WorldWideScience

Sample records for sands dune field

  1. Optical Dating of Holocene Dune Sands in the Ferris Dune Field, Wyoming

    Science.gov (United States)

    Stokes, Stephen; Gaylord, David R.

    1993-05-01

    Optical dating of late Quaternary quartz dune sands from the Clear Creek portion of Ferris dune field, Wyoming, demonstrates the considerable potential of the technique as a chronostratigraphic tool. A sequence of radiocarbon-dated Holocene interdune strata permit optical dating of the intercalated dune sand to be tested; the concordance is good. The optical dates for the aeolian deposits not datable by radiocarbon suggest that aeolian sedimentation at Clear Creek peaked during two relatively short phases at ca. 8500 and 4000 yr B.P. The dates indicate that aeolian accumulation maxima (at least in the Clear Creek area) may not be synchronous with previously defined phases of marked aridity.

  2. Booming Sand Dunes

    Science.gov (United States)

    Vriend, Nathalie

    "Booming" sand dunes are able to produce low-frequency sound that resembles a pure note from a music instrument. The sound has a dominant audible frequency (70-105 Hz) and several higher harmonics and may be heard from far distances away. A natural or induced avalanche from a slip face of the booming dune triggers the emission that may last for several minutes. There are various references in travel literature to the phenomenon, but to date no scientific explanation covered all field observations. This thesis introduces a new physical model that describes the phenomenon of booming dunes. The waveguide model explains the selection of the booming frequency and the amplification of the sound in terms of constructive interference in a confined geometry. The frequency of the booming is a direct function of the dimensions and velocities in the waveguide. The higher harmonics are related to the higher modes of propagation in the waveguide. The experimental validation includes quantitative field research at the booming dunes of the Mojave Desert and Death Valley National Park. Microphone and geophone recordings of the acoustic and seismic emission show a variation of booming frequency in space and time. The analysis of the sensor data quantifies wave propagation characteristics such as speed, dispersion, and nonlinear effects and allows the distinction between the source mechanism of the booming and the booming itself. The migration of sand dunes results from a complicated interplay between dune building, wind regime, and precipitation. The morphological and morphodynamical characteristics of two field locations are analyzed with various geophysical techniques. Ground-penetrating radar images the subsurface structure of the dunes and reveal a natural, internal layering that is directly related to the history of dune migration. The seismic velocity increases abruptly with depth and gradually increases with downhill position due to compaction. Sand sampling shows local

  3. Method of Relating Grain Size Distribution to Hydraulic Conductivity in Dune Sands to Assist in Assessing Managed Aquifer Recharge Projects: Wadi Khulays Dune Field, Western Saudi Arabia

    KAUST Repository

    Lopez Valencia, Oliver Miguel; Jadoon, Khan; Missimer, Thomas

    2015-01-01

    Planning for use of a dune field aquifer for managed aquifer recharge (MAR) requires that hydraulic properties need to be estimated over a large geographic area. Saturated hydraulic conductivity of dune sands is commonly estimated from grain size

  4. The Sources of Moisture in the Sand Dunes – The Example of the Western Sahara Dune Field

    Directory of Open Access Journals (Sweden)

    Żmudzka Elwira

    2014-09-01

    Full Text Available Climatic and meteorological conditions may limit the aeolian transport within barchans. An explanation of that issue was the main goal of the investigation held in Western Sahara dune fields located around Tarfaya and Laâyoune. Particular attention was paid to the factors causing the moisture content rising of the sand dune surface layer, which could influence the wind threshold shear velocity in the aeolian transport. The wetted surface layer of sand, when receiving moisture from precipitation or suspensions, reduces the aeolian transport, even in case of wind velocity above 4-5 m s-1. Fog and dew condensation does not affect the moisture of deeper sand layers, what occurs after rainfall.

  5. Singing Sand Dunes

    Indian Academy of Sciences (India)

    ble low-frequency (s. 75–105 Hz), that can some- times be heard up to 10 km away. Scientific in- vestigations suggest that the sustained low fre- quency sound of sand dunes that resembles a pure note from a musical instrument, is due to the synchronized motion of well-sorted dry sand grains when they spontaneously ...

  6. Sand Dunes with Frost

    Science.gov (United States)

    2004-01-01

    9 May 2004 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a suite of frost-covered sand dunes in the north polar region of Mars in early spring, 2004. The dunes indicate wind transport of sand from left to right (west to east). These landforms are located near 78.1oN, 220.8oW. This picture is illuminated by sunlight from the lower left and covers an area about 3 km (1.9 mi) across.

  7. The role of streamline curvature in sand dune dynamics: evidence from field and wind tunnel measurements

    Science.gov (United States)

    Wiggs, Giles F. S.; Livingstone, Ian; Warren, Andrew

    1996-09-01

    Field measurements on an unvegetated, 10 m high barchan dune in Oman are compared with measurements over a 1:200 scale fixed model in a wind tunnel. Both the field and wind tunnel data demonstrate similar patterns of wind and shear velocity over the dune, confirming significant flow deceleration upwind of and at the toe of the dune, acceleration of flow up the windward slope, and deceleration between the crest and brink. This pattern, including the widely reported upwind reduction in shear velocity, reflects observations of previous studies. Such a reduction in shear velocity upwind of the dune should result in a reduction in sand transport and subsequent sand deposition. This is not observed in the field. Wind tunnel modelling using a near-surface pulse-wire probe suggests that the field method of shear velocity derivation is inadequate. The wind tunnel results exhibit no reduction in shear velocity upwind of or at the toe of the dune. Evidence provided by Reynolds stress profiles and turbulence intensities measured in the wind tunnel suggest that this maintenance of upwind shear stress may be a result of concave (unstable) streamline curvature. These additional surface stresses are not recorded by the techniques used in the field measurements. Using the occurrence of streamline curvature as a starting point, a new 2-D model of dune dynamics is deduced. This model relies on the establishment of an equilibrium between windward slope morphology, surface stresses induced by streamline curvature, and streamwise acceleration. Adopting the criteria that concave streamline curvature and streamwise acceleration both increase surface shear stress, whereas convex streamline curvature and deceleration have the opposite effect, the relationships between form and process are investigated in each of three morphologically distinct zones: the upwind interdune and concave toe region of the dune, the convex portion of the windward slope, and the crest-brink region. The

  8. Field measurements of mean and turbulent airflow over a barchan sand dune

    Science.gov (United States)

    Weaver, Corinne M.; Wiggs, Giles F. S.

    2011-05-01

    Advances in our knowledge of the aeolian processes governing sand dune dynamics have been restricted by a reliance on measures of time-averaged airflow, such as shear velocity ( u*). It has become clear that such measures are incapable of explaining the complete dynamics of sediment transport across dune surfaces. Past evidence from wind tunnel and modelling studies has suggested that in some regions on a dune's surface the sediment transport might be better explained through investigations of the turbulent nature of the airflow. However, to date there have been no field studies providing data on the turbulent characteristics of the airflow around dunes with which to support or refute such hypotheses. The field investigation presented here provides mean and turbulent airflow measurements across the centre-line of a barchan sand dune in Namibia. Data were collected using arrays of sonic anemometers and were compared with sand flux data measured using wedge-shaped traps. Results support previously published data derived from wind tunnels and numerical models. The decline in mean wind velocity at the upwind toe of the dune is shown to coincide with a rise in turbulence, whilst mean velocity acceleration on the upper slope corresponds with a general decline in measured turbulence. Analysis of the components of Reynold shear stress ( -u'¯w'¯) and normal stresses ( u¯ and w2 ¯) supports the notion that the development of flow turbulence along the dune centre-line is likely to be associated with the interplay between streamline curvature and mean flow deceleration/acceleration. It is suggested that, due to the nature of its calculation, turbulence intensity is a measure of less practical use than direct assessments of the individual components of Reynolds stress, particularly the instantaneous horizontal streamwise component ( u2 ¯) and shear stress ( -uw¯). Whilst, increases in Reynolds shear stress and the horizontal streamwise component of stress in the toe

  9. Comparisons of Unconsolidated Sediments Analyzed by APXS (MSL-Curiosity) within Gale Crater, Mars: Soils, Sands of the Barchan and Linear Dunes of the Active Bagnold Dune Field, and Ripple-field Sands.

    Science.gov (United States)

    Thompson, L. M.; O'Connell-Cooper, C.; Spray, J. G.; Gellert, R.; Boyd, N. I.; Desouza, E.

    2017-12-01

    The MSL-APXS has analyzed a variety of unconsolidated sediments within the Gale impact crater, including soils, sands from barchan [High, Namib dunes], and linear dunes [Nathan Bridges, Mount Desert dunes], within the active Bagnold dune field, and sands from two smaller ripple fields ("mega-ripples"). The Gale "soils" (unsorted, unconsolidated sediments, ranging from fine-grained particles (including dust) to coarser "pebbly" material [>2 mm]), are, to a large degree, similar to Martian basaltic soils quantified by APXS, at Gusev crater (MER-A_Spirit) and Meridiani Planum (MER-B_Opportunity). Some local contributions are indicated by, for example, the enriched K levels (relative to a martian average basaltic soil [ABS]) within coarser Gale soil samples, and a Cr, Mn, Fe enrichment within finer-grained samples. Sands (grain size 62 µm to 2 mm) of the Bagnold dunes, generally, exhibit elevated Mg and Ni, indicating enrichment from olivine and pyroxene, but depleted S, Cl and Zn, indicating high activity levels and low dust. Compositional differences, related both to position within a dune (i.e., crest versus off-crest sand), and type of dune (linear versus barchan), are identified. Off-crest sands have Na, Al, Si, K, P contents similar to (or slightly depleted, relative to) the ABS, enrichment in Mg, and low dust content, whilst crest sands contain very high Mg and Ni (relative to the ABS), low felsic elemental concentrations and very low dust content. Cr is significantly enriched (and, to a lesser degree, Mn, Fe, Ti) in the off-crest sands of the linear dunes. In contrast, barchan dunes off-crest sands have Cr, Mn, Fe, and Ti abundances similar to those in the Gale soils. Additionally, Ni concentrations in barchan dunes off-crest sands are enriched relative to the linear dunes. Analyses from a small, isolated "mega-ripple" reveal a composition similar to that of the Gale soils, including a high dust content. The second mega-ripple, within a larger ripple field, is

  10. Modeling aeolian dune and dune field evolution

    Science.gov (United States)

    Diniega, Serina

    Aeolian sand dune morphologies and sizes are strongly connected to the environmental context and physical processes active since dune formation. As such, the patterns and measurable features found within dunes and dune fields can be interpreted as records of environmental conditions. Using mathematical models of dune and dune field evolution, it should be possible to quantitatively predict dune field dynamics from current conditions or to determine past field conditions based on present-day observations. In this dissertation, we focus on the construction and quantitative analysis of a continuum dune evolution model. We then apply this model towards interpretation of the formative history of terrestrial and martian dunes and dune fields. Our first aim is to identify the controls for the characteristic lengthscales seen in patterned dune fields. Variations in sand flux, binary dune interactions, and topography are evaluated with respect to evolution of individual dunes. Through the use of both quantitative and qualitative multiscale models, these results are then extended to determine the role such processes may play in (de)stabilization of the dune field. We find that sand flux variations and topography generally destabilize dune fields, while dune collisions can yield more similarly-sized dunes. We construct and apply a phenomenological macroscale dune evolution model to then quantitatively demonstrate how dune collisions cause a dune field to evolve into a set of uniformly-sized dunes. Our second goal is to investigate the influence of reversing winds and polar processes in relation to dune slope and morphology. Using numerical experiments, we investigate possible causes of distinctive morphologies seen in Antarctic and martian polar dunes. Finally, we discuss possible model extensions and needed observations that will enable the inclusion of more realistic physical environments in the dune and dune field evolution models. By elucidating the qualitative and

  11. Quantifying wind blown landscapes using time-series airborne LiDAR at White Sands Dune Field, New Mexico

    Science.gov (United States)

    Ewing, R. C.

    2011-12-01

    Wind blown landscapes are a default geomorphic and sedimentary environment in our solar system. Wind sand dunes are ubiquitous features on the surfaces of Earth, Mars and Titan and prevalent within the aeolian rock records of Earth and Mars. Dunes are sensitive to environmental and climatic changes and a complete understanding of this system promises a unique, robust and quantitative record of paleoclimate extending to the early histories of these worlds. However, our understanding of how aeolian dune landscapes evolve and how the details of the wind are recorded in cross-strata is limited by our lack of understanding of three-dimensional dune morphodynamics related to changing boundary conditions such as wind direction and magnitude and sediment source area. We use airborne LiDAR datasets over 40 km2 of White Sands Dune Field collected from June 2007, June 2008, January 2009, September 2009 and June 2010 to quantify 1) three-dimensional dune geometries, 2) annual and seasonal patterns of erosion and deposition across dune topography, 3) spatial changes in sediment flux related to position within the field, 4) spatial changes in sediment flux across sinuous crestlines and 5) morphologic changes through dune-dune interactions. In addition to measurements, we use the LiDAR data along with wind data from two near-by weather stations to develop a simple model that predicts depositional and stratigraphic patterns on dune lee slopes. Several challenges emerged using time series LiDAR data sets at White Sands Dune Field. The topography upon which the dunes sit is variable and rises by 16 meters over the length of the dune field. In order to compare individual dune geometries across the field and between data sets a base surface was interpolated from local minima and subtracted from the dune topography. Co-registration and error calculation between datasets was done manually using permanent vegetated features within the active dune field and structures built by the

  12. Water Use for Cultivation Management of Watermelon in Upland Field on Sand Dune

    Science.gov (United States)

    Hashimoto, Iwao; Senge, Masateru; Itou, Kengo; Maruyama, Toshisuke

    Early-maturing cultivation of watermelon in a plastic tunnel was invetigated in upland field on sand dune on the coast of the Japan Sea to find water use to control blowing sand and to transplant seedlings. This region has low precipitation, low humidity, and strong wind in March and April, when sand is readily blown in the field. Water is used to control blowing sand on days with precipitation below 5 mm, minimum humidity below the meteorological average in April, and maximum wind velocity above the meteorological average in April. For the rooting and growth of watermelon seedlings, soil temperature needs to be raised because it is low in April. Ridges are mulched with transparent, porous polyethylene films 10 or more days before transplanting the seedlings and irrigated with sprinklers on fine days for the thermal storage of solar energy. The stored heat steams the mulched ridges to raise soil temperature to 15°C or higher on the day of transplanting the seedlings. The total amount of irrigation water used for watermelon cultivation was 432.7 mm, of which 23.6 mm was for blowing sand control and 26.6 mm was for transplanting the seedlings. The combined amount, 50.2 mm, is 11.6% of the total amount of water used for cultivation management.

  13. Visible/near-infrared spectral diversity from in situ observations of the Bagnold Dune Field sands in Gale Crater, Mars

    Science.gov (United States)

    Johnson, Jeffrey R.; Achilles, Cherie; Bell, James F.; Bender, Steve; Cloutis, Edward; Ehlmann, Bethany; Fraeman, Abigail; Gasnault, Olivier; Hamilton, Victoria E.; Le Mouélic, Stéphane; Maurice, Sylvestre; Pinet, Patrick; Thompson, Lucy; Wellington, Danika; Wiens, Roger C.

    2017-12-01

    As part of the Bagnold Dune campaign conducted by Mars Science Laboratory rover Curiosity, visible/near-infrared reflectance spectra of dune sands were acquired using Mast Camera (Mastcam) multispectral imaging (445-1013 nm) and Chemistry and Camera (ChemCam) passive point spectroscopy (400-840 nm). By comparing spectra from pristine and rover-disturbed ripple crests and troughs within the dune field, and through analysis of sieved grain size fractions, constraints on mineral segregation from grain sorting could be determined. In general, the dune areas exhibited low relative reflectance, a weak 530 nm absorption band, an absorption band near 620 nm, and a spectral downturn after 685 nm consistent with olivine-bearing sands. The finest grain size fractions occurred within ripple troughs and in the subsurface and typically exhibited the strongest 530 nm bands, highest relative reflectances, and weakest red/near-infrared ratios, consistent with a combination of crystalline and amorphous ferric materials. Coarser-grained samples were the darkest and bluest and exhibited weaker 530 nm bands, lower relative reflectances, and stronger downturns in the near-infrared, consistent with greater proportions of mafic minerals such as olivine and pyroxene. These grains were typically segregated along ripple crests and among the upper surfaces of grain flows in disturbed sands. Sieved dune sands exhibited progressive decreases in reflectance with increasing grain size, as observed in laboratory spectra of olivine size separates. The continuum of spectral features observed between the coarse- and fine-grained dune sands suggests that mafic grains, ferric materials, and air fall dust mix in variable proportions depending on aeolian activity and grain sorting.

  14. Method of Relating Grain Size Distribution to Hydraulic Conductivity in Dune Sands to Assist in Assessing Managed Aquifer Recharge Projects: Wadi Khulays Dune Field, Western Saudi Arabia

    Directory of Open Access Journals (Sweden)

    Oliver M. Lopez

    2015-11-01

    Full Text Available Planning for use of a dune field aquifer for managed aquifer recharge (MAR requires that hydraulic properties need to be estimated over a large geographic area. Saturated hydraulic conductivity of dune sands is commonly estimated from grain size distribution data by employing some type of empirical equation. Over 50 samples from the Wadi Khulays dune field in Western Saudi Arabia were collected and the grain size distribution, porosity, and hydraulic conductivity were measured. An evaluation of 20 existing empirical equations showed a generally high degree of error in the predicted compared to the measured hydraulic conductivity values of these samples. Statistical analyses comparing estimated versus measured hydraulic conductivity demonstrated that there is a significant relationship between hydraulic conductivity and mud percentage (and skewness. The modified Beyer equation, which showed a generally low prediction error, was modified by adding a second term fitting parameter related to the mud concentration based on 25 of the 50 samples analyzed. An inverse optimization process was conducted to quantify the fitting parameter and a new empirical equation was developed. This equation was tested against the remaining 25 samples analyzed and produced an estimated saturated hydraulic conductivity with the lowest error of any empirical equation. This methodology can be used for large dune field hydraulic conductivity estimation and reduce planning costs for MAR systems.

  15. Method of Relating Grain Size Distribution to Hydraulic Conductivity in Dune Sands to Assist in Assessing Managed Aquifer Recharge Projects: Wadi Khulays Dune Field, Western Saudi Arabia

    KAUST Repository

    Lopez Valencia, Oliver Miguel

    2015-11-12

    Planning for use of a dune field aquifer for managed aquifer recharge (MAR) requires that hydraulic properties need to be estimated over a large geographic area. Saturated hydraulic conductivity of dune sands is commonly estimated from grain size distribution data by employing some type of empirical equation. Over 50 samples from the Wadi Khulays dune field in Western Saudi Arabia were collected and the grain size distribution, porosity, and hydraulic conductivity were measured. An evaluation of 20 existing empirical equations showed a generally high degree of error in the predicted compared to the measured hydraulic conductivity values of these samples. Statistical analyses comparing estimated versus measured hydraulic conductivity demonstrated that there is a significant relationship between hydraulic conductivity and mud percentage (and skewness). The modified Beyer equation, which showed a generally low prediction error, was modified by adding a second term fitting parameter related to the mud concentration based on 25 of the 50 samples analyzed. An inverse optimization process was conducted to quantify the fitting parameter and a new empirical equation was developed. This equation was tested against the remaining 25 samples analyzed and produced an estimated saturated hydraulic conductivity with the lowest error of any empirical equation. This methodology can be used for large dune field hydraulic conductivity estimation and reduce planning costs for MAR systems.

  16. Provenance of Coastal dune sands along Red Sea, Egypt

    Indian Academy of Sciences (India)

    26

    accumulation of sands behind vegetation or any other obstacles. ... The study areas Safaga (SF) and Quseir (QS) field dunes (Fig. 1) ..... coastal dune sands were deposited in a passive margin of a synrift .... Sed Petrol 63(6), 1110-1117.

  17. Sand dune tracking from satellite laser altimetry

    Science.gov (United States)

    Dabboor, Mohammed

    Substantial problems arise from sand movement in arid and semi-arid countries. Sand poses a threat to infrastructure, agricultural and urban areas. These issues are caused by the encroachment of sand on roads and railway tracks, farmland, towns and villages, and airports, to name a few. Sand movement highly depends on geomorphology including vegetation cover, shape and height of the terrain, and grain size of the sand. However, wind direction and speed are the most important factors that affect efficient sand movement. The direction of the movement depends on the main direction of the wind, but it has been shown that a minimum wind speed is required, e.g. wind gusts, to initiate sand transport. This fact prevents a simple calculation of sand transport from conventional wind data as wind records rarely contain sub-minute intervals masking out any wind gusts. An alternative of predicting sand transport is the direct observation of sand advance by in situ measurements or via satellite. Until recently, satellite imagery was the only means to compare dune shape and position for predicting dune migration over several years. In 2003, the NASA laser altimetry mission ICESat became operational and monitors elevations over all surface types including sand dunes with an accuracy of about 10-20 cm. In this study, ICESat observations from repeat tracks (tracks overlapping eachother within 50 m) are used to derive sand dune advance and direction. The method employs a correlation of the elevation profiles over several dunes and was sucessfully validated with synthetic data. The accuracy of this method is 5 meters of dune advance. One of the most active areas exhibiting sand and dune movement is the area of the Arabian Peninsula. Approximately one-third of the Arabian Peninsula is covered by sand dunes. Different wind regimes (Shamal, Kaus) cause sand dune movement in the selected study area in the eastern part of the Arabian Peninsula between 20-25 degrees North and 45-55 degrees

  18. Insights from Askja sand sheet, Iceland, as a depositional analogue for the Bagnold Dune Field, Gale Crater, Mars.

    Science.gov (United States)

    Ukstins, I.; Sara, M.; Riishuus, M.; Schmidt, M. E.; Yingst, R. A.; Berger, J.

    2017-12-01

    Examining the compositional effect of aeolian transport and sorting processes on basaltic sands is significant for understanding the evolution of the Bagnold dune field, as well as other martian soils and sedimentary units. We use the Askja sand sheet, Iceland, as a testbed to quantify the nature of soil production and aeolian transport processes in a mafic system. Basalts from Askja and surrounding volcanic units, which can have high MgO (5-18 wt %) and high Fe2O3 (5-18 wt %), have been weathered to form mafic volcaniclastic deposits which are incorporated into a 40-km long sand sheet to the E-SE of the caldera, ranging from 10 cm to 10 m thick, and covering 240 km2. Ash and lava from the 2014-2015 Holuhraun eruption were emplaced onto the southeastern part of the sand sheet. The SW section is deflationary and defined by very fine to medium grained basaltic sand with ventifact cobbles and boulders. The central part is inflating and dominated by very fine-grained sand, relict lava fields, and small to large sand ripples (1 to 30 cm). The NE portion is also inflating but accumulation is limited to topographic depressions. Bulk chemistry of >200 sand samples are similar to Martian crust (SiO2: 48-52 wt %, MgO: 5-8 wt %, Fe2O3: 13-15 wt %). MgO concentrations vary with distance along the sand sheet, increasing by 1.5% over 10 km in the downwind direction (E, NE), then maintaining a relatively consistent concentration of 6.75 wt % over 18 km. Mean equancy of grains decreases 15 % to the E over 10 km followed by a plateau at 65 to 75 %. Material at depth tends to be of higher sphericity than material on or near the surface. Notably, MgO increases while the sphericity decreases and both data sets level off at 10 km, which suggests these two variables are related. These indicate input of material with prismoidal morphology around 10 km, and may be due to the Holuhraun eruption.

  19. Mineralogy and Genesis of Heavy Minerals in Coastal Dune Sands, South Eastern Qatar

    OpenAIRE

    Nasir, Sobhi J. [صبحي جابر نصر; El-Kassas, Ibrahim A.; Sadiq, A. Ali M.

    1999-01-01

    Large amounts of aeolian sand occur in the southeastern coastal zone of Qatar Peninsula as sand dunes accumulated in a vast sand field locally called " Niqyan Qatar ". The present work, carried out on a sand dune belt of this field near Mesaied Industrial City, revealed the distribution of heavy minerals shows a regional variability induced by provenance and local variability reflecting genetic differences. The studied dune sands are rich in shells of pelecypods, with the light mineral assemb...

  20. Size distribution and structure of Barchan dune fields

    Directory of Open Access Journals (Sweden)

    O. Durán

    2011-07-01

    Full Text Available Barchans are isolated mobile dunes often organized in large dune fields. Dune fields seem to present a characteristic dune size and spacing, which suggests a cooperative behavior based on dune interaction. In Duran et al. (2009, we propose that the redistribution of sand by collisions between dunes is a key element for the stability and size selection of barchan dune fields. This approach was based on a mean-field model ignoring the spatial distribution of dune fields. Here, we present a simplified dune field model that includes the spatial evolution of individual dunes as well as their interaction through sand exchange and binary collisions. As a result, the dune field evolves towards a steady state that depends on the boundary conditions. Comparing our results with measurements of Moroccan dune fields, we find that the simulated fields have the same dune size distribution as in real fields but fail to reproduce their homogeneity along the wind direction.

  1. Invasive plants on disturbed Korean sand dunes

    Science.gov (United States)

    Kim, Kee Dae

    2005-01-01

    The sand dunes in coastal regions of South Korea are important ecosystems because of their small size, the rare species found in this habitat, and the beautiful landscapes they create. This study investigated the current vegetative status of sand dunes on three representative coasts of the Korean peninsula, and on the coasts of Cheju Island, and assessed the conditions caused by invasive plants. The relationships between the degree of invasion and 14 environmental variables were studied. Plots of sand dunes along line transects perpendicular to the coastal lines were established to estimate vegetative species coverage. TWINSPAN (Two-Way Indicator Species Analysis), CCA (Canonical Correspondence Analysis), and DCCA (Detrended Canonical Correspondence Analysis) were performed to classify communities on sand dunes and assess species composition variation. Carex kobomugi, Elymus mollis, and Vitex rotundifolia were found to be the dominant species plotted on the east, the west, and the peripheral coasts of Cheju Island, respectively. Vegetation on the south coast was totally extinct. The 19 communities, including representative C. kobomugi, C. kobomugi- Ixeris repens, C. kobomugi- Oenothera biennis, E. mollis, Lolium multiflorum- Calystegia soldanella, and V. rotundifolia- C. kobomugi, were all classified according to TWINSPAN. Oenothera biennis and L. multiflorum were exotics observed within these native communities. CCA showed that invasive native and exotic species distribution was segregated significantly, according to disturbance level, exotic species number, gravel, sand and silt contents, as well as vegetation size. It further revealed that human disturbance can strongly favor the settlement of invasive and exotic species. Restoration options to reduce exotic plants in the South Korean sand dune areas were found to be the introduction of native plant species from one sand dune into other sand dune areas, prohibition of building and the introduction of exotic

  2. Sand transportation and reverse patterns over leeward face of sand dune

    Science.gov (United States)

    Jiang, Hong; Dun, Hongchao; Tong, Ding; Huang, Ning

    2017-04-01

    Sand saltation has complex interactions with turbulent flow and dune form. Most models of wind-blown sand consider ideal circumstances such as steady wind velocity and a flat surface, and the bulk of data on wind flow and sand transport over an individual dune has focused mostly on the influence of dune shape or inter-dune space on the wind flow, neglecting the effect of morphology on sand saltation, particularly airflow and sand transportation over the leeward slope. Wind flow structures over the leeward slope of sand dunes have a fundamental influence on the organization of sand dunes. In order to understand sand dune dynamics, lee face airflow and sediment transportation should be paid more attention. Previous field observations could not measure turbulent flow structure well because of the limited observation points and the influence of experiment structure on wind field. In addition, the reverse sand particles over leeward face could not be collected by sand trap in field. Numerous field observations could not measure turbulent flow structure because of the limited observation points and the influence of experimental structures on the wind field. In addition, the reverse transport of sand particles over leeward face could not be collected by sand traps in field. Therefore, this paper aims to investigate the turbulent flow structure and sand transport pattern over the leeward slope. A numerical model of sand saltation over slope terrain is constructed, which also considers the coupling effects between air flow and sand particles. The large eddy simulation method is used to model turbulent flow. Sand transport is simulated by tracking the trajectory of each sand particle. The results show that terrain significantly alters the turbulent air flow structure and wind-blown sand movement, especially over the leeward slope. Here, mass flux increases initially and then decreases with height in the reversed flow region in the direction of wind flow, and the mass flux

  3. Microbial Characterization of Qatari Barchan Sand Dunes.

    Directory of Open Access Journals (Sweden)

    Sara Abdul Majid

    Full Text Available This study represents the first characterization of sand microbiota in migrating barchan sand dunes. Bacterial communities were studied through direct counts and cultivation, as well as 16S rRNA gene and metagenomic sequence analysis to gain an understanding of microbial abundance, diversity, and potential metabolic capabilities. Direct on-grain cell counts gave an average of 5.3 ± 0.4 x 105 cells g-1 of sand. Cultured isolates (N = 64 selected for 16S rRNA gene sequencing belonged to the phyla Actinobacteria (58%, Firmicutes (27% and Proteobacteria (15%. Deep-sequencing of 16S rRNA gene amplicons from 18 dunes demonstrated a high relative abundance of Proteobacteria, particularly enteric bacteria, and a dune-specific-pattern of bacterial community composition that correlated with dune size. Shotgun metagenome sequences of two representative dunes were analyzed and found to have similar relative bacterial abundance, though the relative abundances of eukaryotic, viral and enterobacterial sequences were greater in sand from the dune closer to a camel-pen. Functional analysis revealed patterns similar to those observed in desert soils; however, the increased relative abundance of genes encoding sporulation and dormancy are consistent with the dune microbiome being well-adapted to the exceptionally hyper-arid Qatari desert.

  4. Estimation of sand dune thickness using a vertical velocity profile

    International Nuclear Information System (INIS)

    Al-Shuhail, Abdullatif A.

    2004-01-01

    Previous field and mathematical studies have shown that sand dunes may have vertical velocity profiles (i.e. continuous increase of velocity with depth). Therefore, computing the dunes thickness using conventional seismic refraction methods that assume a vertically homogeneous layer will likely produce some errors. The purpose of this study is to quantify the effect of the vertical velocity profile in a sand dune on the process of thickness estimation using seismic refraction data. First, the time distance (T-X) data of the direct wave in the dune is calculated using a vertical velocity profile, V (z), derived from Hertz-Mindlin contact theory. Then the thickness is estimated from the calculated T-X data, intercept time and velocity of the refractor at the dune's base assuming a constant velocity in the dune. The error in the estimated thickness due to the constant-velocity assumption increases with increasing thickness and decreasing porosity of the dune. For sand dunes with porosities greater than 0.2 and thickness less than 200 meter, the error is less than 15%. (author)

  5. Transient Electromagnetic Soundings Near Great Sand Dunes National Park and Preserve, San Luis Valley, Colorado (2006 Field Season)

    Science.gov (United States)

    Fitterman, David V.; de Sozua Filho, Oderson A.

    2009-01-01

    Time-domain electromagnetic (TEM) soundings were made near Great Sand Dunes National Park and Preserve in the San Luis Valley of southern Colorado to obtain subsurface information of use to hydrologic modeling. Seventeen soundings were made to the east and north of the sand dunes. Using a small loop TEM system, maximum exploration depths of about 75 to 150 m were obtained. In general, layered earth interpretations of the data found that resistivity decreases with depth. Comparison of soundings with geologic logs from nearby wells found that zones logged as having increased clay content usually corresponded with a significant resistivity decrease in the TEM determined model. This result supports the use of TEM soundings to map the location of the top of the clay unit deposited at the bottom of the ancient Lake Alamosa that filled the San Luis Valley from Pliocene to middle Pleistocene time.

  6. Ecogeomorphology of Sand Dunes Shaped by Vegetation

    Science.gov (United States)

    Tsoar, H.

    2014-12-01

    Two dune types associated with vegetation are known: Parabolic and Vegetated Linear Dunes (VLDs), the latters are the dominant dune type in the world deserts. Parabolic dunes are formed in humid, sub-humid and semi-arid environments (rather than arid) where vegetation is nearby. VLDs are known today in semiarid and arid lands where the average yearly rainfall is ≥100 mm, enough to support sparse cover of vegetation. These two dune types are formed by unidirectional winds although they demonstrate a different form and have a distinct dynamics. Conceptual and mathematical models of dunes mobility and stability, based on three control parameters: wind power (DP), average annual precipitation (p), and the human impact parameter (μ) show that where human impact is negligible the effect of wind power (DP) on vegetative cover is substantial. The average yearly rainfall of 60-80 mm is the threshold of annual average rainfall for vegetation growth on dune sand. The model is shown to follow a hysteresis path, which explains the bistability of active and stabilized dunes under the same climatic conditions with respect to wind power. We have discerned formation of parabolic dunes from barchans and transverse dunes in the coastal plain of Israel where a decrease in human activity during the second half of the 20th century caused establishment of vegetation on the crest of the dunes, a process that changed the dynamics of these barchans and transverse dunes and led to a change in the shape of the windward slope from convex to concave. These dunes gradually became parabolic. It seems that VLDs in Australia or the Kalahari have always been vegetated to some degree, though the shrubs were sparser in colder periods when the aeolian erosion was sizeable. Those ancient conditions are characterized by higher wind power and lower rainfall that can reduce, but not completely destroy, the vegetation cover, leading to the formation of lee (shadow) dunes behind each shrub. Formation of

  7. Vegetated dune morphodynamics during recent stabilization of the Mu Us dune field, north-central China

    Science.gov (United States)

    Xu, Zhiwei; Mason, Joseph A.; Lu, Huayu

    2015-01-01

    The response of dune fields to changing environmental conditions can be better understood by investigating how changing vegetation cover affects dune morphodynamics. Significant increases in vegetation and widespread dune stabilization over the years 2000-2012 are evident in high-resolution satellite imagery of the Mu Us dune field in north-central China, possibly a lagged response to changing wind strength and temperature since the 1970s. These trends provide an opportunity to study how dune morphology changes with increasing vegetation stabilization. Vegetation expansion occurs mainly by expansion of pre-existing patches in interdunes. As vegetation spreads from interdunes onto surrounding dunes, it modifies their shapes in competition with wind-driven sand movement, primarily in three ways: 1) vegetation anchoring horns of barchans transforms them to parabolic dunes; 2) vegetation colonizes stoss faces of barchan and transverse dunes, resulting in lower dune height and an elongated stoss face, with shortening of barchan horns; and 3) on transverse dunes, the lee face is fixed by plants that survive sand burial. Along each of these pathways of stabilization, dune morphology tends to change from more barchanoid to more parabolic forms, but that transformation is not always completed before full stabilization. Artificial stabilization leads to an extreme case of "frozen" barchans or transverse dunes with original shapes preserved by rapid establishment of vegetation. Observations in the Mu Us dune field emphasize the point that vegetation growth and aeolian sand transport not only respond to external factors such as climate but also interact with each other. For example, some barchans lose sand mass during vegetation fixation, and actually migrate faster as they become smaller, and vegetation growth on a barchan's lower stoss face may alter sand transport over the dune in a way that favors more rapid stabilization. Conceptual models were generalized for the

  8. Origin of the late quaternary dune fields of northeastern Colorado

    Science.gov (United States)

    Muhs, D.R.; Stafford, T.W.; Cowherd, S.D.; Mahan, S.A.; Kihl, R.; Maat, P.B.; Bush, C.A.; Nehring, J.

    1996-01-01

    Stabilized eolian deposits, mostly parabolic dunes and sand sheets, cover much of the landscape of northeastern Colorado and adjacent parts of southwestern Nebraska in four geographically distinct dune fields. Stratigraphic and soil-geomorphic relations and accelerator radiocarbon dating indicate that at least three episodes of eolian sand movement occurred between 27 ka and 11 ka, possibly between 11 ka and 4 ka, and within the past 1.5 ka. Thus, eolian sand deposition took place under both glacial and interglacial climatic conditions. In the youngest episodes of eolian sand movement, Holocene parabolic dunes partially buried Pleistocene sand sheet deposits. Late Holocene sands in the Fort Morgan and Wray dune fields, to the south of the South Platte River, have trace element ratios that are indistinguishable from modern South Platte River sands, but different from Ogallala Formation bedrock, which has previously been cited as the main source of dune sand on the Great Plains. Sands in the Greeley dune field, to the north of the South Platte River, have trace element concentrations that indicate a probable Laramie Formation source. Measurements of parabolic dunes indicate paleowinds from the northwest in all dune fields, in good agreement with resultant drift directions calculated for nearby weather stations. Thus, paleowinds were probably not significantly different from present-day winds, and are consistent with a South Platte River source for the Fort Morgan and Wray dune fields, and a Laramie Formation source for the Greeley dune field. Sand accumulated downwind of the South Platte River to form the Fort Morgan dune field. In addition, sand was also transported farther downwind over the upland formed by the calcrete caprock of the Ogallala Formation, and deposited in die lee of the upland on the southeast side. Because of high wind energy, the upland itself served as a zone of sand transport, but little or no sand accumulation took place on this surface. These

  9. Measurements of Dune Parameters on Titan Suggest Differences in Sand Availability

    Science.gov (United States)

    Stewart, Brigitte W.; Radebaugh, Jani

    2014-11-01

    The equatorial region of Saturn’s moon Titan has five large sand seas with dunes similar to large linear dunes on Earth. Cassini Radar SAR swaths have high enough resolution (300 m) to measure dune parameters such as width and spacing, which helps inform us about formation conditions and long-term evolution of the sand dunes. Previous measurements in locations scattered across Titan have revealed an average width of 1.3 km and spacing of 2.7 km, with variations by location. We have taken over 1200 new measurements of dune width and spacing in the T8 swath, a region on the leading hemisphere of Titan in the Belet Sand Sea, between -5 and -9 degrees latitude. We have also taken over 500 measurements in the T44 swath, located on the anti-Saturn hemisphere in the Shangri-La Sand Sea, between 0 and 20 degrees latitude. We correlated each group of 50 measurements with the average distance from the edge of the dune field to obtain an estimate of how position within a dune field affects dune parameters. We found that in general, the width and spacing of dunes decreases with distance from the edge of the dune field, consistent with similar measurements in sand seas on Earth. We suggest that this correlation is due to the lesser availability of sand at the edges of dune fields. These measurements and correlations could be helpful in determining differences in sand availability across different dune fields, and along the entire equatorial region of Titan.

  10. The influence of groundwater depth on coastal dune development at sand flats close to inlets

    Science.gov (United States)

    Silva, Filipe Galiforni; Wijnberg, Kathelijne M.; de Groot, Alma V.; Hulscher, Suzanne J. M. H.

    2018-05-01

    A cellular automata model is used to analyze the effects of groundwater levels and sediment supply on aeolian dune development occurring on sand flats close to inlets. The model considers, in a schematized and probabilistic way, aeolian transport processes, groundwater influence, vegetation development, and combined effects of waves and tides that can both erode and accrete the sand flat. Next to three idealized cases, a sand flat adjoining the barrier island of Texel, the Netherlands, was chosen as a case study. Elevation data from 18 annual LIDAR surveys was used to characterize sand flat and dune development. Additionally, a field survey was carried out to map the spatial variation in capillary fringe depth across the sand flat. Results show that for high groundwater situations, sediment supply became limited inducing formation of Coppice-like dunes, even though aeolian losses were regularly replenished by marine import during sand flat flooding. Long dune rows developed for high sediment supply scenarios which occurred for deep groundwater levels. Furthermore, a threshold depth appears to exist at which the groundwater level starts to affect dune development on the inlet sand flat. The threshold can vary spatially depending on external conditions such as topography. On sand flats close to inlets, groundwater is capable of introducing spatial variability in dune growth, which is consistent with dune development patterns found on the Texel sand flat.

  11. CFD evaluation of erosion rate around a bridge near a sand dune

    Science.gov (United States)

    He, Wei; Huang, Ning; Dun, Hongchao; Wang, Wenbo

    2017-04-01

    This study performs a series of simulations through solving the Navier-Stokes equations and the RNG k-ε turbulence model to investigate the wind erosion rates around a bridge in a desert area with sand dunes. The digital elevation model of sand dunes and the bridge model are obtained respectively from hypsographic map and construction drawings. Through combining them into the CFD software of Fluent the simulation zone was formed. The data of wind speed obtained from field observation is fitted into a logarithm format, which was imported into Fluent model as a inlet wind speed condition. Then, the effect of Dun-Go railway on wind-blown sand movement of the neighbouring environment is simulated. The results exhibit that affected by both the sand dune and bridge, the flow field is in a complex condition. It is also shown that the bridge in upstream of the sand dune will not increase the sand transport rate intensively, but change both wind velocity gradient and turbulence kinetic energy over surface of sand dune. On the other hand, when the bridge is built downstream the sand dune, simulation results show that sand deposition rate would be decreased in reference region downstream the pier.

  12. Sediment Source Fingerprinting of the Lake Urmia Sand Dunes.

    Science.gov (United States)

    Ahmady-Birgani, Hesam; Agahi, Edris; Ahmadi, Seyed Javad; Erfanian, Mahdi

    2018-01-09

    Aeolian sand dunes are continuously being discovered in inner dry lands and coastal areas, most of which have been formed over the Last Glacial Maximum. Presently, due to some natural and anthropogenic implications on earth, newly-born sand dunes are quickly emerging. Lake Urmia, the world's second largest permanent hypersaline lake, has started shrinking, vast lands comprising sand dunes over the western shore of the lake have appeared and one question has been playing on the minds of nearby dwellers: where are these sand dunes coming from, What there was not 15 years ago!! In the present study, the determination of the source of the Lake Urmia sand dunes in terms of the quantifying relative contribution of each upstream geomorphological/lithological unit has been performed using geochemical fingerprinting techniques. The findings demonstrate that the alluvial and the fluvial sediments of the western upstream catchment have been transported by water erosion and they accumulated in the lower reaches of the Kahriz River. Wind erosion, as a secondary agent, have carried the aeolian sand-sized sediments to the sand dune area. Hence, the Lake Urmia sand dunes have been originating from simultaneous and joint actions of alluvial, fluvial and aeolian processes.

  13. Holocene eolian activity in the Minot dune field, North Dakota

    Science.gov (United States)

    Muhs, D.R.; Stafford, Thomas W.; Been, J.; Mahan, S.A.; Burdett, J.; Skipp, G.; Rowland, Z.M.

    1997-01-01

    Stabilized eolian sand is common over much of the Great Plains region of the United States and Canada, including a subhumid area of ??? 1500 km2 near Minot, North Dakota. Eolian landforms consist of sand sheets and northwest-trending parabolic dunes. Dunes and sand sheets in the Minot field are presently stabilized by a cover of prairie grasses or oak woodland. Stratigraphic studies and accelerator mass spectrometry radiocarbon dating of paleosols indicate at least two periods of eolian sand movement in the late Holocene. Pedologic data suggest that all of the dune field has experienced late Holocene dune activity, though not all parts of the dune field may have been active simultaneously. Similar immobile element (Ti, Zr, La, Ce) concentrations support the interpretation that eolian sands are derived from local glaciofluvial and glaciolacustrine sediments. However, glaciolacustrine and glaciofluvial source sediments have high Ca concentrations from carbonate minerals, whereas dune sands are depleted in Ca. Because noneolian-derived soils in the area are calcareous, these data indicate that the Minot dune field may have had extended periods of activity in the Holocene, such that eolian abrasion removed soft carbonate minerals. The southwest-facing parts of some presently stabilized dunes were active during the 1930s drought, but were revegetated during the wetter years of the 1940s. These observations indicate that severe droughts accompanied by high temperatures are the most likely cause of Holocene eolian activity.

  14. Effects of prolonged drought on the vegetation cover of sand dunes in the NW Negev Desert: Field survey, remote sensing and conceptual modeling

    Science.gov (United States)

    Siegal, Z.; Tsoar, H.; Karnieli, A.

    2013-06-01

    Luminescence dating of stable sand dunes in the large deserts of the world has shown several episodes of mobility during the last 30 k years. The logical explanation for the mobility of fixed dunes is severe drought. Though drought length can be estimated, the level of precipitation drop is unknown. The stabilized sand dunes of the northwestern Negev Desert, Israel have been under an unprecedented prolonged drought since 1995. This has resulted in a vast decrease of shrubs cover on the fixed sand dunes, which changes along the rainfall gradient. In the north, an average of 27% of the shrubs had wilted by 2009, and in the drier southern area, 68% of the shrubs had withered. This loss of shrubbery is not expected to induce dune remobilization because the existing bio-crust cover is not negatively affected by the drought. Eleven aerial photographs taken over the drier southern area from 1956 to 2005 show the change in shrub cover due to human impact and the recent severe drought.

  15. Experimental Measurement of Diffusive Extinction Depth and Soil Moisture Gradients in Southwestern Saudi Arabian Dune Sand

    KAUST Repository

    Mughal, Iqra

    2013-05-01

    In arid lands, a major contribution to water loss is by soil water evaporation. Desert sand dunes in arid regions are devoid of runoff and have high rates of infiltration. Rainwater is commonly stored within them because of the low permeability soils in the underlying desert pavement. In such cases, moisture is confined in the sand dune below a depth, termed as the “extinction depth”, where it is protected from evaporation during long dry periods. Moreover, desert sand dunes have sparse vegetation, which results in low transpiration losses from the stored water. The water accumulated below the extinction depth of the sand dunes can be utilized for various purposes such as in irrigation to support desert agriculture. In this study, field experiments were conducted in Western Saudi Arabia to monitor the soil moisture gradients and determine the diffusive extinction depth of dune sand. The dune sand was saturated with water and was exposed to natural conditions (evaporation and precipitation). The decline of the water level in the sand column was continuously recorded using transducers and sensors installed at different depths monitored the temporal variation of temperature and moisture content within the sand. The hydrological simulator HYDRUS-1D was used to construct the vertical profiles of soil water content and temperature and the results obtained from HYDRUS-1D were compared to the gradients monitored by the sensors.

  16. Effects of sand fences on coastal dune vegetation distribution

    Science.gov (United States)

    Grafals-Soto, Rosana

    2012-04-01

    Sand fences are important human adjustments modifying the morphology of developed shores. The effects of sand fences on sediment transport and deposition in their initial stages have been well studied, but little is known about the effect of deteriorated sand fences that have become partially buried low scale barriers within the dune, potentially benefiting vegetation growth by protecting it from onshore stress. Data on vegetation, topography and fence characteristics were gathered at three dune sites in Ocean City, New Jersey on September 2007 and March 2008 to evaluate the effect of fences within the dune on vegetation distribution. Variables include: distance landward of dune toe, degree of sheltering from onshore stressors, net change in surface elevation (deposition or erosion), vegetation diversity and density, presence of remnant fence, and distance landward of fence. Results for the studied environment reveal that 1) vegetation diversity or density does not increase near remnant fences because most remnants are lower than average vegetation height and can not provide shelter; but 2) vegetation distribution is related to topographic variables, such as degree of sheltering, that are most likely the result of sand accretion caused by fence deployment. Fence deployment that prioritizes the creation of topographically diverse dunes within a restricted space may increase the diversity and density of the vegetation, and the resilience and value of developed dunes. Managers should consider the benefits of using sand fences on appropriately wide beaches to create a protective dune that is also diverse, functional and better able to adapt to change.

  17. Factors influencing the natural regeneration of the pioneering shrub Calligonum mongolicum in sand dune stabilization plantations in arid deserts of northwest China.

    Science.gov (United States)

    Fan, Baoli; McHugh, Allen David; Guo, Shujiang; Ma, Quanlin; Zhang, Jianhui; Zhang, Xiaojuan; Zhang, Weixing; Du, Juan; Yu, Qiushi; Zhao, Changming

    2018-03-01

    Calligonum mongolicum is a successful pioneer shrub to combat desertification, which is widely used for vegetation restoration in the desert regions of northwest China. In order to reveal the limitations to natural regeneration of C. mongolicum by asexual and sexual reproduction, following the process of sand dune stabilization, we assessed clonal shoots, seedling emergence, soil seed bank density, and soil physical characteristics in mobile and stabilized sand dunes. Controlled field and pot experiments were also conducted to assess germination and seedling emergence in different dune soil types and seed burial depths. The population density of mature C. mongolicum was significantly different after sand dune stabilization. Juvenile density of C. mongolicm was much lower in stabilized sand dunes than mobile sand dune. There was no significant difference in soil seed bank density at three soil depths between mobile and stabilized sand dunes, while the emergence of seedlings in stabilized dunes was much lower than emergence in mobile dunes. There was no clonal propagation found in stabilized dunes, and very few C. mongolicum seedlings were established on stabilized sand dunes. Soil clay and silt content, air-filled porosity, and soil surface compaction were significantly changed from mobile sand dune to stabilized dunes. Seedling emergence of C. mongolicm was highly dependent on soil physical condition. These results indicated that changes in soil physical condition limited clonal propagation and seedling emergence of C. mongolicum in stabilized sand dunes. Seed bank density was not a limiting factor; however, poor seedling establishment limited C. mongolicum's further natural regeneration in stabilized sand dunes. Therefore, clonal propagation may be the most important mode for population expansion in mobile sand dunes. As a pioneer species C. mongolicum is well adapted to propagate in mobile sand dune conditions, it appears unlikely to survive naturally in

  18. Properties of dune sand concrete containing coffee waste

    Directory of Open Access Journals (Sweden)

    Mohamed Guendouz

    2018-01-01

    Full Text Available In the last years, an increase of coffee beverages consumption has been observed all over the world; and its consumption increases the waste coffee grounds which will become an environmental problems. Recycling of this waste to produce new materials like sand concrete appears as one of the best solutions for reduces the problem of pollution. This work aims to study the possibility of recycling waste coffee grounds (Spent Coffee Grounds (SCG as a fine aggregate by replacing the sand in the manufacturing of dune sand concrete. For this; sand concrete mixes were prepared with substitution of sand with the spent coffee grounds waste at different percentage (0%, 5%, 10%, 15% and 20% by volume of the sand in order to study the influence of this wastes on physical (Workability, bulk density and porosity, mechanical (compressive and flexural strength and Thermal (Thermal conductivity and thermal diffusivity properties of dune sand concrete. The results showed that the use of spent coffee grounds waste as partial replacement of natural sand contributes to reduce workability, bulk density and mechanical strength of sand concrete mixes with an increase on its porosity. However, the thermal characteristics are improved and especially for a level of 15% and 20% of substitution. So, it is possible to obtain an insulating material which can be used in the various types of structural components. This study ensures that reusing of waste coffee grounds in dune sand concrete gives a positive approach to reduce the cost of materials and solve some environmental problems.

  19. Sand dune movement in the Victoria Valley, Antarctica

    Science.gov (United States)

    Bourke, Mary C.; Ewing, Ryan C.; Finnegan, David; McGowan, Hamish A.

    2009-08-01

    We use vertical aerial photographs and LiDAR topographic survey data to estimate dune migration rates in the Victoria Valley dunefield, Antarctica, between 1961 and 2001. Results confirm that the dunes migrated an average of 1.5 m/year. These values are consistent with other estimates of dune migration from cold climate deserts and are significantly lower than estimates from warm deserts. Dune migration rates are retarded by the presence of entrained ice, soil moisture and a reversing wind regime. Dune absorption, merging and limb extension are apparent from the time-series images and account for significant changes in dune form and the field-scale dune pattern. Dune-field pattern analysis shows an overall increase in dune-field organization with an increase in mean dune spacing and a reduction in total crest length and defect density. These data suggest that dunes in other cold desert environments on Earth, Mars or Titan, that may also have inter-bedded frozen laminae, still have the potential to migrate and organize, albeit at lower rates than dunes in warm deserts.

  20. Turbulence and sediment transport over sand dunes and ripples

    Science.gov (United States)

    Bennis, A.; Le Bot, S.; lafite, R.; Bonneton, P.; Ardhuin, F.

    2013-12-01

    Several bedforms are present near to the surfzone of natural beaches. Dunes and ripples are frequently observed. Understanding the turbulence over these forms is essential for the sediment transport. The turbulent flow and the suspended sand particles interact with each other. At the moment, the modelling strategy for turbulence is still a challenge. According to the spatial scales, some different methods to model the turbulence are employed, in particular the RANS (Reynolds Averaged Navier-Stokes) and the LES (Large Eddy Simulation). A hybrid method combining both RANS and LES is set up here. We have adapted this method, initially developed for atmospheric flow, to the oceanic flow. This new method is implemented inside the 3D hydrodynamic model, MARS 3D, which is forced by waves. LES is currently the best way to simulate turbulent flow but its higher cost prevents it from being used for large scale applications. So, here we use RANS near the bottom while LES is set elsewhere. It allows us minimize the computational cost and ensure a better accuracy of the results than with a fully RANS model. In the case of megaripples, the validation step was performed with two sets of field data (Sandy Duck'97 and Forsoms'13) but also with the data from Dune2D model which uses only RANS for turbulence. The main findings are: a) the vertical profiles of the velocity are similar throughout the data b) the turbulent kinetic energy, which was underestimated by Dune2D, is in line with the observations c) the concentration of the suspended sediment is simulated with a better accuracy than with Dune2D but this remains lower than the observations.

  1. Dating pleistocene fossil coastal sand dunes by thermoluminescence

    International Nuclear Information System (INIS)

    Poupeau, G.; Souza, J.H.; Soliani Junior, E.; Loss, E.L.

    1983-01-01

    It was shown recently that sunlight exposure is able to bleach most of the geological thermoluminescence (TL) of wind transported sediments. This property has been used in an attempt to date dunes from the well developed recent quaternary coastal dunes system of Rio Grande do Sul. Preliminary results presented here, show that TL dating on fossil sand dunes from Rio Grande do Sul should be possible in a time range from present to at least 50.000 yr and possibly more than 100.000 yr. (Author) [pt

  2. A bright intra-dune feature on Titan and its implications for sand formation and transport

    Science.gov (United States)

    MacKenzie, Shannon; Barnes, Jason W.; Rodriguez, Sebastien; Cornet, Thomas; Brossier, Jeremy; Soderblom, Jason M.; Le Mouélic, Stephane; Sotin, Christophe; Brown, Robert H.; Buratti, Bonnie J.; Clark, Roger Nelson; Nicholson, Philip D.; Baines, Kevin

    2017-10-01

    Organic sands cover much of Titan’s equatorial belt, gathered into longitudinal dunes about a kilometer wide and hundreds of kilometers long. At the end of the Cassini era, questions of how such a vast volume of saltable material is or was created on Titan remain unanswered. At least two possible mechanisms suggested for forming sand-sized particles involve liquids: (1) evaporite deposition and erosion and (2) flocculation of material within a lake. Transporting sand from the lakes and seas of Titan’s poles to the equatorial belt is not strongly supported by Cassini observations: the equatorial belt sits higher than the poles and no sheets or corridors of travelling sand have been identified. Thus, previous sites of equatorial surface liquids may be of interest for understanding sand formation, such as the suggested paleoseas Tui and Hotei Regio. A newly identified feature in the VIMS data sits within the Fensal dune field but is distinct from the surrounding sand. We investigate this Bright Fensal Feature (BFF) using data from Cassini VIMS and RADAR. Specifically, we find spectral similarities between the BFF and both sand and Hotei Regio. The RADAR cross sectional backscatter is similar to neighboring dark areas, perhaps sand covered interdunes. We use this evidence to constrain the BFF’s formation history and discuss how this intra-dune feature may contribute to the processes of sand transport and supply.

  3. Latitudinal and altitudinal controls of Titan's dune field morphometry

    Science.gov (United States)

    Le Gall, A.; Hayes, A. G.; Ewing, R.; Janssen, M. A.; Radebaugh, J.; Savage, C.; Encrenaz, P.; the Cassini Radar Team

    2012-01-01

    Dune fields dominate ˜13% of Titan's surface and represent an important sink of carbon in the methane cycle. Herein, we discuss correlations in dune morphometry with altitude and latitude. These correlations, which have important implications in terms of geological processes and climate on Titan, are investigated through the microwave electromagnetic signatures of dune fields using Cassini radar and radiometry observations. The backscatter and emissivity from Titan's dune terrains are primarily controlled by the amount of interdune area within the radar footprint and are also expected to vary with the degree of the interdunal sand cover. Using SAR-derived topography, we find that Titan's main dune fields (Shangri-La, Fensal, Belet and Aztlan) tend to occupy the lowest elevation areas in Equatorial regions occurring at mean elevations between ˜-400 and ˜0 m (relative to the geoid). In elevated dune terrains, we show a definite trend towards a smaller dune to interdune ratio and possibly a thinner sand cover in the interdune areas. A similar correlation is observed with latitude, suggesting that the quantity of windblown sand in the dune fields tends to decrease as one moves farther north. The altitudinal trend among Titan's sand seas is consistent with the idea that sediment source zones most probably occur in lowlands, which would reduce the sand supply toward elevated regions. The latitudinal preference could result from a gradual increase in dampness with latitude due to the asymmetric seasonal forcing associated with Titan's current orbital configuration unless it is indicative of a latitudinal preference in the sand source distribution or wind transport capacity.

  4. Characterization and Ecophysiological Observations on Coastal Sand Dune Vegetation from Goa, Central West Coast, India

    Digital Repository Service at National Institute of Oceanography (India)

    Rodrigues, R.S.

    Coastal Sand Dune flora (CSD) forms a specialized group of plants commonly referred as psammophytes. Goa has limited natural resources including beaches and sand dunes. The state is globally known for its tourism activities, which pressurize...

  5. Large-eddy simulation of sand dune morphodynamics

    Science.gov (United States)

    Khosronejad, Ali; Sotiropoulos, Fotis; St. Anthony Falls Laboratory, University of Minnesota Team

    2015-11-01

    Sand dunes are natural features that form under complex interaction between turbulent flow and bed morphodynamics. We employ a fully-coupled 3D numerical model (Khosronejad and Sotiropoulos, 2014, Journal of Fluid Mechanics, 753:150-216) to perform high-resolution large-eddy simulations of turbulence and bed morphodynamics in a laboratory scale mobile-bed channel to investigate initiation, evolution and quasi-equilibrium of sand dunes (Venditti and Church, 2005, J. Geophysical Research, 110:F01009). We employ a curvilinear immersed boundary method along with convection-diffusion and bed-morphodynamics modules to simulate the suspended sediment and the bed-load transports respectively. The coupled simulation were carried out on a grid with more than 100 million grid nodes and simulated about 3 hours of physical time of dune evolution. The simulations provide the first complete description of sand dune formation and long-term evolution. The geometric characteristics of the simulated dunes are shown to be in excellent agreement with observed data obtained across a broad range of scales. This work was supported by NSF Grants EAR-0120914 (as part of the National Center for Earth-Surface Dynamics). Computational resources were provided by the University of Minnesota Supercomputing Institute.

  6. Dew Measurements along a Longitudinal Sand Dune Transect

    NARCIS (Netherlands)

    Jacobs, A.F.G.; Heusinkveld, B.G.; Berkowicz, S.

    2000-01-01

    In a desert environment dew can serve as an important source of moisture for plants, biological crusts, insects and small animals. A measurement programme was carried out within a sand dune belt situated in the northwestern Negev desert, Israel, to measure daily amounts of dew deposition as well as

  7. Analysis of wind-blown sand movement over transverse dunes.

    Science.gov (United States)

    Jiang, Hong; Huang, Ning; Zhu, Yuanjian

    2014-12-01

    Wind-blown sand movement often occurs in a very complicated desert environment where sand dunes and ripples are the basic forms. However, most current studies on the theoretic and numerical models of wind-blown sand movement only consider ideal conditions such as steady wind velocity, flat sand surface, etc. In fact, the windward slope gradient plays a great role in the lift-off and sand particle saltation. In this paper, we propose a numerical model for the coupling effect between wind flow and saltating sand particles to simulate wind-blown sand movement over the slope surface and use the SIMPLE algorithm to calculate wind flow and simulate sands transport by tracking sand particle trajectories. We furthermore compare the result of numerical simulation with wind tunnel experiments. These results prove that sand particles have obvious effect on wind flow, especially that over the leeward slope. This study is a preliminary study on windblown sand movement in a complex terrain, and is of significance in the control of dust storms and land desertification.

  8. Sand Dune Dynamics on Mars: Integration of Surface Imaging, Wind Measurements, and Orbital Remote Sensing

    Science.gov (United States)

    Bridges, N.; Sullivan, R. J., Jr.; Ewing, R. C.; Newman, C. E.; Ayoub, F.; Lapotre, M. G. A.; van Beek, J.

    2016-12-01

    In early 2016, the Mars Science Laboratory rover completed the first in situ investigation of an active dune field on another planetary body, the "Bagnold Dunes" in Gale Crater. During the campaign, a series of Mastcam and RMI time-series images of local sand patches, dump piles, ripples, and the lee face and margin of Namib Dune (a barchan in the Bagnold field) were acquired. These were at cadences of a sol or more that were generally at nearly the same local time, and intra-sol imaging bridged by continuous wind measurements from REMS. The dune field has also been imaged 16 times by HiRISE since 2008. By combining the two datasets, long term dune dynamics over the whole field can be compared to small-scale and short-term observations on the surface. From HiRISE, Namib Dune and other barchans and longitudinal dunes to the south and west migrate generally toward the south to southeast. The most active sand deposits are the longitudinal and barchans dunes, with the highest ripple migration rates found on the highest elevations. Rippled sand patches exhibit little of no motion. From MSL, the scrambling of grains on the surfaces of local rippled sand patches and Namib Dune is obvious over periods as short as a single sol, with light-toned grains showing the greatest tendency. On the lee face of Namib, images show grain scrambling, one case of modification to a secondary grainflow, and possibly ripple motion over 3-16 sols. At the dune margin, grain scrambling and one major slump on the lee face of a dune ripple are seen. The daytime REMS record shows wind speeds up to 20 m/s with confidence. As yet, we do not have a demonstrable correlation between measured wind speeds and changes, suggesting that short term gusts or non-aeolian processes acting as triggers may precede significant activity. The changes, occurring in a low flux season based on HiRISE analysis and global circulation models, indicate an active surface at all times of the year to some degree.

  9. Dunes Around Khnifiss Lagoon (Tarfaya, SW of Morocco): Composition, Itinerary In Dune Fields, Effects on Dunes' Colours and Morphodynamic

    Science.gov (United States)

    Adnani, M.; Azzaoui, M. A.; Elbelrhiti, H.; Ahmamou, M.; Masmoudi, L.

    2015-12-01

    Dunes around Khnifiss lagoon (28° 3'N, 12°13'W) show different colors ranging from black at the beach, whitish yellow in transverse dunes near the beach to reddish at the mega barchans situated few kilometers in the SW. The scientific question is about the abundance of different dunes in the same environmental conditions. The present work aims to investigate the factors that influence dunes color change, and then at which degree these factors could control dunes stability. To highlight the difference in color observed at the dune fields then to characterize dunes mineralogy, Landsat TM images were used in addition to mineralogical analysis that was carried out for the black grains samples originated from megabarchans. Optic Microscope and SEM- EDS data was adopted, in addition to physico-chemical analysis provided by Electronic Microprobe. Grain size and shape analysis were conducted to characterize the different types of grains of sand. 3/1 Landsat image band ratio allowed iron oxide distinction, the results revealed the importance of iron oxide concentration. Furthermore, mineralogical and physico-chemical analysis revealed (i) a high grade of oxides (Rutile, Ilmenite, Magnetite, Ulvöspinel) in samples, (ii) silicates (Quartz, Clinopyroxene, feldspar, Zircon), (iii) phosphate (apatite) and (iv) carbonate (calcite). The grain size analysis of the sand originated from the megabarchans reveals that there are three populations of sand. Black grains with a diameter less than 100μm and dominated by the magnetite, red ones composed mainly by the quartz with diameter between 100 and 180 μm and grains with diameter more than 180 μm are white and composed by carbonates. The threshold of motion of these different grains was calculated. It shows that these different grains have the same threshold of motion, which means that the grain size compensates the density. This explains the abundance of different populations of sand in the same environment. The dominance of iron

  10. Observations regarding the movement of barchan sand dunes in the Nazca to Tanaca area of southern Peru

    Science.gov (United States)

    Parker Gay, S.

    1999-03-01

    Significant studies of sand dunes and sand movement made in coastal southern Peru in 1959-1961 [Gay, S.P., 1962. Origen, distribución y movimiento de las arenas eólicas en el área de Yauca a Palpa. Boletin de la Sociedad Geologica del Perú 37, 37-58] have never been published in the English language and consequently have never been referred to in the standard literature. These studies contain valuable information, not developed by later workers in this field, that may be of broad general interest. For example, using airphotos of barchan dunes and plotting the rates of movement vs. dune widths, the author quantified the deduction of Bagnold [Bagnold, R.A., 1941. The Physics of Blown Sand and Desert Dunes. Methuen, London.] that the speed of barchan movement is inversely proportional to barchan size (as characterized by height or width). This led to the conclusion that all barchans in a given dune field, regardless of size, sweep out approximately equal areas in equal times. Another conclusion was that collisions between smaller, overtaking dunes and larger dunes in front of them do not result in destruction or absorption of the smaller dunes if the collision is a `sideswipe'. The dunes simply merge into a compound dune for a time, and the smaller dune then moves on intact, i.e., passes, the larger dune, whilst retaining its approximate original size and shape. Another result of the 1959-1961 studies was a map that documents the Pacific coast beaches as the source of the sand ( Fig. 1), which is then blown inland through extensive dune fields of barchans and other dune forms in great clockwise-sweeping paths, to its final resting place in huge sand masses, sometimes called `sand seas' [Lancaster, N., 1995. Geomorphology of Desert Dunes. Routledge, London], at higher elevations 20 to 60 km from the coast. A minor, but nevertheless interesting, discovery was a small heavy mineral dune located directly in the lee of a large barchan, evidently formed by the winnowing

  11. Demography and monitoring of Welsh's milkweed (Asclepias welshii) at Coral Pink Sand Dunes

    Science.gov (United States)

    Brent C. Palmer; L. Armstrong

    2001-01-01

    Results are presented of a 12-year monitoring program on the Coral Pink Sand Dunes and Sand Hills populations of the threatened Welsh's milkweed, Asclepias welshii N & P Holmgren. The species is an early sera1 member of the dune flora, colonizing blowouts and advancing with shifting dunes. When an area stabilizes and other vegetation encroaches, A. welshii is...

  12. Laboratory studies of dune sand for the use of construction industry in Sri Lanka

    Science.gov (United States)

    de Silva Jayawardena, Upali; Wijesuriya, Roshan; Abayaweera, Gayan; Viduranga, Tharaka

    2015-04-01

    With the increase of the annual sand demand for the construction industry the excessive excavation of river sand is becoming a serious environmental problem in Sri Lanka. Therefore, it is necessary to explore the possibility for an alternative to stop or at least to minimize river sand mining activities. Dune sand is one of the available alternative materials to be considered instead of river sand in the country. Large quantities of sand dunes occur mainly along the NW and SE coastal belt which belong to very low rainfall Dry Zone coasts. The height of dune deposits, vary from 1m to about 30 meters above sea level. The objective of this paper is to indicate some studies and facts on the dune sand deposits of Sri Lanka. Laboratory studies were carried out for visual observations and physical properties at the initial stage and then a number of tests were carried out according to ASTM standards to obtain the compressive strength of concrete cylinders and mortar cubes mixing dune sand and river sand in different percentages keeping a constant water cement ratio. Next the water cement ratio was changed for constant dune sand and river sand proportion. Microscopic analysis shows that the dune sand consist of 95 % of quartz and 5 % of garnet, feldspar, illmenite and other heavy minerals with clay, fine dust, fine shell fragments and organic matters. Grains are sub-rounded to angular and tabular shapes. The grain sizes vary from fine to medium size of sand with silt. The degree of sorting and particle size observed with dune sands are more suited with the requirement of fine aggregates in the construction industry. The test result indicates that dune sand could be effectively used in construction work without sieving and it is ideal for wall plastering due to its'-uniformity. It could also be effectively used in concrete and in mortars mixing with river sand. The best mixing ratio is 75% dune sand and 25% river sand as the fine aggregate of concrete. For mortar the mixing

  13. Dynamics of Unusual Debris Flows on Martian Sand Dunes

    Science.gov (United States)

    Miyamoto, Hideaki; Dohm, James M.; Baker, Victor R.; Beyer, Ross A.; Bourke, Mary

    2004-01-01

    Gullies that dissect sand dunes in Russell impact crater often display debris flow-like deposits in their distal reaches. The possible range of both the rheological properties and the flow rates are estimated using a numerical simulation code of a Bingham plastic flow to help explain the formation of these features. Our simulated results are best explained by a rapid debris flow. For example, a debris flow with the viscosity of 10(exp 2) Pa s and the yield strength of 10(exp 2) Pa can form the observed deposits with a flow rate of 0.5 cu m/s sustained over several minutes and total discharged water volume on the order of hundreds of cubic meters, which may be produced by melting a surface layer of interstitial ice within the dune deposits to several centimeters depth.

  14. Dune mobility in the St. Anthony Dune Field, Idaho, USA: Effects of meteorological variables and lag time

    Science.gov (United States)

    Hoover, R. H.; Gaylord, D. R.; Cooper, C. M.

    2018-05-01

    The St. Anthony Dune Field (SADF) is a 300 km2 expanse of active to stabilized transverse, barchan, barchanoid, and parabolic sand dunes located in a semi-arid climate in southeastern Idaho. The northeastern portion of the SADF, 16 km2, was investigated to examine meteorological influences on dune mobility. Understanding meteorological predictors of sand-dune migration for the SADF informs landscape evolution and impacts assessment of eolian activity on sensitive agricultural lands in the western United States, with implications for semi-arid environments globally. Archival aerial photos from 1954 to 2011 were used to calculate dune migration rates which were subsequently compared to regional meteorological data, including temperature, precipitation and wind speed. Observational analyses based on aerial photo imagery and meteorological data indicate that dune migration is influenced by weather for up to 5-10 years and therefore decadal weather patterns should be taken into account when using dune migration rates as proxies from climate fluctuation. Statistical examination of meteorological variables in this study indicates that 24% of the variation of sand dune migration rates is attributed to temperature, precipitation and wind speed, which is increased to 45% when incorporating lag time.

  15. Study of Black Sand Particles from Sand Dunes in Badr, Saudi Arabia Using Electron Microscopy

    Directory of Open Access Journals (Sweden)

    Haider Abbas Khwaja

    2015-08-01

    Full Text Available Particulate air pollution is a health concern. This study determines the microscopic make-up of different varieties of sand particles collected at a sand dune site in Badr, Saudi Arabia in 2012. Three categories of sand were studied: black sand, white sand, and volcanic sand. The study used multiple high resolution electron microscopies to study the morphologies, emission source types, size, and elemental composition of the particles, and to evaluate the presence of surface “coatings or contaminants” deposited or transported by the black sand particles. White sand was comprised of natural coarse particles linked to wind-blown releases from crustal surfaces, weathering of igneous/metamorphic rock sources, and volcanic activities. Black sand particles exhibited different morphologies and microstructures (surface roughness compared with the white sand and volcanic sand. Morphological Scanning Electron Microscopy (SEM and Laser Scanning Microscopy (LSM analyses revealed that the black sand contained fine and ultrafine particles (50 to 500 nm ranges and was strongly magnetic, indicating the mineral magnetite or elemental iron. Aqueous extracts of black sands were acidic (pH = 5.0. Fe, C, O, Ti, Si, V, and S dominated the composition of black sand. Results suggest that carbon and other contaminant fine particles were produced by fossil-fuel combustion and industrial emissions in heavily industrialized areas of Haifa and Yanbu, and transported as cloud condensation nuclei to Douf Mountain. The suite of techniques used in this study has yielded an in-depth characterization of sand particles. Such information will be needed in future environmental, toxicological, epidemiological, and source apportionment studies.

  16. Sand Dune Ridge Alignment Effects on Surface BRF over the Libya-4 CEOS Calibration Site

    Directory of Open Access Journals (Sweden)

    Yves M. Govaerts

    2015-02-01

    Full Text Available The Libya-4 desert area, located in the Great Sand Sea, is one of the most important bright desert CEOS pseudo-invariant calibration sites by its size and radiometric stability. This site is intensively used for radiometer drift monitoring, sensor intercalibration and as an absolute calibration reference based on simulated radiances traceable to the SI standard. The Libya-4 morphology is composed of oriented sand dunes shaped by dominant winds. The effects of sand dune spatial organization on the surface bidirectional reflectance factor is analyzed in this paper using Raytran, a 3D radiative transfer model. The topography is characterized with the 30 m resolution ASTER digital elevation model. Four different regions-of-interest sizes, ranging from 10 km up to 100 km, are analyzed. Results show that sand dunes generate more backscattering than forward scattering at the surface. The mean surface reflectance averaged over different viewing and illumination angles is pretty much independent of the size of the selected area, though the standard deviation differs. Sun azimuth position has an effect on the surface reflectance field, which is more pronounced for high Sun zenith angles. Such 3D azimuthal effects should be taken into account to decrease the simulated radiance uncertainty over Libya-4 below 3% for wavelengths larger than 600 nm.

