Sample records for sands clay minerals

  1. Microwave processing of oil sands and contribution of clay minerals


    John P. Robinson; Binner, Eleanor; Saeid, Abdul; Al-Harahsheh, Mohammad; Kingman, S. W.


    This study establishes the feasibility of microwave heating for extracting oil from Oil Sands in ex-situ processes. Previous studies in this area have shown some potential, but have not characterised the dielectric properties of the Oil Sands used, nor related them to the mineral composition, both of which are vital if successful scale up is to be achieved. In this work the fundamental interactions of microwave energy with Oil Sands are investigated and understood for the first time, and the ...

  2. Characterization of sands and mineral clays in channel and floodplain deposits of Portuguesa river, Venezuela

    Directory of Open Access Journals (Sweden)

    Orlando José González Clemente


    Full Text Available In the main channel and floodplain of Portuguesa River were studied the mineralogical characteristics of sand and clay minerals respectively. The methodology consisted of X-ray diffraction (XRD analysis, for both mineral fractions. The results indicated the presence of mainly of quartz sands with minor amounts of chlorite, muscovite, calcite and feldspar which are considered quartz sand mature. Its origin is related to the source area and rework of soils and sediments of the floodplain. The clay fraction is characterized by the presence of 13 mineral crystalline phases consisting mainly of quartz, muscovite and chlorite, and clay minerals such as kaolinite, vermiculite, montmorillonite and nontronita. Its detrital origin may be due to mineral neoformation and inheritance. Therefore both mineral fractions consist mainly of quartz and kaolinite, which are essential components of the source area as well as the Quaternary alluvial deposits and the soils that make up the region.

  3. Characterization of Clay Minerals and Kerogen in Alberta Oil Sands Geological End Members (United States)

    Zheng, Limin

    The high degree of variability of oil sands ores can be attributed to a mixture of different geological end members, i.e., estuarine sand, estuarine clay, marine sand and marine clay. This study focused on the mineralogy, especially of clay minerals, and toluene insoluble organic matter, referred to as kerogen, in different oil sands end members. Clays and kerogens will likely have a significant impact on solvent recovery from the gangue following non-aqueous bitumen extraction. The bitumen-free solids were subjected to mineralogical and geochemical analysis. Kerogens were isolated and analyzed by various characterization methods. The types of clays were identified in oriented samples by X-ray diffraction analysis. The nitrogen to carbon ratio in the isolated kerogens is found to be higher than in bitumen. There are more type III kerogens in estuarine samples and more type II kerogens in marine samples.

  4. Heavy oil components sorbed onto clay minerals in Canadian oil sands

    Energy Technology Data Exchange (ETDEWEB)

    Fendel, A.; Schwochau, K. (Institute for Petroleum and Organic Geochemistry, Nuclear Research Centre (KFA), Julich (DE))


    In siliciclastic reservoir rocks the surface-active clay minerals are presumed to be predominantly responsible for the sorption of polar oil components. In order to achieve a better insight into the nature of the oil components sorbed onto clay minerals, unconsolidated Canadian Oil Sands (Cold Lake, Athabasca) were exhaustively extracted with dichloromethane to remove the free oil. The clay minerals (grain fraction less than or equal to2 were then separated by gravitational sedimentation. After the extraction up to 3 wt of organic carbon still remained on the clays. The amount of aliphatic carbon adhering to the clays was assessed by means of IR-spectroscopy. The clay minerals were successively extracted with solvent mixtures of increasing polarity in order to release the bound oil components. The extracts were fractionated into chemically defined compound classes by semi-preparative liquid chromatography and MPLC. The fractions were characterized by GC, GC-MS and IR-spectroscopy. Components containing oxygen functions (carboxylic acids, esters, alcohols, ketones) appear to be preferentially bound by clays. Moreover, a small amount of hydrocarbons, in particular saturates, are sorbed by clays.

  5. Clay Mineral: Radiological Characterization (United States)

    Cotomácio, J. G.; Silva, P. S. C.; Mazzilli, B. P.


    Since the early days, clays have been used for therapeutic purposes. Nowadays, most minerals applied as anti-inflammatory, pharmaceutics and cosmetic are the clay minerals that are used as the active ingredient or, as the excipient, in formulations. Although their large use, few information is available in literature on the content of the radionuclide concentrations of uranium and thorium natural series and 40K in these clay minerals. The objective of this work is to determine the concentrations of 238U, 232Th, 226Ra, 228Ra, 210Pb and 40K in commercial samples of clay minerals used for pharmaceutical or cosmetic purposes. Two kinds of clays samples were obtained in pharmacies, named green clay and white clay. Measurement for the determination of 238U and 232Th activity concentration was made by alpha spectrometry and gamma spectrometry was used for 226Ra, 228Ra, 210Pb and 40K determination. Some physical-chemical parameters were also determined as organic carbon and pH. The average activity concentration obtained was 906±340 Bq kg-1 for 40K, 40±9 Bq kg-1 for 226Ra, 75±9 Bq kg-1 for 228Ra, 197±38 Bq kg-1 for 210Pb, 51±26 Bq kg-1 for 238U and 55±24 Bq kg-1 for 232Th, considering both kinds of clay.

  6. Zeolite and clay-mineral induced resistivity in simulated reservoir. [Artificial cores prepared by mixing and compacting clinoptilolite, smectite and illite, with medium-grained quartz sand

    Energy Technology Data Exchange (ETDEWEB)

    Reynolds, W.R.; Williford, C.W. (Mississippi Univ., University, MS (USA))


    Clay-minerals dispersed in reservoir sands affect electric log response and register reduced resistivity values. Natural zeolites however, with large microporosities and water content could have a greater affect on resistivity measurements. Resistivity values were measured on a series of artificial cores prepared by mixing and compacting various percentages each of clinoptilolite, smectite and illite, with a medium-grained, moderately sorted quartz sand. Various concentrations of NaCl solution mixed with 39 API crude oil were circulated through each core. Impedance measurements were taken, resistance values segregated, and resistivities determined for each core. Water saturation values were calculated from the empirical resistivity values and porosities using a modified Simandoux equation. These values appeared to be much higher for those cores which contained the zeolite clinoptilolite. Clinoptilolite, when dispersed in a simulated reservoir sand and treated as a dispersed smectite or illite, produced inflated saturation values. This inflation effect is thought to be due to the more extensive microporosity and larger micropore water content of the zeolite. Therefore, from the empirical aspect, resistivity measurements of reservoir sands containing a dispersed zeolite, rather than a clay-mineral, would probably yield misleading water saturation values. 3 figs., 26 refs., 3 tabs.

  7. Clay minerals in pollution control

    Energy Technology Data Exchange (ETDEWEB)

    Tateo, F. [Consiglio Nazionale delle Ricerche, Istituto di Ricerca sulle Argille, Tito Scalo, PZ (Italy)


    Clay minerals are fundamental constituents of life, not only as possible actors in the development of life on the Earth (Cairns-Smith and Hartman, 1986), but mainly because they are essential constituents of soils, the interface between the solid planet and the continental biosphere. Many, many authors have devoted themselves to the study of clays and clay minerals since the publication of the early modern studies by Grim (1953, 1962) and Millot (1964). In those years two very important associations were established in Europe (Association Internationale pour l'Etude des Argiles, AIPEA) and in the USA (Clay Mineral Society, CMS). The importance of these societies is to put together people that work in very different fields (agronomy, geology, geochemistry, industry, etc.), but with a common language (clays), very useful in scientific work. Currently excellent texts are being published, but introductory notes are also available on the web (Schroeder, 1998).

  8. Induced polarization of clay-sand mixtures. Experiments and modelling. (United States)

    Okay, G.; Leroy, P.


    The complex conductivity of saturated unconsolidated sand-clay mixtures was experimentally investigated using two types of clay minerals, kaolinite and smectite (mainly Na-Montmorillonite) in the frequency range 1.4 mHz - 12 kHz. The experiments were performed with various clay contents (1, 5, 20, and 100 % in volume of the sand-clay mixture) and salinities (distilled water, 0.1 g/L, 1 g/L, and 10 g/L NaCl solution). Induced polarization measurements were performed with a cylindrical four-electrode sample-holder associated with a SIP-Fuchs II impedance meter and non-polarizing Cu/CuSO4 electrodes. The results illustrate the strong impact of the CEC of the clay minerals upon the complex conductivity. The quadrature conductivity increases steadily with the clay content. We observe that the dependence on frequency of the quadrature conductivity of sand-kaolinite mixtures is more important than for sand-bentonite mixtures. For both types of clay, the quadrature conductivity seems to be fairly independent on the pore fluid salinity except at very low clay contents. The experimental data show good agreement with predicted values given by our SIP model. This complex conductivity model considers the electrochemical polarization of the Stern layer coating the clay particles and the Maxwell-Wagner polarization. We use the differential effective medium theory to calculate the complex conductivity of the porous medium constituted of the grains and the electrolyte. The SIP model includes also the effect of the grain size distribution upon the complex conductivity spectra.

  9. Mineral resource of the Month: Clay (United States)

    Virta, Robert L.


    Clays were one of the first mineral commodities used by people. Clay pottery has been found in archeological sites that are 12,000 years old, and clay figurines have been found in sites that are even older.

  10. Seasonal variations in heavy mineral placer sand from Kalbadevi Bay, Ratnagiri, Maharashtra

    Digital Repository Service at National Institute of Oceanography (India)

    Valsangkar, A.B.

    Heavy mineral sand from Kalbadevi Bay, Ratnagiri, Maharashtra is well known for ilmenite placer deposits. Study along the central profile of the Bay shows that the sand is major constituent followed by silt, and clay content is present in negligible...

  11. Dehydration-induced luminescence in clay minerals (United States)

    Coyne, L. M.; Lahav, N.; Lawless, J. G.


    Reports of triboluminescent phenomena in organic crystalline materials prompted a search for related processes in clay minerals. The reported extensive mechanical distortion produced on freezing and drying of montmorillonite was particularly interesting because of studies of condensation reactions in a wet/dry cycled reaction sequence. The discovery of an unusual luminescent process in several clay minerals is reported and its characteristics are described.

  12. Mineral processing of heavy mineral sands from Malawi and Malaysia


    Mitchell, C J


    Processing of heavy mineral sands involves many techniques including gravity, magnetic and electrostatic separation. As part of a laboratory programme to develop effective mineral processing techniques, two mineral sands from Malawi and Malaysia were processed using the standard techniques, with emphasis placed on the Carpco electrostatic separator. These sands were initially characterised mineralogically by scanning electron microscopy (SEM), electron microprobe analysis (EPMA...

  13. Water repellency of clay, sand and organic soils in Finland

    Directory of Open Access Journals (Sweden)

    K. RASA


    Full Text Available Water repellency (WR delays soil wetting process, increases preferential flow and may give rise to surface runoff and consequent erosion. WR is commonly recognized in the soils of warm and temperate climates. To explore the occurrence of WR in soils in Finland, soil R index was studied on 12 sites of different soil types. The effects of soil management practice, vegetation age, soil moisture and drying temperature on WR were studied by a mini-infiltrometer with samples from depths of 0-5 and 5-10 cm. All studied sites exhibited WR (R index >1.95 at the time of sampling. WR increased as follows: sand (R = 1.8-5.0 < clay (R = 2.4-10.3 < organic (R = 7.9-undefined. At clay and sand, WR was generally higher at the soil surface and at the older sites (14 yr., where organic matter is accumulated. Below 41 vol. % water content these mineral soils were water repellent whereas organic soil exhibited WR even at saturation. These results show that soil WR also reduces water infiltration at the prevalent field moisture regime in the soils of boreal climate. The ageing of vegetation increases WR and on the other hand, cultivation reduces or hinders the development of WR.;

  14. Compressive Strength of Compacted Clay-Sand Mixes

    Directory of Open Access Journals (Sweden)

    Faseel Suleman Khan


    Full Text Available The use of sand to improve the strength of natural clays provides a viable alternative for civil infrastructure construction involving earthwork. The main objective of this note was to investigate the compressive strength of compacted clay-sand mixes. A natural clay of high plasticity was mixed with 20% and 40% sand (SP and their compaction and strength properties were determined. Results indicated that the investigated materials exhibited a brittle behaviour on the dry side of optimum and a ductile behaviour on the wet side of optimum. For each material, the compressive strength increased with an increase in density following a power law function. Conversely, the compressive strength increased with decreasing water content of the material following a similar function. Finally, the compressive strength decreased with an increase in sand content because of increased material heterogeneity and loss of sand grains from the sides during shearing.

  15. Evaluating sand and clay models: do rheological differences matter? (United States)

    Eisenstadt, Gloria; Sims, Darrell


    Dry sand and wet clay are the most frequently used materials for physical modeling of brittle deformation. We present a series of experiments that shows when the two materials can be used interchangeably, document the differences in deformation patterns and discuss how best to evaluate and apply results of physical models. Extension and shortening produce similar large-scale deformation patterns in dry sand and wet clay models, indicating that the two materials can be used interchangeably for analysis of gross deformation geometries. There are subtle deformation features that are significantly different: (1) fault propagation and fault linkage; (2) fault width, spacing and displacement; (3) extent of deformation zone; and (4) amount of folding vs. faulting. These differences are primarily due to the lower cohesion of sand and its larger grain size. If these features are of interest, the best practice would be to repeat the experiments with more than one material to ensure that rheological differences are not biasing results. Dry sand and wet clay produce very different results in inversion models; almost all faults are reactivated in wet clay, and few, if any, are significantly reactivated in sand models. Fault reactivation is attributed to high fluid pressure along the fault zone in the wet clay, a situation that may be analogous to many rocks. Sand inversion models may be best applied to areas where most faults experience little to no reactivation, while clay models best fit areas where most pre-existing normal faults are reactivated.

  16. The influence of clay minerals on acoustic properties of sandstones

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, Olav


    This thesis aims to provide better understanding of the relationship between the acoustic properties and the petrophysical/mineralogical properties in sand-prone rock. It emphasizes the influence of clay minerals. The author develops a method to deposit clay minerals/mineral aggregates in pore space of a rigid rock framework. Kaolinite aggregates were flushed into porous permeable Bentheimer sandstone to evaluate the effect of pore filling minerals on porosity, permeability and acoustic properties. The compressional velocity was hardly affected by the clay content and it was found that the effect of minor quantities of pore filling minerals may be acoustically modelled as an ideal suspension, where the pore fluid bulk modulus is modified by the bulk modulus of the clay minerals. The influence of clays on acoustic velocities in petroleum reservoir rocks was investigated through ultrasonic measurements of compressional- and shear-waves on core material from reservoir and non-reservoir units on the Norwegian Continental Shelf. The measured velocities decrease as the porosity increases, but are not strongly dependent on the clay content. The measured velocities are less dependent on the petrophysical and lithological properties than indicated by previous authors and published mathematical models, and stiffness reduction factors are introduced in two of the models to better match the data. Velocities are estimated along the wellbores based on non-sonic well logs and reflect well the actual sonic log well measurements. In some wells the compressional velocity cannot be modelled correctly by the models suggested. Very high compressional wave anisotropy was measured in the dry samples at atmospheric conditions. As the samples were saturated, the anisotropy was reduced to a maximum of about 30% and decreases further upon pressurization. Reservoir rocks retrieved from 2500 m are more stress dependent than those retrieved from less than 200 m depth. 168 refs., 117 figs., 24

  17. Sand and clay mineralogy of sal forest soils of the Doon Siwalik Himalayas

    Indian Academy of Sciences (India)

    Mukesh; R K Manhas; A K Tripathi; A K Raina; M K Gupta; S K Kamboj


    The peteromineralogical characterization of the soil was carried out for the 12 soil profiles exposed in the Shorea robusta dominated forests of the Siwalik forest division, Dehradun. The quartz was observed as the dominating light mineral fraction (64–80%) in all the profiles studied. Biotite, hornblende, zircon, tourmaline, rutile and opaques comprising of iron minerals constituted the heavy mineral fraction (20%). The mineralogy of both the sand and clay fractions revealed a mixed mineralogy. The clay minerals in the order of their dominance were vermiculite, illite, kaolinite and mixed layer minerals. The presence of vermiculite and illite in appreciable quantities indicates that these were synthesized from the K-rich soil solution, as orthoclase and micas were present in significant quantities in the sand minerals. The mineral suites identified in the study shows that the geological, climatological and topographical factors of the region collectively played a dominant role in their formation and transformation. After critical appraisal of the results, it may be deduced that the mineralogical composition, physicochemical properties and total elemental analysis of the soils do not show any deficiency of the bases and other plant nutrients in general. The inherent fertility of the soil is good as indicated by the sand and clay mineralogy of the soil and the biotite and feldspar together with the mica is an important source of nutrients for the vegetation in the soils of the Doon valley.

  18. Mineral acquisition from clay by budongo forest chimpanzees

    NARCIS (Netherlands)

    Reynolds, Vernon; Lloyd, Andrew W.; English, Christopher J.; Lyons, Peter; Dodd, Howard; Hobaiter, Catherine; Newton-Fisher, Nicholas; Mullins, Caroline; Lamon, Noemie; Schel, Anne Marijke; Fallon, Brittany


    Chimpanzees of the Sonso community, Budongo Forest, Uganda were observed eating clay and drinking clay-water from waterholes. We show that clay, clay-rich water, and clay obtained with leaf sponges, provide a range of minerals in different concentrations. The presence of aluminium in the clay consum

  19. Uranyl adsorption at clay mineral surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Roesch, N.


    This first exemplary survey of actinide adsorption at complex clay mineral surfaces, which provided new insights at the atomic level, will be extended to other pertinent adsorbates like neptunyl NpO{sub 2}{sup +} and more complex minerals like iron-substituted phyllosilicates. In this way we will check if the concepts developed so far can be applied more generally, to support the interpretation of upcoming experiments. An essential facet of these studies will be to account also for the dynamical nature of the mineral/water interface by means of exemplary dynamical simulations. (orig.)

  20. Uranyl adsorption at clay mineral surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Roesch, N. [Technische Univ. Muenchen (Germany). Fachgebiet Theoretische Chemie


    This first systematic survey of actinide adsorption at complex clay mineral surfaces, which provided new insights at the atomic level, is currently being extended to neptunyl NpO{sub 2}{sup +} and more complex minerals, like iron-substituted phyllosilicates. In this way we examine if the concepts developed so far can be applied more generally to support the interpretation of pertinent experiments. A further facet of these studies is to account also for the dynamic nature of the mineral/water interface by means of exemplary dynamic simulations.

  1. The Delft Sand, Clay and Rock Cutting Model

    NARCIS (Netherlands)

    Miedema, S.A.


    Sand, clay and rock have to be excavated for a variety of purposes, such as dredging, trenching, mining (including deep sea mining), drilling, tunnel boring and many other applications. Many excavations take place on dry land, but they are also frequently required in completely saturated conditions,

  2. Mechanical properties of sand, silt, and clay containing tetrahydrofuran hydrate (United States)

    Yun, T.S.; Santamarina, C.J.; Ruppel, C.


    The mechanical behavior of hydrate-bearing sediments subjected to large strains has relevance for the stability of the seafloor and submarine slopes, drilling and coring operations, and the analysis of certain small-strain properties of these sediments (for example, seismic velocities). This study reports on the results of comprehensive axial compression triaxial tests conducted at up to 1 MPa confining pressure on sand, crushed silt, precipitated silt, and clay specimens with closely controlled concentrations of synthetic hydrate. The results show that the stress-strain behavior of hydrate-bearing sediments is a complex function of particle size, confining pressure, and hydrate concentration. The mechanical properties of hydrate-bearing sediments at low hydrate concentration (probably 50% of pore space), the behavior becomes more independent of stress because the hydrates control both stiffness and strength and possibly the dilative tendency of sediments by effectively increasing interparticle coordination, cementing particles together, and filling the pore space. The cementation contribution to the shear strength of hydrate-bearing sediments decreases with increasing specific surface of soil minerals. The lower the effective confining stress, the greater the impact of hydrate formation on normalized strength.

  3. Mineral Acquisition from Clay by Budongo Forest Chimpanzees. (United States)

    Reynolds, Vernon; Lloyd, Andrew W; English, Christopher J; Lyons, Peter; Dodd, Howard; Hobaiter, Catherine; Newton-Fisher, Nicholas; Mullins, Caroline; Lamon, Noemie; Schel, Anne Marijke; Fallon, Brittany


    Chimpanzees of the Sonso community, Budongo Forest, Uganda were observed eating clay and drinking clay-water from waterholes. We show that clay, clay-rich water, and clay obtained with leaf sponges, provide a range of minerals in different concentrations. The presence of aluminium in the clay consumed indicates that it takes the form of kaolinite. We discuss the contribution of clay geophagy to the mineral intake of the Sonso chimpanzees and show that clay eaten using leaf sponges is particularly rich in minerals. We show that termite mound soil, also regularly consumed, is rich in minerals. We discuss the frequency of clay and termite soil geophagy in the context of the disappearance from Budongo Forest of a formerly rich source of minerals, the decaying pith of Raphia farinifera palms.

  4. Sorption Energy Maps of Clay Mineral Surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Cygan, Randall T.; Kirkpatrick, R. James


    A molecular-level understanding of mineral-water interactions is critical for the evaluation and prediction of the sorption properties of clay minerals that may be used in various chemical and radioactive waste disposal methods. Molecular models of metal sorption incorporate empirical energy force fields, based on molecular orbital calculations and spectroscopic data, that account for Coulombic, van der Waals attractive, and short-range repulsive energies. The summation of the non-bonded energy terms at equally-spaced grid points surrounding a mineral substrate provides a three dimensional potential energy grid. The energy map can be used to determine the optimal sorption sites of metal ions on the exposed surfaces of the mineral. By using this approach, we have evaluated the crystallographic and compositional control of metal sorption on the surfaces of kaolinite and illite. Estimates of the relative sorption energy and most stable sorption sites are derived based on a rigid ion approximation.

  5. Clay mineral type effect on bacterial enteropathogen survival in soil. (United States)

    Brennan, Fiona P; Moynihan, Emma; Griffiths, Bryan S; Hillier, Stephen; Owen, Jason; Pendlowski, Helen; Avery, Lisa M


    Enteropathogens released into the environment can represent a serious risk to public health. Soil clay content has long been known to have an important effect on enteropathogen survival in soil, generally enhancing survival. However, clay mineral composition in soils varies, and different clay minerals have specific physiochemical properties that would be expected to impact differentially on survival. This work investigated the effect of clay materials, with a predominance of a particular mineral type (montmorillonite, kaolinite, or illite), on the survival in soil microcosms over 96 days of Listeria monocytogenes, Salmonella Dublin, and Escherichia coli O157. Clay mineral addition was found to alter a number of physicochemical parameters in soil, including cation exchange capacity and surface area, and this was specific to the mineral type. Clay mineral addition enhanced enteropathogen survival in soil. The type of clay mineral was found to differentially affect enteropathogen survival and the effect was enteropathogen-specific.

  6. Alteration of swelling clay minerals by acid activation

    NARCIS (Netherlands)

    Steudel, A.; Batenburg, L.F.; Fischer, H.R.; Weidler, P.G.; Emmerich, K.


    The bulk material of six dioctahedral and two trioctahedral swellable clay minerals was leached in H2SO4 and HCl at concentrations of 1.0, 5.0 and 10.0 M at 80 °C for several hours. Alteration of the clay mineral structures was dependent on the individual character of each mineral (chemical

  7. Alteration of swelling clay minerals by acid activation

    NARCIS (Netherlands)

    Steudel, A.; Batenburg, L.F.; Fischer, H.R.; Weidler, P.G.; Emmerich, K.


    The bulk material of six dioctahedral and two trioctahedral swellable clay minerals was leached in H2SO4 and HCl at concentrations of 1.0, 5.0 and 10.0 M at 80 °C for several hours. Alteration of the clay mineral structures was dependent on the individual character of each mineral (chemical composit

  8. Optimization method for quantitative calculation of clay minerals in soil

    Indian Academy of Sciences (India)

    Libo Hao; Qiaoqiao Wei; Yuyan Zhao; Zilong Lu; Xinyun Zhao


    Determination of types and amounts for clay minerals in soil are important in environmental, agricultural, and geological investigations. Many reliable methods have been established to identify clay mineral types. However, no reliable method for quantitative analysis of clay minerals has been established so far. In this study, an attempt was made to propose an optimization method for the quantitative determination of clay minerals in soil based on bulk chemical composition data. The fundamental principles and processes of the calculation are elucidated. Some samples were used for reliability verification of the method and the results prove the simplicity and efficacy of the approach.

  9. Scour at Vertical Piles in Sand-Clay Mixtures under Waves

    DEFF Research Database (Denmark)

    Dey, Subhasish; Helkjær, Anders; Sumer, B. Mutlu;


    Marine sediments often contain sand-clay mixtures in widely varying proportions. This study presents the results of equilibrium scour and time variation of scour depths at circular piles embedded vertically in clay alone and sand-clay mixed beds under waves. Experiments were conducted in a wave f...

  10. Deposit model for heavy-mineral sands in coastal environments: Chapter L in Mineral deposit models for resource assessment (United States)

    Van Gosen, Bradley S.; Fey, David L.; Shah, Anjana K.; Verplanck, Philip L.; Hoefen, Todd M.


    This report provides a descriptive model of heavy-mineral sands, which are sedimentary deposits of dense minerals that accumulate with sand, silt, and clay in coastal environments, locally forming economic concentrations of the heavy minerals. This deposit type is the main source of titanium feedstock for the titanium dioxide (TiO2) pigments industry, through recovery of the minerals ilmenite (Fe2+TiO3), rutile (TiO2), and leucoxene (an alteration product of ilmenite). Heavy-mineral sands are also the principal source of zircon (ZrSiO4) and its zirconium oxide; zircon is often recovered as a coproduct. Other heavy minerals produced as coproducts from some deposits are sillimanite/kyanite, staurolite, monazite, and garnet. Monazite [(Ce,La,Nd,Th)PO4] is a source of rare earth elements as well as thorium, which is used in thorium-based nuclear power under development in India and elsewhere.

  11. Recent advances in clay mineral-containing nanocomposite hydrogels. (United States)

    Zhao, Li Zhi; Zhou, Chun Hui; Wang, Jing; Tong, Dong Shen; Yu, Wei Hua; Wang, Hao


    Clay mineral-containing nanocomposite hydrogels have been proven to have exceptional composition, properties, and applications, and consequently have attracted a significant amount of research effort over the past few years. The objective of this paper is to summarize and evaluate scientific advances in clay mineral-containing nanocomposite hydrogels in terms of their specific preparation, formation mechanisms, properties, and applications, and to identify the prevailing challenges and future directions in the field. The state-of-the-art of existing technologies and insights into the exfoliation of layered clay minerals, in particular montmorillonite and LAPONITE®, are discussed first. The formation and structural characteristics of polymer/clay nanocomposite hydrogels made from in situ free radical polymerization, supramolecular assembly, and freezing-thawing cycles are then examined. Studies indicate that additional hydrogen bonding, electrostatic interactions, coordination bonds, hydrophobic interaction, and even covalent bonds could occur between the clay mineral nanoplatelets and polymer chains, thereby leading to the formation of unique three-dimensional networks. Accordingly, the hydrogels exhibit exceptional optical and mechanical properties, swelling-deswelling behavior, and stimuli-responsiveness, reflecting the remarkable effects of clay minerals. With the pivotal roles of clay minerals in clay mineral-containing nanocomposite hydrogels, the nanocomposite hydrogels possess great potential as superabsorbents, drug vehicles, tissue scaffolds, wound dressing, and biosensors. Future studies should lay emphasis on the formation mechanisms with in-depth insights into interfacial interactions, the tactical functionalization of clay minerals and polymers for desired properties, and expanding of their applications.

  12. Late Precambrian oxygenation; inception of the clay mineral factory. (United States)

    Kennedy, Martin; Droser, Mary; Mayer, Lawrence M; Pevear, David; Mrofka, David


    An enigmatic stepwise increase in oxygen in the late Precambrian is widely considered a prerequisite for the expansion of animal life. Accumulation of oxygen requires organic matter burial in sediments, which is largely controlled by the sheltering or preservational effects of detrital clay minerals in modern marine continental margin depocenters. Here, we show mineralogical and geochemical evidence for an increase in clay mineral deposition in the Neoproterozoic that immediately predated the first metazoans. Today most clay minerals originate in biologically active soils, so initial expansion of a primitive land biota would greatly enhance production of pedogenic clay minerals (the "clay mineral factory"), leading to increased marine burial of organic carbon via mineral surface preservation.

  13. The systems containing clays and clay minerals from modified drug release: a review. (United States)

    Rodrigues, Luís Alberto de Sousa; Figueiras, Ana; Veiga, Francisco; de Freitas, Rivelilson Mendes; Nunes, Lívio César Cunha; da Silva Filho, Edson Cavalcanti; da Silva Leite, Cleide Maria


    Clays are materials commonly used in the pharmaceutical industry, either as ingredients or as active ingredients. It was observed that when they are administered concurrently, they may interact with drugs reducing their absorption. Therefore, such interactions can be used to achieve technological and biopharmaceutical advantages, regarding the control of release. This review summarizes bibliographic (articles) and technological (patents) information on the use of systems containing clays and clay minerals in modified drug delivery. In this area, formulations such natural clay, commercial clay, synthetic clay, composites clay-polymers, nanocomposites clay-polymers, films and hidrogels composites clay-polymers are used to slow/extend or vectorize the release of drugs and consequently they increase their bioavailability. Finally, this review summarizes the fields of technology and biopharmaceutical applications, where clays are applied.

  14. [Mechanism of tritium persistence in porous media like clay minerals]. (United States)

    Wu, Dong-Jie; Wang, Jin-Sheng; Teng, Yan-Guo; Zhang, Ke-Ni


    To investigate the mechanisms of tritium persistence in clay minerals, three types of clay soils (montmorillonite, kaolinite and illite) and tritiated water were used in this study to conduct the tritium sorption tests and the other related tests. Firstly, the ingredients, metal elements and heat properties of clay minerals were studied with some instrumental analysis methods, such as ICP and TG. Secondly, with a specially designed fractionation and condensation experiment, the adsorbed water, the interlayer water and the structural water in the clay minerals separated from the tritium sorption tests were fractionated for investigating the tritium distributions in the different types of adsorptive waters. Thirdly, the location and configuration of tritium adsorbed into the structure of clay minerals were studied with infrared spectrometry (IR) tests. And finally, the forces and mechanisms for driving tritium into the clay minerals were analyzed on the basis of the isotope effect of tritium and the above tests. Following conclusions have been reached: (1) The main reason for tritium persistence in clay minerals is the entrance of tritium into the adsorbed water, the interlayer water and the structural water in clay minerals. The percentage of tritium distributed in these three types of adsorptive water are in the range of 13.65% - 38.71%, 0.32% - 5.96%, 1.28% - 4.37% of the total tritium used in the corresponding test, respectively. The percentages are different for different types of clay minerals. (2) Tritium adsorbed onto clay minerals are existed in the forms of the tritiated hydroxyl radical (OT) and the tritiated water molecule (HTO). Tritium mainly exists in tritiated water molecule for adsorbed water and interlayer water, and in tritiated hydroxyl radical for structural water. (3) The forces and effects driving tritium into the clay minerals may include molecular dispersion, electric charge sorption, isotope exchange and tritium isotope effect.

  15. The effect of clay minerals on diasterane/sterane ratios (United States)

    van Kaam-Peters, Heidy M. E.; Köster, Jürgen; van der Gaast, Sjierk J.; Dekker, Marlèn; de Leeuw, Jan W.; Sinninghe Damsté, Jaap S.


    To examine the effect of clay minerals on diasterane/sterane ratios, the mineral compositions of three sample sets of sedimentary rocks displaying a wide range of diasterane/sterane ratios were analysed quantitatively. Diasterane/sterane ratios do not to correlate with clay content but depend on the amount of clay relative to the amount of organic matter (clay/TOC ratios). This correlation may explain the high diasterane/sterane ratios in crude oils and extracts derived from certain carbonate source rocks. Based on the concentrations of regular and rearranged steroids in the sample sets, it is proposed that diasterenes are partly reduced to diasteranes and partly degraded during diagenesis in a ratio largely determined by the availability of clay minerals. It is suggested that the hydrogen atoms required for reduction of the diasterenes originate from the water in the interlayers of clay minerals.

  16. The effect of clay minerals on diasterane/sterane ratios

    NARCIS (Netherlands)

    Sinninghe Damsté, J.S.; Kaam-Peters, H.M.E. van; Koster, J.; Gaast, S. J. van der; Dekker, M.H.A.; Leeuw, J.W. de


    To examine the effect of clay minerals on diasterane/sterane ratios, the mineral compositions of three sample sets of sedimentary rocks displaying a wide range of diasterane/sterane ratios were analysed quantitatively. Diasterane/sterane ratios do not to correlate with clay content but depend on the

  17. Impact-Induced Clay Mineral Formation and Distribution on Mars (United States)

    Rivera-Valentin, E. G.; Craig, P. I.


    Clay minerals have been identified in the central peaks and ejecta blankets of impact craters on Mars. Several studies have suggested these clay minerals formed as a result of impact induced hydrothermalism either during Mars' Noachian era or more recently by the melting of subsurface ice. Examples of post-impact clay formation is found in several locations on Earth such as the Mjolnir and Woodleigh Impact Structures. Additionally, a recent study has suggested the clay minerals observed on Ceres are the result of impact-induced hydrothermal processes. Such processes may have occurred on Mars, possibly during the Noachian. Distinguishing between clay minerals formed preor post-impact can be accomplished by studying their IR spectra. In fact, showed that the IR spectra of clay minerals is greatly affected at longer wavelengths (i.e. mid-IR, 5-25 micron) by impact-induced shock deformation while the near-IR spectra (1.0-2.5 micron) remains relatively unchanged. This explains the discrepancy between NIR and MIR observations of clay minerals in martian impact craters noted. Thus, it allows us to determine whether a clay mineral formed from impact-induced hydrothermalism or were pre-existing and were altered by the impact. Here we study the role of impacts on the formation and distribution of clay minerals on Mars via a fully 3-D Monte Carlo cratering model, including impact- melt production using results from modern hydrocode simulations. We identify regions that are conducive to clay formation and the location of clay minerals post-bombardment.

  18. Characterization of Heat-treated Clay Minerals in the Context of Nuclear Waste Disposal (United States)

    Matteo, E. N.; Wang, Y.; Kruichak, J. N.; Mills, M. M.


    Clay minerals are likely candidates to aid in nuclear waste isolation due to their low permeability, favorable swelling properties, and high cation sorption capacities. Establishing the thermal limit for clay minerals in a nuclear waste repository is a potentially important component of repository design, as flexibility of the heat load within the repository can have a major impact on the selection of repository design. For example, the thermal limit plays a critical role in the time that waste packages would need to cool before being transferred to the repository. Understanding the chemical and physical changes, if any, that occur in clay minerals at various temperatures above the current thermal limit (of 100 °C) can enable decision-makers with information critical to evaluating the potential trade-offs of increasing the thermal limit within the repository. Most critical is gaining understanding of how varying thermal conditions in the repository will impact radionuclide sorption and transport in clay materials either as engineered barriers or as disposal media. A variety of repository-relevant clay minerals (illite, mixed layer illite/smectite, and montmorillonite), were heated for a range of temperatures between 100-1000 °C. These samples were characterized to determine surface area, mineralogical alteration, and cation exchange capacity (CEC). Our results show that for conditions up to 500 °C, no significant change occurs, so long as the clay mineral remains mineralogically intact. At temperatures above 500 °C, transformation of the layered silicates into silica phases leads to alteration that impacts important clay characteristics. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's Nation Nuclear Security Administration under contract DE-AC04-94AL85000. SAND Number: SAND2015-6524 A

  19. Small Strain Behaviour and Viscous Effects on Sands and Sand-Clay Mixtures (United States)

    Di Benedetto, H.

    This lecture paper focuses on sands and sand-clay mixtures behaviour in the small strain domain. Non viscous and viscous components are measured, identified and modelled within the framework of a 3 component model. Two precision prototype devices (triaxial and hollow cylinder) both equipped with piezoelectric sensors are used. Non viscous measured behaviour considering small quasi-static cycles and wave properties are compared with simulations obtained from 2 recently formulated anisotropic hypoelastic models (DBGS and DBGSP). Then, viscous experimental part is compared with the proposed model prediction. This model is an asymptotic expression, for the small strain domain, of a viscous evanescent formalism proposed by the author. It takes into account very peculiar behaviour observed on sands. Simulation for loadings with and without rotation of axes and for different rate histories, are quite satisfactory.

  20. Microbe-Clay Mineral Reactions and Characterization Techniques (United States)

    Dong, H.; Zhang, G.; Ji, S.; Jaisi, D.; Kim, J.


    Clays and clay minerals are ubiquitous in soils, sediments, and sedimentary rocks. They play an important role in environmental processes such as nutrient cycling, plant growth, contaminant migration, organic matter maturation, and petroleum production. The changes in the oxidation state of the structural iron in clay minerals, in part, control their physical and chemical properties in natural environments, such as clay particle flocculation, dispersion, swelling, hydraulic conductivity, surface area, cation and anion exchange capacity, and reactivity towards organic and inorganic contaminants. The structural ferric iron [Fe(III)] in clay minerals can be reduced either chemically or biologically. Many different chemical reductants have been tried, but the most commonly used agent is dithionite. Biological reductants are bacteria, including dissimilatory iron reducing prokaryotes (DIRP) and sulfate-reducing bacteria (SRB). A wide variety of DIRP have been used to reduce ferric iron in clay minerals, including mesophilic, thermophilic, and hyperthermophilic prokaryotes. Multiple clay minerals have been used for microbial reduction studies, including smectite, nontronite (iron-rich smectite variety), illite, illite/smectite, chlorite, and their various mixtures. All these clay minerals are reducible by microorganisms under various conditions with smectite (nontronite) being the most reducible. The reduction extent and rate of ferric iron in clay minerals are measured by wet chemistry, and the reduced clay mineral products are typically characterized with chemical methods, X-ray diffraction, scanning and transmission electron microscopy, Mössbauer spectroscopy, Fourier Transform Infrared Spectroscopy (FTIR), UV-vis spectroscopy, and synchrotron-based techniques (such as EXAFS). Microbially reduced smectites (nontronites) have been found to be reactive in reducing a variety of organic and inorganic contaminants. Degradable organic contaminants include pesticides

  1. Characterization of clay minerals; Caracterizacion de minerales arcillosos

    Energy Technology Data Exchange (ETDEWEB)

    Diaz N, C.; Olguin, M.T.; Solache R, M.; Alarcon H, T.; Aguilar E, A. [Gerencia de Ciencias Basicas, Direccion de Investigacion Cientifica, Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, 11801 Mexico D.F. (Mexico)


    The natural clays are the more abundant minerals on the crust. They are used for making diverse industrial products. Due to the adsorption and ion exchange properties of these, a great interest for developing research directed toward the use of natural clays for the waste water treatment has been aroused. As part of such researches it is very important to carry out previously the characterization of the interest materials. In this work the results of the mineral and elemental chemical composition are presented as well as the morphological characteristics of clay minerals from different regions of the Mexican Republic. (Author)

  2. Toxicological evaluation of clay minerals and derived nanocomposites: a review. (United States)

    Maisanaba, Sara; Pichardo, Silvia; Puerto, María; Gutiérrez-Praena, Daniel; Cameán, Ana M; Jos, Angeles


    Clays and clay minerals are widely used in many facets of our society. This review addresses the main clays of each phyllosilicate groups, namely, kaolinite, montmorillonite (Mt) and sepiolite, placing special emphasis on Mt and kaolinite, which are the clays that are more frequently used in food packaging, one of the applications that are currently exhibiting higher development. The improvements in the composite materials obtained from clays and polymeric matrices are remarkable and well known, but the potential toxicological effects of unmodified or modified clay minerals and derived nanocomposites are currently being investigated with increased interest. In this sense, this work focused on a review of the published reports related to the analysis of the toxicological profile of commercial and novel modified clays and derived nanocomposites. An exhaustive review of the main in vitro and in vivo toxicological studies, antimicrobial activity assessments, and the human and environmental impacts of clays and derived nanocomposites was performed. From the analysis of the scientific literature different conclusions can be derived. Thus, in vitro studies suggest that clays in general induce cytotoxicity (with dependence on the clay, concentration, experimental system, etc.) with different underlying mechanisms such as necrosis/apoptosis, oxidative stress or genotoxicity. However, most of in vivo experiments performed in rodents showed no clear evidences of systemic toxicity even at doses of 5000mg/kg. Regarding to humans, pulmonary exposure is the most frequent, and although clays are usually mixed with other minerals, they have been reported to induce pneumoconiosis per se. Oral exposure is also common both intentionally and unintentionally. Although they do not show a high toxicity through this pathway, toxic effects could be induced due to the increased or reduced exposure to mineral elements. Finally, there are few studies about the effects of clay minerals on

  3. [Analysis of XRD spectral characteristics of soil clay mineral in two typical cultivated soils]. (United States)

    Zhang, Zhi-Dan; Luo, Xiang-Li; Jiang, Hai-Chao; Li, Qiao; Shen, Cong-Ying; Liu, Hang; Zhou, Ya-Juan; Zhao, Lan-Po; Wang, Ji-Hong


    The present paper took black soil and chernozem, the typical cultivated soil in major grain producing area of Northeast, as the study object, and determinated the soil particle composition characteristics of two cultivated soils under the same climate and location. Then XRD was used to study the composition and difference of clay mineral in two kinds of soil and the evolutionary mechanism was explored. The results showed that the two kinds of soil particles were composed mainly of the sand, followed by clay and silt. When the particle accumulation rate reached 50%, the central particle size was in the 15-130 microm interval. Except for black soil profile of Shengli Xiang, the content of clay showed converse sequence to the central particle in two soils. Clay accumulated under upper layer (18.82%) in black soil profile while under caliche layer (17.41%) in chernozem profile. Clay content was the least in parent material horizon except in black profile of Quanyanling. Analysis of clay XRD atlas showed that the difference lied in not only the strength of diffraction peak, but also in the mineral composition. The main contents of black soil and chernozem were both 2 : 1 clay, the composition of black soil was smectite/illite mixed layer-illite-vermiculite and that of chernozem was S/I mixture-illite-montmorillonite, and both of them contained little kaolinite, chlorite, quartz and other primary mineral. This paper used XRD to determine the characteristics of clay minerals comprehensively, and analyzed two kinds of typical cultivated soil comparatively, and it was a new perspective of soil minerals study.

  4. Clay mineral distribution on the Kerala continental shelf and slope

    Digital Repository Service at National Institute of Oceanography (India)

    Rao, V.P.; Nair, R.R.; Hashimi, N.H.

    Seventy-five sediment samples collected from the Kerala continental shelf and slope during the 17th and 71st Cruises of @iRV gaveshani@@ were analysed by X-ray diffraction for clay mineral cntent. The distribution of total clay (< 4~k fraction...

  5. Quantification of clay minerals by combined EWA/XRD method

    Institute of Scientific and Technical Information of China (English)

    XU; Jianhong; (徐建红); XU; Jianhong; (徐建红); T.; R.; Astin; PAN; Mao; (潘懋)


    Illite has been considered the main constraint on permeability in the Morecambe Gas Field, East Irish Sea, UK. Previous research has emphasized the morphology rather than the amount of clay minerals. By applying a new method of clay mineral quantification, EWA/XRD, and applying statistical analysis methods, we are able to establish a quantitative model of illite distribution in the field. The result also leads to a better understanding of permeability distribution in reservoir sandstones.

  6. Identification of clay minerals in reservoir rocks by FTIR spectroscopy (United States)

    Cong Khang, Vu; Korovkin, Mikhail V.; Ananyeva, Ludmila G.


    Clay minerals including kaolinite, montmorillonite and bentonite in oil and gas reservoir rocks are identified by absorption spectra obtained via Fourier Transform Infrared (FTIR) spectroscopy. Bands around 3695, 3666, 3650 and 3630 cm-1 and bands around 3620 and 3400 cm-1 are the most diagnostically reliable for kaolinite and montmorillonite, respectively; also absorption bands in the region of 1200...955 cm-1 are equally diagnostic for all the clay minerals studied.

  7. Clays and clay minerals in Bikaner: Sources, environment pollution and management (United States)

    Gayatri, Sharma; Anu, Sharma


    Environmental pollution can also be caused by minerals which include natural as well as human activities. Rapid urbanization, consumerist life style, anthropogenic deeds are increasing environmental pollution day by day. Fluctuation in our ecosystem or polluted environment leads to many diseases and shows adverse effects on living organisms. The main aim of this paper is to highlight the environmental pollution from clays and clay minerals and their mitigation..

  8. Charge Properties and Clay Mineral Composition of Tianbao Mountains Soils

    Institute of Scientific and Technical Information of China (English)



    The clay mineral association,oxides of clay fraction and surface charge properties of 7 soils,which are developed from granite,located at different altitudesof the Tianbao Mountains were studied.Results indicate that with the increase in altitude,1) the weathering process and desilicification of soil clay minerals became weaker,whereas the leaching depotassication and the formation process of hydroxy-aluminum interlayer got stronger;2)the contents of amorphous and complex aluminum and iron,and the activity of aluminum and iron oxides for soil clay fraction increased;and 3) the amount of variable negarive charge,anion exchange capacity and the values of PZC and PZNC also increased.The activity of aluminum and iron oxides,the accumulation of aluminum,and surface charge characteristics and their relation to clay oxides of the vertical zone soils were observed and recorded.

  9. Pore space analysis of NAPL distribution in sand-clay media (United States)

    Matmon, D.; Hayden, N.J.


    This paper introduces a conceptual model of clays and non-aqueous phase liquids (NAPLs) at the pore scale that has been developed from a mathematical unit cell model, and direct micromodel observation and measurement of clay-containing porous media. The mathematical model uses a unit cell concept with uniform spherical grains for simulating the sand in the sand-clay matrix (???10% clay). Micromodels made with glass slides and including different clay-containing porous media were used to investigate the two clays (kaolinite and montmorillonite) and NAPL distribution within the pore space. The results were used to understand the distribution of NAPL advancing into initially saturated sand and sand-clay media, and provided a detailed analysis of the pore-scale geometry, pore size distribution, NAPL entry pressures, and the effect of clay on this geometry. Interesting NAPL saturation profiles were observed as a result of the complexity of the pore space geometry with the different packing angles and the presence of clays. The unit cell approach has applications for enhancing the mechanistic understanding and conceptualization, both visually and mathematically, of pore-scale processes such as NAPL and clay distribution. ?? 2003 Elsevier Science Ltd. All rights reserved.

  10. Adsorption of zinc and lead on clay minerals

    Directory of Open Access Journals (Sweden)

    Katarína Jablonovská


    Full Text Available Clays (especially bentonite, zeolite and quartz sand are widely used as landfill barriers to prevent contamination of subsoil and groundwater by leachates containing heavy metals. The sorption of zinc and lead on these clays was studied as a function of time and it was found that the initial 1 h our was sufficient to exchange most of the metal ions. The retention efficiency of clay samples of Zn2+ and Pb2+ follows the order of bentonite > zeolite> quartz sand. Whatever the clay sample, lead is retained more than zinc. The concentration of elements in the solution was followed by atomic adsorption spectrofotometry. Bacillus cereus and Bacillus pumilus, previously isolated from the kaoline deposit Horna Prievrana was added into the clay samples to comparise the accumulation of Zn2+ and Pb2+ from the model solution. The study of heavy metal adsorption capacity of bacteria- enriched clay adsorbent showed a high retention efficiency for lead ions as comparised with zinc ions. Biosorption is considered a potential instrument for the removal of metals from waste solutions and for the precious metals recovery as an alternative to the conventional processes.

  11. Fixation of Selenium by Clay Minerals and Iron Oxides

    DEFF Research Database (Denmark)

    Hamdy, A. A.; Nielsen, Gunnar Gissel


    In studying Se fixation, soil components capable of retaining Se were investigated. The importance of Fe hydrous oxides in the fixation of Se was established. The clay minerals common to soils, such as kaolinite, montmorillonite and vermiculite, all exhibited Se fixation, but greater fixation...... occurred with the 1:1 than the 2:1 clay type. Experiments with finely ground minerals showed that the pH of the systems greatly influenced the rate of fixation, reaching a maximum between pH 3 and 5 and decreasing rapidly as the pH increased. With the Fe2O3 system fixed Se was slightly reduced as the p......H was increased to over 8. The extractability of Se from the clay minerals indicated that 1:1 clay type minerals fix selenite more indissolubly than 2:1 clays and that selenite was adsorbed on the clays mainly by a surface exchange reaction. The major part of the selenite added to the Fe2O3 system was found...

  12. Microbial Impacts on Clay Mineral Transformation and Reactivity (United States)

    Dong, H.; Jaisi, D.; Fredrickson, J.; Plymale, A.


    Clays and clay minerals are ubiquitous in soils, sedimentary rocks, and pelagic oozes. They play important roles in environmental processes such as nutrient cycling, plant growth, contaminant migration, organic matter maturation, and petroleum production. Iron is a major constituent in clay minerals, and its mobility and stability in different environmental processes is, in part, controlled by the oxidation state. Recent studies have shown that biological reduction of structural Fe(III) in clay minerals can change the physical and chemical properties of clay minerals, such as swelling, cation exchange and fixation capacity, specific surface area, color, and magnetic exchange interactions. As a result of biological reduction of Fe(III), clay minerals also undergo mineral transformations, such as dissolution of smectite and precipitation of illite, siderite and vivianite. These chemical, structural and mineralogical changes of clay minerals have a profound effect on clay mineral reactivity, such as their reactivity with organic and inorganic (i.e., heavy metals and radionuclides) contaminants. Our latest data show that biologically reduced nontronite (a smectite variety) is much more effective in reducing soluble and mobile Tc(VII) to Tc(IV) than unreduced nontronite. The reduced Tc(IV) is insoluble in groundwater and soil and thus is immobile. Biologically reduced nontronite can be prepared by microbially reducing Fe(III) in nontronite by Shewanella putrefaciens in the absence of oxygen. Approximately 30% of structurally Fe(III) can be reduced in this manner. Biogenic Fe(II) can then serve as an electron donor to reduce Tc(VII). Nearly all Fe(II) is available to reduce Tc(VII), with the rate of reduction (typically within weeks) possibly depending on the speciation of Fe(II) (surface sorbed Fe(II) vs. structural Fe(II)). Further investigations are underway to further assess the reversibility of Tc reduction upon exposure to oxygen and to elucidate Tc reduction

  13. Black Carbon, The Pyrogenic Clay Mineral? (United States)

    Most soils contain significant amounts of black carbon, much of which is present as discrete particles admixed with the coarse clay fraction (0.2–2.0 µm e.s.d.) and can be physically separated from the more abundant diffuse biogenic humic materials. Recent evidence has shown that naturally occurring...

  14. Methane Hydrate Formation and Dissociation in the Presence of Silica Sand and Bentonite Clay

    National Research Council Canada - National Science Library

    Kumar Saw, V; Udayabhanu, G; Mandal, A; Laik, S


      The formation and dissociation of methane hydrates in a porous media containing silica sand of different sizes and bentonite clay were studied in the presence of synthetic seawater with 3.55 wt% salinity...

  15. Enchanted Clays: 44th Annual Meeting of the Clay Minerals Society (June 2007)

    Energy Technology Data Exchange (ETDEWEB)

    Randall T. Cygan


    “Enchanted Clays: 44th Annual Meeting of the Clay Minerals Society” was held in early June 2007 in beautiful and historic Santa Fe, New Mexico, USA. Santa Fe provided an idyllic location in the southwestern United States for the attendees to enjoy technical and social sessions while soaking up the diverse culture and wonderful climate of New Mexico—The Land of Enchantment. The meeting included a large and varied group of scientists, sharing knowledge and ideas, benefitting from technical interactions, and enjoying the wonderful historic and enchanted environs of Santa Fe. Including significant number of international scientists, the meeting was attended by approximately two hundred participants. The meeting included three days of technical sessions (oral and poster presentations), three days of field trips to clay and geological sites of northern New Mexico, and a full day workshop on the stabilization of carbon by clays. Details can be found at the meeting web site:

  16. Crystallite size distribution of clay minerals from selected Serbian clay deposits

    Directory of Open Access Journals (Sweden)

    Simić Vladimir


    Full Text Available The BWA (Bertaut-Warren-Averbach technique for the measurement of the mean crystallite thickness and thickness distributions of phyllosilicates was applied to a set of kaolin and bentonite minerals. Six samples of kaolinitic clays, one sample of halloysite, and five bentonite samples from selected Serbian deposits were analyzed. These clays are of sedimentary volcano-sedimentary (diagenetic, and hydrothermal origin. Two different types of shape of thickness distribution were found - lognormal, typical for bentonite and halloysite, and polymodal, typical for kaolinite. The mean crystallite thickness (T BWA seams to be influenced by the genetic type of the clay sample.

  17. The effect of very low water content on the complex dielectric permittivity of clays, sand-clay and sand rocks (United States)

    Belyaeva, T. A.; Bobrov, P. P.; Kroshka, E. S.; Lapina, A. S.; Rodionova, O. V.


    The results of measurements of complex relative permittivity of bentonite and clayey sandstone with different degrees of salinity with low moisture are given in the range of temperatures -20° to  +105 °C at frequencies from 25 Hz to 1 GHz. It is shown, that even a small amount of water in sandy and sandy-argillaceous rocks causes an increase of the real part of complex relative permittivity at frequencies below 100 Hz. The explanation by linearly-broken dependence of refractive index on moisture is given at its small values. By a dielectric method it is shown that in the process of water film formation on the surface of a mineral, the water molecules binding energy changes. Big distinctions in low-frequency dielectric relaxation times testify to the change of binding energy of molecules of water on the surface of a mineral. Also dependences of relaxation times on temperature are various. The results of dielectric measurements showed a strong influence of the salt on the dielectric permittivity of the clay and clayey sandstone even at a low moisture level.

  18. First Direct Detection of Clay Minerals on Mars (United States)

    Singer, R. B.; Owensby, P. D.; Clark, R. N.


    Magnesian clays or clay-type minerals were conclusively detected in the martian regolith. Near-IR spectral observations of Mars using the Mauna Kea 2.2-m telescope show weak but definite absorption bands near microns. The absorption band positions and widths match those produced by combined OH stretch and Mg-OH lattice modes and are diagnostic of minerals with structural OH such as clays and amphiboles. Likely candidate minerals include serpentine, talc, hectorite, and sponite. There is no spectral evidence for aluminous hydroxylated minerals. No distinct band occurs at 2.55 microns, as would be expected if carbonates were responsible for the 2.35 micron absorption. High-albedo regions such as Elysium and Utopia have the strongest bands near 2.35 microns, as would be expected for heavily weathered soils. Low-albedo regions such as Iapygia show weaker but distinct bands, consistent with moderate coatings, streaks, and splotches of bright weathered material. In all areas observed, the 2.35-micron absorption is at least three times weaker than would be expected if well-crystallized clay minerals made up the bulk of bright soils on Mars.

  19. Effect of proteins on reovirus adsorption to clay minerals. (United States)

    Lipson, S M; Stotzky, G


    Organic matter in sewage, soil, and aquatic systems may enhance or inhibit the infectivity of viruses associated with particulates (e.g., clay minerals, sediments). The purpose of this investigation was to identify the mechanisms whereby organic matter, in the form of defined proteins, affects the adsorption of reovirus to the clay minerals kaolinite and montmorillonite and its subsequent infectivity. Chymotrypsin and ovalbumin reduced the adsorption of reovirus to kaolinite and montmorillonite homoionic to sodium. Lysozyme did not reduce the adsorption of the virus to kaolinite, but it did reduce adsorption to montmorillonite. The proteins apparently competed with the reovirus for sites on the clay. As lysozyme does not adsorb to kaolinite by cation exchange, it did not inhibit the adsorption of reovirus to this clay. The amount of reovirus desorbed from lysozyme-coated montmorillonite was approximately 38% less (compared with the input population) than that from uncoated or chymotrypsin-coated montmorillonite after six washings with sterile distilled water. Chymotrypsin and lysozyme markedly decreased reovirus infectivity in distilled water, whereas infectivity of the virus was enhanced after recovery from an ovalbumin-distilled water-reovirus suspension (i.e., from the immiscible pelleted fraction plus supernatant). The results of these studies indicate that the persistence of reovirus in terrestrial and aquatic environments may vary with the type of organic matter and clay mineral with which the virus comes in contact. PMID:6497370

  20. Enhance decarboxylation reaction of carboxylic acids in clay minerals

    Energy Technology Data Exchange (ETDEWEB)

    Negron-Mendoza, A.; Ramos, S.; Albarran, G. [Instituto de Ciencias y Artes, Chiapas (Mexico). Escuela de Biologia


    Clay minerals are important constituents of the Earth`s crust. These minerals catalyze reactions in several ways: by energy transfer processes, redox reactions, stabilization of intermediates and by Broensted or Lewis acidity behavior. Important set of organic reactions can be improved in the precedence of clay minerals. Besides the properties of clays to catalyze chemical reactions, it is possible to enhance some of its reactions by using ionizing radiation. The phenomenon of radiation-induced catalysis may be connected with ionizing process in the solid and with the trapped non-equilibrium charge carriers. In this paper we are reporting the decarboxylation reaction of carboxylic acids catalyzed by clay and by irradiation of the system acid-clay. We studied the behaviour of several carboxylic acids and analyzed them by gas chromatography, X-ray and infrared spectroscopy. The results showed that decarboxylation of the target compound is the dominating pathway. The reaction is enhanced by gamma radiation in several orders of magnitude. (author).

  1. Radiation-induced defects in clay minerals: A review

    Energy Technology Data Exchange (ETDEWEB)

    Allard, Th., E-mail: [IMPMC, UMR CNRS 7590, Universite Pierre et Marie Curie, Universite Denis Diderot, IRD, IPGP, Case 115, 4 Place Jussieu, 75005 Paris (France); Balan, E.; Calas, G.; Fourdrin, C.; Morichon, E.; Sorieul, S. [IMPMC, UMR CNRS 7590, Universite Pierre et Marie Curie, Universite Denis Diderot, IRD, IPGP, Case 115, 4 Place Jussieu, 75005 Paris (France)


    Extensive information has been collected on radiation effects on clay minerals over the last 35 years, providing a wealth of information on environmental and geological processes. The fields of applications include the reconstruction of past radioelement migrations, the dating of clay minerals or the evolution of the physico-chemical properties under irradiation. The investigation of several clay minerals, namely kaolinite, dickite, montmorillonite, illite and sudoite, by Electron Paramagnetic Resonance Spectroscopy has shown the presence of defects produced by natural or artificial radiations. These defects consist mostly of electron holes located on oxygen atoms of the structure. The various radiation-induced defects are differentiated through their nature and their thermal stability. Most of them are associated with a {pi} orbital on a Si-O bond. The most abundant defect in clay minerals is oriented perpendicular to the silicate layer. Thermal annealing indicates this defect in kaolinite (A-center) to be stable over geological periods at ambient temperature. Besides, electron or heavy ion irradiation easily leads to an amorphization in smectites, depending on the type of interlayer cation. The amorphization dose exhibits a bell-shaped variation as a function of temperature, with a decreasing part that indicates the influence of thermal dehydroxylation. Two main applications of the knowledge of radiation-induced defects in clay minerals are derived: (i) The use of defects as tracers of past radioactivity. In geological systems where the age of the clay can be constrained, ancient migrations of radioelements can be reconstructed in natural analogues of high level nuclear waste repositories. When the dose rate may be assumed constant over time, the paleodose is used to date clay populations, an approach applied to fault gouges or laterites of the Amazon basin. (ii) The influence of irradiation over physico-chemical properties of clay minerals. An environmental

  2. Interaction of oil components and clay minerals in reservoir sandstones

    Energy Technology Data Exchange (ETDEWEB)

    Changchun Pan; Linping Yu; Guoying Sheng; Jiamo Fu [Chinese Academy of Sciences, State Key Lab. of Organic Geochemistry, Wushan, Guangzhou (China); Jianhui Feng; Yuming Tian [Chinese Academy of Sciences, State Key Lab. of Organic Geochemistry, Wushan, Guangzhou (China); Zhongyuan Oil Field Co., Puyang, Henan (China); Xiaoping Luo [Zhongyuan Oil Field Co., Puyang, Henan (China)


    The free oil (first Soxhlet extract) and adsorbed oil (Soxhlet extract after the removal of minerals) obtained from the clay minerals in the <2 {mu}m size fraction as separated from eight hydrocarbon reservoir sandstone samples, and oil inclusions obtained from the grains of seven of these eight samples were studied via GC, GC-MS and elemental analyses. The free oil is dominated by saturated hydrocarbons (61.4-87.5%) with a low content of resins and asphaltenes (6.0-22.0% in total) while the adsorbed oil is dominated by resins and asphaltenes (84.8-98.5% in total) with a low content of saturated hydrocarbons (0.6-9.5%). The inclusion oil is similar to the adsorbed oil in gross composition, but contains relatively more saturated hydrocarbons (16.87-31.88%) and less resins and asphaltenes (62.30-78.01% in total) as compared to the latter. Although the amounts of both free and adsorbed oils per gram of clay minerals varies substantially, the residual organic carbon content in the clay minerals of the eight samples, after the free oil extraction, is in a narrow range between 0.537% and 1.614%. From the decrease of the percentage of the extractable to the total of this residual organic matter of the clay minerals with burial depth it can be inferred that polymerization of the adsorbed polar components occurs with the increase of the reservoir temperature. The terpane and sterane compositions indicate that the oil adsorbed onto the clay surfaces appears to be more representative of the initial oil charging the reservoir than do the oil inclusions. This phenomenon could possibly demonstrate that the first oil charge preferentially interacts with the clay minerals occurring in the pores and as coatings around the grains. Although the variation of biomarker parameters between the free and adsorbed oils could be ascribed to the compositional changes of oil charges during the filling process and/or the differential maturation behaviors of these two types of oils after oil

  3. [Occurrence relationship between iron minerals and clay minerals in net-like red soils: evidence from X-ray diffraction]. (United States)

    Yin, Ke; Hong, Han-Lie; Han, Weni; Ma, Yu-Bo; Li, Rong-Biao


    The high purity of clay minerals is a key factor to reconstruct the palaeoclimate in clay mineralogy, however, the existence of iron minerals (such as goethite and hematite) and organics lead to the intergrowth of clay minerals and other minerals, producing other mineral impurities in enriched clay minerals. Although the removal of organics in soil sediments has been fully investigated, the occurrence state of iron minerals remains controversial, hindering the preparation of high-purity clay minerals. Therefore, the occurrence relationship of iron minerals and clay minerals in Jiujiang net-like red soils of the middle to lower reaches of the Yangtze River was investigated using the sequential separation method, which provided some implications for the removal of iron minerals in soil sediments. The results indicated that goethite and hematite were mostly absorbed on the surface of hydroxy-interlayered smectite and illite in the form of films, and the rest were absorbed by kaolinite.

  4. Picloram and Aminopyralid Sorption to Soil and Clay Minerals (United States)

    Aminopyralid sorption data are lacking, and these data are needed to predict off-target transport and plant available herbicide in soil solution. The objective of this research was to determine the sorption of picloram and aminopyralid to five soils and three clay minerals and determine if the pote...

  5. Investigating the Thermal Limit of Clay Minerals for Applications in Nuclear Waste Repository Design (United States)

    Matteo, E. N.; Miller, A. W.; Kruichak, J.; Mills, M.; Tellez, H.; Wang, Y.


    Clay minerals are likely candidates to aid in nuclear waste isolation due to their low permeability, favorable swelling properties, and high cation sorption capacities. Establishing the thermal limit for clay minerals in a nuclear waste repository is a potentially important component of repository design, as flexibility of the heat load within the repository can have a major impact on the selection of repository design. For example, the thermal limit plays a critical role in the time that waste packages would need to cool before being transferred to the repository. Understanding the chemical and physical changes that occur in clay minerals at various temperatures above the current thermal limit (of 100 °C) can enable decision-makers with information critical to evaluating the potential trade-offs of increasing the thermal limit within the repository. Most critical is gaining understanding of how varying thermal conditions in the repository will impact radionuclide sorption and transport in clay materials either as engineered barriers or as disposal media. A variety of clays (illite, mixed layer illite/smectite, montmorillonite, and palygorskite) were heated for a range of temperatures between 100-500 °C. These samples were characterized by a variety of methods, including nitrogen adsorption, x-ray diffraction, thermogravimetric analysis, barium chloride exchange for cation exchange capacity (CEC), and iodide sorption. The nitrogen porosimetry shows that for all the clays, thermally-induced changes in BET surface area are dominated by collapse/creation of the microporosity, i.e. pore diameters Security Administration under contract DE-AC04-94AL85000. SAND Number: 2013-6352A.

  6. A study on the differential thermal analysis of clays and clay minerals

    NARCIS (Netherlands)

    Arens, P.L.


    Differential thermal analysis (DTA) as a method of analysing properties of chemical compounds, more especially of clay minerals, developed rapidly, but lack of quantitative interpretations left many problems to be studied. A historical review was presented, showing the purpose of the study.

  7. Main Clay Minerals in Soils of Fujian Province,China

    Institute of Scientific and Technical Information of China (English)



    The clay minerals of more than 200 soil samples collected from various sites of Fujian Province were studied by the X-ray diffraction method and transmission electron microscopy to study their distribution and evolution.Montmorillonite was found in coastal solonchak,paddy soils derived from marine deposit,lacustrine deposit and river deposit,and some lateritic red soil,red soil and yellow soil with a low weathering degree.Chlorite existed mainly in coastal solonchak and paddy soil developed from marine deposit.1.4nm intergradient mineral appeared frequently in yellow soil,red soil and lateritic red soil.The content of 1.4nm intergradient mineral increased with the decrease of weathering degree from lateritic red soil to red soil to yellow soil.Hydrous micas were more in coastal solonchak,paddy soils derived from marine deposit,lacustrine deposit and river deposit.and puple soil from purple shale than in other soils.Kaolinte was the most important clay mineral in the soils iun this province.The higher the soil weathering degree,the more the kaolinite existed.From yellow soil to red soil to lateritic red soil,kaolinite increased gradually,Kaolinite was the predominant clay mineral accompanied by few other minerals in typical lateritic red soil. Tubular halloysite was a widespread clay mineral in soils of Fujian Province with varying quantities.The soil derived from the paent rocks rich in feldspar contained more tubular halloysite.Spheroidal halloysite was found in a red soil and a paddy soil developed from olivine basalt gibbsite in the soils in this district was largely“primary gibbsite” which formed in the early weathering stage.Gibbsite decreased with the increase of weathering degree from yellow soil to red soil to lateritic red soil.Goethite also decreased in the same sequence while hematite increased.

  8. Reactivity of clay minerals with acids and alkalies (United States)

    Carroll, D.; Starkey, H.C.


    One-g samples of a montmorillonite, a metabentonite, an illite, two kaolinites, and three halloysites were treated with 50 ml of hydrochloric acid (6??45 N, 1:1), acetic acid (4??5 N, 1:3), sodium hydroxide (2??8 N), sodium chloride solution (pH 6??10; Na = 35???; Cl = 21??5???), and natural sea water (pH 7??85; Na = 35??5???; Cl = 21??5???) for a 10-day period in stoppered plastic vials. The supernatant solutions were removed from the clay minerals and analyzed for SiO2, Al2O3, CaO, MgO, Na2O, and K2O. All the solutions removed some SiO2, Al2O3, and Fe2O3 from the samples, but the quantities were small. Sodium hydroxide attacked the kaolin group minerals more strongly than it did montmorillonite, metabentonite, or illite. Halloysite was more strongly attacked by hydrochloric acid than was any of the other experimental minerals. Hydrochloric acid removed iron oxide coatings from soil clay minerals, but acetic acid did not remove them completely. The samples most strongly attacked by HCl and NaOH were examined by X-ray diffraction. Acid treatment did not destroy the structure of the clays, but the halloysite structure was partially destroyed. Sodium hydroxide attacked the halloysite structure, as shown by chemical analysis and X-ray diffraction. These experiments show that treatment in dilute acids has no harmful effect in the preparation of clays for X-ray diffraction. Acetic acid is preferred to hydrochloric acid for this purpose. Hydrochloric acid cleans clay minerals by removing free iron oxide from the surface; acetic acid is less effective. ?? 1971.

  9. Sorption of tylosin on clay minerals. (United States)

    Zhang, Qian; Yang, Chen; Huang, Weilin; Dang, Zhi; Shu, Xiaohua


    The equilibrium sorption of tylosin (TYL) on kaolinite and montmorillonite was measured at different solution pH using batch reactor systems. The results showed that all the sorption isotherms were nonlinear and that the nonlinearity decreased as the solution pH increased for a given clay. At a specific aqueous concentration, the single-point sorption distribution coefficient (KD) of TYL decreased rapidly as the solution pH increased. A speciation-dependent sorption model that accounted for the contributions of the cationic and neutral forms of TYL fit the data well, suggesting that the sorption may be dominated by both ion exchange and hydrophobic interactions. The isotherm data also fit well to a dual mode model that quantifies the contributions of a site-limiting Langmuir component (ion exchange) and a non-specific linear partitioning component (hydrophobic interactions). X-ray diffraction analyses revealed that the interlayers of montmorillonite were expanded due to the uptake of TYL. TYL molecules likely form a monolayer surface coverage.

  10. Adsorption of diethyl phthalate ester to clay minerals. (United States)

    Wu, Yanhua; Si, Youbin; Zhou, Dongmei; Gao, Juan


    Phthalate esters are a group of plasticizers, which have been widely detected in China's agricultural and industrial soils. In this study, batch adsorption experiments were conducted to investigate the environmental effects on the adsorption of diethyl phthalate ester (DEP) to clay minerals. The results showed that DEP adsorption isotherms were well fitted with the Freundlich model; the interlayer spacing of K(+) saturated montmorillonite (K-mont) was the most important adsorption area for DEP, and di-n-butyl ester (DnBP) was limited to intercalate into the interlayer of K-mont due to the bigger molecular size; there was no significant effect of pH and ionic strength on DEP adsorption to K-mont/Ca-mont, but to Na-mont clay. The adsorption to kaolinite was very limited. Data of X-ray diffraction and FTIR spectra further proved that DEP molecules could intercalate into K-/Ca-mont interlayer, and might interact with clay through H-bonding between carbonyl groups and clay adsorbed water. Coated humic acid on clay surface would enhance DEP adsorption at low concentration, but not at high concentration (eg. Ce>0.26 mM). The calculated adsorption enthalpy (ΔHobs) and adsorption isotherms at varied temperatures showed that DEP could be adsorbed easier as more adsorbed. This study implied that clay type, compound structure, exchangeable cation, soil organic matter and temperature played important roles in phthalate ester's transport in soil.

  11. Adsorption of Nucleic Acid Bases, Ribose, and Phosphate by Some Clay Minerals


    Hideo Hashizume


    Besides having a large capacity for taking up organic molecules, clay minerals can catalyze a variety of organic reactions. Derived from rock weathering, clay minerals would have been abundant in the early Earth. As such, they might be expected to play a role in chemical evolution. The interactions of clay minerals with biopolymers, including RNA, have been the subject of many investigations. The behavior of RNA components at clay mineral surfaces needs to be assessed if we are to appreciate ...

