WorldWideScience

Sample records for sandia technology engineering

  1. Sandia Technology engineering and science accomplishments

    Energy Technology Data Exchange (ETDEWEB)

    1994-02-01

    This report briefly discusses the following research being conducted at Sandia Laboratories: Advanced Manufacturing -- Sandia technology helps keep US industry in the lead; Microelectronics-Sandia`s unique facilities transform research advances into manufacturable products; Energy -- Sandia`s energy programs focus on strengthening industrial growth and political decisionmaking; Environment -- Sandia is a leader in environmentally conscious manufacturing and hazardous waste reduction; Health Care -- New biomedical technologies help reduce cost and improve quality of health care; Information & Computation -- Sandia aims to help make the information age a reality; Transportation -- This new initiative at the Labs will help improve transportation, safety,l efficiency, and economy; Nonproliferation -- Dismantlement and arms control are major areas of emphasis at Sandia; and Awards and Patents -- Talented, dedicated employees are the backbone of Sandia`s success.

  2. Sandia technology engineering and science accomplishments

    Energy Technology Data Exchange (ETDEWEB)

    1993-03-01

    Sandia is a DOE multiprogram engineering and science laboratory with major facilities at Albuquerque, New Mexico, and Livermore, California, and a test range near Tonapah, Nevada. We have major research and development responsibilities for nuclear weapons, arms control, energy, the environment, economic competitiveness, and other areas of importance to the needs of the nation. Our principal mission is to support national defense policies by ensuring that the nuclear weapon stockpile meets the highest standards of safety, reliability, security, use control, and military performance. Selected unclassified technical activities and accomplishments are reported here. Topics include advanced manufacturing technologies, intelligent machines, computational simulation, sensors and instrumentation, information management, energy and environment, and weapons technology.

  3. Sandia technology: Engineering and science applications

    Science.gov (United States)

    Maydew, M. C.; Parrot, H.; Dale, B. C.; Floyd, H. L.; Leonard, J. A.; Parrot, L.

    1990-12-01

    This report discusses: protecting environment, safety, and health; Sandia's quality initiative; Sandia vigorously pursues technology transfer; scientific and technical education support programs; nuclear weapons development; recognizing battlefield targets with trained artificial neural networks; battlefield robotics: warfare at a distance; a spinning shell sizes up the enemy; thwarting would-be nuclear terrorists; unattended video surveillance system for nuclear facilities; making the skies safer for travelers; onboard instrumentation system to evaluate performance of stockpile bombs; keeping track with lasers; extended-life lithium batteries; a remote digital video link acquires images securely; guiding high-performance missiles with laser gyroscopes; nonvolatile memory chips for space applications; initiating weapon explosives with lasers; next-generation optoelectronics and microelectronics technology developments; chemometrics: new methods for improving chemical analysis; research team focuses ion beam to record-breaking intensities; standardizing the volt to quantum accuracy; new techniques improve robotic software development productivity; a practical laser plasma source for generating soft x-rays; exploring metal grain boundaries; massively parallel computing; modeling the amount of desiccant needed for moisture control; attacking pollution with sunshine; designing fuel-conversion catalysts with computers; extending a nuclear power plant's useful life; plasma-facing components for the International Thermonuclear Experimental Reactor.

  4. Sandia Technology: Engineering and science accomplishments, February 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-02-01

    Sandia National Laboratories is one of the Department of Energy`s primary research and development laboratories. Our essential mission is to support the national interests of the US in defense, energy, and the environment. Managed by Martin Marietta Corporation for DOE, Sandia focuses its resources on problems of national interest that require the integration of science and technology for their solution. We all hope that this period of sweeping alterations in international affairs will result in a successful transition from the Cold War to a period of sustainable global security and prosperity. In the meantime, our nation`s interests are best served by continued commitment to Sandia`s traditional responsibilities. Nonetheless, as momentous developments are reshaping the world, Sandia is also changing from its beginning as a closed operation concentrating on classified defense programs, Sandia has become a more accessible resource that focuses on research and development partnerships with industry and universities as a way to ensure continued success in DOE`s evolving core mission area of nuclear weapons, energy, environment, and the basis sciences. Through these collaborative efforts, Sandia and its partners are also benefiting the economic competitiveness of our nation. Sandia places a special emphasis on working with small businesses as both technology transfer partners and suppliers of goods and services. We are also reaching out the the larger community surrounding Sandia, striving to provide technological solution and accurate information to meet community needs. We believe that the dialogue we are creating will benefit Sandia, the community, and the nation. Our goal is to render `` exceptional service in the national interest`` by returning maximum value on the investment in the labs. As you review this document, look for new ways in which Sandia can contribute to the solution of problems facing our nation.

  5. Sandia National Laboratories: Research: Research Foundations: Engineering

    Science.gov (United States)

    Foundations Bioscience Computing & Information Science Electromagnetics Engineering Science Geoscience Mexico Small Business Assistance Program Sandia Science & Technology Park Careers Community Library Events Careers View All Jobs Students & Postdocs Internships & Co-ops Fellowships

  6. Description of the Sandia National Laboratories science, technology & engineering metrics process.

    Energy Technology Data Exchange (ETDEWEB)

    Jordan, Gretchen B.; Watkins, Randall D.; Trucano, Timothy Guy; Burns, Alan Richard; Oelschlaeger, Peter

    2010-04-01

    There has been a concerted effort since 2007 to establish a dashboard of metrics for the Science, Technology, and Engineering (ST&E) work at Sandia National Laboratories. These metrics are to provide a self assessment mechanism for the ST&E Strategic Management Unit (SMU) to complement external expert review and advice and various internal self assessment processes. The data and analysis will help ST&E Managers plan, implement, and track strategies and work in order to support the critical success factors of nurturing core science and enabling laboratory missions. The purpose of this SAND report is to provide a guide for those who want to understand the ST&E SMU metrics process. This report provides an overview of why the ST&E SMU wants a dashboard of metrics, some background on metrics for ST&E programs from existing literature and past Sandia metrics efforts, a summary of work completed to date, specifics on the portfolio of metrics that have been chosen and the implementation process that has been followed, and plans for the coming year to improve the ST&E SMU metrics process.

  7. Sandia Laboratories technical capabilities: engineering analysis

    International Nuclear Information System (INIS)

    Lundergan, C.D.

    1975-12-01

    This report characterizes the engineering analysis capabilities at Sandia Laboratories. Selected applications of these capabilities are presented to illustrate the extent to which they can be applied in research and development programs

  8. Building business from technology: The Sandia experience

    Energy Technology Data Exchange (ETDEWEB)

    Traylor, L.B.

    1995-07-01

    This paper describes New Ventures, a new initiative at Sandia National Laboratories that encourages the creation of new businesses based on laboratory technology as a timely, efficient means of technology transfer. Sandia`s New Ventures program has shown that a dedicated effort can produce significant results. In the three years prior to this program`s launch, just two ventures per year on average were created based on laboratory technology. By comparison, the New Ventures program has enabled 20 new ventures in its first nine months of full operation.

  9. SAPLE: Sandia Advanced Personnel Locator Engine.

    Energy Technology Data Exchange (ETDEWEB)

    Procopio, Michael J.

    2010-04-01

    We present the Sandia Advanced Personnel Locator Engine (SAPLE) web application, a directory search application for use by Sandia National Laboratories personnel. SAPLE's purpose is to return Sandia personnel 'results' as a function of user search queries, with its mission to make it easier and faster to find people at Sandia. To accomplish this, SAPLE breaks from more traditional directory application approaches by aiming to return the correct set of results while placing minimal constraints on the user's query. Two key features form the core of SAPLE: advanced search query interpretation and inexact string matching. SAPLE's query interpretation permits the user to perform compound queries when typing into a single search field; where able, SAPLE infers the type of field that the user intends to search on based on the value of the search term. SAPLE's inexact string matching feature yields a high-quality ranking of personnel search results even when there are no exact matches to the user's query. This paper explores these two key features, describing in detail the architecture and operation of SAPLE. Finally, an extensive analysis on logged search query data taken from an 11-week sample period is presented.

  10. Update on Engine Combustion Research at Sandia National Laboratories

    International Nuclear Information System (INIS)

    Jay Keller; Gurpreet Singh

    2001-01-01

    The objectives of this paper are to describe the research efforts in diesel engine combustion at Sandia National Laboratories' Combustion Research Facility and to provide recent experimental results. We have four diesel engine experiments supported by the Department of Energy, Office of Heavy Vehicle Technologies: a one-cylinder version of a Cummins heavy-duty engine, a diesel simulation facility, a one-cylinder Caterpillar engine to evaluate combustion of alternative fuels, and a homogeneous-charge, compression ignition (HCCI) engine. Recent experimental results of diesel combustion research will be discussed and a description will be given of our HCCI experimental program and of our HCCI modeling work

  11. Superconducting technology program Sandia 1996 annual report

    International Nuclear Information System (INIS)

    Roth, E.P.

    1997-02-01

    Sandia's Superconductivity Technology Program is a thallium-based high-temperature superconductor (HTS) research and development program consisting of efforts in powder synthesis and process development, open-system thick film conductor development, wire and tape fabrication, and HTS motor design. The objective of this work is to develop high-temperature superconducting conductors (wire and tape) capable of meeting requirements for high-power electrical devices of interest to industry. The research efforts currently underway are: (1) Process development and characterization of thallium-based high-temperature superconducting closed system wire and tape, (2) Investigation of the synthesis and processing of thallium-based thick films using two-zone processing, and (3) Cryogenic design of a 30K superconducting motor. This report outlines the research that has been performed during FY96 in each of these areas

  12. Energy technologies at Sandia National Laboratories: Past, Present, Future

    Energy Technology Data Exchange (ETDEWEB)

    1989-08-01

    We at Sandia first became involved with developing energy technology when the nation initiated its push toward energy independence in the early 1970s. That involvement continues to be strong. In shaping Sandia's energy programs for the 1990s, we will build on our track record from the 70s and 80s, a record outlined in this publication. It contains reprints of three issues of Sandia's Lab News that were devoted to our non-nuclear energy programs. Together, they summarize the history, current activities, and future of Sandia's diverse energy concerns; hence my desire to see them in one volume. Written in the fall of 1988, the articles cover Sandia's extremely broad range of energy technologies -- coal, oil and gas, geothermal, solar thermal, photovoltaics, wind, rechargeable batteries, and combustion.

  13. Sandia technology, Winter 1975--1976

    International Nuclear Information System (INIS)

    Weber, J.P.; Marcrum, L.S.

    1976-06-01

    Unclassified development activities at Sandia Laboratories are described. Information is included on rocket-powered aerial trolleys, material evaluation using a plasmajet, metal-hydride models, glass-ceramic tube insulators, ferroelectric ceramics, and systems to communicate with earth penetrators

  14. Sandia National Laboratories ASCI Applications Software Quality Engineering Practices; TOPICAL

    International Nuclear Information System (INIS)

    ZEPPER, JOHN D.; ARAGON, KATHRYN MARY; ELLIS, MOLLY A.; BYLE, KATHLEEN A.; EATON, DONNA SUE

    2002-01-01

    This document provides a guide to the deployment of the software verification activities, software engineering practices, and project management principles that guide the development of Accelerated Strategic Computing Initiative (ASCI) applications software at Sandia National Laboratories (Sandia). The goal of this document is to identify practices and activities that will foster the development of reliable and trusted products produced by the ASCI Applications program. Document contents include an explanation of the structure and purpose of the ASCI Quality Management Council, an overview of the software development lifecycle, an outline of the practices and activities that should be followed, and an assessment tool. These sections map practices and activities at Sandia to the ASCI Software Quality Engineering: Goals, Principles, and Guidelines, a Department of Energy document

  15. Technology integration project: Environmental Restoration Technologies Department Sandia National Laboratories

    International Nuclear Information System (INIS)

    Williams, C.V.; Burford, T.D.

    1996-08-01

    Sandia National Laboratories Environmental Restoration Technologies Department is developing environmental restoration technologies through funding form the US Department of Energy's (DOE's) Office of Science and Technology. Initially, this technology development has been through the Mixed Waste Landfill Integrated Demonstration (MWLID). It is currently being developed through the Contaminant Plume containment and Remediation Focus Area, the Landfill Stabilization Focus Area, and the Characterization, Monitoring, and Sensor Cross-Cutting Program. This Technology Integration Project (TIP) was responsible for transferring MWLID-developed technologies for routine use by environmental restoration groups throughout the DOE complex and commercializing these technologies to the private sector. The MWLID's technology transfer/commercialization successes were achieved by involving private industry in development, demonstration, and technology transfer/commercialization activities; gathering and disseminating information about MWLID activities and technologies; and promoting stakeholder and regulatory involvement. From FY91 through FY95, 30 Technical Task Plans (TTPs) were funded. From these TTPs, the MWLID can claim 15 technology transfer/commercialization successes. Another seven technology transfer/commercialization successes are expected. With the changeover to the focus areas, the TIP continued the technology transfer/commercialization efforts begun under the MWLID

  16. Technology integration project: Environmental Restoration Technologies Department Sandia National Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Williams, C.V.; Burford, T.D. [Sandia National Labs., Albuquerque, NM (United States). Environmental Restoration Technologies; Allen, C.A. [Tech Reps, Inc., Albuquerque, NM (United States)

    1996-08-01

    Sandia National Laboratories Environmental Restoration Technologies Department is developing environmental restoration technologies through funding form the US Department of Energy`s (DOE`s) Office of Science and Technology. Initially, this technology development has been through the Mixed Waste Landfill Integrated Demonstration (MWLID). It is currently being developed through the Contaminant Plume containment and Remediation Focus Area, the Landfill Stabilization Focus Area, and the Characterization, Monitoring, and Sensor Cross-Cutting Program. This Technology Integration Project (TIP) was responsible for transferring MWLID-developed technologies for routine use by environmental restoration groups throughout the DOE complex and commercializing these technologies to the private sector. The MWLID`s technology transfer/commercialization successes were achieved by involving private industry in development, demonstration, and technology transfer/commercialization activities; gathering and disseminating information about MWLID activities and technologies; and promoting stakeholder and regulatory involvement. From FY91 through FY95, 30 Technical Task Plans (TTPs) were funded. From these TTPs, the MWLID can claim 15 technology transfer/commercialization successes. Another seven technology transfer/commercialization successes are expected. With the changeover to the focus areas, the TIP continued the technology transfer/commercialization efforts begun under the MWLID.

  17. Renewable energy technology development at Sandia National Laboratories

    Science.gov (United States)

    Klimas, P. C.

    1994-02-01

    The use of renewable energy technologies is typically thought of as an integral part of creating and sustaining an environment that maximizes the overall quality of life of the Earth's present inhabitants and does not leave an undue burden on future generations. Sandia National Laboratories has been a leader in developing many of these technologies over the last two decades. This paper describes innovative solar, wind and geothermal energy systems and components that Sandia is helping to bring to the marketplace. A common but special aspect of all of these activities is that they are conducted in partnership with non-federal government entities. A number of these partners are from New Mexico.

  18. A case for Sandia investment in complex adaptive systems science and technology.

    Energy Technology Data Exchange (ETDEWEB)

    Colbaugh, Richard; Tsao, Jeffrey Yeenien; Johnson, Curtis Martin; Backus, George A.; Brown, Theresa Jean; Jones, Katherine A.

    2012-05-01

    This white paper makes a case for Sandia National Laboratories investments in complex adaptive systems science and technology (S&T) -- investments that could enable higher-value-added and more-robustly-engineered solutions to challenges of importance to Sandia's national security mission and to the nation. Complex adaptive systems are ubiquitous in Sandia's national security mission areas. We often ignore the adaptive complexity of these systems by narrowing our 'aperture of concern' to systems or subsystems with a limited range of function exposed to a limited range of environments over limited periods of time. But by widening our aperture of concern we could increase our impact considerably. To do so, the science and technology of complex adaptive systems must mature considerably. Despite an explosion of interest outside of Sandia, however, that science and technology is still in its youth. What has been missing is contact with real (rather than model) systems and real domain-area detail. With its center-of-gravity as an engineering laboratory, Sandia's has made considerable progress applying existing science and technology to real complex adaptive systems. It has focused much less, however, on advancing the science and technology itself. But its close contact with real systems and real domain-area detail represents a powerful strength with which to help complex adaptive systems science and technology mature. Sandia is thus both a prime beneficiary of, as well as potentially a prime contributor to, complex adaptive systems science and technology. Building a productive program in complex adaptive systems science and technology at Sandia will not be trivial, but a credible path can be envisioned: in the short run, continue to apply existing science and technology to real domain-area complex adaptive systems; in the medium run, jump-start the creation of new science and technology capability through Sandia's Laboratory Directed Research

  19. Superconducting Technology Program: Sandia 1993 annual report

    International Nuclear Information System (INIS)

    Roth, E.P.

    1994-05-01

    Sandia's STP program is a four-part high-temperature superconductor (HTS) research and development program consisting of efforts in powder synthesis and process development, thallium-based HTS film development, wire and tape fabrication, and HTS motor design. The objective of this work is to develop high-temperature superconducting conductors (wire and tape) capable of meeting requirements for high-power electrical devices of interest to industry. The four research efforts currently underway are: (1) process research on the material synthesis of high-temperature superconductors; (2) investigation of the synthesis and processing of thallium-based high-temperature superconducting thick films; (3) process development and characterization of high-temperature superconducting wire and tape, and (4) cryogenic design of a high-temperature superconducting motor. This report outlines the research that has been performed during FY93 in each of these four areas. A brief background of each project is included to provide historical context and perspective. Major areas of research are described, although no attempt has been made to exhaustively include all work performed in each of these areas

  20. Sandia National Laboratories: Microsystems Science & Technology Center

    Science.gov (United States)

    Environmental Management System Pollution Prevention History 60 impacts Diversity Locations Facts & Figures Programs Nuclear Weapons About Nuclear Weapons Safety & Security Weapons Science & Technology Robotics R&D 100 Awards Laboratory Directed Research & Development Technology Deployment Centers

  1. Sandia National Laboratories: Working with Sandia: Procurement:

    Science.gov (United States)

    ; Technology Defense Systems & Assessments About Defense Systems & Assessments Program Areas Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios Contract Audit Working with Sandia Construction and Facilities Sandia establishes contracts to support

  2. Review of Heavy-Duty Engine Combustion Research at Sandia National Laboratories

    International Nuclear Information System (INIS)

    Robert W. Carling; Gurpreet Singh

    2000-01-01

    The objectives of this paper are to describe the research efforts in diesel engine combustion at Sandia National Laboratories' Combustion Research Facility and to provide recent experimental results. We have four diesel engine experiments supported by the Department of Energy, Office of Heavy Vehicle Technologies: a one-cylinder version of a Cummins heavy-duty engine, a diesel simulation facility, a one-cylinder Caterpillar engine to evaluate combustion of alternative fuels, and a homogeneous-charge, compression-ignition (HCCI) engine facility is under development. Recent experimental results to be discussed are: the effects of injection timing and diluent addition on late-combustion soot burnout, diesel-spray ignition and premixed-burn behavior, a comparison of the combustion characteristics of M85 (a mixture of 85% methanol and 15% gasoline) and DF2 (No.2 diesel reference fuel), and a description of our HCCI experimental program and modeling work

  3. SANDIA NATIONAL LABORATORIES IN SITU ELECTROKINETIC EXTRACTION TECHNOLOGY; INNOVATIVE TECHNOLOGY EVALUATION REPORT

    Science.gov (United States)

    As a part of the Superfund Innovative Technology Evaluation (SITE) Program, the U.S. Environmental Protection Agency evaluated the In-Situ Electrokinetic Extraction (ISEE) system at Sandia National Laboratories, Albuquerque, New Mexico.The SITE demonstration results show ...

  4. 1990 DOE/SANDIA crystalline photovoltaic technology project review meeting

    Energy Technology Data Exchange (ETDEWEB)

    Ruby, D.S. (ed.)

    1990-07-01

    This document serves as the proceedings for the annual project review meeting held by Sandia's Photovoltaic Cell Research Division and Photovoltaic Technology Division. It contains information supplied by each organization making a presentation at the meeting, which was held August 7 through 9, 1990 at the Sheraton Hotel in Albuquerque, New Mexico. Sessions were held to discuss national photovoltaic programs, one-sun crystalline silicon cell research, concentrator silicon cell research, concentrator 3-5 cell research, and concentrating collector development.

  5. Integrated Engineering Information Technology, FY93 accommplishments

    Energy Technology Data Exchange (ETDEWEB)

    Harris, R.N.; Miller, D.K.; Neugebauer, G.L.; Orona, J.R.; Partridge, R.A.; Herman, J.D.

    1994-03-01

    The Integrated Engineering Information Technology (IEIT) project is providing a comprehensive, easy-to-use computer network solution or communicating with coworkers both inside and outside Sandia National Laboratories. IEIT capabilities include computer networking, electronic mail, mechanical design, and data management. These network-based tools have one fundamental purpose: to help create a concurrent engineering environment that will enable Sandia organizations to excel in today`s increasingly competitive business environment.

  6. Sandia National Laboratories

    Data.gov (United States)

    Federal Laboratory Consortium — For more than 60 years, Sandia has delivered essential science and technology to resolve the nation's most challenging security issues.Sandia National Laboratories...

  7. Advanced robotic technologies for transfer at Sandia National Laboratories

    International Nuclear Information System (INIS)

    Bennett, P.C.

    1994-01-01

    Hazardous operations which have in the past been completed by technicians are under increased scrutiny due to high costs and low productivity associated with providing protective clothing and environments. As a result, remote systems are needed to accomplish many hazardous materials handling tasks such as the clean-up of waste sites in which the exposure of personnel to radiation, chemical, explosive and other hazardous constituents is unacceptable. Computer models augmented by sensing, and structured, modular computing environments are proving effective in automating many unstructured hazardous tasks. Work at Sandia National Laboratories (SNL) has focused on applying flexible automation (robotics) to meet the needs of the U.S. Department of Energy (USDOE). Dismantling facilities, environmental remediation, and materials handling in changing, hazardous environments lead to many technical challenges. Computer planning, monitoring and operator assistance shorten training cycles, reduce errors, and speed execution of operations. Robotic systems that re-use well-understood generic technologies can be much better characterized than robotic systems developed for a particular application, leading to a more reliable and safer systems. Further safety in robotic operations results from use of environmental sensors and knowledge of the task and environment. Collision detection and avoidance is achieved from such sensor integration and model-based control. This paper discusses selected technologies developed at SNL for use within the USDOE complex that have been or are ready for transfer to government and industrial suppliers. These technologies include sensors, sub-systems, and the design philosophy applied to quickly integrate them into a working robotic system. This paper represents the work of many people at the Intelligent Systems and Robotics Center at SNL, to whom the credit belongs

  8. Sandia National Laboratories: Working with Sandia

    Science.gov (United States)

    Defense Systems & Assessments About Defense Systems & Assessments Program Areas Accomplishments Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios /Facilities Contract Audit Technology Partnerships Sandia collaborates with industry, small businesses

  9. Footprint of Sandia's August 15 2016 Informal Idea Exploration Session on "Towards an Engineering and Applied Science of Research".

    Energy Technology Data Exchange (ETDEWEB)

    Tsao, Jeffrey Y. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Fleming Lindsley, Elizabeth S. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Heffelfinger, Grant S. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Narayanamurti, Venkatesh [Harvard Univ., Cambridge, MA (United States); Schneider, Rick [glo USA, Sunnyvale, CA (United States); Starkweather, Lynne M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Ting, Christina [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Yajima, Rieko [Stanford Univ., CA (United States); Bauer, Travis L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Coltrin, Michael E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Guy, Donald W. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Jones, Wendell [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Mareda, John F. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Nenoff, Tina M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Turnley, Jessica Glicken [Galisteo Consulting Group, Albuquerque, NM (United States)

    2017-02-01

    On August 15, 2016, Sandia hosted a visit by Professor Venkatesh Narayanamurti. Prof Narayanamurti (Benjamin Peirce Research Professor of Technology and Public Policy at Harvard, Board Member of the Belfer Center for Science and International Affairs, former Dean of the School of Engineering and Applied Science at Harvard, former Dean of Engineering at UC Santa Barbara, and former Vice President of Division 1000 at Sandia). During the visit, a small, informal, all-day idea exploration session on "Towards an Engineering and Applied Science of Research" was conducted. This document is a brief synopsis or "footprint" of the presentations and discussions at this Idea Exploration Session. The intent of this document is to stimulate further discussion about pathways Sandia can take to improve its Research practices.

  10. Materials and process engineering projects for the Sandia National Laboratories/Newly Independent States Industrial Partnering Program. Volume 2

    International Nuclear Information System (INIS)

    Zanner, F.J.; Moffatt, W.C.

    1995-07-01

    In July, 1994, a team of materials specialists from Sandia and US. Industry traveled to Russia and the Ukraine to select and fund projects in materials and process technology in support of the Newly Independent States/Industrial Partnering Program (NIS/IPP). All of the projects are collaborations with scientists and Engineers at NIS Institutes. Each project is scheduled to last one year, and the deliverables are formatted to supply US. Industry with information which will enable rational decisions to be made regarding the commercial value of these technologies. This work is an unedited interim compilation of the deliverables received to date

  11. Materials and process engineering projects for the Sandia National Laboratories/Newly Independent States Industrial Partnering Program. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    Zanner, F.J.; Moffatt, W.C.

    1995-07-01

    In July, 1994, a team of materials specialists from Sandia and U S Industry traveled to Russia and the Ukraine to select and fund projects in materials and process technology in support of the Newly Independent States/Industrial Partnering Program (NIS/IPP). All of the projects are collaborations with scientists and Engineers at NIS Institutes. Each project is scheduled to last one year, and the deliverables are formatted to supply US Industry with information which will enable rational decisions to be made regarding the commercial value of these technologies. This work is an unedited interim compilation of the deliverables received to date.

  12. Materials and process engineering projects for the Sandia National Laboratories/Newly Independent States Industrial Partnering Program. Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    Zanner, F.J.; Moffatt, W.C.

    1995-07-01

    In July, 1994, a team of materials specialists from Sandia and US. Industry traveled to Russia and the Ukraine to select and fund projects in materials and process technology in support of the Newly Independent States/Industrial Partnering Program (NIS/IPP). All of the projects are collaborations with scientists and Engineers at NIS Institutes. Each project is scheduled to last one year, and the deliverables are formatted to supply US. Industry with information which will enable rational decisions to be made regarding the commercial value of these technologies. This work is an unedited interim compilation of the deliverables received to date.

  13. Sandia National Laboratories: Sandia National Laboratories: Missions:

    Science.gov (United States)

    Defense Systems & Assessments: About Us Sandia National Laboratories Exceptional service in ; Security Weapons Science & Technology Defense Systems & Assessments About Defense Systems & Information Construction & Facilities Contract Audit Sandia's Economic Impact Licensing & Technology

  14. The evolution of interior intrusion detection technology at Sandia National Laboratories

    International Nuclear Information System (INIS)

    Graham, R.H.; Workhoven, R.M.

    1987-07-01

    Interior Intrusion Detection Technology began at Sandia National Laboratories (SNL) in 1975 as part of the Fixed Facilities Physical Protection Research and Development program sponsored by the US Department of Energy in connection with their nuclear safeguards effort. This paper describes the evolution of Interior Intrusion Detection Technology at Sandia National Laboratories from the beginning of the Interior Sensor Laboratory to the present. This Laboratory was established in 1976 to evaluate commercial interior intrusion sensors and to assist in site-specific intrusion detection system designs. Examples of special test techniques and new test equipment that were developed at the Lab are presented, including the Sandia Intruder Motion Simulator (SIMS), the Sensor and Environment Monitor (SEM), and the Sandia Interior Robot (SIR). We also discuss new sensors and unique sensor combination developed when commercial sensors were unavailable and the future application of expert systems. 5 refs

  15. The evolution of Interior Intrusion Detection Technology at Sandia National Laboratories

    International Nuclear Information System (INIS)

    Graham, R.H.; Workhoven, R.M.

    1987-07-01

    Interior Intrusion Detection Technology began at Sandia National Laboratories (SNL) in 1975 as part of the Fixed Facilities Physical Protection Research and Development program sponsored by the US Department of Energy in connection with their nuclear safeguards effort. This paper describes the evolution of Interior Intrusion Detection Technology at Sandia National Laboratories from the beginning of the Interior Sensor Laboratory to the present. This Laboratory was established in 1976 to evaluate commercial interior intrusion sensors and to assist in site-specific intrusion detection system designs. Examples of special test techniques and new test equipment that were developed at the Lab are presented, including the Sandia Intruder Motion Simulator (SIMS), the Sensor and Environment Monitor (SEM), and the Sandia Interior Robot (SIR). We also discuss new sensors and unique sensor combinations developed when commercial sensors were unavailable and the future application of expert systems

  16. The evolution of interior intrusion detection technology at Sandia National Laboratories

    International Nuclear Information System (INIS)

    Graham, R.H.; Workhoven, R.M.

    1987-01-01

    Interior Intrusion Detection Technology began at Sandia National Laboratories (SNL) in 1975 as part of the Fixed Facilities Physical Protection Research and Development program sponsored by the U.S. Department of Energy in connection with their nuclear safeguards effort. This paper describes the evolution of Interior Intrusion Detection Technology at Sandia National Laboratories from the beginning of the Interior Sensor Laboratory to the present. This Laboratory was established in 1976 to evaluate commercial interior intrusion sensors and to assist in site-specific intrusion detection system designs. Examples of special test techniques and new test equipment that were developed at the Lab are presented, including the Sandia Intruder Motion Simulator (SIMS), the Sensor and Environment Monitor (SEM), and the Sandia Interior Robot (SIR). The authors also discuss new sensors and unique sensor combinations developed when commercial sensors were unavailable and the future application of expert systems

  17. Sandia National Laboratories: Sandia Enabled Communications and

    Science.gov (United States)

    Locator Search Menu About Leadership Mission Social Media Community Involvement Contribution Programs Social Media Careers View All Jobs Students & Postdocs Benefits & Perks Hiring Process Life at New Mexico Small Business Assistance Program Sandia's Economic Impact Sandia Science & Technology

  18. Sandia and General Motors: Advancing Clean Combustion Engines with

    Science.gov (United States)

    , storage, and disposal. Defense Waste Management Programs Advanced Nuclear Energy Nuclear Energy Safety Components and Systems Improving battery performance, economics, and safety for transportation. Batteries Sciences and Engineering Chemical Sciences Geosciences Fusion Energy Sciences Advanced Scientific Computing

  19. Mobile robotics research at Sandia National Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Morse, W.D.

    1998-09-01

    Sandia is a National Security Laboratory providing scientific and engineering solutions to meet national needs for both government and industry. As part of this mission, the Intelligent Systems and Robotics Center conducts research and development in robotics and intelligent machine technologies. An overview of Sandia`s mobile robotics research is provided. Recent achievements and future directions in the areas of coordinated mobile manipulation, small smart machines, world modeling, and special application robots are presented.

  20. Bibliography: Sandia Laboratories hybrid microcircuit and related thin film technology (revised)

    International Nuclear Information System (INIS)

    Oswalt, J.A.

    1975-12-01

    Sandia originated documents (94) describing aspects of technology development related to hybrid microcircuits and thin films are summarized. Authors, titles, and abstracts are given for each unclassified document. The papers are categorized according to the various technologies involved in hybrid microcircuit production

  1. Engineering Manhattan style: Sandia Laboratories as an example of postwar engineering

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-09-01

    A great deal has been written about the history of science in America since World War II. Much of that work has explored the government`s research and development establishment, focusing on the scientific community immediately after the war. It is generally argued that the apparent triumphs of the huge and expensive wartime research and development projects gave rise to a belief that scientific resources should be nurtured and kept on hand - ready to provide service in an emergency. The Cold War drive for more and better weapons further fed this belief, leading to a massive system of national laboratories, military laboratories, and defense industries. The science of this complex is built on extensive financial support, the central strategy of which is that by steadily, and occasionally even lavishly funding large research programs, you will have a constant stream of scientific ideas that can be applied to national security purposes. What is true of science, is also true, in slightly modified form, of postwar engineering. The story I want to tell you today is, I think, an example of the way Cold War engineering r&d for national security worked. This report describes aspects of the Sandia National Laboratories.

  2. Sandia National Laboratories: The First Fifty Years

    Energy Technology Data Exchange (ETDEWEB)

    MORA,CARL J.

    1999-11-03

    On Nov. 1, 1999, Sandia National Laboratories celebrates its 50th birthday. Although Sandia has its roots in the World War II-era Manhattan Project, Sandia began operating as a separate nuclear weapons engineering laboratory under the management of AT&T on Nov. 1, 1949. Today the lab employs more than 7,000 people at its two sites in Albuquerque and Livermore, California, and has research and development missions in national security, energy and environmental technologies, and U.S. economic competitiveness. Lockheed Martin Corporation operates Sandia for the US. Department of Energy.

  3. Sandia National Laboratories: Feedback

    Science.gov (United States)

    Locations Contact Us Employee Locator Search Menu About Leadership Mission Social Media Community Responsibility History Diversity Social Media Careers View All Jobs Students & Postdocs Benefits & Perks Technology Deployment Centers New Mexico Small Business Assistance Program Sandia's Economic Impact Sandia

  4. Sandia National Laboratories: CRISPR genome-editing technology

    Science.gov (United States)

    Environmental Management System Pollution Prevention History 60 impacts Diversity Locations Facts & Figures Programs Nuclear Weapons About Nuclear Weapons Safety & Security Weapons Science & Technology Robotics R&D 100 Awards Laboratory Directed Research & Development Technology Deployment Centers

  5. Sandia Wake Imaging System Field Test Report: 2015 Deployment at the Scaled Wind Farm Technology (SWiFT) Facility.

    Energy Technology Data Exchange (ETDEWEB)

    Naughton, Brian Thomas [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Herges, Thomas [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-10-01

    This report presents the objectives, configuration, procedures, reporting , roles , and responsibilities and subsequent results for the field demonstration of the Sandia Wake Imaging System (SWIS) at the Sandia Scaled Wind Farm Technology (SWiFT) facility near Lubbock, Texas in June and July 2015.

  6. The Sandia MEMS Passive Shock Sensor : FY08 testing for functionality, model validation, and technology readiness.

    Energy Technology Data Exchange (ETDEWEB)

    Walraven, Jeremy Allen; Blecke, Jill; Baker, Michael Sean; Clemens, Rebecca C.; Mitchell, John Anthony; Brake, Matthew Robert; Epp, David S.; Wittwer, Jonathan W.

    2008-10-01

    This report summarizes the functional, model validation, and technology readiness testing of the Sandia MEMS Passive Shock Sensor in FY08. Functional testing of a large number of revision 4 parts showed robust and consistent performance. Model validation testing helped tune the models to match data well and identified several areas for future investigation related to high frequency sensitivity and thermal effects. Finally, technology readiness testing demonstrated the integrated elements of the sensor under realistic environments.

  7. Bibliography: Sandia Laboratories hybrid microcircuits and related thin film technology (revised)

    International Nuclear Information System (INIS)

    Oswalt, J.A.

    1975-12-01

    Hybrid circuit applications for nuclear weapons have been considered at Sandia since the mid-60's. However a major commitment was made in 1970 to develop a limited but well understood set of technologies for weapon applications. Development of these technologies and related studies have been documented in a number of publications. This bibliography lists the publications from 1968 to mid-1977 for reference by hybrid designers, users, or technologists

  8. The 1991 DOE/Sandia Crystalline Photovoltaic Technology Project Review Meeting

    Science.gov (United States)

    Whipple, M. L.

    1991-07-01

    This document serves as the proceedings for the manual project review meeting held by Sandia's Photovoltaic Technology Research Division. It contains information supplied by each organization making a presentation at the meeting, which was held July 30 through 31, 1991 at the Sheraton Hotel in Albuquerque, New Mexico. Sessions were held to discuss national photovoltaic programs, one-sun crystalline silicon cell research, concentrator silicon cell research, and concentrating collector development.

  9. The Los Alamos, Sandia, and Livermore Laboratories: Integration and collaboration solving science and technology problems for the nation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-01

    More than 40 years ago, three laboratories were established to take on scientific responsibility for the nation`s nuclear weapons - Los Alamos, Sandia, and Livermore. This triad of laboratories has provided the state-of-the-art science and technology to create America`s nuclear deterrent and to ensure that the weapons are safe, secure, and to ensure that the weapons are safe, secure, and reliable. These national security laboratories carried out their responsibilities through intense efforts involving almost every field of science, engineering, and technology. Today, they are recognized as three of the world`s premier research and development laboratories. This report sketches the history of the laboratories and their evolution to an integrated three-laboratory system. The characteristics that make them unique are described and some of the major contributions they have made over the years are highlighted.

  10. Sandia National Laboratories: Sandia National Laboratories: Missions:

    Science.gov (United States)

    Responsibility History Diversity Social Media Careers View All Jobs Students & Postdocs Benefits & Perks Technology Deployment Centers New Mexico Small Business Assistance Program Sandia's Economic Impact Sandia interest Menu Search Icon Locations Contact Us Employee Locator Search Menu About Leadership Mission Social

  11. Sandia National Laboratories: Working with Sandia: Accounts Payable

    Science.gov (United States)

    Defense Systems & Assessments About Defense Systems & Assessments Program Areas Accomplishments Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios and Facilities Contract Audit Working with Sandia Accounts Payable Invoice processing Electronic

  12. Sandia National Laboratories: Working with Sandia: Small Business

    Science.gov (United States)

    Does Sandia Buy? Opportunities Small Business Procurement Technical Assistance Program (PTAP) Current Technology Partnerships Business, Industry, & Non-Profits Government Universities Center for Mexico Small Business Assistance Program Sandia Science & Technology Park Careers Community

  13. Sandia National Laboratories: Working with Sandia: What Does Sandia Buy?

    Science.gov (United States)

    Environmental Management System Pollution Prevention History 60 impacts Diversity Locations Facts & Figures Does Sandia Buy? Opportunities Small Business Procurement Technical Assistance Program (PTAP) Current Technology Partnerships Business, Industry, & Non-Profits Government Universities Center for

  14. Survey of subsurface treatment technologies for environmental restoration sites at Sandia National Laboratories, New Mexico.

    Energy Technology Data Exchange (ETDEWEB)

    McGrath, Lucas K.; Ho, Clifford Kuofei; Wright, Jerome L.

    2003-08-01

    This report provides a survey of remediation and treatment technologies for contaminants of concern at environmental restoration (ER) sites at Sandia National Laboratories, New Mexico. The sites that were evaluated include the Tijeras Arroyo Groundwater, Technical Area V, and Canyons sites. The primary contaminants of concern at these sites include trichloroethylene (TCE), tetrachloroethylene (PCE), and nitrate in groundwater. Due to the low contaminant concentrations (close to regulatory limits) and significant depths to groundwater ({approx}500 feet) at these sites, few in-situ remediation technologies are applicable. The most applicable treatment technologies include monitored natural attenuation and enhanced bioremediation/denitrification to reduce the concentrations of TCE, PCE, and nitrate in the groundwater. Stripping technologies to remove chlorinated solvents and other volatile organic compounds from the vadose zone can also be implemented, if needed.

  15. Engineered safeguards system activities at Sandia Laboratories for back-end fuel cycle facilities

    International Nuclear Information System (INIS)

    Sellers, T.A.; Fienning, W.C.; Winblad, A.E.

    1978-01-01

    Sandia Laboratories have been developing concepts for safeguards systems to protect facilities in the back-end of the nuclear fuel cycle against potential threats of sabotage and theft of special nuclear material (SNM). Conceptual designs for Engineered Safeguards Systems (ESSs) have been developed for a Fuel Reprocessing Facility (including chemical separations, plutonium conversion, and waste solidification), a Mixed-Oxide Fuel Fabrication Facility, and a Plutonium Transport Vehicle. Performance criteria for the various elements of these systems and a candidate systematic design approach have been defined. In addition, a conceptual layout for a large-scale Fuel-Cycle Plutonium Storage Facility has been completed. Work is continuing to develop safeguards systems for spent fuel facilities, light-water reactors, alternative fuel cycles, and improved transportation systems. Additional emphasis will be placed on the problems associated with national diversion of special nuclear material. The impact on safeguards element performance criteria for surveillance and containment to protect against national diversion in various alternative fuel cycle complexes is also being investigated

  16. Sandia National Laboratories: News: Publications

    Science.gov (United States)

    Locations Contact Us Employee Locator Search Menu About Leadership Mission Social Media Community Community Involvement Leadership Mission Environmental Responsibility History Diversity Social Media Careers Small Business Assistance Program Sandia's Economic Impact Sandia Science & Technology Park © 2018

  17. Sandia National Laboratories

    Science.gov (United States)

    Gilliom, Laura R.

    1992-01-01

    Sandia National Laboratories has identified technology transfer to U.S. industry as a laboratory mission which complements our national security mission and as a key component of the Laboratory's future. A number of technology transfer mechanisms - such as CRADA's, licenses, work-for-others, and consortia - are identified and specific examples are given. Sandia's experience with the Specialty Metals Processing Consortium is highlighted with a focus on the elements which have made it successful. A brief discussion of Sandia's potential interactions with NASA under the Space Exploration Initiative was included as an example of laboratory-to-NASA technology transfer. Viewgraphs are provided.

  18. Sandia technology. Volume 13, number 2 Special issue: verification of arms control treaties

    International Nuclear Information System (INIS)

    1989-01-01

    Nuclear deterrence, a cornerstone of US national security policy, has helped prevent global conflict for over 40 years. The DOE and DoD share responsibility for this vital part of national security. The US will continue to rely on nuclear deterrence for the foreseeable future. In the late 1950s, Sandia developed satellite-borne nuclear burst detection systems to support the treaty banning atmospheric nuclear tests. This activity has continued to expand and diversify. When the Non-Proliferation Treaty was ratified in 1970, we began to develop technologies to protect nuclear materials from falling into unauthorized hands. This program grew and now includes systems for monitoring the movement and storage of nuclear materials, detecting tampering, and transmiting sensitive data securely. In the late 1970s, negotiations to further limit underground nuclear testing were being actively pursued. In less than 18 months, we fielded the National Seismic Station, an unattended observatory for in-country monitoring of nuclear tests. In the mid-l980s, arms-control interest shifted to facility monitoring and on-site inspection. Our Technical On-site Inspection Facility is the national test bed for perimeter and portal monitoring technology and the prototype for the inspection portal that was recently installed in the USSR under the Intermediate-Range Nuclear Forces accord. The articles in the special issue of Sundiu Technology describe some of our current contributions to verification technology. This work supports the US policy to seek realistic arms control agreements while maintaining our national security.

  19. Sandia National Laboratories: Agreements

    Science.gov (United States)

    Environmental Management System Pollution Prevention History 60 impacts Diversity Locations Facts & Figures Does Sandia Buy? Opportunities Small Business Procurement Technical Assistance Program (PTAP) Current Technology Partnerships Business, Industry, & Non-Profits Government Universities Center for

  20. Manufacturing technologies

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    The Manufacturing Technologies Center is an integral part of Sandia National Laboratories, a multiprogram engineering and science laboratory, operated for the Department of Energy (DOE) with major facilities at Albuquerque, New Mexico, and Livermore, California. Our Center is at the core of Sandia`s Advanced Manufacturing effort which spans the entire product realization process.

  1. Sandia Combustion Research Program

    Energy Technology Data Exchange (ETDEWEB)

    Johnston, S.C.; Palmer, R.E.; Montana, C.A. (eds.)

    1988-01-01

    During the late 1970s, in response to a national energy crisis, Sandia proposed to the US Department of Energy (DOE) a new, ambitious program in combustion research. Shortly thereafter, the Combustion Research Facility (CRF) was established at Sandia's Livermore location. Designated a ''user facility,'' the charter of the CRF was to develop and maintain special-purpose resources to support a nationwide initiative-involving US inventories, industry, and national laboratories--to improve our understanding and control of combustion. This report includes descriptions several research projects which have been simulated by working groups and involve the on-site participation of industry scientists. DOE's Industry Technology Fellowship program, supported through the Office of Energy Research, has been instrumental in the success of some of these joint efforts. The remainder of this report presents results of calendar year 1988, separated thematically into eleven categories. Referred journal articles appearing in print during 1988 and selected other publications are included at the end of Section 11. Our traditional'' research activities--combustion chemistry, reacting flows, diagnostics, engine and coal combustion--have been supplemented by a new effort aimed at understanding combustion-related issues in the management of toxic and hazardous materials.

  2. Electromechanical Engineering Technology Curriculum.

    Science.gov (United States)

    Georgia State Univ., Atlanta. Dept. of Vocational and Career Development.

    This guide offers information and procedures necessary to train electromechanical engineering technicians. Discussed first are the rationale and objectives of the curriculum. The occupational field of electromechanical engineering technology is described. Next, a curriculum model is set forth that contains information on the standard…

  3. Sandia National Laboratories Institutional Plan FY1994--1999

    Energy Technology Data Exchange (ETDEWEB)

    1993-10-01

    This report presents a five year plan for the laboratory. This plan takes advantage of the technical strengths of the lab and its staff to address issues of concern to the nation on a scope much broader than Sandia`s original mission, while maintaining the general integrity of the laboratory. The plan proposes initiatives in a number of technologies which overlap the needs of its customers and the strengths of its staff. They include: advanced manufacturing technology; electronics; information and computational technology; transportation energy technology and infrastructure; environmental technology; energy research and technology development; biomedical systems engineering; and post-cold war defense imperatives.

  4. Assessment Report Sandia National Laboratories Fuel Cycle Technologies Quality Assurance Evaluation of FY15 SNL FCT M2 Milestone Deliverables

    Energy Technology Data Exchange (ETDEWEB)

    Appel, Gordon John [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-05-01

    Sandia National Laboratories (SNL) Fuel Cycle Technologies (FCT) program activities are conducted in accordance with FCT Quality Assurance Program Document (FCT-QAPD) requirements. The FCT-QAPD interfaces with SNL approved Quality Assurance Program Description (SNL-QAPD) as explained in the Sandia National Laboratories QA Program Interface Document for FCT Activities (Interface Document). This plan describes SNL's FY16 assessment of SNL's FY15 FCT M2 milestone deliverable's compliance with program QA requirements, including SNL R&A requirements. The assessment is intended to confirm that SNL's FY15 milestone deliverables contain the appropriate authenticated review documentation and that there is a copy marked with SNL R&A numbers.

  5. Assessment Report Sandia National Laboratories Fuel Cycle Technologies Quality Assurance Evaluation of FY15 SNL FCT M2 Milestone Deliverables

    International Nuclear Information System (INIS)

    Appel, Gordon John

    2016-01-01

    Sandia National Laboratories (SNL) Fuel Cycle Technologies (FCT) program activities are conducted in accordance with FCT Quality Assurance Program Document (FCT-QAPD) requirements. The FCT-QAPD interfaces with SNL approved Quality Assurance Program Description (SNL-QAPD) as explained in the Sandia National Laboratories QA Program Interface Document for FCT Activities (Interface Document). This plan describes SNL's FY16 assessment of SNL's FY15 FCT M2 milestone deliverable's compliance with program QA requirements, including SNL R&A requirements. The assessment is intended to confirm that SNL's FY15 milestone deliverables contain the appropriate authenticated review documentation and that there is a copy marked with SNL R&A numbers.