  17. The morphology and morphodynamics of sand-gravel subaquatic dunes: the Raba River estuary, Poland

    Directory of Open Access Journals (Sweden)

    Artur RADECKI-PAWLIK

    2012-08-01

    Full Text Available In the outlet of the Raba River to the Vistula, the biggest river in Poland, the morphology and morphodynamics of sand and fine-gravel subaquatic dunes were investigated. The site is situated in highland region just about the entrance to Polish Carpathians. The dunes formed on the Raba River bed estuary are composed of sand and fine gravel (d50 up to 11 mm. Systematic observation (within the 2000-2005 were made of geometry, sediment composition and hydraulic climate under which the dunes grew and decomposed. The investigation focuses here mostly on the geometrical parameters of these bed forms such as height, length, as well as granulometric characteristics of the sediment. Based on in-site measurements different hydraulic parameters were calculated such as shear stresses, resistant coefficient, Froude and Reynolds numbers and roughness coefficient. It was found that the relation between height (H and length (L of the Raba estuary dunes describes the formula: H = 0.05L0.35. Also these dunes are steeper and flatter then classical H/L index is: H/L = 0.0518L0.622. During the field campaign, when the foot access to the estuary was possible and dunes were spotted on the river bed the range of measured water velocity was from v = 0.39 m∙s-1 to v = 0.81 m∙s-1 with the highest velocity over the dune crest. At the same time the measured range of shear stresses within the dune field formation were from t = 0.115 N×m-2 to t = 1.59 N×m-2. On the field investigations the CCHE2D - two-dimensional unsteady flow and sediment transport model for non-equilibrium transport of non-uniform sediment mixtures – was applied. The model was used to simulate the morphodynamic changes along the outlet of the Raba River basing on field observations of the 2005 summer flood as well as calculate hydraulics parameters. It was also used to test and confirm the range of morphodynamic changes, which take place along the research reach where the dunes are being developed

  18. Control parameters of the martian dune field positions at planetary scale: tests by the MCD

    Science.gov (United States)

    allemand, pascal

    2016-04-01

    The surface of Mars is occupied by more than 500 dunes fields mainly located inside impact craters of the south hemisphere and near the north polar cap. The questions of the activity of martian dunes and of the localization of the martian dune fields are not completely solved. It has been demonstrated recently by image observation and image correlation that some of these dune fields are clearly active. The sand flux of one of them has been even estimated. But there is no global view of the degree of activity of each the dune fields. (2)The topography of impact craters in which dune fields are localized is an important factor of their position. But there is no consensus of the effect of global atmospheric circulation on dune field localization. These two questions are addressed using the results of Mars Climate Database 5.2 (MCD) (Millour, 2015; Forget et al., 1999). The wind fields of the MCD have been first validated against the observations made on active dune fields. Using a classical transport law, the Drift Potential (DP) and the Relative Drift Potential (RDP) have been computed for each dune fields. A good correlation exists between the position of dune fields and specific values of these two parameters. The activity of each dune field is estimated from these parameters and tested on some examples by image observations. Finally a map of sand flow has been computed at the scale of the planet. This map shows that sand and dust is trapped in specific regions. These regions correspond to the area of dune field concentration.

  19. Southern high latitude dune fields on Mars: Morphology, aeolian inactivity, and climate change

    Science.gov (United States)

    Fenton, L.K.; Hayward, R.K.

    2010-01-01

    In a study area spanning the martian surface poleward of 50?? S., 1190 dune fields have been identified, mapped, and categorized based on dune field morphology. Dune fields in the study area span ??? 116400km2, leading to a global dune field coverage estimate of ???904000km2, far less than that found on Earth. Based on distinct morphological features, the dune fields were grouped into six different classes that vary in interpreted aeolian activity level from potentially active to relatively inactive and eroding. The six dune field classes occur in specific latitude zones, with a sequence of reduced activity and degradation progressing poleward. In particular, the first signs of stabilization appear at ???60?? S., which broadly corresponds to the edge of high concentrations of water-equivalent hydrogen content (observed by the Neutron Spectrometer) that have been interpreted as ground ice. This near-surface ground ice likely acts to reduce sand availability in the present climate state on Mars, stabilizing high latitude dunes and allowing erosional processes to change their morphology. As a result, climatic changes in the content of near-surface ground ice are likely to influence the level of dune activity. Spatial variation of dune field classes with longitude is significant, suggesting that local conditions play a major role in determining dune field activity level. Dune fields on the south polar layered terrain, for example, appear either potentially active or inactive, indicating that at least two generations of dune building have occurred on this surface. Many dune fields show signs of degradation mixed with crisp-brinked dunes, also suggesting that more than one generation of dune building has occurred since they originally formed. Dune fields superposed on early and late Amazonian surfaces provide potential upper age limits of ???100My on the south polar layered deposits and ???3Ga elsewhere at high latitudes. No craters are present on any identifiable dune

  20. Episodic Late Holocene dune movements on the sand-sheet area, Great Sand Dunes National Park and Preserve, San Luis Valley, Colorado, USA

    Science.gov (United States)

    Forman, S. L.; Spaeth, M.; Marín, L.; Pierson, J.; Gómez, J.; Bunch, F.; Valdez, A.

    2006-07-01

    The Great Sand Dunes National Park and Preserve (GSDNPP) in the San Luis Valley, Colorado, contains a variety of eolian landforms that reflect Holocene drought variability. The most spectacular is a dune mass banked against the Sangre de Cristo Mountains, which is fronted by an extensive sand sheet with stabilized parabolic dunes. Stratigraphic exposures of parabolic dunes and associated luminescence dating of quartz grains by single-aliquot regeneration (SAR) protocols indicate eolian deposition of unknown magnitude occurred ca. 1290-940, 715 ± 80, 320 ± 30, and 200-120 yr ago and in the 20th century. There are 11 drought intervals inferred from the tree-ring record in the past 1300 yr at GSDNPP potentially associated with dune movement, though only five eolian depositional events are currently recognized in the stratigraphic record. There is evidence for eolian transport associated with dune movement in the 13th century, which may coincide with the "Great Drought", a 26-yr-long dry interval identified in the tree ring record, and associated with migration of Anasazi people from the Four Corners areas to wetter areas in southern New Mexico. This nascent chronology indicates that the transport of eolian sand across San Luis Valley was episodic in the late Holocene with appreciable dune migration in the 8th, 10-13th, and 19th centuries, which ultimately nourished the dune mass against the Sangre de Cristo Mountains.

  1. On the Internal Structure of Mobile Barchan Sand Dunes due to Granular Processes

    Science.gov (United States)

    Vriend, N. M.; Arran, M.; Louge, M. Y.; Hay, A. G.; Valance, A.

    2017-12-01

    In this work, we visualize the internal structure of mobile barchan desert dunes at the avalanche scale. We reveal an intriguing history of dune building using a novel combination of local sand sampling and advanced geophysical techniques resulting in high resolution measurements of individual avalanche events. Due to progressive rebuilding, granular avalanching, erosional and depositional processes, these marching barchan dunes are reworked every few years and a characteristic zebra-pattern (figure 1a), orientated parallel to the slipface at the angle of repose, appears at regular intervals. We present scientific data on the structure obtained from several mobile barchan dunes of different sizes during recent desert field campaigns (2014, 2015, 2017) in a mobile barchan dune field in Qatar (25.01°N, 51.34°E in the AlWakrah municipality). The site has been equipped with a weather station and has been regularly visited by a multidisciplinary research team in recent years (e.g. [1]). By applying high-frequency (1200 MHz) ground penetrating radar (GPR) transects across the midline (figure 1b) we map the continuous evolution of this cross-bedding at high resolution deep within the dune. The GPR reveals a slope reduction of the slipface near the base of the dune; evidence of irregular wind reversals; and the presence of a harder aeolian cap around the crest and extending to the brink. The data is supplemented with granulometry from layers stabilized by dyed water injection and uncovered by excavating vertical walls perpendicular to old buried avalanches. We attribute visible differences in water penetration between adjacent layers to fine particle segregation processes in granular avalanches. This work was made possible by the support of NPRP grant 6-059-2-023 from the Qatar National Research Fund to MYL and AGH, and a Royal Society Dorothy Hodgkin Research Fellowship to NMV. We thank Jean-Luc Métayer for performing detailed particle size distribution measurements

  2. UAV-imaging to model growth response of marram grass to sand burial: Implications for coastal dune development

    Science.gov (United States)

    Nolet, Corjan; van Puijenbroek, Marinka; Suomalainen, Juha; Limpens, Juul; Riksen, Michel

    2018-04-01

    Vegetated coastal dunes have the capacity to keep up with sea-level rise by accumulating and stabilizing wind-blown sand. In Europe, this is attributed to marram grass (Ammophila arenaria), a coastal grass species that combines two unique advantages for dune-building: (1) a very high tolerance to burial by wind-blown sand, and (2) more vigorous growth due to positive feedback to sand burial. However, while these vegetation characteristics have been demonstrated, observational data has not been used to model a function to describe the growth response of Ammophila to sand burial. Studies that model coastal dune development by incorporating positive feedback, as a result, may be hampered by growth functions that are unvalidated against field data. Therefore, this study aims to parameterize an empirical relationship to model the growth response of Ammophila to burial by wind-blown sand. A coastal foredune along a nourished beach in the Netherlands was monitored from April 2015 to April 2016. High-resolution geospatial data was acquired using an Unmanned Aerial Vehicle (UAV). Growth response of Ammophila, expressed by changes in Normalized Difference Vegetation Index (Δ NDVI) and vegetation cover (Δ Cover), is related to a sand burial gradient by fitting a Gaussian function using nonlinear quantile regression. The regression curves indicate an optimal burial rate for Ammophila of 0.31 m of sand per growing season, and suggest (by extrapolation of the data) a maximum burial tolerance for Ammophila between 0.78 (for Δ Cover) and 0.96 m (for Δ NDVI) of sand per growing season. These findings are advantageous to coastal management: maximizing the potential of Ammophila to develop dunes maximizes the potential of coastal dunes to provide coastal safety.

  3. Petrology of dune sand derived from basalt on the Ka'u Desert, Hawaii

    Science.gov (United States)

    Gooding, J. L.

    1982-01-01

    Dune sand from the Ka'u Desert, southwest flank of Kilauea volcano, Hawaii, is moderately well-sorted (median = 1.60 Phi, deviation = 0.60, skewness = 0.25, kurtosis = 0.68) and composed mostly of frosted subangular particles of basalt glass ('unfractionated' olivine-normative tholeitte), olivine, lithic fragments (subophitic and intersertal basalts; magnetite-ilmenite-rich basalts), reticular basalt glass, magnetite, ilmenite, and plagioclase, in approximately that order of abundance. Quantitative lithological comparison of the dune sand with sand-sized ash from the Keanakakoi Formation supports suggestions that the dune sand was derived largely from Keanakakoi ash. The dune sand is too well sorted to have been emplaced in its present form by base-surge but could have evolved by post-eruption reworking of the ash.

  4. Sand dune of Ruby, Arizona, an anthropogenically created biodiversity hotspot for wasps and their velvet ant parasitoids

    Science.gov (United States)

    Justin O. Schmidt

    2013-01-01

    A large artificial sand dune composed of finely crushed mine tailings was produced by deep mining operations at Ruby, Arizona. Today, the ghost town of Ruby is an important historical location and biodiversity refuge, with the newly formed dune forming the core of the refuge. The dune provides ideal nesting habitat for at least 13 species of sand-loving wasps,...

  5. Plant functional traits and diversity in sand dune ecosystems across different biogeographic regions

    Science.gov (United States)

    Mahdavi, P.; Bergmeier, E.

    2016-07-01

    Plant species of a functional group respond similarly to environmental pressures and may be expected to act similarly on ecosystem processes and habitat properties. However, feasibility and applicability of functional groups in ecosystems across very different climatic regions have not yet been studied. In our approach we specified the functional groups in sand dune ecosystems of the Mediterranean, Hyrcanian and Irano-Turanian phytogeographic regions. We examined whether functional groups are more influenced by region or rather by habitat characteristics, and identified trait syndromes associated with common habitat types in sand dunes (mobile dunes, stabilized dunes, salt marshes, semi-wet sands, disturbed habitats). A database of 14 traits, 309 species and 314 relevés was examined and trait-species, trait-plot and species-plot matrices were built. Cluster analysis revealed similar plant functional groups in sand dune ecosystems across regions of very different species composition and climate. Specifically, our study showed that plant traits in sand dune ecosystems are grouped reflecting habitat affiliation rather than region and species pool. Environmental factors and constraints such as sand mobility, soil salinity, water availability, nutrient status and disturbance are more important for the occurrence and distribution of plant functional groups than regional belonging. Each habitat is shown to be equipped with specific functional groups and can be described by specific sets of traits. In restoration ecology the completeness of functional groups and traits in a site may serve as a guideline for maintaining or restoring the habitat.

  6. Thermoluminescence dating of sand dunes at Roonka, South Australia

    International Nuclear Information System (INIS)

    Prescott, J.R.

    1983-01-01

    Thermoluminescence has been used to date sediments associated with the archaeological excavations at Roonka. An age of 65,000 +- 12,000 years has been found for the terra rossa soil immediately underlying the oldest 14 C dated feature at the main site (18,000 years). At the East Bank site, an age of 2700 +- 300 years is found for the top of the dune at a depth of 30 cm. An age of 14,500 +- 2000 years is found for a stratigraphically distinct and sealed layer at a depth of 1 m. A similar (or possibly older) date is found at 1.7 m. These ages are consistent with the archaeological and geomorphological evidence. There is some evidence that bleaching of sediments by daylight may not be complete in the field. If this is confirmed the ages will need to be revised downwards. (author)

  7. A comparison of seed banks across a sand dune successional gradient at Lake Michigan dunes (Indiana, USA)

    Science.gov (United States)

    Leicht-Young, S. A.; Pavlovic, N.B.; Grundel, R.; Frohnapple, K.J.

    2009-01-01

    In habitats where disturbance is frequent, seed banks are important for the regeneration of vegetation. Sand dune systems are dynamic habitats in which sand movement provides intermittent disturbance. As succession proceeds from bare sand to forest, the disturbance decreases. At Indiana Dunes National Lakeshore, we examined the seed banks of three habitat types across a successional gradient: foredunes, secondary dunes, and oak savanna. There were differences among the types of species that germinated from each of the habitats. The mean seed bank density increased across the successional gradient by habitat, from 376 to 433 to 968 seeds m-2, but with foredune and secondary dune seed bank densities being significantly lower than the savanna seed bank density. The number of seeds germinated was significantly correlated with soil organic carbon, demonstrating for this primary successional sequence that seed density increases with stage and age. The seed bank had much lower species richness than that of the aboveground vegetation across all habitats. Among sites within a habitat type, the similarity of species germinated from the seed banks was very low, illustrating the variability of the seed bank even in similar habitat types. These results suggest that restoration of these habitats cannot rely on seed banks alone. ?? 2008 Springer Science+Business Media B.V.

  8. Dune field pattern formation and recent transporting winds in the Olympia Undae Dune Field, north polar region of Mars

    OpenAIRE

    Ewing, Ryan C.; Peyret, Aymeric-Pierre B.; Kocurek, Gary; Bourke, Mary

    2010-01-01

    High-Resolution Imaging Science Experiment (HiRISE) imagery of the central Olympia Undae Dune Field in the north polar region of Mars shows a reticulate dune pattern consisting of two sets of nearly orthogonal dune crestlines, with apparent slipfaces on the primary crests, ubiquitous wind ripples, areas of coarse-grained wind ripples, and deflated interdune areas. Geomorphic evidence and dune field pattern analysis of dune crest length, spacing, defect density, and orientation indicates that ...

  9. The Geologic Exploration of the Bagnold Dune Field at Gale Crater by the Curiosity Rover.

    Science.gov (United States)

    Chojnacki, Matthew; Fenton, Lori K

    2017-11-01

    The Mars Science Laboratory rover Curiosity engaged in a monthlong campaign investigating the Bagnold dune field in Gale crater. What represents the first in situ investigation of a dune field on another planet has resulted in a number of discoveries. Collectively, the Curiosity rover team has compiled the most comprehensive survey of any extraterrestrial aeolian system visited to date with results that yield important insights into a number of processes, including sediment transport, bed form morphology and structure, chemical and physical composition of aeolian sand, and wind regime characteristics. These findings and more are provided in detail by the JGR-Planets Special Issue Curiosity's Bagnold Dunes Campaign, Phase I.

  10. Airflow over Barchan dunes: field measurements, mathematical modelling and wind tunnel testing

    OpenAIRE

    Wiggs, G. F. S.

    1992-01-01

    There are few empirical measurements of velocity, shear velocity, sand transport, morphological change on the windward slopes of dunes.This thesis compares field measurements on a barchan dune in Oman with calculations using a mathematical model (FLOWSTAR) and measurements in a wind tunnel. All three techniques demonstrate similar patterns of velocity, confirming the acceleration of flow up the windward slope, deceleration between the crest and brink and significant flow decele...

  11. Numerical simulation of wind-sand movement in the reversed flow region of a sand dune with a bridge built downstream.

    Science.gov (United States)

    He, Wei; Huang, Ning; Xu, Bin; Wang, Wenbo

    2018-04-23

    A bridge built inside the reversed flow region of a sand dune will change the characteristics of wind-sand movement in this region. The Reynolds-averaged Navier-Stokes simulation and discrete particle tracing are used to simulate the wind-sand movement around a sand dune with a bridge built inside the reversed region. Three cases with different bridge positions are studied. The results show that 1) compared with the isolated dune case, a tall bridge built at the leeward toe leads to an increase in the deposition rate on the leeward slope and a longer reversed flow region downstream of the sand dune; meanwhile, the high speed of crosswind on the bridge indicates that some measures should be taken to protect trains from strong crosswind; 2) a low bridge at the leeward toe has little effect on the sand deposition and reversed flow region of the dune; however, low sand transport rate and crosswind speed on the bridge show that anti-crosswind/sand measures should be taken according to the actual situation and 3) a low bridge on the leeward slope has little effect on the length of reversed flow region, however, high crosswind speed and sand flux on the bridge reveal the need of anti-crosswind/sand measures on the bridge. Moreover, the bridges in the reversed flow region increase the sand flux near the leeward crest; as a result, the moving patterns of the sand dune are changed.

  12. Nourishment of perched sand dunes and the issue of erosion control in the Great Lakes

    Science.gov (United States)

    Marsh, William M.

    1990-09-01

    Although limited in coverage, perched sand dunes situated on high coastal bluffs are considered the most prized of Great Lakes dunes. Grand Sable Dunes on Lake Superior and Sleeping Bear Dunes on Lake Michigan are featured attractions of national lakeshores under National Park Service management. The source of sand for perched dunes is the high bluff along their lakeward edge. As onshore wind crosses the bluff, flow is accelerated upslope, resulting in greatly elevated levels of wind stress over the slope brow. On barren, sandy bluffs, wind erosion is concentrated in the brow zone, and for the Grand Sable Bluff, it averaged 1 m3/yr per linear meter along the highest sections for the period 1973 1983. This mechanism accounts for about 6,500 m3 of sand nourishment to the dunefield annually and clearly has been the predominant mechanism for the long-term development of the dunefield. However, wind erosion and dune nourishment are possible only where the bluff is denuded of plant cover by mass movements and related processes induced by wave erosion. In the Great Lakes, wave erosion and bluff retreat vary with lake levels; the nourishment of perched dunes is favored by high levels. Lake levels have been relatively high for the past 50 years, and shore erosion has become a major environmental issue leading property owners and politicians to support lake-level regulation. Trimming high water levels could reduce geomorphic activity on high bluffs and affect dune nourishment rates. Locally, nourishment also may be influenced by sediment accumulation associated with harbor protection facilities and by planting programs aimed at stabilizing dunes.

  13. Seasonal geomorphic processes and rates of sand movement at Mount Baldy dune in Indiana, USA

    Science.gov (United States)

    Kilibarda, Zoran; Kilibarda, Vesna

    2016-12-01

    Winds are very strong, frequent, and have high energy (annual DP ∼800 VU) along the southern shores of Lake Michigan, allowing the coexistence of fixed and active dunes. Six years (2007-13) of monitoring Mount Baldy in the Indiana Dunes National Lakeshore reveals that this is the most active coastal dune in the Great Lakes region. This paper documents aeolian processes and changes in the dune's morphology that occur temporarily, following storms, or seasonally, due to weather (climate) variations. Most of the sand transport in this area takes place during strong storms with gale force (>17.5 m/s) winds, which occur in the autumn and winter months. A single storm, such as the October 28-31, 2013 event, can contribute 25% of the annual sand transport and dune movement inland. In its most active year (June 1, 2011 through May 31, 2012), Mount Baldy moved inland on average 4.34 m, with a maximum of 6.52 m along the blowout's axis (155° azimuth). During this particularly active season, there were six storms with sustained gale force winds, winter air temperatures were warmer than average, and shelf ice on Lake Michigan lasted only one day. The dune is least active during the summer season, when the winds are weakest. The late fall and winter winds are the strongest. But in a typical year, most of the dune's advance inland takes place during the spring thaw when sand is released from over-steepened and lumpy slip face, allowing it to avalanche to the toe of the slip face. However, with a warming air temperatures, a reduction in the duration of winter shelf ice, and rising Lake Michigan levels, the annual rates of sand transport and dune movement may increase. The recent Mount Baldy management strategy, which includes planting vegetation and installing wind barriers on the dune's stoss side in an effort to fix the dune and stop its further movement inland, may potentially cause the destruction of the mobile sand, open dune habitat, resulting in the extinction of rare

  14. Restoration of sand dunes along human-altered coasts: a scheme for Miramar beach, Goa

    Digital Repository Service at National Institute of Oceanography (India)

    Mascarenhas, A.

    to perform their functions. 29 There are various ways of restoring dunes that are destroyed. Artificial nourishment of beaches is one such method that has been classified as a modem scientific strategy to counter sand depletion along coasts... can be easily achieved by erecting 1 m high wire mesh, wooden or geotextile fences perpendicular to the direction of prevailing winds. In general, sand gets deposited 6 to 8 m downwind behind these barriers as observed behind artificial objects lying...

  15. Sand fences: An environment-friendly technique to restore degraded coastal dunes

    Digital Repository Service at National Institute of Oceanography (India)

    Mascarenhas, A.

    of prevailing winds (Matias et al. 2005). Our observations show that sand gets deposited 2 to 6 m downwind behind artificial barriers lying on the beach. A series of fences can therefore intercept wind-blown sand over a considerable area along the frontal beach..., but fashioned artificially; (e) Restoration of coastal dunes can be adopted wherever these features are damaged due to natural processes or human interference. Acknowledgements: The author is grateful to the Director, NIO, Goa, for permission to publish...

  16. Arbuscular mycorrhizal fungi associated with psammophilic vegetation in Mediterranean coastal sand dunes

    Energy Technology Data Exchange (ETDEWEB)

    Camprubi, A.; Calvet, C.; Cabot, P.; Pitet, M.; Estaun, V.

    2010-07-01

    This study was conducted in order to characterize the natural albacore's mycorrhizal (AM) biodiversity from Mediterranean sand dune ecosystems and to protect in a collection this biodiversity. The occurrence of AM fungi associated with sand dune plant species in three Mediterranean locations on the north-eastern coast of Spain was examined in one well preserved coastal sand dune and in two embrionary dunes recently protected from public access. Traditional taxonomy and molecular techniques were used to identify the AM fungal species present in these ecosystems. The species identified and isolated were: Scutellospora persica (Kiosk and Walker) Walker and Sanders, Glomus ambisporum Smith and Schenck, Glomus diaphanum Morton and Walker, Glomus clarum Nicolson and Schenck, Glomus intraradices Schenck and Smith, Glomus microaggregatum Koske, Gemma and Olexia and Gigaspora margarita Becker and Hall. Spores of Glomus were the most abundant in the direct soil extraction samples. The molecular analysis indicates that the most abundant fungi forming AM in the roots belonged to the Gigasporaceae group followed by fungi of Glomus group A and Glomus group B. The highest diversity of fungi and abundance of the AM fungal spores was found in the well preserved and undisturbed dune systems. (Author) 26 refs.

  17. Sand mining impacts on long-term dune erosion in southern Monterey Bay

    Science.gov (United States)

    Thornton, E.B.; Sallenger, Abby; Sesto, Juan Conforto; Egley, L.; McGee, Timothy; Parsons, Rost

    2006-01-01

    Southern Monterey Bay was the most intensively mined shoreline (with sand removed directly from the surf zone) in the U.S. during the period from 1906 until 1990, when the mines were closed following hypotheses that the mining caused coastal erosion. It is estimated that the yearly averaged amount of mined sand between 1940 and 1984 was 128,000 m3/yr, which is approximately 50% of the yearly average dune volume loss during this period. To assess the impact of sand mining, erosion rates along an 18 km range of shoreline during the times of intensive sand mining (1940–1990) are compared with the rates after sand mining ceased (1990–2004). Most of the shoreline is composed of unconsolidated sand with extensive sand dunes rising up to a height of 46 m, vulnerable to the erosive forces of storm waves. Erosion is defined here as a recession of the top edge of the dune. Recession was determined using stereo-photogrammetry, and LIDAR and GPS surveys. Long-term erosion rates vary from about 0.5 m/yr at Monterey to 1.5 m/yr in the middle of the range, and then decrease northward. Erosion events are episodic and occur when storm waves and high tides coincide, allowing swash to undercut the dune and resulting in permanent recession. Erosion appears to be correlated with the occurrence of El Niños. The calculated volume loss of the dune in southern Monterey Bay during the 1997–98 El Niño winter was 1,820,000 m3, which is almost seven times the historical annual mean dune erosion of 270,000 m3/yr. The alongshore variation in recession rates appears to be a function of the alongshore gradient in mean wave energy and depletions by sand mining. After cessation of sand mining in 1990, the erosion rates decreased at locations in the southern end of the bay but have not significantly changed at other locations.

  18. Turbulent flow structures and aeolian sediment transport over a barchan sand dune

    Science.gov (United States)

    Wiggs, G. F. S.; Weaver, C. M.

    2012-03-01

    The turbulent structure of airflow over a barchan sand dune is determined using quadrant analysis of wind velocity data derived from sonic anemometers. Results indicate an increased frequency of ejection and sweep events in the toe region of the dune, characteristic of the turbulent bursting process. In contrast, at the crest there was a significant increase in the occurrence of outward interactions. Combined with high frequency saltation data our analyses show that turbulent structures characterised by a positive streamwise fluctuating velocity (+u‧ sweeps at the toe and outward interactions at the crest) have a dominant influence on sand transport on the dune, together accounting for up to 83% and 95% of transporting events at the toe and crest respectively.

  19. How extensive is the effect of modern farming on bird communities in a sand dune desert?

    Directory of Open Access Journals (Sweden)

    Faris Khoury

    2009-12-01

    Full Text Available Bird community structure and diversity measures in sand dune habitats far from and close to modern farms in Wadi Araba, south-west Jordan, were compared using 52 line transects for breeding birds and habitat variables. A change in the bird community of sand dunes surrounding farming projects was measured to a distance of 1 km, but could neither be related to changes in habitat structure nor to the activity of op- portunistic predators (Red Fox as these did not vary significantly between the two samples. The farms included lines of trees and offered a constant source of water, which attracted a variety of opportunistic species, thus increasing bird diversity and total bird abundances. The absence of characteristic ground-dwelling species of open sand dune habitats in the structurally intact sand dunes surrounding farms was likely to be the result of localized, but effectively far-reaching habitat modification (farms acting as barriers and/or competition with some of the opportunistic species, which were common around farms.

  20. Laboratory coupling tests for optimum land streamer design over sand dunes surface

    KAUST Repository

    Almalki, Hashim; Alata, Mohanad; Alkhalifah, Tariq Ali

    2012-01-01

    The cost of data acquisition in land is becoming a major issue as we strive to cover larger areas with seismic surveys at high resolution. Over sand dunes the problem is compounded by the week coupling obtain using geophones, which often forces us

  1. Sand erosion at the toe of a gabion-protected dune face

    NARCIS (Netherlands)

    Chapman, A.

    1992-01-01

    The purpose of this research project was to study the manner in which erosion takes place the the toe of a dune slope protected by gabions, and to examine the response of the gabions to this erosion. A sand slope overlaid by model gabions was subjected to wave attack in a hydraulic flume, and

  2. 44 CFR 65.11 - Evaluation of sand dunes in mapping coastal flood hazard areas.

    Science.gov (United States)

    2010-10-01

    ... mapping coastal flood hazard areas. 65.11 Section 65.11 Emergency Management and Assistance FEDERAL... Insurance Program IDENTIFICATION AND MAPPING OF SPECIAL HAZARD AREAS § 65.11 Evaluation of sand dunes in mapping coastal flood hazard areas. (a) General conditions. For purposes of the NFIP, FEMA will consider...

  3. View of sand dunes in the San Juan Province of Western Argentina

    Science.gov (United States)

    1975-01-01

    A near vertical view of sand dunes in the San Juan Province of Western Argentina, as photographed from the Apollo spacecraft in Earth orbit during the joint U.S.-USSR Apollo Soyuz Test Project (ASTP) mission. The picture was taken at an altitude of 220 kilometers (136 statute miles). The photograph was taken at an altitude of 228 kilometers (141 statute miles).

  4. Experimental Measurement of Diffusive Extinction Depth and Soil Moisture Gradients in Southwestern Saudi Arabian Dune Sand

    KAUST Repository

    Mughal, Iqra

    2013-01-01

    In arid lands, a major contribution to water loss is by soil water evaporation. Desert sand dunes in arid regions are devoid of runoff and have high rates of infiltration. Rainwater is commonly stored within them because of the low permeability

  5. Sand Dunes in Steady Flow at Low Froude Numbers: Dune Height Evolution and Flow Resistance

    DEFF Research Database (Denmark)

    Niemann, S. L.; Fredsøe, Jørgen; Jacobsen, Niels Gjøl

    2011-01-01

    equilibrium shape. The flow modeling is based on a k-ω turbulence closure. The sediment transport is assumed to be bed-load only, with an avalanche-like movement on the steep dune front. The model is also found capable of predicting the growth in wavelength if the initially prescribed wavelength...

  6. Transient electromagnetic soundings in the San Luis Valley, Colorado, near the Great Sand Dunes National Park and Preserve and the Alamosa National Wildlife Refuge (field seasons 2007, 2009, and 2011)

    Science.gov (United States)

    Fitterman, David V.

    2017-06-13

    Transient electromagnetic (TEM) soundings were made in the San Luis Valley, Colorado, to map the location of a blue clay unit as well as to investigate the presence of suspected faults. A total of 147 soundings were made near and in Great Sand Dunes National Park and Preserve, and an additional 6 soundings were made near Hansen Bluff on the eastern edge of the Alamosa National Wildlife Refuge. The blue clay is a significant hydrologic feature in the area that separates an unconfined surface aquifer from a deeper confined aquifer. Knowledge of its location is important to regional hydrological models. Previous analysis of well logs has shown that the blue clay has a resistivity of 10 ohm-meters or less, which is in contrast to the higher resistivity of sand, gravel, and other clay units found in the area, making it a very good target for TEM soundings. The top of the blue clay was found to have considerable relief, suggesting the possibility of deformation of the clay during or after deposition. Because of rift activity, deformation is to be expected. Of the TEM profiles made across faults identified by aeromagnetic data, some showed resistivity variations and (or) subsurface elevation relief of resistivity units, suggestive of faulting. Such patterns were not associated with all suspected faults. The Hansen Bluff profile showed variations in resistivity and depth to conductor that coincide with a scarp between the highlands to the east and the floodplain of the Rio Grande to the west.

  7. INVESTIGATION OF GEOTECHNICAL SPECIFICATIONS OF SAND DUNE SOIL: A CASE STUDY AROUND BAIJI IN IRAQ

    Directory of Open Access Journals (Sweden)

    Abbas J. Al-Taie

    2013-11-01

    Full Text Available ABSTRACT: While more than half the land surface of Iraq consists of deserts covered mainly with sand dunes, little research has taken place to study the characteristics and the behavior of dune soils. This paper directed toward studying the geotechnical properties of dune sands taken from Baiji city (northwest of Iraq. A vast laboratory testing program was carried out to achieve the purpose of this paper. The physical tests, chemical tests, X-ray diffraction analysis, permeability test, compaction characteristics, compressibility and collapsibility tests; and shear strength tests were included in this program. The results indicate that soil of Baiji sand dune exhibits prefer engineering properties according to their state. As such, this soil is considered suitable for use in geotechnical constructions. ABSTRAK: Walaupun lebih separuh daripada bumi Iraq terdiri daripada gurun yang dipenuhi dengan bukit-bukit pasir, tidak banyak penyelidikan dijalankan untuk mengkaji sifat-sifat dan ciri-ciri tanah pasir  tersebut. Kertas kerja ini menyelidik sifat geoteknikal bukit pasir yang diambil dari pekan Baiji (di bahagian barat utara Iraq.  Program penyelidikan makmal yang menyeluruh telah  dijalankan bagi mencapai objektif kajian ini. Ujian fizikal, ujian kimia, analisis belauan sinar-x, ujian kebolehtelapan, ciri pemadatan, faktor ketermampatan, ujian keruntuhan dan ujian kekuatan ricih diambilkira dalam program ini. Keputusan menunjukkan bahawa tanih bukit pasir Baiji mengutamakan ciri kejuruteraan berdasarkan keadaannya. Oleh itu, tanah ini dianggap sesuai untuk kegunaan pembinaan geoteknikal.

  8. Application of the ERICA Integrated Approach to the Drigg coastal sand dunes

    Energy Technology Data Exchange (ETDEWEB)

    Wood, M.D. [Institute for Sustainable Water Integrated Management and Ecosystem Research (SWIMMER)/School of Biological Sciences, Nicholson Building, University of Liverpool, Liverpool, Merseyside L69 3GP (United Kingdom)], E-mail: mwood@liv.ac.uk; Marshall, W.A. [Westlakes Scientific Consulting Ltd., Princess Royal Building, Westlakes Science and Technology Park, Moor Row, Cumbria CA24 3LN (United Kingdom); Beresford, N.A. [Centre for Ecology and Hydrology, Lancaster Environment Centre, Library Avenue, Bailrigg, Lancaster, Lancashire LA1 4AP (United Kingdom); Jones, S.R. [Westlakes Scientific Consulting Ltd., Princess Royal Building, Westlakes Science and Technology Park, Moor Row, Cumbria CA24 3LN (United Kingdom); Howard, B.J. [Centre for Ecology and Hydrology, Lancaster Environment Centre, Library Avenue, Bailrigg, Lancaster, Lancashire LA1 4AP (United Kingdom); Copplestone, D. [Environment Agency, P.O. Box 12, Richard Fairclough House, Knutsford Road, Latchford, Warrington, Cheshire WA4 1HG (United Kingdom); Leah, R.T. [Institute for Sustainable Water Integrated Management and Ecosystem Research (SWIMMER)/School of Biological Sciences, Nicholson Building, University of Liverpool, Liverpool, Merseyside L69 3GP (United Kingdom)

    2008-09-15

    The EC-funded project 'Environmental Risks from Ionising Contaminants: Assessment and Management' (ERICA) developed an 'Integrated Approach' for assessing the impact of ionising radiation on ecosystems. This paper presents the application of the ERICA Integrated Approach, supported by a software programme (the ERICA Tool) and guidance documentation, to an assessment of the Drigg coastal sand dunes (Cumbria, UK). Targeted sampling provided site-specific data for sand dune biota, including amphibians and reptiles. Radionuclides reported included {sup 90}Sr, {sup 99}Tc, {sup 137}Cs, {sup 238}Pu, {sup 239+240}Pu and {sup 241}Am. Site-specific data were compared to predictions derived using the ERICA Tool. Some under- and over-predictions of biota activity concentrations were identified but can be explained by the specific ecological characteristics and contamination mechanism of the dunes. Overall, the results indicated no significant impact of ionising radiation on the sand dune biota and the Integrated Approach was found to be a flexible and effective means of conducting a radiation impact assessment.

  9. Application of the ERICA Integrated Approach to the Drigg coastal sand dunes

    International Nuclear Information System (INIS)

    Wood, M.D.; Marshall, W.A.; Beresford, N.A.; Jones, S.R.; Howard, B.J.; Copplestone, D.; Leah, R.T.

    2008-01-01

    The EC-funded project 'Environmental Risks from Ionising Contaminants: Assessment and Management' (ERICA) developed an 'Integrated Approach' for assessing the impact of ionising radiation on ecosystems. This paper presents the application of the ERICA Integrated Approach, supported by a software programme (the ERICA Tool) and guidance documentation, to an assessment of the Drigg coastal sand dunes (Cumbria, UK). Targeted sampling provided site-specific data for sand dune biota, including amphibians and reptiles. Radionuclides reported included 90 Sr, 99 Tc, 137 Cs, 238 Pu, 239+240 Pu and 241 Am. Site-specific data were compared to predictions derived using the ERICA Tool. Some under- and over-predictions of biota activity concentrations were identified but can be explained by the specific ecological characteristics and contamination mechanism of the dunes. Overall, the results indicated no significant impact of ionising radiation on the sand dune biota and the Integrated Approach was found to be a flexible and effective means of conducting a radiation impact assessment

  10. Provenance of coastal dune sands along Red Sea, Egypt

    Indian Academy of Sciences (India)

    Samir M Zaid

    2017-06-07

    Jun 7, 2017 ... been mainly formed by the accumulation of sands ... the upstream of the catchment areas of rain- fall, where ... deposited at the margin of the developing Red Sea ...... average upper continental crust (UCC) normalized ...... Petrol. 34 625–632. Egyptian Meteorological Authority, Ministry of Transporta-.

  11. Turbulent Flow and Sand Dune Dynamics: Identifying Controls on Aeolian Sediment Transport

    Science.gov (United States)

    Weaver, C. M.; Wiggs, G.

    2007-12-01

    Sediment transport models are founded on cubic power relationships between the transport rate and time averaged flow parameters. These models have achieved limited success and recent aeolian and fluvial research has focused on the modelling and measurement of sediment transport by temporally varying flow conditions. Studies have recognised turbulence as a driving force in sediment transport and have highlighted the importance of coherent flow structures in sediment transport systems. However, the exact mechanisms are still unclear. Furthermore, research in the fluvial environment has identified the significance of turbulent structures for bedform morphology and spacing. However, equivalent research in the aeolian domain is absent. This paper reports the findings of research carried out to characterise the importance of turbulent flow parameters in aeolian sediment transport and determine how turbulent energy and turbulent structures change in response to dune morphology. The relative importance of mean and turbulent wind parameters on aeolian sediment flux was examined in the Skeleton Coast, Namibia. Measurements of wind velocity (using sonic anemometers) and sand transport (using grain impact sensors) at a sampling frequency of 10 Hz were made across a flat surface and along transects on a 9 m high barchan dune. Mean wind parameters and mass sand flux were measured using cup anemometers and wedge-shaped sand traps respectively. Vertical profile data from the sonic anemometers were used to compute turbulence and turbulent stress (Reynolds stress; instantaneous horizontal and vertical fluctuations; coherent flow structures) and their relationship with respect to sand transport and evolving dune morphology. On the flat surface time-averaged parameters generally fail to characterise sand transport dynamics, particularly as the averaging interval is reduced. However, horizontal wind speed correlates well with sand transport even with short averaging times. Quadrant

  12. Multi-spatial analysis of aeolian dune-field patterns

    Science.gov (United States)

    Ewing, Ryan C.; McDonald, George D.; Hayes, Alex G.

    2015-07-01

    Aeolian dune-fields are composed of different spatial scales of bedform patterns that respond to changes in environmental boundary conditions over a wide range of time scales. This study examines how variations in spatial scales of dune and ripple patterns found within dune fields are used in environmental reconstructions on Earth, Mars and Titan. Within a single bedform type, different spatial scales of bedforms emerge as a pattern evolves from an initial state into a well-organized pattern, such as with the transition from protodunes to dunes. Additionally, different types of bedforms, such as ripples, coarse-grained ripples and dunes, coexist at different spatial scales within a dune-field. Analysis of dune-field patterns at the intersection of different scales and types of bedforms at different stages of development provides a more comprehensive record of sediment supply and wind regime than analysis of a single scale and type of bedform. Interpretations of environmental conditions from any scale of bedform, however, are limited to environmental signals associated with the response time of that bedform. Large-scale dune-field patterns integrate signals over long-term climate cycles and reveal little about short-term variations in wind or sediment supply. Wind ripples respond instantly to changing conditions, but reveal little about longer-term variations in wind or sediment supply. Recognizing the response time scales across different spatial scales of bedforms maximizes environmental interpretations from dune-field patterns.

  13. Formation and propagation of sand dunes: A nonlinear treatment

    International Nuclear Information System (INIS)

    Eltayeb, I.A.; Hamza, E.A.; Hassan, M.H.A.

    1986-06-01

    The nonlinear evolutionary equations previously derived for a plane with a rigid lid are here generalized to the free surface model. It is shown that similar equations are obtainable but the coefficients are strongly dependent on the Froude number, F, of the flow. (F is defined as U/(gd) 1/2 , where U is the basic uniform flow, g the gravitational acceleration and d the mean depth of the layer.) When F vanishes, the evolutionary equations reduce to those derived previously for the rigid lid model. The equations possess a dunetrain solution. The stability of this solution is analyzed and found to depend crucially on F. It is found, however, that for all values of F a dunetrain can develop into a solitary dune. The above results apply only when the phase shift δ, originally introduced for the instability of the linear problem, vanishes. For other admissible values of δ, the analysis showed that the neutral solution of the linear theory prevails in the nonlinear regime. (author)

  14. The Influences of a Clay Lens on the Hyporheic Exchange in a Sand Dune

    Directory of Open Access Journals (Sweden)

    Chengpeng Lu

    2018-06-01

    Full Text Available A laboratory flume simulating a riverbed sand dune containing a low-permeability clay lens was constructed to investigate its influence on the quality and quantity of hyporheic exchange. By varying the depths and spatial locations of the clay lens, 24 scenarios and one blank control experiment were created. Dye tracers were applied to visualize patterns of hyporheic exchange and the extent of the hyporheic zone, while NaCl tracers were used to calculate hyporheic fluxes. The results revealed that the clay lens reduces hyporheic exchange and that the reduction depends on its spatial location. In general, the effect was stronger when the lens was in the center of the sand dune. The effect weakened when the lens was moved near the boundary of the sand dune. A change in horizontal location had a stronger influence on the extent of the hyporheic zone compared with a change in depth. The size of the hyporheic zone changed with the depth and position of the clay lens. There was a maximum of hyporheic extent with the lens at a depth of 0.1 m caused by changes of water flow paths.

  15. Dune field pattern formation and recent transporting winds in the Olympia Undae Dune Field, north polar region of Mars

    Science.gov (United States)

    Ewing, Ryan C.; Peyret, Aymeric-Pierre B.; Kocurek, Gary; Bourke, Mary

    2010-08-01

    High-Resolution Imaging Science Experiment (HiRISE) imagery of the central Olympia Undae Dune Field in the north polar region of Mars shows a reticulate dune pattern consisting of two sets of nearly orthogonal dune crestlines, with apparent slipfaces on the primary crests, ubiquitous wind ripples, areas of coarse-grained wind ripples, and deflated interdune areas. Geomorphic evidence and dune field pattern analysis of dune crest length, spacing, defect density, and orientation indicates that the pattern is complex, representing two constructional generations of dunes. The oldest and best-organized generation forms the primary crestlines and is transverse to circumpolar easterly winds. Gross bed form-normal analysis of the younger pattern of crestlines indicates that it emerged with both circumpolar easterly winds and NE winds and is reworking the older pattern. Mapping of secondary flow fields over the dunes indicates that the most recent transporting winds were from the NE. The younger pattern appears to represent an influx of sediment to the dune field associated with the development of the Olympia Cavi reentrant, with NE katabatic winds channeling through the reentrant. A model of the pattern reformation based upon the reconstructed primary winds and resulting secondary flow fields shows that the development of the secondary pattern is controlled by the boundary condition of the older dune topography.

  16. Compaction and Collapse Characteristics of Dune Sand Stabilized with Lime-Silica Fume Mix

    Directory of Open Access Journals (Sweden)

    Mohammed Y. Fattah

    2016-04-01

    Full Text Available The purpose of this research is to assess the suitability of dune sands as construction materials. Moreover, such a goal is considered beneficial in determining appropriate methods for soil stabilization or ground improvement and to assessing the suitability of dune sands as subgrade layer for carrying roads and rail foundation. Dune sand samples were collected from a region in Baiji area in Salah-Aldeen governorate, North of Iraq. A grey-colored densified silica fume (SF and lime (L are used. Three percentages are used for lime (3%, 6%, and 9%, and four rates are used for silica fume (3%, 6%, 9% and 12% and the maximum percentage of silica fume is mixed with the proportions of lime. Unsoaked California Bearing Ratio (CBR on compacted dune sands treated dune sands with L-SF by mixing and cured for one day. The increasing in CBR ranged between 443 – 707% at 2.54 mm penetration and 345 – 410% at 5.08 mm penetration.     Resumen El propósito de esta investigación es evaluar el uso de arena de dunas como materiales de construcción. Además, este objetivo permite determinar los métodos apropiados para la estabilización del suelo, el mejoramiento del terreno y la evaluación de pertinencia de la arena de dunas en capas subbase para carreteras y cimientos férreos. Se recolectaron muestras de arena de dunas en el área de Baiji, del comisionado Salah-Aldeen, al norte de Irak. Se utilizó vapor de óxido de silicio (SF, en inglés, grisáceo y densificado, y óxido de calcio (L. Se utilizaron tres porcentajes para el óxido de calcio (3 %, 6 % y 9 %, y cuatro para el óxido de silicio (3 %, 6 %,  9% y 12% y el máximo porcentaje del óxido de silicio se mezcló con las proporciones de óxido de calcio. Se realizó en seco el Ensayo de Relación de Soporte de California (del inglés California Bearing Ratio, CBR en arena de dunas compactada y tratada con la mezcla L-SF curada durante un día. El incremento en el ensayo CBR osciló entre 443

  17. Ground-Water Flow Direction, Water Quality, Recharge Sources, and Age, Great Sand Dunes National Monument, South-Central Colorado, 2000-2001

    Science.gov (United States)

    Rupert, Michael G.; Plummer, Niel

    2004-01-01

    Great Sand Dunes National Monument is located in south-central Colorado along the eastern edge of the San Luis Valley. The Great Sand Dunes National Monument contains the tallest sand dunes in North America; some rise up to750 feet. Important ecological features of the Great Sand Dunes National Monument are palustrine wetlands associated with interdunal ponds and depressions along the western edge of the dune field. The existence and natural maintenance of the dune field and the interdunal ponds are dependent on maintaining ground-water levels at historic elevations. To address these concerns, the U.S. Geological Survey conducted a study, in collaboration with the National Park Service, of ground-water flow direction, water quality, recharge sources, and age at the Great Sand Dunes National Monument. A shallow unconfined aquifer and a deeper confined aquifer are the two principal aquifers at the Great Sand Dunes National Monument. Ground water in the unconfined aquifer is recharged from Medano and Sand Creeks near the Sangre de Cristo Mountain front, flows underneath the main dune field, and discharges to Big and Little Spring Creeks. The percentage of calcium in ground water in the unconfined aquifer decreases and the percentage of sodium increases because of ionic exchange with clay minerals as the ground water flows underneath the dune field. It takes more than 60 years for the ground water to flow from Medano and Sand Creeks to Big and Little Spring Creeks. During this time, ground water in the upper part of the unconfined aquifer is recharged by numerous precipitation events. Evaporation of precipitation during recharge prior to reaching the water table causes enrichment in deuterium (2H) and oxygen-18 (18O) relative to waters that are not evaporated. This recharge from precipitation events causes the apparent ages determined using chlorofluorocarbons and tritium to become younger, because relatively young precipitation water is mixing with older waters

  18. Natural and human controls of the Holocene evolution of the beach, aeolian sand and dunes of Caesarea (Israel)

    Science.gov (United States)

    Roskin, J.; Sivan, D.; Shtienberg, G.; Roskin, E.; Porat, N.; Bookman, R.

    2015-12-01

    The study focuses on the Holocene appearance, chronology and drivers of beach sand deposition and inland aeolian sand transport around the Roman-Byzantine ruins of Caesarea, Israel. Beach sand, sand sheets, nebkha, linear and transverse dunes as well as parabolic and transverse interdunes along two transects were sampled in the current study down to their substrate. Sixteen new optically stimulated luminescence ages cluster at ∼5.9-3.3 ka, ∼1.2-1.1 ka (800-900 AD) and ∼190-120 years ago (1825-1895 AD) indicating times of middle and late Holocene sand sheet depositions and historical dune stabilization. The first age cluster indicates that beach sand accumulated when rates of global sea level rise declined around 6-5 ka. Until ∼4 ka sand sheets encroached up to 2.5 km inland. Historical and archaeological evidence points to sand mobilization since the first century AD. Sand sheets dating to 1.2-1.1 ka, coevally found throughout the dunefield represent sand stabilization due to vegetation reestablishment attributed to gradual and fluctuating decline in human activity from the middle Early Islamic period until the 10th century. Historical and chronological evidence of the existence of transverse and coppice dunes from the 19th century suggest that dunes only formed in the last few centuries. The study illustrates the initial role of natural processes, in this case decline in global sea level rise and the primary and later role of fluctuating human activity upon coastal sand mobility. The study distinguishes between sand sheets and dunes and portrays them as sensors of environmental changes.

  19. APXS-derived chemistry of the Bagnold dune sands: Comparisons with Gale Crater soils and the global Martian average

    Science.gov (United States)

    O'Connell-Cooper, C. D.; Spray, J. G.; Thompson, L. M.; Gellert, R.; Berger, J. A.; Boyd, N. I.; Desouza, E. D.; Perrett, G. M.; Schmidt, M.; VanBommel, S. J.

    2017-12-01

    We present Alpha-Particle X-ray Spectrometer (APXS) data for the active Bagnold dune field within the Gale impact crater (Mars Science Laboratory (MSL) mission). We derive an APXS-based average basaltic soil (ABS) composition for Mars based on past and recent data from the MSL and Mars Exploration Rover (MER) missions. This represents an update to the Taylor and McLennan (2009) average Martian soil and facilitates comparison across Martian data sets. The active Bagnold dune field is compositionally distinct from the ABS, with elevated Mg, Ni, and Fe, suggesting mafic mineral enrichment and uniformly low levels of S, Cl, and Zn, indicating only a minimal dust component. A relationship between decreasing grain size and increasing felsic content is revealed. The Bagnold sands possess the lowest S/Cl of all Martian unconsolidated materials. Gale soils exhibit relatively uniform major element compositions, similar to Meridiani Planum and Gusev Crater basaltic soils (MER missions). However, they show minor enrichments in K, Cr, Mn, and Fe, which may signify a local contribution. The lithified eolian Stimson Formation within the Gale impact crater is compositionally similar to the ABS and Bagnold sands, which provide a modern analogue for these ancient eolian deposits. Compilation of APXS-derived soil data reveals a generally homogenous global composition for Martian soils but one that can be locally modified due to past or extant geologic processes that are limited in both space and time.

  20. Compositional variations in sands of the Bagnold Dunes, Gale crater, Mars, from visible-shortwave infrared spectroscopy and comparison with ground truth from the Curiosity rover

    Science.gov (United States)

    Lapotre, M. G. A.; Ehlmann, B. L.; Minson, S. E.; Arvidson, R. E.; Ayoub, F.; Fraeman, A. A.; Ewing, R. C.; Bridges, N. T.

    2017-12-01

    During its ascent up Mount Sharp, the Mars Science Laboratory Curiosity rover traversed the Bagnold Dune Field. We model sand modal mineralogy and grain size at four locations near the rover traverse, using orbital shortwave infrared single-scattering albedo spectra and a Markov chain Monte Carlo implementation of Hapke's radiative transfer theory to fully constrain uncertainties and permitted solutions. These predictions, evaluated against in situ measurements at one site from the Curiosity rover, show that X-ray diffraction-measured mineralogy of the basaltic sands is within the 95% confidence interval of model predictions. However, predictions are relatively insensitive to grain size and are nonunique, especially when modeling the composition of minerals with solid solutions. We find an overall basaltic mineralogy and show subtle spatial variations in composition in and around the Bagnold Dunes, consistent with a mafic enrichment of sands with cumulative aeolian-transport distance by sorting of olivine, pyroxene, and plagioclase grains. Furthermore, the large variations in Fe and Mg abundances ( 20 wt %) at the Bagnold Dunes suggest that compositional variability may be enhanced by local mixing of well-sorted sand with proximal sand sources. Our estimates demonstrate a method for orbital quantification of composition with rigorous uncertainty determination and provide key constraints for interpreting in situ measurements of compositional variability within Martian aeolian sandstones.

  1. Mapping the base of sand dunes using a new design of land-streamer for static correction applications

    KAUST Repository

    Almalki, H.; Alkhalifah, Tariq Ali

    2012-01-01

    The complex near-surface structure is a major problem in land seismic data. This is more critical when data acquisition takes place over sand dune surfaces, where the base of the sand acts as a trap for energy and, depending on its shape, can

  2. Heavy metal levels in dune sands from Matanzas urban resorts and Varadero beach (Cuba): Assessment of contamination and ecological risks.

    Science.gov (United States)

    Díaz Rizo, Oscar; Buzón González, Fran; Arado López, Juana O; Denis Alpízar, Otoniel

    2015-12-30

    Concentrations of chromium (Cr), nickel (Ni), copper (Cu), zinc (Zn) and lead (Pb) in dune sands from six urban and suburban Matanzas (Cuba) resorts and Varadero beach were estimated by X-ray fluorescence analysis. Ranges of metal contents in dune sands show a strong variation across the studied locations (in mg/kg(-1)): 20-2964 for Cr, 17-183 for Ni, 17-51 for Cu, 18-88 for Zn and 5-29 for Pb. The values of contamination factors and contamination degrees how that two of the studied Matanzas's resorts (Judio and Chirry) are strongly polluted. The comparison with Sediment Quality Guidelines shows that dune sands from Judio resort represent a serious risk for humans, due to polluted Cr and Ni levels, while sands from the rest of the studied resorts, including Varadero beach, do not represent any risk for public use. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. An evaluation of flora from coastal sand dunes of India: Rationale for conservation and management

    Digital Repository Service at National Institute of Oceanography (India)

    Rodrigues, R.S.; Mascarenhas, A.; Jagtap, T.G.

    stream_size 37100 stream_content_type text/plain stream_name Ocean_Coast_Manage_54_181a.pdf.txt stream_source_info Ocean_Coast_Manage_54_181a.pdf.txt Content-Encoding UTF-8 Content-Type text/plain; charset=UTF-8 1... Author version: Ocean & Coastal Management, vol.54(2); 2011; 181-188 An evaluation of flora from coastal sand dunes of India: Rationale for conservation and management Rouchelle S. Rodrigues, Antonio Mascarenhas, Tanaji G. Jagtap * National...

  4. Sand erosion at the toe of a gabion-protected dune face

    OpenAIRE

    Chapman, A.

    1992-01-01

    The purpose of this research project was to study the manner in which erosion takes place the the toe of a dune slope protected by gabions, and to examine the response of the gabions to this erosion. A sand slope overlaid by model gabions was subjected to wave attack in a hydraulic flume, and periodic measurements of the bottom profile were taken. The results showed that the gabions performed well, and continued to provide protection to the slope even after a considerable amount of erosion an...

  5. Lizard assemblage from a sand dune habitat from southeastern Brazil: a niche overlap analysis.

    Science.gov (United States)

    Winck, Gisele R; Hatano, Fabio; Vrcibradic, Davor; VAN Sluys, Monique; Rocha, Carlos F D

    2016-01-01

    Communities are structured by interactions of historical and ecological factors, which influence the use of different resources in time and space. We acquired data on time of activity, microhabitat use and diet of a lizard assemblage from a sand dune habitat in a coastal area, southeastern Brazil (Restinga de Jurubatiba). We analyzed the data of niche overlap among species in these three axes (temporal, spatial and trophic) using null models. We found a significant overlap within the trophic niche, whereas the overlap for the other axes did not differ from the expected. Based on this result, we discuss the factors acting on the structure of the local lizard community.

  6. Lizard assemblage from a sand dune habitat from southeastern Brazil: a niche overlap analysis

    Directory of Open Access Journals (Sweden)

    GISELE R. WINCK

    2016-01-01

    Full Text Available ABSTRACT Communities are structured by interactions of historical and ecological factors, which influence the use of different resources in time and space. We acquired data on time of activity, microhabitat use and diet of a lizard assemblage from a sand dune habitat in a coastal area, southeastern Brazil (Restinga de Jurubatiba. We analyzed the data of niche overlap among species in these three axes (temporal, spatial and trophic using null models. We found a significant overlap within the trophic niche, whereas the overlap for the other axes did not differ from the expected. Based on this result, we discuss the factors acting on the structure of the local lizard community.

  7. Compositional Variations in Sands of the Bagnold Dunes, Gale Crater, Mars, from Visible-Shortwave Infrared Spectroscopy and Comparison to Ground-Truth from the Curiosity Rover

    OpenAIRE

    Lapotre, M. G. A.; Ehlmann, B. L.; Minson, S. E.; Arvidson, R. E.; Ayoub, F.; Fraeman, A. A.; Ewing, R. C.; Bridges, N. T.

    2017-01-01

    During its ascent up Mount Sharp, the Mars Science Laboratory Curiosity rover traversed the Bagnold Dune Field. We model sand modal mineralogy and grain size at four locations near the rover traverse, using orbital shortwave infrared single-scattering albedo spectra and a Markov chain Monte Carlo implementation of Hapke's radiative transfer theory to fully constrain uncertainties and permitted solutions. These predictions, evaluated against in situ measurements at one site from the Curiosity ...

  8. Compositional variations in sands of the Bagnold Dunes, Gale Crater, Mars, from visible-shortwave infrared spectroscopy and comparison with ground truth from the Curiosity Rover

    Science.gov (United States)

    Lapotre, Mathieu G.A.; Ehlmann, B. L.; Minson, Sarah E.; Arvidson, R. E.; Ayoub, F.; Fraeman, A. A.; Ewing, R. C.; Bridges, N. T.

    2017-01-01

    During its ascent up Mount Sharp, the Mars Science Laboratory Curiosity rover traversed the Bagnold Dune Field. We model sand modal mineralogy and grain size at four locations near the rover traverse, using orbital shortwave infrared single scattering albedo spectra and a Markov-Chain Monte Carlo implementation of Hapke's radiative transfer theory to fully constrain uncertainties and permitted solutions. These predictions, evaluated against in situ measurements at one site from the Curiosity rover, show that XRD-measured mineralogy of the basaltic sands is within the 95% confidence interval of model predictions. However, predictions are relatively insensitive to grain size and are non-unique, especially when modeling the composition of minerals with solid solutions. We find an overall basaltic mineralogy and show subtle spatial variations in composition in and around the Bagnold dunes, consistent with a mafic enrichment of sands with cumulative transport distance by sorting of olivine, pyroxene, and plagioclase grains during aeolian saltation. Furthermore, the large variations in Fe and Mg abundances (~20 wt%) at the Bagnold Dunes suggest that compositional variability induced by wind sorting may be enhanced by local mixing with proximal sand sources. Our estimates demonstrate a method for orbital quantification of composition with rigorous uncertainty determination and provide key constraints for interpreting in situ measurements of compositional variability within martian aeolian sandstones.

  9. Environmental isotopes in North African groundwaters; and the Dahna sand-dune study, Saudi Arabia

    International Nuclear Information System (INIS)

    Sonntag, C.; Thoma, G.; Muennich, K.O.; Dincer, T.; Klitzsch, E.

    1980-01-01

    I. North Saharian palaeowaters were mainly formed during a long humid period between 50,000 and 20,000 years BP., which was followed by a cool dry period from 20,000 to 14,000 years BP. These palaeowaters show a significant west-east decrease in deuterium and 18 O because of past groundwater formation by local rainfall from the western drift. Sahel zone groundwaters seem to show meridional variation of deuterium and 18 O due to a tropical convective influence. II. A computer model estimate of the alternate play between rainwater infiltration and evaporation in the Dahna sand-dune (near Riyadh, Saudi Arabia) yields a mean annual groundwater recharge of 20 mm annually which agrees with that obtained from bomb tritium vertical profiles of the sand moisture. The model also describes the deuterium and 18 O profiles. (author)

  10. Improvement of Dune Sands by Residual Oil in Order to Use in Construction of Lagoons

    Directory of Open Access Journals (Sweden)

    Alborz Hajian nia

    2011-10-01

    Full Text Available This research which is based on experimental work, devoted to study the improvement and stabilization of dune sands in order to create strong layer and stabilize slope and floor construction of sewage Lagoons. Materials used stabilizing these soils are residual oil from the refinery. To confirm the effectiveness of the use of residual oil to improve the mechanical properties of the sand, various samples with different percentages were tested. In besides, the geotechnical and environmental tests were done. Results demonstrate that samples made with 5% oil have highest shear and unconfined compaction strength. It revealed that in compare with natural samples, cohesion and loading capacity highly increased and permeability decrease well. Percentage of fine aggregate, minerals and durability of oil in soil material were also investigated. Finally, effects of sewage on the samples were analyzed, and performance the oils were evaluated in order to use in lagoons.

  11. Responses of woody species to spatial and temporal ground water changes in coastal sand dune systems

    Science.gov (United States)

    Máguas, C.; Rascher, K. G.; Martins-Loução, A.; Carvalho, P.; Pinho, P.; Ramos, M.; Correia, O.; Werner, C.

    2011-12-01

    In spite of the relative importance of groundwater in costal dune systems, studies concerning the responses of vegetation to ground water (GW) availability variations, particularly in Mediterranean regions, are scarce. Thus, the main purpose of this study is to compare the responses of co-occurring species possessing different functional traits, to changes in GW levels (i.e. the lowering of GW levels) in a sand dune ecosystem. For that, five sites were established within a 1 km2 area in a meso-mediterranean sand dune ecosystem dominated by a Pinus pinaster forest. Due to natural topographic variability and anthropogenic GW exploitation, substantial variability in depth to GW between sites was found. Under these conditions it was possible to identify the degree of usage and dependence on GW of different plant species (two deep-rooted trees, a drought adapted shrub, a phreatophyte and a non-native woody invader) and how GW dependence varied seasonally and between the heterogeneous sites. Results indicated that the plant species had differential responses to changes in GW depth according to specific functional traits (i.e. rooting depth, leaf morphology, and water use strategy). Species comparison revealed that variability in pre-dawn water potential (Ψpre) and bulk leaf δ13C was related to site differences in GW use in the deep-rooted (Pinus pinaster, Myrica faya) and phreatophyte (Salix repens) species. However, such variation was more evident during spring than during summer drought. The exotic invader, Acacia longifolia, which does not possess a very deep root system, presented the largest seasonal variability in Ψpre and bulk leaf δ13C. In contrast, the response of Corema album, an endemic understory drought-adapted shrub, seemed to be independent of water availability across seasons and sites. Thus, the susceptibility to lowering of GW due to anthropogenic exploitation, in plant species from sand dunes, is variable, being particularly relevant for deep

  12. Responses of woody species to spatial and temporal ground water changes in coastal sand dune systems

    Directory of Open Access Journals (Sweden)

    C. Máguas

    2011-12-01

    Full Text Available In spite of the relative importance of groundwater in costal dune systems, studies concerning the responses of vegetation to ground water (GW availability variations, particularly in Mediterranean regions, are scarce. Thus, the main purpose of this study is to compare the responses of co-occurring species possessing different functional traits, to changes in GW levels (i.e. the lowering of GW levels in a sand dune ecosystem. For that, five sites were established within a 1 km2 area in a meso-mediterranean sand dune ecosystem dominated by a Pinus pinaster forest. Due to natural topographic variability and anthropogenic GW exploitation, substantial variability in depth to GW between sites was found. Under these conditions it was possible to identify the degree of usage and dependence on GW of different plant species (two deep-rooted trees, a drought adapted shrub, a phreatophyte and a non-native woody invader and how GW dependence varied seasonally and between the heterogeneous sites. Results indicated that the plant species had differential responses to changes in GW depth according to specific functional traits (i.e. rooting depth, leaf morphology, and water use strategy. Species comparison revealed that variability in pre-dawn water potential (Ψpre and bulk leaf δ13C was related to site differences in GW use in the deep-rooted (Pinus pinaster, Myrica faya and phreatophyte (Salix repens species. However, such variation was more evident during spring than during summer drought. The exotic invader, Acacia longifolia, which does not possess a very deep root system, presented the largest seasonal variability in Ψpre and bulk leaf δ13C. In contrast, the response of Corema album, an endemic understory drought-adapted shrub, seemed to be independent of water availability across seasons and sites. Thus, the susceptibility to lowering of GW due to anthropogenic

  13. Sand dunes of the Gaza Strip (southwestern Palestine: morphology, textural characteristics and associated environmental impacts

    Directory of Open Access Journals (Sweden)

    Khalid Fathi Ubeid

    2014-07-01

    Full Text Available Sand dunes are wide spread in the Gaza Strip and are present in its northern, central and southern regions. Thirty sand samples were collected at seven locations along the middle region of the Strip. The coordinates for each sampling site were positioned using GPS and processed with ArcGIS software. Mechanical and chemical properties were examined to determine the textural characteristics and carbonate contents of the dune sands. The mean grain size is fine to medium, and the sands range from moderate- to well-sorting. The skewness is fine to very fine, and the kurtosis ranges from mesokurtic to very leptokurtic. Additionally, the results show that the carbonate content ranges from 1.5% to 5%. The high permeability, good porosity, and low carbonate content of the sand dunes in the Gaza Strip have led to more groundwater pollution via leachates percolating from the solid waste landfills and basins from wastewater treatments constructed above the sand dunes. Sand quarries have also changed the natural landscape of the Gaza Strip. These quarries were excavated randomly, used for a short period and then disused. This random and unregulated excavation has led to the destruction of natural habitats for flora and fauna.   Resumen Las dunas de arena se extienden ampliamente en la Franja de Gaza y hacen presencia en las regiones del norte, centro y sur. Para este trabajo se recolectaron treinta muestras de arena en siete puntos a lo largo de la región media de la Franja. Las coordenadas de cada muestra se marcaron con el GPS y se procesaron con el programa ArcGIS. Se examinaron las propiedades químicas y mecánicas para determinar las características de textura y los contenidos de carbonato de las dunas de arena. El tamaño del grano está entre fino y medio y las arenas oscilan entre moderadas y bien definidas. La asimetría estadística va desde fina hasta muy fina y la variedad de la curtosis se ubica entre mesocúrtica y muy leptoc

  14. A Wireless Sensor Network for the Real-Time Remote Measurement of Aeolian Sand Transport on Sandy Beaches and Dunes.

    Science.gov (United States)

    Pozzebon, Alessandro; Cappelli, Irene; Mecocci, Alessandro; Bertoni, Duccio; Sarti, Giovanni; Alquini, Fernanda

    2018-03-08

    Direct measurements of aeolian sand transport on coastal dunes and beaches is of paramount importance to make correct decisions about coast management. As most of the existing studies are mainly based on a statistical approach, the solution presented in this paper proposes a sensing structure able to orient itself according to wind direction and directly calculate the amount of wind-transported sand by collecting it and by measuring its weight. Measurements are performed remotely without requiring human action because the structure is equipped with a ZigBee radio module, which periodically sends readings to a local gateway. Here data are processed by a microcontroller and then transferred to a remote data collection centre, through GSM technology. The ease of installation, the reduced power consumption and the low maintenance required, make the proposed solution able to work independently, limiting human intervention, for all the duration of the expected experimental campaign. In order to analyze the cause-effect relationship between the transported sand and the wind, the sensing structure is integrated with a multi-layer anemoscope-anemometer structure. The overall sensor network has been developed and tested in the laboratory, and its operation has been validated in field through a 48 h measurement campaign.

  15. A Wireless Sensor Network for the Real-Time Remote Measurement of Aeolian Sand Transport on Sandy Beaches and Dunes

    Science.gov (United States)

    Cappelli, Irene; Mecocci, Alessandro; Alquini, Fernanda

    2018-01-01

    Direct measurements of aeolian sand transport on coastal dunes and beaches is of paramount importance to make correct decisions about coast management. As most of the existing studies are mainly based on a statistical approach, the solution presented in this paper proposes a sensing structure able to orient itself according to wind direction and directly calculate the amount of wind-transported sand by collecting it and by measuring its weight. Measurements are performed remotely without requiring human action because the structure is equipped with a ZigBee radio module, which periodically sends readings to a local gateway. Here data are processed by a microcontroller and then transferred to a remote data collection centre, through GSM technology. The ease of installation, the reduced power consumption and the low maintenance required, make the proposed solution able to work independently, limiting human intervention, for all the duration of the expected experimental campaign. In order to analyze the cause-effect relationship between the transported sand and the wind, the sensing structure is integrated with a multi-layer anemoscope-anemometer structure. The overall sensor network has been developed and tested in the laboratory, and its operation has been validated in field through a 48 h measurement campaign. PMID:29518060

  16. Study of Goa and its environment from space: A report on coastal sand dune ecosystems of Goa: Siginficance, uses and anthropogenic impacts

    Digital Repository Service at National Institute of Oceanography (India)

    Mascarenhas, A.

    by regular tides which raise or lower water levels by 2 or 3 meters daily. It is these geomorphic features which support mangrove thickets which are today visible far into the hinterland along river banks, distributary channels, creeks and lagoons. Several... the maximum brunt of this "development". The beach - dune environment is a highly organized system. Sand dunes which generally back wide beaches, are features of extreme fragility and sensitive to anthropogenic stress. Sand dunes are Nature's line of defense...

  17. A new GIS-based model for automated extraction of Sand Dune encroachment case study: Dakhla Oases, western desert of Egypt

    Directory of Open Access Journals (Sweden)

    M. Ghadiry

    2012-06-01

    Full Text Available The movements of the sand dunes are considered as a threat for roads, irrigation networks, water resources, urban areas, agriculture and infrastructures. The main objectives of this study are to develop a new GIS-based model for automated extraction of sand dune encroachment using remote sensing data and to assess the rate of sand dune movement. To monitor and assess the movements of sand dunes in Dakhla oases area, multi-temporal satellite images and a GIS-developed model, using Python script in Arc GIS, were used. The satellite images (SPOT images, 1995 and 2007 were geo-rectified using Erdas Imagine. Image subtraction was performed using spatial analyst in Arc GIS, the result of image subtraction obtains the sand dune movement between the two dates. The raster and vector shape of sand dune migration was automatically extracted using spatial analyst tools. The frontiers of individual dunes were measured at different dates and movement rates were analyzed in GIS. The ModelBuilder in Arc GIS was used in order to create a user friendly tool. The custom built model window is easy to handle by any user who wishes to adapt the model in his work. It was found that the rate of sand dune movement ranged between 3 and 9 m per year. The majority of sand dunes have a rate movement between 0 and 6 m and very few dunes had a movement rate between 6 and 9 m. Integrating remote sensing and GIS provided the necessary information for determining the minimum, maximum, mean, rate and area of sand dune migration.

  18. Laboratory coupling tests for optimum land streamer design over sand dunes surface

    KAUST Repository

    Almalki, Hashim

    2012-02-26

    The cost of data acquisition in land is becoming a major issue as we strive to cover larger areas with seismic surveys at high resolution. Over sand dunes the problem is compounded by the week coupling obtain using geophones, which often forces us to bury the phone. A major challenge is designing such a land streamer system that combines durability, mobility and the required coupling. We share a couple of such designs and discuss the merits behind such designs and test their capability. The testing includes, the level of coupling, mobility and drag over sand surfaces. For specific designs loose sand can accumulate inside the steamer reducing its mobility. On the other hand, poor coupling will attenuate the high frequencies and cause an effective delay in the signal. The weight of the streamer is also an important factor in both mobility and coupling as it adds to the coupling it reduces the mobility of the streamer. We study the impact of weight and base plate surface area on the seismic signal quality, as well as the friction factor of different designs.