  12. CO2 adsorption isotherm on clay minerals and the CO2 accessibility into the clay interlayer (United States)

    Gensterblum, Yves; Bertier, Pieter; Busch, Andreas; Rother, Gernot; Krooß, Bernhard


    Large-scale CO2 storage in porous rock formations at 1-3 km depth is seen as a global warming mitigation strategy. In this process, CO2 is separated from the flue gas of coal or gas power plants, compressed, and pumped into porous subsurface reservoirs with overlying caprocks (seals). Good seals are mechanically and chemically stable caprocks with low porosity and permeability. They prevent leakage of buoyant CO2 from the reservoir. Caprocks are generally comprised of thick layers of shale, and thus mainly consist of clay minerals. These clays can be affected by CO2-induced processes, such as swelling or dissolution. The interactions of CO2 with clay minerals in shales are at present poorly understood. Sorption measurements in combination scattering techniques could provide fundamental insight into the mechanisms governing CO2-clay interaction. Volumetric sorption techniques have assessed the sorption of supercritical CO2 onto coal (Gensterblum et al., 2010; Gensterblum et al., 2009), porous silica (Rother et al., 2012a) and clays as a means of exploring the potential of large-scale storage of anthropogenic CO2 in geological reservoirs (Busch et al., 2008). On different clay minerals and shales, positive values of excess sorption were measured at gas pressures up to 6 MPa, where the interfacial fluid is assumed to be denser than the bulk fluid. However, zero and negative values were obtained at higher densities, which suggests the adsorbed fluid becomes equal to and eventually less dense than the corresponding bulk fluid, or that the clay minerals expand on CO2 charging. Using a combination of neutron diffraction and excess sorption measurements, we recently deduced the interlayer density of scCO2 in Na-montmorillonite clay in its single-layer hydration state (Rother et al., 2012b), and confirmed its low density, as well as the expansion of the basal spacings. We performed neutron diffraction experiments at the FRMII diffractometer on smectite, kaolinite and illite

  13. Reversibility of soil forming clay mineral reactions induced by plant - clay interactions (United States)

    Barré, P.; Velde, B.


    Recent data based upon observations of field experiments and laboratory experiments suggest that changes in phyllosilicate mineralogy, as seen by X-ray diffraction analysis, which is induced by plant action can be reversed in relatively short periods of time. Changes from diagenetic or metamorphic mineral structures (illite and chlorite) to those found in soils (mixed layered minerals in the smectite, hydroxy-interlayer mineral and illites) observed in Delaware Bay salt marsh sediments in periods of tens of years and observed under different biologic (mycorhize) actions in coniferous forests in the soil environment can be found to be reversed under other natural conditions. Reversal of this process (chloritisation of smectitic minerals in soils) has been observed in natural situations over a period of just 14 years under sequoia gigantia. Formation of smectite minerals from illite (potassic mica-like minerals) has been observed to occur under intensive agriculture conditions over periods of 80 years or so under intensive zea mais production. Laboratory experiments using rye grass show that this same process can be accomplished to a somewhat lesser extent after one growing season. However experiments using alfalfa for 30 year growing periods show that much of the illite content of a soil can be reconstituted or even increased. Observations on experiments using zea mais under various fertilizer and mycorhize treatments indicate that within a single growing season potassium can be extracted from the clay (illite layers) but at the end of the season the potassium can be restored to the clay structures and more replaced that extracted. Hence it is clear that the change in clay mineralogy normally considered to be irreversible, illite to smectite or chlorite to smectite observed in soils, is a reversible process where plant systems control the soil chemistry and the soil mineralogy. The changes in clay mineralogy concern mostly the chemical composition of the interlayer

  14. Study of Dronino Iron Meteorite Weathering in Clay Sand Using Mössbauer Spectroscopy

    Directory of Open Access Journals (Sweden)

    Grigoriy A. Yakovlev


    Full Text Available Weathering products of two fragments of Dronino iron ungrouped meteorite found in the wet and drier clay sand were studied using X-ray diffraction and Mössbauer spectroscopy with a high velocity resolution. The products of metal oxidation in the internal and external surface layers were different for both fragments. The weathering products in fragment found in the wet clay sand contain magnetite (Fe3O4, maghemite (γ-Fe2O3, goethite (α-FeOOH and probably ferrihydrite (5Fe2O3∙9H2O while those in fragment found in drier clay sand contained ferric hydrous oxides (FeOOH and siderite (FeCO3 mainly. Concretions found near the first fragment contain ferric hydrous oxides (FeOOH mainly. This work is licensed under a Creative Commons Attribution 4.0 International License.

  15. Ice nucleation efficiency of clay minerals in the immersion mode

    Directory of Open Access Journals (Sweden)

    V. Pinti


    Full Text Available Emulsion and bulk freezing experiments were performed to investigate immersion ice nucleation on clay minerals in pure water, using various kaolinites, montmorillonites, illites as well as natural dust from the Hoggar Mountains in the Saharan region. DSC (differential scanning calorimeter measurements were performed on the kaolinites KGa-1b and KGa-2 from the Clay Mineral Society and kaolinite from Sigma-Aldrich; the montmorillonites SWy-2 and STx-1b from the Clay Mineral Society and the acid treated montmorillonites KSF and K-10 from Sigma Aldrich; the illites NX and SE from Arginotec. The emulsion experiments provide information on the average freezing behaviour characterized by the average nucleation sites. These experiments revealed one to two distinct heterogeneous freezing peaks, which suggest the presence of a low number of qualitatively distinct average nucleation site classes. We refer to the peak at the lowest temperature as "standard peak" and to the one at higher temperatures as "special peak". Conversely, freezing in bulk samples is not initiated by the average nucleation sites, but by a very low number of "best sites". The kaolinites showed quite narrow standard peaks with onset temperatures 239 K < Tonstd < 242 K and best sites with averaged median freezing temperature Tmedbest = 257 K. Only the kaolinite from Sigma Aldrich featured a special peak with freezing onset at 248 K. The illites showed broad standard peaks with freezing onsets at 244 K < Tonstd < 246 K and best sites with averaged median freezing temperature Tmedbest = 262 K. Montmorillonites had standard peaks with onsets 238 K < Tonstd < 240 K and best sites with Tmedbest=257 K. SWy-2, M K10, and KSF featured special peaks with onsets at Tonspcl=247, 240, and 242 K

  16. Deposition kinetics of MS2 bacteriophages on clay mineral surfaces. (United States)

    Tong, Meiping; Shen, Yun; Yang, Haiyan; Kim, Hyunjung


    The deposition of bacteriophage MS2 on bare and clay-coated silica surfaces was examined in both monovalent (NaCl) and divalent (CaCl(2) and MgCl(2)) solutions under a wide range of environmentally relevant ionic strength and pH conditions by utilizing a quartz crystal microbalance with dissipation (QCM-D). Two types of clay, bentonite and kaolinite, were concerned in this study. To better understand MS2 deposition mechanisms, QCM-D data were complemented by zeta potentials measurements and Derjaguin-Landau-Verwey-Overbeek (DLVO) interaction forces calculation. In both monovalent and divalent solutions, deposition efficiencies of MS2 increased with increasing ionic strength both on bare and clay-coated surfaces, which agreed with the trends of interaction forces between MS2 and solid surface and thus was consistent with DLVO theory. The presence of divalent ions (Ca(2+) and Mg(2+)) in solutions greatly increased virus deposition on both silica and clay deposited surfaces. Coating silica surfaces with clay minerals, either kaolinite or bentonite, could significantly increase MS2 deposition.

  17. Enhanced coal and mineral flotation by selective clay agglomeration

    Energy Technology Data Exchange (ETDEWEB)

    Tao, D.; Chen, G.L.; Fan, M.M.; Zhou, X.H.; Zhao, C.; Aron, M.; Wright, J. [University of Kentucky, Lexington, KY (United States)


    The purpose is to evaluate the performance of clay binding agents for enhancing coal and mineral flotation. Mechanical and column flotation tests were conducted on coal and potash samples. Several process parameters were examined, e.g. impeller rotation speed, binder dosage, slurry solids content, and collector dosage. The results show that the Georgia-Pacific reagents improved flotation efficiency under some process conditions, especially at higher solids percentage and higher impeller rotation speed. 26 refs., 9 figs., 3 tabs.

  18. Investigation of Some Moulding Properties of a Nigerian Clay-Bonded Sand

    Directory of Open Access Journals (Sweden)

    Oke A.O.


    Full Text Available Moulding properties of Isasa River Sand bonded with Ipetumodu clay (Ife-North Local Government Area, Osun State, Nigeria were investigated. American Foundry men Society (AFS standard cylindrical specimens 50mm diameter and 50mm in height were prepared from various sand and clay ratios (between 18% and 32% with 15% water content. The stress-strain curves were generated from a universal strength testing machine. A flow factor was calculated from the inclination of the falling slope beyond the maximum compressive strength. The result shows that the flowability of the samples increases from 18% to 26% clay content, its maximum value was attained at 26% and then it decreases from 30% to 32% clay content. The green compressive strength, dry compressive strength and air permeability values obtained from the mould samples were in accordance with standard values used in foundry practice. The x-ray diffraction test shows that the sand contains silicon oxide (SiO2, Aluminium oxide (Al2O3, and Aluminium silicate (Al6Si2O13. The mould samples were heated to a temperature of 1200 °C to determine the sintering temperature; fussion did not take place at this temperature. The results showed that the sand and clay mixture can be used to cast ferrous and non-ferrous alloys.

  19. Complex resistivity signatures of ethanol in sand-clay mixtures (United States)

    Personna, Yves Robert; Slater, Lee; Ntarlagiannis, Dimitrios; Werkema, Dale; Szabo, Zoltan


    We performed complex resistivity (CR) measurements on laboratory columns to investigate changes in electrical properties as a result of varying ethanol (EtOH) concentration (0% to 30% v/v) in a sand–clay (bentonite) matrix. We applied Debye decomposition, a phenomenological model commonly used to fit CR data, to determine model parameters (time constant: τ, chargeability: m, and normalized chargeability: mn). The CR data showed a significant (P ≤ 0.001) time-dependent variation in the clay driven polarization response (~ 12 mrad) for 0% EtOH concentration. This temporal variation probably results from the clay–water reaction kinetics trending towards equilibrium in the sand–clay–water system. The clay polarization is significantly suppressed (P ≤ 0.001) for both measured phase (ϕ) and imaginary conductivity (σ″) with increasing EtOH concentration. Normalized chargeability consistently decreases (by up to a factor of ~ 2) as EtOH concentration increases from 0% to 10% and 10 to 20%, respectively. We propose that such suppression effects are associated with alterations in the electrical double layer (EDL) at the clay–fluid interface due to (a) strong EtOH adsorption on clay, and (b) complex intermolecular EtOH–water interactions and subsequent changes in ionic mobility on the surface in the EDL. Changes in the CR data following a change of the saturating fluid from EtOH 20% to plain water indicate strong hysteresis effects in the electrical response, which we attribute to persistent EtOH adsorption on clay. Our results demonstrate high sensitivity of CR measurements to clay–EtOH interactions in porous media, indicating the potential application of this technique for characterization and monitoring of ethanol contamination in sediments containing clays.

  20. Diagenesis and clay mineral formation at Gale Crater, Mars (United States)

    Bridges, J. C.; Schwenzer, S. P.; Leveille, R.; Westall, F.; Wiens, R. C.; Mangold, N.; Bristow, T.; Edwards, P.; Berger, G.


    Mars Science Laboratory rover Curiosity found host rocks of basaltic composition and alteration assemblages containing clay minerals at Yellowknife Bay, Gale Crater. On the basis of the observed host rock and alteration minerals, we present results of equilibrium thermochemical modeling of the Sheepbed mudstones of Yellowknife Bay in order to constrain the formation conditions of its secondary mineral assemblage. Building on conclusions from sedimentary observations by the Mars Science Laboratory team, we assume diagenetic, in situ alteration. The modeling shows that the mineral assemblage formed by the reaction of a CO2-poor and oxidizing, dilute aqueous solution (Gale Portage Water) in an open system with the Fe-rich basaltic-composition sedimentary rocks at 10-50°C and water/rock ratio (mass of rock reacted with the starting fluid) of 100-1000, pH of ~7.5-12. Model alteration assemblages predominantly contain phyllosilicates (Fe-smectite, chlorite), the bulk composition of a mixture of which is close to that of saponite inferred from Chemistry and Mineralogy data and to that of saponite observed in the nakhlite Martian meteorites and terrestrial analogues. To match the observed clay mineral chemistry, inhomogeneous dissolution dominated by the amorphous phase and olivine is required. We therefore deduce a dissolving composition of approximately 70% amorphous material, with 20% olivine, and 10% whole rock component.

  1. Impact of clay mineral on air oxidation of PAH-contaminated soils. (United States)

    Biache, Coralie; Kouadio, Olivier; Lorgeoux, Catherine; Faure, Pierre


    This work investigated the impact of a clay mineral (bentonite) on the air oxidation of the solvent extractable organic matters (EOMs) and the PAHs from contaminated soils. EOMs were isolated from two coking plant soils and mixed with silica sand or bentonite. These samples, as well as raw soils and bentonite/soil mixtures, were oxidized in air at 60 and 100 °C for 160 days. Mineralization was followed by measuring the CO2 produced over the experiments. EOM, polycyclic aromatic compound (PAC), including PAH, contents were also determined. Oxidation led to a decrease in EOM contents and PAH concentrations, these diminutions were enhanced by the presence of bentonite. Transfer of carbon from EOM to insoluble organic matter pointed out a condensation phenomenon leading to a stabilization of the contamination. Higher mineralization rates, observed during the oxidation of the soil/bentonite mixtures, seem to indicate that this clay mineral had a positive influence on the transformation of PAC into CO2.

  2. Wave-induced ripple development in mixed clay-sand substrates (United States)

    Wu, Xuxu; Parsons, Daniel; Baas, Jaco H.; Mouazé, Dominique; McLelland, Stuart; Amoudry, Laurent; Eggenhuisen, Jorris; Cartigny, Matthieu; Ruessink, Gerben


    This paper reports on a series of experiments that aim to provide a fuller understanding of ripple development within clay-sand mixture substrates under oscillatory flow conditions. The work was conducted in the Total Environment Simulator at the University of Hull and constituted 6 separate runs, in which 5 runs were conducted under identical sets of regular waves (an additional run was conducted under irregular waves, but is not discussed in present paper). The bed content was systematically varied in its composition ranging from a pure sand bed through to a bed comprising 7.4% clay. A series of state-of-the-art measurements were employed to quantify interactions of near-bed hydrodynamics, sediment transport, and turbulence over rippled beds formed by wave action, during and after, each run. The experimental results demonstrate the significant influence of the amount of cohesive clay materials in the substrate on ripple evolution under waves. Most importantly, addition of clay in the bed dramatically slowed down the rate of ripple development and evolution. The equilibrium time of each run increased exponentially from 30 minutes under the control conditions of a pure sand bed, rising to ~350 minutes for the bed with the highest fraction of clay. The paper discusses the slower ripple growth rates with higher cohesive fractions, via an influence on critical shear, but highlights that the end equilibrium size of ripples is found to be independent of increasing substrate clay fraction. The suspended particles mass (SPM) concentration indicates that clay particles were suspended and winnowed by wave action. Additionally, laser granulometry of the final substrates verified that ripple crests were composed of pure sand layers that were absent at ripple troughs, reflecting a relatively higher winnowing efficiency at wave ripples crest. The winnowing process and its efficiency is inexorably linked to wave ripple development and evolution. The implications of the results

  3. Characterization of saturation and copper concentration in sand and clay with SIP measurements. (United States)

    Peruzzo, L.; Schmutz, M.; Franceschi, M.; Hubbard, S. S.


    Adsorption by clay minerals, oxides and organic matter is commonly the most effective mechanism controlling the mobility and bioavailability of heavy metals in soil. As contamination processes of natural systems commonly present an important variability with time and space, we aim to show if non-invasive and imaging geophysical methods, specifically Spectral Induced Polarization (SIP), are sensitive to mobility and/or bioavailability of copper. Promising works have recently shown that SIP is sensitive to the different ions dissolved in soil water thanks to their different adsorption behavior. To the best of our knowledge, these works have used clean sand as medium; that is why we need to reach a more generic comprehension of natural soil by including the relevant adsorbents. In this paper, we focus on the copper SIP signature accounting for the presence of two types of clay (montmorillonite and kaolinite), different saturation levels and representative copper concentrations which have been chosen on the base of Cu chemical extractions from soil samples taken in a Cu polluted test site. During the set of SIP measurements one single variable at time is changed: soil components, saturation and solution Cu concentration. At the same time pH and temperature are monitored. A successive modeling will consist of two parts. 1) In order to correctly interpret the SIP measurements and make sure that the signals are only influenced by matrix and fluid composition, thanks to very recent publications, we will model the EM inductive coupling, the effect of the electrodes used and the Maxwell-Wagner effect. 2) Geochemical modeling characterizing the electrical double layer (EDL) state at the different experimental conditions; then we will try to theoretically link the EDL state to the SIP results. This last step could provide an important insight about the polarization mechanisms under the investigated conditions.

  4. Transformation of anthracene on various cation-modified clay minerals. (United States)

    Li, Li; Jia, Hanzhong; Li, Xiyou; Wang, Chuanyi


    In this study, anthracene was employed as a probe to explore the potential catalytic effect of clay minerals in soil environment. Clay minerals saturated with various exchangeable cations were tested. The rate of anthracene transformation follows the order: Fe-smectite > Cu-smectite > Al-smectite ≈ Ca-smectite ≈ Mg-smectite ≈ Na-smectite. This suggests that transition-metal ions such as Fe(III) play an important role in anthracene transformation. Among Fe(III)-saturated clays, Fe(III)-smectite exhibits the highest catalytic activity followed by Fe(III)-illite, Fe(III)-pyrophyllite, and Fe(III)-kaolinite, which is in agreement with the interlayer Fe(III) content. Moreover, effects by two common environmental factors, pH and relative humidity (RH), were evaluated. With an increase in pH or RH, the rate of anthracene transformation decreases rapidly at first and then is leveled off. GC-MS analysis identifies that the final product of anthracene transformation is 9,10-anthraquinone, a more bioavailable molecule compared to anthracene. The transformation process mainly involves cation-π bonding, electron transfer leading to cation radical, and further oxidation by chemisorbed O2. The present work provides valuable insights into the abiotic transformation and the fate of PAHs in the soil environment and the development of contaminated land remediation technologies.

  5. Adsorption of nucleic Acid bases, ribose, and phosphate by some clay minerals. (United States)

    Hashizume, Hideo


    Besides having a large capacity for taking up organic molecules, clay minerals can catalyze a variety of organic reactions. Derived from rock weathering, clay minerals would have been abundant in the early Earth. As such, they might be expected to play a role in chemical evolution. The interactions of clay minerals with biopolymers, including RNA, have been the subject of many investigations. The behavior of RNA components at clay mineral surfaces needs to be assessed if we are to appreciate how clays might catalyze the formation of nucleosides, nucleotides and polynucleotides in the "RNA world". The adsorption of purines, pyrimidines and nucleosides from aqueous solution to clay minerals is affected by suspension pH. With montmorillonite, adsorption is also influenced by the nature of the exchangeable cations. Here, we review the interactions of some clay minerals with RNA components.

  6. Adsorption of Nucleic Acid Bases, Ribose, and Phosphate by Some Clay Minerals

    Directory of Open Access Journals (Sweden)

    Hideo Hashizume


    Full Text Available Besides having a large capacity for taking up organic molecules, clay minerals can catalyze a variety of organic reactions. Derived from rock weathering, clay minerals would have been abundant in the early Earth. As such, they might be expected to play a role in chemical evolution. The interactions of clay minerals with biopolymers, including RNA, have been the subject of many investigations. The behavior of RNA components at clay mineral surfaces needs to be assessed if we are to appreciate how clays might catalyze the formation of nucleosides, nucleotides and polynucleotides in the “RNA world”. The adsorption of purines, pyrimidines and nucleosides from aqueous solution to clay minerals is affected by suspension pH. With montmorillonite, adsorption is also influenced by the nature of the exchangeable cations. Here, we review the interactions of some clay minerals with RNA components.

  7. Clays and Clay Minerals and their environmental application in Food Technology (United States)

    del Hoyo Martínez, Carmen; Cuéllar Antequera, Jorge; Sánchez Escribano, Vicente; Solange Lozano García, Marina; Cutillas Díez, Raul


    The clay materials have led to numerous applications in the field of public health (del Hoyo, 2007; Volzone, 2007) having been demonstrated its effectiveness as adsorbents of all contaminants. Some biodegradable materials are used for for adsorption of chemical contaminants: lignins (Valderrabano et al., 2008) and also clays and clay minerals, whose colloidal properties, ease of generating structural changes, abundance in nature, and low cost make them very suitable for this kind of applications. Among the strategies used at present to preserve the quality of the water and this way to diminish the environmental risk that supposes the chemical pollution, stands out the use of adsorbents of under cost, already they are natural or modified, to immobilize these compounds and to avoid the pollution of the water with the consequent reduction of environmental and economic costs Thanks to the development of the science and the technology of the nourishment in the last 50 years, there have revealed itself several new substances that can fulfill beneficial functions in the food, and these substances, named food additives, are today within reach of all. The food additives recover a very important role in the complex nourishing supply. The additives fulfill several useful functions in the food, which often we give for sat. Nevertheless the widespread use of food additives in the food production also influences the public health. The food industries, which are very important for the economy, spill residues proved from its activity that they have to be controlled to evaluate the environmental impact and to offer the necessary information about the quantitative evaluation of the chemical risk of the use of food additives for the public health. We have studied the adsorption of several contaminants by natural or modified clays, searching their interaction mechanisms and the possible recycling of these materials for environmental purposes and prevention of the health. References

  8. Program and Abstracts for Clay Minerals Society 28th Annual Meeting (United States)


    This volume contains abstracts that were accepted for presentation at the annual meeting. Some of the main topics covered include: (1) fundamental properties of minerals and methods of mineral analysis; (2) surface chemistry; (3) extraterrestrial clay minerals; (4) geothermometers and geochronometers; (5) smectite, vermiculite, illite, and related reactions; (6) soils and clays in environmental research; (7) kaolinite, halloysite, iron oxides, and mineral transformations; and (8) clays in lakes, basins, and reservoirs.

  9. Distribution of clay minerals in marine sediments off Chennai, Bay of Bengal, India:Indicators of sediment sources and transport processes

    Institute of Scientific and Technical Information of China (English)

    Subramanian VEERASINGAM; Ramdoss VENKATACHALAPATHY; Thirunavukkarasu RAMKUMAR


    Clay mineralogy, texture size and statistical analyses were carried out on surface sediments from the continental shelf of Chennai, Bay of Bengal, India. The purpose of this study is to characterize the clay mineral distribution and its relation to the hydrodynamics off Chennai to identify the sources and transport pathways of the marine sediments. Characterization of clay minerals in coastal sediments by Fourier Transform Infrared (FTIR) spectroscopy has provided the association of quartz, feldspar, kaolinite, chlorite, illite and iron oxides (magnetite and hematite) derived from river catchments and coastal erosion. Kaolinite, chlorite, illite, iron oxides, and organic matter are the dominant minerals in Cooum, and Adayar region. High quartz and feldspar zones were identified in Marina, which are being confined the sand zone and paralleling the coast. The strong relationships among the wave energy density, sand, quartz and carbonate revealed that wave induced littoral drift system play a dominant role in transportation and deposition of sediments in the Chennai coast. The sediment texture and minerals data are in agreement well with the previous results of hydrodynamics and littoral drift models in this region. Multivariate statistical analyses (correlation, cluster and factor analyses) were carried out and obtained results suggested that clay minerals and organic matter are trapped in silt and clay particles, whereas quartz, feldspar and carbonate are associated with sand particles. Results of sediment sources and transport processes from this study will be useful to predict the fate of the pollutants released from land or the potential change in sediment delivery to coastal areas.

  10. Iron(III)-bearing clay minerals enhance bioreduction of nitrobenzene by Shewanella putrefaciens CN32. (United States)

    Luan, Fubo; Liu, Yan; Griffin, Aron M; Gorski, Christopher A; Burgos, William D


    Iron-bearing clay minerals are ubiquitous in the environment, and the clay-Fe(II)/Fe(III) redox couple plays important roles in abiotic reduction of several classes of environmental contaminants. We investigated the role of Fe-bearing clay minerals on the bioreduction of nitrobenzene. In experiments with Shewanella putrefaciens CN32 and excess electron donor, we found that the Fe-bearing clay minerals montmorillonite SWy-2 and nontronite NAu-2 enhanced nitrobenzene bioreduction. On short time scales (<50 h), nitrobenzene reduction was primarily biologically driven, but at later time points, nitrobenzene reduction by biologically formed structural Fe(II) in the clay minerals became increasingly important. We found that chemically reduced (dithionite) iron-bearing clay minerals reduced nitrobenzene more rapidly than biologically reduced iron-bearing clay minerals despite the minerals having similar structural Fe(II) concentrations. We also found that chemically reduced NAu-2 reduced nitrobenzene faster as compared to chemically reduced SWy-2. The different reactivity of SWy-2 versus NAu-2 toward nitrobenzene was caused by different forms of structural clay-Fe(II) in the clay minerals and different reduction potentials (Eh) of the clay minerals. Because most contaminated aquifers become reduced via biological activity, the reactivity of biogenic clay-Fe(II) toward reducible contaminants is particularly important.

  11. Methane Hydrate Formation and Dissociation in the Presence of Silica Sand and Bentonite Clay

    Directory of Open Access Journals (Sweden)

    Kumar Saw V.


    Full Text Available The formation and dissociation of methane hydrates in a porous media containing silica sand of different sizes and bentonite clay were studied in the presence of synthetic seawater with 3.55 wt% salinity. The phase equilibrium of methane hydrate under different experimental conditions was investigated. The effects of the particle size of silica sand as well as a mixture of bentonite clay and silica sand on methane hydrate formation and its dissociation were studied. The kinetics of hydrate formation was studied under different subcooling conditions to observe its effects on the induction time of hydrate formation. The amount of methane gas encapsulated in hydrate was computed using a real gas equation. The Clausius-Clapeyron equation is used to estimate the enthalpy of hydrate dissociation with measured phase equilibrium data.

  12. Aqueous suspensions of natural swelling clay minerals. 2. Rheological characterization. (United States)

    Paineau, Erwan; Michot, Laurent J; Bihannic, Isabelle; Baravian, Christophe


    We report in this article a comprehensive investigation of the viscoelastic behavior of different natural colloidal clay minerals in aqueous solution. Rheological experiments were carried out under both dynamic and steady-state conditions, allowing us to derive the elasticity and yield stress. Both parameters can be renormalized for all sizes, ionic strength, and type of clay using in a first approach only the volume of the particles. However, applying such a treatment to various clays of similar shapes and sizes yields differences that can be linked to the repulsion strength and charge location in the swelling clays. The stronger the repulsive interactions, the better the orientation of clay particles in flows. In addition, a master linear relationship between the elasticity and yield stress whose value corresponds to a critical deformation of 0.1 was evidenced. Such a relationship may be general for any colloidal suspension of anisometric particles as revealed by the analysis of various experimental data obtained on either disk-shaped or lath- and rod-shaped particles. The particle size dependence of the sol-gel transition was also investigated in detail. To understand why suspensions of larger particles gel at a higher volume fraction, we propose a very simplified view based on the statistical hydrodynamic trapping of a particle by an another one in its neighborhood upon translation and during a short period of time. We show that the key parameter describing this hydrodynamic trapping varies as the cube of the average diameter and captures most features of the sol-gel transition. Finally, we pointed out that in the high shear limit the suspension viscosity is still closely related to electrostatic interactions and follows the same trends as the viscoelastic properties. © 2011 American Chemical Society

  13. Ice nucleation efficiency of clay minerals in the immersion mode

    Directory of Open Access Journals (Sweden)

    V. Pinti


    Full Text Available Emulsion and bulk freezing experiments were performed to investigate immersion ice nucleation on clay minerals in pure water, using various kaolinites, montmorillonites, illites as well as natural dust from the Hoggar Mountains in the Saharan region. Differential scanning calorimeter measurements were performed on three different kaolinites (KGa-1b, KGa-2 and K-SA, two illites (Illite NX and Illite SE and four natural and acid-treated montmorillonites (SWy-2, STx-1b, KSF and K-10. The emulsion experiments provide information on the average freezing behaviour characterized by the average nucleation sites. These experiments revealed one to sometimes two distinct heterogeneous freezing peaks, which suggest the presence of a low number of qualitatively distinct average nucleation site classes. We refer to the peak at the lowest temperature as "standard peak" and to the one occurring in only some clay mineral types at higher temperatures as "special peak". Conversely, freezing in bulk samples is not initiated by the average nucleation sites, but by a very low number of "best sites". The kaolinites and montmorillonites showed quite narrow standard peaks with onset temperatures 238 K<Tonstd<242 K and best sites with averaged median freezing temperature Tmedbest=257 K, but only some featuring a special peak (i.e. KSF, K-10, K-SA and SWy-2 with freezing onsets in the range 240–248 K. The illites showed broad standard peaks with freezing onsets at 244 K Tonstd<246 K and best sites with averaged median freezing temperature Tmedbest=262 K. The large difference between freezing temperatures of standard and best sites shows that characterizing ice nucleation efficiencies of dust particles on the basis of freezing onset temperatures from bulk experiments, as has been done in some atmospheric studies, is not appropriate. Our investigations

  14. Harnessing Water and Resources from Clay Minerals on Mars and Planetary Bodies (United States)

    Bishop, J. L.


    Clay minerals provide a source of water, metals, and cations that can be harvested to provide resources for human exploration on Mars, asteroids, etc. Planning how to access these resources from clays could be a vital component of human exploration.

  15. Geothermal alteration of clay minerals and shales: diagenesis

    Energy Technology Data Exchange (ETDEWEB)

    Weaver, C.E.


    The objective of this report is to perform a critical review of the data on the mineral and chemical alterations that occur during diagenesis and low-grade metamorphism of shale and other clay-rich rocks - conditions similar to those expected from emplacement of heat-producing radioactive waste in a geologic repository. The conclusions drawn in this document are that the following type of alterations could occur: smectite alteration, ion mobilization, illitic shales, kaolinite reactions, chlorite reactions, organic reactions, paleotemperatures, low temperature shales, high temperature shales, and phase equilibrium changes.

  16. Bio-Mobilization of Potassium from Clay Minerals: I. By Ectomycorrhizas

    Institute of Scientific and Technical Information of China (English)


    A pot experiment was carried out to investigate effect of ectomycorrhizal fungi on eucalyptus growth and K bio-mobilization from soils and clay minerals. In the experiment, sands mixed with soil, KCl-saturated vermiculate and mica, respectively, were used to nurse eucalyptus seedlings which were nonectomycorrhized or ectomycorrhized by an ectomycorrhizal fungus Pisolithus tinctorius strain XC1 (Pt XC1) isolated from a forest soil from Xichang, Sichuan Province, China, and a worldwide well-known ectomycorrhizal fungus Pisolithus tinctorius strain 2 144 (Pt 2 144) obtained in Australia. More depletion of HCl-soluble K by mycorrhizas from the soil and minerals than nonmycorrhizas suggested that mycorrhizas had a great ability to mobilize K present in the interlayer and feldspar. Mycorrhizal seedlings depressed greatly K digested with HF-HClO4 from substrates after consecutive extractions of soils and minerals by water, ammonium acetate and boiling HCl, while nonmycorrhizal seedlings reduced it little if any, showing that the mycorrhizal seedlings could mobilize and then utilize the structural K in mineral lattice. Ectomycorrhizal fungi played a very important role not only in promoting the growth of eucalyptus seedlings but also in mobilizing K in soils and minerals. The infection of Pt XC1 led to a better growth of eucalyptus seedlings and more K accumulation in the seedlings than that of Pt 2 144. The large differences in K accumulation by the seedlings might be due to different abilities of the two ectomycorrhizal fungi to mobilize K in interlayer and lattice pools in the clay minerals.

  17. Separation of Clay Minerals from Host Sediments Using Cation Exchange Resins

    Institute of Scientific and Technical Information of China (English)

    I.S. Ismael; H.M. Baioumy


    Classic physical and chemical treatments applied to separating clay minerals from the host sediments are often difficult or aggressive for clay minerals. A technique using cation exchange resins (amberlite IRC-50H and amberlite IR-120) is used to separate clay minerals from the host sediments. The technique is based on the exchange of cations in the minerals that may be associated clay minerals in sediments,such as Ca and Mg from dolomite; Ca from calcite,gypsum and francolite with cations carried by resin radicals. The associated minerals such as gypsum,calcite,dolomite and francolite are removed in descending order. Separation of clay minerals using cation exchange resins is less aggressive than that by other classic treatments.The efficiency of amberlite IRC-50H in the removal of associated minerals is greater than that of amberlite IR-120.

  18. Improvement of Bearing Capacity of Shallow Foundation on Geogrid Reinforced Silty Clay and Sand

    Directory of Open Access Journals (Sweden)

    P. K. Kolay


    Full Text Available The present study investigates the improvement in the bearing capacity of silty clay soil with thin sand layer on top and placing geogrids at different depths. Model tests were performed for a rectangular footing resting on top of the soil to establish the load versus settlement curves of unreinforced and reinforced soil system. The test results focus on the improvement in bearing capacity of silty clay and sand on unreinforced and reinforced soil system in non-dimensional form, that is, BCR. The results show that bearing capacity increases significantly with the increased number of geogrid layers. The bearing capacity for the soil increases with an average of 16.67% using one geogrid layer at interface of soils with equal to 0.667 and the bearing capacity increases with an average of 33.33% while using one geogrid in middle of sand layer with equal to 0.33. The improvement in bearing capacity for sand underlain silty clay maintaining and equal to 0.33; for two, three and four number geogrid layer were 44.44%, 61.11%, 72.22%, respectively. The finding of this research work may be useful to improve the bearing capacity of soil for shallow foundation and pavement design for similar type of soil available elsewhere.

  19. Clay minerals in the Meuse - Haute Marne underground laboratory (France): Possible influence of organic matter on clay mineral evolution.


    Claret, Francis; Sakharov, Boris.A.; Drits, Victor A.; Velde, Bruce; Meunier, Alain; Griffault, Lise; Lanson, Bruno


    A clay-rich Callovo-Oxfordian sedimentary formation was selected in the eastern Paris Basin (MHM site) to host an underground laboratory dedicated to the assessment of nuclear waste disposal feasibility in deep geological formations. As described initially, this formation shows a mineralogical transition from an illite-smectite (I-S) mixed-layered mineral (MLM), which is essentially smectitic and randomly interstratified (R=0) in the top part of the series to a more illitic, ordered (R≥1) I-S...

  20. The formation of goethite and hydrated clay minerals on Mars (United States)

    Huguenin, R. L.


    Laboratory studies reported by Huguenin (1973) on the kinetics and mechanism of the photostimulated oxidation of magnetic and preliminary laboratory data on the weathering of silicates, reported herein, are applied to Mars. Basalts in the Martian dark areas are predicted to alter to hydrated Fe(2 plus or minus) depleted clay minerals, minor goethite, and minor to trace amounts of transition metal oxides such as TiO2, MnO2, and Cr2O3 at a rate of 10 to the minus 1.5 plus or minus 1.5 micron/yr. Some Ca-Mg carbonates are also expected to be formed. The clay minerals are predicted to be more silica-rich than the silicate source material, SiO2 contents of 60% or higher being expected, and strongly depleted in Fe(2+). The oxygen, OH, and H2O contents of the bulk weathering product are predicted to be significantly greater than those of the dark-area source materials, whereas the relative bulk metal abundances should be the same.

  1. A Preliminary Study on Identification of Clay Minerals in Soils with Reference to Reflectance Spectra

    Institute of Scientific and Technical Information of China (English)



    The characteristics of the reflectance spectra of clay minerals and their influences on the reflectance spectra of soils are dealt with in the paper.The results showed that dominant clay minerals in soils could be distinguished in light of the spectral -form parameters of the reflectance spectra of soils,thus making it possible to develop a quick method to determine clay minerals by means of reflectance spectra of soils in the lab.and providing a theoretic basis for remote sensing of clay minerals in soils with a high resolution imaging spectrometer.

  2. Influence of clay particles on the transport and retention of titanium dioxide nanoparticles in quartz sand. (United States)

    Cai, Li; Tong, Meiping; Wang, Xueting; Kim, Hyunjung


    This study investigated the influence of two representative suspended clay particles, bentonite and kaolinite, on the transport of titanium dioxide nanoparticles (nTiO2) in saturated quartz sand in both NaCl (1 and 10 mM ionic strength) and CaCl2 solutions (0.1 and 1 mM ionic strength) at pH 7. The breakthrough curves of nTiO2 with bentonite or kaolinite were higher than those without the presence of clay particles in NaCl solutions, indicating that both types of clay particles increased nTiO2 transport in NaCl solutions. Moreover, the enhancement of nTiO2 transport was more significant when bentonite was present in nTiO2 suspensions relative to kaolinite. Similar to NaCl solutions, in CaCl2 solutions, the breakthrough curves of nTiO2 with bentonite were also higher than those without clay particles, while the breakthrough curves of nTiO2 with kaolinite were lower than those without clay particles. Clearly, in CaCl2 solutions, the presence of bentonite in suspensions increased nTiO2 transport, whereas, kaolinite decreased nTiO2 transport in quartz sand. The attachment of nTiO2 onto clay particles (both bentonite and kaolinite) were observed under all experimental conditions. The increased transport of nTiO2 in most experimental conditions (except for kaolinite in CaCl2 solutions) was attributed mainly to the clay-facilitated nTiO2 transport. The straining of larger nTiO2-kaolinite clusters yet contributed to the decreased transport (enhanced retention) of nTiO2 in divalent CaCl2 solutions when kaolinite particles were copresent in suspensions.

  3. Accumulation of Tobacco mosaic virus (TMV) at different depths clay and loamy sand textural soils due to tobacco waste application. (United States)

    Gülser, Coşkun; Yilmaz, Nazli Kutluk; Candemir, Feride


    The effects of tobacco waste (TW) application to the soil surface on the accumulation of Tobacco mosaic virus (TMV) in clay and loamy sand textural soils at various depths were investigated in two different fields. The tobacco waste had been found to be infected with TMV. Eighteen months after TW application to the soil surface, soils were sampled at 20 cm intervals through to 80 cm depth. The DAS-ELISA method was performed to determine infection of soil with TMV. The viruses persisted in clay soil for a long period compared with loamy sand soil. There was no accumulation of TMV at any depth of loamy sand soil in Experimental Field 2. TMV adsorption to soil particles in 0-60 cm depth of clay soil was determined in all TW treatments in Experimental Field 1. The highest ELISA Absorbance (A405) values in all treatments were determined in the 20-40 cm soil depth that had the highest clay content. ELISA A405 values of TMV at different depths of clay soil gave significant correlations with clay content (r = 0.793**), EC values (r = 0.421**) and soil pH (r = -0.405**). Adsorption of TMV to net negatively charged clay particle surfaces increased with increasing EC values of soil solution. Decreasing soil pH and infiltration rate increased adsorption of TMV to clay particles. Higher infiltration rate and lower clay content in loamy sand soil caused leaching of TMV from the soil profile.

  4. Solidification and stabilization of cadmium ions in sand-cement-clay mixture. (United States)

    Shawabkeh, Reyad A


    This study was carried out to test the ability of a mixture of sand, cement and clay for immobilizing cadmium ions from leaching out into water resources. Various samples with different mass ratios for this mixture were tested to determine their efficiency for adsorbing cadmium. The compressive test, cation exchange capacity (CEC), adsorption equilibrium and leaching test were applied to each sample. The sample that showed the highest cation exchange capacity with 53.1 meq/100 g and compressive strength with 11.05 N/mm2 consists of 25% sand, 50% cement and 25% clay. The equilibrium data for Cd2+ removal using this sample showed a multilayer adsorption, which could be fitted using Brunauer-Emmett-Teller adsorption isotherm model with a regression coefficient of 0.999. The maximum cadmium uptake obtained from this model was 82.618 mg/g solid. The mobility of Cd2+ in acidic solution drawn-off after 18 h of initial mixing was 66.06 mg when the solid sample initially contains 6.0 g Cd2+. This value decreased to 14.33 mg when only 1.0 g Cd2+ was initially spiked in the sample. Introducing clay into this sample enhanced its sorption capacity while the presence of sand and cement enhanced its compressive strength.

  5. Clay mineral distribution from Bhimunipatnam to Pudimadaka along cental eastern continental shelf of India

    Digital Repository Service at National Institute of Oceanography (India)

    Reddy, N.P.C.; Rao, K.M.

    Forty eight sediment samples, collected from 50-100m depth, have been analysed for their clay mineral composition and distribution. Kaolinite with chlorite (K + C) is the predominant mineral followed by illite and montmorillonite. K + C and illite...

  6. Weathering of Dronino Iron Meteorite and Ferric Hydrous Oxides Transfer in Clay Sand Studied Using Mössbauer Spectroscopy (United States)

    Yakovlev, G. A.; Oshtrakh, M. I.; Semionkin, V. A.


    The Dronino meteorite fragments found in clay sand demonstrated heavily weathering. Several concretions formed in this place were also found. These weathering products were subject for the study using Mössbauer spectroscopy.

  7. Microbial assimilation of 14C of ground and unground plant materials decomposing in a loamy sand and a clay soil

    DEFF Research Database (Denmark)

    Sørensen, P.; Ladd, J.N.; Amato, M.


    . More C-14 and N were mineralized and less microbial biomass C-14 accumulated in soils amended with unground than with ground subclover leaves. Differences in the amounts of (CO2)-C-14 and biomass C-14 were established during the initial 7 days of decomposition. At this time, biomass C-14 in the two...... of particle sizes >50 mu m accounted fro 5-6% input C-14 in the loamy sand; the proportions were little affected by grinding of the clover leaf amendment. In contrast, the amounts of biomass C-14 in the fraction of particle sizes soils. Thus......, the increased amounts of biomass C-14 in soils amended with ground leaves were mainly associated with clay plus silt size particles and microaggregates. After 7 d of decomposition, non-biomass C-14 in the two soil fractions accounted for about 40% of input C-14, irrespective of soil type and particle size...


    Institute of Scientific and Technical Information of China (English)


    The current study is the first step in a systematic experimental research on the erosion behaviour of sand-mud mixtures. It concerns the effect of a varying sand content and clay mineralogy on the porosity, structure, strength and permeability of artificially generated sediment mixtures. The permeability of a sediment mixture is an especially significant parameter concerning the type of erosion that occurs. It determines ifthe erosion of the bed is either a drained or an undrained process,respectively indicating surface erosion or mass erosion. Measurements on various mixtures concerning the consolidation coefficient and the permeability have been executed. Results show a distinct transition of behaviour between a sand-silt dominated network structure and a clay-water matrix. The occurrence of these two types of structures appears to depend on the porosity of the volume fraction of sand related to silt, which is, therefore, an important parameter concerning the type of erosion. Finally, the study provides a valuable data set that can be used as a reference for following stages of this research on the erosion behaviour of natural cohesive sediments.

  9. Adsorption of a dye on clay and sand. Use of cyclodextrins as solubility-enhancement agents. (United States)

    De Lisi, Rosario; Lazzara, Giuseppe; Milioto, Stefania; Muratore, Nicola


    Laboratory-scale studies were aimed at elucidating the physico-chemical aspects on the removal process of crystal violet (CV) from waters and solid substrates. The laponite clay (RD) and sand were chosen for the double aim at investigating them as CV adsorbents for water treatment and as substrates which mime the soil components. Sand is very effective in removing CV from waters. The cyclodextrins (CDs) were exploited as solubility-enhancement agents to remove CV from the solid substrates. They are powerful solvent media because they extract the CV from sand forming water-soluble CV/CD inclusion complexes and do not show affinity for sand. Optimum performance was shown by the modified CDs (i.e. hydroxypropyl-beta-cyclodextrin and methyl-beta-cyclodextrin). A linear correlation between the logarithm of the equilibrium constant for the CV/CD inclusion complexes formation (K(cpx)) and the maximum amount of CV extracted from sand in the columns experiments at a flow rate of 1.5 ml min(-1) was drawn. This relationship predicts that CDs with K(cpx)<180 M(-1) are not suitable for CV removal from sand. CDs failed to displace CV from RD because they generate the formation of RD clusters where CV remains entrapped.

  10. Assessing the redox properties of iron-bearing clay minerals using homogeneous electrocatalysis

    Energy Technology Data Exchange (ETDEWEB)

    Gorski, Christopher A., E-mail: [Environmental Chemistry, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Uberlandstrasse 133, P.O. Box 611, 8600 Duebendorf (Switzerland); Sander, Michael; Aeschbacher, Michael [Institute of Biogeochemistry and Pollutant Dynamics (IBP), ETH Zurich, Universitaetstrasse 16, 8092 Zuerich (Switzerland); Hofstetter, Thomas B. [Environmental Chemistry, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Uberlandstrasse 133, P.O. Box 611, 8600 Duebendorf (Switzerland)] [Institute of Biogeochemistry and Pollutant Dynamics (IBP), ETH Zurich, Universitaetstrasse 16, 8092 Zuerich (Switzerland)


    Iron-bearing clay minerals are ubiquitous in the environment and have been shown to play important roles in several biogeochemical processes. Previous efforts to characterize the Fe{sup 2+}-Fe{sup 3+} redox couple in clay minerals using electrochemical techniques have been limited by experimental difficulties due to inadequate reactivity between clay minerals and electrodes. The current work overcomes this limitation by utilizing organic electron transfer mediators that rapidly transfer electrons with both the Fe-bearing clay minerals and electrodes. Here, an Fe-rich source clay mineral (ferruginous smectite, SWa-1) is examined with respect to what fraction of structural Fe participates in oxidation/reduction reactions and the relationship between bulk Fe{sup 2+}/Fe{sup 3+} ratios to the reduction potential (E{sub h}).

  11. Clay Minerals in Mawrth Vallis Region of Mars (United States)


    This map showing the location of some clay minerals in of a portion of the Mawrth Vallis region of Mars covers an area about 10 kilometers (6.2 mile) wide. The map is draped over a topographical model that exaggerates the vertical dimension tenfold. The mineral mapping information comes from an image taken on Sept. 21, 2007, by the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM). Iron-magnesium phyllosilicate is shown in red. Aluminum phyllosyllicate is shown in blue. Hydrated silica and a ferrous iron phase are shown in yellow/green. The topographical information comes from the Mars Orbiter Laser Altimeter instrument on NASA's Mars Global Surveyor orbiter. Mawrth Vallis is an outflow channel centered near 24.7 degrees north latitude, 339.5 degrees east longitude, in northern highlands of Mars. CRISM is one of six science instruments on the Mars Reconnaissance Orbiter. Led by The Johns Hopkins University Applied Physics Laboratory, Laurel, Md., the CRISM team includes expertise from universities, government agencies and small businesses in the United States and abroad. NASA's Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the Mars Reconnaissance Orbiter for NASA's Science Mission Directorate, Washington. Lockheed Martin Space Systems, Denver, built the orbiter.

  12. Bioremediation of PAHs and VOCs: Advances in clay mineral-microbial interaction. (United States)

    Biswas, Bhabananda; Sarkar, Binoy; Rusmin, Ruhaida; Naidu, Ravi


    Bioremediation is an effective strategy for cleaning up organic contaminants, such as polycyclic aromatic hydrocarbons (PAHs) and volatile organic compounds (VOCs). Advanced bioremediation implies that biotic agents are more efficient in degrading the contaminants completely. Bioremediation by microbial degradation is often employed and to make this process efficient, natural and cost-effective materials can serve as supportive matrices. Clay/modified clay minerals are effective adsorbents of PAHs/VOCs, and readily available substrate and habitat for microorganisms in the natural soil and sediment. However, the mechanism underpinning clay-mediated biodegradation of organic compounds is often unclear, and this requires critical investigation. This review describes the role of clay/modified clay minerals in hydrocarbon bioremediation through interaction with microbial agents in specific scenarios. The vision is on a faster, more efficient and cost-effective bioremediation technique using clay-based products. This review also proposes future research directions in the field of clay modulated microbial degradation of hydrocarbons.

  13. Catalysis of aluminosilicate clay minerals to the formation of the transitional zone gas

    Institute of Scientific and Technical Information of China (English)

    雷怀彦; 师育新; 关平; 房玄


    It has been shown that the major clay minerals of the biothermocatalytic transitional zone source rock are montmorillonite, illite/montmorillonite (I/M) interlayer mineral, illite, kaolinite and chlorite. Within the depth of the transitional zone, montmorillonite could convert to the I/M ordered interlayer mineral via the I/M disordered one, i.e. in the intercrystalline layer of montmorillonite, Al3+ replaces Si4+ abundantly, resulting in a surface charge imbalance and the occurrence of a surface acidity. By means of the pyridine analytic method, the surface acidity of these aluminosilicate clay minerals is measured. The catalysis of aluminosilicate clay minerals, such as montmorillonite, illite and kaolinite to the thermo-degraded gas formation of the transitional zone is simulated in the differential thermal analysis-gas chromatography system and the alcohol dehydration catalyzed by clay minerals is employed to discuss this catalytic mechanism. Experiments have shown that montmorillonite is the major

  14. Influence of silicate on the transport of bacteria in quartz sand and iron mineral-coated sand. (United States)

    Dong, Zhe; Yang, Haiyan; Wu, Dan; Ni, Jinren; Kim, Hyunjung; Tong, Meiping


    The influence of silicate on the transport and deposition of bacteria (Escherichia coli) in packed porous media were examined at a constant 20 mM ionic strength with different silicate concentrations (from 0 to 1 mM) at pH 7. Transport experiments were performed in two types of representative porous media, both bare quartz sand and iron mineral-coated quartz sand. In bare quartz sand, the breakthrough plateaus in the presence of silicate in suspensions were lower and the corresponding retained profiles were higher than those without silicate ions, indicating that the presence of silicate in suspensions decreased cell transport in bare quartz sand. Moreover, the decrease of bacteria transport in quartz sand induced by silicate was more pronounced with increasing silicate concentrations from 0 to 1 mM. However, when EPS was removed from cell surfaces, the presence of silicate in cell suspensions (with different concentrations) did not affect the transport behavior of bacteria in quartz sand. The interaction of silicate with EPS on cell surfaces negatively decreased the zeta potentials of bacteria, resulting in the decreased cell transport in bare quartz sand when silicate was copresent in bacteria suspensions. In contrast, the presence of silicate in suspensions increased cell transport in iron mineral-coated sand. Silicate ions competed with bacteria for the adsorption sites on mineral-coated sand, contributing to the increased cell transport in mineral-coated sand with silicate present in cell suspensions.

  15. Clay mineral distribution in surface sediments between Indonesia and NW Australia - source and transport by ocean currents


    F. X. Gingele; P. De Deckker; Hillenbrand, C. -D.


    The clay mineral distribution in sediments between Indonesia and NW Australia has been assessed on the basis of 166 core-top samples. Clay mineral assemblages are closely related to the geology and weathering regime of the adjacent hinterland and allow the distinction of four clay mineral provinces. Three provinces, Western, Central and Eastern Province are situated along the Indonesian Islands Arc, from Sumatra in the west to Timor in the east. Illite is the major clay mineral of the Western...

  16. Sm-Nd dating of Fig Tree clay minerals of the Barberton greenstone belt, South Africa (United States)

    Toulkeridis, T.; Goldstein, S. L.; Clauer, N.; Kroner, A.; Lowe, D. R.


    Sm-Nd isotopic data from carbonate-derived clay minerals of the 3.22-3.25 Ga Fig Tree Group, Barberton greenstone belt, South Africa, form a linear array corresponding to an age of 3102 +/- 64 Ma, making these minerals the oldest dated clays on Earth. The obtained age is 120-160 m.y. younger than the depositional age determined by zircon geochronology. Nd model ages for the clays range from approximately 3.39 to 3.44 Ga and almost cover the age variation of the Barberton greenstone belt rocks, consistent with independent evidence that the clay minerals are derived from material of the belt. The combined isotopic and mineralogical data provide evidence for a cryptic thermal overprint in the sediments of the belt. However, the highest temperature reached by the samples since the time of clay-mineral formation was <300 degrees C, lower than virtually any known early Archean supracrustal sequence.

  17. Distribution of Clay Minerals in Light Coal Fractions and the Thermal Reaction Products of These Clay Minerals during Combustion in a Drop Tube Furnace

    Directory of Open Access Journals (Sweden)

    Sida Tian


    Full Text Available To estimate the contribution of clay minerals in light coal fractions to ash deposition in furnaces, we investigated their distribution and thermal reaction products. The light fractions of two Chinese coals were prepared using a 1.5 g·cm−3 ZnCl2 solution as a density separation medium and were burned in a drop-tube furnace (DTF. The mineral matter in each of the light coal fractions was compared to that of the relevant raw coal. The DTF ash from light coal fractions was analysed using hydrochloric acid separation. The acid-soluble aluminium fractions of DTF ash samples were used to determine changes in the amorphous aluminosilicate products with increasing combustion temperature. The results show that the clay mineral contents in the mineral matter of both light coal fractions were higher than those in the respective raw coals. For the coal with a high ash melting point, clay minerals in the light coal fraction thermally transformed more dehydroxylation products compared with those in the raw coal, possibly contributing to solid-state reactions of ash particles. For the coal with a low ash melting point, clay minerals in the light coal fraction produced more easily-slagging material compared with those in the raw coal, playing an important role in the occurrence of slagging. Additionally, ferrous oxide often produces low-melting substances in coal ash. Due to the similarities of zinc oxide and ferrous oxide in silicate reactions, we also investigated the interactions of clay minerals in light coal fractions with zinc oxide introduced by a zinc chloride solution. The extraneous zinc oxide could react, to a small extent, with clay minerals in the coal during DTF combustion.

  18. MAX--An Interactive Computer Program for Teaching Identification of Clay Minerals by X-ray Diffraction. (United States)

    Kohut, Connie K.; And Others


    Discusses MAX, an interactive computer program for teaching identification of clay minerals based on standard x-ray diffraction characteristics. The program provides tutorial-type exercises for identification of 16 clay standards, self-evaluation exercises, diffractograms of 28 soil clay minerals, and identification of nonclay minerals. (MDH)

  19. MAX--An Interactive Computer Program for Teaching Identification of Clay Minerals by X-ray Diffraction. (United States)

    Kohut, Connie K.; And Others


    Discusses MAX, an interactive computer program for teaching identification of clay minerals based on standard x-ray diffraction characteristics. The program provides tutorial-type exercises for identification of 16 clay standards, self-evaluation exercises, diffractograms of 28 soil clay minerals, and identification of nonclay minerals. (MDH)

  20. Thermal magnetic behaviour of Al-substituted haematite mixed with clay minerals and its geological significance (United States)

    Jiang, Zhaoxia; Liu, Qingsong; Zhao, Xiangyu; Jin, Chunsheng; Liu, Caicai; Li, Shihu


    Clay minerals and Al-substituted haematite (Al-hm) usually coexist in soils and sediments. However, effects of clay minerals on Al-hm during thermal magnetic measurements in argon environment have not been well studied. In order to quantify such effects, a series of Al-hm samples were synthesized, and were then mixed with clay minerals (illite, chlorite, kaolinite and Ca-montmorillonite). The temperature dependence of magnetic susceptibility curves in an argon environment showed that Al-substituted magnetite was produced during the thermal treatment via the reduction of Al-hm by the clay mineral, which leads to a significant magnetic enhancement of the thermal products. In addition, the reductive capacity varies among different types of clay minerals, that is, illite > chlorite > kaolinite > Ca-montmorillonite. Furthermore, the iron content in the clay minerals and Al content of Al-hm are two predominant factors controlling the reduced haematite content. The iron is released from the clay minerals and provides the reducing agent, while Al decreases the crystallinity of haematite and thus facilitates the chemical reaction. Therefore, the thermal magnetic measurements can be used to quantify the Al content of Al-hm in natural samples. Our study provides significant information for palaeomagnetism and environmental magnetism studies, such as thermal magnetic analysis and palaeomagnetic intensity reconstruction using ancient pottery and kilns.

  1. Surveying Clay Mineral Diversity in the Murray Formation, Gale Crater, Mars (United States)

    Bristow, T. F.; Blake, D. F.; Vaniman, D. T.; Chipera, S. J.; Rampe, E. B.; Grotzinger, J. P.; McAdam, A. C.; Ming, D. W.; Morrison, S. M.; Yen, A. S.; Morris, R. V.; Des Marais, D. J.


    One of the primary science goals of Mars Science Laboratory (MSL) is to investigate layered clay mineral-bearing deposits outcropping in the lower NW slopes of Aeolis Mons (Mt. Sharp) detected from orbit. Martian clay mineral-bearing layered rocks are of particular interest because they are potential markers of sedimentary deposits formed in habitable aqueous environments. The CheMin X-ray diffraction (XRD) instrument aboard MSL has documented clay minerals in various drill samples during its traverse of Gale Crater's floor and ascent of Mt. Sharp. Previously, the high concentrations of clay minerals (approximately 20 wt.%) detected in drill powders of mudstone (Sheepbed member) at Yellowknife Bay (YKB) allowed their detailed characterization. Drill powders recovered from lacustrine mudstones of the Sheepbed member at YKB contain smectite clay minerals. Based on the position of 02l reflections in XRD patterns, which serve as an indicator of octahedral occupancy, the smectites are Fe-bearing, trioctahedral species analogous to ferrian saponites from terrestrial deposits. The smectites are thought to have been formed through a process of isochemical aqueous alteration of detrital olivine close to the time of sediment deposition under anoxic to poorly oxidizing conditions. The clay minerals are key indicators that the lake waters were benign and habitable at the time. Clay minerals were detected at other locations during MSL's traverse, including samples from the Pahrump Hills, but lower abundances and overlapping peaks from crystalline phases in XRD patterns hamper in-depth analysis.

  2. The differences in clay minerals between the northern and southern Chelungpu fault, Taiwan (United States)

    Hashimoto, Y.


    In 1999, we obtained a detailed data about motion of fault from the Taiwan Chi-Chi earthquake. The motion represents the high frequency of acceleration and small slip distance in southern part, and low frequency of acceleration and large slip distance in the northern part. Those differences in the fault motion between the southern and northern parts are coincidence with occurrences of deformation textures of rocks which were sampled by drilling of shallow parts (a few hundreds meter) of the fault in 2000. In the southern core, a relatively strong deformation structure is preserved in total, and gouge containing fragments of pseudotachylytes and ultracataclasites is observed at the Chi-Chi- earthquake fault, which indicates that the main deformation mechanisms for the southern part of the fault was brittle. On the other hands, in the northern part, sand layer with much amount of water is found at the Chi-Chi- earthquake fault zone, and no breakage of sand grain is observed, which suggests that the deformation mechanism for northern part is independent particulate flow. The purpose of this study is to reveal the differences in clay minerals between the southern and northern part of the Chi-Chi earthquake fault. And then, we discuss about rock-fluid interaction and frictional heating characterized in seismogenic fault system. We analyzed clay minerals by X-ray diffract meter (XRD) after classification of rock types such as sandstone, alteration of sandstone and mudstone, breccia, and gouge. 1.33 micron meter of grains are obtained. Oriented sample was made. XRD analysis was conducted under following condition; 35kV, 15mA, 1 degree per minute of scan rate, and 0.02 degree of scan step. Range of 2 theta was from 2 degree to 35 degree. At first, air-dried condition of samples was measured. After that, ethylene glycol solvated samples were measured. The result represents that all samples contain smectite, illite, chlorite. No difference in components of clay mineral is

  3. Studies in Finishing Effects of Clay Mineral in Polymers and Synthetic Fibers

    Directory of Open Access Journals (Sweden)

    Faheem Uddin


    Full Text Available The use of clay mineral in modifying the properties of polymeric material is improved in application. The current interest in modifying the polymeric materials, particularly polyethylene, polypropylene, polystyrene, and nylon using clay mineral for improved flame retardancy, thermal stability, peak heat release rate, fracture, and strength properties generated significant research literature. This paper aims to review some of the important recent modification achieved in the performance of polymeric materials using organoclay mineral. Degradation of clay mineral-polymer (nm composite is discussed with appropriate known examples. Clay mineral (nm loading of 5 wt.% to 7 wt.% that was significantly smaller than the percent loading of conventional fillers in polymeric materials introduced significant improvement in terms of thermal and physical stability. An attempt is made to emphasize flammability and thermal stability and to indicate the areas that are relatively little explored in modification of fiber-forming polymers to enhance further research interest.

  4. Transport and selective uptake of radium into natural clay minerals (United States)

    Hidaka, Hiroshi; Horie, Kenji; Gauthier-Lafaye, Françoise


    Understanding of the environmental behavior of Ra is important from the viewpoint of the long-termed repository safety of radioactive waste, but investigation of Ra behavior in natural environment is difficult to detect. We found isotopic evidence of Ra transportation and its selective uptake into clay minerals from Pb isotopic analyses. Illite grains found in calcite veins included in sandstone near the Oklo uranium deposit, Republic of Gabon, show extremely low 207Pb/ 206Pb (˜ 0.0158) isotopic ratios. Although the Pb isotopic ratios of calcite and quartz coexisting with illite indicate the formation age of each component, those of illite do not. In addition, illite grains having low 207Pb/ 206Pb isotopic ratios contain a strongly large amount of Ba (1230 to 6010 ppm) in contrast with low contents of Ba in calcite and quartz (< 0.26 ppm). Considering the chemical similarity between Ba and Ra, the 207Pb/ 206Pb isotopic data suggest an excess of 206Pb due to selective adsorption of 226Ra (and also Ba) into illite grains. This is a very rare example to show evidence of the selective adsorption behavior of Ra from the isotopic excesses of 206Pb, although the adsorption ability of Ra itself in nature was largely reported.

  5. A SEM, EDS and vibrational spectroscopic study of the clay mineral fraipontite. (United States)

    Theiss, Frederick L; López, Andrés; Scholz, Ricardo; Frost, Ray L


    The mineral fraipontite has been studied by using a combination of scanning electron microscopy with energy dispersive analysis and vibrational spectroscopy (infrared and Raman). Fraipontite is a member of the 1:1 clay minerals of the kaolinite-serpentine group. The mineral contains Zn and Cu and is of formula (Cu,Zn,Al)₃(Si,Al)₂O₅(OH)₄. Qualitative chemical analysis of fraipontite shows an aluminium silicate mineral with amounts of Cu and Zn. This kaolinite type mineral has been characterised by Raman and infrared spectroscopy; in this way aspects about the molecular structure of fraipontite clay are elucidated.

  6. [Species Determination and Spectral Characteristics of Swelling Clay Minerals in the Pliocene Sandstones in Xinghai, Qinghai]. (United States)

    Wang, Chao-wen; Chen, Jiang-jun; Fang, Qian; Yin, Ke; Hong, Han-lie


    X-ray diffraction (XRD) and Fourier infrared absorption spectroscopy (FTIR) were conducted to deepen our research on specific species and spectral characteristics of swelling clay minerals in the Pliocene sandstones in Xinghai, Qinghai province. XRD results show that swelling clay minerals are dominant clay minerals in the sandstones, which can be up to 97% in percentage. XRD patterns show 060 reflections of the samples occur both remarkably at 1.534 Å and 1.498 Å, indicating the samples contain physical mixtures of trioctahedral and dioctahedral swelling clay minerals, respectively. Further treatment of Li-300 degrees C heat and glycerol saturation shows the swelling clay minerals collapse to 9.3-9.9 Å with a partial expansion to -18 Å. This indicates the swelling clay minerals dominate montmorillonite and contain minor saponite. The montmorillonite shows no swelling after Li-300 degrees C heat and glycerol saturation because of Li+ inserting into the octahedral layers, which balances the layer charge caused by the substitution of Mg to Al. FTIR results show the samples are composed of a kind of phyllosilicate with absorbed and structural water, which is in agreement with the results of XRD. Absorbed peaks at 913, 842, 880 cm(-1), corresponding to OH associated with Al-Al, Al-Mg, and Al-Fe pairs, further indicates the minerals are dominant dioctahedron in structure. Meanwhile, absorbed peaks at 625 and 519 cm(-1), corresponding to coupled Si-O and Al-O-Si deformation, indicates parts of Si is replaced by Al in tetrahedron. The spectral characteristics of the samples are against the presence of beidellite and nontronite based on the results of XRD and FTIR, while demonstrating an,existence of montmorillonite. This study, to distinguish the specific species of swelling clay species in clay minerals, would be of great importance when using clay mineralogy to interpret provenance and climatic information.

  7. Characteristics and genesis of clay minerals in the northern margin of the Qaidam Basin

    Institute of Scientific and Technical Information of China (English)

    Wang Linlin; Jiang Bo; Peng Dehua; Yin Chengming; Zeng Chunlin


    In order to develop appropriate reservoir protection measures in the northern margin of the Qaidam Basin and improve its oil and gas recovery efficiency, characteristics of clay minerals from eleven clay rock samples from the northern margin of the Qaidam Basin were investigated using X-ray diffraction analysis, the Scanning Electron Microscope (SEM) and energy spectrum analysis. Clay mineral composition and distribution characteristics of the main hydrocarbon reservoirs, I.e., from the Jurassic and Paleogene-Neogene, were explored. We analyzed the main factors which affected these attributes. The results show that the major clay minerals in the northern margin are chlorite, kaolinite, illite, smectite and illite/smectite inter-stratified minerals, Illite is the most widely spread clay mineral in this area.Chlorite is mainly found in the entire Neogene and in shallow horizons of the Paleogene. Smectite is enriched in the shallow Paleogene-Neogene. There are large amounts of kaolinite and illite/smectite inter-stratified minerals in the Jurassic. The major factors affecting the different development of clay minerals in the region are properties of parent rocks, paleoclimate and paleowater media conditions,diagenesis transformation, tectonic and terrain conditions.

  8. Clay mineral distribution on tropical shelf: an example from the western shelf of India

    Digital Repository Service at National Institute of Oceanography (India)

    Hashimi, N.H.; Nair, R.R.

    Seventy-five sediment samples collected from the Kerala continental shelf and slope during the 17th and 71st Cruises of RV Gaveshani were analysed by X-ray diffraction for clay mineral content. The distribution of total clay ( 4 mu fraction...

  9. Spatial distribution and longitudinal variation of clay minerals in the Central Indian Basin

    Digital Repository Service at National Institute of Oceanography (India)

    Valsangkar, A.

    of the 76.5 degrees E fracture zone (FZ), which strongly suggests the possibility of clay supply due to circulation of Antarctic Bottom Water from the south through the FZ. The distribution of four clay minerals along 73 degrees and 76.5 degrees E FZ...

  10. Clay mineral distribution in the continental shelf and slope off Saurashtra, West coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Rao, V.P.

    the Deccan trap coastal province is the predominant clay mineral in the sediments of the continental shelf south of the Gulf of Kutch. Lateral variations reveal that the montmorillonite contents are high in the innershelf and on the continental slope...

  11. Clay mineral distributions in the southern Yellow Sea and their significance

    Institute of Scientific and Technical Information of China (English)


    To better understand the characteristics of the clay minerals in the southern Yellow Sea, the X-ray quantitative determinations have been carried out for the surface samples obtained from the Yellow Sea. With newly compiled clay mineral synoptic maps, the depositional processes were described for four main clay minerals (illite, chlorite, kaolinite and smectite). The analysis shows that most clay minerals are of terrigenous source with the Huanghe River acting as the major sediment supplier. Besides, the source of muddy sediments in the Yellow Sea was also discussed. As for the central Yellow Sea mud (CYSM), the sediments in its northern part mainly come from the Huanghe River, and those in the rest are of multi-origin. Very similarly, a large amount of sediments in the northern part of the southeastern Yellow Sea Mud (SEYSM) derive from the Keum River and Yeongsan River, while those in the southern part are of multi-origin.

  12. Clay Minerals as Solid Acids and Their Catalytic Properties. (United States)

    Helsen, J.


    Discusses catalytic properties of clays, attributed to acidity of the clay surface. The formation of carbonium ions on montmorillonite is used as a demonstration of the presence of surface acidity, the enhanced dissociation of water molecules when polarized by cations, and the way the surface can interact with organic substances. (Author/JN)

  13. Thermal neutron absorption cross section and clay mineral content for Miocene Carpathian samples (United States)



    A correlation between the thermal neutron absorption cross section and the clay volume for samples from the chosen geological region is discussed. A comparison of the calculated and measured absorption cross sections as a function of clay volume allows an estimate to be made on the presence of highly absorbing impurities in clays. From the example presented, it was deduced that 105 ppm of B or 25 ppm of Gd in the clay minerals in the samples tested would be sufficient to explain the difference between the experimental and calculated cross sections.

  14. Evaluation of the medicinal use of clay minerals as antibacterial agents (United States)

    Williams, Lynda B.; Haydel, Shelley E.


    process. Furthermore, aqueous leachates of the antibacterial clays effectively kill the bacteria. Progressively heating the clay leads first to dehydration (200°C), then dehydroxylation (550°C or more), and finally to destruction of the clay mineral structure by (~900°C). By identifying the elements lost after each heating step, and testing the bactericidal effect of the heated product, we eliminated many toxins from consideration (e.g., microbes, organic compounds, volatile elements) and identified several redox-sensitive refractory metals that are common among antibacterial clays. We conclude that the pH and oxidation state buffered by the clay mineral surfaces is key to controlling the solution chemistry and redox related reactions occurring at the bacterial cell wall. PMID:20640226

  15. Lability of soil organic carbon in tropical soils with different clay minerals

    DEFF Research Database (Denmark)

    Bruun, Thilde Bech; Elberling, Bo; Christensen, Bent Tolstrup


    Soil organic carbon (SOC) storage and turnover is influenced by interactions between organic matter and the mineral soil fraction. However, the influence of clay content and type on SOC turnover rates remains unclear, particularly in tropical soils under natural vegetation. We examined the lability...... of SOC in tropical soils with contrasting clay mineralogy (kaolinite, smectite, allophane and Al-rich chlorite). Soil was sampled from A horizons at six sites in humid tropical areas of Ghana, Malaysian Borneo and the Solomon Islands and separated into fractions above and below 250 µm by wet sieving....... Basal soil respiration rates were determined from bulk soils and soil fractions. Substrate induced respiration rates were determined from soil fractions. SOC lability was significantly influenced by clay mineralogy, but not by clay content when compared across contrasting clay minerals. The lability...

  16. Enhanced cellular preservation by clay minerals in 1 billion-year-old lakes. (United States)

    Wacey, David; Saunders, Martin; Roberts, Malcolm; Menon, Sarath; Green, Leonard; Kong, Charlie; Culwick, Timothy; Strother, Paul; Brasier, Martin D


    Organic-walled microfossils provide the best insights into the composition and evolution of the biosphere through the first 80 percent of Earth history. The mechanism of microfossil preservation affects the quality of biological information retained and informs understanding of early Earth palaeo-environments. We here show that 1 billion-year-old microfossils from the non-marine Torridon Group are remarkably preserved by a combination of clay minerals and phosphate, with clay minerals providing the highest fidelity of preservation. Fe-rich clay mostly occurs in narrow zones in contact with cellular material and is interpreted as an early microbially-mediated phase enclosing and replacing the most labile biological material. K-rich clay occurs within and exterior to cell envelopes, forming where the supply of Fe had been exhausted. Clay minerals inter-finger with calcium phosphate that co-precipitated with the clays in the sub-oxic zone of the lake sediments. This type of preservation was favoured in sulfate-poor environments where Fe-silicate precipitation could outcompete Fe-sulfide formation. This work shows that clay minerals can provide an exceptionally high fidelity of microfossil preservation and extends the known geological range of this fossilization style by almost 500 Ma. It also suggests that the best-preserved microfossils of this time may be found in low-sulfate environments.