  6. Advancement in Engineering Technology

    DEFF Research Database (Denmark)

    Kalia, Kartik; Rehman, M. Atiqur; Hussain, Dil muhammed Akbar

    2016-01-01

    In this paper we will be discussing about the impact of technology on our daily lives. How everybody is dependent upon technology in one or other way. Methods/Statistical Analysis: Technology has played a significant role in the evolution of the society. Science has produced many new ideas...... but to harvest those ideas, technology is a must. With the huge requirement of engineering equipment's, the industry needs specialists who can manage and operate these technologies. Detailed information about the merits and demerits of technology is also mentioned in this paper. Findings: Technology has affected...... the environment on a great scale; in some cases, technology is even replacing human being or use of manpower. So proper counter measures have been mentioned, which can be used to control and limit harmful effect....

  7. Sandia National Laboratories focus issue: introduction.

    Science.gov (United States)

    Boye, Robert

    2014-08-20

    For more than six decades, Sandia has provided the critical science and technology to address the nation's most challenging issues. Our original nuclear weapons mission has been complemented with work in defense systems, energy and climate, as well as international and homeland security. Our vision is to be a premier science and engineering laboratory for technology solutions to the most challenging problems that threaten peace and freedom for our nation and the globe.

  8. Sandia National Laboratories Advanced Simulation and Computing (ASC) software quality plan. Part 1: ASC software quality engineering practices, Version 2.0.

    Energy Technology Data Exchange (ETDEWEB)

    Sturtevant, Judith E.; Heaphy, Robert; Hodges, Ann Louise; Boucheron, Edward A.; Drake, Richard Roy; Minana, Molly A.; Hackney, Patricia; Forsythe, Christi A.; Schofield, Joseph Richard, Jr. (,; .); Pavlakos, Constantine James; Williamson, Charles Michael; Edwards, Harold Carter

    2006-09-01

    The purpose of the Sandia National Laboratories Advanced Simulation and Computing (ASC) Software Quality Plan is to clearly identify the practices that are the basis for continually improving the quality of ASC software products. The plan defines the ASC program software quality practices and provides mappings of these practices to Sandia Corporate Requirements CPR 1.3.2 and 1.3.6 and to a Department of Energy document, ASCI Software Quality Engineering: Goals, Principles, and Guidelines. This document also identifies ASC management and software project teams responsibilities in implementing the software quality practices and in assessing progress towards achieving their software quality goals.

  9. Sandia National Laboratories: Locations: Kauai Test Facility

    Science.gov (United States)

    Locations Contact Us Employee Locator Search Menu About Leadership Mission Social Media Community History Diversity Social Media Careers View All Jobs Students & Postdocs Benefits & Perks Hiring Technology Deployment Centers New Mexico Small Business Assistance Program Sandia's Economic Impact Sandia

  10. Sandia National Laboratories: News: Publications: Annual Report

    Science.gov (United States)

    Locations Contact Us Employee Locator Search Menu About Leadership Mission Social Media Community Social Media Careers View All Jobs Students & Postdocs Benefits & Perks Hiring Process Life at New Mexico Small Business Assistance Program Sandia's Economic Impact Sandia Science & Technology

  11. Sandia National Laboratories: News: Publications: Strategic Plan

    Science.gov (United States)

    Locations Contact Us Employee Locator Search Menu About Leadership Mission Social Media Community Involvement Leadership Mission Environmental Responsibility History Diversity Social Media Careers View All Small Business Assistance Program Sandia's Economic Impact Sandia Science & Technology Park © 2018

  12. Sandia National Laboratories: News: Economic Impact

    Science.gov (United States)

    Locations Contact Us Employee Locator Search Menu About Leadership Mission Social Media Community Involvement Leadership Mission Environmental Responsibility History Diversity Social Media Careers View All Small Business Assistance Program Sandia's Economic Impact Sandia Science & Technology Park © 2018

  13. Sandia National Laboratories: Working with Sandia: Current Suppliers

    Science.gov (United States)

    Defense Systems & Assessments About Defense Systems & Assessments Program Areas Accomplishments Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios Suppliers iSupplier Account Accounts Payable Contract Information Construction and Facilities Contract Audit

  14. Sandia National Laboratories: Working with Sandia: Contract Audit

    Science.gov (United States)

    Defense Systems & Assessments About Defense Systems & Assessments Program Areas Accomplishments Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios Audit iSupplier Account Accounts Payable Contract Information Construction and Facilities Contract Audit

  15. Site Environmental Report for 2016 Sandia National Laboratories California.

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Barbara L. [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2017-06-01

    Sandia National Laboratories, California (SNL/CA) is a Department of Energy (DOE) facility. The management and operations of the facility are under a contract with the DOE’s National Nuclear Security Administration (NNSA). On May 1, 2017, the name of the management and operating contractor changed from Sandia Corporation to National Technology and Engineering Solutions of Sandia, LLC (NTESS). The DOE, NNSA, Sandia Field Office administers the contract and oversees contractor operations at the site. This Site Environmental Report for 2016 was prepared in accordance with DOE Order 231.1B, Environment, Safety and Health Reporting (DOE 2012). The report provides a summary of environmental monitoring information and compliance activities that occurred at SNL/CA during calendar year 2016, unless noted otherwise. General site and environmental program information is also included.

  16. Sandia National Laboratories Advanced Simulation and Computing (ASC) software quality plan : ASC software quality engineering practices Version 3.0.

    Energy Technology Data Exchange (ETDEWEB)

    Turgeon, Jennifer L.; Minana, Molly A.; Hackney, Patricia; Pilch, Martin M.

    2009-01-01

    The purpose of the Sandia National Laboratories (SNL) Advanced Simulation and Computing (ASC) Software Quality Plan is to clearly identify the practices that are the basis for continually improving the quality of ASC software products. Quality is defined in the US Department of Energy/National Nuclear Security Agency (DOE/NNSA) Quality Criteria, Revision 10 (QC-1) as 'conformance to customer requirements and expectations'. This quality plan defines the SNL ASC Program software quality engineering (SQE) practices and provides a mapping of these practices to the SNL Corporate Process Requirement (CPR) 001.3.6; 'Corporate Software Engineering Excellence'. This plan also identifies ASC management's and the software project teams responsibilities in implementing the software quality practices and in assessing progress towards achieving their software quality goals. This SNL ASC Software Quality Plan establishes the signatories commitments to improving software products by applying cost-effective SQE practices. This plan enumerates the SQE practices that comprise the development of SNL ASC's software products and explains the project teams opportunities for tailoring and implementing the practices.

  17. A brief history of Sandia National Laboratories and the Department of Energy%3CU%2B2019%3Es Office of Science : interplay between science, technology, and mission.

    Energy Technology Data Exchange (ETDEWEB)

    Tsao, Jeffrey Yeenien; Myers, Samuel Maxwell, Jr.; Simmons, Jerry Alvon; McIlroy, Andrew; Vook, Frederick L.; Collis, Samuel Scott; Picraux, Samuel Thomas

    2011-08-01

    In 1957, Sandia National Laboratories (Sandia) initiated its first programs in fundamental science, in support of its primary nuclear weapons mission. In 1974, Sandia initiated programs in fundamental science supported by the Department of Energy's Office of Science (DOE-SC). These latter programs have grown to the point where, today in 2011, support of Sandia's programs in fundamental science is dominated by that Office. In comparison with Sandia's programs in technology and mission applications, however, Sandia's programs in fundamental science are small. Hence, Sandia's fundamental science has been strongly influenced by close interactions with technology and mission applications. In many instances, these interactions have been of great mutual benefit, with synergies akin to a positive 'Casimir's spiral' of progress. In this report, we review the history of Sandia's fundamental science programs supported by the Office of Science. We present: (a) a technical and budgetary snapshot of Sandia's current programs supported by the various suboffices within DOE-SC; (b) statistics of highly-cited articles supported by DOE-SC; (c) four case studies (ion-solid interactions, combustion science, compound semiconductors, advanced computing) with an emphasis on mutually beneficial interactions between science, technology, and mission; and (d) appendices with key memos and reminiscences related to fundamental science at Sandia.

  18. Manufacturing engineering and technology

    CERN Document Server

    Kalpakjian, Serope; Vijai Sekar, K S

    2014-01-01

    For courses in manufacturing processes at two- or four-year schools. An up-to-date text that provides a solid background in manufacturing processes. Manufacturing Engineering and Technology, SI Edition, 7e, presents a mostly qualitative description of the science, technology, and practice of manufacturing. This includes detailed descriptions of manufacturing processes and the manufacturing enterprise that will help introduce students to important concepts. With a total of 120 examples and case studies, up-to-date and comprehensive coverage of all topics, and superior two-color graphics, this text provides a solid background for manufacturing students and serves as a valuable reference text for professionals. Teaching and Learning Experience To provide a better teaching and learning experience, for both instructors and students, this program will: * Apply Theory and/or Research: An excellent overview of manufacturing conceptswith a balance of relevant fundamentals and real-world practices. * Engage Students: E...

  19. Sandia National Laboratories: News: Media Resources: Media Contacts

    Science.gov (United States)

    Foundations Bioscience Computing & Information Science Electromagnetics Engineering Science Geoscience computing, modeling and simulation and nanotechnology. Contact: (505) 845-7078; nsinger@sandia.gov Kristen specialist at Sandia/California. She covers biological and engineering sciences, homeland security and

  20. Sandia National Laboratories: Working with Sandia: Prospective Suppliers

    Science.gov (United States)

    Environmental Management System Pollution Prevention History 60 impacts Diversity Locations Facts & Figures Does Sandia Buy? Opportunities Small Business Procurement Technical Assistance Program (PTAP) Current Technology Partnerships Business, Industry, & Non-Profits Government Universities Center for

  1. Sandia National Laboratories: What Sandia Looks For In Our Suppliers

    Science.gov (United States)

    Environmental Management System Pollution Prevention History 60 impacts Diversity Locations Facts & Figures Does Sandia Buy? Opportunities Small Business Procurement Technical Assistance Program (PTAP) Current Technology Partnerships Business, Industry, & Non-Profits Government Universities Center for

  2. Sandia National Laboratories embraces ISDN

    Energy Technology Data Exchange (ETDEWEB)

    Tolendino, L.F.; Eldridge, J.M.

    1994-08-01

    Sandia National Laboratories (Sandia), a multidisciplinary research and development laboratory located on Kirtland Air Force Base, has embraced Integrated Services Digital Network technology as an integral part of its communication network. Sandia and the Department of Energy`s Albuquerque Operations Office have recently completed the installation of a modernized and expanded telephone system based, on the AT&T 5ESS telephone switch. Sandia is committed to ISDN as an integral part of data communication services, and it views ISDN as one part of a continuum of services -- services that range from ISDN`s asynchronous and limited bandwidth Ethernet (250--1000 Kbps) through full bandwidth Ethernet, FDDI, and ATM at Sonet rates. Sandia has demonstrated this commitment through its use of ISDN data features to support critical progmmmatic services such as access to corporate data base systems. In the future, ISDN will provide enhanced voice, data communication, and video services.

  3. Nuclear energy related capabilities at Sandia National Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Pickering, Susan Y. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-02-01

    Sandia National Laboratories' technology solutions are depended on to solve national and global threats to peace and freedom. Through science and technology, people, infrastructure, and partnerships, part of Sandia's mission is to meet the national needs in the areas of energy, climate and infrastructure security. Within this mission to ensure clean, abundant, and affordable energy and water is the Nuclear Energy and Fuel Cycle Programs. The Nuclear Energy and Fuel Cycle Programs have a broad range of capabilities, with both physical facilities and intellectual expertise. These resources are brought to bear upon the key scientific and engineering challenges facing the nation and can be made available to address the research needs of others. Sandia can support the safe, secure, reliable, and sustainable use of nuclear power worldwide by incorporating state-of-the-art technologies in safety, security, nonproliferation, transportation, modeling, repository science, and system demonstrations.

  4. Sandia National Laboratories: Pathfinder Radar ISR and Synthetic Aperture

    Science.gov (United States)

    Radar (SAR) Systems Sandia National Laboratories Exceptional service in the national interest ; Technology Defense Systems & Assessments About Defense Systems & Assessments Program Areas Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios

  5. Inside Sandia

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    Articles in this issue include ``Molten salt corrosion testing,`` ``Pulsed ion beams for thermal surface treatment: Improved corrosion, wear, and hardness properties at low cost,`` ``Unmasking hidden armaments: Superconducting gravity sensor could find underground weapons, bunkers,`` ``Charbroiled burgers, heterocyclic amines, and cancer: Molecular modeling identifies dangerous mutagens,`` ``Revolutionary airbag offers increased safety options,`` ``EcoSys{sup TM}: an expert system for `Green Design` ``, ``Sandia, salt, and oil: Labs` diagnostics and analysis help maintain vital US oil reserve,`` and ``Automated fixture design speeds development for prototypes and production``.

  6. Sandia National Laboratories Advanced Simulation and Computing (ASC) software quality plan part 2 mappings for the ASC software quality engineering practices, version 2.0.

    Energy Technology Data Exchange (ETDEWEB)

    Heaphy, Robert; Sturtevant, Judith E.; Hodges, Ann Louise; Boucheron, Edward A.; Drake, Richard Roy; Minana, Molly A.; Hackney, Patricia; Forsythe, Christi A.; Schofield, Joseph Richard, Jr. (,; .); Pavlakos, Constantine James; Williamson, Charles Michael; Edwards, Harold Carter

    2006-09-01

    The purpose of the Sandia National Laboratories Advanced Simulation and Computing (ASC) Software Quality Plan is to clearly identify the practices that are the basis for continually improving the quality of ASC software products. The plan defines the ASC program software quality practices and provides mappings of these practices to Sandia Corporate Requirements CPR001.3.2 and CPR001.3.6 and to a Department of Energy document, ''ASCI Software Quality Engineering: Goals, Principles, and Guidelines''. This document also identifies ASC management and software project teams' responsibilities in implementing the software quality practices and in assessing progress towards achieving their software quality goals.

  7. Microscale technologies for cell engineering

    CERN Document Server

    Gaharwar, Akhilesh

    2016-01-01

    This book offers readers cutting-edge research at the interface of polymer science and engineering, biomedical engineering, materials science, and biology. State-of-the-art developments in microscale technologies for cell engineering applications are covered, including technologies relevant to both pluripotent and adult stem cells, the immune system, and somatic cells of the animal and human origin. This book bridges the gap in the understanding of engineering biology at multiple length scale, including microenvironmental control, bioprocessing, and tissue engineering in the areas of cardiac, cartilage, skeletal, and vascular tissues, among others. This book also discusses unique, emerging areas of micropatterning and three-dimensional printing models of cellular engineering, and contributes to the better understanding of the role of biophysical factors in determining the cell fate. Microscale Technologies for Cell Engineering is valuable for bioengineers, biomaterial scientists, tissue engineers, clinicians,...

  8. Development of the Sandia Cooler

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Terry Alan [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Koplow, Jeffrey P. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Staats, Wayne Lawrence [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Curgus, Dita Brigitte [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Leick, Michael Thomas. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Matthew, Ned Daniel [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Zimmerman, Mark D. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Arienti, Marco [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Gharagozloo, Patricia E. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Hecht, Ethan S. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Spencer, Nathan A. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Vanness, Justin William. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Gorman, Ryan [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2013-12-01

    This report describes an FY13 effort to develop the latest version of the Sandia Cooler, a breakthrough technology for air-cooled heat exchangers that was developed at Sandia National Laboratories. The project was focused on fabrication, assembly and demonstration of ten prototype systems for the cooling of high power density electronics, specifically high performance desktop computers (CPUs). In addition, computational simulation and experimentation was carried out to fully understand the performance characteristics of each of the key design aspects. This work culminated in a parameter and scaling study that now provides a design framework, including a number of design and analysis tools, for Sandia Cooler development for applications beyond CPU cooling.

  9. Technician Career Opportunities in Engineering Technology.

    Science.gov (United States)

    Engineers' Council for Professional Development, New York, NY.

    Career opportunities for engineering technicians are available in the technologies relating to air conditioning, heating, and refrigeration, aviation and aerospace, building construction, chemical engineering, civil engineering, electrical engineering, electronics, industrial engineering, instrumentation, internal combustion engines, mechanical…

  10. An analysis of microsystems development at Sandia National Laboratories

    Science.gov (United States)

    Herrera, Gilbert V.; Myers, David R.

    2011-06-01

    While Sandia initially was motivated to investigate emergent microsystem technology to miniaturize existing macroscale structures, present designs embody innovative approaches that directly exploit the fundamentally different material properties of a new technology at the micro- and nano-scale. Direct, hands-on experience with the emerging technology gave Sandia engineers insights that not only guided the evolution of the technology but also enabled them to address new applications that enlarged the customer base for the new technology. Sandia's early commitment to develop complex microsystems demonstrated the advantages that early adopters gain by developing an extensive design and process tool kit and a shared awareness of multiple approaches to achieve the multiple goals. As with any emergent technology, Sandia's program benefited from interactions with the larger technical community. However, custom development followed a spiral path of direct trial-and-error experience, analysis, quantification of materials properties at the micro- and nano-scale, evolution of design tools and process recipes, and an understanding of reliability factors and failure mechanisms even in extreme environments. The microsystems capability at Sandia relied on three key elements. The first was people: a mix of mechanical and semiconductor engineers, chemists, physical scientists, designers, and numerical analysts. The second was a unique facility that enabled the development of custom technologies without contaminating mainline product deliveries. The third was the arrival of specialized equipment as part of a Cooperative Research And Development Agreement (CRADA) enabled by the National Competitiveness Technology Transfer Act of 1989. Underpinning all these, the program was guided and sustained through the research and development phases by accomplishing intermediate milestones addressing direct mission needs.

  11. Emerging Engine Control Technologies

    DEFF Research Database (Denmark)

    Hendricks, Elbert; Chevalier, Alain

    1996-01-01

    In earlier work published by the author and co-authors, a dynamic model called a Mean Value Engine Model (MVEM) was developed. This model is physically based and is intended mainly for control applications. It is especially well suited to embedded model applications in engine controllers, susch...

  12. Sandia National Laboratories: Research: Research Foundations: Nanodevices

    Science.gov (United States)

    Technology Partnerships Business, Industry, & Non-Profits Government Universities Center for Mexico Small Business Assistance Program Sandia Science & Technology Park Careers Community support for research; technology advancement and maturation; and small-lot, fast-turn prototyping Our

  13. Engineering and "Standards for Technological Literacy."

    Science.gov (United States)

    Gorham, Douglas

    2002-01-01

    Describes the relationship between engineering and technological literacy, criteria used by the Accrediting Board for Engineering and Technology, and the role of professional engineering societies in promoting technological literacy. (SK)

  14. This is Sandia

    Energy Technology Data Exchange (ETDEWEB)

    1995-02-01

    Sandia is a multiprogram engineering and science laboratory operated for the Department of Energy with major facilities at Albuquerque, New Mexico, and Livermore, California, and a test range near Tonapah, Nevada. It has major research and development responsibilities for nuclear weapons, arms control, energy, the environment, economic competitiveness, and other areas of importance to the needs of the nation. The principal mission is to support national defense policies by ensuring that the nuclear weapon stockpile meets the highest standards of safety, reliability, security, use control, and military performance. This publication gives a brief overview of the multifaceted research programs conducted by the laboratory.

  15. Civil Engineering Technology Needs Assessment.

    Science.gov (United States)

    Oakland Community Coll., Farmington, MI. Office of Institutional Planning and Analysis.

    In 1991, a study was conducted by Oakland Community College (OCC) to evaluate the need for a proposed Civil Engineering Technology program. An initial examination of the literature focused on industry needs and the job market for civil engineering technicians. In order to gather information on local area employers' hiring practices and needs, a…

  16. Sandia using RapTOR technology for understanding algal pond collapse.

    Energy Technology Data Exchange (ETDEWEB)

    Lane, Todd W. [Sandia National Laboratories (SNL-CA), Livermore, CA (United States); Janes, Michael [Sandia National Laboratories (SNL-CA), Livermore, CA (United States)

    2010-09-01

    As industry continues to find a profitable way to meet the nation's alternative energy objectives, more and more start-up companies, it seems, are growing production ponds of algae. Algae are widely viewed as a potential source of renewable fuel, but the technology to mass-produce fuel-grade algae is still in the early stages. A major roadblock is the inability to produce large amounts of the greenish, chlorophyll-containing organisms.

  17. Engineering Technology Education: Bibliography, 1988.

    Science.gov (United States)

    Dyrud, Marilyn A.

    1989-01-01

    Lists articles and books related to engineering technology education published in 1988. Items are grouped administration, aeronautical, architectural, CAD/CAM, civil, computers, curriculum, electrical/electronics, industrial, industry/government/employers, instructional technology, laboratories, lasers, liberal studies, manufacturing, mechanical,…

  18. Sandia Combustion Research: Technical review

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-01

    This report contains reports from research programs conducted at the Sandia Combustion Research Facility. Research is presented under the following topics: laser based diagnostics; combustion chemistry; reacting flow; combustion in engines and commercial burners; coal combustion; and industrial processing. Individual projects were processed separately for entry onto the DOE databases.

  19. Engineering research, development and technology

    International Nuclear Information System (INIS)

    1994-05-01

    The mission of the Engineering Research, Development, and Technology Program at Lawrence Livermore National Laboratory (LLNL) is to develop the technical staff, tools, and facilities needed to support current and future LLNL programs. The efforts are guided by a dual-benefit research and development strategy that supports Department of Energy missions, such as national security through nuclear deterrence and economic competitiveness through partnerships with U.S. industry. This annual report, organized by thrust area, describes the activities for the fiscal year 1993. The report provides timely summaries of objectives, methods, and results from nine thrust areas for this fiscal year: Computational Electronics and Electromagnetics; Computational Mechanics; Diagnostics and Microelectronics; Fabrication Technology; Materials Science and Engineering; Power Conversion Technologies; Nondestructive Evaluation; Remote Sensing, Imaging, and Signal Engineering; and Emerging Technologies. Separate abstracts were prepared for 47 papers in this report

  20. Sandia National Laboratories: Hydrogen Risk Assessment Models toolkit now

    Science.gov (United States)

    Icon Locations Contact Us Employee Locator Search Menu About Leadership Mission Social Media Community Responsibility History Diversity Social Media Careers View All Jobs Students & Postdocs Benefits & Perks Technology Deployment Centers New Mexico Small Business Assistance Program Sandia's Economic Impact Sandia

  1. Sandia National Laboratories: Integrated Military Systems

    Science.gov (United States)

    Defense Systems & Assessments About Defense Systems & Assessments Program Areas Accomplishments Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios ; Culture Work-Life Balance Special Programs Integrated Military Systems (IMS) Capabilities Facilities

  2. FY2012 Engineering Research & Technology Report

    Energy Technology Data Exchange (ETDEWEB)

    Lane, Monya

    2014-07-22

    This report documents engineering research, development, and technology advancements performed by LLNL during fiscal year 2012 in the following areas: computational engineering, engineering information systems, micro/nano-devices and structures, and measurement technologies.

  3. Particle Bed Reactor engine technology

    Science.gov (United States)

    Sandler, S.; Feddersen, R.

    1992-03-01

    This paper discusses the Particle Bed Reactor (PBR) based propulsion system being developed under the Space Nuclear Thermal Propulsion (SNTP) program. A PBR engine is a light weight, compact propulsion system which offers significant improvement over current technology systems. Current performance goals are a system thrust of 75,000 pounds at an Isp of 1000 sec. A target thrust to weight ratio (T/W) of 30 has been established for an unshielded engine. The functionality of the PBR, its pertinent technology issues and the systems required to make up a propulsion system are described herein. Accomplishments to date which include hardware development and tests for the PBR engine are also discussed. This paper is intended to provide information on and describe the current state-of-the-art of PBR technology.

  4. Particle Bed Reactor engine technology

    International Nuclear Information System (INIS)

    Sandler, S.; Feddersen, R.

    1992-01-01

    This paper discusses the Particle Bed Reactor (PBR) based propulsion system being developed under the Space Nuclear Thermal Propulsion (SNTP) program. A PBR engine is a light weight, compact propulsion system which offers significant improvement over current technology systems. Current performance goals are a system thrust of 75,000 pounds at an Isp of 1000 sec. A target thrust to weight ratio (T/W) of 30 has been established for an unshielded engine. The functionality of the PBR, its pertinent technology issues and the systems required to make up a propulsion system are described herein. Accomplishments to date which include hardware development and tests for the PBR engine are also discussed. This paper is intended to provide information on and describe the current state-of-the-art of PBR technology. 4 refs

  5. Advanced Technology for Engineering Education

    Science.gov (United States)

    Noor, Ahmed K. (Compiler); Malone, John B. (Compiler)

    1998-01-01

    This document contains the proceedings of the Workshop on Advanced Technology for Engineering Education, held at the Peninsula Graduate Engineering Center, Hampton, Virginia, February 24-25, 1998. The workshop was jointly sponsored by the University of Virginia's Center for Advanced Computational Technology and NASA. Workshop attendees came from NASA, other government agencies, industry and universities. The objectives of the workshop were to assess the status of advanced technologies for engineering education and to explore the possibility of forming a consortium of interested individuals/universities for curriculum reform and development using advanced technologies. The presentations covered novel delivery systems and several implementations of new technologies for engineering education. Certain materials and products are identified in this publication in order to specify adequately the materials and products that were investigated in the research effort. In no case does such identification imply recommendation or endorsement of products by NASA, nor does it imply that the materials and products are the only ones or the best ones available for this purpose. In many cases equivalent materials and products are available and would probably produce equivalent results.

  6. Innovative Technology in Engineering Education.

    Science.gov (United States)

    Fishwick, Wilfred

    1991-01-01

    Discusses the impact that computer-assisted technologies, including applications to software, video recordings, and satellite broadcasts, have had upon the conventions and procedures within engineering education. Calls for the complete utilization of such devices through their appropriate integration into updated education activities effectively…

  7. Civil Engineering Technology Program Guide.

    Science.gov (United States)

    Georgia Univ., Athens. Dept. of Vocational Education.

    This program guide presents civil engineering technology curriculum for technical institutes in Georgia. The general information section contains the following: purpose and objectives; program description, including admissions, typical job titles, and accreditation and certification; and curriculum model, including standard curriculum sequence and…

  8. Aerospace Technology (Aerospace Engineering Degree)

    OpenAIRE

    Tiseira Izaguirre, Andrés Omar; Blanco Rodríguez, David; Carreres Talens, Marcos; FAJARDO PEÑA, PABLO

    2013-01-01

    Apuntes de la asignatura Tecnología Aeroespacial Tiseira Izaguirre, AO.; Blanco Rodríguez, D.; Carreres Talens, M.; Fajardo Peña, P. (2013). Aerospace Technology (Aerospace Engineering Degree). Editorial Universitat Politècnica de València. http://hdl.handle.net/10251/35263

  9. Journal of Applied Science, Engineering and Technology

    African Journals Online (AJOL)

    The Journal of Applied Science, Engineering and Technology covers research activities and development in the field of Applied Sciences and Technology as it relates to Agricultural Engineering, Biotechnology, Computer Science and Engineering Computations, Civil Engineering, Food Science and Technology, Electrical ...

  10. Sandia National Laboratories analysis code data base

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, C.W.

    1994-11-01

    Sandia National Laboratories, mission is to solve important problems in the areas of national defense, energy security, environmental integrity, and industrial technology. The Laboratories` strategy for accomplishing this mission is to conduct research to provide an understanding of the important physical phenomena underlying any problem, and then to construct validated computational models of the phenomena which can be used as tools to solve the problem. In the course of implementing this strategy, Sandia`s technical staff has produced a wide variety of numerical problem-solving tools which they use regularly in the design, analysis, performance prediction, and optimization of Sandia components, systems and manufacturing processes. This report provides the relevant technical and accessibility data on the numerical codes used at Sandia, including information on the technical competency or capability area that each code addresses, code ``ownership`` and release status, and references describing the physical models and numerical implementation.

  11. Sandia National Laboratories Advanced Simulation and Computing (ASC) software quality plan. Part 1 : ASC software quality engineering practices version 1.0.

    Energy Technology Data Exchange (ETDEWEB)

    Minana, Molly A.; Sturtevant, Judith E.; Heaphy, Robert; Hodges, Ann Louise; Boucheron, Edward A.; Drake, Richard Roy; Forsythe, Christi A.; Schofield, Joseph Richard, Jr.; Pavlakos, Constantine James; Williamson, Charles Michael; Edwards, Harold Carter

    2005-01-01

    The purpose of the Sandia National Laboratories (SNL) Advanced Simulation and Computing (ASC) Software Quality Plan is to clearly identify the practices that are the basis for continually improving the quality of ASC software products. Quality is defined in DOE/AL Quality Criteria (QC-1) as conformance to customer requirements and expectations. This quality plan defines the ASC program software quality practices and provides mappings of these practices to the SNL Corporate Process Requirements (CPR 1.3.2 and CPR 1.3.6) and the Department of Energy (DOE) document, ASCI Software Quality Engineering: Goals, Principles, and Guidelines (GP&G). This quality plan identifies ASC management and software project teams' responsibilities for cost-effective software engineering quality practices. The SNL ASC Software Quality Plan establishes the signatories commitment to improving software products by applying cost-effective software engineering quality practices. This document explains the project teams opportunities for tailoring and implementing the practices; enumerates the practices that compose the development of SNL ASC's software products; and includes a sample assessment checklist that was developed based upon the practices in this document.

  12. Sandia National Laboratories: Business Opportunities Website

    Science.gov (United States)

    Environmental Management System Pollution Prevention History 60 impacts Diversity Locations Facts & Figures Does Sandia Buy? Opportunities Small Business Procurement Technical Assistance Program (PTAP) Current Technology Partnerships Business, Industry, & Non-Profits Government Universities Center for

  13. Sandia National Laboratories: News: Publications: Fact Sheets

    Science.gov (United States)

    Environmental Management System Pollution Prevention History 60 impacts Diversity Locations Facts & Figures Does Sandia Buy? Opportunities Small Business Procurement Technical Assistance Program (PTAP) Current Technology Partnerships Business, Industry, & Non-Profits Government Universities Center for

  14. Ethics, technology, and engineering : an introduction

    NARCIS (Netherlands)

    Poel, van de I.R.; Royakkers, L.M.M.

    2011-01-01

    Featuring a wide range of international case studies, Ethics, Technology, and Engineering presents a unique and systematic approach for engineering students to deal with the ethical issues that are increasingly inherent in engineering practice.

  15. International Journal of Engineering, Science and Technology ...

    African Journals Online (AJOL)

    International Journal of Engineering, Science and Technology: Journal Sponsorship. Journal Home > About the Journal > International Journal of Engineering, Science and Technology: Journal Sponsorship. Log in or Register to get access to full text downloads.

  16. International Journal of Engineering, Science and Technology ...

    African Journals Online (AJOL)

    International Journal of Engineering, Science and Technology: About this journal. Journal Home > International Journal of Engineering, Science and Technology: About this journal. Log in or Register to get access to full text downloads.

  17. Process Engineering Technology Center Initiative

    Science.gov (United States)

    Centeno, Martha A.

    2002-01-01

    NASA's Kennedy Space Center (KSC) is developing as a world-class Spaceport Technology Center (STC). From a process engineering (PE) perspective, the facilities used for flight hardware processing at KSC are NASA's premier factories. The products of these factories are safe, successful shuttle and expendable vehicle launches carrying state-of-the-art payloads. PE is devoted to process design, process management, and process improvement, rather than product design. PE also emphasizes the relationships of workers with systems and processes. Thus, it is difficult to speak of having a laboratory for PE at K.S.C. because the entire facility is practically a laboratory when observed from a macro level perspective. However, it becomes necessary, at times, to show and display how K.S.C. has benefited from PE and how K.S.C. has contributed to the development of PE; hence, it has been proposed that a Process Engineering Technology Center (PETC) be developed to offer a place with a centralized focus on PE projects, and a place where K.S.C.'s PE capabilities can be showcased, and a venue where new Process Engineering technologies can be investigated and tested. Graphics for showcasing PE capabilities have been designed, and two initial test beds for PE technology research have been identified. Specifically, one test bed will look into the use of wearable computers with head mounted displays to deliver work instructions; the other test bed will look into developing simulation models that can be assembled into one to create a hierarchical model.

  18. Sandia Agile MEMS Prototyping, Layout Tools, Education and Services Program

    Energy Technology Data Exchange (ETDEWEB)

    Schriner, H.; Davies, B.; Sniegowski, J.; Rodgers, M.S.; Allen, J.; Shepard, C.

    1998-05-01

    Research and development in the design and manufacture of Microelectromechanical Systems (MEMS) is growing at an enormous rate. Advances in MEMS design tools and fabrication processes at Sandia National Laboratories` Microelectronics Development Laboratory (MDL) have broadened the scope of MEMS applications that can be designed and manufactured for both military and commercial use. As improvements in micromachining fabrication technologies continue to be made, MEMS designs can become more complex, thus opening the door to an even broader set of MEMS applications. In an effort to further research and development in MEMS design, fabrication, and application, Sandia National Laboratories has launched the Sandia Agile MEMS Prototyping, Layout Tools, Education and Services Program or SAMPLES program. The SAMPLES program offers potential partners interested in MEMS the opportunity to prototype an idea and produce hardware that can be used to sell a concept. The SAMPLES program provides education and training on Sandia`s design tools, analysis tools and fabrication process. New designers can participate in the SAMPLES program and design MEMS devices using Sandia`s design and analysis tools. As part of the SAMPLES program, participants` designs are fabricated using Sandia`s 4 level polycrystalline silicon surface micromachine technology fabrication process known as SUMMiT (Sandia Ultra-planar, Multi-level MEMS Technology). Furthermore, SAMPLES participants can also opt to obtain state of the art, post-fabrication services provided at Sandia such as release, packaging, reliability characterization, and failure analysis. This paper discusses the components of the SAMPLES program.

  19. Identification of remediation needs and technology development focus areas for the Environmental Restoration (ER) Project at Sandia National Laboratories/New Mexico (SNL/NM)

    International Nuclear Information System (INIS)

    Tucker, M.D.

    1995-06-01

    The Environmental Restoration (ER) Project has been tasked with the characterization, assessment, remediation and long-term monitoring of contaminated waste sites at Sandia National Laboratories/New Mexico (SNL/NM). Many of these sites will require remediation which will involve the use of baseline technologies, innovative technologies that are currently under development, and new methods which will be developed in the near future. The Technology Applications Program (TAP) supports the ER Project and is responsible for development of new technologies for use at the contaminated waste sites, including technologies that will be used for remediation and restoration of these sites. The purpose of this report is to define the remediation needs of the ER Project and to identify those remediation needs for which the baseline technologies and the current development efforts are inadequate. The area between the remediation needs and the existing baseline/innovative technology base represents a technology gap which must be filled in order to remediate contaminated waste sites at SNL/NM economically and efficiently. In the first part of this report, the remediation needs of the ER Project are defined by both the ER Project task leaders and by TAP personnel. The next section outlines the baseline technologies, including EPA defined Best Demonstrated Available Technologies (BDATs), that are applicable at SNL/NM ER sites. This is followed by recommendations of innovative technologies that are currently being developed that may also be applicable at SNL/NM ER sites. Finally, the gap between the existing baseline/innovative technology base and the remediation needs is identified. This technology gap will help define the future direction of technology development for the ER Project

  20. Sandia National Laboratories, California proposed CREATE facility environmental baseline survey.

    Energy Technology Data Exchange (ETDEWEB)

    Catechis, Christopher Spyros

    2013-10-01

    Sandia National Laboratories, Environmental Programs completed an environmental baseline survey (EBS) of 12.6 acres located at Sandia National Laboratories/California (SNL/CA) in support of the proposed Collaboration in Research and Engineering for Advanced Technology and Education (CREATE) Facility. The survey area is comprised of several parcels of land within SNL/CA, County of Alameda, California. The survey area is located within T 3S, R 2E, Section 13. The purpose of this EBS is to document the nature, magnitude, and extent of any environmental contamination of the property; identify potential environmental contamination liabilities associated with the property; develop sufficient information to assess the health and safety risks; and ensure adequate protection for human health and the environment related to a specific property.

  1. Sandia National Laboratories: About Sandia: Community Involvement:

    Science.gov (United States)

    Does Sandia Buy? Opportunities Small Business Procurement Technical Assistance Program (PTAP) Current . In the 1960s, employees initiated the Shoes for Kids Program. Rather than giving each other gifts holidays, New Mexico employees enjoy the opportunity to provide gifts for more than 600 children who are

  2. Diesel Technology: Engines. [Teacher and Student Editions.

    Science.gov (United States)

    Barbieri, Dave; Miller, Roger; Kellum, Mary

    Competency-based teacher and student materials on diesel engines are provided for a diesel technology curriculum. Seventeen units of instruction cover the following topics: introduction to engine principles and procedures; engine systems and components; fuel systems; engine diagnosis and maintenance. The materials are based on the…

  3. Information technology security system engineering methodology

    Science.gov (United States)

    Childs, D.

    2003-01-01

    A methodology is described for system engineering security into large information technology systems under development. The methodology is an integration of a risk management process and a generic system development life cycle process. The methodology is to be used by Security System Engineers to effectively engineer and integrate information technology security into a target system as it progresses through the development life cycle. The methodology can also be used to re-engineer security into a legacy system.

  4. Sandia QIS Capabilities.

    Energy Technology Data Exchange (ETDEWEB)

    Muller, Richard P. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-07-01

    Sandia National Laboratories has developed a broad set of capabilities in quantum information science (QIS), including elements of quantum computing, quantum communications, and quantum sensing. The Sandia QIS program is built atop unique DOE investments at the laboratories, including the MESA microelectronics fabrication facility, the Center for Integrated Nanotechnologies (CINT) facilities (joint with LANL), the Ion Beam Laboratory, and ASC High Performance Computing (HPC) facilities. Sandia has invested $75 M of LDRD funding over 12 years to develop unique, differentiating capabilities that leverage these DOE infrastructure investments.

  5. Sandia National Laboratories analysis code data base

    Science.gov (United States)

    Peterson, C. W.

    1994-11-01

    Sandia National Laboratories' mission is to solve important problems in the areas of national defense, energy security, environmental integrity, and industrial technology. The laboratories' strategy for accomplishing this mission is to conduct research to provide an understanding of the important physical phenomena underlying any problem, and then to construct validated computational models of the phenomena which can be used as tools to solve the problem. In the course of implementing this strategy, Sandia's technical staff has produced a wide variety of numerical problem-solving tools which they use regularly in the design, analysis, performance prediction, and optimization of Sandia components, systems, and manufacturing processes. This report provides the relevant technical and accessibility data on the numerical codes used at Sandia, including information on the technical competency or capability area that each code addresses, code 'ownership' and release status, and references describing the physical models and numerical implementation.

  6. 2016 Annual Site Environmental Report Sandia National Laboratories/New Mexico.

    Energy Technology Data Exchange (ETDEWEB)

    Salas, Angela Maria [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Griffith, Stacy R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-07-01

    Sandia National Laboratories (SNL) is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy’s (DOE’s), National Nuclear Security Administration (NNSA). The DOE/NNSA Sandia Field Office administers the contract and oversees contractor operations at SNL, New Mexico. This Annual Site Environmental Report (ASER) summarizes data and the compliance status of sustainability, environmental protection, and monitoring programs at SNL/NM during calendar year 2016. Major environmental programs include air quality, water quality, groundwater protection, terrestrial and ecological surveillance, waste management, pollution prevention, environmental restoration, oil and chemical spill prevention, and implementation of the National Environmental Policy Act. This ASER is prepared in accordance with and required by DOE O 231.1B, Admin Change 1, Environment, Safety, and Health Reporting.

  7. Knowledge Expansion in Engineering Education: Engineering Technology as an Alternative

    Directory of Open Access Journals (Sweden)

    Kamsiah Mohd Ismail

    2015-07-01

    Full Text Available Abstract. The current and rising challenges in engineering education demand graduate engineers who are well-prepared to provide innovative solutions as technical specialists, system integrators and change agents. Realizing the importance of producing a highly competent manpower, the Malaysian Government has put considerable pressure to the universities to produce engineers who are competitive in the global market. Hence, this assignment of developing a highly competence engineering technologist workforce in support of the government policy highlights issues pertaining to the development and offering of practical-oriented programs as a knowledge expansion in engineering education at universities as envisioned by the Malaysian Government.  This paper evaluates the current scenario and examines the application-oriented programs of engineering technology education as practice in local institutions in Malaysia in comparisons to some universities abroad. It also investigates the challenges faced by university management in dealing with issues concerning national quality assurance and accreditation pertaining to the engineering technology education programs. Specifically, it analyzes the faculty planning of pedagogies in term of hands-on skills in teaching and learning. A key conclusion of this research is that Malaysian universities need to evaluate its engineering technology education strategies if they aim for quality assurance and accreditation to be established and aspire for successful attempts towards the creation of the requisite knowledge workers that Malaysia needs.Keywords: application-oriented, engineering education, engineering technology, hands-on skills, knowledge expansion 

  8. Sandia National Laboratories: National Security Missions: Defense Systems

    Science.gov (United States)

    ; Technology Defense Systems & Assessments About Defense Systems & Assessments Program Areas Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios ; Culture Work-Life Balance Special Programs Nuclear Weapons Defense Systems Global Security Energy Facebook

  9. Software engineering technology transfer: Understanding the process

    Science.gov (United States)

    Zelkowitz, Marvin V.

    1993-01-01

    Technology transfer is of crucial concern to both government and industry today. In this report, the mechanisms developed by NASA to transfer technology are explored and the actual mechanisms used to transfer software development technologies are investigated. Time, cost, and effectiveness of software engineering technology transfer is reported.

  10. Software Engineering Technology Infusion Within NASA

    Science.gov (United States)

    Zelkowitz, Marvin V.

    1996-01-01

    Abstract technology transfer is of crucial concern to both government and industry today. In this paper, several software engineering technologies used within NASA are studied, and the mechanisms, schedules, and efforts at transferring these technologies are investigated. The goals of this study are: 1) to understand the difference between technology transfer (the adoption of a new method by large segments of an industry) as an industry-wide phenomenon and the adoption of a new technology by an individual organization (called technology infusion); and 2) to see if software engineering technology transfer differs from other engineering disciplines. While there is great interest today in developing technology transfer models for industry, it is the technology infusion process that actually causes changes in the current state of the practice.

  11. Handbook of manufacturing engineering and technology

    CERN Document Server

    2015-01-01

    The Springer Reference Work Handbook of Manufacturing Engineering and Technology provides overviews and in-depth and authoritative analyses on the basic and cutting-edge manufacturing technologies and sciences across a broad spectrum of areas. These topics are commonly encountered in industries as well as in academia. Manufacturing engineering curricula across universities are now essential topics covered in major universities worldwide.

  12. Recent Technology Advances in Distributed Engine Control

    Science.gov (United States)

    Culley, Dennis

    2017-01-01

    This presentation provides an overview of the work performed at NASA Glenn Research Center in distributed engine control technology. This is control system hardware technology that overcomes engine system constraints by modularizing control hardware and integrating the components over communication networks.

  13. The Development of Precise Engineering Surveying Technology

    Directory of Open Access Journals (Sweden)

    LI Guangyun

    2017-10-01

    Full Text Available With the construction of big science projects in China, the precise engineering surveying technology developed rapidly in the 21th century. Firstly, the paper summarized up the current development situation for the precise engineering surveying instrument and theory. Then the three typical cases of the precise engineering surveying practice such as accelerator alignment, industry measurement and high-speed railway surveying technology are focused.

  14. Current Capabilities at SNL for the Integration of Small Modular Reactors onto Smart Microgrids Using Sandia's Smart Microgrid Technology High Performance Computing and Advanced Manufacturing.

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, Salvador B. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-05-01

    Smart grids are a crucial component for enabling the nation’s future energy needs, as part of a modernization effort led by the Department of Energy. Smart grids and smart microgrids are being considered in niche applications, and as part of a comprehensive energy strategy to help manage the nation’s growing energy demands, for critical infrastructures, military installations, small rural communities, and large populations with limited water supplies. As part of a far-reaching strategic initiative, Sandia National Laboratories (SNL) presents herein a unique, three-pronged approach to integrate small modular reactors (SMRs) into microgrids, with the goal of providing economically-competitive, reliable, and secure energy to meet the nation’s needs. SNL’s triad methodology involves an innovative blend of smart microgrid technology, high performance computing (HPC), and advanced manufacturing (AM). In this report, Sandia’s current capabilities in those areas are summarized, as well as paths forward that will enable DOE to achieve its energy goals. In the area of smart grid/microgrid technology, Sandia’s current computational capabilities can model the entire grid, including temporal aspects and cyber security issues. Our tools include system development, integration, testing and evaluation, monitoring, and sustainment.

  15. Sandia National Laboratories: Up on the roof

    Science.gov (United States)

    Library Events Careers View All Jobs Students & Postdocs Internships & Co-ops Fellowships load of rooftop solar photovoltaic (PV) installations," says structural engineer Steve Dwyer (6912 structural issues. "I couldn't believe it was a problem," says Steve, who led the Sandia test team

  16. Sandia`s computer support units: The first three years

    Energy Technology Data Exchange (ETDEWEB)

    Harris, R.N. [Sandia National Labs., Albuquerque, NM (United States). Labs. Computing Dept.

    1997-11-01

    This paper describes the method by which Sandia National Laboratories has deployed information technology to the line organizations and to the desktop as part of the integrated information services organization under the direction of the Chief Information officer. This deployment has been done by the Computer Support Unit (CSU) Department. The CSU approach is based on the principle of providing local customer service with a corporate perspective. Success required an approach that was both customer compelled at times and market or corporate focused in most cases. Above all, a complete solution was required that included a comprehensive method of technology choices and development, process development, technology implementation, and support. It is the authors hope that this information will be useful in the development of a customer-focused business strategy for information technology deployment and support. Descriptions of current status reflect the status as of May 1997.

  17. Integrating rehabilitation engineering technology with biologics.

    Science.gov (United States)

    Collinger, Jennifer L; Dicianno, Brad E; Weber, Douglas J; Cui, Xinyan Tracy; Wang, Wei; Brienza, David M; Boninger, Michael L

    2011-06-01

    Rehabilitation engineers apply engineering principles to improve function or to solve challenges faced by persons with disabilities. It is critical to integrate the knowledge of biologics into the process of rehabilitation engineering to advance the field and maximize potential benefits to patients. Some applications in particular demonstrate the value of a symbiotic relationship between biologics and rehabilitation engineering. In this review we illustrate how researchers working with neural interfaces and integrated prosthetics, assistive technology, and biologics data collection are currently integrating these 2 fields. We also discuss the potential for further integration of biologics and rehabilitation engineering to deliver the best technologies and treatments to patients. Engineers and clinicians must work together to develop technologies that meet clinical needs and are accessible to the intended patient population. Copyright © 2011 American Academy of Physical Medicine and Rehabilitation. Published by Elsevier Inc. All rights reserved.

