WorldWideScience

Sample records for sandia shock compression

  1. Shock compression of glow discharge polymer (GDP): density functional theory (DFT) simulations and experiments on Sandia's Z machine

    Science.gov (United States)

    Cochrane, Kyle R.; Ao, T.; Lemke, R. W.; Hamel, S.; Schoff, M. E.; Blue, B. E.; Herrmann, M. C.; Mattsson, T. R.

    2014-03-01

    Glow discharge polymer (GDP) is used extensively as capsule/ablation material in inertial confinement fusion (ICF) capsules. Accurate knowledge of the equation of state (EOS) under shock and release is particularly important for high-fidelity design, analysis, and optimization of ICF experiments since the capsule material is subject to several converging shocks as well as release towards the cryogenic fuel. We performed Density Functional Theory (DFT) based quantum molecular dynamics (QMD) simulations, to gain knowledge of the behavior of GDP - for example regarding the role of chemical dissociation during shock compression, we find that the dissociation regime along the Hugoniot extends from 50 GPa to 250 GPa. The shock pressures calculated from DFT are compared experimental data taken at Sandia's Z-machine. The GDP samples were grown in a planar geometry to improve the sample quality and maintained in a nitrogen atmosphere following manufacturing, thus allowing for a direct comparison to the DFT/QMD simulations. Sandia National Laboratories is a multi program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's NNSA under contract DE-AC04-94AL85000.

  2. Shock Compression Response of Calcium Fluoride (CaF2)

    Science.gov (United States)

    Root, Seth

    2017-06-01

    The fluorite crystal structure is a textbook lattice that is observed for many systems, such as CaF2, Mg2 Si, and CeO2. Specifically, CaF2 is a useful material for studying the fluorite system because it is readily available as a single crystal. Under static compression, CaF2 is known to have at least three solid phases: fluorite, cotunnite, and a Ni2 In phase. Along the Hugoniot CaF2 undergoes a fluorite to cotunnite phase transition, however, at higher shock pressures it is unknown whether CaF2 undergoes another solid phase transition or melts directly from the cotunnite phase. In this work, we conducted planar shock compression experiments on CaF2 using Sandia's Z-machine and a two-stage light gun up to 900 GPa. In addition, we use density functional theory (DFT) based quantum molecular dynamics (QMD) simulations to provide insight into the CaF2 state along the Hugoniot. In collaboration with: Michael Desjarlais, Ray Lemke, Patricia Kalita, Scott Alexander, Sandia National Laboratories. Sandia National Laboratories is a multi-mission laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL850.

  3. Shock compression of glow discharge polymer (GDP): density functional theory (DFT) simulations and experiments on Sandia's Z-machine

    Science.gov (United States)

    Mattsson, Thomas R.; Cochrane, K. R.; Ao, T.; Lemke, R. W.; Flicker, D. G.; Schoff, M. E.; Blue, B. E.; Hamel, S.; Herrmann, M. C.

    2015-11-01

    Glow discharge polymer (GDP) is used extensively as capsule/ablation material in inertial confinement fusion (ICF) capsules. Accurate knowledge of the equation of state (EOS) under shock and release is particularly important for high-fidelity design, analysis, and optimization of ICF experiments since the capsule material is subject to several converging shocks as well as release towards the cryogenic fuel. We performed Density Functional Theory (DFT) based quantum molecular dynamics (QMD) simulations, to gain knowledge of the behavior of GDP - including the effect of changes in chemical composition. The shock pressures calculated from DFT are compared experimental data taken on magnetically launched flyer plate impact experiments on at Sandia's Z-machine. Large GDP samples were grown in a planar geometry to improve the sample quality and maintained in a nitrogen atmosphere following manufacturing, thus allowing for a direct comparison to the DFT/QMD simulations. Sandia National Laboratories is a multi program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's NNSA under contract DE-AC04-94AL85000.