  19. Plant responses to an edaphic gradient across an active sand dune/desert boundary in the great basin desert.

    NARCIS (Netherlands)

    Rosenthal, D.M.; Ludwig, F.; Donovan, L.A.

    2005-01-01

    In arid ecosystems, variation in precipitation causes broad-scale spatial heterogeneity in soil moisture, but differences in soil texture, development, and plant cover can also create substantial local soil moisture heterogeneity. The boundary between inland desert sand dunes and adjacent desert

  20. 77 FR 55224 - Notice of Availability of the Proposed Imperial Sand Dunes Recreation Area Management Plan and...

    Science.gov (United States)

    2012-09-07

    ... Availability of the Proposed Imperial Sand Dunes Recreation Area Management Plan and California Desert... California Desert Conservation Area (CDCA) Plan Amendment/Final Environmental Impact Statement (EIS), for the.... District Court in September 2006. Portions of the biological opinion for the Peirson's milkvetch were also...

  1. Overview of Initial Results From Studies of the Bagnold Dune Field on Mars by the Curiosity Rover

    Science.gov (United States)

    Bridges, Nathan; Ehlmann, Bethany; Ewing, Ryan; Newman, Claire; Sullivan, Robert; Conrad, Pamela; Cousin, Agnes; Edgett, Kenneth; Fisk, Martin; Fraeman, Abigail; Johnson, Jeffrey; Lamb, Michael; Lapotre, Mathieu; Le Mouélic, Stéphane; Martinez, German; Meslin, Pierre-Yves; Thompson, Lucy; van Beek, Jason; Vasavada, Ashwin; Wiens, Roger

    2016-04-01

    The Curiosity Rover is currently studying the Bagnold Dunes in Gale Crater. Here we provide a general overview of results and note that other EGU presentations will focus on specific aspects. The in situ activities have not yet occurred as of this writing, but other analyses have been performed approaching and within the dunefield. ChemCam passive spectra of Bagnold Dune sands are consistent with the presence of olivine. Two APXS spots on the High Dune stoss slope margin, and two others in an engineering test sand patch, show less inferred dust, greater Si, and higher Fe/Mn than other "soils" in Gale Crater. ChemCam analyses of more than 300 soils along the Curiosity traverse show that both fine and coarse soils have increasing iron and alkali content as the Bagnold Dunes are approached, a trend that may reflect admixtures of local rocks (alkalis + iron) to the fines, but also a contribution of Bagnold-like sand (iron) that increases toward the dunefield. MAHLI images of sands on the lower east stoss slope of High Dune show medium and coarse sand in ripple forms, and very fine and fine sand in ripple troughs. Most grains are dark gray, but some are also brick-red/brown, white, green translucent, yellow, brown" colorless translucent, or vitreous spheres HiRISE orbital images show that the Bagnold Dunes migrate on the order of decimeters or more per Earth year. Prior to entering the dune field, wind disruption of dump piles and grain movement was observed over multi-sol time spans, demonstrating that winds are of sufficient strength to mobilize unconsolidated material, either through direct aerodynamic force or via the action of smaller impacting grains. Within the dune field, we are, as of this writing, engaged in change detection experiments with Mastcam and ChemCam's RMI camera. Data we have so far, spanning 8 sols from the same location, shows no changes. Mastcam and RMI images of the stoss sides of Namib, Noctivaga, and High Dune show that the "ripples" seen

  2. Development of spatially diverse and complex dune-field patterns: Gran Desierto Dune Field, Sonora, Mexico

    Science.gov (United States)

    Beveridge, C.; Kocurek, G.; Ewing, R.C.; Lancaster, N.; Morthekai, P.; Singhvi, A.K.; Mahan, S.A.

    2006-01-01

    The pattern of dunes within the Gran Desierto of Sonora, Mexico, is both spatially diverse and complex. Identification of the pattern components from remote-sensing images, combined with statistical analysis of their measured parameters demonstrate that the composite pattern consists of separate populations of simple dune patterns. Age-bracketing by optically stimulated luminescence (OSL) indicates that the simple patterns represent relatively short-lived aeolian constructional events since ???25 ka. The simple dune patterns consist of: (i) late Pleistocene relict linear dunes; (ii) degraded crescentic dunes formed at ???12 ka; (iii) early Holocene western crescentic dunes; (iv) eastern crescentic dunes emplaced at ???7 ka; and (v) star dunes formed during the last 3 ka. Recognition of the simple patterns and their ages allows for the geomorphic backstripping of the composite pattern. Palaeowind reconstructions, based upon the rule of gross bedform-normal transport, are largely in agreement with regional proxy data. The sediment state over time for the Gran Desierto is one in which the sediment supply for aeolian constructional events is derived from previously stored sediment (Ancestral Colorado River sediment), and contemporaneous influx from the lower Colorado River valley and coastal influx from the Bahia del Adair inlet. Aeolian constructional events are triggered by climatic shifts to greater aridity, changes in the wind regime, and the development of a sediment supply. The rate of geomorphic change within the Gran Desierto is significantly greater than the rate of subsidence and burial of the accumulation surface upon which it rests. ?? 2006 The Authors. Journal compilation 2006 International Association of Sedimentologists.

  3. Immunotoxicological and neurotoxicological profile of health effects following subacute exposure to geogenic dust from sand dunes at the Nellis Dunes Recreation Area, Las Vegas, NV

    Energy Technology Data Exchange (ETDEWEB)

    Keil, Deborah, E-mail: Deborah.Keil@montana.edu [Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717 (United States); Buck, Brenda [Department of Geoscience, University of Nevada, Las Vegas, NV 89154 (United States); Goossens, Dirk [Department of Geoscience, University of Nevada, Las Vegas, NV 89154 (United States); Geography Research Group, Department of Earth and Environmental Sciences, KU Leuven (Belgium); Teng, Yuanxin [Department of Geoscience, University of Nevada, Las Vegas, NV 89154 (United States); Leetham, Mallory; Murphy, Lacey [Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717 (United States); Pollard, James [Department of Geoscience, University of Nevada, Las Vegas, NV 89154 (United States); Eggers, Margaret [Center for Biofilm Engineering, Montana State University, Bozeman, MT 59717 (United States); McLaurin, Brett [Department of Environmental, Geographical, and Geological Sciences, Bloomsburg University of Pennsylvania, Bloomsburg, PA 17815 (United States); Gerads, Russell [Brooks Rand Labs, LLC, Bothell, WA 98011 (United States); DeWitt, Jamie [Department of Pharmacology and Toxicology, East Carolina University, Greenville, NC 27834 (United States)

    2016-01-15

    Exposure to geogenic particulate matter (PM) comprised of mineral particles has been linked to human health effects. However, very little data exist on health effects associated with geogenic dust exposure in natural settings. Therefore, we characterized particulate matter size, metal chemistry, and health effects of dust collected from the Nellis Dunes Recreation Area (NDRA), a popular off-road vehicle area located near Las Vegas, NV. Adult female B6C3F1 mice were exposed to several concentrations of mineral dust collected from active and vegetated sand dunes in NDRA. Dust samples (median diameter: 4.4 μm) were suspended in phosphate-buffered saline and delivered at concentrations ranging from 0.01 to 100 mg dust/kg body weight by oropharyngeal aspiration. ICP-MS analyses of total dissolution of the dust resulted in aluminum (55,090 μg/g), vanadium (70 μg/g), chromium (33 μg/g), manganese (511 μg/g), iron (21,600 μg/g), cobalt (9.4 μg/g), copper (69 μg/g), zinc (79 μg/g), arsenic (62 μg/g), strontium (620 μg/g), cesium (13 μg/g), lead 25 μg/g) and uranium (4.7 μg/g). Arsenic was present only as As(V). Mice received four exposures, once/week over 28-days to mimic a month of weekend exposures. Descriptive and functional assays to assess immunotoxicity and neurotoxicity were performed 24 h after the final exposure. The primary observation was that 0.1 to 100 mg/kg of this sand dune derived dust dose-responsively reduced antigen-specific IgM antibody responses, suggesting that dust from this area of NDRA may present a potential health risk. - Graphical abstract: During periods of heavy wind erosion, dense dust clouds of locally emitted geogenic dust enrobe the central Nellis Dune Recreation Area dunes. - Highlights: • Toxicological effects were characterized specific to geogenic dust exposure from a recreational sand dune site in Nevada. • The geogenic dust is a mixture of many metals and crystalline silica. • Exposure to geogenic dust dose

  4. Mapping the base of sand dunes using a new design of land-streamer for static correction applications

    KAUST Repository

    Almalki, H.

    2012-05-16

    The complex near-surface structure is a major problem in land seismic data. This is more critical when data acquisition takes place over sand dune surfaces, where the base of the sand acts as a trap for energy and, depending on its shape, can considerably distort conventionally acquired seismic data. Estimating the base of the sand dune surface can help model the sand dune and reduce its harmful influence on conventional seismic data. Among the current methods to do so are drilling upholes and using conventional seismic data to apply static correction. Both methods have costs and limitations. For upholes, the cost factor and their inability to provide a continuous model is well realized. Meanwhile, conventional seismic data lack the resolution necessary to obtain accurate modeling of the sand basement. We developed a method to estimate the sand base from land-streamer seismic acquisition that is developed and geared to sand surfaces. Seismic data acquisition took place over a sand surface in the Al-Thumamah area, where an uphole is located, using the developed land-streamer and conventional spiked geophone systems. Land-streamer acquisition not only provides a more efficient data acquisition system than the conventional spiked geophone approach, but also in our case, the land-streamer provided better quality data with a broader frequency bandwidth. Such data enabled us to do accurate near-surface velocity estimation that resulted in velocities that are very close to those measured using uphole methods. This fact is demonstrated on multiple lines acquired near upholes, and agreement between the seismic velocities and the upholes is high. The stacked depth seismic section shows three layers. The interface between the first and second layers is located at 7 m depth, while the interface between second and third layers is located at 68 m depth, which agrees with the uphole result. 2012 The Author(s).

  5. Changes in vegetation and biological soil crust communities on sand dunes stabilizing after a century of grazing on San Miguel Island, Channel Island National Park, California

    Science.gov (United States)

    Zellman, Kristine L.

    2014-01-01

    San Miguel Island is the westernmost of the California Channel Islands and one of the windiest areas on the west coast of North America. The majority of the island is covered by coastal sand dunes, which were stripped of vegetation and subsequently mobilized due to droughts and sheep ranching during the late 19th century and early 20th century. Since the removal of grazing animals, vegetation and biological soil crusts have once again stabilized many of the island's dunes. In this study, historical aerial photographs and field surveys were used to develop a chronosequence of the pattern of change in vegetation communities and biological soil crust levels of development (LOD) along a gradient of dune stabilization. Historical aerial photographs from 1929, 1954, 1977, and 2009 were georeferenced and used to delineate changes in vegetation canopy cover and active (unvegetated) dune extent among 5 historical periods (pre-1929, 1929–1954, 1954–1977, 1977–2009, and 2009–2011). During fieldwork, vegetation and biological soil crust communities were mapped along transects distributed throughout San Miguel Island's central dune field on land forms that had stabilized during the 5 time periods of interest. Analyses in a geographic information system (GIS) quantified the pattern of changes that vegetation and biological soil crust communities have exhibited on the San Miguel Island dunes over the past 80 years. Results revealed that a continuing increase in total vegetation cover and a complex pattern of change in vegetation communities have taken place on the San Miguel Island dunes since the removal of grazing animals. The highly specialized native vascular vegetation (sea rocket, dunedelion, beach-bur, and locoweed) are the pioneer stabilizers of the dunes. This pioneer community is replaced in later stages by communities that are dominated by native shrubs (coastal goldenbush, silver lupine, coyote-brush, and giant coreopsis), with apparently overlapping or

  6. Interaction of petroleum mulching, vegetation restoration and dust fallout on the conditions of sand dunes in southwest of Iran

    Science.gov (United States)

    Azoogh, Liela; Khalili moghadam, Bijan; Jafari, Siroos

    2018-06-01

    In the past half-century, petroleum mulching-biological fixation (PM-BF) practices have been employed to stabilize sand dunes in Iran. However, the effects of PM-BF practices on the attributes of sand dunes and the dispersion of heavy metals of mulch have been poorly understood. To this end, three regions treated with PM-BF for 5, 20, and 40 years and a control region with no PM-BF were studied. Samples of soil properties were taken at the depths of 0-10 cm and 10-50 cm, with three replications, in Khuzestan Province. The results showed that PM-BF practices promoted the restoration of vegetation cover in the sand dunes. In addition, these practices increased the deposition of dust particles, gradually increasing the magnitudes of palygorskite and smectite clays over time. The interactions between dust deposition and PM-BF practices significantly altered the chemical and physical properties of the dunes. PM-BF practices increased soil organic matter (184-287%), cation exchangeable capacity (142-209%), electrical conductivity (144-493%), clay content (134-196%), and penetration resistance (107-170%) compared to the region with no PM-BF practices. Furthermore, petroleum mulching significantly increased the amount of Ni (1.19%), Cd (1.55%), Pb (1.08%), Cu (1.34%), Zn (1.38%), Mn (1.66%), and Fe (1.15%). However, in the long term, these elements will probably leach linearly as a consequence of an increase in organic matter and soil salinity in the light texture of sand dunes.

  7. Seed bank dynamics of blowout penstemon in relation to local patterns of sand movement on the Ferris Dunes, south-central Wyoming

    Science.gov (United States)

    Kassie L. Tilini; Susan E. Meyer; Phil S. Allen

    2017-01-01

    Plants restricted to active sand dunes possess traits that enable both survival in a harsh environment and local migration in response to a shifting habitat mosaic. We examined seed bank dynamics of Penstemon haydenii S. Watson (blowout penstemon) in relation to local sand movement. We measured within-year sand movement along a 400 m transect and examined plant density...

  8. Assessment of Ni, Cu, Zn and Pb levels in beach and dune sands from Havana resorts, Cuba.

    Science.gov (United States)

    Díaz Rizo, Oscar; Buzón González, Fran; Arado López, Juana O

    2015-11-15

    Concentrations of nickel (Ni), copper (Cu), zinc (Zn) and lead (Pb) in beach and dune sands from thirteen Havana (Cuba) resorts were estimated by X-ray fluorescence analysis. Determined mean metal contents (in mg·kg(-1)) in beach sand samples were 28±12 for Ni, 35±12 for Cu, 31±11 for Zn and 6.0±1.8 for Pb, while for dune sands were 30±15, 38±22, 37±15 and 6.8±2.9, respectively. Metal-to-iron normalization shows moderately severe and severe enrichment by Cu. The comparison with sediment quality guidelines shows that dune sands from various resorts must be considered as heavily polluted by Cu and Ni. Almost in every resort, the Ni and Cu contents exceed their corresponding TEL values and, in some resorts, the Ni PEL value. The comparison with a Havana topsoil study indicates the possible Ni and Cu natural origin. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. The impact of fire on sand dune stability: Surface coverage and biomass recovery after fires on Western Australian coastal dune systems from 1988 to 2016

    Science.gov (United States)

    Shumack, Samuel; Hesse, Paul; Turner, Liam

    2017-12-01

    This study aims to determine the common response of coastal sand dunes in Western Australia (WA) to fire on decadal time-scales, in terms of ecological-geomorphic-climatic interactions to test the hypothesis that fire plays a role in coastal dune destabilisation. Fires are commonly suggested to have contributed to widespread dune reactivation in Australia and globally, a hypothesis that is relatively untested. We used data from the Landsat Thematic Mapper, Enhanced Thematic Mapper Plus, and Operational Land Imager missions to monitor changes in surface coverage on coastal sand dunes in south-west WA after fires. We analysed 31 fire scars from 1988 to 2016 in two Landsat scenes on the west and south coast of WA. Recovery ratios derived from the Normalised Difference Vegetation Index (NDVI) were used to monitor patterns in post-fire biomass and surface cover. Recovery ratios are correlated with indices of burn severity, and meteorological data to investigate relationships. We also used Maximum Likelihood Classification to monitor changes in bare sand area. Results suggest that recovery followed a strongly consistent pattern, and is characterised by rapid vegetation cover re-establishment within six to twelve months. Prior to this, some aeolian activity may have occurred but without substantial surface changes. Initial germination and/or resprouting were followed by steady growth up to seven years, where NDVI typically neared pre-fire values. Some variation in early recovery occurred between the west and south coast, possibly owing to relative proportions of reseeding and resprouting plants. A log regression explained 75% of the recovery pattern (79% on the south coast). Precipitation had some ability to explain recovery up to nine months post-fire (r2 = 0.29 to 0.54). No relationships were observed between estimates of burn severity and recovery. After nine months, the biggest cause of spatial variation in recovery was the pre-fire community composition and related

  10. Field measurement and analysis of climatic factors affecting dune mobility near Grand Falls on the Navajo Nation, southwestern United States

    Science.gov (United States)

    Bogle, Rian; Redsteer, Margaret Hiza; Vogel, John M.

    2015-01-01

    Aeolian sand covers extensive areas of the Navajo Nation in the southwestern United States. Much of this sand is currently stabilized by vegetation, although many drier parts of these Native lands also have active and partly active dunes. Current prolonged drought conditions that started in the mid-1990s are producing significant changes in dune mobility. Reactivation of regional aeolian deposits due to drought or increasing aridity from rising temperatures resulting from climate change could have serious consequences for human and animal populations, agriculture, grazing, and infrastructure. To understand and document the current and future potential for mobility, seasonally repeated surveys were used to track the location of multiple active barchan dunes. By utilizing Real-Time Kinematic GPS field surveys and simultaneously collecting in-situ meteorological data, it is possible to examine climatic parameters and seasonal variations that affect dune mobility and their relative influences. Through analysis of the recorded data, we examined the fit of various climate parameters, and demonstrate that under the current prolonged drought, wind power is the dominant factor controlling dune mobility.

  11. Investigation of Water Holding Capacity of Sugarcane Mulch for Sand Dune Stabilization in Ahvaz

    Directory of Open Access Journals (Sweden)

    T. Jamili

    2017-01-01

    Full Text Available Introduction: Wind erosion is one of the most serious problems in southwest Iran. Fine-grained structure of sand dunes with not enough strong composition and their low moisture retention property make them susceptible to wind erosion. They lack organic matter and are considered inherently of low fertility (Ahmadi, 2002. Studies have shown that non-erodible materials which include bentonite clay (Diouf et al., 1990, ureamelamine formaldehyde and urea–formaldehyde with 0.25% sodium chloride (Lahalih and Ahmed, 1998, acids, enzymes, lignosulfonates, polymers, tree resins (Santoni et al., 2001, waterborne polymer emulsion (Al-Khanbashi and Abdalla, 2006, polyvinyl alcohol and a polyvinyl acetate emulsion (Newman et al., 2005; Han et al., 2007, ash and polyacrylamide (Yang and Zejun, 2012.have significant potential in reducing wind erosion The area under farming of sugarcane in Khuzestan, Iran, is more than 130,000, ha. Vinasse and Filter Kike are two organic ingredients of sugarcane residues which are generated as byproduct materials insugarcane processing. In recent years these residues have been released into the environment and cause it regarded as water pollutant. Over 800,000 m3 of Vinasse is annually stored in each agro-industry. Vinasse also is rich in K, Ca, and Mg with moderate amounts of P and N,and non toxic complexes or heavy metals. Filter Kike is another residue produced in huge amounts by the agro-industry that is composed of cellulosic substances, CaCO3, N, P, K, organic matter, and clay. Therefore, the objective of this research is to investigate the effect of sugarcane mulch on water holding capacity in soil. This study is performed to evaluate the feasibility of using sugarcane residues inproduce of ecofriendly mulches for environmental use. In order of achieving these goals, Vinase, Filter Cake, and clay soil from near the sand dunes were used as sugarcane mulches. Further comparison between traditional oil mulches and

  12. Nocardiopsis arabia sp. nov., a halotolerant actinomycete isolated from a sand-dune soil.

    Science.gov (United States)

    Hozzein, Wael N; Goodfellow, Michael

    2008-11-01

    The taxonomic status of an unknown actinomycete isolated from a sand-dune soil was established using a polyphasic approach. Isolate S186(T) had chemotaxonomic and morphological properties consistent with its classification in the genus Nocardiopsis, grew on agar plates at NaCl concentrations of up to 15 % (w/v) and formed a distinct phyletic line in the Nocardiopsis 16S rRNA gene sequence tree. Its closest phylogenetic neighbours were Nocardiopsis chromatogenes, Nocardiopsis composta, Nocardiopsis gilva and Nocardiopsis trehalosi, with sequence similarity to the various type strains of 96.9 %, but it was readily distinguished from the type strains of these and related species using a range of phenotypic properties. It is apparent from the genotypic and phenotypic data that strain S186(T) belongs to a novel species of the genus Nocardiopsis, for which the name Nocardiopsis arabia sp. nov. is proposed. The type strain is S186(T) (=CGMCC 4.2057(T) =DSM 45083(T)).

  13. Carbon sequestration capacity of shifting sand dune after establishing new vegetation in the Tengger Desert, northern China.

    Science.gov (United States)

    Yang, Haotian; Li, Xinrong; Wang, Zengru; Jia, Rongliang; Liu, Lichao; Chen, Yongle; Wei, Yongping; Gao, Yanhong; Li, Gang

    2014-04-15

    Reconstructing vegetation in arid and semiarid areas has become an increasingly important management strategy to realize habitat recovery, mitigate desertification and global climate change. To assess the carbon sequestration potential in areas where sand-binding vegetation has been established on shifting sand dunes by planting xeric shrubs located near the southeastern edge of the Tengger Desert in northern China, we conducted a field investigation of restored dune regions that were established at different times (20, 30, 47, and 55 years ago) in the same area. We quantified the total organic carbon (TOC) in each ecosystem by summing the individual carbon contributions from the soil (soil organic carbon; SOC), shrubs, and grasses in each system. We found that the TOC, as well as the amount of organic carbon in the soil, shrubs, and grasses, significantly increased over time in the restored areas. The average annual rate of carbon sequestration was highest in the first 20 years after restoration (3.26 × 10(-2)kg·m(-2) ·year(-1)), and reached a stable rate (2.14 × 10(-2) kg·m(-2) ·year(-1)) after 47 years. Organic carbon storage in soil represented the largest carbon pool for both restored systems and a system containing native vegetation, accounting for 67.6%-85.0% of the TOC. Carbon in grass root biomass, aboveground grass biomass, litter, aboveground shrub biomass, and shrub root biomass account for 10.0%-21.0%, 0.2%-0.6%, 0.1%-0.2%, 1.7%-12.1% and 0.9%-6.2% of the TOC, respectively. Furthermore, we found that the 55-year-old restored system has the capacity to accumulate more TOC (1.02 kg·m(-2) more) to reach the TOC level found in the natural vegetation system. These results suggest that restoring desert ecosystems may be a cost-effective and environmentally friendly way to sequester CO2 from the atmosphere and mitigate the effects of global climate change. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Classification of Land Use on Sand-Dune Topography by Object-Based Analysis, Digital Photogrammetry, and GIS Analysis in the Horqin Sandy Land, China

    Directory of Open Access Journals (Sweden)

    Takafumi Miyasaka

    2016-07-01

    Full Text Available Previous field research on the Horqin Sandy Land (China, which has suffered from severe desertification during recent decades, revealed how land use on a sand-dune topography affects both land degradation and restoration. This study aimed to depict the spatial distribution of local land use in order to shed more light on previous field findings regarding policies on a broader scale. We performed the following analyses with Panchromatic Remote-sensing Instrument for Stereo Mapping (PRISM and Advanced Visible and Near Infrared Radiometer type 2 (AVNIR-2 images of Advanced Land Observing Satellite (ALOS: (1 object-based classification to discriminate preliminary classification of land-use types that were approximately differentiated by ordinary pixel-based analysis with spectral information; (2 digital photogrammetry to generate a digital surface model (DSM with adequately high accuracy to represent undulating sand-dune topography; (3 geographic information system (GIS analysis to classify major topographic types with the digital surface model (DSM; and (4 overlay of the two classification results to depict the local land-use types. The overall accuracies of the object-based and GIS-based classifications were high, at 93% (kappa statistic: 0.84 and 89% (kappa statistic: 0.81, respectively. The resultant local land-use map represents areas covered in previous field studies, showing where and how land degradation and restoration are likely to occur. This research can contribute to future environmental surveys, models, and policies in the study area.

  15. Effects of disturbance on vegetation by sand accretion and erosion across coastal dune habitats on a barrier island.

    Science.gov (United States)

    Miller, Thomas E

    2015-01-12

    Coastal geomorphology and vegetation are expected to be particularly sensitive to climate change, because of disturbances caused by sea-level rise and increased storm frequency. Dunes have critical reciprocal interactions with vegetation; dunes create habitats for plants, while plants help to build dunes and promote geomorphological stability. These interactions are also greatly affected by disturbances associated with sand movement, either in accretion (dune building) or in erosion. The magnitude and intensity of disturbances are expected to vary with habitat, from the more exposed and less stable foredunes, to low-lying and flood-prone interdunes, to the protected and older backdunes. Permanent plots were established at three different spatial scales on St George Island, FL, USA, where the vegetation and dune elevation were quantified annually from 2011 to 2013. Change in elevation, either through accretion or erosion, was used as a measure of year-to-year disturbance over the 2 years of the study. At the scale of different dune habitats, foredunes were found to have the greatest disturbance, while interdunes had the least. Elevation and habitat (i.e. foredune, interdune, backdune) were significantly correlated with plant community composition. Generalized linear models conducted within each habitat show that the change in elevation (disturbance) is also significantly correlated with the plant community, but only within foredunes and interdunes. The importance of disturbance in exposed foredunes was expected and was found to be related to an increasing abundance of a dominant species (Uniola paniculata) in eroding areas. The significant effect of disturbance in the relatively stable interdunes was surprising, and may be due to the importance of flooding associated with small changes in elevation in these low-lying areas. Overall, this study documents changes in the plant community associated with elevation, and demonstrates that the foredune and interdune

  16. Size distributions and dispersions along a 485-year chronosequence for sand dune vegetation.

    Science.gov (United States)

    Waugh, Jennifer M; Aarssen, Lonnie W

    2012-04-01

    Using a sand dune chronosequence that spans 485 years of primary succession, we collected nearest-neighbor vegetation data to test two predictions associated with the traditional "size-advantage" hypothesis for plant competitive ability: (1) the relative representation of larger species should increase in later stages of succession; and (2) resident species that are near neighbors should, over successional time, become more similar in plant body size and/or seed size than expected by random assembly. The first prediction was supported over the time period between mid to later succession, but the second prediction was not; that is, there was no temporal pattern across the chronosequence indicating that either larger resident species, or larger seeded resident species, increasingly exclude smaller ones from local neighborhoods over time. Rather, neighboring species were generally more different from each other in seed sizes than expected by random assembly. As larger species accumulate over time, some relatively small species are lost from later stages of succession, but species size distributions nevertheless remain strongly right-skewed-even in late succession-and species of disparate sizes are just as likely as in early succession to coexist as immediate neighbors. This local-scale coexistence of disparate sized neighbors might be accounted for-as in traditional interpretations-in terms of species differences in "physical-space-niches" (e.g., involving different rooting depths), combined with possible facilitation effects. We propose, however, that this coexistence may also occur because competitive ability involves more than just a size advantage, with traits associated with survival (tolerance of intense competition) and fecundity (offspring production despite intense competition) being at least equally important.

  17. Chemistry, mineralogy, and grain properties at Namib and High dunes, Bagnold dune field, Gale crater, Mars: A synthesis of Curiosity rover observations.

    Science.gov (United States)

    Ehlmann, B L; Edgett, K S; Sutter, B; Achilles, C N; Litvak, M L; Lapotre, M G A; Sullivan, R; Fraeman, A A; Arvidson, R E; Blake, D F; Bridges, N T; Conrad, P G; Cousin, A; Downs, R T; Gabriel, T S J; Gellert, R; Hamilton, V E; Hardgrove, C; Johnson, J R; Kuhn, S; Mahaffy, P R; Maurice, S; McHenry, M; Meslin, P-Y; Ming, D W; Minitti, M E; Morookian, J M; Morris, R V; O'Connell-Cooper, C D; Pinet, P C; Rowland, S K; Schröder, S; Siebach, K L; Stein, N T; Thompson, L M; Vaniman, D T; Vasavada, A R; Wellington, D F; Wiens, R C; Yen, A S

    2017-12-01

    The Mars Science Laboratory Curiosity rover performed coordinated measurements to examine the textures and compositions of aeolian sands in the active Bagnold dune field. The Bagnold sands are rounded to subrounded, very fine to medium sized (~45-500 μm) with ≥6 distinct grain colors. In contrast to sands examined by Curiosity in a dust-covered, inactive bedform called Rocknest and soils at other landing sites, Bagnold sands are darker, less red, better sorted, have fewer silt-sized or smaller grains, and show no evidence for cohesion. Nevertheless, Bagnold mineralogy and Rocknest mineralogy are similar with plagioclase, olivine, and pyroxenes in similar proportions comprising >90% of crystalline phases, along with a substantial amorphous component (35% ± 15%). Yet Bagnold and Rocknest bulk chemistry differ. Bagnold sands are Si enriched relative to other soils at Gale crater, and H 2 O, S, and Cl are lower relative to all previously measured Martian soils and most Gale crater rocks. Mg, Ni, Fe, and Mn are enriched in the coarse-sieved fraction of Bagnold sands, corroborated by visible/near-infrared spectra that suggest enrichment of olivine. Collectively, patterns in major element chemistry and volatile release data indicate two distinctive volatile reservoirs in Martian soils: (1) amorphous components in the sand-sized fraction (represented by Bagnold) that are Si-enriched, hydroxylated alteration products and/or H 2 O- or OH-bearing impact or volcanic glasses and (2) amorphous components in the fine fraction (<40 μm; represented by Rocknest and other bright soils) that are Fe, S, and Cl enriched with low Si and adsorbed and structural H 2 O.

  18. An experiment on a sand-dune environment in Southern Venetian coast based on GPR, VES and documentary evidence

    Directory of Open Access Journals (Sweden)

    L. Tosi

    2000-06-01

    Full Text Available The internal structures of some surviving sand dunes and the ancient shore-lines along the coast south of Venice have been investigated integrating Ground Probing Radar (GPR profiles, Vertical Electrical Soundings (VES and water conductivity measurements in some boreholes. The GPR penetration depth has been limited (4-5 m,using a 400 MHz antenna by the high conductivity of salt water saturating pores of the shallow sediments. On the other hand, the excellent spatial resolution of the radar survey provided an estimate of internal dune bedding features, such as cross lamination and forwarding ancient covered coast-lines dated in the Thirties. The interpretation of the data, in particular along one line 360 m long intercepting a sizable sand-dune bank, seems to offer clues to the evolutional history of the coast line and the depth of transition from fresh-water to brackish-salt water. The water table was detected with electrical measurements and direct observations in boreholes, whereas the transition between fresh and salt water (brackish water was pointed out indirectly by the high energy absorption and total back-reflection of the EM waves, encountered at this boundary, and directly by the strong decrease in VES resistivity values.

  19. An experiment on a sand-dune environment in Southern Venetian coast based on GPR, VES and documentary evidence

    Energy Technology Data Exchange (ETDEWEB)

    Galgaro, A.; Finzi, E. [Padua Univ., Padua (Italy). Dipt. di Geologia, Paleontologia e Geofisica; Tosi, L. [Consiglio Nazionale delle Ricerche, Venice (Italy). Ist. per l Studio della Dinamica delle Grandi Masse

    2000-04-01

    The internal structures of some surviving sand dunes and the ancient shore-lines along the coast south of Venice (Italy) have been investigated integrating ground probing radar (GPR) profiles, vertical electrical soundings (VES) and water conductivity measurements in some boreholes. The GPR penetration depth has been limited (4-5 m, using a 400 MHz antenna) by the high conductivity of salt water saturating pores of the shallow sediments. On the other hand, the excellent spatial resolution of the radar survey provided an estimate of internal dune bedding features, such as cross lamination and forwarding ancient covered coast-lines dated in the Thirties. The interpretation of the data, in particular along one line 360 m long intercepting a sizeable sand-dune bank, seems to offer clues to the evolutional history of the coast line and the depth of transition from fresh-water to brackish-salt water. The water table was detected with electrical measurements and direct observations in boreholes, whereas the transition between fresh and salt water was pointed out indirectly by the high energy absorption and total back-reflection of the electromagnetic waves, encountered at this boundary, and directly by the strong decrease in VES resistivity values.

  20. Equinoctial Activity Over Titan Dune Fields Revealed by Cassini/vims

    Science.gov (United States)

    Rodriguez, S.; Le Mouelic, S.; Barnes, J. W.; Hirtzig, M.; Rannou, P.; Sotin, C.; Brown, R. H.; Bow, J.; Vixie, G.; Cornet, T.; Bourgeois, O.; Narteau, C.; Courrech Du Pont, S.; Le Gall, A.; Reffet, E.; Griffith, C. A.; Jaumann, R.; Stephan, K.; Buratti, B. J.; Clark, R. N.; Baines, K. H.; Nicholson, P. D.; Coustenis, A.

    2012-12-01

    2010. In this paper, we will discuss the possibility that these singular events may have occurred very close to the surface, having a strong link with the underlying dune fields. Radiative transfer calculations indeed show that these singular brightenings are due to the transient appearance of an additional atmospheric layer, confined at very low altitudes and loaded with few but large particles. Gathering all the observational and modeling constraints, we conclude that the most probable explanation for these events is the local and transient occurrence of huge sand storms, directly originating from the underlying dune fields. We will also discuss the possible implications of the equinoctial occurrence of such events for Titan's tropical wind regimes and for the present-day activity of equatorial dunes.

  1. Impacts of simulated climate change and fungal symbionts on survival and growth of a foundation species in sand dunes.

    Science.gov (United States)

    Emery, Sarah M; Rudgers, Jennifer A

    2013-12-01

    For many ecosystems, one of the primary avenues of climate impact may be through changes to foundation species, which create habitats and sustain ecosystem services. For plants, microbial symbionts can often act as mutualists under abiotic stress and may mediate foundational plant responses to climate change. We manipulated the presence of endophytes in Ammophila breviligulata, a foundational sand dune species, to evaluate their potential to influence plant responses to climate change. We simulated projected climate change scenarios for temperature and precipitation using a growth chamber experiment. A 5 °C increase in temperature relative to current climate in northern Michigan reduced A. breviligulata survival by 45 %. Root biomass of A. breviligulata, which is critical to dune stabilization, was also strongly reduced by temperature. Plants inoculated with the endophyte had 14 % higher survival than endophyte-free plants. Contrary to our prediction, endophyte symbiosis did not alter the magnitude or direction of the effects of climate manipulations on A. breviligulata survival. However, in the absence of the endophyte, an increase in temperature increased the number of sand grains bound by roots by 80 %, while in symbiotic plants sand adherence did not significantly respond to temperature. Thus, plant-endophyte symbiosis actually negated the benefits in ecosystem function gained under a warmer climate. This study suggests that heat stress related to climate change in the Great Lakes may compromise the ability of A. breviligulata to stabilize dune ecosystems and reduce carbon storage and organic matter build-up in these early-successional systems due to reduced plant survival and root growth.

  2. Exploring the contributions of vegetation and dune size to early dune development using unmanned aerial vehicle (UAV) imaging

    Science.gov (United States)

    van Puijenbroek, Marinka E. B.; Nolet, Corjan; de Groot, Alma V.; Suomalainen, Juha M.; Riksen, Michel J. P. M.; Berendse, Frank; Limpens, Juul

    2017-12-01

    Dune development along highly dynamic land-sea boundaries is the result of interaction between vegetation and dune size with sedimentation and erosion processes. Disentangling the contribution of vegetation characteristics from that of dune size would improve predictions of nebkha dune development under a changing climate, but has proven difficult due to the scarcity of spatially continuous monitoring data. This study explored the contributions of vegetation and dune size to dune development for locations differing in shelter from the sea. We monitored a natural nebkha dune field of 8 ha, along the coast of the island Texel, the Netherlands, for 1 year using an unmanned aerial vehicle (UAV) with camera. After constructing a digital surface model and orthomosaic we derived for each dune (1) vegetation characteristics (species composition, vegetation density, and maximum vegetation height), (2) dune size (dune volume, area, and maximum height), (3) degree of shelter (proximity to other nebkha dunes and the sheltering by the foredune). Changes in dune volume over summer and winter were related to vegetation, dune size and degree of shelter. We found that a positive change in dune volume (dune growth) was linearly related to initial dune volume over summer but not over winter. Big dunes accumulated more sand than small dunes due to their larger surface area. Exposed dunes increased more in volume (0.81 % per dune per week) than sheltered dunes (0.2 % per dune per week) over summer, while the opposite occurred over winter. Vegetation characteristics did not significantly affect dune growth in summer, but did significantly affect dune growth in winter. Over winter, dunes dominated by Ammophila arenaria, a grass species with high vegetation density throughout the year, increased more in volume than dunes dominated by Elytrigia juncea, a grass species with lower vegetation density (0.43 vs. 0.42 (m3 m-3) week-1). The effect of species was irrespective of dune size or

  3. Studies of the terrestrial O2 and carbon cycles in sand dune gases and in biosphere 2

    Energy Technology Data Exchange (ETDEWEB)

    Severinghaus, Jeffrey Peck [Columbia Univ., New York, NY (United States)

    1995-01-01

    Molecular oxygen in the atmosphere is coupled tightly to the terrestrial carbon cycle by the processes of photosynthesis, respiration, and burning. This dissertation examines different aspects of this coupling in four chapters. Chapter 1 explores the feasibility of using air from sand dunes to reconstruct atmospheric O2 composition centuries ago. Such a record would reveal changes in the mass of the terrestrial biosphere, after correction for known fossil fuel combustion, and constrain the fate of anthropogenic CO2.

  4. Geology along Mosca Pass Trail, Great Sand Dunes National Park and Preserve, Colorado

    Science.gov (United States)

    Lindsey, David A.; Klein, Terry L.; Valdez, Andrew; Webster, Robert J.

    2012-01-01

    Mosca Pass Trail takes the hiker on a journey into the Earth's crust. Here you can see the results of tremendous tectonic forces that bend and tear rocks apart and raise mountain ranges. The trail begins near the Sangre de Cristo fault, which separates the Sangre de Cristo Range from the San Luis Valley. The valley is part of the Rio Grande rift, a series of fault basins extending from southern New Mexico to central Colorado, wherein the Earth's crust has been pulled apart during the last 30 million years. Thousands of feet of sediment, brought by streams mostly from the Sangre de Cristo Range, fill the San Luis Valley beneath the Great Sand Dunes. The trail ends at Mosca Pass overlooking Huerfano Park. The park is part of the larger Raton Basin, formed by compression of the Earth's crust during the Laramide orogeny, which occurred 70–40 million years ago. Massive highlands, the remnants of which are preserved in the Sangre de Cristo Range, were uplifted and pushed over the western side of the Raton Basin. Streams eroded the highland as it rose and filled the Raton Basin with sediment. After the sediment was compacted and cemented to form sedimentary rock, the Huerfano River and other streams began to excavate the basin. Over an unknown but long timespan that probably lasted millions of years, relatively soft sedimentary rocks were removed by the river to form the valley we call "Huerfano Park." Between the ends of the trail, the hiker walks through an erosional "window," or opening, into red sedimentary rocks overridden by gneiss, a metamorphic rock, during the Laramide orogeny. This window gives the hiker a glimpse into the Laramide highland of 70–40 million years ago that preceded the present-day Sangre de Cristo Range. The window is the focus of this trail guide. At the east end of the trail, near Mosca Pass, another trail follows the ridgeline south to Carbonate Mountain. Immediately after reaching the first summit above tree line, this trail crosses a

  5. Mapping gullies, dunes, lava fields, and landslides via surface roughness

    Science.gov (United States)

    Korzeniowska, Karolina; Pfeifer, Norbert; Landtwing, Stephan

    2018-01-01

    Gully erosion is a widespread and significant process involved in soil and land degradation. Mapping gullies helps to quantify past, and anticipate future, soil losses. Digital terrain models offer promising data for automatically detecting and mapping gullies especially in vegetated areas, although methods vary widely measures of local terrain roughness are the most varied and debated among these methods. Rarely do studies test the performance of roughness metrics for mapping gullies, limiting their applicability to small training areas. To this end, we systematically explored how local terrain roughness derived from high-resolution Light Detection And Ranging (LiDAR) data can aid in the unsupervised detection of gullies over a large area. We also tested expanding this method for other landforms diagnostic of similarly abrupt land-surface changes, including lava fields, dunes, and landslides, as well as investigating the influence of different roughness thresholds, resolutions of kernels, and input data resolution, and comparing our method with previously published roughness algorithms. Our results show that total curvature is a suitable metric for recognising analysed gullies and lava fields from LiDAR data, with comparable success to that of more sophisticated roughness metrics. Tested dunes or landslides remain difficult to distinguish from the surrounding landscape, partly because they are not easily defined in terms of their topographic signature.

  6. Coastal sand dune ecosystem services in metropolitan suburbs: effects on the sake brewery environment induced by changing social conditions

    Science.gov (United States)

    Kaneko, Korehisa; Matsushima, Hajime

    2017-12-01

    Chiba Prefecture, Japan, lies very near Tokyo, the capital city of Japan. It borders the sea on three sides and is banded by coastal dunes. Several sake breweries are located near these dunes. Although there are records of sake brewing along the coast of Tokyo Bay since 1925, sake breweries have completely disappeared in several areas. We believe that sake brewing in these areas benefited from the ecosystem services afforded them by their proximity to the coastal ecosystem. We investigated potential environmental factors (e.g., landscape, soil, and groundwater), as well as conditions that could have driven sake brewers away from the coastal area. Many of the sake breweries that no longer exist were located on coastal dunes (i.e., sand, sandbanks, and natural levees) and obtained their water from a freshwater layer located 3-10 m below the surface. We speculate that these sake breweries benefited from using natural ingredients found in the coastal zone. We also investigated the following factors that may have negatively impacted the breweries, driving them out of business: (1) bankruptcies and reconstruction difficulties that followed the destructive 1923 Great Kanto earthquake, (2) industrial wartime adjustments during World War II (1939-1945), (3) development of coastal industries during the period from 1960 to 1975, and (4) increasing choices for other alcoholic drinks (e.g., beer, wine, and whiskey) from the 1960s to the present.[Figure not available: see fulltext.

  7. Antioxidant activity of raw, cooked and Rhizopus oligosporus fermented beans of Canavalia of coastal sand dunes of Southwest India.

    Science.gov (United States)

    Niveditha, Vedavyas R; Sridhar, Kandikere R

    2014-11-01

    The raw and processed (cooked and cooked + solid-state fermented with Rhizopus oligosporus) split beans of two landraces of coastal sand dune wild legumes (Canavalia cathartica and Canavalia maritima) of the southwest coast of India were examined for bioactive compounds (total phenolics, tannins and vitamin C) and antioxidant potential (total antioxidant activity, ferrous-ion chelating capacity, DPPH free radical-scavenging activity and reducing activity). One-way ANOVA revealed significant elevation of bioactive compounds as well as antioxidant activities in fermented beans compared to raw and cooked beans in both legumes (p beans of both legumes were significantly lowest compared to raw and cooked beans (p beans of C. cathartica, while total antioxidant and free radical-scavenging activities of fermented beans of C. maritima were clustered. The present study demonstrated that split beans of coastal sand dune Canavalia fermented by R. oligosporus endowed with high bioactive principles as well as antioxidant potential and thus serve as future nutraceutical source.

  8. Difference in the wind speeds required for initiation versus continuation of sand transport on mars: implications for dunes and dust storms.

    Science.gov (United States)

    Kok, Jasper F

    2010-02-19

    Much of the surface of Mars is covered by dunes, ripples, and other features formed by the blowing of sand by wind, known as saltation. In addition, saltation loads the atmosphere with dust aerosols, which dominate the Martian climate. We show here that saltation can be maintained on Mars by wind speeds an order of magnitude less than required to initiate it. We further show that this hysteresis effect causes saltation to occur for much lower wind speeds than previously thought. These findings have important implications for the formation of dust storms, sand dunes, and ripples on Mars.

  9. Dune growth under multidirectional wind regimes

    Science.gov (United States)

    Gadal, C.; Rozier, O.; Claudin, P.; Courrech Du Pont, S.; Narteau, C.

    2017-12-01

    Under unidirectional wind regimes, flat sand beds become unstable to produce periodic linear dunes, commonly called transverse dunes because their main ridges are oriented perpendicular to the air flow. In areas of low sediment availability, the same interactions between flow, transport and topography produce barchan dunes, isolated sand-pile migrating over long distances with a characteristic crescentic shape. For the last fifteen years, barchan dunes and the instability at the origin of transverse dunes have been the subject of numerous studies that have identified a set of characteristic length and time scales with respect to the physical properties of both grains and fluid. This is not the case for dunes developing under multidirectional wind regimes. Under these conditions, dune orientation is measured with respect to the direction of the resultant sand flux. Depending on the wind regime, dunes do not always line up perpendicularly to the resultant sand flux, but can also be at an oblique angle or even parallel to it. These oblique and longitudinal dunes are ubiquitous in all deserts on Earth and planetary bodies because of the seasonal variability of wind orientation. They are however poorly constrained by observations and there is still no complete theoretical framework providing a description of their orientation and initial wavelength. Here, we extend the linear stability analysis of a flat sand of bed done in two dimensions for a unidirectional flow to three dimensions and multidirectional flow regimes. We are able to recover transitions from transverse to oblique or longitudinal dune patterns according to changes in wind regimes. We besides give a prediction for the initial dune wavelength. Our results compare well to previous theory of dune orientation and to field, experimental and numerical data.

  10. STUDY OF THE EFFECT OF ALUMINUM CONTENT AND C / S RATIO ON THE PHYSICO-MECHANICAL AND THERMAL PROPERTIES OF A LIGHTWEIGHT CONCRETE MADE FROM SAND DUNE

    Directory of Open Access Journals (Sweden)

    Z. Damene

    2015-07-01

    Full Text Available This research is a contribution to the development of local materials especially in the development of a cellular concrete with dunes sand. This is an experimental study whose objective is to see the influence of the C/S (dosage of cement compared to sand and the dosage of aluminum on the physico- mechanical and thermal performance of lightweight concrete cellular type. The results showed that the cement compared to the sand has a remarkable effect on the reaction and that on expansion the mechanical behavior as well as the dosage of aluminum in the composition of cellular concrete has a certain threshold Aluminium beyond which provides no relief benefits. Based on these results, the cellular concrete made from sand dune can be classified as light structural concrete with insulation suitable for very hot and arid environment of our region power.

  11. The effects of dune slopes and material heterogeneity on the thermal behavior of dune fields in Mars' Southern Hemisphere

    Science.gov (United States)

    O'Shea, P. M.; Putzig, N. E.; Van Kooten, S.; Fenton, L. K.

    2015-12-01

    We analyzed the effects of slopes on the thermal properties of three dune fields in Mars' southern hemisphere. Although slope has important thermal effects, it is not the main driver of observed apparent thermal inertia (ATI) for these dunes. Comparing the ATI seasonal behavior as derived from Thermal Emission Spectrometer (TES) data with that modeled for compositional heterogeneities, we found that TES results correlate best with models of duricrust overlying and/or horizontally mixing with fines. We measured slopes and aspects in digital terrain models created from High Resolution Imaging Science Experiment (HiRISE) images of dunes within Proctor, Kaiser, and Wirtz craters. Using the MARSTHERM web toolset, we incorporated the slopes and aspects together with TES albedo, TES thermal inertia, surface pressure, and TES dust opacity, into models of seasonal ATI. Models that incorporate sub-pixel slopes show seasonal day and night ATI values that differ from the TES results by 0-300 J m-2 K-1 s-½. In addition, the models' day-night differences are opposite in sign from those of the TES results, indicating that factors other than slope are involved. We therefore compared the TES data to model results for a broad range of horizontally mixed and two-layered surfaces to seek other possible controls on the observed data, finding that a surface layer of higher thermal inertia is a likely contributor. However, it is clear from this study that the overall composition and morphology of the dune fields are more complex than currently available models allow. Future work will combine slopes with other model parameters such as multi-layered surfaces and lateral changes in layer thickness. Coupling these improvements with broader seasonal coverage from the Thermal Emission Imaging System (THEMIS) at more thermally favorable times of day would allow more accurate characterization of dune thermal behavior.

  12. Breeding system and its consequence on fruit set of a rare sand dune shrub Eremosparton songoricum (Fabaceae: Papilionoideae): implications for conservation

    Science.gov (United States)

    The breeding system and its consequence on fruit set of Eremosparton songoricum (Litv.) Vass., a rare shrubby legume occurring in moving or semi-fixed sand dunes of Central Asian deserts, were examined by manipulative experiments and observational studies in natural populations during the period of ...

  13. Advanced GPR imaging of sedimentary features: integrated attribute analysis applied to sand dunes

    Science.gov (United States)

    Zhao, Wenke; Forte, Emanuele; Fontolan, Giorgio; Pipan, Michele

    2018-04-01

    We evaluate the applicability and the effectiveness of integrated GPR attribute analysis to image the internal sedimentary features of the Piscinas Dunes, SW Sardinia, Italy. The main objective is to explore the limits of GPR techniques to study sediment-bodies geometry and to provide a non-invasive high-resolution characterization of the different subsurface domains of dune architecture. On such purpose, we exploit the high-quality Piscinas data-set to extract and test different attributes of the GPR trace. Composite displays of multi-attributes related to amplitude, frequency, similarity and textural features are displayed with overlays and RGB mixed models. A multi-attribute comparative analysis is used to characterize different radar facies to better understand the characteristics of internal reflection patterns. The results demonstrate that the proposed integrated GPR attribute analysis can provide enhanced information about the spatial distribution of sediment bodies, allowing an enhanced and more constrained data interpretation.

  14. Are the different gully morphologies due to different formation processes on the Kaiser dune field on Mars?

    Science.gov (United States)

    Pasquon, K.; Gargani, J.; Nachon, M.; Conway, S. J.; Massé, M.; Jouannic, G.; Balme, M. R.; Costard, F.; Vincendon, M.

    2017-12-01

    Diverse gully morphologies are seen on Mars and differences are often neglected for simplification. Here we describe in detail the morphology and present-day activity of two gully-systems on the Kaiser dune field in the southern hemisphere of Mars. We then compare their activity with that of the morphologically distinct linear dune gullies present on the same dunes. The studied gully-systems have large depositional aprons (named "large apron gullies") and occur on dune faces oriented westward. They are active from mid-autumn to late winter (i.e. from Ls 50° to Ls 180°) coinciding with CO2 ice condensation/sublimation cycles. Sandy material collapses from the alcove flanks onto the alcove floor sporadically throughout this period. This accumulated sand is remobilized by punctuated mass flows which we estimate to be up to 7100 m3 in volume. These flows run out on to the apron and occur between Ls 120° and Ls 160°. These mass flow events occur when the number of "digitate flows" is at its seasonal maximum. Digitate flows are characterized by long-narrow zig-zagging low-albedo tracks and do not seem to transport appreciable sediment, and they can number in the hundreds. Small pits appear at their termini or midway along and sometimes these pits are re-deepened by subsequent flows. These events repeat every year and using volume balance calculations we find that the whole system could be built on a timescale of hundreds of martian ears. These large apron gullies differ in morphology and timing from the linear dune gullies. The linear dune gullies are active in late winter, or beginning of spring when the CO2 frost finally sublimates, which occurs after the activity of the large apron gullies. Due to the difference of orientation between large apron gullies and linear dune as well as timing, we infer that insolation, which may influence (i) the depth to ground ice, (ii) the amount of volatiles deposits, is the main cause their differences. Sediment transport by CO2

  15. Reconstruction of the coastal morphodynamics of the Fulong-beach dune field in north-eastern Taiwan

    Science.gov (United States)

    Dörschner, Nina; Böse, Margot; Frechen, Manfred

    2010-05-01

    The Fulong-beach dune field is located at the north-eastern coast of Taiwan. Built up of medium and fine grained quartz rich sand, it represents a unique feature of only few kilometres along the east coast of Taiwan. This unique sedimentological regime makes the area most perfectly suitable for age estimations by optically stimulated luminescence (OSL). The dune field is crossed by the Shuangsi-river, which flows into the Pacific Ocean. The coastal area is subjected to very dynamic conditions in the transition zone between land and sea. Due to the constant force of marine and aeolian processes from tides, weather and sediment accumulation by rivers, it is a continuously changing area. Taiwan is located in a very active tectonic zone with high elevation rates, which reach from 4 mm per year at the east coast up to 7 mm per year in the southern parts of the island. Furthermore Taiwan is affected by medial 3.8 typhoons per year and minor earthquakes nearly occur every day (LIN ET AL. 2006). The consequences are high rates of erosion and sediment transport during very short time periods. The Fulong-beach coastal area is densely populated and proud for being a tourism destination. At the northern end of the dune field the Lungmen nuclear power plant is currently under construction. Four separate dune ridges could be identified from a digital elevation model and from field mapping. During the field campaign in October and November 2009 17 samples were taken for OSL-dating (MURRAY ET AL. 1995) out of the four dune ridges as well as out of a more than 30 m high elevated outcrop cut by the Shuangsi-river. The measurement and the evaluation of the OSL-samples will provide us an insight into the duration and intensity of the processes affecting the coastal area of Taiwan during the Holocene. We will give an outline during the poster presentation of the methodical approach and the morphodynamical processes affecting the Fulong-beach dune field in north-eastern Taiwan

  16. Temporal dynamics of sand dune bidirectional reflectance characteristics for absolute radiometric calibration of optical remote sensing data

    Science.gov (United States)

    Coburn, Craig A.; Logie, Gordon S. J.

    2018-01-01

    Attempts to use pseudoinvariant calibration sites (PICS) for establishing absolute radiometric calibration of Earth observation (EO) satellites requires high-quality information about the nature of the bidirectional reflectance distribution function (BRDF) of the surfaces used for these calibrations. Past studies have shown that the PICS method is useful for evaluating the trend of sensors over time or for the intercalibration of sensors. The PICS method was not considered until recently for deriving absolute radiometric calibration. This paper presents BRDF data collected by a high-performance portable goniometer system to develop a temporal BRDF model for the Algodones Dunes in California. By sampling the BRDF of the sand surface at similar solar zenith angles to those normally encountered by EO satellites, additional information on the changing nature of the surface can improve models used to provide absolute radiometric correction. The results demonstrated that the BRDF of a reasonably simple sand surface was complex with changes in anisotropy taking place in response to changing solar zenith angles. For the majority of observation and illumination angles, the spectral reflectance anisotropy observed varied between 1% and 5% in patterns that repeat around solar noon.

  17. Thermal biology of Liolaemus occipitalis (Squamata, Tropiduridae in the coastal sand dunes of Rio Grande do Sul, Brazil

    Directory of Open Access Journals (Sweden)

    C. S. Bujes

    Full Text Available The thermal biology of the small sand lizard, Liolaemus occipitalis, was studied in the coastal sand dunes at Quintão Beach (Palmares do Sul, Rio Grande do Sul, Brazil; 30° 24' S and 50° 17' W, between September, 1998 and August, 1999. Liolaemus occipitalis presented a mean body temperature of 30.89 °C (SD = 4.43 °C; min = 16.4 °C; max = 40.2 °C; N = 270, that varied on a daily and seasonal basis according to microhabitat thermal alterations. The substrate temperature was the main heat source for thermoregulation of L. occipitalis as in all seasons of the year it was responsible for the animals' temperature variation (82% of the collected lizards in the spring; 60% in the summer; 84% in the fall and 68% in the winter. The results indicate that L. occipitalis is a saxicolous, thigmothermic and heliothermic species that regulates its body temperature through behavioral mechanisms.

  18. An experiment to restore coastal sand dunes at Miramar beach, Goa: An appraisal

    Digital Repository Service at National Institute of Oceanography (India)

    Mascarenhas, A.

    on the adjacent roads. Driven by highest wind speeds during June -August (36 km/h in 2004 and even 60 km/h in 2007), this episode is most intense during this period every year. A recurring phenomenon, sand deposits on the traffic circle creates nuisance...

  19. Temporal characteristics of coherent flow structures generated over alluvial sand dunes, Mississippi River, revealed by acoustic doppler current profiling and multibeam echo sounding

    Science.gov (United States)

    Czuba, John A.; Oberg, Kevin A.; Best, Jim L.; Parsons, Daniel R.; Simmons, S. M.; Johnson, K.K.; Malzone, C.

    2009-01-01

    This paper investigates the flow in the lee of a large sand dune located at the confluence of the Mississippi and Missouri Rivers, USA. Stationary profiles collected from an anchored boat using an acoustic Doppler current profiler (ADCP) were georeferenced with data from a real-time kinematic differential global positioning system. A multibeam echo sounder was used to map the bathymetry of the confluence and provided a morphological context for the ADCP measurements. The flow in the lee of a low-angle dune shows good correspondence with current conceptual models of flow over dunes. As expected, quadrant 2 events (upwellings of low-momentum fluid) are associated with high backscatter intensity. Turbulent events generated in the lower lee of a dune near the bed are associated with periods of vortex shedding and wake flapping. Remnant coherent structures that advect over the lower lee of the dune in the upper portion of the water column, have mostly dissipated and contribute little to turbulence intensities. The turbulent events that occupy most of the water column in the upper lee of the dune are associated with periods of wake flapping.

  20. Beach litter along various sand dune habitats in the southern Adriatic (E Mediterranean).

    Science.gov (United States)

    Šilc, Urban; Küzmič, Filip; Caković, Danka; Stešević, Danijela

    2018-03-01

    Marine litter accumulates on sandy beaches and is an important environmental problem, as well as a threat to habitat types that are among the most endangered according to EU legislation. We sampled 120 random plots (2 × 2 m) in spring 2017 to determine the distribution pattern of beach litter along the zonation of habitat types from sea to the inland. The most frequent litter items were plastic, polystyrene and glass. A clear increase of litter cover along the sea-inland gradient is evident, and foredunes and pine forests have the highest cover of litter. Almost no litter was present in humid dune slacks. Shoreline and recreational activities are the major source of beach litter, while ocean/waterway activities are more important in the aphytic zone and strandline. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Experimental Measurement of Diffusive Extinction Depth and Soil Moisture Gradients in a Dune Sand Aquifer in Western Saudi Arabia: Assessment of Evaporation Loss for Design of an MAR System

    KAUST Repository

    Mughal, Iqra; Jadoon, Khan; Mai, Paul Martin; Al-Mashharawi, Samir; Missimer, Thomas

    2015-01-01

    A component of designing a managed aquifer recharge system in a dune aquifer is the control of diffusive evaporative loss of water which is governed by the physical properties of the sediments and the position of the water table. A critical water table position is the “extinction depth”, below which no further loss of water occurs via diffusion. Field experiments were conducted to measure the extinction depth of sediments taken from a typical dune field in the region. The soil grain size characteristics, laboratory porosity, and saturated hydraulic conductivity were measured. The sand is classified as well-sorted, very fine sand with a mean grain diameter of 0.15 mm. Soil moisture gradients and diffusion loss rates were measured using sensors in a non-weighing lysimeter that was placed below land surface. The sand was saturated carefully with water from the bottom to the top and was exposed to the natural climate for a period of about two months. The moisture gradient showed a gradual decline during measurement until extinction depth was reached at about 100 cm below surface after 56 days. Diurnal temperature changes were observed in the upper 75 cm of the column and were negligible at greater depth.

  2. Experimental Measurement of Diffusive Extinction Depth and Soil Moisture Gradients in a Dune Sand Aquifer in Western Saudi Arabia: Assessment of Evaporation Loss for Design of an MAR System

    Directory of Open Access Journals (Sweden)

    Iqra Mughal

    2015-12-01

    Full Text Available A component of designing a managed aquifer recharge system in a dune aquifer is the control of diffusive evaporative loss of water which is governed by the physical properties of the sediments and the position of the water table. A critical water table position is the “extinction depth”, below which no further loss of water occurs via diffusion. Field experiments were conducted to measure the extinction depth of sediments taken from a typical dune field in the region. The soil grain size characteristics, laboratory porosity, and saturated hydraulic conductivity were measured. The sand is classified as well-sorted, very fine sand with a mean grain diameter of 0.15 mm. Soil moisture gradients and diffusion loss rates were measured using sensors in a non-weighing lysimeter that was placed below land surface. The sand was saturated carefully with water from the bottom to the top and was exposed to the natural climate for a period of about two months. The moisture gradient showed a gradual decline during measurement until extinction depth was reached at about 100 cm below surface after 56 days. Diurnal temperature changes were observed in the upper 75 cm of the column and were negligible at greater depth.

  3. Experimental Measurement of Diffusive Extinction Depth and Soil Moisture Gradients in a Dune Sand Aquifer in Western Saudi Arabia: Assessment of Evaporation Loss for Design of an MAR System

    KAUST Repository

    Mughal, Iqra

    2015-12-10

    A component of designing a managed aquifer recharge system in a dune aquifer is the control of diffusive evaporative loss of water which is governed by the physical properties of the sediments and the position of the water table. A critical water table position is the “extinction depth”, below which no further loss of water occurs via diffusion. Field experiments were conducted to measure the extinction depth of sediments taken from a typical dune field in the region. The soil grain size characteristics, laboratory porosity, and saturated hydraulic conductivity were measured. The sand is classified as well-sorted, very fine sand with a mean grain diameter of 0.15 mm. Soil moisture gradients and diffusion loss rates were measured using sensors in a non-weighing lysimeter that was placed below land surface. The sand was saturated carefully with water from the bottom to the top and was exposed to the natural climate for a period of about two months. The moisture gradient showed a gradual decline during measurement until extinction depth was reached at about 100 cm below surface after 56 days. Diurnal temperature changes were observed in the upper 75 cm of the column and were negligible at greater depth.

  4. [Spatial distribution pattern and allometric growth of three common species on moving sand dunes in Horqin Sandy Land, China].

    Science.gov (United States)

    Jia, Mei-yu; Li, Xue-hua; Oh, Choong-hyeon; Park, Hong-chul; Miao, Chun-ping; Han, Xu

    2015-10-01

    Research on fine scale pattern and characteristics of allometric growth could contribute to better understanding plants' adaptation in moving sandy dunes. The abundance, height and biomass of 3 species Agriophilum aquarrosum, Corispermum candelabrum and Setaria viridis in twenty-eight 1 m x 1 m quadrats of Horqin Sandy Land were identified, mapped and described. The nearest neighbor method and O-ring O(r) function analysis were applied to analyze the spatial patterns. The results showed that the individual spatial pattern was mainly aggregated in 1 m x 1 m quadrat at community level but mainly random at population level. At 0-50 cm individual distance scale, both intraspecific and interspecific relationship were facilitation and aggregated distribution occurred at some scales and varied with increasing plant abundance in 1 m x 1 m quadrat. In 0-40 cm, the aggregated distribution of S. viridis and A. aquarrosum increased obviously; in 10-20 cm, both intraspecific and interspecific aggregation increased; in 10-30 cm, the occurrence possibility of positive correlations between S. viridis and A. aquarrosum, S. viridis and C. candelabrum all increased; in 40-50 cm, the possibility of positive correlations between A. squarrosum and S. viridis, A. squarrosum and C. candelabrum all increased. Research on the three species components indicated that the growth rate of above-ground was faster than that of underground. S. viridis had the highest ratio of under-ground biomass to above-ground biomass but its nutritional organs' biomass ratio was medium. C. candelabrum allocated more biomass to propagative organs and stem, but A. squarrosum allocated more biomass to nutritional organs. Based on the spatial distribution and allometric characteristics, the three common species in moving sand dunes preferred r strategy in their life history.

  5. Trickle-down boundary conditions in aeolian dune-field pattern formation

    Science.gov (United States)

    Ewing, R. C.; Kocurek, G.

    2015-12-01

    One the one hand, wind-blown dune-field patterns emerge within the overarching boundary conditions of climate, tectonics and eustasy implying the presence of these signals in the aeolian geomorphic and stratigraphic record. On the other hand, dune-field patterns are a poster-child of self-organization, in which autogenic processes give rise to patterned landscapes despite remarkable differences in the geologic setting (i.e., Earth, Mars and Titan). How important are climate, tectonics and eustasy in aeolian dune field pattern formation? Here we develop the hypothesis that, in terms of pattern development, dune fields evolve largely independent of the direct influence of 'system-scale' boundary conditions, such as climate, tectonics and eustasy. Rather, these boundary conditions set the stage for smaller-scale, faster-evolving 'event-scale' boundary conditions. This 'trickle-down' effect, in which system-scale boundary conditions indirectly influence the event scale boundary conditions provides the uniqueness and richness of dune-field patterned landscapes. The trickle-down effect means that the architecture of the stratigraphic record of dune-field pattern formation archives boundary conditions, which are spatially and temporally removed from the overarching geologic setting. In contrast, the presence of an aeolian stratigraphic record itself, reflects changes in system-scale boundary conditions that drive accumulation and preservation of aeolian strata.

  6. Minimal size of a barchan dune

    Science.gov (United States)

    Parteli, E. J. R.; Durán, O.; Herrmann, H. J.

    2007-01-01

    Barchans are dunes of high mobility which have a crescent shape and propagate under conditions of unidirectional wind. However, sand dunes only appear above a critical size, which scales with the saturation distance of the sand flux [P. Hersen, S. Douady, and B. Andreotti, Phys. Rev. Lett. 89, 264301 (2002); B. Andreotti, P. Claudin, and S. Douady, Eur. Phys. J. B 28, 321 (2002); G. Sauermann, K. Kroy, and H. J. Herrmann, Phys. Rev. E 64, 31305 (2001)]. It has been suggested by P. Hersen, S. Douady, and B. Andreotti, Phys. Rev. Lett. 89, 264301 (2002)] that this flux fetch distance is itself constant. Indeed, this could not explain the protosize of barchan dunes, which often occur in coastal areas of high litoral drift, and the scale of dunes on Mars. In the present work, we show from three-dimensional calculations of sand transport that the size and the shape of the minimal barchan dune depend on the wind friction speed and the sand flux on the area between dunes in a field. Our results explain the common appearance of barchans a few tens of centimeter high which are observed along coasts. Furthermore, we find that the rate at which grains enter saltation on Mars is one order of magnitude higher than on Earth, and is relevant to correctly obtain the minimal dune size on Mars.

  7. Dunes with Frost

    Science.gov (United States)

    2004-01-01

    31 May 2004 Springtime for the martian northern hemisphere brings defrosting spots and patterns to the north polar dune fields. This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows an example located near 76.7oN, 250.4oW. In summer, these dunes would be darker than their surroundings. However, while they are still covered by frost, they are not any darker than the substrate across which the sand is slowly traveling. Dune movement in this case is dominated by winds that blow from the southwest (lower left) toward the northeast (upper right). The picure covers an area about 3 km (1.9 mi) across and is illuminated by sunlight from the lower left.

  8. Controls on desert dune activity - a geospatial approach

    Science.gov (United States)

    Lancaster, N.; Hesse, P. P.

    2017-12-01

    Desert and other inland dunes occur on a wide spectrum of activity (defined loosely as the proportion of the surface area subject to sand movement) from unvegetated to sparsely vegetated "active" dunes through discontinuously vegetated inactive dunes to completely vegetated and degraded dunes. Many of the latter are relicts of past climatic conditions. Although field studies and modeling of the interactions between winds, vegetation cover, and dune activity can provide valuable insights, the response of dune systems to climate change and variability past, present, and future has until now been hampered by the lack of pertinent observational data on geomorphic and climatic boundary conditions and dune activity status for most dune areas. We have developed GIS-based approach that permits analysis of boundary conditions and controls on dune activity at a range of spatial scales from dunefield to global. In this approach, the digital mapping of dune field and sand sea extent has been combined with systematic observations of dune activity at 0.2° intervals from high resolution satellite image data, resulting in four classes of activity. 1 km resolution global gridded datasets for the aridity index (AI); precipitation, satellite-derived percent vegetation cover; and estimates of sand transport potential (DP) were re-sampled for each 0.2° grid cell, and dune activity was compared to vegetation cover, sand transport potential, precipitation, and the aridity index. Results so far indicate that there are broad-scale relationships between dunefield mean activity, climate, and vegetation cover. However, the scatter in the data suggest that other local factors may be at work. Intra-dune field patterns are complex in many cases. Overall, much more work needs to be done to gain a full understanding of controls at different spatial and temporal scales, which can be faciliated by this spatial database.

  9. Sand dunes development of Vistula River mouth during May 2014 flood

    Science.gov (United States)

    Lisimenka, Aliaksandr; Rudowski, Stanisław; Kałas, Maciej; Szefler, Kazimierz

    2015-04-01

    The Vistula, Poland's primary river, is the largest river of the southern Baltic Sea and is one of the least regulated amongst large rivers in Europe. The Vistula has a vast delta with the main mouth in the form of an artificial cross-cut channel of about 3000 m length, 400 m width and up to 10 m depth. The comprehensive riverbed morphology in the area is characterized by the set of both 2D and 3D sandy bedforms of various orientations (Lisimenka et al., 2013). About 95% of total Vistula water, with the long-term average annual water discharge of 1081 m3/s, outflows into the Baltic Sea through this channel, which also plays a crucial role in sediment delivery processes into the Vistula External Delta, coast and neighbouring marine waters. Results of bathymetry measurements which were carried out in the main Vistula river mouth during the 23-26 May 2014 flood are presented. Echosounding records were made using boat mounted high-resolution Reson Seabat 7101 multibeam echosounder system (MBES) operating at 240 kHz. The measurements set includes data from: (1) the central part of the river channel with a wide band width for the first and last days of the experiment; (2) the riverbed elevation along axis longitudinal profile obtained on a daily basis with a twice per day registration at the final stage of the rising limb of a flood wave. During the considered period of time, extremely high magnitudes of water level and water discharge values changed from 2590 m3/s up to 4110 m3/s were observed. Estimated based on positioning system data, water flow velocity amounted to about 2 m/s and exceeded a long-term average conditions in more than two times. Based on bedform tracking tool proposed by Van der Mark and Blom (2007), the geometric variables of individual bedforms for each elevation profiles were extracted and histograms of the dune height and length were obtained. The results revealed significant changes in bedform geometry with a counterclockwise hysteresis effect as

  10. Primary sand-dune plant community and soil properties during the west-coast India monsoon

    Directory of Open Access Journals (Sweden)

    Willis A.

    2016-06-01

    Full Text Available A seven-station interrupted belt transect was established that followed a previously observed plant zonation pattern across an aggrading primary coastal dune system in the dry tropical region of west-coast India. The dominant weather pattern is monsoon from June to November, followed by hot and dry winter months when rainfall is scarce. Physical and chemical soil characteristics in each of the stations were analysed on five separate occasions, the first before the onset of monsoon, three during and the last post-monsoon. The plant community pattern was confirmed by quadrat survey. A pH gradient decreased with distance from the shoreline. Nutrient concentrations were deficient, increasing only in small amounts until the furthest station inland. At that location, there was a distinct and abrupt pedological transition zone from psammite to humic soils. There was a significant increase over previous stations in mean organic matter, ammonium nitrate and soil-water retention, although the increase in real terms was small. ANOVA showed significant variation in electrical conductivity, phosphorus, calcium, magnesium and sodium concentrations over time. There was no relationship between soil chemistry characteristics and plant community structure over the transect. Ipomoea pes-caprae and Spinifex littoreus were restricted to the foredunes, the leguminous forb Alysicarpus vaginalis and Perotis indica to the two stations furthest from the strand. Ischaemum indicum, a C4 perennial grass species adopting an ephemeral strategy was, in contrast, ubiquitous to all stations.

  11. Assessing radiation impact at a protected coastal sand dune site: an intercomparison of models for estimating the radiological exposure of non-human biota

    International Nuclear Information System (INIS)

    Wood, Michael D.; Beresford, Nicholas A.; Barnett, Catherine L.; Copplestone, David; Leah, Richard T.