  18. Predictors of Associate's Degree Completion in Engineering and Engineering Technologies

    Science.gov (United States)

    Reys-Nickel, Lynsey L.

    The purpose of this ex post facto study was to describe completers and non-completers of associate's degree programs in engineering and engineering technologies and determine whether and to what extent completion in these programs is a function of selected student-related variables and institutional variables. Data from the 2004/2009 Beginning Postsecondary Students Longitudinal Study (BPS: 04/09) of associate's degree completers and non-completers in engineering and engineering technologies were accessed and analyzed through PowerStats, a web-based data analysis tool from National Center for Education Statistics (NCES). Descriptive data indicated that, proportionally, engineering and engineering technologies completers were mostly White, married, middle income, employed part-time, enrolled full-time, did not hold a high school diploma or certificate, completed Trigonometry/Algebra II, had a father who's highest education level was an associate's degree, but did not know their mother's highest level of education, completed remedial coursework, and started college with the goal of earning an associate's degree. While more males enrolled in the programs, males and females demonstrated similar completion rates, proportionally--with females showing a slightly higher percentage of completion. Results from the logistic regression further indicated that the variables significant to completion in associate's degree programs in engineering and engineering technologies were gender and enrollment size. Findings suggested that female students were more likely to earn the degree, and that the larger the institution, the more likely the student would become a completer. However, since a major limitation of the study was the small weighted sample size, the results of the study are inconclusive in terms of the extent to which the findings can be generalized to the population of students in associate's degree programs in engineering and engineering technologies. This study fills a

  19. Ceramic Technology For Advanced Heat Engines Project

    Energy Technology Data Exchange (ETDEWEB)

    1990-12-01

    Significant accomplishments in fabricating ceramic components for the Department of Energy (DOE), National Aeronautics and Space Administration (NASA), and Department of Defense (DoD) advanced heat engine programs have provided evidence that the operation of ceramic parts in high-temperature engine environments is feasible. However, these programs have also demonstrated that additional research is needed in materials and processing development, design methodology, and data base and life prediction before industry will have a sufficient technology base from which to produce reliable cost-effective ceramic engine components commercially. The objective of the project is to develop the industrial technology base required for reliable ceramics for application in advanced automotive heat engines. The project approach includes determining the mechanisms controlling reliability, improving processes for fabricating existing ceramics, developing new materials with increased reliability, and testing these materials in simulated engine environments to confirm reliability. Although this is a generic materials project, the focus is on the structural ceramics for advanced gas turbine and diesel engines, ceramic bearings and attachments, and ceramic coatings for thermal barrier and wear applications in these engines. This advanced materials technology is being developed in parallel and close coordination with the ongoing DOE and industry proof of concept engine development programs. To facilitate the rapid transfer of this technology to U.S. industry, the major portion of the work is being done in the ceramic industry, with technological support from government laboratories, other industrial laboratories, and universities. Abstracts prepared for appropriate papers.

  20. Sandia National Laboratories: Search Results

    Science.gov (United States)

    Locations Contact Us Employee Locator Search Menu About Leadership Mission Social Media Community Diversity Social Media Careers View All Jobs Students & Postdocs Benefits & Perks Hiring Process Deployment Centers New Mexico Small Business Assistance Program Sandia's Economic Impact Sandia Science &

  1. Technology for reducing aircraft engine pollution

    Science.gov (United States)

    Rudey, R. A.; Kempke, E. E., Jr.

    1975-01-01

    Programs have been initiated by NASA to develop and demonstrate advanced technology for reducing aircraft gas turbine and piston engine pollutant emissions. These programs encompass engines currently in use for a wide variety of aircraft from widebody-jets to general aviation. Emission goals for these programs are consistent with the established EPA standards. Full-scale engine demonstrations of the most promising pollutant reduction techniques are planned within the next three years. Preliminary tests of advanced technology gas turbine engine combustors indicate that significant reductions in all major pollutant emissions should be attainable in present generation aircraft engines without adverse effects on fuel consumption. Fundamental-type programs are yielding results which indicate that future generation gas turbine aircraft engines may be able to utilize extremely low pollutant emission combustion systems.

  2. International Journal of Engineering, Science and Technology

    African Journals Online (AJOL)

    International Journal of Engineering, Science and Technology. Journal Home · ABOUT THIS JOURNAL · Advanced Search · Current Issue · Archives · Journal Home > Vol 7, No 3 (2015) >. Log in or Register to get access to full text downloads.

  3. International Journal of Engineering, Science and Technology

    African Journals Online (AJOL)

    International Journal of Engineering, Science and Technology. Journal Home · ABOUT THIS JOURNAL · Advanced Search · Current Issue · Archives · Journal Home > Vol 2, No 11 (2010) >. Log in or Register to get access to full text downloads.

  4. International Journal of Engineering, Science and Technology

    African Journals Online (AJOL)

    International Journal of Engineering, Science and Technology. Journal Home · ABOUT THIS JOURNAL · Advanced Search · Current Issue · Archives · Journal Home > Vol 8, No 3 (2016) >. Log in or Register to get access to full text downloads.

  5. International Journal of Engineering, Science and Technology

    African Journals Online (AJOL)

    International Journal of Engineering, Science and Technology. Journal Home · ABOUT THIS JOURNAL · Advanced Search · Current Issue · Archives · Journal Home > Vol 3, No 3 (2011) >. Log in or Register to get access to full text downloads.

  6. International Journal of Engineering, Science and Technology

    African Journals Online (AJOL)

    International Journal of Engineering, Science and Technology. Journal Home · ABOUT THIS JOURNAL · Advanced Search · Current Issue · Archives · Journal Home > Vol 2, No 2 (2010) >. Log in or Register to get access to full text downloads.

  7. Supporting indigenous women in science, technology, engineering ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Supporting indigenous women in science, technology, engineering and mathematics careers in Mexico and Central ... ROSSA's latest bulletin puts a focus on women. ... IDRC invites applications for the IDRC Doctoral Research Awards.

  8. Classroom Implementation of Science, Technology, Engineering ...

    African Journals Online (AJOL)

    Zimbabwe Journal of Educational Research ... Understanding science, technology, engineering, and mathematics (STEM) education as a ... life skills in general and scientific literacy, along with a productive disposition and sense of social ...

  9. Ceramic Technology for Advanced Heat Engines Project

    Energy Technology Data Exchange (ETDEWEB)

    1989-08-01

    The Ceramic Technology for Advanced Heat Engines Project was developed by the Department of Energy's Office of Transportation Systems (OTS) in Conservation and Renewable Energy. This project, part of the OTS's Advanced Materials Development Program, was developed to meet the ceramic technology requirements of the OTS's automotive technology programs. Significant accomplishments in fabricating ceramic components for the Department of Energy (DOE), National Aeronautics and Space Administration (NASA), and Department of Defense (DoD) advanced heat engine programs have provided evidence that the operation of ceramic parts in high-temperature engine environments is feasible. However, these programs have also demonstrated that additional research is needed in materials and processing development, design methodology, and data base and life prediction before industry will have a sufficient technology base from which to produce reliable cost-effective ceramic engine components commercially.

  10. Hydrogen fuel cell engines and related technologies

    Science.gov (United States)

    2001-12-01

    The manual documents the first training course developed on the use of hydrogen fuel cells in transportation. The manual contains eleven modules covering hydrogen properties, use and safety; fuel cell technology and its systems, fuel cell engine desi...

  11. Transportation Energy - Sandia Energy

    Science.gov (United States)

    Energy Energy Secure & Sustainable Energy Future Search Icon Sandia Home Locations Contact Us Employee Locator Menu Stationary Power solar Energy Conversion Efficiency Increasing the amount of electricity produced from a given thermal energy input. Solar Energy Wind Energy Water Power Supercritical CO2

  12. Energy Research - Sandia Energy

    Science.gov (United States)

    Energy Energy Secure & Sustainable Energy Future Search Icon Sandia Home Locations Contact Us Employee Locator Menu Stationary Power solar Energy Conversion Efficiency Increasing the amount of electricity produced from a given thermal energy input. Solar Energy Wind Energy Water Power Supercritical CO2

  13. Energy - Sandia National Laboratories

    Science.gov (United States)

    Energy Energy Secure & Sustainable Energy Future Search Icon Sandia Home Locations Contact Us Employee Locator Menu Stationary Power solar Energy Conversion Efficiency Increasing the amount of electricity produced from a given thermal energy input. Solar Energy Wind Energy Water Power Supercritical CO2

  14. Education of indoor enviromental engineering technology

    Czech Academy of Sciences Publication Activity Database

    Kic, P.; Zajíček, Milan

    2011-01-01

    Roč. 9, Spec. 1 (2011), s. 83-90 ISSN 1406-894X. [Biosystems Engineering 2011. Tartu, 12.05.2011-13.05.2011] Institutional research plan: CEZ:AV0Z10750506 Keywords : Biosystems engineering * indoor environment * study * programs Subject RIV: AM - Education http://library.utia.cas.cz/separaty/2011/VS/zajicek-education of indoor enviromental engineering technology.pdf

  15. Sandia National Laboratories Institutional Plan: FY 1996--2001

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    Sandia`s Institutional Plan is by necessity a large document. As their missions have grown and diversified over the past decades, the variety of technical and site activities has increased. The programs and activities described here cover an enormous breadth of scientific and technological effort--from the creation of new materials to the development of a Sandia-wide electronic communications system. Today, there are three major themes that greatly influence this work. First, every federally funded institution is being challenged to find ways to become more cost effective, as the US seeks to reduce the deficit and achieve a balanced federal spending plan. Sandia is evaluating its business and operational processes to reduce the overall costs. Second, in response to the Galvin Task Force`s report ``Alternative Futures for the Department of Energy National Laboratories``, Sandia and the Department of Energy are working jointly to reduce the burden of administrative and compliance activities in order to devote more of the total effort to their principal research and development missions. Third, they are reevaluating the match between their missions and the programs they will emphasize in the future. They must demonstrate that Sandia`s roles--in national security, energy security, environmental integrity, and national scientific and technology agenda support--fit their special capabilities and skills and thus ensure their place in these missions for the longer planning horizon. The following areas are covered here: Sandia`s mission; laboratory directives; programmatic activities; technology partnerships and commercialization; Sandia`s resources; and protecting resources and the community.

  16. Application of Statistics in Engineering Technology Programs

    Science.gov (United States)

    Zhan, Wei; Fink, Rainer; Fang, Alex

    2010-01-01

    Statistics is a critical tool for robustness analysis, measurement system error analysis, test data analysis, probabilistic risk assessment, and many other fields in the engineering world. Traditionally, however, statistics is not extensively used in undergraduate engineering technology (ET) programs, resulting in a major disconnect from industry…

  17. FY08 Engineering Research and Technology Report

    Energy Technology Data Exchange (ETDEWEB)

    Minichino, C; McNichols, D

    2009-02-24

    This report summarizes the core research, development, and technology accomplishments in Lawrence Livermore National Laboratory's Engineering Directorate for FY2008. These efforts exemplify Engineering's more than 50-year history of developing and applying the technologies needed to support the Laboratory's national security missions. A partner in every major program and project at the Laboratory throughout its existence, Engineering has prepared for this role with a skilled workforce and technical resources developed through both internal and external venues. These accomplishments embody Engineering's mission: 'Enable program success today and ensure the Laboratory's vitality tomorrow.' Engineering's mission is carried out through basic research and technology development. Research is the vehicle for creating competencies that are cutting-edge, or require discovery-class groundwork to be fully understood. Our technology efforts are discipline-oriented, preparing research breakthroughs for broader application to a variety of Laboratory needs. The term commonly used for technology-based projects is 'reduction to practice.' As we pursue this two-pronged approach, an enormous range of technological capabilities result. This report combines our work in research and technology into one volume, organized into thematic technical areas: Engineering Modeling and Simulation; Measurement Technologies; Micro/Nano-Devices and Structures; Engineering Systems for Knowledge and Inference; and Energy Manipulation. Our investments in these areas serve not only known programmatic requirements of today and tomorrow, but also anticipate the breakthrough engineering innovations that will be needed in the future.

  18. International Conference on Mechanical Engineering and Technology

    CERN Document Server

    Mechanical Engineering and Technology

    2012-01-01

    The volume includes a set of selected papers extended and revised from the 2011 International Conference on Mechanical Engineering and Technology, held on London, UK, November 24-25, 2011.   Mechanical engineering technology is the application of physical principles and current technological developments to the creation of useful machinery and operation design. Technologies such as solid models may be used as the basis for finite element analysis (FEA) and / or computational fluid dynamics (CFD) of the design. Through the application of computer-aided manufacturing (CAM), the models may also be used directly by software to create "instructions" for the manufacture of objects represented by the models, through computer numerically controlled (CNC) machining or other automated processes, without the need for intermediate drawings.   This volume covers the subject areas of mechanical engineering and technology, and also covers interdisciplinary subject areas of computers, communications, control and automation...

  19. Biological restoration of major transportation facilities domestic demonstration and application project (DDAP): technology development at Sandia National Laboratories.

    Energy Technology Data Exchange (ETDEWEB)

    Ramsey, James L., Jr. (.,; .); Melton, Brad; Finley, Patrick; Brockman, John; Peyton, Chad E.; Tucker, Mark David; Einfeld, Wayne; Griffith, Richard O.; Brown, Gary Stephen; Lucero, Daniel A.; Betty, Rita G.; McKenna, Sean Andrew; Knowlton, Robert G.; Ho, Pauline

    2006-06-01

    The Bio-Restoration of Major Transportation Facilities Domestic Demonstration and Application Program (DDAP) is a designed to accelerate the restoration of transportation nodes following an attack with a biological warfare agent. This report documents the technology development work done at SNL for this DDAP, which include development of the BROOM tool, an investigation of surface sample collection efficiency, and a flow cytometry study of chlorine dioxide effects on Bacillus anthracis spore viability.

  20. Market Assessment and Commercialization Strategy for the Radial Sandia Cooler

    Energy Technology Data Exchange (ETDEWEB)

    Goetzler, William [Navigant Consulting, Inc., Burlington, MA (United States); Shandross, Richard [Navigant Consulting, Inc., Burlington, MA (United States); Weintraub, Daniel [Navigant Consulting, Inc., Burlington, MA (United States); Young, Jim [Navigant Consulting, Inc., Burlington, MA (United States)

    2014-02-01

    This market assessment and commercialization report characterizes and assesses the market potential of the rotating heat exchanger technology developed at Sandia National Laboratories (SNL), known as the Radial Sandia Cooler. The RSC is a novel, motor-driven, rotating, finned heat exchanger technology. The RSC was evaluated for the residential, commercial, industrial, and transportation markets. Recommendations for commercialization were made based on assessments of the prototype RSC and the Sandia Cooler technology in general, as well as an in-depth analysis of the six most promising products for initial RSC commercialization.

  1. Tokamak Engineering Technology Facility scoping study

    Energy Technology Data Exchange (ETDEWEB)

    Stacey, W.M. Jr.; Abdou, M.A.; Bolta, C.C.

    1976-03-01

    A scoping study for a Tokamak Engineering Technology Facility (TETF) is presented. The TETF is a tokamak with R = 3 m and I/sub p/ = 1.4 MA based on the counterstreaming-ion torus mode of operation. The primary purpose of TETF is to demonstrate fusion technologies for the Experimental Power Reactor (EPR), but it will also serve as an engineering and radiation test facility. TETF has several technological systems (e.g., superconducting toroidal-field coil, tritium fuel cycle, impurity control, first wall) that are prototypical of EPR.

  2. Tokamak Engineering Technology Facility scoping study

    International Nuclear Information System (INIS)

    Stacey, W.M. Jr.; Abdou, M.A.; Bolta, C.C.

    1976-03-01

    A scoping study for a Tokamak Engineering Technology Facility (TETF) is presented. The TETF is a tokamak with R = 3 m and I/sub p/ = 1.4 MA based on the counterstreaming-ion torus mode of operation. The primary purpose of TETF is to demonstrate fusion technologies for the Experimental Power Reactor (EPR), but it will also serve as an engineering and radiation test facility. TETF has several technological systems (e.g., superconducting toroidal-field coil, tritium fuel cycle, impurity control, first wall) that are prototypical of EPR

  3. ABET [Accreditation Board for Engineering and Technology] accreditation for engineering technology

    International Nuclear Information System (INIS)

    Foulke, L.R.

    1989-01-01

    Engineering technology is that part of the technological field that requires the application of scientific and engineering knowledge and methods combined with technical skills in support of engineering activities. It lies in the occupational spectrum between the craftsman and the engineer at the end of the spectrum closest to the engineer. The term engineering technician is applied to the graduates of associate degree programs. Graduates of baccalaureate programs are called engineering technologists. The content of a 4-yr engineering technology program treats the same subject areas as does an engineering program but with more emphasis on application, use of established design concepts, and the laboratory experience rather than on science, conceptual design, and new development. The mathematics content of accreditable baccalaureate programs must contain at least 12 semester-hour credits of mathematics including the study of calculus. Engineering managers should take a hard look at what is really needed in the education of that majority of a personnel who do not work as design and development engineers. Graduates of engineering technology programs may be better qualified than those of some engineering programs for the majority of jobs in our industry today

  4. Sandia National Laboratories: News: Search Sandia Publications

    Science.gov (United States)

    Foundations Bioscience Computing & Information Science Electromagnetics Engineering Science Geoscience , Consumption, and Utilization Advanced Propulsion Systems Engineering Instrumentation Related To Nuclear Nanotechnology Astronomy and Astrophysics Fossil-Fueled Power Plants Power Transmission and Distribution Hydrogen

  5. Sandia WIPP calibration traceability

    Energy Technology Data Exchange (ETDEWEB)

    Schuhen, M.D. [Sandia National Labs., Albuquerque, NM (United States); Dean, T.A. [RE/SPEC, Inc., Albuquerque, NM (United States)

    1996-05-01

    This report summarizes the work performed to establish calibration traceability for the instrumentation used by Sandia National Laboratories at the Waste Isolation Pilot Plant (WIPP) during testing from 1980-1985. Identifying the calibration traceability is an important part of establishing a pedigree for the data and is part of the qualification of existing data. In general, the requirement states that the calibration of Measuring and Test equipment must have a valid relationship to nationally recognized standards or the basis for the calibration must be documented. Sandia recognized that just establishing calibration traceability would not necessarily mean that all QA requirements were met during the certification of test instrumentation. To address this concern, the assessment was expanded to include various activities.

  6. Sandia WIPP calibration traceability

    International Nuclear Information System (INIS)

    Schuhen, M.D.; Dean, T.A.

    1996-05-01

    This report summarizes the work performed to establish calibration traceability for the instrumentation used by Sandia National Laboratories at the Waste Isolation Pilot Plant (WIPP) during testing from 1980-1985. Identifying the calibration traceability is an important part of establishing a pedigree for the data and is part of the qualification of existing data. In general, the requirement states that the calibration of Measuring and Test equipment must have a valid relationship to nationally recognized standards or the basis for the calibration must be documented. Sandia recognized that just establishing calibration traceability would not necessarily mean that all QA requirements were met during the certification of test instrumentation. To address this concern, the assessment was expanded to include various activities

  7. Ceramic technology for Advanced Heat Engines Project

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, D.R.

    1991-07-01

    Significant accomplishments in fabricating ceramic components for advanced heat engine programs have provided evidence that the operation of ceramic parts in high-temperature engine environments is feasible. However, these programs have also demonstrated that additional research is needed in materials and processing development, design methodology, and database and life prediction before industry will have a sufficient technology base from which to produce reliable cost-effective ceramic engine components commercially. An assessment of needs was completed, and a five year project plan was developed with extensive input from private industry. The project approach includes determining the mechanisms controlling reliability, improving processes for fabricating existing ceramics, developing new materials with increased reliability, and testing these materials in simulated engine environments to confirm reliability. Although this is a generic materials project, the focus is on the structural ceramics for advanced gas turbine and diesel engines, ceramic bearings and attachments, and ceramic coatings for thermal barrier and wear applications in these engines. To facilitate the rapid transfer of this technology to US industry, the major portion of the work is being done in the ceramic industry, with technological support from government laboratories, other industrial laboratories, and universities. This project is managed by ORNL for the Office of Transportation Technologies, Office of Transportation Materials, and is closely coordinated with complementary ceramics tasks funded by other DOE offices, NASA, DOD, and industry.

  8. Ceramic Technology for Advanced Heat Engines Project

    Energy Technology Data Exchange (ETDEWEB)

    1990-08-01

    The Ceramic Technology For Advanced Heat Engines Project was developed by the Department of Energy's Office of Transportation Systems (OTS) in Conservation and Renewable Energy. This project, part of the OTS's Advanced Materials Development Program, was developed to meet the ceramic technology requirements of the OTS's automotive technology programs. Significant accomplishments in fabricating ceramic components for the Department of Energy (DOE), National Aeronautics and Space Administration (NASA), and Department of Defense (DOD) advanced heat engine programs have provided evidence that the operation of ceramic parts in high-temperature engine environments is feasible. However, these programs have also demonstrated that additional research is needed in materials and processing development, design methodology, and data base and life prediction before industry will have a sufficient technology base from which to produce reliable cost-effective ceramic engine components commercially. An assessment of needs was completed, and a five year project plan was developed with extensive input from private industry. The objective of the project is to develop the industrial technology base required for reliable ceramics for application in advanced automotive heat engines. The project approach includes determining the mechanisms controlling reliability, improving processes for fabricating existing ceramics, developing new materials with increased reliability, and testing these materials in simulated engine environments to confirm reliability. Although this is a generic materials project, the focus is on structural ceramics for advanced gas turbine and diesel engines, ceramic hearings and attachments, and ceramic coatings for thermal barrier and wear applications in these engines.

  9. Introduction to biomedical engineering technology

    CERN Document Server

    Street, Laurence J

    2011-01-01

    IntroductionHistory of Medical DevicesThe Role of Biomedical Engineering Technologists in Health CareCharacteristics of Human Anatomy and Physiology That Relate to Medical DevicesSummaryQuestionsDiagnostic Devices: Part OnePhysiological Monitoring SystemsThe HeartSummaryQuestionsDiagnostic Devices: Part TwoCirculatory System and BloodRespiratory SystemNervous SystemSummaryQuestionsDiagnostic Devices: Part ThreeDigestive SystemSensory OrgansReproductionSkin, Bone, Muscle, MiscellaneousChapter SummaryQuestionsDiagnostic ImagingIntroductionX-RaysMagnetic Resonance Imaging ScannersPositron Emissio

  10. Educating Future Engineers and the Image of Technology : Applying the Philosophy of Technology to Engineering Education

    NARCIS (Netherlands)

    Ghaemi Nia, M.M.

    2017-01-01

    This thesis deals with the matter of making reforms in engineering education, and it highlights the significance of delivering a more comprehensive image of technology and its different aspects in the course of training students about technology and engineering. The innovative contribution of the

  11. Preparing technicians for engineering materials technology

    Science.gov (United States)

    Jacobs, James A.; Metzloff, Carlton H.

    1990-01-01

    A long held principle is that for every engineer and scientist there is a need for ten technicians to maximize the efficiency of the technology team for meeting needs of industry and government. Developing an adequate supply of technicians to meet the requirements of the materials related industry will be a challenge and difficult to accomplish. A variety of agencies feel the need and wish to support development of engineering materials technology programs. In a joint effort among Battelle Laboratories, the Department of Energy (DOE) and Northwest College and University Association for Science (NORCUS), the development of an engineering materials technology program for vocational programs and community colleges for the Pacific Northwest Region was recently completed. This effort has implications for a national model. The model Associate of Applied Science degree in Engineering Materials Technology shown provides a general structure. It purposely has course titles which need delimiting while also including a core of courses necessary to develop cognitive, affective and psychomotor skills with the underlining principles of math, science and technology so students have job entry skills, and so that students can learn about and adapt to evolving technology.

  12. Information Technology in Engineering and Project Management

    Directory of Open Access Journals (Sweden)

    Chien-Ho Ko

    2017-01-01

    Full Text Available Information Technology (IT can be regarded as the use of computers to store, analyze, and manipulate data (Daintith, 2009. With the rapid development of personal computers, IT has been widely applied in nearly every field (Davenport, 2013. This issue presents five papers covering engineering and project management, three of which focus on the application of IT to solve engineering and project management issues, while one presents research into public private partnerships, and another into cash flow forecasting.

  13. Transformer engineering design, technology, and diagnostics

    CERN Document Server

    Kulkarni, SV

    2012-01-01

    Transformer Engineering: Design, Technology, and Diagnostics, Second Edition helps you design better transformers, apply advanced numerical field computations more effectively, and tackle operational and maintenance issues. Building on the bestselling Transformer Engineering: Design and Practice, this greatly expanded second edition also emphasizes diagnostic aspects and transformer-system interactions. What's New in This Edition Three new chapters on electromagnetic fields in transformers, transformer-system interactions and modeling, and monitoring and diagnostics An extensively revised chap

  14. Pollution reduction technology program for turboprop engines

    Science.gov (United States)

    Tomlinson, J. G.

    1977-01-01

    The reduction of CO, HC, and smoke emissions while maintaining acceptable NO(x) emissions without affecting fuel consumption, durability, maintainability, and safety was accomplished. Component combustor concept screening directed toward the demonstration of advanced combustor technology required to meet the EPA exhaust emissions standards for class P2 turboprop engines was covered. The combustion system for the Allison 501-D22A engine was used, and three combustor design concepts - reverse flow, prechamber, and staged fuel were evaluated.

  15. 20 Engineering Technologies Which Changed The World

    International Nuclear Information System (INIS)

    Lee, In Sik; Shin, Dong Won; Mun, Jung Yang and others

    2004-07-01

    This book deals with 20 engineering technologies which changed the world, these are about a, compass, papermaking, a lens, gunpowder, machine watch, printing technique, vaccine, a suspension bridge, a railroad, a loom, photograph, petroleum, automobile, electricity, wireless communications, synthetic medicine, a jet engine and a rocket, nuclear bombs, ENIAC, and polymerase chain reaction method. Each skill is introduced with history and the detailed reports by other persons.

  16. SI units in engineering and technology

    CERN Document Server

    Qasim, S H

    2016-01-01

    SI Units in Engineering and Technology focuses on the use of the International System of Units-Systeme International d'Unités (SI). The publication first elaborates on the SI, derivation of important engineering units, and derived SI units in science and engineering. Discussions focus on applied mechanics in mechanical engineering, electrical and magnetic units, stress and pressure, work and energy, power and force, and magnitude of SI units. The text then examines SI units conversion tables and engineering data in SI units. Tables include details on the sectional properties of metals in SI units, physical properties of important molded plastics, important physical constants expressed in SI units, and temperature, area, volume, and mass conversion. Tables that show the mathematical constants, standard values expressed in SI units, and Tex count conversion are also presented. The publication is a dependable source of data for researchers interested in the use of the International System of Units-Systeme Inter...

  17. DEMONSTRATION BULLETIN: IN SITU ELECTROKINETIC EXTRACTION SYSTEM - SANDIA NATIONAL LABORATORIES

    Science.gov (United States)

    Sandia National Laboratories (SNL) has developed an in situ soil remediation system that uses electrokinetic principles to remediate hexavalent chromium-contaminated unsaturated or partially saturated soils. The technology involves the in situ application of direct current to the...

  18. Mathematics for engineering, technology and computing science

    CERN Document Server

    Martin, Hedley G

    1970-01-01

    Mathematics for Engineering, Technology and Computing Science is a text on mathematics for courses in engineering, technology, and computing science. It covers linear algebra, ordinary differential equations, and vector analysis, together with line and multiple integrals. This book consists of eight chapters and begins with a discussion on determinants and linear equations, with emphasis on how the value of a determinant is defined and how it may be obtained. Solution of linear equations and the dependence between linear equations are also considered. The next chapter introduces the reader to

  19. Mechanical technology for higher engineering technicians

    CERN Document Server

    Black, Peter

    1972-01-01

    Mechanical Technology for Higher Engineering Technicians deals with the mechanics of machines, thermodynamics, and mechanics of fluids. This book presents discussions and examples that deal with the strength of materials, technology of machines, and techniques used by professional engineers. The book explains the strain energy of torsion, coil springs, and the effects of axial load. The author also discusses the forces that produce bending, shearing, and bending combined with direct stress, as well as beams subjected to a uniform bending moment or simply supported beams with concentrated non-c

  20. Integrated diesel engine NOx reduction technology development

    Energy Technology Data Exchange (ETDEWEB)

    Hoelzer, J.; Zhu, J.; Savonen, C.L. [Detroit Diesel Corp., MI (United States); Kharas, K.C.C.; Bailey, O.H.; Miller, M.; Vuichard, J. [Allied Signal Environmental Catalysts, Tulsa, OK (United States)

    1997-12-31

    The effectiveness of catalyst performance is a function of the inlet exhaust gas temperature, gas flow rate, concentration of NO{sub x} and oxygen, and reductant quantity and species. Given this interrelationship, it becomes immediately clear that an integrated development approach is necessary. Such an approach is taken in this project. As such, the system development path is directed by an engine-catalyst engineering team. Of the tools at the engine engineer`s disposal the real-time aspects of computer assisted subsystem modeling is valuable. It will continue to be the case as ever more subtle improvements are needed to meet competitive performance, durability, and emission challenges. A review of recent prototype engines has shown that considerable improvements to base diesel engine technology are being made. For example, HSDI NO{sub x} has been reduced by a factor of two within the past ten years. However, additional substantial NO{sub x}/PM reduction is still required for the future. A viable lean NO{sub x} catalyst would be an attractive solution to this end. The results of recent high and low temperature catalyst developments were presented. High temperature base metal catalysts have been formulated to produce very good conversion efficiency and good thermal stability, albeit at temperatures near the upper range of diesel engine operation. Low temperature noble metal catalysts have been developed to provide performance of promising 4-way control but need increased NO{sub x} reduction efficiency.

  1. Wind Energy Workforce Development: Engineering, Science, & Technology

    Energy Technology Data Exchange (ETDEWEB)

    Lesieutre, George A.; Stewart, Susan W.; Bridgen, Marc

    2013-03-29

    Broadly, this project involved the development and delivery of a new curriculum in wind energy engineering at the Pennsylvania State University; this includes enhancement of the Renewable Energy program at the Pennsylvania College of Technology. The new curricula at Penn State includes addition of wind energy-focused material in more than five existing courses in aerospace engineering, mechanical engineering, engineering science and mechanics and energy engineering, as well as three new online graduate courses. The online graduate courses represent a stand-alone Graduate Certificate in Wind Energy, and provide the core of a Wind Energy Option in an online intercollege professional Masters degree in Renewable Energy and Sustainability Systems. The Pennsylvania College of Technology erected a 10 kilowatt Xzeres wind turbine that is dedicated to educating the renewable energy workforce. The entire construction process was incorporated into the Renewable Energy A.A.S. degree program, the Building Science and Sustainable Design B.S. program, and other construction-related coursework throughout the School of Construction and Design Technologies. Follow-on outcomes include additional non-credit opportunities as well as secondary school career readiness events, community outreach activities, and public awareness postings.

  2. Sandia National Laboratories: About Sandia: History

    Science.gov (United States)

    Environmental Management System Pollution Prevention History 60 impacts Diversity Locations Facts & Figures Programs Nuclear Weapons About Nuclear Weapons Safety & Security Weapons Science & Technology Robotics R&D 100 Awards Laboratory Directed Research & Development Technology Deployment Centers

  3. Liquid Metal Engineering and Technology. Volume 1

    International Nuclear Information System (INIS)

    1988-01-01

    These proceedings of the fourth international conference on liquid metal engineering and technology volume 1, are devided into 3 sections bearing on: - Apparatus and components for liquid metal (29 papers) - Liquid metal leaks, fires and fumes (10 papers) - Cleaning, decontamination, waste disposal (14 papers) [fr

  4. Integration of basic electromagnetism and engineering technology

    DEFF Research Database (Denmark)

    Bentz, Sigurd

    1995-01-01

    The theory of electromagnetism is taught as a part of most contemporary electrical engineering curricula. Usually a basic course is intended to cover all the fundamental electromagnetic theory which is needed in later engineering courses. However it is often found that students fail to understand...... theoretical course contents have been reduced to a core of fundamental principles. These are combined with the study of magnetic properties of materials closely related to manufacturer's data sheets. To enhance the understanding of these fundamentals, practical topics from engineering technology are included...... and their application in technology students get a more comprehensive understanding of electromagnetism, and they are able to apply the physical principles to problems they encounter later in their careers...

  5. Sandia National Laboratories: Sandia National Laboratories: Missions:

    Science.gov (United States)

    ; Force Protection Homeland Security Cyber & Infrastructure Security Global Security Remote Sensing predictions of the adiabatic architecture's robustness to noise. Cyber Patterns Cyber researchers developed a to websites - identifying possible reconnaissance in preparation for a social engineering attack

  6. Biomedical engineering frontier research and converging technologies

    CERN Document Server

    Jun, Ho-Wook; Shin, Jennifer; Lee, SangHoon

    2016-01-01

    This book provides readers with an integrative overview of the latest research and developments in the broad field of biomedical engineering. Each of the chapters offers a timely review written by leading biomedical engineers and aims at showing how the convergence of scientific and engineering fields with medicine has created a new basis for practically solving problems concerning human health, wellbeing and disease. While some of the latest frontiers of biomedicine, such as neuroscience and regenerative medicine, are becoming increasingly dependent on new ideas and tools from other disciplines, the paradigm shift caused by technological innovations in the fields of information science, nanotechnology, and robotics is opening new opportunities in healthcare, besides dramatically changing the ways we actually practice science. At the same time, a new generation of engineers, fluent in many different scientific “languages,” is creating entirely new fields of research that approach the “old” questions f...

  7. Complex engineering systems science meets technology

    CERN Document Server

    Minai, Ali A; Bar-Yam, Yaneer

    2006-01-01

    Every time that we take money out of an ATM, surf the internet or simply turn on a light switch, we enjoy the benefits of complex engineered systems. Systems like power grids and global communication networks are so ubiquitous in our daily lives that we usually take them for granted, only noticing them when they break down. But how do such amazing technologies and infrastructures come to be what they are? How are these systems designed? How do distributed networks work? How are they made to respond rapidly in 'real time'? And as the demands that we place on these systems become increasingly complex, are traditional systems-engineering practices still relevant? This volume examines the difficulties that arise in creating highly complex engineered systems and new approaches that are being adopted. Topics addressed range from the formal representation and classification of distributed networked systems to revolutionary engineering practices inspired by biological evolution. By bringing together the latest resear...

  8. 78 FR 24241 - Nanoscale Science, Engineering, and Technology Subcommittee; Committee on Technology, National...

    Science.gov (United States)

    2013-04-24

    ... OFFICE OF SCIENCE AND TECHNOLOGY POLICY Nanoscale Science, Engineering, and Technology.... SUMMARY: The National Nanotechnology Coordination Office (NNCO), on behalf of the Nanoscale Science, Engineering, and Technology (NSET) Subcommittee of the Committee on Technology, National Science and...

  9. 77 FR 13159 - Nanoscale Science, Engineering, and Technology Subcommittee of the Committee on Technology...

    Science.gov (United States)

    2012-03-05

    ... OFFICE OF SCIENCE AND TECHNOLOGY POLICY Nanoscale Science, Engineering, and Technology... public meeting. SUMMARY: The National Nanotechnology Coordination Office (NNCO), on behalf of the Nanoscale Science, Engineering, and Technology (NSET) Subcommittee of the Committee on Technology, National...

  10. 77 FR 56681 - Nanoscale Science, Engineering, and Technology Subcommittee; Committee on Technology, National...

    Science.gov (United States)

    2012-09-13

    ... OFFICE OF SCIENCE AND TECHNOLOGY POLICY Nanoscale Science, Engineering, and Technology...: Notice of webinar. SUMMARY: The National Nanotechnology Coordination Office (NNCO), on behalf of the Nanoscale Science, Engineering, and Technology (NSET) Subcommittee of the Committee on Technology, National...

  11. 77 FR 61448 - Nanoscale Science, Engineering and Technology Subcommittee Committee on Technology, National...

    Science.gov (United States)

    2012-10-09

    ... OFFICE OF SCIENCE AND TECHNOLOGY POLICY Nanoscale Science, Engineering and Technology Subcommittee...: The National Nanotechnology Coordination Office (NNCO), on behalf of the Nanoscale Science, Engineering, and Technology (NSET) Subcommittee of the Committee on Technology, National Science and...

  12. Vibration control for precision manufacturing at Sandia National Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Hinnerichs, T.; Martinez, D. [Sandia National Labs., Albuquerque, NM (United States). Structural Dynamics and Vibration Control Dept.

    1995-04-01

    Sandia National Laboratories performs R and D in structural dynamics and vibration suppression for precision applications in weapon systems, space, underwater, transportation and civil structures. Over the last decade these efforts have expanded into the areas of active vibration control and ``smart`` structures and material systems. In addition, Sandia has focused major resources towards technology to support weapon product development and agile manufacturing capability for defense and industrial applications. This paper will briefly describe the structural dynamics modeling and verification process currently in place at Sandia that supports vibration control and some specific applications of these techniques to manufacturing in the areas of lithography, machine tools and flexible robotics.

  13. Vibration control for precision manufacturing at Sandia National Laboratories

    International Nuclear Information System (INIS)

    Hinnerichs, T.; Martinez, D.

    1995-01-01

    Sandia National Laboratories performs R and D in structural dynamics and vibration suppression for precision applications in weapon systems, space, underwater, transportation and civil structures. Over the last decade these efforts have expanded into the areas of active vibration control and ''smart'' structures and material systems. In addition, Sandia has focused major resources towards technology to support weapon product development and agile manufacturing capability for defense and industrial applications. This paper will briefly describe the structural dynamics modeling and verification process currently in place at Sandia that supports vibration control and some specific applications of these techniques to manufacturing in the areas of lithography, machine tools and flexible robotics

  14. Tiger Team Assessment, Energy Technology Engineering Center

    Energy Technology Data Exchange (ETDEWEB)

    1991-04-01

    The Office Special Projects within the Office of Environment, Safety, and Health (EH) has the responsibility to conduct Tiger Team Assessments for the Secretary of Energy. This report presents the assessment of the buildings, facilities, and activities under the DOE/Rockwell Contract No. DE-AM03-76SF00700 for the Energy Technology Engineering Center (ETEC) and of other DOE-owned buildings and facilities at the Santa Susana Field Laboratory (SSFL) site in southeastern Ventura County, California, not covered under Contract No. DE-AM03-76SF00700, but constructed over the years under various other contracts between DOE and Rockwell International. ETEC is an engineering development complex operated for DOE by the Rocketdyne Division of Rockwell International Corporation. ETEC is located within SSFL on land owned by Rockwell. The balance of the SSFL complex is owned and operated by Rocketdyne, with the exception of a 42-acre parcel owned by the National Aeronautics and Space Administration (NASA). The primary mission of ETEC is to provide engineering, testing, and development of components related to liquid metals technology and to conduct applied engineering development of emerging energy technologies.

  15. Tiger Team Assessment, Energy Technology Engineering Center

    International Nuclear Information System (INIS)

    1991-04-01

    The Office Special Projects within the Office of Environment, Safety, and Health (EH) has the responsibility to conduct Tiger Team Assessments for the Secretary of Energy. This report presents the assessment of the buildings, facilities, and activities under the DOE/Rockwell Contract No. DE-AM03-76SF00700 for the Energy Technology Engineering Center (ETEC) and of other DOE-owned buildings and facilities at the Santa Susana Field Laboratory (SSFL) site in southeastern Ventura County, California, not covered under Contract No. DE-AM03-76SF00700, but constructed over the years under various other contracts between DOE and Rockwell International. ETEC is an engineering development complex operated for DOE by the Rocketdyne Division of Rockwell International Corporation. ETEC is located within SSFL on land owned by Rockwell. The balance of the SSFL complex is owned and operated by Rocketdyne, with the exception of a 42-acre parcel owned by the National Aeronautics and Space Administration (NASA). The primary mission of ETEC is to provide engineering, testing, and development of components related to liquid metals technology and to conduct applied engineering development of emerging energy technologies

  16. Analysis of Engineering Content within Technology Education Programs

    Science.gov (United States)

    Fantz, Todd D.; Katsioloudis, Petros J.

    2011-01-01

    In order to effectively teach engineering, technology teachers need to be taught engineering content, concepts, and related pedagogy. Some researchers posit that technology education programs may not have enough content to prepare technology teachers to teach engineering design. Certain technology teacher education programs have responded by…

  17. Electrical principles and technology for engineering

    CERN Document Server

    Bird, John

    1995-01-01

    The aim of this book is to introduce students to the basic electrical and electronic principles needed by technicians in fields such as electrical engineering, electronics and telecommunications. The emphasis is on the practical aspects of the subject, and the author has followed his usual successful formula, incorporating many worked examples and problems (answers supplied) into the learning process.Electrical Principles and Technology for Engineering is John Bird's core text for Further Education courses at BTEC levels N11 and N111 and Advanced GNVQ. It is also designed to provide a comprehe

  18. Pulsed Power: Sandia's Plans for the New Millenium

    International Nuclear Information System (INIS)

    Quintenz, Jeffrey P.

    2000-01-01

    Pulsed power science and engineering activities at Sandia National Laboratories grew out of a programmatic need for intense radiation sources to advance capabilities in radiographic imaging and to create environments for testing and certifying the hardness of components and systems to radiation in hostile environments. By the early 1970s, scientists in laboratories around the world began utilizing pulsed power drivers with very short (10s of nanoseconds) pulse lengths for Inertial Confinement Fusion (ICF) experiments. In the United States, Defense Programs within the Department of Energy has sponsored this research. Recent progress in pulsed power, specifically fast-pulsed-power-driven z pinches, in creating temperatures relevant to ICF has been remarkable. Worldwide developments in pulsed power technologies and increased applications in both defense and industry are contrasted with ever increasing stress on research and development tiding. The current environment has prompted us at Sandia to evaluate our role in the continued development of pulsed power science and to consider options for the future. This presentation will highlight our recent progress and provide an overview of our plans as we begin the new millennium

  19. Information technologies in environmental engineering. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Athanasiadis, Ioannis N.; Rizzoli, Andrea E. [Istituto dalle Molle di Studi sull' Intelligenza Artificiale (IDSIA), Manno (Switzerland); Mitkas, Pericles A. [Aristotle Univ. of Thessaloniki (Greece); Marx Gomez, Jorge (eds.) [Oldenburg Univ. (Germany). Abt. Wirtschaftsinformatik

    2009-07-01

    Information technologies have evolved to an enabling science for natural resource management and conservation, environmental engineering, scientific simulation and integrated assessment studies. Computing plays a significant role in every day practices of environmental engineers, natural scientists, economists, and social scientists. The complexity of natural phenomena requires interdisciplinary approaches, where computing science offers the infrastructure for environmental data collection and management, scientific simulations, decision support documentation and reporting. Ecology, environmental engineering and natural resource management comprise an excellent real-world testbed for IT system demonstration, while raising new challenges for computer science. Complexity, uncertainty and scaling issues of natural systems form a demanding application domain for sensor networks and earth observation systems; modelling, simulation and scientific workflows, data management and reporting, decision support and intelligent systems, distributed computing environments, geographical information systems, heterogeneous systems integration, software engineering, accounting systems and control systems. This books offers a collection of papers presented at the 4th International Symposium on Environmental Engineering, held in May 2009, in Thessaloniki, Greece. Recent success stories in ecoinformatics, promising ideas and new challenges are discussed among computer scientists, environmental engineers, economists and social scientists, demonstrating new paradigms for problem solving and decision making. (orig.)

  20. Ceramic technology for advanced heat engines project

    Energy Technology Data Exchange (ETDEWEB)

    1990-09-01

    The Ceramic Technology for Advanced Heat Engines Project was developed by the Department of Energy's Office of Transportation Systems in Conservation and Renewable Energy. This project was developed to meet the ceramic technology requirements of the OTT's automotive technology programs. This project is managed by ORNL and is closely coordinated with complementary ceramics tasks funded by other DOE offices, NASA, DoD, and industry. Research is discussed under the following topics; Turbomilling of SiC Whiskers; microwave sintering of silicon nitride; and milling characterization; processing of monolithics; silicon nitride matrix; oxide matrix; silicate matrix; thermal and wear coatings; joining; design; contact interfaces; time-dependent behavior; environmental effects; fracture mechanics; nondestructive evaluation; and technology transfer. References, figures, and tables are included with each topic.

  1. First Wall, Blanket, Shield Engineering Technology Program

    International Nuclear Information System (INIS)

    Nygren, R.E.

    1982-01-01

    The First Wall/Blanket/Shield Engineering Technology Program sponsored by the Office of Fusion Energy of DOE has the overall objective of providing engineering data that will define performance parameters for nuclear systems in advanced fusion reactors. The program comprises testing and the development of computational tools in four areas: (1) thermomechanical and thermal-hydraulic performance of first-wall component facsimiles with emphasis on surface heat loads; (2) thermomechanical and thermal-hydraulic performance of blanket and shield component facsimiles with emphasis on bulk heating; (3) electromagnetic effects in first wall, blanket, and shield component facsimiles with emphasis on transient field penetration and eddy-current effects; (4) assembly, maintenance and repair with emphasis on remote-handling techniques. This paper will focus on elements 2 and 4 above and, in keeping with the conference participation from both fusion and fission programs, will emphasize potential interfaces between fusion technology and experience in the fission industry

  2. JAERI Nuclear Engineering School and technology transfer

    International Nuclear Information System (INIS)

    Nishimura, Kazuaki; Kawaguchi, Chiyoji

    1978-01-01

    A method is introduced to evaluate the degree of nuclear technology transfer; that is, the output powers of Japanese nuclear reactors constructed in these 20 years are chronologically plotted in a semi-log figure. All reactors plotted are classified into imported and domestic ones according to a value of domestication factor. A space between two historical trajectories of reactor construction may be interpreted as one of the measures indicating the degree of nuclear technology transfer. In connection with this method, historical change of educational and training courses in Nuclear Engineering School of Japan Atomic Energy Research Institute is reviewed in this report. (author)

  3. Nanoscale Science, Engineering and Technology Research Directions

    Energy Technology Data Exchange (ETDEWEB)

    Lowndes, D. H.; Alivisatos, A. P.; Alper, M.; Averback, R. S.; Jacob Barhen, J.; Eastman, J. A.; Imre, D.; Lowndes, D. H.; McNulty, I.; Michalske, T. A.; Ho, K-M; Nozik, A. J.; Russell, T. P.; Valentin, R. A.; Welch, D. O.; Barhen, J.; Agnew, S. R.; Bellon, P.; Blair, J.; Boatner, L. A.; Braiman, Y.; Budai, J. D.; Crabtree, G. W.; Feldman, L. C.; Flynn, C. P.; Geohegan, D. B.; George, E. P.; Greenbaum, E.; Grigoropoulos, C.; Haynes, T. E.; Heberlein, J.; Hichman, J.; Holland, O. W.; Honda, S.; Horton, J. A.; Hu, M. Z.-C.; Jesson, D. E.; Joy, D. C.; Krauss, A.; Kwok, W.-K.; Larson, B. C.; Larson, D. J.; Likharev, K.; Liu, C. T.; Majumdar, A.; Maziasz, P. J.; Meldrum, A.; Miller, J. C.; Modine, F. A.; Pennycook, S. J.; Pharr, G. M.; Phillpot, S.; Price, D. L.; Protopopescu, V.; Poker, D. B.; Pui, D.; Ramsey, J. M.; Rao, N.; Reichl, L.; Roberto, J.; Saboungi, M-L; Simpson, M.; Strieffer, S.; Thundat, T.; Wambsganss, M.; Wendleken, J.; White, C. W.; Wilemski, G.; Withrow, S. P.; Wolf, D.; Zhu, J. H.; Zuhr, R. A.; Zunger, A.; Lowe, S.