  4. Shock Compression of Liquid Noble Gases to Multi-Mbar Pressures

    Science.gov (United States)

    Root, Seth

    2011-10-01

    The high pressure - high temperature behavior of noble gases is of considerable interest because of their use in z-pinch liners for fusion studies and for understanding astrophysical and planetary evolution. However, our understanding of the equation of state (EOS) of the noble gases at extreme conditions is limited. A prime example of this is the liquid xenon Hugoniot. Previous EOS models rapidly diverged on the Hugoniot above 1 Mbar because of differences in the treatment of the electronic contribution to the free energy. Similar divergences are observed for krypton EOS. Combining shock compression experiments and density functional theory (DFT) simulations, we can determine the thermo-physical behavior of matter under extreme conditions. The experimental and DFT results have been instrumental to recent developments in planetary astrophysics and inertial confinement fusion. Shock compression experiments are performed using Sandia's Z-Accelerator to determine the Hugoniot of liquid xenon and krypton in the Mbar regime. Under strong pressure, krypton and xenon undergo an insulator to metal transition. In the metallic state, the shock front becomes reflective allowing for a direct measurement of the sample's shock velocity using laser interferometry. The Hugoniot state is determined using a Monte Carlo analysis method that accounts for systematic error in the standards and for correlations. DFT simulations at these extreme conditions show good agreement with the experimental data - demonstrating the attention to detail required for dealing with elements with relativistic core states and d-state electrons. The results from shock compression experiments and DFT simulations are presented for liquid xenon to 840 GPa and for liquid krypton to 800 GPa, decidedly increasing the range of known behavior of both gases. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company

  5. Shock compression experiments on Lithium Deuteride single crystals.

    Energy Technology Data Exchange (ETDEWEB)

    Knudson, Marcus D.; Desjarlais, Michael Paul; Lemke, Raymond W.

    2014-10-01

    S hock compression exper iments in the few hundred GPa (multi - Mabr) regime were performed on Lithium Deuteride (LiD) single crystals . This study utilized the high velocity flyer plate capability of the Sandia Z Machine to perform impact experiments at flyer plate velocities in the range of 17 - 32 km/s. Measurements included pressure, density, and temperature between %7E200 - 600 GPa along the Principal Hugoniot - the locus of end states achievable through compression by large amplitude shock waves - as well as pressure and density of re - shock states up to %7E900 GPa . The experimental measurements are compared with recent density functional theory calculations as well as a new tabular equation of state developed at Los Alamos National Labs.

  6. Shock compression experiments on Lithium Deuteride (LiD) single crystals

    Science.gov (United States)

    Knudson, M. D.; Desjarlais, M. P.; Lemke, R. W.

    2016-12-01

    Shock compression experiments in the few hundred GPa (multi-Mbar) regime were performed on Lithium Deuteride single crystals. This study utilized the high velocity flyer plate capability of the Sandia Z Machine to perform impact experiments at flyer plate velocities in the range of 17-32 km/s. Measurements included pressure, density, and temperature between ˜190 and 570 GPa along the Principal Hugoniot—the locus of end states achievable through compression by large amplitude shock waves—as well as pressure and density of reshock states up to ˜920 GPa. The experimental measurements are compared with density functional theory calculations, tabular equation of state models, and legacy nuclear driven results that have been reanalyzed using modern equations of state for the shock wave standards used in the experiments.

  7. Molecular dynamics study of shock compression in porous silica glass

    Science.gov (United States)

    Jones, Keith; Lane, J. Matthew D.; Vogler, Tracy J.