  17. Mineralogy and geotechnical characteristics of some pottery clay


    Mujib Olamide ADEAGBO; Samuel Akinlabi OLA; Olumide Oluwapelumi OJURI


    The physical properties of soils, which are tremendously influenced by the active clay minerals in soil, are of great importance in geotechnical engineering. This paper investigates the clay-sized particles of the Igbara-Odo pottery clay, and compares results obtained with available data on the bulk sample, to determine their correlation and underline the dependence of the geotechnical properties of the bulk clay material on the clay-sized particles. The bulk clay sample consists of 52% sand-...

  18. Clay minerals in the sediments around the Andaman Islands

    Digital Repository Service at National Institute of Oceanography (India)

    Rao, V.P.

    have different provenances. The Andaman Sea clays are derived largely from the sediments transported by the Irrawady River, while the western side shelf sediments (on the Bay of Bengal side) are derived from the weathering products of the rocks...

  19. Clay mineral particles as effficient carriers of methylene blue used for antimicrobial treatment. (United States)

    Bujdák, Juraj; Jureceková, Jana; Bujdákova, Helena; Lang, Kamil; Sersen, Frantisek


    There is a strong demand to identify new strategies for disinfection and treatment of human, animal, and plant pathogens. The presented work shows the potential of clay minerals to contribute to the development of novel disinfection materials. Enhanced antimicrobial effect of a photoactive organic dye, methylene blue (MB), in the colloids of clay mineral was observed. Singlet oxygen (1O2) formed upon visible light irradiation was detected directly using luminescence measurements atthe near-infrared region and by spin-trapping method. While MB adsorbed on clay colloid particles lost the ability to produce 1O2 due to molecular aggregation, surprisingly, the antimicrobial activity was significantly enhanced. Under visible light irradiation, MB/clay minerals dispersions prevented the sporulation of A. niger and Penicillium sp. and inhibited the growth of C. albicans by an additional 6-15% when compared with MB solution. In the experiments with E. coli, the efficiency of MB was increased by the reduction of surviving cells by 27 and 33%. S. aureus proved to be the most susceptible to MB/clay dispersions. Only less than 20% cells survived with respect to the control experiment at the low MB concentration (1.1 x 10(-6) mol dm(-3)). The contradiction between the significant antimicrobial properties of MB in clay colloidal systems and low 1O2 formation can be explained in terms of the photosensitization mechanism. The role of clay particles is most likely to promote the contact between microorganism cells and photoactive MB. Although the dye directly bound to the clay surface exhibits significantly reduced photoactivity, the presence of clay mediates the delivery of dye molecules on the surface or inside cells. The results indicate new perspectives of potential implementations of clay minerals as parts of complex disinfection materials for industrial applications or in understanding similar processes in nature.

  20. Micro and nano-size pores of clay minerals in shale reservoirs: Implication for the accumulation of shale gas (United States)

    Chen, Shangbin; Han, Yufu; Fu, Changqin; Zhang, han; Zhu, Yanming; Zuo, Zhaoxi


    A pore is an essential component of shale gas reservoirs. Clay minerals are the adsorption carrier second only to organic matter. This paper uses the organic maturity test, Field-Emission Scanning Electron Microscopy (FE-SEM), and X-ray Diffraction (XRD) to study the structure and effect of clay minerals on storing gas in shales. Results show the depositional environment and organic maturity influence the content and types of clay minerals as well as their structure in the three types of sedimentary facies in China. Clay minerals develop multi-size pores which shrink to micro- and nano-size by close compaction during diagenesis. Micro- and nano-pores can be divided into six types: 1) interlayer, 2) intergranular, 3) pore and fracture in contact with organic matter, 4) pore and fracture in contact with other types of minerals, 5) dissolved and, 6) micro-cracks. The contribution of clay minerals to the presence of pores in shale is evident and the clay plane porosity can even reach 16%, close to the contribution of organic matter. The amount of clay minerals and pores displays a positive correlation. Clay minerals possess a strong adsorption which is affected by moisture and reservoir maturity. Different pore levels of clay minerals are mutually arranged, thus essentially producing distinct reservoir adsorption effects. Understanding the structural characteristics of micro- and nano-pores in clay minerals can provide a tool for the exploration and development of shale gas reservoirs.

  1. Interactions between microbial activity and distribution and mineral coatings on sand grains from rapid sand filters treating groundwater

    DEFF Research Database (Denmark)

    Gülay, Arda; Tatari, Karolina; Musovic, Sanin

    Rapid sand filtration is a traditional and widespread technology for drinking water purification which combines biological, chemical and physical processes together. Granular media, especially sand, is a common filter material that allows several oxidized compounds to accumulate on its surface....... Preliminarily, we detected a strong relation between the amount of DNA and mineral coating mass. We hypothesized that the accumulated mineral coatings have a positive effect on amount of bacterial biomass, its spatial distribution and substrate removal rates. In this study, we combined molecular, microscopic...... and abundance indicated that attached minerals are an important factor controlling bacterial colonization, growth, distribution and substrate utilization in these systems....

  2. Potential bioavailability of mercury in humus-coated clay minerals. (United States)

    Zhu, Daiwen; Zhong, Huan


    It is well-known that both clay and organic matter in soils play a key role in mercury biogeochemistry, while their combined effect is less studied. In this study, kaolinite, vermiculite, and montmorillonite were coated or not with humus, and spiked with inorganic mercury (IHg) or methylmercury (MeHg). The potential bioavailability of mercury to plants or deposit-feeders was assessed by CaCl2 or bovine serum albumin (BSA) extraction. For uncoated clay, IHg or MeHg extraction was generally lower in montmorillonite, due to its greater number of functional groups. Humus coating increased partitioning of IHg (0.5%-13.7%) and MeHg (0.8%-52.9%) in clay, because clay-sorbed humus provided more strong binding sites for mercury. Furthermore, humus coating led to a decrease in IHg (3.0%-59.8% for CaCl2 and 2.1%-5.0% for BSA) and MeHg (8.9%-74.6% for CaCl2 and 0.5%-8.2% for BSA) extraction, due to strong binding between mercury and clay-sorbed humus. Among various humus-coated clay particles, mercury extraction by CaCl2 (mainly through cation exchange) was lowest in humus-coated vermiculite, explained by the strong binding between humus and vermiculite. The inhibitory effect of humus on mercury bioavailability was also evidenced by the negative relationship between mercury extraction by CaCl2 and mercury in the organo-complexed fraction. In contrast, extraction of mercury by BSA (principally through complexation) was lowest in humus-coated montmorillonite. This was because BSA itself could be extensively sorbed onto montmorillonite. Results suggested that humus-coated clay could substantially decrease the potential bioavailability of mercury in soils, which should be considered when assessing risk in mercury-contaminated soils.


    NARCIS (Netherlands)



    A comparison has been made of the traditional gravimetric method for measuring the heavy mineral mass fraction in sand with a method based on the emission of gamma-rays from the uranium and thorium series by radiogenic heavy-minerals. The comparision reveals that beach sand along the Dutch coast may

  4. Ground Truthing Orbital Clay Mineral Observations with the APXS Onboard Mars Exploration Rover Opportunity (United States)

    Schroeder, C.; Gellert, R.; VanBommel, S.; Clark, B. C.; Ming, D. W.; Mittlefehldt, D. S.; Yen, A. S.


    NASA's Mars Exploration Rover Opportunity has been exploring approximately 22 km diameter Endeavour crater since 2011. Its rim segments predate the Hesperian-age Burns formation and expose Noachian-age material, which is associated with orbital Fe3+-Mg-rich clay mineral observations [1,2]. Moving to an orders of magnitude smaller instrumental field of view on the ground, the clay minerals were challenging to pinpoint on the basis of geochemical data because they appear to be the result of near-isochemical weathering of the local bedrock [3,4]. However, the APXS revealed a more complex mineral story as fracture fills and so-called red zones appear to contain more Al-rich clay minerals [5,6], which had not been observed from orbit. These observations are important to constrain clay mineral formation processes. More detail will be added as Opportunity is heading into her 10th extended mission, during which she will investigate Noachian bedrock that predates Endeavour crater, study sedimentary rocks inside Endeavour crater, and explore a fluid-carved gully. ESA's ExoMars rover will land on Noachian-age Oxia Planum where abundant Fe3+-Mg-rich clay minerals have been observed from orbit, but the story will undoubtedly become more complex once seen from the ground.

  5. Influence of Humic Acid on Interaction of Ammonium and Potassium Ions on Clay Minerals

    Institute of Scientific and Technical Information of China (English)

    ZHANG Wen-Zhao; CHEN Xiao-Qin; ZHOU Jian-Min; LIU Dai-Huan; WANG Huo-Yan; DU Chang-Wen


    Interaction of ammonium (NH4+) and potassium (K+) is typical in field soils.However,the effects of organic matter on interaction of NH4+ and K+ have not been thoroughly investigated.In this study,we examined the changes in major physicochemical properties of three clay minerals (kaolinite,illite,and montmorillonite) after humic acid (HA) coating and evaluated the influences of these changes on the interaction of NH4+ and K+ on clay minerals using batch experiments.After HA coating,the cation exchange capacity (CEC) and specific surface area (SSA) of montmorillonite decreased significantly,while little decrease in CEC and SSA occurred in illite and only a slight increase in CEC was found in kaolinite.Humic acid coating significantly increased cation adsorption and preference for NH4+,and this effect was more obvious on clay minerals with a lower CEC.Results of Fourier transform infrared spectrometry analysis showed that HA coating promoted the formation of H-bonds between the adsorbed NH4+ and the organo-mineral complexes.HA coating increased cation fixation capacity on montmorillonite and kaolinite,but the opposite occurred on illite.In addition,HA coating increased the competitiveness of NH4+ on fixation sites.These results showed that HA coating affected both the nature of clay mineral surfaces and the reactions of NH4+ and K+ with clay minerals,which might influence the availability of nutrient cations to plants in field soils amended with organic matter.

  6. Alteration of non-swelling clay minerals and magadiite by acid activation

    NARCIS (Netherlands)

    Steudel, A.; Batenburg, L.F.; Fischer, H.R.; Weidler, P.G.; Emmerich, K.


    The bulk material of three kaolins, a sepiolite, an illite and one magadiite were treated with 1, 5 and 10 M H2SO4 at 80 °C for several hours. The alteration of the non-swelling clay mineral structures was controlled by the individual character of each mineral (chemical composition and initial parti

  7. Alteration of non-swelling clay minerals and magadiite by acid activation

    NARCIS (Netherlands)

    Steudel, A.; Batenburg, L.F.; Fischer, H.R.; Weidler, P.G.; Emmerich, K.


    The bulk material of three kaolins, a sepiolite, an illite and one magadiite were treated with 1, 5 and 10 M H2SO4 at 80 °C for several hours. The alteration of the non-swelling clay mineral structures was controlled by the individual character of each mineral (chemical composition and initial parti

  8. Acidity-Facilitated Mobilization of Surface Clay Colloid from Natural Sand Medium (United States)

    Huang, Y.; Wang, C.; Mohanty, B. P.


    Colloid mobilization and migration in a soil system has attracted increasing scrutiny for its role in facilitating colloid-borne transport of contaminants in the environments. In many previous studies, pH was evoked as a major factor in mobilizing surface colloids through inducing favorable surface charge and electrostatic conditions. The possible direct role of acidity with H+ as a chemical agent has remained largely obscured behind the indirect role of pH. In this study, we demonstrated through column flow-through tests that cyclical elution of natural sand media with weak acid and base solutions can greatly facilitate detachment and transport of surface clay colloids. We found that while elevating pH to an alkaline condition helped release the loosely-attached surface clays, a pretreatment with H+ could facilitate the mobilization of chemically-bonded clay colloids through lysing of labile Ca and Mg ions. A quantitative relation was observed that 1 mmol H+ could lyse about 0.5 mmol Ca2+ and Mg2+ and subsequently resulted in a release of about 1,200 mg clay during base elution when repulsive force between particles dominated. Natural organic acids such as citric acid and acetic acid in environment-relevant low concentrations (5.0) were as effective as HCl with a stronger acidic condition. The small mass ratio of Ca and Mg over colloid released and the nature of weak acid used suggest that the mobilization was less likely due to dissolution of cement casing than lysing of labile interstitial Ca and Mg by H+, which severed Ca and Mg bridging bonds between particles. Natural acidity is generated in abundance from various bio- and geochemical processes; e.g., many plants produce citric acid through citric acid cycle metabolism; biodegradation of dead organic matter forms humic acids. We postulate that natural proton dynamics in tendon with pH oscillation accompanied with various soil biogeochemical processes could play a major role in subsurface clay transport

  9. Global distribution of clay-size minerals on land surface for biogeochemical and climatological studies. (United States)

    Ito, Akihiko; Wagai, Rota


    Clay-size minerals play important roles in terrestrial biogeochemistry and atmospheric physics, but their data have been only partially compiled at global scale. We present a global dataset of clay-size minerals in the topsoil and subsoil at different spatial resolutions. The data of soil clay and its mineralogical composition were gathered through a literature survey and aggregated by soil orders of the Soil Taxonomy for each of the ten groups: gibbsite, kaolinite, illite/mica, smectite, vermiculite, chlorite, iron oxide, quartz, non-crystalline, and others. Using a global soil map, a global dataset of soil clay-size mineral distribution was developed at resolutions of 2' to 2° grid cells. The data uncertainty associated with data variability and assumption was evaluated using a Monte Carlo method, and validity of the clay-size mineral distribution obtained in this study was examined by comparing with other datasets. The global soil clay data offer spatially explicit studies on terrestrial biogeochemical cycles, dust emission to the atmosphere, and other interdisciplinary earth sciences.

  10. Numerical Evaluation on the Different Shapes of Gravelly Sand Columns to Increase the Loading Capacity of Soft Clay

    Directory of Open Access Journals (Sweden)

    Meghzili Sif Allah


    Full Text Available Improvement on soft clay by the installation of stone column is one of the most popular methods followed worldwide. Different analytical and numerical solutions have already been developed for understanding the load transfer mechanism of soft soil reinforced with stone column. This study investigated a bearing capacity of the gravelly sand column, installed in soft clay bed at 15kpa of undrained shear strength. The column variable of length and diameter ratio at 7, 8 and 9 were evaluated. On top of that, the combination of two diameters in single column was tested and the uniform diameter was used as a control. In the numerical analysis, Mohrcoulomb model was adopted in the idealization of the behaviour of the gravelly sand column and soft clay materials. The results revealed that the optimum design that gave the highest loading capacity of the combination 11=12 of column diameter was the length and diameter ratio of 8.

  11. Induced liquefaction experiment in relatively dense, clay-rich sand deposits (United States)

    Hatzor, Yossef H.; Gvirtzman, Haim; Wainshtein, Ilia; Orian, Itay


    In this paper we report results from a controlled blast-induced liquefaction experiment at the field scale. The physical and mechanical properties of the materials at the subsurface are characterized by a suite of in situ and laboratory tests, including the Standard Penetration Test (SPT); downhole and cross-hole seismic velocity tests; density, porosity, and gradation tests; and direct shear tests. Since the blast experiment was performed above groundwater table, the subsurface was saturated by a sequence of controlled infiltration tests. A 50-kg TNT charge was detonated at a depth of 10 m, and seismic ground motions were recorded in a vertical geophone array positioned at a horizontal distance of 30 m from the blast borehole. Obtained liquefaction features include a water fountain that erupted from the blast borehole, prolonged bubbling of the water surface inside the infiltration trench (a process equivalent to "sand boils" typically observed at sites which have experienced liquefaction), lateral spreading, and surface settlement. We argue that in contrast to conventional predictions, liquefaction may be induced in relatively dense silty and clayey sands (shear wave velocity >300 m s-1; relative density = 63-89%) relatively rich in clays (fines content >30%) and that the driving mechanism should not necessarily be restricted to cyclic shear stress loading.

  12. Clay mineral distribution in the continental shelf sediments from Krishna to Ganges river mouth, east coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Rao, V.P.

    minerals and montmorillonite (M) to illite (I) ratio, 6 distinct clay mineral assemblages which reflect their sources are identified. Illite (80%) and chlorite-rich (20%) clay mineral suite, with less kaolinite (av. K/C=0.3) and traces of montmorillonite...

  13. Molecular Basis of Clay Mineral Structure and Dynamics in Subsurface Engineering Applications (United States)

    Cygan, R. T.


    Clay minerals and their interfaces play an essential role in many geochemical, environmental, and subsurface engineering applications. Adsorption, dissolution, precipitation, nucleation, and growth mechanisms, in particular, are controlled by the interplay of structure, thermodynamics, kinetics, and transport at clay mineral-water interfaces. Molecular details of these processes are typically beyond the sensitivity of experimental and analytical methods, and therefore require accurate models and simulations. Also, basal surfaces and interlayers of clay minerals provide constrained interfacial environments to facilitate the evaluation of these complex processes. We have developed and used classical molecular and quantum methods to examine the complex behavior of clay mineral-water interfaces and dynamics of interlayer species. Bulk structures, swelling behavior, diffusion, and adsorption processes are evaluated and compared to experimental and spectroscopic findings. Analysis of adsorption mechanisms of radionuclides on clay minerals provides a scientific basis for predicting the suitability of engineered barriers associated with nuclear waste repositories and the fate of contaminants in the environment. Similarly, the injection of supercritical carbon dioxide into geological reservoirs—to mitigate the impact of climate change—is evaluated by molecular models of multi-fluid interactions with clay minerals. Molecular dynamics simulations provide insights into the wettability of different fluids—water, electrolyte solutions, and supercritical carbon dioxide—on clay surfaces, and which ultimately affects capillary fluid flow and the integrity of shale caprocks. This work is supported as part of Center for Frontiers of Subsurface Energy Security, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science and by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Geosciences Research Program

  14. Effect of Clay Minerals on the Chemical Characteristics of Soil Humus

    Institute of Scientific and Technical Information of China (English)



    Chemical characteristics of humic substances in soils with different mineralogical characteristics and under different utilization paterns in Zhangpu,Fujian Province,together with two pairs of cultivated soils in North China Plain were studied by chemical analysis,visible and IR spectroscopy and 13C NMR spectrometry.For soils in Zhanpu the HA/FA ratio and both the aromaticity and the degree of humification of HA were higher in soils with montmorillonite as the predominant clay mineral than in those with kaolinite as the predominant clay mineral,provided these soils were under the same utilization pattern.While for each pair of soils with similar mineralogical characteristics the HA/FA ratio was higher and the C/H ratio and the contnet of carboxyl group of HA were lower in paddy soil than in upland soil.Among the upland soils(or paddy soils)studied the Ha/FA ratio of soil in Zhangpu with kaolinite as the predominant clay mineral was the lowest,and that of soil in Zhangpu with montmorillonite as the predominant clay mineral was the highest .the lowest.and that of soil in Zhangpu with montmorillonite as the predominant clay mineral was the highest It was concluded that the presence of montmorillonite favored the fromation and maturation of humic acid.

  15. Manganese(II)-catalyzed and clay-minerals-mediated reduction of chromium(VI) by citrate. (United States)

    Sarkar, Binoy; Naidu, Ravi; Krishnamurti, Gummuluru S R; Megharaj, Mallavarapu


    Unlike lower valent iron (Fe), the potential role of lower valent manganese (Mn) in the reduction of hexavalent chromium (Cr(VI)) in soil is poorly documented. In this study, we report that citrate along with Mn(II) and clay minerals (montmorillonite and kaolinite) reduce Cr(VI) both in aqueous phase and in the presence of dissolved organic carbon (SDOC) extracted from a forest soil. The reduction was favorable at acidic pH (up to pH 5) and followed the pseudo-first-order kinetic model. The citrate (10 mM) + Mn(II) (182.02 μM) + clay minerals (3% w/v) system in SDOC accounted for complete reduction of Cr(VI) (192.32 μM) in about 72 h at pH 4.9. In this system, citrate was the reductant, Mn(II) was a catalyst, and the clay minerals acted as an accelerator for both the reductant and catalyst. The clay minerals also serve as a sink for Cr(III). This study reveals the underlying mechanism of the Mn(II)-induced reduction of Cr(VI) by organic ligand in the presence of clay minerals under certain environmental conditions.


    Institute of Scientific and Technical Information of China (English)

    黄文辉; 许光泉; 刑军


    Clay mineral assemblages in Shihezi Formation of Huaibei coal-bearing strata are determined by X-ray diffraction and Differential Thermal Analyzer, that is restated to the sedimentfaces and climatic changes in the source area, and to a lesser extent, alterations during burial diagenesis. In the Upper Shihezi Formation, the clay fraction is dominated by kaolinite in norther npart of the coal field, which was formed in alluvial sediment environment. But in the South ofHuaibei coal field, the clay mineral assemblage consists of mainly illite that reflects the influenceof sea water. The predominately kaolinite and sederite composition of the clay fraction in the lower Shihezi Formation sediments documents less relief and gentle erosion of kaolinite rich soils developing under warm source area. In the lower part of Shihezi Formation, some chlorite is detected, which suggests transformation of illite or kaolinite to chlorite under conditions of burial diagenesis.

  17. Modeling of Cation Binding in Hydrated 2:1 Clay Minerals - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Smith, David E.


    Hydrated 2:1 clay minerals are high surface area, layered silicates that play a unique role in determining the fate of radionuclides in the environment. This project consisted of developing and implementing computer simulation methods for molecular characterization of the swelling and ion exchange properties of Hydrated 2:1 clay minerals, and the subsequent analysis and theoretical modeling with a view toward improving contaminant transport modeling as well as soil remediation and radionuclide containment strategies. Project results included the (a) development of simulation methods to treat clays under environmentally relevant conditions of variable water vapor pressure; (b) calculation of clay swelling thermodynamics as a function of interlayer ion size and charge (calculated quantities include immersion energies, free energies, and entropies of swelling); and (c) calculation of ion exchange free energies, including contributions from changing interlayer water contents and layer spacing.

  18. Paleoenvironmental significance of clay mineral assemblages in the southeastern Arabian Sea during last 30 kyr

    Indian Academy of Sciences (India)

    Siddhartha Sankar Das; Ajai K Rai; Vaseem Akaram; Dhananjai Verma; A C Pandey; Koushik Dutta; G V Ravi Prasad


    A gravity core SK-221 recovered from the southeastern Arabian Sea near Laccadive–Chagos Ridge was examined to identify the sources of detrital clay minerals and to decipher paleoenvironmental changes for the last 30 kyr. The clay mineral assemblages predominantly consist of illite, kaolinite and chlorite with small amounts of smectite. Quartz, feldspar and occasionally gibbsite are the clay-sized non-clay minerals present in the examined section. The detrital clay minerals primarily originated from the hinterland and were supplied to the present site by the numerous small rivers draining western India during preglacial and Holocene periods, and partly by the strong reworking of Indian continental shelf during glacial period. The low values of humidity proxies (kaolinite content, kaolinite to illite and smectite to illite ratios) and better illite crystallinity indicate relatively weak summer monsoon condition that resulted in reduced chemical weathering during glacial period, which was interrupted by a discrete event of winter monsoon intensification at ∼20–17 ka. The increased kaolinite content, higher values of humidity indices and poorer illite crystallinity reflect high humidity that resulted in strong hydrolysis activity during the preglacial and Holocene periods. The increased CaCO3 during above periods also indicates less terrigenous dilution and intensified southwest monsoon-led upwelling which result in higher surface biogenic productivity. The characteristic clay mineral associations broadly suggest dry to semi-drier conditions during Heinrich Events H1, H2, and H3 and also during Younger Dryas. The low values of biogenic carbonate and organic carbon also indicate low productivity associated with weak summer monsoons during Heinrich Events. Abrupt increased humidity was recorded at 15–12.7 ka (Bølling/Allerød Event) sandwiched between two lows of Heinrich Events. Cycles of millennial timescale variations 2300, 1800, 1300 and 1000 yr have been

  19. Exploring biotic vs. abiotic controls on syngenetic carbonate and clay mineral precipitation (United States)

    Nascimento, Gabriela S.; McKenzie, Judith A.; Martinez Ruiz, Francisca; Bontognali, Tomaso R. R.; Vasconcelos, Crisogono


    A possible syngenetic relationship between carbonate and clay mineral precipitation has been reported for sedimentary rocks deposited in both lacustrine and marine sedimentary environments throughout the geological record. In particular, the mineral dolomite is often found associated with Mg-rich clays, such as stevensite. It is notable that this carbonate/clay association has been recorded in numerous samples taken from modern dolomite precipitating environments; for example, the Coorong lakes, South Australia, coastal sabkhas, Abu Dhabi, UAE and coastal hypersaline lagoons (Lagoa Vermelha and Brejo do Espinho) east of Rio de Janeiro, Brazil. An HRTEM study of samples from these three locations indicates a possible physical/chemical association between the Ca-dolomite and Mg-rich clays, demonstrating a probable co-precipitation. To test this hypothesis, we have conducted a series of biotic and abiotic laboratory experiments. If this syngenesis actually occurs in nature, what, if any, are the biogeochemical processes controlling these precipitation reactions? Our experiments were designed to determine the extent of the biotic versus abiotic component influencing the mineral precipitation and, in the case of a biotic influence, to understand the mechanism through which microorganisms might mediate the formation of clay minerals. The experiments were carried out in the Geomicrobiology Laboratory of ETH Zürich using cultures of living microbes and artificial organic compounds that simulate functional groups present in natural biofilms formed under both aerobic and anaerobic conditions. In addition, pure inorganic experiments were designed to understand possible physico-chemical conditions for diagenetic processes that could induce dissolution of Mg-carbonates and precipitation of Mg-rich clays. Our results show a remarkable biotic influence during the formation of clay minerals. Specifically, extracellular polymeric substances (EPS), released by microbes in their

  20. Interaction of surface-modified silica nanoparticles with clay minerals

    Directory of Open Access Journals (Sweden)

    Cigdem Omurlu


    Full Text Available Abstract In this study, the adsorption of 5-nm silica nanoparticles onto montmorillonite and illite is investigated. The effect of surface functionalization was evaluated for four different surfaces: unmodified, surface-modified with anionic (sulfonate, cationic (quaternary ammonium (quat, and nonionic (polyethylene glycol (PEG surfactant. We employed ultraviolet–visible spectroscopy to determine the concentration of adsorbed nanoparticles in conditions that are likely to be found in subsurface reservoir environments. PEG-coated and quat/PEG-coated silica nanoparticles were found to significantly adsorb onto the clay surfaces, and the effects of electrolyte type (NaCl, KCl and concentration, nanoparticle concentration, pH, temperature, and clay type on PEG-coated nanoparticle adsorption were studied. The type and concentration of electrolytes were found to influence the degree of adsorption, suggesting a relationship between the interlayer spacing of the clay and the adsorption ability of the nanoparticles. Under the experimental conditions reported in this paper, the isotherms for nanoparticle adsorption onto montmorillonite at 25 °C indicate that adsorption occurs less readily as the nanoparticle concentration increases.

  1. Atom exchange between aqueous Fe(II) and structural Fe in clay minerals. (United States)

    Neumann, Anke; Wu, Lingling; Li, Weiqiang; Beard, Brian L; Johnson, Clark M; Rosso, Kevin M; Frierdich, Andrew J; Scherer, Michelle M


    Due to their stability toward reductive dissolution, Fe-bearing clay minerals are viewed as a renewable source of Fe redox activity in diverse environments. Recent findings of interfacial electron transfer between aqueous Fe(II) and structural Fe in clay minerals and electron conduction in octahedral sheets of nontronite, however, raise the question whether Fe interaction with clay minerals is more dynamic than previously thought. Here, we use an enriched isotope tracer approach to simultaneously trace Fe atom movement from the aqueous phase to the solid ((57)Fe) and from the solid into the aqueous phase ((56)Fe). Over 6 months, we observed a significant decrease in aqueous (57)Fe isotope fraction, with a fast initial decrease which slowed after 3 days and stabilized after about 50 days. For the aqueous (56)Fe isotope fraction, we observed a similar but opposite trend, indicating that Fe atom movement had occurred in both directions: from the aqueous phase into the solid and from the solid into aqueous phase. We calculated that 5-20% of structural Fe in clay minerals NAu-1, NAu-2, and SWa-1 exchanged with aqueous Fe(II), which significantly exceeds the Fe atom layer exposed directly to solution. Calculations based on electron-hopping rates in nontronite suggest that the bulk conduction mechanism previously demonstrated for hematite1 and suggested as an explanation for the significant Fe atom exchange observed in goethite2 may be a plausible mechanism for Fe atom exchange in Fe-bearing clay minerals. Our finding of 5-20% Fe atom exchange in clay minerals indicates that we need to rethink how Fe mobility affects the macroscopic properties of Fe-bearing phyllosilicates and its role in Fe biogeochemical cycling, as well as its use in a variety of engineered applications, such as landfill liners and nuclear repositories.

  2. Influence of clay minerals on curcumin properties: Stability and singlet oxygen generation (United States)

    Gonçalves, Joyce L. S.; Valandro, Silvano R.; Poli, Alessandra L.; Schmitt, Carla C.


    Curcumin (CUR) has showed promising photophysical properties regarding to biological and chemical sciences. However, the main barrier for those applications are their low solubility and stability in aqueous solution. The effects of two different clay minerals, the montmorillonite (SWy-2) and the Laponite RD (Lap) nanoclay, on the stabilization of Curcumin were investigated. Their effects were compared with two well-established environments (acidic and neutral aqueous media). CUR/clay hybrids were prepared using a simple and fast method, where CUR solution was added into clay suspensions, to obtain well dispersed hybrids in water. The degradation process of CUR and CUR/clays hybrids was investigated using UV-Vis spectroscopic. For both studied hybrids, the CUR degradation process was suppressed by the presence of the clay particles. Furthermore, the Lap showed a great stabilization effect than SWy-2. This behavior was due to the smaller particle size and higher exfoliation ability of Lap, providing a large surface for CUR adsorption compared to SWy-2. The degradation process of CUR solutions and CUR/clay hybrids was also studied in the presence of light. CUR photodegradation process was faster not only in the aqueous solution but also in the clay suspension compared to those studied in the dark. The presence of clay particles accelerated the photodegradation of CUR due to the products formation in the reactions between CUR and oxygen radicals. Our results showed that the singlet oxygen quantum yield (ΦΔ) of CUR were about 59% higher in the clay suspensions than CUR in aqueous solution. Therefore, the formation of CUR/clay hybrids, in particularly with Lap, suppressed the degradation in absence light of CUR and increased the singlet oxygen generation, which makes this hybrids of CUR/clay a promising material to enlarge the application of CUR in the biological sciences.

  3. Role of clay minerals in the formation of atmospheric aggregates of Saharan dust (United States)

    Cuadros, Javier; Diaz-Hernandez, José L.; Sanchez-Navas, Antonio; Garcia-Casco, Antonio


    Saharan dust can travel long distances in different directions across the Atlantic and Europe, sometimes in episodes of high dust concentration. In recent years it has been discovered that Saharan dust aerosols can aggregate into large, approximately spherical particles of up to 100 μm generated within raindrops that then evaporate, so that the aggregate deposition takes place most times in dry conditions. These aerosol aggregates are an interesting phenomenon resulting from the interaction of mineral aerosols and atmospheric conditions. They have been termed "iberulites" due to their discovery and description from aerosol deposits in the Iberian Peninsula. Here, these aggregates are further investigated, in particular the role of the clay minerals in the aggregation process of aerosol particles. Iberulites, and common aerosol particles for reference, were studied from the following periods or single dust events and locations: June 1998 in Tenerife, Canary Islands; June 2001 to August 2002, Granada, Spain; 13-20 August 2012, Granada; and 1-6 June 2014, Granada. Their mineralogy, chemistry and texture were analysed using X-ray diffraction, electron microprobe analysis, SEM and TEM. The mineral composition and structure of the iberulites consists of quartz, carbonate and feldspar grains surrounded by a matrix of clay minerals (illite, smectite and kaolinite) that also surrounds the entire aggregate. Minor phases, also distributed homogenously within the iberulites, are sulfates and Fe oxides. Clays are apparently more abundant in the iberulites than in the total aerosol deposit, suggesting that iberulite formation concentrates clays. Details of the structure and composition of iberulites differ from descriptions of previous samples, which indicates dependence on dust sources and atmospheric conditions, possibly including anthropic activity. Iberulites are formed by coalescence of aerosol mineral particles captured by precursor water droplets. The concentration of

  4. Applied mineralogy of the constituent clays of the mineral wastes from the coal mines in the Teruel mining zone; Mineralogia aplicada de arcillas constitutivas de esteriles en minas de carbon de la zona minera de Teruel

    Energy Technology Data Exchange (ETDEWEB)

    Bastida, J.; Lopez Buendia, A.M.; Serrano, J.; De La Torre, J.; Sienes, M. [Univ. Valencia, Valencia (Spain). Dept. de Geologia


    The coals of the district of Teruel (NE Spain) presents as mine wastes several industrial minerals and rocks (sands, kaolins, clays, Al-sulfates,...) the mining of which would be interesting. The aim of this work is the mineralogical and ceramic characterisation of these clays. So mineralogical and petrographical data as well as technological data concerning granulometry, chemical analysis and Atteberg index have been used in order to compare these clays with those analysed and typified in previous works and with those actually used as ceramic raw materials in the NE of Teruel. 26 refs., 5 figs., 4 tabs.

  5. Fine-resolution multiscale mapping of clay minerals in Australian soils measured with near infrared spectra (United States)

    Viscarra Rossel, R. A.


    Clay minerals are the most reactive inorganic components of soils. They help to determine soil properties and largely govern their behaviors and functions. Clay minerals also play important roles in biogeochemical cycling and interact with the environment to affect geomorphic processes such as weathering, erosion and deposition. This paper provides new spatially explicit clay mineralogy information for Australia that will help to improve our understanding of soils and their role in the functioning of landscapes and ecosystems. I measured the abundances of kaolinite, illite and smectite in Australian soils using near infrared (NIR) spectroscopy. Using a model-tree algorithm, I built rule-based models for each mineral at two depths (0-20 cm, 60-80 cm) as a function of predictors that represent the soil-forming factors (climate, parent material, relief, vegetation and time), their processes and the scales at which they vary. The results show that climate, parent material and soil type exert the largest influence on the abundance and spatial distribution of the clay minerals; relief and vegetation have more local effects. I digitally mapped each mineral on a 3 arc-second grid. The maps show the relative abundances and distributions of kaolinite, illite and smectite in Australian soils. Kaolinite occurs in a range of climates but dominates in deeply weathered soils, in soils of higher landscapes and in regions with more rain. Illite is present in varied landscapes and may be representative of colder, more arid climates, but may also be present in warmer and wetter soil environments. Smectite is often an authigenic mineral, formed from the weathering of basalt, but it also occurs on sediments and calcareous substrates. It occurs predominantly in drier climates and in landscapes with low relief. These new clay mineral maps fill a significant gap in the availability of soil mineralogical information. They provide data to for example, assist with research into soil

  6. Reduction and immobilization of hexavalent chromium by microbially reduced Fe-bearing clay minerals (United States)

    Bishop, Michael E.; Glasser, Paul; Dong, Hailiang; Arey, Bruce; Kovarik, Libor


    Hexavalent chromium (Cr6+) is a major contaminant in the environment. As a redox-sensitive element, the fate and toxicity of chromium is controlled by reduction-oxidation (redox) reactions. Previous research has shown the ability of structural Fe(II) in naturally present and chemically reduced clay minerals to reduce Cr6+ to Cr(III) as a way of immobilization and detoxification. However, it is still poorly known whether or not structural Fe(II) in biologically reduced clay minerals exhibits a similar reactivity and if so, what the kinetics and mechanisms of Cr6+ reduction are. The objective of this study was to determine the kinetics and possible mechanisms of Cr6+ reduction by structural Fe(II) in microbially reduced clay minerals and the nature of reduced Cr(III). Structural Fe(III) in nontronite (NAu-2), montmorillonite (SWy-2), chlorite (CCa-2), and clay-rich sediments from the Ringold Formation of the Hanford site of Washington State, USA was first bioreduced to Fe(II) by an iron-reducing bacterium Geobacter sulfurreducens with acetate as the sole electron donor and anthraquinone-2,6-disulfonate (AQDS) as electron shuttle in synthetic groundwater (pH 7). Biogenic Fe(II) was then used to reduce aqueous Cr6+ at three different temperatures, 10, 20, and 30 °C, in order to determine the temperature dependence of the redox reaction between Cr6+ and clay-Fe(II). The results showed that nontronite and montmorillonite were most effective in reducing aqueous Cr6+ at all three temperatures. In contrast, most Fe(II) in chlorite was not reactive towards Cr6+ reduction at 10 °C, though at 30 °C there was some reduction. For all the clay minerals, the ratio of total Fe(II) oxidized to Cr6+ reduced was close to the expected stoichiometric value of 3. Characterization of the Cr-clay reaction product with scanning electron microscopy with focused ion beam and transmission electron microscopy with electron energy loss spectroscopy revealed that reduced chromium was possibly

  7. Geochemical constraints on the presence of clay minerals in the Burns formation, Meridiani Planum, Mars (United States)

    Cino, C. D.; Dehouck, E.; McLennan, S. M.


    Burns formation sandstones, deposited by aeolian processes and preserved at Meridiani Planum, Mars, contain abundant sulfate minerals. These sedimentary rocks are thought to be representative of a sulfate-rich geological epoch during late Noachian - early Hesperian time that followed an earlier clay-rich epoch. Twenty Burns formation targets, abraded by the Rock Abrasion Tool (RAT) and for which alpha-particle X-ray spectrometry (APXS) and Mössbauer spectroscopy data are available, were selected for geochemical modeling. A linear unmixing modeling approach was employed. Mineralogical constituents quantitatively constrained by Mössbauer and Mini-TES spectroscopy and interpreted to be chemically precipitated from aqueous fluids during deposition and/or early diagenesis were subtracted from the bulk chemistry. Resulting residual chemical compositions, interpreted to be dominated by detrital siliciclastic components and representing ∼21-35% of the rocks, were then geochemically evaluated to constrain the potential for the presence of clay minerals or their poorly-crystalline or non-crystalline precursors/chemical equivalents. Calculations incorporated a robust estimate of the uncertainties in mineral abundances. On Al2O3 - (CaO+Na2O) - K2O (A-CN-K) and Al2O3 - (CaO+Na2O+K2O) - (FeOtotal+MgO) (A-CNK-FM) molar ternary diagrams, removal of chemical constituents resulted in a shift from igneous-like compositions to compositions consistent with secondary mineral assemblages containing significant aluminous clay mineral components. All of the residual compositions are corundum-normative, further supportive of the presence of highly aluminous phases. On the A-CNK-FM diagram, clay minerals plotting closest to the residual field are natural montmorillonites but could also represent mixtures of various Mg/Fe-rich phyllosilicates, such as nontronite or saponite, and other more Al-rich minerals such as Al-montmorillonite, kaolinite or illite. Depending on the age of clay

  8. Comparison of Conventional and Minerals, Extraction. Extraction Methods for Tio2 Recovery in Mineral Sands

    Directory of Open Access Journals (Sweden)

    Muhammad Nurdin


    Full Text Available Iron sand as the source of many important minerals is one of natural resources in Southeast Sulawesi. The iron sand minerals that contain TiO2 has economic value and a number of application i.e. environmental protection, paint industries, sensor and photovoltaic. The extraction of TiO2 has been done from pseudorutile (Fe2Ti3O9 using dissolution of HCl 20% and the addition of Fe0 reductor to optimize the microwave and conventional process. The result showed the optimized yield value of TiO2 and Fe2O3 are 74.49% and 80.35%, respectively. The power used effect of microwave -assisted to the extraction process was obtained decreasing of 81%, and the extraction time could be efficiency from 6 to 2 hours. The microwave extraction process can increase a yield of TiO2 and significant decreasing the yield of Fe2O3 in a shorter time if compared to the conventional process.

  9. Rheological properties of different minerals and clay soils

    Directory of Open Access Journals (Sweden)

    Dolgor Khaydapova


    Full Text Available Rheological properties of kaolinite, montmorillonite, ferralitic soil of the humid subtropics (Norfolk island, southwest of Oceania, alluvial clay soil of arid subtropics (Konyaprovince, Turkey and carbonate loess loam of Russian forest-steppe zone were determined. A parallel plate rheometer MCR-302 (Anton Paar, Austria was used in order to conduct amplitude sweep test. Rheological properties allow to assess quantitatively structural bonds and estimate structural resistance to a mechanical impact. Measurements were carried out on samples previously pounded and capillary humidified during 24 hours. In the amplitude sweep method an analyzed sample was placed between two plates. The upper plate makes oscillating motions with gradually extending amplitude. Software of the device allows to receive several rheological parameters such as elastic modulus (G’, Pa, viscosity modulus (G", Pa, linear viscoelasticity range (G’>>G”, and point of destruction of structure at which the elastic modulus becomes equal to the viscosity modulus (G’=G”- crossover. It was found out that in the elastic behavior at G '>> G " strength of structural links of kaolinite, alluvial clay soil and loess loam constituted one order of 105 Pa. Montmorillonit had a minimum strength - 104 Pa and ferrallitic soil of Norfolk island [has] - a maximum one -106 Pa. At the same time montmorillonite and ferralitic soil were characterized by the greatest plasticity. Destruction of their structure (G '= G" took place only in the cases when strain was reaching 11-12%. Destraction of the kaolinite structure happened at 5% of deformation and of the alluvial clay soil and loess loam - at 4.5%.

  10. Networking and rheology of concentrated clay suspensions "matured" in mineral medicinal water. (United States)

    Aguzzi, Carola; Sánchez-Espejo, Rita; Cerezo, Pilar; Machado, José; Bonferoni, Cristina; Rossi, Silvia; Salcedo, Inmaculada; Viseras, César


    This work studied the influence of "maturation" conditions (time and agitation) on aggregation states, gel structure and rheological behaviour of a special kind of pharmaceutical semisolid products made of concentrated clay suspensions in mineral medicinal water. Maturation of the samples was carried out in distilled and sulphated mineral medicinal water, both in static conditions (without agitation) and with manual stirring once a week, during a maximum period of three months. At the measured pH interval (7.5-8.0), three-dimensional band-type networks resulting from face/face contacts were predominant in the laminar (disc-like) clay suspensions, whereas the fibrous (rod-like) particles formed micro-aggregates by van der Waals attractions. The high concentration of solids in the studied systems greatly determined their behaviour. Rod-like sepiolite particles tend to align the major axis in aggregates promoted by low shearing maturation, whereas aggregates of disc-like smectite particles did not have a preferential orientation and their complete swelling required long maturation time, being independent of stirring. Maturation of both kinds of suspensions resulted in improved rheological properties. Laminar clay suspensions became more structured with time, independently from static or dynamic maturation conditions, whereas for fibrous clay periodic agitation was also required. Rheological properties of the studied systems have been related to aggregation states and networking mechanisms, depending on the type of clay minerals constituents. Physical stability of the suspensions was not impaired by the specific composition of the Graena medicinal water.

  11. Experimental Constraints on Microbial Liberation of Structural Iron from Common Clay Minerals in Marine Sediments (United States)

    Metcalfe, K. S.; Gaines, R. R.; Trang, J.; Scott, S. W.; Crane, E. J.; Lackey, J.; Prokopenko, M. G.; Berelson, W.


    Iron is a limiting nutrient in many marine settings. The marine Fe-cycle is complex because Fe may be used as an electron donor or acceptor and cycled many times before ultimate burial in sediments. Thus, the availability of iron plays a large role in the marine carbon cycle, influencing not only the extent of primary productivity but also the oxidation of organic matter in sediments. The primary constituents of marine sediments are clay minerals, which commonly contain lattice-bound Fe in octahedral sites. In marine settings, the pool of Fe bound within silicate mineral lattices has long been considered reactive only over long timescales, and thus non-bioavailable. In vitro experimental evidence has shown that lab cultures of Fe-reducing bacteria are able to utilize structurally-bound Fe (III) from the crystal lattice of nontronite, an uncommon but particularly Fe-rich (> 12 wt.%) smectite. Importantly, this process is capable of liberating Fe (II) to solution, where it is available to biotic processes as an electron donor. In order to constrain the capacity of naturally-occurring marine bacteria to liberate structurally-coordinated Fe from the lattices of common clay minerals, we exposed a suite of 16 different clay minerals (0.8-13.9 wt.% Fe) to lab cultures of known Fe-reducer S. onenidensis MR-1 and to a natural consortium of Fe-reducing microbes from the San Pedro and Santa Monica Basins over timescales ranging from 7-120 days. Clay minerals were treated with Na-dithionite to extract surface-bound Fe prior to exposure. Crystallographic data and direct measurements of Fe in solution demonstrate the release of structural Fe from all clay minerals analyzed. Neoformation of illite and amorphous quartz were observed. The array of clay minerals and microbes used in this experiment complement past findings and suggest that common clay minerals may represent a large and previously unrecognized pool of bioavailable Fe in the world ocean that contributes significantly

  12. Surveying Clay Mineral Diversity in the Murray Formation, Gale Crater, Mars (United States)

    Bristow, T.F.; Blake, D. F..; Vaniman, D. T.; Chipera, S. J.; Rampe, E. B.; Grotzinger, J. P.; McAdam, A. C.; Ming, D. W..; Morrison, S. M.; Yen, A. S.; hide


    The CheMin XRD instrument aboard Mars Science Laboratory (MSL) has documented clay minerals in various drill samples during its traverse of Gale Crater's floor and ascent of Mt. Sharp. The most recent samples, named Marimba, Quela and Sebina were acquired from the Murray Formation in the Murray Buttes region of lower Mt. Sharp. Marimba and Quela come from a approx. 30 m package of finely laminated lacustrine mudstones. Sebina comes from an overlying package of heterolithic mudstone-sandstones. Clay minerals make up approx.15-25 wt.% of the bulk rock with similar contributions to XRD patterns in all three samples. Broad basal reflections at approx. 10deg 2(theta) CoK(alpha) indicate the presence of 2:1 group clay minerals. The 02(lambda) clay mineral band lies at approx. 22.9deg 2(theta), a region typically occupied by Fe-bearing dioctahedral 2:1 clay minerals like nontronite or Fe-illite. The low humidity within the CheMin instrument, which is open to the martian atmosphere, promotes loss of interlayer H2O and collapse of smectite interlayers making them difficult to distinguish from illites. However, based on the low K content of the bulk samples, it appears that smectitic clay minerals are dominant. Peak dehydroxylation of the Marimba sample measured by the SAM instrument on MSL occurred at 610C and 780C. Fe-bearing smectites are not consistent with these dehydroxylation temperatures. Thus, we suggest that a mixture of dioctahedral and trioctahedral smectite phases are present giving the appearance of intermediate octahedral occupancy in XRD. Dioctahedral smectites have not previously been reported in Gale Crater by MSL. Earlier in the mission, relatively clay mineral rich samples (approx. 20 wt.%) from lacustrine mudstones in Yellowknife Bay (YKB) were found to contain ferrian saponites. It is proposed that YKB saponites formed via isochemical aqueous alteration of detrital olivine close to the time of sediment deposition, under anoxic to poorly oxidizing

  13. Modeling spatial variability of sand-lenses in clay till settings using transition probability and multiple-point geostatistics

    DEFF Research Database (Denmark)

    Kessler, Timo Christian; Nilsson, Bertel; Klint, Knud Erik;


    the geology of e.g. a contaminated site, it is not always possible to gather enough information to build a representative geological model. Mapping in analogue geological settings and applying geostatistical tools to simulate spatial variability of heterogeneities can improve ordinary geological models...... that are predicated only on vertical borehole information. This study documents methods to map geological heterogeneity in clay till and ways to calibrate geostatistical models with field observations. A well-exposed cross-section in an excavation pit was used to measure and illustrate the occurrence and distribution...... of sand-lenses in clay till. Sand-lenses mainly account for horizontal transport and are prioritised in this study. Based on field observations, the distribution has been modeled using two different geostatistical approaches. One method uses a Markov chain model calculating the transition probabilities...

  14. Cambrian burgess shale animals replicated in clay minerals (United States)

    Orr; Briggs; Kearns


    Although the evolutionary importance of the Burgess Shale is universally acknowledged, there is disagreement on the mode of preservation of the fossils after burial. Elemental mapping demonstrates that the relative abundance of elements varies between different anatomical features of the specimens. These differences reflect the compositions of the minerals that replicated the decaying organism, which were controlled by contrasts in tissue chemistry. Delicate morphological details are replicated in the elemental maps, showing that authigenic mineralization was fundamental to preserving these fossils, even though some organic remains are also present.

  15. Effect of purity on adsorption capacities of a Mars-like clay mineral at different pressures (United States)

    Jenkins, Traci; Mcdoniel, Bridgett; Bustin, Roberta; Allton, Judith H.


    There has been considerable interest in adsorption of carbon dioxide on Marslike clay minerals. Some estimates of the carbon dioxide reservoir capacity of the martian regolith were calculated from the amount of carbon dioxide adsorbed on the ironrich smectite nontronite under martian conditions. The adsorption capacity of pure nontronite could place upper limits on the regolith carbon dioxide reservoir, both at present martian atmospheric pressure and at the postulated higher pressures required to permit liquid water on the surface. Adsorption of carbon dioxide on a Clay Mineral Society standard containing nontronite was studied over a wide range of pressures in the absence of water. Similar experiments were conducted on the pure nontronite extracted from the natural sample. Heating curves were obtained to help characterize and determine the purity of the clay sample.

  16. Heterogeneous uptake of the C1 to C4 organic acids on a swelling clay mineral

    Directory of Open Access Journals (Sweden)

    M. A. Tolbert


    Full Text Available Mineral aerosol is of interest due to its physiochemical impacts on the Earth's atmosphere. However, adsorbed organics could influence the chemical and physical properties of atmospheric mineral particles and alter their impact on the biosphere and climate. In this work, the heterogeneous uptake of a series of small organic acids on the swelling clay, Na-montmorillonite, was studied at 212 K as a function of relative humidity (RH, organic acid pressure and clay mass. A high vacuum chamber equipped with a quadrupole mass spectrometer and a transmission Fourier transform infrared spectrometer was used to detect the gas and condensed phases, respectively. Our results show that while the initial uptake efficiency was found to be independent of organic acid pressure, it increased linearly with increasing clay mass. Thus, the small masses studied allow access to the entire surface area of the clay sample with minimal effects due to surface saturation. Additionally, results from this study show that the initial uptake efficiency for butanoic (butyric acid on the clay increases by an order of magnitude as the RH is raised from 0% to 45% RH at 212 K while the initial uptake efficiency of formic, acetic and propanoic (propionic acids increases only slightly at higher humidities. However, the initial uptake efficiency decreases significantly in a short amount of time due to surface saturation effects. Thus, although the initial uptake efficiencies are appropriate for initial times, the fact that the uptake efficiency will decrease over time as the surface saturates should be considered in atmospheric models. Surface saturation results in sub-monolayer coverage of organic acid on montmorillonite under dry conditions and relevant organic acid pressures that increases with increasing humidity for all organic acids studied. Additionally, the presence of large organic acids may slightly enhance the water content of the clay above 45% RH. Our results indicate

  17. Spectral characteristics of clay minerals in the 2.5 - 14 µm wavelength region

    NARCIS (Netherlands)

    Yitagesu, F.A.; Meer, F.D. van der; Werff, H.M.A. van der; Hecker, C.A.


    Identification and quantification of clay minerals, particularly those that are responsible for susceptibility of soils to expansion and shrinkage, is a constant focus of research in geotechnical engineering. The visible, near infrared and short wave infrared wavelength regions are well explored. Ho

  18. Clay Mineral Distribution Patterns of Tertiary Continental Oil-bearing Basins in China

    Institute of Scientific and Technical Information of China (English)

    Zhao Xingyuan


    @@ Induction This paper studies the clay mineral distribution patterns of Tertiary continental oil-bearing basins in China. More than 9 000 shale samples from Paleogene (E) to Neogene (N) Series distributed in Bohai Gulf, Subei, Jianghan,Nanxiang, Zhoukou, Sanshui, Beibu Bay, East China Sea,Hetao, Juiquan, Qaidam and Tarim basins, and so on.

  19. Sedimentological and clay mineral studies in Kakinada Bay, east coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Reddy, N.P.C.; Rao, K.M.

    are of sandy sediments (2.9 to 3.05 phi). Interrelationships of size statistical parameters and the CM diagram of the bay sediments suggest a mechanism of slow deposition from quiet water. Montmorillonite is the predominant clay mineral followed by kaolinite...

  20. Clay mineral stratigraphy of Miocene to recent marine sediments in the central Mediterranean

    NARCIS (Netherlands)

    Visser, J.P. de


    X-ray diffraction analyses were made of the smaller than 2 J..Lm fraction from about 1250 samples of the central Mediterranean Miocene to Recent and the southeastern North-Atlantic Miocene in order to reconstruct climatic changes. Relative quantities of the clay minerals chlorite, illite, pyrophylli

  1. Modeling selenite adsorption envelopes on oxides, clay minerals, and soils using the triple layer model (United States)

    Selenite adsorption behavior was investigated on amorphous aluminum and iron oxides, clay minerals: kaolinite, montmorillonite, and illite, and 45 surface and subsurface soil samples from the Southwestern and Midwestern regions of the USA as a function of solution pH. Selenite adsorption decreased ...

  2. Modeling selenate adsorption behavior on oxides, clay minerals, and soils using the triple layer model (United States)

    Selenate adsorption behavior was investigated on amorphous aluminum oxide, amorphous iron oxide, goethite, clay minerals: kaolinites, montmorillonites, illite, and 18 soil samples from Hawaii, and the Southwestern and the Midwestern regions of the US as a function of solution pH. Selenate adsorpti...

  3. Clay minerals assemblage in the Neogene fluvial succession of the Pishin Belt, Pakistan

    DEFF Research Database (Denmark)

    Kasi, Aimal Khan; Kassi, Akhtar Muhammad; Friis, Henrik


    and metasedimentary successions. The source of kaolinite seems to be pedogenic or lateritic. The clay minerals assemblage in mudstones and sandstones of the Dasht Murgha group, Malthanai formation and Bostan formation appears to have been derived from the nearby-exposed Pre-Miocence mafic/ultramafic rocks...

  4. Influence of swelling on reaction efficiency in intercalated clay minerals

    Energy Technology Data Exchange (ETDEWEB)

    Politowicz, P.A.; Kozak, J.J.


    A lattice model is designed to determine the extent which the efficiency of reaction between a fixed target molecule and a diffusing coreactant is affected when the interlamellar space separating the atomic layers defining a smectite-type clay is expanded (or swollen). The authors consider partially ordered layer lattices of hexagonal symmetry, and for the case where the target molecule is positioned in the basal lattice at the centrosymmetric site exact numerical solution of the underlying stochastic problem shows that in the limit of large planar arrays the reaction efficiency (as calibrated by the mean walklength (n) of the diffusing coreactant) decreases by a factor of approx. 1.7 for a (stacked) two-layer hexagonal structure and by approx. 2.4 for a three-layer structure. The role of initial conditions and system size is explored, and the exponential character of the decay is quantified.

  5. Discussion on origin of clay minerals in outcropped sandstone from Lower Cretaceous Chengzihe Formation and Muling Formation in Jixi Basin

    Institute of Scientific and Technical Information of China (English)

    LIU Jianying; LIU Li; QU Xiyu


    Clay minerals in the outcropped sandstone from Lower Cretaceous Chengzihe Formation and Muling Formation in Jixi Basin were analyzed by X-ray diffraction. The results show that the clay minerals mainly consist of illite, kaollinite and illite/smectite, which can be divided into two types: kaolinite- and illite/smectite types. The outcropped sandstone occurred in middle diagenetic stage-A on the basis of the clay mineral composition. The development factor of the formation of kaolinite type clay mineral is caused mainly by the organic acid from the coal-bearing formation and mudstone during the diagenesis process in Lower Cretaceous Chengzihe Formation and Muling Formation in the Jixi Basin. The weak hydrodynamic force of sedimentary facies made the sandstone leaching condition poor, which is the reason forming the aggregation of clay minerals of the illite/smectite-and illite types.

  6. Provenance of sands from the confluence of the Amazon and Madeira rivers based on detrital heavy minerals and luminescence of quartz and feldspar (United States)

    do Nascimento, Daniel R.; Sawakuchi, André O.; Guedes, Carlos C. F.; Giannini, Paulo C. F.; Grohmann, Carlos H.; Ferreira, Manuela P.


    Source-to-sink systems are poorly known in tropical rivers. For the Amazonian rivers, the majority of the provenance studies remain focused on the suspended load, implying a poor understanding of the processes governing production and distribution of sands. In this study, we perform heavy mineral and optically stimulated luminescence (OSL) analysis to cover the entire spectrum (heavy and light minerals fraction) of 29 sand samples of the Lower Madeira river region (Amazon and Madeira rivers), of which the main goal was to find provenance indicators specific to these rivers. Despite the tropical humid climate, the sands of the Amazon and Lower Madeira rivers are rich in unstable heavy minerals as augite, hypersthene, green hornblende and andalusite. The Madeira river is highlighted by its higher content of andalusite, with source attributed to the Amazon Craton (medium-to-high grade metamorphic rocks), while the Amazon river, upstream of the Madeira river mouth, has a signature of augite and hypersthene, that suggests an Andean provenance (volcanic rocks). Sands from the Madeira river can be tracked in the Amazon river by the increasing concentration in andalusite. OSL analysis of the light minerals fraction was used as an index of feldspar concentration and sedimentary history of quartz grains. Lower feldspar concentration and quartz grains with longer sedimentary history (higher OSL sensitivity) also point to a major contribution of cratonic sources for the sands in the Madeira river. While the sands from the Lower Madeira would be mainly supplied by cratonic rocks, previous work recognised that suspended sediments (silt and clay) are derived from Andean rocks. Therefore, we interpret a decoupling between the sources of sand and mud (silt and clay) under transport in the Madeira river. Andean sands (rich in augite and hypersthene) would be trapped in the foreland zones of the Beni and Mamoré tributaries. In the Amazon river sands, the low OSL sensitivity of the

  7. Clay minerals in primitive meteorites and interplanetary dust 1 (United States)

    Zolensky, M. E.; Keller, L. P.


    Many meteorites and interplanetary dust particles (IDPs) with primitive compositions contain significant amounts of phyllosilicate minerals, which are generally interpreted as evidence of protoplanetary aqueous alteration at an early period of the solar system. These meteorites are chondrites (near solar composition) of the carbonaceous and ordinary varieties. The former are subdivided (according to bulk composition and petrology) into CI, CM, CV, CO, CR, and ungrouped classes. IDPs are extraterrestrial particulates, collected in stratosphere, which have chemical compositions indicative of a primitive origin; they are typically distinct from the primitive meteorites. Characterization of phyllosilicates in these materials is a high priority because of the important physico-chemical information they hold. The most common phyllosilicates present in chondritic extraterrestrial materials are serpentine-group minerals, smectites, and micas. We discuss these phyllosilicates and describe the interpretation of their occurrence in meteorites and IDPs and what this indicates about history of their parent bodies, which are probably the hydrous asteroids.

  8. Cesium adsorption/desorption behavior of clay minerals considering actual contamination conditions in Fukushima (United States)

    Mukai, Hiroki; Hirose, Atsushi; Motai, Satoko; Kikuchi, Ryosuke; Tanoi, Keitaro; Nakanishi, Tomoko M.; Yaita, Tsuyoshi; Kogure, Toshihiro


    Cesium adsorption/desorption experiments for various clay minerals, considering actual contamination conditions in Fukushima, were conducted using the 137Cs radioisotope and an autoradiography using imaging plates (IPs). A 50 μl solution containing 0.185 ~ 1.85 Bq of 137Cs (10-11 ~ 10-9 molL-1 of 137Cs) was dropped onto a substrate where various mineral particles were arranged. It was found that partially-vermiculitized biotite, which is termed “weathered biotite” (WB) in this study, from Fukushima sorbed 137Cs far more than the other clay minerals (fresh biotite, illite, smectite, kaolinite, halloysite, allophane, imogolite) on the same substrate. When WB was absent on the substrate, the amount of 137Cs sorbed to the other clay minerals was considerably increased, implying that selective sorption to WB caused depletion of radiocesium in the solution and less sorption to the coexisting minerals. Cs-sorption to WB continued for about one day, whereas that to ferruginous smectite was completed within one hour. The sorbed 137Cs in WB was hardly leached with hydrochloric acid at pH 1, particularly in samples with a longer sorption time. The presence/absence of WB sorbing radiocesium is a key factor affecting the dynamics and fate of radiocesium in Fukushima.

  9. Cesium adsorption/desorption behavior of clay minerals considering actual contamination conditions in Fukushima. (United States)

    Mukai, Hiroki; Hirose, Atsushi; Motai, Satoko; Kikuchi, Ryosuke; Tanoi, Keitaro; Nakanishi, Tomoko M; Yaita, Tsuyoshi; Kogure, Toshihiro


    Cesium adsorption/desorption experiments for various clay minerals, considering actual contamination conditions in Fukushima, were conducted using the (137)Cs radioisotope and an autoradiography using imaging plates (IPs). A 50 μl solution containing 0.185 ~ 1.85 Bq of (137)Cs (10(-11) ~ 10(-9 )molL(-1) of (137)Cs) was dropped onto a substrate where various mineral particles were arranged. It was found that partially-vermiculitized biotite, which is termed "weathered biotite" (WB) in this study, from Fukushima sorbed (137)Cs far more than the other clay minerals (fresh biotite, illite, smectite, kaolinite, halloysite, allophane, imogolite) on the same substrate. When WB was absent on the substrate, the amount of (137)Cs sorbed to the other clay minerals was considerably increased, implying that selective sorption to WB caused depletion of radiocesium in the solution and less sorption to the coexisting minerals. Cs-sorption to WB continued for about one day, whereas that to ferruginous smectite was completed within one hour. The sorbed (137)Cs in WB was hardly leached with hydrochloric acid at pH 1, particularly in samples with a longer sorption time. The presence/absence of WB sorbing radiocesium is a key factor affecting the dynamics and fate of radiocesium in Fukushima.

  10. Influence of Water Content on the Mechanical Behaviour of Limestone: Role of the Clay Minerals Content (United States)

    Cherblanc, F.; Berthonneau, J.; Bromblet, P.; Huon, V.


    The mechanical characteristics of various sedimentary stones significantly depend on the water content, where 70 % loss of their mechanical strengths can be observed when saturated by water. Furthermore, the clay fraction has been shown to be a key factor of their hydro-mechanical behaviour since it governs for instance the hydric dilation. This work aims at investigating the correlations between the clay mineral content and the mechanical weakening experienced by limestones when interacting with water. The experimental characterization focuses on five different limestones that exhibit very different micro-structures. For each of them, we present the determination of clay mineral composition, the sorption isotherm curve and the dependences of tensile and compressive strengths on the water content. It emerges from these results that, first, the sorption behaviour is mainly governed by the amount of smectite layers which exhibit the larger specific area and, second, the rate of mechanical strength loss depends linearly on the sorption capacity. Indeed, the clay fraction plays the role of a retardation factor that delays the appearance of capillary bridges as well as the mechanical weakening of stones. However, no correlation was evidenced between the clay content and the amplitude of weakening. Since the mechanisms whereby the strength decreases with water content are not clearly established, these results would help to discriminate between various hypothesis proposed in the literature.

  11. Bioreduction of Fe-bearing clay minerals and their reactivity toward pertechnetate (Tc-99) (United States)

    Bishop, Michael E.; Dong, Hailiang; Kukkadapu, Ravi K.; Liu, Chongxuan; Edelmann, Richard E.


    99Technetium ( 99Tc) is a fission product of uranium-235 and plutonium-239 and poses a high environmental hazard due to its long half-life ( t1/2 = 2.13 × 10 5 y), abundance in nuclear wastes, and environmental mobility under oxidizing conditions [i.e., Tc(VII)]. Under reducing conditions, Tc(VII) can be reduced to insoluble Tc(IV). Ferrous iron, either in aqueous form (Fe 2+) or in mineral form [Fe(II)], has been used to reduce Tc(VII) to Tc(IV). However, the reactivity of Fe(II) from clay minerals, other than nontronite, toward immobilization of Tc(VII) and its role in retention of reduced Tc(IV) has not been investigated. In this study the reactivity of a suite of clay minerals toward Tc(VII) reduction and immobilization was evaluated. The clay minerals chosen for this study included five members in the smectite-illite (S-I) series, (montmorillonite, nontronite, rectorite, mixed layered I-S, and illite), chlorite, and palygorskite. Surface Fe-oxides were removed from these minerals with a modified dithionite-citrate-bicarbonate (DCB) procedure. The total structural Fe content of these clay minerals, after surface Fe-oxide removal, ranged from 0.7% to 30.4% by weight, and the structural Fe(III)/Fe(total) ratio ranged from 45% to 98%. X-ray diffraction (XRD) and Mössbauer spectroscopy results showed that after Fe oxide removal the clay minerals were free of Fe-oxides. Scanning electron microscopy (SEM) revealed that little dissolution occurred during the DCB treatment. Bioreduction experiments were performed in bicarbonate buffer (pH-7) with structural Fe(III) in the clay minerals as the sole electron acceptor, lactate as the sole electron donor, and Shewanella putrefaciens CN32 cells as a mediator. In select tubes, anthraquinone-2,6-disulfate (AQDS) was added as electron shuttle to facilitate electron transfer. In the S-I series, smectite (montmorillonite) was the most reducible (18% and 41% without and with AQDS, respectively) and illite the least (1% for both

  12. Bioreduction of Fe-bearing clay minerals and their reactivity toward pertechnetate (Tc-99)

    Energy Technology Data Exchange (ETDEWEB)

    Bishop, Michael E.; Dong, Hailiang; Kukkadapu, Ravi K.; Liu, Chongxuan; Edelmann, Richard E.


    99Technetium (99Tc) is a fission product of uranium-235 and plutonium-239 and poses a high environmental hazard due to its long half-life (t1/2 = 2.13 x 105 y), abundance in nuclear wastes, and environmental mobility under oxidizing conditions [i.e., Tc(VII)]. Under reducing conditions, Tc(VII) can be reduced to insoluble Tc(IV). Ferrous iron [Fe(II)], either in aqueous form or in mineral form, has been used to reduce Tc(VII) to Tc(IV). However, the reactivity of Fe(II) from clay minerals, other than nontronite, toward immobilization of Tc(VII) and its role in retention of reduced Tc(IV) have not been investigated. In this study the reactivity of a suite of clay minerals toward Tc(VII) reduction and immobilization was evaluated. The clay minerals chosen for this study included five members in the smectite-illite (S-I) series, (montmorillonite, nontronite, rectorite, mixed layered I-S, and illite), chlorite, and palygorskite. Fe-oxides were removed from these minerals with a modified dithionite-citrate-bicarbonate (DCB) procedure. The total Fe content of these clay minerals, after Fe-oxide removal, ranged from 0.7 to 30.4% by weight, and the Fe(III)/Fe(total) ratio ranged from 44.9 to 98.5%. X-ray diffraction (XRD) and Mössbauer spectroscopy results showed that after Fe oxide removal the clay minerals were free of Fe-oxides. Scanning electron microscopy (SEM) revealed that little dissolution occurred during the DCB treatment. Bioreduction experiments were performed in bicarbonate buffer (pH-7) with Fe(III) in the clay minerals as the sole electron acceptor, lactate as the sole electron donor, and Shewanella Putrifaciens CN32 cells as mediators. In select tubes, anthraquinone-2,6-disulfate (AQDS) was added as electron shuttle to facilitate electron transfer. The extent of Fe(III) bioreduction was the highest for chlorite (~43 wt%) and the lowest for palygorskite (~4.17 wt%). In the S-I series, NAu-2 was the most reducible (~31 %) and illite the least (~0.4 %). The

  13. Clay mineral association in the salt formation of the Transylvanian Basin and its paleoenvironmental significance

    Directory of Open Access Journals (Sweden)

    Nicoleta Bican-Bris̡an


    Full Text Available The investigated clay fraction was separated from salt samples recovered from three boreholes located in the Praid salt deposit area. For comparison, samples collected from Turda deposit (Franz Josef adit, the Rudolf and Ghizele chambers and from the salt massif from Sărăţel were also analyzed. The qualitative investigations evidenced a clay minerals association dominated by illite and chlorite accompanied by subordinate amounts of kaolinite, smectite, fibrous clays (sepiolite, palygorskite, and in minor amounts, by 14/14 chlorite/vermiculite and chlorite/smectite interstratifications. A quantitative evaluation (% including a standard graphical representation was performed only for the borehole samples (Praid, according to the vertical distribution. The genetical interpretation of the identified clay minerals association took into account the influence of the sedimentation mechanisms and the climate control on the mineral phases. The environment of formation for the salt in the Transylvanian Basin was defined by the presence of specific climatic factors, also suggested by the palynological investigations.

  14. Adsorption of herbicide paraquat by clay mineral regenerated from spent bleaching earth. (United States)

    Tsai, Wen-Tien; Lai, Chi-Wei


    The adsorption of herbicide paraquat (as model adsorbate) in aqueous solution onto regenerated clay mineral from bleaching earth waste has been studied in a batch reaction system. The adsorption rate has been investigated under the controlled process parameters including initial pH, salinity and temperature. Based on the high affinity between cationic paraquat and clay mineral, a pseudo-second order model has been developed using experimental data to predict the rate constant of adsorption, and equilibrium adsorption capacity. The results showed that the adsorption process could be satisfactorily described with the reaction model and were reasonably explained by assuming a competitive adsorption mechanism in the ion exchange process. Further, the fitted adsorption capacity at equilibrium decreased with increasing temperature. It implied that the strong interaction might play an important role in the paraquat-clay system. Overall, the results from this study demonstrated that the clay resource regenerated from bleaching earth waste could be used as a low-cost mineral adsorbent for the removal of environmental cationic organic pollutants from the aqueous solution.

  15. Modified clay minerals efficiency against chemical and biological warfare agents for civil human protection. (United States)

    Plachá, Daniela; Rosenbergová, Kateřina; Slabotínský, Jiří; Kutláková, Kateřina Mamulová; Studentová, Soňa; Martynková, Gražyna Simha


    Sorption efficiencies of modified montmorillonite and vermiculite of their mono ionic Na and organic HDTMA and HDP forms were studied against chemical and biological warfare agents such as yperite and selected bacterial strains. Yperite interactions with modified clay minerals were observed through its capture in low-density polyethylene foil-modified clay composites by measuring yperite gas permeation with using chemical indication and gas chromatography methods. The antibacterial activities of synthetized organoclays were tested against selected Gram-positive and Gram-negative bacterial species in minimum inhibitory concentration tests. The obtained results showed a positive influence of modified clay minerals on the significant yperite breakthrough-time increase. The most effective material was the polyethylene-Na form montmorillonite, while the polyethylene-Na form vermiculite showed the lowest efficiency. With increasing organic cations loading in the interlayer space the montmorillonite efficiency decreased, and in the case of vermiculite an opposite effect was observed. Generally the modified montmorillonites were more effective than modified vermiculites. The HDP cations seem to be more effective compare to the HDTMA. The antibacterial activity tests confirmed efficiency of all organically modified clay minerals against Gram-positive bacteria. The confirmation of antibacterial activity against Y. pestis, plague bacteria, is the most interesting result of this part of the study.