    1999-01-01

    This report describes important future research directions in nanoscale science, engineering and technology. It was prepared in connection with an anticipated national research initiative on nanotechnology for the twenty-first century. The research directions described are not expected to be inclusive but illustrate the wide range of research opportunities and challenges that could be undertaken through the national laboratories and their major national scientific user facilities with the support of universities and industry.

  4. Technology developments for a compound cycle engine

    Science.gov (United States)

    Bobula, George A.; Wintucky, William T.; Castor, J. G.

    1988-01-01

    The Compound Cycle Engine (CCE) is a highly turbocharged, power compounded power plant which combines the light weight pressure rise capability of a gas turbine with the high efficiency of a diesel. When optimized for a rotorcraft, the CCE will reduce fuel burned for a typical 2 hour (plus 30 min reserve) mission by 30 to 40 percent when compared to a conventional advanced technology gas turbine. The CCE can provide a 50 percent increase in range-payload product on this mission. Results of recent activities in a program to establish the technology base for a CCE are presented. The objective of this program is to research and develop those critical technologies which are necessary for the demonstration of a multicylinder diesel core in the early 1990s. A major accomplishment was the initial screening and identification of a lubricant which has potential for meeting the material wear rate limits of the application. An in-situ wear measurement system also was developed to provide accurate, readily obtainable, real time measurements of ring and liner wear. Wear data, from early single cylinder engine tests, are presented to show correlation of the in-situ measurements and the system's utility in determining parametric wear trends. A plan to demonstrate a compound cycle engine by the mid 1990s is included.

  5. Technological and engineering challenges of fusion

    International Nuclear Information System (INIS)

    Maisonnier, David; Hayward, Jim

    2008-01-01

    The current fusion development scenario in Europe assumes the sequential achievement of key milestones. Firstly, the qualification of the DEMO/reactor physics basis in ITER, secondly, the qualification of materials for in-vessel components in IFMIF and, thirdly, the qualification of components and processes in DEMO. Although this scenario is constrained by budgetary considerations, it assumes the resolution of many challenges in physics, technology and engineering. In the first part of the paper, the technological and engineering challenges to be met in order to satisfy the current development scenario will be highlighted. These challenges will be met by an appropriate share of the work between ITER, IFMIF, DEMO and the necessary accompanying programme, which will have to include a number of dedicated facilities (e.g. for the development of H and CD systems). In the second part of the paper, the consequences of a considerable acceleration of the fusion development programme will be discussed. Although most of the technological and engineering challenges identified above will have to be met within a shorter timescale, it is possible to limit the requirements and expectation for a first fusion power plant with respect to those adopted for the current fusion development scenario. However, it must be recognised that such a strategy will inevitably result in increased risk and a reduction in the economy of the plant. (author)

  6. International Journal of Engineering, Science and Technology: Site ...

    African Journals Online (AJOL)

    International Journal of Engineering, Science and Technology: Site Map. Journal Home > About the Journal > International Journal of Engineering, Science and Technology: Site Map. Log in or Register to get access to full text downloads.

  7. Teaching Engineering Habits of Mind in Technology Education

    Science.gov (United States)

    Loveland, Thomas; Dunn, Derrek

    2014-01-01

    With a new emphasis on the inclusion of engineering content and practices in technology education, attention has focused on what engineering content should be taught and assessed in technology education. The National Academy of Engineering (2010) proposed three general principles for K-12 engineering education in "Standards for K-12…

  8. Variable Cycle Engine Technology Program Planning and Definition Study

    Science.gov (United States)

    Westmoreland, J. S.; Stern, A. M.

    1978-01-01

    The variable stream control engine, VSCE-502B, was selected as the base engine, with the inverted flow engine concept selected as a backup. Critical component technologies were identified, and technology programs were formulated. Several engine configurations were defined on a preliminary basis to serve as demonstration vehicles for the various technologies. The different configurations present compromises in cost, technical risk, and technology return. Plans for possible variably cycle engine technology programs were formulated by synthesizing the technology requirements with the different demonstrator configurations.

  9. Critical experiments at Sandia National Laboratories

    International Nuclear Information System (INIS)

    Harms, G.A.; Ford, J.T.; Barber, A.D.

    2011-01-01

    reactor physics data to support validation of the reactor physics codes used to design commercial reactor fuel elements in an enrichment range above the current 5% enrichment cap. A first set of critical experiments in the 7uPCX has been completed. More experiments are planned in the 7uPCX series. The critical experiments at Sandia National Laboratories are currently funded by the US Department of Energy Nuclear Criticality Safety Program (NCSP). The NCSP has committed to maintain the critical experiment capability at Sandia and to support the development of a critical experiments training course at the facility. The training course is intended to provide hands-on experiment experience for the training of new and re-training of practicing Nuclear Criticality Safety Engineers. The current plans are for the development of the course to continue through the first part of fiscal year 2011 with the development culminating is the delivery of a prototype of the course in the latter part of the fiscal year. The course will be available in fiscal year 2012. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  10. Critical experiments at Sandia National Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Harms, G.A.; Ford, J.T.; Barber, A.D., E-mail: gaharms@sandia.gov [Sandia National Laboratories, Albuquerque, NM (United States)

    2011-07-01

    benchmark reactor physics data to support validation of the reactor physics codes used to design commercial reactor fuel elements in an enrichment range above the current 5% enrichment cap. A first set of critical experiments in the 7uPCX has been completed. More experiments are planned in the 7uPCX series. The critical experiments at Sandia National Laboratories are currently funded by the US Department of Energy Nuclear Criticality Safety Program (NCSP). The NCSP has committed to maintain the critical experiment capability at Sandia and to support the development of a critical experiments training course at the facility. The training course is intended to provide hands-on experiment experience for the training of new and re-training of practicing Nuclear Criticality Safety Engineers. The current plans are for the development of the course to continue through the first part of fiscal year 2011 with the development culminating is the delivery of a prototype of the course in the latter part of the fiscal year. The course will be available in fiscal year 2012. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  11. SANDIA-ORIGEN user's manual

    International Nuclear Information System (INIS)

    Bennett, D.E.

    1979-10-01

    The SANDIA-ORIGEN code calculates the detailed isotopic composition as a function of time in nuclear reactor fuel irradiation and radioactive decay problems. This code was developed specifically for Control Data Corporation computers from the original Oak Ridge National Laboratory ORIGEN code. The nuclear data file used with the code at Sandia Laboratories contains 1063 isotopes (254 structural materials, 101 actinides, and 708 fission products). SANDIA-ORIGEN is oriented toward simple, easy use and includes NAMELIST input, convenient control of the output, and versatile options for the blending and reprocessing of reactor fuel. System operating instructions and the input decks for numerous sample problems are also presented. 13 references, 14 figures

  12. Development of nuclear rocket engine technology

    International Nuclear Information System (INIS)

    Gunn, S.V.

    1989-01-01

    Research sponsored by the Atomic Energy Commission, the USAF, and NASA (later on) in the area of nuclear rocket propulsion is discussed. It was found that a graphite reactor, loaded with highly concentrated Uranium 235, can be used to heat high pressure liquid hydrogen to temperatures of about 4500 R, and to expand the hydrogen through a high expansion ratio rocket nozzle assembly. The results of 20 reactor tests conducted at the Nevada Test Site between July 1959 and June 1969 are analyzed. On the basis of these results, the feasibility of solid graphite reactor/nuclear rocket engines is revealed. It is maintained that this technology will support future space propulsion requirements, using liquid hydrogen as the propellant, for thrust requirements ranging from 25,000 lbs to 250,000 lbs, with vacuum specific impulses of at least 850 sec and with full engine throttle capability. 12 refs

  13. Advanced technology for reducing aircraft engine pollution

    Science.gov (United States)

    Jones, R. E.

    1973-01-01

    The proposed EPA regulations covering emissions of gas turbine engines will require extensive combustor development. The NASA is working to develop technology to meet these goals through a wide variety of combustor research programs conducted in-house, by contract, and by university grant. In-house efforts using the swirl-can modular combustor have demonstrated sizable reduction in NO emission levels. Testing to reduce idle pollutants has included the modification of duplex fuel nozzles to air-assisted nozzles and an exploration of the potential improvements possible with combustors using fuel staging and variable geometry. The Experimental Clean Combustor Program, a large contracted effort, is devoted to the testing and development of combustor concepts designed to achieve a large reduction in the levels of all emissions. This effort is planned to be conducted in three phases with the final phase to be an engine demonstration of the best reduced emission concepts.

  14. Sandia Laboratories technical capabilities: testing

    International Nuclear Information System (INIS)

    Lundergan, C.D.

    1975-12-01

    The testing capabilities at Sandia Laboratories are characterized. Selected applications of these capabilities are presented to illustrate the extent to which they can be applied in research and development programs

  15. Sandia Laboratories technical capabilities: electronics

    International Nuclear Information System (INIS)

    Lundergan, C.D.

    1975-12-01

    This report characterizes the electronics capabilities at Sandia Laboratories. Selected applications of these capabilities are presented to illustrate the extent to which they can be applied in research and development programs

  16. Optics and photonics: essential technologies for our nation (technology & engineering)

    CERN Document Server

    Research, Committee on Harnessing Light: Capitalizing on Optical Science Trends and Challenges for Future; Sciences, Division on Engineering and Physical; Council, National Research

    2013-01-01

    Optics and photonics technologies are ubiquitous: they are responsible for the displays on smart phones and computing devices, optical fiber that carries the information in the internet, advanced precision manufacturing, enhanced defense capabilities, and a plethora of medical diagnostics tools. The opportunities arising from optics and photonics offer the potential for even greater societal impact in the next few decades, including solar power generation and new efficient lighting that could transform the nation's energy landscape and new optical capabilities that will be essential to support the continued exponential growth of the Internet. As described in the National Research Council report Optics and Photonics: Essential Technologies for our Nation, it is critical for the United States to take advantage of these emerging optical technologies for creating new industries and generating job growth. The report assesses the current state of optical science and engineering in the United States and abroad--incl...

  17. Conventional engine technology. Volume 1: Status of OTTO cycle engine technology

    Science.gov (United States)

    Dowdy, M. W.

    1981-01-01

    Federally-mandated emissions standards have led to major changes in automotive technology during the last decade. Efforts to satisfy the new standards were directed more toward the use of add-on devices, such as catalytic converters, turbochargers, and improved fuel metering, than toward complete engine redesign. The resulting changes are described and the improvement brought about by them in fuel economy and emissions levels are fully documented. Four specific categories of gasoline-powered internal combustion engines are covered, including subsystem and total engine development. Also included are the results of fuel economy and exhaust emissions tests performed on representative vehicles from each category.

  18. Strategic alliances in engineering, technology and development

    International Nuclear Information System (INIS)

    Jazrawi, W.

    1991-01-01

    The role of strategic alliances in the development of heavy oil resources, both mineable and in-situ, is discussed. A strategic alliance is defined as a custom designed, long term collaborative working arrangement between two parties to pool, exchange, and integrate their resources to maximize mutual gain. A combination of one or more of the following success factors is seen as contributing to the unlocking of static heavy oil resources: sufficiently high and sustained crude oil prices; strategic intent to pursue heavy oil development regardless of short-term setbacks or economic downturns; technology breakthroughs that can reduce bitumen supply and upgrading costs; and strategic alliances. An idealized model for strategic alliances designed to help develop heavy oil resources is illustrated. The advantages and pitfalls involved in strategic alliances are listed along with the characteristics of viable contract agreements for such alliances. Some examples of strategic alliances in engineering and technology development are presented from Alberta experience. 2 figs., 1 tab

  19. Improving student retention in computer engineering technology

    Science.gov (United States)

    Pierozinski, Russell Ivan

    The purpose of this research project was to improve student retention in the Computer Engineering Technology program at the Northern Alberta Institute of Technology by reducing the number of dropouts and increasing the graduation rate. This action research project utilized a mixed methods approach of a survey and face-to-face interviews. The participants were male and female, with a large majority ranging from 18 to 21 years of age. The research found that participants recognized their skills and capability, but their capacity to remain in the program was dependent on understanding and meeting the demanding pace and rigour of the program. The participants recognized that curriculum delivery along with instructor-student interaction had an impact on student retention. To be successful in the program, students required support in four domains: academic, learning management, career, and social.

  20. Engineering Research, Development and Technology, FY95: Thrust area report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-02-01

    The mission of the Engineering Research, Development, and Technology Program at Lawrence Livermore National Laboratory (LLNL) is to develop the knowledge base, process technologies, specialized equipment, tools and facilities to support current and future LLNL programs. Engineering`s efforts are guided by a strategy that results in dual benefit: first, in support of Department of Energy missions, such as national security through nuclear deterrence; and second, in enhancing the nation`s economic competitiveness through their collaboration with US industry in pursuit of the most cost-effective engineering solutions to LLNL programs. To accomplish this mission, the Engineering Research, Development, and Technology Program has two important goals: (1) identify key technologies relevant to LLNL programs where they can establish unique competencies, and (2) conduct high-quality research and development to enhance their capabilities and establish themselves as the world leaders in these technologies. To focus Engineering`s efforts, technology thrust areas are identified and technical leaders are selected for each area. The thrust areas are comprised of integrated engineering activities, staffed by personnel from the nine electronics and mechanical engineering divisions, and from other LLNL organizations. This annual report, organized by thrust area, describes Engineering`s activities for fiscal year 1995. The report provides timely summaries of objectives methods, and key results from eight thrust areas: computational electronics and electromagnetics; computational mechanics; microtechnology; manufacturing technology; materials science and engineering; power conversion technologies; nondestructive evaluation; and information engineering.

  1. The new Sandia light ion microbeam

    Energy Technology Data Exchange (ETDEWEB)

    Vizkelethy, G., E-mail: gvizkel@sandia.gov [Sandia National Laboratories, P.O. Box 5800, MS 1056, Albuquerque, NM 87185 (United States); Doyle, B.L. [Sandia National Laboratories, P.O. Box 5800, MS 1056, Albuquerque, NM 87185 (United States); McDaniel, F.L. [Sandia National Laboratories, P.O. Box 5800, MS 1056, Albuquerque, NM 87185 (United States); University of North Texas, Denton, TX 76203 (United States)

    2012-02-15

    The Ion Beam Laboratory of Sandia National Laboratories (SNL) was recently relocated into a brand new building. The 6 MV High Voltage Engineering (HVE) tandem accelerator (hosting the heavy ion microbeam and several analytical beam lines) and the 350 kV HVE implanter with a nanobeam were moved to the new building. There were several new pieces of equipment acquired associated with the move, among them a new high brightness 3 MV Pelletron accelerator, a high resolution light ion microbeam, a nanoimplanter, and a transmission electron microscope (TEM) connected to the tandem accelerator. In this paper this new facility will be described, and initial results of the new microbeam will be presented.

  2. Measuring Technology and Mechatronics Automation in Electrical Engineering

    CERN Document Server

    2012-01-01

    Measuring Technology and Mechatronics Automation in Electrical Engineering includes select presentations on measuring technology and mechatronics automation related to electrical engineering, originally presented during the International Conference on Measuring Technology and Mechanatronics Automation (ICMTMA2012). This Fourth ICMTMA, held at Sanya, China, offered a prestigious, international forum for scientists, engineers, and educators to present the state of the art of measuring technology and mechatronics automation research.

  3. Examining Engineering & Technology Students' Acceptance of Network Virtualization Technology Using the Technology Acceptance Model

    Science.gov (United States)

    Yousif, Wael K.

    2010-01-01

    This causal and correlational study was designed to extend the Technology Acceptance Model (TAM) and to test its applicability to Valencia Community College (VCC) Engineering and Technology students as the target user group when investigating the factors influencing their decision to adopt and to utilize VMware as the target technology. In…

  4. Statement of Work Electrical Energy Storage System Installation at Sandia National Laboratories.

    Energy Technology Data Exchange (ETDEWEB)

    Schenkman, Benjamin L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-03-01

    Sandia is seeking to procure a 1 MWh energy storage system. It will be installed at the existing Energy Storage Test Pad, which is located at Sandia National Laboratories in Albuquerque, New Mexico. This energy storage system will be a daily operational system, but will also be used as a tool in our Research and development work. The system will be part of a showcase of Sandia distributed energy technologies viewed by many distinguished delegates.

  5. An overview of weapons technologies used to improve US healthcare

    International Nuclear Information System (INIS)

    Fahrenholtz, J.; Kovarik, T.L.

    1995-01-01

    At Sandia National Laboratories the Biomedical Engineering Program uses existing weapons-related technology in medical applications in order to reduce health care costs, improve diagnoses, and promote efficient health care delivery. This paper describes several projects which use Sandia technologies to solve biomedical problems. Specific technical capabilities that are important to this program include sensor data interpretation, robotics, lasers and optics, microelectronics, image processing and materials

  6. Multimedia Image Technology and Computer Aided Manufacturing Engineering Analysis

    Science.gov (United States)

    Nan, Song

    2018-03-01

    Since the reform and opening up, with the continuous development of science and technology in China, more and more advanced science and technology have emerged under the trend of diversification. Multimedia imaging technology, for example, has a significant and positive impact on computer aided manufacturing engineering in China. From the perspective of scientific and technological advancement and development, the multimedia image technology has a very positive influence on the application and development of computer-aided manufacturing engineering, whether in function or function play. Therefore, this paper mainly starts from the concept of multimedia image technology to analyze the application of multimedia image technology in computer aided manufacturing engineering.

  7. Noise and vibration improvement technologies for engines; Engine ni okeru soon shindo kaizen gijutsu

    Energy Technology Data Exchange (ETDEWEB)

    Kuzuoka, H.; Maeda, R. [Nissan Motor Co. Ltd., Tokyo (Japan)

    1999-02-01

    This is an outline of recent measurement and simulation technology for reduction of engine noise and vibration. We can recognize correct phenomenon by visualization of noise and vibration phenomena using new measurement technology. And we can create optimum countermeasures using new simulation technology In this report, examples of application of these technology in the development of NEO-DI engines are provided. (author)

  8. Engineering, Analysis and Technology FY 1995 Site Support Program Plan

    International Nuclear Information System (INIS)

    Suyama, R.M.

    1994-09-01

    The vision of the Engineering, Analysis and Technology organization is to be recognized as the cost-effective supplier of specialized, integrated, multi-disciplined engineering teams to support Hanford missions. The mission of the Engineering, Analysis and Technology organization is to provide centralized engineering services. These services are focused on supplying technical design, analytical engineering and related support services that support Hanford's environmental restoration mission. These services include engineering analysis, design and development of systems and engineered equipment, supplying multi-disciplined engineering teams to all Hanford programs and project organizations, engineering document release, and site-wide leadership in the development and implementation of engineering standards, engineering practices, and configuration management processes

  9. The Design-to-Analysis Process at Sandia National Laboratories Observations and Recommendations; TOPICAL

    International Nuclear Information System (INIS)

    BURNS, SHAWN P.; HARRISON, RANDY J.; DOBRANICH, DEAN

    2001-01-01

    The efficiency of the design-to-analysis process for translating solid-model-based design data to computational analysis model data plays a central role in the application of computational analysis to engineering design and certification. A review of the literature from within Sandia as well as from industry shows that the design-to-analysis process involves a number of complex organizational and technological issues. This study focuses on the design-to-analysis process from a business process standpoint and is intended to generate discussion regarding this important issue. Observations obtained from Sandia staff member and management interviews suggest that the current Sandia design-to-analysis process is not mature and that this cross-organizational issue requires committed high-level ownership. A key recommendation of the study is that additional resources should be provided to the computer aided design organizations to support design-to-analysis. A robust community of practice is also needed to continuously improve the design-to-analysis process and to provide a corporate perspective

  10. Sandia National Laboratories:

    Science.gov (United States)

    Environmental Management System Pollution Prevention History 60 impacts Diversity Locations Facts & Figures Programs Nuclear Weapons About Nuclear Weapons Safety & Security Weapons Science & Technology Robotics R&D 100 Awards Laboratory Directed Research & Development Technology Deployment Centers

  11. Micromachined sensor and actuator research at Sandia`s Microelectronics Development Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Smith, J.H.

    1996-11-01

    An overview of the surface micromachining program at the Microelectronics Development Laboratory of Sandia National Laboratories is presented. Development efforts are underway for a variety of surface micromachined sensors and actuators for both defense and commercial applications. A technology that embeds micromechanical devices below the surface of the wafer prior to microelectronics fabrication has been developed for integrating microelectronics with surface-micromachined micromechanical devices. The application of chemical-mechanical polishing to increase the manufacturability of micromechanical devices is also presented.

  12. Journal of Applied Science, Engineering and Technology: Editorial ...

    African Journals Online (AJOL)

    Focus and Scope. Journal of Applied Science Engineering and Technology accepts and publishes articles on Engineering, Physical Sciences and all fields of Technology and Biotechnology. It is published twice a year by the FACULTY OF TECHNOLOGY, UNIVERSITY OF IBADAN, IBADAN, NIGERIA. The journal covers ...

  13. Engaging Students in the Ethics of Engineering and Technology

    DEFF Research Database (Denmark)

    Keiko, Yasukawa

    This paper argues that education for engineers and technologists should focus on the ethics of technology and engineering, and not just ethics in technology and engineering projects. It argues that one's expression of their ethical position is linked closely to their identity formation, and is di......, and is different to other "competencies" that are emphasised in engineering and technology education. Principles of sustainable development are proposed as a framework for engaging students in reflecting on their ethical positions and practices.......This paper argues that education for engineers and technologists should focus on the ethics of technology and engineering, and not just ethics in technology and engineering projects. It argues that one's expression of their ethical position is linked closely to their identity formation...

  14. International Conference on Intelligent Technologies and Engineering System (ICITES 2012)

    CERN Document Server

    Huang, Yi-Cheng; Intelligent Technologies and Engineering Systems

    2013-01-01

    This book concentrates on intelligent technologies as it relates to engineering systems. The book covers the following topics: networking, signal processing, artificial intelligence, control and software engineering, intelligent electronic circuits and systems, communications, and materials and mechanical engineering. The book is a collection of original papers that have been reviewed by technical editors. These papers were presented at the International Conference on Intelligent Technologies and Engineering Systems, held Dec. 13-15, 2012.

  15. Practical microcontroller engineering with ARM technology

    CERN Document Server

    Bai, Ying

    2016-01-01

    This book introduces the basic concepts and practical techniques in designing and building ARM® microcontrollers in industrial and commercial applications Practical Microcontroller Engineering with ARM® Technology provides the full scope of components and materials related to ARM® Cortex®–M4 microcontroller systems. Chapters 2 through 9 provide the fundamentals and detailed discussions about ARM® Cortex®-M4 MCU applications with the most widely used peripherals such as flash memory, EEPROM, ADC, DAC, PWM, UART, USB, I2C, SSI, LCD and GPTM. The remaining chapters cover advanced and optional peripherals such as Control Area Network (CAN), Quadrature Encoder Interface (QEI), Analog Comparators (ACMP) and detailed discussions of Floating Point Unit (FPU) and ARM® Cortex®-M4 Memory Protection Unit (MPU).

  16. Sandia capabilities for the measurement, characterization, and analysis of heliostats for CSP.

    Energy Technology Data Exchange (ETDEWEB)

    Andraka, Charles E.; Christian, Joshua Mark; Ghanbari, Cheryl M.; Gill, David Dennis; Ho, Clifford Kuofei; Kolb, William J.; Moss, Timothy A.; Smith, Edward J.; Yellowhair, Julius

    2013-07-01

    The Concentrating Solar Technologies Organization at Sandia National Laboratories has a long history of performing important research, development, and testing that has enabled the Concentrating Solar Power Industry to deploy full-scale power plants. Sandia continues to pursue innovative CSP concepts with the goal of reducing the cost of CSP while improving efficiency and performance. In this pursuit, Sandia has developed many tools for the analysis of CSP performance. The following capabilities document highlights Sandias extensive experience in the design, construction, and utilization of large-scale testing facilities for CSP and the tools that Sandia has created for the full characterization of heliostats. Sandia has extensive experience in using these tools to evaluate the performance of novel heliostat designs.

  17. Critical experiments at Sandia National Laboratories

    International Nuclear Information System (INIS)

    Harms, Gary A.; Ford, John T.; Barber, Allison Delo

    2010-01-01

    reactor physics data to support validation of the reactor physics codes used to design commercial reactor fuel elements in an enrichment range above the current 5% enrichment cap. A first set of critical experiments in the 7uPCX has been completed. More experiments are planned in the 7uPCX series. The critical experiments at Sandia National Laboratories are currently funded by the US Department of Energy Nuclear Criticality Safety Program (NCSP). The NCSP has committed to maintain the critical experiment capability at Sandia and to support the development of a critical experiments training course at the facility. The training course is intended to provide hands-on experiment experience for the training of new and re-training of practicing Nuclear Criticality Safety Engineers. The current plans are for the development of the course to continue through the first part of fiscal year 2011 with the development culminating is the delivery of a prototype of the course in the latter part of the fiscal year. The course will be available in fiscal year 2012.

  18. Textile Technologies and Tissue Engineering: A Path Towards Organ Weaving

    Science.gov (United States)

    Akbari, Mohsen; Tamayol, Ali; Bagherifard, Sara; Serex, Ludovic; Mostafalu, Pooria; Faramarzi, Negar; Mohammadi, Mohammad Hossein

    2016-01-01

    Textile technologies have recently attracted great attention as potential biofabrication tools for engineering tissue constructs. Using current textile technologies, fibrous structures can be designed and engineered to attain the required properties that are demanded by different tissue engineering applications. Several key parameters such as physiochemical characteristics of fibers, pore size and mechanical properties of the fabrics play important role in the effective use of textile technologies in tissue engineering. This review summarizes the current advances in the manufacturing of biofunctional fibers. Different textile methods such as knitting, weaving, and braiding are discussed and their current applications in tissue engineering are highlighted. PMID:26924450

  19. Sandia Laboratories technical capabilities. Auxiliary capabilities: environmental health information science

    International Nuclear Information System (INIS)

    1975-09-01

    Sandia Laboratories is an engineering laboratory in which research, development, testing, and evaluation capabilities are integrated by program management for the generation of advanced designs. In fulfilling its primary responsibility to ERDA, Sandia Laboratories has acquired extensive research and development capabilities. The purpose of this series of documents is to catalog the many technical capabilities of the Laboratories. After the listing of capabilities, supporting information is provided in the form of highlights, which show applications. This document deals with auxiliary capabilities, in particular, environmental health and information science. (11 figures, 1 table) (RWR)

  20. International Conference on Information Technology and Agricultural Engineering (ICITAE 2011)

    CERN Document Server

    Sambath, Sabo; Information Technology and Agricultural Engineering

    2012-01-01

    This volume comprises the papers from 2011 International Conference on Information Technology and Agricultural Engineering (ICITAE 2011).  2011 International Conference on Information Technology and Agricultural Engineering (ICITAE 2011) has been held in Sanya, China, December 1-2, 2011. All the papers have been peer reviewed by the selected experts. These papers represent the latest development in the field of materials manufacturing technology, spanning from the fundamentals to new technologies and applications. Specially, these papers cover the topics of Information Technology and Agricultural Engineering. This book provides a greatly valuable reference for researchers in the field of Information Technology and Agricultural Engineering who wish to further understand the underlying mechanisms and create innovative and practical techniques, systems and processes. It should also be particularly useful for engineers in information technology and agriculture who are responsible for the efficient and effective ...

  1. Application of industrial CT in reverse engineering technology

    International Nuclear Information System (INIS)

    Fang Liyong; Li Hui; Bai Jinping; Li Bailin

    2013-01-01

    The basic principle and basic steps of reverse engineering technology based on industrial CT are described. The recent research progresses and situation at home and abroad of reverse engineering technology based on industrial CT image are respectively described, analyzed and summarized from two routes which are surface segmentation and volume segmentation. An example of conch is used to exhibit the results from the two routes in reverse engineering technology based on industrial CT image. Finally, some difficulties in application and the future developments of reverse engineering technology based on industrial CT are prospected. (authors)

  2. A Sandia telephone database system

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, S.D.; Tolendino, L.F.

    1991-08-01

    Sandia National Laboratories, Albuquerque, may soon have more responsibility for the operation of its own telephone system. The processes that constitute providing telephone service can all be improved through the use of a central data information system. We studied these processes, determined the requirements for a database system, then designed the first stages of a system that meets our needs for work order handling, trouble reporting, and ISDN hardware assignments. The design was based on an extensive set of applications that have been used for five years to manage the Sandia secure data network. The system utilizes an Ingres database management system and is programmed using the Application-By-Forms tools.

  3. Performance Engineering Technology for Scientific Component Software

    Energy Technology Data Exchange (ETDEWEB)

    Malony, Allen D.

    2007-05-08

    Large-scale, complex scientific applications are beginning to benefit from the use of component software design methodology and technology for software development. Integral to the success of component-based applications is the ability to achieve high-performing code solutions through the use of performance engineering tools for both intra-component and inter-component analysis and optimization. Our work on this project aimed to develop performance engineering technology for scientific component software in association with the DOE CCTTSS SciDAC project (active during the contract period) and the broader Common Component Architecture (CCA) community. Our specific implementation objectives were to extend the TAU performance system and Program Database Toolkit (PDT) to support performance instrumentation, measurement, and analysis of CCA components and frameworks, and to develop performance measurement and monitoring infrastructure that could be integrated in CCA applications. These objectives have been met in the completion of all project milestones and in the transfer of the technology into the continuing CCA activities as part of the DOE TASCS SciDAC2 effort. In addition to these achievements, over the past three years, we have been an active member of the CCA Forum, attending all meetings and serving in several working groups, such as the CCA Toolkit working group, the CQoS working group, and the Tutorial working group. We have contributed significantly to CCA tutorials since SC'04, hosted two CCA meetings, participated in the annual ACTS workshops, and were co-authors on the recent CCA journal paper [24]. There are four main areas where our project has delivered results: component performance instrumentation and measurement, component performance modeling and optimization, performance database and data mining, and online performance monitoring. This final report outlines the achievements in these areas for the entire project period. The submitted progress

  4. Technology of interdisciplinary open-ended designing in engineering education

    Science.gov (United States)

    Isaev, A. P.; Plotnikov, L. V.; Fomin, N. I.

    2017-11-01

    Author’s technology of interdisciplinary open-ended engineering is presented in this article. This technology is an integrated teaching method that significantly increases the practical component in the educational program. Author’s technology creates the conditions to overcome the shortcomings in the engineering education. The basic ideas of the technology of open-ended engineering, experience of their implementation in higher education and the author’s vision of the teaching technology are examined in the article. The main stages of development process of the author’s technology of open-ended engineering to prepare students (bachelor) of technical profile are presented in the article. Complex of the methodological tools and procedures is shown in the article. This complex is the basis of the developed training technology that is used in educational process in higher school of engineering (UrFU). The organizational model of the technology of open-ended engineering is presented. Organizational model integrates the functions in the creation and implementation of all educational program. Analysis of the characteristics of educational activity of students working on author’s technology of interdisciplinary open-ended engineering is presented. Intermediate results of the application of author’s technology in the educational process of the engineering undergraduate are shown.

  5. Sandia National Laboratories: Research

    Science.gov (United States)

    Energy Stationary Power Earth Science Transportation Energy Energy Research Global Security WMD and decision-making. Materials science Leading the nation in the knowledge of materials engineering success is our foundational scientific research, which provides us with knowledge and capabilities that

  6. International conference on Advances in Engineering Technologies and Physical Science

    CERN Document Server

    Ao, Sio-Iong; Rieger, Burghard; IAENG Transactions on Engineering Technologies : Special Edition of the World Congress on Engineering and Computer Science 2011

    2013-01-01

    This volume contains thirty revised and extended research articles written by prominent researchers participating in an international conference in engineering technologies and physical science and applications. The conference serves as good platforms for the engineering community to meet with each other and to exchange ideas. The conference has also struck a balance between theoretical and application development. The conference is truly international meeting with a high level of participation from many countries. Topics covered include chemical engineering, circuits, communications systems, control theory, engineering mathematics, systems engineering, manufacture engineering, and industrial applications. The book offers the state of art of tremendous advances in engineering technologies and physical science and applications, and also serves as an excellent reference work for researchers and graduate students working with/on engineering technologies and physical science and applications.

  7. Massively Parallel Computing: A Sandia Perspective

    Energy Technology Data Exchange (ETDEWEB)

    Dosanjh, Sudip S.; Greenberg, David S.; Hendrickson, Bruce; Heroux, Michael A.; Plimpton, Steve J.; Tomkins, James L.; Womble, David E.

    1999-05-06

    The computing power available to scientists and engineers has increased dramatically in the past decade, due in part to progress in making massively parallel computing practical and available. The expectation for these machines has been great. The reality is that progress has been slower than expected. Nevertheless, massively parallel computing is beginning to realize its potential for enabling significant break-throughs in science and engineering. This paper provides a perspective on the state of the field, colored by the authors' experiences using large scale parallel machines at Sandia National Laboratories. We address trends in hardware, system software and algorithms, and we also offer our view of the forces shaping the parallel computing industry.

  8. NREL- and Sandia-Developed HyStEP Device Receives Far West FLC Award | News

    Science.gov (United States)

    | NREL NREL- and Sandia-Developed HyStEP Device Receives Far West FLC Award NREL- and Sandia -Developed HyStEP Device Receives Far West FLC Award September 1, 2016 The National Renewable Energy technologies and boost the regional economy. As FLC awards are granted for outstanding achievements in

  9. Sandia National Laboratories: News: Image Gallery

    Science.gov (United States)

    Locations Contact Us Employee Locator Search Menu About Leadership Mission Social Media Community Diversity Social Media Careers View All Jobs Students & Postdocs Benefits & Perks Hiring Process Deployment Centers New Mexico Small Business Assistance Program Sandia's Economic Impact Sandia Science &

  10. Infusing Software Engineering Technology into Practice at NASA

    Science.gov (United States)

    Pressburger, Thomas; Feather, Martin S.; Hinchey, Michael; Markosia, Lawrence

    2006-01-01

    We present an ongoing effort of the NASA Software Engineering Initiative to encourage the use of advanced software engineering technology on NASA projects. Technology infusion is in general a difficult process yet this effort seems to have found a modest approach that is successful for some types of technologies. We outline the process and describe the experience of the technology infusions that occurred over a two year period. We also present some lessons from the experiences.

  11. Energy Fact Sheets - Sandia Energy

    Science.gov (United States)

    Energy Energy Secure & Sustainable Energy Future Search Icon Sandia Home Locations Contact Us Employee Locator Menu Stationary Power solar Energy Conversion Efficiency Increasing the amount of electricity produced from a given thermal energy input. Solar Energy Wind Energy Water Power Supercritical CO2

  12. Sandia National Laboratories: Research: Biodefense

    Science.gov (United States)

    Energy Stationary Power Earth Science Transportation Energy Energy Research Global Security WMD knowledge to counter disease Sandia conducts research into how pathogens interact and subvert a host's immune response to develop the knowledge base needed to create new novel environmental detectors, medical

  13. Sandia National Laboratories: Contact Us

    Science.gov (United States)

    Employment (VOE) - New Mexico and California Please submit your requests by fax OR email - not both. Fax Number: (505) 845-0097, ATTN: HR Records Email Address: HR-Records@sandia.gov HR Records' Hotline: (505 in Writing Requester's Contact Information: Requester's name, company name (if applicable), phone

  14. Thrust Area Report, Engineering Research, Development and Technology

    Energy Technology Data Exchange (ETDEWEB)

    Langland, R. T.

    1997-02-01

    The mission of the Engineering Research, Development, and Technology Program at Lawrence Livermore National Laboratory (LLNL) is to develop the knowledge base, process technologies, specialized equipment, tools and facilities to support current and future LLNL programs. Engineering`s efforts are guided by a strategy that results in dual benefit: first, in support of Department of Energy missions, such as national security through nuclear deterrence; and second, in enhancing the nation`s economic competitiveness through our collaboration with U.S. industry in pursuit of the most cost- effective engineering solutions to LLNL programs. To accomplish this mission, the Engineering Research, Development, and Technology Program has two important goals: (1) identify key technologies relevant to LLNL programs where we can establish unique competencies, and (2) conduct high-quality research and development to enhance our capabilities and establish ourselves as the world leaders in these technologies. To focus Engineering`s efforts technology {ital thrust areas} are identified and technical leaders are selected for each area. The thrust areas are comprised of integrated engineering activities, staffed by personnel from the nine electronics and mechanical engineering divisions, and from other LLNL organizations. This annual report, organized by thrust area, describes Engineering`s activities for fiscal year 1996. The report provides timely summaries of objectives, methods, and key results from eight thrust areas: Computational Electronics and Electromagnetics; Computational Mechanics; Microtechnology; Manufacturing Technology; Materials Science and Engineering; Power Conversion Technologies; Nondestructive Evaluation; and Information Engineering. Readers desiring more information are encouraged to contact the individual thrust area leaders or authors. 198 refs., 206 figs., 16 tabs.

  15. The Technology of Forming of Innovative Content for Engineering Education

    Science.gov (United States)

    Kayumova, Lilija A.; Savva, Lubov I.; Soldatchenko, Aleksandr L.; Sirazetdinov, Rustem M.; Akhmetov, Linar G.

    2016-01-01

    The relevance of the study is conditioned by the modernization of engineering education aimed at specialists' training to solve engineering and economic problems effectively. The goal of the paper is to develop the technology of the innovative content's formation for engineering education. The leading method to the study of this problem is a…

  16. Software engineering technology innovation: Turning research results into industrial success

    NARCIS (Netherlands)

    Punter, H.T.; Krikhaar, R.L.; Bril, R.J.

    2009-01-01

    This paper deals with the innovation of software engineering technologies. These technologies are methods and tools for conducting software development and maintenance. We consider innovation as a process consisting of two phases, being technology creation and technology transfer. In this paper, we

  17. Software engineering technology innovation - Turning research results into industrial success

    NARCIS (Netherlands)

    Punter, T.; Krikhaar, R.L.; Bril, R.J.

    2009-01-01

    This paper deals with the innovation of software engineering technologies. These technologies are methods and tools for conducting software development and maintenance. We consider innovation as a process consisting of two phases, being technology creation and technology transfer. In this paper, we

  18. Introduction to the workshop on technology transfer in software engineering

    NARCIS (Netherlands)

    Harrison, Warren; Wieringa, Roelf J.

    The goal of the Workshop on Technology Transfer in Software Engineering is to increase our understanding of technology transfer in software engineering, and to learn from successful case studies. We wanted to bring researchers and practitioners together to create an inventory of problems in software

  19. Toys for Tots in Your Technology and Engineering Program

    Science.gov (United States)

    Berkeihiser, Mike

    2016-01-01

    Most technology and engineering (T&E) classes are elective, so teachers are always looking for ways to market programs, engage students, and remind administrators and school board members about the good things T&E teachers do with and for kids. In this article, the Unionville High School (PA) Technology and Engineering Department describes…

  20. Emerging methods, technologies and process management in software engineering

    CERN Document Server

    Ferrucci, Filomena; Tortora, Genny; Tucci, Maurizio

    2007-01-01

    A high-level introduction to new technologies andmethods in the field of software engineering Recent years have witnessed rapid evolution of software engineering methodologies, and until now, there has been no single-source introduction to emerging technologies in the field.

  1. Textile Technologies and Tissue Engineering: A Path Towards Organ Weaving

    OpenAIRE

    Akbari, Mohsen; Tamayol, Ali; Bagherifard, Sara; Serex, Ludovic; Mostafalu, Pooria; Faramarzi, Negar; Mohammadi, Mohammad Hossein; Khademhosseini, Ali

    2016-01-01

    Textile technologies have recently attracted great attention as potential biofabrication tools for engineering tissue constructs. Using current textile technologies, fibrous structures can be designed and engineered to attain the required properties that are demanded by different tissue engineering applications. Several key parameters such as physiochemical characteristics of fibers, pore size and mechanical properties of the fabrics play important role in the effective use of textile technol...

  2. Mechanics of materials an introduction to engineering technology

    CERN Document Server

    Ghavami, Parviz

    2015-01-01

    This book, framed in the processes of engineering analysis and design, presents concepts in mechanics of materials for students in two-year or four-year programs in engineering technology, architecture, and building construction, as well as for students in vocational schools and technical institutes. Using the principles and laws of mechanics, physics, and the fundamentals of engineering, Mechanics of Materials: An Introduction for Engineering Technology will help aspiring and practicing engineers and engineering technicians from across disciplines—mechanical, civil, chemical, and electrical—apply concepts of engineering mechanics for analysis and design of materials, structures, and machine components. The book is ideal for those seeking a rigorous, algebra/trigonometry-based text on the mechanics of materials. This book also: ·       Elucidates concepts of engineering mechanics in materials, including stress and strain, force systems on structures, moment of inertia, and shear and bending moments...

  3. Power source evaluation capabilities at Sandia National Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Doughty, D.H.; Butler, P.C.

    1996-04-01

    Sandia National Laboratories maintains one of the most comprehensive power source characterization facilities in the U.S. National Laboratory system. This paper describes the capabilities for evaluation of fuel cell technologies. The facility has a rechargeable battery test laboratory and a test area for performing nondestructive and functional computer-controlled testing of cells and batteries.

  4. Support of Study on Engineering Technology from Physics and Mathematics

    OpenAIRE

    Mynbaev, Djafar K.; Cabo, Candido; Kezerashvili, Roman Ya.; Liou-Mark, Janet

    2008-01-01

    An approach that provides students with an ability to transfer learning in physics and mathematics to the engineering-technology courses through e-teaching and e-learning process is proposed. E-modules of courses in mathematics, physics, computer systems technology, and electrical and telecommunications engineering technology have been developed. These modules being used in the Blackboard and Web-based communications systems create a virtual interdisciplinary learning community, which helps t...

  5. Sandia SWiFT Wind Turbine Manual.

    Energy Technology Data Exchange (ETDEWEB)

    White, Jonathan; LeBlanc, Bruce Philip; Berg, Jonathan Charles; Bryant, Joshua; Johnson, Wesley D.; Paquette, Joshua

    2016-01-01

    The Scaled Wind Farm Technology (SWiFT) facility, operated by Sandia National Laboratories for the U.S. Department of Energy's Wind and Water Power Program, is a wind energy research site with multiple wind turbines scaled for the experimental study of wake dynamics, advanced rotor development, turbine control, and advanced sensing for production-scale wind farms. The SWiFT site currently includes three variable-speed, pitch-regulated, three-bladed wind turbines. The six volumes of this manual provide a detailed description of the SWiFT wind turbines, including their operation and user interfaces, electrical and mechanical systems, assembly and commissioning procedures, and safety systems. Further dissemination only as authorized to U.S. Government agencies and their contractors; other requests shall be approved by the originating facility or higher DOE programmatic authority. 111 UNCLASSIFIED UNLIMITED RELEASE Sandia SWiFT Wind Turbine Manual (SAND2016-0746 ) approved by: Department Manager SWiFT Site Lead Dave Minster (6121) Date Jonathan White (6121) Date SWiFT Site Supervisor Dave Mitchell (6121) Date Note: Document revision logs are found after the title page of each volume of this manual. iv

  6. Future engineers: the intrinsic technology motivation of secondary school pupils

    Science.gov (United States)

    Jones, Lewis C. R.; McDermott, Hilary J.; Tyrer, John R.; Zanker, Nigel P.

    2018-07-01

    The supply of students motivated to study engineering in higher education is critical to the sector. Results are presented from the 'Mindsets STEM Enhancement Project'. Fifty-seven new resources packs, designed to improve STEM education in Design and Technology, were given to schools across London. A modified Intrinsic Motivation Inventory questionnaire measured pupils' (n = 458) motivation towards technology. The results show that although pupils have positive reactions to the technology content within Design and Technology lessons, the type of STEM resources and lessons created through the project had made no significant difference on pupils' interest/enjoyment towards technology. This suggests stand-alone resources do not improve pupil motivation. The impact of this work to engineering higher education is that the existing levels and the inability to improve pupil motivation in technology at school could be a factor affecting the pursuit of a technology or engineering related education or career.

  7. FY10 Engineering Innovations, Research and Technology Report

    Energy Technology Data Exchange (ETDEWEB)

    Lane, M A; Aceves, S M; Paulson, C N; Candy, J V; Bennett, C V; Carlisle, K; Chen, D C; White, D A; Bernier, J V; Puso, M A; Weisgraber, T H; Corey, B; Lin, J I; Wheeler, E K; Conway, A M; Kuntz, J D; Spadaccini, C M; Dehlinger, D A; Kotovsky, J; Nikolic, R; Mariella, R P; Foudray, A K; Tang, V; Guidry, B L; Ng, B M; Lemmond, T D; Chen, B Y; Meyers, C A; Houck, T L

    2011-01-11

    This report summarizes key research, development, and technology advancements in Lawrence Livermore National Laboratory's Engineering Directorate for FY2010. These efforts exemplify Engineering's nearly 60-year history of developing and applying the technology innovations needed for the Laboratory's national security missions, and embody Engineering's mission to ''Enable program success today and ensure the Laboratory's vitality tomorrow.'' Leading off the report is a section featuring compelling engineering innovations. These innovations range from advanced hydrogen storage that enables clean vehicles, to new nuclear material detection technologies, to a landmine detection system using ultra-wideband ground-penetrating radar. Many have been recognized with R&D Magazine's prestigious R&D 100 Award; all are examples of the forward-looking application of innovative engineering to pressing national problems and challenging customer requirements. Engineering's capability development strategy includes both fundamental research and technology development. Engineering research creates the competencies of the future where discovery-class groundwork is required. Our technology development (or reduction to practice) efforts enable many of the research breakthroughs across the Laboratory to translate from the world of basic research to the national security missions of the Laboratory. This portfolio approach produces new and advanced technological capabilities, and is a unique component of the value proposition of the Lawrence Livermore Laboratory. The balance of the report highlights this work in research and technology, organized into thematic technical areas: Computational Engineering; Micro/Nano-Devices and Structures; Measurement Technologies; Engineering Systems for Knowledge Discovery; and Energy Manipulation. Our investments in these areas serve not only known programmatic requirements of today and tomorrow, but

  8. 3rd International Conference on Intelligent Technologies and Engineering Systems

    CERN Document Server

    2016-01-01

    This book includes the original, peer reviewed research from the 3rd International Conference on Intelligent Technologies and Engineering Systems (ICITES2014), held in December, 2014 at Cheng Shiu University in Kaohsiung, Taiwan. Topics covered include: Automation and robotics, fiber optics and laser technologies, network and communication systems, micro and nano technologies, and solar and power systems. This book also Explores emerging technologies and their application in a broad range of engineering disciplines Examines fiber optics and laser technologies Covers biomedical, electrical, industrial, and mechanical systems Discusses multimedia systems and applications, computer vision and image & video signal processing.