    2017-06-01

    The shock response of porous amorphous silica is investigated using classical molecular dynamics, over a range of porosity ranging from fully dense (2.21 g/cc) down to 0.14 g/cc. We observe an enhanced densification in the Hugoniot response at initial porosities above 50 %, and the effect increases with increasing porosity. In the lowest initial densities, after an initial compression response, the systems expand with increased pressure. These results show good agreement with experiments. Mechanisms leading to enhanced densification will be explored, which appear to differ from mechanisms observed in similar studies in silicon. Sandia National Laboratories is a multi mission laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  8. Shock Compression Response of the Light Noble Gases: Neon and Helium

    Science.gov (United States)

    Root, Seth; Shulenburger, Luke; Cochrane, Kyle; Lopez, Andrew; Shelton, Keegan; Villalva, Jose; Mattsson, Thomas

    2015-06-01

    Understanding material behavior at extreme conditions is important to a wide range of processes in planetary astrophysics and inertial confinement fusion. Modeling the high pressure - high temperature processes requires robust equations of state (EOS). For many materials, EOS models have been developed using low-pressure Hugoniot data. Assumptions are made to extrapolate the EOS models to Mbar pressure regimes, leading to different model behavior at extreme conditions. In this work, we examine the high pressure response of the light noble gases: neon and helium in the multi-Mbar regime. We perform a series of shock compression experiments using Sandia's Z-Machine on cryogenically cooled liquids of Ne (26 K) and He (2.2 K) to measure the Hugoniot and reshock states. In parallel, we use density functional theory methods to calculate the Hugoniot and reshock states. The experiments validated the DFT simulations and the combined experimental and simulation results are used to assess the EOS models. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Securities Administration under Contract No. DE-AC04-94AL85000.

  9. Shock compression of synthetic opal

    International Nuclear Information System (INIS)

    Inoue, A; Okuno, M; Okudera, H; Mashimo, T; Omurzak, E; Katayama, S; Koyano, M

    2010-01-01

    Structural change of synthetic opal by shock-wave compression up to 38.1 GPa has been investigated by using SEM, X-ray diffraction method (XRD), Infrared (IR) and Raman spectroscopies. Obtained information may indicate that the dehydration and polymerization of surface silanole due to high shock and residual temperature are very important factors in the structural evolution of synthetic opal by shock compression. Synthetic opal loses opalescence by 10.9 and 18.4 GPa of shock pressures. At 18.4 GPa, dehydration and polymerization of surface silanole and transformation of network structure may occur simultaneously. The 4-membered ring of TO 4 tetrahedrons in as synthetic opal may be relaxed to larger ring such as 6-membered ring by high residual temperature. Therefore, the residual temperature may be significantly high at even 18.4 GPa of shock compression. At 23.9 GPa, opal sample recovered the opalescence. Origin of this opalescence may be its layer structure by shock compression. Finally, sample fuse by very high residual temperature at 38.1 GPa and the structure closes to that of fused SiO 2 glass. However, internal silanole groups still remain even at 38.1 GPa.

  10. Shock compression of synthetic opal

    Science.gov (United States)

    Inoue, A.; Okuno, M.; Okudera, H.; Mashimo, T.; Omurzak, E.; Katayama, S.; Koyano, M.

    2010-03-01

    Structural change of synthetic opal by shock-wave compression up to 38.1 GPa has been investigated by using SEM, X-ray diffraction method (XRD), Infrared (IR) and Raman spectroscopies. Obtained information may indicate that the dehydration and polymerization of surface silanole due to high shock and residual temperature are very important factors in the structural evolution of synthetic opal by shock compression. Synthetic opal loses opalescence by 10.9 and 18.4 GPa of shock pressures. At 18.4 GPa, dehydration and polymerization of surface silanole and transformation of network structure may occur simultaneously. The 4-membered ring of TO4 tetrahedrons in as synthetic opal may be relaxed to larger ring such as 6-membered ring by high residual temperature. Therefore, the residual temperature may be significantly high at even 18.4 GPa of shock compression. At 23.9 GPa, opal sample recovered the opalescence. Origin of this opalescence may be its layer structure by shock compression. Finally, sample fuse by very high residual temperature at 38.1 GPa and the structure closes to that of fused SiO2 glass. However, internal silanole groups still remain even at 38.1 GPa.