  16. Bioremediating oil spills in nutrient poor ocean waters using fertilized clay mineral flakes: some experimental constraints. (United States)

    Warr, Laurence N; Friese, André; Schwarz, Florian; Schauer, Frieder; Portier, Ralph J; Basirico, Laura M; Olson, Gregory M


    Much oil spill research has focused on fertilizing hydrocarbon oxidising bacteria, but a primary limitation is the rapid dilution of additives in open waters. A new technique is presented for bioremediation by adding nutrient amendments to the oil spill using thin filmed minerals comprised largely of Fullers Earth clay. Together with adsorbed N and P fertilizers, filming additives, and organoclay, clay flakes can be engineered to float on seawater, attach to the oil, and slowly release contained nutrients. Our laboratory experiments of microbial activity on weathered source oil from the Deepwater Horizon spill in the Gulf of Mexico show fertilized clay treatment significantly enhanced bacterial respiration and consumption of alkanes compared to untreated oil-in-water conditions and reacted faster than straight fertilization. Whereas a major portion (up to 98%) of the alkane content was removed during the 1 month period of experimentation by fertilized clay flake interaction; the reduced concentration of polyaromatic hydrocarbons was not significantly different from the non-clay bearing samples. Such clay flake treatment could offer a way to more effectively apply the fertilizer to the spill in open nutrient poor waters and thus significantly reduce the extent and duration of marine oil spills, but this method is not expected to impact hydrocarbon toxicity.

  17. Bioremediating Oil Spills in Nutrient Poor Ocean Waters Using Fertilized Clay Mineral Flakes: Some Experimental Constraints

    Directory of Open Access Journals (Sweden)

    Laurence N. Warr


    Full Text Available Much oil spill research has focused on fertilizing hydrocarbon oxidising bacteria, but a primary limitation is the rapid dilution of additives in open waters. A new technique is presented for bioremediation by adding nutrient amendments to the oil spill using thin filmed minerals comprised largely of Fullers Earth clay. Together with adsorbed N and P fertilizers, filming additives, and organoclay, clay flakes can be engineered to float on seawater, attach to the oil, and slowly release contained nutrients. Our laboratory experiments of microbial activity on weathered source oil from the Deepwater Horizon spill in the Gulf of Mexico show fertilized clay treatment significantly enhanced bacterial respiration and consumption of alkanes compared to untreated oil-in-water conditions and reacted faster than straight fertilization. Whereas a major portion (up to 98% of the alkane content was removed during the 1 month period of experimentation by fertilized clay flake interaction; the reduced concentration of polyaromatic hydrocarbons was not significantly different from the non-clay bearing samples. Such clay flake treatment could offer a way to more effectively apply the fertilizer to the spill in open nutrient poor waters and thus significantly reduce the extent and duration of marine oil spills, but this method is not expected to impact hydrocarbon toxicity.

  18. The origin and implications of clay minerals from Yellowknife Bay, Gale crater, Mars. (United States)

    Bristow, Thomas F; Bish, David L; Vaniman, David T; Morris, Richard V; Blake, David F; Grotzinger, John P; Rampe, Elizabeth B; Crisp, Joy A; Achilles, Cherie N; Ming, Doug W; Ehlmann, Bethany L; King, Penelope L; Bridges, John C; Eigenbrode, Jennifer L; Sumner, Dawn Y; Chipera, Steve J; Moorokian, John Michael; Treiman, Allan H; Morrison, Shaunna M; Downs, Robert T; Farmer, Jack D; Marais, David Des; Sarrazin, Philippe; Floyd, Melissa M; Mischna, Michael A; McAdam, Amy C


    The Mars Science Laboratory (MSL) rover Curiosity has documented a section of fluvio-lacustrine strata at Yellowknife Bay (YKB), an embayment on the floor of Gale crater, approximately 500 m east of the Bradbury landing site. X-ray diffraction (XRD) data and evolved gas analysis (EGA) data from the CheMin and SAM instruments show that two powdered mudstone samples (named John Klein and Cumberland) drilled from the Sheepbed member of this succession contain up to ~20 wt% clay minerals. A trioctahedral smectite, likely a ferrian saponite, is the only clay mineral phase detected in these samples. Smectites of the two samples exhibit different 001 spacing under the low partial pressures of H2O inside the CheMin instrument (relative humidity <1%). Smectite interlayers in John Klein collapsed sometime between clay mineral formation and the time of analysis to a basal spacing of 10 Å, but largely remain open in the Cumberland sample with a basal spacing of ~13.2 Å. Partial intercalation of Cumberland smectites by metal-hydroxyl groups, a common process in certain pedogenic and lacustrine settings on Earth, is our favored explanation for these differences. The relatively low abundances of olivine and enriched levels of magnetite in the Sheepbed mudstone, when compared with regional basalt compositions derived from orbital data, suggest that clay minerals formed with magnetite in situ via aqueous alteration of olivine. Mass-balance calculations are permissive of such a reaction. Moreover, the Sheepbed mudstone mineral assemblage is consistent with minimal inputs of detrital clay minerals from the crater walls and rim. Early diagenetic fabrics suggest clay mineral formation prior to lithification. Thermodynamic modeling indicates that the production of authigenic magnetite and saponite at surficial temperatures requires a moderate supply of oxidants, allowing circum-neutral pH. The kinetics of olivine alteration suggest the presence of fluids for thousands to hundreds of

  19. Influence of swelling on reaction efficiency in intercalated clay minerals. 2. Pillared clays

    Energy Technology Data Exchange (ETDEWEB)

    Politowicz, P.A.; San Leung, L.B.; Kozak, J.J. (Australian National Univ., Canberra)


    Methods for intercalating thermally stable, polynuclear hydroxy metal cations and/or metal cluster cations in smectite clays have been developed in recent years as a means of keeping separate the silicate layers in the absence of a swelling solvent. Since the pillaring cations are space filling, the interlamellar reaction space will be broken up into an interconnected set of channels through which a diffusing species can migrate. In this paper, a lattice model is designed to determine how different spatial distributions of pillaring agents and different interlamellar spacings can influence the efficiency of reaction between a fixed target molecule and a diffusing coreactant. The authors study two regular distributions of pillaring cations and calculate the mean reaction time (as calibrated by the mean walklength ) of the diffusing coreactant as a function of the separation between silicate layers. All other factors being held constant, they find a significant increase in the reaction efficiency with increase in the number of channels available to the coreactant. They also find that for each distribution there is a decrease in reaction efficiency as one increases the interlayer spacing, with the surprising result that for large arrays the addition of one or two layers above the basal plane (where the target molecule is anchored at the centrosymmetric site) leads to essentially the same relative changes in the reaction efficiency regardless of the spatial distribution considered.

  20. Iron-rich clay minerals on Mars - Potential sources or sinks for hydrogen and indicators of hydrogen loss over time (United States)

    Burt, D. M.


    Although direct evidence is lacking, indirect evidence suggests that iron-rich clay minerals or poorly-ordered chemical equivalents are widespread on the Martian surface. Such clays can act as sources or sinks for hydrogen ('hydrogen sponges'). Ferrous clays can lose hydrogen and ferric clays gain it by the coupled substitution Fe(3+)O(Fe(2+)OH)-1, equivalent to minus atomic H. This 'oxy-clay' substitution involves only proton and electron migration through the crystal structure, and therefore occurs nondestructively and reversibly, at relatively low temperatures. The reversible, low-temperature nature of this reaction contrasts with the irreversible nature of destructive dehydroxylation (H2O loss) suffered by clays heated to high temperatures. In theory, metastable ferric oxy-clays formed by dehydrogenation of ferrous clays over geologic time could, if exposed to water vapor, extract the hydrogen from it, releasing oxygen.

  1. Structural Transformation of Clay Minerals by a New Molecular Dynamics Simulation Method (United States)

    Wang, Jianfeng; Gutierrez, Marte


    A MD simulation study of 2:1 clay minerals is carried out using a new MD simulation method which is capable of simulating a system under the most general external stress conditions by considering the changes of MD cell size and shape. The tensor defining the cell size and shape is correlated with the atomic level stress tensors (both internal and external) through a Lagrangian formulation. Due to this feature, the method is able to predict the crystal transformation of molecular structures which is compatible with the imposed external stress and boundary conditions. In this paper, the new method has been applied for the first time to the simulations of dehydrated montmorillonite sheets, and has successfully revealed unforeseen structural transformations of clay minerals upon relaxation under different normal stress conditions. In order to first achieve the correct coupled simulation of atomic structural change and MD cell deformation, parametric studies were made on the effects of the time step and the "imaginary" mass M of the MD cell on the model behavior. It is found that the time step essentially controls the convergence behavior of the system, while the "imaginary" mass M has large influences on the final equilibrated structure of the system. Results of the parametric study suggest that values of 1.0×10-17 sec for the time step and 1.0×105 for the "imaginary" mass M are appropriate for the simulation of 2:1 clay minerals using the current method. Simulation results reveal the strong correlations between the degrees of constraints imposed on the simulation cell (i.e., whether the cell size or shape change is allowed) and the final equilibrated crystal structure of clay minerals. It is found during the relaxation process that large shear distortions of clay minerals will occur if full allowance is given to the cell size and shape change, while large shear stress in the sheet plane will be retained if only the cell size change is allowed. These structural

  2. Influence of clay minerals on sorption and bioreduction of arsenic under anoxic conditions. (United States)

    Ghorbanzadeh, Nasrin; Lakzian, Amir; Halajnia, Akram; Kabra, Akhil N; Kurade, Mayur B; Lee, Dae S; Jeon, Byong-Hun


    Adsorption of As(V) on various clay minerals including kaolinite (KGa-1), montmorillonite (SWy-1) and nontronites (NAU-1 and NAU-2), and subsequent bioreduction of sorbed As(V) to As(III) by bacterium Shewanella putrefaciens strain CN-32 were investigated. Nontronites showed relatively higher sorption capacity for As(V) primarily due to higher iron oxide content. Freundlich equation well described the sorption of As(V) on NAU-1, NAU-2 and SWy-1, while As(V) sorption isotherm with KGa-1 fitted well in the Langmuir model. The bacterium rapidly reduced 50% of dissolved As(V) to As(III) in 2 h, followed by its complete reduction (>ca. 98%) within 12 h. In contrast, sorption of As(V) to the mineral surfaces interferes with the activity of bacterium, resulting in low bioreduction of As(V) by 27% for 5 days of incubation. S. putrefaciens also promoted the reduction of Fe(III) present in the clay mineral to Fe(II). This study indicates that the sorption and subsequent bioreduction of As(V) on clay minerals can significantly influence the mobility of As(V) in subsurface environment.

  3. Diversity of clay minerals in soils of solonetzic complexes in the southeast of Western Siberia (United States)

    Chizhikova, N. P.; Khitrov, N. B.


    Data on the mineralogical composition of clay in soils of solonetzic complexes of the Priobskoe Plateau and the Kulunda and Baraba lowlands have been generalized. The parent materials predominating in these regions have loamy and clayey textures and are characterized by the association of clay minerals represented by dioctahedral and trioctahedral mica-hydromica, chlorite, kaolinite, and a number of irregular interstratifications. They differ in the proportions between the major mineral phases and in the qualitative composition of the minerals. Mica-hydromica and chlorites with a small amount of smectitic phase predominate on the Priobskoe Plateau and in the Kulunda Lowland; in the Baraba Lowland, the portion of mica-smectite interstratifications is higher. An eluvial-illuvial distribution of clay fraction in solonetzes is accompanied by the acid-alkaline destruction and lessivage of clay minerals, including the smectitic phase in the superdispersed state. This results in the strong transformation of the mineralogical composition of the upper (suprasolonetzic) horizons and in the enrichment of the solonetzic horizons with the products of mineral destruction; superdispersed smectite; and undestroyed particles of hydromica, kaolinite, and chlorite from the suprasolonetzic horizons. A significant decrease in the content of smectitic phase in the surface solodic horizons of solonetzic complexes has different consequences in the studied regions. In the soils of the Priobskoe Plateau and Kulunda Lowland with a relatively low content (10-30%) of smectitic phase represented by chlorite-smectite interstratifications, this phase virtually disappears from the soils (there are only rare cases of its preservation). In the soils of the Baraba Lowland developed from the parent materials with the high content (30-50%) of smectitic phase represented by mica-smectite interstratifications, the similar decrease (by 10-20%) in the content of smectitic phase does not result in its

  4. Evaluation of mineral kaolinite present in portuguese clays for use in porcelain stoneware; Avaliacao do mineral caulinita presente em argilas portuguesas para uso em gres porcelanato

    Energy Technology Data Exchange (ETDEWEB)

    Luna da Silveira, G.C. [Instituto Federal do Rio Grande do Norte (IFRN), RN (Brazil); Acchar, W.; Gomes, U.U.; Luna da Silveira, R.V. [Universidade Federal do Rio Grnde do Norte (UFRN), RN (Brazil); Labrincha, A.; Miranda, C.M.P., E-mail: [Universidade de Aveiro (Portugal)


    Kaolinite is a mineral from the kaolin, product resulting from transformation in depth of alumino silicate mineral type, such as feldspars, plagioclase and feldspars contained in the rocks. Clays are raw materials that have as main characteristic the plasticity property, which gives the product, after applying a certain pressure, a defined shape and an increase in the mechanical resistance when they become from green to dry and then to sintered. Given these characteristics, this paper analyzes the presence of the existing mineral kaolinite in two portuguese clays who are used in the preparation of formulations of porcelain stoneware tiles. The analyzes of the two clays were made by fluorescence x-ray diffraction of x-rays, thermal analysis, particle size and scanning electron microscopy, to better use of this mineral in the formulations. In both clays were found aluminum oxide, as well as mineral quartz, kaolinite and illite. (author)

  5. Subsurface water and clay mineral formation during the early history of Mars. (United States)

    Ehlmann, Bethany L; Mustard, John F; Murchie, Scott L; Bibring, Jean-Pierre; Meunier, Alain; Fraeman, Abigail A; Langevin, Yves


    Clay minerals, recently discovered to be widespread in Mars's Noachian terrains, indicate long-duration interaction between water and rock over 3.7 billion years ago. Analysis of how they formed should indicate what environmental conditions prevailed on early Mars. If clays formed near the surface by weathering, as is common on Earth, their presence would indicate past surface conditions warmer and wetter than at present. However, available data instead indicate substantial Martian clay formation by hydrothermal groundwater circulation and a Noachian rock record dominated by evidence of subsurface waters. Cold, arid conditions with only transient surface water may have characterized Mars's surface for over 4 billion years, since the early-Noachian period, and the longest-duration aqueous, potentially habitable environments may have been in the subsurface.

  6. Microbial metabolism mediates interactions between dissolved organic matter and clay minerals in streamwater (United States)

    Hunter, W. R.; Battin, T. J.


    Sorption of organic molecules to mineral surfaces is an important control upon the aquatic carbon (C) cycle. Organo-mineral interactions are known to regulate the transport and burial of C within inland waters, yet the mechanisms that underlie these processes are poorly constrained. Streamwater contains a complex and dynamic mix of dissolved organic compounds that coexists with a range of organic and inorganic particles and microorganisms. To test how microbial metabolism and organo-mineral complexation alter amino acid and organic carbon fluxes we experimented with 13C-labelled amino acids and two common clay minerals (kaolinite and montmorillonite). The addition of 13C-labelled amino acids stimulated increased microbial activity. Amino acids were preferentially mineralized by the microbial community, concomitant with the leaching of other (non-labelled) dissolved organic molecules that were removed from solution by clay-mediated processes. We propose that microbial processes mediate the formation of organo-mineral particles in streamwater, with potential implications for the biochemical composition of organic matter transported through and buried within fluvial environments.

  7. [Preliminary characterization of clay minerals from four typical soils of Northeast China]. (United States)

    Juan, Ying-hua; Wu, Zhi-jie; Chen, Li-jun; Wang, Ren; Gong, Liang; Bao, Hong-jing; Liu, Yan


    The black soil, albic soil, brown soil and cinnamon soil in Northeast China were selected as research objects, and their mineral characteristics were evaluated with Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction spectroscopy (XRD), and scanning electron microscopy(SEM). The results showed that the mineral atlas of test soils were of montmorillonite type. Quartz was the main component of clay minerals in the four soils. Montmorillonite and high mountain stone had higher amounts in black soil and albic soil, and mica and high mountain stone were more in brown soil and cinnamon soil. Generally, the surface of mineral particles in black soil, brown soil and cinnamon soil seems to be of laminarization with significant un-uniformity, and compared with black soil, brown soil and cinnamon soil had more smooth surface. In contrast, the mineral particles in albic soil had distinct profile and smooth surface with some interstice. It was indicated that the components and characteristics of soil clay minerals could be analyzed by soil spectroscopy, and the related information to be obtained could be accurate and available.

  8. Features of Clay Minerals in the YSDP102 Core on the Continental Shelf of the Southeast Yellow Sea

    Institute of Scientific and Technical Information of China (English)

    JIANG Xuejun; QU Gaosheng; LI Shaoquan


    Ninety-eight clay mineral samples from the YSDP102 core were analyzed by x-ray diffractometer to study the four clay minerals: illite, chlorite, kaolinite and smectite. Twenty-eight samples had been analyzed on the laser particle-size analyzer to reveal the particle features of the sediments. Distribution of the clay minerals and the particle characteristics in the YSDP102 core show that the core experienced three different depositional periods and formed three different sedimentary intervals due to different sediment sources and different depositional environments. Features of the clay minerals and the heavy minerals in the YSDP102 core indicate that coarse-grained sediments and fine-grained sediments result from different sources. The Yellow Sea Warm Current has greatly influenced the sedimentary framework of this region since the current's formation.

  9. Removal of arsenic from aqueous solution by iron-coated sand and manganese-coated sand having different mineral types. (United States)

    Chang, Yoon-Young; Song, Ki-Hoon; Yu, Mok-Ryun; Yang, Jae-Kyu


    In this study, the effects of the coating temperature during the preparation of manganese-coated sand (MCS) and iron-coated sand (ICS) on the removals of As(III) and As(V) were evaluated. The mineral type of manganese oxide on MCS-150, prepared at 150 °C, was identified as a mixture of pyrolusite and ramsdellite, which changed to high crystalline pyrolusite above 300 °C. The mineral type of ICS-150, prepared at 150 °C, was a mixture of goethite and hematite, which changed to high crystalline goethite above 300 °C. The adsorption efficiency was determined according to the mineral type which depended on the coating temperature. The As(III) oxidation efficiency of MCS-150 and As(V) adsorption efficiency of ICS-150 were approximately 77 and 70% higher compared with those of MCS-600 and ICS-600, respectively, prepared at 600 °C. Regardless of the coating temperature, the amounts of manganese and iron coated on the sand substrates were similar.

  10. Crystal structure control of aluminized clay minerals on the mobility of caesium in contaminated soil environments. (United States)

    Dzene, Liva; Ferrage, Eric; Viennet, Jean-Christophe; Tertre, Emmanuel; Hubert, Fabien


    Radioactive caesium pollution resulting from Fukushima Dai-ichi and Chernobyl nuclear plant accidents involves strong interactions between Cs(+) and clays, especially vermiculite-type minerals. In acidic soil environments, such as in Fukushima area, vermiculite is subjected to weathering processes, resulting in aluminization. The crystal structure of aluminized clays and its implications for Cs(+) mobility in soils remain poorly understood due to the mixture of these minerals with other clays and organic matter. We performed acidic weathering of a vermiculite to mimic the aluminization process in soils. Combination of structure analysis and Cs(+) extractability measurements show that the increase of aluminization is accompanied by an increase in Cs(+) mobility. Crystal structure model for aluminized vermiculite is based on the interstratification of unaltered vermiculite layers and aluminized layers within the same particle. Cs(+) in vermiculite layers is poorly mobile, while the extractability of Cs(+) is greatly enhanced in aluminized layers. The overall reactivity of the weathered clay (cation exchange capacity, Cs(+) mobility) is then governed by the relative abundance of the two types of layers. The proposed layer model for aluminized vermiculite with two coexisting populations of caesium is of prime importance for predicting the fate of caesium in contaminated soil environments.

  11. Crystal structure control of aluminized clay minerals on the mobility of caesium in contaminated soil environments (United States)

    Dzene, Liva; Ferrage, Eric; Viennet, Jean-Christophe; Tertre, Emmanuel; Hubert, Fabien


    Radioactive caesium pollution resulting from Fukushima Dai-ichi and Chernobyl nuclear plant accidents involves strong interactions between Cs+ and clays, especially vermiculite-type minerals. In acidic soil environments, such as in Fukushima area, vermiculite is subjected to weathering processes, resulting in aluminization. The crystal structure of aluminized clays and its implications for Cs+ mobility in soils remain poorly understood due to the mixture of these minerals with other clays and organic matter. We performed acidic weathering of a vermiculite to mimic the aluminization process in soils. Combination of structure analysis and Cs+ extractability measurements show that the increase of aluminization is accompanied by an increase in Cs+ mobility. Crystal structure model for aluminized vermiculite is based on the interstratification of unaltered vermiculite layers and aluminized layers within the same particle. Cs+ in vermiculite layers is poorly mobile, while the extractability of Cs+ is greatly enhanced in aluminized layers. The overall reactivity of the weathered clay (cation exchange capacity, Cs+ mobility) is then governed by the relative abundance of the two types of layers. The proposed layer model for aluminized vermiculite with two coexisting populations of caesium is of prime importance for predicting the fate of caesium in contaminated soil environments. PMID:28233805

  12. Crystal structure control of aluminized clay minerals on the mobility of caesium in contaminated soil environments (United States)

    Dzene, Liva; Ferrage, Eric; Viennet, Jean-Christophe; Tertre, Emmanuel; Hubert, Fabien


    Radioactive caesium pollution resulting from Fukushima Dai-ichi and Chernobyl nuclear plant accidents involves strong interactions between Cs+ and clays, especially vermiculite-type minerals. In acidic soil environments, such as in Fukushima area, vermiculite is subjected to weathering processes, resulting in aluminization. The crystal structure of aluminized clays and its implications for Cs+ mobility in soils remain poorly understood due to the mixture of these minerals with other clays and organic matter. We performed acidic weathering of a vermiculite to mimic the aluminization process in soils. Combination of structure analysis and Cs+ extractability measurements show that the increase of aluminization is accompanied by an increase in Cs+ mobility. Crystal structure model for aluminized vermiculite is based on the interstratification of unaltered vermiculite layers and aluminized layers within the same particle. Cs+ in vermiculite layers is poorly mobile, while the extractability of Cs+ is greatly enhanced in aluminized layers. The overall reactivity of the weathered clay (cation exchange capacity, Cs+ mobility) is then governed by the relative abundance of the two types of layers. The proposed layer model for aluminized vermiculite with two coexisting populations of caesium is of prime importance for predicting the fate of caesium in contaminated soil environments.

  13. An update on synthetic dyes adsorption onto clay based minerals: A state-of-art review. (United States)

    Ngulube, Tholiso; Gumbo, Jabulani Ray; Masindi, Vhahangwele; Maity, Arjun


    Dyes are growing to be a problematic class of pollutants to the environment. The disposal of dyes in water resources has bad aesthetic and health effects, hence the need to remove them from the environment. The need for treatment methods that are effective and low in price is rising hence a lot of research interest is being diverted towards adsorbents that are cheap, preferable naturally occurring materials like clays. In most reported dye adsorption studies, limited information on the relationship between characterization results with adsorbent performance on dye removal has been given. This review article seeks to report on the link between the adsorption characteristics of the clays and their adsorption capacities and to gather information on the modifications done on clays to improve their adsorption capacities. A critical analysis of the different mechanisms involved during the decolouration process and their application for dye removal has been discussed in detail in this up-to-date review. From a wide range of consulted literature review, it is evident that some clays have appreciable adsorption capacities on top of being widely available. It was also noted that several parameters like contact time, dosage, concentration, temperature and pH affect the removal of dyes. Furthermore, the application of clay minerals for decolourising water represents economic viable and locally available materials that can be used substantially for pollution control and management. Conclusions were also drawn and suggestions for future research perspectives are proposed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Importance of Tetrahedral Iron during Microbial Reduction of Clay Mineral NAu-2 (United States)

    Shi, B.; Wu, L.; Liu, K.; Smeaton, C. M.; Li, W.; Beard, B. L.; Johnson, C.; Roden, E. E.; Van Cappellen, P.


    Transformations between Fe(II) and Fe(III) in ferruginous clay minerals significantly impact the physicochemical properties of soils and sediments, such as the ion exchange capacity and redox potential. An increasing number of studies have focused on clay minerals that undergo redox changes, however, none have so far addressed Fe isotope fractionation during these processes. In this study, Fe isotope fractionations were determined during microbial reduction of Fe(III) in nontronite NAu-2 with different concentrations of lactate. No secondary Fe-bearing minerals, including Fe oxides, were detected by SEM in over 100 days of incubation, suggesting that the measured fractionations only reflected the net isotope effect associated with the clay minerals. The initial reduction likely started from edge sites, and the reductive dissolution released aqueous Fe(II). Basal plane sorbed Fe(II) was detectable after the extent of Fe reduction exceeded 5% and extensive electron transfer and isotope exchange had occurred between basal plane sorbed Fe(II) and structural Fe(III). With lower concentrations of the lactate(40 mM), the maximum Fe isotope fractionation was larger (∆56Febasal Fe(II)-structure Fe(III)= -4.37‰), consistent with greater adsorption than in systems with more lactate. After the Fe in reactive sites was all reduced, isotope exchange between Fe(II) and structural Fe(III) was inhibited due to blockage of electron transfer pathways by the collapse of the clay layers. The results agree with another study in our group on microbial reduction of NAu-1, despite both the smaller extent of reduction (~10% vs. 22% max bioreduction for NAu-1 and NAu-2, respectively) and smaller isotope fractionation factor than for NAu-2. We speculate that tetrahedral Fe in NAu-2 may have accelerated the electron transfer between Fe atoms, thus inducing a higher extent of reduction and a larger Fe isotope fractionation compared to NAu-1.

  15. Spectral stratigraphy and clay minerals analysis in parts of Hellas Planitia, Mars


    Das, I. C.; J. Joseph; Subramanian, S. K.; V. K. Dadhwal


    Absorption features that occur in reflectance spectra are a sensitive indicator of mineralogy and chemical composition for a wide variety of materials. The investigation of the mineralogy and chemical composition of surfaces give information about the origin and evolution of planetary bodies. On Mars, the processes of formation of different types of clay minerals result from different types of wet conditions viz. hydrothermalism, subsurface/groundwater weathering, surface alteration ...

  16. Application of short-wave infrared (SWIR) spectroscopy in quantitative estimation of clay mineral contents (United States)

    You, Jinfeng; Xing, Lixin; Liang, Liheng; Pan, Jun; Meng, Tao


    Clay minerals are significant constituents of soil which are necessary for life. This paper studied three types of clay minerals, kaolinite, illite, and montmorillonite, for they are not only the most common soil forming materials, but also important indicators of soil expansion and shrinkage potential. These clay minerals showed diagnostic absorption bands resulting from vibrations of hydroxyl groups and structural water molecules in the SWIR wavelength region. The short-wave infrared reflectance spectra of the soil was obtained from a Portable Near Infrared Spectrometer (PNIS, spectrum range: 1300~2500 nm, interval: 2 nm). Due to the simplicity, quickness, and the non-destructiveness analysis, SWIR spectroscopy has been widely used in geological prospecting, chemical engineering and many other fields. The aim of this study was to use multiple linear regression (MLR) and partial least squares (PLS) regression to establish the optimizing quantitative estimation models of the kaolinite, illite and montmorillonite contents from soil reflectance spectra. Here, the soil reflectance spectra mainly refers to the spectral reflectivity of soil (SRS) corresponding to the absorption-band position (AP) of kaolinite, illite, and montmorillonite representative spectra from USGS spectral library, the SRS corresponding to the AP of soil spectral and soil overall spectrum reflectance values. The optimal estimation models of three kinds of clay mineral contents showed that the retrieval accuracy was satisfactory (Kaolinite content: a Root Mean Square Error of Calibration (RMSEC) of 1.671 with a coefficient of determination (R2) of 0.791; Illite content: a RMSEC of 1.126 with a R2 of 0.616; Montmorillonite content: a RMSEC of 1.814 with a R2 of 0.707). Thus, the reflectance spectra of soil obtained form PNIS could be used for quantitative estimation of kaolinite, illite and montmorillonite contents in soil.


    Directory of Open Access Journals (Sweden)

    Eliana Satiko Mano


    This study describes an optimized methodology to characterize a Cu-lateritic ore, mainly composed of Cu-bearing clay minerals. Cations saturations and particle sizes separation, combined with X-ray diffraction, mid infrared spectroscopy and scanning electron microscopy allow concluding that this Cu-lateritic ore is mainly composed of smectites, micas and kaolinite; furthermore, the copper is especially associated to mica and secondarily to smectite.

  18. Paleoenvironmental Implications of Clay Minerals at Yellowknife Bay, Gale Crater, Mars (United States)

    Bristow, Thomas F.; Blake, David F.


    The Mars Science Laboratory (MSL) Rover, Curiosity spent approx 150 sols at Yellowknife Bay (YKB) studying a section of fluvio-lacustrine sedimentary rocks (with potential indications of volcanic influence), informally known as the Yellowknife Bay formation. YKB lies in a distal region of the Peace Vallis alluvial fan, which extends from the northern rim of Gale Crater toward the dune field at the base of Mt Sharp. Sedimentological and stratigraphic observations are consistent with the Yellowknife Bay formation being part of a distal fan deposit, which could be as young as middle Hesperian to even early Amazonian in age (approx. 3.5 to 2.5 Ga). The Yellowknife Bay formation hosts a unit of mudstone called the Sheepbed member. Curiosity obtained powdered rock samples from two drill holes in the Sheepbed Member, named John Klein and Cumberland, and delivered them to instruments in Curiosity. Data from CheMin, a combined X-ray diffraction (XRD)/X-ray fluorescence instrument (XRF), has allowed detailed mineralogical analysis of mudstone powders revealing a clay mineral component of approx. 20 wt.% in each sample. The clay minerals are important indicators of paleoenvironmental conditions and sensitive recorders of post-depositional alteration processes. The XRD pattern of John Klein reveals a 02l band consistent with a trioctahedral phyllosilicate. A broad peak at approx. 10A with a slight inflexion at approx. 12A indicates the presence of 2:1 type clay minerals in the John Klein sample. The trioctahedral nature of the clay minerals, breadth of the basal reflection, and presence of a minor component with larger basal spacing suggests that John Klein contains a trioctahedral smectite (probably saponite), whose interlayer is largely collapsed because of the low-humidity conditions. The XRD patterns show no evidence of corrensite (mixed-layer chlorite/smectite) or chlorite, which are typical diagenetic products of trioctahedral smectites when subjected to burial and

  19. Relationship between heavy metal contents and clay mineral properties in surface sediments: Implications for metal pollution assessment (United States)

    Chen, Yueh-Min; Gao, Jin-bo; Yuan, Yong-Qiang; Ma, Jun; Yu, Shen


    Clay minerals in surface sediments can affect the adsorption of heavy metals. However, few historical studies have focused on the influence of fine clay mineral characteristics on metal sorption. Since the reactions between heavy metals and fine clay minerals in sediments remain obscure, this study investigates the influence of fine clay mineral characteristics on metal sorption in a typical urbanizing small watershed. Clay minerals, including nanoparticles with various size fractions ranging from 1000 to 2000 (clay), 450-1000 (fine clay), and 220-450 (very fine clay) nm were used to demonstrate their transformation from well crystalline to poorly crystalline. The nanoparticles were collected and evaluated by determination of their surface area, X-ray diffraction, scanning electron microscopy (SEM) and chemical analyses. The relationship between metal content and properties of the surface sediments was also revealed by canonical correlation analysis. With smaller particle sizes, nanoparticles (very fine clay) were observed to be poorly crystalline, possibly indicating few repetitions of unit cells as a result of preferential structural disruption of other crystal planes caused by pressure-induced phase transition in the fine-size fractions. The first canonical matrix (M) variables of metal contents can be predicted by both surface area and pore volume, followed by kaolinite and illite contents. On the other hand, the category of metal, i.e., Cu, Cr, Zn, or Pb, was significantly correlated with the first 'M' canonical variables. The data obtained in the present study are of fundamental significance in advancing our understanding of the reactions between heavy metals and fine clay minerals in the terrestrial ecosystem.

  20. Evaluation of the bleaching flux in clays containing hematite and different clay minerals; Avaliacao do fundente descolorante em argilas contendo hematita e diferentes argilominerais

    Energy Technology Data Exchange (ETDEWEB)

    Silva Junior, E.M.; Lusa, T.; Silva, T.M.; Medeiros, B.B.; Santos, G.R. dos [Universidade Tecnologica Federal do Parana (DAMEC/UFTPR), Pato Branco, PR (Brazil); Morelli, M.R., E-mail:, E-mail: [Universidade Federal de Sao Carlos (DEMa/PPGCEM/UFSCar), SP (Brazil)


    Previous studies have shown that the addition of a synthetic flux in a clay mineral constituted by illite phase in the presence of iron oxide with the hematite, promotes color change of the firing products, making the reddish color firing into whiteness. This flow is constituted of a vitreous phase of the silicates family obtained by fusion/solidification of oxides and carbonates. Thus, the objective of this work was that of studying the interaction of the iron element in the final color mechanism of the different types of mineral crystal phase of the clays. In order to study the phenomenon, we obtained different compositions between the select clays and the synthetic flow, and characterization using X-ray diffraction (XRD) and visual analysis. The results showed that the action of the synthetic flow as a modifying agent for color depends on the mineral crystal phase of the clays. The color firing modification does not occur in the clays content high levels of kaolinite mineral phase. (author)

  1. Internal Porosity of Mineral Coating Supports Microbial Activity in Rapid Sand Filters for Groundwater Treatment

    DEFF Research Database (Denmark)

    Gülay, Arda; Tatari, Karolina; Musovic, Sanin


    A mineral coating develops on the filter grain surface when groundwater is treated via rapid sand filtration in drinking water production. The coating changes the physical and chemical properties of the filter material, but little is known about its effect on the activity, colonization, diversity...... prokaryotes in filter material with various degrees of mineral coating. We also examined the physical and chemical characteristics of the mineral coating. The amount of mineral coating correlated positively with the internal porosity, the packed bulk density, and the biologically available surface area......, and abundance of microbiota. This study reveals that a mineral coating can positively affect the colonization and activity of microbial communities in rapid sand filters. To understand this effect, we investigated the abundance, spatial distribution, colonization, and diversity of all and of nitrifying...

  2. Effects of complexation between organic matter (OM) and clay mineral on OM pyrolysis (United States)

    Bu, Hongling; Yuan, Peng; Liu, Hongmei; Liu, Dong; Liu, Jinzhong; He, Hongping; Zhou, Junming; Song, Hongzhe; Li, Zhaohui


    The stability and persistence of organic matter (OM) in source rocks are of great significance for hydrocarbon generation and the global carbon cycle. Clay-OM associations commonly occur in sedimentation and diagenesis processes and can influence the pyrolytic behaviors of OM. In this study, clay-OM complexes, i.e., interlayer clay-OM complexes and clay-OM mixture, were prepared and exposed to high-pressure pyrolysis conditions in confined gold capsule reactors to assess variations in OM pyrolysis products in the presence of clay minerals. Three model organic compounds, octadecanoic acid (OA), octadecy trimethyl ammonium bromide (OTAB), and octadecylamine (ODA), were employed and montmorillonite (Mt) was selected as the representative clay mineral. The solid acidity of Mt plays a key role in affecting the amount and composition of the pyrolysis gases generated by the clay-OM complexes. The Brønsted acid sites significantly promote the cracking of hydrocarbons through a carbocation mechanism and the isomerization of normal hydrocarbons. The Lewis acid sites are primarily involved in the decarboxylation reaction during pyrolysis and are responsible for CO2 generation. Mt exhibits either a catalysis effect or pyrolysis-inhibiting during pyrolysis of a given OM depending on the nature of the model organic compound and the nature of the clay-OM complexation. The amounts of C1-5 hydrocarbons and CO2 that are released from the Mt-OA and Mt-ODA complexes were higher than those of the parent OA and ODA, respectively, indicating a catalysis effect of Mt. In contrast, the amount of C1-5 hydrocarbons produced from the pyrolysis of Mt-OTAB complexes was lower than that of OTAB, which we attribute to an inhibiting effect of Mt. This pyrolysis-inhibiting effect works through the Hoffmann elimination that is promoted by the catalysis of the Brønsted acid sites of Mt, therefore releasing smaller amounts of gas hydrocarbons than the nucleophilic reaction that is induced by the

  3. Significance of saturation index of certain clay minerals in shallow coastal groundwater, in and around Kalpakkam, Tamil Nadu, India

    Indian Academy of Sciences (India)

    S Chidambaram; U Karmegam; P Sasidhar; M V Prasanna; R Manivannan; S Arunachalam; S Manikandan; P Anandhan


    The saturation index of clay minerals like Gibbsite, Kaolinite, Illite, Montmorillonite and Chlorite in groundwater were studied in detail by collecting 29 groundwater samples from the shallow coastal aquifers in and around Kalpakkam. The samples collected were analysed for major cations, anions and trace elements by using standard procedures. The study reveals that pH has a significant role in the saturation index (SI) of minerals. It also shows that the relationship of electrical conductivity to the SI of these minerals is not significant than that of the ionic strength, log pCO2 values, and alumina silica ratio have significant relation to the SI of these clay minerals. The SI of these clay minerals was spatially distributed to identify the areas of higher SI. Silica has good correlation to SI of Kaolinite, Gibbsite and Montmorillonite and Al has good correlation to SI of all the minerals except to that of Chlorite.

  4. Mineral carbonation of gaseous carbon dioxide using a clay-hosted cation exchange reaction. (United States)

    Kang, Il-Mo; Roh, Ki-Min


    The mineral carbonation method is still a challenge in practical application owing to: (1) slow reaction kinetics, (2) high reaction temperature, and (3) continuous mineral consumption. These constraints stem from the mode of supplying alkaline earth metals through mineral acidification and dissolution. Here, we attempt to mineralize gaseous carbon dioxide into calcium carbonate, using a cation exchange reaction of vermiculite (a species of expandable clay minerals). The mineralization is operated by draining NaCI solution through vermiculite powders and continuously dropping into the pool of NaOH solution with CO2 gas injected. The mineralization temperature is regulated here at 293 and 333 K for 15 min. As a result of characterization, using an X-ray powder diffractometer and a scanning electron microscopy, two types of pure CaCO3 polymorphs (vaterite and calcite) are identified as main reaction products. Their abundance and morphology are heavily dependent on the mineralization temperature. Noticeably, spindle-shaped vaterite, which is quite different from a typical vaterite morphology (polycrystalline spherulite), forms predominantly at 333 K (approximately 98 wt%).

  5. Clay minerals as palaeomonsoon proxies: Evaluation and relevance to the late Quaternary records from SE Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Thamban, M.; Rao, V.P.

    as palaeoclimatic proxies are evaluated and discussed. Systematic investigations using several sediment cores from the SE Arabian Sea reveal that despite the influence of several complicating factors, variations in clay mineral composition during the late Quaternary...

  6. Clay mineral distribution in the shelf sediments off the northern part of the east coast of india

    Digital Repository Service at National Institute of Oceanography (India)

    Rao, V.P.; Reddy, N.P.C.; Rao, Ch.M.

    Forty-eight sediment samples from the continental shelf between Visakhapatnam and the Ganges were analysed by X-ray diffraction for the composition and distribution of clay minerals. Estuarine samples of the Hooghly are dominated by illite...

  7. Broad-spectrum in vitro antibacterial activities of clay minerals against antibiotic-susceptible and antibiotic-resistant bacterial pathogens

    National Research Council Canada - National Science Library

    Haydel, Shelley E; Remenih, Christine M; Williams, Lynda B

    .... The use of geological nanomaterials to heal skin infections has been evident since the earliest recorded history, and specific clay minerals may prove valuable in the treatment of bacterial diseases...

  8. The First X-ray Diffraction Patterns of Clay Minerals from Gale Crater (United States)

    Bristow, Thomas; Blake, David; Bish, David L.; Vaniman, David; Ming, Douglas W.; Morris, Richard V.; Chipera, Steve; Rampe, Elizabeth B.; Farmer, Jack, D.; Treiman, Allan H; hide


    The Mars Science Laboratory (MSL) Rover, Curiosity spent approx 150 sols at Yellowknife Bay (YKB) studying a section of fluvio-lacustrine sedimentary rocks (with potential indications of volcanic influence), informally known as the Yellowknife Bay formation. YKB lies in a distal region of the Peace Vallis alluvial fan, which extends from the northern rim of Gale Crater toward the dune field at the base of Mt Sharp. Sedimentological and stratigraphic observations are consistent with the Yellowknife Bay formation being part of a distal fan deposit, which could be as young as middle Hesperian to even early Amazonian in age (approx 3.5 to 2.5 Ga). The Yellowknife Bay formation hosts a unit of mudstone called the Sheepbed member. Curiosity obtained powdered rock samples from two drill holes in the Sheepbed Member, named John Klein and Cumberland, and delivered them to instruments in Curiosity. Data from CheMin, a combined X-ray diffraction (XRD)/X-ray fluorescence instrument (XRF), has allowed detailed mineralogical analysis of mudstone powders revealing a clay mineral component of approx 20 wt.% in each sample. The clay minerals are important indicators of paleoenvironmental conditions and sensitive recorders of post-depositional alteration processes. The XRD pattern of John Klein reveals a 021 band consistent with a trioctahedral phyllosilicate. A broad peak at approx 10A with a slight inflexion at approx 12A indicates the presence of 2:1 type clay minerals in the John Klein sample. The trioctahedral nature of the clay minerals, breadth of the basal reflection, and presence of a minor component with larger basal spacing suggests that John Klein contains a trioctahedral smectite (probably saponite), whose interlayer is largely collapsed because of the low-humidity conditions. The XRD patterns show no evidence of corrensite (mixed-layer chlorite/smectite) or chlorite, which are typical diagenetic products of trioctahedral smectites when subjected to burial and heating

  9. [Effect of treatments of hydrogen peroxide and sodium dithionite-citrate-bicarbonate on clay minerals of red earth sediments]. (United States)

    Li, Rong-Biao; Hong, Han-Lie; Yin, Ke; Wang, Chao-Wen; Gao, Wen-Peng; Han, Wen; Wu, Qing-Feng


    As classical procedures for pretreatment of soil sediments, hydrogen peroxide (H2O2) and sodium dithionite-citrate-bicarbonate (DCB) treatment methods are very important in removing the organic matter and iron oxides acting as cementing agents in the soils. However, both of these methods have less been focused on the effect on the clay minerals when separating. Here, we report the comparable methods between H2O2 and DCB to reveal their effect on clay minerals in red earth sediments using X-ray diffraction (XRD). The XRD results suggested that mineral particles can be totally decentralized by either H2O2 or DCB method in the soils and high purity clay minerals can be obtained by separating quartz and other impurities from clay minerals effectively. However, the XRD data were distorted by the DCB treatment owning to the cation exchange between Na+ and interlayer cation. On the contrary, the authentic data can be obtained by H2O2 treatment. Therefore, the H2O2 treatment seems to be a more appropriate method to obtain authentic information of clay mineralogy when separating of clay minerals from red earth sediments.

  10. Climatic control on clay mineral formation: Evidence from weathering profiles developed on either side of the Western Ghats

    Indian Academy of Sciences (India)

    R Deepthy; S Balakrishnan


    Many physico-chemical variables like rock-type,climate,topography and exposure age affect weathering environments.In the present study,an attempt is made to understand how the nature of clay minerals formed due to weathering differs in tropical regions receiving high and low rainfall. Clay mineralogy of weathering pro files in west coast of India,which receives about 3 m rainfall through two monsoons and those from the inland rain-shadow zones (> 200 cm rainfall)are studied using X-ray diffraction technique.In the west coast,1:1 clays (kaolinite)and Fe –Al oxides (gibb-site/goethite)are dominant clay minerals in the weathering pro files while 2:1 clay minerals are absent or found only in trace amounts.Weathering pro files in the rain shadow region have more complex clay mineralogy and are dominated by 2:1 clays and kaolinite.Fe –Al oxides are either less or absent in clay fraction.The kaolinite –smectite interstrati fied mineral in Banasandra pro files are formed due to transformation of smectites to kaolinite,which is indicative of a humid paleo-climate. In tropical regions receiving high rainfall the clay mineral assemblage remains the same irrespective of the parent rock type.Rainfall and availability of water apart from temperature, are the most important factors that determine kinetics of chemical weathering.Mineral alteration reactions proceed through different pathways in water rich and water poor environments.

  11. Transmission X-ray Microscopy—A New Tool in Clay Mineral Floccules Characterization

    Directory of Open Access Journals (Sweden)

    Ray L. Frost


    Full Text Available Effective flocculation and dewatering of mineral processing streams containing clays are microstructure dependent in clay-water systems. Initial clay flocculation is crucial in the design and for the development of a new methodology of gas exploitation. Microstructural engineering of clay aggregates using covalent cations and Keggin macromolecules have been monitored using the new state of the art Transmission X-ray Microscope (TXM with 60 nm tomography resolution installed in a Taiwanese synchrotron. The 3-D reconstructions from TXM images show complex aggregation structures in montmorillonite aqueous suspensions after treatment with Na+, Ca2+ and Al13 Keggin macromolecules. Na-montmorillonite displays elongated, parallel, well-orientated and closed-void cellular networks, 0.5–3 µm in diameter. After treatment by covalent cations, the coagulated structure displays much smaller, randomly orientated and openly connected cells, 300–600 nm in diameter. The average distances measured between montmorillonite sheets was around 450 nm, which is less than half of the cell dimension measured in Na-montmorillonite. The most dramatic structural changes were observed after treatment by Al13 Keggin; aggregates then became arranged in compacted domains of a 300 nm average diameter composed of thick face-to-face oriented sheets, which forms porous aggregates with larger intra-aggregate open and connected voids.

  12. Comparison of revegetation techniques on mineral clay soil: analysis of quantitative response of vegetation cover

    Directory of Open Access Journals (Sweden)

    Enrico Muzzi


    Full Text Available Revegetation of mineral-clay soils is a notably complex ecological and technically challenging undertaking that depends on substrate profile and local micro-environmental conditions, factors making it a particularly long procedure as well. This study compared and assessed the medium-term effectiveness of four treatments employed to promote stable pedogenesis and herbaceous recolonisation of abandoned clay quarries in the Apennine foothills of northern Italy’s Emilia- Romagna region. The treatments included: slow-release N organic fertiliser, phosphate fertiliser, organic amendment and topsoil [the soil top layer (0-0.2 m of a local natural meadow]. The state of the vegetative cover was monitored monthly from 1994 through 2004, until problems of slope stability at the site compromised the integrity of the trial plots. Significant effects were achieved by the recycled topsoil through 8 years and by organic amendment through 6 years; the effects of slow-release nitrogen were notably limited over time and phosphorous delivered a medium-term response but of notable year-toyear swings. No interactions among factors emerged in the mediumterm. After 11 years, treatments did not induce effects statistical appreciable. Our results suggest that the tested agronomic strategies on mineral clay soil did not trigger, in the medium-term, secondary succession processes able to potentially alter the spontaneous revegetation course.

  13. Cesium Diffusion through Angstrom-Scale Open Spaces in Clay Minerals (United States)

    Fujimoto, Koichiro; Sato, Kiminori; Nakata, Masataka


    Saponite clay minerals possess the local molecular structures, where one and two nanosheets are inserted into interlayer spaces forming open spaces with their sizes of ˜3 and ˜9 Å, respectively. Here, Cs diffusion via the above-mentioned open spaces is highlighted based on the results of open space analysis using positronium (Ps) lifetime spectroscopy coupled with a conventional diffusion experiment. A population of Cs is found to significantly migrate in the saponite clay yielding a diffusion coefficient of ˜2.0 × 10-7 cm2 s-1 with an application of Fick's second law, which arises from overall diffusion contributed from open spaces with a variety of sizes. On the other hand, the diffusion coefficient solely attributable to the angstrom-scale open space is ˜2.5 × 10-8 cm2 s-1, which amounts to more than ˜10% than that of overall diffusion.

  14. Removal of phosphate ions from aqueous solution using Tunisian clays minerals and synthetic zeolite

    Institute of Scientific and Technical Information of China (English)

    Noureddine Hamdi; Ezzeddine Srasra


    Phosphate ions are usually considered to be responsible for the algal bloom in receiving water bodies and aesthetic problems in water.From the environmental point of view,the management of such contaminant and valuable resource is very important.The present work deals with the removal of phosphate ions from aqueous solutions using kaolinitic and smectic clay minerals and synthetic zeolite as adsorbent.The pH effect and adsorption kinetic were studied.It was found that phosphate could be efficiently removed at acidic pH (between 4 and 6) and the second order model of kinetics is more adopted for all samples.The isotherms of adsorption of phosphate ions by the two clays and the zeolite samples show that the zeolite has the highest rate of uptake (52.9 mg P/g).Equilibrium data were well fitted with Langmuir and Freundlich isotherm.

  15. Sequestered carbon on clay mineral probed by electron paramagnetic resonance and X-ray photoelectron spectroscopy. (United States)

    Lombardi, Kátia Cylene; Mangrich, Antonio Salvio; Wypych, Fernando; Rodrigues-Filho, Ubirajara Pereira; Guimarães, José L; Schreiner, Wido H


    This paper describes the interaction among soil organic matter components with kaolinite, an important clay mineral present in tropical soils, especially in Brazil. XPS data show that the soil organic matter adsorbed on kaolinite has aromatic and aliphatic structures, with phenolic and/or alcoholic functions and carbonyl carbons (CO) of amide and/or carboxylic groups. The N1s spectrum of the kaolinite shows an asymmetric peak that is assigned to amide and protonated ammines probably from humin. The interaction between them is strong enough to resist chemical oxidative or reductive attack besides loose amide functionalities. EPR data show that reductive treatment reduces some Fe3+ of the kaolinite structure, loosing organic components. A schematic representation of the reduction of structural Fe3+ in the concentrated domains and consequently increased concentration of Fe3+ ions in diluted domains of the spectrum is presented. This reinforces the hypothesis that humin is a stable carbon sink in soils when adsorbed to clays.

  16. Molecular simulation of carbon dioxide, brine, and clay mineral interactions and determination of contact angles. (United States)

    Tenney, Craig M; Cygan, Randall T


    Capture and subsequent geologic storage of CO2 in deep brine reservoirs plays a significant role in plans to reduce atmospheric carbon emission and resulting global climate change. The interaction of CO2 and brine species with mineral surfaces controls the ultimate fate of injected CO2 at the nanoscale via geochemistry, at the pore-scale via capillary trapping, and at the field-scale via relative permeability. We used large-scale molecular dynamics simulations to study the behavior of supercritical CO2 and aqueous fluids on both the hydrophilic and hydrophobic basal surfaces of kaolinite, a common clay mineral. In the presence of a bulk aqueous phase, supercritical CO2 forms a nonwetting droplet above the hydrophilic surface of kaolinite. This CO2 droplet is separated from the mineral surface by distinct layers of water, which prevent the CO2 droplet from interacting directly with the mineral surface. Conversely, both CO2 and H2O molecules interact directly with the hydrophobic surface of kaolinite. In the presence of bulk supercritical CO2, nonwetting aqueous droplets interact with the hydrophobic surface of kaolinite via a mixture of adsorbed CO2 and H2O molecules. Because nucleation and precipitation of minerals should depend strongly on the local distribution of CO2, H2O, and ion species, these nanoscale surface interactions are expected to influence long-term mineralization of injected carbon dioxide.

  17. Evidence for microbial liberation of structurally-coordinated iron in clay minerals as a nutrient source in the world ocean (United States)

    Metcalfe, K. S.; Gaines, R. R.; Trang, J.; Scott, S.; Crane, E. J.; Lackey, J.; Prokopenko, M. G.; Berelson, W.


    Clay minerals are the most abundant materials found at the surface of earth and they are the primary constituents of marine sediments. Iron, a limiting nutrient in many marine settings, is a common constituent of clay minerals. Recent in vitro experimental evidence has shown that lab cultures of Fe-reducing bacteria are able to utilize structurally-bound Fe from the crystal lattice of nontronite, an uncommon and particularly Fe-rich (> 12 wt.%) smectitie. Reduction of structurally-coordinated Fe results in both the liberation of Fe(II) to solution, where it is available for other biotic processes, as well as the transformation of smectite to illite. However, it remains unclear: 1. whether Fe-reducers are able to access structurally coordinated Fe found at low wt.% in common clay minerals; and 2. if naturally occuring populations of Fe-reducers are able to reduce structurally coordinated Fe as are some lab strains. In order to address these questions, we conducted in vitro experiments using a suite of sixteen clay minerals with low (0.8 wt.%) to high (13.9 wt.%) Fe concentrations. Clays were treated with Na-dithionite solution to remove surface-bound Fe, isolating for study Fe sourced from within the clay crystal lattice. Experimental evidence clearly indicates that, under in vitro conditions, Fe(III) bound in common clay minerals is available for reduction by the lab strain Shewanella oneidensis MR-1 as well as by naturally-occuring consortia of Fe-reducers cultured from the San Pedro and Santa Monica Basins. Our findings suggest that common clay minerals may represent a large and previously unrecognized pool of bioavailable Fe in the world ocean that contributes significantly to biogeochemical cycling of Fe and C.

  18. Adsorption ability of rare earth elements on clay minerals and its practical performance

    Institute of Scientific and Technical Information of China (English)

    肖燕飞; 龙志奇; 黄莉; 冯宗玉; 王良士


    The adsorption behaviors of rare earth elements on clay minerals would have great influence on the mineralization process and the leaching process of the ion-adsorption type rare earths ore. In this work, the adsorption thermodynamics of REEs on kaolin were investigated thoroughly and systematically. The experimental results showed that the adsorption characteristics of La, Nd, Y on kaolin did fit well with the Langmuir isotherm model and their saturated adsorption capacities were 1.731, 1.587 and 0.971 mg/g, re-spectively. The free energy change (ΔG) values were –16.91 kJ/mol (La), –16.05 kJ/mol (Nd) and –15.58 kJ/mol (Y), respectively. The negative values ofΔG demonstrated that the adsorption of rare earth on kaolin was a spontaneously physisorption process. The deposit characteristic of the volcanic ion-adsorption type rare earths ore and the behavior of the rare earth in the column leaching process were also developed here. With the increase of the ore body depth, the distribution of the LREEs decreased and the HREEs increased. And the slight differences in the adsorption ability of REEs on clay minerals led to the fractionation effect in the column leaching process. These developed more evidences and better understanding of metallogenic regularity, and provided a theoretical ba-sis and scientific approach to separation of the HREEs and LREEs in the leaching process.

  19. [Research on characteristics of soil clay mineral evolution in paddy field and dry land by XRD spectrum]. (United States)

    Zhang, Zhi-dan; Li, Qiao; Luo, Xiang-li; Jiang, Hai-chao; Zheng, Qing-fu; Zhao, Lan-po; Wang, Ji-hong


    The present paper took the typical saline-alkali soil in Jilin province as study object, and determinated the soil clay mineral composition characteristics of soil in paddy field and dry land. Then XRD spectrum was used to analyze the evolutionary mechanism of clay mineral in the two kinds of soil. The results showed that the physical and chemical properties of soil in paddy field were better than those in dry land, and paddy field would promote the weathering of mineral particles in saline-alkali soil and enhance the silt content. Paddy field soil showed a strong potassium-removal process, with a higher degree of clay mineral hydration and lower degree of illite crystallinity. Analysis of XRD spectrum showed that the clay mineral composition was similar in two kinds of soil, while the intensity and position of diffraction peak showed difference. The evolution process of clay mineral in dry land was S/I mixture-->vermiculite, while in paddy field it was S/I mixture-->vermiculite-->kaolinite. One kind of hydroxylated 'chlorite' mineral would appear in saline-alkali soil in long-term cultivated paddy field. Taking into account that the physical and chemical properties of soil in paddy field were better then those in dry land, we could know that paddy field could help much improve soil structure, cultivate high-fertility soil and improve saline-alkali soil. This paper used XRD spectrum to determine the characteristics of clay minerals comprehensively, and analyzed two'kinds of land use comparatively, and was a new perspective of soil minerals study.

  20. Quantitative XRD HW-IR plot for clay mineral domain size and lattice strain analyses (United States)

    Wang, H. J.; Chen, D. Z.; Zhou, J.; Chen, T.; Wang, H.; Zhang, Z. Q.


    Based on integral-breadth method, the one of three basic XRD methods (Klug &Alexander, 1974), authors (2000) proposed a qualitative half width (HW)-intensity ratio (IR) plot for clay mineral domain size and lattice strain analyses. In this study, the quantitative HW-IR plot is further developed on the basis of i) the curve relation between the Voigt function and the Pearson VII function; ii) the relationship between the Kübler index and the Weaver index. By numerical simulating, it is derived a curve relation between shape indexes k of the Voigt function and u of the Pearson VII function. With this curve relation, k and u can be converted each other in an accuracy of ten thousandth and therefore the domain size and the lattice strain contributions can be precisely separated from an XRD peak according to Langford's (1978) formula. For micaceous minerals, the HW-IR plot requires only a pair of values of the Kübler index and the Weaver index from 1nm reflection. For other clay minerals, the plot needs a pair of values of the (00l) peak's half width and intensity ratio IR. IR is a ratio of peak maximum to the intensity at the position of maximum minus 0.422oΔ2Θ in CuKα radiation. This quantitative plot renders a mean dimension of clay particles perpendicular to the reflection plane (00l) and an approximate upper limit strain normal to d001. The accuracy for domain size analysis reaches one tenth of nanometre and that for the lattice strain analysis is in ten thousandth respectively. This plot method can be widely used with any digital X-ray diffractometer, whose XRD data can be converted into text format. Excel 5.0 or latter versions in both English and Chinese can well support the HW-IR plot. This study was supported by NNSFC (Grant No 40272022)

  1. Evacuation of sand from the equine intestine with mineral oil, with and without psyllium. (United States)

    Hotwagner, K; Iben, C


    The aim of this study was to determine the evacuation of sand from the equine intestine after a double treatment with psyllium and mineral oil or mineral oil only. A crossover study was conducted. Twelve healthy horses were fed 1 kg sand once a day for 5 days. Subsequently, these horses were divided into two groups: A and B. From day 6-10, both groups were treated with 2 l of mineral oil once a day and group B received an additional 0.5 kg of psyllium twice a day. The trial was repeated after 2 weeks with treatment crossover of groups A and B. The horses were housed sand free and 1.8 kg hay/100 kg body weight was offered to meet the maintenance energy requirement. Prior to the sand administration, faeces were collected from each horse for 3 days and the crude ash was determined to establish a baseline output of ash. There was no difference between the baseline crude ash output of the first and second treatment. From day 6-10, faeces were collected daily and the fresh weight and the dry matter and the crude ash contents were determined. For administration, sand or psyllium was mixed with 1 l of Irish mash (concentrate mixed with water), respectively, and mineral oil was administered via a nasogastric tube. All horses showed higher crude ash excretion when treated with psyllium and mineral oil compared with the mineral oil administration only. On the second, third and fourth day of the treatment, the difference was significant. Faeces crude ash weight corrected for baseline crude ash output while treated with psyllium plus oil and oil solely, reached a mean of 51.0 (SD 20.5) and 26.1 (SD 17.7) % of the administered sand mass, respectively. The results of this trial show that the ash output differed highly between the horses. Nevertheless, all horses showed a higher total ash output within the 5 days treatment period when the psyllium semen and mineral oil were used for the treatment than when treated with mineral oil solely.

  2. Potential Sites for Ice Nucleation on Aluminosilicate Clay Minerals and Related Materials. (United States)

    Freedman, Miriam Arak


    Few aerosol particles in clouds nucleate the formation of ice. The surface sites available for nucleus formation, which can include surface defects and functional groups, determine in part the activity of an aerosol particle toward ice formation. Although ice nucleation on particles has been widely studied, exploration of the specific sites at which the initial germ forms has been limited, but is important for predicting the microphysical properties of clouds, which impact climate. This Perspective focuses on what is currently known about surface sites for ice nucleation on aluminosilicate clay minerals, which are commonly found in ice residuals, as well as related materials.

  3. Clay minerals assemblage in the Neogene fluvial succession of the Pishin Belt, Pakistan

    DEFF Research Database (Denmark)

    Kasi, Aimal Khan; Kassi, Akhtar Muhammad; Friis, Henrik


    and kaolinite. Smectite and chlorite are most probably derived from the metavolcanic and mafic volcanic rocks, respectively. Presence of serpentine in samples of the Bostan Formation indicates altered ultramafic rocks as one of the source terrains. Illite is probably recycled from the older sedimentary...... and metasedimentary successions. The source of kaolinite seems to be pedogenic or lateritic. The clay minerals assemblage in mudstones and sandstones of the Dasht Murgha group, Malthanai formation and Bostan formation appears to have been derived from the nearby-exposed Pre-Miocence mafic/ultramafic rocks...

  4. The application of power ultrasound to the surface cleaning of silica and heavy mineral sands. (United States)

    Farmer, A D; Collings, A F; Jameson, G J


    Power ultrasound may be used in the processing of minerals to clean their surfaces of oxidation products and fine coatings, mainly through the large, but very localised, forces produced by cavitation. Results of the application of power ultrasound to remove iron-rich coatings from the surfaces of silica sand used in glass making and to improve the electrostatic separation of mineral sand concentrates through lowering the resistivity of the conducting minerals (ilmenite and rutile) are presented. Parameters affecting ultrasonic cleaning, such as input power and levels of reagent addition, are discussed. In particular, we present data showing the relationship between power input and the particle size of surface coatings removed. This can be explained by the Derjaguin approximation for the energy of interaction between a sphere and a flat surface.

  5. Spectral Induced Polarization Signatures of Ethanol in Sand-Clay Medium (United States)

    The spectral Induced Polarization (SIP) method has previously been investigated as a tool for detecting physicochemical changes occurring as result of clay-organic interactions in porous media. We performed SIP measurements with a dynamic signal analyzer (NI-4551) on laboratory ...

  6. Modified centroid for estimating sand, silt and clay from soil texture class (United States)

    Models that require inputs of soil particle size commonly use soil texture class for input; however, texture classes do not represent the continuum of soil size fractions. Soil texture class and clay percentage are collected as a standard practice for many land management agencies (e.g., NRCS, BLM, ...

  7. Development and evaluation of a new sorption model for organic cations in soil: contributions from organic matter and clay minerals. (United States)

    Droge, Steven T J; Goss, Kai-Uwe


    This study evaluates a newly proposed cation-exchange model that defines the sorption of organic cations to soil as a summed contribution of sorption to organic matter (OM) and sorption to phyllosilicate clay minerals. Sorption to OM is normalized to the fraction organic carbon (fOC), and sorption to clay is normalized to the estimated cation-exchange capacity attributed to clay minerals (CECCLAY). Sorption affinity is specified to a fixed medium composition, with correction factors for other electrolyte concentrations. The model applies measured sorption coefficients to one reference OM material and one clay mineral. If measured values are absent, then empirical relationships are available on the basis of molecular volume and amine type in combination with corrective increments for specific polar moieties. The model is tested using new sorption data generated at pH 6 for two Eurosoils, one enriched in clay and the other, OM, using 29 strong bases (pKa > 8). Using experimental data on reference materials for all tested compounds, model predictions for the two soils differed on average by only -0.1 ± 0.4 log units from measured sorption affinities. Within the chemical applicability domain, the model can also be applied successfully to various reported soil sorption data for organic cations. Particularly for clayish soils, the model shows that sorption of organic cations to clay minerals accounts for more than 90% of the overall affinity.

  8. Clay minerals and geochemistry of the bottom sediments in the northwestern East China Sea

    Institute of Scientific and Technical Information of China (English)


    Clay minerals of 34 sediments collected from the northwestern continental shelf of the East China Sea have been determined by X-ray diffraction analysis. The clay mineral distribution is mainly controlled by the sediment source and the dominant circulation pattern. The predominant clay mineral in our study area is illite comprising more than 67% of the whole clay fraction. The highest concentration of illite (>68%) is found in the southeastern offshore parts beyond the reach of terrigenous input from the Jeju Island. It means that these illites are largely transported by the Kuroshio Current from the South China Sea (SCS). Smectite is highly concentrated in the northwest middle part and in the outer-shelf mud patch. It seems to be due to the high supply of smectite transported from China where fine-grained sediments are discharged from modern and ancient Huanghe (Yellow) River. The relatively high abundant kaolinite is likely derived from the Changjiang (Yangtze) River via the Taiwan Warm Current. In contrast,large amounts of chlorite and high chlorite/kaolinite ratios occur in the northwestern area, reflecting the transportation by the Yellow Sea Coastal Current from the southern Yellow Sea. The discrimination diagrams clearly show that the sediments in the northwestern East China Sea are ultimately sourced from Chinese rivers, especially from the Huanghe River, whereas the sediment in the northeast part might come from the Jeju Island. The muddy sediments of the Changjiang River's submerged delta have much lower 87Sr/86Sr ratios (0.7162-0.7180) than those of the Shandong Peninsular mud wedge (0.7216-0.7249),which are supposed to be originated from the Huanghe River, suggesting the distribution pattern of 87Sr/86Sr ratios as a new tracer to discriminate the provenance of shelf sediments in the study area. The 87Sr/86Sr ratios of the outer-shelf muddy sediments ranged from 0.7169 to 0.7216 in a wide range and was between those of the Huanghe River and Changjiang

  9. Removal of polycyclic aromatic hydrocarbons (PAHs) from inorganic clay mineral: Bentonite. (United States)

    Karaca, Gizem; Baskaya, Hüseyin S; Tasdemir, Yücel


    There has been limited study of the removal of polycyclic aromatic hydrocarbons (PAHs) from inorganic clay minerals. Determining the amount of PAH removal is important in predicting their environmental fate. This study was carried out to the degradation and evaporation of PAHs from bentonite, which is an inorganic clay mineral. UV apparatus was designed specifically for the experiments. The impacts of temperature, UV, titanium dioxide (TiO2), and diethylamine (DEA) on PAH removal were determined. After 24 h, 75 and 44 % of ∑12 PAH in the bentonite were removed with and without UV rays, respectively. DEA was more effective as a photocatalyst than TiO2 during UV application. The ∑12 PAH removal ratio reached 88 % with the addition of DEA to the bentonite. It was concluded that PAHs were photodegraded at high ratios when the bentonite samples were exposed to UV radiation in the presence of a photocatalyst. At the end of all the PAH removal applications, higher evaporation ratios were obtained for 3-ring compounds than for heavier ones. More than 60 % of the amount of ∑12 PAH evaporated consisted of 3-ring compounds.

  10. Effect of clay minerals and nanoparticles on chromium fractionation in soil contaminated with leather factory waste. (United States)

    Taghipour, Marzieh; Jalali, Mohsen


    This study was conducted to investigate the effect of time, clay minerals and nanoparticles (NPs) on chromium (Cr) fractionation in a soil contaminated with leather factory waste (LFW). Soil was mixed with LFW, then, the contaminated soils were treated with clay minerals (bentonite and zeolite) and nanoparticles (MgO, TiO2 and ZnO) at 5% and 1%, respectively. The samples were incubated for 15-180 days at 25 °C and constant moisture. After incubation, Cr in control and treated soils was fractionated by the sequential extraction procedure. The distribution of various Cr fractions in control soil indicated that the greatest amounts of Cr were found in the residual fraction (RES) followed by the carbonate (CAR), organic matter (OM) and exchangeable (EXC) fractions. The addition of LFW in soils increased Cr concentration in all fractions. The higher proportion of EXC fraction in the soil treated with LFW indicates its higher potential of leaching and runoff transport. In all treated soils, the RES fraction was increased, while EXC and OM fractions were decreased during incubation. The results indicated that NPs are effective adsorbent for the removal of Cr ions from LFW treated soil, and they could be useful in reducing their environment risk.

  11. The association of soil organic matter with mineral surfaces depends on clay content in an arable Cambisol (United States)

    Schweizer, Steffen A.; Angelika, Koelbl; Hoeschen, Carmen; Mueller, Carsten W.; Koegel-Knabner, Ingrid


    The amount and distribution of mineral-associated soil organic matter (MOM) depends on the availability of adsorptive mineral surface area. In soils with low content of fine-sized mineral particles, the available mineral surface is limited in comparison to soils with high content of fine-sized mineral particles. Accordingly, the spatial distribution of MOM from soils with various contents of fine-sized mineral particles should reflect different structural organization of organo-mineral associations. In this study, we analyzed MOM and further indicators of its binding in the topsoil (020 cm) of an arable Cambisol. The sampled site showed a gradient in the content of clay-sized particles (6-35 %) under similar soil management and biomass input. We obtained fine silt-sized (26.3 μm) and clay-sized (0.22 μm) mineral-associated (>1.6 g cm3) fractions from a combined density and size fractionation. We measured solid-state 13C nuclear magnetic resonance spectra and analyzed the specific surface area of the fractions by N2-BET with and without NaOCl oxidation. The spatial distribution of MOM was determined by nanoscale secondary ion mass spectrometry (NanoSIMS) at a lateral resolution of approximately 100 nm. We found that the mineral-associated carbon concentration of the fine silt and clay-sized fractions decreased from 80 to 40 mg g-1 when the content of clay-sized particles increased from 6 to 15 %. In the clay-rich soils the mineral-associated carbon remained constant at approximately 40 mg g-1 for higher contents of clay-sized particles from 15 to 30 %. In addition, the 12C and 12C14N ion distributions obtained from NanoSIMS indicated a much higher coverage of mineral surface with MOM in the sandy soils than in the clay-rich soils. Our data shows that both the concentration and coverage of MOM is increased in soils with a lower content of fine-sized mineral particles, when the input of organic material to the soil is similar.

  12. Microorganism-induced weathering of clay minerals in a hydromorphic soil (United States)

    Hong, Hanlie; Fang, Qian; Cheng, Liuling; Wang, Chaowen; Churchman, Gordon Jock


    In order to improve the understanding of factors influencing weathering in hydromorphic soils, the clay mineral and chemical compositions, iron (hydr)oxides, organic compounds, and Sr and Nd isotopic compositions, of hydromorphic soils on the banks of the Liangzi Lake, Hubei province, south China, were investigated. The B horizon in the lower profile exhibits a distinct net-like pattern, with abundant short white veins within the red-brown matrix. Their various 87Sr/86Sr and 143Nd/144Nd isotopic compositions showed only small variations of 0.7270-0.7235 and 0.51200-0.51204, respectively, consistent with the composition of Yangtze River sediments, indicating that the soils were all derived from alluvium from the catchment. The white veins contained notably more SiO2, Al2O3, TiO2, and mobile elements relative to the red-brown matrix, while they both showed similar values for the chemical index of alteration of 86.7 and 87.1, respectively, and displayed similar degrees of weathering. The clay minerals in A, AE, and E horizons of the soil profile were illite, kaolinite, and mixed-layer illite-smectite. These same three clay minerals comprised the white net-like veins in the soil B horizon, whereas only illite and kaolinite were observed in the red-brown matrix. Iron (hydr)oxides in A, AE, and E horizons of the soil profile were hematite and goethite, whereas in the red-brown matrix of the B horizon they were hematite, goethite, and ferrihydrite. Different organic compounds were observed for the white vein and the red-brown matrix in the soil B horizon: an 18:2 fatty acid biomarker for fungi in the net-like vein, but not in the red-brown matrix. Compared with the red-brown matrix, the white net-like vein also clearly contained more mono-unsaturated fatty acids, which are sometimes associated with bacteria that have the capacity to reduce Fe(III). Thus, migration of iron and the formation of the net-like veins involved the participation of biota during the hydromorphic

  13. Mineral magnetic characteristics of the late Quaternary coastal red sands of Bheemuni, East Coast (India) (United States)

    Srivastava, Priyeshu; Sangode, S. J.; Parmar, Nikita; Meshram, D. C.; Jadhav, Priyanka; Singhvi, A. K.