  9. Microgel Technology to Advance Modular Tissue Engineering

    NARCIS (Netherlands)

    Kamperman, Tom

    2018-01-01

    The field of tissue engineering aims to restore the function of damaged or missing tissues by combining cells and/or a supportive biomaterial scaffold into an engineered tissue construct. The construct’s design requirements are typically set by native tissues – the gold standard for tissue

  10. Core Ideas of Engineering and Technology

    Science.gov (United States)

    Sneider, Cary

    2012-01-01

    Last month, Rodger Bybee's article, "Scientific and Engineering Practices in K-12 Classrooms," provided an overview of Chapter 3 in "A Framework for K-12 Science Education: Practices, Crosscutting Concepts, and Core Ideas" (NRC 2011). Chapter 3 describes the practices of science and engineering that students are expected to develop during 13 years…

  11. Committee to evaluate Sandia`s risk expertise: Final report. Volume 1: Presentations

    Energy Technology Data Exchange (ETDEWEB)

    Dudley, E.C.

    1998-05-01

    On July 1--2, 1997, Sandia National Laboratories hosted the External Committee to Evaluate Sandia`s Risk Expertise. Under the auspices of SIISRS (Sandia`s International Institute for Systematic Risk Studies), Sandia assembled a blue-ribbon panel of experts in the field of risk management to assess their risk programs labs-wide. Panelists were chosen not only for their own expertise, but also for their ability to add balance to the panel as a whole. Presentations were made to the committee on the risk activities at Sandia. In addition, a tour of Sandia`s research and development programs in support of the US Nuclear Regulatory Commission was arranged. The panel attended a poster session featuring eight presentations and demonstrations for selected projects. Overviews and viewgraphs from the presentations are included in Volume 1 of this report. Presentations are related to weapons, nuclear power plants, transportation systems, architectural surety, environmental programs, and information systems.

  12. Technology Education; Engineering Technology and Industrial Technology in California Community Colleges: A Curriculum Guide.

    Science.gov (United States)

    Schon, James F.

    In order to identify the distinguishing characteristics of technical education programs in engineering and industrial technology currently offered by post-secondary institutions in California, a body of data was collected by visiting 25 community colleges, 5 state universities, and 8 industrial firms; by a questionnaire sampling of 72 California…

  13. 1st International Conference on Data Engineering and Communication Technology

    CERN Document Server

    Bhateja, Vikrant; Joshi, Amit

    2017-01-01

    This two-volume book contains research work presented at the First International Conference on Data Engineering and Communication Technology (ICDECT) held during March 10–11, 2016 at Lavasa, Pune, Maharashtra, India. The book discusses recent research technologies and applications in the field of Computer Science, Electrical and Electronics Engineering. The aim of the Proceedings is to provide cutting-edge developments taking place in the field data engineering and communication technologies which will assist the researchers and practitioners from both academia as well as industry to advance their field of study.

  14. Evolving technologies drive the new roles of Biomedical Engineering.

    Science.gov (United States)

    Frisch, P H; St Germain, J; Lui, W

    2008-01-01

    Rapidly changing technology coupled with the financial impact of organized health care, has required hospital Biomedical Engineering organizations to augment their traditional operational and business models to increase their role in developing enhanced clinical applications utilizing new and evolving technologies. The deployment of these technology based applications has required Biomedical Engineering organizations to re-organize to optimize the manner in which they provide and manage services. Memorial Sloan-Kettering Cancer Center has implemented a strategy to explore evolving technologies integrating them into enhanced clinical applications while optimally utilizing the expertise of the traditional Biomedical Engineering component (Clinical Engineering) to provide expanded support in technology / equipment management, device repair, preventive maintenance and integration with legacy clinical systems. Specifically, Biomedical Engineering is an integral component of the Medical Physics Department which provides comprehensive and integrated support to the Center in advanced physical, technical and engineering technology. This organizational structure emphasizes the integration and collaboration between a spectrum of technical expertise for clinical support and equipment management roles. The high cost of clinical equipment purchases coupled with the increasing cost of service has driven equipment management responsibilities to include significant business and financial aspects to provide a cost effective service model. This case study details the dynamics of these expanded roles, future initiatives and benefits for Biomedical Engineering and Memorial Sloan Kettering Cancer Center.

  15. Implementing Virtual Private Networking for Enabling Lower Cost, More Secure Wide Area Communications at Sandia National Laboratories; TOPICAL

    International Nuclear Information System (INIS)

    MILLER, MARC M.; YONEK JR., GEORGE A.

    2001-01-01

    Virtual Private Networking is a new communications technology that promises lower cost, more secure wide area communications by leveraging public networks such as the Internet. Sandia National Laboratories has embraced the technology for interconnecting remote sites to Sandia's corporate network, and for enabling remote access users for both dial-up and broadband access

  16. Use of Soft Computing Technologies For Rocket Engine Control

    Science.gov (United States)

    Trevino, Luis C.; Olcmen, Semih; Polites, Michael

    2003-01-01

    The problem to be addressed in this paper is to explore how the use of Soft Computing Technologies (SCT) could be employed to further improve overall engine system reliability and performance. Specifically, this will be presented by enhancing rocket engine control and engine health management (EHM) using SCT coupled with conventional control technologies, and sound software engineering practices used in Marshall s Flight Software Group. The principle goals are to improve software management, software development time and maintenance, processor execution, fault tolerance and mitigation, and nonlinear control in power level transitions. The intent is not to discuss any shortcomings of existing engine control and EHM methodologies, but to provide alternative design choices for control, EHM, implementation, performance, and sustaining engineering. The approaches outlined in this paper will require knowledge in the fields of rocket engine propulsion, software engineering for embedded systems, and soft computing technologies (i.e., neural networks, fuzzy logic, and Bayesian belief networks), much of which is presented in this paper. The first targeted demonstration rocket engine platform is the MC-1 (formerly FASTRAC Engine) which is simulated with hardware and software in the Marshall Avionics & Software Testbed laboratory that

  17. Off reactor testings. Technological engineering applicative research

    International Nuclear Information System (INIS)

    Doca, Cezar

    2001-01-01

    By the end of year 2000 over 400 nuclear electro-power units were operating world wide, summing up a 350,000 MW total capacity, with a total production of 2,300 TWh, representing 16% of the world's electricity production. Other 36 units, totalizing 28,000 MW, were in construction, while a manifest orientation towards nuclear power development was observed in principal Asian countries like China, India, Japan and Korea. In the same world's trend one find also Romania, the Cernavoda NPP Unit 1 generating electrical energy into the national system beginning with 2 December 1996. Recently, the commercial contract was completed for finishing the Cernavoda NPP Unit 2 and launching it into operation by the end of year 2004. An important role in developing the activity of research and technological engineering, as technical support for manufacturing the CANDU type nuclear fuel and supplying with equipment the Cernavoda units, was played by the Division 7 TAR of the INR Pitesti. Qualification testings were conducted for: - off-reactor CANDU type nuclear fuel; - FARE tools, pressure regulators, explosion proof panels; channel shutting, as well as functional testing for spare pushing facility as a first step in the frame of the qualification tests for the charging/discharging machine (MID) 4 and 5 endings. Testing facilities are described, as well as high pressure hot/cool loops, measuring chains, all of them fulfilling the requirements of quality assurance. The nuclear fuel off-reactor tests were carried out to determine: strength; endurance; impact, pressure fall and wear resistance. For Cernavoda NPP equipment testings were carried out for: the explosion proof panels, pressure regulators, behaviour to vibration and wear of the steam generation tubings, effects of vibration upon different electronic component, channel shutting (for Cernavoda Unit 2), MID operating at 300 and 500 cycles. A number of R and D programs were conducted in the frame of division 7 TAR of INR

  18. Building on and spinning off: Sandia National Labs` creation of sensors for Vietnam

    Energy Technology Data Exchange (ETDEWEB)

    Ullrich, R.

    1996-12-31

    This paper discusses Sandia National Laboratories` development of new technologies for use in the Vietnam War - specifically the seismic sensors deployed to detect troop and vehicle movement - first along the Ho Chi Minh Trail and later in perimeter defense for American military encampments in South Vietnam. Although the sensor story is a small one, it is interesting because it dovetails nicely with our understanding of the war in Vietnam and its frustrations; of the creation of new technologies for war and American enthusiasm for that technology; and of a technological military and the organizational research and a m am development structure created to support it. Within the defense establishment, the sensors were proposed within the context of a larger concept - that of a barrier to prevent the infiltration of troops and supplies from North Vietnam to the South. All of the discussion of the best way to fight in Vietnam is couched in the perception that this was a different kind of war than America was used to fighting. The emphasis was on countering the problems posed by guerrilla/revolutionary warfare and eventually by the apparent constraints of being involved in a military action, not an outright war. The American response was to find the right technology to do the job - to control the war by applying a technological tincture to its wounds and to make the war familiar and fightable on American terms. And, when doubts were raised about the effectiveness of applying existing technologies (namely, the bombing of North Vietnam and Laos), the doubters turned to new technologies. The sensors that were developed for use in Vietnam were a direct product of this sort of thinking - on the part of the engineers at Sandia who created the sensors, the civilian scientific advisors who recommended them, and, ultimately, the soldiers in the field who had to use them.

  19. Fusion power system: technology and engineering considerations

    International Nuclear Information System (INIS)

    Fillo, J.A.

    1976-01-01

    Engineering concepts are discussed for the following topics: (1) blanket environment, (2) blanket materials, (3) tritium breeding, (4) heat removal problems, (5) materials selection for radiation shields, (6) afterheat, and (7) fusion blanket design

  20. Requirements Engineering and Design Technology Report

    National Research Council Canada - National Science Library

    Ganska, Ralph

    1995-01-01

    This report reviews the STSC's recommendations for the selection and usage of software engineering products aimed at the requirements analysis and high-level design portions of the software lifecycle...

  1. Engineering research, development and technology: Thrust area report FY 91

    International Nuclear Information System (INIS)

    1991-01-01

    The mission of the Engineering Research, Development, and Technology Program at Lawrence, Livermore National Laboratory (LLNL) is to develop the technical staff and the technology needed to support current and future LLNL programs. To accomplish this mission, the Engineering Research, Development, and Technology Program has two important goals: (1) to identify key technologies and (2) conduct high quality work to enhance our capabilities in these key technologies. To help focus our efforts, we identify technology thrust areas and select technical leaders for each area. The thrust areas are integrated engineering activities and, rather than being based on individual disciplines, they are staffed by personnel from Electronics Engineering, Mechanical Engineering, and other LLNL organizations, as appropriate. The thrust area leaders are expected to establish strong links to LLNL program leaders and to industry; to use outside and inside experts to review the quality and direction of the work; to use university contacts to supplement and complement their efforts; and to be certain that we are not duplicating the work of others. The thrust area leader is also responsible for carrying out the work that follows from the Engineering Research, Development, and Technology Program so that the results can be applied as early as possible to the needs of LLNL programs. This annual report, organized by thrust area, describes activities conducted within the Program for the fiscal year, 1991. Its intent is to provide timely summaries of objectives, theories, methods, and results

  2. Concise Review: Organ Engineering: Design, Technology, and Integration.

    Science.gov (United States)

    Kaushik, Gaurav; Leijten, Jeroen; Khademhosseini, Ali

    2017-01-01

    Engineering complex tissues and whole organs has the potential to dramatically impact translational medicine in several avenues. Organ engineering is a discipline that integrates biological knowledge of embryological development, anatomy, physiology, and cellular interactions with enabling technologies including biocompatible biomaterials and biofabrication platforms such as three-dimensional bioprinting. When engineering complex tissues and organs, core design principles must be taken into account, such as the structure-function relationship, biochemical signaling, mechanics, gradients, and spatial constraints. Technological advances in biomaterials, biofabrication, and biomedical imaging allow for in vitro control of these factors to recreate in vivo phenomena. Finally, organ engineering emerges as an integration of biological design and technical rigor. An overall workflow for organ engineering and guiding technology to advance biology as well as a perspective on necessary future iterations in the field is discussed. Stem Cells 2017;35:51-60. © 2016 AlphaMed Press.

  3. Textile Technologies and Tissue Engineering: A Path Toward Organ Weaving.

    Science.gov (United States)

    Akbari, Mohsen; Tamayol, Ali; Bagherifard, Sara; Serex, Ludovic; Mostafalu, Pooria; Faramarzi, Negar; Mohammadi, Mohammad Hossein; Khademhosseini, Ali

    2016-04-06

    Textile technologies have recently attracted great attention as potential biofabrication tools for engineering tissue constructs. Using current textile technologies, fibrous structures can be designed and engineered to attain the required properties that are demanded by different tissue engineering applications. Several key parameters such as physiochemical characteristics of fibers, microarchitecture, and mechanical properties of the fabrics play important roles in the effective use of textile technologies in tissue engineering. This review summarizes the current advances in the manufacturing of biofunctional fibers. Different textile methods such as knitting, weaving, and braiding are discussed and their current applications in tissue engineering are highlighted. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. The development and application of CFD technology in mechanical engineering

    Science.gov (United States)

    Wei, Yufeng

    2017-12-01

    Computational Fluid Dynamics (CFD) is an analysis of the physical phenomena involved in fluid flow and heat conduction by computer numerical calculation and graphical display. The numerical method simulates the complexity of the physical problem and the precision of the numerical solution, which is directly related to the hardware speed of the computer and the hardware such as memory. With the continuous improvement of computer performance and CFD technology, it has been widely applied to the field of water conservancy engineering, environmental engineering and industrial engineering. This paper summarizes the development process of CFD, the theoretical basis, the governing equations of fluid mechanics, and introduces the various methods of numerical calculation and the related development of CFD technology. Finally, CFD technology in the mechanical engineering related applications are summarized. It is hoped that this review will help researchers in the field of mechanical engineering.

  5. 2016 China Academic Conference on Printing, Packaging Engineering & Media Technology

    CERN Document Server

    Ouyang, Yun; Xu, Min; Yang, Li; Ouyang, Yujie

    2017-01-01

    This book includes a selection of reviewed papers presented at the 2016 China Academic Conference on Printing, Packaging Engineering & Media Technology, held on November 25-27, 2016 in Xi’an, China. The conference was jointly organized by China Academy of Printing Technology, Xi’an University of Technology and Stuttgart Media University of Germany. The proceedings cover the recent outcomes on color science and technology, image processing technology, digital media technology, digital process management technology in packaging and packaging etc. They will be of interest to university researchers, R&D engineers and graduate students in graphic communications, packaging, color science, image science, material science, computer science, digital media and network technology fields.

  6. Sandia National Laboratories Strategic Context Workshop Series 2017: National Security Futures for Strategic Thinking.

    Energy Technology Data Exchange (ETDEWEB)

    Keller, Elizabeth James Kistin [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Roll, Elizabeth [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Aamir, Munaf Syed [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bull, Diana L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Deland, Sharon M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Haddal, Chad [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Passell, Howard D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Foley, John T. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Harwell, Amber Suzanne [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Otis, Monique [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Backus, George A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Jones, Wendell [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bawden, Michael Greet Shander [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Craft, Richard L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Kistin, David [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Martin, Jeffrey B. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); McNicol, Bradley Robert [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Vannoni, Michael G. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Trost, Lawrence C. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Tsao, Jeffrey Y. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Weaver, Karla [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2018-01-01

    In August 2017, Sandia convened five workshops to explore the future of advanced technologies and global peace and security through the lenses of deterrence, information, innovation, nonproliferation, and population and Earth systems.

  7. Sustainable transportation : technology, engineering, and science - summer camp instructor's guide.

    Science.gov (United States)

    2014-03-01

    This document reproduces the instructors guide for a ten day transportation engineering summer camp that was held at the University of Idaho in July 2013. The instructors guide is split into three units: Unit 1: Vehicle Technology, Unit 2: Traf...

  8. Discovery Camp Excites Students about Engineering and Technology Careers

    Science.gov (United States)

    Massiha, G. H.

    2011-01-01

    In the United States and elsewhere, there is a dramatic shortage of engineers and technologists. And, unfortunately, these professions often suffer from a lack of awareness among K-12 students. Clearly, educators need to show students the very exciting and lucrative aspects of these fields. Engineering and technology are consistently listed by…

  9. Formal Abstraction in Engineering Education--Challenges and Technology Support

    Science.gov (United States)

    Neuper, Walther A.

    2017-01-01

    This is a position paper in the field of Engineering Education, which is at the very beginning in Europe. It relates challenges in the new field to the emerging technology of (Computer) Theorem Proving (TP). Experience shows, that "teaching" abstract models, for instance the wave equation in mechanical engineering and in electrical…

  10. Colloquy on Minority Males in Science, Technology, Engineering, and Mathematics

    Science.gov (United States)

    Didion, Catherine; Fortenberry, Norman L.; Cady, Elizabeth

    2012-01-01

    On August 8-12, 2010 the National Academy of Engineering (NAE), with funding from the National Science Foundation (NSF), convened the Colloquy on Minority Males in Science, Technology, Engineering, and Mathematics (STEM), following the release of several reports highlighting the educational challenges facing minority males. The NSF recognized the…

  11. Attracting Girls to Science, Engineering and Technology: An Australian Perspective

    Science.gov (United States)

    Little, Alison J.; Leon de la Barra, Bernardo A.

    2009-01-01

    This paper describes a project undertaken by the school outreach team at the School of Engineering, University of Tasmania, Australia, to attract girls to science, engineering and technology (SET). The project was a pilot program designed to engage female students from upper primary to senior secondary in the teaching of physical sciences. A…

  12. Teacher Challenges to Implement Engineering Design in Secondary Technology Education

    Science.gov (United States)

    Kelley, Todd R.; Wicklein, Robert C.

    2009-01-01

    This descriptive study examined the current status of technology education teacher practices with respect to engineering design. This article is the third article in a three-part series presenting the results of this study. The first article in the series titled "Examination of Engineering Design Curriculum Content" highlighted the research…

  13. International Conference on Emerging Trends in Science, Engineering and Technology

    CERN Document Server

    Caroline, B; Jayanthi, J

    2012-01-01

    The present book is based on the research papers presented in the International Conference on Emerging Trends in Science, Engineering and Technology 2012, held at Tiruchirapalli, India. The papers presented bridges the gap between science, engineering and technology. This book covers a variety of topics, including mechanical, production, aeronautical, material science, energy, civil and environmental energy, scientific management, etc. The prime objective of the book is to fully integrate the scientific contributions from academicians, industrialists and research scholars.

  14. Engineering innovation in healthcare: technology, ethics and persons.

    Science.gov (United States)

    Bowen, W Richard

    2011-01-01

    Engineering makes profound contributions to our health. Many of these contributions benefit whole populations, such as clean water and sewage treatment, buildings, dependable sources of energy, efficient harvesting and storage of food, and pharmaceutical manufacture. Thus, ethical assessment of these and other engineering activities has often emphasized benefits to communities. This is in contrast to medical ethics, which has tended to emphasize the individual patient affected by a doctor's actions. However technological innovation is leading to an entanglement of the activities, and hence ethical responsibilities, of healthcare professionals and engineering professionals. The article outlines three categories of innovation: assistive technologies, telehealthcare and quasi-autonomous systems. Approaches to engineering ethics are described and applied to these innovations. Such innovations raise a number of ethical opportunities and challenges, especially as the complexity of the technology increases. In particular the design and operation of the technologies require engineers to seek closer involvement with the persons benefiting from their work. Future innovation will require engineers to have a good knowledge of human biology and psychology. More particularly, healthcare engineers will need to prioritize each person's wellbeing, agency, human relationships and ecological self rather than technology, in the same way that doctors prioritize the treatment of persons rather than their diseases.

  15. Integrated Tools for Future Distributed Engine Control Technologies

    Science.gov (United States)

    Culley, Dennis; Thomas, Randy; Saus, Joseph

    2013-01-01

    Turbine engines are highly complex mechanical systems that are becoming increasingly dependent on control technologies to achieve system performance and safety metrics. However, the contribution of controls to these measurable system objectives is difficult to quantify due to a lack of tools capable of informing the decision makers. This shortcoming hinders technology insertion in the engine design process. NASA Glenn Research Center is developing a Hardware-inthe- Loop (HIL) platform and analysis tool set that will serve as a focal point for new control technologies, especially those related to the hardware development and integration of distributed engine control. The HIL platform is intended to enable rapid and detailed evaluation of new engine control applications, from conceptual design through hardware development, in order to quantify their impact on engine systems. This paper discusses the complex interactions of the control system, within the context of the larger engine system, and how new control technologies are changing that paradigm. The conceptual design of the new HIL platform is then described as a primary tool to address those interactions and how it will help feed the insertion of new technologies into future engine systems.

  16. Conventional engine technology. Volume 3: Comparisons and future potential

    Science.gov (United States)

    Dowdy, M. W.

    1981-01-01

    The status of five conventional automobile engine technologies was assessed and the future potential for increasing fuel economy and reducing exhaust emission was discussed, using the 1980 EPA California emisions standards as a comparative basis. By 1986, the fuel economy of a uniform charge Otto engine with a three-way catalyst is expected to increase 10%, while vehicles with lean burn (fast burn) engines should show a 20% fuel economy increase. Although vehicles with stratified-charge engines and rotary engines are expected to improve, their fuel economy will remain inferior to the other engine types. When adequate NO emissions control methods are implemented to meet the EPA requirements, vehicles with prechamber diesel engines are expected to yield a fuel economy advantage of about 15%. While successful introduction of direct injection diesel engine technology will provide a fuel savings of 30 to 35%, the planned regulation of exhaust particulates could seriously hinder this technology, because it is expected that only the smallest diesel engine vehicles could meet the proposed particulate requirements.

  17. International Conference of Applied Science and Technology for Infrastructure Engineering

    Science.gov (United States)

    Elvina Santoso, Shelvy; Hardianto, Ekky

    2017-11-01

    Preface: International Conference of Applied Science and Technology for Infrastructure Engineering (ICASIE) 2017. The International Conference of Applied Science and Technology for Infrastructure Engineering (ICASIE) 2017 has been scheduled and successfully taken place at Swiss-Bell Inn Hotel, Surabaya, Indonesia, on August 5th 2017 organized by Department of Civil Infrastructure Engineering, Faculty of Vocation, Institut Teknologi Sepuluh Nopember (ITS). This annual event aims to create synergies between government, private sectors; employers; practitioners; and academics. This conference has different theme each year and “MATERIAL FOR INFRASTUCTURE ENGINEERING” will be taken for this year’s main theme. In addition, we also provide a platform for various other sub-theme topic including but not limited to Geopolymer Concrete and Materials Technology, Structural Dynamics, Engineering, and Sustainability, Seismic Design and Control of Structural Vibrations, Innovative and Green Buildings, Project Management, Transportation and Highway Engineering, Geotechnical Engineering, Water Engineering and Resources Management, Surveying and Geospatial Engineering, Coastal Engineering, Geophysics, Energy, Electronic and Mechatronic, Industrial Process, and Data Mining. List of Organizers, Journal Editors, Steering Committee, International Scientific Committee, Chairman, Keynote Speakers are available in this pdf.

  18. Impactful times memories of 60 years of shock wave research at Sandia National Laboratories

    CERN Document Server

    Asay, James R; Lawrence, R Jeffery; Sweeney, Mary Ann

    2017-01-01

    This book presents a history of shock compression science, including development of experimental, material modeling, and hydrodynamics code technologies over the past six decades at Sandia National Laboratories. The book is organized into a discussion of major accomplishments by decade with over 900 references, followed by a unique collection of 45 personal recollections detailing the trials, tribulations, and successes of building a world-class organization in the field. It explains some of the challenges researchers faced and the gratification they experienced when a discovery was made. Several visionary researchers made pioneering advances that integrated these three technologies into a cohesive capability to solve complex scientific and engineering problems. What approaches worked, which ones did not, and the applications of the research are described. Notable applications include the turret explosion aboard the USS Iowa and the Shoemaker-Levy comet impact on Jupiter. The personal anecdotes and recollec...

  19. Stratified charge rotary aircraft engine technology enablement program

    Science.gov (United States)

    Badgley, P. R.; Irion, C. E.; Myers, D. M.

    1985-01-01

    The multifuel stratified charge rotary engine is discussed. A single rotor, 0.7L/40 cu in displacement, research rig engine was tested. The research rig engine was designed for operation at high speeds and pressures, combustion chamber peak pressure providing margin for speed and load excursions above the design requirement for a high is advanced aircraft engine. It is indicated that the single rotor research rig engine is capable of meeting the established design requirements of 120 kW, 8,000 RPM, 1,379 KPA BMEP. The research rig engine, when fully developed, will be a valuable tool for investigating, advanced and highly advanced technology components, and provide an understanding of the stratified charge rotary engine combustion process.

  20. 3D Bioprinting Technologies for Hard Tissue and Organ Engineering

    Science.gov (United States)

    Wang, Xiaohong; Ao, Qiang; Tian, Xiaohong; Fan, Jun; Wei, Yujun; Hou, Weijian; Tong, Hao; Bai, Shuling

    2016-01-01

    Hard tissues and organs, including the bones, teeth and cartilage, are the most extensively exploited and rapidly developed areas in regenerative medicine field. One prominent character of hard tissues and organs is that their extracellular matrices mineralize to withstand weight and pressure. Over the last two decades, a wide variety of 3D printing technologies have been adapted to hard tissue and organ engineering. These 3D printing technologies have been defined as 3D bioprinting. Especially for hard organ regeneration, a series of new theories, strategies and protocols have been proposed. Some of the technologies have been applied in medical therapies with some successes. Each of the technologies has pros and cons in hard tissue and organ engineering. In this review, we summarize the advantages and disadvantages of the historical available innovative 3D bioprinting technologies for used as special tools for hard tissue and organ engineering. PMID:28773924

  1. 3D Bioprinting Technologies for Hard Tissue and Organ Engineering

    Directory of Open Access Journals (Sweden)

    Xiaohong Wang

    2016-09-01

    Full Text Available Hard tissues and organs, including the bones, teeth and cartilage, are the most extensively exploited and rapidly developed areas in regenerative medicine field. One prominent character of hard tissues and organs is that their extracellular matrices mineralize to withstand weight and pressure. Over the last two decades, a wide variety of 3D printing technologies have been adapted to hard tissue and organ engineering. These 3D printing technologies have been defined as 3D bioprinting. Especially for hard organ regeneration, a series of new theories, strategies and protocols have been proposed. Some of the technologies have been applied in medical therapies with some successes. Each of the technologies has pros and cons in hard tissue and organ engineering. In this review, we summarize the advantages and disadvantages of the historical available innovative 3D bioprinting technologies for used as special tools for hard tissue and organ engineering.

  2. 3D Bioprinting Technologies for Hard Tissue and Organ Engineering.

    Science.gov (United States)

    Wang, Xiaohong; Ao, Qiang; Tian, Xiaohong; Fan, Jun; Wei, Yujun; Hou, Weijian; Tong, Hao; Bai, Shuling

    2016-09-27

    Hard tissues and organs, including the bones, teeth and cartilage, are the most extensively exploited and rapidly developed areas in regenerative medicine field. One prominent character of hard tissues and organs is that their extracellular matrices mineralize to withstand weight and pressure. Over the last two decades, a wide variety of 3D printing technologies have been adapted to hard tissue and organ engineering. These 3D printing technologies have been defined as 3D bioprinting. Especially for hard organ regeneration, a series of new theories, strategies and protocols have been proposed. Some of the technologies have been applied in medical therapies with some successes. Each of the technologies has pros and cons in hard tissue and organ engineering. In this review, we summarize the advantages and disadvantages of the historical available innovative 3D bioprinting technologies for used as special tools for hard tissue and organ engineering.

  3. Sandia Pulse Reactor-IV Project

    International Nuclear Information System (INIS)

    Reuscher, J.A.

    1983-01-01

    Sandia National Laboratories has developed, designed and operated fast burst reactors for over 20 years. These reactors have been used for a variety of radiation effects programs. During this period, programs have required larger irradiation volumes primarily to expose complex electronic systems to postulated threat environments. As experiment volumes increased, a new reactor was built so that these components could be tested. The Sandia Pulse Reactor-IV is a logical evolution of the two decades of fast burst reactor development at Sandia

  4. Technical comparison of the commercialized Racon model 21000 Portable, Reconfigurable Line Sensor (PRLS) and original Sandia/USAF prototype

    International Nuclear Information System (INIS)

    Blattman, D.A.

    1993-01-01

    The military has been moving from a global strategic response with fixed site asset protection to regional tactical response requirements. This change necessitates high security sensor systems that can be easily relocated and rapidly placed in operation by unskilled operators. The Portable, Reconfigurable Line Sensor (PRLS) was developed by Sandia National Laboratories with United States Air Force funding. Racon, Inc. is now commercializing the PRLS through a Cooperative Research and Development Agreement (CRDA) with the United States Air Force. The commercialized design of the new PRLS bi-static radar sensor benefits from the extensive field testing of the original Sandia/USAF-developed engineering prototype systems of the 1980s. Tests conducted in hot, cold, wind, rain, and snow conditions verified exceptional intruder detection capability, resistance to spoofing attempts, and insusceptibility to mutual interference and nuisance alarms caused by birds or small animals. The use of 1990's implementation technology combined with extensive testing information has resulted in significant product performance enhancements as well as cost savings. This paper compares technical features of the original Sandia/USAF prototypes with the new commercialized Racon model 21000 Portable, Reconfigurable Line Sensor. The PRLS advances the art of outdoor security to meet the Relocatable Sensor System (RSS) challenge of the 1990s

  5. Charter of the Sandia National Laboratories Sandia Postdoctoral Development (SPD) Association.

    Energy Technology Data Exchange (ETDEWEB)

    McBride, Amber Alane Fisher; McBride, Amber Alane Fisher; Rodgers, Theron; Dong, Wen; Juan, Pierre-Alexandre; Barkholtz, Heather; Alley, William Morgan; Wolk, Benjamin Matthew; Vane, Zachary Phillips; Priye, Aashish; Ball, Cameron Scott; McBride, Amber Alane Fisher

    2017-03-01

    The SNL SPD Association represents all personnel that are classified as Postdoctoral Appointees at Sandia National Laboratories. The purpose of the SNL SPD Association is to address the needs and concerns of Postdoctoral Appointees within Sandia National Laboratories.

  6. Application of Modern Simulation Technology in Mechanical Outstanding Engineer Training

    Directory of Open Access Journals (Sweden)

    Gongfa Li

    2014-03-01

    Full Text Available This text has described the relationship between outstanding engineer training and modern simulation technology, have recommended the characteristics of mechanical outstanding engineer in detail. Aiming at the importance of the teaching practice link to course of theory of mechanics, mechanical design and mechanical signal analysis, have expounded the function of modern simulation technology in the mechanical outstanding engineer training, especially on teaching practice in the theory of mechanics, mechanical design and mechanical signal analysis. It has the advantages of economizing the teaching cost, overcoming the hardware constrains, model prediction, promoting student's innovation and manipulative ability, so can popularize and develop in a more cost-effective manner in the university.

  7. Greenhouse engineering: New technologies and approaches

    NARCIS (Netherlands)

    Montero, J.I.; Henten, van E.J.; Son, J.E.; Castilla, N.

    2011-01-01

    Firstly, this article discusses the greenhouse engineering situation in three geographic areas which are relevant in the field of protected cultivation: Northern Asia, The Netherlands and the Mediterranean. For each area, the prevailing greenhouse type and equipment is briefly described. Secondly,

  8. Supersonic propulsion technology. [variable cycle engines

    Science.gov (United States)

    Powers, A. G.; Coltrin, R. E.; Stitt, L. E.; Weber, R. J.; Whitlow, J. B., Jr.

    1979-01-01

    Propulsion concepts for commercial supersonic transports are discussed. It is concluded that variable cycle engines, together with advanced supersonic inlets and low noise coannular nozzles, provide good operating performance for both supersonic and subsonic flight. In addition, they are reasonably quiet during takeoff and landing and have acceptable exhaust emissions.

  9. Sandia Laboratories plutonium protection system

    International Nuclear Information System (INIS)

    Bernard, E.A.; Miyoshi, D.S.; Gutierrez, F.D.

    1977-01-01

    Sandia Laboratories is developing an improved plutonium protection system (PPS) to demonstrate new concepts for enhancing special nuclear materials safeguards. PPS concepts include separation of functions, real-time item accountability and improved means for control of materials, activities and personnel access. Physical barriers and a secure communications network are designed into the system to offer greater protection against sabotage, diversion and theft attempts. Prototype systems are being constructed at Hanford, Washington and Albuquerque, New Mexico and will be subjected to a comprehensive testing and evaluation program

  10. SANDIA MOUNTAIN WILDERNESS, NEW MEXICO.

    Science.gov (United States)

    Hedlund, D.C.; Kness, R.F.

    1984-01-01

    Geologic and mineral-resource investigations in the Sandia Mountains in New Mexico indicate that a small part of the area has a probable mineral-resource potential. Most of the mineral occurrences are small barite-fluorite veins that occur along faults on the eastern slope of the range. The barite veins in the Landsend area and in the Tunnel Spring area are classed as having a probable mineral-resource potential. Fluorite veins which occur at the La Luz mine contain silver-bearing galeana and the area near this mine is regarded as having a probable resource potential for silver. No energy resources were identified in this study.

  11. FY 2007 Progress Report for Advanced Combustion Engine Technologies

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2007-12-01

    Advanced combustion engines have great potential for achieving dramatic energy efficiency improvements in light-duty vehicle applications, where it is suited to both conventional and hybrid- electric powertrain configurations. Light-duty vehicles with advanced combustion engines can compete directly with gasoline engine hybrid vehicles in terms of fuel economy and consumer-friendly driving characteristics; also, they are projected to have energy efficiencies that are competitive with hydrogen fuel cell vehicles when used in hybrid applications.Advanced engine technologies being researched and developed by the Advanced Combustion Engine R&D Sub-Program will also allow the use of hydrogen as a fuel in ICEs and will provide an energy-efficient interim hydrogen-based powertrain technology during the transition to hydrogen/fuelcell-powered transportation vehicles.

  12. DESALINATION AND WATER TREATMENT RESEARCH AT SANDIA NATIONAL LABORATORIES.

    Energy Technology Data Exchange (ETDEWEB)

    Rigali, Mark J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Miller, James E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Altman, Susan J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Biedermann, Laura [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Brady, Patrick Vane. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Kuzio, Stephanie P. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Nenoff, Tina M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Rempe, Susan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-11-01

    Water is the backbone of our economy - safe and adequate supplies of water are vital for agriculture, industry, recreation, and human consumption. While our supply of water today is largely safe and adequate, we as a nation face increasing water supply challenges in the form of extended droughts, demand growth due to population increase, more stringent health-based regulation, and competing demands from a variety of users. To meet these challenges in the coming decades, water treatment technologies, including desalination, will contribute substantially to ensuring a safe, sustainable, affordable, and adequate water supply for the United States. This overview documents Sandia National Laboratories' (SNL, or Sandia) Water Treatment Program which focused on the development and demonstration of advanced water purification technologies as part of the larger Sandia Water Initiative. Projects under the Water Treatment Program include: (1) the development of desalination research roadmaps (2) our efforts to accelerate the commercialization of new desalination and water treatment technologies (known as the 'Jump-Start Program),' (3) long range (high risk, early stage) desalination research (known as the 'Long Range Research Program'), (4) treatment research projects under the Joint Water Reuse & Desalination Task Force, (5) the Arsenic Water Technology Partnership Program, (6) water treatment projects funded under the New Mexico Small Business Administration, (7) water treatment projects for the National Energy Technology Laboratory (NETL) and the National Renewable Energy Laboratory (NREL), (8) Sandia- developed contaminant-selective treatment technologies, and finally (9) current Laboratory Directed Research and Development (LDRD) funded desalination projects.

  13. Incorporating Disciplinary Literacy in Technology and Engineering Education

    Science.gov (United States)

    Loveland, Thomas

    2014-01-01

    This article presents an overview of how to relate reading to a content area, specifically technology education. The author notes that, with the new focus on Common Core English Language Arts State Standards and state-developed standards, technology and engineering teachers should include disciplinary literacy in their curriculum. Academic…

  14. Improving Teacher-Made Assessments in Technology and Engineering Education

    Science.gov (United States)

    White, Jesse W.; Moye, Johnny J.; Gareis, Christopher R.; Hylton, Sarah P.

    2018-01-01

    In the interest of learning how to effectively use the technological literacy standards and of adhering to education regulation, this article focuses on efforts to improve the professional teaching practices of Technology and Engineering Education (TEE) teachers by using the Gareis and Grant (2015) process with respect to "Standards for…

  15. Reference Points: Engineering Technology Education Bibliography, 1987.

    Science.gov (United States)

    Engineering Education, 1989

    1989-01-01

    Lists articles and books published in 1987. Selects the following headings: administration, aeronautical, architectural, CAD/CAM, civil, computers, curriculum, electrical/electronics, industrial, industry/government/employers, instructional technology, laboratories, liberal studies, manufacturing, mechanical, minorities, research, robotics,…

  16. Bioprocess-Engineering Education with Web Technology

    NARCIS (Netherlands)

    Sessink, O.

    2006-01-01

    Development of learning material that is distributed through and accessible via the World Wide Web. Various options from web technology are exploited to improve the quality and efficiency of learning material.

  17. Thermal barrier coatings - Technology for diesel engines

    International Nuclear Information System (INIS)

    Harris, D.H.; Lutz, J.

    1988-01-01

    Thermal Barrier Coatings (TBC) are a development of the aerospace industry primarily aimed at hot gas flow paths in turbine engines. TBC consists of zirconia ceramic coatings applied over (M)CrAlY. These coatings can provide three benefits: (1) a reduction of metal surface operating temperatures, (2) a deterrent to hot gas corrosion, and (3) improved thermal efficiencies. TBC brings these same benefits to reciprocal diesel engines but coating longevity must be demonstrated. Diesels require thicker deposits and have challenging geometries for the arc-plasma spray (APS) deposition process. Different approaches to plasma spraying TBC are required for diesels, especially where peripheral edge effects play a major role. Bondcoats and ceramic top coats are modified to provide extended life as determined by burner rig tests, using ferrous and aluminum substrates

  18. Civil engineering in power plant technology

    International Nuclear Information System (INIS)

    Krolewski, H.

    1982-01-01

    Guaranteeing our power supplies requires increasingly large, bold or novel construction works (for example, 200 m chimney with installation of stays over a wide area for a wind power plant in Spain; up to 400 m structure height on floating drill rigs). The layman admires the impressiveness with which these demand great ability and responsibility on the part of the civil engineer. The inland power station builder has to concentrate on few spectacular methods of construction or dimensions. The success of the total undertaking is however no less attributable to structural prerequisites. Civil engineering problems have to be displaced by means of static and dynamic problems in order to meet licensing requirements (planning of construction supervision, fire prevention, structure of supply and disposal). (orig.) [de

  19. Semantic Web technologies in software engineering

    OpenAIRE

    Gall, H C; Reif, G

    2008-01-01

    Over the years, the software engineering community has developed various tools to support the specification, development, and maintainance of software. Many of these tools use proprietary data formats to store artifacts which hamper interoperability. However, the Semantic Web provides a common framework that allows data to be shared and reused across application, enterprise, and community boundaries. Ontologies are used define the concepts in the domain of discourse and their relationships an...

  20. Introduction to Plasma Technology Science, Engineering and Applications

    CERN Document Server

    Harry, John Ernest

    2011-01-01

    Written by a university lecturer with more than forty years experience in plasma technology, this book adopts a didactic approach in its coverage of the theory, engineering and applications of technological plasmas. The theory is developed in a unified way to enable brevity and clarity, providing readers with the necessary background to assess the factors that affect the behavior of plasmas under different operating conditions. The major part of the book is devoted to the applications of plasma technology and their accompanying engineering aspects, classified by the various pressure and densit

  1. Critical technologies: The role of chemistry and chemical engineering

    International Nuclear Information System (INIS)

    1992-01-01

    The purpose of this report is to identify and illustrate key contributions of chemical and chemical engineering research to the development of technologies that have been deemed critical to the economy, security, and well-being of our nation. The report surveys a wide range of vital technologies that are heavily reliant or even critically dependent on chemical or chemical engineering research. Examples were taken from the fields of materials, manufacturing, energy, transportation, public health, information and communications, and the environment. While loosely following the structure of the critical technologies report of the NCTP, our committee decided on a different approach, that of using examples backed up by extensive illustrations

  2. Engineering research, development and technology. Thrust area report, FY93

    Energy Technology Data Exchange (ETDEWEB)

    1994-05-01

    The mission of the Engineering Research, Development, and Technology Program at Lawrence Livermore National Laboratory (LLNL) is to develop the technical staff, tools, and facilities needed to support current and future LLNL programs. The efforts are guided by a dual-benefit research and development strategy that supports Department of Energy missions, such as national security through nuclear deterrence and economic competitiveness through partnerships with U.S. industry. This annual report, organized by thrust area, describes the activities for the fiscal year 1993. The report provides timely summaries of objectives, methods, and results from nine thrust areas for this fiscal year: Computational Electronics and Electromagnetics; Computational Mechanics; Diagnostics and Microelectronics; Fabrication Technology; Materials Science and Engineering; Power Conversion Technologies; Nondestructive Evaluation; Remote Sensing, Imaging, and Signal Engineering; and Emerging Technologies. Separate abstracts were prepared for 47 papers in this report.

  3. Research Technology (ASTP) Rocket Based Combined Cycle (RBCC) Engine

    Science.gov (United States)

    2004-01-01

    Pictured is an artist's concept of the Rocket Based Combined Cycle (RBCC) launch. The RBCC's overall objective is to provide a technology test bed to investigate critical technologies associated with opperational usage of these engines. The program will focus on near term technologies that can be leveraged to ultimately serve as the near term basis for Two Stage to Orbit (TSTO) air breathing propulsions systems and ultimately a Single Stage To Orbit (SSTO) air breathing propulsion system.

  4. Technology-Enhanced Mathematics Education for Creative Engineering Studies

    DEFF Research Database (Denmark)

    Triantafyllou, Eva; Timcenko, Olga

    2014-01-01

    This project explores the opportunities and challenges of integrating digital technologies in mathematics education in creative engineering studies. Students in such studies lack motivation and do not perceive the mathematics the same way as mathematics students do. Digital technologies offer new...... are conceptualized. Then, we are going to apply this field data in designing learning technologies, which will be introduced in university classrooms. The effect of this introduction will be evaluated through educational design experiments....

  5. Microbial genetic engineering and enzyme technology

    Energy Technology Data Exchange (ETDEWEB)

    Hollenberg, C.P.; Sahm, H.

    1987-01-01

    In a series of up-to-date contributions BIOTEC 1 has experts discussing the current topics in microbial gene technology and enzyme technology and speculating on future developments. Bacterial and yeast systems for the production of interferons, growth hormone or viral antigenes are described as well as the impact of gene technology on plants. Exciting is the prospect of degrading toxic compounds in our environment by microorganisms tuned in the laboratory. Enzymes are the most effective catalysts we know. They exhibit a very high substrate- and stereospecificity. These properties make enzymes extremely attractive as industrial catalysts, leading to new production processes that are non-polluting and save both energy and raw materials. (orig.) With 135 figs., 36 tabs.

  6. Engineering and Technology Students' Perceptions of Courses

    Science.gov (United States)

    Mativo, John M.; Womble, Myra N.; Jones, Karen H.

    2013-01-01

    As cultural, social, political and economic changes take place, the secondary or high school curriculum should reflect and respond to changing needs and aspirations of students. Technology Education has been proactive in this arena as it has transformed over the decades to meet ever-changing societal needs. The most recent change to the discipline…

  7. DIESEL ENGINE RETROFIT TECHNOLOGY VERIFICATION (POSTER)

    Science.gov (United States)

    ETV is presenting a poster at the EPA's 2005 Science Forum from May 16-18, 2005 in Washington, DC. This poster will contain a summary of the performance results realized by the six verified diesel retrofit technologies, as well as potential impacts that could be realized if sigi...

  8. Sandia National Laboratories: Employee & Retiree Resources: Emergency

    Science.gov (United States)

    Media Community Involvement Contribution Programs Volunteer Programs Education Programs Environmental & Figures Programs Nuclear Weapons About Nuclear Weapons Safety & Security Weapons Science & , twitter.com/SandiaLabs Sandia Kirtland Radio at 1640 AM Information regarding road conditions can be found at

  9. Sandia software guidelines, Volume 4: Configuration management

    Energy Technology Data Exchange (ETDEWEB)

    1992-06-01

    This volume is one in a series of Sandia Software Guidelines for use in producing quality software within Sandia National Laboratories. This volume is based on the IEEE standard and guide for software configuration management. The basic concepts and detailed guidance on implementation of these concepts are discussed for several software project types. Example planning documents for both projects and organizations are included.

  10. Sandia software guidelines: Software quality planning

    Energy Technology Data Exchange (ETDEWEB)

    1987-08-01

    This volume is one in a series of Sandia Software Guidelines intended for use in producing quality software within Sandia National Laboratories. In consonance with the IEEE Standard for Software Quality Assurance Plans, this volume identifies procedures to follow in producing a Software Quality Assurance Plan for an organization or a project, and provides an example project SQA plan. 2 figs., 4 tabs.

  11. Pulsed power safety and technical training at Sandia National Laboratories

    International Nuclear Information System (INIS)

    Goldstein, S.A.; Zawadzkas, G.A.; Donovan, G.L.; Mikkelson, K.A.; Sharpe, A.W.; Johnston, R.R.

    1987-01-01

    The expansion of pulsed power applications research at Sandia National Labs requires increasing technician-level support from individuals trained in high voltage, short pulse technology. Large superpower generators need a broad-based training curriculum in all aspects of accelerator operation to satisfy recent Department of Energy (DOE) desires for formal certification of accelerator operators. This paper discusses the status of Sandia's safety and technical training program in pulsed power technology directed mainly towards high school graduate and technical school level students. Present safety training methodology requires that hazards for experimental facilities are identified first, a specific curriculum is then tailored to individuals' background experiences and hazards involved with their current assignments. In the technical training program, certification requirements are being established and a coursework program has been initiated in which subjects are organized into two sections. The first covers electrical principles and physical properties of pulsed power components. The second presents various support-type subsystems for accelerators

  12. Sandia National Laboratories: Research: Bioscience

    Science.gov (United States)

    biological agents. We integrate our renowned engineering, nanotechnology, and computational capabilities to Foundations Bioscience Computing & Information Science Electromagnetics Engineering Science Geoscience Opportunities Microsensors Bioscience Leadership Computing and Information Science Engineering Science

  13. Sandia and the Waste Isolation Pilot Plant, 1974--1999

    Energy Technology Data Exchange (ETDEWEB)

    MORA,CARL J.