    2009-01-01

    This paper presents the application of three publicly available biota dose assessment models (the ERICA Tool, R and D128/SP1a and RESRAD-BIOTA) to an assessment of the Drigg coastal sand dunes. Using measured 90 Sr, 99 Tc, 137 Cs, 238 Pu, 239+240 Pu and 241 Am activity concentrations in sand dune soil, activity concentration and dose rate predictions are made for a range of organisms including amphibians, birds, invertebrates, mammals, reptiles, plants and fungi. Predicted biota activity concentrations are compared to measured data where available. The main source of variability in the model predictions is the transfer parameters used and it is concluded that developing the available transfer databases should be a focus of future research effort. The value of taking an informed user approach to investigate the way in which models may be expected to be applied in practice is highlighted and a strategy for the future development of intercomparison exercises is presented.

  12. Isotopes based assessment of groundwater renewal and related anthropogenic effects in water scarce areas: Sand dunes study in Qasim area, Saudi Arabia

    International Nuclear Information System (INIS)

    Al-Sagaby, A.; Moallim, A.

    2001-01-01

    The investigation of recharge in the sand dune, Qasim, Saudi Arabia, with the help of chloride concentration and isotope content has revealed inconsistent pattern and less homogeneity. Monotonic chloride concentration and isotope content was the result of seasonal recharge occurrence in the study area. In addition, applying chloride mass-balance method, recharge rate calculation in the sand dune site, Qasim, Saudi Arabia, was made. The results (1.80 and 1.84mmy -1 - dune site) estimated during this project using this method was a long way below the recharge rates (30mmy -1 , 13.4mmy -1 in the dune site and 5mmy -1 in the swale site) obtained with the application of tritium method in the previous years (1994 and 1996). 1.80 and 1.84mmy -1 was for CRP-Saud-9405 project and was calculated 1997 and 1998 respectively. The reason for the lower recharge rate with the application of chloride mass-balance method could be the source of chloride input and high evaporation, which causes accumulation of chloride salts in the area. (author)

  13. The Carolina Sandhills: Quaternary eolian sand sheets and dunes along the updip margin of the Atlantic Coastal Plain province, southeastern United States

    Science.gov (United States)

    Swezey, Christopher; Fitzwater, Bradley A.; Whittecar, G. Richard; Mahan, Shannon; Garrity, Christopher P.; Aleman Gonzalez, Wilma B.; Dobbs, Kerby M.

    2016-01-01

    The Carolina Sandhills is a physiographic region of the Atlantic Coastal Plain province in the southeastern United States. In Chesterfield County (South Carolina), the surficial sand of this region is the Pinehurst Formation, which is interpreted as eolian sand derived from the underlying Cretaceous Middendorf Formation. This sand has yielded three clusters of optically stimulated luminescence ages: (1) 75 to 37 thousand years ago (ka), coincident with growth of the Laurentide Ice Sheet; (2) 28 to 18 ka, coincident with the last glacial maximum (LGM); and (3) 12 to 6 ka, mostly coincident with the Younger Dryas through final collapse of the Laurentide Ice Sheet. Relict dune morphologies are consistent with winds from the west or northwest, coincident with modern and inferred LGM January wind directions. Sand sheets are more common than dunes because of effects of coarse grain size (mean range: 0.35–0.59 mm) and vegetation. The coarse grain size would have required LGM wind velocities of at least 4–6 m/sec, accounting for effects of colder air temperatures on eolian sand transport. The eolian interpretation of the Carolina Sandhills is consistent with other evidence for eolian activity in the southeastern United States during the last glaciation.

  14. Holocene moisture variations over the arid central Asia revealed by a comprehensive sand-dune record from the central Tian Shan, NW China

    Science.gov (United States)

    Long, Hao; Shen, Ji; Chen, Jianhui; Tsukamoto, Sumiko; Yang, Linhai; Cheng, Hongyi; Frechen, Manfred

    2017-10-01

    Arid central Asia (ACA) is one of the largest arid (desert) areas in the world, and its climate is dominated by the westerlies. In this study, we examined sand dune evolution from the Bayanbulak Basin in the Tian Shan (Xinjiang, NW China), aiming to infer the Holocene moisture history of the ACA. Combined with stratigraphic observation and environmental proxies analysis (grain size, magnetic susceptibility and total organic content), large numbers of luminescence ages from multiple sites (eight sections, 79 samples) were applied to reconstruct the evolution of the sand dune accumulation in the study basin. The overall results imply very dry conditions characterized by sand dune accumulation at ∼12-6.5 ka, a wet interval between ∼6.5 and 0.8 ka when soil formation occurred, and decreased moisture during the last 0.8 ka. This moisture variation pattern is generally consistent with that inferred from many lacustrine records in the core zone of ACA, suggesting a widespread dry period in the early-to-middle Holocene and relatively wet middle-to-late Holocene. Thus, the moisture history derived from the current sand dune system contrasts with that in Asian monsoon areas, which are characterized by a strong monsoon (high precipitation) in the early and mid-Holocene and a weak monsoon (low precipitation and dry climate) during the late Holocene. Our results strongly suggest that the winter solar insolation and the external boundary conditions such as atmospheric CO2 concentration, ice sheets, and meltwater fluxes, have been major influential factors triggering the Holocene moisture evolution in the core zone of ACA.

  15. Dew variability in three habitats of a sand dune transect in a desert oasis ecotone, Northwestern China

    CERN Document Server

    Zhuang, Yanli

    2014-01-01

    Dew, as a supplementary water source, may have an important ecological role in arid and semi-arid regions. During August and September of 2007 and 2008, measurements were taken to investigate the dew accumulation and evaporation patterns in the very early morning hours, in three different habitats (dunetop, footslope, and interdune lowland) of a fixed sand dune in Northwest China. Dew quantities were measured using the cloth-plate method. The results indicated that there was a positive correlation between dew amounts and relative humidity, but a negative correlation between dew amounts and mean temperature. Clear mornings were characterized by higher dew amounts and longer dew duration, whereas less dew was recorded during cloudy and especially windy mornings. Dew continued to condense even after sunrise, although a shorter warming time after dawn is also of vital importance in dew formation. The higher average maximum dew quantities (0.06mm) and longer average dew duration (2.3h) occurred in the interdune lo...

  16. Degradation of seed mucilage by soil microflora promotes early seedling growth of a desert sand dune plant.

    Science.gov (United States)

    Yang, Xuejun; Baskin, Carol C; Baskin, Jerry M; Zhang, Wenhao; Huang, Zhenying

    2012-05-01

    In contrast to the extensive understanding of seed mucilage biosynthesis, much less is known about how mucilage is biodegraded and what role it plays in the soil where seeds germinate. We studied seed mucilage biodegradation by a natural microbial community. High-performance anion-exchange chromatography (HPAEC) was used to determine monosaccharide composition in achene mucilage of Artemisia sphaerocephala. Mucilage degradation by the soil microbial community from natural habitats was examined by monosaccharide utilization tests using Biolog plates, chemical assays and phospholipid fatty acid (PLFA) analysis. Glucose (29.4%), mannose (20.3%) and arabinose (19.5%) were found to be the main components of achene mucilage. The mucilage was biodegraded to CO(2) and soluble sugars, and an increase in soil microbial biomass was observed during biodegradation. Fluorescence microscopy showed the presence of mucilage (or its derivatives) in seedling tissues after growth with fluorescein isothiocyanate (FITC)-labelled mucilage. The biodegradation also promoted early seedling growth in barren sand dunes, which was associated with a large soil microbial community that supplies substances promoting seedling establishment. We conclude that biodegradation of seed mucilage can play an ecologically important role in the life cycles of plants especially in harsh desert environments to which A. sphaerocephala is well-adapted. © 2011 Blackwell Publishing Ltd.

  17. Development of a low-cost cement free polymer concrete using industrial by-products and dune sand

    Directory of Open Access Journals (Sweden)

    Ismail Najif

    2017-01-01

    Full Text Available Alkali-activated polymer concrete (APC can potentially reduce CO2 emissions associated to concrete production by 84%. The binder in APC herein was synthesized using a combined sodium silicate-sodium hydroxide solution (i.e., alkali activator, alumino-silicate rich precursor (fly ash and slag. Light weight expanded clay and desert dune sand were used as aggregates. An overview of an experimental program was presented, which involved evaluation of fresh and mechanical properties of the produced APC and counterpart mortar (APM. Variables investigated were the fly ash to slag ratio and curing conditions. The curing regimes adopted herein included 24 hours of curing at ambient conditions, 30°C, and 60°C. The experimental program was undertaken in two stages, of these the first stage involved physical and chemical testing of constituent materials and the second stage involved testing or produced APM/APC. Reported were the setting times, workability, compression strength, strength development, flexural strength, tensile splitting strength, and plastic shrinkage strains. Relationship between strength results were investigated and effectiveness of codified predictive equations was evaluated.

  18. Diet of the lizard Liolaemus occipitalis in the coastal sand dunes of southern Brazil (Squamata-Liolaemidae

    Directory of Open Access Journals (Sweden)

    L. Verrastro

    Full Text Available Knowledge of a species’ diet provides important information on adaptation and the relationship between the organism and its environment. The genus Liolaemus occurs in the southern region of South America and is an excellent model to investigate the adaptive processes of vertebrate ecology in ecosystems of this region of the world. Liolaemus occipitalis is an endangered species that inhabits the coastal sand dunes of southern Brazil. This species is the most abundant vertebrate in this environment, and it presents unique adaptation characteristics to the restinga environment. The present study analyzed this lizard’s diet to verify similarities or differences between this species and other species of the same genus. Specimens were collected monthly from January 1996 to December 1997. The number of items, frequency of occurrence and volume of each prey taxon were determined. Arthropods were identified to the order level, and plant material was identified as flower, fruit, seed and leaves. Variations in the diet of males and females, adults and juveniles and seasons were also analyzed. The data indicate that Liolaemus occipitalis is a generalist, “sit-and-wait” or ambush predator as well as omnivorous, feeding on both arthropods and plant material. Significant ontogenetic differences were verified. Juveniles are more carnivorous, and the intake of plant material increases with size and age. Seasonal differences in diet composition were also observed. In the spring, arthropod and plant materials were more diversified and, therefore, consumed more often.

  19. Diet of the lizard Liolaemus occipitalis in the coastal sand dunes of southern Brazil (Squamata-Liolaemidae).

    Science.gov (United States)

    Verrastro, L; Ely, I

    2015-05-01

    Knowledge of a species' diet provides important information on adaptation and the relationship between the organism and its environment. The genus Liolaemus occurs in the southern region of South America and is an excellent model to investigate the adaptive processes of vertebrate ecology in ecosystems of this region of the world. Liolaemus occipitalis is an endangered species that inhabits the coastal sand dunes of southern Brazil. This species is the most abundant vertebrate in this environment, and it presents unique adaptation characteristics to the restinga environment. The present study analyzed this lizard's diet to verify similarities or differences between this species and other species of the same genus. Specimens were collected monthly from January 1996 to December 1997. The number of items, frequency of occurrence and volume of each prey taxon were determined. Arthropods were identified to the order level, and plant material was identified as flower, fruit, seed and leaves. Variations in the diet of males and females, adults and juveniles and seasons were also analyzed. The data indicate that Liolaemus occipitalis is a generalist, "sit-and-wait" or ambush predator as well as omnivorous, feeding on both arthropods and plant material. Significant ontogenetic differences were verified. Juveniles are more carnivorous, and the intake of plant material increases with size and age. Seasonal differences in diet composition were also observed. In the spring, arthropod and plant materials were more diversified and, therefore, consumed more often.

  20. Yeasts and coliform bacteria of water accumulated in bromeliads of mangrove and sand dune ecosystems of southeast Brazil.

    Science.gov (United States)

    Hagler, A N; Rosa, C A; Morais, P B; Mendonça-Hagler, L C; Franco, G M; Araujo, F V; Soares, C A

    1993-10-01

    Yeasts and coliform bacteria were isolated from water that accumulated in the central cups and adjacent leaf axilae of two bromeliads, Neoregelia cruenta of a coastal sand dune and Quesnelia quesneliana of a mangrove ecosystem near the city of Rio de Janeiro, Brazil. The mean total coliform counts were above 10,000 per 100 mL for waters of both plants, but the mean fecal coliform counts were only 74 per 100 mL for Q. quesneliana and mostly undetected in water from N. cruenta. Of 90 fecal coliform isolates, 51 were typical of Escherichia coli in colony morphology and indol, methyl red, Volges-Proskauer, and citrate (IMViC) tests. Seven representatives of the typical E. coli cultures were identified as this species, but the identifications of nine other coliform bacteria were mostly dubious. The yeast community of N. cruenta was typical of plant surfaces with basidiomycetous yeasts anamorphs, and the black yeast Aureobasidium pullulans was prevalent. Quesnelia quesneliana had a substantial proportion of ascomycetous yeasts and their anamorphs, including a probable new biotype of Saccharomyces unisporus. Our results suggested that the microbial communities in bromeliad waters are typically autochtonous and not contaminants.

  1. Vegetation development in a sand dune ten years after restoration, Parque Municipal das Dunas da Lagoa da Conceição, Florianópolis, Santa Catarina

    Directory of Open Access Journals (Sweden)

    Nina Rosa Zanin Zanella

    2010-01-01

    Full Text Available The vegetation cover of a sand dune was surveyed ten years after the improvement of a restoration project that utilized seed sowing, seedling planting and seedling transplantation from an adjacent area with watering in the first months. On the upper part of the restored dune, the vegetation was sparse (53% but more developed than that of the adjacent control area (34%, both presenting herbaceous/subshrub physiognomy with predominance of Panicum racemosum. On the slope of the restored dune, a shrub vegetation developed, presenting a percentage cover (90% similar to that of the control area (100%. Dodonaea viscosa was the dominant species on this restored face. The establishment of arboreal and shrub species seedlings on the upper dune was good. In part, this improved the species richness, but contributed to dissimilarity between this area and the control site.  A lower species richness was presented on the slope and the similarity to the control area was even lower. Plants introduced by sowing and seedling transplantation showed success and contributed to the similarity with the adjacent vegetation. Seedlings of arboreal and shrub plants survived on the upper dune. These species are represented in a more developed stage of succession, differing from the adjacent control area.

  2. The investigation of Martian dune fields using very high resolution photogrammetric measurements and time series analysis

    Science.gov (United States)

    Kim, J.; Park, M.; Baik, H. S.; Choi, Y.

    2016-12-01

    At the present time, arguments continue regarding the migration speeds of Martian dune fields and their correlation with atmospheric circulation. However, precisely measuring the spatial translation of Martian dunes has rarely conducted only a very few times Therefore, we developed a generic procedure to precisely measure the migration of dune fields with recently introduced 25-cm resolution High Resolution Imaging Science Experimen (HIRISE) employing a high-accuracy photogrammetric processor and sub-pixel image correlator. The processor was designed to trace estimated dune migration, albeit slight, over the Martian surface by 1) the introduction of very high resolution ortho images and stereo analysis based on hierarchical geodetic control for better initial point settings; 2) positioning error removal throughout the sensor model refinement with a non-rigorous bundle block adjustment, which makes possible the co-alignment of all images in a time series; and 3) improved sub-pixel co-registration algorithms using optical flow with a refinement stage conducted on a pyramidal grid processor and a blunder classifier. Moreover, volumetric changes of Martian dunes were additionally traced by means of stereo analysis and photoclinometry. The established algorithms have been tested using high-resolution HIRISE images over a large number of Martian dune fields covering whole Mars Global Dune Database. Migrations over well-known crater dune fields appeared to be almost static for the considerable temporal periods and were weakly correlated with wind directions estimated by the Mars Climate Database (Millour et al. 2015). Only over a few Martian dune fields, such as Kaiser crater, meaningful migration speeds (>1m/year) compared to phtotogrammetric error residual have been measured. Currently a technical improved processor to compensate error residual using time series observation is under developing and expected to produce the long term migration speed over Martian dune

  3. The investigation of active Martian dune fields using very high resolution photogrammetric measurements

    Science.gov (United States)

    Kim, Jungrack; Kim, Younghwi; Park, Minseong

    2016-10-01

    At the present time, arguments continue regarding the migration speeds of Martian dune fields and their correlation with atmospheric circulation. However, precisely measuring the spatial translation of Martian dunes has succeeded only a very few times—for example, in the Nili Patera study (Bridges et al. 2012) using change-detection algorithms and orbital imagery. Therefore, in this study, we developed a generic procedure to precisely measure the migration of dune fields with recently introduced 25-cm resolution orbital imagery specifically using a high-accuracy photogrammetric processor. The processor was designed to trace estimated dune migration, albeit slight, over the Martian surface by 1) the introduction of very high resolution ortho images and stereo analysis based on hierarchical geodetic control for better initial point settings; 2) positioning error removal throughout the sensor model refinement with a non-rigorous bundle block adjustment, which makes possible the co-alignment of all images in a time series; and 3) improved sub-pixel co-registration algorithms using optical flow with a refinement stage conducted on a pyramidal grid processor and a blunder classifier. Moreover, volumetric changes of Martian dunes were additionally traced by means of stereo analysis and photoclinometry. The established algorithms have been tested using high-resolution HIRISE time-series images over several Martian dune fields. Dune migrations were iteratively processed both spatially and volumetrically, and the results were integrated to be compared to the Martian climate model. Migrations over well-known crater dune fields appeared to be almost static for the considerable temporal periods and were weakly correlated with wind directions estimated by the Mars Climate Database (Millour et al. 2015). As a result, a number of measurements over dune fields in the Mars Global Dune Database (Hayward et al. 2014) covering polar areas and mid-latitude will be demonstrated

  4. Mars Global Digital Dune Database (MGD3): Global dune distribution and wind pattern observations

    Science.gov (United States)

    Hayward, Rosalyn K.; Fenton, Lori; Titus, Timothy N.

    2014-01-01

    The Mars Global Digital Dune Database (MGD3) is complete and now extends from 90°N to 90°S latitude. The recently released south pole (SP) portion (MC-30) of MGD3 adds ∼60,000 km2 of medium to large-size dark dune fields and ∼15,000 km2 of sand deposits and smaller dune fields to the previously released equatorial (EQ, ∼70,000 km2), and north pole (NP, ∼845,000 km2) portions of the database, bringing the global total to ∼975,000 km2. Nearly all NP dunes are part of large sand seas, while the majority of EQ and SP dune fields are individual dune fields located in craters. Despite the differences between Mars and Earth, their dune and dune field morphologies are strikingly similar. Bullseye dune fields, named for their concentric ring pattern, are the exception, possibly owing their distinctive appearance to winds that are unique to the crater environment. Ground-based wind directions are derived from slipface (SF) orientation and dune centroid azimuth (DCA), a measure of the relative location of a dune field inside a crater. SF and DCA often preserve evidence of different wind directions, suggesting the importance of local, topographically influenced winds. In general however, ground-based wind directions are broadly consistent with expected global patterns, such as polar easterlies. Intriguingly, between 40°S and 80°S latitude both SF and DCA preserve their strongest, though different, dominant wind direction, with transport toward the west and east for SF-derived winds and toward the north and west for DCA-derived winds.

  5. Temporal and spatial variation of groundwater in quantity and quality in sand dune at coastal region, Kamisu city, central Japan.

    Science.gov (United States)

    Umei, Yohei; Tsujimura, Maki; Sakakibara, Koichi; Watanabe, Yasuto; Minema, Motomitsu

    2016-04-01

    The role of groundwater in integrated water management has become important in recent 10 years, though the surface water is the major source of drinking water in Japan. Especially, it is remarked that groundwater recharge changed due to land cover change under the anthropogenic and climatic condition factors. Therefore, we need to investigate temporal and spatial variation of groundwater in quantity and quality focusing on the change during recent 10-20 years in specific region. We performed research on groundwater level and quality in sand dune at coastal region facing Pacific Ocean, Kamisu city, Ibaraki Prefecture, which have been facing environmental issues, such as land cover change due to soil mining for construction and urbanization. We compared the present situation of groundwater with that in 2000 using existed data to clarify the change of groundwater from 2000 to 2015. The quality of water is dominantly characterized by Ca2+-HCO3- in both 2000 and 2015, and nitrate was not observed in 2015, though it was detected in some locations in 2000. This may be caused by improvement of the domestic wastewater treatment. The topography of groundwater table was in parallel with that of ground surface in 2015, same as that in 2000. However, a depletion of groundwater table was observed in higher elevation area in 2015 as compared with that in 2000, and this area corresponds to the locations where the land cover has changed due to soil mining and urbanization between 2015 and 2000. In the region of soil mining, the original soil is generally replaced by impermeable soil after mining, and this may cause a decrease of percolation and net groundwater recharge, thus the depletion of groundwater table occurred after the soil mining.

  6. Fine-scale patterns of vegetation assembly in the monitoring of changes in coastal sand-dune landscapes

    Directory of Open Access Journals (Sweden)

    J. Honrado

    2010-02-01

    Full Text Available Understanding dune ecosystem responses to multi-scale environmental changes can provide the framework for reliable forecasts and cost-efficient protocols for detecting shifts in prevailing coastal dynamics. Based on the hypothesis that stress and disturbance interact as primary community controls in coastal dunes, we studied the fine-scale floristic assembly of foredune vegetation, in its relation to topography, along regional and local environmental gradients in the 200 km long coastline of northern Portugal, encompassing a major biogeographic transition in western Europe. Thirty topographic profiles perpendicular to the shoreline were recorded at ten sites along the regional climate gradient, and vegetation was sampled by recording the frequency of plant species along those profiles. Quantitative topographic attributes of vegetated dune profiles (e.g. length or height exhibited wide variations relatable to differences in prevailing coastal dynamics. Metrics of taxonomic diversity (e.g. total species richness and its additive beta component and of the functional composition of vegetation were highly correlated to attributes of dune topography. Under transgressive dynamics, vegetation profiles have fewer species, increased dominance, lower turnover rates, and lower total vegetation cover. These changes may drive a decrease in structural and functional diversity, with important consequences for resistance, resilience and other ecosystem properties. Moreover, differences in both vegetation assembly (in meta-stable dunes and response to increased disturbance (in eroding dunes between distinct biogeographic contexts highlight a possible decline in facilitation efficiency under extreme physical stress (i.e. under Mediterranean climate and support the significance of functional approaches in the study of local ecosystem responses to disturbance along regional gradients. Our results strongly suggest that assessing fine-scale community assembly can

  7. Modeling elk and bison carrying capacity for Great Sand Dunes National Park, Baca National Wildlife Refuge, and The Nature Conservancy's Medano Ranch, Colorado

    Science.gov (United States)

    Wockner, Gary; Boone, Randall; Schoenecker, Kathryn A.; Zeigenfuss, Linda C.

    2015-01-01

    Great Sand Dunes National Park and Preserve and the neighboring Baca National Wildlife Refuge constitute an extraordinary setting that offers a variety of opportunities for outdoor recreation and natural resource preservation in the San Luis Valley of Colorado. Adjacent to these federal lands, the Nature Conservancy (TNC) manages the historic Medano Ranch. The total land area of these three conservation properties is roughly 121,500 hectares (ha). It is a remote and rugged area in which resource managers must balance the protection of natural resources with recreation and neighboring land uses. The management of wild ungulates in this setting presents challenges, as wild ungulates move freely across public and private landscapes.

  8. Exploring inner structure of Titan's dunes from Cassini Radar observations

    Science.gov (United States)

    Sharma, P.; Heggy, E.; Farr, T. G.

    2013-12-01

    Linear dunes discovered in the equatorial regions of Titan by the Cassini-Huygens mission are morphologically very similar to many terrestrial linear dune fields. These features have been compared with terrestrial longitudinal dune fields like the ones in Namib desert in western Africa. This comparison is based on the overall parallel orientation of Titan's dunes to the predominant wind direction on Titan, their superposition on other geomorphological features and the way they wrap around topographic obstacles. Studying the internal layering of dunes has strong implications in understanding the hypothesis for their origin and evolution. In Titan's case, although the morphology of the dunes has been studied from Cassini Synthetic Aperture Radar (SAR) images, it has not been possible to investigate their internal structure in detail as of yet. Since no radar sounding data is available for studying Titan's subsurface yet, we have developed another technique to examine the inner layering of the dunes. In this study, we utilize multiple complementary radar datasets, including radar imaging data for Titan's and Earth's dunes and Ground Penetrating Radar (GPR)/radar sounding data for terrestrial dunes. Based on dielectric mixing models, we suggest that the Cassini Ku-band microwaves should be able to penetrate up to ~ 3 m through Titan's dunes, indicating that the returned radar backscatter signal would include contributions from both surface and shallow subsurface echoes. This implies that the shallow subsurface properties can be retrieved from the observed radar backscatter (σ0). In our analysis, the variation of the radar backscatter as a function of dune height is used to provide an insight into the layering in Titan's dunes. We compare the variation of radar backscatter with elevation over individual dunes on Titan and analogous terrestrial dunes in three sites (Great Sand Sea, Siwa dunes and Qattaniya dunes) in the Egyptian Sahara. We observe a strong, positive

  9. When Field Experiments Yield Unexpected Results: Lessons Learned from Measuring Selection in White Sands Lizards

    Science.gov (United States)

    Hardwick, Kayla M.; Harmon, Luke J.; Hardwick, Scott D.; Rosenblum, Erica Bree

    2015-01-01

    Determining the adaptive significance of phenotypic traits is key for understanding evolution and diversification in natural populations. However, evolutionary biologists have an incomplete understanding of how specific traits affect fitness in most populations. The White Sands system provides an opportunity to study the adaptive significance of traits in an experimental context. Blanched color evolved recently in three species of lizards inhabiting the gypsum dunes of White Sands and is likely an adaptation to avoid predation. To determine whether there is a relationship between color and susceptibility to predation in White Sands lizards, we conducted enclosure experiments, quantifying survivorship of Holbrookia maculate exhibiting substrate-matched and substrate-mismatched phenotypes. Lizards in our study experienced strong predation. Color did not have a significant effect on survival, but we found several unexpected relationships including variation in predation over small spatial and temporal scales. In addition, we detected a marginally significant interaction between sex and color, suggesting selection for substrate matching may be stronger for males than females. We use our results as a case study to examine six major challenges frequently encountered in field-based studies of natural selection, and suggest that insight into the complexities of selection often results when experiments turn out differently than expected. PMID:25714838

  10. Sand dunes: An introduction

    Digital Repository Service at National Institute of Oceanography (India)

    Mascarenhas, A

    stream_size 5 stream_content_type text/plain stream_name Fish_Curry_Rice_2002_142.pdf.txt stream_source_info Fish_Curry_Rice_2002_142.pdf.txt Content-Encoding ISO-8859-1 Content-Type text/plain; charset=ISO-8859-1 ...

  11. Sand wave fields beneath the Loop Current, Gulf of Mexico: Reworking of fan sands

    Science.gov (United States)

    Kenyon, Neil H.; Akhmetzhanov, A.M.; Twichell, D.C.

    2002-01-01

    Extensive fields of large barchan-like sand waves and longitudinal sand ribbons have been mapped by deep-towed SeaMARC IA sidescan sonar on part of the middle and lower Mississippi Fan that lies in about 3200 m of water. The area is beneath the strongly flowing Loop Current. The bedforms have not been adequately sampled but probably consist of winnowed siliciclastic-foraminiferal sands. The size (about 200 m from wingtip to wingtip) and shape of the large barchans is consistent with a previously observed peak current speed of 30 cm/s, measured 25 m above the seabed. The types of small-scale bedforms and the scoured surfaces of chemical crusts, seen on nearby bottom photographs, indicate that near-bed currents in excess of 30 cm/s may sometimes occur. At the time of the survey the sand transport direction was to the northwest, in the opposite direction to the Loop Current but consistent with there being a deep boundary current along the foot of the Florida Escarpment. Some reworking of the underlying sandy turbidites and debris flow deposits is apparent on the sidescan sonar records. Reworking by deep-sea currents, resulting in erosion and in deposits characterised by coarsening upwards structures and cross-bedding, is a process that has been proposed for sand found in cores in shallower parts of the Gulf of Mexico. This process is more widespread than hitherto supposed. 

  12. Parabolic dune development modes according to shape at the southern fringes of the Hobq Desert, Inner Mongolia, China

    Science.gov (United States)

    Guan, Chao; Hasi, Eerdun; Zhang, Ping; Tao, Binbin; Liu, Dan; Zhou, Yanguang

    2017-10-01

    Since the 1970s, parabolic dunes at the southern fringe of the Hobq Desert, Inner Mongolia, China have exhibited many different shapes (V-shaped, U-shaped, and palmate) each with a unique mode of development. In the study area, parabolic dunes are mainly distributed in Regions A, B, and C with an intermittent river running from the south to the north. We used high-resolution remote-sensing images from 1970 to 2014 and RTK-GPS measurements to study the development modes of different dune shapes; the modes are characterized by the relationship between the intermittent river and dunes, formation of the incipient dune patterns, the predominant source supply of dunes, and the primary formation of different shapes (V-shaped, U-shaped, and palmate). Most parabolic dunes in Region A are V-shaped and closer to the bank of the river. The original barchans in this region exhibit "disconnected arms" behavior. With the sand blown out of the riverbed through gullies, the nebkhas on the disconnected arms acquire the external sand source through the "fertile island effect", thereby developing into triangular sand patches and further developing into V-shaped parabolic dunes. Most parabolic dunes in Regions B and C are palmate. The residual dunes cut by the re-channelization of river from transverse dune fields on the west bank are the main sand source of Region B. The parabolic dunes in Region C are the original barchans having then been transformed. The stoss slopes of V-shaped parabolic dunes along the riverbank are gradual and the dunes are flat in shape. The dune crest of V-shaped parabolic dune is the deposition area, which forms the "arc-shaped sand ridge". Their two arms are non-parallel; the lateral airflow of the arms jointly transport sand to the middle part of dunes, resulting in a narrower triangle that gradually becomes V-shaped. Palmate parabolic dunes have a steeper stoss slope and height. The dune crest of the palmate parabolic dune is the erosion area, which forms

  13. Feeding habits of the frog Pleurodema diplolistris (Anura, Leptodactylidae in Quaternary sand dunes of the Middle Rio São Francisco, Bahia, Brazil

    Directory of Open Access Journals (Sweden)

    José Wellington Alves dos Santos

    2003-12-01

    Full Text Available In this work, we investigate the feeding habits of Pleurodema diplolistris, the most abundant anuran species of the São Francisco sand dunes, during a period of slightly over one year. The fieldwork was undertaken during four excursions to a sand dune in the semiarid Caatinga, Brazil, and the analyses were based on stomach contents. Pleurodema diplolistris were not active during the dry season. The important food categories in diet were Isoptera (winged forms, Coleoptera, and Formicidae. Small and large animals had different food comsumption patterns: small frogs showed positive electivity for termites and large frogs, for ants. The pattern was strongly influenced by large male food electivity. High levels of termite comsumption ocurred during the days of greater capture success. The pattern of high comsumption of termites detected here is different from that described in another study on lizards from the same locality and sampled in the same periods. We discuss alternative hypotheses that could explain the observed patterns.

  14. Assessing radiation impact at a protected coastal sand dune site: an intercomparison of models for estimating the radiological exposure of non-human biota

    Energy Technology Data Exchange (ETDEWEB)

    Wood, Michael D., E-mail: mwood@liv.ac.u [Institute for Sustainable Water Integrated Management and Ecosystem Research (SWIMMER), Nicholson Building, University of Liverpool, Liverpool, Merseyside L69 3GP (United Kingdom); School of Biological Sciences, Nicholson Building, University of Liverpool, Liverpool, Merseyside L69 3GP (United Kingdom); Beresford, Nicholas A.; Barnett, Catherine L. [Centre for Ecology and Hydrology, Lancaster Environment Centre, Library Avenue, Bailrigg, Lancaster, Lancashire LA1 4AP (United Kingdom); Copplestone, David [Environment Agency, PO Box 12, Richard Fairclough House, Knutsford Road, Latchford, Warrington, Cheshire WA4 1HG (United Kingdom); Leah, Richard T. [Institute for Sustainable Water Integrated Management and Ecosystem Research (SWIMMER), Nicholson Building, University of Liverpool, Liverpool, Merseyside L69 3GP (United Kingdom); School of Biological Sciences, Nicholson Building, University of Liverpool, Liverpool, Merseyside L69 3GP (United Kingdom)

    2009-12-15

    This paper presents the application of three publicly available biota dose assessment models (the ERICA Tool, R and D128/SP1a and RESRAD-BIOTA) to an assessment of the Drigg coastal sand dunes. Using measured {sup 90}Sr, {sup 99}Tc, {sup 137}Cs, {sup 238}Pu, {sup 239+240}Pu and {sup 241}Am activity concentrations in sand dune soil, activity concentration and dose rate predictions are made for a range of organisms including amphibians, birds, invertebrates, mammals, reptiles, plants and fungi. Predicted biota activity concentrations are compared to measured data where available. The main source of variability in the model predictions is the transfer parameters used and it is concluded that developing the available transfer databases should be a focus of future research effort. The value of taking an informed user approach to investigate the way in which models may be expected to be applied in practice is highlighted and a strategy for the future development of intercomparison exercises is presented.

  15. Spatial Heterogeneity of Soil Nutrients after the Establishment of Caragana intermedia Plantation on Sand Dunes in Alpine Sandy Land of the Tibet Plateau.

    Science.gov (United States)

    Li, Qingxue; Jia, Zhiqing; Zhu, Yajuan; Wang, Yongsheng; Li, Hong; Yang, Defu; Zhao, Xuebin

    2015-01-01

    The Gonghe Basin region of the Tibet Plateau is severely affected by desertification. Compared with other desertified land, the main features of this region is windy, cold and short growing season, resulting in relatively difficult for vegetation restoration. In this harsh environment, identification the spatial distribution of soil nutrients and analysis its impact factors after vegetation establishment will be helpful for understanding the ecological relationship between soil and environment. Therefore, in this study, the 12-year-old C. intermedia plantation on sand dunes was selected as the experimental site. Soil samples were collected under and between shrubs on the windward slopes, dune tops and leeward slopes with different soil depth. Then analyzed soil organic matter (SOM), total nitrogen (TN), total phosphorus (TP), total potassium (TK), available nitrogen (AN), available phosphorus (AP) and available potassium (AK). The results showed that the spatial heterogeneity of soil nutrients was existed in C. intermedia plantation on sand dunes. (1) Depth was the most important impact factor, soil nutrients were decreased with greater soil depth. One of the possible reasons is that windblown fine materials and litters were accumulated on surface soil, when they were decomposed, more nutrients were aggregated on surface soil. (2) Topography also affected the distribution of soil nutrients, more soil nutrients distributed on windward slopes. The herbaceous coverage were higher and C. intermedia ground diameter were larger on windward slopes, both of them probably related to the high soil nutrients level for windward slopes. (3) Soil "fertile islands" were formed, and the "fertile islands" were more marked on lower soil nutrients level topography positions, while it decreased towards higher soil nutrients level topography positions. The enrichment ratio (E) for TN and AN were higher than other nutrients, most likely because C. intermedia is a leguminous shrub.

  16. The role of vegetation in shaping dune morphology

    Science.gov (United States)

    Duran Vinent, O.; Moore, L. J.; Young, D.

    2012-12-01

    . Consistent with field observations, we find that basic dune morphology is primarily determined by grass species, with linear or hummocky dunes being built by some species, while others may prevent dune formation. We also find that the evolution of coastal dune morphology is controlled by at least two bio-geomorphic couplings: (1) between vegetation growth and sand transport, which leads to a positive feedback for dune growth, as certain beach grasses maximize growth under sand accretion, which means that an ever denser vegetation implies an ever higher accretion rate; and (2) between vegetation growth and shoreline position through the sand influx. While the first coupling is responsible for dune formation, the second one determines when dunes stop growing and thus controls final dune size. This is particularly relevant for accreting/eroding coastlines where we find that dune size, and thus coastal protection, is maximized for relatively small accretion rates while larger accretion rates lead to formation of a new, smaller dune ridge at the beach.

  17. Soil microbial community of abandoned sand fields

    Czech Academy of Sciences Publication Activity Database

    Elhottová, Dana; Szili-Kovács, T.; Tříska, Jan

    2002-01-01

    Roč. 47, č. 4 (2002), s. 435-440 ISSN 0015-5632 R&D Projects: GA ČR GA526/99/P033 Grant - others:OTKA(HU) T25739 Institutional research plan: CEZ:AV0Z6066911 Keywords : microbial community * abandoned fields Subject RIV: EH - Ecology, Behaviour Impact factor: 0.979, year: 2002

  18. New technique of in-situ soil-moisture sampling for environmental isotope analysis applied at Pilat sand dune near Bordeaux. HETP modelling of bomb tritium propagation in the unsaturated and saturated zones

    International Nuclear Information System (INIS)

    Thoma, G.; Esser, N.; Sonntag, C.; Weiss, W.; Rudolph, J.; Leveque, P.

    1979-01-01

    A new soil-air suction method with soil-water vapour adsorption by a 4-A molecular sieve provides soil-moisture samples from various depths for environmental isotope analysis and yields soil temperature profiles. A field tritium tracer experiment shows that this in-situ sampling method has an isotope profile resolution of about 5-10cm only. Application of this method in the Pilat sand dune (Bordeaux/France) yielded deuterium and tritium profiles down to 25m depth. Bomb tritium measurements of monthly lysimeter percolate samples available since 1961 show that the tritium response has a mean delay of five months in the case of a sand lysimeter and of 2.5 years for a loess loam lysimeter. A simple HETP model simulates the layered downward movement of soil water and the longitudinal dispersion in the lysimeters. Field capacity and evapotranspiration taken as open parameters yield tritium concentration values of the lysimeters' percolate which agree well with the experimental results. Based on local meteorological data the HETP model applied to tritium tracer experiments in the unsaturated zone yields in addition an individual prediction of the momentary tracer position and of the soil-moisture distribution. This prediction can be checked experimentally at selected intervals by coring. (author)

  19. Sediment volume in the north polar sand seas of Mars

    International Nuclear Information System (INIS)

    Lancaster, N.; Greeley, R.

    1990-01-01

    Data from studies of the cross-sectional area of terrestrial transverse dunes have been combined with maps of dune morphometry derived from Viking orbiter images to generate new estimates of sediment thickness and dune sediment volume in the north polar sand seas of Mars. A relationship between dune spacing and equivalent sediment thickness (EST) was developed from field data on Namibian and North American dunes and was applied to data on dune spacing and dune cover measured on Viking orbiter images to generate maps of dune sediment thickness for Martian north polar sand seas. There are four major sand seas in the north polar region of Mars, covering an area of 6.8 x 10 5 km 2 . Equivalent sediment thickness ranges between 0.5 and 6.1 m with a mean of 1.8 m. The sand seas contain a total of 1158 km 3 of dune sediment, which may have been derived by erosion of polar layered deposits and concentrated in its present location by winds that change direction seasonally

  20. Dune-slope activity due to frost and wind throughout the north polar erg, Mars.

    Science.gov (United States)

    Diniega, Serina; Hansen, Candice J; Allen, Amanda; Grigsby, Nathan; Li, Zheyu; Perez, Tyler; Chojnacki, Matthew

    2017-01-01

    Repeat, high-resolution imaging of dunes within the Martian north polar erg have shown that these dune slopes are very active, with alcoves forming along the dune brink each Mars year. In some areas, a few hundred cubic metres of downslope sand movement have been observed, sometimes moving the dune brink 'backwards'. Based on morphological and activity-timing similarities of these north polar features to southern dune gullies, identifying the processes forming these features is likely to have relevance for understanding the general evolution/modification of dune gullies. To determine alcove-formation model constraints, we have surveyed seven dune fields, each over 1-4 Mars winters. Consistent with earlier reports, we found that alcove-formation activity occurs during the autumn-winter seasons, before or while the stable seasonal frost layer is deposited. We propose a new model in which alcove formation occurs during the autumn, and springtime sublimation activity then enhances the feature. Summertime winds blow sand into the new alcoves, erasing small alcoves over a few Mars years. Based on the observed rate of alcove erasure, we estimated the effective aeolian sand transport flux. From this, we proposed that alcove formation may account for 2-20% of the total sand movement within these dune fields.

  1. Field observations of artificial sand and oil agglomerates

    Science.gov (United States)

    Dalyander, Patricia (Soupy); Long, Joseph W.; Plant, Nathaniel G.; McLaughlin, Molly R.; Mickey, Rangley C.

    2015-01-01

    Oil that comes into the surf zone following spills, such as occurred during the 2010 Deepwater Horizon (DWH) blowout, can mix with local sediment to form heavier-than-water sand and oil agglomerates (SOAs), at times in the form of mats a few centimeters thick and tens of meters long. Smaller agglomerates that form in situ or pieces that break off of larger mats, sometimes referred to as surface residual balls (SRBs), range in size from sand-sized grains to patty-shaped pieces several centimeters (cm) in diameter. These mobile SOAs can cause beach oiling for extended periods following the spill, on the scale of years as in the case of DWH. Limited research, including a prior effort by the U.S. Geological Survey (USGS) investigating SOA mobility, alongshore transport, and seafloor interaction using numerical model output, focused on the physical dynamics of SOAs. To address this data gap, we constructed artificial sand and oil agglomerates (aSOAs) with sand and paraffin wax to mimic the size and density of genuine SOAs. These aSOAs were deployed in the nearshore off the coast of St. Petersburg, Florida, during a field experiment to investigate their movement and seafloor interaction. This report presents the methodology for constructing aSOAs and describes the field experiment. Data acquired during the field campaign, including videos and images of aSOA movement in the nearshore (1.5-meter and 0.5-meter water depth) and in the swash zone, are also presented in this report.

  2. DIVERSITY OF ARBUSCULAR MYCORRHIZAL FUNGI ALONG A SAND DUNE STABILIZATION GRADIENT: A CASE STUDY AT PRAIA DE JOAQUINA, ILHA DE SANTA CATARINA, SOUTH BRAZIL

    Science.gov (United States)

    Species diversity of abuscular mycorrhizal fungi (AMF) was assessed along a dunes stabilization gradient (embyonic dune, foredune and fixed dune) at Praia da Joaquina (Joaquina Beach), Ilha de Santa Catarina. These dunes served as a case study to assess whether diversity and myc...

  3. Mars Hand Lens Imager (MAHLI) Efforts and Observations at the Rocknest Eolian Sand Shadow in Curiosity's Gale Crater Field Site

    Science.gov (United States)

    Edgett, K. S.; Yingst, R. A.; Minitti, M. E.; Goetz, W.; Kah, L. C.; Kennedy, M. R.; Lipkaman, L. J.; Jensen, E. H.; Anderson, R. C.; Beegle, L. W.; hide

    2013-01-01

    The Mars Science Laboratory (MSL) mission is focused on assessing the past or present habitability of Mars, through interrogation of environment and environmental records at the Curiosity rover field site in Gale crater. The MSL team has two methods available to collect, process and deliver samples to onboard analytical laboratories, the Chemistry and Mineralogy instrument (CheMin) and the Sample Analysis at Mars (SAM) instrument suite. One approach obtains samples by drilling into a rock, the other uses a scoop to collect loose regolith fines. Scooping was planned to be first method performed on Mars because materials could be readily scooped multiple times and used to remove any remaining, minute terrestrial contaminants from the sample processing system, the Collection and Handling for In-Situ Martian Rock Analysis (CHIMRA). Because of this cleaning effort, the ideal first material to be scooped would consist of fine to very fine sand, like the interior of the Serpent Dune studied by the Mars Exploration Rover (MER) Spirit team in 2004 [1]. The MSL team selected a linear eolian deposit in the lee of a group of cobbles they named Rocknest (Fig. 1) as likely to be similar to Serpent Dune. Following the definitions in Chapter 13 of Bagnold [2], the deposit is termed a sand shadow. The scooping campaign occurred over approximately 6 weeks in October and November 2012. To support these activities, the Mars Hand Lens Imager (MAHLI) acquired images for engineering support/assessment and scientific inquiry.

  4. Characteristics of dune-paleosol-sequences in Fuerteventura. - What should be questioned?

    Science.gov (United States)

    Faust, Dominik; Willkommen, Tobias; Yanes, Yurena; Richter, David; Zöller, Ludwig

    2013-04-01

    Characteristics of dune-paleosol-sequences in Fuerteventura. - What should be questioned? Dominik Faust, TU Dresden, Germany Tobias Willkommen, TU Dresden, Germany Yurena Yanes, CSIC Granada/Cincinatti, Spain/USA David Richter, TU Dresden, Germany Ludwig Zöller, Uni Bayreuth, Germany The northern part of Fuerteventura is characterized by large dune fields. We investigated dune-paleosol-sequences in four pits to establish a robust stratigraphy and to propose a standard section. An interaction of processes like dune formation, soil formation and redeposition of soils and sand are most important to understand the principles of landscape development in the study area. To our mind a process cycle seem to be important: First climbing-dunes are formed by sand of shelf origin. Then soil formation could have taken place. Soil and/or sand were then eroded and deposited at toe slope position. This material in turn is the source of new sand supply and dune formation. The described cycle may be repeated several times and this ping-pong-process holds on. The results are sections composed of dune layers, paleosols and colluvial material interbedded. Fundamental questions still remain unanswered: Is climate change responsable for changes in process combination (e.g. from dune formation to soil formation)? Or are these features due to divergence phenomenon, where different effects/results (dune and soils) may be linked to similar causes (here: climate)? Assuming that different features (soils and dunes) were formed under one climate, increasing soil forming intensity could be mainly a function of decreasing sand supply. This in turn could be caused by reduced sand production (s. ZECH et al. accepted). However geochemical data and mollusc assemblages point to changing environments in space and even climate modifications in time.

  5. Holocene beach buildup and coastal aeolian sand incursions off the Nile littoral cell

    Science.gov (United States)

    Roskin, Joel; Sivan, Dorit; Shtienberg, Gilad; Porat, Naomi; Bookman, Revital

    2017-04-01

    Israel's coastal plain is abundant with sand originating from the Nile littoral cell. The inland windblown loose sand has formed 3-6 km wide lobe-like sand and dune fields currently comprised of foredunes, linear and northeasterly facing transverse and parabolic dunes that are currently stabilized by vegetation. This study reviews the architecture and history of the these dune fields aiming to: (a) Date the timings of beach accretion, and sand and dune incursions. (b) Discriminate between natural and human-induced forcing factors of sand mobilization and stabilization in time and space. (c) Present a model of the dunescape development. (d) Assess scenarios of sand transport in the future charcaterized by intense human impact and climate change. Luminescence ages, radiocarbon dates and relative ages from previously published geological and archaeological reports, historical texts, together with new optically stimulated luminescence (OSL) ages and stratigraphic and sedimentological data are analyzed. The deposition, mobilizations and preservation of the sand bodies, initially induced by the decline in sea level rise at 6-4 ka, were later controlled by historic land-use intensity and modern land-use/negligence practices. At 6 ka, beach sand buildup rapidly started. Where aeolianite ridges bordered the coast, pulses of sand with biogenic carbonate grains unconformably draped the ridges and rapidly consolidated into a distinct sandy calcarenite unit. Further east, sand sheets and low dunes partly pedogenized following their incursion, but did not cement. The water retention capacities of the sand sheets enabled the establishment of a sand-stabilizing vegetation cover that probably became an attractive environment for fuel and grazing. The growing Hellenistic-Roman-Byzantine ( 2.4-1.3 ka) populations probably led to increased consumption and massive destruction of sand stabilizing vegetation, enabling sand erodibility and mobilization during winter storms. The sand

  6. Construction of an Environmentally Sustainable Development on a Modified Coastal Sand Mined and Landfill Site—Part 2. Re-Establishing the Natural Ecosystems on the Reconstructed Beach Dunes

    Directory of Open Access Journals (Sweden)

    Anne-Laure Markovina

    2010-03-01

    Full Text Available Mimicking natural processes lead to progressive colonization and stabilization of the reconstructed beach dune ecosystem, as part of the ecologically sustainable development of Magenta Shores, on the central coast of New South Wales, Australia. The retained and enhanced incipient dune formed the first line of storm defence. Placement of fibrous Leptospermum windrows allowed wind blown sand to form crests and swales parallel to the beach. Burial of Spinifex seed head in the moist sand layer achieved primary colonization of the reconstructed dune and development of a soil fungal hyphae network prior to introduction of secondary colonizing species. Monitoring stakes were used as roosts by birds, promoting re-introduction of native plant species requiring germination by digestive tract stimulation. Bush regeneration reduced competition from weeds, allowing native vegetation cover to succeed. On-going weeding and monitoring are essential at Magenta Shores until bitou bush is controlled for the entire length of beach. The reconstructed dunes provide enhanced protection from sand movement and storm bite, for built assets, remnant significant vegetation and sensitive estuarine ecosystems.

  7. Aeolian dune sediment flux heterogeneity in Meridiani Planum, Mars.

    Science.gov (United States)

    Chojnacki, Matthew; Urso, Anna; Fenton, Lori K; Michaels, Timothy I

    2017-06-01

    It is now known unambiguously that wind-driven bedform activity is occurring on the surface of Mars today, including early detections of active sand dunes in Meridiani Planum's Endeavour crater. Many of these reports are only based on a few sets of observations of relatively isolated bedforms and lack regional context. Here, we investigate aeolian activity across central Meridiani Planum and test the hypothesis that dune sites surrounding Endeavour crater are also active and part of region-wide sediment migration driven by northwesterly winds. All 13 dune fields investigated clearly showed evidence for activity and the majority exhibited dune migration (average rates of 0.6 m/Earth-year). Observations indicate substantial geographic and temporal heterogeneity of dune crest fluxes across the area and per site. Locations with multiple time steps indicate dune sand fluxes can vary by a factor of five, providing evidence for short periods of rapid migration followed by near-stagnation. In contrast, measurements at other sites are nearly identical, indicating that some dunes are in a steady-state as they migrate. The observed sediment transport direction was consistent with a regional northeasterly-to-northwesterly wind regime, revealing more variations than were appreciated from earlier, more localized studies. Craters containing shallow, degraded, flat-floored interiors tended to have dunes with high sediment fluxes/activity, whereas local kilometer-scale topographic obstructions (e.g., central peaks, yardangs) were found to be inversely correlated with dune mobility. Finally, the previous, more limited detections of dune activity in Endeavour crater have been shown to be representative of a broader, region-wide pattern of dune motion.

  8. Relating sedimentary processes in the Bagnold Dunes to the development of crater basin aeolian stratification

    Science.gov (United States)

    Ewing, R. C.; Lapotre, M. G. A.; Lewis, K. W.; Day, M. D.; Stein, N.; Rubin, D. M.; Sullivan, R. J., Jr.; Banham, S.; Thomas, N. M.; Lamb, M. P.; Gupta, S.; Fischer, W. W.

    2017-12-01

    Wind-blown sand dunes are ubiquitous on the surface of Mars and are a recognized component of the martian stratigraphic record. Our current knowledge of the aeolian sedimentary processes that determine dune morphology, drive dune dynamics, and create aeolian cross-stratification are based upon orbital studies of ripple and dune morphodynamics, rover observations of stratification on Mars, Earth analogs, and experimental and theoretical studies of sand movement under martian conditions. Exploration of the Bagnold Dunes by the Curiosity Rover in Gale Crater, Mars provided the first opportunity to make in situ observations of martian dunes from the grain-to-dune scale. We used the suite of cameras on Curiosity, including Navigation Camera, Mast Camera, and Mars Hand Lens Imager. We measured grainsize and identified sedimentary processes similar to processes on terrestrial dunes, such as grainfall, grainflow, and impact ripples. Impact ripple grainsize had a median of 0.103 mm. Measurements of grainflow slopes indicate a relaxation angle of 29° and grainfall slopes indicate critical angles of at least 32°. Dissimilar to terrestrial dunes, large, meter-scale ripples form on all slopes of the dunes. The ripples form both sinuous and linear crestlines, have symmetric and asymmetric profiles, range in height between 12cm and 28cm, and host grainfall, grainflow, and impact ripples. The largest ripples are interpreted to integrate the annual wind cycle within the crater, whereas smaller large ripples and impact ripples form or reorient to shorter term wind cycling. Assessment of sedimentary processes in combination with dune type across the Bagnold Dunes shows that dune-field pattern development in response to a complex crater-basin wind regime dictates the distribution of geomorphic processes. From a stratigraphic perspective, zones of highest potential accumulation correlate with zones of wind convergence, which produce complex winds and dune field patterns thereby

  9. Predictive hydrogeochemical modelling of bauxite residue sand in field conditions.

    Science.gov (United States)

    Wissmeier, Laurin; Barry, David A; Phillips, Ian R

    2011-07-15

    The suitability of residue sand (the coarse fraction remaining from Bayer's process of bauxite refining) for constructing the surface cover of closed bauxite residue storage areas was investigated. Specifically, its properties as a medium for plant growth are of interest to ensure residue sand can support a sustainable ecosystem following site closure. The geochemical evolution of the residue sand under field conditions, its plant nutrient status and soil moisture retention were studied by integrated modelling of geochemical and hydrological processes. For the parameterization of mineral reactions, amounts and reaction kinetics of the mineral phases natron, calcite, tricalcium aluminate, sodalite, muscovite and analcime were derived from measured acid neutralization curves. The effective exchange capacity for ion adsorption was measured using three independent exchange methods. The geochemical model, which accounts for mineral reactions, cation exchange and activity corrected solution speciation, was formulated in the geochemical modelling framework PHREEQC, and partially validated in a saturated-flow column experiment. For the integration of variably saturated flow with multi-component solute transport in heterogeneous 2D domains, a coupling of PHREEQC with the multi-purpose finite-element solver COMSOL was established. The integrated hydrogeochemical model was applied to predict water availability and quality in a vertical flow lysimeter and a cover design for a storage facility using measured time series of rainfall and evaporation from southwest Western Australia. In both scenarios the sand was fertigated and gypsum-amended. Results show poor long-term retention of fertilizer ions and buffering of the pH around 10 for more than 5 y of leaching. It was concluded that fertigation, gypsum amendment and rainfall leaching alone were insufficient to render the geochemical conditions of residue sand suitable for optimal plant growth within the given timeframe. The

  10. A field study of the geomorphic effects of sublimating CO2 blocks on dune slopes at Coral Pink Dunes, Utah.

    Science.gov (United States)

    Bourke, Mary; Nield, Jo; Diniega, Serina; Hansen, Candy; McElwaine, Jim

    2016-04-01

    The seasonal sublimation of CO2 ice is an active driver of present-day surface change on Mars. Diniega et al (2013) proposed that a discrete type of Martian gully, found on southern hemisphere dunes, were formed by the movement of CO2 seasonal ice blocks. These 'Linear Gullies' consist primarily of long (100 m - 2.5 km) grooves with near-uniform width (few-10 m wide), and typical depth of nudge it moved downslope. The dynamics of the block movement were recorded using a pair of high resolution video cameras. Geomorphological observations were noted and topographic change was quantified using a Leica P20 terrestrial laser scanner with a resolution of 0.8 mm at 10 m, and change detection limits less than 3 mm. The block run was repeated a total of 10 times and launched from the same location at the dune brink. The experiment ran for 45 minutes. The block size was reduced to (45 x 190 x 195 mm) by the end of the run series. The resultant geomorphology shows that the separate block runs occupied different tracks leading to a triangular plan form shape with a maximum width of 3.5 m. This is different from the findings in Arizona where a narrower track span was recorded (1.7m) (Bourke et al, 2016). Similar block dynamics were observed at both sites (as blocks moved straight, swiveled and bounced downslope). Distinctive pits with arcuate rims on their downslope edge were formed where blocks bounced on the surface. These pits are at an almost equidistant spacing. Despite a longer slope (16 m as opposed to 8m at Grand Falls), no depositional apron was formed. Levee development was less consistent compared to the Arizona site, but a pronounced unpaired-levee formed towards the base of the lee slope. These data show that sublimating blocks of CO2 ice leave signatures of transport paths and are capable of eroding and transporting sediment. Diniega,S. et al (2013) A new dry hypothesis for the formation of Martian linear gullies. Icarus. Vol. 225, 1, p. 526-537. Bourke, M.C. et

  11. Mars Global Digital Dune Database; MC-1

    Science.gov (United States)

    Hayward, R.K.; Fenton, L.K.; Tanaka, K.L.; Titus, T.N.; Colaprete, A.; Christensen, P.R.

    2010-01-01

    The Mars Global Digital Dune Database presents data and describes the methodology used in creating the global database of moderate- to large-size dune fields on Mars. The database is being released in a series of U.S. Geological Survey (USGS) Open-File Reports. The first release (Hayward and others, 2007) included dune fields from 65 degrees N to 65 degrees S (http://pubs.usgs.gov/of/2007/1158/). The current release encompasses ~ 845,000 km2 of mapped dune fields from 65 degrees N to 90 degrees N latitude. Dune fields between 65 degrees S and 90 degrees S will be released in a future USGS Open-File Report. Although we have attempted to include all dune fields, some have likely been excluded for two reasons: (1) incomplete THEMIS IR (daytime) coverage may have caused us to exclude some moderate- to large-size dune fields or (2) resolution of THEMIS IR coverage (100m/pixel) certainly caused us to exclude smaller dune fields. The smallest dune fields in the database are ~ 1 km2 in area. While the moderate to large dune fields are likely to constitute the largest compilation of sediment on the planet, smaller stores of sediment of dunes are likely to be found elsewhere via higher resolution data. Thus, it should be noted that our database excludes all small dune fields and some moderate to large dune fields as well. Therefore, the absence of mapped dune fields does not mean that such dune fields do not exist and is not intended to imply a lack of saltating sand in other areas. Where availability and quality of THEMIS visible (VIS), Mars Orbiter Camera narrow angle (MOC NA), or Mars Reconnaissance Orbiter (MRO) Context Camera (CTX) images allowed, we classified dunes and included some dune slipface measurements, which were derived from gross dune morphology and represent the prevailing wind direction at the last time of significant dune modification. It was beyond the scope of this report to look at the detail needed to discern subtle dune modification. It was also

  12. Danos socioambientais originados pelas usinas eólicas nos campos de dunas do Nordeste brasileiro e critérios para definição de alternativas locacionais Dommages socio-environnementaux causés par les parcs éoliens dans les champs de dunes de sable du nord-est du Brésil et critères pour la définition d'alternatives de localisation Socio-environmental damage caused by wind farms in sand dunes fields of northeastern Brazil and criteria for definition of locational alternatives

    Directory of Open Access Journals (Sweden)

    Antonio Jeovah de Andrade Meireles

    2011-09-01

    Full Text Available O potencial eólico brasileiro é uma importante alternativa para a produção de energia renovável para enfrentar as emissões de poluentes atmosféricos com a utilização de energia limpa. Uma excelente política ambiental para minimizar as consequências previstas pelo aquecimento global, perante as emissões de dióxido de carbono e poluentes relacionados com a utilização de carvão mineral e outros combustíveis fósseis. Este artigo enumerou as consequências ambientais das usinas eólicas sobre os campos de dunas através da fragmentação dos sistemas ambientais provocado pelas obras de engenharia. Ao final foi possível analisar os impactos cumulativos tomando como exemplo o litoral cearense, definir alternativas locacionais e ações adequadas para o planejamento de ambientes costeiros diante esta nova forma de geração de energia limpa.En ce qui concerne la production d'énergies renouvelables au Brésil, le potentiel éolien  est une alternative prometteuse pour la réduction d’émissions de polluants atmosphériques, la mise en pratique d’une politique environnementale sensible aux conséquences du phénomène de réchauffement global. Cependant, la localisation de projets de cette nature dans les champs de dunes, suscite  un changement drastique de la dynamique géomorphologique de la zone côtière, avec  des impacts environnementaux que ce texte vise à d’évaluer, surtout dans le cas du Ceará. La localisation des parcs éoliens dans les champs de dunes y est une conséquence des politiques d’aménagement mises en place dans la zone côtière et d’après la logique de production d'énergie propre.The wind potential in Brazil is an important alternative for the production of renewable energy, reducing the emission of air pollutants with the use of clean energy. An environmental policy to minimize the consequences of global warming.  This article evaluated the environmental impacts of wind farms on the dune

  13. Possibility of star (pyramid) dune development in the area of bimodal wind regime

    Science.gov (United States)

    Biejat, K.

    2012-04-01

    Star (pyramid) dunes are the largest aeolian landforms. They can occur in three types - simple, complex and compound. Development of this type of dunes is usually connected with multidirectional or complex wind regimes. The aim of this study was to verify a hypothesis that the star dunes can also develop by a bimodal wind regime and by local modifications of nearsurface wind flow directions. Field study was performed on Erg Chebbi, in southern Morocco. Several star and transverse dunes were selected for the study of their shape. The star dunes were analysed concerning their type and position in the dune field. This erg contains all of three types of star dunes together with transverse dunes. The regional wind data show that there are two dominant wind directions - NE (Chergui) and SW (Saheli). To determine the difference in shape of star dunes, we performed topographic surveying by GPS RTK. The results allowed to create 3D models of star dunes. The models were used to determine metric characteristics of star dunes, including area of dune basis, volume, and slope angles. On the basis of 3D models, primary, secondary and, on the compound dunes, tertiary arms were determined. Primary arms on each type of star dunes, as well as crestlines of transverse dunes, have dominant orientation NW-SE, perpendicular to two dominant wind directions. This clearly confirms that star dunes of Erg Chebbi develop by a bimodal wind regime In contrast to primary arms, subsidiary (secondary and tertiary) arms are not connected to general wind regime. The secondary arms of star dunes occur to be differentially developer. There are more subsidiary arms on SW sides in comparison to the E sides of the dunes where inclination of slopes is constant. It can be therefore inferred that sand has been supplied predominantly from SW direction. This is supported by distribution of the dunes on the erg. Most compound star dunes compose a chain along the E margin of the erg. Comparison of compound star

  14. Intertidal Sandbar Welding as a Primary Source of Sediment for Dune Growth: Evidence from a Large Scale Field Experiment

    Science.gov (United States)

    Cohn, N.; Ruggiero, P.; de Vries, S.

    2016-12-01

    Dunes provide the first line of defense from elevated water levels in low-lying coastal systems, limiting potentially major flooding, economic damages, and loss of livelihood. Despite the well documented importance of healthy dunes, our predictive ability of dune growth, particularly following erosive storm events, remains poor - resulting in part from traditionally studying the wet and dry beach as separate entities. In fact, however, dune recovery and growth is closely tied to the subtidal morphology and the nearshore hydrodynamic conditions, necessitating treating the entire coastal zone from the shoreface to the backshore as an integrated system. In this context, to further improve our understanding of the physical processes allowing for beach and dune growth during fair weather conditions, a large field experiment, the Sandbar-aEolian Dune EXchange EXperiment, was performed in summer 2016 in southwestern Washington, USA. Measurements of nearshore and atmospheric hydrodynamics, in-situ sediment transport, and morphology change provide insight into the time and space scales of nearshore-beach-dune exchanges along a rapidly prograding stretch of coast over a 6 week period. As part of this experiment, the hypothesis that dune growth is limited by the welding of intertidal sandbars to the shoreline (Houser, 2009) was tested. Using laser particle counters, bed elevation sensors (sonar altimeters and Microsoft Kinect), continuously logging sediment traps, RGB and IR cameras, and repeat morphology surveys (terrestrial lidar, kite based structure from motion, and RTK GPS), spatial and temporal trends in aeolian sediment transport were assessed in relation to the synoptic onshore migration and welding of intertidal sandbars. Observations from this experiment demonstrate that (1) the intertidal zone is the primary source of sediment to the dunes during non-storm conditions, (2) rates of saltation increase during later stages of bar welding but equivalent wind conditions

  15. The effects of extreme rainfall events on carbon release from Biological Soil Crusts covered soil in fixed sand dunes in the Tengger Desert, northern China

    Science.gov (United States)

    Zhao, Yang; Li, Xinrong; Pan, Yanxia; Hui, Rong

    2016-04-01

    How soil cover types and extreme rainfall event influence carbon (C) release in temperate desert ecosystems has largely been unexplored. We assessed the effects of extreme rainfall (quantity and intensity) events on the carbon release from soils covered by different types of biological soil crusts (BSCs) in fixed sand dunes in the Tengger Desert, Shapotou regionof northern China. We removed intact crusts down to 10 cm and measured them in PVC mesocosms. A Li-6400-09 Soil Chamber was used to measure the respiration rates of the BSCs immediately after the rainfall stopped, and continued until the respiration rates of the BSCs returned to the pre-rainfall basal rate. Our results showed that almost immediately after extreme rainfall events the respiration rates of algae crust and mixed crust were significantly inhibited, but moss crust was not significantly affected. The respiration rates of algae crust, mixed crust, and moss crust in extreme rainfall quantity and intensity events were, respectively, 0.12 and 0.41 μmolCO2/(m2•s), 0.10 and 0.45 μmolCO2/(m2•s), 0.83 and 1.69 μmolCO2/(m2•s). Our study indicated that moss crust in the advanced succession stage can well adapt to extreme rainfall events in the short term. Keywords: carbon release; extreme rainfall events; biological soil crust

  16. Sample descriptions and geophysical logs for cored well BP-3-USGS, Great Sand Dunes National Park and Preserve, Alamosa County, Colorado

    Science.gov (United States)

    Grauch, V.J.S.; Skipp, Gary L.; Thomas, Jonathan V.; Davis, Joshua K.; Benson, Mary Ellen

    2015-01-01

    The BP-3-USGS well was drilled at the southwestern corner of Great Sand Dunes National Park in the San Luis Valley, south-central Colorado, 68 feet (ft, 20.7 meters [m]) southwest of the National Park Service’s boundary-piezometer (BP) well 3. BP-3-USGS is located at latitude 37°43ʹ18.06ʺN. and longitude 105°43ʹ39.30ʺW., at an elevation of 7,549 ft (2,301 m). The well was drilled through poorly consolidated sediments to a depth of 326 ft (99.4 m) in September 2009. Water began flowing from the well after penetrating a clay-rich layer that was first intercepted at a depth of 119 ft (36.3 m). The base of this layer, at an elevation of 7,415 ft (2,260 m) above sea level, likely marks the top of a regional confined aquifer recognized throughout much of the San Luis Valley. Approximately 69 ft (21 m) of core was recovered (about 21 percent), almost exclusively from clay-rich zones. Coarser grained fractions were collected from mud extruded from the core barrel or captured from upwelling drilling fluids. Natural gamma-ray, full waveform sonic, density, neutron, resistivity, spontaneous potential, and induction logs were acquired. The well is now plugged and abandoned.

  17. THE WIND DEFLATION FROM SAND AREAS AFFECTED BY ATMOSFERIC DRYNESS: LEU-ROTUNDA AND DĂBULENI FIELDS (OLTENIA PLAIN

    Directory of Open Access Journals (Sweden)

    ROȘCA FLORINA CRISTINA

    2014-03-01

    Full Text Available Leu-Rotunda and Dăbuleni Fields are characterized by substantial extension of sandy soils. The sands on the left of Jiu are poli-stratificated fluvial deposits eolian shaped as dunes and interdunes. During the reported period 1980-2007, it was found that the most exposed time of the year to the wind was during the spring, the months of March, April and May as in speed and frequency. According to the analyzed data, the dominant wind direction during spring season on the sandy soils from Dăbuleni is the western, with negative effects on crops who then begin their vegetation cycle. The shelterbelts have decreased, although lately there have been numerous programs which aimed afforestation of affected areas.

  18. Dynamics of a cliff top dune

    Science.gov (United States)

    Rasmussen, K. R.

    2012-12-01

    Morphological changes during more than 100 years have been investigated for a cliff-top dune complex at Rubjerg at the Danish North Sea coast. Here the lower 50 m of the cliff front is composed of Pleistocene steeply inclined floes of silt and clay with coarse sand in between which gives it a saw-tooth appearance. On top of this the dunes are found for several kilometres along the coastline. Due to erosion by the North Sea the cliff has retreated about 120 m between approximately 1880 and 1970 as indicated from two national surveys, and recent GPS-surveys indicate that erosion is continuing at a similar rate. Nevertheless the cliff top dune complex has survived, but its morphology has undergone some changed. The old maps indicate that around 1880 the dune complex was composed of several up to about 20 m high dunes streamlined in the East-West direction which is parallel to the prevailing wind direction. When protective planting started during the first half of the 20th Century the cliff top dunes gradually merged together forming a narrow, tall ridge parallel to the shore line with the highest part reaching about 90 m near 1970. In 1993 the highest points along the ridge was almost 95 m high, but then the protective planting was considerably reduced and recent annual GPS-surveys indicate that the dunes respond quickly to this by changing their morphology towards the original appearance. It is remarkable that despite the mass wasting caused by the constant erosion of the cliff front the dunes have remained more or less intact. Theoretical studies of hill flow indicate given the proper geometry of the cliff then suspension of even coarse grains can be a very effective agent for carrying sand from the exposed parts of the cliff front to and beyond the cliff-top. Mostly the sand grains are deposited within some hundred meters downwind of the cliff dune while silt is often carried more than 10 km inland. Field observations indicate that where the dislodged floes and

  19. A case study on dune response to infragravity waves

    Science.gov (United States)

    Li, Wenshan; Wang, Hui; Li, Huan; Wu, Shuangquan; Li, Cheng

    2017-08-01

    A series of numerical simulations were conducted using the process-based model XBeach to investigate dune response under normal and getting rid of infragravity wave conditions with different slopes. Erosion volume upside the dune toe and dune top recession are set as indicators for dune vulnerability as well as defence capacity for its front-beach. Results show that both dune erosion volume and dune top recession decrease with gentler dune slopes. Of all the simulation cases, dune with a face slope of 1/1 lost most sand and supplied most sand for lower-bed. The presence of infragravity waves is validated to be crucial to dune vulnerability. The dune erosion volume is shown to decrease by 44.5%∼61.5% and the dune top recession decreased by 0%∼45.5% correspondingly, in the case that infragravity motion is not taken into account during simulation for different dune slopes.

  20. White Sands, New Mexico as seen from STS-60

    Science.gov (United States)

    1994-01-01

    White Sands National Monument (Park) is easily recognized in the center of this near-vertical color photograph. White Sands is the world's largest gypsum dune field. It represents an alabaster sea that covers nearly 300 square miles. At the southwest corner of the White Sands is dry lake, Lucero. In terms of cultural features the city of Alamogordo and Holloman Air Force Base can be seen with great clarity on this photograph.

  1. Frost-covered dunes

    Science.gov (United States)

    1999-01-01

    MOC image of dunes in Chasma Boreale, a giant trough in the north polar cap. This September 1998 view shows dark sand emergent from beneath a veneer of bright frost left over from the northern winter that ended in July 1998.

  2. Integrating multi-disciplinary field and laboratory methods to investigate the response and recovery of beach-dune systems in Ireland to extreme events

    Science.gov (United States)

    Farrell, E.; Lynch, K.; Wilkes Orozco, S.; Castro Camba, G.; Scullion, A.

    2017-12-01

    This two year field monitoring project examines the response and recovery of 1.2km of a coastal beach-dune system in the west coast of Ireland (The Maharees, Brandon Bay, Co. Kerry) to storms. The results from this project initiated a larger scale study to assess the long term evolution of Brandon Bay (12km) and patterns of meso-scale rotation. On a bay scale historic shoreline analyses were completed using historic Ordnance Survey maps, aerial photography, and DGPS surveys inputted to the Digital Shoreline Analysis System. These were coupled with a GSTA-wavemeter experiment that collected 410 sediment samples along the beach and nearshore to identify preferred sediment transport pathways along the bay. On a local scale (1.2km) geomorphological changes of the beach and nearshore were monitored using repeated monthly DGPS surveys and drone technology. Topographical data were correlated with atmospheric data obtained from a locally installed automatic weather station, oceanographic data from secondary sources, and photogrammetry using a camera installed at the site collecting pictures every 10 minutes during daylight hours. Changes in surface elevation landward of the foredune from aeolian processes were measured using five pin transects across the dune. The contribution of local blowout dynamics were measured using drone imagery and structure-from-motion technology. The results establish that the average shoreline recession along the 1.2 km site is 72 m during the past 115 years. The topographic surveys illustrate that natural beach building processes initiate system recovery post storms including elevated foreshores and backshores and nearshore sand bar migration across the entire 1.2 km stretch of coastline. In parallel with the scientific work, the local community have mobilized and are working closely with the lead scientists to implement short term coastal management strategies such as signage, information booklets, sand trap fencing, walkways, wooden

  3. Ground Improvement of Dune Sand Fields For The Purpose of Moisture Retention

    OpenAIRE

    Dr.A.S.Wayal; Dr.N.K.Ameta

    2014-01-01

    Plant growth depends on the use of two important natural resources, soil and water. Soil provides the mechanical and nutrient support necessary for plant growth. Water is the major input for the growth and development of all types of plants. The availability of water, its movement and its retention are governed by the properties of soil. The properties like bulk density, mechanical composition, hydraulic conductivity etc depends on the nature and formation of soil and land use...