    The voluminous red sand deposits of Bheemuni in the east coast of India provide record of coastal land-sea interaction during the late Quaternary climatic and eustatic oscillations. Limited information on the origin and depositional environments of these red sands and their chronology is available. We studied two inland to coast cross profiles from Bheemuni red sand deposits using mineral magnetism, color characteristics and Citrate-bicarbonate-dithionite (CBD) extractable pedogenic iron oxides over 23 horizons along with optically stimulated luminescence (OSL) chronology at 6 horizons. The oldest exposed bed had an optical age of 48.9 ± 1.7 ka. Differential ages between the two parallel sections (SOS = 48.9 ± 1.7 to 12.1 ± 0.3 ka and IMD = 29.3 ± 3.5 ka) suggest laterally shifting fluvial sedimentation. Both the profiles show significant amount of antiferromagnetic oxide (hematite) along with ferrimagnetic (magnetite/maghemite) mineral composition. The granulometric (/domain-) sensitive parameters (χFD, χARM, SIRM/χLF and χARM/χLF) indicate variable concentration of superparamagnetic (SP) and single domain (SD) particles between the two profiles. The higher frequency dependent and pedogenic magnetic susceptibilities (χFD and χpedo) in the younger (IMD) profile suggest enhanced pedogenesis under a warm-wet climate post 29.3 ka and also during Holocene. A combination of hard isothermal remanent magnetization (HIRM) and redness rating (RR) index indicates distinct but variable concentration of a) crystalline and b) poorly crystalline (pigmentary) hematites in both the profiles. We consider that the former (#a) is derived from hinterland red soils and possibly due to post-depositional diagenesis, and the latter (#b) precipitated from the dissolved iron under fluvial regime imparting the unique red coloration to Bheemuni sands. Partial to complete alteration of ferromagnesian minerals due to pedogenesis in hinterlands under warm-wet climate was therefore the

  14. Soft X-ray spectromicroscopy study of mineral-organic matter associations in pasture soil clay fractions. (United States)

    Chen, Chunmei; Dynes, James J; Wang, Jian; Karunakaran, Chithra; Sparks, Donald L


    There is a growing acceptance that associations with soil minerals may be the most important overarching stabilization mechanism for soil organic matter. However, direct investigation of organo-mineral associations has been hampered by a lack of methods that can simultaneously characterize organic matter (OM) and soil minerals. In this study, STXM-NEXAFS spectroscopy at the C 1s, Ca 2p, Fe 2p, Al 1s, and Si 1s edges was used to investigate C associations with Ca, Fe, Al, and Si species in soil clay fractions from an upland pasture hillslope. Bulk techniques including C and N NEXAFS, Fe K-edge EXAFS spectroscopy, and XRD were applied to provide additional information. Results demonstrated that C was associated with Ca, Fe, Al, and Si with no separate phase in soil clay particles. In soil clay particles, the pervasive C forms were aromatic C, carboxyl C, and polysaccharides with the relative abundance of carboxyl C and polysaccharides varying spatially at the submicrometer scale. Only limited regions in the soil clay particles had aliphatic C. Good C-Ca spatial correlations were found for soil clay particles with no CaCO3, suggesting a strong role of Ca in organo-mineral assemblage formation. Fe EXAFS showed that about 50% of the total Fe in soils was contained in Fe oxides, whereas Fe-bearing aluminosilicates (vermiculite and Illite) accounted for another 50%. Fe oxides in the soil were mainly crystalline goethite and hematite, with lesser amounts of poorly crystalline ferrihydrite. XRD revealed that soil clay aluminosilicates were hydroxy-interlayered vermiculite, Illite, and kaolinite. C showed similar correlation with Fe to Al and Si, implying a similar association of Fe oxides and aluminosilicates with organic matter in organo-mineral associations. These direct microscopic determinations can help improve understanding of organo-mineral interactions in soils.

  15. Spectroscopic evidence for Fe(II)-Fe(III) electron transfer at clay mineral edge and basal sites. (United States)

    Neumann, Anke; Olson, Tyler L; Scherer, Michelle M


    Despite the importance of Fe redox cycling in clay minerals, the mechanism and location of electron transfer remain unclear. More specifically, there is some controversy whether electron transfer can occur through both basal and edge surfaces. Here we used Mössbauer spectroscopy combined with selective chemical extractions to study electron transfer from Fe(II) sorbed to basal planes and edge OH-groups of clay mineral NAu-1. Fe(II) sorbed predominantly to basal planes at pH values below 6.0 and to edge OH-groups at pH value 7.5. Significant electron transfer occurred from edge OH-group bound Fe(II) at pH 7.5, whereas electron transfer from basal plane-sorbed Fe(II) to structural Fe(III) in clay mineral NAu-1 at pH 4.0 and 6.0 occurred but to a much lower extent than from edge-bound Fe(II). Mössbauer hyperfine parameters for Fe(II)-reacted NAu-1 at pH 7.5 were consistent with structural Fe(II), whereas values found at pH 4.0 and 6.0 were indicative of binding environments similar to basal plane-sorbed Fe(II). Reference experiments with Fe-free synthetic montmorillonite SYn-1 provided supporting evidence for the assignment of the hyperfine parameters to Fe(II) bound to basal planes and edge OH-groups. Our findings demonstrate that electron transfer to structural Fe in clay minerals can occur from Fe(II) sorbed to both basal planes and edge OH-groups. These findings require us to reassess the mechanisms of abiotic and microbial Fe reduction in clay minerals as well as the importance of Fe-bearing clay minerals as a renewable source of redox equivalents in subsurface environments.

  16. Experimental Research on Lithium Bentonite Clay Sand%锂膨润土粘土砂的实验研究

    Institute of Scientific and Technical Information of China (English)

    潘嘉祺; 孙亚琴; 陈麒忠


    对钙-钠膨润土的锂化改性进行了研究,温度、碳酸锂加入量和溶液的pH值是锂化过程的三个重要参数,实验得出了这3个参数合适的取值范围.经XRD和红外光谱的微观分析,当锂离子置换钙离子后,膨润土的晶格间距减小,结构中的水分子减少.实验将两种膨润土作为粘结剂的型砂性能进行了测定,表明锂化改性的膨润土的各项技术指标优于钙-钠膨润土;相应粘土砂的综合性能,前者比后者有较大的提高.%The calcium sodium bentonite of lithium modification was studied, the temperature, dosage of lithium carbonate and lithium solution pH value are three important parameters, their appropriate value was obtained by experiment. Through microscopic analysis of XRD and infrared spectra, when calcium ion is replaced by lithium ion, the lattice spacing of bentonite and the water molecule number in the structure decrease. The performances of molding sands with two kinds of bentonites as sand binders are determined, the all technical indicators of lithium modified bentonite are superior to that of calcium-sodium bentonite; the overall performance of clay sands with the former has a greater improvement than that of with the latter.

  17. Coastal deposits of heavy mineral sands; Global significance and US resources (United States)

    Van Gosen, Bradley S.; Bleiwas, Donald I.; Bedinger, George M.; Ellefsen, Karl J.; Shah, Anjana K.


    Ancient and modern coastal deposits of heavy mineral sands (HMS) are the principal source of several heavy industrial minerals, with mining and processing operations on every continent except Antarctica. For example, HMS deposits are the main source of titanium feedstock for the titanium dioxide (TiO2) pigments industry, obtained from the minerals ilmenite (Fe2+TiO3), rutile (TiO2) and leucoxene (an alteration product of ilmenite). HMS deposits are also the principal source of zircon (ZrSiO4), from which zirconium dioxide (ZrO2) is obtained for uses mostly in refractory products. Sometimes monazite [(Ce,La,Nd,Th)PO4] is recovered as a byproduct mineral, sought for its rare earth elements and thorium (Ault and others, 2016; Sengupta and Van Gosen, 2016; Van Gosen and Tulsidas, 2016). 

  18. Clay mineral distribution in surface sediments of the South China Sea and its significance for in sediment sources and transport

    Institute of Scientific and Technical Information of China (English)

    刘建国; 陈木宏; 陈忠; 颜文


    Clay minerals of surface sediments in the South China Sea (SCS) are analyzed with X-ray diffraction, and their transport is explored with a grain size trend analysis (GSTA) model. Results show that clay mineral types in various sedimentary environments have different sediment sources and transport routes. Sediments in the northern SCS (north of 20°N) between the southwest of Taiwan Island and the outer mouth of the Pearl River have high contents of illite and chlorite, which are derived mainly from sediment...

  19. Mineral Dissolution and Secondary Precipitation on Quartz Sand in Simulated Hanford Tank Solutions Affecting Subsurface Porosity

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Guohui; Um, Wooyong


    Highly alkaline nuclear waste solutions have been released from underground nuclear waste storage tanks and pipelines into the vadose zone at the U.S. Department of Energy’s Hanford Site in Washington, causing mineral dissolution and re-precipitation upon contact with subsurface sediments. High pH caustic NaNO3 solutions with and without dissolved Al were reacted with quartz sand through flow-through columns stepwise at 45, 51, and 89°C to simulate possible reactions between leaked nuclear waste solution and primary subsurface mineral. Upon reaction, Si was released from the dissolution of quartz sand, and nitrate-cancrinite [Na8Si6Al6O24(NO3)2] precipitated on the quartz surface as a secondary mineral phase. Both steady-state dissolution and precipitation kinetics were quantified, and quartz dissolution apparent activation energy was determined. Mineral alteration through dissolution and precipitation processes results in pore volume and structure changes in the subsurface porous media. In this study, the column porosity increased up to 40.3% in the pure dissolution column when no dissolved Al was present in the leachate, whereas up to a 26.5% porosity decrease was found in columns where both dissolution and precipitation were observed because of the presence of Al in the input solution. The porosity change was also confirmed by calculation using the dissolution and precipitation rates and mineral volume changes.

  20. Detrital minerals from source to sink : tracing Orange River sand from Lesotho to Angola (United States)

    Garzanti, Eduardo; Vermeesch, Pieter; Andò, Sergio; Resentini, Alberto; Vezzoli, Giovanni; Lustrino, Michele; Padoan, Marta; Pereira, Alcides


    Quantitative provenance analysis based on high-resolution bulk-petrography and heavy-mineral data on beach and dune sands, integrated with detrital-zircon geochronology and chemical analyses of pyroxene, garnet and staurolite, demonstrates that sand carried by the Orange River and derived from Lesotho and South Africa is carried by powerful and persistent longshore currents as far as southern Angola (Garzanti et al., 2014a). This is the longest cell of littoral sand transport documented so far on Earth, and a great test case for investigating physical controls on sand texture and composition. We have monitored textural, mineralogical and geochemical variability of beach and eolian-dune sands along a 1750 km stretch of the Atlantic coast of southern Africa by using an integrated set of techniques, including image analysis, laser granulometry, optical microscopy, Raman spectroscopy and bulk-sediment geochemistry (Garzanti et al., 2014b). Our results contrast with previous reports that feldspars and volcanic detritus break down during transport, that sand grains are rounded rapidly in shallow-marine environments, and that quartzose sands may be produced by physical processes alone. We demonstrate that basaltic rock fragments and pyroxenes, traditionally believed to be rapidly destroyed, survive healthily the 4000 km-long multistep hazardous journey from Lesotho volcanic highlands to Angola. Feldspar abundance remains remarkably constant from the Orange mouth to southern Angola, and quartz increases only very slightly, possibly as a result of local recycling. Among sedimentary and metasedimentary rock fragments, unconsolidated or strongly foliated types are readily comminuted when they enter the high-energy marine environment, but cemented sandstone/siltstone grains can survive the travel from the Karoo Basin of South Africa to northern Namibia and beyond. No detrital mineral displays a significant increase in grain roundness after 300-350 km of longshore transport in

  1. First-principles study of cesium adsorption to weathered micaceous clay minerals (United States)

    Okumura, Masahiko; Nakamura, Hiroki; Machida, Masahiko


    A large amount of radioactive nuclides was produced into environment due to the Fukushima Dai-ichi Nuclear Power Plant (FDNPP) accident. Residents near FDNPP were suffering from radioactive cesium and then evacuated, because which has long half-life and is retained by surface soil for long time. The Japanese government has been decontaminating the cesium by removing the surface soil in order to return them to their home. This decontamination method is very effective, but which produces huge amount of waste soil. This becomes another big problem in Fukushima, because it is not easy to find large storage sites. Then effective and economical methods to reduce the volume of the waste soil are needed. However, it has not been invented yet. One of the reasons is lack of knowledge about microscopic process of adsorption/desorption of cesium to/from soil. It is known that weathered micaceous clay minerals play crucial role on adsorption and retention of cesium. They are expected to have special sorption sites, called frayed edge sites (FESs), which adsorb cesium selectively and irreversibly. Properties of FES have been intensely investigated by experiments. But microscopic details of the adsorption process on FES are still unclear. Because direct observation of the process with current experimental techniques is quite difficult. We investigated the adsorption of cesium to FES in muscovite, which is a typical micaceous clay mineral, via first-principles calculations (density functional theory). We made a minimal model of FES and evaluate the energy difference before and after cesium adsorption to FES. This is the first numerical modeling of FES. It was shown that FES does adsorb cesium if the weathering of muscovite has been weathered. In addition, we revealed the mechanism of cesium adsorption to FES, which is competition between ion radius of cesium and the degree of weathering. I plan to discuss volume reduction of the waste soil based on our result. Reference M. Okumura

  2. Terrestrial Analogs for Clay Minerals at Yellowknife Bay, Gale Crater, Mars (United States)

    Treiman, Allan H; Morris, Richard V.; Bristow, Thomas; Ming, Douglas W.; Achillies, Cherie; Bish, David L.; Blake, David; Vaniman, David; Chipera, Steve


    the last three varieties may be contemporaneous. One sample shows agate (alpha- quartz) that was precipitated between the episodes of deposition of the fine-grained and coarse-grained 'griffithite.' 'Griffithite' is not unique as a possible terrestrial analog - some clay minerals from the Doushantou formation, China, have similar 02L diffraction bands, and many basalts contain smectites in vesicles and as replacements after olivine. Similar trioctahedral smectites occur also in the nakhlite martian meteorites - as veinlets and replacements of olivine. By understanding the formation of these terrestrial clays, we hope to constrain the nature and mechanism of formation of the Sheepbed clay mineral.

  3. Understanding the role of clay minerals in the chromium(VI) bioremoval by Pseudomonas aeruginosa CCTCC AB93066 under growth condition: microscopic, spectroscopic and kinetic analysis. (United States)

    Kang, Chunxi; Wu, Pingxiao; Li, Yuewu; Ruan, Bo; Li, Liping; Tran, Lytuong; Zhu, Nengwu; Dang, Zhi


    Laboratory batch experiments were conducted to investigate the role of clay minerals, e.g., kaolinite and vermiculite, in microbial Cr(VI) reduction by Pseudomonas aeruginosa under growth condition in glucose-amended mediums as a method for treating Cr(VI)-contaminated subsurface environment such as soil. Our results indicated that glucose could acted as an essential electron donor, and clay minerals significantly enhanced microbial Cr(VI) reduction rates by improving the consumption rate of glucose and stimulating the growth and propagation of P. aeruginosa. Cr(VI) bioreduction by both free cells and clay minerals-amended cells followed the pseudo-first-order kinetic model, with the latter one fitting better. The mass balance analyses and X-ray photoelectron spectroscopy analysis found that Cr(VI) was reduced to Cr(III) and the adsorption of total chromium on clay minerals-bacteria complex was small, implying that Cr(VI) bioremoval was not mainly due to the adsorption of Cr(VI) onto cells or clay minerals or clay minerals-cells complex but mainly due to the Cr(VI) reduction capacity of P. aeruginosa under the experimental conditions studied (e.g., pH 7). Atomic force microscopy revealed that the addition of clay minerals (e.g. vermiculite) decreased the surface roughness of Cr(VI)-laden cells and changed the cell morphology and dimension. Fourier transform infrared spectroscopy revealed that organic matters such as aliphatic species and/or proteins played an important role in the combination of cells and clay minerals. Scanning electron microscopy confirmed the attachment of cells on the surface of clay minerals, indicating that clay minerals could provide a microenvironment to protect cells from Cr(VI) toxicity and serve as growth-supporting materials. These findings manifested the underlying influence of clay minerals on microbial reduction of Cr(VI) and gave an understanding of the interaction between pollutants, the environment and the biota.

  4. Reducement of cadmium adsorption on clay minerals by the presence of dissolved organic matter from animal manure. (United States)

    Zhou, Wenjun; Ren, Lingwei; Zhu, Lizhong


    Clay minerals are the most popular adsorbents/amendments for immobilizing heavy metals in contaminated soils, but the dissolved organic matter (DOM) in soil environment would potentially affect the adsorption/immobilization capacity of clay minerals for heavy metals. In this study, the effects of DOM derived from chicken manure (CM) on the adsorption of cadmium (Cd(2+)) on two clay minerals, bentonite and zeolite, were investigated. The equilibrium data for Cd(2+) sorption in the absence or presence of CM-DOM could be well-fitted to the Langmuir equation (R(2) > 0.97). The presence of CM-DOM in the aqueous solution was found to greatly reduce the adsorption capacity of both minerals for Cd(2+), in particular zeolite, and the percentage decreases for Cd(2+) sorption increased with increasing concentrations of Cd(2+) as well as CM-DOM in aqueous solutions. The adsorption of CM-DOM on zeolite was greater than that on bentonite in the absence of Cd(2+), however, a sharp increase was observed for CM-DOM sorption on bentonite with increasing Cd(2+) concentrations but little change for that on zeolite, which can be attributed to the different ternary structures on mineral surface. The CM-DOM modified clay minerals were utilized to investigate the effect of mineral-adsorbed CM-DOM on Cd(2+) sorption. The adsorbed form was found to inhibit Cd(2+) sorption, and further calculation suggested it primarily responsible for the overall decrease in Cd(2+) sorption on clay minerals in the presence of CM-DOM in aqueous solutions. An investigation for the mineral surface morphology suggested that the mineral-adsorbed CM-DOM decreased Cd(2+) sorption on bentonite mainly through barrier effect, while in the case of zeolite, it was the combination of active sites occupation and barrier effect. These results can serve as a guide for evaluating the performance of clay minerals in immobilizing heavy metals when animal manure is present in contaminated soils. Copyright © 2017 Elsevier

  5. Influence of crop residues on trifluralin mineralization in a silty clay loam soil. (United States)

    Farenhorst, Annemieke


    Trifluralin is typically applied onto crop residues (trash, stubble) at the soil surface, or onto the bare soil surface after the incorporation of crop residues into the soil. The objective of this study was to quantify the effect of the type and amount of crop residues in soil on trifluralin mineralization in a Wellwood silty clay loam soil. Leaves and stubble of Potato (Solanum tuberosum) (P); Canola (Brassica napus) (C), Wheat (Triticum aestivum) (W), Oats (Avena sativa), (O), and Alfalfa (Medicago sativa) (A) were added to soil microcosms at rates of 2%, 4%, 8% and 16% of the total soil weight (25 g). The type and amount of crop residues in soil had little influence on the trifluralin first-order mineralization rate constant, which ranged from 3.57E-03 day(-1) in soil with 16% A to 2.89E-02 day(-1) in soil with 8% W. The cumulative trifluralin mineralization at 113 days ranged from 1.15% in soil with 16% P to 3.21% in soil with 4% C, again demonstrating that the observed differences across the treatments are not of agronomic or environmental importance.

  6. Contact angles at the water-air interface of hydrocarbon-contaminated soils and clay minerals (United States)

    Sofinskaya, O. A.; Kosterin, A. V.; Kosterina, E. A.


    Contact angles at the water-air interface have been measured for triturated preparations of clays and soils in order to assess changes in their hydrophobic properties under the effect of oil hydrocarbons. Tasks have been to determine the dynamics of contact angle under soil wetting conditions and to reveal the effect of chemical removal of organic matter from soils on the hydrophilicity of preparations. The potentialities of static and dynamic drop tests for assessing the hydrophilic-hydrophobic properties of soils have been estimated. Clays (kaolinite, gumbrine, and argillite) have been investigated, as well as plow horizons of soils from the Republic of Tatarstan: heavy loamy leached chernozem, medium loamy dark gray forest soil, and light loamy soddy-calcareous soil. The soils have been contaminated with raw oil and kerosene at rates of 0.1-3 wt %. In the uncontaminated and contaminated chernozem, capillary water capacity has been maintained for 250 days. The contact angles have been found to depend on the degree of dispersion of powdered preparation, the main type of clay minerals in the soil, the presence and amount of oxidation-resistant soil organic matter, and the soil-water contact time. Characteristic parameters of mathematical models for drop behavior on triturated preparations have been calculated. Contamination with hydrocarbons has resulted in a reliable increase in the contact angles of soil preparations. The hydrophobization of soil surface in chernozem is more active than in soils poorer in organic matter. The complete restoration of the hydrophilic properties of soils after hydrocarbon contamination is due to the oxidation of easily oxidizable organic matter at the low content of humus, or to wetting during several months in the absence of the mazut fraction.

  7. Clay minerals in surface sediments of the Pearl River drainage basin and their contribution to the South China Sea

    Institute of Scientific and Technical Information of China (English)

    LIU ZhiFei; Christophe COLIN; HUANG Wei; CHEN Zhong; Alain TRENTESAUX; CHEN JianFang


    Clay minerals have played a significant role in the study of the East Asian monsoon evolution in the South China Sea by being able to track oceanic current variations and to reveal contemporaneous paleoclimatic changes prevailing in continental source areas. As one of the most important rivers inputting terrigenous matters to the northern South China Sea, the Pearl River was not previously paid attention to from the viewpoint of clay mineralogy. This paper presents a detailed study on clay minerals in surface sediments collected from the Pearl River drainage basin (including all three main channels,various branches, and the Lingdingyang in the estuary) by using the X-ray diffraction (XRD) method.The results indicate that the clay mineral assemblage consists dominantly of kaolinite (35%-65%),lesser abundance of chlorite (20%-35%) and illite (12%-42%), and very scare smectite occurrences (generally <5%). Their respective distribution does not present any obvious difference throughout the Pearl River drainage basin. However, downstream the Pearl River to the northern South China Sea, the clay mineral assemblage varies significantly: kaolinite decreases gradually, smectite and illite increase gradually. Additionally, illite chemistry index steps down and illite crystallinity steps up. These variations indicate the contribution of major kaolinite, lesser illite and chlorite, and very scarce smectite to the northern South China Sea from the Pearl River drainage basin. The maximum contribution of clay minerals from the Pearl River is 72% to the northern margin and only 15% to the northern slope of the South China Sea. In both glacials and interglacials, kaolinite indicates that the ability of mechanical erosion occurred in the Pearl River drainage basin.

  8. Modern and late Quaternary clay mineral distribution in the area of the SE Mediterranean Sea (United States)

    Hamann, Yvonne; Ehrmann, Werner; Schmiedl, Gerhard; Kuhnt, Tanja


    The present-day clay mineral distribution in the southeastern Levantine Sea and its borderlands reveals a complex pattern of different sources and distribution paths. Smectite dominates the suspended load of the Nile River and of rivers in the Near East. Illite sources are dust-bearing winds from the Sahara and southwestern Europe. Kaolinite is prevalent in rivers of the Sinai, in Egyptian wadis, and in Saharan dust. A high-resolution sediment core from the southeastern Levantine Sea spanning the last 27 ka shows that all these sources contributed during the late Quaternary and that the Nile River played a very important role in the supply of clay. Nile influence was reduced during the glacial period but was higher during the African Humid Period. In contrast to the sharp beginning and end of the African Humid Period recorded in West African records (15 and 5.5 ka), our data show a more transitional pattern and slightly lower Nile River discharge rates not starting until 4 ka. The similarity of the smectite concentrations with fluctuations in sea-surface temperatures of the tropical western Indian Ocean indicates a close relationship between the Indian Ocean climate system and the discharge of the Nile River.

  9. The Imprint of Atmospheric Evolution in the D/H of Hesperian Clay Minerals on Mars (United States)

    Mahaffy, P. R.; Webster, C. R.; Stern, J. C.; Brunner, A. E.; Atreya, S. K.; Conrad, P. G.; Domagal-Goldman, S.; Eigenbrode, J. L.; Flesch, G. J.; Christensen, L. E.; Franz, H. B.; Glavin, D. P.; Jones, J. H.; McAdam, A. C.; Pavlov, A. A.; Trainer, M. G.; Williford, K. H.


    The deuterium-to-hydrogen (D/H) ratio in strongly bound water or hydroxyl groups in ancient Martian clays retains the imprint of the water of formation of these minerals. Curiosity's Sample Analysis at Mars (SAM) experiment measured thermally evolved water and hydrogen gas released between 550 degrees Centigrade and 950 degrees Centigrade from samples of Hesperian-era Gale crater smectite to determine this isotope ratio. The D/H value is 3.0 (plus or minus 0.2) times the ratio in standard mean ocean water. The D/H ratio in this approximately 3-billion-year-old mudstone, which is half that of the present Martian atmosphere but substantially higher than that expected in very early Mars, indicates an extended history of hydrogen escape and desiccation of the planet.

  10. Heteroagglomeration of zinc oxide nanoparticles with clay mineral modulates the bioavailability and toxicity of nanoparticle in Tetrahymena pyriformis. (United States)

    Gupta, Govind Sharan; Senapati, Violet Aileen; Dhawan, Alok; Shanker, Rishi


    The extensive use of zinc oxide nanoparticles (ZnO NPs) in cosmetics, sunscreens and healthcare products increases their release in the aquatic environment. The present study explored the possible interaction of ZnO NPs with montmorillonite clay minerals in aqueous conditions. An addition of ZnO NPs on clay suspension significantly (p<0.05) increases the hydrodymic size of clay particles from 1652±90nm to 2158±13nm due to heteroagglomeration. The electrokinetic measurements showed a significant (p<0.05) difference in the electrophoretic mobilities of bare (-1.80±0.03μmcm/Vs) and ZnO NPs-clay association (-1.37±0.03μmcm/Vs) that results to the electrostatic interaction between ZnO NPs and clay particles. The attenuated total reflectance Fourier transform infrared spectroscopy analysis of ZnO NPs-clay association demonstrated the binding of ZnO NPs with the Si-O-Al region on the edges of clay particles. The increase in size of ZnO NPs-clay heteroagglomerates further leads to their sedimentation at 24h. Although, the stability of ZnO NPs in the clay suspension was decreased due to heteroagglomeration, but the bioavailability and toxicity of ZnO NPs-clay heteroagglomerates in Tetrahymena pyriformis was enhanced. These observations provide an evidence on possible mechanisms available in natural environment that can facilitate nanoparticles entry into the organisms present in lower trophic levels of the food web. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. A comparison of heavy mineral assemblage between the loess and the Red Clay sequences on the Chinese Loess Plateau (United States)

    Peng, Wenbin; Wang, Zhao; Song, Yougui; Pfaff, Katharina; Luo, Zeng; Nie, Junsheng; Chen, Wenhan


    QEMSCAN-based (Quantitative Evaluation of Minerals by Scanning Electron Microscopy) heavy mineral analysis has recently been demonstrated an efficient way to allow a rapid extraction of provenance information from sediments. However, one key issue to correctly obtain a provenance signal using this technique is to clearly separate effects of diagenetic alteration on heavy minerals in sediments, especially in fine-grained loess. Here we compare heavy mineral assemblages of bottom Quaternary loess (L33) and upper Pliocene Red Clay of three sites on the Chinese Loess Plateau (CLP). Two sites (Chaona and Luochuan) with similar modern climate conditions show similar heavy mineral assemblages but contain much less of the unstable heavy mineral amphibole than the drier Xifeng site. This result provides strong evidence supporting that climate-caused diagenesis is an important factor controlling heavy mineral assemblages of fine-grained loess. However, heavy mineral assemblages are similar for loess and paleosol layers deposited after 0.5 Ma on the Chinese Loess Plateau regardless of climate differences, suggesting that time is also a factor controlling heavy mineral assemblages of loess and Red Clay. Our high resolution sampling of the upper Miocene-Pliocene Chaona Red Clay sequence reveals similar heavy mineral compositions with a minor amphibole content, different from the drier Xifeng site results of the same age. This result indicates that the monsoonal climate pattern might have been maintained since the late Miocene. Furthermore, it indicates that the heavy mineral method is promising in tracing provenance for sites northwest of the Xifeng site on the Loess Plateau.

  12. Coupling of Fe(II) oxidation in illite with nitrate reduction and its role in clay mineral transformation (United States)

    Zhao, Linduo; Dong, Hailiang; Edelmann, Richard E.; Zeng, Qiang; Agrawal, Abinash


    In pedogenic and diagenetic processes, clay minerals transform from pre-existing phases to other clay minerals via intermediate interstratified clays. Temperature, pressure, chemical composition of fluids, and time are traditionally considered to be the important geological variables for clay mineral transformations. Nearly ten years ago, the role of microbes was recognized for the first time, where microbial reduction of structural Fe(III) in smectite resulted in formation of illite under ambient conditions within two weeks. However, the opposite process, the oxidation of structural Fe(II) in illite has not been studied and it remains unclear whether or not this process would result in the back reaction, e.g., from illite to smectite. The overall objective of this study was to investigate biological oxidation of structural Fe(II) in illite coupled with nitrate reduction and the effect of this process on clay mineral transformation. Laboratory incubations were set up, where structural Fe(II) in illite served as electron donor, nitrate as electron acceptor, and Pseudogulbenkiania sp. strain 2002 as mediator. Solution chemistry and gas composition were monitored over time. Mineralogical transformation resulting from bio-oxidation was characterized with X-ray diffraction and scanning and transmission electron microscopy. Our results demonstrated that strain 2002 was able to couple oxidation of structural Fe(II) in illite with reduction of nitrate to N2 with nitrite as a transient intermediate. This oxidation reaction resulted in transformation of illite to smectite and ultimately to kaolinite (illite → smectite → kaolinite transformations). This study illustrates the importance of Fe redox process in mediating the smectite-illite mineral cycle with important implications for Fe redox cycling and mineral evolution in surficial earth environments.

  13. Selenite reduction in boom clay: effect of FeS{sub 2}, clay minerals and dissolved organic matter

    Energy Technology Data Exchange (ETDEWEB)

    Bruggeman, C.; Maes, A.; Vancluysen, J. [Katholieke Universiteit Leuven, Lab. for Colloid Chemistry, Leuven (Belgium)


    In Belgium, the Boom clay layer is considered as the candidate host rock for the disposal of high-level radioactive waste (HLRW). For this disposal, Selenium 79 is considered to be a critical radionuclide and responsible for the highest dose to man over a period of tens of thousands of years. The behaviour and reactivity of Se thereby depend on its speciation and on its complex biogeochemical transformations. {sup 79}Se is thought to occur in, and be released from the solid waste matrix in a variety of redox states, including Se oxyanions such as SeO{sub 3}{sup 2-} or SeO{sub 4}{sup 2-}. The composition of the solid and liquid phases of Boom clay was published before. In this paper, the reduction of Se oxyanions was investigated by adding appropriate amounts of SeO{sub 3}{sup 2-} in over-saturation with respect to the proclaimed thermodynamical solubility of reduced Se solid phases (SeO, FeSe, FeSe{sub 2}), to a number of systems which represent Boom clay geochemical conditions. The range of systems is chosen in order to incorporate in an increasing way the different Se competing organic and inorganic phases present in the Boom clay matrix. (authors)

  14. Chemical and structural analysis of enhanced biochars: thermally treated mixtures of biochar, chicken litter, clay and minerals. (United States)

    Lin, Y; Munroe, P; Joseph, S; Ziolkowski, A; van Zwieten, L; Kimber, S; Rust, J


    In this study biochar mixtures comprising a Jarrah-based biochar, chicken litter (CL), clay and other minerals were thermally treated, via torrefaction, at moderate temperatures (180 and 220 °C). The objectives of this treatment were to reduce N losses from CL during processing and to determine the effect of both the type of added clay and the torrefaction temperature on the structural and chemical properties of the final product, termed as an enhanced biochar (EB). Detailed characterisation indicated that the EBs contained high concentrations of plant available nutrients. Both the nutrient content and plant availability were affected by torrefaction temperature. The higher temperature (220 °C) promoted the greater decomposition of organic matter in the CL and dissociated labile carbon from the Jarrah-based biochar, which produced a higher concentration of dissolved organic carbon (DOC). This DOC may assist to solubilise mineral P, and may also react with both clay and minerals to block active sites for P adsorption. This subsequently resulted in higher concentrations of plant available P. Nitrogen loss was minimised, with up to 73% of the initial total N contained in the feedstock remaining in the final EB. However, N availability was affected by both torrefaction temperature and the nature of the clay minerals added.

  15. Surficial clay mineral distribution on the southwestern continental margin of India: Evidence of input from the Bay of Bengal

    Digital Repository Service at National Institute of Oceanography (India)

    Chauhan, O.S.; Gujar, A.R.

    ) having nickel-filtered CuKa radiation (21.514 A). 326 O.S. Chauhan and A. R. Gujar Standard methods of ethylene glycol treatment were used to aid in identification of expanded clay minerals (Biscaye, 1965; Carol, 1970; Brindly et al., 1968). Weighted...

  16. Determination of the composition of the organic matter chemically stabilized by agricultural soil clay minerals: Spectroscopy and Density Fractionation (United States)

    Oufqir, Sofia; Bloom, Paul; Toner, Brandy; Hatcher, Patrick


    The interactions between soil organic matter and clay minerals are considered important processes because of their ability to sequester C in soil for long periods of time, and hence control C in the global C cycle when present. However, differing results have been reported regarding the composition of the soil organic matter - aromatic fractions versus aliphatic fractions - associated with clay minerals. To clarify this critical issue and better understand the C sequestration process in soils, we aimed to determine the nature of the chemically bound natural organic matter on clay surfaces, and to probe the speciation and spatial distribution of C in the soil clay nanoparticles using direct spectroscopic measurements namely solid-state CP-MAS and DP-MAS 13C NMR spectroscopy, x-ray diffraction spectroscopy (XRD), and scanning transmission x-ray microscopy (STXM). We tested the hypotheses that peptides and polysaccharides are stabilized by the smectite-illite clay while the lipids and black carbon are a separate phase; and that they are evenly distributed on clay surfaces. A soil clay fraction (5.5% organic C) was isolated from the surface of a prairie soil (Mollisol) in southwestern Minnesota, characterized by a pH 6.0, 32.5% clay content, and 3.7% organic carbon, using a sonication-sedimentation-siphoning process in distilled water. Then was subjected to density separation combined with low energy ultrasonic dispersion to separate the free organic and black C (light fraction) from the chemically bound C (heavy fraction). The XRD results indicated a dominance of interstratified smectite-illite clays in soil. The 13C-NMR spectra of the soil clay fraction suggested that polysaccharides and polypeptides are the prevailing components of the organic matter associated with the mineral clay, with only a minor component of aromatic C. The light fraction has strong alkyl C-H bands characteristic of fatty acids plus strong C-O bands characteristic of polysaccharides, including

  17. Clay minerals, metallic oxides and oxy-hydroxides and soil organic carbon distribution within soil aggregates in temperate forest soils (United States)

    Gartzia-Bengoetxea, Nahia; Fernández-Ugalde, Oihane; Virto, Iñigo; Arias-González, Ander


    Soil mineralogy is of primary importance for key environmental services provided by soils like carbon sequestration. However, current knowledge on the effects of clay mineralogy on soil organic carbon (SOC) stabilization is based on limited and conflicting data. In this study, we investigated the relationship between clay minerals, metallic oxides and oxy-hydroxides and SOC distribution within soil aggregates in mature Pinus radiata D.Don forest plantations. Nine forest stands located in the same geographical area of the Basque Country (North of Spain) were selected. These stands were planted on different parent material (3 on each of the following: sandstone, basalt and trachyte). There were no significant differences in climate and forest management among them. Moreover, soils under these plantations presented similar content of clay particles. We determined bulk SOC storage, clay mineralogy, the content of Fe-Si-Al-oxides and oxyhydroxides and the distribution of organic C in different soil aggregate sizes at different soil depths (0-5 cm and 5-20 cm). The relationship between SOC and abiotic factors was investigated using a factor analysis (PCA) followed by stepwise regression analysis. Soils developed on sandstone showed significantly lower concentration of SOC (29 g C kg-1) than soils developed on basalts (97 g C kg-1) and trachytes (119 g C kg-1). The soils on sandstone presented a mixed clay mineralogy dominated by illite, with lesser amounts of hydroxivermiculite, hydrobiotite and kaolinite, and a total absence of interstratified chlorite/vermiculite. In contrast, the major crystalline clay mineral identified in the soils developed on volcanic rocks was interstratified chlorite/vermiculite. Nevertheless, no major differences were observed between basaltic and trachytic soils in the clay mineralogy. The selective extraction of Fe showed that the oxalate extractable iron was significantly lower in soils on sandstone (3.7%) than on basalts (11.2%) and


    Institute of Scientific and Technical Information of China (English)

    Zhenxing Shen; Xuxiang Li; Junji Cao; Sandrine Caquineau; Yaqiang Wang; Xiaoye Zhang


    The objectives of this research were to characterise the clay minerals composition of soil-derived dust in Northern China and to set up a mineralogical signature to trace their origin. Mineral composition of aerosol particles was investigated at Aksu, Dunhuang, Yulin, Tongliao and Changwu during an intensive field campaign period of ACE-Asia.The results show that the kaolinite (K) to chlorite (C) ratio is sensitive to the regional origin of Asian dust. Western source areas (represented by Aksu) displayed the lowest K/C ratio of 0.3 (average), while it was found to increase up to 0.70(average) upon moving towards northern source areas (represented by Yulin). By studying transported dust in a deposition area representative of the Chinese Loess Plateau, the usefulness of the K/C ratio, when associated with back air-mass trajectories, was found to lie in revealing the origin of the dust. Comparison of the mineralogical data between Asian dust and Sahara dust, shows that the K/C ratio is also an effective signature to identify the source areas on a hemisphere scale.

  19. Effect of organic matter properties, clay mineral type and thermal maturity on gas adsorption in organic-rich shale systems (United States)

    Zhang, Tongwei; Ellis, Geoffrey S.; Ruppel, Stephen C.; Milliken, Kitty; Lewan, Mike; Sun, Xun; Baez, Luis; Beeney, Ken; Sonnenberg, Steve


    A series of CH4 adsorption experiments on natural organic-rich shales, isolated kerogen, clay-rich rocks, and artificially matured Woodford Shale samples were conducted under dry conditions. Our results indicate that physisorption is a dominant process for CH4 sorption, both on organic-rich shales and clay minerals. The Brunauer–Emmett–Teller (BET) surface area of the investigated samples is linearly correlated with the CH4 sorption capacity in both organic-rich shales and clay-rich rocks. The presence of organic matter is a primary control on gas adsorption in shale-gas systems, and the gas-sorption capacity is determined by total organic carbon (TOC) content, organic-matter type, and thermal maturity. A large number of nanopores, in the 2–50 nm size range, were created during organic-matter thermal decomposition, and they significantly contributed to the surface area. Consequently, methane-sorption capacity increases with increasing thermal maturity due to the presence of nanopores produced during organic-matter decomposition. Furthermore, CH4 sorption on clay minerals is mainly controlled by the type of clay mineral present. In terms of relative CH4 sorption capacity: montmorillonite ≫ illite – smectite mixed layer > kaolinite > chlorite > illite. The effect of rock properties (organic matter content, type, maturity, and clay minerals) on CH4 adsorption can be quantified with the heat of adsorption and the standard entropy, which are determined from adsorption isotherms at different temperatures. For clay-mineral rich rocks, the heat of adsorption (q) ranges from 9.4 to 16.6 kJ/mol. These values are considerably smaller than those for CH4 adsorption on kerogen (21.9–28 kJ/mol) and organic-rich shales (15.1–18.4 kJ/mol). The standard entropy (Δs°) ranges from -64.8 to -79.5 J/mol/K for clay minerals, -68.1 to -111.3 J/mol/K for kerogen, and -76.0 to -84.6 J/mol/K for organic-rich shales. The affinity of CH4 molecules for sorption on organic matter

  20. Lithologic Control on Secondary Clay Mineral Formation in the Valles Caldera, New Mexico (United States)

    Caylor, E.; Rasmussen, C.; Dhakal, P.


    Understanding the transformation of rock to soil is central to landscape evolution and ecosystem function. The objective of this study was to examine controls on secondary mineral formation in a forested catchment in the Catalina-Jemez CZO. We hypothesized landscape position controls the type of secondary minerals formed in that well-drained hillslopes favor Si-poor secondary phases such as kaolinite, whereas poorly drained portions of the landscape that collect solutes from surrounding areas favor formation of Si-rich secondary phases such as smectite. The study focused on a catchment in Valles Caldera in northern New Mexico where soils are derived from a mix of rhyolitic volcanic material, vegetation includes a mixed conifer forest, and climate is characterized by a mean annual precipitation of ~800 mm yr-1 and mean annual temperature of 4.5°C. Soils were collected at the soil-saprolite boundary from three landscape positions, classified as well drained hillslope, poorly drained convergent area, and poorly drained hill slope. Clay fractions were isolated and analyzed using a combination of quantitative and qualitative x-ray diffraction (XRD) analyses and thermal analysis. Quantitative XRD of random powder mounts indicated the presence of both primary phases such as quartz, and alkali and plagioclase feldspars, and secondary phases that include illite, Fe-oxyhydroxides including both goethite and hematite, kaolinite, and smectite. The clay fractions were dominated by smectite ranging from 36-42%, illite ranging from 21-35%, and kaolinite ranging from 1-8%. Qualitative XRD of oriented mounts confirmed the presence of smectite in all samples, with varying degrees of interlayering and interstratification. In contrast to our hypothesis, results indicated that secondary mineral assemblage was not strongly controlled by landscape position, but rather varied with underlying variation in lithology. The catchment is underlain by a combination of porphorytic rhyolite and

  1. Study of adsorption of Phenanthrene on Different Types of Clay Minerals; Estudio de Adsorcion de Fenentreno en Diferentes Tipos de Arcillas

    Energy Technology Data Exchange (ETDEWEB)

    Contreras, M. L.; Escolano, O.; Rodriguez, V.; Diaz, F. J.; Perez, R.; Garcia, S.; Garcia Frutos, F. J.


    The fate and behaviour of non-ionic hydrophobic organic compounds in deep soil is mainly controlled by the mineral fraction present in the soil due to the very low organic carbon content of the deep soil. The mineral fraction that may greatly influence the fate and transport of these compounds due to its presence and properties are the clay minerals. Clay mineral also become increasingly important in low organic matter content soils. There tree, studies of non-ionic hydrophobic organic compounds adsorption on clay minerals without organic matter are necessary lo better understand the fate and transport of these compounds. In this work we used phenanthrene as model compound of non-ionic hydrophobic organic compound and four pure clay minerals: kaolinite, illite, montmorillonite, and vermiculite including muscovite mica. These clays minerals are selected due to its abundance in represent ve Spanish soils and different properties as its structural layers and expanding capacity. Batch experiments were performed using phenanthrene aqueous solutions and the clays selected. Phenanthrene sorption isotherms for all clays, except muscovite mica, were best described by the Freundlich model. Physical sorption on the external surfaces is the most probable adsorption mechanisms. In this sense, the presence of non-polar nano-sites on clay surfaces could determine the adsorption of phenanthrene by hydrophobic interaction on these sites. (Author) 22 refs.

  2. Changes of clay mineral assemblages in Lake Hovsgol (Mongolia) in the course of their transportation and sedimentation (United States)

    Zhdanova, A.; Solotchina, E.; Krivonogov, S.


    As known, clay minerals of lake sediments sensitively indicate climatic and environmental changes. Composition of clay mineral assemblages depends on petrography and weathering pattern of parental rocks in lake catchments. Lake Hovsgol, the second large basin in the Baikal Rift Zone, differs from the first one by extremely small drainage area: its ratio to the lake surface is 1.8 (compare with 17 of Lake Baikal). This peculiarity of lake Hovsgol defines the amount of clay minerals deposited in bottom sediments and the value of their transformation in the course of transportation We studied a number of short sediment cores (up to 1.75 m long) obtained from different parts of the lake in the framework of the Hovsgol Drilling Project, 2001-2007. Regularities of modern clay minerals transportation were studied in 80 samples from river mouths and piedmont slopes around the lake. Their mineral composition was determined by X-ray powder diffraction and IR-spectroscopy. For X-ray, we prepared the oriented mounts by transferring the suspension of bulk sample in distilled water onto a glass slide. Slides, dried at room temperature, then were solvated for about 24 hours with ethylene-glycol vapor in an evacuated desiccator. Measurements were conducted on an automated powder diffractometer with CuKα radiation, graphite monochromator. The comparative analysis of clay minerals and their crystallochemical parameters were performed by the original method of modeling X-ray diffraction profiles, based on the calculation of the interference function of the one-dimensional disordered crystals with finite thickness and using a specially developed optimization procedure. Quantitative estimations of the composition of minerals such as quartz, plagioclase, carbonate were made by IR-spectroscopy. Samples were prepared using the KBr pellet method. It was established that the mineral association in bottom sediments includes illite, smectite, chlorite, chlorite-smectite, muscovite, kaolinite

  3. Effect of substitution of sand stone dust for quartz and clay in triaxial porcelain composition

    Indian Academy of Sciences (India)

    M K Haldar; S K Das


    Quartz and kaolin were partially substituted by sand stone dust (a siliceous byproduct of Indian stone cutting and polishing industries) in a traditional triaxial porcelain composition consisting of kaolin, quartz and feldsper. The effect of substitution upon heating at different temperatures (1050–1150°C) were studied by measuring the linear shrinkage, bulk density, porosity and flexural strength. Qualititative phase and microstructural analysis on selected samples were carried out using XRD and SEM/EDX technique. The results show that the samples of all the batches achieved higher density (2.50 g/cc) and almost full vitrification (<0.1% apparent porosity) at around 1115°C compared to around 1300°C for traditional triaxial porcelain composition. As high as 70 MPa flexural strength was obtained in most of the vitrified samples. No significant variation in physico-mechanical properties was observed in between the composition. XRD studies on selected samples show presence of mainly quartz phase both at low and high temperatures. SEM photomicrographs of the 1115°C heated specimen show presence of quartz grain and glassy matrix. Few quartz grains (20–40m) are associated with circumferential cracks around them.

  4. Catalysis of gas hydrates by biosurfactants in seawater-saturated sand/clay

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, R. E.; Kothapalli, C.; Lee, M.S. [Mississippi State University, Swalm School of Chemical Engineering, MS (United States); Woolsey, J. R. [University of Mississippi, Centre of Marine Resources and Environmental Technology, MS (United States)


    Large gas hydrate mounds have been photographed in the seabed of the Gulf of Mexico and elsewhere. According to industry experts, the carbon trapped within gas hydrates is two or three times greater than all known crude oil, natural gas and coal reserves in the world. Gas hydrates, which are ice-like solids formed from the hydrogen bonding of water as water temperature is lowered under pressure to entrap a suitable molecular-size gas in cavities of the developing crystal structure, are found below the ocean floor to depths exhibiting temperature and pressure combinations within the appropriate limits. The experiments described in this study attempt to ascertain whether biosurfactant byproducts of microbial activity in seabeds could catalyze gas hydrate formation. Samples of five possible biosurfactants classifications were used in the experiments. Results showed that biosurfactants enhanced hydrate formation rate between 96 per cent and 288 percent, and reduced hydrate induction time 20 per cent to 71 per cent relative to the control. The critical micellar concentration of rhamnolipid/seawater solution was found to be 13 ppm at hydrate-forming conditions. On the basis of these results it was concluded that minimal microbial activity in sea floor sands could achieve the threshold concentration of biosurfactant that would greatly promote hydrate formation. 28 refs., 2 tabs., 4 figs.

  5. Parametric study of the physical properties of hydrate-bearing sand, silt, and clay sediments: 1. Electromagnetic properties (United States)

    Lee, J.Y.; Santamarina, J.C.; Ruppel, C.


    The marked decrease in bulk electrical conductivity of sediments in the presence of gas hydrates has been used to interpret borehole electrical resistivity logs and, to a lesser extent, the results of controlled source electromagnetic surveys to constrain the spatial distribution and predicted concentration of gas hydrate in natural settings. Until now, an exhaustive laboratory data set that could be used to assess the impact of gas hydrate on the electromagnetic properties of different soils (sand, silt, and clay) at different effective stress and with different saturations of hydrate has been lacking. The laboratory results reported here are obtained using a standard geotechnical cell and the hydrate-formed tetrahydrofuran (THF), a liquid that is fully miscible in water and able to produce closely controlled saturations of hydrate from dissolved phase. Both permittivity and electrical conductivity are good indicators of the volume fraction of free water in the sediment, which is in turn dependent on hydrate saturation. Permittivity in the microwave frequency range is particularly predictive of free water content since it is barely affected by ionic concentration, pore structure, and surface conduction. Electrical conductivity (or resistivity) is less reliable for constraining water content or hydrate saturation: In addition to fluid-filled porosity, other factors, such as the ionic concentration of the pore fluid and possibly other conduction effects (e.g., surface conduction in high specific surface soils having low conductivity pore fluid), also influence electrical conductivity.

  6. Bio-Mobilization of Potassium from Clay Minerals: II. By Ectomycorrhizal Fungi

    Institute of Scientific and Technical Information of China (English)


    Ectomycorrhizal fungi, including Cenococcum geophilurn SIV (Cg SIV), and Pisolithus tinctorius 2144(Pt 2144), 441 (Pt 441) and XC1 (Pt XC1), were cultured in Pachlewski liquid medium with H2KPO4, KClsaturated vermiculite and mica as K sources, respectively, to investigate the mechanism of K absorption and mobilization by the fungi. Fungal growth rate, K absorption and mobilization varied significantly among the fungal species. Faster growth and greater K accumulation in Pt XC1 than Pt 2 144, Pt 441 and Cg siv were observed. Ectomycorrhizal fungi depressed HCl-soluble K in minerals after successive extractions by water and NH4OAc. Ratio of the total amount of K, including water-, NH4OAc- and HCl-soluble K, lost from substrates to the K accumulated in fungal colonies was less than 60%. These reveal that the ectomycorrhizal fungi could utilize K in interlayer and structural pools, which are usually unavailable for plants in short period. Large differences in the depletion of K in interlayer and structural pools by fungi were observed at fungal harvest. Taking into account the nutrient absorption by ectomycorrhizal fungi in symbionts and the direct contact between hyphae and soils, the fungi species colonized on the root surfaces seemed to be related to the effectiveness of mycorrhizas to utilize K in soils. Ectomycorrhizal fungi differed in the efflux of protons and oxalate. Pt XC1 was observed to have greatest ability to effuse protons and oxalate among the fungi adopted in the experiment. Furthermore, the higher the concentrations of protons and oxalate in the liquid culture solutions, the larger the depletion of K in interlayer and structural pools in minerals by fungi. Protons could replace interlayer K and chelation of oxalate with Fe and A1 in crystal lattice could cause weathering of clay minerals. So, protons and oxalate produced by ectomycorrhizal fungi might play an important role in K mobilization in these two pools.

  7. Calcium-ammonium exchange experiments on clay minerals using a (45)Ca tracer technique in marine pore water. (United States)

    Ockert, Charlotte; Wehrmann, Laura M; Kaufhold, Stephan; Ferdelman, Tim G; Teichert, Barbara M A; Gussone, Nikolaus


    Understanding cation exchange processes is important for evaluating early diagenetic and synsedimentary processes taking place in marine sediments. To quantify calcium (Ca) exchange and Ca-ammonium exchange in a seawater environment, we performed experiments with a radioactive (45)Ca tracer on clay mineral standards (Fithian illite, montmorillonite and kaolinite) and marine sediments from the North Atlantic Integrated Ocean Drilling Program Site U1306A in artificial seawater (ASW). The results show that equilibrium during the initial attachment of Ca as well as the exchange of Ca by [Formula: see text] is attained in less than 2 min. On average 8-20% of the exchangeable sites of the clay minerals were occupied by Ca in a seawater medium. The conditional selectivity coefficient, describing the [Formula: see text] exchange in ASW is mineral specific and it was determined to be 0.07 for montmorillonite, 0.05 for a natural marine sediment and 0.013 for Fithian illite.


    Directory of Open Access Journals (Sweden)

    V. D. Petrenko


    Full Text Available Purpose. In the section of changes geotechnical conditions of spondylov’s clay to buchatskiy sands may have significant structural deformation of running tunnels. It is necessary to identify the cause of deformities develop ways to minimize and based modeling and calculations to prove the effectiveness of measures to reduce deformation.Methodology. To solve the analysis problem of the stress-strain state (SSS of the system «structure array» it was conducted the numerical simulation using the finite element method (FEM. On the basis of the obtained results the graphs were constructed and the dependencies were determined. Findings. The presence of weak water-saturated soils in tray of the tunnel on an area of transition from spondylov’s clay to buchatskiy sand causes significant increasing in strain construction of tunnels and general vibration liquefaction in soil basis. Also change the physical and mechanical characteristics of soils within the frames of tunnels influences on the level of strain state of most frames. Improved strain state settings of tunnels in areas of change soil characteristics of the array (especially at the bottom of casing can be achieved by chemical consolidation of weak soils. Composition of solutions for fixing the weak soils should be determined based on the study of grain size, porosity, and other parameters of physical and mechanical and physical and chemical characteristics of soils.Originality.The basic cause significant strain on transition zone from spondylov’s clay to buchatskiy sands is found, that is explained by saturated phenomenon vibration liquefaction basis under the tunnel.Practical value.The approaches to reduce the strain in the construction of running tunnels in the transition zone from spondylov’s clay to buchatskiy sands are developed, as well as in the area ofthe station «Glybochytska»the Kyiv Metro.

  9. Clay mineral records of East Asian monsoon evolution during late Quaternary in the southern South China Sea

    Institute of Scientific and Technical Information of China (English)

    LIU Zhifei; C. Colin; A. Trentesaux; D. Blamart


    High-resolution clay mineral records combined with oxygen isotopic stratigraphy over the past 190 ka during late Quaternary from core MD01-2393 off the Mekong River in the southern South China Sea are reported to reconstruct a history of East Asian monsoon evolution.The dominating clay mineral components indicate a strong glacial-interglacial cyclicity, with high glacial illite, chlorite, and kaolinite contents and high interglacial smectites content. The provenance analysis indicates the direct input of clay minerals via the Mekong River drainage basin.Illite and chlorite derived mainly from the upper reach of the Mekong River, where physical erosion of meta-sedimentary rocks is dominant. Kaolinite derived mainly from active erosion of inhered clays from reworked sediments in the middle reaches. Smectites originated mainly through bisiallitic soils in the middle to lower reaches of the Mekong River. The smectites/(illite+chlorite)and smectites/kaolinite ratios are determined as mineralogical indicators of East Asian monsoon variations. Relatively high ratios occur during interglacials and indicate strengthened summer-monsoon rainfall and weakened winter-monsoon winds; relatively lower ratios happened in glacials, indicating intensified winter monsoon and weakened summer monsoon. The evolution of the summer and winter monsoons provides an almost linear response to the summer insolation of the Northern Hemisphere, implying an astronomical forcing of the East Asian monsoon evolution.

  10. Characterization of clay deposits from Egypt and assessment of their potential application for waste water treatment: How dissolved organic matter determines the interaction of heavy metals and clay minerals

    NARCIS (Netherlands)

    Refaey Mohammed, Y.B.


    The main aim of this study was to investigate the potential of using clay minerals abundant in local soils in Egypt as low cost materials to reduce Cu, Ni and Zn pollution of soil and groundwater originating from polluted wastewater; specifically focusing on the influence of the interaction of clay

  11. Major soil classes of the metropolitan region of Curitiba (PR, Brazil: I - mineralogical characterization of the sand, silt and clay fractions

    Directory of Open Access Journals (Sweden)

    Ana Christina Duarte Pires


    Full Text Available The aim of this work was to evaluate the mineralogical and chemical characteristics of most representative soils of the Region of Curitiba, Paraná State. Samples were collected at different depths. The results showed: (a the quartz was the only identified mineral at the silt and sand fractions. The dominant clay mineral was Kaolinite, with contents ranging from 676.7 to 820.8 g kg-1. The gibbsite was also an important constituent of the most weathered horizons and the hematite and goethite contents were low, mainly in the Histosol; (b at the C horizon of the Inceptisol, high intensity of vermiculite/smectite reflections were detected (X-ray diffraction, justifying the high capacity of expansion and contraction, normally showed for this soil horizon; (c was observed a good relation between pedogenetic degree and crystallographic mineral characteristics.Devido a grande importância dos minerais, notadamente aqueles da fração argila, sobre o planejamento de uso e sobre os impactos das atividades antrópicas, estudos detalhados da composição dos solos das regiões metropolitanas são imprescindíveis. Para avaliar as características mineralógicas e químicas de solos mais representativos da Região Metropolitana de Curitiba, estado do Paraná, foram coletadas amostras das classes Organossolo, Latossolo e Cambissolo, em diferentes profundidades. As frações areia, silte e argila foram estudadas por difratometria de Raios-X (DRX e a fração mais fina foi submetida a análise térmica e extrações químicas com oxalato de amônio (OA, ditionito-citrato-bicarbonato (DCB e solução de NaOH 5 mol L-1 fervente. As características cristalográficas da hematita (Hm, goethita (Gt, gibbsita (Gb e caulinita (Ct foram determinadas por DRX. Os resultados permitiram concluir que: (a o quartzo foi o único mineral identificado nas frações areia e silte. Na fração argila, verificou-se o predomínio de Ct, com teores variando de 661,7 a 820,8 g kg-1

  12. Distribution of clay minerals in surface sediments of the western Gulf of Thailand: Sources and transport patterns (United States)

    Shi, Xuefa; Liu, Shengfa; Fang, Xisheng; Qiao, Shuqing; Khokiattiwong, Somkiat; Kornkanitnan, Narumol


    A high density sampling program during two joint China-Thailand scientific cruises in 2011-2012 included collection of 152 gravity box cores in the Gulf of Thailand (GoT). Samples from the top 5 cm of each core were analyzed by X-ray diffraction for clay mineral content. Several systemic analytical approaches were applied to examine the distribution pattern and the constraint factors of clay minerals in the surface sediments of the western GoT. The clay minerals mainly comprise illite, kaolinite, chlorite and smectite, having the average weight percent distributions of 50%, 34%, 14% and 2%, respectively. Based on the spatial distribution characteristics and statistical results, the study area can be classified into three provinces. Province I contains high concentrations of smectite, and covers the northern GoT, sediments in this province are mainly from rivers discharging into the upper GoT, especially the Chao Phraya and Mae Klong Rivers. Sediments in Province II are characterized by higher values of illite, located in the central GoT, where fine sediments are contributed by the Mekong River and from the South China Sea. Province Ш, in the coastal regions of southwestern GoT close to Malaysia, exhibits a clay mineral assemblage with complex distribution patterns, and may contain terrestrial materials from the Mae Klong River as well as re-suspended sediments. Results of integrative analysis also demonstrate that the hydrodynamic environment in the study area, especially the seasonal various circumfluence and eddies, play an important role in the spatial distribution and dispersal of clay fraction in sediments.


    Directory of Open Access Journals (Sweden)

    Ya. N. Kovalev


    Full Text Available Value of adhesion bond between mineral surface of acid quartz materials and organic binder (bitumen has a great significance while forming structure of asphalt concrete strengthening. It has been established theoretically and experimentally that that the bond is insignificant and it causes premature destruction of structure for asphalt-binding substance and finally asphalt concrete. In this connection the relevant objective of the paper is a search for efficient methods for strengthening of adhesion bonds between the indicated structural components. A development for obtaining mineral powders from used molding sand activated by various hydrofobisation methods plays rather important role in that matter. The development of several methods for obtainment of activated mineral powders from used molding sand and also know-how pertaining to behavior of asphalt concrete formed on their basis have made it possible to create rational technologies which are applicable under operational conditions of the specified asphalt concrete plants in any region. The executed investigations on hydrofobisation of particles surface for the used molding sand with the help of sodium alkyl siliconates have established the basis for development of new efficient method for obtaining activated mineral powders from the used molding sand. The method presupposes treatment of the used molding sand in the process of mill flow in a ball drum while using sodium ethyl siliconate (0.3–0.7 % as compared with the mass of mineral raw material. Juvenile particle surface of fresh milled powder from the used molding sand has a maximum activity among the known filling compounds in relation to althin and this phenomenon can be explained by additional structure-forming impact of chemically active organic foundry binding agents which are contained in the used molding sand. That particular property allows to use widely powder from the used molding sand which contains uncured althin as a

  14. Curiosity's traverse through the upper Murray formation (Gale crater): ground truth for orbital detections of Martian clay minerals (United States)

    Dehouck, Erwin; Carter, John; Gasnault, Olivier; Pinet, Patrick; Daydou, Yves; Gondet, Brigitte; Mangold, Nicolas; Johnson, Jeffrey; Arvidson, Raymond; Maurice, Sylvestre; Wiens, Roger


    Orbital observations from visible/near-infrared (VNIR) spectrometers have shown that hydrated clay minerals are widespread on the surface of Mars (e.g., Carter et al., JGR, 2013), but implications in terms of past environmental conditions are debated. In this context, in situ missions can play a crucial role by providing "ground truth" and detailed geological setting for orbital signatures. Since its landing in 2012, the Mars Science Laboratory rover Curiosity has found evidence for clay minerals in several sedimentary formations within Gale crater. The first clays were encountered at Yellowknife Bay, where results from the CheMin X-ray diffractometer (XRD) showed the presence of 20 wt% tri-octahedral, Fe/Mg-bearing smectites (Vaniman et al., Science, 2014). However, due to dust cover, this location lacks any signature of clay minerals in orbital VNIR observations. Smaller amounts of clay minerals were found later in the rover's traverse, but again at locations with no specific signature from orbit. More recently, Curiosity reached the upper Murray formation, a sedimentary layer consisting primarily of mudstones and belonging to the basal part of Aeolis Mons (or Mt Sharp), the central mound of Gale crater. There, for the first time, orbital signatures of clay minerals can be compared to laterally-equivalent samples that were analyzed by Curiosity's payload. Orbital VNIR spectra suggest the prevalence of di-octahedral, Al/Fe-bearing smectites, clearly distinct from the tri-octahedral, Fe/Mg-bearing species of Yellowknife Bay (Carter et al., LPSC, 2016). Preliminary results from XRD and EGA analyses performed by the CheMin and SAM instruments at Marimba, Quela and Sebina drill sites are broadly consistent with such interpretation. However, and perhaps unsurprisingly, in situ data show more complexity than orbital observations. In particular, in situ data suggest the possible presence of an illitic component as well as the possible co-existence of both di

  15. Refinements of water parameters for molecular dynamics: Simulations of adsorption at the clay mineral/aqueous solution interface

    DEFF Research Database (Denmark)

    Schäfer, L.; Yu, C.; Teppen, B.J.;


    In the context of a long-term program involving molecular dynamics simulations of adsorption phenomena at the clay mineral/aqueous solution interface, we are testing the viability of combining a force field that we developed specificially for clays with other, independently derived potential...... parameters for molecular species which are important in clay adsorption. For the current study the importance of variations in the potential parameters of water were investigated and polarization effects on oxygen studied as a function of intermolecular interactions. For this purpose ab initio MP2/6-311GG...... atomic charges were determined for several oligomers of water and for the water dimer at different intermolecular separations. Charge variations of up to ~0.1 electron charge unit on oxygen are found and, together with changes in van der Waals constants, their significance for dynamics simulations...

  16. Vanadium recovery from clay vanadium mineral using an acid leaching method

    Institute of Scientific and Technical Information of China (English)

    LI Haoran; FENG Yali; LIANG Jianglong; LUO Xiaobing; DU Zhuwei


    A technique including direct acid leaching,vanadium precipitation with alkaline,sodium hydroxide releaching,impurity removing by adjusting pH value,precipitation vanadium with ammonium chloride,and vanadium pentoxide by roasting steps was proposed according to the characteristic of Xichuan clay vanadium mineral.The factors influencing leaching vanadium such as temperature and the concentration of sulfuric acid were investigated and optimized.The experimental results indicate that the extract ratios of V2O5 can reach 94% and 92% at a sodium chlorate ratio of 3% and a manganese dioxide ratio of 3%,respectively.A completely chemical precipitation method was adopted to decontaminate and enrich the vanadium in the acid leaching solution.The X-ray diffraction (XRD) pattern and the purity analysis of vanadium pentoxide indicate that the purity of final vanadium pentoxide can reach 99% and meet the standard specifications.The total recovery can reach about 75%.The technique has the characteristics of simplicity,less investlnent,and more environment safety as compared with the traditional salt roasting method.

  17. Characteristics of Lead Sorption on Clay Minerals in Relation to Metal Oxides

    Institute of Scientific and Technical Information of China (English)


    Difference of montmorillonite (Mt), illite (It) and kaolinite (Kt) in lead sorption characteristics and the effects of amorphous Fe and Al oxide coatings on the haracteristics were experimentally studied with logistic model. The sorption curves had sigmoid feature due to use of acetate-type buffer solution. With the modelthe sorption process could be divided into four stages and the sorption characteristics at the stages were discussed. The results showed that, after Mt, It and Kt were coated by amorphous Fe oxide, their maximum sorption capacity (MSC) and percentage of high-SSC concentration scope (HCS) of Pb2+ increased markedly but the specific sorption capacity (SSC) decreased. With regard to effects of amorphous Al oxide coating,except for It+Al, the SSC of other samples showed a downtrend, despite that their MSC remained unchanged.Eventually, the gray correlation degrees to Pb2+ sorption for different physicochemical characteristics of the clay minerals were indicated to be higher for hydronium, zero point of surface charge and hydroxy, but lower for specific surface area, density of surface charge and amount of surface charges.

  18. Size distributions of coastal ocean suspended particulate inorganic matter: Amorphous silica and clay minerals and their dynamics (United States)

    Zhang, Xiaodong; Stavn, Robert H.; Falster, Alexander U.; Rick, Johannes J.; Gray, Deric; Gould, Richard W.


    Particulate inorganic matter (PIM) is a key component in estuarine and coastal systems and plays a critical role in trace metal cycling. Better understanding of coastal dynamics and biogeochemistry requires improved quantification of PIM in terms of its concentration, size distribution, and mineral species composition. The angular pattern of light scattering contains detailed information about the size and composition of particles. These volume scattering functions (VSFs) were measured in Mobile Bay, Alabama, USA, a dynamic, PIM dominated coastal environment. From measured VSFs, we determined through inversion the particle size distributions (PSDs) of major components of PIM, amorphous silica and clay minerals. An innovation here is the extension of our reported PSDs significantly into the submicron range. The PSDs of autochthonous amorphous silica exhibit two unique features: a peak centered at about 0.8 μm between 0.2 and 4 μm and a very broad shoulder essentially extending from 4 μm to >100 μm. With an active and steady particle source from blooming diatoms, the shapes of amorphous silica PSDs for sizes 10 μm inside the bay, likely due to wind-induced resuspension of larger frustules that have settled. Compared to autochthonous amorphous silica, the allochthonous clay minerals are denser and exhibit relatively narrower PSDs with peaks located between 1 and 4 μm. Preferential settling of larger mineral particles as well as the smaller but denser illite component further narrowed the size distributions of clay minerals as they were being transported outside the bay. The derived PSDs also indicated a very dynamic situation in Mobile Bay when a cold weather front passed through during the experiment. With northerly winds of speeds up to 15 m s-1, both amorphous silica and clay minerals showed a dramatic increase in concentration and broadening in size distribution outside the exit of the barrier islands, indicative of wind-induced resuspension and subsequent

  19. The impact of hydrate saturation on the mechanical, electrical, and thermal properties of hydrate-bearing sand, silts, and clay

    Energy Technology Data Exchange (ETDEWEB)

    Santamarina, J.C. [Georgia Inst. of Technology, Atlanta, GA (United States). School of Civil and Environmental Engineering; Ruppel, C. [United States Geological Survey, Woods Hole, MA (United States)


    A study was conducted to provide an internally-consistent, systematically-acquired database that could help in evaluating gas hydrate reservoirs. Other objectives were to assist in geomechanical analyses, hazards evaluation and the development of methane hydrate production techniques in sandy lithologies and fine-grained sediments that exist in the northern Gulf of Mexico. An understanding of the physical properties of hydrate-bearing sediments facilitates the interpretation of geophysical field data, borehole and slope stability analyses, and reservoir simulation and production models. This paper reported on the key findings derived from 5 years of laboratory experiments conducted on synthetic samples of sand, silts, or clays subjected to various confining pressures. The samples contained controlled saturations of tetrahydrofuran hydrate formed from the dissolved phase. This internally-consistent data set was used to conduct a comprehensive analysis of the trends in geophysical and geotechnical properties as a function of hydrate saturation, soil characteristics, and other parameters. The experiments emphasized measurements of seismic velocities, electrical conductivity and permittivity, large strain deformation and strength, and thermal conductivity. The impact of hydrate formation technique on the resulting physical properties measurements were discussed. The data set was used to identify systematic effects of sediment characteristics, hydrate concentration, and state of stress. The study showed that the electrical properties of hydrate-bearing sediments are less sensitive to the method used to form hydrate in the laboratory than to hydrate saturation. It was concluded that mechanical properties are strongly influenced by both soil properties and the hydrate loci. Since the thermal conductivity depends on the interaction of several factors, it cannot be readily predicted by volume average formulations. 23 refs., 2 tabs., 9 figs.

  20. Determination of Tracer Arrival Times and Volumetric Contents of Clay and Mineral Fines Using Visible NearInfrared Spectroscopy

    DEFF Research Database (Denmark)

    Hermansen, Cecilie; Møldrup, Per; Karup, Dan;

    to give rapid and accurate predictions of soil functional properties related to texture and organic matter, such as water retention and compaction. We evaluated visNIR spectroscopy as a rapid and indirect method for predicting selected BTC tracer mass arrival times (TMATs) and the volumetric contents...... and volumetric contents of clay and mineral fines were correlated to spectral data with partial least squares regression on a calibration set (133 samples) and then tested on a validation set (44 samples). We obtained accurate visNIR predictions of the 5% TMAT and volumetric contents of clay and mineral fines....... VisNIR predictions of later TMATs of 10, 15, 20, 25, 30, 40 and 50% showed decreasing accuracy with increasing TMAT, which probably reflect decreasing correlation with soil texture....

  1. Characterization of Adsorbed Alkali Metal Ions in 2:1 Type Clay Minerals from First-Principles Metadynamics. (United States)

    Ikeda, Takashi; Suzuki, Shinichi; Yaita, Tsuyoshi


    Adsorption states of alkali metal ions in three kinds of 2:1 type clay minerals are systematically investigated via first-principles-based metadynamics. Our reconstructed free energy surfaces in a two-dimensional space of coordination numbers specifically employed as collective variables for describing the interlayer cations show that an inner-sphere (IS) complex is preferentially formed for Cs(+) in the 2:1 type trioctahedral clay minerals with saponite-like compositions, where lighter alkali metal ions show a tendency to form an outer-sphere one instead. The strong preference for an IS complex observed for Cs(+) is found to result partially from the capability of recognizing selectively Cs(+) ions at the basal O atoms with the Lewis basicity significantly enhanced by the isomorphic substitution in tetrahedral sheets.