    2000-04-11

    Engineers have learned to design and build big projects, which certainly describes the WIPP project, but also includes defense projects, highway networks, space exploration, the Internet, etc., through what has been called a messily complex embracing of contradictions. When something massive and complicated has to be built these days, it leads to a protracted political process in which every special interest makes a stand, lobbyists exert what influence they can, lawmakers bicker, contractors change things, Congress struggles with costs, environmentalists hold things up--and this is good. It may seem amazing that anything gets done, but when it does, everyone has had their say. It's an intensely democratic, even if expensive and time-consuming, process. The corporate historian of Sandia National Laboratories presents a unique background of the WIPP project and Sandia's part in it.

  14. Sandia and the Waste Isolation Pilot Plant, 1974-1999

    International Nuclear Information System (INIS)

    Mora, Carl J.

    2000-01-01

    Engineers have learned to design and build big projects, which certainly describes the WIPP project, but also includes defense projects, highway networks, space exploration, the Internet, etc., through what has been called a messily complex embracing of contradictions. When something massive and complicated has to be built these days, it leads to a protracted political process in which every special interest makes a stand, lobbyists exert what influence they can, lawmakers bicker, contractors change things, Congress struggles with costs, environmentalists hold things up--and this is good. It may seem amazing that anything gets done, but when it does, everyone has had their say. It's an intensely democratic, even if expensive and time-consuming, process. The corporate historian of Sandia National Laboratories presents a unique background of the WIPP project and Sandia's part in it

  15. Recent Progress in Data Engineering and Internet Technology Volume 1

    CERN Document Server

    Gaol, Ford Lumban

    2013-01-01

    The latest inventions in internet technology influence most of business and daily activities. Internet security, internet data management, web search, data grids, cloud computing, and web-based applications play vital roles, especially in business and industry, as more transactions go online and mobile. Issues related to ubiquitous computing are becoming critical.   Internet technology and data engineering should reinforce efficiency and effectiveness of business processes. These technologies should help people make better and more accurate decisions by presenting necessary information and possible consequences for the decisions. Intelligent information systems should help us better understand and manage information with ubiquitous data repository and cloud computing.   This book is a compilation of some recent research findings in Internet Technology and Data Engineering. This book provides state-of-the-art accounts in computational algorithms/tools, database management and database technologies,  intelli...

  16. Recent Progress in Data Engineering and Internet Technology Volume 2

    CERN Document Server

    Gaol, Ford Lumban

    2012-01-01

    The latest inventions in internet technology influence most of business and daily activities. Internet security, internet data management, web search, data grids, cloud computing, and web-based applications play vital roles, especially in business and industry, as more transactions go online and mobile. Issues related to ubiquitous computing are becoming critical.   Internet technology and data engineering should reinforce efficiency and effectiveness of business processes. These technologies should help people make better and more accurate decisions by presenting necessary information and possible consequences for the decisions. Intelligent information systems should help us better understand and manage information with ubiquitous data repository and cloud computing.   This book is a compilation of some recent research findings in Internet Technology and Data Engineering. This book provides state-of-the-art accounts in computational algorithms/tools, database management and database technologies,  intelli...

  17. Manufacturing technology for advanced jet engines; Jisedai jetto engine no seizo gijutsu

    Energy Technology Data Exchange (ETDEWEB)

    Hirakawa, H [Kawasaki Heavy Industries Ltd., Kobe (Japan)

    1997-04-05

    A part of the latest production technologies for aircraft jet engines is introduced. Outline of the turbofan engine, turbo-prop engine, and turbo-shaft engine are given. Every one of them employs a gas turbine engine comprising a compressor, combustor, and a turbine as the output generator. Increase in the turbine inlet temperature is effective for making the gas turbine engine more efficient. The development tread of heat resisting materials for realizing higher temperature is shown. The current status and future aspect of the manufacturing technology is discussed for each main component of the engine. Technological development for decreasing weight is important because the weight of the fan member increases when the fan diameter is increased to increase the bypass ratio. FRP is adopted for the blades and casing to decrease the weight of the compressor, and studies have been made on fiber reinforced materials to reduce the weight of the disks. The outlines of the latest manufacturing technologies for the combustor and turbine are introduced. 2 refs., 9 figs.

  18. Model Driven Engineering with Ontology Technologies

    Science.gov (United States)

    Staab, Steffen; Walter, Tobias; Gröner, Gerd; Parreiras, Fernando Silva

    Ontologies constitute formal models of some aspect of the world that may be used for drawing interesting logical conclusions even for large models. Software models capture relevant characteristics of a software artifact to be developed, yet, most often these software models have limited formal semantics, or the underlying (often graphical) software language varies from case to case in a way that makes it hard if not impossible to fix its semantics. In this contribution, we survey the use of ontology technologies for software modeling in order to carry over advantages from ontology technologies to the software modeling domain. It will turn out that ontology-based metamodels constitute a core means for exploiting expressive ontology reasoning in the software modeling domain while remaining flexible enough to accommodate varying needs of software modelers.

  19. The preliminary research for biosynthetic engineering by radiation fusion technology

    Energy Technology Data Exchange (ETDEWEB)

    Roh, Chang Hyun; Jung, U Hee; Park, Hae Ran [KAERI, Daejeon (Korea, Republic of)

    2012-01-15

    The purpose of this project is to elucidate the solution to the production of bioactive substance using biotransformation process from core technology of biosynthetic engineering by radiation fusion technology. And, this strategy will provide core technology for development of drugs as new concept and category. Research scopes and contents of project include 1) The development of mutant for biosynthetic engineering by radiation fusion technology 2) The development of host for biosynthetic engineering by radiation fusion technology 3) The preliminary study for biosynthetic engineering of isoflavone by radiation fusion technology. The results are as follows. Isoflavone compounds(daidzein, hydroxylated isoflavone) were analyzed by GC-MS. The study of radiation doses and p-NCA high-throughput screening for mutant development were elucidated. And, it was carried out the study of radiation doses for host development. Furthermore, the study of redox partner and construction of recombinant strain for region-specific hydroxylation(P450, redox partner). In addition, the biological effect of 6,7,4'-trihydroxyisoflavone as an anti-obesity agent was elucidated in this study.

  20. Waste Technology Engineering Laboratory (324 building)

    International Nuclear Information System (INIS)

    Kammenzind, D.E.

    1997-01-01

    The 324 Facility Standards/Requirements Identification Document (S/RID) is comprised of twenty functional areas. Two of the twenty functional areas (Decontamination and Decommissioning and Environmental Restoration) were determined as nonapplicable functional areas and one functional area (Research and Development and Experimental Activities) was determined applicable, however, requirements are found in other functional areas and will not be duplicated. Each functional area follows as a separate chapter, either containing the S/RID or a justification for nonapplicability. The twenty functional areas listed below follow as chapters: 1. Management Systems; 2. Quality Assurance; 3. Configuration Management; 4. Training and Qualification; 5. Emergency Management; 6. Safeguards and Security; 7. Engineering Program; 8. Construction; 9. Operations; 10. Maintenance; 11. Radiation Protection; 12. Fire Protection; 13. Packaging and Transportation; 14. Environmental Restoration; 15. Decontamination and Decommissioning; 16. Waste Management; 17. Research and Development and Experimental Activities; 18. Nuclear Safety; 19. Occupational Safety and Health; 20. Environmental Protection

  1. Waste Technology Engineering Laboratory (324 building)

    Energy Technology Data Exchange (ETDEWEB)

    Kammenzind, D.E.

    1997-05-27

    The 324 Facility Standards/Requirements Identification Document (S/RID) is comprised of twenty functional areas. Two of the twenty functional areas (Decontamination and Decommissioning and Environmental Restoration) were determined as nonapplicable functional areas and one functional area (Research and Development and Experimental Activities) was determined applicable, however, requirements are found in other functional areas and will not be duplicated. Each functional area follows as a separate chapter, either containing the S/RID or a justification for nonapplicability. The twenty functional areas listed below follow as chapters: 1. Management Systems; 2. Quality Assurance; 3. Configuration Management; 4. Training and Qualification; 5. Emergency Management; 6. Safeguards and Security; 7. Engineering Program; 8. Construction; 9. Operations; 10. Maintenance; 11. Radiation Protection; 12. Fire Protection; 13. Packaging and Transportation; 14. Environmental Restoration; 15. Decontamination and Decommissioning; 16. Waste Management; 17. Research and Development and Experimental Activities; 18. Nuclear Safety; 19. Occupational Safety and Health; 20. Environmental Protection.

  2. Technology development multidimensional review for engineering and technology managers

    CERN Document Server

    Neshati, Ramin; Watt, Russell; Eastham, James

    2014-01-01

    Developing new products, services, systems, and processes has become an imperative for any firm expecting to thrive in today’s fast-paced and hyper-competitive environment.  This volume integrates academic and practical insights to present fresh perspectives on new product development and innovation, showcasing lessons learned on the technological frontier.  The first part emphasizes decision making.  The second part focuses on technology evaluation, including cost-benefit analysis, material selection, and scenarios. The third part features in-depth case studies to present innovation management tools, such as customer needs identification, technology standardization, and risk management. The fourth part highlights important international trends, such as globalization and outsourcing. Finally the fifth part explores social and political aspects.

  3. Get certified a guide to wireless communication engineering technologies

    CERN Document Server

    Ahson, Syed A

    2009-01-01

    The Institute of Electrical and Electronics Engineers (IEEE) Communications Society designed the IEEE wireless communication engineering technologies (WCET) certification program to address the wireless industry's growing need for communications professionals with practical problem-solving skills in real-world situations. Individuals who achieve this prestigious certification are recognized as possessing the required knowledge, skill, and abilities to meet wireless challenges in various industry, business, corporate, and organizational settings. Presenting contributions from 50 wireless commun

  4. High Thrust-to-Power Annular Engine Technology

    Science.gov (United States)

    Patterson, Michael J.; Thomas, Robert E.; Crofton, Mark W.; Young, Jason A.; Foster, John E.

    2015-01-01

    Gridded ion engines have the highest efficiency and total impulse of any mature electric propulsion technology, and have been successfully implemented for primary propulsion in both geocentric and heliocentric environments with excellent ground/in-space correlation of performance. However, they have not been optimized to maximize thrust-to-power, an important parameter for Earth orbit transfer applications. This publication discusses technology development work intended to maximize this parameter. These activities include investigating the capabilities of a non-conventional design approach, the annular engine, which has the potential of exceeding the thrust-to-power of other EP technologies. This publication discusses the status of this work, including the fabrication and initial tests of a large-area annular engine. This work is being conducted in collaboration among NASA Glenn Research Center, The Aerospace Corporation, and the University of Michigan.

  5. Technology transfer: The key to successful space engineering education

    Science.gov (United States)

    Fletcher, L. S.; Page, R. H.

    The 1990s are the threshold of the space revolution for the next century. This space revolution was initiated by space pioneers like Tsiolkovsky, Goddard, and Oberth, who contributed a great deal to the evolution of space exploration, and more importantly, to space education. Recently, space engineering education programs for all ages have been advocated around the world, especially in Asia and Europe, as well as the U.S.A. and the Soviet Union. And yet, although space related technologies are developing rapidly, these technologies are not being incorporated successfully into space education programs. Timely technology transfer is essential to assure the continued education of professionals. This paper reviews the evolution of space engineering education and identifies a number of initiatives which could strengthen space engineering education for the next century.

  6. Sandia's Particle Beam Fusion Program

    International Nuclear Information System (INIS)

    Sweeney, M.A.

    1979-01-01

    Sandia's Particle Beam Fusion Program is investigating pulsed electron and light ion beam accelerators, with the goal of demonstrating the practical application of such drivers as igniters in inertial confinement fusion (ICF) reactors. Recent developments in the program are described. Traditionally, two requirements of ICF reactor operation have been the most difficult to satisfy in conceptual designs. Adequate standoff of critical components from damaging pellet emissions must be assured, and the shot repetition rate must be consistent with the desired reactor power level at reasonable pellet gains. Progress in power compression, beam focusing and transport, first-wall protection schemes, and net-energy-gain target design shows how these requirements can be met

  7. Application of local area network technology in an engineering environment

    International Nuclear Information System (INIS)

    Powell, A.D.; Sokolowski, M.A.

    1990-01-01

    This paper reports on the application of local area network technology in an engineering environment. Mobil Research and Development Corporation Engineering, Dallas, texas has installed a local area network (LAN) linking over 85 microcomputers. This network, which has been in existence for more than three years, provides common access by all engineers to quality output devices such as laser printers and multi-color pen plotters; IBM mainframe connections; electronic mail and file transfer; and common engineering program. The network has been expanded via a wide area ethernet network to link the Dallas location with a functionally equivalent LAN of over 400 microcomputers in Princeton, N.J. Additionally, engineers on assignment at remote areas in Europe, U.S., Africa and project task forces have dial-in access to the network via telephone lines

  8. Sandia's experience in designing and implementing integrated high security physical protection systems

    International Nuclear Information System (INIS)

    Caskey, D.L.

    1986-01-01

    As DOE's lead laboratory for physical security, Sandia National Laboratories has had a major physical security program for over ten years. Activities have ranged from component development and evaluation, to full scale system design and implementation. This paper presents some of the lessons learned in designing and implementing state-of-the-art high security physical protection systems for a number of government facilities. A generic system design is discussed for illustration purposes. Sandia efforts to transfer technology to industry are described

  9. Evaluation of complementary technologies to reduce bio engine emissions

    Energy Technology Data Exchange (ETDEWEB)

    Blowes, J.H.

    2003-09-01

    This report summaries the results of a study examining the technical and economic feasibility of exhaust gas treatment technologies for reducing emissions from diesel engines burning pyrolysis oil to within internationally recognised limits. Details are given of the burning of pyrolysis oils in reciprocating engines, the reviewing of information on pyrolysis oils and engines, and the aim to produce detailed information for securing investment for a British funded diesel project. The burning of the pyrolysis oils in an oxygen-rich atmosphere to allow efficient combustion with acceptable exhaust emission limits is discussed along with the problems caused by the deterioration of the injection system.

  10. Development of System Engineering Technology for Nuclear Fuel Cycle

    International Nuclear Information System (INIS)

    Kim, Hodong; Choi, Iljae

    2013-04-01

    The development of efficient process for spent fuel and establishment of system engineering technology to demonstrate the process are required to develop nuclear energy continuously. The demonstration of pyroprocess technology which is proliferation resistance nuclear fuel cycle technology can reduce spent fuel and recycle effectively. Through this, people's trust and support on nuclear power would be obtained. Deriving the optimum nuclear fuel cycle alternative would contribute to establish a policy on back-end nuclear fuel cycle in the future, and developing the nuclear transparency-related technology would contribute to establish amendments of the ROK-U. S. Atomic Energy Agreement scheduled in 2014

  11. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT: NEW CONDENSATOR, INC.--THE CONDENSATOR DIESEL ENGINE RETROFIT CRANKCASE VENTILATION SYSTEM

    Science.gov (United States)

    EPA's Environmental Technology Verification Program has tested New Condensator Inc.'s Condensator Diesel Engine Retrofit Crankcase Ventilation System. Brake specific fuel consumption (BSFC), the ratio of engine fuel consumption to the engine power output, was evaluated for engine...

  12. Two Rotor Stratified Charge Rotary Engine (SCRE) Engine System Technology Evaluation

    Science.gov (United States)

    Hoffman, T.; Mack, J.; Mount, R.

    1994-01-01

    This report summarizes results of an evaluation of technology enablement component technologies as integrated into a two rotor Stratified Charge Rotary Engine (SCRE). The work constitutes a demonstration of two rotor engine system technology, utilizing upgraded and refined component technologies derived from prior NASA Contracts NAS3-25945, NAS3-24628 and NAS-23056. Technical objectives included definition of, procurement and assembly of an advanced two rotor core aircraft engine, operation with Jet-A fuel at Take-Off rating of 340 BHP (254kW) and operation at a maximum cruise condition of 255 BHP (190kW), 75% cruise. A fuel consumption objective of 0.435 LBS/BHP-Hr (265 GRS/kW-Hr) was identified for the maximum cruise condition. A critical technology component item, a high speed, unit injector fuel injection system with electronic control was defined, procured and tested in conjunction with this effort. The two rotor engine configuration established herein defines an affordable, advanced, Jet-A fuel capability core engine (not including reduction gear, propeller shaft and some aircraft accessories) for General Aviation of the mid-1990's and beyond.

  13. 2nd International Conference on Intelligent Technologies and Engineering Systems

    CERN Document Server

    Chen, Cheng-Yi; Yang, Cheng-Fu

    2014-01-01

    This book includes the original, peer reviewed research papers from the 2nd International Conference on Intelligent Technologies and Engineering Systems (ICITES2013), which took place on December 12-14, 2013 at Cheng Shiu University in Kaohsiung, Taiwan. Topics covered include: laser technology, wireless and mobile networking, lean and agile manufacturing, speech processing, microwave dielectrics, intelligent circuits and systems, 3D graphics, communications, and structure dynamics and control.

  14. FY2011 Engineering Innovations, Research, and Technology Report

    Energy Technology Data Exchange (ETDEWEB)

    Hamilton, Kip [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Martz, Harry E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Poyneer, Lisa A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Shusteff, Maxim [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Spadaccini, Christopher M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Hopkins, Jonathan B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Bernier, Joel V. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); King, Michael J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Puso, Michael A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Weisgraber, Todd H. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Goldstein, Noah C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Sales, Ana Paula De Oliveira [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Dehlinger, Dietrich A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kotovsky, Jack [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kuntz, Joshua D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Voss, Lars F. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Wheeler, Elizabeth K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Chang, John T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Lehman, Sean K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Vernon, Stephen P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Tang, Vincent [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2012-04-24

    This report summarizes key research, development, and technology advancements in Lawrence Livermore National Laboratory’s Engineering Directorate for FY2011. These efforts exemplify Engineering’s nearly 60-year history of developing and applying the technology innovations needed for the Laboratory’s national security missions, and embody Engineering’s mission to “Enable program success today and ensure the Laboratory’s vitality tomorrow.

  15. 3D Bioprinting Technologies for Hard Tissue and Organ Engineering

    OpenAIRE

    Wang, Xiaohong; Ao, Qiang; Tian, Xiaohong; Fan, Jun; Wei, Yujun; Hou, Weijian; Tong, Hao; Bai, Shuling

    2016-01-01

    Hard tissues and organs, including the bones, teeth and cartilage, are the most extensively exploited and rapidly developed areas in regenerative medicine field. One prominent character of hard tissues and organs is that their extracellular matrices mineralize to withstand weight and pressure. Over the last two decades, a wide variety of 3D printing technologies have been adapted to hard tissue and organ engineering. These 3D printing technologies have been defined as 3D bioprinting. Especial...

  16. Creating the integral engineer : Combining development education, sustainability, entrepreneurship and technology at Delft University of Technology

    NARCIS (Netherlands)

    Zwarteveen, J.W.; Blom, E.M.; Vastbinder, B.; Brezet, J.C.

    2010-01-01

    A modern engineer is more than a technical specialist. Training an integral engineer requires education in non-technical skills, including social and ethical aspects. Therefore, Delft University of Technology (DUT) introduced sustainable development and entrepreneurship into its bachelor and master

  17. Development of decommissioning system engineering technology

    International Nuclear Information System (INIS)

    Lee, K. W.; Kim, S. K.; Seo, B. K.

    2012-02-01

    In the decommissioning planning stage, it is important to select the optimized decommissioning process considering the cost and safety. Especially the selection of the optimized decommissioning process is necessary because it affects to improve worker's safety and decommissioning work efficiency. The decommissioning process evaluation technology can provide the optimized decommissioning process as constructing various decommissioning scenarios and it can help to prevent the potential accidents as delivering the exact work procedures to workers and to help workers to perform decommissioning work skillfully. It's necessary to measure the radioactive contamination in the highly contaminated facilities such as hot-cells or glove-boxes to be decommissioned for decommissioning planning. These facilities are very high radiation level, so it is difficult to approach. In this case the detector system is preferable to separate the sensor and electronics, which have to locate in the facility outside to avoid the electric noise and worker's radiation exposure. In this project, we developed the remote detection system for radiation measurement and signal transmission in the high radiation area. In order to minimize worker's exposure when decommissioning highly activated nuclear facilities, it is necessary to develop the remote handling tool to perform the dismantling work remotely. Especially, since cutting, measuring, and decontamination works should be performed remotely in the highly activated area, the remote handling tool for conducting these works should be developed. Therefore, the multi-purpose dismantling machine that can measuring dose, facility cutting, and remote handling for maintenance and decommissioning of highly activated facility should be needed

  18. Sandia Laboratories environment and safety programs

    International Nuclear Information System (INIS)

    Zak, B.D.; McGrath, P.E.; Trauth, C.A. Jr.

    1975-01-01

    Sandia, one of ERDA's largest laboratories, is primarily known for its extensive work in the nuclear weapons field. In recent years, however, Sandia's role has expanded to embrace sizeable programs in the energy, resource recovery, and the environment and safety fields. In this latter area, Sandia has programs which address nuclear, fossil fuel, and general environment and safety issues. Here we survey ongoing activities and describe in more detail aa few projects of particular interest. These range from a study of the impact of sealed disposal of radioactive wastes, through reactor safety and fossil fuel plume chemistry, to investigations of the composition and dynamics of the stratosphere

  19. From STEM to STEAM: Strategies for Enhancing Engineering & Technology Education

    Directory of Open Access Journals (Sweden)

    Andy M. Connor

    2015-05-01

    Full Text Available This paper sets out to challenge the common pedagogies found in STEM (Science, Technology, Engineering and Mathematics education with a particular focus on engineering. The dominant engineering pedagogy remains “chalk and talk”; despite research evidence that demonstrates its ineffectiveness. Such pedagogical approaches do not embrace the possibilities provided by more student-centric approaches and more active learning. The paper argues that there is a potential confusion in engineering education around the role of active learning approaches, and that the adoption of these approaches may be limited as a result of this confusion, combined with a degree of disciplinary egocentrism. The paper presents examples of design, engineering and technology projects that demonstrate the effectiveness of adopting pedagogies and delivery methods more usually attributed to the liberal arts such as studio based learning. The paper concludes with some suggestions about how best to create a fertile environment from which inquiry based learning can emerge as well as a reflection on whether the only real limitation on cultivating such approaches is the disciplinary egocentrism of traditional engineering educators.

  20. Rapid prototyping technology and its application in bone tissue engineering.

    Science.gov (United States)

    Yuan, Bo; Zhou, Sheng-Yuan; Chen, Xiong-Sheng

    Bone defects arising from a variety of reasons cannot be treated effectively without bone tissue reconstruction. Autografts and allografts have been used in clinical application for some time, but they have disadvantages. With the inherent drawback in the precision and reproducibility of conventional scaffold fabrication techniques, the results of bone surgery may not be ideal. This is despite the introduction of bone tissue engineering which provides a powerful approach for bone repair. Rapid prototyping technologies have emerged as an alternative and have been widely used in bone tissue engineering, enhancing bone tissue regeneration in terms of mechanical strength, pore geometry, and bioactive factors, and overcoming some of the disadvantages of conventional technologies. This review focuses on the basic principles and characteristics of various fabrication technologies, such as stereolithography, selective laser sintering, and fused deposition modeling, and reviews the application of rapid prototyping techniques to scaffolds for bone tissue engineering. In the near future, the use of scaffolds for bone tissue engineering prepared by rapid prototyping technology might be an effective therapeutic strategy for bone defects.

  1. Urban Composting in the Technology and Engineering Classroom

    Science.gov (United States)

    Buelin-Biesecker, Jennifer

    2014-01-01

    The average American produces around 1,600 pounds of garbage every year, and it is estimated that 50 percent of that waste is material that could be composted (Clean Air Council, 2012). Instead, most is sent to landfills and incinerators. In technology and engineering education, a great deal of time is spent in talking, teaching, and thinking…

  2. Rapid prototyping technology and its application in bone tissue engineering*

    Science.gov (United States)

    YUAN, Bo; ZHOU, Sheng-yuan; CHEN, Xiong-sheng

    2017-01-01

    Bone defects arising from a variety of reasons cannot be treated effectively without bone tissue reconstruction. Autografts and allografts have been used in clinical application for some time, but they have disadvantages. With the inherent drawback in the precision and reproducibility of conventional scaffold fabrication techniques, the results of bone surgery may not be ideal. This is despite the introduction of bone tissue engineering which provides a powerful approach for bone repair. Rapid prototyping technologies have emerged as an alternative and have been widely used in bone tissue engineering, enhancing bone tissue regeneration in terms of mechanical strength, pore geometry, and bioactive factors, and overcoming some of the disadvantages of conventional technologies. This review focuses on the basic principles and characteristics of various fabrication technologies, such as stereolithography, selective laser sintering, and fused deposition modeling, and reviews the application of rapid prototyping techniques to scaffolds for bone tissue engineering. In the near future, the use of scaffolds for bone tissue engineering prepared by rapid prototyping technology might be an effective therapeutic strategy for bone defects. PMID:28378568

  3. Engineering Workflow: The Process in Product Data Technology

    NARCIS (Netherlands)

    Bijwaard, D.; Spee, J.B.R.M.; de Boer, Pieter-Tjerk

    The prevailing paradigm for enterprises in the new decade is undoubtedly speed. This enterprise view is driven by the availability of e-business technology that enables new forms of collaboration between companies. The rapid developments in e-business also have an impact on the future of engineering

  4. Information Technologies in Higher Education: Lessons Learned in Industrial Engineering

    Science.gov (United States)

    Delgado-Almonte, Milagros; Andreu, Hernando Bustos; Pedraja-Rejas, Liliana

    2010-01-01

    This article describes a teaching experience in which information and communication technologies were applied in five industrial engineering courses at the Universidad de Tarapaca in Chile. The paper compares the performance and course pass rates of the e-learning platform and portable pocket PC platform with those of the same courses teaching in…

  5. Taiwanese Preservice Teachers' Science, Technology, Engineering, and Mathematics Teaching Intention

    Science.gov (United States)

    Lin, Kuen-Yi; Williams, P. John

    2016-01-01

    This study applies the theory of planned behavior as a basis for exploring the impact of knowledge, values, subjective norms, perceived behavioral controls, and attitudes on the behavioral intention toward science, technology, engineering, and mathematics (STEM) education among Taiwanese preservice science teachers. Questionnaires (N = 139)…

  6. Nano-Science-Engineering-Technology Applications to Food and Nutrition.

    Science.gov (United States)

    Nakajima, Mitsutoshi; Wang, Zheng; Chaudhry, Qasim; Park, Hyun Jin; Juneja, Lekh R

    2015-01-01

    Nanoscale Science, Engineering and Technology are applied to Food and Nutrition. Various delivery systems include nanoemulsions, microemulsions, solid lipid nanoparticles, micelles, and liposomes. The nanoscale systems have advantages, such as higher bioavailabitity, and other physicochemical properties. The symposium will provide an overview of the formulation, characterization, and utilization of nanotechnology-based food and nutrition.

  7. RNAi technology extends its reach: Engineering plant resistance ...

    African Journals Online (AJOL)

    RNA interference (RNAi) is a homology-dependent gene silencing technology that is initiated by double stranded RNA (dsRNA). It has emerged as a genetic tool for engineering plants resistance against prokaryotic pathogens such as virus and bacteria. Recent studies broaden the role of RNAi, and many successful ...

  8. Remediating the past and preparing for the future at Sandia National Laboratories

    International Nuclear Information System (INIS)

    Sanders, T.L.

    1996-01-01

    Sandia National Laboratories is one of the nation's largest multiprogram research, development, test, and evaluation (RDT ampersand E) facilities, with headquarters in Albuquerque, New Mexico, a laboratory in Livermore, California, and a test range near Tonopah, Nevada. Smaller testing facilities are also operated at other locations. Established in 1945, Sandia is currently operated for the U.S. Department of Energy by Lockheed-Martin's energy and environment sector. Sandia's responsibility is research and development for national security programs in defense, energy, and environment, with primary emphasis on nuclear weapons research and development. This article describes Sandia's program of remedial action which aims to use technology to reduce costs of decommissioning and decontamination, positioning itself for future opportunities

  9. Systems engineering identification and control of mixed waste technology development

    International Nuclear Information System (INIS)

    Beitel, G.A.

    1997-01-01

    The Department of Energy (DOE) established the Mixed Waste Characterization, Treatment, and Disposal Focus Area (MWFA) to develop technologies required to meet the Department's commitments for treatment of mixed low-level and transuranic wastes. Waste treatment includes all necessary steps from generation through disposal. Systems engineering was employed to reduce programmatic risk, that is, risk of failure to meet technical commitments within cost and schedule. Customer needs (technology deficiencies) are identified from Site Treatment Plans, Consent Orders, ten year plans, Site Technical Coordinating Groups, Stakeholders, and Site Visits. The Technical Baseline, a prioritized list of technology deficiencies, forms the basis for determining which technology development activities will be supported by the MWFA. Technology Development Requirements Documents are prepared for each technology selected for development. After technologies have been successfully developed and demonstrated, they are documented in a Technology Performance Report. The Technology Performance Reports are available to any of the customers or potential users of the technology, thus closing the loop between problem identification and product development. This systematic approach to technology development and its effectiveness after 3 years is discussed in this paper

  10. Results of the pollution reduction technology program for turboprop engines

    Science.gov (United States)

    Mularz, E. J.

    1976-01-01

    A program was performed to evolve and demonstrate advanced combustor technology aimed at achieving the 1979 EPA standards for turboprop engines (Class P2). The engine selected for this program was the 501-D22A turboprop manufactured by Detroit Diesel Allison Division of General Motors Corporation. Three combustor concepts were designed and tested in a combustor rig at the exact combustor operating conditions of the 501-D22A engine over the EPA landing-takeoff cycle. Each combustor concept exhibited pollutant emissions well below the EPA standards, achieving substantial reductions in unburned hydrocarbons, carbon monoxide, and smoke emissions compared with emissions from the production combustor of this engine. Oxides of nitrogen emissions remained well below the EPA standards, also.

  11. Shaping Identity of Being Creative Information Technology (IT) Engineers

    DEFF Research Database (Denmark)

    Zhang, Hui; Zhou, Chunfang

    2015-01-01

    This paper emphasizes the increasing awareness and ability of developing creativity in Information Technology (IT) education, which is motivated by the need to be creative engineers as part of the social identity of young IT engineers. This suggests this paper to discuss three questions: 1) what...... Problem-Based Learning (PBL) is one of the potential strategy of teaching creativity to young IT engineers. So this paper has both theoretical and practical significances of improvement for creativity in IT industry and education in the future....... is creativity and engineering creativity? 2) why is IT understood as a creative domain? And 3) how to increase the awareness and ability of developing creativity in IT education? The above three questions will lead to a literature review in order to seeking for the answers. In addition, this paper points out...

  12. Development of Key Performance Indicators for the Engineering Technology Education Programs in Taiwan

    Science.gov (United States)

    Lee, Lung-Sheng; Lai, Chun-Chin

    2004-01-01

    In comparison with engineering, engineering technology is more practical and purposeful. The engineering technology education programs in Taiwan have been mainly offered in 56 universities/colleges of technology (UTs/CTs) and are anticipated to continuously improve their performance to prepare quality engineering technologists. However, it is…

  13. Development of System Engineering Technology for Nuclear Fuel Cycle

    International Nuclear Information System (INIS)

    Kim, Ho Dong; Kim, Sung Ki; Song, Kee Chan

    2010-04-01

    This report is aims to establish design requirements for constructing mock-up system of pyroprocess by 2011 to realize long-term goal of nuclear energy promotion comprehensive plan, which is construction of engineering scale pyroprocess integrated process demonstration facility. The development of efficient process for spent fuel and establishment of system engineering technology to demonstrate the process are required to develop nuclear energy continuously. The detailed contents of research for these are as follows; - Design of Mock-up facility for demonstrate pyroprocess, Construction, Approval, Trial run, Performance test - Development of nuclear material accountancy technology for unit processes of pyroprocess and design of safeguards system - Remote operation of demonstrating pyroprocess / Development of maintenance technology and equipment - Establishment of transportation system and evaluation of pre-safety for interim storage system - Deriving and implementation of a method to improve nuclear transparency for commercialization proliferation resistance nuclear fuel cycle Spent fuel which is the most important pending problem of nuclear power development would be reduced and recycled by developing the system engineering technology of pyroprocess facility by 2010. This technology would contribute to obtain JD for the use of spent fuel between the ROK-US and to amend the ROK-US Atomic Energy Agreement scheduled in 2014

  14. Application of plasma technology to nuclear engineering fields

    International Nuclear Information System (INIS)

    Suzuki, Masaaki; Akatsuka, Hiroshi

    1996-01-01

    In order to discuss about the application of the plasma technology to nuclear engineering fields, we mention two subjects, the oxygenation of metal chloride waste by oxygen plasma and the characterization of fine particles generated in the plasma process. Through the experimental results of two subjects, both of the advantage and the disadvantage of the plasma technology and their characteristics are shown and discussed. The following conclusions are obtained. The reactive plasma is effective to oxygenate the chloride wastes. The particle generation which is one of the disadvantages must not be specialized and its characteristics can be estimated. Consequently, the plasma technology should be applicable to nuclear engineering fields adopting its advantage and overcoming its disadvantage. (author)

  15. [Flexible print circuit technology application in biomedical engineering].

    Science.gov (United States)

    Jiang, Lihua; Cao, Yi; Zheng, Xiaolin

    2013-06-01

    Flexible print circuit (FPC) technology has been widely applied in variety of electric circuits with high precision due to its advantages, such as low-cost, high specific fabrication ability, and good flexibility, etc. Recently, this technology has also been used in biomedical engineering, especially in the development of microfluidic chip and microelectrode array. The high specific fabrication can help making microelectrode and other micro-structure equipment. And good flexibility allows the micro devices based on FPC technique to be easily packaged with other parts. In addition, it also reduces the damage of microelectrodes to the tissue. In this paper, the application of FPC technology in biomedical engineering is introduced. Moreover, the important parameters of FPC technique and the development trend of prosperous applications is also discussed.

  16. International Conference on Sustainable Vital Technologies in Engineering and Informatics

    CERN Document Server

    Hassan, Maguid

    2017-01-01

    This book reports on cutting-edge technologies that have been fostering sustainable development in a variety of fields, including built and natural environments, structures, energy, advanced mechanical technologies as well as electronics and communication technologies. It reports on the applications of Geographic Information Systems (GIS), Internet-of-Things, predictive maintenance, as well as modeling and control techniques to reduce the environmental impacts of buildings, enhance their environmental contribution and positively impact the social equity. The different chapters, selected on the basis of their timeliness and relevance for an audience of engineers and professionals, describe the major trends in the field of sustainable engineering research, providing them with a snapshot of current issues together with important technical information for their daily work, as well as an interesting source of new ideas for their future research. The works included in this book were selected among the contributions...

  17. Sandia software guidelines: Volume 5, Tools, techniques, and methodologies

    Energy Technology Data Exchange (ETDEWEB)

    1989-07-01

    This volume is one in a series of Sandia Software Guidelines intended for use in producing quality software within Sandia National Laboratories. This volume describes software tools and methodologies available to Sandia personnel for the development of software, and outlines techniques that have proven useful within the Laboratories and elsewhere. References and evaluations by Sandia personnel are included. 6 figs.

  18. Environmental monitoring report, Sandia Laboratories 1975

    International Nuclear Information System (INIS)

    Holley, W.L.; Simmons, T.N.

    1976-04-01

    Water and vegetation are monitored to determine Sandia Laboratories impact on the surrounding environment. Nonradioactive pollutants released are reported. Radioactive effluents are also reported and their person-rem contribution to the population is calculated

  19. NNSA Master Asset Map - Sandia National Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Billie, Gepetta S. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-01-01

    This report gives information on the following topics related to Sandia National Laboratories: site leadership's vision, condition, footprint management, major gaps and risks, and proposed investment plan.

  20. Sandia Laboratories technical capabilities: systems analysis

    International Nuclear Information System (INIS)

    Lundergan, C.D.

    1975-06-01

    The systems analysis capabilities at Sandia Laboratories are summarized. Selected applications of these capabilities are presented to illustrate the extent to which they can be applied in research and development programs. (U.S.)

  1. Summary of Sandia Laboratories technical capabilities

    International Nuclear Information System (INIS)

    1977-05-01

    The technical capabilities of Sandia Laboratories are detailed in a series of companion reports. In this summary the use of the capabilities in technical programs is outlined and the capabilities are summarized. 25 figures, 3 tables

  2. Technology to Advance High School and Undergraduate Students with Disabilities in Science, Technology, Engineering, and Mathematics

    Science.gov (United States)

    Leddy, Mark H.

    2010-01-01

    Americans with disabilities are underemployed in science, technology, engineering and mathematics (STEM) at higher rates than their nondisabled peers. This article provides an overview of the National science Foundation's Research in Disabilities Education (RDE) program, of technology use by students with disabilities (SWD) in STEM, and of…

  3. Information Technology in project-organized electronic and computer technology engineering education

    DEFF Research Database (Denmark)

    Nielsen, Kirsten Mølgaard; Nielsen, Jens Frederik Dalsgaard

    1999-01-01

    This paper describes the integration of IT in the education of electronic and computer technology engineers at Institute of Electronic Systems, Aalborg Uni-versity, Denmark. At the Institute Information Technology is an important tool in the aspects of the education as well as for communication...

  4. Intercultural Communication in Management of Engineering and Technology

    Science.gov (United States)

    Miyoshi, Kazuhisa

    Companies want more business-minded industrial technology managers and engineers with entrepreneurial skills who also have an awareness of the challenges of global marketplace. Both the Master of Engineering and Management Degree (MEM) and the Master of Management of Technology Degree (MOT) aim to meet the needs of industry by offering managers and engineers the critical skills need to be successful in a professional career. The world today is characterized by an ever-growing number of contacts resulting in communication between people in industry with different linguistic and cultural backgrounds. This communication takes place because of contacts within the areas of business, engineering, technology, science, and education but also because of immigration brought about by labor shortage or political conflicts. In all these contacts, there is communication, which needs to be as constructive as possible, without misunderstandings and breakdowns. Knowledge on the nature of linguistic and cultural similarities and differences can play a positive and constructive role. The objective of this paper is to examine what makes the difference in communication between people with diverse cultural background. In addition, it emphasizes the importance of diversity management and diversity leadership in the diverse workplace.

  5. Development of a Thermoacoustic Stirling Engine Technology Demonstrator

    Science.gov (United States)

    Reissner, Alexander; Gerger, Joachim; Hummel, Stefan; Reißig, Jannis; Pawelke, Roland

    2014-08-01

    Waste heat is a primary source of energy loss in many aerospace and terrestrial applications. FOTEC, an Austrian Research Company located in Wiener Neustadt, is presently developing a micro power converter, promising high efficiencies even for small- scale applications. The converter is based on an innovative thermoacoustic stirling engine concept without any moving parts. Such a maintenance-free engine system would be particularly suitable for advanced space power systems (radioisotope, waste heat) or even within the scope of terrestrial energy harvesting. This paper will summarizes the status of our ongoing efforts on this micro power converter technology.

  6. Space Shuttle OMS engine valve technology. [Orbital Maneuvering System

    Science.gov (United States)

    Wichmann, H.

    1974-01-01

    Valve technology program to determine shutoff valve concepts suitable for the Orbital Maneuvering System (OMS) engine of the Space Shuttle. The tradeoff studies selected the electric torque motor operated dual poppet and ball valves as the most desirable valve concepts for the OMS Engine Shutoff Valve. A prototype of one of these concepts was built and subjected to a design verification program. A number of unique features were designed to include the required contamination insensitivity, operating fluid compatibility, decontamination capability, minimum maintenance requirement and long service life capability.

  7. Armstrong Flight Research Center Research Technology and Engineering Report 2015

    Science.gov (United States)

    Voracek, David F.

    2016-01-01

    I am honored to endorse the 2015 Neil A. Armstrong Flight Research Center’s Research, Technology, and Engineering Report. The talented researchers, engineers, and scientists at Armstrong are continuing a long, rich legacy of creating innovative approaches to solving some of the difficult problems and challenges facing NASA and the aerospace community.Projects at NASA Armstrong advance technologies that will improve aerodynamic efficiency, increase fuel economy, reduce emissions and aircraft noise, and enable the integration of unmanned aircraft into the national airspace. The work represented in this report highlights the Center’s agility to develop technologies supporting each of NASA’s core missions and, more importantly, technologies that are preparing us for the future of aviation and space exploration.We are excited about our role in NASA’s mission to develop transformative aviation capabilities and open new markets for industry. One of our key strengths is the ability to rapidly move emerging techniques and technologies into flight evaluation so that we can quickly identify their strengths, shortcomings, and potential applications.This report presents a brief summary of the technology work of the Center. It also contains contact information for the associated technologists responsible for the work. Don’t hesitate to contact them for more information or for collaboration ideas.

  8. Reactor technology assessment and selection utilizing systems engineering approach

    Science.gov (United States)

    Zolkaffly, Muhammed Zulfakar; Han, Ki-In

    2014-02-01

    The first Nuclear power plant (NPP) deployment in a country is a complex process that needs to consider technical, economic and financial aspects along with other aspects like public acceptance. Increased interest in the deployment of new NPPs, both among newcomer countries and those with expanding programs, necessitates the selection of reactor technology among commercially available technologies. This paper reviews the Systems Decision Process (SDP) of Systems Engineering and applies it in selecting the most appropriate reactor technology for the deployment in Malaysia. The integrated qualitative and quantitative analyses employed in the SDP are explored to perform reactor technology assessment and to select the most feasible technology whose design has also to comply with the IAEA standard requirements and other relevant requirements that have been established in this study. A quick Malaysian case study result suggests that the country reside with PWR (pressurized water reactor) technologies with more detailed study to be performed in the future for the selection of the most appropriate reactor technology for Malaysia. The demonstrated technology assessment also proposes an alternative method to systematically and quantitatively select the most appropriate reactor technology.

  9. Cranioplasty prosthesis manufacturing based on reverse engineering technology

    Science.gov (United States)

    Chrzan, Robert; Urbanik, Andrzej; Karbowski, Krzysztof; Moskała, Marek; Polak, Jarosław; Pyrich, Marek

    2012-01-01

    Summary Background Most patients with large focal skull bone loss after craniectomy are referred for cranioplasty. Reverse engineering is a technology which creates a computer-aided design (CAD) model of a real structure. Rapid prototyping is a technology which produces physical objects from virtual CAD models. The aim of this study was to assess the clinical usefulness of these technologies in cranioplasty prosthesis manufacturing. Material/Methods CT was performed on 19 patients with focal skull bone loss after craniectomy, using a dedicated protocol. A material model of skull deficit was produced using computer numerical control (CNC) milling, and individually pre-operatively adjusted polypropylene-polyester prosthesis was prepared. In a control group of 20 patients a prosthesis was manually adjusted to each patient by a neurosurgeon during surgery, without using CT-based reverse engineering/rapid prototyping. In each case, the prosthesis was implanted into the patient. The mean operating times in both groups were compared. Results In the group of patients with reverse engineering/rapid prototyping-based cranioplasty, the mean operating time was shorter (120.3 min) compared to that in the control group (136.5 min). The neurosurgeons found the new technology particularly useful in more complicated bone deficits with different curvatures in various planes. Conclusions Reverse engineering and rapid prototyping may reduce the time needed for cranioplasty neurosurgery and improve the prosthesis fitting. Such technologies may utilize data obtained by commonly used spiral CT scanners. The manufacturing of individually adjusted prostheses should be commonly used in patients planned for cranioplasty with synthetic material. PMID:22207125

  10. Engineering Education: Environmental and Chemical Engineering or Technology Curricula--A European Perspective

    Science.gov (United States)

    Glavic, Peter; Lukman, Rebeka; Lozano, Rodrigo

    2009-01-01

    Over recent years, universities have been incorporating sustainable development (SD) into their systems, including their curricula. This article analyses the incorporation of SD into the curricula of chemical and environmental engineering or technology bachelor degrees at universities in the European Union (EU) and European Free Trade Association…

  11. Semantic modeling and interoperability in product and process engineering a technology for engineering informatics

    CERN Document Server

    2013-01-01

    In the past decade, feature-based design and manufacturing has gained some momentum in various engineering domains to represent and reuse semantic patterns with effective applicability. However, the actual scope of feature application is still very limited. Semantic Modeling and Interoperability in Product and Process Engineering provides a systematic solution for the challenging engineering informatics field aiming at the enhancement of sustainable knowledge representation, implementation and reuse in an open and yet practically manageable scale.   This semantic modeling technology supports uniform, multi-facet and multi-level collaborative system engineering with heterogeneous computer-aided tools, such as CADCAM, CAE, and ERP.  This presented unified feature model can be applied to product and process representation, development, implementation and management. Practical case studies and test samples are provided to illustrate applications which can be implemented by the readers in real-world scenarios. �...

  12. Graphics tablet technology in second year thermal engineering teaching

    Directory of Open Access Journals (Sweden)

    Antonio Carrillo Andrés

    2013-12-01

    Full Text Available Graphics tablet technology is well known in markets such as manufacturing, graphics arts and design but they have not yet found widespread acceptance for university teaching. A graphics tablet is an affordable and efficient teaching tool that combines the best features from traditional and new media. It allows developing a progressive, interactive lecture (as a traditional blackboard does. However, the tablet is more versatile, being able to integrate graphic material such as tables, graphs, colours, etc. In addition to that, lecture notes can be saved and posted on a course website. The objective of this paper is to show the usefulness of tablet technology in undergraduate engineering teaching by sharing experiences made using a graphics tablet for lecturing a second year Thermal Engineering course. Students’ feedback is definitely positive, though there are some caveats regarding technical and operative problems.

  13. 5th International Conference on Advanced Manufacturing Engineering and Technologies

    CERN Document Server

    Jakovljevic, Zivana; NEWTECH2017

    2017-01-01

    This book presents the proceedings from the 5th NEWTECH conference (Belgrade, Serbia, 5–9 June 2017), the latest in a series of high-level conferences that bring together experts from academia and industry in order to exchange knowledge, ideas, experiences, research results, and information in the field of manufacturing. The range of topics addressed is wide, including, for example, machine tool research and in-machine measurements, progress in CAD/CAM technologies, rapid prototyping and reverse engineering, nanomanufacturing, advanced material processing, functional and protective surfaces, and cyber-physical and reconfigurable manufacturing systems. The book will benefit readers by providing updates on key issues and recent progress in manufacturing engineering and technologies and will aid the transfer of valuable knowledge to the next generation of academics and practitioners. It will appeal to all who work or conduct research in this rapidly evolving field.

  14. Advanced engineering materials and thick film hybrid circuit technology

    International Nuclear Information System (INIS)

    Faisal, S.; Aslam, M.; Mehmood, K.