  4. Environmental Controls and Eco-geomorphic Interactions of the Barchan-to-parabolic Dune Stabilisation and the Parabolic-to-barchan Dune Reactivation

    Science.gov (United States)

    Yan, Na; Baas, Andreas

    2015-04-01

    Parabolic dunes are one of a few common aeolian landforms which are highly controlled by eco-geomorphic interactions. Parabolic dunes, on the one hand, can be developed from highly mobile dune landforms, barchans for instance, in an ameliorated vegetation condition; or on the other hand, they can be reactivated and transformed back into mobile dunes due to vegetation deterioration. The fundamental mechanisms and eco-geomorphic interactions controlling both dune transformations remain poorly understood. To bridge the gap between complex processes involved in dune transformations on a relatively long temporal scale and real world monitoring records on a very limited temporal scale, this research has extended the DECAL model to incorporate 'dynamic' growth functions and the different 'growth' of perennial shrubs between growing and non-growing seasons, informed by field measurements and remote sensing analysis, to explore environmental controls and eco-geomorphic interactions of both types of dune transformation. A non-dimensional 'dune stabilising index' is proposed to capture the interactions between environmental controls (i.e. the capabilities of vegetation to withstand wind erosion and sand burial, the sandy substratum thickness, the height of the initial dune, and the sand transport potential), and establish the linkage between these controls and the geometry of a stabilising dune. An example demonstrates how to use the power-law relationship between the dune stabilising index and the normalised migration distance to assist in extrapolating the historical trajectories of transforming dunes. The modelling results also show that a slight increase in vegetation cover of an initial parabolic dune can significantly increase the reactivation threshold of climatic impact (both drought stress and wind strength) required to reactivate a stabilising parabolic dune into a barchan. Four eco-geomorphic interaction zones that govern a barchan-to-parabolic dune transformation

  5. In situ viscosity of oil sands using low field NMR

    International Nuclear Information System (INIS)

    Bryan, J.; Moon, D.; Kantzas, A.

    2005-01-01

    In heavy oil and bitumen reservoirs, oil viscosity is a vital piece of information that will have great bearing on the chosen EOR scheme and the recovery expected. Prediction of in situ viscosity with a logging tool would he very beneficial in reservoir characterization and exploitation design. Low field NMR is a technology that has shown great potential as a tool for characterizing hydrocarbon properties in heavy oil and bitumen reservoirs. An oil viscosity correlation has previously been developed that is capable of providing order of magnitude viscosity estimates for a wide range of oils taken from various fields in Alberta. This paper presents tuning procedures to improve the NMR predictions for different viscosity ranges, and extends the NMR viscosity model to in situ heavy oil in unconsolidated sands. The results of this work show that the NMR oil peak can be de-convoluted from the in situ signals of the oil and water, and the bulk viscosity correlation that was developed for bulk oils can he applied to predict the in situ oil viscosity. These results can be translated to an NMR logging tool algorithm, allowing for in situ measurements of oil viscosity at the proper reservoir conditions. (author)

  6. Stability of isolated Barchan dunes

    Science.gov (United States)

    Fourrière, Antoine; Charru, François

    2010-11-01

    When sand grains are entrained by an air flow over a non-erodible ground, or with limited sediment supply from the bed, they form isolated dunes showing a remarkable crescentic shape with horns pointing downstream. These dunes, known as Barchan dunes, are commonly observed in deserts, with height of a few meters and velocity of a few meters per year (Bagnold 1941). These dunes also exist under water, at a much smaller, centimetric size (Franklin & Charru 2010). Their striking stability properties are not well understood yet. Two phenomena are likely to be involved in this stability: (i) relaxation effects of the sand flux which increases from the dune foot up to the crest, related to grain inertia or deposition, and (ii) a small transverse sand flux due to slope effects and the divergence of the streamlines of the fluid flow. We reproduced aqueous Barchan dunes in a channel, and studied their geometrical and dynamic properties (in particular their shape, velocity, minimum size, and rate of erosion). Using coloured glass beads (see the figure), we were then able to measure the particle flux over the whole dune surface. We will discuss the stability of these dunes in the light of our measurements.

  7. A wind proxy based on migrating dunes at the Baltic coast: statistical analysis of the link between wind conditions and sand movement

    Science.gov (United States)

    Bierstedt, Svenja E.; Hünicke, Birgit; Zorita, Eduardo; Ludwig, Juliane

    2017-07-01

    We statistically analyse the relationship between the structure of migrating dunes in the southern Baltic and the driving wind conditions over the past 26 years, with the long-term aim of using migrating dunes as a proxy for past wind conditions at an interannual resolution. The present analysis is based on the dune record derived from geo-radar measurements by Ludwig et al. (2017). The dune system is located at the Baltic Sea coast of Poland and is migrating from west to east along the coast. The dunes present layers with different thicknesses that can be assigned to absolute dates at interannual timescales and put in relation to seasonal wind conditions. To statistically analyse this record and calibrate it as a wind proxy, we used a gridded regional meteorological reanalysis data set (coastDat2) covering recent decades. The identified link between the dune annual layers and wind conditions was additionally supported by the co-variability between dune layers and observed sea level variations in the southern Baltic Sea. We include precipitation and temperature into our analysis, in addition to wind, to learn more about the dependency between these three atmospheric factors and their common influence on the dune system. We set up a statistical linear model based on the correlation between the frequency of days with specific wind conditions in a given season and dune migration velocities derived for that season. To some extent, the dune records can be seen as analogous to tree-ring width records, and hence we use a proxy validation method usually applied in dendrochronology, cross-validation with the leave-one-out method, when the observational record is short. The revealed correlations between the wind record from the reanalysis and the wind record derived from the dune structure is in the range between 0.28 and 0.63, yielding similar statistical validation skill as dendroclimatological records.

  8. Geomorphology and drift potential of major aeolian sand deposits in Egypt

    Science.gov (United States)

    Hereher, Mohamed E.

    2018-03-01

    Aeolian sand deposits cover a significant area of the Egyptian deserts. They are mostly found in the Western Desert and Northern Sinai. In order to understand the distribution, pattern and forms of sand dunes in these dune fields it is crucial to analyze the wind regimes throughout the sandy deserts of the country. Therefore, a set of wind data acquired from twelve meteorological stations were processed in order to determine the drift potential (DP), the resultant drift potential (RDP) and the resultant drift direction (RDD) of sand in each dune field. The study showed that the significant aeolian sand deposits occur in low-energy wind environments with the dominance of linear and transverse dunes. Regions of high-energy wind environments occur in the south of the country and exhibit evidence of deflation rather than accumulation with the occurrence of migratory crescentic dunes. Analysis of the sand drift potentials and their directions help us to interpret the formation of major sand seas in Egypt. The pattern of sand drift potential/direction suggests that the sands in these seas might be inherited from exogenous sources.

  9. Boundary Conditions and the Aeolian Sediment State of the Olympia Undae Dune Field, Mars

    Science.gov (United States)

    Middlebrook, W.; Ewing, R. C.; Ayoub, F.; Bridges, N. T.; Smith, I.; Spiga, A.

    2015-05-01

    We evaluate the boundary conditions in Olympia Undae. We map two and three dimensional dune parameters from two locations proximal and distal to Planum Boreum and constrain sediment fluxes. We compare our results with a mesoscale atmospheric model.

  10. Monitoring of desert dune topography by multi angle sensors

    Science.gov (United States)

    Yun, J.; Kim, J.; Choi, Y.; Yun, H.

    2011-12-01

    Nowadays, the sandy desert is rapidly expanding world widely and results in a lot of risks in the socio-econimical aspects as well as the anthropogenic activities. For example, the increasing occurrences of mineral dust storm which presumably originated from the sandy deserts in northwest China become a serious threat in human activities as well as public health over Far East Asian area as the interpretation by the MODIS analysis (Zhang et al., 2007) and the particle trajectory simulation with HYSPLYT (HYbrid Single-Particle Lagrangian Integrated Trajectory) (Kim et al., 2011) identified. Since the sand dune activity has been recognized as an essential indicator of the progressive desertification, it is important to establish the monitoring method for the variations of topographic properties by the dune activities such as local roughness. Thus it will provide the crucial data about the extent and the transition of sandy desert. For example, it is well known the aerodynamic roughness lengths Zo which can be driven from the specialized sensor such as POLDER (POLarization and Directionality of the Earth's Reflectances) is essential to understand desert dune characteristics. However, for the multi temporal observation of dune fields, the availability of data set to extract Zo is limited. Therefore, we employed MISR (Multi angle imaging Spectro Radiometer) image sequence to extract multi angle topographic parameters such as NDAI (Normalized Difference Angular Index) or the variation of radiance with the viewing geometry which are representing the characteristics of target desert topography instead of Zo. In our approach, NDAI were expanded to the all viewing angles and then compared over the target sandy desert and the surrounding land covers. It showed very strong consistencies according to the land cover type and especially over the dynamic dune fields. On the other hands, the variation of NDAIs of sandy desert combining with the metrological observations were

  11. Provenance and recycling of Arabian desert sand

    Science.gov (United States)

    Garzanti, Eduardo; Vermeesch, Pieter; Andò, Sergio; Vezzoli, Giovanni; Valagussa, Manuel; Allen, Kate; Kadi, Khalid A.; Al-Juboury, Ali I. A.

    2013-05-01

    This study seeks to determine the ultimate origin of aeolian sand in Arabian deserts by high-resolution petrographic and heavy-mineral techniques combined with zircon U-Pb geochronology. Point-counting is used here as the sole method by which unbiased volume percentages of heavy minerals can be obtained. A comprehensive analysis of river and wadi sands from the Red Sea to the Bitlis-Zagros orogen allowed us to characterize all potential sediment sources, and thus to quantitatively constrain provenance of Arabian dune fields. Two main types of aeolian sand can be distinguished. Quartzose sands with very poor heavy-mineral suites including zircon occupy most of the region comprising the Great Nafud and Rub' al-Khali Sand Seas, and are largely recycled from thick Lower Palaeozoic quartzarenites with very minor first-cycle contributions from Precambrian basement, Mesozoic carbonate rocks, or Neogene basalts. Instead, carbonaticlastic sands with richer lithic and heavy-mineral populations characterize coastal dunes bordering the Arabian Gulf from the Jafurah Sand Sea of Saudi Arabia to the United Arab Emirates. The similarity with detritus carried by the axial Tigris-Euphrates system and by transverse rivers draining carbonate rocks of the Zagros indicates that Arabian coastal dunes largely consist of far-travelled sand, deposited on the exposed floor of the Gulf during Pleistocene lowstands and blown inland by dominant Shamal northerly winds. A dataset of detrital zircon U-Pb ages measured on twelve dune samples and two Lower Palaeozoic sandstones yielded fourteen identical age spectra. The age distributions all show a major Neoproterozoic peak corresponding to the Pan-African magmatic and tectonic events by which the Arabian Shield was assembled, with minor late Palaeoproterozoic and Neoarchean peaks. A similar U-Pb signature characterizes also Jafurah dune sands, suggesting that zircons are dominantly derived from interior Arabia, possibly deflated from the Wadi al

  12. Modeling river dune development and dune transition to upper stage plane bed

    NARCIS (Netherlands)

    Naqshband, Suleyman; van Duin, Olav; Ribberink, Jan S.; Hulscher, Suzanne J.M.H.

    2016-01-01

    Large asymmetric bedforms known as dunes commonly dominate the bed of sand rivers. Due to the turbulence generation over their stoss and lee sides, dunes are of central importance in predicting hydraulic roughness and water levels. During floods in steep alluvial rivers, dunes are observed to grow

  13. Dune and ripple migration along Curiosity's traverse in Gale Crater on Mars

    Science.gov (United States)

    Silvestro, S.; Vaz, D.; Ewing, R. C.; Fenton, L. K.; Michaels, T. I.; Ayoub, F.; Bridges, N. T.

    2013-12-01

    The NASA Mars Science Laboratory (MSL) rover, Curiosity, has safely landed near a 35-km-long dark dune field in Gale Crater on Mars. This dune field lies along Curiosity's traverse to Aeolis Mons (Mt. Sharp). Here we present new evidence of aeolian activity and further estimate wind directions within the dune field through analysis of ripple migration with the COSI-Corr technique, which provides precise measurements of ripple displacement at the sub-pixel scale.The area analyzed is located ~10 km southwest of rover Curiosity's current position and ~4 km SW of its selected path through Aeolis Mons (Mt. Sharp) (Fig. 1a). Here barchan dunes with elongated horns and seif dunes coexist with more typical barchan and dome dunes (Fig. 1a, b), with slopes sculpted by two intersecting ripple crestline orientations trending at 45° and 330°. The range of dune types and ripple orientations indicate the dune field morphology is influenced by at least two winds from the NW and the NE. The direction of migration is toward the SW, suggesting the most recent sand transporting winds were from the NE (Fig. 1c). These results match previous predictions and can be used to forecast the wind conditions close to the entry point to Mt. Sharp. Fig. 1: a-b) Study area c) Ripple migration direction computed using the COSI-Corr technique

  14. Numerical modelling of flow structures over idealized transverse aeolian dunes of varying geometry

    Science.gov (United States)

    Parsons, Daniel R.; Walker, Ian J.; Wiggs, Giles F. S.

    2004-04-01

    A Computational Fluid Dynamics (CFD) model (PHOENICS™ 3.5) previously validated for wind tunnel measurements is used to simulate the streamwise and vertical velocity flow fields over idealized transverse dunes of varying height ( h) and stoss slope basal length ( L). The model accurately reproduced patterns of: flow deceleration at the dune toe; stoss flow acceleration; vertical lift in the crest region; lee-side flow separation, re-attachment and reversal; and flow recovery distance. Results indicate that the flow field over transverse dunes is particularly sensitive to changes in dune height, with an increase in height resulting in flow deceleration at the toe, streamwise acceleration and vertical lift at the crest, and an increase in the extent of, and strength of reversed flows within, the lee-side separation cell. In general, the length of the separation zone varied from 3 to 15 h from the crest and increased over taller, steeper dunes. Similarly, the flow recovery distance ranged from 45 to >75 h and was more sensitive to changes in dune height. For the range of dune shapes investigated in this study, the differing effects of height and stoss slope length raise questions regarding the applicability of dune aspect ratio as a parameter for explaining airflow over transverse dunes. Evidence is also provided to support existing research on: streamline curvature and the maintenance of sand transport in the toe region; vertical lift in the crest region and its effect on grainfall delivery; relations between the turbulent shear layer and downward forcing of flow re-attachment; and extended flow recovery distances beyond the separation cell. Field validation is required to test these findings in natural settings. Future applications of the model will characterize turbulence and shear stress fields, examine the effects of more complex isolated dune forms and investigate flow over multiple dunes.

  15. Conservation of Sand Dune Vegetation in Coastal areas of the Valencian Region (Spain); Estado de conservacion de la vegetacion dunar en las costas de la comunidad Valenciana

    Energy Technology Data Exchange (ETDEWEB)

    Albertos, B.; San Miguel, E.; Draper, I.; Garilleti, R.; Lara, F.; Varela, J. M.

    2010-07-01

    The state of conservation of the coastal dune vegetation in Valencia region has been assessed within a survey of the vegetal communities present in these systems.The conservation status has been evaluated through a qualitative scale which integrates criteria such as dune extension, structure and diversity of the vegetal communities, level of ruderalization, presence of invasive species, and floristic rarity. Special attention has been paid to the usual aggressions to this type of ecosystem and the situation of the most aggressive invasive plants. (Author) 15 refs.

  16. The remarkable endemism of moths at White Sands National Monument in New Mexico, USA, with special emphasis on Gelechioidea (Lepidoptera

    Directory of Open Access Journals (Sweden)

    Eric H. Metzler

    2014-03-01

    Full Text Available The white sands formation, a snow-white gypsum dunes system, is the world's largest gypsum dune field. White Sands National Monument protects about 40% of the dunes; the dunes formation as it is known today was formed ca. 8,000 years BP. Prior to 8,000 years BP, the area covered by the dunes was a wet cool forest of the last glacial maximum in North America. The dunes were formed as a result of the hypsithermal, a warming and drying period which followed the most recent glacial maximum. The white sands formation is located in south central New Mexico in the Tularosa Basin of southwestern United States. A 10-year study of moths at the dunes was commissioned by the U. S. National Park Service in 2006. Almost immediately species new to science were detected. In the period of 6 years, 30 new species were discovered in the dunes. Several of the new species are white or very pale in color, and are endemic to the dunes. The focus of the 10 year project was modified to emphasize naming the undescribed species which helps the National Park Service catalog and manage the habitats. The data should encourage other researchers to explore the interactions of the animals with the plants and the harsh desert environment, to study DNA and evolution, and to study the rapid adaptation which seems to be occurring.

  17. Developing an interactive Tool for evaluating sand nourishment strategies along the Holland coast in perspective of benthos, fish nursery and dune quality

    NARCIS (Netherlands)

    Baptist, M.J.; Wolfshaar, van de K.E.; Huisman, B.J.A.; Groot, de A.V.; Boer, de W.; Ye, Q.

    2012-01-01

    Sand nourishments can affect the coastal ecosystem in various ways. Direct effects are the burial of benthic species under a layer of sand. In the direct vicinity, suffocation of benthos can occur due to the settling of a plume of suspended sediment particles. A plume of fine particles may also

  18. Field test on sand compaction pile method with copper slag sand; Dosuisai slag wo mochiita SCP koho no shiken seko

    Energy Technology Data Exchange (ETDEWEB)

    Minami, K.; Matsui, H.; Naruse, E.; Kitazume, M. [Port and Harbour Research Inst., Kanagawa (Japan)

    1997-09-20

    This paper describes the sand compaction pile (SCP) method using copper slag sand. The SCP method is a method by which sand compaction piles are constructed in the ground, and improvement can be obtained in a short period. This method has been widely used even in the port areas for enhancing the bearing power of soft clay ground and the lateral resistance of sheet pile. A great deal of sand is required as a material. The sand requires high permeability, proper size distribution with less fine particle fraction content, easy compaction property with enough strength, and easy discharging property from the casing of construction machines as required properties. Recently, it becomes hard to secure proper sand materials. The copper slag sand is obtained from refining process of copper as a by-product which is quenched in water flow and crushed in water. The copper slag sand has higher particle density than that of sand, excellent permeability, and similar size distribution to that of sand. From compaction drainage triaxial compression test and permeability test, it was found that the mechanical properties of copper slag sand did not change by the crushing of grains with keeping excellent permeability. Through the test construction, applicability of the copper slag sand to the SCP method could be confirmed as an alternate material of sand. 17 refs., 9 figs., 4 tabs.

  19. Sedimentary rhythms in coastal dunes as a record of intra-annual changes in wind climate (Łeba, Poland)

    Science.gov (United States)

    Ludwig, J.; Lindhorst, S.; Betzler, C.; Bierstedt, S. E.; Borówka, R. K.

    2017-08-01

    It is shown that coastal dunes bear a so far unread archive of annual wind intensity. Active dunes at the Polish coast near Łeba consist of two genetic units: primary dunes with up to 18 m high eastward-dipping foresets, temporarily superimposed by smaller secondary dunes. Ground-penetrating radar (GPR) data reveal that the foresets of the primary dunes are bundled into alternating packages imaged as either low- or high-amplitude reflections. High-amplitude packages are composed of quartz sand with intercalated heavy-minerals layers. Low-amplitude packages lack these heavy-mineral concentrations. Dune net-progradation is towards the east, reflecting the prevalence of westerly winds. Winds blowing parallel to the dune crest winnow the lee slope, leaving layers enriched in heavy minerals. Sediment transport to the slip face of the dunes is enhanced during the winter months, whereas winnowing predominantly takes place during the spring to autumn months, when the wind field is bi-directional. As a consequence of this seasonal shift, the sedimentary record of one year comprises one low- and one high-amplitude GPR reflection interval. This sedimentary pattern is a persistent feature of the Łeba dunes and recognized to resemble a sedimentary "bar code". To overcome hiatuses in the bar code of individual dunes and dune-to-dune variations in bar-code quality, dendrochronological methods were adopted to compile a composite bar code from several dunes. The resulting data series shows annual variations in west-wind intensity at the southern Baltic coast for the time period 1987 to 2012. Proxy-based wind data are validated against instrumental based weather observations.

  20. Dune associated calcretes, Rhizoliths and Paleosols from the western continental shelf of India

    Digital Repository Service at National Institute of Oceanography (India)

    Rao, V.P.; Thamban, M.

    detrital/carbonate sands with thin heavy mineral laminations are found. Textural studies indicate that the detrital sands are derived from dunes. Drusy calcite and neomorphic calcite cements are associated with the sands. Sheet deposits contain coarse...

  1. Hydraulic and topographic response of sand-bed rivers to woody riparian seedlings: field-scale laboratory methods and results

    Science.gov (United States)

    Lightbody, A.; Skorko, K.; Kui, L.; Stella, J. C.; Wilcox, A. C.

    2012-12-01

    Feedbacks between topography, flow fields and vegetation community structure are fundamental processes in many rivers. In addition, predicting seedling mortality in response to flood events requires a detailed understanding of the influence of flow on seedling scour and burial. As of yet, however, flow and sediment transport in the presence of seedlings are poorly understood. Measurements quantifying the response of topography and flow to the presence of seedlings with differing plant architectures were obtained within a field-scale meandering stream channel with a mobile sand bed (median grain size of 0.7 mm) and full experimental control over sediment and water discharge. Seedlings of Tamarix spp. (tamarisk) and Populus fremontii (cottonwood) with intact roots were installed on a point bar during low flow conditions. Flow rate was then elevated to a constant flood level, while sediment feed rate, plant density, and plant species were varied during each of eight different experimental runs. Flood conditions were maintained long enough for bar topography to reach steady state. The presence of all types of vegetation on the bar decreased the height and lateral extent of dunes migrating across the bar, thereby preventing the development of dunes as the primary mechanism of sediment transport through the bend. Time-averaged bar volume increased from bare-bed conditions when sparse tamarisk, dense tamarisk, or mixed cottonwood and tamarisk seedlings were present on the bar. The presence of dense cottonwood seedlings, however, did not result in an increase in either bar size or height, likely because an increase in steady-state turbulence intensities on the bar when dense cottonwood was present interfered with sediment deposition. Thus, differing plant architecture was an important influence on topographic evolution. In particular, it is possible that the flexibility of tamarisk seedlings causes them to behave analogously to herbaceous vegetation, sheltering the bar

  2. FIELD TESTING & OPTIMIZATION OF CO2/SAND FRACTURING TECHNOLOGY

    Energy Technology Data Exchange (ETDEWEB)

    Raymond L. Mazza

    2004-11-30

    These contract efforts involved the demonstration of a unique liquid free stimulation technology which was, at the beginning of these efforts, in 1993 unavailable in the US. The process had been developed, and patented in Canada in 1981, and held promise for stimulating liquid sensitive reservoirs in the US. The technology differs from that conventionally used in that liquid carbon dioxide (CO{sub 2}), instead of water is the base fluid. The CO{sub 2} is pumped as a liquid and then vaporizes at reservoir conditions, and because no other liquids or chemicals are used, a liquid free fracture is created. The process requires a specialized closed system blender to mix the liquid CO{sub 2} with proppant under pressure. These efforts were funded to consist of up to 21 cost-shared stimulation events. Because of the vagaries of CO{sub 2} supplies, service company support and operator interest only 19 stimulation events were performed in Montana, New Mexico, and Texas. Final reports have been prepared for each of the four demonstration groups, and the specifics of those demonstrations are summarized. A summary of the demonstrations of a novel liquid-free stimulation process which was performed in four groups of ''Candidate Wells'' situated in Crockett Co., TX; San Juan Co., NM; Phillips Co., MT; and Blaine Co., MT. The stimulation process which employs CO{sub 2} as the working fluid and the production responses were compared with those from wells treated with conventional stimulation technologies, primarily N{sub 2} foam, excepting those in Blaine Co., MT where the reservoir pressure is too low to clean up spent stimulation liquids. A total of 19 liquid-free CO{sub 2}/sand stimulations were performed in 16 wells and the production improvements were generally uneconomic.

  3. Sedimentary processes of the Bagnold Dunes: Implications for the eolian rock record of Mars

    Science.gov (United States)

    Ewing, R. C.; Lapotre, M. G. A.; Lewis, K. W.; Day, M.; Stein, N.; Rubin, D. M.; Sullivan, R.; Banham, S.; Lamb, M. P.; Bridges, N. T.; Gupta, S.; Fischer, W. W.

    2017-12-01

    The Mars Science Laboratory rover Curiosity visited two active wind-blown sand dunes within Gale crater, Mars, which provided the first ground-based opportunity to compare Martian and terrestrial eolian dune sedimentary processes and study a modern analog for the Martian eolian rock record. Orbital and rover images of these dunes reveal terrestrial-like and uniquely Martian processes. The presence of grainfall, grainflow, and impact ripples resembled terrestrial dunes. Impact ripples were present on all dune slopes and had a size and shape similar to their terrestrial counterpart. Grainfall and grainflow occurred on dune and large-ripple lee slopes. Lee slopes were 29° where grainflows were present and 33° where grainfall was present. These slopes are interpreted as the dynamic and static angles of repose, respectively. Grain size measured on an undisturbed impact ripple ranges between 50 μm and 350 μm with an intermediate axis mean size of 113 μm (median: 103 μm). Dissimilar to dune eolian processes on Earth, large, meter-scale ripples were present on all dune slopes. Large ripples had nearly symmetric to strongly asymmetric topographic profiles and heights ranging between 12 cm and 28 cm. The composite observations of the modern sedimentary processes highlight that the Martian eolian rock record is likely different from its terrestrial counterpart because of the large ripples, which are expected to engender a unique scale of cross stratification. More broadly, however, in the Bagnold Dune Field as on Earth, dune-field pattern dynamics and basin-scale boundary conditions will dictate the style and distribution of sedimentary processes.

  4. Sedimentary processes of the Bagnold Dunes: Implications for the eolian rock record of Mars.

    Science.gov (United States)

    Ewing, R C; Lapotre, M G A; Lewis, K W; Day, M; Stein, N; Rubin, D M; Sullivan, R; Banham, S; Lamb, M P; Bridges, N T; Gupta, S; Fischer, W W

    2017-12-01

    The Mars Science Laboratory rover Curiosity visited two active wind-blown sand dunes within Gale crater, Mars, which provided the first ground-based opportunity to compare Martian and terrestrial eolian dune sedimentary processes and study a modern analog for the Martian eolian rock record. Orbital and rover images of these dunes reveal terrestrial-like and uniquely Martian processes. The presence of grainfall, grainflow, and impact ripples resembled terrestrial dunes. Impact ripples were present on all dune slopes and had a size and shape similar to their terrestrial counterpart. Grainfall and grainflow occurred on dune and large-ripple lee slopes. Lee slopes were ~29° where grainflows were present and ~33° where grainfall was present. These slopes are interpreted as the dynamic and static angles of repose, respectively. Grain size measured on an undisturbed impact ripple ranges between 50 μm and 350 μm with an intermediate axis mean size of 113 μm (median: 103 μm). Dissimilar to dune eolian processes on Earth, large, meter-scale ripples were present on all dune slopes. Large ripples had nearly symmetric to strongly asymmetric topographic profiles and heights ranging between 12 cm and 28 cm. The composite observations of the modern sedimentary processes highlight that the Martian eolian rock record is likely different from its terrestrial counterpart because of the large ripples, which are expected to engender a unique scale of cross stratification. More broadly, however, in the Bagnold Dune Field as on Earth, dune-field pattern dynamics and basin-scale boundary conditions will dictate the style and distribution of sedimentary processes.

  5. Morfodinámica de un campo de dunas submarinas en una entrada de marea: San Blas, Argentina Submarine dune field morphodynamics in a tidal inlet: San Blas, Argentina

    Directory of Open Access Journals (Sweden)

    Diana G Cuadrado

    2012-03-01

    detailed submarine morphology. Large dunes, with heights between 4.5 and 5.0 m and from 100 to 120 m separating them, were present near the southern limit of the dune field at 24 m depth. These dunes move towards the outer part of the channel at a speed of 18 to 75 m year-1. At the northern end of the dune field, at 21 m depth, the dunes are smaller, being 2.0 to 2.5 m in height and separated by 40 to 80 m. The smaller dunes move towards the interior of Anegada Bay at 18 to 36 m year-1. The distribution of the water flow in the entire water column was obtained through a perpendicular profile of the channel by means of an ADCP. Maximum current speeds were 2 m s-1, and were found during flood tide. The results obtained indicate a circulatory transport model of sedimentary sands, with the formation of ebb and flood deltas at both ends of the deep inlet throat, which lacks of unconsolidated sediments.

  6. Grain-size variations on a longitudinal dune and a barchan dune

    Science.gov (United States)

    Watson, Andrew

    1986-01-01

    The grain-size characteristics of the sand upon two dunes—a 40 m high longitudinal dune in the central Namib Desert and a 6.0 m high barchan in the Jafurah sand sea of Saudi Arabia—vary with position on the dunes. On the longitudinal dune, median grain size decreases, sorting improves and the grain-size distributions are less skewed and more normalized toward the crest. Though sand at the windward toe is distinct, elsewhere on the dune the changes in grain-size characteristics are gradual. An abrupt change in grain size and sorting near the crest—as described by Bagnold (1941, pp. 226-229)—is not well represented on this dune. Coarse grains remain as a lag on concave slope units and small particles are winnowed from the sand on the steepest windward slopes near the crest. Avalanching down slipfaces at the crest acts only as a supplementary grading mechanism. On the barchan dune median grain size also decreases near the crest, but sorting becomes poorer, though the grain-size distributions are more symmetric and more normalized. The dune profile is a Gaussian curve with a broad convex zone at the apex upon which topset beds had accreted prior to sampling. Grain size increases and sorting improves down the dune's slipface. However, this grading mechanism does not influence sand on the whole dune because variations in wind regime bring about different modes of dune accretion. On both dunes, height and morphology appear to influence significantly the grain-size characteristics.

  7. Cementation and blackening of Holocene sands by peat-derived humates: A case study from the Great Dune of Pilat, Landes des Gascogne, Southwestern France

    Czech Academy of Sciences Publication Activity Database

    Suchý, V.; Sýkorová, Ivana; Havelcová, Martina; Machovič, Vladimír; Zeman, Antonín; Trejtnarová, Hana

    2013-01-01

    Roč. 114, JUL (2013), s. 19-32 ISSN 0166-5162 R&D Projects: GA ČR GA205/09/1162; GA ČR(CZ) GA13-18482S Institutional support: RVO:67985891 ; RVO:68378297 Keywords : humate * peat * cementation * aeolian sand Subject RIV: DB - Geology ; Mineralogy Impact factor: 3.313, year: 2013

  8. Identification of Algerian Field-Caught Phlebotomine Sand Fly Vectors by MALDI-TOF MS.

    Directory of Open Access Journals (Sweden)

    Ismail Lafri

    2016-01-01

    Full Text Available Phlebotomine sand flies are known to transmit Leishmania parasites, bacteria and viruses that affect humans and animals in many countries worldwide. Precise sand fly identification is essential to prevent phlebotomine-borne diseases. Over the past two decades, progress in matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS has emerged as an accurate tool for arthropod identification. The objective of the present study was to investigate the usefulness of MALDI-TOF MS as a tool for identifying field-caught phlebotomine.Sand flies were captured in four sites in north Algeria. A subset was morphologically and genetically identified. Six species were found in these areas and a total of 28 stored frozen specimens were used for the creation of the reference spectrum database. The relevance of this original method for sand fly identification was validated by two successive blind tests including the morphological identification of 80 new specimens which were stored at -80°C, and 292 unknown specimens, including engorged specimens, which were preserved under different conditions. Intra-species reproducibility and inter-species specificity of the protein profiles were obtained, allowing us to distinguish specimens at the gender level. Querying of the sand fly database using the MS spectra from the blind test groups revealed concordant results between morphological and MALDI-TOF MS identification. However, MS identification results were less efficient for specimens which were engorged or stored in alcohol. Identification of 362 phlebotomine sand flies, captured at four Algerian sites, by MALDI-TOF MS, revealed that the subgenus Larroussius was predominant at all the study sites, except for in M'sila where P. (Phlebotomus papatasi was the only sand fly species detected.The present study highlights the application of MALDI-TOF MS for monitoring sand fly fauna captured in the field. The low cost, reliability and

  9. Identification of Algerian Field-Caught Phlebotomine Sand Fly Vectors by MALDI-TOF MS.

    Science.gov (United States)

    Lafri, Ismail; Almeras, Lionel; Bitam, Idir; Caputo, Aurelia; Yssouf, Amina; Forestier, Claire-Lise; Izri, Arezki; Raoult, Didier; Parola, Philippe

    2016-01-01

    Phlebotomine sand flies are known to transmit Leishmania parasites, bacteria and viruses that affect humans and animals in many countries worldwide. Precise sand fly identification is essential to prevent phlebotomine-borne diseases. Over the past two decades, progress in matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) has emerged as an accurate tool for arthropod identification. The objective of the present study was to investigate the usefulness of MALDI-TOF MS as a tool for identifying field-caught phlebotomine. Sand flies were captured in four sites in north Algeria. A subset was morphologically and genetically identified. Six species were found in these areas and a total of 28 stored frozen specimens were used for the creation of the reference spectrum database. The relevance of this original method for sand fly identification was validated by two successive blind tests including the morphological identification of 80 new specimens which were stored at -80°C, and 292 unknown specimens, including engorged specimens, which were preserved under different conditions. Intra-species reproducibility and inter-species specificity of the protein profiles were obtained, allowing us to distinguish specimens at the gender level. Querying of the sand fly database using the MS spectra from the blind test groups revealed concordant results between morphological and MALDI-TOF MS identification. However, MS identification results were less efficient for specimens which were engorged or stored in alcohol. Identification of 362 phlebotomine sand flies, captured at four Algerian sites, by MALDI-TOF MS, revealed that the subgenus Larroussius was predominant at all the study sites, except for in M'sila where P. (Phlebotomus) papatasi was the only sand fly species detected. The present study highlights the application of MALDI-TOF MS for monitoring sand fly fauna captured in the field. The low cost, reliability and rapidity of MALDI

  10. Deep learning for the detection of barchan dunes in satellite images

    Science.gov (United States)

    Azzaoui, A. M.; Adnani, M.; Elbelrhiti, H.; Chaouki, B. E. K.; Masmoudi, L.

    2017-12-01

    Barchan dunes are known to be the fastest moving sand dunes in deserts as they form under unidirectional winds and limited sand supply over a firm coherent basement (Elbelrhiti and Hargitai,2015). They were studied in the context of natural hazard monitoring as they could be a threat to human activities and infrastructures. Also, they were studied as a natural phenomenon occurring in other planetary landforms such as Mars or Venus (Bourke et al., 2010). Our region of interest was located in a desert region in the south of Morocco, in a barchan dunes corridor next to the town of Tarfaya. This region which is part of the Sahara desert contained thousands of barchans; which limits the number of dunes that could be studied during field missions. Therefore, we chose to monitor barchan dunes with satellite imagery, which can be seen as a complementary approach to field missions. We collected data from the Sentinel platform (https://scihub.copernicus.eu/dhus/); we used a machine learning method as a basis for the detection of barchan dunes positions in the satellite image. We trained a deep learning model on a mid-sized dataset that contained blocks representing images of barchan dunes, and images of other desert features, that we collected by cropping and annotating the source image. During testing, we browsed the satellite image with a gliding window that evaluated each block, and then produced a probability map. Finally, a threshold on the latter map exposed the location of barchan dunes. We used a subsample of data to train the model and we gradually incremented the size of the training set to get finer results and avoid over fitting. The positions of barchan dunes were successfully detected and deep learning was an effective method for this application. Sentinel-2 images were chosen for their availability and good temporal resolution, which will allow the tracking of barchan dunes in future work. While Sentinel images had sufficient spatial resolution for the

  11. Electric conductivity for laboratory and field monitoring of induced partial saturation (IPS) in sands

    Science.gov (United States)

    Kazemiroodsari, Hadi

    implemented in the prepared specimen to validate the numerical simulation model and explore the use of conductivity probes to detect the transport of chemical solution, estimate degree of saturation achieved due to injection of chemical solution, and evaluate final zone of partial saturation. The conductivity probe and the simulation results agreed well. To study the effect of IPS on liquefaction response of the sand specimen, IPS was implemented in a large (2-story high) sand specimen prepared in the laminar box of NEES Buffalo and then the specimen was subjected to harmonic shaking. Electric conductivity probes were used in the specimen treatment by controlling the duration and spacing of injection of the chemical solution, in monitoring the transport of chemical solution, in the estimation of zone of partial saturation achieved, and in the estimation of degree of saturation achieved due to implementation of IPS. The conductivity probes indicated partial saturation of the specimen. The shaking tests results confirmed the partial saturation state of the sand specimen. In addition, to the laboratory works, electric conductivity probes were used in field implementation of IPS in a pilot test at the Wildlife Liquefaction Array (WLA) of NEES UCSB site. The conductivity probes in the field test helped decide the optimum injection pressure, the injection tube spacing, and the degree of saturation that could be achieved in the field. The various laboratory and field tests confirmed that electric conductivity and the probes devised and used can be invaluable in the implementation of IPS, by providing information regarding transport of the chemical solution, the spacing of injection tubes, duration of injection, and the zone and degree of partial saturation caused by IPS.

  12. Geomorphological Evidence of Plausible Water Activity and Evaporatic Deposition in Interdune Areas of the Gypsum-rich Olympia Undae Dune Field

    Science.gov (United States)

    Szynkiewicz, A.; Ewing, R. C.; Fishbaugh, K. E.; Bourke, M. C.; Bustos, D.; Pratt, L. M.

    2009-03-01

    New morphological features (e.g., cross-bedding strata, bright patches), revealed by HiRISE for the gypsum-rich Olympia Undae Dune Field, appear to indicate the change(s) in paleoenvironmental conditions likely controlled by climate fluctuations in the North Pole of Mars.

  13. INLAND DUNE VEGETATION OF THE NETHERLANDS

    Directory of Open Access Journals (Sweden)

    R. HAVEMAN

    2003-01-01

    Full Text Available Drifting sands in the Netherlands are the result of human over-exploitation (sod-cutting, over-grazing of woodlands and heathlands. The most important association of inland sand dune areas is the Spergulo-Corynephoretum (Corynephorion canescentis, which is poor in vascular plants, but in it older stager rich in mosses and especially lichens. In the Netherlands, the area of drifting sand is reduced dramatically in the last 70 years. mainly by afforestation and spontaneous succession.

  14. Field evaluation of a new light trap for phlebotomine sand flies.

    Science.gov (United States)

    Gaglio, Gabriella; Napoli, Ettore; Falsone, Luigi; Giannetto, Salvatore; Brianti, Emanuele

    2017-10-01

    Light traps are one of the most common attractive method for the collection of nocturnal insects. Although light traps are generally referred to as "CDC light traps", different models, equipped with incandescent or UV lamps, have been developed. A new light trap, named Laika trap 3.0, equipped with LED lamps and featured with a light and handy design, has been recently proposed into the market. In this study we tested and compared the capture performances of this new trap with those of a classical light trap model under field conditions. From May to November 2013, a Laika trap and a classical light trap were placed biweekly in an area endemic for sand flies. A total of 256 sand fly specimens, belonging to 3 species (Sergentomyia minuta, Phlebotomus perniciosus, Phlebotomus neglectus) were collected during the study period. The Laika trap captured 126 phlebotomine sand flies: P. perniciosus (n=38); S. minuta (n=88), a similar number of specimens (130) and the same species were captured by classical light trap which collected also 3 specimens of P. neglectus. No significant differences in the capture efficiency at each day of trapping, neither in the number of species or in the sex of sand flies were observed. According to results of this study, the Laika trap may be a valid alternative to classical light trap models especially when handy design and low power consumption are key factors in field studies. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Harding - a field case study: Sand control strategy for ultra-high productivity and injectivity wells

    Energy Technology Data Exchange (ETDEWEB)

    McKay, G.; Bennett, C.; Price-Smith, C.; Dowell, S.; McLellan, W. [British Petroleum (United Kingdom)

    1998-12-31

    The strategy adopted and the factors considered in the development of the sandface completion design for Phase One of the Harding Field in the unconsolidated Balder Massive Sand in the U.K. Sector of the North Sea is described. The field development utilizes a TPG 500 Jack-up Drilling and Production Unit in conjunction with a concrete gravity base tank (GBT). The first phase of the development involved drilling and completing horizontal wells sand-free, ultra-high production (over 30,000 BOPD/well, with PI in excess of 1,000 bbl/day/psi). The experiences showed that pre-packed screens can be successfully utilized to provide lasting sand control with high rate of production in clean homogenous sandstones, and that testing for fluid compatibility, formation damage, screen plugging, corrosion and erosion potential are essential pre-requisites in determining the optimal solution in any well with sand production potential.The experiences gained in Phase One have contributed to design enhancements for Phase Two of the project which include extended reach horizontal wells to neighbouring satellite pools. 3 refs., 1 tab., 8 figs.

  16. The Mars Science Laboratory (MSL) Bagnold Dunes Campaign, Phase I: Overview and introduction to the special issue

    Science.gov (United States)

    Bridges, Nathan T.; Ehlmann, Bethany L.

    2018-01-01

    The Bagnold dunes in Gale Crater, Mars, are the first active aeolian dune field explored in situ on another planet. The Curiosity rover visited the Bagnold dune field to understand modern winds, aeolian processes, rates, and structures; to determine dune material composition, provenance, and the extent and type of compositional sorting; and to collect knowledge that informs the interpretation of past aeolian processes that are preserved in the Martian sedimentary rock record. The Curiosity rover conducted a coordinated campaign of activities lasting 4 months, interspersed with other rover activities, and employing all of the rover's science instruments and several engineering capabilities. Described in 13 manuscripts and summarized here, the major findings of the Bagnold Dunes Campaign, Phase I, include the following: the characterization of and explanation for a distinctive, meter-scale size of sinuous aeolian bedform formed in the high kinetic viscosity regime of Mars' thin atmosphere; articulation and evaluation of a grain splash model that successfully explains the occurrence of saltation even at wind speeds below the fluid threshold; determination of the dune sands' basaltic mineralogy and crystal chemistry in comparison with other soils and sedimentary rocks; and characterization of chemically distinctive volatile reservoirs in sand-sized versus dust-sized fractions of Mars soil, including two volatile-bearing types of amorphous phases.

  17. Evaluation of the potential for reduction in well spacing of the Bakken sand pool, Court Field

    Energy Technology Data Exchange (ETDEWEB)

    Majcher, M.B.; Estrada, C.A. [Society of Petroleum Engineers, Richardson, TX (United States)]|[Nexen Inc., Calgary, AB (Canada); Archer, J.C. [Nexen Inc., Calgary, AB (Canada)

    2005-11-01

    For the past 15 years, the Court field has produced hydrocarbons from the Mississippian/Devonian middle Bakken sandstone reservoir. The formation is located in west central Saskatchewan and was deposited in a marine shelf environment and later reworked into tidally influenced sand ridges. Vertical wells and a waterflood recovery scheme have been used to produce heavy crude with an API gravity of 17. A better understanding of the reservoir behaviour is required in order to advance field development and maintain successful waterflood management. Three-dimensional seismic and well logs were used to map the structural complexity of the sand ridge. This study examined the feasibility of using production and seismic data to update and substantiate a simulation model which was used to evaluate downspace potential. Stratigraphic disparities were taken into account as discontinuous interbedded siltstones may be flow barriers that create anisotropy in the permeability zone. Grid orientation was altered to align axially with the permeability trends of the main sand ridge. This study also reviewed an earlier field simulation and generated an updated model. The potential to reduce well spacing was then identified and waterflood optimization of the middle Bakken reservoir was evaluated. It was concluded that the edges of the sand ridge and areas isolated from existing injectors have the greatest potential for infill drilling and additional water injection because of the high sinkhole density. It was noted that drilling edge regions with high oil saturations have a risk of low permeability zones, resulting in low production rates and the possibility of an ineffective waterflood scheme. Therefore, a successful waterflood in the edge zones would require injector-producer pairs in the equivalent sand facies. 4 refs., 36 figs.

  18. Coastal Dunes of the Baltic Sea Shores: A Review

    Directory of Open Access Journals (Sweden)

    Łabuz Tomasz Arkadiusz

    2018-03-01

    Full Text Available The article summarises results of studies conducted along the Baltic Sea sandy coasts by scientists involved in coastal dune research, and presents an attempt to describe the types and distribution of dune coasts. The Baltic Sea coasts feature lower and higher foredunes. The lowland behind the coastal dune belt is covered by wandering or stabilised inland dunes – transgressive forms, mainly parabolic or barchans. The source of sediment for dune development includes fluvioglacial sands from eroded coasts, river-discharged sand, and older eroded dunes. Due to the ongoing erosion and coastal retreat, many dunes have been eroded, and some are withdrawing onto the adjacent land. There are visible differences between the south-eastern, western, and northern parts of the Baltic Sea coast with respect to dune development. The entire southern and eastern coast abounds in sand, so the coastal dunes are large, formerly or currently wandering formations. The only shifting dunes are found at the Polish and the Russian–Lithuanian coasts on the Łebsko Lake Sandbar as well as on the Vistula and Curonian Spits. The very diverse shoreline of the south-western coast experiences a scarcity of larger sandy formations. Substantial parts of the Baltic Sea sandy coasts have been eroded or transformed by humans. The northern part of the Baltic Sea coast features mainly narrow and low sandy coasts (e.g. in Estonia. Further north, sandy dunes are virtually absent.

  19. The Holocene evolution of the beach and inland aeolian sand of the north-central Mediterranean coast of Israel

    Science.gov (United States)

    Roskin, Joel; Sivan, Dorit; Bookman, Revital; Shteinberg, Gilad

    2015-04-01

    Israel's coastal geomorphology, situated within a Mediterranean climate zone, is characterized by parallel Pleistocene aeolianite ridges, coastal cliffs of aeolianite, and sandy beaches. Lobe-like fields of predominantly stable transverse and parabolic quartz sand dunes protrude 2-7 km inland from the current Mediterranean Sea coastline. However, their migration and accumulation history is still not well-defined. This study focuses on the Holocene appearance, chronology and drivers of beach sand deposition and inland aeolian sand transport along the Caesarea-Hadera dunefield in the north-central coastal plain of Israel. In order to achieve these goals, a detailed field survey and sampling campaign was carried out along a west-east and southwest-northeast transect, loyal to the advancement orientations of the currently stable dunes and directions of dominant sand transporting winds. Beach sand, a foredune, a linear dune, and interdunes of parabolic and transverse dunes were sampled down to their aeolianite or red loam (locally named hamra) palaeosol substrate by drilling and analyzing exposed sections. The sampled sediments were sedimentologically analyzed and twenty-five were dated by optically stimulated luminescence (OSL). The results indicate that beach sand started to accumulate rapidly around 6 ka probably in response to global sea level stabilization. Until around 4 ka, thin sand sheets encroached 2-3 km inland. Sand ages in the range of 1.2-1.1 ka (8th-9th century CE -- Early Moslem period) were found throughout the study area, suggesting a major mobilization of sand, followed by stabilization around 0.6 ka and pedogenesis. By 1.2 ka, the sands had reached their current extent of 5-7 km inland, suggesting transport in a southwest-northeast orientation similar to the advancement orientation of the current transverse and parabolic dunes. The particle-size distributions of the fine to medium-sized aeolian sand showed minor variation linked to inland transport

  20. Sediment sorting along tidal sand waves: A comparison between field observations and theoretical predictions

    Science.gov (United States)

    Van Oyen, Tomas; Blondeaux, Paolo; Van den Eynde, Dries

    2013-07-01

    A site-by-site comparison between field observations and theoretical predictions of sediment sorting patterns along tidal sand waves is performed for ten locations in the North Sea. At each site, the observed grain size distribution along the bottom topography and the geometry of the bed forms is described in detail and the procedure used to obtain the model parameters is summarized. The model appears to accurately describe the wavelength of the observed sand waves for the majority of the locations; still providing a reliable estimate for the other sites. In addition, it is found that for seven out of the ten locations, the qualitative sorting process provided by the model agrees with the observed grain size distribution. A discussion of the site-by-site comparison is provided which, taking into account uncertainties in the field data, indicates that the model grasps the major part of the key processes controlling the phenomenon.

  1. Advanced InSAR imaging for dune mapping

    Science.gov (United States)

    Havivi, Shiran; August, Yitzhak; Blumberg, Dan G.; Rotman, Stanley R.

    2015-04-01

    extensively in the field. High resolution TerraSAR-X (TSX) images, covering the entire research area were acquired for the period of October 2011 to July 2012 (15 images in total). All images were co-registreted, the first image was used as the master image. A coherence index was calculated for all the images. Analysis was performed in GIS software. The results display minor changes (coherence index in range of 0.4-0.65) on dune crests depending on the dune location relative to its distance from the sea and distance from the city. In addition, field results indicate erosion / deposition of sand in a cumulatively amount of approximately 30mm annually. The results of this study confirm that it is possible to monitor subtle changes in dunes and to identify dune stability or instability, only by the use of SAR images.

  2. Late Pleistocene dune activity in the central Great Plains, USA

    Science.gov (United States)

    Mason, J.A.; Swinehart, J.B.; Hanson, P.R.; Loope, D.B.; Goble, R.J.; Miao, X.; Schmeisser, R.L.

    2011-01-01

    Stabilized dunes of the central Great Plains, especially the megabarchans and large barchanoid ridges of the Nebraska Sand Hills, provide dramatic evidence of late Quaternary environmental change. Episodic Holocene dune activity in this region is now well-documented, but Late Pleistocene dune mobility has remained poorly documented, despite early interpretations of the Sand Hills dunes as Pleistocene relicts. New optically stimulated luminescence (OSL) ages from drill cores and outcrops provide evidence of Late Pleistocene dune activity at sites distributed across the central Great Plains. In addition, Late Pleistocene eolian sands deposited at 20-25 ka are interbedded with loess south of the Sand Hills. Several of the large dunes sampled in the Sand Hills clearly contain a substantial core of Late Pleistocene sand; thus, they had developed by the Late Pleistocene and were fully mobile at that time, although substantial sand deposition and extensive longitudinal dune construction occurred during the Holocene. Many of the Late Pleistocene OSL ages fall between 17 and 14 ka, but it is likely that these ages represent only the later part of a longer period of dune construction and migration. At several sites, significant Late Pleistocene or Holocene large-dune migration also probably occurred after the time represented by the Pleistocene OSL ages. Sedimentary structures in Late Pleistocene eolian sand and the forms of large dunes potentially constructed in the Late Pleistocene both indicate sand transport dominated by northerly to westerly winds, consistent with Late Pleistocene loess transport directions. Numerical modeling of the climate of the Last Glacial Maximum has often yielded mean monthly surface winds southwest of the Laurentide Ice Sheet that are consistent with this geologic evidence, despite strengthened anticyclonic circulation over the ice sheet. Mobility of large dunes during the Late Pleistocene on the central Great Plains may have been the result of

  3. Deformed barchans under alternating flows: Flume experiments and comparison with barchan dunes within Proctor Crater, Mars

    Science.gov (United States)

    Taniguchi, Keisuke; Endo, Noritaka

    2007-10-01

    It is generally considered that barchans, isolated crescentic-shaped dunes, develop where wind is unidirectional and the available sand is insufficient to cover the entire dune field; however, Bishop [Bishop, M.A., 2001. Seasonal variation of crescentic dune morphology and morphometry, Strzelecki Simpson desert, Australia. Earth Surface Process and Landforms 26, 783 791.] observed barchans that developed in areas where winds blow seasonally in opposite directions and described a peculiar deformation feature, the “rear slipface,” that is not found in ordinary barchans. Barchans under such bidirectional flows are poorly understood, and it is necessary to study barchans that formed under many different flow conditions. We conducted flume experiments to investigate the deformation of barchans under alternating water flow, and observed new deformation features in addition to rear slipfaces. We conclude that the deformation of barchans can be categorized into four types, one of which shows morphologies similar to barchans within Proctor Crater, Mars. The deformation type depends on the strength of the reverse flow relative to the forward flow and the absolute velocity of the forward flow. Comparison of our results with barchan dunes within Proctor Crater enable us to qualitatively estimate the wind strength and direction related to dune formation on Mars. These results are in agreement with those of Fenton et al. [Fenton, L.K., Toigo, A.D., Richardson, M.I., 2005. Aeolian processes in Proctor Crater on Mars: Mesoscale modeling of dune-forming winds. Journal of Geophysical Research 110 (E6), E06005.].

  4. Reorientation Timescales and Pattern Dynamics for Titan's Dunes: Does the Tail Wag the Dog or the Dragon?

    Science.gov (United States)

    Hayes, A. G.; Ewing, R. C.; Cassini Radar Science Team, T.

    2011-12-01

    Fields of bedform patterns persist across many orders of magnitude, from cm-scale sub-aqueous current ripples to km-scale aeolian dunes, and form with surprisingly little difference in expression despite a range of formative environments. Because of the remarkable similarity between and among patterns, extracting information about climate and environment from these patterns is a challenge. For example, crest orientation is not diagnostic of a particular flow regime; similar patterns form under many different flow configurations. On Titan, these challenges have played out with many attempts to reconcile dune-field patterns with modeled and expected wind regimes. We propose that thinking about the change in dune orientation, rather than the orientation itself, can provide new insights on the long-term stability of the dune-field patterns and the formative wind regime. In this work, we apply the re-orientation model presented by Werner and Kocurek [Geology, 1997] to the equatorial dune fields of Titan. We measure variations in pattern parameters (crest spacing, crest length and defect density, which is the number of defect pairs per total crest length) both within and between Titan's dune fields to describe pattern maturity and identify areas where changes in dune orientation are likely to occur (or may already be occurring). Measured defect densities are similar to Earth's largest linear dune fields, such as the Namib Sand Sea and the Simpson Desert. We use measured defect densities in the Werner and Kocurek model to estimate crestline reorientation rates. We find reorientation timescales varying from ten to a hundred thousand times the average migration timescale (time to migrate a bedform one meter, ~1 Titan year according to Tokano (Aeolian Research, 2010)). Well organized patterns have the longest reorientation time scales (~10^5 migration timescales), while the topographically or spatially isolated patches of dunes show the shortest reorientation times (~10

  5. Reattachment Zone Characterisation Under Offshore Winds With Flow Separation On The Lee Side Of Coastal Dunes

    Science.gov (United States)

    Delgado-Fernandez, I.; Jackson, D.; Cooper, J. A.; Baas, A. C.; Lynch, K.; Beyers, M.

    2010-12-01

    Airflow separation, lee-side eddies and secondary flows play an essential role on the formation and maintenance of sand dunes. Downstream from dune crests the flow surface layer detaches from the ground and generates an area characterised by turbulent eddies in the dune lee slope (the wake). At some distance downstream from the dune crest, flow separates into a reversed component directed toward the dune toe and an offshore “re-attached” component. This reattachment zone (RZ) has been documented in fluvial and desert environments, wind tunnel experiments and numerical simulations, but not yet characterised in coastal dunes. This study examines the extent and temporal evolution of the RZ and its implications for beach-dune interaction at Magilligan, Northern Ireland. Wind parameters were measured over a profile extending from an 11 m height dune crest towards the beach, covering a total distance of 65 m cross-shore. Data was collected using an array of nine ultrasonic anemometers (UAs) deployed in April-May 2010, as part of a larger experiment to capture airflow data under a range of incident wind velocities and offshore directions. UAs were located along the profile (5 m tower spacing) over the beach, which allowed a detailed examination of the RZ with empirical data. Numerical modelling using Computational Fluid Dynamics (CFD) software was also conducted with input data from anemometer field measurements, running over a surface mesh generated from LiDAR and DGPS surveys. Results demonstrate that there is a wind threshold of approximately 5-6 ms-1 under which no flow separation exists with offshore winds. As wind speed increases over the threshold, a flow reversal area is quickly formed, with the maximum extent of the RZ at approximately 3.5 dune heights (h). The maximum extent of the RZ increases up to 4.5h with stronger wind speeds of 8-10 ms-1 and remains relatively constant as wind speed further increases. This suggests that the spatial extent of the RZ is

  6. Advanced Interferometric Synthetic Aperture Imaging Radar (InSAR) for Dune Mapping

    Science.gov (United States)

    Havivi, Shiran; Amir, Doron; Schvartzman, Ilan; August, Yitzhak; Mamman, Shimrit; Rotman, Stanely R.; Blumberg, Dan G.

    2016-04-01

    varying levels of stability and vegetation cover and have been monitored meteorologically, geomorphologically, and studied extensively in the field. High resolution TerraSAR-X (TSX) images covering the entire research area were acquired for the period of 2011 to 2012. Analysis was performed in imaging processing and GIS software. The coherence results display minor changes on the dune crest (0.42-0.49), compared to bigger changes in windward slope (0.31-0.37). The level of change depends on the dune location relative to its distance from the sea. Furthermore, the coherence results show decreasing over time. Field results indicate erosion/deposition of sand ranging from -99 to 137 mm/year. The results of this study confirm that it is possible to monitor subtle changes in sand dunes and to identify dune stability or instability, only by the use of SAR images, even in areas characterized by low coherence.

  7. The Geodiversity in Drift Sand Landscapes of The Netherlands

    Science.gov (United States)

    van den Ancker, Hanneke; Jungerius, Pieter Dirk; Riksen, Michel

    2015-04-01

    The authors carried out detailed field studies of more than twelve drift sand landscapes in The Netherlands. The objective of these studies was to restore Natura-2000 values by restoring the wind activity. Active drift sands occur almost exclusively in The Netherlands, Natura 2000 habitat 2330 'Inland dunes with open Corynephorus and Agrostis grasslands', for which reason our country is largely responsible for this European landscape. Active drift sands had almost disappeared for two reasons: first, the stabilization of the drift sands by air pollution, mainly nitrogen, which stimulates the growth of algae and grasses that initiate soil formation, and second, by the growth of forests surrounding the sands, which decreases the wind force. The restoration studies revealed differences in the geodiversity between and within the drift sand areas. Whereas the drift sands on geological and soil maps show as almost homogenous areas, they have in fact highly variable geo-conditions of which examples will be given. These geodiversity aspects concern differences in geomorphological structure, origin, sediments and age of the drift sands. Differences in wind and water erosion, trampling and soil formation add to the geodiversity within the drift sand areas. Especially in the primary stages of succession the differences in geodiversity are relevant for the Natura-2000 values. We discerned three main types of active sands. Firstly, the impressive drift sands with large parabolic dune structures, often consisting of series of interlocking parabolic dunes. They developed from the northeast towards the southwest, against the direction of the dominant wind, and must have taken centuries to develop. Small parts of these systems are still active, other parts show different degrees of soil formation. Their origin is still unclear but probably dates from medieval times (Heidinga, 1985, Jungerius & Riksen, 2008). Second are the drift sand areas with irregular hills from 0.5 to about 2

  8. Formation of aeolian dunes on Anholt, Denmark since AD 1560

    DEFF Research Database (Denmark)

    Clemmensen, Lars B; Bjørnsen, Mette; Murray, Andrew

    2007-01-01

    Sand dunes on the island of Anholt (Denmark) in the middle of Kattegat form a relatively barren, temperate climate Aeolian system, locally termed the "Desert". The dunes have developed on top of a raised beach ridge system under the influence of dominant winds from westerly directions. They are r......Sand dunes on the island of Anholt (Denmark) in the middle of Kattegat form a relatively barren, temperate climate Aeolian system, locally termed the "Desert". The dunes have developed on top of a raised beach ridge system under the influence of dominant winds from westerly directions....... They are relatively coarse-grained with an average mean grain size of 480 µm. The last phase of aeolian activity and dune formation on Anholt started after AD 1560, when the local pine forest was removed. Historical sources report intense sand mobilization in the 17th century, and new optically stimulated...... in the beginning of the 20th century probably records a temporary decrease in storminess. Ground-penetrating radar mapping of the internal structures in two dunes in the western part of the Desert (a parabolic dune and a linear dune) indicates the importance of north-westerly (storm) winds during dune formation...

  9. The physics of wind-blown sand and dust.

    Science.gov (United States)

    Kok, Jasper F; Parteli, Eric J R; Michaels, Timothy I; Karam, Diana Bou

    2012-10-01

    The transport of sand and dust by wind is a potent erosional force, creates sand dunes and ripples, and loads the atmosphere with suspended dust aerosols. This paper presents an extensive review of the physics of wind-blown sand and dust on Earth and Mars. Specifically, we review the physics of aeolian saltation, the formation and development of sand dunes and ripples, the physics of dust aerosol emission, the weather phenomena that trigger dust storms, and the lifting of dust by dust devils and other small-scale vortices. We also discuss the physics of wind-blown sand and dune formation on Venus and Titan.

  10. Coexistence of Dunes and Humid Conditions at Titan's Tropics

    Science.gov (United States)

    Radebaugh, Jani; Lorenz, R. D.; Lunine, J. I.; Kirk, R. L.; Ori, G. G.; Farr, T. G.; Malaska, M.; Le Gall, A.; Liu, Z. Y. C.; Encrenaz, P. J.; Paillou, P.; Hayes, A.; Lopes, R. M. C.; Turtle, E. P.; Wall, S. D.; Stofan, E. R.; Wood, C. A.; Cassini RADAR Team

    2012-10-01

    At Titan's equatorial latitudes there are tens of thousands of dunes, a landform typical of desert environments where sand does not become anchored by vegetation or fluids. Model climate simulations predict generally dry conditions at the equator and humid conditions near the poles of Titan, where lakes of methane/ethane are found. However, moderate relative methane humidity was observed at the Huygens landing site, recent rainfall was seen by Cassini ISS near the Belet Sand Sea, and a putative transient lake in Shangri-La was observed by Cassini VIMS, all of which indicate abundant fluids may be present, at least periodically, at Titan's equatorial latitudes. Terrestrial observations and studies demonstrate dunes can exist and migrate in conditions of high humidity. Active dunes are found in humid climates, indicating the movement of sand is not always prohibited by the presence of fluids. Sand mobility is related to precipitation, evaporation and wind speed and direction. If dune surfaces become wetted by rainfall or rising subsurface fluids, they can become immobilized. However, winds can act to dry the uppermost layers, freeing sands for saltation and enabling dune migration in wet conditions. Active dunes are found in tropical NE Brazil and NE Australia, where there are alternating dry and wet periods, a condition possible for Titan's tropics. Rising and falling water levels lead to the alteration of dune forms, mainly from being anchored by vegetation, but also from cementation by carbonates or clays. Studies of Titan's dunes, which could undergo anchoring of organic sediments by hydrocarbon fluids, could inform the relative strength of vegetation vs. cementation at humid dune regions on Earth. Furthermore, a comprehensive survey of dune morphologies near regions deemed low by SARTopo and stereo, where liquids may collect in wet conditions, could reveal if bodies of liquid have recently existed at Titan's tropics.

  11. Centrifuge - dewatering of oil sand fluid tailings: phase 2 field-scale test

    Energy Technology Data Exchange (ETDEWEB)

    Seto, Jack T.C. [BGC Engineering Inc (Canada); O' Kane, Mike [O' Kane Consultants Inc (Canada); Donahue, Robert [Applied Geochemical Solutions Engineering (Canada); Lahaie, Rick [Syncrude Canada Ltd (Canada)

    2011-07-01

    In order to reduce the accumulation of oil sand fluid fine tailings (FFT) and to create trafficable surfaces for reclamation, Syncrude Canada Ltd. has been studying several tailings technologies. Centrifuge-dewatering is one such technology. This paper discusses the phase 2 field-scale tests for centrifuge-dewatering of oil sand FFT. In centrifuge-dewatering, FFT is diluted and treated with flocculant, then processed through a centrifuge plant and the high-density underflow is transported to a tailings deposit. This technology has evolved since 2005 from laboratory bench scale tests. More than 10,000 cubic meters of centrifuge cake was treated, produced and transported to ten different deposits over a 12-week period from August to October 2010. The amount of solids in FFT was increased from 30% to 50% by centrifuging. Sampled deposits were tested and instrumented for in situ strength. It can be concluded that the deposits can be strengthened and densified by natural dewatering processes like freeze-thaw action and evaporative drying.

  12. Modeling the effect of dune sorting on the river long profile

    Science.gov (United States)

    Blom, A.

    2012-12-01

    River dunes, which occur in low slope sand bed and sand-gravel bed rivers, generally show a downward coarsening pattern due to grain flows down their avalanche lee faces. These grain flows cause coarse particles to preferentially deposit at lower elevations of the lee face, while fines show a preference for its upper elevations. Before considering the effect of this dune sorting mechanism on the river long profile, let us first have a look at some general trends along the river profile. Tributaries increasing the river's water discharge in streamwise direction also cause a streamwise increase in flow depth. As under subcritical conditions mean dune height generally increases with increasing flow depth, the dune height shows a streamwise increase, as well. This means that also the standard deviation of bedform height increases in streamwise direction, as in earlier work it was found that the standard deviation of bedform height linearly increases with an increasing mean value of bedform height. As a result of this streamwise increase in standard deviation of dune height, the above-mentioned dune sorting then results in a loss of coarse particles to the lower elevations of the bed that are less and even rarely exposed to the flow. This loss of coarse particles to lower elevations thus increases the rate of fining in streamwise direction. As finer material is more easily transported downstream than coarser material, a smaller bed slope is required to transport the same amount of sediment downstream. This means that dune sorting adds to river profile concavity, compared to the combined effect of abrasion, selective transport and tributaries. A Hirano-type mass conservation model is presented that deals with dune sorting. The model includes two active layers: a bedform layer representing the sediment in the bedforms and a coarse layer representing the coarse and less mobile sediment underneath migrating bedforms. The exposure of the coarse layer is governed by the rate

  13. Sedimentary processes of the Bagnold Dunes: Implications for the eolian rock record of Mars

    OpenAIRE

    Ewing, R. C.; Lapotre, M. G. A.; Lewis, K. W.; Day, M.; Stein, N.; Rubin, D. M.; Sullivan, R.; Banham, S.; Lamb, M. P.; Bridges, N. T.; Gupta, S.; Fischer, W. W.

    2017-01-01

    The Mars Science Laboratory rover Curiosity visited two active wind-blown sand dunes within Gale crater, Mars, which provided the first ground-based opportunity to compare Martian and terrestrial eolian dune sedimentary processes and study a modern analog for the Martian eolian rock record. Orbital and rover images of these dunes reveal terrestrial-like and uniquely Martian processes. The presence of grainfall, grainflow, and impact ripples resembled terrestrial dunes. Impact ripples were pre...

  14. Sedimentary processes of the Bagnold Dunes: Implications for the eolian rock record of Mars

    OpenAIRE

    Ewing, R. C.; Lapotre, M. G. A.; Lewis, K. W.; Day, M.; Stein, N.; Rubin, D. M.; Sullivan, R.; Banham, S.; Lamb, M. P.; Bridges, N. T.; Gupta, S.; Fischer, W. W.

    2017-01-01

    Abstract The Mars Science Laboratory rover Curiosity visited two active wind‐blown sand dunes within Gale crater, Mars, which provided the first ground‐based opportunity to compare Martian and terrestrial eolian dune sedimentary processes and study a modern analog for the Martian eolian rock record. Orbital and rover images of these dunes reveal terrestrial‐like and uniquely Martian processes. The presence of grainfall, grainflow, and impact ripples resembled terrestrial dunes. Impact ripples...

  15. Informal Monograph on Riverine Sand Dunes

    Science.gov (United States)

    1991-10-01

    current deficiencies in the theoretical models are discussed and are concluded to stem from the difficulties inherent to analysis of nonuniform, turbulent...T(x,t) = m[l + crlx(x,t)1[(U - Uc) + Ox(x - 13, - d,t)]n (5) 134 5. (4) and (5) yield 1r(x,b), which is Fourier transformed to yield Bt(k,t) - Tk2 ...is known about the formation, behavior and characteristics of alluvial bed forms, and the principal deficiencies in our knowledge about them. Section

  16. The fate of sand dunes of Goa

    Digital Repository Service at National Institute of Oceanography (India)

    Mascarenhas, A.

    stream_size 1 stream_content_type text/plain stream_name Voices_Oceans_1996_111.pdf.txt stream_source_info Voices_Oceans_1996_111.pdf.txt Content-Encoding ISO-8859-1 Content-Type text/plain; charset=ISO-8859-1 ...

  17. Geotechnical field investigation of the rapid densification phenomenon in oil sands mature fine tailings

    Energy Technology Data Exchange (ETDEWEB)

    Guo, C.; Chalaturnyk, R.J.; Scott, J.D.; Cyre, G. [Alberta Univ., Edmonton, AB (Canada). Dept. of Civil and Environmental Engineering; MacKinnon, M. [Syncrude Canada Ltd., Edmonton, AB (Canada). Edmonton Research Centre

    2002-07-01

    The Mildred Lake Settling Basin (MLSB) is an oil sand tailings pond with a water area of about 11 square km and a maximum depth of mature fine tailings (MFT) of about 50 m, rendering it Syncrude's largest disposal site for tailings. Syncrude began storing the MFT in 1978 but in recent years there has been a sharp increase in the consolidation of the fine tailings, creating pumping challenges in the transfer of tailings from the MLSB for the creation of composite tailings. This paper presents preliminary results of field and laboratory study which have been launched to better manage the rapid densification of fine tailings. The study involves sampling, field vane tests, cone penetration tests, steel plate penetration tests and earth pressure measurements. Methane producing microorganisms have become very active in the part of the pond that is experiencing rapid densification. The objective of the study was to determine the inventory and distribution of high strength MFT in current storage ponds and to assess whether geotechnical properties are enough to support direct loading with solids such as sand, clay or coke. The cause of the phenomena was also examined along with ways to possibly enhance MFT development through microbial, physical or chemical treatments. Results show that the accumulation of methane gas may have reached a critical state in some parts of the pond. The densification phenomenon at the southern pond is more significant compared to the northern pond. Earth pressure measurements indicate that the earth pressure cell has good sensitivity and that the coefficient of earth pressure at rest is approximately one. Good agreement was reached between different testing methods used to determine geotechnical properties of MFT. 5 refs., 4 tabs., 14 figs.

  18. Interdisciplinary Research Produces Results in the Understanding of Planetary Dunes

    Science.gov (United States)

    Titus, Timothy N.; Hayward, Rosalyn Kay; Bourke, Mary C.

    2010-08-01

    Second International Planetary Dunes Workshop: Planetary Analogs—Integrating Models, Remote Sensing, and Field Data; Alamosa, Colorado, 18-21 May 2010; Dunes and other eolian bed forms are prominent on several planetary bodies in our solar system. Despite 4 decades of study, many questions remain regarding the composition, age, and origins of these features, as well as the climatic conditions under which they formed. Recently acquired data from orbiters and rovers, together with terrestrial analogs and numerical models, are providing new insights into Martian sand dunes, as well as eolian bed forms on other terrestrial planetary bodies (e.g., Titan). As a means of bringing together terrestrial and planetary researchers from diverse backgrounds with the goal of fostering collaborative interdisciplinary research, the U.S. Geological Survey (USGS), the Carl Sagan Center for the Study of Life in the Universe, the Desert Research Institute, and the U.S. National Park Service held a workshop in Colorado. The small group setting facilitated intensive discussion of problems and issues associated with eolian processes on Earth, Mars, and Titan.

  19. The coal deposits of the Alkali Butte, the Big Sand Draw, and the Beaver Creek fields, Fremont County, Wyoming

    Science.gov (United States)

    Thompson, Raymond M.; White, Vincent L.