  11. Shock compression of synthetic opal

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, A; Okuno, M; Okudera, H [Department of Earth Sciences, Kanazawa University Kanazawa, Ishikawa, 920-1192 (Japan); Mashimo, T; Omurzak, E [Shock Wave and Condensed Matter Research Center, Kumamoto University, Kumamoto, 860-8555 (Japan); Katayama, S; Koyano, M, E-mail: okuno@kenroku.kanazawa-u.ac.j [JAIST, Nomi, Ishikawa, 923-1297 (Japan)

    2010-03-01

    Structural change of synthetic opal by shock-wave compression up to 38.1 GPa has been investigated by using SEM, X-ray diffraction method (XRD), Infrared (IR) and Raman spectroscopies. Obtained information may indicate that the dehydration and polymerization of surface silanole due to high shock and residual temperature are very important factors in the structural evolution of synthetic opal by shock compression. Synthetic opal loses opalescence by 10.9 and 18.4 GPa of shock pressures. At 18.4 GPa, dehydration and polymerization of surface silanole and transformation of network structure may occur simultaneously. The 4-membered ring of TO{sub 4} tetrahedrons in as synthetic opal may be relaxed to larger ring such as 6-membered ring by high residual temperature. Therefore, the residual temperature may be significantly high at even 18.4 GPa of shock compression. At 23.9 GPa, opal sample recovered the opalescence. Origin of this opalescence may be its layer structure by shock compression. Finally, sample fuse by very high residual temperature at 38.1 GPa and the structure closes to that of fused SiO{sub 2} glass. However, internal silanole groups still remain even at 38.1 GPa.

  12. Impactful times memories of 60 years of shock wave research at Sandia National Laboratories

    CERN Document Server

    Asay, James R; Lawrence, R Jeffery; Sweeney, Mary Ann

    2017-01-01

    This book presents a history of shock compression science, including development of experimental, material modeling, and hydrodynamics code technologies over the past six decades at Sandia National Laboratories. The book is organized into a discussion of major accomplishments by decade with over 900 references, followed by a unique collection of 45 personal recollections detailing the trials, tribulations, and successes of building a world-class organization in the field. It explains some of the challenges researchers faced and the gratification they experienced when a discovery was made. Several visionary researchers made pioneering advances that integrated these three technologies into a cohesive capability to solve complex scientific and engineering problems. What approaches worked, which ones did not, and the applications of the research are described. Notable applications include the turret explosion aboard the USS Iowa and the Shoemaker-Levy comet impact on Jupiter. The personal anecdotes and recollec...

  13. Thermophysical properties of multi-shock compressed dense argon.

    Science.gov (United States)

    Chen, Q F; Zheng, J; Gu, Y J; Chen, Y L; Cai, L C; Shen, Z J

    2014-02-21

    In contrast to the single shock compression state that can be obtained directly via experimental measurements, the multi-shock compression states, however, have to be calculated with the aid of theoretical models. In order to determine experimentally the multiple shock states, a diagnostic approach with the Doppler pins system (DPS) and the pyrometer was used to probe multiple shocks in dense argon plasmas. Plasma was generated by a shock reverberation technique. The shock was produced using the flyer plate impact accelerated up to ∼6.1 km/s by a two-stage light gas gun and introduced into the plenum argon gas sample, which was pre-compressed from the environmental pressure to about 20 MPa. The time-resolved optical radiation histories were determined using a multi-wavelength channel optical transience radiance pyrometer. Simultaneously, the particle velocity profiles of the LiF window was measured with multi-DPS. The states of multi-shock compression argon plasma were determined from the measured shock velocities combining the particle velocity profiles. We performed the experiments on dense argon plasmas to determine the principal Hugonoit up to 21 GPa, the re-shock pressure up to 73 GPa, and the maximum measure pressure of the fourth shock up to 158 GPa. The results are used to validate the existing self-consistent variational theory model in the partial ionization region and create new theoretical models.