    2006-01-01

    The use of Thick Film hybrid Technology to manufacture electronic circuits and passive components continues to grow at rapid rate. Thick Film Technology can be viewed as a means of packaging active devices, spanning the gap between monolithic integrated circuit chips and printed circuit boards with attached active and passive components. An advancement in engineering materials has moved from a formulating art to a base of greater understanding of relationship of material chemistry to the details of electrical and mechanical performance. This amazing advancement in the field of engineering materials has brought us up to a magnificent standard that we are able to manufacture small size, low cost and sophisticated electronic circuits of Military, Satellite systems, Robotics, Medical and Telecommunications. (author)

  15. Application of smart transmitter technology in nuclear engineering measurements

    International Nuclear Information System (INIS)

    Kang, Hyun Gook; Seong, Poong Hyun

    1993-01-01

    By making use of the microprocessor technology, instrumentation system becomes intelligent. In this study a programmable smart transmitter is designed and applied to the nuclear engineering measurements. In order to apply the smart transmitter technology to nuclear engineering measurements, the digital time delay compensation function and water level change detection function are developed and applied in this work. The time compensation function compensates effectively the time delay of the measured signal, but it is found that the characteristics of the compensation function should be considered through its application. It is also found that the water level change detection function reduces the detection time to about 7 seconds by the signal processing which has the time constant of over 250 seconds and which has the heavy noise. (Author)

  16. Engineered Nanostructured MEA Technology for Low Temperature Fuel Cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Yimin

    2009-07-16

    The objective of this project is to develop a novel catalyst support technology based on unique engineered nanostructures for low temperature fuel cells which: (1) Achieves high catalyst activity and performance; (2) Improves catalyst durability over current technologies; and (3) Reduces catalyst cost. This project is directed at the development of durable catalysts supported by novel support that improves the catalyst utilization and hence reduce the catalyst loading. This project will develop a solid fundamental knowledge base necessary for the synthetic effort while at the same time demonstrating the catalyst advantages in Direct Methanol Fuel Cells (DMFCs).

  17. Digital video and audio broadcasting technology a practical engineering guide

    CERN Document Server

    Fischer, Walter

    2010-01-01

    Digital Video and Audio Broadcasting Technology - A Practical Engineering Guide' deals with all the most important digital television, sound radio and multimedia standards such as MPEG, DVB, DVD, DAB, ATSC, T-DMB, DMB-T, DRM and ISDB-T. The book provides an in-depth look at these subjects in terms of practical experience. In addition it contains chapters on the basics of technologies such as analog television, digital modulation, COFDM or mathematical transformations between time and frequency domains. The attention in the respective field under discussion is focussed on aspects of measuring t

  18. Diesel Engine Waste Heat Recovery Utilizing Electric Turbocompound Technology

    International Nuclear Information System (INIS)

    Gerke, Frank G.

    2001-01-01

    This cooperative program between the DOE Office of Heavy Vehicle Technology and Caterpillar, Inc. is aimed at demonstrating electric turbocompound technology on a Class 8 truck engine. This is a lab demonstration program, with no provision for on-truck testing of the system. The goal is to demonstrate the level of fuel efficiency improvement attainable with the electric turbocompound system. Also, electric turbocompounding adds an additional level of control to the air supply which could be a component in an emissions control strategy

  19. Traditional technologies of fuels production for air-jet engines

    Directory of Open Access Journals (Sweden)

    Бойченко С. В.

    2013-07-01

    Full Text Available Available energy resources for various fuels, mainly for gas-turbine engines are presented in the given article. Traditional technologies for jet fuels production from nonrenewable raw materials, such as crude oil, coal, natural gas, oil-shales and others are analyzed in details. Cause and effect relationship between production and use of such fuels and their impact on natural environment is defined. The timeliness and necessity for development of alternative technologies of aviation biofuels production are determined in the given article.

  20. Complex engineering objects construction using Multi-D innovative technology

    International Nuclear Information System (INIS)

    Agafonov, Alexey

    2013-01-01

    Multi-D technology is an integrated innovative project management system for a construction of complex engineering objects based on a construction process simulation using an intellectual 3D model. Multi-D technology includes: • The unified schedule of E+P+C; • The schedule of loading of human resources, machines & mechanisms; • The budget of expenses and the income integrated with the schedule; • 3D model; • Multi-D model; • Weekly-daily tasks (with 4th level schedules); • Control system of interaction of Customer-EPC(m) company - Contractors; • Change and configuration management system

  1. Nuclear engineering and manufacturing technology transfer coproduction with technical assistance

    International Nuclear Information System (INIS)

    Marillier, J.C.; Boury, C.

    1985-10-01

    This paper emphasizes in the specific areas of design, engineering, and component production. This paper presents what Framatome has to offer in these areas and its export oriented philosophy. Then, a typical example of successful implementation of this technology transfer philosophy is the collaboration with the South Korean firm, Korea Heavy Industries Corporation (KHIC) for the supply of KNU 9 and KNU 10 power stations

  2. Collaboration in Research and Engineering for Advanced Technology.

    Energy Technology Data Exchange (ETDEWEB)

    Vrieling, P. Douglas [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2016-01-01

    SNL/CA proposes the Collaboration in Research and Engineering for Advanced Technology and Education (CREATE) facility to support customer-driven national security mission requirements while demonstrating a fiscally responsible approach to cost-control. SNL/CA realizes that due to the current backlog of capital projects in NNSA that following the normal Line Item process to procure capital funding is unlikely and therefore SNL/CA will be looking at all options including Alternative Financing.

  3. Experiences implementing the MPI standard on Sandia`s lightweight kernels

    Energy Technology Data Exchange (ETDEWEB)

    Brightwell, R.; Greenberg, D.S.

    1997-10-01

    This technical report describes some lessons learned from implementing the Message Passing Interface (MPI) standard, and some proposed extentions to MPI, at Sandia. The implementations were developed using Sandia-developed lightweight kernels running on the Intel Paragon and Intel TeraFLOPS platforms. The motivations for this research are discussed, and a detailed analysis of several implementation issues is presented.

  4. 75 FR 30874 - National Nanotechnology Coordination Office, Nanoscale Science, Engineering and Technology...

    Science.gov (United States)

    2010-06-02

    ... OFFICE OF SCIENCE AND TECHNOLOGY POLICY National Nanotechnology Coordination Office, Nanoscale Science, Engineering and Technology Subcommittee, National Science and Technology Council, Committee on Technology; The National Nanotechnology Initiative (NNI) Strategic Planning Stakeholder Workshop: Public...

  5. History of the Development of NERVA Nuclear Rocket Engine Technology

    International Nuclear Information System (INIS)

    David L., Black

    2000-01-01

    During the 17 yr between 1955 and 1972, the Atomic Energy Commission (AEC), the U.S. Air Force (USAF), and the National Aeronautics and Space Administration (NASA) collaborated on an effort to develop a nuclear rocket engine. Based on studies conducted in 1946, the concept selected was a fully enriched uranium-filled, graphite-moderated, beryllium-reflected reactor, cooled by a monopropellant, hydrogen. The program, known as Rover, was centered at Los Alamos Scientific Laboratory (LASL), funded jointly by the AEC and the USAF, with the intent of designing a rocket engine for long-range ballistic missiles. Other nuclear rocket concepts were studied during these years, such as cermet and gas cores, but are not reviewed herein. Even thought the program went through the termination phase in a very short time, the technology may still be fully recoverable/retrievable to the state of its prior technological readiness in a reasonably short time. Documents; drawings; and technical, purchasing, manufacturing, and materials specifications were all stored for ease of retrieval. If the U.S. space program were to discover a need/mission for this engine, its 1972 'pencils down' status could be updated for the technology developments of the past 28 yr for flight demonstration in 8 or fewer years. Depending on today's performance requirements, temperatures and pressures could be increased and weight decreased considerably

  6. Characteristics, finite element analysis, test description, and preliminary test results of the STM4-120 kinematic Stirling engine

    Science.gov (United States)

    Linker, K. L.; Rawlinson, K. S.; Smith, G.

    1991-10-01

    The Department of Energy's Solar Thermal Program has, as one of its program elements, the development and evaluation of conversion device technologies applicable to dish-electric systems. The primary research and development combines a conversion device (heat engine), solar receiver, and generator mounted at the focus of a parabolic dish concentrator. The Stirling-cycle heat engine was identified as the conversion device for dish-electric with the most potential for meeting the program's goals for efficiency, reliability, and installed cost. To advance the technology toward commercialization, Sandia National Laboratories has acquired a Stirling Thermal Motors, Inc. kinematic Stirling engine, STM4-120, for evaluation. The engine is being bench-tested at Sandia's Engine Test Facility and will be combined later with a solar receiver for on-sun evaluation. This report presents the engine characteristics, finite element analyses of critical engine components, test system layout, instrumentation, and preliminary performance results from the bench test.

  7. Benefits of reverse engineering technologies in software development makerspace

    Directory of Open Access Journals (Sweden)

    Aabidi M.H.

    2017-01-01

    Full Text Available In the recent decades, the amount of data produced by scientific, engineering, and life science applications has increased with several orders of magnitude. In parallel with this development, the applications themselves have become increasingly complex in terms of functionality, structure, and behavior. In the same time, development and production cycles of such applications exhibit a tendency of becoming increasingly shorter, due to factors such as market pressure and rapid evolution of supporting and enabling technologies. As a consequence, an increasing fraction of the cost of creating new applications and manufacturing processes shifts from the creation of new artifacts to the adaption of existing ones. A key component of this activity is the understanding of the design, operation, and behavior of existing manufactured artifacts, such as software code bases, hardware systems, and mechanical assemblies. For instance, in the software industry, it is estimated that maintenance costs exceed 80% of the total costs of a software product's lifecycle, and software understanding accounts for as much as half of these maintenance costs. To facilitate the software development process, it would be ideal to have tools that automatically generate or help to generate UML (Unified Modeling Language models from source code. Reverse engineering the software architecture from source code provides a valuable service to software practitioners. Case tools implementing MDA and reverse-engineering constitute an important opportunity of software development engineers. So MDA and reverse engineering is an important key witch make makerspace more productive and more efficient.

  8. Research and Development Program for transportation packagings at Sandia National Laboratories

    International Nuclear Information System (INIS)

    Hohnstreiter, G.F.; Sorenson, K.B.

    1995-01-01

    This document contains information about the research and development programs dealing with waste transport at Sandia National Laboratories. This paper discusses topics such as: Why new packaging is needed; analytical methodologies and design codes;evaluation of packaging components; materials characterization; creative packaging concepts; packaging engineering and analysis; testing; and certification support

  9. Aircraft Engine Technology for Green Aviation to Reduce Fuel Burn

    Science.gov (United States)

    Hughes, Christopher E.; VanZante, Dale E.; Heidmann, James D.

    2013-01-01

    The NASA Fundamental Aeronautics Program Subsonic Fixed Wing Project and Integrated Systems Research Program Environmentally Responsible Aviation Project in the Aeronautics Research Mission Directorate are conducting research on advanced aircraft technology to address the environmental goals of reducing fuel burn, noise and NOx emissions for aircraft in 2020 and beyond. Both Projects, in collaborative partnerships with U.S. Industry, Academia, and other Government Agencies, have made significant progress toward reaching the N+2 (2020) and N+3 (beyond 2025) installed fuel burn goals by fundamental aircraft engine technology development, subscale component experimental investigations, full scale integrated systems validation testing, and development validation of state of the art computation design and analysis codes. Specific areas of propulsion technology research are discussed and progress to date.

  10. Hydrogel microfabrication technology toward three dimensional tissue engineering

    Directory of Open Access Journals (Sweden)

    Fumiki Yanagawa

    2016-03-01

    Full Text Available The development of biologically relevant three-dimensional (3D tissue constructs is essential for the alternative methods of organ transplantation in regenerative medicine, as well as the development of improved drug discovery assays. Recent technological advances in hydrogel microfabrication, such as micromolding, 3D bioprinting, photolithography, and stereolithography, have led to the production of 3D tissue constructs that exhibit biological functions with precise 3D microstructures. Furthermore, microfluidics technology has enabled the development of the perfusion culture of 3D tissue constructs with vascular networks. In this review, we present these hydrogel microfabrication technologies for the in vitro reconstruction and cultivation of 3D tissues. Additionally, we discuss current challenges and future perspectives of 3D tissue engineering.

  11. LOW-ENGINE-FRICTION TECHNOLOGY FOR ADVANCED NATURAL-GAS RECIPROCATING ENGINES

    Energy Technology Data Exchange (ETDEWEB)

    Victor W. Wong; Tian Tian; Grant Smedley; Jeffrey Jocsak

    2004-09-30

    This program aims at improving the efficiency of advanced natural-gas reciprocating engines (ANGRE) by reducing piston/ring assembly friction without major adverse effects on engine performance, such as increased oil consumption and emissions. An iterative process of simulation, experimentation and analysis, are being followed towards achieving the goal of demonstrating a complete optimized low-friction engine system. To date, a detailed set of piston/ring dynamic and friction models have been developed and applied that illustrated the fundamental relationships between design parameters and friction losses. Various low-friction strategies and ring-design concepts have been explored, and engine experiments have been done on a full-scale Waukesha VGF F18 in-line 6 cylinder power generation engine rated at 370 kW at 1800 rpm. Current accomplishments include designing and testing ring-packs using a subtle top-compression-ring profile (skewed barrel design), lowering the tension of the oil-control ring, employing a negative twist to the scraper ring to control oil consumption. Initial test data indicate that piston ring-pack friction was reduced by 35% by lowering the oil-control ring tension alone, which corresponds to a 1.5% improvement in fuel efficiency. Although small in magnitude, this improvement represents a first step towards anticipated aggregate improvements from other strategies. Other ring-pack design strategies to lower friction have been identified, including reduced axial distance between the top two rings, tilted top-ring groove. Some of these configurations have been tested and some await further evaluation. Colorado State University performed the tests and Waukesha Engine Dresser, Inc. provided technical support. Key elements of the continuing work include optimizing the engine piston design, application of surface and material developments in conjunction with improved lubricant properties, system modeling and analysis, and continued technology

  12. Experiments in Creative Engineering at the Department of Mechanical Engineering in Kurume National College of Technology

    Science.gov (United States)

    Tanaka, Hiroshi; Hashimura, Shinji; Hiroo, Yasuaki

    We present a program to learn ability to solve problems on engineering. This program is called “Experiments in creative engineering” in the department of mechanical engineering in Kurume National College of Technology advanced engineering school. In the program, students have to determine own theme and manufacture experimental devices or some machines by themselves. The students must also perform experiments to valid the function and performance of their devices by themselves. The restriction of the theme is to manufacture a device which function dose not basically exist in the world with limited cost (up to 20,000Yen) . As the results of questionnaire of students, the program would be very effective to the creative education for the students.

  13. Developing an Integration Infrastructure for Distributed Engine Control Technologies

    Science.gov (United States)

    Culley, Dennis; Zinnecker, Alicia; Aretskin-Hariton, Eliot; Kratz, Jonathan

    2014-01-01

    Turbine engine control technology is poised to make the first revolutionary leap forward since the advent of full authority digital engine control in the mid-1980s. This change aims squarely at overcoming the physical constraints that have historically limited control system hardware on aero-engines to a federated architecture. Distributed control architecture allows complex analog interfaces existing between system elements and the control unit to be replaced by standardized digital interfaces. Embedded processing, enabled by high temperature electronics, provides for digitization of signals at the source and network communications resulting in a modular system at the hardware level. While this scheme simplifies the physical integration of the system, its complexity appears in other ways. In fact, integration now becomes a shared responsibility among suppliers and system integrators. While these are the most obvious changes, there are additional concerns about performance, reliability, and failure modes due to distributed architecture that warrant detailed study. This paper describes the development of a new facility intended to address the many challenges of the underlying technologies of distributed control. The facility is capable of performing both simulation and hardware studies ranging from component to system level complexity. Its modular and hierarchical structure allows the user to focus their interaction on specific areas of interest.

  14. 2013 Annual Site Environmental Report for Sandia National Laboratories Tonopah Test Range Nevada & Kauai Test Facility Hawaii

    Energy Technology Data Exchange (ETDEWEB)

    Griffith, Stacy Rene [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Agogino, Karen [National Nuclear Security Administration (NNSA), Washington, DC (United States); Li, Jun [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); White, Nancy [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Minitrez, Alexandra [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Avery, Penny [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Bailey-White, Brenda [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Bonaguidi, Joseph [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Catechis, Christopher [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); duMond, Michael [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Eckstein, Joanna [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Evelo, Stacie [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Forston, William [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Herring, III, Allen [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Lantow, Tiffany [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Martinez, Reuben [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Mauser, Joseph [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Miller, Amy [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Miller, Mark [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Payne, Jennifer [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Peek, Dennis [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Reiser, Anita [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Ricketson, Sherry [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Roma, Charles [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Salinas, Stephanie [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Ullrich, Rebecca [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)

    2014-08-01

    Tonopah Test Range (TTR) in Nevada and Kauai Test Facility (KTF) in Hawaii are government-owned, contractor-operated facilities managed and operated by Sandia Corporation (Sandia), a wholly owned subsidiary of Lockheed Martin Corporation. The U.S. Department of Energy (DOE), National Nuclear Security Administration (NNSA), through the Sandia Field Office (SFO), in Albuquerque, New Mexico, administers the contract and oversees contractor operations at TTR and KTF. Sandia manages and conducts operations at TTR in support of the DOE/NNSA’s Weapons Ordnance Program and has operated the site since 1957. Navarro Research and Engineering subcontracts to Sandia in administering most of the environmental programs at TTR. Sandia operates KTF as a rocket preparation launching and tracking facility. This Annual Site Environmental Report summarizes data and the compliance status of the sustainability, environmental protection, and monitoring program at TTR and KTF through Calendar Year 2013. The compliance status of environmental regulations applicable at these sites include state and federal regulations governing air emissions, wastewater effluent, waste management, terrestrial surveillance, Environmental Restoration (ER) cleanup activities, and the National Environmental Policy Act. Sandia is responsible only for those environmental program activities related to its operations. The DOE/NNSA/Nevada Field Office retains responsibility for the cleanup and management of TTR ER sites. Environmental monitoring and surveillance programs are required by DOE Order 231.1B, Environment, Safety, and Health Reporting (DOE 2012).

  15. New technologies in Islamic countries. Power engineering, transport, oil industry, machinery construction, building construction and information technologies problems

    International Nuclear Information System (INIS)

    Sharipova, N.S.

    1999-01-01

    The published proceedings contain brief presentations concerning new technologies in power engineering, transport, oil industry, machinery construction, building construction and information technologies presented to the International scientific and technical conference: New technologies in Islamic countries, which was organized within frame work of 6 General Assembly of Federation of engineering Institutes of Islamic countries (FEIIC). (author)

  16. New technologies in Islamic countries. Power engineering, transport, oil industry, machinery construction, building construction and information technologies problems

    International Nuclear Information System (INIS)

    Sharipova, N.S.

    1999-01-01

    This issue contains papers, which reflect the most important achievements of new technologies in power engineering, transport, oil industry, machinery construction, building construction and information technologies presented to the International Scientific and Technical Conference: New technologies in Islamic countries, which was organized within frame work of 6 General Assembly of Federation of Engineering Institutes of Islamic Countries (FEIIC). (author)

  17. Young Women’s Perceptions of Technology and Engineering: Factors Influencing Their Participation in Math, Science and Technology?

    OpenAIRE

    Roue, Leah C.

    2007-01-01

    The current number of women in technology and engineering only represents a fraction of today’s workforce. Technological innovation depends on our nation’s best and brightest, representing all segments of our diverse society. Sanders (2005), in talking about women in technology and engineering, stated that women’s lack of participation can only be measured in jobs not filled, problems not solved, and technology not created. Research in the area of how young women view technology will provide ...

  18. Sandia National Laboratories 1979 environmental monitoring report

    International Nuclear Information System (INIS)

    Simmons, T.N.

    1980-04-01

    Sandia National Laboratories in Albuquerque is located south of the city on two broad mesas. The local climate is arid continental. Radionuclides are released from five technical areas from the Laboratories' resarch activities. Sandia's environmental monitoring program searches for cesium-137, tritium, uranium, alpha emitters, and beta emitters in water, soil, air, and vegetation. No activity was found in public areas in excess of local background in 1979. The Albuquerque population receives only 0.076 person-rem (estimated) from airborne radioactive releases. While national security research is the laboratories' major responsibility, energy research is a major area of activity. Both these research areas cause radioactive releases

  19. Sandia Software Guidelines, Volume 2. Documentation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    This volume is one in a series of Sandia Software Guidelines intended for use in producing quality software within Sandia National Laboratories. In consonance with the IEEE Standards for software documentation, this volume provides guidance in the selection of an adequate document set for a software project and example formats for many types of software documentation. A tutorial on life cycle documentation is also provided. Extended document thematic outlines and working examples of software documents are available on electronic media as an extension of this volume.

  20. Transuranic waste management at Sandia National Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Humphrey, Betty [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bland, Jesse John [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2018-01-01

    This paper documents the history of the TRU program at Sandia, previous and current activities associated with TRU material and waste, interfaces with other TRU waste generator sites and the Waste Isolation Pilot Plan (WIPP), and paths forward for TRU material and waste. This document is a snapshot in time of the TRU program and should be updated as necessary, or when significant changes have occurred in the Sandia TRU program or in the TRU regulatory environment. This paper should serve as a roadmap to capture past TRU work so that efforts are not repeated and ground is not lost due to future inactivity and personnel changes.

  1. Engineering Encounters: Building Technological Literacy with Philosophy and Nature of Technology

    Science.gov (United States)

    Kruse, Jerrid; Wilcox, Jesse

    2017-01-01

    This column presents ideas and techniques to enhance your science teaching. In this issue the authors discuss a design project they have used with upper elementary students (grades 4-6). They note ways to engage students in thinking philosophically about technology to meet engineering design outcomes in the "Next Generation Science…

  2. An overview of semiconductor bridge, SCB, applications at Sandia National Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Bickes, R.W. Jr.; Grubelich, M.C.; Harris, S.M.; Merson, J.A.; Weinlein, J.H.

    1995-05-01

    The semiconductor bridge, SCB, developed by Sandia National Laboratories is a maturing technology now being used in several applications by Sandia customers. Most applications arose because of a need at the system level to provide explosive assemblies that were light weight, small volume, low cost and required small quantities of electrical energy to function -- for the purposes of this paper we define an explosive assembly to mean the combination of the firing set and an explosive component. As a result, and because conventional firing systems could not meet the stringent size, weight and energy requirements of our customers, we designed and are investigating SCB applications that range from devices for Sandia applications to igniters for fireworks. We present in this paper an overview of SCB technology with specific examples of the system designed for our customers to meet modern requirements that sophisticated explosive systems must satisfy in today`s market environments.

  3. Integration of an ion engine on the Communications Technology Satellite.

    Science.gov (United States)

    Payne, W. F.; Finke, R. C.

    1972-01-01

    An ion engine subsystem intended for satellite stationkeeping tasks is described. Ion thrusters are chosen to perform the task because the specific impulse is at least an order of magnitude higher than the commonly used reaction control jets. The higher the value of specific impulse, the greater the total impulse that can be attained for a given weight of propellant, hence cost benefits result. The integration, subsystem testing, and the operating plans for the ion engine experiment to be flown in 1975 on the Canadian Communications Technology Satellite (CTS) are described. The subsystem is designed to demonstrate north-south stationkeeping, attitude control by means of thrust vectoring, long-term space storage and restart capability, and compatibility with a high powered communications transponder.

  4. Mechanical-engineering aspects of mirror-fusion technology

    International Nuclear Information System (INIS)

    Fisher, D.K.; Doggett, J.N.

    1982-01-01

    The mirror approach to magnetic fusion has evolved from the original simple mirror cell to today's mainline effort: the tandem-mirror machine with thermal barriers. Physics and engineering research is being conducted throughout the world, with major efforts in Japan, the USSR, and the US. At least one facility under construction (MFTF-B) will approach equivalent energy breakeven in physics performance. Significant mechanical engineering development is needed, however, before a demonstration reactor can be constructed. The principal areas crucial to mirror reactor development include large high-field superconducting magnets, high-speed continuous vacuum-pumping systems, long-pulse high-power neutral-beam and rf-plasma heating systems, and efficient high-voltage high-power direct converters. Other areas common to all fusion systems include tritium handling technology, first-wall materials development, and fusion blanket design

  5. Pollution Reduction Technology Program, Turboprop Engines, Phase 1

    Science.gov (United States)

    Anderson, R. D.; Herman, A. S.; Tomlinson, J. G.; Vaught, J. M.; Verdouw, A. J.

    1976-01-01

    Exhaust pollutant emissions were measured from a 501-D22A turboprop engine combustor and three low emission combustor types -- reverse flow, prechamber, and staged fuel, operating over a fuel-air ratio range of .0096 to .020. The EPAP LTO cycle data were obtained for a total of nineteen configurations. Hydrocarbon emissions were reduced from 15.0 to .3 lb/1000 Hp-Hr/cycle, CO from 31.5 to 4.6 lb/1000 Hp-Hr/cycle with an increase in NOx of 17 percent, which is still 25% below the program goal. The smoke number was reduced from 59 to 17. Emissions given here are for the reverse flow Mod. IV combustor which is the best candidate for further development into eventual use with the 501-D22A turboprop engine. Even lower emissions were obtained with the advanced technology combustors.

  6. Physics and information technology an interplay between science and engineering

    CERN Multimedia

    Hagstrom, S B

    1999-01-01

    In the last decade of this century and millennium, the computer and communication revolution has shown its power to transform the society. In this talk I will reflect on my personal experience of witnessing this revolution from an observation post in Silicon Valley. In particular, I will emphasize the role of physics and the interplay between science and engineering in this development. Information technology is often viewed as based on some physics discoveries and inventions such as the transistor and the semiconductor laser. Much of the subsequent development, the integrated circuit being a good example, has been an engineering feat. With shrinking dimensions of the circuits we are approaching the quantum limitations, requiring new types of computer architectures based on fundamental physics concepts. In this context we may ask if we should include the basic concepts of information and information handling as part of physics. Finally I will include some remarks on the views of physics as seen in the eyes of...

  7. The role of technology and engineering models in transforming healthcare.

    Science.gov (United States)

    Pavel, Misha; Jimison, Holly Brugge; Wactlar, Howard D; Hayes, Tamara L; Barkis, Will; Skapik, Julia; Kaye, Jeffrey

    2013-01-01

    The healthcare system is in crisis due to challenges including escalating costs, the inconsistent provision of care, an aging population, and high burden of chronic disease related to health behaviors. Mitigating this crisis will require a major transformation of healthcare to be proactive, preventive, patient-centered, and evidence-based with a focus on improving quality-of-life. Information technology, networking, and biomedical engineering are likely to be essential in making this transformation possible with the help of advances, such as sensor technology, mobile computing, machine learning, etc. This paper has three themes: 1) motivation for a transformation of healthcare; 2) description of how information technology and engineering can support this transformation with the help of computational models; and 3) a technical overview of several research areas that illustrate the need for mathematical modeling approaches, ranging from sparse sampling to behavioral phenotyping and early detection. A key tenet of this paper concerns complementing prior work on patient-specific modeling and simulation by modeling neuropsychological, behavioral, and social phenomena. The resulting models, in combination with frequent or continuous measurements, are likely to be key components of health interventions to enhance health and wellbeing and the provision of healthcare.

  8. Engineering in the 21st century. [aerospace technology prospects

    Science.gov (United States)

    Mccarthy, J. F., Jr.

    1978-01-01

    A description is presented of the nature of the aerospace technology system that might be expected by the 21st century from a reasonable evolution of the current resources and capabilities. An aerospace employment outlook is provided. The years 1977 and 1978 seem to be marking the beginning of a period of stability and moderate growth in the aerospace industry. Aerospace research and development employment increased to 70,000 in 1977 and is now occupying a near-constant 18% share of the total research and development work force. The changing job environment is considered along with the future of aerospace education. It is found that one trend is toward a more interdisciplinary education. Most trend setters in engineering education recognize that the really challenging engineering problems invariably require the judicious exercise of several disciplines for their solution. Some future trends in aerospace technology are discussed. By the year 2000 space technology will have achieved major advances in four areas, including management of information, transportation, space structures, and energy.

  9. Connecting the physical and psychosocial space to Sandia's mission

    Energy Technology Data Exchange (ETDEWEB)

    Emmanuel, Glory Ruth [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Silva, Austin Ray [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-07-01

    Sandia Labs has corporate, lab-wide efforts to enhance the research environment as well as improve physical space. However, these two efforts are usually done in isolation. The integration of physical space design with the nurturing of what we call psychosocial space can foster more efficient and effective creativity, innovation, collaboration, and performance. This paper presents a brief literature review on how academia and industry are studying the integration of physical and psychosocial space and focuses on the efforts that we, the authors, have made to improve the research environment in the Cyber Engineering Research Lab (CERL), home to Group 1460. Interviews with subject matter experts from Silicon Valley and the University of New Mexico plus changes to actual spaces in CERL provided us with six lessons learned when integrating physical and psychosocial space. We describe these six key takeaways in hopes that Sandia will see this area as an evolving research capability that Sandia can both contribute to and benefit from.

  10. Dictionary of electrical engineering. Power engineering, automation technology, measurement and control technology, mechatronics. English - German; Fachwoerterbuch Elektrotechnik. Energietechnik, Automatisierungstechnik, Mess-, Steuer- und Regelungstechnik, Mechatronik. Englisch - Deutsch

    Energy Technology Data Exchange (ETDEWEB)

    Heckler, H.

    2007-07-01

    The foreign-language vocabulary taught at school usually does not cover terms needed during professional life in electrical engineering. This comprehensive dictionary contains more than 60,000 electrotechnical and engineering terms - used in textbooks, manuals, data sheets, whitepapers and international standards. British English and American English spelling differences are identified. Terms used in IEC standards of the International Electrotechnical Commission are marked, allowing the reader to have easy access to the multilingual glossary of the IEC. This book contains the in-house dictionaries of the internationally operating companies Festo, KEB, Phoenix Contact, and Rittal. Topics: - Basic of electrical engineering, - Electrical power engineering, - Mechatronics, - Electrical drive engineering, - Electrical connection technology, - Automation technology, - Safety-related technology, - Information technology, - Measurement and control technology, - Explosion protection - Power plant technology, - Lightning and overvoltage protection. (orig.)

  11. Functional information technology in geometry-graphic training of engineers

    Directory of Open Access Journals (Sweden)

    Irina D. Stolbova

    2017-01-01

    Full Text Available In the last decade, information technology fundamentally changed the design activity and made significant adjustments to the development of design documentation. Electronic drawings and 3d-models appeared instead of paper drawings and the traditional form of the design documentation. Geometric modeling of 3d-technology has replaced the graphic design technology. Standards on the electronic models are introduced. Electronic prototypes and 3d-printing contribute to the spread of rapid prototyping technologies.In these conditions, the task to find the new learning technology, corresponding to the level of development of information technologies and meeting the requirements of modern design and manufacturing technologies, comes to the fore. The purpose of this paper — the analysis of the information technology capabilities in the formation of geometrical-graphic competences, happening in the base of graphic training of students of technical university. Traditionally, basic graphic training of students in the junior university courses consisted in consecutive studying of the descriptive geometry, engineering and computer graphics. Today, the use of integrative approach is relevant, but the role of computer graphics varies considerably. It is not only an object of study, but also a learning tool, the core base of graphic training of students. Computer graphics is an efficient mechanism for the development of students’ spatial thinking. The role of instrumental training of students to the wide use of CAD-systems increases in the solution of educational problems and in the implementation of project tasks, which corresponds to the modern requirements of the professional work of the designer-constructor.In this paper, the following methods are used: system analysis, synthesis, simulation.General geometric-graphic training model of students of innovation orientation, based on the use of a wide range of computer technology is developed. The

  12. A user`s guide to LHS: Sandia`s Latin Hypercube Sampling Software

    Energy Technology Data Exchange (ETDEWEB)

    Wyss, G.D.; Jorgensen, K.H. [Sandia National Labs., Albuquerque, NM (United States). Risk Assessment and Systems Modeling Dept.

    1998-02-01

    This document is a reference guide for LHS, Sandia`s Latin Hypercube Sampling Software. This software has been developed to generate either Latin hypercube or random multivariate samples. The Latin hypercube technique employs a constrained sampling scheme, whereas random sampling corresponds to a simple Monte Carlo technique. The present program replaces the previous Latin hypercube sampling program developed at Sandia National Laboratories (SAND83-2365). This manual covers the theory behind stratified sampling as well as use of the LHS code both with the Windows graphical user interface and in the stand-alone mode.

  13. Simulation and off-line programming at Sandia`s Intelligent Systems and Robotics Center

    Energy Technology Data Exchange (ETDEWEB)

    Xavier, P.G.; Fahrenholtz, J.C.; McDonald, M. [Sandia National Labs., Albuquerque, NM (United States). Intelligent Systems and Robotics Center] [and others

    1997-11-01

    One role of the Intelligent Robotics and System Center (ISRC) at Sandia National Laboratories is to address certain aspects of Sandia`s mission to design, manufacture, maintain, and dismantle nuclear weapon components. Hazardous materials, devices, and environments are often involved. Because of shrinking resources, these tasks must be accomplished with a minimum of prototyping, while maintaining high reliability. In this paper, the authors describe simulation, off-line programming/planning, and related tools which are in use, under development, and being researched to solve these problems at the ISRC.

  14. ''We crash, burn, and crush'': A history of packaging at Sandia National Laboratories, 1978 -1997

    International Nuclear Information System (INIS)

    Mora, C.J.; McConnell, P.

    1997-11-01

    Even prior to the beginning of the nuclear age, the packaging and transportation of nuclear materials was a prime national concern. Nuclear materials such as uranium and plutonium had to be transported safely (and secretly) to the Manhattan Engineer District Laboratory in Los Alamos, New Mexico. The subsequent post war use of nuclear power for the generation of electricity and accelerated weapons development programs resulted in radioactive waste byproducts, such as spent fuel and plutonium, that were stored on site at utilities and federal weapons sites. While projected repositories for long term storage of radioactive waste are being planned, both low and high level radioactive materials on occasion must be moved safely. Movement to interim storage and, for low level waste, repository sites, is accomplished by a combination of truck, rail, ship, and air. The US Department of Energy (DOE) directs transportation activities including cask development technology for use in single or multimodal (a combination of land, water, and air) transport. In 1978, Sandia National Laboratories was selected as the lead contractor for basic transportation technology. This report is divided into the following topics: (1) early research and development (1936--1978); (2) radioactive material package test (1975--1977); (3) the SNL Transportation Technology Center; (4) TRUPACT-II; (5) beneficial uses of shipping system casks; (6) C-141B drop tests; (7) MIDAS; (8) MOSAIK; (9) SEARAM; (10) PATRAM; and (11) a chronology of transportation activities

  15. Particulate emissions from diesel engines: correlation between engine technology and emissions.

    Science.gov (United States)

    Fiebig, Michael; Wiartalla, Andreas; Holderbaum, Bastian; Kiesow, Sebastian

    2014-03-07

    In the last 30 years, diesel engines have made rapid progress to increased efficiency, environmental protection and comfort for both light- and heavy-duty applications. The technical developments include all issues from fuel to combustion process to exhaust gas aftertreatment. This paper provides a comprehensive summary of the available literature regarding technical developments and their impact on the reduction of pollutant emission. This includes emission legislation, fuel quality, diesel engine- and exhaust gas aftertreatment technologies, as well as particulate composition, with a focus on the mass-related particulate emission of on-road vehicle applications. Diesel engine technologies representative of real-world on-road applications will be highlighted.Internal engine modifications now make it possible to minimize particulate and nitrogen oxide emissions with nearly no reduction in power. Among these modifications are cooled exhaust gas recirculation, optimized injections systems, adapted charging systems and optimized combustion processes with high turbulence. With introduction and optimization of exhaust gas aftertreatment systems, such as the diesel oxidation catalyst and the diesel particulate trap, as well as NOx-reduction systems, pollutant emissions have been significantly decreased. Today, sulfur poisoning of diesel oxidation catalysts is no longer considered a problem due to the low-sulfur fuel used in Europe. In the future, there will be an increased use of bio-fuels, which generally have a positive impact on the particulate emissions and do not increase the particle number emissions.Since the introduction of the EU emissions legislation, all emission limits have been reduced by over 90%. Further steps can be expected in the future. Retrospectively, the particulate emissions of modern diesel engines with respect to quality and quantity cannot be compared with those of older engines. Internal engine modifications lead to a clear reduction of the

  16. Rio Grande Erosion Potential Demonstration - Report for the National Border Technology Program; TOPICAL

    International Nuclear Information System (INIS)

    JEPSEN, RICHARD A.; ROBERTS, JESSE D.; LANGFORD, RICHARD; GAILANI, JOSEPH

    2001-01-01

    This demonstration project is a collaboration among DOE, Sandia National Laboratories, the University of Texas, El Paso (UTEP), the International Boundary and Water Commission (IBWC), and the US Army Corps of Engineers (USACE). Sandia deployed and demonstrated a field measurement technology that enables the determination of erosion and transport potential of sediments in the Rio Grande. The technology deployed was the Mobile High Shear Stress Flume. This unique device was developed by Sandia's Carlsbad Programs for the USACE and has been used extensively in collaborative efforts on near shore and river systems throughout the United States. Since surface water quantity and quality along with human health is an important part of the National Border Technology Program, technologies that aid in characterizing, managing, and protecting this valuable resource from possible contamination sources is imperative

  17. Thermal engineering and micro-technology; Thermique et microtechnologie

    Energy Technology Data Exchange (ETDEWEB)

    Kandlikar, S. [Rochester Inst. of Tech., NY (United States); Luo, L. [Institut National Polytechnique, 54 - Nancy (France); Gruss, A. [CEA Grenoble, GRETH, 38 (France); Wautelet, M. [Mons Univ. (Belgium); Gidon, S. [CEA Grenoble, Lab. d' Electronique et de Technologie de l' Informatique (LETI), 38 (France); Gillot, C. [Ecole Nationale Superieure d' Ingenieurs Electriciens de Grenoble, 38 - Saint Martin d' Heres (France)]|[CEA Grenoble, Lab. Electronique et de Technologie de l' Informatique (LETI), 38 (France); Therme, J.; Marvillet, Ch.; Vidil, R. [CEA Grenoble, 38 (France); Dutartre, D. [ST Microelectronique, France (France); Lefebvre, Ph. [SNECMA, 75 - Paris (France); Lallemand, M. [Institut National des Sciences Appliquees (INSA), 69 - Villeurbanne (France); Colin, S. [Institut National des Sciences Appliquees (INSA), 31 - Toulouse (France); Joulin, K. [Ecole Nationale Superieure de Mecanique et d' Aerotechnique (ENSMA), 86 - Poitiers (France); Gad el Hak, M. [Virginia Univ., Charlottesville, VA (United States)

    2003-07-01

    This document gathers the abstracts and transparencies of 5 invited conferences of this congress of the SFT about heat transfers and micro-technologies: Flow boiling in microchannels: non-dimensional groups and heat transfer mechanisms (S. Kandlikar); Intensification and multi-scale process units (L. Luo and A. Gruss); Macro-, micro- and nano-systems: different physics? (M. Wautelet); micro-heat pipes (M. Lallemand); liquid and gas flows inside micro-ducts (S. Colin). The abstracts of the following presentations are also included: Electro-thermal writing of nano-scale memory points in a phase change material (S. Gidon); micro-technologies for cooling in micro-electronics (C. Gillot); the Minatec project (J. Therme); importance and trends of thermal engineering in micro-electronics (D. Dutartre); Radiant heat transfers at short length scales (K. Joulain); Momentum and heat transfer in micro-electromechanical systems (M. Gad-el-Hak). (J.S.)

  18. Continuous nonlinear optimization for engineering applications in GAMS technology

    CERN Document Server

    Andrei, Neculai

    2017-01-01

    This book presents the theoretical details and computational performances of algorithms used for solving continuous nonlinear optimization applications imbedded in GAMS. Aimed toward scientists and graduate students who utilize optimization methods to model and solve problems in mathematical programming, operations research, business, engineering, and industry, this book enables readers with a background in nonlinear optimization and linear algebra to use GAMS technology to understand and utilize its important capabilities to optimize algorithms for modeling and solving complex, large-scale, continuous nonlinear optimization problems or applications. Beginning with an overview of constrained nonlinear optimization methods, this book moves on to illustrate key aspects of mathematical modeling through modeling technologies based on algebraically oriented modeling languages. Next, the main feature of GAMS, an algebraically oriented language that allows for high-level algebraic representation of mathematical opti...

  19. Functional and operational requirements document : building 1012, Battery and Energy Storage Device Test Facility, Sandia National Laboratories, New Mexico.

    Energy Technology Data Exchange (ETDEWEB)

    Johns, William H. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2013-11-01

    This report provides an overview of information, prior studies, and analyses relevant to the development of functional and operational requirements for electrochemical testing of batteries and energy storage devices carried out by Sandia Organization 2546, Advanced Power Sources R&D. Electrochemical operations for this group are scheduled to transition from Sandia Building 894 to a new Building located in Sandia TA-II referred to as Building 1012. This report also provides background on select design considerations and identifies the Safety Goals, Stakeholder Objectives, and Design Objectives required by the Sandia Design Team to develop the Performance Criteria necessary to the design of Building 1012. This document recognizes the Architecture-Engineering (A-E) Team as the primary design entity. Where safety considerations are identified, suggestions are provided to provide context for the corresponding operational requirement(s).

  20. Sandia National Laboratories: Careers: Special Programs

    Science.gov (United States)

    Program Master's Fellowship Program Wounded Warrior Career Development Program Careers Special Programs Special career opportunities for select individuals Join Sandia's workforce while receiving support and Laboratories' Affirmative Action Plan. Learn more about MFP. Wounded Warrior Career Development Program U.S

  1. Sandia National Laboratories: Fabrication, Testing and Validation

    Science.gov (United States)

    digital and analog elements. * Cadence Process-Design Kit. Structured ASIC Sandia National Laboratories demonstrate complex multilevel devices such as micro-mass-analysis systems up to 25 microns thick and novel possible to fabricate a wide very large variety of useful devices. Micro-Mass-Analysis Systems Applications

  2. PREFACE: Modern Technologies in Industrial Engineering (ModTech2015)

    Science.gov (United States)

    Oanta, E.; Comaneci, R.; Carausu, C.; Placzek, M.; Cohal, V.; Topala, P.; Nedelcu, D.

    2015-11-01

    attended by 140 participants from 17 countries. The authors and co-authors were from various countries worldwide, namely: Sweden, China, Switzerland, Romania, Serbia, Germany, Netherlands, Belgium, France, South Korea, Taiwan, Poland, USA, Slovenia, Turkey, Republic of Moldova, Russia, Finland, Japan, Ukraine, Portugal, Uzbekistan, Iraq, Italy and India. The Keynote Speakers were as follows: Prof. Esteban Broitman - Linkoping University, Sweden; Prof. Ziyi Ge - NIMTE, Chinese Academy of Sciences, Ningbo, China; Prof. Thomas Graule - EMPA, Switzerland; prof. Razvan Tamas - Constanta Maritime University, Romania; Prof. Rainer Gadow - University of Stuttgart, Germany; Prof. Marcel Van de Voorde - DELFT University of Technology, Netherlands; Prof. Chris Lacor - Vrije University, Brussels, Belgium; Prof. Fiqiri Hodaj - National Polytechnique Institute of Grenoble, France; Prof. Hong Seok Park - University of Ulsan, South Korea; Prof. Der-Jang Liaw - National Taiwan University of Science and Technology, Taiwan; Prof. Petrica Vizureanu - Gheorghe Asachi Technical University of Iasi, Romania. The main publications of ModTech2015 International Conference are as follows: IOP Conference Series: Materials Science and Engineering, United Kingdom, Indian Journal of Engineering & Materials Sciences (IJEMS) and International Journal of Modern Manufacturing Technologies (IJMMT).

  3. Innovative technologies in course Electrical engineering and electronics

    Science.gov (United States)

    Kuznetsov, E. V.; Kiselev, V. I.; Kulikova, E. A.

    2017-11-01

    Department of Electrical Engineering and Nondestructive Testing, NRU “MPEI”, has been working on development Electronic Learning Resources (ELRs) in course Electrical Engineering and Electronics for several years. This work have been focused on education intensification and effectiveness while training bachelors in nonelectrical specializations including students from Thermal and Atomic Power Engineering Institute. The developed ELRs are united in a tutorial module consisting of three parts (Electrical Circuits, Electrical Machines, Basics of Electronics): electronic textbook and workbook (ETW); virtual laboratory sessions (VLS); training sessions (ETS); personal tasks (PT); testing system that contains electronic tests in all course subjects and built-in verification of a student’s work results in ETW, VLS, ETS, PT. The report presents samples of different ELRs in html format and MathCAD, MatLAB Simulink applications, copyrighted programs in Java2, Delphi, VB6, C++. The report also contains the experience description, advantages and disadvantages of the new technologies. It is mentioned that ELRs provide new opportunities in course studying.

  4. Microbial ecology-based engineering of Microbial Electrochemical Technologies.

    Science.gov (United States)

    Koch, Christin; Korth, Benjamin; Harnisch, Falk

    2018-01-01

    Microbial ecology is devoted to the understanding of dynamics, activity and interaction of microorganisms in natural and technical ecosystems. Bioelectrochemical systems represent important technical ecosystems, where microbial ecology is of highest importance for their function. However, whereas aspects of, for example, materials and reactor engineering are commonly perceived as highly relevant, the study and engineering of microbial ecology are significantly underrepresented in bioelectrochemical systems. This shortfall may be assigned to a deficit on knowledge and power of these methods as well as the prerequisites for their thorough application. This article discusses not only the importance of microbial ecology for microbial electrochemical technologies but also shows which information can be derived for a knowledge-driven engineering. Instead of providing a comprehensive list of techniques from which it is hard to judge the applicability and value of information for a respective one, this review illustrates the suitability of selected techniques on a case study. Thereby, best practice for different research questions is provided and a set of key questions for experimental design, data acquisition and analysis is suggested. © 2017 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  5. Using Innovative Technologies for Manufacturing and Evaluating Rocket Engine Hardware

    Science.gov (United States)

    Betts, Erin M.; Hardin, Andy

    2011-01-01

    Many of the manufacturing and evaluation techniques that are currently used for rocket engine component production are traditional methods that have been proven through years of experience and historical precedence. As we enter into a new space age where new launch vehicles are being designed and propulsion systems are being improved upon, it is sometimes necessary to adopt new and innovative techniques for manufacturing and evaluating hardware. With a heavy emphasis on cost reduction and improvements in manufacturing time, manufacturing techniques such as Direct Metal Laser Sintering (DMLS) and white light scanning are being adopted and evaluated for their use on J-2X, with hopes of employing both technologies on a wide variety of future projects. DMLS has the potential to significantly reduce the processing time and cost of engine hardware, while achieving desirable material properties by using a layered powdered metal manufacturing process in order to produce complex part geometries. The white light technique is a non-invasive method that can be used to inspect for geometric feature alignment. Both the DMLS manufacturing method and the white light scanning technique have proven to be viable options for manufacturing and evaluating rocket engine hardware, and further development and use of these techniques is recommended.