    1952-01-01

    Large coal reserves are present in three areas located between 12 and 20 miles southeast of Riverton, Fremont County, central Wyoming. Coal in two of these areas, the Alkali Butte coal field and the Big Sand Draw coal field, is exposed on the surface and has been developed to some extent by underground mining. The Beaver Creek coal field is known only from drill cuttings and cores from wells drilled for oil and gas in the Beaver Creek oil and gas field.These three coal areas can be reached most readily from Riverton, Wyo. State Route 320 crosses Wind River about 1 mile south of Riverton. A few hundred yards south of the river a graveled road branches off the highway and extends south across the Popo Agie River toward Sand Draw oil and gas field. About 8 miles south of the highway along the Sand Draw road, a dirt road bears east and along this road it is about 12 miles to the Bell coal mine in the Alkali Butte coal field. Three miles southeast of the Alkali Butte turn-off, 3 miles of oiled road extends southwest into the Beaver Creek oil and gas field. About 6 miles southeast of the Beaver Creek turn-off, in the valley of Little Sand Draw Creek, a dirt road extends east 1. mile and then southeast 1 mile to the Downey mine in the Big Sand Draw coal field. Location of these coal fields is shown on figure 1 with their relationship to the Wind River basin and other coal fields, place localities, and wells mentioned in this report. The coal in the Alkali Butte coal field is exposed partly on the Wind River Indian Reservation in Tps. 1 and 2 S., R. 6 E., and partly on public land. Coal in the Beaver Creek and Big Sand Draw coal fields is mainly on public land. The region has a semiarid climate with rainfall averaging less than 10 in. per year. When rain does fall the sandy-bottomed stream channels fill rapidly and are frequently impassable for a few hours. Beaver Creek, Big Sand Draw, Little Sand Draw, and Kirby Draw and their smaller tributaries drain the area and flow

  20. DETECTION OF BARCHAN DUNES IN HIGH RESOLUTION SATELLITE IMAGES

    Directory of Open Access Journals (Sweden)

    M. A. Azzaoui

    2016-06-01

    Full Text Available Barchan dunes are the fastest moving sand dunes in the desert. We developed a process to detect barchans dunes on High resolution satellite images. It consisted of three steps, we first enhanced the image using histogram equalization and noise reduction filters. Then, the second step proceeds to eliminate the parts of the image having a texture different from that of the barchans dunes. Using supervised learning, we tested a coarse to fine textural analysis based on Kolomogorov Smirnov test and Youden’s J-statistic on co-occurrence matrix. As an output we obtained a mask that we used in the next step to reduce the search area. In the third step we used a gliding window on the mask and check SURF features with SVM to get barchans dunes candidates. Detected barchans dunes were considered as the fusion of overlapping candidates. The results of this approach were very satisfying in processing time and precision.

  1. Composition And Geometry Of Titan'S Dunes

    Science.gov (United States)

    Le Gall, Alice; Janssen, M. A.; Wye, L. C.; Lorenz, R. D.; Radebaugh, J.; Cassini RADAR Team

    2009-09-01

    Fields of linear dunes cover a large portion of Titan's equatorial regions. As the Cassini mission continues, more of them are unveiled and examined by the microwave Titan RADAR Mapper both in the active and passive modes of operation of the instrument and with an increasing variety of observational geometries. In this presentation, we will show that the joint analysis of the SAR (Synthetic Aperture Radar) and radiometry observations of the dunes at closest approach supports the idea of different composition between the dunes and the interdunes. It suggests that the icy bedrock of Titan may be exposed, or partially exposed, in the interdunes. We also see regional differences among dune fields. Dunes are highly directional features; their visibility is controlled by the look direction and the incidence angle. We have developed a backscatter and emissivity model that takes into account the topography of the dunes relative to the geometry of observation as well as the composition of the dunes and interdunes. Compared to observations and, in particular, to multiple observations of areas at the overlap of several swaths, we argue the need for a diffuse scattering mechanism. The presence of ripples in the dunes and/or interdunes might account for the recorded backscatter. In this presentation we will also report the results of the T61 experiment. The T61 HiSAR sequence (on August 25, 2009) was designed to examine a small region of the Shangri-La dune field with a substantial sampling of incidence angles around the direction perpendicular to the dunes long axis. The spot in question was already observed during the T55 SAR swath and the T61 experiment should allow us to determine the slope of the dunes.

  2. Treatment of synthetic urban runoff using manganese oxide-coated sand in the presence of magnetic field

    Directory of Open Access Journals (Sweden)

    Maryam Foroughi

    2013-01-01

    Conclusion: Manganese oxide-coated sand filter in the presence of magnetic field improve the quality of urban runoff significantly. Authors believe that this approach is simple, economical and efficient as in comparison to other existing methods. This could be a promising treatment technology that can enhance quality of urban runoff and industrial wastewaters.

  3. Dune erosion above revetments

    NARCIS (Netherlands)

    Van Thiel de Vries, J.S.M.

    2012-01-01

    In a situation with a narrow dune, the dune base can be protected with a revetment to reduce dune erosion during extreme events. To quantify the effects of a revetment on storm impact, the functionality of the numerical storm impact model XBeach (Roelvink et al., 2009) is extended to account for the

  4. Changes of Bulgarian Coastal Dune Landscape under Anthropogenic Impact

    Science.gov (United States)

    Palazov, A.; Young, R.; Stancheva, M.; Stanchev, H.

    2012-04-01

    At one time large sand dune formations were widely distributed along the Bulgarian coast. However, due to increased urbanization in the coastal zone, the areas of total dune landscape has been constantly reduced. Dunes presently comprise only 10% of the entire 412 km long coastline of Bulgaria: they embrace a total length of 38.57 km and a total area of 8.78 km2 Important tasks in dune protection are identification of landscape changes for a certain period of time and accurate delineation of sand dune areas. The present research traces sand dune changes along the Bulgarian Black Sea coast over a 27 year period (1983-2010). This period includes also the time of expanded tourist boom and overbuilding of the coastal zone, and respectively presents the largest dune changes and reductions. Based on the landscape change analyst in GIS environment the study also aims to explore the importance of different natural and human factors in driving the observed dune alterations and destruction. To detect and assess dune changes during the last 3 decades, we used data for sand dunes derived from several sources at different time periods in order to compare changes in shoreline positions, dune contours and areas: i) Topographic maps in 1:5,000 scale from 1983; ii) Modern Very High Resolution orthophotographs from 2006 and 2010; iii) QuickBird Very High Resolution satellite images from 2009; iv) Statistical information for population and tourist infrastructure is also used to consider the influence of human pressure and hotel developments on the dune dynamics. In addition, for more detailed description and visualization of main dune types, digital photos have been taken at many parts of the Bulgarian coast. The study was performed in GIS environment. Based on the results obtained the dunes along the Bulgarian coast were divided into three main groups with relation to the general factors responsible for their alterations: i) Dunes that have decreased in result of shoreline retreat

  5. Fungal symbiosis and precipitation alter traits and dune building by the ecosystem engineer, Ammophila breviligulata.

    Science.gov (United States)

    Emery, Sarah M; Bell-Dereske, Lukas; Rudgers, Jennifer A

    2015-04-01

    Ecosystem engineer species influence their community and ecosystem by creating or altering the physical structure of habitats. The function of ecosystem engineers is variable and can depend on both abiotic and biotic factors. Here we make use of a primary successional system to evaluate the direct and interactive effects of climate change (precipitation) and fungal endophyte symbiosis on population traits and ecosystem function of the ecosystem engineering grass species, Ammophila breviligulata. We manipulated endophyte presence in A. breviligulata in combination with rain-out shelters and rainfall additions in a factorial field experiment established in 2010 on Lake Michigan sand dunes. We monitored plant traits, survival, growth, and sexual reproduction of A. breviligulata from 2010-2013, and quantified ecosystem engineering as the sand accumulation rate. Presence of the endophyte in A. breviligulata increased vegetative growth by up to 19%, and reduced sexual reproduction by up to 46% across all precipitation treatments. Precipitation was a less significant factor than endophyte colonization for A. breviligulata growth. Reduced precipitation increased average leaf number per tiller but had no other effects on plant traits. Changes in A. breviligulata traits corresponded to increases in sand accumulation in plots with the endophyte as well as in plots with reduced precipitation. Sand accumulation is a key ecosystem function in these primary successional habitats, and so microbial symbiosis in this ecosystem engineer could lead to direct effects on the value of these dune habitats for humans.

  6. Determination of erosion thresholds and aeolian dune stabilization mechanisms via robotic shear strength measurements

    Science.gov (United States)

    Qian, F.; Lee, D. B.; Bodek, S.; Roberts, S.; Topping, T. T.; Robele, Y.; Koditschek, D. E.; Jerolmack, D. J.

    2017-12-01

    Understanding the parameters that control the spatial variation in aeolian soil erodibility is crucial to the development of sediment transport models. Currently, in-situ measurements of erodibility are time consuming and lack robustness. In an attempt to remedy this issue, we perform field and laboratory tests to determine the suitability of a novel mechanical shear strength method to assess soil erodibility. These tests can be performed quickly ( 1 minute) by a semi-autonomous robot using its direct-drive leg, while environmental controls such as soil moisture and grain size are simultaneously characterized. The robot was deployed at White Sands National Monument to delineate and understand erodibility gradients at two different scales: (1) from dry dune crest to moist interdune (distance 10s m), where we determined that shear strength increases by a factor of three with increasing soil moisture; and (2) from barren barchan dunes to vegetated and crusted parabolics downwind (distance 5 km), where we found that shear strength was enhanced by a factor of two relative to loose sand. Interestingly, shear strength varied little from carbonate-crusted dune surfaces to bio-crust covered interdunes in the downwind parabolic region, indicating that varied surface crusts contribute similarly to erosion resistance. To isolate the control of soil moisture on erodibility, we performed laboratory experiments in a sandbox. These results verify that the observed increase in soil erodibility from barchan crest to interdune at White Sands is dominated by soil moisture, and the variation in parabolic dune and barchan interdune areas results from a combination of soil moisture, bio-activity, and crust development. This study highlights that spatial variation of soil erodibility in arid environments is large enough to significantly affect sediment transport, and that probing soil erodibility with a robot has the potential to improve our understanding of this multifaceted problem.

  7. Propagation and diffusion of a plasma column in a magnetic field; Propagation et diffusion d'une colonne de plasma dans un champ magnetique

    Energy Technology Data Exchange (ETDEWEB)

    Bottiglioni, F; Coutant, J; Gadda, E; Prevot, F [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires

    1966-12-01

    A plasma column is created in a magnetic field by longitudinal diffusion from a low-pressure pulsed discharge in hydrogen. Depending on the discharge conditions, two regimes are obtained in which the gas pumping speed has a different effect upon the plasma density in the column. Calculations are presented which can explain this effect by a difference in the transverse diffusion coefficient. (authors) [French] On forme une colonne de plasma dans un champ magnetique par diffusion longitudinale a partir d'une decharge puisee dans l'hydrogene a basse pression. Selon les conditions de la decharge on observe deux regimes differents pour lesquels le pompage du gaz neutre a un effet different sur la densite resultante du plasma dans la colonne. On presente des calculs qui peuvent expliquer cet effet par une difference dans la diffusion transversale du plasma. (auteurs)

  8. Reorientation Timescales and Pattern Dynamics for Titan's Dunes: Does the Tail Wag the Dog or the Dragon?

    Science.gov (United States)

    Ewing, R. C.; Hayes, A. G.; McCormick, C.; Ballard, C.; Troy, S. A.

    2012-04-01

    Fields of bedform patterns persist across many orders of magnitude, from cm-scale sub-aqueous current ripples to km-scale aeolian dunes, and form with surprisingly little difference in expression despite a range of formative environments. Because of the remarkable similarity among bedform patterns, extracting information about climate and environment from these patterns is a challenge. For example, crestline orientation is not diagnostic of a particular flow regime; similar patterns form under many different flow configurations. On Titan, these challenges have played out with many attempts to reconcile dune crestline orientation with modeled and expected wind regimes. We propose that thinking about the time-scale of the change in dune orientation, rather than the orientation itself, can provide new insights on the long-term stability of the dune-field patterns and the formative wind regime. In this work, we apply the crestline re-orientation model developed by Werner and Kocurek [Geology, 1997] to the equatorial dune fields of Titan. We use Cassini Synthetic Aperture Radar images processed through a de-noising algorithm recently developed by Lucas et al. [LPSC, 2012] to measure variations in pattern parameters (crest spacing, crest length and defect density, which is the number of defect pairs per total crest length) both within and between Titan's dune fields to describe pattern maturity and identify areas where changes in dune orientation are likely to occur (or may already be occurring). Measured defect densities are similar to Earth's largest linear dune fields, such as the Namib Sand Sea and the Simpson Desert. We use measured defect densities in the Werner and Kocurek model to estimate crestline reorientation rates. We find reorientation timescales varying from ten to a hundred thousand times the average migration timescale (time to migrate a bedform one meter, ~1 Titan year according to Tokano (Aeolian Research, 2010)). Well-organized patterns have the

  9. Aeolian sedimentary processes at the Bagnold Dunes, Mars: Implications for modern dune dynamics and sedimentary structures in the aeolian stratigraphic record of Mars

    Science.gov (United States)

    Ewing, Ryan C.; Bridges, Nathan T.; Sullivan, Rob; Lapotre, Mathieu G. A.; Fischer, Woodward W.; Lamb, Mike P.; Rubin, David M.; Lewis, Kevin W.; Gupta, Sanjeev

    2016-04-01

    Wind-blown sand dunes are ubiquitous on the surface of Mars and are a recognized component of the martian stratigraphic record. Our current knowledge of the aeolian sedimentary processes that determine dune morphology, drive dune dynamics, and create aeolian cross-stratification are based upon orbital studies of ripple and dune morphodynamics, rover observations of stratification on Mars, Earth analogs, and experimental and theoretical studies of sand movement under Martian conditions. In-situ observations of sand dunes (informally called the Bagnold Dunes) by Curiosity Rover in Gale Crater, Mars provide the first opportunity to make observations of dunes from the grain-to-dune scale thereby filling the gap in knowledge between theory and orbital observations and refining our understanding of the martian aeolian stratigraphic record. We use the suite of cameras on Curiosity, including Navigation Camera (Navcam), Mast Camera (Mastcam) and Mars Hand Lens Imager (MAHLI), to make observations of the Bagnold Dunes. Measurements of sedimentary structures are made where stereo images are available. Observations indicate that structures generated by gravity-driven processes on the dune lee slopes, such as grainflow and grainfall, are similar to the suite of aeolian sedimentary structures observed on Earth and should be present and recognizable in Mars' aeolian stratigraphic record. Structures formed by traction-driven processes deviate significantly from those found on Earth. The dune hosts centimeter-scale wind ripples and large, meter-scale ripples, which are not found on Earth. The large ripples migrate across the depositional, lee slopes of the dune, which implies that these structures should be present in Mars' stratigraphic record and may appear similar to compound-dune stratification.The Mars Science Laboratory Curiosity Rover Team is acknowledged for their support of this work.

  10. Avalanches of Singing Sand in the Laboratory

    Science.gov (United States)

    Dagois-Bohy, Simon; Courrech Du Pont, Sylvain; Douady, Stéphane

    2011-03-01

    The song of dunes is a natural phenomenon that has arisen travellers' curiosity for a long time, from Marco Polo to R.A. Bagnold. Scientific observations in the XXth century have shown that the sound is emitted during a shear flow of these particular grains, the free surface of the flow having coherent vibrations like a loud speaker. The sound emission is also submitted to a threshold effect with many parameters like humidity, flow speed, surface of the grains. The sound has been reproduced in laboratory avalanche experiments close to the natural phenomenon on field, but set in a channel with a hard bottom and a few centimeters of sand flowing, which contradicts explanations of the sound that involve a sand dune under the avalanche flow. Flow rates measurements also show the presence of a plug region in the flow above the sheared band, with the same characteristic length as the coherence zones of the sound. Finally we show experimentally that the Froude number, once modified to take into account the height of this plug band, is the parameter that sets the amplitude of the sound, and produces a threshold that depends on the grain type.

  11. Rip Currents, Mega-Cusps, and Eroding Dunes

    OpenAIRE

    Thornton, E.B.; MacMahan, J.; Sallenger, A.H.

    2006-01-01

    Submitted to Marine Geology 1 November 2006 Dune erosion is shown to occur at the embayment of beach mega-cusps O(200m alongshore) that are associated with rip currents. The beach is the narrowest at the embayment of the mega-cusps allowing the swash of large storm waves coincident with high tides to reach the toe of the dune, to undercut the dune and to cause dune erosion. Field measurements of dune, beach, and rip current morphology are acquired along an 18 km shoreline in southern Mont...

  12. Coupling Solute and Fine Particle Transport with Sand Bed Morphodynamics within a Field Experiment

    Science.gov (United States)

    Phillips, C. B.; Ortiz, C. P.; Schumer, R.; Jerolmack, D. J.; Packman, A. I.

    2017-12-01

    Fine suspended particles are typically considered to pass through streams and rivers as wash load without interacting with the bed, however experiments have demonstrated that hyporheic flow causes advective exchange of fine particles with the stream bed, yielding accumulation of fine particle deposits within the bed. Ultimately, understanding river morphodynamics and ecosystem dynamics requires coupling both fine particle and solute transport with bed morphodynamics. To better understand the coupling between these processes we analyze a novel dataset from a controlled field experiment conducted on Clear Run, a 2nd order sand bed stream located within the North Carolina coastal plain. Data include concentrations of continuously injected conservative solutes and fine particulate tracers measured at various depths within the stream bed, overhead time lapse images of bed forms, stream discharge, and geomorphological surveys of the stream. We use image analysis of bed morphodynamics to assess exchange, retention, and remobilization of solutes and fine particles during constant discharge and a short duration experimental flood. From the images, we extract a time series of bedform elevations and scour depths for the duration of the experiment. The high-resolution timeseries of bed elevation enables us to assess coupling of bed morphodynamics with both the solute and fine particle flux during steady state mobile bedforms prior to the flood and to changing bedforms during the flood. These data allow the application of a stochastic modeling framework relating bed elevation fluctuations to fine particle residence times. This combined experimental and modeling approach ultimately informs our ability to predict not only the fate of fine particulate matter but also associated nutrient and carbon dynamics within streams and rivers.

  13. Future DUNE constraints on EFT

    Science.gov (United States)

    Falkowski, Adam; Grilli di Cortona, Giovanni; Tabrizi, Zahra

    2018-04-01

    In the near future, fundamental interactions at high-energy scales may be most efficiently studied via precision measurements at low energies. A universal language to assemble and interpret precision measurements is the so-called SMEFT, which is an effective field theory (EFT) where the Standard Model (SM) Lagrangian is extended by higher-dimensional operators. In this paper we investigate the possible impact of the DUNE neutrino experiment on constraining the SMEFT. The unprecedented neutrino flux offers an opportunity to greatly improve the current limits via precision measurements of the trident production and neutrino scattering off electrons and nuclei in the DUNE near detector. We quantify the DUNE sensitivity to dimension-6 operators in the SMEFT Lagrangian, and find that in some cases operators suppressed by an O(30) TeV scale can be probed. We also compare the DUNE reach to that of future experiments involving atomic parity violation and polarization asymmetry in electron scattering, which are sensitive to an overlapping set of SMEFT parameters.

  14. A study of global sand seas

    Science.gov (United States)

    McKee, Edwin D.

    1979-01-01

    The birth of the idea that led to this publication on "Global Sand Seas" dates back to the late 1920's. At that time I was engaged in a study of the Coconino Sandstone of Arizona's Grand Canyon. Considerable controversy existed then as to whether this sandstone was a subaqueous deposit or was composed of wind-formed dunes. It became apparent that definitive literature was sparse or lacking on types of dunes, global distribution of these types, the mechanics of their development, the precise nature of their internal structure of cross-stratificiation, and the relation of wind systems to these sand forms. Especially lacking were data on criteria that could confidently be used in the recognition of ancient dunes. The common denominator in this publication is eolian sand bodies. Although the book is concerned primarily with desert sand seas, the subject matter is not restricted to deserts; it includes many references to deposits of coastal sand and to sand bodies in humid climates. Nor does the book deal exclusively with dunes, which, according to most definitions, involve mounds or hills. Many references are made to sand sheets, sand stringers, and other types of sand deposits that have no prominent topographic expression. All sand bodies accumulated by the action of wind are discussed. Chapters A-J of this publication are primarily topical. Chapters cover the grain texture, the color, and the structure of modern dunes and other eolian sands. Special treatment is given to the relation of wind data to dune interpretation, the evolution of form in current-deposited sand bodies as determined from experimental studies, and the discriminant analysis technique for differentiating between coastal and inland desert sands. This topical part of the publication also includes an analysis of criteria used in ancient deposits to interpret their eolian genesis and a consideration of economic application of the principles described, including a discussion of potentials and problems

  15. Coastal dunes of South Africa

    CSIR Research Space (South Africa)

    Tinley, KL

    1985-01-01

    Full Text Available . The descriptive section is divided into geographic setting, physical features, ecological features and dune dynamics. Emphasis is placed on the factors affecting dune formation and erosion and the biogeography and dynamics of dune vegetation. Current use...

  16. The Karakum and Kyzylkum sand seas dynamics; mapping and palaeoclimatic interpretations

    Science.gov (United States)

    Maman, Shimrit; Blumberg, Dan G.; Tsoar, Haim; Porat, Naomi

    2015-04-01

    . GIS analysis was performed in parallel with field work to obtain validation and verification. The remote sensing and GIS results show that these ergs are mostly stabilized, with the estimated sand mantled area for the Karakum desert ~260,000 km2, and for the Kyzylkum it is ~195,500 km2. Meteorological analysis of wind and precipitation data indicate a low wind power environment (DP100 mm) to support vegetation. Thus, these sands are indicative of past periods during which the climate in this region was different than today, enabling aeolian sand activity. Optically stimulated luminescence ages derived from the upper meter of the interdune of 14 exposed sections from both ergs, indicate sand stabilization during the mid-Holocene. This stabilization is understood to reflect a transition to a warmer, wetter, and less windy climate that generally persisted until today. The OSL ages, coupled with a compilation of regional palaeoclimatic data, corroborate and reinforce the previously proposed Mid-Holocene Liavliakan phase, known to reflect a warmer, wetter, and less windy climate that persists until today and resulted in dune stabilization around the Mid-Holocene.

  17. Looking Back at 'Purgatory Dune'

    Science.gov (United States)

    2005-01-01

    The wheels of NASA's Mars Exploration Rover Opportunity dug more than 10 centimeters (4 inches) deep into the soft, sandy material of a wind-shaped ripple in Mars' Meridiani Planum region during the rover's 446th martian day, or sol (April 26, 2005). Getting the rover out of the ripple, dubbed 'Purgatory Dune,' required more than five weeks of planning, testing, and carefully monitored driving. Opportunity used its navigation camera to capture this look back at the ripple during sol 491 (June 11, 2005), a week after the rover drove safely onto firmer ground. The ripple that became a sand trap is about one-third meter (one foot) tall and 2.5 meters (8 feet) wide.

  18. Martian aeolian activity at the Bagnold Dunes, Gale Crater: The view from the surface and orbit

    Science.gov (United States)

    Bridges, N. T.; Sullivan, R.; Newman, C. E.; Navarro, S.; van Beek, J.; Ewing, R. C.; Ayoub, F.; Silvestro, S.; Gasnault, O.; Le Mouélic, S.; Lapotre, M. G. A.; Rapin, W.

    2017-10-01

    The first in situ investigation of an active dune field on another planetary surface occurred in 2015-2016 when the Mars Science Laboratory Curiosity rover investigated the Bagnold Dunes on Mars. High Resolution Imaging Science Experiment images show clear seasonal variations that are in good agreement with atmospheric model predictions of intra-annual sand flux and migration directions that together indicate that the campaign occurred during a period of low wind activity. Curiosity surface images show that limited changes nevertheless occurred, with movement of large grains, particularly on freshly exposed surfaces, two occurrences of secondary grain flow on the slip face of Namib Dune, and a slump on a freshly exposed surface of a large ripple. These changes are seen at Martian solar day (sol)-to-sol time scales. Grains on a rippled sand deposit and unconsolidated dump piles show limited movement of large grains over a few hours during which mean friction speeds are estimated at 0.3-0.4 m s-1. Overall, the correlation between changes and peak Rover Environmental Monitoring Station (REMS) winds is moderate, with high wind events associated with changes in some cases, but not in others, suggesting that other factors are also at work. The distribution of REMS 1 Hz wind speeds shows a significant tail up to the current 20 m s-1 calibration limit, indicating that even higher speed winds occur. Nonaeolian triggering mechanisms are also possible. The low activity period at the dunes documented by Curiosity provides clues to processes that dominated in the Martian past under conditions of lower obliquity.

  19. Recolonization of macrofauna in unpolluted sands placed in a polluted yachting harbour: A field approach using experimental trays

    Science.gov (United States)

    Guerra-García, J. M.; García-Gómez, J. C.

    2009-01-01

    A field experiment using trays was conducted at Ceuta's yachting harbour, North Africa, to study the effect in recolonization of placing trays with unpolluted defaunate sediments (fine and gross sands with low contents of organic matter) inside an enclosed yachting harbour characterized by high percentages of silt and clay and high concentrations of organic matter. Sediment recolonization in the trays was mainly undertaken by the species living naturally at the yachting harbour, which recolonized both uncontaminated gross and fine sand trays (such as the crustaceans Corophium runcicorne, Corophium sextonae and Nebalia bipes, the mollusc Parvicardium exiguum and the polychaete Pseudomalacoceros tridentata). However, other species like the polychaetes Cirriformia tentaculata and Platynereis dumerilii, although also abundant in the yachting harbour, were unable to colonize the trays through transport of larvae and/or adults in the water column. The recolonization was very quick, and after the first month, the values of abundance, species richness, diversity and evenness were similar in the experimental trays and in the reference area (yachting harbour). Although the multivariate analysis showed that the species composition differed between the trays and the reference area, there were no significant differences in recolonization of gross and fine sands, indicating that other factors different from the granulometry are modulating the recolonization patterns.

  20. Corridors of barchan dunes: Stability and size selection

    DEFF Research Database (Denmark)

    Hersen, P.; Andersen, Ken Haste; Elbelrhiti, H.

    2004-01-01

    state. Second, the propagation speed of dunes decreases with the size of the dune: this leads, through the collision process, to a coarsening of barchan fields. We show that these phenomena are not specific to the model, but result from general and robust mechanisms. The length scales needed...... for these instabilities to develop are derived and discussed. They turn out to be much smaller than the dune field length. As a conclusion, there should exist further, yet unknown, mechanisms regulating and selecting the size of dunes....

  1. The Effect of Air Density on Sand Transport Structures and the Adobe Abrasion Profile: A Field Wind-Tunnel Experiment Over a Wide Range of Altitude

    Science.gov (United States)

    Han, Qingjie; Qu, Jianjun; Dong, Zhibao; Zu, Ruiping; Zhang, Kecun; Wang, Hongtao; Xie, Shengbo

    2014-02-01

    Aeolian sand transport results from interactions between the surface and the airflow above. Air density strongly constrains airflow characteristics and the resulting flow of sand, and therefore should not be neglected in sand transport models. In the present study, we quantify the influence of air density on the sand flow structure, sand transport rate, adobe abrasion profiles, and abrasion rate using a portable wind-tunnel in the field. For a given wind speed, the flow's ability to transport sand decreases at low air density, so total sand transport decreases, but the saltation height increases. Thus, the damage to human structures increases compared with what occurs at lower altitudes. The adobe abrasion rate by the cloud of blowing sand decreases exponentially with increasing height above the surface, while the wind erosion and dust emission intensity both increase with increasing air density. Long-term feedback processes between air density and wind erosion suggest that the development of low-altitude areas due to long-term deflation plays a key role in dust emission, and will have a profound significance for surface Aeolian processes and geomorphology.

  2. Mycorrhizal status of Lycium europaeum in the coastal dunes of ...

    African Journals Online (AJOL)

    SARAH

    2013-11-30

    Nov 30, 2013 ... to fix the mobile dunes and to protect the reserve of Sidi Boughaba threatened by the progress of sand. Mycorrhization probably .... 90°C in the water bath until the roots became white. Roots were then rinsed, after this; ..... early in the vegetation succession on degraded soil and promote subsequently the ...

  3. Simultaneous sand control and liner cement system: keeping well productivity by optimizing drilling and completion operations in mature fields

    Energy Technology Data Exchange (ETDEWEB)

    Sa, Andrea Nicolino de; Silva, Dayana Nunes e; Calderon, Agostinho [Petroleo Brasileiro S.A. (PETROBRAS), Rio de janeiro, RJ (Brazil)

    2012-07-01

    The need to reduce oil extraction costs by increasing the recovery factor in mature fields unconsolidated sandstone reservoirs motivated the development of drilling and completion techniques that integrate the various interfaces of engineering the well, resulting in a final well configuration that provides maximum oil production at a lower cost. Due to the continued growth of drilling and completion of new wells or deviation of old wells in the design of mesh density field with an advanced degree of exploitation, PETROBRAS took the challenge to seek options for projects well, in order to maintain productivity and reduce their construction time, with the optimization of drilling and sand control systems. To achieve these goals, PETROBRAS developed the SCARS - Simultaneous Sand Control and Liner Cementing System, a pioneer technique in the global oil industry, which consists of a one trip sequence of operations in which sand control screens and liner are installed followed by the open hole gravel pack operation performed with the alpha and beta waves deposition technique, using a non aqueous system as a carrier fluid. The sequence is completed by liner cementing in the same trip. The great success of this project was based on the definition of a specific application scenario and demands allowing optimization of the system. This project started with the development of a non aqueous system as a gravel pack carrier fluid in order to perform an open hole gravel pack with the alpha/beta wave deposition technique along with the development and optimization of SCARS procedures. This article details the planning and execution phases of this project and also presents a broad description of the technical aspects. (author)

  4. Inside ProtoDune

    CERN Multimedia

    Brice, Maximilien

    2017-01-01

    The protoDUNE experimental program is designed to test and validate the technologies and design that will be applied to the construction of the DUNE Far Detector at the Sanford Underground Research Facility (SURF). The protoDUNE detectors will be run in a dedicated beam line at the CERN SPS accelerator complex. The rate and volume of data produced by these detectors will be substantial and will require extensive system design and integration effort. As of Fall 2015, "protoDUNE" is the official name for the two apparatuses to be used in CERN beam test: single-phase and dual-phase LArTPC detectors. Each received a formal CERN experiment designation: NP02 for the dual-phase detector. NP04 for single-phase detector.

  5. Modeling Megacusps and Dune Erosion

    Science.gov (United States)

    Orzech, M.; Reniers, A. J.; Thornton, E. B.

    2009-12-01

    Megacusps are large, concave, erosional features of beaches, of O(200m) alongshore wavelength, which sometimes occur when rip channel bathymetry is present. It is commonly hypothesized that erosion of the dune and back beach will be greater at the alongshore locations of the megacusp embayments, principally because the beach width is narrower there and larger waves can more easily reach the dune toe (e.g., Short, J. Geol., 1979, Thornton, et al., Mar. Geol., 2007). At present, available field data in southern Monterey Bay provide some support for this hypothesis, but not enough to fully confirm or refute it. This analysis utilizes XBeach, a 2DH nearshore sediment transport model, to test the above hypothesis under a range of wave conditions over several idealized rip-megacusp bathymetries backed by dunes. Model results suggest that while specific wave conditions may result in erosional hot spots at megacusp embayments, other factors such as tides, wave direction, and surf zone bathymetry can often play an equal or stronger role.

  6. Frost on Dunes

    Science.gov (United States)

    2005-01-01

    18 March 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows dark dunes on a crater floor during the southern spring. Some of the dunes have frost on their south-facing slopes. Location near: 52.3oS, 326.7oW Image width: 3 km (1.9 mi) Illumination from: upper left Season: Southern Spring

  7. The Mediterranean Coastal Dunes in Egypt: An Endangered Landscape

    Science.gov (United States)

    Batanouny, K. H.

    1999-08-01

    The Mediterranean coast in Egypt extends almost 900 km, the major part of which is bordered by sand dunes of different natures and types. Along the coastline between Alexandria and El-Alamein, a distance of some 100 km, the sand dunes represent a particular landscape with special characteristics and features, and consequently plants with particular attributes. In this area, the belt of sand dunes has developed immediately south of the shore and these dunes may rise up to 10 m in height and extend about 0·5-1·5 km inland from the shore. These dunes are famous as a habitat for the fig (Ficus carica L.) cultivation depending on the irregular rainfall. They also represent a landing station and a cross-road for birds such as quail migrating from Europe in the north. In the past, summer resort areas were confined to limited areas with few people, these same areas support the growth of some important plant species, for example, sand binders, medicinal and range plants. For more than two decades, there has been considerable socio-economic change and an open-door policy in the economy of the country has been adopted. One of the consequences of this change is that a great part of the coastal dune belt west of Alexandria till El-Alamein, has been subjected to destruction, due to the continuous construction of summer resort villages. These were built at a distance of about 100 m of the shoreline, extending 400-600 m inland and a breadth of 400 m or more along the shoreline. The area already covered by the dunes is now almost occupied by new buildings, gardens and other infrastructure. The consequences of these human activities are numerous and include impacts on the soil, water resources, the flora and the fauna, migrating birds, trends of the indigenous people, and the cultural environment. The present paper gives a concise environmental setting of the dune belt before the advent of the new activities, and the socio-economic and political attitudes which threaten the dunes

  8. Parabolic dune reactivation and migration at Napeague, NY, USA: Insights from aerial and GPR imagery

    Science.gov (United States)

    Girardi, James D.; Davis, Dan M.

    2010-02-01

    Observations from mapping since the 19th century and aerial imagery since 1930 have been used to study changes in the aeolian geomorphology of coastal parabolic dunes over the last ~ 170 years in the Walking Dune Field, Napeague, NY. The five large parabolic dunes of the Walking Dune Field have all migrated across, or are presently interacting with, a variably forested area that has affected their migration, stabilization and morphology. This study has concentrated on a dune with a particularly complex history of stabilization, reactivation and migration. We have correlated that dune's surface evolution, as revealed by aerial imagery, with its internal structures imaged using 200 MHz and 500 MHz Ground Penetrating Radar (GPR) surveys. Both 2D (transect) and high-resolution 3D GPR imagery image downwind dipping bedding planes which can be grouped by apparent dip angle into several discrete packages of beds that reflect distinct decadal-scale episodes of dune reactivation and growth. From aerial and high resolution GPR imagery, we document a unique mode of reactivation and migration linked to upwind dune formation and parabolic dune interactions with forest trees. This study documents how dune-dune and dune-vegetation interactions have influenced a unique mode of blowout deposition that has alternated on a decadal scale between opposite sides of a parabolic dune during reactivation and migration. The pattern of recent parabolic dune reactivation and migration in the Walking Dune Field appears to be somewhat more complex, and perhaps more sensitive to subtle environmental pressures, than an idealized growth model with uniform deposition and purely on-axis migration. This pattern, believed to be prevalent among other parabolic dunes in the Walking Dune Field, may occur also in many other places where similar observational constraints are unavailable.

  9. Optical dating of dune ridges on Rømø

    DEFF Research Database (Denmark)

    Madsen, Anni Tindahl; Murray, A. S.; Andersen, Thorbjørn Joest

    2007-01-01

    The application of optically stimulated luminescence (OSL) to the dating of recent aeolian sand ridges on Rømø, an island off the southwest coast of Denmark, is tested. These sand ridges began to form approximately 300 years ago, and estimates of the ages are available from historical records....... Samples for OSL dating were taken ~0.5 m below the crests of four different dune ridges; at least five samples were recovered from each ridge to test the internal consistency of the ages. Additional samples were recovered from the low lying areas in the swales and from the scattered dune formations......-defined building phases separated by inactive periods and the first major ridge formed ~235 years ago. This study demonstrates that optical dating can be successfully applied to these young aeolian sand deposits, and we conclude that OSL dating is a powerful chronological tool in studies of coastal change....

  10. Sedimentary differentiation of aeolian grains at the White Sands National Monument, New Mexico, USA

    Science.gov (United States)

    Fenton, Lori K.; Bishop, Janice L.; King, Sara; Lafuente, Barbara; Horgan, Briony; Bustos, David; Sarrazin, Philippe

    2017-06-01

    Gypsum (CaSO4·2H2O) has been identified as a major component of part of Olympia Undae in the northern polar region of Mars, along with the mafic minerals more typical of Martian dune fields. The source and age of the gypsum is disputed, with the proposed explanations having vastly different implications for Mars' geological history. Furthermore, the transport of low density gypsum grains relative to and concurrently with denser grains has yet to be investigated in an aeolian setting. To address this knowledge gap, we performed a field study at White Sands National Monument (WSNM) in New Mexico, USA. Although gypsum dominates the bulk of the dune field, a dolomite-rich [CaMg(CO3)2] transport pathway along the northern border of WSNM provides a suitable analog site to study the transport of gypsum grains relative to the somewhat harder and denser carbonate grains. We collected samples along the stoss slope of a dune and on two coarse-grained ripples at the upwind margin of the dune field where minerals other than gypsum were most common. For comparison, additional samples were taken along the stoss slope of a dune outside the dolomite transport pathway, in the center of the dune field. Visible and near-infrared (VNIR), X-ray powder diffraction (XRD), and Raman analyses of different sample size fractions reveal that dolomite is only prevalent in grains larger than ∼1 mm. Other minerals, most notably calcite, are also present in smaller quantities among the coarse grains. The abundance of these coarse grains, relative to gypsum grains of the same size, drops off sharply at the upwind margin of the dune field. In contrast, gypsum dominated the finer fraction (MCD) are consistent with the observed concentration of gypsum at dune crests. Density-driven differentiation in transport should not influence sediment fluxes of finer grains (<1 mm) as strongly on Earth, suggesting that the high ratio of fine gypsum grains to other minerals at WSNM is caused by a relatively

  11. Field testing, comparison, and discussion of five aeolian sand transport measuring devices operating on different measuring principles

    Science.gov (United States)

    Goossens, Dirk; Nolet, Corjan; Etyemezian, Vicken; Duarte-Campos, Leonardo; Bakker, Gerben; Riksen, Michel

    2018-06-01

    Five types of sediment samplers designed to measure aeolian sand transport were tested during a wind erosion event on the Sand Motor, an area on the west coast of the Netherlands prone to severe wind erosion. Each of the samplers operates on a different principle. The MWAC (Modified Wilson And Cooke) is a passive segmented trap. The modified Leatherman sampler is a passive vertically integrating trap. The Saltiphone is an acoustic sampler that registers grain impacts on a microphone. The Wenglor sampler is an optical sensor that detects particles as they pass through a laser beam. The SANTRI (Standalone AeoliaN Transport Real-time Instrument) detects particles travelling through an infrared beam, but in different channels each associated with a particular grain size spectrum. A procedure is presented to transform the data output, which is different for each sampler, to a common standard so that the samplers can be objectively compared and their relative efficiency calculated. Results show that the efficiency of the samplers is comparable despite the differences in operating principle and the instrumental and environmental uncertainties associated to working with particle samplers in field conditions. The ability of the samplers to register the temporal evolution of a wind erosion event is investigated. The strengths and weaknesses of the samplers are discussed. Some problems inherent to optical sensors are looked at in more detail. Finally, suggestions are made for further improvement of the samplers.

  12. Potential of Probing the Lunar Regolith using Rover-Mounted Ground Penetrating Radar: Moses Lake Dune Field Analog Study

    Science.gov (United States)

    Horz, F.; Heggy, E.; Fong, T.; Kring, D.; Deans, M.; Anglade, A.; Mahiouz, K.; Bualat, M.; Lee, P.; Bluethmann, W.

    2009-01-01

    Probing radars have been widely recognized by the science community to be an efficient tool to explore lunar subsurface providing a unique capability to address several scientific and operational issues. A wideband (200 to 1200 MHz) Ground Penetrating Radar (GPR) mounted on a surface rover can provide high vertical resolution and probing depth from few tens of centimeters to few tens of meters depending on the sounding frequency and the ground conductivity. This in term can provide a better understand regolith thickness, elemental iron concentration (including ilmenite), volatile presence, structural anomalies and fracturing. All those objectives are of important significance for understanding the local geology and potential sustainable resources for future landing sites in particular exploring the thickness, structural heterogeneity and potential volatiles presence in the lunar regolith. While the operation and data collection of GPR is a straightforward case for most terrestrial surveys, it is a challenging task for remote planetary study especially on robotic platforms due to the complexity of remote operation in rough terrains and the data collection constrains imposed by the mechanical motion of the rover and limitation in data transfer. Nevertheless, Rover mounted GPR can be of great support to perform systematic subsurface surveys for a given landing site as it can provide scientific and operational support in exploring subsurface resources and sample collections which can increase the efficiency of the EVA activities for potential human crews as part of the NASA Constellation Program. In this study we attempt to explore the operational challenges and their impact on the EVA scientific return for operating a rover mounted GPR in support of potential human activity on the moon. In this first field study, we mainly focused on the ability of GPR to support subsurface sample collection and explore shallow subsurface volatiles.

  13. Sand Transport under Highly Turbulent Airflow on a Beach Surface

    Science.gov (United States)

    Baas, A. C. W.; Jackson, D. W. T.; Cooper, J. A. G.; Lynch, K.; Delgado-Fernandez, I.; Beyers, J. H. M.

    2012-04-01

    The past decade has seen a growing body of research on the relation between turbulence in the wind and the resultant transport of sediment over active sand surfaces. Widespread use of sonic anemometry and high-frequency sand transport sensors and traps have facilitated recent field studies over dunes and beach surfaces, to move beyond monitoring of mean wind speed and bulk transport to more detailed measurements at much higher spatio-temporal resolutions. In this paper we present results of a field study conducted in the recirculation flow and re-attachment zone on a beach behind a foredune at Magilligan Strand, Northern Ireland. The offshore winds over the foredune at this site are associated with flow separation and reversal located over the beach surface in the lee of the dune row, often strong enough to induce sand transport toward the toe of the foredune ('against' the overall offshore flow). The re-attachment and recirculation zone are associated with strongly turbulent fluid flow and complex streamlines that do not follow the underlying topography. High frequency (25 Hz) wind and sand transport data were collected at a grid of point locations distributed over the beach surface between 35 m to 55 m distance from the 10 m high dune crest, using ultrasonic anemometers at 0.5 m height and co-located load cell traps and Safires at the bed surface. The wind data are used to investigate the role of Reynolds shear stresses and quadrant analysis techniques for identifying burst-sweep events in relation to sand transport events. This includes an assessment of the issues involved with data rotations for yaw, pitch, and roll corrections relative to complex flow streamlines, and the subsequently derived turbulence parameters based on fluctuating vector components (u', v', w'). Results illustrate how transport may exist under threshold mean velocities because of the role played by coherent flow structures, and the findings corroborate previous findings that shear velocity

  14. Ecologia do forrageio por Cyphomyrmex morschi Emery (Hymenoptera, Formicidae em vegetação de restinga no Sul do Brasil Foraging ecology of Cyphomyrmex morschi Emery (Hymenoptera, Formicidae in sand dune vegetation at Southern Brazil

    Directory of Open Access Journals (Sweden)

    Benedito Cortês Lopes

    2007-03-01

    Full Text Available Foram amostrados 400 ninhos de Cyphomyrmex morschi Emery, 1887 entre 1997 e 1998, nas dunas da praia da Joaquina, Florianópolis, SC, para a verificação do material transportado ao ninho. Estas formigas utilizam material de origem vegetal ou animal (fezes de lagartas de Lepidoptera ou partes de corpos de besouros ou formigas ou mesmo material não identificado que são introduzidos no ninho para o cultivo do fungo. Assim, do ponto de vista do papel ecológico desempenhado, pode-se considerar C. morschi como uma espécie detritófaga.A total of 400 nests of Cyphomyrmex morschi Emery, 1887 was evaluated between 1997 and 1998 at the dunes of the Joaquina Beach, Florianópolis, Santa Catarina, in order to verify the substrate brought back to the nests. These ants use vegetable or animal material (excrements of lepidopteran larvae or carcasses of beetles or ants or even not identified material that are used to culture the fungus. Thus, ecologically speaking, C. morschi can be considered a detritiphagous species.

  15. Dynamic dune management, integrating objectives of nature development and coastal safety: Examples from the Netherlands

    Science.gov (United States)

    Arens, Sebastiaan M.; Mulder, Jan P. M.; Slings, Quirinus L.; Geelen, Luc H. W. T.; Damsma, Petra

    2013-10-01

    This paper discusses and compares results of management interventions to remobilise dunes and obtain more autonomous changes in foredunes resulting from a change in coastal defence policy. In recent decades, nature conservation managers tried to restore aeolian dynamics and dune mobility landward of foredunes to maintain threatened, rare pioneer species. Results indicate that destabilisation activities yielded an important increase of blowing sand and its effects on ecology but with a limited effect on the desired integral remobilization of dunes. Roots remaining in the sand after removal of vegetation and soil is one of the main problems. Follow up removal of roots for 3 to 5 years seems to be essential, but it is not clear whether the dunes will remain mobile in the long term. In 1990 the Dutch government decided to maintain the position of the coastline by artificial sand nourishment. An intensive management of the foredunes was no longer required. Consequently, natural processes in the foredunes revived, and the sediment budget of the beach-dune system changed. Two main types of responses are visible. In some areas, increased input of sand resulted in the development of embryonic dunes seaward of the former foredunes, leading to increased stabilisation of the former foredunes. In other areas, development of embryonic dunes was insignificant despite the increased sand input, but wind erosion features developed in the foredunes, and the environment was more dynamic. The reasons for the differences are not clear, and the interaction between shoreface, beach and dunes is still poorly understood. Until now, attempts to mobilise the inner dunes were independent of changes made to the foredunes. We argue that an integrated, dynamic approach to coastal management, taking account of all relevant functions (including safety and natural values) and the dune-beach system as a whole, may provide new and durable solutions. An integrated approach would ideally provide fresh

  16. Self-Synchronization of Numerical Granular Flows: A Key to Musical Sands?

    Science.gov (United States)

    Staron, L.

    2011-12-01

    In some rare circumstances, sand flows at the surface of dunes are able to produce a loud sound known as "the song of dunes". The complex mechanisms at the source of these singing properties are far from fully understood. In this study, granular flows are simulated in two dimensions using the discrete Contact Dynamics algorithm. We show that the motion of grains at the surface of the flows exhibits a well-defined oscillation, the frequency of which is not described by the natural frequencies of the system, and does not depend on the rigid or erodible bottom condition. To explain this oscillation, we propose a simple synchronization model based on the existence of coherent structures, or clusters, at the surface of the flow, which yields successful prediction of the numerically observed frequencies. Our analysis gives consistent results when compared with field data from booming dunes, offers a possible explanation for the field observation of sound-generation velocity threshold, and provides new keys to the understanding of musical sands.

  17. Fontainebleau Sand

    DEFF Research Database (Denmark)

    Leth, Caspar Thrane

    2006-01-01

    The report is a summary of results from laboratory tests in the geotechncial research group on Fontainebleau sand.......The report is a summary of results from laboratory tests in the geotechncial research group on Fontainebleau sand....

  18. Martian Dune Ripples as Indicators of Recent Surface Wind Patterns

    Science.gov (United States)

    Johnson, M.; Zimbelman, J. R.

    2015-12-01

    Sand dunes have been shown to preserve the most recent wind patterns in their ripple formations. This investigation continues the manual documentation of ripples on Martian dunes in order to assess surface wind flow. Study sites investigated must have clear HiRISE frames and be able to represent diverse locations across the surface, decided primarily by their spread of latitude and longitude values. Additionally, frames with stereo pairs are preferred because of their ability to create digital terrain models. This will assist in efforts to relate dune slopes and obstacles to ripple patterns. The search and analysis period resulted in 40 study sites with mapped ripples. Lines were drawn perpendicular to ripple crests across three adjacent ripples in order to document both ripple wavelength from line length and inferred wind direction from azimuth. It is not possible to infer a unique wind direction from ripple orientation alone and therefore these inferred directions have a 180 degree ambiguity. Initial results from all study sites support previous observations that the Martian surface has many dune types in areas with adequate sand supply. The complexity of ripple patterns varies greatly across sites as well as within individual sites. Some areas of uniform directionality for hundreds of kilometers suggest a unimodal wind regime while overlapping patterns suggest multiple dominant winds or seasonally varying winds. In most areas, form flow related to dune shape seems to have a large effect on orientation and must be considered along with the dune type. As long as the few steep slip faces on these small dunes are avoided, form flow can be considered the dominant cause of deviation from the regional wind direction. Regional results, wind roses, and comparisons to previous work will be presented for individual sites.

  19. Dunes on planet Tatooine: Observation of barchan migration at the Star Wars film set in Tunisia

    Science.gov (United States)

    Lorenz, Ralph D.; Gasmi, Nabil; Radebaugh, Jani; Barnes, Jason W.; Ori, Gian G.

    2013-11-01

    Sand dune migration is documented with a readily-available tool (Google Earth) near Chott El Gharsa, just north-west of Tozeur, Tunisia. As fiducial markers we employ a set of buildings used to portray the fictional city Mos Espa. This set of ~ 20 buildings over roughly a hectare was constructed in 1997 for the movie Star Wars Episode 1 - The Phantom Menace. The site now lies between the arms of a large “pudgy” barchan dune, which has been documented via satellite imaging in 2002, 2004, 2008 and 2009 to have moved from ~ 140 m away to only ~ 10 m away. Visits by the authors to the site in 2009 and 2011 confirm the barchan to be in a threatening position: a smaller set nearby was substantially damaged by being overrun by dunes circa 2004. The migration rate of ~ 15 m/yr decreases over the observation period, possibly as a result of increased local rainfall, and is consistent with barchan migration rates observed at other locations worldwide. The migration rate of this and two other barchans suggests sand transport of ~ 50 m3/m/yr, somewhat higher than would be suggested by traditional wind rose calculations: we explore possible reasons for this discrepancy. Because of the link to popular science fiction, the site may be of pedagogical interest in teaching remote sensing and geomorphic change. We also note that nearby playa surfaces and agricultural areas have a time-variable appearance. The site's popularity as a destination for Star Wars enthusiasts results in many photographs being posted on the internet, providing a rich set of in-situ imagery for continued monitoring in the absence of dedicated field visits.

  20. Annual monsoon rains recorded by Jurassic dunes.

    Science.gov (United States)

    Loope, D B; Rowe, C M; Joeckel, R M

    2001-07-05

    Pangaea, the largest landmass in the Earth's history, was nearly bisected by the Equator during the late Palaeozoic and early Mesozoic eras. Modelling experiments and stratigraphic studies have suggested that the supercontinent generated a monsoonal atmospheric circulation that led to extreme seasonality, but direct evidence for annual rainfall periodicity has been lacking. In the Mesozoic era, about 190 million years ago, thick deposits of wind-blown sand accumulated in dunes of a vast, low-latitude desert at Pangaea's western margin. These deposits are now situated in the southwestern USA. Here we analyse slump masses in the annual depositional cycles within these deposits, which have been described for some outcrops of the Navajo Sandstone. Twenty-four slumps, which were generated by heavy rainfall, appear within one interval representing 36 years of dune migration. We interpret the positions of 20 of these masses to indicate slumping during summer monsoon rains, with the other four having been the result of winter storms. The slumped lee faces of these Jurassic dunes therefore represent a prehistoric record of yearly rain events.

  1. Probabilistic estimation of dune retreat on the Gold Coast, Australia

    Science.gov (United States)

    Palmsten, Margaret L.; Splinter, Kristen D.; Plant, Nathaniel G.; Stockdon, Hilary F.

    2014-01-01

    Sand dunes are an important natural buffer between storm impacts and development backing the beach on the Gold Coast of Queensland, Australia. The ability to forecast dune erosion at a prediction horizon of days to a week would allow efficient and timely response to dune erosion in this highly populated area. Towards this goal, we modified an existing probabilistic dune erosion model for use on the Gold Coast. The original model was trained using observations of dune response from Hurricane Ivan on Santa Rosa Island, Florida, USA (Plant and Stockdon 2012. Probabilistic prediction of barrier-island response to hurricanes, Journal of Geophysical Research, 117(F3), F03015). The model relates dune position change to pre-storm dune elevations, dune widths, and beach widths, along with storm surge and run-up using a Bayesian network. The Bayesian approach captures the uncertainty of inputs and predictions through the conditional probabilities between variables. Three versions of the barrier island response Bayesian network were tested for use on the Gold Coast. One network has the same structure as the original and was trained with the Santa Rosa Island data. The second network has a modified design and was trained using only pre- and post-storm data from 1988-2009 for the Gold Coast. The third version of the network has the same design as the second version of the network and was trained with the combined data from the Gold Coast and Santa Rosa Island. The two networks modified for use on the Gold Coast hindcast dune retreat with equal accuracy. Both networks explained 60% of the observed dune retreat variance, which is comparable to the skill observed by Plant and Stockdon (2012) in the initial Bayesian network application at Santa Rosa Island. The new networks improved predictions relative to application of the original network on the Gold Coast. Dune width was the most important morphologic variable in hindcasting dune retreat, while hydrodynamic variables, surge and

  2. Ciclos de actividad diaria y estacional de un gremio de saurios en las dunas de arena de Viesca, Coahuila, México Daily and seasonal activity patterns of a lizard guild in the sand dunes of Viesca, Coahuila, Mexico

    Directory of Open Access Journals (Sweden)

    Cristina García-De la Peña

    2007-06-01

    Full Text Available En el 2002 se evaluaron los ciclos de actividad diaria y estacional de los saurios Uta stejnegeri, Uma exsul y Aspidoscelis marmorata en un hábitat de dunas al suroeste de Coahuila, México. Se recorrió un transecto de 500 m, cada hora (de 0700 a 1900 h durante 7 días, en primavera, verano y otoño. Se registró el número de individuos activos por especie, la temperatura del aire y del sustrato, y la humedad relativa. La amplitud de nicho temporal se calculó mediante el Índice estandarizado de Levins, y el traslape de nicho mediante el método de Pianka. En las 3 estaciones del año U. stejnegeri inició su actividad más temprano que U. exsul, y ésta, a su vez, se registró antes que A. marmorata. Las 3 especies presentaron un ciclo de actividad bimodal durante primavera y verano, y unimodal en otoño. Aspidoscelis marmorata presentó la menor amplitud de nicho temporal durante las 3 estaciones. La temperatura corporal de cada especie y la temperatura ambiental parecen determinar los patrones de actividad de este gremio de saurios en Viesca.In 2002, daily and seasonal activity patterns of the lizards Uta stejnegeri, Uma exsul, and Aspidoscelis marmorata were evaluated in a dune habitat in the southwestern portion of Coahuila, Mexico. Methods included surveying a 500 m transect once per hour between 0700 and 1900 for 7 days each season during the spring, summer and fall. The number of active lizards, air and substrate temperatures, and relative humidity were recorded. A standardized Levins Index and Pianka’s method were used to measure temporal niche breadth and overlap, respectively. In each of the 3 seasons, U. stejnegeri was active earlier than U. exsul, and U. exsul was active before A. marmorata. The 3 species showed a bimodal activity pattern during spring and summer, and unimodal in fall. Aspidoscelis marmorata showed the smallest niche breadth in the 3 seasons. For each species, preferred body temperature and environmental

  3. Field Evaluation/Demonstration of a Multisegmented Dewatering System for Accreting Beach Sand in a High-Wave-Energy Environment

    National Research Council Canada - National Science Library

    Curtis, William

    1998-01-01

    This study documents the use of beach dewatering systems to accrete beach sand and minimize erosion, and to develop quantitative guidance for constructing and operating beach dewatering installations...

  4. Using both free surface effect and sediment transport mode parameters in defining the morphology of river dunes and their evolution to upper stage plane beds, doi: 10.1061/(ASCE)HY.1943-7900.0000873

    NARCIS (Netherlands)

    Naqshband, Suleyman; Ribberink, Jan S.; Hulscher, Suzanne J.M.H.

    2014-01-01

    Dunes are common bed forms in sand bed rivers and are of central interest in water management purposes. Due to flow separation and associated energy dissipation, dunes form the main source of hydraulic roughness. A large number of dune dimension data sets was compiled and analyzed in this study—414

  5. Weeds of cereal stubble-fields on various soils in the Kielce region. P. 1. Podzolic and brown soils developed from sands and loams

    Directory of Open Access Journals (Sweden)

    Franciszek Pawłowski

    2013-12-01

    Full Text Available Occupying cereal stubble-fields weed flora is the most characteristic of the environmental (especially soil conditions. Because of its developing and accomplishing the reproductive stages there it can threatens cultivated plants. They are considered to complete the seed store in a soil by 393 min per ha. The results presented in the paper concern the species composition, number and constancy (S and indice of coverage (D of the cereal stubble-field weed species on various soils in the Kielce region (the central part of Poland. The report was based upon 885 phytosociological records collected in the 268 stands. The records were carried out after the crop harvest, in the latter part of September, in 1976-1980. Soil were chosen on the base of soil maps. The analyse of soil samples, taken at the investigation process, were done in order to confirm the soil quality. The worked out material was divided into three parts. The first part, including 369 phytosociological records collected in the 112 stands (in 90 localities concerns stubble-field weeds on podzolic and brown soils developed from sands (loose, weakly loamy and loamy and loams (light and medium. It was found that these soils were grown by 108 (loamy sands to 132 (weakly loamy sands weed species. Among them 66 species were common for all of the soils. Species composition was not differentiated by the soil type (brown, podzolic within kind of the. soil (sand or loams. Among soil examined, the brown loams was the most abundant with species of high constancy degree (30 species but brown loose sands and podzolic loamy sands was the poorest one with (16 species.

  6. Pesticide leaching in polders : field and model studies on cracked clays and loamy sand

    NARCIS (Netherlands)

    Groen, K.P.

    1997-01-01

    This thesis reports on a study of pesticide leaching in polder areas. The study comprises two aspects: a data collection program and the development, calibration and application of the model SWACRO for the simulation of pesticide transport.

    Field data were

  7. First quantification of relationship between dune orientation and sediment availability, Olympia Undae, Mars

    Science.gov (United States)

    Fernandez-Cascales, Laura; Lucas, Antoine; Rodriguez, Sébastien; Gao, Xin; Spiga, Aymeric; Narteau, Clément

    2018-05-01

    Dunes provide unique information about wind regimes on planetary bodies where there is no direct meteorological data. At the eastern margin of Olympia Undae on Mars, dune orientation is measured from satellite imagery and sediment cover is estimated using the high contrast between the dune material and substrate. The analysis of these data provide the first quantification of relationship between sediment availability and dune orientation. Abrupt and smooth dune reorientations are associated with inward and outward dynamics of dunes approaching and ejecting from major sedimentary bodies, respectively. These reorientation patterns along sediment transport pathways are interpreted using a new generation dune model based on the coexistence of two dune growth mechanisms. This model also permits solving of the inverse problem of predicting the wind regime from dune orientation. For bidirectional wind regimes, solutions of this inverse problem show substantial differences in the distributions of sediment flux orientation, which can be attributed to atmospheric flow variations induced by changes in albedo at the boundaries of major dune fields. Then, we conclude that relationships between sediment cover and dune orientation can be used to constrain wind regime and dune field development on Mars and other planetary surfaces.

  8. Field testing, comparison, and discussion of five aeolian sand transport measuring devices operating on different measuring principles

    NARCIS (Netherlands)

    Goossens, Dirk; Nolet, Corjan; Etyemezian, Vicken; Duarte-campos, Leonardo; Bakker, Gerben; Riksen, Michel

    2018-01-01

    Five types of sediment samplers designed to measure aeolian sand transport were tested during a wind erosion event on the Sand Motor, an area on the west coast of the Netherlands prone to severe wind erosion. Each of the samplers operates on a different principle. The MWAC (Modified Wilson And

  9. Field testing, comparison, and discussion of five aeolian sand transport measuring devices operation on different measuring priciples

    NARCIS (Netherlands)

    Goossens, Dirk; Nolet, C.; Etyemezian, Vicken; Duarte-Campos, Leonardo; Bakker, G.; Riksen, M.J.P.M.

    2018-01-01

    Five types of sediment samplers designed to measure aeolian sand transport were tested during a wind erosion event on the Sand Motor, an area on the west coast of the Netherlands prone to severe wind erosion. Each of the samplers operates on a different principle. The MWAC (Modified Wilson And

  10. An Integrated Rock Typing Approach for Unraveling the Reservoir Heterogeneity of Tight Sands in the Whicher Range Field of Perth Basin, Western Australia

    DEFF Research Database (Denmark)

    Ilkhchi, Rahim Kadkhodaie; Rezaee, Reza; Harami, Reza Moussavi

    2014-01-01

    Tight gas sands in Whicher Range Field of Perth Basin show large heterogeneity in reservoir characteristics and production behavior related to depositional and diagenetic features. Diagenetic events (compaction and cementation) have severely affected the pore system. In order to investigate...... the petrophysical characteristics, reservoir sandstone facies were correlated with core porosity and permeability and their equivalent well log responses to describe hydraulic flow units and electrofacies, respectively. Thus, very tight, tight, and sub-tight sands were differentiated. To reveal the relationship...... between pore system properties and depositional and diagenetic characteristics in each sand type, reservoir rock types were extracted. The identified reservoir rock types are in fact a reflection of internal reservoir heterogeneity related to pore system properties. All reservoir rock types...

  11. Coastal dune dynamics in response to excavated foredune notches

    Science.gov (United States)

    Ruessink, B. G.; Arens, S. M.; Kuipers, M.; Donker, J. J. A.

    2018-04-01

    Dune management along developed coasts has traditionally focussed on the suppression of the geomorphic dynamics of the foredune to improve its role in sea defence. Because a stabilized foredune acts as an almost total barrier to aeolian transport from the beach, the habitat diversity in the more landward dunes has degraded. With the overarching objective to mitigate this undesirable loss in biodiversity, dune management projects nowadays increasingly intend to restore aeolian dynamics by reconnecting the beach-dune system with notches excavated through the foredune. Here, we use repeat topographic survey data to examine the geomorphic response of a coastal dune system in the Dutch National Park Zuid-Kennemerland to five notches excavated in 2012-2013 within an 850-m stretch of the 20-m high established foredune. The notches were dug in a V-shape (viewed onshore), with a width between approximately 50 and 100 m at the top, a (cross-dune) length between 100 and 200 m, and excavation depths between 9 and 12.5 m. The 1 × 1 m digital terrain models, acquired with airborne Lidar and UAV photogrammetry, illustrate that during the 3-year survey period the notches developed into a U-shape because of wall deflation, and that up to 8-m thick and 150-m long depositional lobes formed landward of the notches. Sand budget computations showed that the sand volume of the entire study area increased by about 22,750 m3/year, which, given the 850-m width of the study area, corresponds to an aeolian input from the beach of approximately 26.5 m3/m/year. Between 2006 and 2012 all wind-blown beach sand deposited on the seaward side of the foredune; since 2013, the notches have caused 75% of the sand to be deposited landward of the foredune. This highlights that the notches are highly effective conduits for aeolian transport into the back dunes. Future monitoring is required to determine for how long the notches will stimulate aeolian dynamics and if (and when) vegetation eventually

  12. Frost-free Dunes

    Science.gov (United States)

    2006-01-01

    [figure removed for brevity, see original site] Context image for PIA03291 Frost-free Dunes These dark dunes are frost covered for most of the year. As southern summer draws to a close, the dunes have been completely defrosted. Image information: VIS instrument. Latitude -66.6N, Longitude 37.0E. 34 meter/pixel resolution. Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time. NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  13. Field pilot test of surfactant-enhanced remediation of trichloroethane DNAPL in a sand aquifer

    International Nuclear Information System (INIS)

    Jackson, R.E.; Butler, G.W.; Londergan, J.T.; Mariner, P.E.; Pickens, J.F.; Fountain, J.C.

    1994-01-01

    The sequence of lacustrine and outwash deposits beneath a vapor degreasing operation at the Paducah Gaseous Division Plant, Kentucky, is contaminated with trichloroethane due to leakage from a sewer/sump line. A plume of dissolved trichloroethane (TCE) extends throughout an area of approximately 3 km 2 in the Regional Gravel Aquifer (RGA) which is located between 20 and 30 meters below ground surface. It is suspected that some 40,000 liters of TCE might have escaped into the subsurface at Paducah, most of which is still present in the lacustrine deposits and the underlying RGA as DNAPL. A field test to confirm the presence of TCE DNAPL in the sandy, upper portion of the RGA around a monitoring well and to test the efficiency of the surfactant for TCE solubilization is described. The aqueous concentrations of TCE in this well have consistently been measured at 300--550 mg TCE/L over a period of three years. The use of Capillary and Bond numbers to estimate the improbability of mobilization of DNAPL due to the lowering of the interfacial tension is described. The multiphase, multicomponent simulator UTCHEM was used to simulate both the injection and extraction of the surfactant solution and the solubilization of the TCE by the surfactant micelles

  14. Effect of injection water quality on permeability of productive sands in Shaimsk group of oil fields

    Energy Technology Data Exchange (ETDEWEB)

    Andreeva, N I; Ivanov, V N; Lazarev, V N; Maksimov, V P

    1966-01-01

    Water from the Kond River is used to flood Shaimsk oil fields. Effect of raw and filtered waters on permeability of Shaimsk cores was experimentally determined. The raw river water contained 26 mg/liter of suspended solids, 10.7 mg/liter of total iron, 4.3 mg/liter of suspended iron oxide, and a pH of 6.4. The filtered river water was free of suspended solids and had a pH of 6.2. It was found that both raw and filtered water decreased core permeability. The unfiltered water decreased permeability 2 to 7 times more than the filtered water. Also, the decrease in permeability occurs much more slowly with the filtered than the unfiltered water. The effect of water on core permeability is essentially irreversible. Efforts to restore core permeability by reversing flow direction were not successful. Among the reasons for the permeability decrease were hydration and swelling of clays and evolution of gases from water in the cores. (10 refs.)

  15. Motion of a particle in a radial space-charge field and in an axial magnetic field; Le mouvement d'une particule dans un champ de charge d'espace radial et un champ magnetique axial

    Energy Technology Data Exchange (ETDEWEB)

    Canobbio, E [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires. Services de Physique Appliquee, Service d' Ionique Generale, Section d' Etudes des Interactions Ondes Plasmas; Finzi, U [Institut de Physique Theorique de Milan (Italy)

    1966-07-01

    The motion of a charged particle in an axial uniform steady magnetic field, under the action of a radial space charge is calculated. A cylindrical symmetric charge distribution similar to the one which is observed in HF plasma accelerators is assumed. The particle motion is discussed with the method of effective potentials. A radial acceleration of ions is shown to be possible if the space charge density is sufficiently high. The displacement of the turning points of the trajectories due to the electrostatic field is calculated in the low plasma density approximation. Finally a HF circularly polarized electric field is introduced, the shift in cyclotron resonance is calculated and a low frequency resonance is found to be possible. (authors) [French] On etudie le mouvement d'une particule dans un champ magnetique axial uniforme et constant en presence d'un champ de charge d'espace radial. On considere une distribution de charge a symetrie cylindrique, semblable a celle qu'on observe dans les accelerateurs de plasma a H.F. On se sert des potentiels effectifs pour discuter les caracteristiques du mouvement. Une acceleration radiale des ions est possible lorsque la densite de charge est assez elevee. On calcule aussi les deplacements des points de rebroussement des trajectoires produits par un champ electrostatique faible. On introduit enfin un champ electrique HF polarise circulairement et on calcule le deplacement de la resonance de cyclotron du au champ de charge d'espace. En meme temps on voit apparaitre dans l'energie cinetique de la particule une resonance a basse frequence. (auteurs)

  16. Sediment flux and airflow on the stoss slope of a barchan dune

    Science.gov (United States)

    Lancaster, N.; Nickling, W. G.; Neuman, C. K. McKenna; Wyatt, V. E.

    1996-09-01

    Measurements of sediment flux on the windward slope of an isolated barchan using an array of 30 sand traps provide new data that can constrain models of dune dynamics. The data show that at low wind incident speeds, flux increases up the dune exponentially, whereas at higher wind speeds the increase with distance approaches linearity. Wind profile measurements, conducted at the same time as the flux measurements, indicate that, although wind speed at a given height increases by 1.2 times from dune toe to brinkline, wind shear velocity derived from the profile data decreases up the dune and is in many cases below transport threshold values. This demonstrates that conventional wind profiles, derived from anemometry on dunes, do not measure the part of the boundary layer that is significant for sediment transport.

  17. Dune-Yardang Interactions in Becquerel Crater, Mars

    Science.gov (United States)

    Urso, Anna; Chojnacki, Matthew; Vaz, David A.

    2018-02-01

    Isolated landscapes largely shaped by aeolian processes can occur on Earth, while the majority of Mars' recent history has been dominated by wind-driven activity. Resultantly, Martian landscapes often exhibit large-scale aeolian features, including yardang landforms carved from sedimentary-layered deposits. High-resolution orbital monitoring has revealed that persistent bedform activity is occurring with dune and ripple migration implying ongoing abrasion of the surface. However, little is known about the interaction between dunes and the topography surrounding them. Here we explore dune-yardang interactions in Becquerel crater in an effort to better understand local landscape evolution. Dunes there occur on the north and south sides of a 700 m tall sedimentary deposit, which displays numerous superposed yardangs. Dune and yardang orientations are congruent, suggesting that they both were formed under a predominantly northerly wind regime. Migration rates and sediment fluxes decrease as dunes approach the deposit and begin to increase again downwind of the deposit where the effect of topographic sheltering decreases. Estimated sand abrasion rates (16-40 μm yr-1) would yield a formation time of 1.8-4.5 Myr for the 70 m deep yardangs. This evidence for local aeolian abrasion also helps explain the young exposure ages of deposit surfaces, as estimated by the crater size-frequency distribution. Comparisons to terrestrial dune activity and yardang development begin to place constraints on yardang formation times for both Earth and Mars. These results provide insight into the complexities of sediment transport on uneven terrain and are compelling examples of contemporary aeolian-driven landscape evolution on Mars.

  18. Dune-Yardang Interactions in Becquerel Crater, Mars.

    Science.gov (United States)

    Urso, Anna; Chojnacki, Matthew; Vaz, David A

    2018-01-01

    Isolated landscapes largely shaped by aeolian processes can occur on Earth, while the majority of Mars' recent history has been dominated by wind-driven activity. Resultantly, Martian landscapes often exhibit large-scale aeolian features, including yardang landforms carved from sedimentary-layered deposits. High-resolution orbital monitoring has revealed that persistent bedform activity is occurring with dune and ripple migration implying ongoing abrasion of the surface. However, little is known about the interaction between dunes and the topography surrounding them. Here we explore dune-yardang interactions in Becquerel crater in an effort to better understand local landscape evolution. Dunes there occur on the north and south sides of a 700 m tall sedimentary deposit, which displays numerous superposed yardangs. Dune and yardang orientations are congruent, suggesting that they both were formed under a predominantly northerly wind regime. Migration rates and sediment fluxes decrease as dunes approach the deposit and begin to increase again downwind of the deposit where the effect of topographic sheltering decreases. Estimated sand abrasion rates (16-40 μm yr -1 ) would yield a formation time of 1.8-4.5 Myr for the 70 m deep yardangs. This evidence for local aeolian abrasion also helps explain the young exposure ages of deposit surfaces, as estimated by the crater size-frequency distribution. Comparisons to terrestrial dune activity and yardang development begin to place constraints on yardang formation times for both Earth and Mars. These results provide insight into the complexities of sediment transport on uneven terrain and are compelling examples of contemporary aeolian-driven landscape evolution on Mars.

  19. A Late Pleistocene linear dune dam record of aeolian-fluvial dynamics at the fringes of the northwestern Negev dunefield

    Science.gov (United States)

    Roskin, Joel; Bookman, Revital; Friesem, David; Vardi, Jacob

    2017-04-01

    The paper presents a late Pleistocene aeolian-fluvial record within a linear dune-like structure that partway served as a dune dam. Situated along the southern fringe of the northwestern Negev desert dunefield (Israel) the structure's morphology, orientation, and some of its stratigraphic units partly resemble adjacent west-east extending vegetated linear dunes. Uneven levels of light-colored, fine-grained fluvial deposits (LFFDs) extend to the north and south from the flanks of the studied structure. Abundant Epipalaeolithic sites line the fringes of the LFFDs. The LFFD microstructures of fine graded bedding and clay blocky peds indicate sorting and shrinking of saturated clays in transitional environments between low energy flows to shallow standing water formed by dunes damming a mid-sized drainage system. The structure's architecture of interchanging units of sand with LFFDs indicates interchanging dominances between aeolian sand incursion and winter floods. Sand mobilization associated with powerful winds during the Heinrich 1 event led to dune damming downstream of the structure and within the structure to in-situ sand deposition, partial fluvial erosion, reworking of the sand, and LFFD deposition. Increased sand deposition led to structure growth and blockage of its drainage system that in turn accumulated LFFD units up stream of the structure. Extrapolation of current local fluvial sediment yields indicate that LFFD accretion up to the structure's brim occurred over a short period of several decades. Thin layers of Geometric Kebaran (c. 17.5-14.5 ka cal BP) to Harifian (12-11 ka BP) artifacts within the structure's surface indicates intermittent, repetitive, and short term camping utilizing adjacent water along a timespan of 4-6 kyr. The finds directly imply that the NW Negev LFFDs formed in dune-dammed water bodies which themselves were formed following events of vegetated linear dune elongation. LFFD accumulation persisted as a result of dune dam

  20. 75 FR 20826 - Notice of Intent To Prepare a Draft Environmental Impact Statement on Beach and Dune Restoration...