  2. Redox properties of structural Fe in clay minerals. 1. Electrochemical quantification of electron-donating and -accepting capacities of smectites. (United States)

    Gorski, Christopher A; Aeschbacher, Michael; Soltermann, Daniela; Voegelin, Andreas; Baeyens, Bart; Marques Fernandes, Maria; Hofstetter, Thomas B; Sander, Michael


    Clay minerals often contain redox-active structural iron that participates in electron transfer reactions with environmental pollutants, bacteria, and biological nutrients. Measuring the redox properties of structural Fe in clay minerals using electrochemical approaches, however, has proven to be difficult due to a lack of reactivity between clay minerals and electrodes. Here, we overcome this limitation by using one-electron-transfer mediating compounds to facilitate electron transfer between structural Fe in clay minerals and a vitreous carbon working electrode in an electrochemical cell. Using this approach, the electron-accepting and -donating capacities (Q(EAC) and Q(EDC)) were quantified at applied potentials (E(H)) of -0.60 V and +0.61 V (vs SHE), respectively, for four natural Fe-bearing smectites (i.e., SWa-1, SWy-2, NAu-1, and NAu-2) having different total Fe contents (Fe(total) = 2.3 to 21.2 wt % Fe) and varied initial Fe(2+)/Fe(total) states. For every SWa-1 and SWy-2 sample, all the structural Fe was redox-active over the tested E(H) range, demonstrating reliable quantification of Fe content and redox state. Yet for NAu-1 and NAu-2, a significant fraction of the structural Fe was redox-inactive, which was attributed to Fe-rich smectites requiring more extreme E(H)-values to achieve complete Fe reduction and/or oxidation. The Q(EAC) and Q(EDC) values provided here can be used as benchmarks in future studies examining the extent of reduction and oxidation of Fe-bearing smectites.

  3. Role of Clay Minerals in Long-Distance Transport of Landslides in Valles Marineris, Mars (United States)

    Watkins, J.; Ehlmann, B. L.; Yin, A.


    Long-runout (> 50 km) subaerial landslides are rare on Earth, but are common features episodically shaping Mars' Valles Marineris (VM) trough system over the past 3.5 billion years. They display two end-member morphologies: a thick-skinned inner zone, characterized by fault-bounded, rotated blocks near their source region, and a thin-skinned, exceptionally long-runout outer zone, characterized by thin sheets spreading over 10s of km across the trough floor. Four decades of studies on the latter have resulted in two main competing hypotheses to explain their long-distance transport: (1) movement of landslides over layers of trapped air or soft materials containing ice or snow, enabling basal lubrication, and (2) fluidization of landslide materials with or without the presence of water and volatiles. To address this issue, we examine the mineralogic composition of landslides across VM using Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) near-infrared spectral data analysis coupled with detailed geologic mapping and morphometric analysis of satellite images. Our survey reveals a general correlation between transport distance, significant lateral spreading, and the presence of hydrated silicates among VM landslides. Given that smectite clay absorbs water into its layered crystal structure and can reduce the friction coefficient by a factor of three v. that of dry rocks, these results suggest that hydrated silicates played a decisive role in facilitating long-runout landslide transport in VM. We propose that, concurrent with downslope failure and sliding of broken trough-wall rock, frontal landslide masses overrode and entrained hydrated-silicate-bearing trough-floor deposits, lubricating the basal sliding zones and permitting the landslide outer zones to spread laterally while moving forward over the low-friction surface. The key participation of hydrated silicates in episodic, sustained landslide activity throughout the canyon implies that clay minerals

  4. Preparation and Coagulation Behavior of a Novel Multiple Flocculant Based on Cationic Polymer, Hydroxy Aluminum, and Clay Minerals

    Directory of Open Access Journals (Sweden)

    Feng-shan Zhou


    Full Text Available Cationic polymer, hydroxy aluminum, and clay minerals are three flocculants with different action mechanisms and a more cost-efficient multiple flocculant can be prepared by compositing them through appropriate technology. All of attapulgite (ATP, clay minerals containing magnesium, aluminum, and silicate, are porous environmental mineral material with good absorbability and have found wide applications in industrial sewage treatment. With polyaluminum chloride (PAC, poly(dimethyl diallyl ammonium chloride (PDMDAAC, and attapulgite (ATP clay being the main raw materials, multiple flocculant CMHa (liquid with good storage stability was prepared and its optimized blending mass percent was PDMDAAC of 2%-3%, ATP of 4%–6%, and PAC of 20%–30%. The liquid poly(dimethyl diallyl ammonium chloride (PDMDAAC was firstly loaded on solid material in kneader and then mixed in certain proportion with PAC and ATP to prepare solid CMHa convenient for storage and transportation. The optimized mass ratio is PAC : ATP : PDMDAAC = 80 : 10 : 2.4. When this multiple flocculant was used to treat domestic sewage, coal washing sewage, dyeing wastewater, and papermaking wastewater, its equivalent dosage was just 50% of PAC, while overall production cost has been reduced to about 40%, viewing showing broad application prospect.

  5. Nature, distribution and origin of clay minerals in grain size fractions of sediments from manganese nodule field, Central Indian Ocean Basin

    Digital Repository Service at National Institute of Oceanography (India)

    Rao, V.P.; Nath, B.N.

    -rich montmorillonite). Montmorillonite is present in all size fractions of sediments, whereas Fe-rich montmorillonite is present only in 1 and 1-2 mu m fractions of siliceous and 1 mu m fractions of pelagic clays. Distribution of clay minerals suggests that illite...

  6. Mineralogy and geotechnical characteristics of some pottery clay

    Directory of Open Access Journals (Sweden)

    Mujib Olamide ADEAGBO


    Full Text Available The physical properties of soils, which are tremendously influenced by the active clay minerals in soil, are of great importance in geotechnical engineering. This paper investigates the clay-sized particles of the Igbara-Odo pottery clay, and compares results obtained with available data on the bulk sample, to determine their correlation and underline the dependence of the geotechnical properties of the bulk clay material on the clay-sized particles. The bulk clay sample consists of 52% sand-size particles, 21% silt and 27% clay. Analysis of the clay-sized particles and the bulk materials shows: specific gravity of 2.07 and 2.66, liquid limit of 91.0% and 33.0%, plastic limit of 27.5% and 14.3%, plasticity index of 63.5% and 18.7% and a linear shrinkage of 7.9% and 5.4%, for both clay-sized particles and bulk clay respectively. The activity value of the clay material (0.64 suggests the presence of Kaolinite and Ilite; and these were confirmed with X-Ray diffraction on the bulk sample and clay-sized particles. X-Ray diffraction patterns shows distinctive peaks which highlight the dominance of Kaolinite (with 8 peaks in the pottery clay sample for both clay-sized particles and bulk material; while traces of other clay minerals like Illite and Halloysite and rock minerals like Mica, Feldspar and Chrysotile were also found. These results suggest that the clay possesses high viability in the manufacturing of ceramics, refractory bricks, paper, fertilizer and paint. The clay material can be used as a subgrade in road construction, since it possesses low swelling characteristics.

  7. Formation of replicating saponite from a gel in the presence of oxalate: implications for the formation of clay minerals in carbonaceous chondrites and the origin of life (United States)

    Schumann, Dirk; Hartman, Hyman; Eberl, Dennis D.; Sears, S. Kelly; Hesse, Reinhard; Vali, Hojatollah


    The potential role of clay minerals in the abiotic origin of life has been the subject of ongoing debate for the past several decades. At issue are the clay minerals found in a class of meteorites known as carbonaceous chondrites. These clay minerals are the product of aqueous alteration of anhydrous mineral phases, such as olivine and orthopyroxene, that are often present in the chondrules. Moreover, there is a strong correlation in the occurrence of clay minerals and the presence of polar organic molecules. It has been shown in laboratory experiments at low temperature and ambient pressure that polar organic molecules, such as the oxalate found in meteorites, can catalyze the crystallization of clay minerals. In this study, we show that oxalate is a robust catalyst in the crystallization of saponite, an Al- and Mg-rich, trioctahedral 2:1 layer silicate, from a silicate gel at 60°C and ambient pressure. High-resolution transmission electron microscopy analysis of the saponite treated with octadecylammonium (n(C)=18) cations revealed the presence of 2:1 layer structures that have variable interlayer charge. The crystallization of these differently charged 2:1 layer silicates most likely occurred independently. The fact that 2:1 layer silicates with variable charge formed in the same gel has implications for our understanding of the origin of life, as these 2:1 clay minerals most likely replicate by a mechanism of template-catalyzed polymerization and transmit the charge distribution from layer to layer. If polar organic molecules like oxalate can catalyze the formation of clay-mineral crystals, which in turn promote clay microenvironments and provide abundant adsorption sites for other organic molecules present in solution, the interaction among these adsorbed molecules could lead to the polymerization of more complex organic molecules like RNA from nucleotides on early Earth.

  8. Formation of replicating saponite from a gel in the presence of oxalate: implications for the formation of clay minerals in carbonaceous chondrites and the origin of life. (United States)

    Schumann, Dirk; Hartman, Hyman; Eberl, Dennis D; Sears, S Kelly; Hesse, Reinhard; Vali, Hojatollah


    The potential role of clay minerals in the abiotic origin of life has been the subject of ongoing debate for the past several decades. At issue are the clay minerals found in a class of meteorites known as carbonaceous chondrites. These clay minerals are the product of aqueous alteration of anhydrous mineral phases, such as olivine and orthopyroxene, that are often present in the chondrules. Moreover, there is a strong correlation in the occurrence of clay minerals and the presence of polar organic molecules. It has been shown in laboratory experiments at low temperature and ambient pressure that polar organic molecules, such as the oxalate found in meteorites, can catalyze the crystallization of clay minerals. In this study, we show that oxalate is a robust catalyst in the crystallization of saponite, an Al- and Mg-rich, trioctahedral 2:1 layer silicate, from a silicate gel at 60°C and ambient pressure. High-resolution transmission electron microscopy analysis of the saponite treated with octadecylammonium (n(C)=18) cations revealed the presence of 2:1 layer structures that have variable interlayer charge. The crystallization of these differently charged 2:1 layer silicates most likely occurred independently. The fact that 2:1 layer silicates with variable charge formed in the same gel has implications for our understanding of the origin of life, as these 2:1 clay minerals most likely replicate by a mechanism of template-catalyzed polymerization and transmit the charge distribution from layer to layer. If polar organic molecules like oxalate can catalyze the formation of clay-mineral crystals, which in turn promote clay microenvironments and provide abundant adsorption sites for other organic molecules present in solution, the interaction among these adsorbed molecules could lead to the polymerization of more complex organic molecules like RNA from nucleotides on early Earth.

  9. Non-selective oxidation of humic acid in heterogeneous aqueous systems: a comparative investigation on the effect of clay minerals. (United States)

    Kavurmaci, Sibel Sen; Bekbolet, Miray


    Application of photocatalysis for degradation of natural organic matter (NOM) has received wide interest during the last decades. Besides NOM, model compounds more specifically humic acids (HAs) were also studied. As a continuation of the previous research, TiO2 photocatalytic degradation of HA was investigated in the presence of clay minerals, i.e., montmorillonite (Mt) and kaolinite (Kt). Degradation of HA was expressed by the pseudo-first-order kinetic modelling of dissolved organic carbon (DOC) and UV-VIS parameters (Colour436 and UV254). A slight rate enhancement was attained for Colour436 and UV254 in the presence of either Mt or Kt. The presence of clay particles did not significantly change the DOC degradation rate of HA. The effect of ionic strength (Ca2+ loading from 5 x 10(-4) M to 5 x 1(-3) M) was also assessed for the photocatalytic degradation of sole HA and HA in the presence of either Mt or Kt. Following photocatalytic treatment, molecular size distribution profiles of HA were presented. Besides the effective removal of higher molecular size fractions (100 and 30 kDa fractions), transformation to lower molecular size fractions (clay minerals. Scanning electron microscopic images with the energy dispersive X-ray analysis confirmed the diversities in surface morphologies of the binary and ternary systems composed of HA, TiO2 and Mt or Kt both prior to and following photocatalysis. This study demonstrated that photocatalysis could be applicable for DOC degradation in the presence of clay minerals in natural waters.

  10. Evaluation of Turf-Grass and Prairie-Vegetated Rain Gardens in a Clay and Sand Soil, Madison, Wisconsin, Water Years 2004-08 (United States)

    Selbig, William R.; Balster, Nicholas


    The U.S. Geological Survey, in cooperation with a consortium of 19 cities, towns, and villages in Dane County, Wis., undertook a study to compare the capability of rain gardens with different vegetative species and soil types to infiltrate stormwater runoff from the roof of an adjacent structure. Two rain gardens, one planted with turf grass and the other with native prairie species, were constructed side-by-side in 2003 at two locations with different dominant soil types, either sand or clay. Each rain garden was sized to a ratio of approximately 5:1 contributing area to receiving area and to a depth of 0.5 foot. Each rain garden, regardless of vegetation or soil type, was capable of storing and infiltrating most of the runoff over the 5-year study period. Both rain gardens in sand, as well as the prairie rain garden in clay, retained and infiltrated 100 percent of all precipitation and snowmelt events during water years 2004-07. The turf rain garden in clay occasionally had runoff exceed its confining boundaries, but was still able to retain 96 percent of all precipitation and snowmelt events during the same time period. Precipitation intensity and number of antecedent dry days were important variables that influenced when the storage capacity of underlying soils would become saturated, which resulted in pooled water in the rain gardens. Because the rooftop area that drained runoff to each rain garden was approximately five times larger than the area of the rain garden itself, evapotranspiration was a small percentage of the annual water budget. For example, during water year 2005, the maximum evapotranspiration of total influent volume ranged from 21 percent for the turf rain garden in clay to 25 percent for the turf rain garden in sand, and the minimum ranged from 12 percent for the prairie rain garden in clay to 19 percent for the prairie rain garden in sand. Little to no runoff left each rain garden as effluent and a small percentage of runoff returned to the

  11. Degradative crystal–chemical transformations of clay minerals under the influence of cyanobacterium-actinomycetal symbiotic associations

    Directory of Open Access Journals (Sweden)

    Ekaterina Ivanova


    Full Text Available Cyanobacteria and actinomycetes are essential components of soil microbial community and play an active role in ash elements leaching from minerals of the parent rock. Content and composition of clay minerals in soil determine the sorption properties of the soil horizons, water-holding capacity of the soil, stickiness, plasticity, etc. The transformative effect of cyanobacterial–actinomycetes associations on the structure of clay minerals – kaolinite, vermiculite, montmorillonite, biotite and muscovite – was observed, with the greatest structural lattice transformation revealed under the influence of association in comparison with monocultures of cyanobacterium and actinomycete. The range of the transformative effect depended both on the type of biota (component composition of association and on the crystal–chemical parameters of the mineral itself (trioctahedral mica – biotite, was more prone to microbial degradation than the dioctahedral – muscovite. The formation of the swelling phase – the product of biotite transformation into the mica–vermicullite mixed-layered formation was revealed as a result of association cultivation. Crystal chemical transformation of vermiculite was accompanied by the removal of potassium (К, magnesium (Mg and aluminum (Al from the crystal lattice. The study of such prokaryotic communities existed even in the early stages of the Earth's history helps to understand the causes and nature of the transformations undergone by the atmosphere, hydrosphere and lithosphere of the planet.contribution of treatments on structure induces and model parameters are discussed in the paper.

  12. [Mineralogy and genesis of mixed-layer clay minerals in the Jiujiang net-like red soil]. (United States)

    Yin, Ke; Hong, Han-Lie; Li, Rong-Biao; Han, Wen; Wu, Yu; Gao, Wen-Peng; Jia, Jin-Sheng


    Mineralogy and genesis were investigated using X-ray diffraction (XRD), Fourier infrared absorption spectroscopy (FTIR) and high resolution transmission electron microscopy (HRTEM) to understand the mineralogy and its genesis significance of mixed-layer clay minerals in Jiujiang red soil section. XRD and FTIR results show that the net-like red soil sediments are composed of illite, kaolinite, minor smectite and mixed-layer illite-smectite and minor mixed-layer kaolinite-smectite. HRTEM observation indicates that some smectite layers have transformed into kaolinite layers in net-like red soil. Mixed-layer illite-smectite is a transition phase of illite transforming into smectite, and mixed-layer kaolinite-smectite is a transitional product relative to kaolinite and smectite. The occurrence of two mixed-layer clay species suggests that the weathering sequence of clay minerals in net-like red soil traversed from illite to mixed-layer illite-smectite to smectite to mixed-layer kaolinite-smectite to kaolinite, which indicates that net-like red soil formed under a warm and humid climate with strengthening of weathering.

  13. Comparaison de diverses méthodes de dosage des argiles d'un sable de gisement. Dosage des argiles Comparison of Different Methods of Determining Clays in a Reservoir Sand. Quantitative Analysis of Clays

    Directory of Open Access Journals (Sweden)

    Yvon J.


    Full Text Available Les argiles d'un sable de gisement, concentrées dans la fraction de diamètre Phi Oil, gas and geothermal reservoirs all contain clayey fractions no matter how small they may be. This has been blamed whenever operating or producing problems arise. It may be revealed by phenomena of mechanical resistance, permeability or interfacial properties (ion exchange, adsorption, etc. . Tests to understand such phenomena then go via the quantitative mineralogical analysis of the clays present. This analysis must also be looked at in terms of methods. It is subjected to constraints of cost, instrumentation, competence or deadlines. This article proposes:(a A so-called conventional route (Dejou et al, 1977 based on chemical and weighted analyses. (b An overall assessment method of the clay phase by difference (determination of two nonclay species. (c A method based on the statistical processing of microanalytic data obtained by an electronic microprobe. The material examined was a quartzose arenite made up mainly of quartz, jarosite, orthoclase, plagioclases, calcite, dolomite, muscovite, kaolinite, illite, montmorillonite, interstratified illite-montmorillionite, iron oxyhydroxides and accessory minerals such as rutile, zircon, garnet, tourmaline and hydroxylapatite. The arenite was subjected to an ultrasonic treatment (Letelier, 1986 to recover pellicular or weakly cemented clays. After this treatment, all the free clays were found in the < 40 m fraction which were used for the measurements. The so-called conventionalmethod is based on the associating of multiple techniques that are normally used for analyzing clays. They include X-ray diffraction, TDA, TGA, selective dissolution, CEC, adsorption of various reagents and gravimetric separations. They have been reviewed by Dejou et al (1977. The results they give depend on the grain size, chrystallochemistry, presence of amorphous elements and especially the typical chemical compositions assigned to the

  14. The effects of the biogeochemical properties of clay minerals on the Pb sorption and desorption in various redox condition (United States)

    Koo, T. H.; Kim, J. Y.; Kim, J. W.


    The fate and transportation of hazardous trace metal in soil environment can be controlled by various factors including temperature, geological location, properties of bed rock or sediment, human behavior, and biogeochemical reactions. The sorption and desorption process is one of the major process for control the transportation of trace metal in soil-water system. Nonetheless, few studies were focused on the biological controlling parameters, particularly redox reaction of structural metal of clay minerals. Thus, the objective of the present study is to investigate the correlation between the sorption and desorption reaction of Pb and biogeochemical properties of clay minerals. The effects of redox state of structural Fe and layer charge of the minerals on the migration/speciation of Pb at the various geochemical environment will be elucidated. The Fe-rich smectite, nontronite (NAu-1), and bulk soil samples which were collected from abandoned mine areas were reduced by microbial respiration by Shewanella Oneidensis MR-1 and/or Na-dithionite to various oxidation state of structural Fe. Then the Pb-stock solution made with common lead and nitric acid were spiked into the mineral/soil slurry with various Pb concentration to test the sorption and desorption reaction upto 7 days. The reaction was stopped at each time point by freezing the pellet and supernatant separately after centrifugation. Then the concentration and stable isotope ratio of Pb in the supernatant were measured using Inductively Coupled Plasma Mass Spectrometer (ICP-MS) and Multicollector (MC)-ICP-MS. The structural as well as chemical modification on nontronite and bulk soil sample were measured using x-ray diffraction (XRD), scanning electron microscopy (SEM) and wet chemistry analysis. The changes in Pb species in supernatant by sorption and desorption and its consequences on the clay structural/biogeochemical properties will be discussed.

  15. Application of ground penetrating radar in placer mineral exploration for mapping subsurface sand layers: A case study

    Digital Repository Service at National Institute of Oceanography (India)

    Loveson, V.J.; Barnwal, R.P.; Singh; Gujar, A.R.; Rajamanickam, G.V.

    Penetrating Radar in Placer Mineral Exploration for Mapping Subsurface Sand Layers: A Case Study V.J. LOVESON # , R.P. BARNWAL # , V.K. SINGH # , A.R.GUJAR* AND G.V.RAJAMANICKAM** # Central Mining Research Institute, Dhanbad *National Institute...

  16. Discriminating silt-and-clay from suspended-sand in rivers using side-looking acoustic profilers (United States)

    Wright, Scott A.; Topping, David J.; Williams, Cory A.


    techniques rely on measurements of ancillary properties that correlate with suspended-sediment concentration and particle size and thus require the collection of traditional samples for calibration. Through in situ deployments, these methods can provide the high temporal resolution that cannot be achieved through traditional sampling. Here we focus on the evaluation of acoustic profiling techniques (e.g. acoustic-Doppler sideways-looking profilers, or ADPs). One major advantage of acoustic profiling is the ability to concurrently measure water velocity (using Doppler-shift methods) and suspended-sediment concentration such that suspended-sediment flux can be directly computed using data from a single instrument. Acoustic-Doppler profilers have become popular for measuring water velocity and discharge in rivers, through both moving-boat operations and from fixed deployments such as bank-mounted sideways-looking instruments (Hirsch and Costa, 2004, Muste et al., 2007). The method presented herein is most suited to sideways-looking applications as a complement to the "index velocity" technique, whereby an index velocity from a sideways-looking instrument is related to the cross-section average velocity (determined from moving-boat discharge measurements) as a means for developing a continuous water-discharge record (Ruhl and Simpson, 2005). Topping et al. (2007) presented a method for discriminating silt-and-clay from suspended sand, using single frequency ADPs. This method takes advantage of the relations among acoustic backscatter, sediment-induced acoustic attenuation, suspended-sediment concentration (SSC), and particle size distribution (PSD). Backscatter is the amount of sound scattered back and received at the transducer while sediment-induced attenuation is the amount of sound scattered in other directions and absorbed by the sediment particles. Both of these parameters can be measured with an ADP, and their different dependencies on SSC and PSD allow for the

  17. Alteration of glass as a possible source of clay minerals on Mars (United States)

    Gooding, J. L.; Keil, K.


    Thermodynamic calculations show that, under present Martian surface conditions, favorable gas-solid weathering products of feldspar glasses should include beidellites (clays of the montmorillonite series) + carbonates + quartz. The gas-solid weathering of mafic silicate glass ( of volcanic or impact origin) may similarly favor the production of metastable Fe-rich montmorillonite clays. Simple mass-balance calculations suggest that gas-solid weathering of Martian proto-regolith containing 10% glass could conceivably produce a global blanket of clays at a rate of at least 0.4 cm/b.y. The production rate should be expected to increase significantly with the glass content and rate of reworking of the proto-regolith and with the availability of water. Complete extraction of altered glass from a lunar-like proto-regolith might yield a global Martian clay blanket about 10-100 cm in thickness.

  18. Burial diagenetic processes of clay mineral and non-clay mineral, quartz cementation and dissolution in sandstones and mudstones of the Siri Canyon, Danish North Sea

    DEFF Research Database (Denmark)

    Kazerouni, Afsoon Moatari; Friis, Henrik; Svendsen, Johan Byskov

    reprecipitate as opal, quartz or other mineral phases inside the shale itself. The deep marine sandstones in the Siri Canyon, Danish North Sea, have been reported to import significant amounts of dissolve silica from adjacent Paleocene shales during early diagenesis, and the authigenesis of silica developed...

  19. The adsorption and release of sulfur in mineral and organic soils of the Athabasca Oil Sands Region, Alberta, Canada. (United States)

    Whitfield, C J; Adkinson, A; Eimers, M C; Watmough, S A


    Mineral soil and fibric peat from acid-sensitive western boreal catchments in the Athabasca Oil Sands Region of Alberta, Canada were evaluated for their ability to adsorb and release SO(4)(2-). Laboratory batch studies indicated that SO(4)(2-) adsorption in mineral soil from both the A and B horizons exhibits a limited response to elevated SO(4)(2-) concentrations, with the slope of initial mass isotherms mineral soils and the potential drought-induced S release from peatlands in this region where increased S deposition is expected, further investigation of acidification impacts is warranted.

  20. Clay minerals and metal oxides strongly influence the structure of alkane-degrading microbial communities during soil maturation. (United States)

    Steinbach, Annelie; Schulz, Stefanie; Giebler, Julia; Schulz, Stephan; Pronk, Geertje J; Kögel-Knabner, Ingrid; Harms, Hauke; Wick, Lukas Y; Schloter, Michael


    Clay minerals, charcoal and metal oxides are essential parts of the soil matrix and strongly influence the formation of biogeochemical interfaces in soil. We investigated the role of these parental materials for the development of functional microbial guilds using the example of alkane-degrading bacteria harbouring the alkane monooxygenase gene (alkB) in artificial mixtures composed of different minerals and charcoal, sterile manure and a microbial inoculum extracted from an agricultural soil. We followed changes in abundance and community structure of alkane-degrading microbial communities after 3 and 12 months of soil maturation and in response to a subsequent 2-week plant litter addition. During maturation we observed an overall increasing divergence in community composition. The impact of metal oxides on alkane-degrading community structure increased during soil maturation, whereas the charcoal impact decreased from 3 to 12 months. Among the clay minerals illite influenced the community structure of alkB-harbouring bacteria significantly, but not montmorillonite. The litter application induced strong community shifts in soils, maturated for 12 months, towards functional guilds typical for younger maturation stages pointing to a resilience of the alkane-degradation function potentially fostered by an extant 'seed bank'.


    Institute of Scientific and Technical Information of China (English)


    Characteristics of fluoride emission from five clay minerals (montmorillonite, kaolinite, vermiculite, geothite, and allophane) as affected by temperature, heating time and addition of calcium compounds were studied. Marked increase of the fluoride emission rate was noticed with increase of temperature. The fluoride release, began at 500 ℃-600 ℃, and the main bulk of the fluoride emission occurred at the temperature of about 800 ℃. The loss of crystalline water was primarily responsible for the increase of fluoride emission. When minerals were heated at 800 ℃, The fluoride emission rate from the clay minerals reached the highest after heating for 1 hour. The samples treated by CaO, CaCO3, Ca(OH)2, Ca3(PO4)2, and CaSO4 had 55.45%, 59.58%, 46.45%, 54.31%, 31.25% reduction in the fluoride emission from montmorillonite at the temperature of 800 ℃, respectively. CaCO3 had the highest fluoride fixing capacity compared to other calcium compounds.

  2. [X-ray powder diffraction of clay minerals of SZK01 core of Zabuye Lake, Tibetan Plateau]. (United States)

    Zhang, Xue-Fei; Zheng, Mian-Ping


    The present article chooses the core from the borehole SZK01 in Zabuye Lake as the main research object. According to the results of X-ray powder diffraction of clay minerals, the major components are illite, illite and smectite mixed layer mineral (I/S), kaolinite and chlorite. According to the different species and contents of clay, integration of the characteristics of mineral and the results of Δ18O, we reestablished the evolution process of paleoclimate in Zabuye Lake. In compaison with SZK02 core in Zabuye, Greenland GISP2 and GRIP and Guliya ice core, it contains 5 stages since 115 ka in Zabuye: the last interglacial (15-75.5 ka), the earlier last glacial (75.5-60 ka), the interstage of the last glacial (60-30.1 ka), the last glacial maximum (30.1-16.7 ka) and deglacial-holocene (since 16.7 ka). We also recognized 6 Heinrich events (H1-H6) and warm event in 71 ka. In particular, the content of kaolinite is low, with the negative-skewed value of Δ18O in 52-53 ka, while the value of Δ18O in SZK02 and Guliya ice core is negative-skewed too, indicating the cold event in Tibet plateau, named H5-1. All the above demonstrated that the climate in Tibet plateau is global since the earlier last glacial, and it also has regional characteristics.

  3. Relationship between heavy metals and minerals extracted from soil clay by standard and novel acid extraction procedures. (United States)

    Melo, Vander Freitas; Batista, Araína Hulmann; Gilkes, Robert J; Rate, Andrew W


    Strong acid digestions are commonly used to determine heavy metal (HM) contents in soils. In order to understand more fully the acid digestion processes, a logical step is to determine the extent of dissolution of mineral phases. The aims of this study were to compare the efficiency of extraction of HM by different acid digestions and to monitor the associated dissolution of the clay fraction. The context of the study was to develop a milder chemical extraction method (microwave-assisted 1 mol L(-1) HNO3 closed system (NACS)), which recovers more reactive HM and with little dissolution of minerals. The different acid digestion methods dissolved different amounts of minerals from the clay fraction. Both aqua regia (AR) and EPA 3051 dissolved all of the Fe and Al oxides, and the dissolution of kaolin was limited to thinner particles (c dimension), smaller particles in a and b dimensions and grains with lower crystallinity. The lower recovery of HM for AR compared with EPA 3051 was related to the large amount of short-range order phases formed during the AR extraction as these phases have the capacity to re-adsorb HM. The new method (NACS) has the potential to replace other methods of determining bioavailable forms of HM, such as AR and EPA 3051. The contents of Pb, As, Co, Zn, and Cu determined by EPA 3051 and EPA 3052 were quite close.

  4. Sorption of organic cations to phyllosilicate clay minerals: CEC-normalization, salt dependency, and the role of electrostatic and hydrophobic effects. (United States)

    Droge, Steven T J; Goss, Kai-Uwe


    Sorption to the phyllosilicate clay minerals Illite, kaolinite, and bentonite has been studied for a wide variety of organic cations using a flow-through method with fully aqueous medium as the eluent. Linear isotherms were observed at concentrations below 10% of the cation-exchange capacity (CEC) for Illite and kaolinite and below 1 mmol/kg (<1% CEC) for bentonite. Sorption to clays was strongly influenced by the electrolyte composition of the eluent but with a consistent trend for a diverse set of compounds on all clays, thus allowing for empirical correction factors. When sorption affinities for a given compound to a given clay are normalized to the CEC of the clay, the differences in sorption affinities between clays are reduced to less than 0.5 log units for most compounds. Although CEC-normalized sorption of quaternary ammonium compounds to clay was up to 10-fold higher than CEC-normalized sorption to soil organic matter, CEC-normalized sorption for most compounds was comparable between clays and soil organic matter. The clay fraction is thus a potentially relevant sorption phase for organic cations in many soils. The sorption data for organic cations to clay showed several regular trends with molecular structure but also showed quite a few systematic effects that we cannot explain. A model on the basis of the molecular size and charge density at the ionized nitrogen is used here as a tool to obtain benchmark values that elucidate the effect of specific polar moieties on the sorption affinity.

  5. [Rapid determination of major and trace elements in the salt lake clay minerals by X-ray fluorescence spectrometry]. (United States)

    Wang, Xiao-Huan; Meng, Qing-Fen; Dong, Ya-Ping; Chen, Mei-Da; Li, Wu


    A rapid multi-element analysis method for clay mineral samples was described. This method utilized a polarized wave-length dispersive X-ray fluorescence spectrometer--Axios PW4400, which had a maximum tube power of 4 000 watts. The method was developed for the determination of As, Mn, Co, Cu, Cr, Dy, Ga, Mo, P, Pb, Rb, S, Sr, Ni, ,Cs, Ta, Th, Ti, U, V, Y, Zn, Zr, MgO, K2O, Na2O, CaO, Fe2O3, Al2O3, SiO2 and so on. Thirty elements in clay mineral species were measured by X-ray fluorescence spectrometry with pressed powder pellets. Spectral interferences, in particular the indirect interferences of each element, were studied. A method to distinguish the interference between each other periodic elements in element periodic table was put forward. The measuring conditions and existence were mainly investigated, and the selected background position as well as corrected spectral overlap for the trace elements were also discussed. It was found that the indirect spectral overlap line was the same important as direct spectral overlap line. Due to inducing the effect of indirect spectral overlap, some elements jlike Bi, Sn, W which do not need analysis were also added to the elements channel. The relative standard deviation (RSD) was in the range of 0.01% to 5.45% except three elements Mo, Cs and Ta. The detection limits, precisions and accuracies for most elements using this method can meet the requirements of sample analysis in clay mineral species.

  6. The role of clay minerals in the reduction of nitrate in groundwater by zero-valent iron. (United States)

    Cho, Dong-Wan; Chon, Chul-Min; Jeon, Byong-Hun; Kim, Yongje; Khan, Moonis Ali; Song, Hocheol


    Bench-scale batch experiments were performed to investigate the feasibility of using different types of clay minerals (bentonite, fuller's earth, and biotite) with zero-valent iron for their potential utility in enhancing nitrate reduction and ammonium control. Kinetics experiments performed with deionized water (DW) and groundwater (GW) revealed nitrate reduction by Fe(0) proceeded at significantly faster rate in GW than in DW, and such a difference was attributed to the formation of green rust in GW. The amendment of the minerals at the dose of 25 g L(-1) in Fe(0) reaction in GW resulted in approximately 41%, 43%, and 33% more removal of nitrate in 64 h reaction for bentonite, fuller's earth, and biotite, respectively, compared to Fe(0) alone reaction. The presumed role of the minerals in the rate enhancement was to provide sites for the formation of surface bound green rust. Bentonite and fuller's earth also effectively removed ammonium produced from nitrate reduction by adsorption, with the removal efficiencies significantly increased with the increase in mineral dose above 5:1 Fe(0) to mineral mass ratio. Such a removal of ammonium was not observed for biotite, presumably due to its lack of swelling property. Equilibrium adsorption experiments indicated bentonite and fuller's earth had maximum ammonium adsorption capacity of 5.6 and 2.1 mg g(-1), respectively.

  7. Mineralogy, chemistry and radioactivity of the heavy minerals in the black sands, along the northern coast of Egypt (United States)

    Abdel-Karim, Abdel-Aal M.; Zaid, Samir M.; Moustafa, Mohammed I.; Barakat, Mohammed G.


    Three hundreds and six black sand samples have been collected from the beach areas along the northern coast of Egypt, parallel and perpendicular to the shoreline. The mineralogy and chemistry of the economic heavy minerals were studied. The grain size distribution of the studied economic minerals shows a unimodal class that mostly in the very fine sand size. The microscopic investigation indicates that the study area is enriched with six economic heavy minerals. These are ilmenite, magnetite, garnet, zircon, rutile and monazite; in addition to leucoxene, arranged in decreasing order of their abundance. The studied black sands suggest a reserve of 329, 183, 24, 21, 7, 1 and 14 thousand tons of ilmenite, magnetite, garnet, zircon, rutile, monazite and leucoxene, respectively. The spherical magnetite grains are higher in Fe2O3 than those of euhedral shaped grains. Ilmenite grains display sub-rounded to euhedral shapes. The altered ilmenite grains have higher TiO2 and lower Fe2O3 in comparison with the euhedral fresh ones. Garnet occurs as angular (49%), sub-spherical (45%), spherical (5%) and euhedral grains (1%). Garnet grains containing mineral inclusions represent 10% of their concentrate. The euhedral garnet grains have Al, Fe, Mn, Mg and Ca that arranged in decreasing order of their abundance. The magnetic zircon fraction obtained from their bulk concentrate is particularly rich in colored grains (70%). Their common colors are red and brown with some malacons. The reddish-brown color of zircon may be due to iron oxide stains. Some magnetic zircon grains are enriched in Hf and REEs contents. Rutile grains are sub-to well rounded (70%), and rich in TiO2. Monazite is enriched in Ce, La, Nd, Th and U. Detectable inclusions of gold, copper, lead, galena, cinnabar, platinum group elements (PGES) and silver are recorded in cassiterite. The radiometric measurements revealed that the black sands of the western zone (4 km2) have high values of specific activity, absorbed

  8. Anomalous small angle x-ray scattering studies of heavy metal ion solvation behavior in clay minerals

    Energy Technology Data Exchange (ETDEWEB)

    Carrado, K.A.; Thiyagarajan, P.; Winans, R.E.; Song, Kang [Argonne National Lab., IL (United States)


    The authors have exploited anomalous small angle x-ray scattering (ASAXS) to monitor the solvation behavior of Cu(II), Er(III) and Yb(III) ions within the interlayers of the natural aluminosilicate clay mineral montmorillonite. The ASAXS technique can reveal the distribution of specific metallic species within a heterogeneous and disordered matrix. The variations of signal intensity as a function of absorption energy were monitored for all of the metal-clays as a function of hydration. Two different hydration levels were probed: as prepared at ambient conditions, or so-called {open_quotes}dry{close_quotes} powders, and {open_quotes}wet{close_quotes} pastes. ASAXS intensities should increase with absorption energy if the metal ion is associated with the interlayer solvent (water in this case), and decrease if the metal ion is associated with the solid matrix. The results show that: (1) Cu(II) is solvated within the interlayers of the wet sample, as expected, and (2) Er(III) and Yb(III) decrease in ASAXS intensity with increased hydration. This latter result was not expected and there is speculation that these ions have associated as hydrolyzed products with the clay surface. The basic principles underlying SAXS and ASAXS will also be presented in this paper.

  9. Structural Investigation of Alkali Activated Clay Minerals for Application in Water Treatment Systems (United States)

    Bumanis, G.; Bajare, D.; Dembovska, L.


    Alkali activation technology can be applied for a wide range of alumo-silicates to produce innovative materials with various areas of application. Most researches focuse on the application of alumo-silicate materials in building industry as cement binder replacement to produce mortar and concrete [1]. However, alkali activation technology offers high potential also in biotechnologies [2]. In the processes where certain pH level, especially alkaline environment, must be ensured, alkali activated materials can be applied. One of such fields is water treatment systems where high level pH (up to pH 10.5) ensures efficient removal of water pollutants such as manganese [3]. Previous investigations had shown that alkali activation technology can be applied to calcined clay powder and aluminium scrap recycling waste as a foam forming agent to create porous alkali activated materials. This investigation focuses on the structural investigation of calcined kaolin and illite clay alkali activation processes. Chemical and mineralogical composition of both clays were determined and structural investigation of alkali activated materials was made by using XRD, DTA, FTIR analysis; the microstructure of hardened specimens was observed by SEM. Physical properties of the obtained material were determined. Investigation indicates the essential role of chemical composition of the clay used in the alkali activation process, and potential use of the obtained material in water treatment systems.

  10. Sorption of Pyrene by Clay Minerals Coated with Dissolved Organic Matter (DOM from Landfill Leachate

    Directory of Open Access Journals (Sweden)

    Pingxiao Wu


    Full Text Available Interactions of dissolved organic matter (DOM from landfill leachate with clays could affect significantly the fate of hydrophobic organic compounds (HOCs in soils. The complexes of montmorillonite (MT and kaolinite (KL with DOM extracted from landfill leachate were prepared under controlled conditions, termed CMT and CKL, respectively. The bare clays and their complexes were characterized by powder X-ray diffraction (XRD, Fourier transform infrared (FTIR, thermogravimetry (TG, differential scanning calorimetry (DSC, and scanning electron microscopy (SEM. Batch experiments were designed to investigate the sorption behavior of pyrene onto the clays in the presence of DOM. The maximum sorption capacities of pyrene on MT, CMT, KL, and CKL were 22.18, 38.96, 42.00, and 44.99 μg·g−1, respectively, at the initial concentration of 1000 ± 150 μg·L−1. The sorption isotherms of pyrene by the bare clays followed the Henry model well, whereas the Freundlich sorption isotherm provided a better fit to the equilibrium data of the sorption by the complexes. The role of montmorillonite and kaolinite complexes with DOM in the retention of pyrene in soils was different. This may be due to the different crystal structures between montmorillonite and kaolinite.

  11. Suitability of the methylene blue test for determination of cation exchange capacity of clay minerals related to ammonium acetate method (United States)

    Milošević, Maja; Logar, Mihovil; Dojčinović, Biljana; Erić, Suzana


    Cation exchange capacity (CEC) represents one of the most important parameters of clay minerals which reflects their ability to exchange cations with liquid phases in near contact. Measurement of CEC is used for characterizing sample plasticity, adsorbing and swelling properties which later define their usage in industrial purposes. Several methods have been developed over the years for determination of layer charge, charge density, charge distribution, etc. and have been published in numerous papers (Czimerova et al., 2006; Yukselen and Kaya, 2008). The main goal of present study is comparison of suitability of more recent method - methylene blue test in regard to older method - ammonium acetate for determination of CEC. For this study, we selected one montmorillonite clay (Bogovina, Serbia) and two mainly kaolinite clays (Miličinica, Serbia). Chemicals used for CEC determinations were solution of methylene blue (MB)(14*10-6M/ml) and ammonium acetate (AA) solution (1M). The obtained results are showing generally lower values in case of MB method. The main difference is due to molecular aggregation of MB on the clay surface. AA method is highly sensitive to the presence of CaO. Release of Ca ion from the sample into the solution can limit the saturation of exchange sites by the ammonium ion. This is clearly visible in case of montmorillonite clay. Fe2+ and Mg ions are difficult to move by the ammonium ion because of their ion radius, but in case of MB molecule there is no such restriction in removing them from the exchange sites. MB solution, even in a low concentration (2*10-6M/ml), is showing preferable results in moving the ions from their positions which is already visible after adding a small quantity of solution (25cm3). Both MB-titration and MB-spot test yield similar results and are much simpler methods than AA and they also give other information such as specific surface area (external and internal) whereas AA method only provides information about

  12. Time and pH-dependent sorption of the veterinary antimicrobial sulfathiazole to clay minerals and ferrihydrite. (United States)

    Kahle, Maren; Stamm, Christian


    Substantial amounts of sulfonamides, ionizable, polar veterinary antimicrobials, may reach the environment by spreading of manure. Sorption to soils and sediments is a crucial but not sufficiently understood process influencing the environmental fate of sulfonamides. Therefore, we investigated sorption of sulfathiazole to clay minerals (montmorillonite, illite) and ferrihydrite for varying pH values and two contact times (1d, 14 d) under sterile conditions. Results were compared to sulfathiazole sorption to organic sorbents. Sulfathiazole sorption to inorganic sorbents exhibited pronounced pH dependence consistent with sorbate speciation and sorbent charge properties. While sulfathiazole cations were most important for sorption to clay minerals, followed by neutral species, ferrihydrite was a specific anion sorbent, showing significant sorption only between pH 5.5-7. Experiments revealed a substantial increase of sorption with time for ferrihydrite (pH 5.5-7) and illite (pHsorbents was more than an order of magnitude lower than to organic sorbents. This implies that in many topsoils and sediments inorganic sorbents play a minor role. Our results highlight the need to account for contact time and speciation when predicting sulfonamide sorption in the environment.

  13. Adsorption mechanisms of emerging micro-pollutants with a clay mineral: Case of tramadol and doxepine pharmaceutical products. (United States)

    Thiebault, Thomas; Guégan, Régis; Boussafir, Mohammed


    A sodium exchanged smectite clay mineral (Mt) was used as geo-sorbent for the adsorption of tramadol and doxepin: two pharmaceutical products (PPs) defined as emerging pollutants due to their presence at significant concentration in numerous water compartments. The adsorption isotherms for both the temperatures of 20 and 40°C and the derived data determined through the fitting procedure by using Langmuir, Freundlich and Dubinin-Radushkevich equation models explicitly pointed out that the sorption of both tramadol and doxepin is mainly driven by electrostatic interaction. The studied PPs are intercalated in a monolayer arrangement within the interlayer space through a cation exchange in stoichiometric proportion with the Na(+) cations leading to adsorbed PPs amounts that match the cation exchange capacity (CEC) of Mt. Due to their hydrophobic character, additional doxepin molecules could be adsorbed by weak molecular interaction driving to an increase of the adsorbed amount beyond the CEC at low temperature (20°C). The confinement of PPs within the interlayer space of Mt confirms the use of clay minerals as potential material for the wastewater treatment as well as it drives to an amorphous or glassy state, which can find echo in biopharmaceutical applications for a controlled release of PPs.

  14. Distributions of clay minerals in surface sediments of the middle Bay of Bengal: Source and transport pattern (United States)

    Li, Jingrui; Liu, Shengfa; Shi, Xuefa; Feng, Xiuli; Fang, Xisheng; Cao, Peng; Sun, Xingquan; Wenxing, Ye; Khokiattiwong, Somkiat; Kornkanitnan, Narumol


    The clay mineral contents in 110 surface sediment samples collected from the middle of the Bay of Bengal were analyzed by X-ray diffraction (XRD) to investigate the provenance and transport patterns. The illite content was highest, followed by chlorite, kaolinite and then smectite, with average weight percent distributions of 52%, 22%, 14% and 12%, respectively. Illite and chlorite had similar distribution pattern, with higher contents in the northern and central areas and lower contents in the southern area, whereas smectite showed the opposite distribution pattern. Kaolinite show no obvious higher or lower areas and the southern ;belt; was one of the highest content areas. Based on the spatial distribution characteristics and cluster analysis results, the study area can be classified into two provinces. Province I covers the southwestern area and contains high concentrations of illite and smectite sediments. Province II covers most sites and is also characterized by high concentrations of illite, but the weight percent of smectite is only half of that of province I. According to a quantitative estimate using end-member clay minerals contents, the relative contributions from the Himalayan source and the Indian source are 63% and 37% on average, respectively. Integrative analysis indicates that the hydrodynamic environment in the study area, especially the turbidity and surface monsoonal circulation, plays an important role in the spatial distribution and dispersal of the clay fraction in the sediments. The sediments in province I are mainly from the Indian source transported by the East Indian Coastal Current (EICC) and the surface monsoon circulation with minor contributions from the Himalayan source while the sediments in province II are mainly from the Himalayan source transported by turbidity and surface monsoonal circulation with little contribution from Indian river materials.

  15. Equilibrium, kinetic and thermodynamic studies on the adsorption of the toxins of Bacillus thuringiensis subsp. kurstaki by clay minerals

    Energy Technology Data Exchange (ETDEWEB)

    Fu Qingling; Deng Yali; Li Huishu; Liu Jie [Key Laboratory of Subtropical Agricultural Resource and Environment, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070 (China); Hu Hongqing, E-mail: [Key Laboratory of Subtropical Agricultural Resource and Environment, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070 (China); Chen Shouwen [Key Laboratory of Subtropical Agricultural Resource and Environment, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070 (China); Sa Tongmin [Department of Agricultural Chemistry, College of Agriculture, Chungbuk National University, Cheongju, 361-763 (Korea, Republic of)


    The persistence of Bacillus thuringiensis (Bt) toxins in soil is further enhanced through association with soil particles. Such persistence may improve the effectiveness of controlling target pests, but impose a hazard to non-target organisms in soil ecosystems. In this study, the equilibrium adsorption of the Bt toxin by four clay minerals (montmorillonite, kaolinite, goethite, and silicon dioxide) was investigated, and the kinetic and thermodynamic parameters were calculated. The results showed that Bt toxin could be adsorbed easily by minerals, and the adsorption was much easier at low temperature than at high temperature at the initial concentration varying from 0 to 1000 mg L{sup -1}. The adsorption fitted well to both Langmuir and Freundlich isotherm models, but the Freundlich equation was more suitable. The pseudo-second-order (PSO) was the best application model to describe the adsorption kinetic. The adsorption process appeared to be controlled by chemical process, and the intra-particle diffusion was not the only rate-controlling step. The negative standard free energy ({Delta}{sub r}G{sub m}{sup {theta}}) values of the adsorption indicated that the adsorption of the Bt toxin by the minerals was spontaneous, and the changes of the standard enthalpy ({Delta}{sub r}H{sub m}{sup {theta}}) showed that the adsorption of the Bt toxin by montmorillonite was endothermic while the adsorption by the other three minerals was exothermic.

  16. Equilibrium, kinetic and thermodynamic studies on the adsorption of the toxins of Bacillus thuringiensis subsp. kurstaki by clay minerals (United States)

    Fu, Qingling; Deng, Yali; Li, Huishu; Liu, Jie; Hu, Hongqing; Chen, Shouwen; Sa, Tongmin


    The persistence of Bacillus thuringiensis ( Bt) toxins in soil is further enhanced through association with soil particles. Such persistence may improve the effectiveness of controlling target pests, but impose a hazard to non-target organisms in soil ecosystems. In this study, the equilibrium adsorption of the Bt toxin by four clay minerals (montmorillonite, kaolinite, goethite, and silicon dioxide) was investigated, and the kinetic and thermodynamic parameters were calculated. The results showed that Bt toxin could be adsorbed easily by minerals, and the adsorption was much easier at low temperature than at high temperature at the initial concentration varying from 0 to 1000 mg L -1. The adsorption fitted well to both Langmuir and Freundlich isotherm models, but the Freundlich equation was more suitable. The pseudo-second-order (PSO) was the best application model to describe the adsorption kinetic. The adsorption process appeared to be controlled by chemical process, and the intra-particle diffusion was not the only rate-controlling step. The negative standard free energy ( ΔGmθr) values of the adsorption indicated that the adsorption of the Bt toxin by the minerals was spontaneous, and the changes of the standard enthalpy ( ΔHmθr) showed that the adsorption of the Bt toxin by montmorillonite was endothermic while the adsorption by the other three minerals was exothermic.

  17. Distribution of grain size and clay minerals in sediments from the INDEX area, central Indian Basin

    Digital Repository Service at National Institute of Oceanography (India)

    Valsangkar, A.B.; Ambre, N.V.

    ,R.,H. L. Howa,and D. Michel. 1996. Application of grain size trend analysis for the determination of sediment transport pathways in intertidal areas. Marine Geology135:35–49.Pettijohn,F. G.,P. D. Potter,and R. Siever. 1972. Sand and Sandstone.New York...

  18. The 1.7- to 4.2-micron spectrum of asteroid 1 Ceres - Evidence for structural water in clay minerals (United States)

    Lebofsky, L. A.; Feierberg, M. A.; Larson, H. P.; Johnson, J. R.; Tokunaga, A. T.


    A high-resolution Fourier spectrum (1.7-3.5 microns) and medium-resolution spectrophotometry (2.7-4.2 microns) were obtained for Asteroid 1 Ceres. The presence of the 3-micron absorption feature due to water of hydration was confirmed. The 3-micron feature is compared with the 3-micron bands due to water of hydration in clays and salts. It is concluded that the spectrum of Ceres shows a strong absorption at 2.7-2.8 microns due to structural OH groups in clay minerals. The dominant minerals on the surface of Ceres are therefore hydrated clay minerals structurally similar to terrestrial montmorillonites. There is also a narrow absorption feature at 3.1 microns which is attributable to a very small amount of water ice on Ceres. This is the first evidence for ice on the surface of an asteroid.

  19. Estimating mineral abundances of clay and gypsum mixtures using radiative transfer models applied to visible-near infrared reflectance spectra (United States)

    Robertson, K. M.; Milliken, R. E.; Li, S.


    Quantitative mineral abundances of lab derived clay-gypsum mixtures were estimated using a revised Hapke VIS-NIR and Shkuratov radiative transfer model. Montmorillonite-gypsum mixtures were used to test the effectiveness of the model in distinguishing between subtle differences in minor absorption features that are diagnostic of mineralogy in the presence of strong H2O absorptions that are not always diagnostic of distinct phases or mineral abundance. The optical constants (k-values) for both endmembers were determined from bi-directional reflectance spectra measured in RELAB as well as on an ASD FieldSpec3 in a controlled laboratory setting. Multiple size fractions were measured in order to derive a single k-value from optimization of the optical path length in the radiative transfer models. It is shown that with careful experimental conditions, optical constants can be accurately determined from powdered samples using a field spectrometer, consistent with previous studies. Variability in the montmorillonite hydration level increased the uncertainties in the derived k-values, but estimated modal abundances for the mixtures were still within 5% of the measured values. Results suggest that the Hapke model works well in distinguishing between hydrated phases that have overlapping H2O absorptions and it is able to detect gypsum and montmorillonite in these simple mixtures where they are present at levels of ∼10%. Care must be taken however to derive k-values from a sample with appropriate H2O content relative to the modeled spectra. These initial results are promising for the potential quantitative analysis of orbital remote sensing data of hydrated minerals, including more complex clay and sulfate assemblages such as mudstones examined by the Curiosity rover in Gale crater.

  20. Effect of pH on the heavy metal-clay mineral interaction

    Energy Technology Data Exchange (ETDEWEB)

    Altyn, O.; Oezbelge, H.O.; Dogu, T.; Oezbelge, T.A. [Middle East Technical Univ., Ankara (Turkey)


    Adsorption and ion exchange of Pb and Cd on the surface of kaolinite and montmorillonite were studied with a strong emphasis on the pH values of solutions containing heavy metal ions. The pH range studied was 2.5 - 9. For kaolinite at a clay/solution ratio of 1/10 (w/w), Pb removal changes from 20 to 30% for an initial Pb concentration of 1640 ppm, and Cd removal changes from 10 to 20% for an initial Cd concentration of 1809 ppm. Due to its high exchange capacity, montmorillonite can remove more heavy metal than kaolinite. Removal rates for montmorillonite can reach up to 90% for both Pb and Cd. In the pH range of 3-6, there is a plateau for the removal rates. At pH values higher than 6, removal seems to increase artificially due to the precipitation of heavy metals. Under similar conditions for both clays, the rate of removal of Pb is always higher than that of Cd. As the pH value decreases for montmorillonite, there is a strong tendency for decreased surface area and swelling, as indicated by BET surface area measurements, adsorbed layer thickness and pore size distribution data. In the range of pH values studied, X-ray diffraction analysis showed the appearance of a characteristic (001) peak for montmorillonite, indicating that the crystalline structure of the clay was intact during the experiments.

  1. The protective effect of clay minerals against damage to adsorbed DNA induced by cadmium and mercury. (United States)

    Hou, Yakun; Wu, Pingxiao; Zhu, Nengwu


    The adsorption of Salmon Sperm DNA on three kinds of raw clay (rectorite, montmorillonite and sericite) was investigated as a function of pH, ionic strength and the concentrations of DNA and phosphate ions in solution. The DNA adsorption was reduced in the following order: rectorite>montmorillonite>sericite. Based on these findings, there is a strong evidence that the mechanisms for DNA adsorption on clay involve electrostatic forces, cation bridging and ligand exchange. Cyclic voltammetry (CV) and UV-vis absorption and fluorescence spectroscopy were used to compare the properties of unbound DNA and the absorbed DNA on rectorite, both in the absence and presence of Cd(2+) and Hg(2+) inaqueous solutions. The interaction of heavy metals with the unbound DNA was evidenced by the disappearance of reduction peaks in CV, a small bathochromic shift in UV-vis spectroscopy and an incomplete quenching in the emission spectra. Such changes were not observed in the DNA-rectorite hybrids, which is evidence that adsorption on the clay can reduce the extent of the DNA damage caused by heavy metals. Therefore, in these experience the rectorite played an important role in protecting DNA against Cd(2+) and Hg(2+) induced damage.

  2. Characterization of sorbed oil components on clays and quartz grains in oil sand. A contribution to the wettability of reservoir rocks in petroleum deposits. Charakterisierung sorbierter Oelkomponenten auf Tonmineralien und Quarzkoernern in Oelsanden. Ein Beitrag zur Benetzbarkeit von Reservoirgesteinen in Oellagerstaetten

    Energy Technology Data Exchange (ETDEWEB)

    Fendel, A.


    The wettability of an oil reservoir strongly influences the recovery rate during primary production and the feasibility of Enhanced Oil Recovery. In order to achieve an insight into the chemical nature of the oil components sorbed onto mineral surfaces, unconsolidated Canadian (Athabasca, Cold Lake) and U.S. oilsands (Tar Sand Triangle) were exhaustively extracted with dichloromethane by Soxhlet to remove the non-sorbed, so called free oil. The sorbed oil on the clays were investigated in situ by spectroscopy and pyrolysis. Clays and quartz were extensively extracted with polar solvent mixtures to release the sorbed oil. The extractable sorbed oil and the corresponding free oil were fractionated in chemically defined compound classes by adsorption chromatography. The fractions were characterized by means of GC, GC//MS and IR-spectroscopy. The sorbed oil is highly enriched in oxygen functions bearing components, which partly show a polyfunctional character. The surprising existence of n-alkanes in the sorbed oil, which are not detected in the free oil, is explained by occlusion in the sorbed organic layer. The existence of sterols could be shown in the free and the sorbed oil though not being reported in literature to date. Clays and quartz show a different behavior of sorption. Opposite to the general accepted idea, of smectites showing the highest capacity to sorb organics, the highest amount of sorbed oil was found in the kaolinite-/illite-rich samples. Different mechanisms of oil sorption onto the mineral surfaces, possibly driven by entropy, are discussed. (orig./RB).

  3. Biomass Composition and Mineral Removal of Sugarcane and Energy Cane on a Sand Soil in Florida (United States)

    Approximately 20% of Sugarcane is grown on sand soils in south Florida, but yields and profits are lower compared to sugarcane grown on organic soils in the region. Energy cane may be an alternative crop on sand soils in the future to improve profits because of the growing interest of increased biom...

  4. Investigations of the use of clay minerals and prussian blue in reducing the transfer of dietary radiocaesium to milk. (United States)

    Unsworth, E F; Pearce, J; McMurray, C H; Moss, B W; Gordon, F J; Rice, D


    Two experiments were performed with lactating dairy cattle to assess the efficacy of clay minerals and Prussian Blue (AFCF form) in controlling the transfer of dietary radiocaesium to milk. In Experiment 1, bentonite was included in the diet at 0, 300, 600 and 900 g d-1 and the transfer of radiocaesium from silage to milk was determined. Bentonite inclusion significantly (P less than 0.001) depressed the transfer of radiocaesium to milk with no benefit in increasing the dietary inclusion above 600 g d-1 when a 73% reduction was observed. In Experiment 2, the effectiveness of bentonite (300 g d-1), clinoptilolite (300 g d-1) and Prussian Blue (3 g d-1) as dietary additives was compared. All treatments significantly (P less than 0.001) depressed the transfer of dietary radiocaesium to milk. Clinoptilolite was less effective than bentonite and both treatments were considerably less effective than Prussian Blue, the reductions being 35%, 62% and 85% respectively.

  5. Self-sealing barriers of sand/bentonite-mixtures in a clay repository. SB-experiment in the Mont Terri Rock Laboratory. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Rothfuchs, Tilmann; Czaikowski, Oliver; Hartwig, Lothar; Hellwald, Karsten; Komischke, Michael; Miehe, Ruediger; Zhang, Chun-Liang


    Several years ago, GRS performed laboratory investigations on the suitability of clay/mineral mixtures as optimized sealing materials in underground repositories for radioactive wastes /JOC 00/ /MIE 03/. The investigations yielded promising results so that plans were developed for testing the sealing properties of those materials under representative in-situ conditions in the Mont Terri Rock Laboratory (MTRL). The project was proposed to the ''Projekttraeger Wassertechnologie und Entsorgung (PtWT+E)'', and finally launched in January 2003 under the name SB-project (''Self-sealing Barriers of Clay/Mineral Mixtures in a Clay Repository''). The project was divided in two parts, a pre-project running from January 2003 until June 2004 under contract No. 02E9713 /ROT 04/ and the main project running from January 2004 until June 2012 under contract No. 02E9894 with originally PtWT+E, later renamed as PTKA-WTE. In the course of the pre-project it was decided to incorporate the SB main project as a cost shared action of PtWT+E and the European Commission (contract No. FI6W-CT-2004-508851) into the EC Integrated Project ESDRED (Engineering Studies and Demonstrations of Repository Designs) performed by 11 European project partners within the 6th European framework programme. The ESDRED project was terminated prior to the termination of the SB project. Interim results were reported by mid 2009 in two ESDRED reports /DEB09/ /SEI 09/. This report presents the results achieved in the whole SB-project comprising preceding laboratory investigations for the final selection of suited material mixtures, the conduction of mock-up tests in the geotechnical laboratory of GRS in Braunschweig and the execution of in-situ experiments at the MTRL.

  6. Experimental Study of the Selective Adsorption of Heavy Metals onto Clay Minerals

    Institute of Scientific and Technical Information of China (English)

    何宏平; 郭九皋; 等


    The interaction between minerals and heavy metals has been a hot object of study in environmental science,mineralogy and soil science,Through the selective adsorption experiment of Ca-montomorillonite,illite and kaolinite to Cu2+,Pb2+,Zn2+,Cd2+,and Cr3+ ions at certain conditions,it could be concluded that Cr3+ is most effectively sorbed by all the three minerals.Also,it can be found that Pb2+ shows a strong affinity for illite and kaolinite while cu2+ for montmorillonite .Based on the adsorption experiment at varying pH of solution,it can be found that the amount of heavy etals sorbed by minerals increases with increasing pH of the solution.

  7. Mineral potential of clays that cover the gypsum deposits in Araripina-PE region; Potencial mineral das argilas que recobrem as jazidas de gipsita na regiao de Araripina-PE

    Energy Technology Data Exchange (ETDEWEB)

    Lira, B.B.; Anjos, I.F. dos, E-mail: [Universidade Federal da Paraiba (CT/UFPB), PB (Brazil); Rego, S.A.B.C. [Universidade Federal de Pernambuco (PGEM/DEMEC/UFPE), PE (Brazil)


    In the present work the applicability of the clays that cover the deposits of Gypsum Plaster in the region of Araripina - PE for use as the ceramic pigments and for bricks production in the red ceramic industry was analyzed. The clay minerals contained the illite, kaolinite and smectite, with high proportion of the last one. The possibility of industrial application of this mineral clay is considerable; however, the mining industries that mine and process the gypsum in the region do not take the clays into account as the potential mineral. In general, industries use the clay minerals in manufacturing processes or as key raw materials, or as the alternatives for some kinds of the chemical processing industries. This paper aims to highlight the potential of materials that cover the deposits of gypsum in reference. The material sampled from different deposit layers was characterized and the physical treatment of ore was applied. The results showed that the material analyzed can be used in various kinds of industry, such as the production of natural ceramic pigments. (author)

  8. Clay minerals in primitive meteorites and interplanetary dust 2. Smectites and micas (United States)

    Keller, L. P.; Zolensky, M. E.


    The classification is briefly summarized of stony meteorites and cosmic dust, and the mineralogy and chemistry is described of serpentine group minerals. The occurrence of smectites and micas in extraterrestrial materials is examined. The characterization of fine grained minerals in meteorites and IDPs relies heavily on electron beam instruments, especially the transmission electron microscope (TEM). Typically, phyllosilicates are identified by a combination of high resolution imaging of basal spacings, electron diffraction, and chemical analysis. Smectites can be difficult to differentiate from micas because the smectites lose their interlayer water and the interlayer partly collapse in the high vacuum of the TEM.

  9. Interactions between extracellular polymeric substances and clay minerals affect soil aggregation (United States)

    Vogel, Cordula; Rehschuh, Stephanie; Kemi Olagoke, Folasade; Redmile Gordon, Marc; Kalbiltz, Karsten


    Soil aggregation is crucial for carbon (C) sequestration and microbial processes have been recognised as important control of aggregate turnover (formation, stability, and destruction). However, how microorganisms contribute to these processes is still a matter of debate. An enthralling mechanism determining aggregate turnover and therefore C sequestration may be the excretion of extracellular polymeric substances (EPS) as microbial glue, but effects of EPS on aggregation is largely unknown. Moreover, interdependencies between important aggregation factors like the amount of fine-sized particles (clay content), the decomposability of organic matter and the microbial community (size and composition, as well as the excretion of EPS) are still poorly understood. Therefore, we studied the complex interactions between these factors and their role in aggregate turnover. It was hypothesized that an increase in microbial activity, induced by the input of organic substrates, will stimulate EPS production and therefore the formation and stability of aggregates. To test this hypothesis, an incubation experiment has been conducted across a gradient of clay content (montmorillonite) and substrate decomposability (starch and glucose) as main drivers of the microbial activity. A combination of aggregate separation and stability tests were applied. This results will be examined with respect to the obtained microbial parameters (amount and composition of EPS, CO2 emission, microbial biomass, phospholipid fatty acid), to disentangle the mechanisms and factors controlling aggregate turnover affected by soil microorganisms. This study is expected to provide insights on the role of EPS in the stability of aggregates. Thus, the results of this study will provide an improved understanding of the underlying processes of aggregate turnover in soils, which is necessary to implement strategies for enhanced C sequestration in agricultural soils.

  10. Contribution to the physical-mechanical study of cement CRS basis of dune-sand powder and other minerals (United States)

    Dahmani, Saci; Kriker, Abdelouahed


    The Portland cements are increasingly used for the manufacture of cement materials (mortar or concrete). Sighting the increasing demand of the cement in the field of construction, and the wealth of our country of minerals. It is time to value these local materials in construction materials and in the manufacture of cement for the manufacture of a new type of cement or for the improvement of the cement of characteristics for several reasons either technical, or ecological or economic or to improve certain properties to the State fees or hardened. The uses of mineral additions remain associated to disadvantages on the time of solidification and the development of the mechanical resistance at the young age [8]. The objective of our work is to study the effects of the incorporation of additions minerals such the pozzolan (active addition) [3], slag of blast furnace (active addition) [4] and the sand dune powder (inert addition) on the physico-mechanical properties of compositions of mortar collaborated compositions according to different binary combinations basis of these additions. This will allow selecting of optimal dosages of these combinations the more efficient, from the point of view of mechanical resistanceas well. The results of this research work confirm that the rate of 10% of pozzolan, slag or powder of dune sand contributes positively on the development of resistance in the long term, at of this proportion time,there is a decrease in the latter except for the slag (20 - 40%) [4]Seems the more effective resistors and physical properties.

  11. Chemical and physical transformations of aluminosilicate clay minerals due to acid treatment and consequences for heterogeneous ice nucleation. (United States)

    Sihvonen, Sarah K; Schill, Gregory P; Lyktey, Nicholas A; Veghte, Daniel P; Tolbert, Margaret A; Freedman, Miriam Arak


    Mineral dust aerosol is one of the largest contributors to global ice nuclei, but physical and chemical processing of dust during atmospheric transport can alter its ice nucleation activity. In particular, several recent studies have noted that sulfuric and nitric acids inhibit heterogeneous ice nucleation in the regime below liquid water saturation in aluminosilicate clay minerals. We have exposed kaolinite, KGa-1b and KGa-2, and montmorillonite, STx-1b and SWy-2, to aqueous sulfuric and nitric acid to determine the physical and chemical changes that are responsible for the observed deactivation. To characterize the changes to the samples upon acid treatment, we use X-ray diffraction, transmission electron microscopy, and inductively coupled plasma-atomic emission spectroscopy. We find that the reaction of kaolinite and montmorillonite with aqueous sulfuric acid results in the formation of hydrated aluminum sulfate. In addition, sulfuric and nitric acids induce large structural changes in montmorillonite. We additionally report the supersaturation with respect to ice required for the onset of ice nucleation for these acid-treated species. On the basis of lattice spacing arguments, we explain how the chemical and physical changes observed upon acid treatment could lead to the observed reduction in ice nucleation activity.

  12. 30 CFR 46.5 - New miner training. (United States)


    ... RETRAINING OF MINERS ENGAGED IN SHELL DREDGING OR EMPLOYED AT SAND, GRAVEL, SURFACE STONE, SURFACE CLAY, COLLOIDAL PHOSPHATE, OR SURFACE LIMESTONE MINES. § 46.5 New miner training. (a) Except as provided in... the recognition and avoidance of electrical hazards and other hazards present at the mine, such...

  13. Application of clay minerals from Cayo Guan, Cuba, as sorbents of heavy metals and ceramic raw materials; Aplicaciones de los minerales arcillosos de Cayo Guan, Cuba, como adsorbentes de metales pesados y materia prima ceramica

    Energy Technology Data Exchange (ETDEWEB)

    Fonseca, D.; Barba, F.; Callejas, P.; Recio, P.


    It has been studied by Analysis Heating Microscope Optical the behaviour of some kaolinitic clays from a reservoir of Cayo Guan rich in iron oxides and low silica content proving to be a refractory materials whose softening appears after 1500 degree centigrade. It has obtained the workability diagram of the different clay minerals calculating the plasticity by the method of Casagrande spoon; only one of the samples is in the area suitable for extrusion. Vitrification diagrams report that the capacity of water absorption is <0.6 % when the temperature of 1400 degree centigrade is achieved. We have designed a program to calculate compositions of porcelain stoneware prepared from these modified clays adding low-cost raw materials that facilitate the formation of glassy phase ((potassium feldspar and glass cullet) and/or increase the silica (sand and diatomaceous earth used as filters in the brewing industry). With one of these compositions, prepared in the laboratory (60 % of clay, 30 % feldspar and 10 % of diatomaceous earth), calcined at 1250 degree centigrade with a heating rate of 15 degree centigrade/min, the results were: water absorption 0.8 %, and linear shrinkage 21 % without any deformation observed. These clays have been treated with acid to eliminate its high iron content and study its application as an sorbent of heavy metals as Cd{sup 2}+, Cr{sup 3}+. The results of the immobilization of these elements have been compared with those obtained with thermally activated vermiculite at 800 degree centigrade, showing that the treated samples show sorption of both cadmium and chromium below the vermiculite, but the non-treated ones are suitable to remove chromium; this is because these clays do not contain in its composition exchangeable ions (Ca{sup {sub 2}} +, Mg{sup 2} +, Na{sup +}, K{sup +}), and even if they are chemically activated only the presence of Fe ions is which produces form bindings (Cr{sub x}.Fe{sub 1}-x) (OH){sub 3} which favor Cr sorption

  14. Oligomerization of glycine on clay mineral surface and implication to oligin of life under seafloor hydrothermal conditions (United States)

    Fuchida, S.; Masuda, H.