  6. International Colloquium on Sports Science, Exercise, Engineering and Technology 2014

    CERN Document Server

    Ismail, Shariman; Sulaiman, Norasrudin

    2014-01-01

    The proceeding is a collection of research papers presented at the International Colloquium on Sports Science, Exercise, Engineering and Technology (ICoSSEET2014), a conference dedicated to address the challenges in the areas of sports science, exercise, sports engineering and technology including other areas of sports, thereby presenting a consolidated view to the interested researchers in the aforesaid fields. The goal of this conference was to bring together researchers and practitioners from academia and industry to focus on the scope of the conference and establishing new collaborations in these areas. The topics of interest are as follows but are not limited to:1. Sports and Exercise Science • Sports Nutrition • Sports Biomechanics • Strength and Conditioning • Motor Learning and Control • Sports Psychology • Sports Coaching • Sports and Exercise Physiology • Sports Medicine and Athletic Trainer • Fitness and Wellness • Exercise Rehabilitation • Adapted Physical Activity...

  7. Renewable energy technology from underpinning physics to engineering application

    International Nuclear Information System (INIS)

    Infield, D G

    2008-01-01

    The UK Energy Research Centre (UKERC) in it's submission to the DTI's 2006 Energy Review reminded us that the 'UK has abundant wind, wave and tidal resources available; its mild climate lends itself to bio-energy production, and solar radiation levels are sufficient to sustain a viable solar industry'. These technologies are at different stages of development but they all draw on basic and applied Science and Engineering. The paper will briefly review the renewable energy technologies and their potential for contributing to a sustainable energy supply. Three research topics will be highlighted that bridge the gap between the physics underpinning the energy conversion, and the engineering aspects of development and deployment; all three are highly relevant to the Government's programme on micro-generation. Two are these are taken from field of thin film photovoltaics (PV), one related to novel device development and the other to a measurement technique for assessing the manufacturing quality of PV modules and their performance. The third topic concerns the development of small building integrated wind turbines and examines the complex flow associated with such applications. The paper will conclude by listing key research challenges that are central to the search for efficient and cost-effective renewable energy generation

  8. Pollution technology program, can-annular combustor engines

    Science.gov (United States)

    Roberts, R.; Fiorentino, A. J.; Greene, W.

    1976-01-01

    A Pollution Reduction Technology Program to develop and demonstrate the combustor technology necessary to reduce exhaust emissions for aircraft engines using can-annular combustors is described. The program consisted of design, fabrication, experimental rig testing and assessment of results and was conducted in three program elements. The combustor configurations of each program element represented increasing potential for meeting the 1979 Environmental Protection Agency (EPA) emission standards, while also representing increasing complexity and difficulty of development and adaptation to an operational engine. Experimental test rig results indicate that significant reductions were made to the emission levels of the baseline JT8D-17 combustor by concepts in all three program elements. One of the Element I single-stage combustors reduced carbon monoxide to a level near, and total unburned hydrocarbons (THC) and smoke to levels below the 1979 EPA standards with little or no improvement in oxides of nitrogen. The Element II two-stage advanced Vorbix (vortex burning and mixing) concept met the standard for THC and achieved significant reductions in CO and NOx relative to the baseline. Although the Element III prevaporized-premixed concept reduced high power NOx below the Element II results, there was no improvement to the integrated EPA parameter relative to the Vorbix combustor.

  9. Using Innovative Technologies for Manufacturing Rocket Engine Hardware

    Science.gov (United States)

    Betts, E. M.; Eddleman, D. E.; Reynolds, D. C.; Hardin, N. A.

    2011-01-01

    Many of the manufacturing techniques that are currently used for rocket engine component production are traditional methods that have been proven through years of experience and historical precedence. As the United States enters into the next space age where new launch vehicles are being designed and propulsion systems are being improved upon, it is sometimes necessary to adopt innovative techniques for manufacturing hardware. With a heavy emphasis on cost reduction and improvements in manufacturing time, rapid manufacturing techniques such as Direct Metal Laser Sintering (DMLS) are being adopted and evaluated for their use on NASA s Space Launch System (SLS) upper stage engine, J-2X, with hopes of employing this technology on a wide variety of future projects. DMLS has the potential to significantly reduce the processing time and cost of engine hardware, while achieving desirable material properties by using a layered powder metal manufacturing process in order to produce complex part geometries. Marshall Space Flight Center (MSFC) has recently hot-fire tested a J-2X gas generator (GG) discharge duct that was manufactured using DMLS. The duct was inspected and proof tested prior to the hot-fire test. Using a workhorse gas generator (WHGG) test fixture at MSFC's East Test Area, the duct was subjected to extreme J-2X hot gas environments during 7 tests for a total of 537 seconds of hot-fire time. The duct underwent extensive post-test evaluation and showed no signs of degradation. DMLS manufacturing has proven to be a viable option for manufacturing rocket engine hardware, and further development and use of this manufacturing method is recommended.

  10. Assessment of an Engineering Technology Outreach Program for 4th-7th Grade Girls

    Science.gov (United States)

    Dell, Elizabeth M.; Christman, Jeanne; Garrick, Robert D.

    2011-01-01

    This paper describes a workshop led by female Engineering Technology students, with support from female faculty, to provide an introduction to Engineering Technology to 4th-7th grade girls through a series of interactive laboratory experiments. This outreach program was developed to improve attitudes towards science and engineering in middle…

  11. Patent Information Use in Engineering Technology Design: An Analysis of Student Work

    Science.gov (United States)

    Phillips, Margaret; Zwicky, Dave

    2017-01-01

    How might engineering technology students make use of patent information in the engineering design process? Librarians analyzed team project reports and personal reflections created by students in an undergraduate mechanical engineering technology design course, revealing that the students used patents to consider the patentability of their ideas,…

  12. Electronic Engineering Technology Program Exit Examination as an ABET and Self-Assessment Tool

    Science.gov (United States)

    Thomas, Gary; Darayan, Shahryar

    2018-01-01

    Every engineering, computing, and engineering technology program accredited by the Accreditation Board for Engineering and Technology (ABET) has formulated many and varied self-assessment methods. Methods used to assess a program for ABET accreditation and continuous improvement are for keeping programs current with academic and industrial…

  13. New model for public participation at Sandia National Laboratories: What comes after environmental restoration?

    International Nuclear Information System (INIS)

    KEENER R, WILLIAM; BACA, STEPHEN S.; BACA, MAUREEN R.; STOTTS, AL; TOOPS, TAMI; WOLFF, THEODORE A.

    2000-01-01

    As the Sandia National Laboratories' Environmental Restoration (ER) project moves toward closure, the project's experiences--including a number of successes in the public participation arena--suggest it is time for a new, more interactive model for future government-citizen involvement. This model would strive to improve the quality of public interaction with the Department of Energy (DOE) and Sandia, by using subject-specific working groups and aiming for long-term trustful relationships with the community. It would make use of interactive techniques, fewer formal public forums, and a variety of polling and communication technologies to improve information gathering and exchange

  14. Exploratory battery technology development and testing report for 1989

    Energy Technology Data Exchange (ETDEWEB)

    Magnani, N.J.; Diegle, R.B.; Braithwaite, J.W.; Bush, D.M.; Freese, J.M.; Akhil, A.A.; Lott, S.E.

    1990-12-01

    Sandia National Laboratories, Albuquerque, has been designated as Lead Center for the Exploratory Battery Technology Development and Testing Project, which is sponsored by the US Department of Energy's Office of Energy Storage and Distribution. In this capacity, Sandia is responsible for the engineering development of advanced rechargeable batteries for both mobile and stationary energy storage applications. This report details the technical achievements realized in pursuit of the Lead Center's goals during calendar year 1989. 4 refs., 84 figs., 18 tabs.

  15. Design and initial deployment of the wireless local area networking infrastructure at Sandia National Laboratories.

    Energy Technology Data Exchange (ETDEWEB)

    Long, John P.; Hamill, Michael J.; Mitchell, M. G.; Miller, Marc M.; Witzke, Edward L.; Wiener, Dallas J

    2006-11-01

    A major portion of the Wireless Networking Project at Sandia National Laboratories over the last few years has been to examine IEEE 802.11 wireless networking for possible use at Sandia and if practical, introduce this technology. This project team deployed 802.11a, b, and g Wireless Local Area Networking at Sandia. This report examines the basics of wireless networking and captures key results from project tests and experiments. It also records project members thoughts and designs on wireless LAN architecture and security issues. It documents some of the actions and milestones of this project, including pilot and production deployment of wireless networking equipment, and captures the team's rationale behind some of the decisions made. Finally, the report examines lessons learned, future directions, and conclusions.

  16. The Sandia/Arzamas-16 Magazine-to-Magazine Remote Monitoring Field Trial Evaluation

    International Nuclear Information System (INIS)

    Barkanov, Boris; Blagin, Sergei; Croessmann, Dennis; Damico, Joe; Ehle, Steve; Nilsen, Curt

    1999-01-01

    Sandia National Laboratories and the Russian Federal Nuclear Center-All Russian Research Institute for Experimental Physics (VNIIEF) (also known as Arzamas-16) are collaborating on ways to assure the highest standards of safety, security, and international accountability of fissile material. For these collaborations, sensors and information technologies have been identified as important in reaching these standards in a cost-effective manner. Specifically, Sandia and VNIIEF have established a series of remote monitoring field trials to provide a mechanism for joint research and development on storage monitoring systems. These efforts consist of the ''Container-to-Container'', ''Magazine-to-Magazine'', and ''Facility-to-Facility'' field trials. This paper will describe the evaluation exercise Sandia and VNIIEF conducted on the Magazine-to-Magazine systems. Topics covered will include a description of the evaluation philosophy, how the various sensors and system features were tested, evaluation results, and lessons learned

  17. The development and technology transfer of software engineering technology at NASA. Johnson Space Center

    Science.gov (United States)

    Pitman, C. L.; Erb, D. M.; Izygon, M. E.; Fridge, E. M., III; Roush, G. B.; Braley, D. M.; Savely, R. T.

    1992-01-01

    The United State's big space projects of the next decades, such as Space Station and the Human Exploration Initiative, will need the development of many millions of lines of mission critical software. NASA-Johnson (JSC) is identifying and developing some of the Computer Aided Software Engineering (CASE) technology that NASA will need to build these future software systems. The goal is to improve the quality and the productivity of large software development projects. New trends are outlined in CASE technology and how the Software Technology Branch (STB) at JSC is endeavoring to provide some of these CASE solutions for NASA is described. Key software technology components include knowledge-based systems, software reusability, user interface technology, reengineering environments, management systems for the software development process, software cost models, repository technology, and open, integrated CASE environment frameworks. The paper presents the status and long-term expectations for CASE products. The STB's Reengineering Application Project (REAP), Advanced Software Development Workstation (ASDW) project, and software development cost model (COSTMODL) project are then discussed. Some of the general difficulties of technology transfer are introduced, and a process developed by STB for CASE technology insertion is described.

  18. Stratified charge rotary engine critical technology enablement. Volume 2: Appendixes

    Science.gov (United States)

    Irion, C. E.; Mount, R. E.

    1992-01-01

    This second volume of appendixes is a companion to Volume 1 of this report which summarizes results of a critical technology enablement effort with the stratified charge rotary engine (SCRE) focusing on a power section of 0.67 liters (40 cu. in.) per rotor in single and two rotor versions. The work is a continuation of prior NASA Contracts NAS3-23056 and NAS3-24628. Technical objectives are multi-fuel capability, including civil and military jet fuel and DF-2, fuel efficiency of 0.355 Lbs/BHP-Hr. at best cruise condition above 50 percent power, altitude capability of up to 10Km (33,000 ft.) cruise, 2000 hour TBO and reduced coolant heat rejection. Critical technologies for SCRE's that have the potential for competitive performance and cost in a representative light-aircraft environment were examined. Objectives were: the development and utilization of advanced analytical tools, i.e. higher speed and enhanced three dimensional combustion modeling; identification of critical technologies; development of improved instrumentation; and to isolate and quantitatively identify the contribution to performance and efficiency of critical components or subsystems. A family of four-stage third-order explicit Runge-Kutta schemes is derived that required only two locations and has desirable stability characteristics. Error control is achieved by embedding a second-order scheme within the four-stage procedure. Certain schemes are identified that are as efficient and accurate as conventional embedded schemes of comparable order and require fewer storage locations.

  19. Stratified Charge Rotary Engine Critical Technology Enablement, Volume 1

    Science.gov (United States)

    Irion, C. E.; Mount, R. E.

    1992-01-01

    This report summarizes results of a critical technology enablement effort with the stratified charge rotary engine (SCRE) focusing on a power section of 0.67 liters (40 cu. in.) per rotor in single and two rotor versions. The work is a continuation of prior NASA Contracts NAS3-23056 and NAS3-24628. Technical objectives are multi-fuel capability, including civil and military jet fuel and DF-2, fuel efficiency of 0.355 Lbs/BHP-Hr. at best cruise condition above 50 percent power, altitude capability of up to 10Km (33,000 ft.) cruise, 2000 hour TBO and reduced coolant heat rejection. Critical technologies for SCRE's that have the potential for competitive performance and cost in a representative light-aircraft environment were examined. Objectives were: the development and utilization of advanced analytical tools, i.e. higher speed and enhanced three dimensional combustion modeling; identification of critical technologies; development of improved instrumentation, and to isolate and quantitatively identify the contribution to performance and efficiency of critical components or subsystems.

  20. Proceedings of chemical engineering in nuclear technology - national seminar on recent advances in fuel cycle technologies: book of abstracts

    International Nuclear Information System (INIS)

    2014-01-01

    Kalpakkam Regional Centre of Indian Institute of Chemical Engineers is embarking on conducting a series of national seminars on Chemical Engineering in Nuclear Technology 2014. For CHEMENT-2014 the theme was Seminar on recent advances in fuel cycle technologies. The topics covered included research and development, modeling and simulation and equipment development. Papers relevant to INIS are indexed separately

  1. Comparison of China-US Engineering Ethics Educations in Sino-Western Philosophies of Technology.

    Science.gov (United States)

    Cao, Gui Hong

    2015-12-01

    Ethics education has become essential in modern engineering. Ethics education in engineering has been increasingly implemented worldwide. It can improve ethical behaviors in technology and engineering design under the guidance of the philosophy of technology. Hence, this study aims to compare China-US engineering ethics education in Sino-Western philosophies of technology by using literature studies, online surveys, observational researches, textual analyses, and comparative methods. In my original theoretical framework and model of input and output for education, six primary variables emerge in the pedagogy: disciplinary statuses, educational goals, instructional contents, didactic models, teaching methods, and edificatory effects. I focus on the similarities and differences of engineering ethics educations between China and the U.S. in Chinese and Western philosophies of technology. In the field of engineering, the U.S. tends toward applied ethics training, whereas China inclines toward practical moral education. The U.S. is the leader, particularly in the amount of money invested and engineering results. China has quickened its pace, focusing specifically on engineering labor input and output. Engineering ethics is a multiplayer game effected at various levels among (a) lower level technicians and engineers, engineering associations, and stockholders; (b) middle ranking engineering ethics education, the ministry of education, the academy of engineering, and the philosophy of technology; and (c) top national and international technological policies. I propose that professional engineering ethics education can play many important roles in reforming engineering social responsibility by international cooperation in societies that are becoming increasingly reliant on engineered devices and systems. Significantly, my proposals contribute to improving engineering ethics education and better-solving engineering ethics issues, thereby maximizing engineering

  2. Engineering Issue: Technology Alternatives for the Remediation of PCB Contaminated Soils and Sediments

    Science.gov (United States)

    The U.S. Environmental Protection Agency (EPA) Engineering Issue papers are a series of documents that summarize the available information on specific contaminates, selected treatment and site remediation technologies, and related issues. This Engineering Issue paper is intended...

  3. Technology Education Benefits from the Inclusion of Pre-Engineering Education

    Science.gov (United States)

    Rogers, Steve; Rogers, George E.

    2005-01-01

    Technology education is being taught today in almost every high school and middle school in America. Over 1000 technology education departments are now including pre-engineering education in their programs. According to these authors, the time has come for the profession to agree that including pre-engineering education in technology education…

  4. Teaching Sustainable Entrepreneurship to Engineering Students: The Case of Delft University of Technology

    Science.gov (United States)

    Bonnet, Hans; Quist, Jaco; Hoogwater, Daan; Spaans, Johan; Wehrmann, Caroline

    2006-01-01

    Sustainability, enhancement of personal skills, social aspects of technology, management and entrepreneurship are of increasing concern for engineers and therefore for engineering education. In 1996 at Delft University of Technology this led to the introduction of a subject on sustainable entrepreneurship and technology in the course programmes of…

  5. Analysis of Alternatives (AoA) of Open Colllaboration and Research Capabilities Collaboratipon in Research and Engineering in Advanced Technology and Education and High-Performance Computing Innovation Center (HPCIC) on the LVOC.

    Energy Technology Data Exchange (ETDEWEB)

    Vrieling, P. Douglas [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2016-01-01

    The Livermore Valley Open Campus (LVOC), a joint initiative of the National Nuclear Security Administration (NNSA), Lawrence Livermore National Laboratory (LLNL), and Sandia National Laboratories (SNL), enhances the national security missions of NNSA by promoting greater collaboration between world-class scientists at the national security laboratories, and their partners in industry and academia. Strengthening the science, technology, and engineering (ST&E) base of our nation is one of the NNSA’s top goals. By conducting coordinated and collaborative programs, LVOC enhances both the NNSA and the broader national science and technology base, and helps to ensure the health of core capabilities at LLNL and SNL. These capabilities must remain strong to enable the laboratories to execute their primary mission for NNSA.

  6. Engine Family Groups for Verification of Clean Diesel Technology

    Science.gov (United States)

    These documents show engine family boxes that represent groupings of engine families with similar characterists (i.e., the emissions standards that the engines were built to) for current and past model years.

  7. TECHNOLOGICAL CONTRIBUTIONS OF THE MILITARY ENGINEERING TO THE NATIONAL DEVELOPMENT

    Directory of Open Access Journals (Sweden)

    RODRIGO CARO DE KARTZOW

    2018-01-01

    Full Text Available The development of the Chilean military industry is closely related to the growing of the national industry. Similarly to the way the history of the Army and the country are tightly related, the history of the military engineering is an example of organic growth when compared to its civilian counterpart. Collaboration instead of competition is the distinctive seal that best shows the development of weaponry, explosives, cartography and nuclear power. This collaboration have lasted with the years and we can afirm today that the relationship within civilian professionals and technicians and their military counterparts has reached an state that has never seen before. The governmental policies that fund R&D of initiatives that facilitate the science and technology study and research, come of a futuristic vision, born in the rim of the independent movements, driven naturally by the need of self sustain as sovereign nations.

  8. [Veneer computer aided design based on reverse engineering technology].

    Science.gov (United States)

    Liu, Ming-li; Chen, Xiao-dong; Wang, Yong

    2012-03-01

    To explore the computer aided design (CAD) method of veneer restoration, and to assess if the solution can help prosthesis meet morphology esthetics standard. A volunteer's upper right central incisor needed to be restored with veneer. Super hard stone models of patient's dentition (before and after tooth preparation) were scanned with the three-dimensional laser scanner. The veneer margin was designed as butt-to-butt type. The veneer was constructed using reverse engineering (RE) software. The technique guideline of veneers CAD was explore based on RE software, and the veneers was smooth, continuous and symmetrical, which met esthetics construction needs. It was a feasible method to reconstruct veneer restoration based on RE technology.

  9. Environmental monitoring report: Sandia Laboratories, 1976

    International Nuclear Information System (INIS)

    Simmons, T.N.

    1977-04-01

    Water and vegetation are monitored to determine Sandia Laboratories impact on the surrounding environment. Nonradioactive pollutants released are reported. Radioactive effluents are also reported and their person-rem contribution to the Albuquerque population is calculated. The environmental monitoring for calendar year 1976 shows that concentrations of radioactive materials in the Albuquerque area are typical of natural background for the area. An exception is a single onsite location where slightly abnormal uranium concentrations are expected. An estimated 0.044 person-rem Albuquerque area (80 km radius) population dose commitment results from calculated Sandia Laboratories releases. Over the same area 57,000 person-rem is accumulated from natural background. There were no measurable offsite radioactive effluent releases in CY 1976

  10. Targets development at Sandia National Laboratories

    International Nuclear Information System (INIS)

    Smith, M.L.; Hebron, D.; Derzon, M.; Olson, R.; Alberts, T.

    1997-01-01

    For many years, Sandia National Laboratories under contract to the Department of Energy has produced targets designed to understand complex ion beam and z-pinch plasma physics. This poster focuses on the features of target designs that make them suitable for Z-pinch plasma physics applications. Precision diagnostic targets will prove critical in understanding the plasma physics model needed for future ion beam and z-pinch design. Targets are designed to meet specific physics needs; in this case the authors have fabricated targets to maximize information about the end-on versus side-on x-ray emission and z-pinch hohlraum development. In this poster, they describe the fabrication and characterization techniques. They include discussion of current targets under development as well as target fabrication capabilities. Advanced target designs are fabricated by Sandia National Laboratories in cooperation with General Atomics of San Diego, CA and W.J. Schafer Associates, Inc. of Livermore, CA

  11. 2016 Annual Site Environmental report Sandia National Laboratories Tonopah Test Range Nevada & Kaua'i Test Facility Hawai'i.

    Energy Technology Data Exchange (ETDEWEB)

    Salas, Angela Maria [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Griffith, Stacy R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-07-01

    Sandia National Laboratories (SNL) is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy’s (DOE’s), National Nuclear Security Administration (NNSA) under contract DE-NA0003525. The DOE/NNSA Sandia Field Office administers the contract and oversees contractor operations at the SNL, Tonopah Test Range (SNL/TTR) in Nevada and the SNL, Kaua‘i Test Facility (SNL/KTF) in Hawai‘i. SNL personnel manage and conduct operations at SNL/TTR in support of the DOE/NNSA’s Weapons Ordnance Program and have operated the site since 1957. Navarro Research and Engineering personnel perform most of the environmental programs activities at SNL/TTR. The DOE/NNSA/Nevada Field Office retains responsibility for cleanup and management of SNL/TTR Environmental Restoration sites. SNL personnel operate SNL/KTF as a rocket preparation launching and tracking facility. This Annual Site Environmental Report (ASER) summarizes data and the compliance status of sustainability, environmental protection, and monitoring programs at SNL/TTR and SNL/KTF during calendar year 2016. Major environmental programs include air quality, water quality, groundwater protection, terrestrial and biological surveillance, waste management, pollution prevention, environmental restoration, oil and chemical spill prevention, and implementation of the National Environmental Policy Act. This ASER is prepared in accordance with and as required by DOE O 231.1B, Admin Change 1, Environment, Safety, and Health Reporting.

  12. Perspectives on the Science Advisor Program at Sandia National Laboratories

    International Nuclear Information System (INIS)

    Bennett, P.C.; Heath, R.B.; Podlesny, A.; Channon, P.A.

    1992-01-01

    This paper discusses a Science Advisor Program which has been established at Sandia National Laboratories (SNL) for the long term augmentation of math and science instruction in New Mexico schools. Volunteer SNL engineers and scientists team with the faculty of participating schools to enhance the teachers' abilities to capture and hold the student's scientific imagination and develop their scientific skills. This is done primarily through providing laboratory resources, training the teachers how to use those resources, and advising how to obtain them in the future. In its first year, over 140 advisors teamed with 132 schools, for average weekly contact with 500 teachers and 10,000 students. Surveys indicate a general rise in frequency and quality of hands-on science instruction, as well as teacher and student attitudes. An expanded evaluation is planned for subsequent years

  13. Environmental Monitoring Plan, Sandia National Laboratories, Livermore

    International Nuclear Information System (INIS)

    Holland, R.C.

    1992-06-01

    This Environmental Monitoring Plan was written to fulfill the requirements of DOE Order 5400.1 and DOE Environmental Regulatory Guide DOE/EH 0173T. This Plan documents the background, organizational structure, and methods used for effluent monitoring and environmental surveillance at Sandia National Laboratories, Livermore. The design, rationale, and historical results of the environmental monitoring system are discussed in detail. Throughout the Plan, recommendations for improvements to the monitoring system are made. 61 refs

  14. Compilation of Sandia Laboratories technical capabilities

    International Nuclear Information System (INIS)

    Lundergan, C.D.; Mead, P.L.

    1975-11-01

    This report is a compilation of 17 individual documents that together summarize the technical capabilities of Sandia Laboratories. Each document in this compilation contains details about a specific area of capability. Examples of application of the capability to research and development problems are provided. An eighteenth document summarizes the content of the other seventeen. Each of these documents was issued with a separate report number (SAND 74-0073A through SAND 74-0091, except -0078)

  15. Compilation of Sandia Laboratories technical capabilities

    Energy Technology Data Exchange (ETDEWEB)

    Lundergan, C. D.; Mead, P. L. [eds.

    1975-11-01

    This report is a compilation of 17 individual documents that together summarize the technical capabilities of Sandia Laboratories. Each document in this compilation contains details about a specific area of capability. Examples of application of the capability to research and development problems are provided. An eighteenth document summarizes the content of the other seventeen. Each of these documents was issued with a separate report number (SAND 74-0073A through SAND 74-0091, except -0078). (RWR)

  16. Examination of engineering design teacher self-efficacy and knowledge base in secondary technology education and engineering-related courses

    Science.gov (United States)

    Vessel, Kanika Nicole

    2011-12-01

    There is an increasing demand for individuals with engineering education and skills of varying fields in everyday life. With the proper education students of high-needs schools can help meet the demand for a highly skilled and educated workforce. Researchers have assumed the supply and demand has not been met within the engineering workforce as a result of students' collegiate educational experiences, which are impacted by experiences in K-12 education. Although factors outside of the classroom contribute to the inability of universities to meet the increasing demand for the engineering workforce, most noted by researchers is the academic unpreparedness of freshman engineering students. The unpreparedness of entering freshman engineering students is a result of K-12 classroom experiences. This draws attention not only to the quality and competence of teachers present in the K-12 classroom, but the type of engineering instruction these students are receiving. This paper was an effort to systematically address one of the more direct and immediate factors impacting freshman engineering candidates, the quality of secondary engineering educators. Engineers develop new ideas using the engineering design process, which is taught at the collegiate level, and has been argued to be the best approach to teach technological literacy to all K-12 students. However, it is of importance to investigate whether technology educators have the knowledge and understanding of engineering design, how to transfer that knowledge in the classroom to students through instructional strategies, and their perception of their ability to do that. Therefore, the purpose of this study is to show the need for examining the degree to which technology and non-technology educators are implementing elements of engineering design in the curriculum.

  17. Systems Engineering Knowledge Asset (SEKA) Management for Higher Performing Engineering Teams: People, Process and Technology toward Effective Knowledge-Workers

    Science.gov (United States)

    Shelby, Kenneth R., Jr.

    2013-01-01

    Systems engineering teams' value-creation for enterprises is slower than possible due to inefficiencies in communication, learning, common knowledge collaboration and leadership conduct. This dissertation outlines the surrounding people, process and technology dimensions for higher performing engineering teams. It describes a true experiment…

  18. Mason Bee Habitations: Teaching Proper "Making" Skill through Authentic Engineering Design Contests. Resources in Technology and Engineering

    Science.gov (United States)

    Cool, Nate; Strimel, Greg J.; Croly, Michael; Grubbs, Michael E.

    2017-01-01

    To be technologically and engineering literate, people should be able to "make" or produce quality solutions to engineering design challenges while recognizing and understanding how to avoid hazards in a broad array of situations when properly using tools, machines, and materials (Haynie, 2009; Gunter, 2007; ITEA/ITEEA, 2000/2002/2007).…

  19. Education and research in biomedical engineering of the Budapest University of Technology and Economics.

    Science.gov (United States)

    Benyó, Z

    2006-03-01

    Biomedical Engineering is a relatively new interdisciplinary science. This review paper presents the biomedical engineering activity, which is carried out at the Budapest University of Technology and Economics (BUTE) and its partner institutions. In the first parts the main goals and the curriculum of the Biomedical Engineering Education Program is presented. The second part of the paper summarizes the most important biomedical engineering researches most of them carried out in the Biomedical Engineering Laboratory of BUTE.

  20. Sandia Strehl Calculator Version 1.0

    Energy Technology Data Exchange (ETDEWEB)

    2017-12-05

    The Sandia Strehl Calculator is designed to calculate the Gibson and Lanni point spread function (PSF), Strehl ratio, and ensquared energy, allowing non-design immersion, coverslip, and sample layers. It also uses Abbe number calculations to determine the refractive index at specific wavelengths when given the refractive index at a different wavelength and the dispersion. The primary application of Sandia Strehl Calculator is to determine the theoretical impacts of using an optical microscope beyond its normal design parameters. Examples of non-design microscope usage include: a) using coverslips of non-design material b) coverslips of different thicknesses c) imaging deep into an aqueous sample with an immersion objective d) imaging a sample at 37 degrees. All of these changes can affect the imaging quality, sometimes profoundly, but are at the same time non-design conditions employed not infrequently. Rather than having to experimentally determine whether the changes will result in unacceptable image quality, Sandia Strehl Calculator uses existing optical theory to determine the approximate effect of the change, saving the need to perform experiments.

  1. Intelligent engineering and technology for nuclear power plant operation

    International Nuclear Information System (INIS)

    Wang, P.P.; Gu, X.

    1996-01-01

    The Three-Mile-Island accident has drawn considerable attention by the engineering, scientific, management, financial, and political communities as well as society at large. This paper surveys possible causes of the accident studied by various groups. Research continues in this area with many projects aimed at specifically improving the performance and operation of a nuclear power plant using the contemporary technologies available. In addition to the known cause of the accident and suggest a strategy for coping with these problems in the future. With the increased use of intelligent methodologies called computational intelligence or soft-computing, a substantially larger collection of powerful tools are now available for our designers to use in order to tackle these sensitive and difficult issues. These intelligent methodologies consists of fuzzy logic, genetic algorithms, neural networks, artificial intelligence and expert systems, pattern recognition, machine intelligence, and fuzzy constraint networks. Using the Three-Mile-Island experience, this paper offers a set of specific recommendations for future designers to take advantage of the powerful tools of intelligent technologies that we are now able to master and encourages the adoption of a novel methodology called fuzzy constraint network

  2. STEM Career Cluster Engineering and Technology Education pathway in Georgia: Perceptions of Georgia engineering and technology education high school teachers and CTAE administrators as measured by the Characteristics of Engineering and Technology Education survey

    Science.gov (United States)

    Crenshaw, Mark VanBuren

    This study examined the perceptions held by Georgia Science, Technology, Engineering, and Mathematics (STEM) Career Cluster Engineering and Technology Education (ETE) high school pathway teachers and Georgia's Career, Technical and Agriculture Education (CTAE) administrators regarding the ETE pathway and its effect on implementation within their district and schools. It provides strategies for ETE teaching methods, curriculum content, STEM integration, and how to improve the ETE pathway program of study. Current teaching and curricular trends were examined in ETE as well as the role ETE should play as related to STEM education. The study, using the Characteristics of Engineering and Technology Education Survey, was conducted to answer the following research questions: (a) Is there a significant difference in the perception of ETE teaching methodology between Georgia ETE high school teachers and CTAE administrators as measured by the Characteristics of Engineering and Technology Education Survey? (b) Is there a significant difference in the perception of ETE curriculum content between Georgia ETE high school teachers and CTAE administrators as measured by the Characteristics of Engineering and Technology Education Survey? (c) Is there a significant difference in the perception of STEM integration in the ETE high school pathway between Georgia ETE high school teachers and CTAE administrators as measured by the Characteristics of Engineering and Technology Education Survey? and (d) Is there a significant difference in the perception of how to improve the ETE high school pathway between Georgia ETE high school teachers and CTAE administrators as measured by the Characteristics of Engineering and Technology Education Survey? Suggestions for further research also were offered.

  3. A Review of Multi-Sensory Technologies in a Science, Technology, Engineering, Arts and Mathematics (STEAM) Classroom

    Science.gov (United States)

    Taljaard, Johann

    2016-01-01

    This article reviews the literature on multi-sensory technology and, in particular, looks at answering the question: "What multi-sensory technologies are available to use in a science, technology, engineering, arts and mathematics (STEAM) classroom, and do they affect student engagement and learning outcomes?" Here engagement is defined…

  4. Engineered Nanomaterials, Sexy New Technology and Potential Hazards

    International Nuclear Information System (INIS)

    Beaulieu, R.A.

    2009-01-01

    Engineered nanomaterials enhance exciting new applications that can greatly benefit society in areas of cancer treatments, solar energy, energy storage, and water purification. While nanotechnology shows incredible promise in these and other areas by exploiting nanomaterials unique properties, these same properties can potentially cause adverse health effects to workers who may be exposed during work. Dispersed nanoparticles in air can cause adverse health effects to animals not merely due to their chemical properties but due to their size, structure, shape, surface chemistry, solubility, carcinogenicity, reproductive toxicity, mutagenicity, dermal toxicity, and parent material toxicity. Nanoparticles have a greater likelihood of lung deposition and blood absorption than larger particles due to their size. Nanomaterials can also pose physical hazards due to their unusually high reactivity, which makes them useful as catalysts, but has the potential to cause fires and explosions. Characterization of the hazards (and potential for exposures) associated with nanomaterial development and incorporation in other products is an essential step in the development of nanotechnologies. Developing controls for these hazards are equally important. Engineered controls should be integrated into nanomaterial manufacturing process design according to 10CFR851, DOE Policy 456.1, and DOE Notice 456.1 as safety-related hardware or administrative controls for worker safety. Nanomaterial hazards in a nuclear facility must also meet control requirements per DOE standards 3009, 1189, and 1186. Integration of safe designs into manufacturing processes for new applications concurrent with the developing technology is essential for worker safety. This paper presents a discussion of nanotechnology, nanomaterial properties/hazards and controls

  5. Engineering of educational programs through the application of intelligent technologies

    Directory of Open Access Journals (Sweden)

    Mikhail S. Gasparian

    2017-01-01

    Full Text Available One of the key tasks of the present stage of the education system development in Russia is to improve the practical orientation of specialists’ training for the modern labor market. On the agenda, there are the issues of modernization of educational programs in the direction of a closer relationship between education and professional standards, which is the main purpose of this study.Rapidly changing business needs, especially in the field of the booming ITindustry indicate the need for continuous improvement of mechanisms for the acquisition of new knowledge, abilities and skills of students, which in turn requires the development of special tools for the development of educational technologies. The article discusses the issues of flexible engineering education programs of higher education in accordance with the needs of the labour market, presented in professional standards. The methods of semantic modeling of informational and educational space, allowing to systematize the knowledge of the professional area in the form of conceptual models of ontologies and repositories of learning objects are offered as the methods of engineering.As the result of the correlation analysis of the categories of existing educational and professional standards, the mechanism to overcome the contradictions between the language of professional competences of educational standards and requirements of the labour functions of the professional standards is proposed. The paper describes the characteristics of the knowledge and skills of educational programs in the categories: scope, sphere and types of tasks of professional activities.The professional competences are differentiated due to profiles of training and types of professional tasks.The proposed universal algorithm for the development of educational programs of profile training on the base of the analysis of generalized labour functions and labour functions of professional standards can be useful to

  6. How Mockups, a Key Engineering Tool, Help to Promote Science, Technology, Engineering, and Mathematics Education

    Science.gov (United States)

    McDonald, Harry E.

    2010-01-01

    The United States ranking among the world in science, technology, engineering, and mathematics (STEM) education is decreasing. To counteract this problem NASA has made it part of its mission to promote STEM education among the nation s youth. Mockups can serve as a great tool when promoting STEM education in America. The Orion Cockpit Working Group has created a new program called Students Shaping America s Next Space Craft (SSANS) to outfit the Medium Fidelity Orion Mockup. SSANS will challenge the students to come up with unique designs to represent the flight design hardware. There are two main types of project packages created by SSANS, those for high school students and those for university students. The high school projects will challenge wood shop, metal shop and pre-engineering classes. The university projects are created mainly for senior design projects and will require the students to perform finite element analysis. These projects will also challenge the undergraduate students in material selection and safety requirements. The SSANS program will help NASA in its mission to promote STEM education, and will help to shape our nations youth into the next generation of STEM leaders.

  7. An Integrated Surface Engineering Technology Development for Improving Energy Efficiency of Engine Components

    Energy Technology Data Exchange (ETDEWEB)

    Stephen Hsu; Liming Chang; Huan Zhan

    2009-05-31

    Frictional losses are inherent in most practical mechanical systems. The ability to control friction offers many opportunities to achieve energy conservation. Over the years, materials, lubricants, and surface modifications have been used to reduce friction in automotive and diesel engines. However, in recent years, progress in friction reduction technology has slowed because many of the inefficiencies have been eliminated. A new avenue for friction reduction is needed. Designing surfaces specifically for friction reduction with concomitant enhanced durability for various engine components has emerged recently as a viable opportunity due to advances in fabrication and surface finishing techniques. Recently, laser ablated dimples on surfaces have shown friction reduction properties and have been demonstrated successfully in conformal contacts such as seals where the speed is high and the load is low. The friction reduction mechanism in this regime appears to depend on the size, patterns, and density of dimples in the contact. This report describes modeling efforts in characterizing surface textures and understanding their mechanisms for enhanced lubrication under high contact pressure conditions. A literature survey is first presented on the development of descriptors for irregular surface features. This is followed by a study of the hydrodynamic effects of individual micro-wedge dimples using the analytical solution of the 1-D Reynolds equation and the determination of individual components of the total friction resistance. The results obtained provide a better understanding of the dimple orientation effects and the approach which may be used to further compare the friction reduction provided by different texture patterns.

  8. Development and application of the ultrasonic technologies in nuclear engineering

    International Nuclear Information System (INIS)

    Lebedev, Nikolay; Krasilnikov, Dmitry; Vasiliev, Albert; Dubinin, Gennady; Yurmanov, Viktor

    2012-09-01

    Efficiency of some traditional chemical technologies in different areas could be significantly increased by adding ultrasonic treatment. For example, ultrasonic treatment was found to improve make-up water systems, decontamination procedures, etc. Improvement of traditional chemical technologies with implementation of ultrasonic treatment has allowed to significantly reducing water waste, including harmful species and radioactive products. The report shows the examples of the recent ultrasonic technology development and application in Russian nuclear engineering. They are as follows: - Preliminary cleaning of surfaces of in-pile parts (e.g. control sensors) prior to their assemblage and welding - Decontamination of grounds and metal surfaces of components with a complex structure -Decrease in sliding friction between fuel rods and grids during VVER reactor fuel assembly manufacturing -Removal of deposits from reactor fuel surfaces in VVER-440s -Increasing the density and strength of pressed sintered items while making fuel pellets and fuel elements, especially mixed-oxide fuel Surface cleanness is very important for the fuel assembly manufacturing, especially prior to welding. An ultrasonic technology for surface cleaning (from graphite and other lubricants, oxides etc.) was developed and implemented. The ultrasonic cleaning is applicable to the parts having both simple shape and different holes. Ultrasonic technology has allowed to improve the surface quality and environmental safety. Ultrasonic treatment appears to be expedient to intensify the chemical decontamination of solid radioactive waste from grounds of different fractions to metallic components. Ultrasonic treatment reduces the decontamination process duration up to 100 times as much. Excellent decontamination factor was received even for the ground fractions below 1 mm. It should be noted that alternative decontamination techniques (e.g. hydraulic separation) are poorly applicable for such ground

  9. Reverse engineering human neurodegenerative disease using pluripotent stem cell technology.

    Science.gov (United States)

    Liu, Ying; Deng, Wenbin

    2016-05-01

    With the technology of reprogramming somatic cells by introducing defined transcription factors that enables the generation of "induced pluripotent stem cells (iPSCs)" with pluripotency comparable to that of embryonic stem cells (ESCs), it has become possible to use this technology to produce various cells and tissues that have been difficult to obtain from living bodies. This advancement is bringing forth rapid progress in iPSC-based disease modeling, drug screening, and regenerative medicine. More and more studies have demonstrated that phenotypes of adult-onset neurodegenerative disorders could be rather faithfully recapitulated in iPSC-derived neural cell cultures. Moreover, despite the adult-onset nature of the diseases, pathogenic phenotypes and cellular abnormalities often exist in early developmental stages, providing new "windows of opportunity" for understanding mechanisms underlying neurodegenerative disorders and for discovering new medicines. The cell reprogramming technology enables a reverse engineering approach for modeling the cellular degenerative phenotypes of a wide range of human disorders. An excellent example is the study of the human neurodegenerative disease amyotrophic lateral sclerosis (ALS) using iPSCs. ALS is a progressive neurodegenerative disease characterized by the loss of upper and lower motor neurons (MNs), culminating in muscle wasting and death from respiratory failure. The iPSC approach provides innovative cell culture platforms to serve as ALS patient-derived model systems. Researchers have converted iPSCs derived from ALS patients into MNs and various types of glial cells, all of which are involved in ALS, to study the disease. The iPSC technology could be used to determine the role of specific genetic factors to track down what's wrong in the neurodegenerative disease process in the "disease-in-a-dish" model. Meanwhile, parallel experiments of targeting the same specific genes in human ESCs could also be performed to control

  10. Information Technologies in the System of Military Engineer Training of Cadets

    Science.gov (United States)

    Khizhnaya, Anna V.; Kutepov, Maksim M.; Gladkova, Marina N.; Gladkov, Alexey V.; Dvornikova, Elena I.

    2016-01-01

    The necessity of enhancement of the information component in the military engineer training is determined by the result of a comparative analysis of global and national engineering education standards. The purpose is to substantiate the effectiveness and relevance of applying information technology in the system of military engineer training of…

  11. Pollution reduction technology program for small jet aircraft engines: Class T1

    Science.gov (United States)

    Bruce, T. W.; Davis, F. G.; Mongia, H. C.

    1977-01-01

    Small jet aircraft engines (EPA class T1, turbojet and turbofan engines of less than 35.6 kN thrust) were evaluated with the objective of attaining emissions reduction consistent with performance constraints. Configurations employing the technological advances were screened and developed through full scale rig testing. The most promising approaches in full-scale engine testing were evaluated.

  12. NOx Reduction Technology in Diesel Engine Exhaust by the Plasmatron

    International Nuclear Information System (INIS)

    Joa, Sang Beom

    2008-02-01

    The diesel vehicle is relatively superior to gasoline vehicle on the fuel consumption, durability and combustion efficiency. However, exhaust emissions from diesel vehicles are known to be harmful to human health and environment. An experimental study of the diesel fuel reformation by a plasmatron and diesel engine exhaust cleaning by means of plasma chemical pretreatment of fuel is described. Plasma chemical reformation of fuel was carried by a DC arc plasmatron that was fabricated to increase an ability of the gas activation. Some portion of the fuel was activated in an arc discharge and turned into the hydrogen-rich synthesis gas. The yield of reformation for the diesel fuel showed 80 % ∼ 100 % when the small quantities of fuel (flow rate up to about 6 cc/min) were reformed. The regulation for an emission from the diesel vehicle is getting more stringent, the research in the field of the in-cylinder processing technologies (pretreatment) becomes more important issue as well as the catalyst after-treatment. The used high durability plasmatron has the characteristics of low contamination level, low anode erosion rate, low plasma temperature, and effective activation of the process gas. The developed fuel reformation system with the plasmatron was connected to the air feeding inlet sleeve of the diesel engine Kookje 3T90LT-AC (Korea) in order to study the reduction of NOx content in the engine's emission. Tubular reformation chamber was connected to the engine through the heat exchanger DOVER B10Hx20/1P-SC-S. Its cooling jacket was connected in series with the cooling system of the plasmatron. At the exit of this device gas temperature did not exceed ∼40 .deg. C at plasmatron power up to 1.5 kW which seemed quite acceptable. Gas composition was studied here using RBR-Ecom KD gas analyzer. The design of the DC arc plasmatron applied for the plasma chemical fuel reformation was improved boosting the degree of fuel-air mixture activation that provided the

  13. Engineering Technology Showcase to feature high-tech products from 18 companies

    OpenAIRE

    Gilbert, Karen

    2007-01-01

    The Student Technology Council (STC) at Virginia Tech is sponsoring an Engineering Technology Showcase on Tuesday, March 27. In addition to providing a platform for technology companies to show off their most recent innovations, technology presentations will be offered by Virginia Tech faculty and staff on topics ranging from a virtual greenhouse to the System X supercomputer.

  14. Concise Review: Organ Engineering: Design, Technology, and Integration

    NARCIS (Netherlands)

    Kaushik, G.; Leijten, Jeroen Christianus Hermanus; Khademhosseini, A.

    Engineering complex tissues and whole organs has the potential to dramatically impact translational medicine in several avenues. Organ engineering is a discipline that integrates biological knowledge of embryological development, anatomy, physiology, and cellular interactions with enabling

  15. Rehabilitation Engineering and Assistive Technology Society of North America

    Science.gov (United States)

    ... certification, how it has helped them in their careers, and what it means to them personally. #ATPproud ... and has been a steering force in my career as a rehabilitation engineer. ---Casmir Usiatynski, Rehabilitation Engineer ...

  16. An Evaluation of HigherEd 2.0 Technologies in Undergraduate Mechanical Engineering Courses

    Science.gov (United States)

    Orange, Amy; Heinecke, Walter; Berger, Edward; Krousgrill, Charles; Mikic, Borjana; Quinn, Dane

    2012-01-01

    Between 2006 and 2010, sophomore engineering students at four universities were exposed to technologies designed to increase their learning in undergraduate engineering courses. Our findings suggest that students at all sites found the technologies integrated into their courses useful to their learning. Video solutions received the most positive…

  17. A Complex Formula: Girls and Women in Science, Technology, Engineering and Mathematics in Asia

    Science.gov (United States)

    Salmon, Aliénor

    2015-01-01

    What factors might be causing the low participation of women Science, Technology, Engineering and Mathematics (STEM) fields? What can be done to attract more girls and women into STEM in Asia and beyond? The report, "A Complex Formula. Girls and Women in Science, Technology, Engineering and Mathematics in Asia", answers three fundamental…

  18. A Qualitative Study of African American Women in Engineering Technology Programs in Community Colleges

    Science.gov (United States)

    Blakley, Jacquelyn

    2016-01-01

    This study examined the experiences of African American women in engineering technology programs in community colleges. There is a lack of representation of African American women in engineering technology programs throughout higher education, especially in community/technical colleges. There is also lack of representation of African American…

  19. Positioning Technology and Engineering Education as a Key Force in STEM Education

    Science.gov (United States)

    Strimel, Greg; Grubbs, Michael E.

    2016-01-01

    As the presence of engineering content and practices increases in science education, the distinction between the two fields of science and technology education becomes even more vague than previously theorized. Furthermore, the addition of engineering to the title of the profession raises the question of the true aim of technology education. As a…

  20. The Supply and Demand of Technology and Engineering Teachers in the United States: Who Knows?

    Science.gov (United States)

    Moye, Johnny J.

    2017-01-01

    The purpose of this study was to determine the supply and demand of technology and engineering teachers in the United States. Once gathered, the resulting data (that was available) was compared to previous studies to determine trends. The researcher reviewed the 2010-11 through 2015-16 Technology & Engineering Teacher Education Directories. To…