    Science.gov (United States)

    2010-04-21

    ... restore the beach and dune by placing approximately 610,000 cubic yards of beach compatible sand along the proposed project's beach. The sand will be hopper-dredged from a relict shoal approximately three to six... analyze the following: aesthetics/visual quality, agricultural resources, air quality, biological...

  1. Tales from a distant swamp: Petrological and paleobotanical clues for the origin of the sand coal lithotype (Mississippian, Valley Fields, Virginia)

    Science.gov (United States)

    Hower, J.C.; O'Keefe, J.M.K.; Eble, C.F.

    2008-01-01

    Tournasian (Mississippian) Price Formation semianthracites (Rmax = 2.40%) in the Valley Fields of southwestern Virginia contain a lithotype described in an early-20th-century report as a "sand" coal. The Center for Applied Energy Research inherited a collection of coals containing sand coal specimens, making it possible to study the lithotype from the long-closed mines. The sand coal consists of rounded quartz sand and maceral assemblages (secretinite, corpogelinite, and rounded collotelinite) along with banded collotelinite, vitrodetrinite, and inertodetrinite assemblages. The association of rounded macerals and similar-size quartz grains suggests transport. Oxidation rims surrounding the rounded collotelinite provides further evidence for transport. Due to the semianthracite rank, palynology could not be performed. Stratigraphic evidence indicates that the Lepidodendropsis flora would have been the dominant mire vegetation. Pteridosperms in this assemblage could have contributed resin rodlets, subsequently metamorphosed to collogelinite or secretinite. While a resin rodlet origin is an intriguing possibility for the origin of the rounded macerals (at least some of the rounded maceral, the rounded collotelinite clearly has a different origin), we cannot definitively prove this origin. ?? 2008 Elsevier B.V. All rights reserved.

  2. The Effect of the Kind of Sands and Additions on the Mechanical Behaviour of S.C.C

    Science.gov (United States)

    Zeghichi, L.; Benghazi, Z.; Baali, L.

    The sand is an inert element essential in the composition of concrete; its use ensures granular continuity between the cement and gravel for better cohesion of concrete. This paper presents the results of a study that investigated the influence of sand quality on the properties of fresh and hardened self-compacting concrete (SCC). The dune sands are very fine materials characterized by a high intergranular porosity, high surface area and low fineness modulus; on the other hand crushed (manufactured) sand has a high rate into thin and irregular shapes which are influencing the workability of concrete. The amount of dune sand varies from (0% 50%, to 100%) by weight of fine aggregates. The effect of additions is also treated (blast furnace slag and lime stone) The results show that the rheological properties favour the use of dune sands; however the mechanical properties support the use of crushed sand.

  3. Neural network prediction of carbonate lithofacies from well logs, Big Bow and Sand Arroyo Creek fields, Southwest Kansas

    Science.gov (United States)

    Qi, L.; Carr, T.R.

    2006-01-01

    In the Hugoton Embayment of southwestern Kansas, St. Louis Limestone reservoirs have relatively low recovery efficiencies, attributed to the heterogeneous nature of the oolitic deposits. This study establishes quantitative relationships between digital well logs and core description data, and applies these relationships in a probabilistic sense to predict lithofacies in 90 uncored wells across the Big Bow and Sand Arroyo Creek fields. In 10 wells, a single hidden-layer neural network based on digital well logs and core described lithofacies of the limestone depositional texture was used to train and establish a non-linear relationship between lithofacies assignments from detailed core descriptions and selected log curves. Neural network models were optimized by selecting six predictor variables and automated cross-validation with neural network parameters and then used to predict lithofacies on the whole data set of the 2023 half-foot intervals from the 10 cored wells with the selected network size of 35 and a damping parameter of 0.01. Predicted lithofacies results compared to actual lithofacies displays absolute accuracies of 70.37-90.82%. Incorporating adjoining lithofacies, within-one lithofacies improves accuracy slightly (93.72%). Digital logs from uncored wells were batch processed to predict lithofacies and probabilities related to each lithofacies at half-foot resolution corresponding to log units. The results were used to construct interpolated cross-sections and useful depositional patterns of St. Louis lithofacies were illustrated, e.g., the concentration of oolitic deposits (including lithofacies 5 and 6) along local highs and the relative dominance of quartz-rich carbonate grainstone (lithofacies 1) in the zones A and B of the St. Louis Limestone. Neural network techniques are applicable to other complex reservoirs, in which facies geometry and distribution are the key factors controlling heterogeneity and distribution of rock properties. Future work

  4. Source-to-Sink: An Earth/Mars Comparison of Boundary Conditions for Eolian Dune Systems

    OpenAIRE

    Kocurek, Gary; Ewing, Ryan C.

    2012-01-01

    Eolian dune fields on Earth and Mars evolve as complex systems within a set of boundary conditions. A source-to-sink comparison indicates that although differences exist in sediment production and transport, the systems largely converge at the dune-flow and pattern-development levels, but again differ in modes of accumulation and preservation. On Earth, where winds frequently exceed threshold speeds, dune fields are sourced primarily through deflation of subaqueous deposits as these sediments...

  5. Last Glacial Maximum Development of Parna Dunes in Panhandle Oklahoma, USA

    Science.gov (United States)

    Johnson, W. C.; Halfen, A. F.; McGowen, S.; Carter, B.; Fine, S.; Bement, L. C.; Simms, A. R.

    2012-12-01

    Though dunefields are a ubiquitous feature of the North American Great Plains, those studied to date have consisted primarily of sand grains. In Beaver County of the Oklahoma panhandle, however, upland dune forms consist of sand-sized aggregates of silt and clay. These aptly named parna dunes occur in two swarms, range in height from 10-15 m, and have asymmetrical dome morphologies with approximate north-south dune orientations. Despite their morphological similarities to sand dunes of the region, their origin and evolution is unknown. Documenting parna dune formation in the Oklahoma panhandle will help improve our understanding of prehistoric landscape instability and climate change, particularly in the central Great Plains where such records are limited. Panhandle parna dunes are typified by Blue Mound, our best documented parna dune thus far. Coring has documented a basal paleosol buried at a depth equivalent to the surrounding landscape—14C ages from this soil indicate its formation about 25-21 ka. The paleosol is a hydric Mollisol with a pronounced C3 isotopic signature reflecting hydric plant communities, rather than the regionally dominated C4 prairie vegetation. Hydric soils are associated with many of the playas on the surrounding landscape today, which suggests that they may have been more prevalent during the LGM. The overlying 8-10 m of parna is low in organic C and high in calcite, with indications of up to ten major episodes of sediment flux, which are documented with magnetic, isotope, soil-stratigraphic, particle-size, and color data. Near-surface luminescence (OSL) ages from Blue Mound are similar to the 14C ages from the basal paleosol, indicating rapid dune construction, with little or no Holocene accumulation of sediment. Marine isotope stage (MIS) 3 loess records indicate that upland areas of the region were relatively stable with attendant widespread pedogenesis prior to development of the parna dunes. At the onset of the LGM, however, the

  6. Late Pleistocene dune-sourced alluvial fans in coastal settings: Sedimentary facies and related processes (Mallorca, Western Mediterranean)

    Science.gov (United States)

    Pomar, F.; del Valle, L.; Fornós, J. J.; Gómez-Pujol, L.

    2018-05-01

    Aeolian-alluvial sedimentary interaction results in the formation of deposits characterized by typical alluvial sedimentary structures, but is composed of conspicuous amounts of aeolian sediments. The literature on this topic is limited and most works relate more with continental aeolian dunes or fluvial dune interference with fan bodies. Furthermore, there is a lack of examples of aeolian-alluvial sedimentary interference in coastal settings. In the western Mediterranean, there are many Pleistocene alluvial fan deposits built up partly by sediment originating from coastal dunes dismantled by alluvial streams. Very often, these deposits show a continuous sedimentary sequence through which we can derive the contribution and predominance of coastal, alluvial-colluvial and aeolian processes and their controls on landscape formation. This is an outstanding feature within coastal systems since it shows marine sediments reworked and integrated within coastal dune fields by aeolian transport, and the latter built up into alluvial fan bodies. In this sense, aeolian-alluvial interaction is the geomorphic-sedimentary expression of the coexistence and overlapping of alluvial and aeolian environments resulting in deposits sharing sedimentary features from both environments. The aim of this paper is to unravel the contribution of coastal dunes in the construction of alluvial fans bodies and identify the main sedimentary facies that constitute these deposits, as well as their climatic controls. For this reason, Es Caló fan (northern Mallorca) has been selected due to its well-exposed deposits exhibiting the alternation of aeolian, alluvial and colluvial deposits. Sedimentological and stratigraphic analyses based on 33 logs and complementary analyses demonstrate that most of the facies constituting the fan body are made up completely of marine bioclastic sands. These deposits record an alluvial fan sedimentary environment characterized by sediments inputs that do not proceed

  7. Dune recovery after storm erosion on a high-energy beach: Vougot Beach, Brittany (France)

    Science.gov (United States)

    Suanez, Serge; Cariolet, Jean-Marie; Cancouët, Romain; Ardhuin, Fabrice; Delacourt, Christophe

    2012-02-01

    On 10th March 2008, the high energy storm Johanna hit the French Atlantic coast, generating severe dune erosion on Vougot Beach (Brittany, France). In this paper, the recovery of the dune of Vougot Beach is analysed through a survey of morphological changes and hydrodynamic conditions. Data collection focused on the period immediately following storm Johanna until July 2010, i.e. over two and a half years. Results showed that the dune retreated by a maximum of almost 6 m where storm surge and wave attack were the most energetic. Dune retreat led to the creation of accommodation space for the storage of sediment by widening and elevating space between the pre- and post-storm dune toe, and reducing impacts of the storm surge. Dune recovery started in the month following the storm event and is still ongoing. It is characterised by the construction of "secondary" embryo dunes, which recovered at an average rate of 4-4.5 cm per month, although average monthly volume changes varied from - 1 to 2 m 3.m - 1 . These embryo dunes accreted due to a large aeolian sand supply from the upper tidal beach to the existing foredune. These dune-construction processes were facilitated by growth of vegetation on low-profile embryo dunes promoting backshore accretion. After more than two years of survey, the sediment budget of the beach/dune system showed that more than 10,000 m 3 has been lost by the upper tidal beach. We suggest that seaward return currents generated during the storm of 10th March 2008 are responsible for offshore sediment transport. Reconstitution of the equilibrium beach profile following the storm event may therefore have generated cross-shore sediment redistribution inducing net erosion in the tidal zone.

  8. A qualitative assessment of desertification change in the Tarfaya basin (Morocco using panchromatic data of Landsat ETM+ and oli: sand encroachment approach

    Directory of Open Access Journals (Sweden)

    Aydda Ali

    2017-01-01

    Full Text Available The purpose of the present work is to assess desertification change in the Tarfaya basin (Morocco based on quantifying sand dunes mass change at the corridor scale using two Panchromatic bands of Landsat ETM+ and OLI with 15 m of resolution covering the study area for ten years (2005–2016. In this work, the sand dunes quantification is qualitative and is based on automatic extraction and classification of sand dunes shape using co-occurence texture filters and Support Vector Machine (SVM classifier. The statistical results show that the area covered by sand was increased during the last ten years, which reveal that desertification becomes more intense.

  9. 76 FR 9309 - Endangered and Threatened Wildlife and Plants; 90-Day Finding on a Petition To List the Sand...

    Science.gov (United States)

    2011-02-17

    ... Washington. At known locations in British Columbia, the sand verbena moth occurs in small satellite patches... of beach dune habitat remain at the type locality for the sand verbena moth, making this species... and, therefore, the sand verbena moth are adversely affected by the construction of artificial...

  10. Agglomeration of a comprehensive model for the wind-driven sand transport at the Belgian Coast

    Science.gov (United States)

    Strypsteen, Glenn; Rauwoens, Pieter

    2016-04-01

    Although a lot of research has been done in the area of Aeolian transport, it is only during the last years that attention has been drawn to Aeolian transport in coastal areas. In these areas, the physical processes are more complex, due to a large number of transport limiting parameters. In this PhD-project, which is now in its early stage, a model will be developed which relates the wind-driven sand transport at the Belgian coast with physical parameters such as the wind speed, humidity and grain size of the sand, and the slope of beach and dune surface. For the first time, the interaction between beach and dune dynamics is studied at the Belgian coast. The Belgian coastline is only 67km long, but densely populated and therefore subject to coastal protection and safety. The coast mostly consists of sandy beaches and dikes. Although, still 33km of dunes exist, whose dynamics are far less understood. The overall research approach consists of three pathways: (i) field measurements, (ii) physical model tests, and (iii) numerical simulations. Firstly and most importantly, several field campaigns will provide accurate data of meteo-marine conditions, morphology, and sand transport events on a wide beach at the Belgian Coastline. The experimental set-up consists of a monitoring station, which will provide time series of vegetation cover, shoreline position, fetch distances, surficial moisture content, wind speed and direction and transport processes. The horizontal and vertical variability of the event scale Aeolian sand transport is analyzed with 8 MWAC sand traps. Two saltiphones register the intensity and variations of grain impacts over time. Two meteo-masts, each with four anemometers and one wind vane, provide quantitative measurements of the wind flow at different locations on the beach. Surficial moisture is measured with a moisture sensor. The topography measurements are typically done with laser techniques. To start, two sites are selected for measurement

  11. Element Geochemical Analysis of the Contribution of Aeolian Sand to Suspended Sediment in Desert Stream Flash Floods

    Directory of Open Access Journals (Sweden)

    Xiaopeng Jia

    2014-01-01

    Full Text Available The interaction of wind and water in semiarid and arid areas usually leads to low-frequency flash flood events in desert rivers, which have adverse effects on river systems and ecology. In arid zones, many aeolian dune-fields terminate in stream channels and deliver aeolian sand to the channels. Although aeolian processes are common to many desert rivers, whether the aeolian processes contribute to fluvial sediment loss is still unknown. Here, we identified the aeolian-fluvial cycling process responsible for the high rate of suspended sediment transport in the Sudalaer desert stream in the Ordos plateau of China. On the basis of element geochemistry data analysis, we found that aeolian sand was similar to suspended sediment in element composition, which suggests that aeolian sand contributes to suspended sediment in flash floods. Scatter plots of some elements further confirm that aeolian sand is the major source of the suspended sediment. Factor analysis and the relation between some elements and suspended sediment concentration prove that the greater the aeolian process, the higher the suspended sediment concentration and the greater the contribution of aeolian sand to suspended sediment yield. We conclude that aeolian sand is the greatest contributor to flash floods in the Sudalaer desert stream.

  12. Element geochemical analysis of the contribution of aeolian sand to suspended sediment in desert stream flash floods.

    Science.gov (United States)

    Jia, Xiaopeng; Wang, Haibing

    2014-01-01

    The interaction of wind and water in semiarid and arid areas usually leads to low-frequency flash flood events in desert rivers, which have adverse effects on river systems and ecology. In arid zones, many aeolian dune-fields terminate in stream channels and deliver aeolian sand to the channels. Although aeolian processes are common to many desert rivers, whether the aeolian processes contribute to fluvial sediment loss is still unknown. Here, we identified the aeolian-fluvial cycling process responsible for the high rate of suspended sediment transport in the Sudalaer desert stream in the Ordos plateau of China. On the basis of element geochemistry data analysis, we found that aeolian sand was similar to suspended sediment in element composition, which suggests that aeolian sand contributes to suspended sediment in flash floods. Scatter plots of some elements further confirm that aeolian sand is the major source of the suspended sediment. Factor analysis and the relation between some elements and suspended sediment concentration prove that the greater the aeolian process, the higher the suspended sediment concentration and the greater the contribution of aeolian sand to suspended sediment yield. We conclude that aeolian sand is the greatest contributor to flash floods in the Sudalaer desert stream.

  13. Mineralogy of an active eolian sediment from the Namib dune, Gale crater, Mars

    Science.gov (United States)

    Achilles, C. N.; Downs, R. T.; Ming, D. W.; Rampe, E. B.; Morris, R. V.; Treiman, A. H.; Morrison, S. M.; Blake, D. F.; Vaniman, D. T.; Ewing, R. C.; Chipera, S. J.; Yen, A. S.; Bristow, T. F.; Ehlmann, B. L.; Gellert, R.; Hazen, R. M.; Fendrich, K. V.; Craig, P. I.; Grotzinger, J. P.; Des Marais, D. J.; Farmer, J. D.; Sarrazin, P. C.; Morookian, J. M.

    2017-11-01

    The Mars Science Laboratory rover, Curiosity, is using a comprehensive scientific payload to explore rocks and soils in Gale crater, Mars. Recent investigations of the Bagnold Dune Field provided the first in situ assessment of an active dune on Mars. The Chemistry and Mineralogy (CheMin) X-ray diffraction instrument on Curiosity performed quantitative mineralogical analyses of the history of the dune material and offers an important opportunity for ground truth of orbital observations. CheMin's analysis of the mineralogy and phase chemistry of modern and ancient Gale crater dune fields, together with other measurements by Curiosity's science payload, provides new insights into present and past eolian processes on Mars.

  14. 77 FR 60207 - Endangered and Threatened Wildlife and Plants; Proposed Threatened Status for Coral Pink Sand...

    Science.gov (United States)

    2012-10-02

    ... FURTHER INFORMATION CONTACT: Larry Crist, Field Supervisor, U.S. Fish and Wildlife Service, Utah Field... burrows, dune migration characteristics that permit vegetation to develop and persist within dune swales... sediment characteristics not conducive for vegetation nor suitable for larval burrows, dune migration...

  15. Developing sustainable land-use options for mined sand dunes

    CSIR Research Space (South Africa)

    De Wet, Benita

    2012-10-01

    Full Text Available for commercial livestock husbandry Vegetables (pumpkin, chili, sweet potato, amadumbe) for commercial markets Legumes (cowpeas, Bambara nuts, sugar beans, peanuts) for subsistance markets & soil improvement Crop trial for technical viability Sustainable...

  16. Wind-blown sand on beaches: an evaluation of models

    Science.gov (United States)

    Sherman, Douglas J.; Jackson, Derek W. T.; Namikas, Steven L.; Wang, Jinkang

    1998-03-01

    Five models for predicting rates of aeolian sand transport were evaluated using empirical data obtained from field experiments conducted in April, 1994 at a beach on Inch Spit, Co. Kerry, Republic of Ireland. Measurements were made of vertical wind profiles (to derive shear velocity estimates), beach slope, and rates of sand transport. Sediment samples were taken to assess characteristics of grain size and surface moisture content. Estimates of threshold shear velocity were derived using grain size data. After parsing the field data on the basis of the quality of shear velocity estimation and the occurrence of blowing sand, 51 data sets describing rates of sand transport and environmental conditions were retained. Mean grain diameter was 0.17 mm. Surface slopes ranged from 0.02 on the foreshore to about 0.11 near the dune toe. Mean shear velocities ranged from 0.23 m s -1 (just above the observed transport threshold) to 0.65 m s -1. Rates of transport ranged from 0.02 kg m -1 h -1 to more than 80 kg m -1 h -1. These data were used as input to the models of Bagnold [Bagnold, R.A., 1936. The Movement of Desert Sand. Proc. R. Soc. London, A157, 594-620], Kawamura [Kawamura, R., 1951. Study of Sand Movement by Wind. Translated (1965) as University of California Hydraulics Engineering Laboratory Report HEL 2-8, Berkeley], Zingg [Zingg, A.W., 1953. Wind tunnel studies of the movement of sedimentary material. Proc. 5th Hydraulics Conf. Bull. 34, Iowa City, Inst. of Hydraulics, pp. 111-135], Kadib [Kadib, A.A., 1965. A function for sand movement by wind. University of California Hydraulics Engineering Laboratory Report HEL 2-8, Berkeley], and Lettau and Lettau [Lettau, K. and Lettau, H., 1977. Experimental and Micrometeorological Field Studies of Dune Migration. In: K. Lettau and H. Lettau (Eds.), Exploring the World's Driest Climate. University of Wisconsin-Madison, IES Report 101, pp. 110-147]. Correction factors to adjust predictions of the rate of transport to account

  17. Long-term sand supply to Coachella Valley Fringe-toed Lizard Habitat in the Northern Coachella Valley, California

    Science.gov (United States)

    Griffiths, Peter G.; Webb, Robert H.; Lancaster, Nicholas; Kaehler, Charles A.; Lundstrom, Scott C.

    2002-01-01

    The Coachella Valley fringe-toed lizard (Uma inornata) is a federally listed threatened species that inhabits active sand dunes in the vicinity of Palm Springs, California. The Whitewater Floodplain and Willow Hole Reserves provide some of the primary remaining habitat for this species. The sediment-delivery system that creates these active sand dunes consists of fluvial depositional areas fed episodically by ephemeral streams. Finer fluvial sediments (typically sand size and finer) are mobilized in a largely unidirectional wind field associated with strong westerly winds through San Gorgonio Pass. The fluvial depositional areas are primarily associated with floodplains of the Whitewater?San Gorgonio Rivers and Mission Creek?Morongo Wash; other small drainages also contribute fluvial sediment to the eolian system. The eolian dunes are transitory as a result of unidirectional sand movement from the depositional areas, which are recharged with fine-grained sediment only during episodic floods that typically occur during El Ni?o years. Eolian sand moves primarily from west to east through the study area; the period of maximum eolian activity is April through June. Wind speed varies diurnally, with maximum velocities typically occurring during the afternoon. Development of alluvial fans, alteration of stream channels by channelization, in-stream gravel mining, and construction of infiltration galleries were thought to reduce the amount of fluvial sediment reaching the depositional areas upwind of Uma habitat. Also, the presence of roadways, railroads, and housing developments was thought to disrupt or redirect eolian sand movement. Most of the sediment yield to the fluvial system is generated in higher elevation areas with little or no development, and sediment yield is affected primarily by climatic fluctuations and rural land use, particularly livestock grazing and wildfire. Channelization benefits sediment delivery to the depositional plains upwind of the reserves

  18. Production and global transport of Titan's sand particles

    Science.gov (United States)

    Barnes, Jason W.; Lorenz, Ralph D.; Radebaugh, Jani; Hayes, Alexander G.; Arnold, Karl; Chandler, Clayton

    2015-06-01

    Previous authors have suggested that Titan's individual sand particles form by either sintering or by lithification and erosion. We suggest two new mechanisms for the production of Titan's organic sand particles that would occur within bodies of liquid: flocculation and evaporitic precipitation. Such production mechanisms would suggest discrete sand sources in dry lakebeds. We search for such sources, but find no convincing candidates with the present Cassini Visual and Infrared Mapping Spectrometer coverage. As a result we propose that Titan's equatorial dunes may represent a single, global sand sea with west-to-east transport providing sources and sinks for sand in each interconnected basin. The sand might then be transported around Xanadu by fast-moving Barchan dune chains and/or fluvial transport in transient riverbeds. A river at the Xanadu/Shangri-La border could explain the sharp edge of the sand sea there, much like the Kuiseb River stops the Namib Sand Sea in southwest Africa on Earth. Future missions could use the composition of Titan's sands to constrain the global hydrocarbon cycle.

  19. Basaltic lava flows covering active aeolian dunes in the Paraná Basin in southern Brazil: Features and emplacement aspects

    Science.gov (United States)

    Waichel, Breno L.; Scherer, Claiton M. S.; Frank, Heinrich T.

    2008-03-01

    Burial of active aeolian dunes by lava flows can preserve the morphology of the dunes and generate diverse features related to interaction between unconsolidated sediments and lavas. In the study area, located in southern Brazil, burial of aeolian deposits by Cretaceous basaltic lava flows completely preserved dunes, and generate sand-deformation features, sand diapirs and peperite-like breccia. The preserved dunes are crescentic and linear at the main contact with basalts, and smaller crescentic where interlayered with lavas. The various feature types formed on sediment surfaces by the advance of the flows reflect the emplacement style of the lavas which are compound pahoehoe type. Four feature types can be recognized: (a) type 1 features are related to the advance of sheet flows in dune-interdune areas with slopes > 5°, (b) type 2 is formed where the lava flows advance in lobes and climb the stoss slope of crescentic dunes (slopes 8-12°), (c) type 3 is generated by toes that descend the face of linear dunes (slopes 17-23°) and (d) type 4 occurs when lava lobes descend the stoss slope of crescentic dunes (slopes 10-15°). The direction of the flows, the disposition and morphology of the dunes and the ground slope are the main factors controlling formation of the features. The injection of unconsolidated sand in lava lobes forms diapirs and peperite-like breccias. Sand diapirs occur at the basal portion of lobes where the lava was more solidified. Peperite-like breccias occur in the inner portion where lava was more plastic, favoring the mingling of the components. The generation of both features is related to a mechanical process: the weight of the lava causes the injection of sand into the lava and the warming of the air in the pores of the sand facilitates this process. The lava-sediment interaction features presented here are consistent with previous reports of basalt lavas with unconsolidated arid sediments, and additional new sand-deformation features

  20. Large-eddy simulations of unidirectional water flow over dunes

    Science.gov (United States)

    Grigoriadis, D. G. E.; Balaras, E.; Dimas, A. A.

    2009-06-01

    The unidirectional, subcritical flow over fixed dunes is studied numerically using large-eddy simulation, while the immersed boundary method is implemented to incorporate the bed geometry. Results are presented for a typical dune shape and two Reynolds numbers, Re = 17,500 and Re = 93,500, on the basis of bulk velocity and water depth. The numerical predictions of velocity statistics at the low Reynolds number are in very good agreement with available experimental data. A primary recirculation region develops downstream of the dune crest at both Reynolds numbers, while a secondary region develops at the toe of the dune crest only for the low Reynolds number. Downstream of the reattachment point, on the dune stoss, the turbulence intensity in the developing boundary layer is weaker than in comparable equilibrium boundary layers. Coherent vortical structures are identified using the fluctuating pressure field and the second invariant of the velocity gradient tensor. Vorticity is primarily generated at the dune crest in the form of spanwise "roller" structures. Roller structures dominate the flow dynamics near the crest, and are responsible for perturbing the boundary layer downstream of the reattachment point, which leads to the formation of "horseshoe" structures. Horseshoe structures dominate the near-wall dynamics after the reattachment point, do not rise to the free surface, and are distorted by the shear layer of the next crest. The occasional interaction between roller and horseshoe structures generates tube-like "kolk" structures, which rise to the free surface and persist for a long time before attenuating.

  1. Rip currents, mega-cusps, and eroding dunes

    Science.gov (United States)

    Thornton, E.B.; MacMahan, J.; Sallenger, A.H.

    2007-01-01

    Dune erosion is shown to occur at the embayment of beach mega-cusps O(200 m alongshore) that are associated with rip currents. The beach is the narrowest at the embayment of the mega-cusps allowing the swash of large storm waves coincident with high tides to reach the toe of the dune, to undercut the dune and to cause dune erosion. Field measurements of dune, beach, and rip current morphology are acquired along an 18 km shoreline in southern Monterey Bay, California. This section of the bay consists of a sandy shoreline backed by extensive dunes, rising to heights exceeding 40 m. There is a large increase in wave height going from small wave heights in the shadow of a headland, to the center of the bay where convergence of waves owing to refraction over the Monterey Bay submarine canyon results in larger wave heights. The large alongshore gradient in wave height results in a concomitant alongshore gradient in morphodynamic scale. The strongly refracted waves and narrow bay aperture result in near normal wave incidence, resulting in well-developed, persistent rip currents along the entire shoreline. The alongshore variations of the cuspate shoreline are found significantly correlated with the alongshore variations in rip spacing at 95% confidence. The alongshore variations of the volume of dune erosion are found significantly correlated with alongshore variations of the cuspate shoreline at 95% confidence. Therefore, it is concluded the mega-cusps are associated with rip currents and that the location of dune erosion is associated with the embayment of the mega-cusp.

  2. Eolian deposition cycles since AD 500 in Playa San Bartolo lunette dune, Sonora, Mexico: Paleoclimatic implications

    Science.gov (United States)

    Ortega, Beatriz; Schaaf, Peter; Murray, Andrew; Caballero, Margarita; Lozano, Socorro; Ramirez, Angel

    2013-12-01

    Records of past climatic changes in desert environments are scarce due to the poor preservation of biological proxies. To overcome this lack we consider the paleoenvironmental significance and age of a lunette dune at the eastern rim of Playa San Bartolo (PSB) in the Sonoran Desert (Mexico). Thermoluminescence and optical stimulated luminescence (TL and OSL) provide the chronology of lunette dune development. Mineralogical, geochemical (major, trace and REE element concentrations) and rock magnetic analyses allow for the assessment of sediment provenance and changes in the composition of the PSB dune over time. The upper 6 m of dune accumulation occurred over the past 1.5 ka, largely during AD 500-1200, a period that correlates with the Medieval climatic anomaly (AD 300-1300). Variability in composition of dune sediments is attributed to changes in sediment sources. Sand sized deposits are mainly eroded from granitoids from nearby outcrops. Sandy silt deposits, rich in evaporative minerals, resulted after the flooding of PSB, later deflation and accumulation of both detritic and authigenic components in the dune. These findings suggest that main dune accretion occurred during regionally extended drought conditions, disrupted by sporadic heavy rainfall.

  3. Drivers of drift sand dynamics; a reconstruction for the Wekeromse Zand, the Netherlands

    Science.gov (United States)

    Hendriks, Chantal; Sonneveld, Marthijn; Wallinga, Jakob

    2013-04-01

    Inland active drift sand landscapes are regarded as unique ecosystems of great historical and geomorphological value. Recent studies have highlighted the role of multiple factors in the initiation and stabilization of drift sand landscapes. To unravel the importance of different forcings (e.g. agricultural practices, climate) and their interplay, insight in the chronology of drift sand dynamics is essential. In this study, we aimed to reconstruct the dynamics of the drift sand landscape of the Wekeromse Zand (central Netherlands) and to develop a conceptual model to understand the processes involved. The Wekeromse Zand study area (370 ha) is located on the border of a central push moraine and is characterised by open active drift sands (14 ha) and vegetated hills and valleys. The surroundings are dominated by modern agricultural practices, and remnants from ancient iron age Celtic Field systems showing that the area has been in agricultural use since at least the Iron Age. For the study area we: i) analysed historical maps going back to the early 19th century, ii) performed a field survey to map the palaeolandscape (before drift sand activation) and iii) employed optically stimulated luminescence (OSL) dating of drift sand deposits on 11 samples from two locations to determine the timing of drift sand deposition. Analysis of the available topographic maps showed no substantial aeolean activity of the area outside its morphological boundaries. OSL dating revealed that two drift sand layers were deposited between 1373 and 1462 AD and between 1680 and 1780 AD. A layer with a higher organic matter content was found at one of the sites. This suggests that the Wekeromse Zand has known three relatively stable periods: i) a period between the start of the Holocene to the Late Medieval Period, ii) in between the Medieval climatic optimum and the climatic Maunder minimum, and iii) current situation. Despite the fact that agricultural activities occurred in this area from the

  4. Large submarine sand waves and gravel lag substrates on Georges Bank off Atlantic Canada

    Science.gov (United States)

    Todd, B.J.; Valentine, Page C.; Harris, Peter T; Baker, E.K.

    2012-01-01

    Georges Bank is a large, shallow, continental shelf feature offshore of New England and Atlantic Canada. The bank is mantled with a veneer of glacial debris transported during the late Pleistocene from continental areas lying to the north. These sediments were reworked by marine processes during postglacial sea-level transgression and continue to be modified by the modern oceanic regime. The surficial geology of the Canadian portion of the bank is a widespread gravel lag overlain in places by well sorted sand occurring as bedforms. The most widespread bedforms are large, mobile, asymmetrical sand waves up to 19 m in height formed through sediment transport by strong tidal-driven and possibly storm-driven currents. Well-defined curvilinear bedform crests up to 15 km long form a complex bifurcating pattern having an overall southwest–northeast strike, which is normal to the direction of the major axis of the semidiurnal tidal current ellipse. Minor fields of immobile, symmetrical sand waves are situated in bathymetric lows. Rare mobile, asymmetrical barchan dunes are lying on the gravel lag in areas of low sand supply. On Georges Bank, the management of resources and habitats requires an understanding of the distribution of substrate types, their surface dynamics and susceptibility to movement, and their associated fauna.

  5. Sand consolidation

    Energy Technology Data Exchange (ETDEWEB)

    Spain, H H

    1965-01-21

    In a sand consolidation method in which there is injected a mixture of resin-forming liquids comprising an aryl-hydroxy low molecular weight compound, a water- soluble aldehyde, and a catalyst, an improvement is claimed which comprises diluting the resin-forming liquids with a diluent and with water so that the yield of the resin is sufficient to consolidate the sand particles with the minimum desirable pressure. The diluent may be mutually soluble in water and in the resin-forming liquids, and does not affect the setting time of the polymer. The aldehyde and the aryl-hydroxy compound may be in ratio of 5:1, and the diluent, methyl alcohol, is present in a ratio of 2:1 with reference to the water.

  6. Bloodmeal Identification in Field-Collected Sand Flies From Casa Branca, Brazil, Using the Cytochrome b PCR Method.

    Science.gov (United States)

    Carvalho, G M L; Rêgo, F D; Tanure, A; Silva, A C P; Dias, T A; Paz, G F; Andrade Filho, J D

    2017-07-01

    PCR-based identification of vertebrate host bloodmeals has been performed on several vectors species with success. In the present study, we used a previously published PCR protocol followed by DNA sequencing based on primers designed from multiple alignments of the mitochondrial cytochrome b gene used to identify avian and mammalian hosts of various hematophagous vectors. The amplification of a fragment encoding a 359 bp sequence of the Cyt b gene yielded recognized amplification products in 192 female sand flies (53%), from a total of 362 females analyzed. In the study area of Casa Branca, Brazil, blood-engorged female sand flies such as Lutzomyia longipalpis (Lutz & Neiva, 1912), Migonemyia migonei (França, 1924), and Nyssomyia whitmani (Antunes & Coutinho, 1939) were analyzed for bloodmeal sources. The PCR-based method identified human, dog, chicken, and domestic rat blood sources. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. Effects of sand burial on the survival and growth of two shrubs dominant in different habitats of northern China.

    Science.gov (United States)

    Qu, Hao; Zhao, Ha-Lin; Zhao, Xue-Yong; Zuo, Xiao-An; Wang, Shao-Kun; Chen, Min

    2017-04-01

    Plants that grow in dune ecosystems always suffer from sand burial. Shrubs play implications on the healthy functioning of dune ecosystems due to control blowing sand. However, the survival and growth responses of shrubs to sand burial remain poorly understood. The survival rate and seedling height of two shrubs (Artemisia halodendron and Lespedeza davurica) along with the soil properties under different burial depths were examined in order to reveal the causing ecophysiological attributes of sand burial on shrubs in the desertified region. It was found that A. halodendron can survive a burial depth of 6 cm greater than its seedling height, which is a dominant shrub in mobile dunes with intense burial, whereas a burial depth equivalent to three fourths of its seedling height is detrimental to L. davurica, which is dominant in fixed dunes with less burial. The reasons for the shrub death under sand burial were associated with the physical barrier to vertical growth and the reduction in photosynthetic area. In conclusion, A. halodendron can facilitate the stabilization of mobile dunes because of their high tolerance to the frequent and intensive sand burial, while L. davurica can be beneficial for the recovery process because of their higher survival rates under shallow burial following restoration of mobile dunes.

  8. Mineralogy of an Active Eolian Sediment from the Namib Dune, Gale Crater, Mars

    OpenAIRE

    Achilles, C. N.; Downs, R. T.; Ming, D. W.; Rampe, E. B.; Morris, R. V.; Treiman, A. H.; Morrison, S. M.; Blake, D. F.; Vaniman, D. T.; Ewing, R. C.; Chipera, S. J.; Yen, A. S.; Bristow, T. F.; Ehlmann, B. L.; Gellert, R.

    2017-01-01

    The Mars Science Laboratory rover, Curiosity, is using a comprehensive scientific payload to explore rocks and soils in Gale crater, Mars. Recent investigations of the Bagnold Dune Field provided the first in situ assessment of an active dune on Mars. The Chemistry and Mineralogy (CheMin) X-ray diffraction instrument on Curiosity performed quantitative mineralogical analyses of the

  9. Delineating chalk sand distribution of Ekofisk formation using probabilistic neural network (PNN) and stepwise regression (SWR): Case study Danish North Sea field

    Science.gov (United States)

    Haris, A.; Nafian, M.; Riyanto, A.

    2017-07-01

    Danish North Sea Fields consist of several formations (Ekofisk, Tor, and Cromer Knoll) that was started from the age of Paleocene to Miocene. In this study, the integration of seismic and well log data set is carried out to determine the chalk sand distribution in the Danish North Sea field. The integration of seismic and well log data set is performed by using the seismic inversion analysis and seismic multi-attribute. The seismic inversion algorithm, which is used to derive acoustic impedance (AI), is model-based technique. The derived AI is then used as external attributes for the input of multi-attribute analysis. Moreover, the multi-attribute analysis is used to generate the linear and non-linear transformation of among well log properties. In the case of the linear model, selected transformation is conducted by weighting step-wise linear regression (SWR), while for the non-linear model is performed by using probabilistic neural networks (PNN). The estimated porosity, which is resulted by PNN shows better suited to the well log data compared with the results of SWR. This result can be understood since PNN perform non-linear regression so that the relationship between the attribute data and predicted log data can be optimized. The distribution of chalk sand has been successfully identified and characterized by porosity value ranging from 23% up to 30%.

  10. Floração, produção de néctar e abelhas visitantes de Eriope blanchetii (Lamiaceae em dunas costeiras, Nordeste do Brasil Flowering, nectar production and visiting bees of Eriope blanchetii (Lamiaceae, in sand dunes, northeastern Brazil

    Directory of Open Access Journals (Sweden)

    Fabiana Oliveira da Silva

    2007-03-01

    Full Text Available As observações sobre a floração, produção de néctar e abelhas visitantes foram realizadas entre outubro de 1999 e outubro de 2000, em uma população natural de Eriope blanchetii (Benth Harley (Lamiaceae distribuída em dunas litorâneas, Salvador (12º56'S, 38º21'W, Bahia. Entre as 15 espécies de abelhas registradas, predominaram aquelas de porte corporal médio e grande. Os polinizadores efetivos são Xylocopa cearensis Ducke, 1910 e Colletes petropolitanus Dalla Torre, 1896, considerando seu tamanho, comportamento e freqüência nas flores. A floração contínua da população de E. blanchetii e o grau de sincronia, duração e intensidade da floração entre os indivíduos estimula o movimento interplanta e o transporte de pólen pelos polinizadores com diferentes demandas energéticas e comportamento generalista. A deposição de pólen ocorre na região ventral do corpo do polinizador na região que contata as anteras e o estigma durante o forrageio, mas apenas C. petropolitanus transportou exclusivamente pólen de E. blanchetii. O pólen, removido principalmente durante a fase masculina é, posteriormente, depositado em flores com estigmas receptivos durante a fase feminina. Entre maio e outubro de 2000, o volume de néctar variou de 0,01 a 0,98 ml sendo maior na fase masculina (U=2972,5; P0.05 e entre aquelas ensacadas e não ensacadas (U=3632; P>0.05 não foi significativa. O padrão de floração, a produção e acessibilidade do néctar tornam as flores de E. blanchetii atrativas aos seus polinizadores potenciais.Observations on nectar production, flowering and visiting bees were conducted from October 1999 to October 2000 in a wild population of Eriope blanchetii (Benth Harley (Lamiaceae located at Abaeté sand dunes (12º56'S, 38º21'W, in Salvador, Bahia. Fifteen bee species were collected with those varying from medium to large-sized being predominant. The effective pollinators were Xylocopa cearensis Ducke, 1910 and

  11. Climate sensibility and stability of coastal dunes. Final report; Klimasensibilitaet und Stabiltaet nicht regenerierbarer Oekosysteme: Kuestenduenen. Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Handelmann, D.; Klittmann, T.; Badenhop, J.; Folger, M.

    2000-07-01

    Coastal dunes have an important function as unique habitats for plants and animals as well as natural barriers against storm tides. Thus, they are of special value for nature conservation and coastal defence issues. Facing their potential endangering due to accelerated climate change profound knowledge of stabilty of coastal dunes is essential. In this context the presented study deals with the impact of climate change on biogenic sand stabilization in coastal dunes, which have to be conceived as an ecosystemic process. Questions of climate affected reactions of organism groups involved in this process (plants, soil microflora, soil fauna) and alterations in soil structure were followed up. Within the scope of a 2-years-lasting field experiment conducted on the Eastfrisian Island Norderney the microclimate near the soil surface was modified by gauze covering, which was set up on field plots. (orig.) [German] In ihrer Funktion als Lebensraum fuer Pflanzen und Tiere sowie als natuerlicher Schutzwall bei Sturmfluten wird den Kuestenduenen eine wichtige Bedeutung im Natur- und Kuestenschutz beigemessen. Angesichts ihrer potentiellen Gefaehrdung durch einen beschleunigten Klimawandel ist ein fundierter Kenntnisstand zur Stabilitaet von Kuestenduenen von elementarem Interesse. Vor diesem Hintergrund befasst sich die vorliegende Studie mit dem Einfluss von Klimaaenderungen auf die biogene Sandstabilisierung in Kuestenduenen, die aufgrund des bestehenden organismischen Beziehungsgeflechtes als oekosystemarer Prozess aufzufassen ist. Dabei wurden Fragen nach klimaabhaengigen Reaktionen der an diesem Prozess beteiligten Organismengruppen (Pflanzen, Bodenmikroflora, Bodenfauna) und Veraenderungen des Bodengefueges bearbeitet. Im Rahmen eines 2-jaehrigen Freilandexperimentes auf der Ostfriesischen Insel Norderney wurde das bodennahe Mikroklima mittels einer Gazeueberspannung auf 4 m{sup 2} grossen und mit Strandhafer (Calammophila baltica) bepflanzten Parzellen experimentell

  12. SHEAR STRENGTH, COLLAPSIBILITY AND COMPRESSIBILITY CHARACTERISTICS OF COMPACTED BAIJI DUNE SOILS

    Directory of Open Access Journals (Sweden)

    ABBAS JAWAD AL-TAIE

    2017-03-01

    Full Text Available Baiji city is a vital industrial centre in Iraq since it has the biggest oil refinery. Therefore, Baiji has become an attractive site for strategic construction projects. Dune sand covers about 220 km2 of the area of Baiji city. However, few researches had attempted to study its behaviour. In this study laboratory tests were conducted to determine the shear strength, collapsibility and compressibility of the dune sand at its natural and compacted status. The effect of dry unit weight, moisture content, relative density and soaking on mechanical properties of dune soil was investigated. The results demonstrated that dry and soaked dune specimens tested at their in-situ condition exhibited similar volume changes during shear and identical friction angles. The results of shear tests of both of compacted soaked and unsoaked samples were identical. The collapse potential of dune soil is inversely proportional with the relative density. The minimum axial strain is observed when the samples are compacted to modified effort. The compression index of the compacted specimens is affected by moulding water content, while the rebound index is less sensitive.

  13. The role of the reef–dune system in coastal protection in Puerto Morelos (Mexico

    Directory of Open Access Journals (Sweden)

    G. L. Franklin

    2018-04-01

    Full Text Available Reefs and sand dunes are critical morphological features providing natural coastal protection. Reefs dissipate around 90 % of the incident wave energy through wave breaking, whereas sand dunes provide the final natural barrier against coastal flooding. The storm impact on coastal areas with these features depends on the relative elevation of the extreme water levels with respect to the sand dune morphology. However, despite the importance of barrier reefs and dunes in coastal protection, poor management practices have degraded these ecosystems, increasing their vulnerability to coastal flooding. The present study aims to theoretically investigate the role of the reef–dune system in coastal protection under current climatic conditions at Puerto Morelos, located in the Mexican Caribbean Sea, using a widely validated nonlinear non-hydrostatic numerical model (SWASH. Wave hindcast information, tidal level, and a measured beach profile of the reef–dune system in Puerto Morelos are employed to estimate extreme runup and the storm impact scale for current and theoretical scenarios. The numerical results show the importance of including the storm surge when predicting extreme water levels and also show that ecosystem degradation has important implications for coastal protection against storms with return periods of less than 10 years. The latter highlights the importance of conservation of the system as a mitigation measure to decrease coastal vulnerability and infrastructure losses in coastal areas in the short to medium term. Furthermore, the results are used to evaluate the applicability of runup parameterisations for beaches to reef environments. Numerical analysis of runup dynamics suggests that runup parameterisations for reef environments can be improved by including the fore reef slope. Therefore, future research to develop runup parameterisations incorporating reef geometry features (e.g. reef crest elevation, reef lagoon width, fore

  14. The role of the reef-dune system in coastal protection in Puerto Morelos (Mexico)

    Science.gov (United States)

    Franklin, Gemma L.; Torres-Freyermuth, Alec; Medellin, Gabriela; Allende-Arandia, María Eugenia; Appendini, Christian M.

    2018-04-01

    Reefs and sand dunes are critical morphological features providing natural coastal protection. Reefs dissipate around 90 % of the incident wave energy through wave breaking, whereas sand dunes provide the final natural barrier against coastal flooding. The storm impact on coastal areas with these features depends on the relative elevation of the extreme water levels with respect to the sand dune morphology. However, despite the importance of barrier reefs and dunes in coastal protection, poor management practices have degraded these ecosystems, increasing their vulnerability to coastal flooding. The present study aims to theoretically investigate the role of the reef-dune system in coastal protection under current climatic conditions at Puerto Morelos, located in the Mexican Caribbean Sea, using a widely validated nonlinear non-hydrostatic numerical model (SWASH). Wave hindcast information, tidal level, and a measured beach profile of the reef-dune system in Puerto Morelos are employed to estimate extreme runup and the storm impact scale for current and theoretical scenarios. The numerical results show the importance of including the storm surge when predicting extreme water levels and also show that ecosystem degradation has important implications for coastal protection against storms with return periods of less than 10 years. The latter highlights the importance of conservation of the system as a mitigation measure to decrease coastal vulnerability and infrastructure losses in coastal areas in the short to medium term. Furthermore, the results are used to evaluate the applicability of runup parameterisations for beaches to reef environments. Numerical analysis of runup dynamics suggests that runup parameterisations for reef environments can be improved by including the fore reef slope. Therefore, future research to develop runup parameterisations incorporating reef geometry features (e.g. reef crest elevation, reef lagoon width, fore reef slope) is warranted.

  15. Observations of Interannual Dune Morphological Evolution With Comparisons to Shoreline Change Along the Columbia River Littoral Cell

    Science.gov (United States)

    Doermann, L.; Kaminsky, G. M.; Ruggiero, P.

    2006-12-01

    Beach topographic data have been collected along the 160 km-long Columbia River Littoral Cell in southwest Washington and northwest Oregon, USA as part of the Southwest Washington Coastal Erosion Study and a NANOOS pilot project. The monitoring program includes the collection of cross-shore beach profiles at 49 sites for each of the 34 seasons since 1997 (with few exceptions), enabling the investigation of the seasonal to interannual morphological variability of this high-energy coast. We focus here on the dunes backing the beaches, aiming to quantitatively describe the wide variety of characteristics they exhibit, as well as to relate dune evolution to shoreline change. To analyze the large volume of high-quality data, we use automated algorithms and systematic processes to identify the location of the dune toe, crest, and face, and calculate a volume (where enough data are available) and beach width for each survey. We define the position of the dune face as the elevation half-way between the average dune toe and average dune crest elevations at each profile location, and beach width as the horizontal distance between the 2-m contour (~MSL) and the dune toe. Much like shoreline proxies lower on the beach profile, (e.g., the 3-m contour), the location of the dune toe shows large seasonal variability with onshore deposition of sand in summer months and offshore sand transport in the winter. However, the location of the dune face and the elevation of the dune crest are much less variable and are useful in describing the evolution of the dune/beach system in the horizontal and vertical directions, respectively, over interannual time scales. On beaches with the highest shoreline change rates in the study area, the dune face follows the progradational trend of the shoreline with the dune face prograding at approximately 25-50% of the rate of the shoreline. Along many of these beaches that experienced severe erosion during the El Niño of 1997/98, the dune face

  16. Summary of the Third International Planetary Dunes Workshop: remote sensing and image analysis of planetary dunes

    Science.gov (United States)

    Fenton, Lori K.; Hayward, Rosalyn K.; Horgan, Briony H.N.; Rubin, David M.; Titus, Timothy N.; Bishop, Mark A.; Burr, Devon M.; Chojnacki, Matthew; Dinwiddie, Cynthia L.; Kerber, Laura; Gall, Alice Le; Michaels, Timothy I.; Neakrase, Lynn D.V.; Newman, Claire E.; Tirsch, Daniela; Yizhaq, Hezi; Zimbelman, James R.

    2013-01-01

    The Third International Planetary Dunes Workshop took place in Flagstaff, AZ, USA during June 12–15, 2012. This meeting brought together a diverse group of researchers to discuss recent advances in terrestrial and planetary research on aeolian bedforms. The workshop included two and a half days of oral and poster presentations, as well as one formal (and one informal) full-day field trip. Similar to its predecessors, the presented work provided new insight on the morphology, dynamics, composition, and origin of aeolian bedforms on Venus, Earth, Mars, and Titan, with some intriguing speculation about potential aeolian processes on Triton (a satellite of Neptune) and Pluto. Major advancements since the previous International Planetary Dunes Workshop include the introduction of several new data analysis and numerical tools and utilization of low-cost field instruments (most notably the time-lapse camera). Most presentations represented advancement towards research priorities identified in both of the prior two workshops, although some previously recommended research approaches were not discussed. In addition, this workshop provided a forum for participants to discuss the uncertain future of the Planetary Aeolian Laboratory; subsequent actions taken as a result of the decisions made during the workshop may lead to an expansion of funding opportunities to use the facilities, as well as other improvements. The interactions during this workshop contributed to the success of the Third International Planetary Dunes Workshop, further developing our understanding of aeolian processes on the aeolian worlds of the Solar System.

  17. Quantifying the effects of European beach grass on aeolian sand transport over the last century: Bodega Marine Reserve, California

    Science.gov (United States)

    Cesmat, R.; Werner, S.; Smith, M. E.; Riedel, T.; Best, R.; Olyarnik, S.

    2012-12-01

    Introduction of European beach grass (Ammophila arenaria) to coastal dune systems of western North America induced significant changes to the transport and storage of sediment, and consequently the nesting habitat of the western snowy plover (Charadrius alexandrinus nivosus). At the Bodega Marine Reserve and Sonoma Coast State Park, Ammophila was introduced within the ~0.5 km2 dune area in the 1920's to limit the flux of sand through Bodega Harbor and agricultural land. To assess the potential impact of restoration efforts (Ammophila removal) on aeolian sediment flux, we measured sediment flux as a function of wind speeds and ground cover, and used these measurements to parameterize a spatial model for historical sand deposition Fine- to coarse-grained lithic to sub-lithic sand is delivered to the Bodega dune system from Salmon Creek beach, the down-shore terminus of a littoral system fed by the 3846 km2 Russian River catchment, several small (Gaffney ridge) at the edge of the planted region. An average accumulation rate of ~4,000 m3/yr is indicated within the study swath by the preserved sediment volumes. Within the modern dune system, unvegetated areas exhibit 2-3 meter wavelength, ~1/2 meter amplitude mega-ripples, and the uppermost 2-10 cm consists of coarse-sand to granule-sized armor layer. In contrast, grain-sizes in vegetated areas are largely vertically homogenous. Open areas are typically 2-8 meters lower than adjacent vegetated areas, and show evidence for net lowering of the land surface (i.e., exposed fence posts, roots). Conversely, vegetated areas appear prone to sediment accumulation, particularly downwind of unvegetated areas. We measured sand transport using 0.5 m high traps deployed at 18 sites throughout the dune field, and used a linear mixed effects model to predict transport rate as a function of wind and ground cover class, taking into account random effects of sampling date and repeated measurements at each site. The analysis indicates up

  18. Transport of microbial tracers in clean and organically contaminated silica sand in laboratory columns compared with their transport in the field

    International Nuclear Information System (INIS)

    Weaver, Louise; Sinton, Lester W.; Pang, Liping; Dann, Rod; Close, Murray

    2013-01-01

    Waste disposal on land and the consequent transport of bacterial and viral pathogens in soils and aquifers are of major concern worldwide. Pathogen transport can be enhanced in the presence of organic matter due to occupation of attachment sites in the aquifer materials thus preventing pathogen attachment leading to their faster transport for longer distances. Laboratory column studies were carried out to investigate the effect of organic matter, in the form of dissolved organic carbon (DOC), on the transport of Escherichia coli and MS2 phage in saturated clean silica sand. Transport rates of these microbial tracers were also studied in a contaminated field site. Laboratory column studies showed that low concentrations (0.17 mg L −1 ) of DOC had little effect on E. coli J6-2 removal and slightly reduced the attachment of MS2 phage. After progressive conditioning of the column with DOC (1.7 mg L −1 and 17 mg L −1 ), neither E. coli J6-2 nor MS2 phage showed any attachment and recovery rates increased dramatically (up to 100%). The results suggest that DOC can affect the transport rates of microbial contaminants. For E. coli J6-2 the predominant effect appeared to be an increase in the secondary energy minimum leading to an increase in E. coli attachment initially. However, after 17 mg L −1 DOC conditioning of the silica sand no attachment of E. coli was observed as the DOC took up attachment sites in the porous media. MS2 phage appeared to be affected predominantly by out-competition of binding sites in the clean silica sand and a steady reduction in attachment was observed as the DOC conditioning increased. Field study showed a high removal of both E. coli and MS2 phage, although E. coli was removed at a lower rate than MS2 phage. In the field it is likely that a combination of effects are seen as the aquifer material will be heterogeneous in its surface nanoscale properties, demonstrated by the differing removal of E. coli and MS2 phage compared to the

  19. Mineral sands

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    This paper presents an outlook of the Australian mineral sand industry and covers the major operators. It is shown that conscious of an environmentally minded public, the Australian miners have led the way in the rehabilitation of mined areas. Moreover the advanced ceramic industry is generating exciting new perspectives for zircon producers and there is a noticeable growth in the electronic market for rare earths, but in long term the success may depend as much on environmental management and communication skills as on mining and processing skills

  20. A unifying model for planform straightness of ripples and dunes in air and water

    Science.gov (United States)

    Rubin, David M.

    2012-01-01

    Geologists, physicists, and mathematicians have studied ripples and dunes for more than a century, but despite considerable effort, no general model has been proposed to explain perhaps the most fundamental property of their morphology: why are some bedforms straight, continuous, parallel, and uniform in planform geometry (i.e. two-dimensional) whereas others are irregular (three-dimensional)? Here we argue that physical coupling along the crest of a bedform is required to produce straight crests and that along-crest flow and sand transport provide effective physical mechanisms for that coupling. Ripples and dunes with the straightest and most continuous crests include longitudinal and oblique dunes in unidirectional flows, wave ripples, dunes in reversing flows, wind ripples, and ripples migrating along a slope. At first glance, these bedforms appear quite different (ripples and dunes; air and water; transverse, oblique, and longitudinal orientations relative to the net sand-transport direction), but they all have one property in common: a process that increases the amount of along-crest sand transport (that lengthens and straightens their crests) relative to the across-crest transport (that makes them migrate and take the more typical and more three-dimensional planform geometry). In unidirectional flows that produce straight bedforms, along-crest transport of sand is caused by along-crest flow (non-transverse bedform orientation), gravitational transport along an inclined crest, or ballistic splash in air. Bedforms in reversing flows tend to be straighter than their unidirectional counterparts, because reverse transport across the bedform crest reduces the net across-crest transport (that causes the more typical irregular geometry) relative to the along-crest transport (that smoothes and straightens planform geometry).

  1. The role of sexual vs. asexual recruitment of Artemisia wudanica in transition zone habitats between inter-dune lowlands and active dunes in Inner Mongolia, China

    Science.gov (United States)

    Wang, Yongcui; Alberto, Busso Carlos; Jiang, Deming; Ala, Musa; Li, Xuehua; Zhou, Quanlai; Lin, Jixiang; Ren, Guohua; Jia, Lian

    2016-04-01

    Artemisia wudanica is an endemic, perennial, pioneering psammophyte species in the sand dune ecosystems of western Horqin Sand Land in northern China. However, no studies have addressed how sexual and asexual reproduction modes of A. wudanica perform at the transitional zones between active dune inter-dune lowlands and active dunes. In early spring, quadrats were randomly set up in the study area to monitor surviving seedling and/or ramet density and frequency coming from sexual/asexual reproduction of A. wudanica. Iron sticks were inserted near each quadrat to determine wind erosion intensity (WE). Additionally, soil samples were collected nearby each quadrat to test for soil moisture (SM), organic matter (OM) and pH. Surviving seedlings of A. wudanica showed an inverse response in comparison with ramets to SM, OM and WE. Soil moisture showed the most positive effect, and WE the negative effect, on surviving, sexual reproduction seedlings. Contrarily, WE had the most positive effect, and SM the negative effect, on asexual reproduction ramets. This suggests that increases in SM and decreases in WE should benefit recruitment of A. wudanica seedlings. On the contrary, ramets coming from asexual reproduction showed a different response to environmental factors in transition zone habitats. While SM was not a key constraint for the survival of seedlings, they showed a better, positive response to wind erosion environments. Overall, various study environmental parameters could be improved to foster A. wudanica invasion and settlement in the plant community through different reproductive modes, thereby promoting vegetation restoration and rehabilitation.

  2. Limited change in dune mobility in response to a large decrease in wind power in semi-arid northern China since the 1970s

    Science.gov (United States)

    Mason, J.A.; Swinehart, J.B.; Lu, H.; Miao, X.; Cha, P.; Zhou, Y.

    2008-01-01

    The climatic controls on dune mobility, especially the relative importance of wind strength, remain incompletely understood. This is a key research problem in semi-arid northern China, both for interpreting past dune activity as evidence of paleoclimate and for predicting future environmental change. Potential eolian sand transport, which is approximately proportional to wind power above the threshold for sand entrainment, has decreased across much of northern China since the 1970s. Over the same period, effective moisture (ratio of precipitation to potential evapotranspiration) has not changed significantly. This "natural experiment" provides insight on the relative importance of wind power as a control on dune mobility in three dunefields of northern China (Mu Us, Otindag, and Horqin), although poorly understood and potentially large effects of human land use complicate interpretation. Dune forms in these three regions are consistent with sand transport vectors inferred from weather station data, suggesting that wind directions have remained stable and the stations adequately represent winds that shaped the dunes. The predicted effect of weaker winds since the 1970s would be dune stabilization, with lower sand transport rates allowing vegetation cover to expand. Large portions of all three dunefields remained stabilized by vegetation in the 1970s despite high wind power. Since the 1970s, trends in remotely sensed vegetation greenness and change in mobile dune area inferred from sequential Landsat images do indicate widespread dune stabilization in the eastern Mu Us region. On the other hand, expansion of active dunes took place farther west in the Mu Us dunefield and especially in the central Otindag dunefield, with little overall change in two parts of the Horqin dunes. Better ground truth is needed to validate the remote sensing analyses, but results presented here place limits on the relative importance of wind strength as a control on dune mobility in the

  3. CONTRIBUTION TO THE STUDY OF DUNES FIXATION IN THE SEMI-ARIDE ENVIRONMENT: ALGERIA

    Directory of Open Access Journals (Sweden)

    Saida Akkouche

    2017-05-01

    Full Text Available In our study,of dune fixation , spontaneous vegetation was installed inside the grid. Over the years, plant diversity has improved with74 species in 2009 (22 families and 61 genera, demonstrating a significant reduction of troubles, caused especially by the erosive action of winds and other microclimate factors. Indeed, in non-fixed dunes (mechanical and biological fixation vegetation is particularly present in the lower slopes of the dunes shelter where humidity is relatively high and the soil fertile. But in fixed environments, vegetation climbs to the top of dunes, improving: I The Microclimate; creating a gentle atmosphere under the effect of shade and transpiration; II Floor; increasing its humidity and improving its fertility through the provision of litter. On all of the fixed dunes and under the feet of planted species a surface layer of soil , sometimes reduced in a few centimeters, is formed by fine particles of clays and acting as a shield which reduces evaporation and therefore allows a relatively large water retention preserved for a longer period of the year. This layer is called "Self-mulching" is a colloidal material which sticks the sand after a biological dune fixation.

  4. Erosion reasons and rate on accumulative Polish dune coast caused by the January 2012 storm surge

    Directory of Open Access Journals (Sweden)

    Tomasz A. Łabuz

    2014-03-01

    Full Text Available The Polish coast is a non-tidal area; its shores are affected mainly by autumn-winter storm surges. Those of 6 and 14 January 2012 are representative of the forces driving the erosion of normally accumulative sections of coastal dunes, monitored by the author since 1997. The sea level maximum during these two storm surges reached 1.2 to 1.5 m amsl along the Polish coast. Land forms up to 3 m amsl were inundated. Beaches and low parts of the coast up to this height were rebuilt by sea waves attacking the coast for almost 12 days. Quantitative analyses of the morphological dynamics of the coastal dunes are presented for 57 profiles located along the coast. Only those accumulative sections of the Polish coast are analysed where sand accumulation did occur and led to new foredune development. The mean rate of dune erosion was 2.5 m3 per square metre with an average toe retreat of 1.4 m. Erosion understood as dune retreat was greater when a beach was lower (correlation coefficient 0.8. Dune erosion did not occur on coasts with beaches higher than 3.2 m or on lower ones covered by embryo dunes.

  5. Assessing the Importance of Cross-Stream Transport in Bedload Flux Estimates from Migrating Dunes: Colorado River, Grand Canyon National Park

    Science.gov (United States)

    Leary, K. P.; Buscombe, D.; Schmeeckle, M.; Kaplinski, M. A.

    2017-12-01

    Bedforms are ubiquitous in sand-bedded rivers, and understanding their morphodynamics is key to quantifying bedload transport. As such, mechanistic understanding of the spatiotemporal details of sand transport through and over bedforms is paramount to quantifying total sediment flux in sand-bedded river systems. However, due to the complexity of bedform field geometries and migration in natural settings, our ability to relate migration to bedload flux, and to quantify the relative role of tractive and suspended processes in their dynamics, is incomplete. Recent flume and numerical investigations indicate the potential importance of cross-stream transport, a process previously regarded as secondary and diffusive, to the three-dimensionality of bedforms and spatially variable translation and deformation rates. This research seeks to understand and quantify the importance of cross-stream transport in bedform three-dimensionality in a field setting. This work utilizes a high-resolution (0.25 m grid) data set of bedforms migrating in the channel of the Colorado River in Grand Canyon National Park. This data set comprises multi-beam sonar surveys collected at 3 different flow discharges ( 283, 566, and 1076 m3/s) along a reach of the Colorado River just upstream of the Diamond Creek USGS gage. Data were collected every 6 minutes almost continuously for 12 hours. Using bed elevation profiles (BEPs), we extract detailed bedform geometrical data (i.e. bedform height, wavelength) and spatial sediment flux data over a suite of bedforms at each flow. Coupling this spatially extensive data with a generalized Exner equation, we conduct mass balance calculations that evaluate the possibility, and potential importance, of cross-stream transport in the spatial variability of translation and deformation rates. Preliminary results suggest that intra-dune cross-stream transport can partially account for changes in the planform shape of dunes and may play an important role in spatially

  6. Connecting Brabant's cover sand landscapes through landscape history

    Science.gov (United States)

    Heskes, Erik; van den Ancker, Hanneke; Jungerius, Pieter Dirk; Harthoorn, Jaap; Maes, Bert; Leenders, Karel; de Jongh, Piet; Kluiving, Sjoerd; van den Oetelaar, Ger

    2015-04-01

    Noord-Brabant has the largest variety of cover sand landscapes in The Netherlands, and probably in Western Europe. During the Last Ice Age the area was not covered by land ice and a polar desert developed in which sand dunes buried the existing river landscapes. Some of these polar dune landscapes experienced a geomorphological and soil development that remained virtually untouched up to the present day, such as the low parabolic dunes of the Strabrechtse Heide or the later and higher dunes of the Oisterwijkse Vennen. As Noord-Brabant lies on the fringe of a tectonic basin, the thickness of cover sand deposits in the Centrale Slenk, part of a rift through Europe, amounts up to 20 metres. Cover sand deposits along the fault lines cause the special phenomenon of 'wijst' to develop, in which the higher grounds are wetter than the boarding lower grounds. Since 4000 BC humans settled in these cover sand landscapes and made use of its small-scale variety. An example are the prehistoric finds on the flanks and the historic towns on top of the 'donken' in northwest Noord-Brabant, where the cover sand landscapes are buried by river and marine deposits and only the peaks of the dunes protrude as donken. Or the church of Handel that is built beside a 'wijst' source and a site of pilgrimage since living memory. Or the 'essen' and plaggen agriculture that developed along the stream valleys of Noord-Brabant from 1300 AD onwards, giving rise to geomorphological features as 'randwallen' and plaggen soils of more than a metre thickness. Each region of Brabant each has its own approach in attracting tourists and has not yet used this common landscape history to connect, manage and promote their territories. We propose a landscape-historical approach to develop a national or European Geopark Brabants' cover sand landscapes, in which each region focuses on a specific part of the landscape history of Brabant, that stretches from the Late Weichselian polar desert when the dune

  7. Modeling river dune evolution using a parameterization of flow separation

    NARCIS (Netherlands)

    Paarlberg, Andries J.; Dohmen-Janssen, C. Marjolein; Hulscher, Suzanne J.M.H.; Termes, Paul

    2009-01-01

    This paper presents an idealized morphodynamic model to predict river dune evolution. The flow field is solved in a vertical plane assuming hydrostatic pressure conditions. The sediment transport is computed using a Meyer-Peter–Müller type of equation, including gravitational bed slope effects and a

  8. Stratigraphy and landsnail faunas of Late Holocene coastal dunes, Tokerau Beach, northern New Zealand

    International Nuclear Information System (INIS)

    Brook, F.J.

    1999-01-01

    At least four depositional episodes, each involving cycles of dune instability and sand accumulation followed by stabilisation and soil formation, are represented in a Holocene dune sequence at Tokerau Beach. The first depositional episode followed the maximum post-glacial sea level rise at 6500 years BP, probably with formation of a narrow dune belt landward of the present coastline. The second depositional episode resulted in extensive progradation of the dune belt to about the present coastline from c. 3000-2000 years BP, followed by dune stabilisation and soil formation from c. 2000-900 years BP. The third depositional episode involved vertical dune accretion at c. 900-600 years BP, followed by stabilisation and soil formation after c. 600 years BP. The fourth depositional episode, after 240 years BP, resulted in further vertical dune accretion and localised extensive erosion and reworking of pre-existing dune deposits. Fossil landsnail faunas indicate that there was patchy sandfield and shrubland vegetation of the dune belt from c. 3000-2000 years BP, followed by a mosaic of shrubland and forest from c. 2000-900 years BP. After 900 years BP there was a progressive reversion to patchy shrubland vegetation, but an extensive shrubland cover again became established at c. 600 years BP and persisted until c. 450 years BP, when it was replaced by patchy shrubland and sandfield vegetation. Dune progradational phases in the first two depositional episodes correlate with and probably developed primarily in response to changes in sea level, whereas subsequent alternating phases of dune stabilisation and build-up are inferred to have resulted in part from the influence of long term cyclical variation in prevailing local wind and wave regimes in Doubtless Bay. Two stratigraphically distinct, exotic, sea-rafted pumice units are represented in the Tokerau dune sequence: Tokerau pumice (new), which has a primary depositional age of c. 3000 years BP, and Loisels pumice, which

  9. Extraction of lidar-based dune-crest elevations for use in examining the vulnerability of beaches to inundation during hurricanes

    Science.gov (United States)

    Stockdon, H.F.; Doran, K.S.; Sallenger, A.H.

    2009-01-01

    The morphology of coastal sand dunes plays an important role in determining how a beach will respond to a hurricane. Accurate measurements of dune height and position are essential for assessing the vulnerability of beaches to extreme coastal change during future landfalls. Lidar topographic surveys provide rapid, accurate, high-resolution datasets for identifying the location, position, and morphology of coastal sand dunes over large stretches of coast. An algorithm has been developed for identification of the crest of the most seaward sand dune that defines the landward limit of the beach system. Based on changes in beach slope along cross-shore transects of lidar data, dune elevation and location can automatically be extracted every few meters along the coastline. Dune elevations in conjunction with storm-induced water levels can be used to predict the type of coastal response (e.g., beach erosion, dune erosion, overwash, or inundation) that may be expected during hurricane landfall. The vulnerability of the beach system at Fire Island National Seashore in New York to the most extreme of these changes, inundation, is assessed by comparing lidar-derived dune elevations to modeled wave setup and storm surge height. The vulnerability of the beach system to inundation during landfall of a Category 3 hurricane is shown to be spatially variable because of longshore variations in dune height (mean elevation 5.44 m, standard deviation 1.32 m). Hurricane-induced mean water levels exceed dune elevations along 70 of the coastal park, making these locations more vulnerable to inundation during a Category 3 storm. ?? 2009 Coastal Education and Research Foundation.

  10. Understanding the hydrochemical evolution of a coastal dune system in SW England using a multiple tracer technique

    International Nuclear Information System (INIS)

    Allen, Debbie; Darling, W. George; Williams, Peter J.; Stratford, Charlie J.; Robins, Nick S.