    The sediments at hydrothermal and/or various parts of the crust has been believed to be good environments to proceed the chemical evolution of life precursor, since minerals promoted oligomerization of amino acids, sugars and lipids on the primitive earth. In this study, the thermal behaviors of glycine (Gly), the simplest amino acid, adsorbed on montmorillonite was observed to evaluate the role of clay minerals and water on the oligomerization under thermal condition of sediments. Gly was adsorbed on montmorillonite was heated at 150 degree C for 3-288 hrs under dry and wet condition. In the latter case, 10 - 60% water was added in the system. The amount of Gly monomer remaining in the montmorillonite exponentially decreased with time; 46% Gly remained in the montmorillonite under dry condition and 74% under wet condition after 288 hrs. The Gly monomer was more stable under hydrothermal condition than dry thermal condtion. FT-IR analysis suggested that the Gly was intercalated in the montmorillonite via hydrogen bond, which is likely to promote to stabilize Gly, between amino group of the Gly and silanol group of the montmorillonite. On the contrast, the yields of peptides were low on motmorillonite after heated under the wet condition: the amounts of glycilglycine (Gly-Gly) and diketopiperazine (DKP) are 0.8% and 0.9%, respectively. The amounts of DKP and GlyGly are 12.9% and 4.8% after heated under the dry condtion. Excessive water would promote to hydrolyze synthesized peptides. New band at 1671cm-1 by FT-IR implies that DKP was condensed on the montmorillonite. DKP was not formed without montmorillonite under the dry condition, although peptide formation is theoretically favorable. Water molecules including in the montmorillonite would act as proton transfer to promote the peptide formation. The peptide formation would be more proceeded under a little wet condition than completely dry condition. Results of this study suggested that deep sediments, where

  15. Phosphorus adsorption onto clay minerals and iron oxide with consideration of heterogeneous particle morphology. (United States)

    Fang, Hongwei; Cui, Zhenghui; He, Guojian; Huang, Lei; Chen, Minghong


    Particle morphology plays an important role in solid-water interface adsorption, which affects the fate and behavior of phosphorus (P) in rivers and lakes and the resulting eutrophication. In this paper, three minerals including kaolinite, montmorillonite and hematite were considered to investigate the contributions of particle morphology to P adsorption using adsorption experiments and microscopic examinations. The Taylor expansion method is applied to quantitatively characterize the heterogeneity of surface morphology. The results reveal that local concave or convex micro-morphology characterized by the second order term of Taylor expansion F2, can affect the local adsorption capacity due to its effect on the distribution of surface charge and reactive sites. Moreover, the adsorbed P at different F2 here fits to a Weibull distribution, which can further define the representative average adsorption onto individual particles. A weighted average morphology factor F2a is derived to characterize the surface heterogeneity, and correlated with average P adsorption of particular mineral particles. In addition, the Sips model can successfully fit the experimental data of different minerals, and the heterogeneity parameters γ and adsorption capacity Qm in the model are proved to be functions with the basic mineral properties, including particle size, surface site density and morphology characterization as well. It is concluded that the complex surface morphology plays a significant role in particle adsorption and the morphological role need to be considered in the adsorption model in order to better describe the adsorption in system with heterogeneous solid surface. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Bioavailability of iron in geophagic earths and clay minerals, and their effect on dietary iron absorption using an in vitro digestion/Caco-2 cell model. (United States)

    Seim, Gretchen L; Ahn, Cedric I; Bodis, Mary S; Luwedde, Flavia; Miller, Dennis D; Hillier, Stephen; Tako, Elad; Glahn, Raymond P; Young, Sera L


    Geophagy, the deliberate consumption of earth, is strongly associated with iron (Fe) deficiency. It has been proposed that geophagy may be practiced as a means to improve Fe status by increasing Fe intakes and, conversely, that geophagy may cause Fe deficiency by inhibiting Fe absorption. We tested these hypotheses by measuring Fe concentration and relative bioavailable Fe content of 12 samples of geophagic earth and 4 samples of pure clay minerals. Further, we assessed the impact of these samples on the bioavailability of Fe from an Fe-rich test meal (cooked white beans, WB). Fe concentrations were measured with inductively coupled plasma atomic emission spectroscopy. Fe bioavailability was determined using an in vitro digestion/Caco-2 cell model in which ferritin formation was used as an index of Fe bioavailability. Geophagic earth and clay mineral samples were evaluated with this model, both alone and in combination with WB (1 : 16 ratio, sample : WB). Median Fe concentration of the geophagic earth was 3485 (IQR 2462, 14 ,571) μg g⁻¹ and mean Fe concentration in the clay minerals was 2791 (±1782) μg g⁻¹. All specimens had Fe concentrations significantly higher (p ≤ 0.005) than the Fe concentration of WB (77 μg g⁻¹). Ferritin formation (i.e. Fe uptake) in cells exposed to geophagic earths and clay minerals was significantly lower than in cells exposed to WB (p ≤ 0.05) and Fe uptake responses of 11 of the 16 samples were not significantly different from the blank, indicating no bioavailable Fe. When samples were combined with WB, 5 of 16 had mean ferritin levels that were significantly lower (p ≤ 0.05, one tail) than the WB alone, indicating that the samples inhibited Fe uptake from the WB. None of the ferritin responses of cells exposed to both WB and earth/clay were significantly higher than WB alone. Thus, although geophagic earths and mineral clays are high in total Fe, very little of this Fe is bioavailable. Further, some

  17. Heavy mineral sorting as a tool to distinguish depositional characteristics of “in situ” sands from their related injected sands in a Palaeogene submarine Canyon, Danish North Sea

    DEFF Research Database (Denmark)

    Moatari Kazerouni, Afsoon; Friis, Henrik; Svendsen, Johan. B

    in the Paleocene Siri Canyon near the Danish Central Graben of the North Sea hydrocarbon province from borehole data. The emplacement of large-scale injection complexes has been commonly attributed in the geological literature to seismic activity and consequent sand liquefaction. However, due to very small...... and has been interpreted to represent the depositional sorting. This study demonstrates the detailed sorting pattern of heavy minerals in thin, injected sands and relates it to the flow patterns during injection. The sorting pattern is used to explain the large scale sorting pattern of the reservoir sands...... and to suggest a tool for petrographic/geochemical distinction between "in situ" sands and their related injected sands within a submarine canyon setting....

  18. Heavy mineral sorting as a tool to distinguish depositional characteristics of “in situ” sands from their related injected sands in a Palaeogene submarine Canyon, Danish North Sea

    DEFF Research Database (Denmark)

    Moatari Kazerouni, Afsoon; Friis, Henrik; Svendsen, Johan. B

    Postdepositional remoblization and injection of sand are important processes in deep-water clastic systems. Subsurface mobilisation and injection of sand has been recently recognised as a significant control of deep-water sandstone geometry. Kilometre-scale injection complexes have been interpreted...... in the Paleocene Siri Canyon near the Danish Central Graben of the North Sea hydrocarbon province from borehole data. The emplacement of large-scale injection complexes has been commonly attributed in the geological literature to seismic activity and consequent sand liquefaction. However, due to very small...... differences in textural and compositional properties, and the lack of depositional structures of reservoir sands in the Siri Canyon, the distinction between "in situ" and injected or remobilised sands is difficult. Large scale heavy mineral sorting (in 10 m thick units) is observed in several reservoir units...

  19. The influence of clay type on reduction of water repellency by applied clays: a review of some West Australian work (United States)

    McKissock, I.; Walker, E. L.; Gilkes, R. J.; Carter, D. J.


    In Western Australia water repellency mostly occurs in soils with sandy texture; the severity of water repellency is influenced by very small changes in clay content. Additions of 1-2% clay can prevent water repellency and for some time clay amendments have been used by farmers to overcome water repellency. The aim of this study was to assess the effectiveness of clays in ameliorating water repellency. Clays were assessed for effectiveness in reducing water repellency by mixing with water repellent sands and measuring water drop penetration time (WDPT) on the resultant mixtures. WDPT was measured on the initial mixtures, a wetting and drying cycle was imposed and WDPT measured again. Two sets of clays were assessed: four simple clays containing kaolinite (2) or smectite (2) group minerals and a group of clayey subsoil materials which had been collected by farmers. For the simple clays, clay mineral type was the most significant factor in determining response. Kaolin was much more effective than smectite. Imposition of a wetting and drying cycle greatly reduced water repellency. The dominant exchangeable cation of the clays (sodium or calcium) had little effect on the ability of the clays to reduce water repellency. The factor that was most predictive of the effectiveness of clayey subsoils materials in reducing water repellency was texture: clay content ( r2=0.18) or clay+silt content ( r2=0.23). These properties were more predictive of water repellency values after the wetting and drying cycle treatment ( r2=0.36, r2=0.44). The proportion of the clay fraction that consisted of kaolinite was next most predictive in determining effectiveness which is again indicative of kaolin group minerals being more effective than smectite group minerals. The exchangeable sodium percentage and clay dispersibility had no systematic effect on the ability of these clays to reduce water repellency. These results provide a basis for developing a practical field procedure to enable

  20. Clay at Nili Fossae (United States)


    This image of the Nili Fossae region of Mars was compiled from separate images taken by the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) and the High-Resolution Imaging Science Experiment (HiRISE), two instruments on NASA's Mars Reconnaissance Orbiter. The images were taken at 0730 UTC (2:30 a.m. EDT) on Oct. 4, 2006, near 20.4 degrees north latitude, 78.5 degrees east longitude. CRISM's image was taken in 544 colors covering 0.36 to 3.92 micrometers, and shows features as small as 18 meters (60 feet) across. HiRISE's image was taken in three colors, but its much higher resolution shows features as small as 30 centimeters (1 foot) across. CRISM's sister instrument on the Mars Express spacecraft, OMEGA, discovered that some of the most ancient regions of Mars are rich in clay minerals, formed when water altered the planet's volcanic rocks. From the OMEGA data it was unclear whether the clays formed at the surface during Mars' earliest history of if they formed at depth and were later exposed by impact craters or erosion of the overlying rocks. Clays are an indicator of wet, benign environments possibly suitable for biological processes, making Nili Fossae and comparable regions important targets for both CRISM and HiRISE. In this visualization of the combined data from the two instruments, the CRISM data were used to calculate the strengths of spectral absorption bands due to minerals present in the scene. The two major minerals detected by the instrument are olivine, a mineral characteristic of primitive igneous rocks, and clay. Areas rich in olivine are shown in red, and minerals rich in clay are shown in green. The derived colors were then overlayed on the HiRISE image. The area where the CRISM and HiRISE data overlap is shown at the upper left, and is about 5 kilometers (3 miles) across. The three boxes outlined in blue are enlarged to show how the different minerals in the scene match up with different landforms. In the image at the upper right

  1. Antibiotic eluting clay mineral (Laponite®) for wound healing application: an in vitro study. (United States)

    Ghadiri, M; Chrzanowski, W; Rohanizadeh, R


    Different materials in form of sponge, hydrogel and film have been developed and formulated for treating and dressing burn wounds. In this study, the potential of Laponite, a gel forming clay, in combination with an antimicrobial agent (mafenide), as a wound dressing material was tested in vitro. Laponite/mafenide (Lap/Maf) hydrogel was formulated in three different ratios of Lap/Maf 1:1, 1:2, 1:3. Laponite/mafenide/alginate (Lap/Maf/Alg) film was also formulated by combining Lap/Maf gel (1:1) with alginate. Intercalation rate of mafenide into the layers of Laponite nanoparticles and physico-chemical properties, including wound dressing characteristics of materials were studied using various analytical methods. Furthermore, the degradation of materials and the release profile of mafenide were investigated in simulated wound exudates fluid and antibacterial effectiveness of the eluted mafenide was tested on a range of bacterial species. The cytotoxicity of materials was also evaluated in skin fibroblast culture. The results showed that mafenide molecules were intercalated between the nano-sized layers of Laponite. The eluted mafenide showed active antibacterial effects against all three tested bacteria. All intercalated mafenide released from Lap/Maf 1:1 and 1:2 gel formulations and nearly 80% release from 1:3 formulation during test period. No significant difference was observed in release profile of mafenide between Lap/Maf/Alg film and Lap/Maf formulations. Wound dressing tests on Lap/Maf/Alg film showed it is a breathable dressing and has capacity to absorb wound exudates. The study showed that prepared Lap/Maf composite has the potential to be used as an antibiotic eluting gel or film for wound healing application. Additionally, Laponite has shown benefits in wound healing processes by releasing Mg(2+) ions and thereby reducing the cytotoxic effect of mafenide on fibroblast cells.

  2. Viscosity and Plasticity of Latvian Illite Clays



    Due to viscosity and plasticity, clays and clay minerals are used in civil engineering, pottery and also in cosmetics and medicine as thickening agents and emulsion and suspension stabilizers. The rheological properties of clay suspensions are complex. Mostly it is an interaction between mineral composition, clay particle size and pH value and also depends on clay minerals. Clay-water suspension is non-Newtonian fluid showing thixotropic and pseudoplastic properties. Results showed that plast...

  3. Physical Properties of Latvian Clays



    Physical and chemical properties of clays mostly depends on its mineral and chemical composition, particle size and pH value. The mutual influence of these parameters is complex. Illite is the most abundant clay mineral in Latvia and usually used in building materials and pottery. The viscosity and plasticity of Latvian clays from several deposits were investigated and correlated with mineral composition, particle size and pH value. Fractionated and crude clay samples were used. The p...

  4. Europium retention onto clay minerals from 25 to 150 °C: Experimental measurements, spectroscopic features and sorption modelling (United States)

    Tertre, E.; Berger, G.; Simoni, E.; Castet, S.; Giffaut, E.; Loubet, M.; Catalette, H.


    The sorption of Eu(III) onto kaolinite and montmorillonite was investigated up to 150 °C. The clays were purified samples, saturated with Na in the case of montmorillonite. Batch experiments were conducted at 25, 40, 80 and 150 °C in 0.5 M NaClO 4 solutions to measure the distribution coefficients (Kd) of Eu as a trace element (<10 -6 mol/L) between the solution and kaolinite. For the Na-montmorillonite, we used Kd results from a previous study [Tertre, E., Berger, G., Castet, S., Loubet, M., Giffaut, E., 2005. Experimental study of adsorption of Ni 2+, Cs + and Ln 3+ onto Na-montmorillonite up to 150 °C. Geochim. Cosmochim. Acta69, 4937-4948] obtained under exactly the same conditions. The number and nature of the Eu species sorbed onto both clay minerals were investigated by time resolved laser fluorescence spectroscopy (TRLFS) in specific experiments in the same temperature range. We identified a unique inner-sphere complex linked to the aluminol sites in both clays, assumed to be dbnd AlOEu 2+ at the edge of the particles, and a second exchangeable outer-sphere complex for montmorillonite, probably in an interlayer position. The Kd values were used to adjust the parameters of a surface complexation model (DLM: diffuse layer model) from 25 to 150 °C. The number of Eu complexes and the stoichiometry of reactions were constrained by TRLFS. The acidity constants of the amphoteric aluminol sites were taken from another study [Tertre, E., Castet, S., Berger, G., Loubet, M., Giffaut, E. Acid/base surface chemistry of kaolinite and Na-montmorillonite at 25 and 60 °C: experimental study and modelling. Geochim. Cosmochim. Acta, in press], which integrates the influence of the negative structural charge of clays on the acid/base properties of edge sites as a function of temperature and ionic strength. The results of the modelling show that the observed shift of the sorption edge towards low pH with increasing temperature results solely from the contribution of the

  5. How do peat type, sand addition and soil moisture influence the soil organic matter mineralization in anthropogenically disturbed organic soils? (United States)

    Säurich, Annelie; Tiemeyer, Bärbel; Don, Axel; Burkart, Stefan


    Drained peatlands are hotspots of carbon dioxide (CO2) emissions from agriculture. As a consequence of both drainage induced mineralization and anthropogenic sand mixing, large areas of former peatlands under agricultural use contain soil organic carbon (SOC) at the boundary between mineral and organic soils. Studies on SOC dynamics of such "low carbon organic soils" are rare as the focus of previous studies was mainly either on mineral soils or "true" peat soil. However, the variability of CO2 emissions increases with disturbance and therefore, we have yet to understand the reasons behind the relatively high CO2 emissions of these soils. Peat properties, soil organic matter (SOM) quality and water content are obviously influencing the rate of CO2 emissions, but a systematic evaluation of the hydrological and biogeochemical drivers for mineralization of disturbed peatlands is missing. With this incubation experiment, we aim at assessing the drivers of the high variability of CO2 emissions from strongly anthropogenically disturbed organic soil by systematically comparing strongly degraded peat with and without addition of sand under different moisture conditions and for different peat types. The selection of samples was based on results of a previous incubation study, using disturbed samples from the German Agricultural Soil Inventory. We sampled undisturbed soil columns from topsoil and subsoil (three replicates of each) of ten peatland sites all used as grassland. Peat types comprise six fens (sedge, Phragmites and wood peat) and four bogs (Sphagnum peat). All sites have an intact peat horizon that is permanently below groundwater level and a strongly disturbed topsoil horizon. Three of the fen and two of the bog sites have a topsoil horizon altered by sand-mixing. In addition the soil profile was mapped and samples for the determination of soil hydraulic properties were collected. All 64 soil columns (including four additional reference samples) will be installed

  6. Mild acid and alkali treated clay minerals enhance bioremediation of polycyclic aromatic hydrocarbons in long-term contaminated soil: A (14)C-tracer study. (United States)

    Biswas, Bhabananda; Sarkar, Binoy; Rusmin, Ruhaida; Naidu, Ravi


    Bioremediation of polycyclic aromatic hydrocarbon (PAH)-contaminated soils requires a higher microbial viability and an increased PAH bioavailability. The clay/modified clay-modulated bacterial degradation could deliver a more efficient removal of PAHs in soils depending on the bioavailability of the compounds. In this study, we modified clay minerals (smectite and palygorskite) with mild acid (HCl) and alkali (NaOH) treatments (0.5-3 M), which increased the surface area and pore volume of the products, and removed the impurities without collapsing the crystalline structure of clay minerals. In soil incubation studies, supplements with the clay products increased bacterial growth in the order: 0.5 M HCl ≥ unmodified ≥ 0.5 M NaOH ≥ 3 M NaOH ≥ 3 M HCl for smectite, and 0.5 M HCl ≥ 3 M NaOH ≥ 0.5 M NaOH ≥ 3 M HCl ≥ unmodified for palygorskite. A(14)C-tracing study showed that the mild acid/alkali-treated clay products increased the PAH biodegradation (5-8%) in the order of 0.5 M HCl ≥ unmodified > 3 M NaOH ≥ 0.5 M NaOH for smectite, and 0.5 M HCl > 0.5 M NaOH ≥ unmodified ≥ 3 M NaOH for palygorskite. The biodegradation was correlated (r = 0.81) with the bioavailable fraction of PAHs and microbial growth as affected particularly by the 0.5 M HCl and 0.5 M NaOH-treated clay minerals. These results could be pivotal in developing a clay-modulated bioremediation technology for cleaning up PAH-contaminated soils and sediments in the field. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Effects of Organic Anions on Phosphate Adsorption and Desorption from Variable—Charge Clay Minerals and Soil

    Institute of Scientific and Technical Information of China (English)



    Effects of citrate and tartrate on phosphate adsorption and desorption from kaolinite,goethite,amorphous Al-oxide and Ultisol were studied.P adsorption was significantly decreased as the concentration of the organic anions increased from 10-5 to 10-1 M.At 0.1 M and pH 7.0,tartrate decreased P adsorption by 27.6%-50.6% and citrate by 37.9-80.4%,depending on the kinds of adsorbent.Little Al and/or Fe were detected in the equilibrium solutions,even at the highest concentration of the organic anions.Effects of the organic anions on phosphate adsorption follow essentially the competitive adsorption mechanism.The selectivity coefficients for competitive adsorption can be used to compare the effectiveness of different organic anions in reducing P adsorption under given gonditions. Phosphate desorption was increased by 3 to 100 times in the presence of 0.001 M citrate or tartrate compared to that in 0.02 M KCl solution alone.However,for all the soil and clay minerals studied the amount of P desorbed by citrate or tartrate was generally lower than or close to that of isotopically exchangeable P.The effect of organic anions on phosphate desorption arises primarily from ligand exchange.

  8. Comparative 40Ar/39Ar and K-Ar dating of illite-type clay minerals: A tentative explanation for age identities and differences (United States)

    Clauer, Norbert; Zwingmann, Horst; Liewig, Nicole; Wendling, Raymond


    The 40K/40Ar (K-Ar) and 40Ar/39Ar dating methods are applied here to the same, very small, micrometric illite-type particles that crystallized under low-temperature (samples with a total of fifteen size fractions from advantages, such as the plateaus obtained by incremental step heating of the various size fractions, even if not translatable straight as ages of the illite populations; they allow identification of two generations of authigenic illite that formed at about 200 and 175 Ma, and one detrital generation. However, 40Ar/39Ar dating of clay minerals remains challenging as technical factors, such as the non-standardized encapsulation, may have potential unexpected effects. Both dating methods have their limitations: (1) K-Ar dating requires relatively large samples (ca. 10-20 mg) incurring potential sample homogeneity problems, with two aliquots required for K and Ar analysis for an age determination, also inducing a higher analytical uncertainty; (2) an identified drawback of 40Ar/39Ar dating is Ar recoil and therefore potential loss that occurs during neutronic creation of 39Ar from 39K, mostly in the finer mineral particles. If all the recoiled 39Ar is redistributed into adjacent grains/minerals, the final 40Ar/39Ar age of the analyzed size fraction remains theoretically identical, but it is not systematic in clay-type material. The finest grain sizes (e.g., convenient and straightforward use supported by a standardized and well-controlled technical approach. The present comparison of the two Ar-dating methods as applied to clay material shows that neither method is presently outdated, and that they are even of reciprocal use. Both methods have distinct application fields in clay geochronology and complementary application fields in clay crystallography.

  9. Effect of iron oxide coatings on zinc sorption mechanisms at the clay-mineral/water interface. (United States)

    Nachtegaal, Maarten; Sparks, Donald L


    Oxide surface coatings are ubiquitous in the environment, but their effect on the intrinsic metal uptake mechanism by the underlying mineral surface is poorly understood. In this study, the zinc (Zn) sorption complexes formed at the kaolinite, goethite, and goethite-coated kaolinite surfaces, were systematically studied as a function of pH, aging time, surface loading, and the extent of goethite coating, using extended X-ray absorption fine structure (EXAFS) spectroscopy. At pH 5.0, Zn partitioned to all sorbents by specific chemical binding to hydroxyl surface sites. At pH 7.0, the dominant sorption mechanism changed with reaction time. At the kaolinite surface, Zn was incorporated into a mixed metal Zn-Al layered double hydroxide (LDH). At the goethite surface, Zn initially formed a monodentate inner-sphere adsorption complex, with typical Zn-Fe distances of 3.18 A. However, with increasing reaction time, the major Zn sorption mechanism shifted to the formation of a zinc hydroxide surface precipitate, with characteristic Zn-Zn bond distances of 3.07 A. At the goethite-coated kaolinite surface, Zn initially bonded to FeOH groups of the goethite coating. With increasing aging time however, the inclusion of Zn into a mixed Zn-Al LDH took over as the dominant sorption mechanism. These results suggest that the formation of a precipitate phase at the kaolinite surface is thermodynamically favored over adsorption to the goethite coating. These findings show that the formation of Zn precipitates, similar in structure to brucite, at the pristine kaolinite, goethite, and goethite-coated kaolinite surfaces at near neutral pH and over extended reaction times is an important attenuation mechanism of metal contaminants in the environment.

  10. Frequency fraction and spatial distribution of clay minerals detection by sub-pixel classification of ASTER data, case study, Esteghlal mine of Abadeh

    Directory of Open Access Journals (Sweden)

    Majid Hashemi Tangestani


    Full Text Available Esteghlal fireclay mine, northern Abadeh, with dominant composition of kaolinite and pyrophyllite, and annual production of over a million tons, is one of the largest sedimentary deposits in Iran. Linear Spectral Unmixing (LSU and Mixture Tuned Matched Filtering (MTMF processes were applied on the VNIR + SWIR dataset of ASTER for identifying the frequency fraction and distribution of clay minerals in this mine. Sub-pixel frequency assessment of ASTER data showed that distribution of pixels with higher fractions belong to the kaolinite and pyrophyllite, outcropped in two different parts of the mine. Comparison of LSU and MTMF output results showed that MTMF is more reliable to determining the relative fraction of clay minerals at the study area.

  11. Adsorption of dissolved aluminum on sapphire-c and kaolinite: implications for points of zero charge of clay minerals. (United States)

    Lützenkirchen, Johannes; Abdelmonem, Ahmed; Weerasooriya, Rohan; Heberling, Frank; Metz, Volker; Marsac, Remi


    We have studied the impact of dissolved aluminum on interfacial properties of two aluminum bearing minerals, corundum and kaolinite. The effect of intentionally adding dissolved aluminum on electrokinetic potential of basal plane surfaces of sapphire was studied by streaming potential measurements as a function of pH and was complemented by a second harmonic generation (SHG) study at pH 6. The electrokinetic data show a similar trend as the SHG data, suggesting that the SHG electric field correlates to zeta-potential. A comparable study was carried out on kaolinite particles. In this case electrophoretic mobility was measured as a function of pH. In both systems the addition of dissolved aluminum caused significant changes in the charging behavior. The isoelectric point consistently shifted to higher pH values, the extent of the shift depending on the amount of aluminum present or added. The experimental results imply that published isoelectric points of clay minerals may have been affected by this phenomenon. The presence of dissolved aluminum in experimental studies may be caused by particular pre-treatment methods (such as washing in acids and subsequent adsorption of dissolved aluminum) or even simply by starting a series of measurements from extreme pH (causing dissolution), and subsequently varying the pH in the very same batch. This results in interactions of dissolved aluminum with the target surface. A possible interpretation of the experimental results could be that at low aluminum concentrations adatoms of aluminum (we will refer to adsorbed mineral constituents as adatoms) can form at the sapphire basal plane, which can be rather easily removed. Simultaneously, once the surface has been exposed to sufficiently high aluminum concentration, a visible change of the surface is seen by AFM which is attributed to a surface precipitate that cannot be removed under the conditions employed in the current study. In conclusion, whenever pre-treatment or the

  12. Study on clay minerals in Paleozoic reservoirs in the Huanghua Depression%黄骅坳陷上古生界储层粘土矿物研究

    Institute of Scientific and Technical Information of China (English)

    张晨; 苗建宇; 宋红霞; 王静茹


    通过对黄骅坳陷上古生界储层78个样品的X衍射分析、扫描电镜和铸体薄片观察指明其储层中粘土矿物以伊利石、伊/蒙间层为主,含少量自生高岭石及绿泥石,产状以薄膜式、搭桥式为主.随深度增加伊利石含量上升、伊/蒙间层比增大,致使储层孔、渗减小.与压汞测试结果进行对比后确定粘土矿物与压汞曲线间存在三种典型对照关系.同时,粘土矿物组合暗示本区为干旱盐湖的古环境.全区成岩环境均为碱性,仅在油藏附近表现为碱-酸-碱的变化过程.%X - ray diffraction, scanning electron microscopy and casting thin observation of 78 samples from Paleozoic reservoirs in the Huanghua Depression indicate that the main clay mineral are mainly as follow illite, illite - smectite and there are a few authigenic kaolinite and chlorite and the clay mineral appear as film - like style and bridge type. Illite content and I/S increase with depth increasing, which lead to the decrease of permeability of reservoir pore. Three typical of the relationship between the mercury curves and clay minerals were obtained by taking pressured - mercury testing. The clay mineral assemblages imply that this area' s ancient environment was dry - salt lake; the regional dia-genetic environment were alkaline; the environment being close to oil reservoir showed individually alkali - acid - alkali process.

  13. Potential application of microbial iron redox cycles in nitrate removal and their effects on clay mineral properties (United States)

    Zhao, L.; Dong, H.; Kukkadapu, R. K.; Briggs, B. R.; Zeng, Q.


    Phyllosilicates that are ubiquitous in subsurface can serve as an iron source for microbial respiration. The objective of this research is to determine the ability of the phyllosilicate Fe to remove nitrate in subsurface undergoing microbial-driven redox cycles. In this study, thus, a well-characterized reference clay (NAu-2; nontronite), was subjected to redox cycles in a system containing dissimilatory Fe(III)-reducing bacteria, Shewanella putrefaciens CN32, and nitrate-dependent Fe(II)-oxidizing bacteria, Pseudogulbenkiania sp. Strain 2002. Three redox cycles were conducted in bicarbonate- and PIPES-buffered medium. The extents of Fe(III) reduction, Fe(II) oxidation, nitrate reduction, and its various intermediate products were measured by wet chemical methods. For each cycle, Electron Energy Loss Spectroscopy and Mossbauer spectroscopy confirmed Fe oxidation state. Mineralogical changes were identified by using X-ray diffraction (XRD), 57Fe-Mössbauer spectroscopy, and infrared absorption spectroscopy. For all three cycles, nitrate was completely reduced to nitrogen gas under both bicarbonate- and PIPES- buffered conditions. As redox cycle increased, bio-reduction extents of Fe(III) in NAu-2 decreased by 33% and 48% in PIPES- and bicarbonate-buffered medium, respectively; however, bio-oxidation extents increased by 66% and 55% in the same medium, respectively. Despite the change of OH-stretching vibration band and OH-bending vibration bands in NAu-2 structure along Fe redox cycles, XRD data showed interlayer spacing of NAu-2 to be constant along the same Fe redox cycle. 57Fe-Mössbauer spectroscopy indicated complex reduction and re-oxidation pathways. For example, a distinct Fe(II) doublet and a Fe2.5+ feature due to interfacial Fe(II)-Fe(III) electron transfer on clay mineral are prominent in their RT spectra. Both these Fe(II) are partially oxidized by Fe(II)-oxidizing bacteria. The result of this study shows that Fe in biogenically reduced or oxidized NAu-2

  14. Synergy between polyaniline and OMt clay mineral in Langmuir-Blodgett films for the simultaneous detection of traces of metal ions. (United States)

    de Barros, Anerise; Ferreira, Mariselma; Constantino, Carlos José Leopoldo; Bortoleto, José Roberto Ribeiro; Ferreira, Marystela


    We report on Langmuir-Blodgett (LB) films made with emeraldine salt polyaniline (PAni-ES) and organophilic montmorillonite clay mineral (OMt), where synergy between the components was reached to yield an enhanced performance in detecting trace levels of cadmium (Cd(2+)), lead (Pb(2+)) and copper (Cu(2+)). Detection was carried out using square wave anodic stripping (SWAS) voltammetry with indium tin oxide (ITO) electrodes modified with LB films of PAni-ES/OMt nanocomposite, whose data were compared to those obtained with electrodes coated with neat PAni-ES and neat OMt LB films. The enhanced performance in the nanocomposite may be attributed to the stabilizing and ordering effect promoted by OMt in PAni-ES Langmuir films, which then led to more homogeneous LB films. According to X-ray diffraction data, the stacking of OMt layers was preserved in the LB films and therefore the PAni-ES chains did not cause clay mineral exfoliation. Instead, OMt affected the polaronic state of PAni-ES as indicated in UV-vis, Raman and FTIR spectra, also consistent with the changes observed for the Langmuir films. Taken together these results do indicate that semiconducting polymers and clay minerals may be combined for enhancing the electrical properties of nanostructures for sensing and related applications.

  15. Pre-treatment of Used-Cooking Oil as Feed Stocks of Biodiesel Production by Using Activated Carbon and Clay Minerals

    Directory of Open Access Journals (Sweden)

    Rudy Syah Putra


    Full Text Available Many low-cost feedstock i.e. used-cooking oil (UCO for the production of biodiesel fuel (BDF has contained a large amount of water and high proportion of free fatty acids (FFAs. Therefore, a pre-treatment process to reduce the water content (<0.1 wt.% and FFAs (<2.0 wt.% were necessary in order to avoid an undesirable side reactions, such as saponification, which could lead to serious problem of product separation and low fatty acid methyl ester (FAME yield. . In this study, a pre-treatment process of used cooking oil as a feedstock for the production of BDF by using various adsorbents such as Activated Carbon (AC and various clay minerals, for example Smectite (S, Bentonite (B, Kaolinite (K, and Powdered Earthenware (PE were evaluated. The oil obtained from pre-treatment was compared with oil without pre-treatment process. In this study, we reported a basic difference in material ability to the oil, depending on the adsorption condition with respect to the physico-chemical parameters, e.g. refractive index (R, density (ρ, FFAs, and water content (W. The results showed that the water content and FFAs in the oil has decreased when using AC as an adsorbent compared with clay minerals. However, the refractive index of oil has similar with the oil without pre-treatment process as well; meanwhile, the density of oil has increased after the pre-treatment process by using clay minerals.

  16. Soil animals and nitrogen mineralization under sand-fixation plantations in Zhanggutai region, China

    Institute of Scientific and Technical Information of China (English)

    CHEN Fu-sheng; ZENG De-hui; HU Xiao-fei; CHEN Guang-sheng; YU Zhan-yuan


    The effects of soil animals on soil nitrogen (N) mineralization and its availability were studied by investigating soil animal groups and their amounts of macro-faunas sorted by hand, and middle and microfaunas distinguished with Tullgren and Baermann methods under three Pinus sylvestris var. mongolica Litv. plantations in Zhanggutai sandy land, China. In addition, soil N mineralization rate was also measured with PVC closed-top tube in situ incubation method. The soil animals collected during growing season belonged to 13 orders, 5groups, 4 phyla, whose average density was 86 249.17 individuals.m-2. There were significant differences in soil animal species, densities,diversities and evenness among three plantations. Permanent grazing resulted in decrease of soil animal species and diversity. The average ammonification, nitrification and mineralization rates were 0.48 g·m-2·a-1, 3.68 g·m-2·a-1 and 4.16 g·m-2·a-1, respectively. The ammonification rate in near-mature forest was higher than that in middle-age forests, while the order of nitrification and net mineralization rates was: middle-age forest without grazing < middle-age forest with grazing < near-mature forest with grazing (P<0.05). Soil N mineralization rate increased with soil animal amounts, but no significant relationship with diversity. The contribution of soil animals to N mineralization was different for different ecosystems due to influences of complex factors including grazing,soil characteristics, the quality and amount of litter on N mineralization.

  17. It's in the sand


    Mitchell, Clive


    Sand is sand isn’t it? Sand gets everywhere but rather than a nuisance it is a valuable, high-purity raw material. Clive Mitchell, Industrial Minerals Specialist at the British Geological Survey (BGS), talks us through what sand is, what it can be used for and how to find it. His exploration of sand takes us from the deserts of Arabia to the damp sand pits of Mansfield!

  18. Clay minerals of Pliocene deposits and their potential use for the purification of polluted wastewater in the Sohag area, Egypt

    NARCIS (Netherlands)

    Y. Refaey; B. Jansen; A.H. El-Shater; A.A. El-Haddad; K. Kalbitz


    In our study we investigated the clay fraction composition of Pliocene clay deposits in the Sohag area, Egypt. Our goal was to obtain insights into the origin of the deposits, and to assess their potential for use in inexpensive wastewater purification. The rationale for the latter was that in Egypt

  19. Physico-chemical and technological properties of ceramic tiles: Role of clay minerals on as pressed and dried compacts properties

    Directory of Open Access Journals (Sweden)

    Gouzouli N.


    Full Text Available Chemical, mineralogical and technological properties of an experimental clay are investigated with the aim to substitute for other clays used at present in factories. Flexural strength distributions of green and dry compacts were analysed and correlated to microstructural features with a view to evaluate their drying ability and their mechanical reliability.

  20. [Effect of Cr (VI) anions on the Cu (II) adsorption behavior of two kinds of clay minerals in single and binary solution]. (United States)

    Liu, Juan-Juan; Liang, Dong-Li; Wu, Xiao-Long; Qu, Guang-Zhou; Qian, Xun


    The adsorption of Cu (II) on kaolinite and montmorillonite was investigated through batch adsorption experiment. Several adsorption models were employed to describe the adsorption of Cu (II) on the two clay minerals in single Cu (II) and Cu(II)-Cr (VI) binary solutions, and the impact of solution with various pH values on the adsorption of Cu (II) on the two target mineral clays was investigated in order to explain the environmental chemical behavior of heavy metals in soil and to provide theoretical basis in remediation of multi-element contaminated soil. The results indicated that the adsorption process of Cu (II) on kaolinite and montmorillonite in both single and binary solutions was fast at the beginning and then slowed down. Adsorption equilibrium was observed within 120 min. In both single and binary solutions, pseudo-second-order model (R2 > 0.983) showed the highest agreement with the adsorption of Cu (II) on the two mineral clays, followed by the intra-particle diffusion model and pseudo-first-order model. Both Intra-particle diffusion model and Boyd model illustrated that the film diffusion process was the rate-limiting step, which mainly occurred at the edge and surface of mineral clays. Copper adsorption on kaolinite was well fitted with the Freundlich equation (R2 > 0.971), which could be attributed to the heterogeneity of kaolinite surface with adsorption sites that have different energies of adsorption. Langmuir equation was best fitted with the isotherm for montmorillonite (R2 > 0.983), which indicated that the adsorption was on a single molecular layer or chemisorptions. In both single and binary solutions, the adsorption of Cu (II ) on the two clay minerals first increased and then decreased with the rising of pH values. The maximum adsorption amount was found at pH = 5.0, and was in the order of Qmon. > Qkao. and Q(Single-Cu) > Q(Cu-Cr binary). Cr (VI) in the solution reduced the adsorption of Cu (II), and the minimal influence of Cr (VI) on Cu

  1. Wave liquefaction in soils with clay content

    DEFF Research Database (Denmark)

    Kirca, Özgür; Sumer, B. Mutlu; Fredsøe, Jørgen


    The paper presents the results of an experimental study of the influence of clay content (in silt-clay and sand-clay mixtures) on liquefaction beneath progressive waves. The experiments showed that the influence of clay content is very significant. Susceptibility of silt to liquefaction...... is increased with increasing clay content, up to 30%, beyond which the mixture of silt and clay is not liquefied. Sand may become prone to liquefaction with the introduction of clay, contrary to the general perception that this type of sediment is normally liquefaction resistant under waves....

  2. Parametric study of the physical properties of hydrate-bearing sand, silt, and clay sediments: 2. Small-strain mechanical properties (United States)

    Lee, J. Y.; Francisca, F. M.; Santamarina, J. C.; Ruppel, C.


    The small-strain mechanical properties (e.g., seismic velocities) of hydrate-bearing sediments measured under laboratory conditions provide reference values for calibration of logging and seismic exploration results acquired in hydrate-bearing formations. Instrumented cells were designed for measuring the compressional (P) and shear (S) velocities of sand, silts, and clay with and without hydrate and subject to vertical effective stresses of 0.01 to 2 MPa. Tetrahydrofuran (THF), which is fully miscible in water, was used as the hydrate former to permit close control over the hydrate saturation Shyd and to produce hydrate from dissolved phase, as methane hydrate forms in most natural marine settings. The results demonstrate that laboratory hydrate formation technique controls the pattern of P and S velocity changes with increasing Shyd and that the small-strain properties of hydrate-bearing sediments are governed by effective stress, σ'v and sediment specific surface. The S velocity increases with hydrate saturation owing to an increase in skeletal shear stiffness, particularly when hydrate saturation exceeds Shyd≈ 0.4. At very high hydrate saturations, the small strain shear stiffness is determined by the presence of hydrates and becomes insensitive to changes in effective stress. The P velocity increases with hydrate saturation due to the increases in both the shear modulus of the skeleton and the bulk modulus of pore-filling phases during fluid-to-hydrate conversion. Small-strain Poisson's ratio varies from 0.5 in soft sediments lacking hydrates to 0.25 in stiff sediments (i.e., subject to high vertical effective stress or having high Shyd). At Shyd ≥ 0.5, hydrate hinders expansion and the loss of sediment stiffness during reduction of vertical effective stress, meaning that hydrate-rich natural sediments obtained through pressure coring should retain their in situ fabric for some time after core retrieval if the cores are maintained within the hydrate

  3. Effects of Clay Content of Sand on Workability and Compressive Strength of Concrete%砂石含泥量对混凝土工作性及抗压强度的影响

    Institute of Scientific and Technical Information of China (English)

    刘红霞; 韩晓虎


    砂石是现代建筑中不可缺少的材料之一,含泥量是混凝土用砂石骨料质量标准中一项重要的指标,含泥量高可能引起需水量的增加,使混凝土拌合物的工作性及混凝土强度受到影响。但目前关于骨料含泥量在混凝土中的影响,尚无系统的试验和足够的数据证明。本文通过不同含泥量的砂、石配制混凝土进行试验研究,总结其对混凝土性能的影响规律,为配制合理等级的混凝土提供试验数据和理论依据。%The sand is one of the materials indispensable to modern architecture, and the clay content is an important indicator of the concrete mixing sand gravel aggregate. High clay content may cause the increase in water demand, which affects the workability of concrete mixture and the strength of concrete. But the impact of clay content of aggregate on the concrete can not yet be proved by systematic test and enough data. This paper conducted test and study of different clay content of sand and stone concrete, summarized their impact law on concrete performance, to provide experimental data and theoretical basis for the preparation of concrete with reasonable level.

  4. Fluid-rock interaction controlling clay-mineral crystallization in quartz-rich rocks and its influence on the seismicity of the Carboneras fault area (SE Spain) (United States)

    Jimenez-Espinosa, R.; Abad, I.; Jimenez-Millan, J.; Lorite-Herrera, M.


    The Carboneras Fault zone is one of the longest fault in the Betic Cordillera (SE Spain) and it would be a good candidate to generate large magnitude earthquakes (Gracia et al., 2006). Seismicity in the region is characterised by low to moderate magnitude events, although large destructive earthquakes have occurred, which reveals significant earthquake and tsunami hazards (Masana et al., 2004). Due to the internal architecture of the fault zone, shear lenses of post-orogenic sediments of Miocene and Pliocene age including marls and sandstones sequences are juxtaposed to the predominant slaty gouges of the Alpine basement. Microcataclasites and gouges of the quartz-rich post-orogenic sediments are also developed as cm- to m-scale bands, allowing the comparison between the deformed materials and their protoliths. Red, yellow and white sandstones and their respective cataclasites can be identified. This communication is concerned with the clay mineral crystallization events in these materials and its possible influence on the seismicity model of the region. The presence of phyllosilicates in fault zones as either neoformed or inherited clays is commonly related with fluid circulation and a mechanically weak fault behaviour (e.g., Wang, 1984). A critical factor for the understanding of the mechanical role of clays in fault rocks is to determine the timing of formation of mineral assemblages and microstructure of fault rocks and protolith. The effects of post-faulting alteration limit inferences about fault behaviour that can be made from exhumed rocks. The Carboneras fault zone provides good opportunities to study mineral processes enhanced by deformation, given that it is located in a region of arid climate and shows outcroppings of quartzitic rocks included in slaty rocks. Combined XRD, optical microscopy and SEM analyses reveal that deformed quartzitic rocks are enriched in phyllosilicates, increasing especially the amount of chlorite. The samples strongly damaged

  5. Impact of Long-Term Alfalfa Cropping on Soil Potassium Content and Clay Minerals in a Semi-Arid Loess Soil in China

    Institute of Scientific and Technical Information of China (English)

    LI De-Cheng; B. VELDE; LI Feng-Min; ZHANG Gan-Lin; ZHAO Ming-Song; HUANG Lai-Ming


    Alfalfa cropping has been considered an efficient method of increasing soil fertility.Usually nitrogen increase in root nodules is considered to be the major beneficial effect.A 21-year time series (five sampling periods) of alfalfa cultivation plots on a loess soil,initially containing illite and chlorite,in Lanzhou of northwestern China was selected to investigate the relationships among alfalfa cropping,soil potassium (K) content and soil clay minerals.The results indicated that soil K significantly accumulated after cropping,with a peak value at about 15 years,and decreased afterwards.The accumulated K was associated with the K increase in the well-crystallized illite,which was not extracted by the traditional laboratory K extraction methods in assessing bioavailability.The steep decline in soil K content after 15-year cropping was in accord with the observed fertility loss in the alfalfa soil.Plant biomass productivity peaked at near 9 years of culture,whereas soil K and clay minerals continued to increase until cropping for 15 years.This suggested that K increased in the topsoil came from the deep root zone.Thus alfalfa continued to store K in clays even after peak production occurred.Nitrogen did not follow these trends,showing a general decline compared with the native prairie soils that had not been cropped.Therefore,the traditional alfalfa cropping can increase K content in the topsoil.

  6. Biodegradation and adsorption of C1- and C2-phenanthrenes and C1- and C2-dibenzothiophenes in the presence of clay minerals: effect on forensic diagnostic ratios. (United States)

    Ugochukwu, Uzochukwu C; Head, Ian M; Manning, David A C


    The impact of modified montmorillonites on adsorption and biodegradation of crude oil C1-phenanthrenes, C1-dibenzothiophenes, C2-phenanthrenes and C2-dibenzothiophenes was investigated in aqueous clay/oil microcosm experiments with a hydrocarbon degrading microorganism community. Consequently, the effect on C1-dibenzothiophenes/C1-phenanthrenes, C2-dibenzothiophenes/C2-phenanthrenes, 2+3-methyldibenzothiophene/4-methyldibenzothiophene and 1-methyldibenzothiophene/4-methyldibenzothiophene ratios commonly used as diagnostic ratios for oil forensic studies was evaluated. The clay mineral samples were treated to produce acid activated montmorillonite, organomontmorillonite and homoionic montmorillonite which were used in this study. The different clay minerals (modified and unmodified) showed varied degrees of biodegradation and adsorption of the C1-phenanthrenes, C1-dibenzothiophenes, C2-phenanthrenes and C2-dibenzothiophenes. The study indicated that as opposed to biodegradation, adsorption has no effect on the diagnostic ratios. Among the diagnostic ratios reviewed, only C2-dibenzothiophenes/C2-phenanthrenes ratio was neither affected by adsorption nor biodegradation making this ratio very useful in forensic studies of oil spills and oil-oil correlation.

  7. Evidence of multi-stage faulting by clay mineral analysis: Example in a normal fault zone affecting arkosic sandstones (Annot sandstones) (United States)

    Buatier, Martine D.; Cavailhes, Thibault; Charpentier, Delphine; Lerat, Jérémy; Sizun, Jean Pierre; Labaume, Pierre; Gout, Claude


    Fault affecting silicoclastic sediments are commonly enriched in clay minerals. Clays are sensitive to fluid-rock interactions and deformation mechanisms; in this paper, they are used as proxy for fault activity and behavior. The present study focuses on clay mineral assemblages from the Point Vert normal fault zone located in the Annot sandstones, a Priabonian-Rupelian turbidite succession of the Alpine foredeep in SE France. In this area, the Annot sandstones were buried around 6-8 km below the front of Alpine nappes soon after their deposition and exhumed during the middle-late Miocene. The fault affects arkosic sandstone beds alternating with pelitic layers, and displays throw of about thirty meters. The fault core zone comprises intensely foliated sandstones bounding a corridor of gouge about 20 cm thick. The foliated sandstones display clay concentration along S-C structures characterized by dissolution of K-feldspar and their replacement by mica, associated with quartz pressure solution, intense microfracturation and quartz vein precipitation. The gouge is formed by a clayey matrix containing fragments of foliated sandstones and pelites. However, a detailed petrographical investigation suggests complex polyphase deformation processes. Optical and SEM observations show that the clay minerals fraction of all studied rocks (pelites and sandstones from the damage and core zones of the fault) is dominated by white micas and chlorite. These minerals have two different origins: detrital and newly-formed. Detrital micas are identified by their larger shape and their chemical composition with a lower Fe-Mg content than the newly-formed white micas. In the foliated sandstones, newly-formed white micas are concentrated along S-C structures or replace K-feldspar. Both types of newly formed micas display the same chemical composition confirmed microstructural observations suggesting that they formed in the same conditions. They have the following structural formulas: Na0

  8. Soil Water Repellency of Sands and Clay as Affected by Particle Size%砂土和黏土的颗粒差异对土壤斥水性的影响

    Institute of Scientific and Technical Information of China (English)

    杨松; 吴珺华; 董红艳; 张燕明


    斥水性土壤广泛存在于自然界中,并且对土壤环境和作物生长等有重要影响。建立理想化的土壤颗粒模型对砂土和黏土的斥水特性进行计算分析。结果表明:当接触角很小时,砂土中不存在斥水现象。随着接触角的增大,砂土斥水性与含水率密切相关,砂土的密实度对其斥水性也有重要影响,当砂土比较密实时,土壤的“亲水”与“斥水”特性对含水率特别敏感,随着含水率的变化,砂土可能由亲水性较好的土壤转变为斥水性土壤;当砂土比较松散时,土壤颗粒的斥水性对含水率并不敏感。当黏土接触角略小于90°且湿润半径b也较小时,黏土也存在斥水现象。如果黏土颗粒的接触角较小或接触角小于90°且湿润半径b较大,黏土总是亲水的。黏土含水率较大时,斥水特性由土壤颗粒的接触角决定。%Water-repellent soils,existing widely in nature,have some important effects on soil environment and crop growth. In order to analyze water repellency of sand and clay,models of sand and clay different in particle size were built. Results showed that no phenomenon of water repellency was found in sand soil when the contact angle of water with sand was small. Water repellency of sand soil was closely related to soil water content when the sand-water contact angle was big. Compactness of the soil was another important factor affecting soil water repellency. When the sand soil was highly compacted,whether the soil was hydrophilic or hydrophobic was very sensitive to water content,and it might switch from one state to another with changing soil water content. When the sand soil was quite loose,it was no longer sensitive to soil water content. In clay soil with soil-water contact angle being slightly less than 90°and wetting radius b being small,the phenomenon of water repellency was observed. But when the clay soil was much smaller than 90°in soil-water and

  9. Colorimetric Humidity and Solvent Recognition Based on a Cation-Exchange Clay Mineral Incorporating Nickel(II)-Chelate Complexes. (United States)

    Hosokawa, Hitoshi; Mochida, Tomoyuki


    Solvatochromic nickel(II) complexes with diketonato and diamine ligands were incorporated into a saponite clay by ion exchange, and their colorimetric humidity- and solvent-recognition properties were investigated. These powders exhibit color change from red to blue-green depending on humidity, and the detection range can be controlled by modifying the metal complex. The humidity response takes advantage of the humidity-dependent water content in clay and the coordination of water molecules to the metal complex in equilibrium. The addition of organic solvents to the powders causes a color change to occur, varying from red to blue-green depending on the donor number of the solvent, thereby enabling solvent recognition. In the clay, the affinity of less sterically hindered complexes to water or solvent molecules is decreased compared with that in solution because the cationic complexes interact with the anionic layers in the clay. Incorporating diethylene glycol into the materials produced thermochromic powders.

  10. CO2-Brine-Iron-bearing Clay Mineral Interactions: Surface Area Changes and Fracture-Filling Potentials in Geologic CO2 Sequestration (United States)

    Jun, Y.; Hu, Y.


    Geologic carbon dioxide sequestration (GCS) is a promising option to reduce anthropogenic CO2 emission from coal-fired power plants. The injected CO2 in GCS sites can induce dissolution of rocks and secondary mineral formation, potentially change the physical properties of the geological formations, and thus influence the transport and injectivity of CO2. However, most of the relevant studies are based on hydrological transport, using simulation models rather than studying actual interfacial chemical reactions. The mechanisms and kinetics of interfacial reactions among supercritical CO2 (scCO2)-saline water-rock surfaces at the molecular scale and their impacts on CO2 leakage have not been well understood. This research investigated the effects of various environmental factors (such as temperature, pressure, salinity, and different metal ion and organic-containing brine) on the dissolution and surface morphological changes of clay minerals. In this work, iron-bearing clay mineral, biotite [K(Mg,Fe)3AlSi3O10(OH,F)2], was used for model clay minerals in potential GCS sites. Both fluid/solid chemistry analysis and interfacial topographic studies were conducted to investigate the dissolution/precipitation on clay mineral surfaces under GCS conditions in high salinity systems. Using atomic force microscopy (AFM) and scanning electron microscopy (SEM), the interfacial surface morphology changes were observed. Shortly after a CO2 pressure of 102 atm is applied at 95oC, in situ pH of solutions was 3.15 ± 0.10. The early intrinsic dissolution rates of biotite were 8.4 ± 2.8 × 10-13 and 11.2 ± 3.0 × 10-13 mol Si m-2s-1 in water and NaCl solution, respectively. At the early stage of reaction, fast growth of fibrous illite on biotite basal planes was observed. After 22-70 h reaction, the biotite basal surface cracked, resulting in illite detaching from the surfaced. Later, the cracked surface layer was released into solution, thus the inner layer was exposed as a renewed

  11. Provenance analysis of heavy minerals in beach sands (Falkland Islands/Islas Malvinas) - A view to mineral deposits and the geodynamics of the South Atlantic Ocean (United States)

    Dill, Harald G.; Skoda, Radek


    Beach sands are ideal traps to collect heavy minerals (HM) from different geodynamic settings and mineral deposits. The coastal sediments contain a mixture of HM derived from the submarine shelf and from source rocks in the hinterland. This is true in a transgressive periglacial regime, where drowned valleys and estuaries are instrumental in draining HM to the arenaceous beach sediments from more distal basement lithologies. A scenario like this can be found in the Falkland Islands/Islas Malvinas. The site under study is the missing link between South Africa and South America, the splitting-apart of which is mirrored by the HM distribution predominantly concentrated in the backshore and dune belt along the coast. The HM are subdivided into three HM associations reflecting the geodynamic evolution of the South Atlantic Ocean and of some of the prominent mineral deposits on the Gondwana Continent: (1) Gondwana cratons and Proterozoic orogens, with Cr and BIF deposits (rutile, zircon, ilmenite, tourmaline, garnet, Cr spinel), (2) rift-related and break-apart magmatic lithologies with mantle-derived pipe rocks such as kimberlites (zircon, pyroxene, spinel, Mg ilmenite), (3) Cordillera-type lithologies with polymetallic stratabound deposits (tourmaline, amphibole, chlorite, REE phosphates). The variation of the major HM from the stable craton (Kalahari-Kaapvaal Craton) in the East to the mobile fold belt (Andes) in the West follows the order of stability of HM. In addition to these 3 geodynamic HM groups, sporadic occurrences of HM originating from alteration (leucoxene, chlorite s.s.s. (= solid solution series)) are part of armored relics such as ;nigrine; which on transport disintegrated and thereby released these HM. The major ultrastable and stable HM zircon, rutile, tourmaline s.s.s., spinel s.s.s., and garnet s.s.s. are displayed in a synoptical x-y plot showing the mantle and crustal trends of fractionation and formation of cumulates by means of particular

  12. Preparation of High Performance Foamed Concrete from Cement, Sand and Mineral Admixtures

    Institute of Scientific and Technical Information of China (English)

    PAN Zhihua; Fujiwara Hiromi; Wee Tionghuan


    The titled high performance foamed concrete was developed from Portland cement, ultra fine granulated blast-furnace slag, pulverized fly ash and condensed silica fume by means of pre-foaming process. The resultant foamed concrete presents its thermal conductivity of about 0.16-0.75 W/(m·℃) and 28 d compressive strength of about 1.1-23.7 MPa when its mix proportion varies in the range of cement content 280 kg-650 kg/m3, fly ash 42-97 kg/m3, slag 64-146 kg/m3, silica fume 34-78 kg/m3, and sand 0-920 kg/m3. The compressive strength of the foamed concrete with oven dried bulk density of 1500 kg/m3 in appropriate mix proportion and with small amount of superplasticizer reached as high as 44.1 MPa. Meanwhile, the fresh foamed concrete behaves like an excellent flow-ability, therefore, is especially suitable for the application in case of massive foamed concrete casting in situ and in the case of filling casting into large volume underground irregular voids, except for pre-casting of building components like blocks, bricks, and wall panels.

  13. 柴达木盆地粘土矿物特征及其演化%Characteristics and Evolution of the Clay Minerals in Qaida m Basin

    Institute of Scientific and Technical Information of China (English)

    赵东升; 贺鹏; 孔红喜; 郑海鹏; 雷振锋


    对柴达木盆地下侏罗系河流夹沼泽相沉积和第三系以来湖相沉积的粘土矿物进行了X射线衍射、电镜等分析和观察,在此基础上讨论粘土矿物的成因,母岩分布和性质、水介质条件和古气候对粘土矿物形成和演化的影响,并通过粘土矿物含量和组合对比,讨论粘土矿物的继承性和粘土矿物组合差异的原因。%The Qaidam basin is a non-marine, petroliferous basin on the northeastern margi n of the Qinghai-Tibetan Plateau, with an area of about 120,000 km2. Almost a ll strata are cropped out except Archaean group. The oil and gas discovered are distributed mainly in the reservoir of Jurassic(J1),Tertiary(R) and Quaternary (Q). Jurassic section is mainly composed of fluvial facies and offshore shallow lake deposition, interbedded with paludal sediment, the lithology is charac teristic of sandstone and mudstone, interbedded with coals. However, Cenozoic is composed of lucustrine and fluvial facies, and the lithology is characteristic of sandstone, mudstone, carbonate rock, interbedded with salt-rock, gypsum, with the palaeosalinity ranging 15‰~60‰.   Illite, illite-smectite, montmorillonite, chlorite, kaolinite and a small amoun t of chlorite-montmorillonite, palygorskite,holloysite are major clay mineralsin Qaidam basin. The clay mineral in sandstone is considered to be automorphic c rystal which is produced in diagenetic period. The monoblastic texture of illite , kaolinite and chlorite in mudstone is anhedral crystal, and its smooth, irregular outline reflected the terrigenous genesis of clay mineral.   The clay mineral contents vary with different depth and horizon. The kaolinite c ontent is 44.4% in J1 and 5.6% in E13-E23. The chlorite content va ry between 18.9%~12% in Cenozoic.However, it decreases to 9.9% in Jurassic. M ontmorillonite is concentrated in Quaternary and modern sediment. The con tent of illite-smectite in N1-N32 is 42.3% in highest, and

  14. Soil quality assessment for peat-mineral mix cover soil used in oil sands reclamation. (United States)

    Ojekanmi, A A; Chang, S X


    A soil quality (SQ) assessment and rating framework that is quantitative, iterative, and adaptable, with justifiable weighting for quality scores, is required for evaluating site-specific SQ at land reclamation sites. Such a framework needs to identify the minimum dataset that reflects the current knowledge regarding relationships between SQ indicators and relevant measures of ecosystem performance. Our objective was to develop nonlinear scoring functions for assessing the impact on SQ of peat-mineral mix (PMM) used as a cover soil at land reclamation sites. Soil functional indicators affected by PMM were extracted from existing databases and correlated with soil organic carbon (SOC). Based on defined objectives for SQ assessment, indicators with significant correlation ( soil nitrogen, and cation exchange capacity of PMM using SOC as input parameter. Application of the SQFs to an independent dataset produced ratings with mean differences similar to the treatment effects of mixing three levels of peat and mineral soil. These results show that derived ratings and weighing factors using SOC reflect the relationship between PMM treatment and other SQ indicators. Applying the developed SQFs to a long-term soil monitoring dataset shows that an increase or decrease in SOC from 10 to 20 g kg causes a significant change in SQ. This identifies the need for further nutrient and moisture management of PMM to support long-term SQ development in land reclamation.

  15. Characteristics of Clay Minerals in the Northern South China Sea and Its Implications for Evolution of East Asian Monsoon since Miocene

    Institute of Scientific and Technical Information of China (English)

    Wan Shiming; Li Anchun; Xu Kehui; Yin Xueming


    Clay mineral assemblages, crystallinity, chemistry, and micromorphology of clay particles in sediments from ODP Site 1146 in the northern South China Sea (SCS) were analyzed, and used to trace sediment sources and obtain proxy records of the past changes in the East Asian monsoon climate since the Miocene, based on a multi-approach, including X-ray diffraction (XRD) and scanning electron microscopy combined with energy dispersive X-ray spectrometry (SEM-EDS). Clay minerals consist mainly of illite and smectite, with associated chlorite and kaolinite. The illite at ODP Site 1146 has very well-to-well crystallinity, and smectite has moderate-to-poor crystallinity. In SEM the smectite particles at ODP Site 1146 often appear cauliflower-like, a typical micromorphology of volcanic smecites. The smectite at ODP Site 1146 is relatively rich in Si element, but poor in Fe, very similar to the smectite from the West Philippine Sea. In contrast, the chemical composition of illite at ODP Site 1146 has no obvious differences from those of the Loess plateau, Yellow River, Yangtze River, and Pearl River. A further study on sediment source indicates that smectite originates mainly from Luzon, kaolinite from the Pearl River, and illite and chlorite from the Pearl River, Taiwan and/or the Yangtze River. The clay mineral assemblages at ODP Site 1146 were not only controlled by continental eathering regimes surrounding the SCS, but also by the changing strength of the transport processes. The ratios of (illite+chlorite)/smectite at ODP Site 1146 were adopted as proxies for the East Asian monsoon evolution. Relatively higher ratios reflect strongly intensified winter monsoon relative to summer monsoon, in contrast, lower ratios indicate a strengthened summer monsoon relative to winter monsoon. The consistent variation of this clay proxy from those of Loess plateau, eolian deposition in the North Pacific, planktonic, benthic foraminifera, and black carbon in the SCS since 20 Ma shows

  16. Mineral Resource Assessment of Marine Sand Resources in Cape- and Ridge-Associated Marine Sand Deposits in Three Tracts, New York and New Jersey, United States Atlantic Continental Shelf (United States)

    Bliss, James D.; Williams, S. Jeffress; Arsenault, Matthew A.


    geographic, economic, preemptive use, environmental, geologic and political factors. In addition, offshore sand resources should only be considered if the area is seaward of the active zone of significant nearshore sediment transport, about 10 to 12 m in depth, and in sufficiently shallow water so that sand can be extracted within U.S. dredging equipment limits, currently about 40 m in depth. If the material is to be used for beach nourishment, material must be of an appropriate sediment texture and character (grain size, sorting, shape, and color) to match the native beach and have mineralogical properties important to its use. Extraction of sand can disturb or alter the benthic habitat and seafloor ecology, so these factors and other site-specific effects will need to be evaluated for any intended use. These and other factors are not considered in this report but can be expected to reduce the total net volume of sand resources available for production. The purpose of this report is to describe and present results from a probabilistic mineral modeling technique previously applied to onshore mineral resources. This modeling and assessment procedure is being used for the first time to assess and estimate offshore aggregate resources; this study is part of the U.S. Geological Survey (USGS) Marine Aggregates Resources and Processes Project (

  17. Thermostability of montmorillonitic clays


    Petr Jelínek; Dobosz, Stanisław M.; Jaroslav Beňo


    Bentonite is one of the most widespread used clays connected with various applications. In the case of foundry technology, bentonite is primarily used as a binder for mold manufacture. Thermal stability of bentonites is a natural property of clay minerals and it depends on the genesis, source and chemical composition of the clay. This property is also closely connected to bentonite structure. According to DTA analysis if only one peak of dehydroxylation is observed (about 600 ºC), the cis- is...

  18. [Pollutant distribution in organo-mineral aggregates in topsoils from a site contaminated by organochlorine pesticides]. (United States)

    Cong, Xin; Xue, Nan-dong; Liang, Gang; Wang, Shi-jie; Zhu, Shu-quan; Li, Fa-sheng


    Four different soil particle-size fractions that is clay, silt, fine sand and coarse sand ( 200 microm) from the topsoils in an organochlorine pesticide (OCP) field were separated by physical method to characterize the OCPs distribution in soils and to study the effect of organic matter and mineral composition in different separates on pollutants distribution. The results show that the concentrations of HCHs and DDTs in silt with 463.1 mg x kg(-1) and 1225.6 mg x kg(-1) are higher than those in coarse sand, 157.8 mg x kg(-1) and 384.5 mg x kg(-1), respectively. There is a significant correlationship between IgKoc. and the contents of HCHs and DDTs in clay. The analysis on X-ray diffraction of organo-mineral aggregates demonstrates that clay and silt have a much higher content of the clay minerals than those in coarse sand within the contaminated soils. There are some differences with different particle-size fractions in the content and composition of the clay minerals in organo-mineral aggregates, which affect the OCP distribution in soils to some extents. The results also suggest that the distribution of HCHs and DDTs in the particle with more pollutants in the site is similar to that in airborne particles. So the environmental behavior of OCPs in topsoils from the contaminated site should be paid more attention especially in ambient air-soil interaction.

  19. Method of Identifying Clay Mineral by X-Ray Diffraction Analysis%用X射线衍射分析鉴定粘土矿物的方法

    Institute of Scientific and Technical Information of China (English)



    Combined with the analysis executed by clay mineral in constructing material of dams of our institute , the principal of X-ray diffraction analysis, preparation of specimens and testing methods are introduced, and the graph of X-ray diffraction is interpreted and analyzed as well.%该文结合我院对筑坝材料中粘土矿物的分析,对X射线衍射分析的原理、样品制备及试验方法进行了介绍,对试验得到的衍射图谱进行了解译分析.

  20. Evaluation of first-row transition metal oxides supported on clay minerals for catalytic growth of carbon nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Tsoufis, Theodoros [Department of Materials Science and Engineering, University of Ioannina, GR-45110 Ioannina (Greece); Jankovic, Lubos [Department of Physics, University of Ioannina, GR-45110 Ioannina (Greece); Gournis, Dimitrios [Department of Materials Science and Engineering, University of Ioannina, GR-45110 Ioannina (Greece)], E-mail:; Trikalitis, Pantelis N. [Department of Chemistry, University of Crete, GR-71409 Heraklion (Greece); Bakas, Thomas [Department of Physics, University of Ioannina, GR-45110 Ioannina (Greece)], E-mail:


    In the present work we employed various transition metals (Cr, Mn, Fe, Co, Ni, Cu and Zn) loaded on different smectite clays (laponite and montmorillonite) as catalysts in synthesis of carbon nanostructures (mainly nanotubes) and we report the effect of the nature of the catalytic centers and type of aluminosilicate layers in the morphology, quality and structure on the final products. Owing to their unique swelling, ion-exchange and intercalation properties smectite clays were easily, uniformly and reproducibly loaded with metal cations. Different homoionic forms of montmorillonite and laponite were prepared containing first-row transition metals and the synthesis of carbon nanostructures was carried out at 700 deg. C using an acetylene/nitrogen mixture. A variety of analytical techniques (XRD, Raman, SEM, TEM and thermal analysis) were used to fully characterize the final materials. Iron-, cobalt-, nickel- and manganese-exchanged clays showed to be effective catalysts for the production of carbon nanotubes, while acetylene decomposition over copper-exchanged clays resulted to the creation of carbon spheres. The resulting hybrid systems are particularly attractive for polymer reinforcing applications since the combined action of clay-carbon nanotubes in polymer matrixes can provide outstanding properties to the resulting composite materials.

  1. 30 CFR 46.6 - Newly hired experienced miner training. (United States)


    ... TRAINING TRAINING AND RETRAINING OF MINERS ENGAGED IN SHELL DREDGING OR EMPLOYED AT SAND, GRAVEL, SURFACE STONE, SURFACE CLAY, COLLOIDAL PHOSPHATE, OR SURFACE LIMESTONE MINES. § 46.6 Newly hired experienced...) Instruction on the recognition and avoidance of electrical hazards and other hazards present at the mine,...

  2. Evolution of clay mineral assemblages in the Tinguiririca geothermal field, Andean Cordillera of central Chile: an XRD and HRTEM-AEM study (United States)

    Vázquez, M.; Nieto, F.; Morata, D.; Droguett, B.; Carrillo-Rosua, F. J.; Morales, S.


    HRTEM textural evidence shows that clay minerals in the Tinguiririca geothermal field (Andean Cordillera, central Chile) are the result of direct alteration of former volcanic glass and minerals by hydrothermal fluids at similar temperatures to the present day. They show the classical pattern of diagenetic transformation from smectite at the top to illite at the bottom, with the progressive formation of corrensite and chlorite. The high fluid/rock ratio, disposability of necessary cations and absence of previous detrital phyllosilicates allow the consideration of this area as a natural laboratory to establish the extreme ideal conditions for very low-T reactions. Transformations from smectite to R1 illite-smectite (I-S) and from these to R3 mixed-layers occur respectively at 80-120 °C and 125-180 °C. In spite of ideal genetic conditions, the new-formed minerals show all the defective character and lack of textural and chemical equilibrium previously described in the literature for diagenetic and hydrothermal low-temperature assemblages. Chemistry of smectite-illite phases evolves basically through a diminution of the pyrophyllitic component toward a theoretical muscovite (Si4 + + □ -> Al3 ++ K+). However, a second chemical vector (Si4 ++ Mg2 + → Al3 ++ Al3 +), that is, decreasing of the tschermack component, also contributes to the evolution toward the less Si-more Al rich muscovite in relation to the original smectite. Residual Mg (and Fe) from the latter reaction is consumed in the genesis of chloritic phases. Nevertheless, as a consequence of the lack of chemical equilibrium (probably because of the short time-scale of the geothermal alteration processes), the composition of clay minerals is highly heterogeneous at the level of a single sample. Consequently, the respective fields of smectite, R1 I-S and R3 I-S overlap each other, making the distinction among these three phases impossible based exclusively on chemical data.

  3. Mineral catalysis of the formation of the phosphodiester bond in aqueous solution - The possible role of montmorillonite clays (United States)

    Ferris, James P.; Ertem, Gozen; KAMALUDDIN; Agarwal, Vipin; Hua, Lu Lin


    The possible role of montmorillonite clays in the spontaneous formation on the primitive earth of the phosphodiester bond in the presence of water was investigated in experiments measuring the binding of various nucleosides and nucleotides with Na(+)-montmorillonite 22A and the reactions of these compounds with a water-soluble carbodiimide. It was found that, at neutral pH, adenine derivatives bind stronger than the corresponding uracil derivatives, consistent with the protonation of the adenine by the acidic clay surface and a cationic binding of the protonated ring to the anionic clay surface. The reaction of the 5-prime-AMP with carbodiimide resulted in the formation of 2-prime,5-prime-pApA (18.9 percent), 3-prime,5-prime-pApA (11 percent), and AppA (4.8 percent). The yields of these oligomers obtained when poly(U) was used in place of the clay were 15.5 percent, 3.7 percent, and 14.9 percent AppA, respectively.

  4. Reconstruction of late Quaternary monsoon oscillations based on clay mineral proxies using sediment cores from the western margin of India

    Digital Repository Service at National Institute of Oceanography (India)

    Thamban, M.; Rao, V.P.; Schneider, R.R.

    - nental margin. As the hinterland is characterised by steep slopes with heavy monsoon rainfall, it is presumed that clays were not stored on land for periods more than the duration of the millennial- scale climatic £uctuations we attempt to interpret...

  5. Late-Quaternary variations in clay minerals along the SW continental margin of India: Evidence of climatic variations

    Digital Repository Service at National Institute of Oceanography (India)

    Chauhan, O.S.; Sukhija, B.S.; Gujar, A.R.; Nagabhushanam, P.; Paropkari, A.L.

    Down-core variations in illite, chlorite, smectite and kaolinite (the major clays) in two sup(14)C-dated cores collected along the SW continental margin of India show that illite and chlorite have enhanced abundance during 20-17, 12.5, 11-9.5, and 5...

  6. Structure, dynamics, and function of the hammerhead ribozyme in bulk water and at a clay mineral surface from replica exchange molecular dynamics. (United States)

    Swadling, Jacob B; Wright, David W; Suter, James L; Coveney, Peter V


    Compared with proteins, the relationship between structure, dynamics, and function of RNA enzymes (known as ribozymes) is far less well understood, despite the fact that ribozymes are found in many organisms and are often conceived as "molecular fossils" of the first self-replicating molecules to have arisen on Earth. To investigate how ribozymal function is governed by structure and dynamics, we study the full hammerhead ribozyme in bulk water and in an aqueous clay mineral environment by computer simulation using replica-exchange molecular dynamics. Through extensive sampling of the major conformational states of the hammerhead ribozyme, we are able to show that the hammerhead manifests a free-energy landscape reminiscent of that which is well known in proteins, exhibiting a "funnel" topology that guides the ribozyme into its globally most stable conformation. The active-site geometry is found to be closely correlated to the tertiary structure of the ribozyme, thereby reconciling conflicts between previously proposed mechanisms for the self-scission of the hammerhead. The conformational analysis also accounts for the differences reported experimentally in the catalytic activity of the hammerhead ribozyme, which is reduced when interacting with clay minerals as compared with bulk water.

  7. Redox properties of structural Fe in clay minerals. 2. Electrochemical and spectroscopic characterization of electron transfer irreversibility in ferruginous smectite, SWa-1. (United States)

    Gorski, Christopher A; Klüpfel, Laura; Voegelin, Andreas; Sander, Michael; Hofstetter, Thomas B


    Structural Fe in clay minerals is an important, albeit poorly characterized, redox-active phase found in many natural and engineered environments. This work develops an experimental approach to directly assess the redox properties of a natural Fe-bearing smectite (ferruginous smectite, SWa-1, 12.6 wt % Fe) with mediated electrochemical reduction (MER) and oxidation (MEO). By utilizing a suite of one-electron-transfer mediating compounds to facilitate electron transfer between structural Fe in SWa-1 and a working electrode, we show that the Fe2+/Fe3+ couple in SWa-1 is redox-active over a large range of potentials (from E(H) = -0.63 V to +0.61 V vs SHE). Electrochemical and spectroscopic analyses of SWa-1 samples that were subject to reduction and re-oxidation cycling revealed both reversible and irreversible structural Fe rearrangements that altered the observed apparent standard reduction potential (E(H)(ø)) of structural Fe. E(H)(ø)-values vary by as much as 0.56 V between SWa-1 samples with different redox histories. The wide range of E(H)-values over which SWa-1 is redox-active and redox history-dependent E(H)(ø)-values underscore the importance of Fe-bearing clay minerals as redox-active phases in a wide range of redox regimes.