    2014-01-01

    Highlights: • Braunton Burrows is an alkaline rain-fed system with no saline intrusion. • Marine aerosols and shell dissolution dominate unsaturated zone water quality. • Hydrochemical evolution in the unsaturated zone is rapid. • Slower evolutionary processes contribute to water quality in the saturated zone. • High dune groundwaters were 13–16 yr old and dune slack groundwater 5–7 yr old. - Abstract: An improved knowledge of the hydrology of coastal dune systems is desirable for successful management of their diverse ecology under a changing climate. As a near-pristine coastal dune spit system, Braunton Burrows (SW England) is an ideal location for the study of the natural processes governing recharge to the dune groundwater system and the evolution of its water quality. Whereas previous investigations have tended to focus on inter-dune slacks, this study has also given attention to infiltration through the high dunes. Cores were taken through dunes and the resulting sand samples processed to provide information on grain size distribution and porewater chemistry. Groundwater samples were obtained from beneath dunes and slacks. A variety of geochemical techniques were applied including hydrochemistry, stable isotopes and residence time indicators. The unsaturated zone profiles indicate the existence of piston flow recharge with an infiltration rate of 0.75–1 m/yr, although faster rates probably also occur locally. Groundwater beneath the high dunes gave ages in the range 13–16 yr, compared to the dune slack groundwater ages of 5–7 yr, and an age of 22 yr for groundwater from the underlying mudstone aquifer. The chemistry of waters in both unsaturated and saturated zones is dominated by Ca and HCO 3 , supplemented by variable amounts of other ions derived from marine aerosols and limited reaction with sand grains and their coatings. The main chemical evolution of the porewaters occurs rapidly through the mobilisation of surface salt crusts and

  11. Theory of a metrology for the earths magnetic field based on the resonance of polarised atomic nuclei (1962); Theorie d'une metrologie du champ magnetique terrestre basee sur la resonance de noyaux atomiques polarises (1962)

    Energy Technology Data Exchange (ETDEWEB)

    Bonnet, G [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires

    1961-06-15

    The problems presented by the metrology of the earths field are studied from two points of view. a. The first, purely physical, concerns the study of NMR transducers in their role for the transformation of the magnetic field into a frequency. The possibilities and limitations are outlined. The use of an equivalent model is introduced systematically in the considerations of NMR phenomena, this makes it possible to treat all problems of interaction between a spin system and an electric detection system in a unified form. b. The other point of view concerns the restitution of the nuclear signal frequency in the form of a directly perceptible observable. The treatment of information is considered from a statistical angle, which leads to the study of an optimisation process concerning the linearization of the measurement as well as the minimisation of noise effects. (author) [French] Les problemes que pose la metrologie du champ terrestre sont etudies sous un double aspect: a. L'un, purement physique, concerne l'etude des traducteurs a RMN dans leur role de transformation du champ magnetique en une frequence. On en degage les possibilites et les limitations. L'emploi d'un modele equivalent est introduit de maniere systematique pour rendre compte des phenomenes de RMN, ce qui permet de traiter sous forme unifiee tous les problemes d'interaction entre un systeme de spins et un systeme electrique de detection. b. L'autre aspect concerne la restitution de la frequence du signal nucleaire sous la forme d'une observable directement perceptible. On considere le traitement de l'information sous l'aspect statistique, ce qui amene a etudier un processus d'optimisation concernant la linearisation de la mesure aussi bien que la minimisation des effets des bruits. (auteur)

  12. Natural and anthropogenic factors affecting freshwater lenses in coastal dunes of the Adriatic coast

    Science.gov (United States)

    Cozzolino, Davide; Greggio, Nicolas; Antonellini, Marco; Giambastiani, Beatrice Maria Sole

    2017-08-01

    This study characterizes the near-shore portion of the shallow coastal aquifer included in the Ravenna area (Northern Italy) with special attention to the roles of coastal dunes as freshwater reservoirs and their buffer on groundwater salinity. The paper focuses on the presence and evolution of freshwater lenses below coastal dunes and highlights the existing differences between preserved natural dunes and dunes strongly affected by human intervention. The influence that multiple natural and anthropogenic factors, such as land cover, local drainage network, and beach erosion have on the presence, size and evolution of the freshwater lenses in the aquifer is quantified and discussed. The methodology includes multiple seasonal monitoring and sampling campaigns of physical (water level, salinity, and temperature) and chemical (major cations and anions) groundwater parameters. Results indicate that freshwater lenses, where existing, are limited in thickness (about 1-2 m). Proximity to drainage ditches as well as limited dune elevation and size do not allow the formation and permanent storage of large freshwater lenses in the aquifer below the dunes. The pine forest land cover, that replaced the typical bush or sand cover, intensifies evapotranspiration reducing net infiltration and freshwater storage. The cation species distribution in the water shows that a freshening process is ongoing in preserved natural sites with stable or advancing beaches, whereas a salinization process is ongoing in anthropogenic-impacted areas with strongly-fragmented dune systems. Currently, the thin freshwater lenses in the shallow Ravenna coastal aquifer are limited in space and have no relevance for irrigation or any other human activity. The dune-beach system, however, is the recharge zone of the coastal aquifer and its protection is important to reduce water and soil salinization, which in turn control the health of the whole coastal ecosystem.

  13. Aeolian sand transport and aeolian deposits on Venus: A review

    Science.gov (United States)

    Kreslavsly, Mikhail A.; Bondarenko, Nataliya V.

    2017-06-01

    We review the current state of knowledge about aeolian sand transport and aeolian bedforms on planet Venus. This knowledge is limited by lack of observational data. Among the four planetary bodies of the Solar System with sufficient atmospheres in contact with solid surfaces, Venus has the densest atmosphere; the conditions there are transitional between those for terrestrial subaerial and subaqueous transport. The dense atmosphere causes low saltation threshold and short characteristic saltation length, and short scale length of the incipient dunes. A few lines of evidence indicate that the typical wind speeds exceed the saltation threshold; therefore, sand transport would be pervasive, if sand capable of saltation is available. Sand production on Venus is probably much slower than on the Earth; the major terrestrial sand sinks are also absent, however, lithification of sand through sintering is expected to be effective under Venus' conditions. Active transport is not detectable with the data available. Aeolian bedforms (transverse dunes) resolved in the currently available radar images occupy a tiny area on the planet; however, indirect observations suggest that small-scale unresolved aeolian bedforms are ubiquitous. Aeolian transport is probably limited by sand lithification causing shortage of saltation-capable material. Large impact events likely cause regional short-term spikes in aeolian transport by supplying a large amount of sand-size particles, as well as disintegration and activation of older indurated sand deposits. The data available are insufficient to understand whether the global aeolian sand transport occurs or not. More robust knowledge about aeolian transport on Venus is essential for future scientific exploration of the planet, in particular, for implementation and interpretation of geochemical studies of surface materials. High-resolution orbital radar imaging with local to regional coverage and desirable interferometric capabilities is the

  14. New technique of insitu soil moisture sampling for environmental isotope analysis applied at 'Pilat-dune' near Bordeaux

    International Nuclear Information System (INIS)

    Thoma, G.; Esser, N.; Sonntag, C.; Weiss, W.; Rudolph, J.; Leveque, P.

    1978-01-01

    A new soil-air suction method with soil water vapor adsorption by 4 A-molecular sieve provides soil moisture samples from various depths for environmental isotope analysis and yields soil temperature profiles. A field tritium tracer experiment shows that this insitu sampling method has an isotope profile resolution of about 5-10 cm only. Application of this method in the Pilat sand dune (Bordeaux/France) yielded deuterium and tritium profiles down to 25 meters depth. Bomb tritium measurements of monthly lysimeter percolate samples available since 1961 show that the tritium response has a mean delay of 5 months in case of a sand lysimeter and of 2.5 years for a loess loam lysimeter. A simple HETP model simulates the layered downward movement of soil water and the longitudinal dispersion in the lysimeters. Field capacity and evapotranspiration taken as open parameters yield tritium concentration values of the lysimeters' percolate which are in close agreement with the experimental results. Based on local meteorological data the HETP model applied to tritium tracer experiments in the unsaturated zone further yiels an individual prediction of the momentary tracer position and of the soil moisture distribution. This prediction can be checked experimentally at selected intervals by coring. (orig.) [de

  15. Consolidation and atmospheric drying of fine oil sand tailings : Comparison of blind simulations and field scale results

    NARCIS (Netherlands)

    Vardon, P.J.; Yao, Y.; van Paassen, L.A.; van Tol, A.F.; Sego, D.C.; Wilson, G.W.; Beier, N.A.

    2016-01-01

    This paper presents a comparison between blind predictions of field tests of atmospheric drying of mature fine tailings (MFT) presented in IOSTC 2014 and field results. The numerical simulation of the consolidation and atmospheric drying of selfweight consolidating fine material is challenging and

  16. Experiment Simulation Configurations Used in DUNE CDR

    Energy Technology Data Exchange (ETDEWEB)

    Alion, T. [Univ. of South Carolina, Columbia, SC (United States); Black, J. J. [Univ. of Warwick, Coventry (United Kingdom); Bashyal, A. [Oregon State Univ., Corvallis, OR (United States); Bass, M. [Univ. of Oxford (United Kingdom); Bishai, M. [Brookhaven National Lab. (BNL), Upton, NY (United States); Cherdack, D. [Colorado State Univ., Fort Collins, CO (United States); Diwan, M. [Brookhaven National Lab. (BNL), Upton, NY (United States); Djurcic, Z. [Argonne National Lab. (ANL), Argonne, IL (United States); Evans, J. [Univ. of Manchester (United Kingdom); Fernandez-Martinez, E. [Madrid Autonama Univ. (Spain); Fields, L. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Fleming, B. [Yale Univ., New Haven, CT (United States); Gran, R. [Univ. of Minnesota, Duluth, MN (United States); Guenette, R. [Univ. of Oxford (United Kingdom); Hewes, J. [Univ. of Manchester (United Kingdom); Hogan, M. [Colorado State Univ., Fort Collins, CO (United States); Hylen, J. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Junk, T. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Kohn, S. [Univ. of California, Berkeley, CA (United States); LeBrun, P. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Lundberg, B. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Marchionni, A. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Morris, C. [Univ. of California, Berkeley, CA (United States); Papadimitriou, V. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Rameika, R. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Rucinski, R. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Soldner-Rembold, S. [Univ. of Manchester (United Kingdom); Sorel, M. [Spanish National Research Council (CSIC), Valencia (Spain). Univ. of Valencia (UV), Inst. de Fisica Corpuscular; Urheim, J. [Indiana Univ., Bloomington, IN (United States); Viren, B. [Brookhaven National Lab. (BNL), Upton, NY (United States); Whitehead, L. [Univ. of Houston, TX (United States); Wilson, R. [Colorado State Univ., Fort Collins, CO (United States); Worcester, E. [Brookhaven National Lab. (BNL), Upton, NY (United States); Zeller, G. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2016-06-30

    The LBNF/DUNE CDR describes the proposed physics program and experimental design at the conceptual design phase. Volume 2, entitled The Physics Program for DUNE at LBNF, outlines the scientific objectives and describes the physics studies that the DUNE collaboration will perform to address these objectives. The long-baseline physics sensitivity calculations presented in the DUNE CDR rely upon simulation of the neutrino beam line, simulation of neutrino interactions in the far detector, and a parameterized analysis of detector performance and systematic uncertainty. The purpose of this posting is to provide the results of these simulations to the community to facilitate phenomenological studies of long-baseline oscillation at LBNF/DUNE. Additionally, this posting includes GDML of the DUNE single-phase far detector for use in simulations. DUNE welcomes those interested in performing this work as members of the collaboration, but also recognizes the benefit of making these configurations readily available to the wider community.

  17. Correlation between Hurricane Sandy damage along the New Jersey coast with land use, dunes and other local attributes.

    Science.gov (United States)

    2013-08-01

    The goal of this study was to evaluate the effectiveness of sand dunes along New Jerseys Coast in reducing damage during Sandy. The study area included eight selected zones with different damage levels from Ocean County. A model to independently p...

  18. Comparative Field Evaluation of Different Traps for Collecting Adult Phlebotomine Sand Flies (Diptera: Psychodidae) in an Endemic Area of Cutaneous Leishmaniasis in Quintana Roo, Mexico.

    Science.gov (United States)

    Rodríguez-Rojas, Jorge J; Arque-Chunga, Wilfredo; Fernández-Salas, Ildefonso; Rebollar-Téllez, Eduardo A

    2016-06-01

    Phlebotominae are the vectors of Leishmania parasites. It is important to have available surveillance and collection methods for the sand fly vectors. The objectives of the present study were to evaluate and compare traps for the collection of sand fly species and to analyze trap catches along months and transects. Field evaluations over a year were conducted in an endemic area of leishmaniasis in the state of Quintana Roo, Mexico. A randomized-block design was implemented in study area with tropical rainforest vegetation. The study design utilized 4 transects with 11 trap types: 1) Centers for Disease Control and Prevention (CDC) light trap with incandescent bulb (CDC-I), 2) CDC light trap with blue light-emitting diodes (LEDs) (CDC-B), 3) CDC light trap with white LEDs (CDC-W), 4) CDC light trap with red LEDs (CDC-R), 5) CDC light trap with green LEDs (CDC-G), 6) Disney trap, 7) Disney trap with white LEDs, 8) sticky panels, 9) sticky panels with white LEDs, 10) delta-like trap, and 11) delta-like trap with white LEDs. A total of 1,014 specimens of 13 species and 2 genera (Lutzomyia and Brumptomyia) were collected. There were significant differences in the mean number of sand flies caught with the 11 traps; CDC-I was (P  =  0.0000) more effective than the other traps. Other traps exhibited the following results: CDC-W (17.46%), CDC-B (15.68%), CDC-G (14.89%), and CDC-R (14.30%). The relative abundance of different species varied according to trap types used, and the CDC-I trap attracted more specimens of the known vectors of Leishmania spp., such as like Lutzomyia cruciata, Lu. shannoni, and Lu. ovallesi. Disney trap captured more specimens of Lu. olmeca olmeca. Based on abundance and number of species, CDC light traps and Disney traps appeared to be good candidates for use in vector surveillance programs in this endemic area of Mexico.

  19. Sports, genre et developpement durable : l'heritage d'une ...

    African Journals Online (AJOL)

    Sports, genre et developpement durable : l'heritage d'une distribution ... to new populations in situation of confrontation with the difference that Goffman (1975) ... and women (gender), maintain the sports field and behind the appearance of a ...

  20. Beach-dune dynamics: Spatio-temporal patterns of aeolian sediment transport under complex offshore airflow

    Science.gov (United States)

    Lynch, K.; Jackson, D.; Delgado-Fernandez, I.; Cooper, J. A.; Baas, A. C.; Beyers, M.

    2010-12-01

    This study examines sand transport and wind speed across a beach at Magilligan Strand, Northern Ireland, under offshore wind conditions. Traditionally the offshore component of local wind regimes has been ignored when quantifying beach-dune sediment budgets, with the sheltering effect of the foredune assumed to prohibit grain entrainment on the adjoining beach. Recent investigations of secondary airflow patterns over coastal dunes have suggested this may not be the case, that the turbulent nature of the airflow in these zones enhances sediment transport potential. Beach sediment may be delivered to the dune toe by re-circulating eddies under offshore winds in coastal areas, which may explain much of the dynamics of aeolian dunes on coasts where the dominant wind direction is offshore. The present study investigated aeolian sediment transport patterns under an offshore wind event. Empirical data were collected using load cell traps, for aeolian sediment transport, co-located with 3-D ultrasonic anemometers. The instrument positioning on the sub-aerial beach was informed by prior analysis of the airflow patterns using computational fluid dynamics. The array covered a total beach area of 90 m alongshore by 65 m cross-shore from the dune crest. Results confirm that sediment transport occurred in the ‘sheltered’ area under offshore winds. Over short time and space scales the nature of the transport is highly complex; however, preferential zones for sand entrainment may be identified. Alongshore spatial heterogeneity of sediment transport seems to show a relationship to undulations in the dune crest, while temporal and spatial variations may also be related to the position of the airflow reattachment zone. These results highlight the important feedbacks between flow characteristics and transport in a complex three dimensional surface.

  1. Correlation of aeolian sediment transport measured by sand traps and fluorescent tracers

    Science.gov (United States)

    Cabrera, Laura L.; Alonso, Ignacio

    2010-03-01

    Two different methods, fluorescent tracers and vertical sand traps, were simultaneously used to carry out an aeolian sediment transport study designed to test the goodness of fluorescent tracers in aeolian environments. Field experiments were performed in a nebkha field close to Famara beach at Lanzarote Island (Canary Islands, Spain) in a sector where the dunes were between 0.5 and 0.8 m height and 1-2 m wide and the vegetal cover was approximately 22%. In this dune field the sediment supply comes from Famara beach and is blown by trade winds toward the south, where the vegetation acts as natural sediment traps. Wind data were obtained by means of four Aanderaa wind speed sensors and one Aanderaa vane, all them distributed in a vertical array from 0.1 to 4 m height for 27 h. The average velocity at 1 m height during the experiment was 5.26 m s - 1 with the wind direction from the north. The tracer was under wind influence for 90 min at midday. During this period two series of sand traps (T1 and T2) N, S, E and W oriented were used. Resultant transport rates were 0.0131 and 0.0184 kg m - 1 min - 1 respectively. Tracer collection was performed with a sticky tape to sample only surface sediments. Tagged grains were visually counted under UV light. The transport rate was computed from the centroid displacement, that moved 0.875 m southwards, and the depth of the active layer considered was the size of one single grain. Taking into account these data the transport rate was 0.0072 kg m - 1 min - 1 . The discrepancy in results between both methods is related to several factors, such as the thickness of the active layer and the grain size difference between the tagged and the native material.

  2. The Dunes of Shangri-La : New Cassini RADAR results on patterns of aeolian features and the influence of topography

    Science.gov (United States)

    Lorenz, R. D.; Radebaugh, J.; Wall, S. D.; Kirk, R.; Le Gall, A.; Janssen, M. A.; Zebker, H.; Paganelli, F.; Wye, L.; Lunine, J.

    2008-12-01

    Recent flybys (T43, T44 - and just prior to this meeting, T48) provide SAR imagery of northern Shangri-La, the large dark region just to the WNW of Xanadu. Previous imaging of SE Shangri-La (T13) showed that dunes there take a pronounced southward dip compared with the E-W direction seen elsewhere. The new data show rather different directions for dunes in northern Shangri-La, and confirm a blocking or divergent influence of Xanadu. Application of monopulse radar methods to retrieve elevations from Cassini SAR images ('SARTopo') now allows us to explore the influence of topography on the local dune (and by implication, wind) patterns, and the relationship between elevation and sediment accumulation. The lack of large positive relief at Xanadu makes its influence on the dunes somewhat surprising. We consider the possible mechanisms of Xanadu's effect on the winds, using terrestrial analogs as a guide. We review the global pattern of dune orientations and their implications for atmospheric circulation: this orientation map presents a challenging constraint for modelers. We note preliminary indications that scatterometry of Titan's dunefields yields azimuth-dependent radar cross-sections (as is the case for terrestrial sand seas) and note future plans for dune studies on Titan with multi-angle observations that will provide constraints on dune-scale slopes and duneforms too small to resolve.

  3. Transport of microbial tracers in clean and organically contaminated silica sand in laboratory columns compared with their transport in the field

    Energy Technology Data Exchange (ETDEWEB)

    Weaver, Louise, E-mail: louise.weaver@esr.cri.nz; Sinton, Lester W.; Pang, Liping; Dann, Rod; Close, Murray

    2013-01-15

    Waste disposal on land and the consequent transport of bacterial and viral pathogens in soils and aquifers are of major concern worldwide. Pathogen transport can be enhanced in the presence of organic matter due to occupation of attachment sites in the aquifer materials thus preventing pathogen attachment leading to their faster transport for longer distances. Laboratory column studies were carried out to investigate the effect of organic matter, in the form of dissolved organic carbon (DOC), on the transport of Escherichia coli and MS2 phage in saturated clean silica sand. Transport rates of these microbial tracers were also studied in a contaminated field site. Laboratory column studies showed that low concentrations (0.17 mg L{sup −1}) of DOC had little effect on E. coli J6-2 removal and slightly reduced the attachment of MS2 phage. After progressive conditioning of the column with DOC (1.7 mg L{sup −1} and 17 mg L{sup −1}), neither E. coli J6-2 nor MS2 phage showed any attachment and recovery rates increased dramatically (up to 100%). The results suggest that DOC can affect the transport rates of microbial contaminants. For E. coli J6-2 the predominant effect appeared to be an increase in the secondary energy minimum leading to an increase in E. coli attachment initially. However, after 17 mg L{sup −1} DOC conditioning of the silica sand no attachment of E. coli was observed as the DOC took up attachment sites in the porous media. MS2 phage appeared to be affected predominantly by out-competition of binding sites in the clean silica sand and a steady reduction in attachment was observed as the DOC conditioning increased. Field study showed a high removal of both E. coli and MS2 phage, although E. coli was removed at a lower rate than MS2 phage. In the field it is likely that a combination of effects are seen as the aquifer material will be heterogeneous in its surface nanoscale properties, demonstrated by the differing removal of E. coli and MS2 phage

  4. Dunes across the Solar System

    Science.gov (United States)

    Hayes, Alexander G.

    2018-06-01

    Before NASA's New Horizons mission, the surface of Pluto was shrouded in mystery. No one knew what to expect from its surface and most scientists shied away from detailed speculation, except to say that the one thing we should expect is to be surprised (1). On page 992 of this issue, Telfer et al. (2) present such a surprise by describing features interpreted as dunes on Pluto's surface.

  5. Seasonal variations in heavy mineral placer sand from Kalbadevi Bay, Ratnagiri, Maharashtra

    Digital Repository Service at National Institute of Oceanography (India)

    Valsangkar, A.B.

    spaced at ~1.5 km apart (Fig. 1). More details are given in Valsangkar (2005). Beach samples were obtained by push cores from the different beach environment that included dune, berm, hide tide (HT), mid tide (MT) and low tide (LT) area. The samples...) decreased to 12 % during post-monsoon season. Increase of sand content with depth in bern environment is therefore considered related to deposition due to wave and current action. May, 2K4; BP-02 0 20 40 60 80 100 120 Dune Berm HT MT LT Sand % 0-5 5...

  6. [Dynamic changes of surface soil organic carbon and light-fraction organic carbon after mobile dune afforestation with Mongolian pine in Horqin Sandy Land].

    Science.gov (United States)

    Shang, Wen; Li, Yu-qiang; Wang, Shao-kun; Feng, Jing; Su, Na

    2011-08-01

    This paper studied the dynamic changes of surface (0-15 cm) soil organic carbon (SOC) and light-fraction organic carbon (LFOC) in 25- and 35-year-old sand-fixing Mongolian pine (Pinus sylvestris var. mongolica) plantations in Horqin Sandy Land, with a mobile dune as a comparison site. After the afforestation on mobile dune, the content of coarse sand in soil decreased, while that of fine sand and clay-silt increased significantly. The SOC and LFOC contents also increased significantly, but tended to decrease with increasing soil depth. Afforestation increased the storages of SOC and LFOC in surface soil, and the increment increased with plantation age. In the two plantations, the increment of surface soil LFOC storage was much higher than that of SOC storage, suggesting that mobile dune afforestation had a larger effect on surface soil LFOC than on SOC.

  7. Questioning the environmental stress hypothesis for gall diversity of restinga vegetation on dunes

    OpenAIRE

    Arriola, Ígor A.; F. MeloJr., JoãoCarlos; S. Isaias, RosyMary

    2015-01-01

    AbstractThe Atlantic Coast Restinga is a mosaic of plant communities with a distinct floristic and phytophysiognomy, exposed to luminous, thermal, and saline stresses. Plants of the restinga must have special features commonly associated to xeric environments, and are expected to host a high diversity of galling herbivores. We studied gall morphotypes, and recorded the diversity of galls on plants growing in sand dunes in a remnant area of restinga (Acaraí State Park) in São Francisco do Sul,...

  8. Feedbacks among Floods, Pioneer Woody Vegetation, and Channel Change in Sand-Bed Rivers: Insights from Field Studies of Controlled Flood Releases and Models

    Science.gov (United States)

    Wilcox, A. C.; Shafroth, P. B.; Lightbody, A.; Stella, J. C.; Bywater-Reyes, S.; Kiu, L.; Skorko, K.

    2012-04-01

    To investigate feedbacks between flow, geomorphic processes, and pioneer riparian vegetation in sand-bed rivers, we are combining field, hydraulic modeling, and laboratory simulations. Field studies have examined the response of woody riparian seedlings and channel morphology to prescribed dam-released floods that have been designed in part to maintain a native riparian woodland system on the Bill Williams River, Arizona, USA. Through monitoring of floods over a 7-year period, we have observed temporal and spatial variations in channel response. Floods have produced geomorphic and vegetation responses that varied with distance downstream of a dam, with scour and associated seedling mortality closer to the dam and aggradation and burial-induced mortality in a downstream reach with greater sediment supply. We also have observed that as vegetation grows beyond the seedling stage, its stabilizing effect on bars and its drag effect on flow progressively increases, such that floods of similar sizes but at different times may produce markedly different downstream responses as a function of vegetation characteristics. We also observed greater mortality among nonnative Tamarix spp. (tamarisk) seedlings than among native Salix gooddingii (Goodding's willow) seedlings, likely as a result of the greater first-year growth of willow relative to tamarisk. Combining field observations with modeling predictions of local hydraulics for the flood events we have studied is being used to draw linkages between hydraulics, channel change, and plant response at the patch and bar scale. In addition, mechanistic linkages are being examined using a field-scale laboratory stream channel, where seedlings of Tamarix spp. (tamarisk) and Populus fremontii (cottonwood) were planted and subjected to floods with varying sediment feed rate and plant configurations. The floods conveyed by our model channel were generally insufficient to scour the woody seedlings we planted, but changes in bar size and

  9. Variability and correlations of shoreline and dunes on the southern Baltic coast (CRS Lubiatowo, Poland)

    OpenAIRE

    Zbigniew Pruszak; Rafal Ostrowski; Jan Schönhofer

    2011-01-01

    The paper analyses the results of field investigations into the evolution of the shoreline and dune toe positions in a multi-bar,dissipative coastal zone. The correlations between the changes in the shoreline and the dune toe range from -0.4 to 0.8. It is most often the case that the dune toe is stable while the shoreline moves. Consistent cross-shore migration is slightly more likelyto happen than the divergent or convergent movements of both lines. Shoreline retreat and advance attain resp...

  10. Characteristics Of Basaltic Sand: Size, Shape, And Composition As A Function Of Transport Process And Distance

    Science.gov (United States)

    Craddock, R. A.; Needell, Z. A.; Rose, T. R.

    2012-04-01

    quartz, feldspar, and heavy minerals commonly found in most terrestrial sedimentary deposits, basaltic sediments are composed of varying amounts of olivine, pyroxene, plagioclase, and vitric and lithic fragments. One of the few locations on Earth containing such material is the Ka'u Desert of Hawaii. This area is unique in that both eolian and fluvial sediment pathways occur in the same area, thus allowing a direct comparison of particles transported by different processes over identical distances (~20 km). We are currently documenting the physical and chemical changes that take place in basaltic sediments as they are transported by wind and water over increasing distances. This will result in an improvement in our understanding of traditional sedimentological concepts when applying them to Martian surface materials. Process: The Ka'u Desert is ~350 km2 and contains the largest basaltic dune fields on Earth. We have identified several different dune types located in various parts of the desert, including climbing and falling dunes, sand sheets, parabolic dunes (that were initially barchans), and crescentic dunes. Fluvial sediments occur as floodout deposits where ephemeral streams go from confined to unconfined flow outside the continuous Keanakako'i Formation [7]. There are also a number of sand bottom streams and playas that occur along a series of channels that extend from the Keanakako'i Formation ~20 km to the sea. We have collected samples from dunes and fluvial deposits at various locations in the Ka'u Desert, at varying distances from sources and subject to different environmental processes. In the lab, we have begun to use optical and scanning electron microscopic images to assess how grain size, shape, and angularity of individual particles change with increasing transport distances. We are also conducting point counts of particles contained within each sample to better understand how olivine, pyroxene, feldspar, and lithic and vitric fragments weather with

  11. protoDUNE-Single Phase and protDUNE-DualPhase

    CERN Multimedia

    Brice, Maximilien

    2016-01-01

    At the EHN1 two big 8m x 8m x8m detector prototypes (protoDUNE-Single Phase and protDUNE-DualPhase) are being constructed. The aim is to test technologies and detector performances for DUNE, a new generation of LBN neutr

  12. Understanding river dune splitting through flume experiments and analysis of a dune evolution model

    NARCIS (Netherlands)

    Warmink, Jord Jurriaan; Dohmen-Janssen, Catarine M.; Lansink, Jord; Naqshband, Suleyman; van Duin, Olav; Paarlberg, Andries; Termes, A.P.P.; Hulscher, Suzanne J.M.H.

    2014-01-01

    Forecasts of water level during river floods require accurate predictions of the evolution of river dune dimensions, because the hydraulic roughness of the main channel is largely determined by the bed morphology. River dune dimensions are controlled by processes like merging and splitting of dunes.

  13. Biological soil crust as a bio-mediator alters hydrological processes in stabilized dune system of the Tengger Desert, China

    Science.gov (United States)

    Li, Xinrong

    2016-04-01

    Biological soil crust (BSC) is a vital component in the stabilized sand dunes with a living cover up to more than 70% of the total, which has been considered as a bio-mediator that directly influences and regulates the sand dune ecosystem processes. However, its influences on soil hydrological processes have been long neglected in Chinese deserts. In this study, BSCs of different successional stages were chose to test their influence on the hydrological processes of stabilized dune, where the groundwater deep exceeds 30m, further to explore why occur the sand-binding vegetation replacement between shrubs and herbs. Our long-term observation (60 years) shows that cyanobacteria crust has been colonized and developed after 3 years since the sand-binding vegetation has been established and dune fixation using planted xerophytic shrubs and made sand barrier (straw-checkerboard) on shifting dune surface, lichen and moss crust occurred after 20 years, and the cover of moss dominated crust could reach 70 % after 50 years. The colonization and development of BSC altered the initial soil water balance of revegetated areas by influencing rainfall infiltration, soil evaporation and dew water entrapment. The results show that BSC obviously reduced the infiltration that occurred during most rainfall events (80%), when rainfall was greater than 5 mm or less than 20 mm. The presence of BSC reduced evaporation of topsoil after small rainfall (<5 mm) because its high proportion of finer particles slowed the evaporation rate, thus keeping the water in the soil surface longer, and crust facilitated topsoil evaporation when rainfall reached 10 mm. The amount of dew entrapment increases with the succession of BSC. Moreover, the effect of the later successional BSC to dew entrapment, rainfall infiltration and evaporation was more obvious than the early successional BSC on stabilized dunes. In general, BSC reduced the amount of rainfall water that reached deeper soil (0.4-3m), which is

  14. What is a Dune: Developing AN Automated Approach to Extracting Dunes from Digital Elevation Models

    Science.gov (United States)

    Taylor, H.; DeCuir, C.; Wernette, P. A.; Taube, C.; Eyler, R.; Thopson, S.

    2016-12-01

    Coastal dunes can absorb storm surge and mitigate inland erosion caused by elevated water levels during a storm. In order to understand how a dune responds to and recovers from a storm, it is important that we can first identify and differentiate the beach and dune from the rest of the landscape. Current literature does not provide a consistent definition of what the dune features (e.g. dune toe, dune crest) are or how they can be extracted. The purpose of this research is to develop enhanced approaches to extracting dunes from a digital elevation model (DEM). Manual delineation, convergence index, least-cost path, relative relief, and vegetation abundance were compared and contrasted on a small area of Padre Island National Seashore (PAIS), Preliminary results indicate that the method used to extract the dune greatly affects our interpretation of how the dune changes. The manual delineation method was time intensive and subjective, while the convergence index approach was useful to easily identify the dune crest through maximum and minimum values. The least-cost path method proved to be time intensive due to data clipping; however, this approach resulted in continuous geomorphic landscape features (e.g. dune toe, dune crest). While the relative relief approach shows the most features in multi resolution, it is difficult to assess the accuracy of the extracted features because extracted features appear as points that can vary widely in their location from one meter to the next. The vegetation approach was greatly impacted by the seasonal and annual fluctuations of growth but is advantageous in historical change studies because it can be used to extract consistent dune formation from historical aerial imagery. Improving our ability to more accurately assess dune response and recovery to a storm will enable coastal managers to more accurately predict how dunes may respond to future climate change scenarios.

  15. Environmental differences in substrate mechanics do not affect sprinting performance in sand lizards (Uma scoparia and Callisaurus draconoides).

    Science.gov (United States)

    Korff, Wyatt L; McHenry, Matthew J

    2011-01-01

    Running performance depends on a mechanical interaction between the feet of an animal and the substrate. This interaction may differ between two species of sand lizard from the Mojave Desert that have different locomotor morphologies and habitat distributions. Uma scorparia possesses toe fringes and inhabits dunes, whereas the closely related Callisaurus draconoides lacks fringes and is found on dune and wash habitats. The present study evaluated whether these distribution patterns are related to differential locomotor performance on the fine sand of the dunes and the course sand of the wash habitat. We measured the kinematics of sprinting and characterized differences in grain size distribution and surface strength of the soil in both habitats. Although wash sand had a surface strength (15.4±6.2 kPa) that was more than three times that of dune sand (4.7±2.1 kPa), both species ran with similar sprinting performance on the two types of soil. The broadly distributed C. draconoides ran with a slightly (22%) faster maximum speed (2.2±0.2 m s(-1)) than the dune-dwelling U. scorparia (1.8±0.2 m s(-1)) on dune sand, but not on wash sand. Furthermore, there were no significant differences in maximum acceleration or the time to attain maximum speed between species or between substrates. These results suggest that differences in habitat distribution between these species are not related to locomotor performance and that sprinting ability is dominated neither by environmental differences in substrate nor the presence of toe fringes.

  16. Very large dune formation along the Ebro outer continental shelf (Western Mediterranean)

    Science.gov (United States)

    Lo Iacono, Claudio; Guillén, Jorge; Puig, Pere; Ribó, Marta; Ballesteros, Maria; Palanques, Albert; Farrán, Marcelli; Acosta, Juan

    2010-05-01

    Large and very large subaqueous dunes have been observed in a number of outer shelf regions around the world, tipically developing on fossil sand bodies and ridges. Dunes observed on outer shelves usually display large dimensions with maximum wavelength reaching up to 500 m and heights up to 20 m. Forcing mechanisms able to induce their formation have been described as strong bottom currents related to tidal variations and water masses flowing under geostrophic conditions, generally controlled and enhanced by local geomorphologic configurations. In this study, such bed features have been recognized, mapped and measured around the Columbretes Islands (Ebro continental shelf - Western Mediterranean) with the aim to reconstruct which are the potential forcing processes that could generate them in relation to the local settings of the area. Swath-bathymetry around the Columbretes Islands was collected using 30 kHz and 180 kHz Multi Beam echo-sounders for a 50-400 m water depth range. Bathymetric data revealed the presence of three main relict sand bodies along the outer shelf, for a 80-116 m depth range, above which asymmetrical, slightly asymmetrical and symmetrical large and very large 2D and 3D subaqueous dunes were observed. Dunes range from 150 to 760 m in wavelength and from tens of cm to 6 m in height. These bedforms are composed of sandy sediments, presumably coming from the degraded relict sand bodies on which they developed, mixed to the fine fractions coming from the recent draping holocenic sediments. The orientation of the dunes is SSW and progressively turns to W directions moving towards the southernmost sector of the area, following the trend of the shelf-edge. Observed dunes display a strong asymmetric profile for those occurring along the shelf-edge (Symmetry Index (SI): 2.6) and lose progressively their asymmetry towards the inner portion of the shelf (SI: 0.5), being 0.6 the minimum SI value to classify the dunes as asymmetric. The subaqueous dunes

  17. Morphology and mechanism of the very large dunes in the tidal reach of the Yangtze River, China

    Science.gov (United States)

    Shuwei, Zheng; Heqin, Cheng; Shuaihu, Wu; Shengyu, Shi; Wei, Xu; Quanping, Zhou; Yuehua, Jiang

    2017-05-01

    High-resolution multibeam data was used to interpret the surface morphology of very large dunes (VLDs) in the tidal reach of the Yangtze River, China. These VLDs can be divided into three categories according to their surface morphological characteristics. (1) VLDs-I: those with a smooth surface and cross-section; (2) VLDs-II: those accompanied by secondary dunes; (3) VLDs-III: those accompanied by secondary dunes and numerous elliptical pits. Parameters and spatial distribution of VLDs, and bed surface sediment were analyzed in the laboratory. Overall, channel morphology is an important factor affecting the development of VLDs, and channels with narrow and straight and certain water surface slope are facilitating the development of VLDs by constraining stream power. Meanwhile, distribution density of VLDs depicts a decreasing trend from Chizhou towards the estuary, are probably influenced by channel morphology and width. Associated pits in VLDs-III change the 3D dune morphology by distributing in secondary dunes as beads. The Three Gorges Dam project (TGP) leads to the bed surface sediment activity frequently and leads to the riverbed surface sediment coarsens, which promotes the further development of dunes. Moreover, other human activities, such as river regulation project, sand mining and Deep Water Channel Regulation Project have changed the regional river boundary conditions and hydrodynamic conditions are influential on the development of VLDs.

  18. Accumulation of nitrogen and organic matter during primary succession of Leymus arenarius dunes on the volcanic island Surtsey, Iceland

    Science.gov (United States)

    Stefansdottir, G.; Aradottir, A. L.; Sigurdsson, B. D.

    2014-05-01

    The volcanic island of Surtsey has been a natural laboratory where the primary succession of flora and fauna has been monitored, since it emerged from the N-Atlantic Ocean in 1963. We quantified the accumulation rates of nitrogen (N) and soil organic matter (SOM) in a 37 year long chronosequence of Leymus arenarius dunes in order to illuminate the spatiotemporal patterns in their build-up in primary succession. The Leymus dune area, volume and height grew exponentially over time. Aboveground plant biomass, cover or number of shoots per unit area did not change significantly with time, but root biomass accumulated with time, giving a root-shoot ratio of 19. The dunes accumulated on average 6.6 kg N ha-1 year-1, which was 3.5 times more than is received annually by atmospheric deposition. The extensive root system of Leymus seems to effectively retain and accumulate large part of the annual N deposition, not only deposition directly on the dunes but also from the adjacent unvegetated areas. SOM per unit area increased exponentially with dune age, but the accumulation of roots, aboveground biomass and SOM was more strongly linked to soil N than time: 1 g m-2 increase in soil N led on the average to 6 kg C m-2 increase in biomass and SOM. The Leymus dunes, where most of the N has been accumulated, will therefore probably act as hot-spots for further primary succession of flora and fauna on the tephra sands of Surtsey.

  19. Erosion and its rate on an accumulative Polish dune coast: the effects of the January 2012 storm surge

    Directory of Open Access Journals (Sweden)

    Tomasz A. Łabuz

    2014-01-01

    Full Text Available The Polish coast is a non-tidal area; its shores are affected mainly by autumn-winter storm surges. Those of 6 and 14 January 2012 are representative of the forces driving the erosion of normally accumulative sections of coastal dunes, monitored by the author since 1997. The sea level maximum during these two storm surges reached 1.2 to 1.5 m amsl along the Polish coast. Land forms up to 3 m amsl were inundated. Beaches and low parts of the coast up to this height were rebuilt by sea waves attacking the coast for almost 12 days. Quantitative analyses of the morphological dynamics of the coastal dunes are presented for 57 profiles located along the coast. Only those accumulative sections of the Polish coast are analysed where sand accumulation did occur and led to new foredune development. The mean rate of dune erosion was 2.5 m3 per square metre with an average toe retreat of 1.4 m. Erosion understood as dune retreat was greater when a beach was lower (correlation coefficient 0.8. Dune erosion did not occur on coasts with beaches higher than 3.2 m or on lower ones covered by embryo dunes.

  20. Episodes of aeolian sand movement on a large spit system (Skagen Odde, Denmark) and North Atlantic storminess during the Little Ice Age

    DEFF Research Database (Denmark)

    Clemmensen, Lars B.; Glad, Aslaug C.; Hansen, Kristian W. T.

    2015-01-01

    . A change in the atmospheric circulation, so that both the North Atlantic Oscillation (NAO) and the Atlantic Multidecadal Oscillation (AMO) were negative, apparently led to an increased number of intense cyclones causing inland sand movement and dune building. The second and third phase of aeolian sand...

  1. Experimental perforation of tubing with a hydraulic sand jet

    Energy Technology Data Exchange (ETDEWEB)

    Semenov, Yu V

    1970-01-01

    A series of field tests has shown that perforation with a hydraulic sand jet improves the quality of well completion. The sand jet does not crack the cement sheath or the casing, and the perforations are larger and deeper than perforations formed by explosive charges. Fluid circulation during sand jet perforation can safely be stopped for at least 10 min. Water containing a surfactant can be used as a sand carrier. Sand jet perforation allows successful completion of wells cased by 2 tubing strings. Sand jet perforation can be used to clean the borehole well and to remove foreign objects from the well.

  2. Oil sands tailings management project

    Energy Technology Data Exchange (ETDEWEB)

    Godwalt, C. [Alberta WaterSMART, Calgary, AB (Canada); Kotecha, P. [Suncor Energy Inc, Calgary, AB (Canada); Aumann, C. [Alberta Innovates - Technology Futures, Alberta Governement, AB (Canada)

    2010-11-15

    The Oil sands leadership initiative (OSLI) works with the Government of Alberta on the development of the oil sands industry, considering environmental, economical and social aspects. Water management was identified as one of most important areas to focus on. Alberta WaterSMART was requested to support the development and the management of projects resulting from the work done or underway in this field. The development of a regional water management solution stood out as the most interesting solution to obtain significant results. In the Athabasca Region, oil sands producers work independently on their water sourcing and disposal with particular attention to fresh water conservation and economics. The Athabasca River represents a source for mines and distant saline aquifers are the target of steam assisted gravity drainage (SAGD) operators. As part of a four-phase project aiming to study the environmental and economic footprint (EEF) benefit of alternatives for Athabasca oil sands production water supply and disposal, the purpose of the tailings water management project was to identify tailings treatment technologies that are ready to be implemented, and to design and evaluate solutions in order to improve regional oil sands production water sourcing and disposal. Alternatives were evaluated based on their total EEF, applying a lifecycle assessment methodology with a particular attention on the quantification of important performance indicators. 25 refs., 8 tabs., 40 figs.

  3. Oil sands tailings management project

    International Nuclear Information System (INIS)

    Godwalt, C.; Kotecha, P.; Aumann, C.

    2010-11-01

    The Oil sands leadership initiative (OSLI) works with the Government of Alberta on the development of the oil sands industry, considering environmental, economical and social aspects. Water management was identified as one of most important areas to focus on. Alberta WaterSMART was requested to support the development and the management of projects resulting from the work done or underway in this field. The development of a regional water management solution stood out as the most interesting solution to obtain significant results. In the Athabasca Region, oil sands producers work independently on their water sourcing and disposal with particular attention to fresh water conservation and economics. The Athabasca River represents a source for mines and distant saline aquifers are the target of steam assisted gravity drainage (SAGD) operators. As part of a four-phase project aiming to study the environmental and economic footprint (EEF) benefit of alternatives for Athabasca oil sands production water supply and disposal, the purpose of the tailings water management project was to identify tailings treatment technologies that are ready to be implemented, and to design and evaluate solutions in order to improve regional oil sands production water sourcing and disposal. Alternatives were evaluated based on their total EEF, applying a lifecycle assessment methodology with a particular attention on the quantification of important performance indicators. 25 refs., 8 tabs., 40 figs.

  4. Linking marine resources to ecotonal shifts of water uptake by terrestrial dune vegetation.

    Science.gov (United States)

    Greaver, Tara L; Sternberg, Leonel L da S

    2006-09-01

    As evidence mounts that sea levels are rising, it becomes increasingly important to understand the role of ocean water within terrestrial ecosystem dynamics. Coastal sand dunes are ecosystems that occur on the interface of land and sea. They are classic ecotones characterized by zonal distribution of vegetation in response to strong gradients of environmental factors from the ocean to the inland. Despite the proximity of the dune ecosystem to the ocean, it is generally assumed that all vegetation utilizes only freshwater and that water sources do not change across the ecotone. Evidence of ocean water uptake by vegetation would redefine the traditional interpretation of plant-water relations in the dune ecosystem and offer new ideas for assessing maritime influences on function and spatial distribution of plants across the dune. The purpose of this study was to identify sources of water (ocean, ground, and rain) taken up by vegetation using isotopic analysis of stem water and to evaluate water uptake patterns at the community level based on the distribution and assemblage of species. Three coastal dune systems located in southern Florida, USA, and the Bahamian bank/platform system were investigated. Plant distributions across the dune were zonal for 61-94% of the 18 most abundant species at each site. Species with their highest frequency on the fore dune (nearest the ocean) indicate ocean water uptake as evidenced by delta 18O values of stem water. In contrast, species most frequent in the back dune show no evidence of ocean water uptake. Analysis of species not grouped by frequency, but instead sampled along a transect from the ocean toward the inland, indicates that individuals from the vegetation assemblage closest to the ocean had a mixed water-harvesting strategy characterized by plants that may utilize ocean, ground-, and/or rainwater. In contrast, the inland vegetation relies mostly on rainwater. Our results show evidence supporting ocean water use by dune

  5. Field Trial on Pea ( Pisum Sativum L.) Grown on Sand Soil and Subjected to Water Regimes and Nitrogen Forms with Aid of 15 N Stable Isotope

    International Nuclear Information System (INIS)

    Fahmy, A.E.; Abdel Aziz, H.A.; Al-Gindy, A.M.; Arafa, Y.E.

    2016-01-01

    A field experiment on sand soil was conducted to trace the effects of different water regimes on pea growth and nutritional values as fertilized with urea and ammonium sulfate fertilizers. 15 N/ 14 N isotope dilution technique was followed to distinguish between the different N proportions derived to pea plants and in the same time estimating the efficientuse of both two nitrogen forms (%NUE). Irrigation water regimes and fertilization treatments were applied under drip irrigation system. Two water regimes epresented 100% (W1) and 75% (W2) of water requirement in combination with three N fertilizer rates, i.e. N 0 , N 100 and N 75 were applied. Two nitrogen fertilizer forms represent urea and ammonium sulfate were performed. The overall means of seed yield as affected by nitrogen fertilization treatments reflected relative increase accounted for 45.8, and 38.7%; 41.7 and 36.2% over the unfertilized control for NU 100 , and NU 75 ; NAS 100 and NAS 75 , respectively. It seems that 100% water regime (W1) made nitrogen fertilizer, especially with high rate, more available for plant uptake comparing to the low water quantity regime. Pea crop had accumulated more nitrogen from urea comparing to ammonium sulfate fertilizer. Nitrogen uptake, in general, significantly correlated to application N rates. Water regime (W1) in combination with ammonium sulfate fertilizer resulted in the better percentage or absolute values of N derived from fertilizer by pea seeds. It was clear that efficient use of ammonium sulfate, to some extent, was affected by different wa - ter regimes. This holds true either at 100% (N1) or 75% (W2) application rates. On the other hand, urea added at rate of 75% was more efficiently used by seeds than those added at rate of 100% of the recommended N rate

  6. The Slipface Awakens : Evolution of Linear dunes to Megabarchans ? Examples from Liwa (UAE), Badain Jaran and Titan.

    Science.gov (United States)

    Lorenz, Ralph; Radebaugh, Jani; Barnes, Jason; Turtle, Elizabeth

    2016-04-01

    The term megabarchans, referring to large crescentic dunes, might be thought to suggest a link to common barchans. However, the spatial arrangement of megabarchans, such as those at Liwa in the United Arab Emirates where the recent Star Wars movie was filmed, is quite distinct from that found in barchan corridors, and the mechanism by which winds in a unidirectional regime might cause dunes to grow to such large sizes is not at all obvious. Instead, we suggest that the growth and regular arrangement of megabarchans results from their prior accumulation as large linear dunes in a bidirectional wind regime, and the subsequent reduction in frequency or intensity of one of the wind directions. The more unidirectional wind then results in preferential slip face development on one side, and slow migration (slow, since the dunes are large - we report measurements of 50-80m high dunes at Liwa of ~0.1m/yr). The continuum of linear to hooked barchan forms in the Rub Al'Khali south of Liwa supports this paradigm. The Badain Jaran desert similarly has rather large dunes with a regular arrangement, but may have evolved further, with generally more well-developed crescentic slip faces. The relevance of this evolution to Titan, where some hooked barchan forms have been identified, will be discussed. Another feature of Liwa and the Badain Jaran, that may also have a counterpart on Titan, is the existence of interdune sabkhas due to a near-surface water table. In the Badain Jaran these are quite often water-filled, and similarly in the Lençóis Maranhenses barchanoid dunes in Brazil, seasonal flooding of the interdunes occurs. The possible role of water on sand mobility and the resultant dune morphology will be discussed.

  7. A new turbulence-based model for sand transport

    Science.gov (United States)

    Mayaud, Jerome; Wiggs, Giles; Bailey, Richard

    2016-04-01

    saltation system that has been reported in previous studies. Whilst the inclusion of both the u and w flow components is a key conceptual element of our new model, similar to recent field studies (e.g. Schönfeldt & von Löwis, 2003; Wiggs & Weaver, 2012; Chapman et al., 2013), we find that fluctuations in w are relatively unimportant for driving saltation, because wind-driven flux is more strongly associated with a positive u component. The best predictions of total sand transport are achieved using our turbulence model at a temporal resolution of 4 s in cases of partially developed saltation, and at a resolution of 1 min in cases of well-developed saltation. The proposed approach could prove to be significant for integrating turbulent transport processes into long-term, macro-scale landscape modelling of drylands References Chapman, C., Walker, I. J., Hesp, P. A., Bauer, B. O., Davidson-Arnott, R. G. D., & Ollerhead, J. (2013). Reynolds stress and sand transport over a foredune. Earth Surface Processes and Landforms, 38(14), 1735-1747. Dong, Z., Liu, X., Wang, H. & Wang, X. (2003). Aeolian sand transport: a wind tunnel model. Sedimentary Geology, 161, 71-83. Radok, U. (1977). Snow drift. Journal of Glaciology, 19, 123-139. Schönfeldt, H. J., & von Löwis, S. (2003). Turbulence-driven saltation in the atmospheric surface layer. Meteorologische Zeitschrift, 12(5), 257-268. Wiggs, G. F. S. & Weaver, C. M. (2012). Turbulent flow structures and aeolian sediment transport over a barchan sand dune. Geophysical Research Letters, 39(5), 1-7.

  8. Coastal dune facies, Permian Cutler Formation (White Rim Sandstone), Capitol Reef National Park area, southern Utah

    Science.gov (United States)

    Kamola, Diane L.; Chan, Marjorie A.

    1988-04-01

    The Permian Cutler Formation (White Rim Sandstone) in the Capitol Reef National Park area in southern Utah is an excellent example of a coastal dune complex subjected to periodic flooding by marine waters. Wind-ripple, grainfall and grainflow laminae compose the cross-sets deposited by eolian dunes. However, wave-reworked structures such as oscillation ripples, the occurrence of the characteristically marine trace fossils Thalassinoides and Chondrites, and interfingering marine carbonate beds of the Kaibab Formation collectively indicate marine interaction with the eolian environment. Four facies are distinguished: cross-stratified sandstone, burrowed to bioturbated sandstone, brecciated and deformed sandstone, and ripple-laminated sandstone and thin carbonate beds. One unusual aspect of the cross-stratified sandstone facies is the abundance of coarse-grained sand. Coarse-grained sand is atypical in many ancient eolian slipface deposits, but occurs here in large slipface foresets as both grainflow and wind-ripple deposits. No water-laid structures are found in these slipface deposits. Coarse-grained sand was probably transported to the Cutler shoreline by fluvial systems draining the Uncompahgre Uplift to the east, and then concentrated as coarse-grained ripples in interdune areas. Some of these coarse-grained ripples migrated up the stoss side of the dunes and accumulations of coarse-grained sand avalanched down the crest to form grainflow deposits. An extensive amount of soft-sediment deformation is indicated by the presence of convolute bedding and brecciation. These features occur near the zone of interfingering with marine carbonate beds of the Kaibab Formation. The water-saturated and moist conditions required for extensive deformation may have been controlled by the proximity of these sandstones to the shoreline, and fluctuations in the associated groundwater table.

  9. Displacement pile installation effects in sand

    NARCIS (Netherlands)

    Beijer-Lundberg, A.

    2015-01-01

    Installation effects govern the post-installation behaviour of displacement piles in sand. These effects are currently not completely understood. Suitable experimental techniques to model these installation effects include field, laboratory and experimental models. In the current thesis a

  10. Investigating the backscatter contrast anomaly in synthetic aperture radar (SAR) imagery of the dunes along the Israel-Egypt border

    Science.gov (United States)

    Rozenstein, Offer; Siegal, Zehava; Blumberg, Dan G.; Adamowski, Jan

    2016-04-01

    The dune field intersected by the Israel-Egypt borderline has attracted many remote sensing studies over the years because it exhibits unique optical phenomena in several domains, from the visual to the thermal infrared. These phenomena are the result of land-use policies implemented by the two countries, which have differing effects on the two ecosystems. This study explores the surface properties that affect radar backscatter, namely the surface roughness and dielectric properties, in order to determine the cause for the variation across the border. The backscatter contrast was demonstrated for SIR-C, the first synthetic aperture radar (SAR) sensor to capture this phenomenon, as well as ASAR imagery that coincides with complementary ground observations. These field observations along the border, together with an aerial image from the same year as the SIR-C acquisition were used to analyze differences in vegetation patterns that can affect the surface roughness. The dielectric permittivity of two kinds of topsoil (sand, biocrust) was measured in the field and in the laboratory. The results suggest that the vegetation structure and spatial distribution differ between the two sides of the border in a manner that is consistent with the radar observations. The dielectric permittivity of sand and biocrust was found to be similar, although they are not constant across the radar spectral region (50 MHz-20 GHz). These findings support the hypothesis that changes to the vegetation, as a consequence of the different land-use practices in Israel and Egypt, are the cause for the radar backscatter contrast across the border.

  11. Sudan challenges the sand dragon.

    Science.gov (United States)

    Tinker, J

    1978-01-01

    Formerly productive areas have become wasteland as the desert advances in the Sudan. To understand how desertification is undermining the very survival of the Sahel, one ecosystem is reviewed in detail here: the gum arabic zone of Kordofan. After cotton, gum arabic is Sudan's largest export, worth from $14-26 million in recent years. In this zone the ecologically balanced cycle of gum gardens, fire, grain crops, and fallow is now breaking down; the 1968-1973 drought having in many areas delivered the final blow. Because of a growing population, the cultivation period is extended, and the soil becomes impoverished. Overgrazing in the fallow period, and the lopping of gum trees for firewood is producing a low return on the gum trees. Without this gum to harvest for cash, farmers must repeatedly replant their subsistence crops until the land becomes useless sand. The Sudanese have recognized the problem earlier than most, and a number of imaginative and practicable pilot projects are already in use: 1) waterpoint management; 2) construction of firebreaks; 3) land threatened by shifting dunes has been enclosed by stockproof fence and afforested with local trees; and 4) shelter belts have been planted around town perimeters where old gum tree stumps have started to sprout and the grass is reseeding itself. Out of these pilot projects, and with the advice of the U.N. Environment Program, the U.N. Development Program, and FAO, the Sudanese have developed a modest $26 million desert encroachment control and rehabilitation program (DECARP).

  12. Formation and entrainment of fluid mud layers in troughs of subtidal dunes in an estuarine turbidity zone

    DEFF Research Database (Denmark)

    Becker, Marius; Schrottke, Kerstin; Bartholomä, Alexander

    2013-01-01

    25 g/L below the lutocline to 70 g/L at the river bed, whereas the gelling concentration was below 70 g/L. Sites of fluid mud formation coincided with the location of the estuarine turbidity zone during slack water. On average, near-bed density gradients were initially observed in dune troughs 1.2 h...... before slack water, and all fluid mud layers were entrained 2.3 h after slack water. No shear instabilities occurred until 1.8 h after slack water. While the flow was oriented in the dune direction, rapid entrainment was related to the development of the turbulent flow field behind dunes and is explained...... to be induced by advection of strong turbulence during accelerating currents. Fluid mud layers in dune troughs were entrained at an earlier point in time after slack water, compared to adjacent layers formed on a comparatively flat bed, where dune crests did not protrude from the lutocline....

  13. Eastern Scheldt Sand, Baskarp Sand No. 15

    DEFF Research Database (Denmark)

    Andersen, A. T; Madsen, E. B.; Schaarup-Jensen, A. L.

    The present data report contains data from 13 drained triaxial tests, performed on two different sand types in the Soil Mechanics Laboratory at Aalborg University in March, 1997. Two tests have been performed on Baskarp Sand No. 15, which has already ken extensively tested in the Soil Mechanics...... Laboratory. The remaining 11 triaxial tests have ben performed on Eastern Scheldt Sand, which is a material not yet investigated at the Soil Mechanics Laboratory. In the first pari of this data report, the characteristics of the two sand types in question will be presented. Next, a description...... will described. In this connection, the procedure for preparation of the soil specimens will be presented, and the actual performance of the tests will be briefly outlined. Finally, the procedure for processing of the measurements from the laboratory in order to obtain usable data will be described. The final...

  14. Recursos vegetais usados por Acromyrmex striatus (Roger (Hymenoptera, Formicidae em restinga da Praia da Joaquina, Florianópolis, Santa Catarina, Brasil Vegetable resources used by Acromyrmex striatus (Roger (Hymenoptera, Formicidae in sand dunes at Joaquina Beach, Florianópolis, Santa Catarina State, Brazil

    Directory of Open Access Journals (Sweden)

    Benedito C. Lopes

    2005-06-01

    Full Text Available Foram amostrados 400 ninhos de Acromyrmex striatus entre 1997 e 1998, nas dunas da praia da Joaquina, Florianópolis, SC, para a verificação do material vegetal trazido para o ninho. Estas formigas usam partes de 50 espécies de plantas dispostas em 22 famílias, sendo as principais, representantes de Compositae, Gramineae e Leguminosae. Nesta última família, Stylosanthes viscosa foi a espécie mais utilizada nos dois anos de amostragem. Acromyrmex striatus corta matéria vegetal fresca, bem como se utiliza de material vegetal já caído, podendo, então se comportar como cortadeira ou como uma espécie oportunista.A total of 400 nests of Acromyrmex striatus (Roger, 1863 was evaluated between 1997 and 1998 at the dunes of the Joaquina Beach, Florianópolis, Santa Catarina State, in order to determine the vegetable substrate brought back to the nests. These ants use some parts of 50 plant species in 22 botanical families, being Compositae, Gramineae and Leguminosae the principal ones. In this last family, Stylosanthes viscosa Swartz was the most herbivored species in the two years samplings. Acromyrmex striatus cut fresh vegetables, as well as use decayed materials, being then a true leaf-cutter ant or a opportunistic ant.

  15. EPISODIC EOLIAN SAND DEPOSITION IN THE PAST 4000 YEARS IN CAPE COD NATIONAL SEASHORE, MASSACHUSETTS, USA IN RESPONSE TO POSSIBLE HURRICANE/STORM AND ANTHROPOGENIC DISTURBANCES

    Directory of Open Access Journals (Sweden)

    Steven L. Forman

    2015-02-01

    Full Text Available The eolian sand depositional record for a dune field within Cape Cod National Seashore, Massachusetts is posit as a sensitive indicator of environmental disturbances in the late Holocene from a combination of factors such as hurricane/storm and forest fire occurrence, and anthropogenic activity. Stratigraphic and sedimentologic observations, particularly the burial of spodosol-like soils, and associated 14C and OSL ages that are concordant indicate at least six eolian depositional events at ca. 3750, 2500, 1800, 960, 430 and <250 years ago. The two oldest events are documented at just one locality and thus, the pervasiveness of this eolian activity is unknown. However, the four younger events are identified in three or more sites and show evidence for dune migration and sand sheet accretion. The timing of eolian deposition, particularly the initiation age, corresponds to documented periods of increased storminess/hurricane activity in the North Atlantic Ocean at ca. 2.0 to 1.6, and 1.0 ka and also a wetter coastal climate, which suppressed the occurrence of forest fire. Thus, local droughts are not associated with periods of dune movement in this mesic environment. Latest eolian activity on outer Cape Cod commenced in the past 300 to 500 years and may reflect multiple factors including broad-scale landscape disturbance with European colonization, an increased incidence of forest fires and heightened storminess. Eolian systems of Cape Cod appear to be sensitive to landscape disturbance and prior to European settlement may reflect predominantly hurricane/storm disturbance, despite generally mesic conditions in past 4 ka.

  16. Effect of a radial space-charge field on the movement of particles in a magneto-static field and under the influence of a circularly polarized wave; L'effet d'un champ de charge d'espace radial sur le mouvement des particules dans un champ magnetique statique et sous l'action d'une onde polarisee circulairement

    Energy Technology Data Exchange (ETDEWEB)

    Buffa, A [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1967-06-15

    The effect of a circularly polarized wave on a cylindrical plasma in a axial magnetostatic field and a radial space-charge field proportional to r is studied. Single particle motion is considered. The electrostatic field produces a shift in the cyclotron resonance frequency and,in case of high charge density, a radial movement of the off-resonance particles. In these conditions a radio-frequency-particle resonance is also possible called 'drift-resonance'. The drift resonance can be produced, with whistler mode, and may be employed in ion acceleration. Afterwards parametrical resonances produced by space-charge field oscillations and collisional limits of theory are studied. Cases in which ion acceleration is possible are considered on the basis of a quantitative analysis of results. (author) [French] On etudie l'effet d'une onde polarisee circulairement sur un plasma cylindrique place dans un champ magnetique axial constant, en supposant etre en presence d'un, champ de charge d'espace radial proportionnel a r. L'etude est faite du point de vue de la particule individuelle. Le champ electrostatique deplace la frequence de resonance cyclotron et, dans le cas de forte densite, donne lieu a un mouvement radial des particules qui ne sont pas en resonance. Dans ces champs, il peut aussi se produire une resonance qu'on a appele 'de derive', entre un R.F. et la particule. Cette resonance peut se produire avec le mode siffleur et peut etre utilisee pour l'acceleration des ions. On considere ensuite les resonances parametriques, qui se manifestent lorsque le champ de charge d'espace oscille, et les limites a la theorie posees par les collisions. Une discussion quantitative des resultats fait ressortir les cas dans lesquels on peut accelerer les ions. (auteur)

  17. Zooming in on neutrino oscillations with DUNE

    Science.gov (United States)

    Srivastava, Rahul; Ternes, Christoph A.; Tórtola, Mariam; Valle, José W. F.

    2018-05-01

    We examine the capabilities of the DUNE experiment as a probe of the neutrino mixing paradigm. Taking the current status of neutrino oscillations and the design specifications of DUNE, we determine the experiment's potential to probe the structure of neutrino mixing and C P violation. We focus on the poorly determined parameters θ23 and δC P and consider both two and seven years of run. We take various benchmarks as our true values, such as the current preferred values of θ23 and δC P, as well as several theory-motivated choices. We determine quantitatively DUNE's potential to perform a precision measurement of θ23, as well as to test the C P violation hypothesis in a model-independent way. We find that, after running for seven years, DUNE will make a substantial step in the precise determination of these parameters, bringing to quantitative test the predictions of various theories of neutrino mixing.

  18. Matter Density Profile Shape Effects at DUNE

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, Kevin J. [Northwestern U.; Parke, Stephen J. [Fermilab

    2018-02-19

    Quantum mechanical interactions between neutrinos and matter along the path of propagation, the Wolfenstein matter effect, are of particular importance for the upcoming long-baseline neutrino oscillation experiments, specifically the Deep Underground Neutrino Experiment (DUNE). Here, we explore specifically what about the matter density profile can be measured by DUNE, considering both the shape and normalization of the profile between the neutrinos' origin and detection. Additionally, we explore the capability of a perturbative method for calculating neutrino oscillation probabilities and whether this method is suitable for DUNE. We also briefly quantitatively explore the ability of DUNE to measure the Earth's matter density, and the impact of performing this measurement on measuring standard neutrino oscillation parameters.

  19. Eolian depositional phases during the past 50 ka and inferred climate variability for the Pampean Sand Sea, western Pampas, Argentina

    Science.gov (United States)

    Tripaldi, Alfonsina; Forman, Steven L.

    2016-05-01

    The Pampean Sand Sea, which occurs from the Argentinian Pampas to the eastern Andean piedmont, hosts presently stabilized dune fields spanning the late Quaternary. This study integrates previous results and presents new geomorphic, stratigraphic, sedimentological, and chronologic data for nineteen >2 m-thick eolian successions for the San Luis paleo-dune field, western Pampas, to better constrain the depositional history. Six eolian depositional phases are identified spanning the past 50 ka, interposed with paleosols and/or bounded by erosive surfaces. Age control was from 61 OSL ages of small aliquots of quartz grains from eolian stratigraphic units. The inferred timing of eolian phases are at ca. 70 ± 10 yr, 190 ± 20 yr, 12 to 1 ka, 22 to 17 ka, 29 to 24 ka, and 40 to 32 ka. A maximum span for periods of pedogenesis at ca. 12 to 17 ka, 22 to 24 ka, and 29 to 32 ka was provided by bounding OSL ages, which broadly overlap with high stands of pluvial lakes and glacier advances in the central Andes. We infer that the added precipitation may reflect expansion of the Southern Hemisphere monsoon, associated with Northern Hemisphere Heinrich events, leading to episodes of significantly wetter conditions (>350 mm MAP) to at least 35° S. Most of the Holocene (12 ka to 0.8 ka) was characterized by sand sheet deposit under drier than present conditions (100-450 mm MAP), associated with Monte-type vegetation (shrub steppe). The latest two eolian depositional phases, occurred at ca. 190 and 70 yr ago, during the historic period with European settlement and are related to anthropogenic landscape disturbance, though the youngest phase was concomitant with 1930s drought. Wet conditions dominated since ca. AD 1970 with new lakes and rivers forming across this eolian terrain; an incongruous environmental response in reference to drier conditions for most of the Holocene.

  20. Drought drove forest decline and dune building in eastern upper Michigan, USA, as the upper Great Lakes became closed basins

    Science.gov (United States)

    Loope, Walter L.; Loope, Henry M.; Goble, Ronald J.; Fisher, Timothy G.; Lytle, David E.; Legg, Robert J.; Wysocki, Douglas A.; Hanson, Paul R.; Young, Aaron R.

    2012-01-01

    Current models of landscape response to Holocene climate change in midcontinent North America largely reconcile Earth orbital and atmospheric climate forcing with pollen-based forest histories on the east and eolian chronologies in Great Plains grasslands on the west. However, thousands of sand dunes spread across 12,000 km2 in eastern upper Michigan (EUM), more than 500 km east of the present forest-prairie ecotone, present a challenge to such models. We use 65 optically stimulated luminescence (OSL) ages on quartz sand deposited in silt caps (n = 8) and dunes (n = 57) to document eolian activity in EUM. Dune building was widespread ca. 10–8 ka, indicating a sharp, sustained decline in forest cover during that period. This decline was roughly coincident with hydrologic closure of the upper Great Lakes, but temporally inconsistent with most pollen-based models that imply canopy closure throughout the Holocene. Early Holocene forest openings are rarely recognized in pollen sums from EUM because faint signatures of non-arboreal pollen are largely obscured by abundant and highly mobile pine pollen. Early Holocene spikes in nonarboreal pollen are recorded in cores from small ponds, but suggest only a modest extent of forest openings. OSL dating of dune emplacement provides a direct, spatially explicit archive of greatly diminished forest cover during a very dry climate in eastern midcontinent North America ca. 10–8 ka.

  1. System Controls on the South Texas Sand Sheet

    Science.gov (United States)

    Barrineau, Clifton Patrick

    Semi-stabilized dune systems are important indicators of Quaternary drought variability across central North America. The South Texas sand sheet (STSS) is the southernmost relict dune system in central North America and is exposed to higher evapotranspiration and moisture variability than similar landscapes farther north. This study uses multi-scale analysis of LiDAR data, geophysical surveys, optically stimulated luminescence dates of core samples, and X-ray fluorescence analysis to identify historical periods of desertification across the STSS. These data suggest long-term relationships between climate, ecological disturbances, geological framework, and desertification. Aeolian activations dated at ca. 75, 230, 2000, 4100, and 6600 yr bp correspond to periods of persistent regional drought, changes in sediment supply, and anthropogenic disturbances of native ecology. From these results it appears that regionalized activation in semi-stabilized dune systems is controlled primarily by climatic variations that reduce the overall moisture available for maintaining vigorous vegetation growth, while localized activation patterns depend more on stresses related to site-specific morphodynamics as well as human activity. With enhanced aridity forecast for much of central North America through the 21 st century, understanding the specific thresholds of desertification is an important step towards building a conceptual model of desertification in semi-stabilized dune landscapes.

  2. Changes in Microbial Community Structure and Soil Biological Properties in Mined Dune Areas During Re-vegetation.

    Science.gov (United States)

    Escobar, Indra Elena C; Santos, Vilma M; da Silva, Danielle Karla A; Fernandes, Marcelo F; Cavalcante, Uided Maaze T; Maia, Leonor C

    2015-06-01

    The aim of this study was to describe the impact of re-vegetation on the restoration of microbial community structure and soil microbiological properties in sand dunes that had been affected by mining activity. Soil samples were collected during the dry and rainy seasons from a chronosequence (1, 9, 21 years) of re-vegetated dunes using a single preserved dune as a reference. The composition of the fatty acid methyl esters and soil microbial properties were evaluated. The results showed that the changes in microbial community structure were related to seasonal variations: biomarkers of Gram-positive bacteria were higher than Gram-negative bacteria during the dry season, showing that this group of organisms is more tolerant to these stressful conditions. The microbial community structure in the natural dune was less affected by seasonal variation compared to the re-vegetated areas, whereas the opposite was observed for microbiological properties. Thus, in general, the proportion of saprobic fungi was higher in the natural dune, whereas Gram-negative bacteria were proportionally more common in the younger areas. Although over time the re-vegetation allows the recovery of the microbial community and the soil functions, these communities and functions are different from those found in the undisturbed areas.

  3. Quantifying energy and water fluxes in dry dune ecosystems of the Netherlands

    Science.gov (United States)

    Voortman, B. R.; Bartholomeus, R. P.; van der Zee, S. E. A. T. M.; Bierkens, M. F. P.; Witte, J. P. M.

    2015-09-01

    Coastal and inland dunes provide various ecosystem services that are related to groundwater, such as drinking water production and biodiversity. To manage groundwater in a sustainable manner, knowledge of actual evapotranspiration (ETa) for the various land covers in dunes is essential. Aiming at improving the parameterization of dune vegetation in hydrometeorological models, this study explores the magnitude of energy and water fluxes in an inland dune ecosystem in the Netherlands. Hydrometeorological measurements were used to parameterize the Penman-Monteith evapotranspiration model for four different surfaces: bare sand, moss, grass and heather. We found that the net longwave radiation (Rnl) was the largest energy flux for most surfaces during daytime. However, modeling this flux by a calibrated FAO-56 Rnl model for each surface and for hourly time steps was unsuccessful. Our Rnl model, with a novel submodel using solar elevation angle and air temperature to describe the diurnal pattern in radiative surface temperature, improved Rnl simulations considerably. Model simulations of evaporation from moss surfaces showed that the modulating effect of mosses on the water balance is species-dependent. We demonstrate that dense moss carpets (Campylopus introflexus) evaporate more (5 %, +14 mm) than bare sand (total of 258 mm in 2013), while more open-structured mosses (Hypnum cupressiforme) evaporate less (-30 %, -76 mm) than bare sand. Additionally, we found that a drought event in the summer of 2013 showed a pronounced delayed signal on lysimeter measurements of ETa for the grass and heather surfaces, respectively. Due to the desiccation of leaves after the drought event, and their feedback on the surface resistance, the potential evapotranspiration in the year 2013 dropped by 9 % (-37 mm) and 10 % (-61 mm) for the grass and heather surfaces, respectively, which subsequently led to lowered ETa of 8 % (-29 mm) and 7 % (-29 mm). These feedbacks are of importance for

  4. Influence green sand system by core sand additions

    Directory of Open Access Journals (Sweden)

    N. Špirutová

    2012-01-01

    Full Text Available Today, about two thirds of iron alloys casting (especially for graphitizing alloys of iron are produced into green sand systems with usually organically bonded cores. Separation of core sands from the green sand mixture is very difficult, after pouring. The core sand concentration increase due to circulation of green sand mixture in a closed circulation system. Furthermore in some foundries, core sands have been adding to green sand systems as a replacement for new sands. The goal of this contribution is: “How the green sand systems are influenced by core sands?”This effect is considered by determination of selected technological properties and degree of green sand system re-bonding. From the studies, which have been published yet, there is not consistent opinion on influence of core sand dilution on green sand system properties. In order to simulation of the effect of core sands on the technological properties of green sands, there were applied the most common used technologies of cores production, which are based on bonding with phenolic resin. Core sand concentration added to green sand system, was up to 50 %. Influence of core sand dilution on basic properties of green sand systems was determined by evaluation of basic industrial properties: moisture, green compression strength and splitting strength, wet tensile strength, mixture stability against staling and physical-chemistry properties (pH, conductivity, and loss of ignition. Ratio of active betonite by Methylene blue test was also determined.

  5. Delineating Beach and Dune Morphology from Massive Terrestrial Laser Scanning Data Using the Generic Mapping Tools

    Science.gov (United States)

    Zhou, X.; Wang, G.; Yan, B.; Kearns, T.

    2016-12-01

    Terrestrial laser scanning (TLS) techniques have been proven to be efficient tools to collect three-dimensional high-density and high-accuracy point clouds for coastal research and resource management. However, the processing and presenting of massive TLS data is always a challenge for research when targeting a large area with high-resolution. This article introduces a workflow using shell-scripting techniques to chain together tools from the Generic Mapping Tools (GMT), Geographic Resources Analysis Support System (GRASS), and other command-based open-source utilities for automating TLS data processing. TLS point clouds acquired in the beach and dune area near Freeport, Texas in May 2015 were used for the case study. Shell scripts for rotating the coordinate system, removing anomalous points, assessing data quality, generating high-accuracy bare-earth DEMs, and quantifying beach and sand dune features (shoreline, cross-dune section, dune ridge, toe, and volume) are presented in this article. According to this investigation, the accuracy of the laser measurements (distance from the scanner to the targets) is within a couple of centimeters. However, the positional accuracy of TLS points with respect to a global coordinate system is about 5 cm