  8. The Study of Clay Minerals Distribution in Lianhua Reservoir%莲花油层中粘土矿物分布规律研究

    Institute of Scientific and Technical Information of China (English)

    唐洪明; 曾凡刚; 陈忠; 赵敬松; 沈明道; 唐清山; 柴利文; 魏桂萍


    The Lianhua reservoir of Shahejie group(geology period E1) in Gaosheng Oil field , located in Liaohe granen faulting basin, is rich in heavy crude oil, with the burial depth being 1 450~1 700 m.The reservoirs have been under development for 22 years. The company has made great profit from the reservoir development by means of steam-flooding technology, but some problems have been found in the reservo i r with the technology application, because the difficulty in reservoir developme nt is increasing with the frequency of applying the technology. By the end of 19 98 the average steam flooding for every well has been four times, but the more s team-flooding, the less satisfactory the efforts to increase the production.   Therefore, a more comprehensive study of the types, content, and the horizonta l and vertical distribution characteristics of the clay minerals in the reservoi r is of most important consequence to the design of the heavy crude oil developme nt, reservoir protection, reservoir evaluation, and enhanced oil recovery (EOR) etc. The clay minerals in Lianhua reservoir are systematically studied by means of X-ray diffraction, scan electronic microscope and heat simulation experiment s.   The Lianhua reservoir is a sediment by gravity flow, with the rock types bein g gravel, sandstone, and mudstone, and the sedimentary depth being 50~600 m. L ian hua reservoir has excellent physical property, with the porosity being 20%~26% and the permeability being 1~4 μm2.   The studies show that the major clay minerals in Lianhua reservoir are montmoril lonite(60%~85%), illite (8%~20%), kaolinite (5%~25%), and chlorite (<5%). T he montm orillonite content decreases with the increase of the burial depth, but the kaol inite and illite content are just the opposite, because the porosity fluid in sa ndstone and gravels more easily circulative than that in mudstone, and the mont morillonite in sandstone can more easily convert into other

  9. Resistant heated rotary furnaces for heat treatment of rare earth minerals and quartz sand; Widerstandsbeheizte Drehrohroefen zur Waermebehandlung von seltenen Erden und Quarzsand

    Energy Technology Data Exchange (ETDEWEB)

    Wuebben, Peter [Linn High Therm GmbH, Eschenfelden (Germany)


    The rotary tube furnace combines, in most cases, the expectations of today of a modern continuous heat treatment furnace - high throughput, energy efficiency, easy automation and a reliable reproducibility. Today a number of applications can be realized by the use of high performance materials for the rotary tube. The various operational possibilities of rotary tube furnaces were recently extended by applications for the production of rare earth minerals and high purity quartz sand. (orig.)

  10. Discoloration and mineralization of Orange II by using a bentonite clay-based Fe nanocomposite film as a heterogeneous photo-Fenton catalyst. (United States)

    Feng, Jiyun; Hu, Xijun; Yue, Po Lock


    Discoloration and mineralization of an azo dye Orange II was conducted by using a bentonite clay-based Fe nanocomposite (Fe-B) film as a heterogeneous photo-Fenton catalyst in the presence of UVC light and H(2)O(2). Under optimal conditions (pH=3.0, 10 mM H(2)O(2), and 1 x 8W UVC), 100% discoloration and 50-60% TOC removal of 0.2 mM Orange II can be achieved in 90 and 120 min, respectively. The mineralization kinetics of 0.2 mM Orange II is much slower than the corresponding discoloration kinetics. Under the same conditions, the Fe leaching from the Fe-B-coated catalyst film is very low. The Fe-B-coated catalyst film could be used in the pre-treatment of wastewater for an integrated system consisting of a photochemical reactor and a biological reactor. Multi-run experimental results reveal that the Fe-B-coated catalyst film could have a long-term stability for the discoloration and mineralization of Orange II. A comparison between the performance of the Fe-B-coated catalyst film and a suspended Fe-B catalyst in the discoloration and mineralization of Orange II was also discussed.

  11. Metal oxides, clay minerals and charcoal determine the composition of microbial communities in matured artificial soils and their response to phenanthrene. (United States)

    Babin, Doreen; Ding, Guo-Chun; Pronk, Geertje Johanna; Heister, Katja; Kögel-Knabner, Ingrid; Smalla, Kornelia


    Microbial communities in soil reside in a highly heterogeneous habitat where diverse mineral surfaces, complex organic matter and microorganisms interact with each other. This study aimed to elucidate the long-term effect of the soil mineral composition and charcoal on the microbial community composition established in matured artificial soils and their response to phenanthrene. One year after adding sterile manure to different artificial soils and inoculating microorganisms from a Cambisol, the matured soils were spiked with phenanthrene or not and incubated for another 70 days. 16S rRNA gene and internal transcribed spacer fragments amplified from total community DNA were analyzed by denaturing gradient gel electrophoresis. Metal oxides and clay minerals and to a lesser extent charcoal influenced the microbial community composition. Changes in the bacterial community composition in response to phenanthrene differed depending on the mineral composition and presence of charcoal, while no shifts in the fungal community composition were observed. The abundance of ring-hydroxylating dioxygenase genes was increased in phenanthrene-spiked soils except for charcoal-containing soils. Here we show that the formation of biogeochemical interfaces in soil is an ongoing process and that different properties present in artificial soils influenced the bacterial response to the phenanthrene spike.

  12. Comment on "Evaluation of X-ray diffraction methods for determining the crystal growth mechanisms of clay minerals in mudstones, shales and slates," by L. N. Warr and D. R. Peacor (United States)

    Eberl, D.D.; Srodon, J.; Drits, V.A.


    A recent paper by Warr and Peacor (2002) suggested that our use of the Bertaut-Warren-Averbach technique (MudMaster computer program) for studying changes in crystallite thickness distributions (CTDs) of clay minerals during diagenesis and very low-grade metamorphism is not reliable because it is dependent on many variables which can not be fully controlled. Furthermore, the authors implied that the measured shapes of CTDs cannot be used with confidence to deduce crystal growth mechanisms and histories for clays, based on our CTD simulation approach (using the Galoper computer program). We disagree with both points, and show that the techniques are powerful, reliable and useful for studying clay mineral alteration in rocks. ?? 2003 Schweiz. Mineral. Petrogr. Ges.

  13. Dioxin congener patterns in commercial catfish from the United States and the indication of mineral clays as the potential source. (United States)

    Huwe, J K; Archer, J C


    Since 1991 the US Department of Agriculture (USDA) has conducted annual surveys of pesticide residues in foods under the Agricultural Marketing Service's Pesticide Data Program (PDP). To assess chemical residues in domestically marketed catfish products, 1479 catfish samples were collected during the 2008-2010 PDPs. A subset of 202 samples was analysed for 17 toxic polychlorinated dibenzo-p-dioxins and furans (PCDD/Fs). The average pattern of the individual PCDD/F congener concentrations in the catfish was rather unique in that it had almost no measurable amounts of polychlorinated dibenzofurans (PCDFs), but all PCDDs were present. This pattern was more dominant in the domestically produced catfish products than in the imported products (China/Taiwan). Comparison of the pattern to known sources of PCDD/Fs showed strong similarities to the pattern of PCDD/Fs found in kaolin clays which have often been used as anti-caking agents in animal feeds. To investigate whether catfish feeds may be the source of the PCDD/Fs found in the catfish, archived catfish feed data from a US Food and Drug Administration (USFDA) database were examined. In 61 out of 112 feed samples, the PCDD concentrations were 50 times higher than the PCDF concentrations and resembled the pattern found in the catfish products and in clays mined in the south-eastern United States. Although the source of PCDD/Fs in domestically marketed catfish products cannot be definitively established, mined clay products used in feeds should be considered a likely source and, given the wide concentration range of PCDD/Fs that has been found in clays, a critical control point for PCDD/Fs entrance to the food supply.

  14. Prospecting for clay minerals within volcanic successions: Application of electrical resistivity tomography to characterise bentonite deposits in northern Sardinia (Italy) (United States)

    Longo, V.; Testone, V.; Oggiano, G.; Testa, A.


    Electrical resistivity tomography (ERT) is applied to prospect for and characterise a bentonitic clay deposit in northern Sardinia. Sardinian bentonites derived from the hydrothermal alteration of thick successions of pyroclastic flows and epiclastites are associated with the Oligo-Miocene calc-alkaline volcanic cycle. The alteration of these rocks is generally controlled by faults that control the local circulation of hydrothermal fluids. Two-dimensional ERT investigations were performed close to a faulted area to define the location, thickness and lateral continuity of the clayey body, and determine how it relates to faulting and stratigraphy. A line-based three-dimensional ERT data acquisition was carried out in a selected area to estimate the available clay reserves. The reliability of these resistivity models was assessed by comparison with local borehole data. Finally, the interpretation of the ERT results was optimised through synthetic modelling of the electrical resistivity imaging technique. The results define the extent and geometry of the bentonitic deposit with good accuracy and outline the scenarios where the ERT method may provide optimal results when prospecting for clay deposits.

  15. Detection of Soluble and Fixed NH4+ in Clay Minerals by DTA and IR Reflectance Spectroscopy : A Potential Tool for Planetary Surface Exploration (United States)

    Janice, Bishop; Banin, A.; Mancinelli, R. L.; Klovstad, M. R.; DeVincenzi, Donald L. (Technical Monitor)


    Nitrogen is an essential element for life. It is the only element among the six major biogenic elements, C, O, S, O, P, H, whose presence in the Martian soil has not been positively and directly established. We describe here a study assessing the ability to detect NH4 in soils by two methods: differential thermal analysis (DTA) and infrared (IR) reflectance spectroscopy. Four standard clay minerals (kaolinite, montmorillonite, illite and attapulgite) and an altered tephra sample from Mauna Kea were treated with NH4 in this study. Samples of the NH4-treated and leached clays were analyzed by DTA and infrared (IR) reflectance spectroscopy to quantify the delectability of soluble and sorbed/fixed NH4. An exotherm at 270-280 C was clearly detected in the DTA curves of NH4-treated (non-leached) samples. This feature is assigned to the thermal decomposition reaction of NH4. Spectral bands observed at 1.56, 2.05, 2.12, 3.06, 3.3, 3.5, 5.7 and 7.0 microns in the reflectance spectra of NH4-treated and leached samples are assigned to the sorbed/fixed ammonium in the clays. The montmorillonite has shown the most intense absorbance due to fixed ammonium among the leached samples in this study, as a result of its high cation sorption capacity. It is concluded that the presence of sorbed or fixed NH4 in clays may be detected by infrared (IR) reflectance or emission spectroscopy. Distinction between soluble and sorbed NH4 may be achieved through the presence or absence of several spectral features assigned to the sorbed NH4 moietyi and, specifically, by use of the 4.2 micrometer feature assigned to solution NH4. Thermal analyses furnish supporting evidence of ammonia in our study through detection of N released at temperatures of 270-330 C. Based on these results it is estimated that IR spectra measured from a rover should be able to detect ammonia if present above 20 mg NH4/g sample in the surface layers. Orbital IR spectra and thermal analyses measured on a rover may be able to

  16. Ball clay (United States)

    Virta, Robert L.


    The article reports on the global market performance of ball clay in 2009 and presents an outlook for its 2010 performance. Several companies mined ball call in the country including Old Hickey Clay Co., Kentucky-Tennessee Clay Co., and H.C. Spinks Clay Co. Information on the decline in ball clay imports and exports is also presented.

  17. 粘土矿物在气候环境变化研究中的应用进展%Application Progress of Clay Minerals in the Researches of Climate and Environment

    Institute of Scientific and Technical Information of China (English)

    孙庆峰; 陈发虎; Christophe Colin; 张家武


    在古环境和古气候的重建中,粘土矿物和碳-氧同位素、孢粉、树轮、冰芯等代用指标一样具有同等重要的地位.在没有地质构造运动影响时,气候是影响粘土矿物形成的主要因素,沉积物中的粘土矿物可用来分析古气候和古环境.粘土矿物及其组合可以独立或作为主要指标反映气候和环境变化,并已应用于高分辨率的晚第四纪地层的气候环境研究中.粘土矿物在很短的时间内也会发生明显地变化,不仅可以反映千年-百年尺度的气候环境变化,而且也可以反映几十年尺度的古气候环境变化过程.粘土矿物与其它指标对同一气候环境响应的相位差有待深入研究.不同的半定量分析方法测量出的同一剖面中粘土矿物的含量变化趋势和特征具有一致性.%In constructing paleoenvironment and paleoclimate clay minerals could be used same as the proxies of carben-oxygen isotope, pollen, tree ring, ice core to decipher the information of climate and environment. In the geological time without tectonic movement climate is the primary factor to dominate clay mineral formation and clay mineral could be utilized to analyze paleoclimate and paleoenvironment. Clay minerals and their assemblages can be independent or primary good proxies of climatic and environmental changes. Clay minerals have been used in high solution strata of the late Quaternary. Clay minerals can change obviously in a short time and record the climatic and environmental changing history of thousand-hundred years or even several decades. The climatic and environmental lag recorded by clay minerals and other proxies needs to be studied thoroughly. Clay mineral quantity tendencies and characteristics in a section measured by different semi-quantity methods are uniform.

  18. Novel bentonite clay-based Fe-nanocomposite as a heterogeneous catalyst for photo-Fenton discoloration and mineralization of Orange II. (United States)

    Feng, Jiyun; Hu, Xijun; Yue, Po Lock


    A novel bentonite clay-based Fe-nanocomposite (Fe-B) was successfully developed as a heterogeneous catalyst for photo-Fenton discoloration and mineralization of an azo-dye Orange II. X-ray diffraction (XRD) analysis clearly reveals that the Fe-B nanocomposite catalyst mainly consists of Fe2O3 (hematite) and SiO2 (quartz) crystallites, and the Fe concentration of the Fe-B catalyst determined by X-reflective fluorescence (XRF) is 31.8 wt %. The catalytic activity of the Fe-B was evaluated in the discoloration and mineralization of Orange II in the presence of H2O2 and UVC light (254 nm). It was found that the optimal Fe-B catalyst dosage is around 1.0 g/L, and the efficiency of discoloration and mineralization of Orange II increases as initial Orange II concentration decreases or reaction temperature increases. In addition, at optimal conditions (10 mM H2O2, 1.0 g of Fe-B/L, 1 x 8W UVC, and pH = 3.0), complete discoloration and mineralization of 0.2 mM Orange II can be achieved in less than 60 and 120 min, respectively. The result strongly indicates that the Fe-B nanocomposite catalyst exhibits a high catalytic activity not only in the photo-Fenton discoloration of Orange II but also in the mineralization of Orange II. The reaction kinetics analysis illustrates that the photo-Fenton discoloration of Orange II in the first 15 min obeys the pseudo-first-order kinetics. The reaction activation energy calculated was 9.94 kJ/mol, indicating that the photo-Fenton discoloration of Orange II is not very sensitive to reaction temperature.

  19. Langmuir-Blodgett monolayers of cationic dyes in the presence and absence of clay mineral layers: N,N'-dioctadecyl thiacyanine, octadecyl rhodamine B and laponite. (United States)

    Hussain, Syed Arshad; Schoonheydt, Robert A


    Langmuir-Blodgett (LB) films of N,N'-dioctadecyl thiacyanine perchlorate (TC18) and octadecyl rhodamine B chloride (RhB18) and their mixtures in the presence and absence of clay mineral layers were investigated by recording surface pressure-area (pi-A) isotherms and by UV-vis and fluorescence spectroscopies. The pi-A isotherms of TC18, RhB18, and their mixtures are characteristic of liquid expanded state behavior with repulsive interactions between the two cationic dyes. In the presence of laponite, the pi-A isotherms show liquid expanded and condensed-state behavior. In laponite dispersions and in monolayers, TC18 has a strong tendency to aggregate with formation of H- and J- aggregates. The absorption and fluorescence maxima of the monomers in the films are at 435 nm and at 480 nm; H-dimers have an absorption maximum around 410 nm and do not fluoresce. J-dimers are present in all the films with absorption maximum at 461 nm and fluorescence at 463 nm. RhB18 is mainly present as monomers in the LB films with an absorption maximum at 576 nm and fluorescence at 595 nm. Fluorescence resonance energy transfer from TC18 to RhB18 has been observed in clay dispersions and in films with and without laponite. The optimum condition for TC18 --> RhB18 fluorescence energy transfer in the films is 90 mol % TC18 + 10 mol % RhB18.

  20. Mycotoxins modify the barrier function of Caco-2 cells through differential gene expression of specific claudin isoforms: Protective effect of illite mineral clay. (United States)

    Romero, Alejandro; Ares, Irma; Ramos, Eva; Castellano, Víctor; Martínez, Marta; Martínez-Larrañaga, María-Rosa; Anadón, Arturo; Martínez, María-Aránzazu


    Aflatoxin B1 (AFB1), fumonisin B1 (FB1), ochratoxin A (OTA) and T-2 toxin (T2) are mycotoxins that commonly contaminate the food chain and cause various toxicological effects. Their global occurrence is regarded as an important risk factor for human and animal health. In this study, the results demonstrate that, in human Caco-2 cells, AFB1, FB1, OTA and T2 origin cytotoxic effects, determining cell viability through MTT assay and LDH leakage, and decrease trans-epithelial electrical resistance (TEER). The decrease in barrier properties is concomitant with a reduction in the expression levels of the tight junction constituents claudin-3, claudin-4 and occludin. The protective effect of mineral clays (diosmectite, montmorillonite and illite) on alterations in cell viability and epithelial barrier function induced by the mycotoxins was also evaluated. Illite was the best clay to prevent the mycotoxin effects. Illite plus mycotoxin co-treatment completely abolished AFB1 and FB1-induced cytotoxicity. Also, the decreases in the gene expression of claudins and the reduction of TEER induced by mycotoxins were reversed by the illite plus mycotoxin co-treatment. In conclusion, these results demonstrated that mycotoxins AFB1, FB1, T2 and OTA disrupt the intestinal barrier permeability by a mechanism involving reduction of claudin isoform expressions, and illite counteracts this disruption.

  1. Influences of surface treatments with abrasive paper and sand-blasting on surface morphology, hydrophilicity, mineralization and osteoblasts behaviors of n-CS/PK composite. (United States)

    Tang, Xiaoming; Huang, Kai; Dai, Jian; Wu, Zhaoying; Cai, Liang; Yang, Lili; Wei, Jie; Sun, Hailang


    The surfaces of nano-calcium silicate (n-CS)/polyetheretherketone (PK) composites were treated with abrasive paper and sand-blasting, and the surfaces performances of the as-treated composites were studied. The results showed that the surface roughness, hydrophilicity and mineralization of the simulated body fluid (SBF) of the composites surfaces were significantly improved, and the properties of the composites treated by with sand-blasting were better than those treated with abrasive paper. Moreover, the treated composites significantly promoted osteoblasts responses, such as cell attachment, spreading, proliferation and alkaline phosphatase (ALP) activity, compared to un-treated composites, and the cellular responses to the composites treated with sand-blasting were better than those treated with abrasive paper. The results suggested that surface treatment with sand-blasting was an effective method to greatly improve the surface bioperformances of the n-CS/PK composite, and this treated composite with improved bioactivity and cytocompatibility might be a promising implant material for orthopedic applications.

  2. Late Quaternary clay minerals off Middle Vietnam in the western South China Sea: Implications for source analysis and East Asian monsoon evolution

    Institute of Scientific and Technical Information of China (English)


    High-resolution clay mineral records combined with oxygen isotopic stratigraphy over the past 450 ka during late Quaternary from Core MD05-2901 off Middle Vietnam in the western South China Sea are reported to reconstruct a history of East Asian monsoon evolution.Variations in Illite,chlorite,and kaolinite contents indicate a strong glacial-interglacial cyclicity,while changes in smectite content present a higher frequency cyclicity.The provenance analysis indicates a mixture of individual clay minerals from various sources surrounding the South China Sea.Smectite derived mainly from the Sunda shelf and its major source area of the Indonesian islands.Illite and chlorite originated mainly from the Mekong and Red rivers.Kaolinite was provided mainly by the Pearl River.Spectral analysis of the kaolinite/(illite+chlorite) ratio displays a strong eccentricity period of 100 ka,implying the ice sheet-forced winter monsoon evolution; whereas higher frequency changes in the smectite content show an ice sheet-forced obliquity period of 41 ka,and precession periods of 23 and 19 ka and a semi-precession period of 13 ka as well,implying the tropical-forced summer monsoon evolution.The winter monsoon evolution is generally in coherence with the glacial-interglacial cyclicity,with intensified winter monsoon winds during glacials and weakened winter monsoon winds during interglacials; whereas the summer monsoon evolution provides an almost linear response to the summer insolation of low latitude in the Northern Hemisphere,with strengthened summer monsoon during higher insolation and weakened summer monsoon during lower insolation.The result suggests that the high-latitude ice sheet and low-latitude tropical factor could drive the late Quaternary evolution of East Asian winter and summer monsoons,respectively,implying their diplex and self-contained forcing mechanism.

  3. 金厂沟梁地区土壤含水粘土矿物含量短波红外光谱反演%Inversion of Hydrated Clay Mineral Content in Soil of Jinchanggouliang Area Based on SWIR

    Institute of Scientific and Technical Information of China (English)

    曹会; 邢立新; 潘军; 刘立文; 杨东旭; 王莹


    Based on the physical mechanism that clay mineral can produce characteristic spectrum at shortwave infrared ray ( SWIR) , we chose the characteristic wave band of clay mineral, used the actual analysis results and test data of the mineral components, and adopted multivariate linear regression analysis to build model for inversing the soil clay mineral content of Jinchanggouliang area of Inner Mongolia. The study results demonstrated that applying soil spectral reflectance which was corresponding with the characteristic wave band to establish forecast model could carry out the inversion of hydrated clay mineral content in the soil of this area. The clay mineral content influenced the discretion of the soil spectral reflectance.%基于粘土矿物在短波红外线处产生特征光谱的机理,选出其特征波段,利用矿物组分的实际分析结果和测试数据,采用多元线性回归方法建立模型,对内蒙古金厂沟梁地区的土壤粘土矿物含量进行了反演.研究结果表明:应用特征波段对应的土壤光谱反射率建立预测模型可以用于该地区土壤粘土矿物含量的反演;粘土矿物含量的多少影响光谱反射率的高低.

  4. Comparison of the sorption behaviors and mechanisms of perfluorosulfonates and perfluorocarboxylic acids on three kinds of clay minerals. (United States)

    Zhao, Lixia; Bian, Jingna; Zhang, Yahui; Zhu, Lingyan; Liu, Zhengtao


    The sorption of four perfluoroalkyl acids (PFAAs) [perfluorooctane sulfonate (PFOS), perfluorohexane sulfonate (PFHxS), perfluorooctanoic acid (PFOA) and perfluorohexanoic acid (PFHxA)] on three typical minerals [montmorillonite (MM), kaolinite (KL) and hematite (HM)] was studied. The sorption of PFOS and PFHxS was much stronger than PFOA and PFHxA. The sorption of each PFAA on the minerals followed an order of HM>KL>MM, even though MM was positively while KL and HM were negatively charged, implying that the sorption is driven by some other interactions besides electrostatic attraction. The sorption decreased with an increase in pH and a decrease in ionic strength of the solution, and their impacts on PFOS were much stronger than other three PFAAs. Surface complexing and hydrogen-bonding could make great contributions to the sorption of PFOS on the minerals. The results are important for understanding the transport and fate of PFAAs in sediment and ground water.

  5. Influence Of Carboxymethyl Cellulose For The Transport Of Titanium Dioxide Nanoparticles In Clean Silica And Mineral-Coated Sands (United States)

    The transport properties of titanium dioxide (anatase polymorph) nanoparticles encapsulated by carboxymethyl cellulose (CMC) were evaluated as a function of changes in the solute chemical properties in clean quartz, amorphous aluminum and iron hydroxide-coated sands. While prist...

  6. Experimental Study on Gold Ore with Clay-bearing Mineral%含泥质矿物的金矿石浮选试验研究

    Institute of Scientific and Technical Information of China (English)



    对某金矿石进行的浮选试验研究结果表明,含金黄铁矿中泥质矿物是影响金选矿工艺指标的主要因素,在强化载金黄铁矿浮选的同时,选择合理的调整剂可以显著的提高金的选矿工艺指标。经过试验研究,在原矿含金品位为2.53 g/t时,浮选获得了金精矿含金品位为62.50g/t ,金回收率为92.60%的工艺指标。新型复合捕收剂sk和调整剂羧甲基纤维素的应用是提高精矿含金品位的关键。%An experimental study result of a kind of gold ore shows that the main factor affecting the miner-al flotation process index is the clay mineral in gold-bearing pyrite . At the same time of strengthening flo-tation of gold loaded pyrite , choosing a reasonable adjustment can significantly increase the mineral flota-tion process index . Through experimental study , when the gold grade of a raw ore is 2 .53 g/t ,the better process indexes have gain by flotation :the grade of gold-bearing gold concentrates is 62 .50 g/t , and the gold recovery is 92 .60% .The application of new type composite collectors sk and regulator carboxymeth-ylcellulose is the key to increase the gold concentrate grade .

  7. Infrared spectroscopic studies of the effect of elevated temperature on the association of pyroglutamic acid with clay and other minerals (United States)

    Macklin, J. W.; White, D. H.


    Fourier transform i.r. measurements of L-pyroglutamic acid dispersed in a matrix of a clay, silica or alumina have been obtained at various temperatures between 25 and 220 degrees C. The i.r. spectrum of L-pyroglutamic acid varies in a manner dependent upon the matrix material and shows considerable change as the temperature of the mixtures is increased. The differences in the spectrum at elevated temperatures are explained in terms of a chemical reaction between hydroxyl groups in the matrix and the carboxylic acid. The i.r. spectra of trimethylsilyl derivatives of L-pyroglutamic acid and aluminum pyroglutamate were also measured to assist the understanding of spectra and interpretation of the spectral changes dependent upon increasing temperature.

  8. Visible–Near-Infrared Spectroscopy Can Predict the Clay/Organic Carbon and Mineral Fines/Organic Carbon Ratios

    DEFF Research Database (Denmark)

    Hermansen, Cecilie; Knadel, Maria; Møldrup, Per;


    The ratios of mineral fines (... of preferential flow, water repellency, and chemical adsorption. Conventional texture and OC measurements are time consuming and expensive, and visible–near-infrared (vis-NIR) spectroscopy may provide a fast and inexpensive alternative for obtaining the n- and m-ratios. In this study, a total of 480 soil samples...

  9. Clay Play (United States)

    Rogers, Liz; Steffan, Dana


    This article describes how to use clay as a potential material for young children to explore. As teachers, the authors find that their dialogue about the potential of clay as a learning medium raises many questions: (1) What makes clay so enticing? (2) Why are teachers noticing different play and conversation around the clay table as compared to…

  10. Geotechnical properties of Karwar marine clay

    Digital Repository Service at National Institute of Oceanography (India)

    Bhat, S.T.; Nayak, B.U.; Naik, R.L.

    Karwar marine clay possesses high plasticity characteristics with natural water content higher than the liquid limit. Liquidity index was as high as 1.7. Predominant clay mineral was kaolinite. Undrained shear strength showed an increasing trend...

  11. Modelling of the physico-chemical behaviour of clay minerals with a thermo-kinetic model taking into account particles morphology in compacted material. (United States)

    Sali, D.; Fritz, B.; Clément, C.; Michau, N.


    Modelling of fluid-mineral interactions is largely used in Earth Sciences studies to better understand the involved physicochemical processes and their long-term effect on the materials behaviour. Numerical models simplify the processes but try to preserve their main characteristics. Therefore the modelling results strongly depend on the data quality describing initial physicochemical conditions for rock materials, fluids and gases, and on the realistic way of processes representations. The current geo-chemical models do not well take into account rock porosity and permeability and the particle morphology of clay minerals. In compacted materials like those considered as barriers in waste repositories, low permeability rocks like mudstones or compacted powders will be used : they contain mainly fine particles and the geochemical models used for predicting their interactions with fluids tend to misjudge their surface areas, which are fundamental parameters in kinetic modelling. The purpose of this study was to improve how to take into account the particles morphology in the thermo-kinetic code KINDIS and the reactive transport code KIRMAT. A new function was integrated in these codes, considering the reaction surface area as a volume depending parameter and the calculated evolution of the mass balance in the system was coupled with the evolution of reactive surface areas. We made application exercises for numerical validation of these new versions of the codes and the results were compared with those of the pre-existing thermo-kinetic code KINDIS. Several points are highlighted. Taking into account reactive surface area evolution during simulation modifies the predicted mass transfers related to fluid-minerals interactions. Different secondary mineral phases are also observed during modelling. The evolution of the reactive surface parameter helps to solve the competition effects between different phases present in the system which are all able to fix the chemical

  12. Predicting soil particle density from clay and soil organic matter contents

    DEFF Research Database (Denmark)

    Schjønning, Per; McBride, R.A.; Keller, T.


    Soil particle density (Dp) is an important soil property for calculating soil porosity expressions. However, many studies assume a constant value, typically 2.65Mgm−3 for arable, mineral soils. Fewmodels exist for the prediction of Dp from soil organic matter (SOM) content. We hypothesized...... of clay particles was approximately 2.86 Mg m−3, while that of sand+silt particles could be estimated to ~2.65 Mgm−3. Multiple linear regression showed that a combination of clay and SOMcontents could explain nearly 92% of the variation in measured Dp. The clay and SOMprediction equation was validated...... against a combined data set with 227 soil samples representing A, B, and C horizons from temperate North America and Europe. The new prediction equation performed better than two SOM-based models from the literature. Validation of the new clay and SOM model using the 227 soil samples gave a root mean...

  13. Nitrogen Mineralization of Broiler Litter Applied to Southeastern Coastal Plain Soils (United States)

    A field study was conducted to determine nitrogen (N) mineralization of broiler litter (BL) in two Coastal Plain soils of differing texture, sandy or clayey. The soils were a Tifton loamy sand (fine-loamy, siliceous, thermic, Plinthic Kandiudults) and a Greenville sandy clay loam (clayey, kaoliniti...


    A field study was conducted during 2004-2005 to determine nitrogen (N) mineralization of broiler litter (BL) in two Coastal Plain soils of differing texture, sandy or clayey. The soils were a Tifton loamy sand (fine-loamy, siliceous, thermic, Plinthic Kandiudults) and a Greenville sandy clay loam (...

  15. The role of climate and vegetation in weathering and clay mineral formation in late Quaternary soils of the Swiss and Italian Alps (United States)

    Egli, Markus; Mirabella, Aldo; Sartori, Giacomo


    Interactions between climate and soil remain ambiguous, particularly when silicate weathering and clay mineral formation and transformation rates are considered in relation to global climate changes. Recent studies suggest that climate affects weathering rates much less than previously thought. Here we show that the climate in the central European Alps has a significant, but indirect, influence on the weathering of soils through vegetation. The pattern of element leaching and mineral transformations is not only due to precipitation and temperature. Element leaching was greatest in subalpine forests near the timberline; weathering is lessened at higher and lower altitudes. Vegetation, therefore, contributes significantly to weathering processes. The highest accumulation of organic matter was found in climatically cooler sites (subalpine range) where the production of organic ligands, which enhance weathering, is greatest. Patterns of smectite formation and distribution had strong similarities to that of the elemental losses of Fe and Al ( R = 0.69; P climate, element leaching (Fe, Al, Ca, Mg, K, Na), and smectite formation is strongly nonlinear and driven by the podzolisation process, which is more pronounced near the timberline because of the bioclimatic constellation. Climate warming will probably, in the future, lead to a decrease in SOM stocks in the subalpine to alpine range because of more favourable conditions for biodegradation that would also affect weathering processes.

  16. Importância das espécies minerais no potássio total da fração argila de solos do Triângulo Mineiro Importance of mineral species in total potassium content of clay fraction in soils of the Triângulo Mineiro, Minas Gerais State, Brazil

    Directory of Open Access Journals (Sweden)

    V. F. Melo


    arenito da Formação Uberaba, migmatito/micaxisto do Grupo Araxá e basalto da Formação Serra Geral.Few studies relate the K reserve in soils developed in a humid tropic climate with the minerals found in the clay fraction. Nineteen soils were collected for this purpose in the Triângulo Mineiro region, Minas Gerais State, Brazil, developed from different parent materials and different weathering degrees. Due to the greater occurrence, a larger number of samples of the Bauru Group was collected, comprising all the geological formations found in the region. The total K content in soil and the sand, silt, and clay fractions were determined after the digestion of the soil samples by HF, HNO3 and H2SO4. To quantify the contribution of each mineral species to the total K content, Na-saturated clay samples were submitted by a sequential and selective mineral extraction procedure, following the order: amorphous Al and Fe oxides; crystalline Fe oxides; kaolinite and gibbsite; mica and other 2:1 minerals and; feldspar and resistant minerals. The clay mineralogy composition reflects the high weathering and leaching degree in soils of the Triângulo Mineiro, with low contents of amorphous minerals, a predominant proportion of kaolinite and the presence of other secondary resistant minerals. In spite of this mineral composition, the clay fraction presented the highest total K content, mainly in the most weathered soils. Due to the high proportion of kaolinite in the clay fraction, this mineral was an important source of non-exchangeable K forms. On the other hand, the contribution of amorphous Fe and Al oxides and crystalline Fe oxides to the total K content of the clay fraction was negligible. In general, easily weathered primary minerals (mica and feldspar contributed largely to the total K of the clay fraction, principally to the youngest soils developed from the Uberaba (sandstone and Serra Geral (basalt Formations, and the Araxá Group (migmatite/micaschist.

  17. Ball clay (United States)

    Virta, R.L.


    The article discusses the latest developments in the global ball clay mining industry, particularly in the U.S., as of June 2011. It cites several firms that are involved in ball clay mining in the U.S., including HC Spins Clay Co. Inc., the Imerys Group and Old Hickory Clay Co. Among the products made from ball clay are ceramic tiles, sanitaryware, as well as fillers, extenders and binders.

  18. Mineralization of carbon and nitrogen from fresh and anaerobically stored sheep manure in soils of different texture

    DEFF Research Database (Denmark)

    Sørensen, P.; Jensen, E.S.


    was insignificant or slightly negative in the three soil-sand mixtures (100% soil+0% quartz sand; 50% soil+50% quartz sand; 25% soil+75% quartz sand). After 84 days, the cumulative CO2 evolution and the net mineralization of N from the fresh manure were highest in the soil-sand mixutre with the lowest clay content......-sand mixture with the lowest clay content was probably caused by a higher remineralization of immobilized N in this soil-sand mixture. Anaerobic storage of the manure reduced the CO2 evolution rates from the manure C in the three soil-sand mixtures during the initial weeks of decomposition. However......A sandy loam soil was mixed with three different amounts of quartz sand and incubated with ((NH4)-N-15)(2)SO4 (60 mu g N g(-1) soil) and fresh or anaerobically stored sheep manure (60 mu g g(-1) soil). The mineralization-immobilization of N and the mineralization of C were studied during 84 days...

  19. Amplification of plasmid DNA bound on soil colloidal particles and clay minerals by the polymerase chain reaction

    Institute of Scientific and Technical Information of China (English)


    Polymerase chain reaction (PCR) was used to amplify a 600-base pair (bp) sequence of plasmid pGEX-2T DNA bound on soil colloidal particles from Brown soil (Alfisol) and Red soil (Ultisol), and three different minerals (goethite, kaolinite, montmorillonite). DNA bound on soil colloids, kaolinite, and montmorillonite was not amplified when the complexes were used directly but amplification occurred when the soil colloid or kaolinite-DNA complex was diluted, 10- and 20-fold. The montmorillonite-DNA complex required at least 100-fold dilution before amplification could be detected. DNA bound on goethite was amplified irrespective of whether the complex was used directly, or diluted 10- and 20-fold. The amplification of mineral-bound plasmid DNA by PCR is, therefore, markedly influenced by the type and concentration of minerals used. This information is of fundamental importance to soil molecular microbial ecology with particular reference to monitoring the fate of genetically engineered microorganisms and their recombinant DNA in soil environments.

  20. Spectral induced polarization and the hydraulic properties of New Zealand sands (United States)

    Joseph, S.; Ingham, M.


    Laboratory measurements of spectral induced polarization (SIP) and permeability have been made on unconsolidated samples representative of shallow coastal aquifers in New Zealand. The samples consisted of sands sieved into different fractions ranging from a mean grain size of 1.0 mm to 0.125 mm. Although the occurrence in New Zealand natural sands of titomagnetite means that the magnitude of the SIP phase response is significantly greater than is generally found for "clean" sands, the peak in SIP phase shows a clear dependence on grain size. The SIP spectra have been represented in terms of a Cole-Cole model and the relaxation times derived from this show a strong linear correlation with the measured values of permeability. The SIP and permeability measurements are then extended to mixtures of sieved sands, sand with varying amount of clay, samples with varying amount of magnetic minerals and also natural samples from various locations in New Zealand.

  1. Microtektites and Associated Minerals in the Iridium-Rich Layer of Marine Clay From the Central North Pacific Ocean (United States)

    Leung, I. S.


    Our study is based on a sample derived from a deep sea core (GPC3) from the mid-Pacific Ocean floor north of the Hawaiian Islands, provided by Jim Broda, Woods Hole Oceanographic Institution. The 65 Ma K/T boundary layer was identified by measurements of magnetic susceptibility (Doh, 1987) and Ir anomaly (Kyte et al., 1995) which peaked at a down-hole depth of 2055-2056 cm. Our sample of red clay was about 5 cubic cm in size. After wet-sieving for the size fraction greater than 38 microns, we hand-picked grains of interest under a binocular microscope. We found 40 microtektites (glass spherules, mostly devitrified), 12 olive-green aggregates composed of talc/magnetite, and 3 green and blue crystals of silicon carbide (SiC). There are many quartz grains having decorated deformation lamellae or mosaic structures. The olive-green talc/magnetite particles have textures and composition similar to materials found in chondritic meteorites, whereas, SiC crystals are known to occur in carbonaceous chondrites. These particles seem to implicate an affinity to meteorites. Ir-rich deposits world-wide are believed to have settled from dust produced by the Chicxulub Impact, but what object from space created the impact crater is rather uncertain. Our results reported here cannot rule out the possiblilty of impact by comets, because the nature of cometary dust particles are not very well known.

  2. Ab-Initio Modelling Of Surface Site Reactivity And Fluid Transport In Clay Minerals Case Study: Pyrophyllite

    Energy Technology Data Exchange (ETDEWEB)

    Churakov, S.V


    Pyrophyllite, Al{sub 2}[Si{sub 4}O{sub 10}](OH){sub 2}, is the simplest structural prototype for 2:1 dioctahedral phyllosilicate. Because the net electric charge in pyrophyllite is zero, it is the best candidate for investigating the non electrostatic contribution to sorption and transport phenomena in clays. Using ab-initio simulations, we have investigated the reactivity and structure of the water-solid interface on the basal plane and edge sites of pyrophyllite. The calculations predict slightly hydrophobic behaviour of the basal plane. For the high water coverage (100), (110) and (-110), lateral facets have a lower energy than for the (010), (130) and (-130) surfaces. Analysis of the surface reactivity reveals that the =Al-OH groups are most easily protonated on the (010), (130) and (-130) facets. The =Al-O-Si= sites will be protonated on the (100), (130), (110), (-110) and (-130) surfaces. The =Al-OH{sub 2} complexes are more easily de-protonated than the =Si-OH and =Al-OH sites. A spontaneous, reversible exchange of the protons between the solution and the edge sites has been observed in ab-initio molecular dynamics simulations at 300 K. Such near-surface proton diffusion may result in a significant contribution to the diffusion coefficients measured in neutron scattering experiments. (author)

  3. Microbially-accelerated consolidation of oil sands tailings. Pathway II: solid phase biogeochemistry

    Directory of Open Access Journals (Sweden)

    Tariq eSiddique


    Full Text Available Consolidation of clay particles in aqueous tailings suspensions is a major obstacle to effective management of oil sands tailings ponds in northern Alberta, Canada. We have observed that microorganisms indigenous to the tailings ponds accelerate consolidation of mature fine tailings (MFT during active metabolism by using two biogeochemical pathways. In Pathway I, microbes alter porewater chemistry to indirectly increase consolidation of MFT. Here, we describe Pathway II comprising significant, direct and complementary biogeochemical reactions with MFT mineral surfaces. An anaerobic microbial community comprising Bacteria (predominantly Clostridiales, Synergistaceae and Desulfobulbaceae and Archaea (Methanolinea/Methanoregula and Methanosaeta transformed FeIII minerals in MFT to amorphous FeII minerals during methanogenic metabolism of an added organic substrate. Synchrotron analyses suggested that ferrihydrite (5Fe2O3. 9H2O and goethite (α-FeOOH were the dominant FeIII minerals in MFT. The formation of amorphous iron sulfide (FeS and possibly green rust entrapped and masked electronegative clay surfaces in amended MFT. Both Pathways I and II reduced the surface charge potential (repulsive forces of the clay particles in MFT, which aided aggregation of clays and formation of networks of pores, as visualized using cryo-scanning electron microscopy. These reactions facilitated the egress of porewater from MFT and increased consolidation of tailings solids. These results have large-scale implications for management and reclamation of oil sands tailings ponds, a burgeoning environmental issue for the public and government regulators.

  4. Microbially-accelerated consolidation of oil sands tailings. Pathway II: solid phase biogeochemistry. (United States)

    Siddique, Tariq; Kuznetsov, Petr; Kuznetsova, Alsu; Li, Carmen; Young, Rozlyn; Arocena, Joselito M; Foght, Julia M


    Consolidation of clay particles in aqueous tailings suspensions is a major obstacle to effective management of oil sands tailings ponds in northern Alberta, Canada. We have observed that microorganisms indigenous to the tailings ponds accelerate consolidation of mature fine tailings (MFT) during active metabolism by using two biogeochemical pathways. In Pathway I, microbes alter porewater chemistry to indirectly increase consolidation of MFT. Here, we describe Pathway II comprising significant, direct and complementary biogeochemical reactions with MFT mineral surfaces. An anaerobic microbial community comprising Bacteria (predominantly Clostridiales, Synergistaceae, and Desulfobulbaceae) and Archaea (Methanolinea/Methanoregula and Methanosaeta) transformed Fe(III) minerals in MFT to amorphous Fe(II) minerals during methanogenic metabolism of an added organic substrate. Synchrotron analyses suggested that ferrihydrite (5Fe2O3. 9H2O) and goethite (α-FeOOH) were the dominant Fe(III) minerals in MFT. The formation of amorphous iron sulfide (FeS) and possibly green rust entrapped and masked electronegative clay surfaces in amended MFT. Both Pathways I and II reduced the surface charge potential (repulsive forces) of the clay particles in MFT, which aided aggregation of clays and formation of networks of pores, as visualized using cryo-scanning electron microscopy (SEM). These reactions facilitated the egress of porewater from MFT and increased consolidation of tailings solids. These results have large-scale implications for management and reclamation of oil sands tailings ponds, a burgeoning environmental issue for the public and government regulators.

  5. Uranium and thorium in soils, mineral sands, water and food samples in a tin mining area in Nigeria with elevated activity. (United States)

    Arogunjo, A M; Höllriegl, V; Giussani, A; Leopold, K; Gerstmann, U; Veronese, I; Oeh, U


    The activity concentrations of uranium and thorium have been determined in soils and mineral sands from the Nigerian tin mining area of Bisichi, located in the Jos Plateau, and from two control areas in Nigeria (Jos City and Akure) using high-purity germanium detectors (HPGe). High resolution sector field inductively coupled plasma mass spectroscopy (HR-SF-ICP-MS) was used to determine uranium and thorium in liquids and foodstuffs consumed locally in the mining area. The activities of uranium and thorium measured in the soils and mineral sands from Bisichi ranged from 8.7 kBq kg(-1) to 51 kBq kg(-1) for (238)U and from 16.8 kBq kg(-1) to 98 kBq kg(-1) for (232)Th, respectively. These values were significantly higher than those in the control areas of Jos City and Akure and than the reference values reported in the literature. They even exceeded the concentrations reported for areas of high natural radioactive background. Radionuclide concentrations in samples of the local foodstuffs and in water samples collected in Bisichi were found to be higher than UNSCEAR reference values. The results reveal the pollution potential of the mining activities on the surrounding areas.

  6. Application of passive sonar technology to mineral processing and oil sands applications : if you can measure it, you can manage it

    Energy Technology Data Exchange (ETDEWEB)

    O' Keefe, C.; Viega, J.; Fernald, M. [CiDRA Corp., Wallingford, CT (United States)


    SONAR-based flow and entrained air measurement instruments were described. This new class of industrial flow and compositional analyzers was developed by CiDRA to provide new measurement insight and quantifiable value to industrial process operators. Passive sonar array-based processing units have been installed worldwide in several industrial applications and are particularly suited for a wide range of mineral processing applications, including slurry flow rate measurement and fluid characterization. This paper also described the SONAR-based, clamp-on SONARtrac technology, a scalable platform that provides several other value added measurements and information such as speed of sound, entrained air/gas, gas hold-up, and velocity profile. Oil sands, tailings and bitumen slurries present considerable measurement challenges for in-line flow measurement devices in terms of measurement accuracy, reliability and maintenance. The sonar-based technology platform has been used in a variety of oil sands processes, hydrotransport, and minerals beneficiation applications. This paper described these applications with particular reference to difficult slurry flow measurement and control in the areas of comminution and flotation such as mill discharge, hydrocyclone feed/overflow, final concentrate, thickener discharge, and tailings. 5 refs., 4 tabs., 23 figs.

  7. Early diagenesis and clay mineral adsorption as driving factors of metal pollution in sediments: the case of Aveiro Lagoon (Portugal). (United States)

    Martins, Maria Virgínia Alves; Mane, Miguel Ângelo; Frontalini, Fabrizio; Santos, José Francisco; da Silva, Frederico Sobrinho; Terroso, Denise; Miranda, Paulo; Figueira, Rubens; Laut, Lazaro Luiz Mattos; Bernardes, Cristina; Filho, João Graciano Mendonça; Coccioni, Rodolfo; Dias, João M Alveirinho; Rocha, Fernando


    This work aims to define the factors driving the accumulation of metals in the sediment of the lagoon of Aveiro (Portugal). The role of initial diagenetic processes in controlling trace metal retention in surface sediment is traced by mineralogy, magnetic susceptibility and geochemical analyses. Although several studies have focused on the metal distribution in this polihaline and anthropized coastal lagoon, most of them have been solely focused on the total metal concentrations. This study instead represents the first attempt to evaluate in a vast area of the Aveiro Lagoon the role of biogeochemical processes in metal availability and distribution in three extracted phases: exchangeable cations adsorbed by clay and elements co-precipitated with carbonates (S1), organic matter (S2) and amorphous Mn hydroxides (S3). According to the sediment guideline values, the sediment is polluted by, for instance, As and Hg in the inner area of the Murtosa Channel, Pb in the Espinheiro Channel, Aveiro City canals and Aveiro Harbour, and Zn in the northern area of the Ovar Channel. These sites are located near the source areas of pollutants and have the highest total available concentrations in each extracted phase. The total available concentrations of all toxic metals are however associated, firstly, with the production of amorphous Mn hydroxides in most of the areas and, secondly, with adsorption by organic compounds. The interplay of the different processes implies that not all of the sites near pollution sources have polluted surface sediment. The accumulation of metals depends on not only the pollution source but also the changing in the redox state of the sediments that may cause alterations in the sediment retention or releasing of redox-sensitive metals. Results of this work suggest that the biogeochemical processes may play a significant role in the increase of the pollutants in the sediment of the Aveiro Lagoon.

  8. Impact of clay mineral, wood sawdust or root organic matter on the bacterial and fungal community structures in two aged PAH-contaminated soils. (United States)

    Cébron, Aurélie; Beguiristain, Thierry; Bongoua-Devisme, Jeanne; Denonfoux, Jérémie; Faure, Pierre; Lorgeoux, Catherine; Ouvrard, Stéphanie; Parisot, Nicolas; Peyret, Pierre; Leyval, Corinne


    The high organic pollutant concentration of aged polycyclic aromatic hydrocarbon (PAH)-contaminated wasteland soils is highly recalcitrant to biodegradation due to its very low bioavailability. In such soils, the microbial community is well adapted to the pollution, but the microbial activity is limited by nutrient availability. Management strategies could be applied to modify the soil microbial functioning as well as the PAH contamination through various amendment types. The impact of amendment with clay minerals (montmorillonite), wood sawdust and organic matter plant roots on microbial community structure was investigated on two aged PAH-contaminated soils both in laboratory and 1-year on-site pot experiments. Total PAH content (sum of 16 PAHs of the US-EPA list) and polar polycyclic aromatic compounds (pPAC) were monitored as well as the available PAH fraction using the Tenax method. The bacterial and fungal community structures were monitored using fingerprinting thermal gradient gel electrophoresis (TTGE) method. The abundance of bacteria (16S rRNA genes), fungi (18S rRNA genes) and PAH degraders (PAH-ring hydroxylating dioxygenase and catechol dioxygenase genes) was followed through qPCR assays. Although the treatments did not modify the total and available PAH content, the microbial community density, structure and the PAH degradation potential changed when fresh organic matter was provided as sawdust and under rhizosphere influence, while the clay mineral only increased the percentage of catechol-1,2-dioxygenase genes. The abundance of bacteria and fungi and the percentage of fungi relative to bacteria were enhanced in soil samples supplemented with wood sawdust and in the plant rhizospheric soils. Two distinct fungal populations developed in the two soils supplemented with sawdust, i.e. fungi related to Chaetomium and Neurospora genera and Brachyconidiellopsis and Pseudallescheria genera, in H and NM soils respectively. Wood sawdust amendment favoured the

  9. Optimal Inference of Modelling Parameters to Simulate Complex Trends across Soft Boundaries: A Case Study in Heavy Mineral Sands

    NARCIS (Netherlands)

    Wambeke, T.; Benndorf, J.


    A risk-robust development of a heavy mineral resource requires an assessment of the geological uncertainty and spatial variability of the key factors impacting the mining and processing operation. Attributes of interest are the total heavy mineral grade, the slime content and the amount of oversized

  10. Pore Characteristics and Methane Adsorption of Clay Minerals in Shale Gas Reservoir%页岩气储层粘土矿物孔隙特征及其甲烷吸附作用

    Institute of Scientific and Technical Information of China (English)

    王茂桢; 柳少波; 任拥军; 田华


    The clay minerals are the main constituent minerals of the shale.It’s closely related with the occurrence and enrichment of shale gas.Because of its special crystal structure,clay minerals formed different types of pores between the crystal layers,in the internal mineral and between the mineral particles.The pore size, morphology and the specific surface area determine the methane adsorption capacity of the clay minerals.This paper reviews the occurrence of methane adsorption and various influence factors,such as pore structure,the water and organic matter in the pore.Different types of clay minerals are different in pore development and morphology.The round and slit micropores are most frequently found in smectite clay,which has the biggest total surface area and methane adsorption capacity.The mesoporous and macroporous are most developed in illite and kaolinite with the methane adsorption capacity belowing montmorillonite.Water and organic matters present in the pore of the clay minerals will also affect the methane adsorption capacity.Generally believed that water molecules will occupy the surface of pore,and resulting in a decrease of methane adsorption capacity of clay minerals.However,the specific effects of the soluble organic matter to the methane adsorption capacity of clay minerals are not clear yet.Finally, this paper indicates some of the issues to be explored in depth according to the needs of shale gas exploration.%粘土矿物是页岩的主要组成矿物,与页岩气的赋存和富集密切相关。粘土矿物因其特殊的晶体结构,在晶层之间、矿物内部以及矿物颗粒之间形成了不同类型的孔隙,这些孔隙的大小、形貌和比表面积决定着粘土矿物的甲烷吸附能力。为此,本文综述了粘土矿物的孔隙结构以及孔隙中的水和有机质对甲烷吸附性的影响,指出不同类型的粘土矿物孔隙发育与形貌特征存在差异,蒙脱石中多发育圆形、狭缝状的

  11. Degradation of plant cuticles in soils: impact on formation and sorptive ability of humin-mineral matrices. (United States)

    Olshansky, Yaniv; Polubesova, Tamara; Chefetz, Benny


    Plant cuticles are important precursors for soil organic matter, in particular for soil humin, which is considered an efficient sorbent for organic pollutants. In this study, we examined degradation and transformation of cuticles isolated from fruit and leaves in loamy sand and sandy clay loessial arid brown soils. We then studied sorption of phenanthrene and carbamazepine to humin-mineral matrices isolated from the incubated soils. Low degradation (22%) was observed for agave cuticle in a sandy clay soil system, whereas high degradation (68-78%) was obtained for agave cuticle in a loamy sand soil system and for loamy sand and sandy clay soils amended with tomato cuticle. During incubation, most of the residual organic matter was accumulated in the humin fraction. Sorption of phenanthrene was significantly higher for humin-mineral matrices obtained from soils incubated with plant cuticles as compared with soils without cuticle application. Sorption of carbamazepine to humin-mineral matrices was not affected by cuticle residues. Cooperative sorption of carbamazepine on humin-mineral matrices isolated from sandy clay soil is suggested. Sorption-desorption hysteresis of both phenanthrene and carbamazepine was lower for humin-mineral matrices obtained from soils incubated with plant cuticles as compared with nonamended soils. Our results show that cuticle composition significantly affects the rate and extent of cuticle degradation in soils and that plant cuticle application influences sorption and desorption of polar and nonpolar pollutants by humin-mineral matrices.

  12. Clay resources in the Netherlands

    NARCIS (Netherlands)

    Meulen, M.J. van der; Maljers, D.; Gessel, S.F. van; Gruijters, S.H.L.L.


    Clay is a common lithology in the Dutch shallow subsurface. It is used in earth constructions such as dikes, and as raw material for the fabricationof bricks, roof tiles etc. We present a new national assessment of Dutch clay resources, as part of a project that provides mineral-occurrenceinformatio

  13. Clay resources in the Netherlands

    NARCIS (Netherlands)

    Meulen, M.J. van der; Maljers, D.; Gessel, S.F. van; Gruijters, S.H.L.L.


    Clay is a common lithology in the Dutch shallow subsurface. It is used in earth constructions such as dikes, and as raw material for the fabrication of bricks, roof tiles etc. We present a new national assessment of Dutch clay resources, as part of a project that provides mineral-occurrence informat

  14. Characterization and technological properties of mineral clays used in the Southwest of Parana and West of Santa Catarina states; Caracterizacao e propriedades tecnologicas de argilas utilizadas na regiao sudoeste do Parana e oeste de Santa Catarina

    Energy Technology Data Exchange (ETDEWEB)

    Valdameri, C.Z.; Ciesca, D.F., E-mail: [Universidade Paranaense (UNIPAR), Francisco Beltrao, PR (Brazil). Departamento de Engenharia Civil; Zatta, L. [Universidade Tecnologica Federal do Parana (UTFPR), Pato Branco, PR (Brazil). Departtamento de Quimica; Anaissi, F.J. [Universidade Estadual do Centro-Oeste (UNICENTRO), Guarapuava, PR (Brazil). Departamento de Quimica


    This paper aims to characterize clay minerals used in the ceramic industry in southwestern region of Parana and west of Santa Catarina states. The precursors used were the same used by industries in these regions for the production of bricks. The precursors were characterized,preliminary results are shown with respect to structural, chemical and physical precursors (XRD, EDS and plasticity). The specimens were characterized for technological burning properties: linear shrinkage, water absorption, flexural tension and density. The results show that the clays present Typical chemical composition of raw clay, however, the evaluation of technological properties after burning indicate negative results to be applied to the manufacture of red ceramic because did not meet the regulatory requirements. (author)

  15. Clay Houses (United States)

    Pedro, Cathy


    In this article, the author describes a project designed for fourth-graders that involves making clay relief sculptures of houses. Knowing the clay houses will become a family heirloom makes this lesson even more worth the time. It takes three classes to plan and form the clay, and another two to underglaze and glaze the final products.

  16. Impact of medicated feed along with clay mineral supplementation on Escherichia coli resistance to antimicrobial agents in pigs after weaning in field conditions. (United States)

    Jahanbakhsh, Seyedehameneh; Kabore, Kiswendsida Paul; Fravalo, Philippe; Letellier, Ann; Fairbrother, John Morris


    The aim of this study was to examine changes in antimicrobial resistance (AMR) phenotype and virulence and AMR gene profiles in Escherichia coli from pigs receiving in-feed antimicrobial medication following weaning and the effect of feed supplementation with a clay mineral, clinoptilolite, on this dynamic. Eighty E. coli strains isolated from fecal samples of pigs receiving a diet containing chlortetracycline and penicillin, with or without 2% clinoptilolite, were examined for antimicrobial resistance to 15 antimicrobial agents. Overall, an increased resistance to 10 antimicrobials was observed with time. Supplementation with clinoptilolite was associated with an early increase but later decrease in blaCMY-2, in isolates, as shown by DNA probe. Concurrently, a later increase in the frequency of blaCMY-2 and the virulence genes iucD and tsh was observed in the control pig isolates, being significantly greater than in the supplemented pigs at day 28. Our results suggest that, in the long term, supplementation with clinoptilolite could decrease the prevalence of E. coli carrying certain antimicrobial resistance and virulence genes.

  17. Laboratory studies of dune sand for the use of construction industry in Sri Lanka (United States)

    de Silva Jayawardena, Upali; Wijesuriya, Roshan; Abayaweera, Gayan; Viduranga, Tharaka


    With the increase of the annual sand demand for the construction industry the excessive excavation of river sand is becoming a serious environmental problem in Sri Lanka. Therefore, it is necessary to explore the possibility for an alternative to stop or at least to minimize river sand mining activities. Dune sand is one of the available alternative materials to be considered instead of river sand in the country. Large quantities of sand dunes occur mainly along the NW and SE coastal belt which belong to very low rainfall Dry Zone coasts. The height of dune deposits, vary from 1m to about 30 meters above sea level. The objective of this paper is to indicate some studies and facts on the dune sand deposits of Sri Lanka. Laboratory studies were carried out for visual observations and physical properties at the initial stage and then a number of tests were carried out according to ASTM standards to obtain the compressive strength of concrete cylinders and mortar cubes mixing dune sand and river sand in different percentages keeping a constant water cement ratio. Next the water cement ratio was changed for constant dune sand and river sand proportion. Microscopic analysis shows that the dune sand consist of 95 % of quartz and 5 % of garnet, feldspar, illmenite and other heavy minerals with clay, fine dust, fine shell fragments and organic matters. Grains are sub-rounded to angular and tabular shapes. The grain sizes vary from fine to medium size of sand with silt. The degree of sorting and particle size observed with dune sands are more suited with the requirement of fine aggregates in the construction industry. The test result indicates that dune sand could be effectively used in construction work without sieving and it is ideal for wall plastering due to its'-uniformity. It could also be effectively used in concrete and in mortars mixing with river sand. The best mixing ratio is 75% dune sand and 25% river sand as the fine aggregate of concrete. For mortar the mixing

  18. Porosity Investigation of Kosova's Clay


    Makfire Sadiku; Naim Hasani; Altin Mele


    Problem statement: Acid activated clay minerals are used as catalysts in the desulphurization of crude oil or as catalyst carrier, as drilling mud, as bleaching earth. Approach: The efficiency of the acid activation can be described in two ways. As increase of the surface and as increase of the cumulative pore volume after the activation. Results: In different samples of the clay mineral the activation was done with different sulfuric acid concentrations for two and 3h. Afterwards the specifi...

  19. Links Between Variations of Clay Mineral Supply and Deep Oceanic Circulation Over The Last Million Years At Site 984, Odp Leg 162 (northwestern Atlantic Ocean) (United States)

    Bout-Roumazeilles, V.; Davies, G.; Récourt, P.

    The high northern latitude oceans influence the global environment through the formation of seasonal ice cover, transfer of sensible and latent heat to the atmosphere, and by deep-water formation. The ODP site 984 was drilled in the northwestern Atlantic Ocean in order to monitor the intermediate and deep-water masses variability at Milankovitch timescale over the last million years. Site 984 is located on the Bjorn Drift (61°N 24°W) on the eastern flank of the Reykjanes Ridge. The site lies on the northwestern margin of the Iceland basin directly under the influence of overflows from the Iceland-Faeroe Ridge. This water-mass flows as a deep northern boundary current through the Charlie -Gibbs fracture zone, south of site 984. The presence and the evolution of sediment drifts are intimately linked with the deep-water circulation patterns in this region, and the drift is presently being sculpted by the NSOW water overflowing the Wyville -Thomson Ridge. The sedimentary sequence recovered at site 984 is characterized by unusually high sedimentation rates. Where fine-grained sediments settle out of the current nepheloid layer, large drifts build up that typically have very high sedimentation rates due to the excess of fine fraction. Thus site 984 provides a very good record of glacial- interglacial and millennial-scale variations in thermohaline circulation and ice- rafting history over the Pleistocene. The clay mineral fraction was studied at high resolution over the last million years. The fine size fraction is mainly composed of smectite and illite which variations display the familiar sequences of glacial and interglacial marine isotope stages. The supply in illite is low during interglacial intervals while the smectite supply is high. By contrast, sediments deposited during glacial periods are characterized by a high illite / low smectite content. These variations tend to indicate that there is a major change in fine particles provenance from glacial to

  20. Pb-Zn mineralization of Ali ou Daoud area (Central High Atlas, Morocco: characterisation of deposit and relationship with the clay assemblages

    Directory of Open Access Journals (Sweden)

    Daoudi, L.


    Full Text Available Zn-Pb-Fe ores in the Ali ou Daoud deposit (Central High Atlas are found as stratiform levels and as karst fillings in carbonate platforms facies of Bajocian age. Tectonic structures (e.g., synsedimentary faults played a relevant role in the ore emplacement. The dolomitic ore-related host-rock levels are characterized by the presence of kaolinite enrichment in clay levels in amounts directly related to the proportion of the clay minerals. The latter is evidenced by correlation between kaolinite and sulphide contents, suggesting that the installation of kaolinite and mineralisations would result from the same hydrothermal fluid.[Français] Dans les séries sédimentaires carbonatées d’Ali ou Daoud (Haut Atlas Central, les minéralisations à Zn, Pb et Fe en amas stratiformes forment les faciès de remplissage des karsts d’une plateforme carbonatée bajocienne. Le contrôle structural joue un rôle capital dans la localisation du gîte en bordure de plateforme sur des failles synsédimentaires. Dans les niveaux dolomitiques encaissants des minéralisations, les assemblages argileux sont caractérisés par la présence de kaolinite dont la teneur varie parallèlement avec celle du minerai. Ceci suggère que la mise en place de la kaolinite et des minéralisations résulterait du même fluide hydrothermal. [Español] En las series sedimentarias carbonatadas de Ali ou Daoud (Alto Atlas Central, las mineralizaciones de Zn, Pb y Fe aparecen en niveles estratiformes como facies de reemplazamiento de los karsts de una plataforma carbonatada Bajociense. El control estructural desempeña un papel crucial en la localización del yacimiento a lo largo de la plataforma sobre fallas sinsedimentarias. En los niveles dolomíticos que incluyen las mineralizaciones, las asociaciones arcillosas se caracterizan por la presencia de caolinita, cuyo contenido varía paralelamente al de la mineralización. Esto sugiere que la creación de caolinita y de la

  1. Comparison and analysis of reservoir rocks and related clays

    Energy Technology Data Exchange (ETDEWEB)

    Crocker, M.E.; Donaldson, E.C.; Marchin, L.M.


    A series of instrumental and chemical analyses was made on sedimentary rocks to determine the surface chemical properties of sedimentry rocks and the physical characteristic of the pores. A scanning electron microscope (SEM) with energy dispersive X-ray analytic capability was used to study the morphology of the samples, surface mineral composition and type and location of clays, and to obtain a qualitative estimate of the pore sizes. A centrifuge was used to determine the pore size distributions which are correlated with SEM observations. An atomic absorption spectrophotometer equipped with an inductively coupled plasma for complete spectral analysis was used to obtain analyses of the rocks, clays, and effluents from ion exchange tests. Two of the results are as follows: (1) Sweetwater gas sands have a bimodal pore size distribution composed of pores with a mean diameter of 0.2 microns which is attributed to intergranular spaces and cracks in the expanded laborboratory sample but which will be close under the pressure of the overburden formations, and these Sweetwater sands have a distribution of pores at 2 microns which are solution vugs rather than intergranular porosity since the sand grains are completely packed together with the cementing material due to the high overburden pressures; and (2) Ion-exchange capacities of two rocks were 5.3 meq/kg and 18.0 meq/kg, and the surface areas were 0.9 m/sup 2//g and 2.30 m/sup 2//g, respectively, even though each had almost identical mineral composition, clay type and quantity, and permeability. 7 references, 12 figures, 3 tables.

  2. Adsorption of Three Phthalic Acid Esters on Different Clay Minerals%三种邻苯二甲酸酯在不同黏土矿物上的吸附

    Institute of Scientific and Technical Information of China (English)

    吴艳华; 周东美; 高娟; 司友斌


    Phthalic acid esters(PAEs)are widely used as plasticizers and are easily released into the environment, posing potential harms to human. Clay minerals are an important component of soil. After PAEs enter soils, the clay minerals would inevitably affect the transformation and fates of PAEs. Here we examined PAEs adsorption on clay minerals using two montmorillonite clays(FZ-10, SMF)and one kaolinite clay(Kao)as adsorbents that were saturated with K ions(K-FZ-10,K-SMF and K-Kao). Results showed that the adsorption of PAEs by clay minerals were in the following order:dimethyl phthalate(DMP)K-SMF>K-Kao. Both type and surface area of clay minerals contributed to the adsorption ability. Temperature rise reduced the adsorptions of three PAEs on K-FZ-10, K-SMF and K-Kao, indicating that the adsorption was exothermic and spontaneous. This study revealed that the type of clays, hydrophobicityof PAEs and temperature were three important factors affecting the adsorption of PAEs on clay minerals. The adsorption of PAEs onto soil could be used to predict the transportation in soil to some extent.%邻苯二甲酸酯类(PAEs)作为一类常见的增塑剂可以通过多种途径进入土壤,并在土壤中富集。黏土矿物是土壤的一个重要组分,对有机污染物的迁移有重要的作用。通过考察三种PAEs,即邻苯二甲酸二甲酯(DMP)、邻苯二甲酸二乙酯(DEP)和邻苯二甲酸正丁酯(DnBP)在改性之后的K+饱和黏土矿物(K-FZ-10,K-SMF和K-Kao)上的吸附行为,分析了黏土矿物类型、PAEs种类以及温度对吸附的影响。试验结果能较好地用Freundlich方程进行拟合,结果表明:PAEs的疏水性越强,固相-水分配系数(K d)越大, PAEs越容易被黏土矿物吸附;三种PAEs在黏土矿物上的吸附量均呈现DMPK-SMF>K-Kao,其与黏土矿物的表面积呈正相关。不同温度(4、10、20℃和30℃)的试验结果表明,黏土矿

  3. Cerium sequestration and accumulation in fractured crystalline bedrock: The role of Mn-Fe (hydr-)oxides and clay minerals (United States)

    Yu, Changxun; Drake, Henrik; Mathurin, Frédéric A.; Åström, Mats E.


    This study focuses on the mechanisms of Ce sequestration and accumulation in the fracture network of the upper kilometer of the granitoid bedrock of the Baltic Shield in southeast Sweden (Laxemar area, Sweden). The material includes 81 specimens of bulk secondary mineral precipitates (;fracture coatings;) collected on fracture walls identified in 17 drill cores, and 66 groundwater samples collected from 21 deep boreholes with equipment designed for retrieval of representative groundwater at controlled depths. The concentrations of Ce in the fracture coatings, although varying considerably (10-90th percentiles: 67-438 mg kg-1), were frequently higher than those of the wall rock (10-90th percentiles: 70-118 mg kg-1). Linear combination fitting analysis of Ce LIII-edge X-ray absorption near-edge structure (XANES) spectra, obtained for 19 fracture coatings with relatively high Ce concentrations (⩾145 mg kg-1) and a wide range of Ce-anomaly values, revealed that Ce(IV) occurs frequently in the upper 10 m of the fracture network (Ce(IV)/Cetotal = 0.06-1.00 in 8 out of 11 specimens) and is mainly associated with Mn oxides (modeled as Ce oxidatively scavenged by birnessite). These features are in line with the strong oxidative and sorptive capacities of Mn oxide as demonstrated by previous studies, and abundant todorokite and birnessite-like Mn oxides identified in 3 out of 4 specimens analyzed by Mn K-edge X-ray absorption spectroscopy (XAS) in the upper parts of the fracture network (down to 5 m). For a specimen with very high Ce concentration (1430 mg kg-1) and NASC-normalized Ce anomaly (3.63), the analysis of Ce XANES and Mn XAS data revealed (i) a predominance of Ce oxide in addition to Ce scavenged by Mn oxide; and (ii) a large fraction of poorly-crystalline hexagonal birnessite and aqueous Mn2+, suggesting a recent or on-going oxidation of Mn2+ in this fracture. In addition, the Ce oxide precipitates on this fracture observed by in situ SEM-EDS contained

  4. Aggregate and Mineral Resources - SAND_GRAVEL_RESOURCES_IN: Sand and Gravel Resource Potential in Mapped Surficial Material in Indiana (Indiana Geological Survey, 1:500,000, Polygon Shapefile) (United States)

    NSGIC GIS Inventory (aka Ramona) — SAND_GRAVEL_RESOURCES_IN is a polygon shapefile that identifies sand and gravel permissive tracts in the surficial unconsolidated deposits of Indiana. Permissive...

  5. Carbon and nitrogen mineralization are decoupled in organo-mineral fractions (United States)

    Bimüller, Carolin; Mueller, Carsten W.; von Lützow, Margit; Kreyling, Olivia; Kölbl, Angelika; Haug, Stephan; Schloter, Michael; Kögel-Knabner, Ingrid


    To improve our comprehension how carbon and nitrogen mineralization are linked in soils, we used a controlled laboratory mineralization approach and compared carbon and nitrogen dynamics in the bulk soil and in soil fractions. Topsoil of a Rendzic Leptosol from a beech forest site near Tuttlingen, Germany, was fractionated into three particle size classes: sand (2000 to 20 µm), silt (20 to 2 µm), and clay (nitrogen mineralization dynamics, and assessed carbon respiration as well as nitrogen mineralization and microbial biomass carbon and nitrogen contents. Soil organic matter in the incubated fractions was considered by a subsequent density fractionation. The chemical composition of selected samples was qualitatively evaluated by 13C-NMR spectroscopy. When summing up the mineralization rates of the single fractions, the values for respired carbon equaled the bulk soil, whereas the mathematical recombination of mineral nitrogen in all fractions was significantly less than in bulk soil. Hence, carbon mineralization was not affected by the damage of the aggregated soil structure via fractionation, whereas nitrogen mineralization was reduced. Fractionation increased the surface area providing accessory mineral surfaces, which allowed new binding of especially nitrogen-rich compounds, besides ammonium fixation via cation exchange. Density fractionation revealed that organic matter in the sand fraction contained mainly particulate organic matter present as light material comprising partly decomposed plant remnants. The organic matter in the clay fraction was mostly adsorbed on mineral surfaces. Organic matter in the sand and in the clay fraction was dominated by O/N-alkyl C indicating low recalcitrance, but the C/N ratio of organic matter narrowed with decreasing particle size. These results also imply that the C/N ratio as well as the alkyl C to O/N-alkyl C ratio are not suitable to draw conclusions regarding biological decomposability of plant residues when

  6. Programs to obtain vertical heights from mean sea level and for computing volume of sand/mineral along beaches: A case study with Kalbadevi beach profiling data and results

    Digital Repository Service at National Institute of Oceanography (India)

    Ganesan, P.