  14. Shock compression of diamond crystal

    OpenAIRE

    Kondo, Ken-ichi; Ahrens, Thomas J.

    1983-01-01

    Two shock wave experiments employing inclined mirrors have been carried out to determine the Hugoniot elastic limit (HEL), final shock state at 191 and 217 GPa, and the post-shock state of diamond crystal, which is shock-compressed along the intermediate direction between the and crystallographic axes. The HEL wave has a velocity of 19.9 ± 0.3 mm/µsec and an amplitude of 63 ± 28 GPa. An alternate interpretation of the inclined wedge mirror streak record suggests a ramp precursor wave and th...

  15. Hugoniot and refractive indices of bromoform under shock compression

    Science.gov (United States)

    Liu, Q. C.; Zeng, X. L.; Zhou, X. M.; Luo, S. N.

    2018-01-01

    We investigate physical properties of bromoform (liquid CHBr3) including compressibility and refractive index under dynamic extreme conditions of shock compression. Planar shock experiments are conducted along with high-speed laser interferometry. Our experiments and previous results establish a linear shock velocity-particle velocity relation for particle velocities below 1.77 km/s, as well as the Hugoniot and isentropic compression curves up to ˜21 GPa. Shock-state refractive indices of CHBr3 up to 2.3 GPa or ˜26% compression, as a function of density, can be described with a linear relation and follows the Gladstone-Dale relation. The velocity corrections for laser interferometry measurements at 1550 nm are also obtained.

  16. Hugoniot and refractive indices of bromoform under shock compression

    Directory of Open Access Journals (Sweden)

    Q. C. Liu

    2018-01-01

    Full Text Available We investigate physical properties of bromoform (liquid CHBr3 including compressibility and refractive index under dynamic extreme conditions of shock compression. Planar shock experiments are conducted along with high-speed laser interferometry. Our experiments and previous results establish a linear shock velocity−particle velocity relation for particle velocities below 1.77 km/s, as well as the Hugoniot and isentropic compression curves up to ∼21 GPa. Shock-state refractive indices of CHBr3 up to 2.3 GPa or ∼26% compression, as a function of density, can be described with a linear relation and follows the Gladstone-Dale relation. The velocity corrections for laser interferometry measurements at 1550 nm are also obtained.

  17. Ethane-xenon mixtures under shock conditions

    Science.gov (United States)

    Flicker, Dawn; Magyar, Rudolph; Root, Seth; Cochrane, Kyle; Mattsson, Thomas

    2015-06-01

    Mixtures of light and heavy elements arise in inertial confinement fusion and planetary science. We present results on the physics of molecular scale mixing through a validation study of equation of state (EOS) properties. Density functional theory molecular dynamics (DFT/QMD) at elevated-temperature and pressure is used to obtain the properties of pure xenon, ethane, and various compressed mixture compositions along their principal Hugoniots. To validate the QMD simulations, we performed high-precision shock compression experiments using Sandia's Z-Machine. A bond tracking analysis of the simulations correlates the sharp rise in the Hugoniot curve with completion of dissociation in ethane. DFT-based simulation results compare well with experimental data and are used to provide insight into the dissociation as a function of mixture composition. Interestingly, we find that the compression ratio for complete dissociation is similar for ethane, Xe-ethane, polymethyl-pentene, and polystyrene, suggesting that a limiting compression exists for C-C bonded systems. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, Security Administration under contract DE-AC04-94AL85000.

  18. Using Sandia's Z Machine and Density Functional Theory Simulations to Understand Planetary Materials

    Science.gov (United States)

    Root, Seth

    2017-06-01

    The use of Z, NIF, and Omega have produced many breakthrough results in high pressure physics. One area that has greatly benefited from these facilities is the planetary sciences. The high pressure behavior of planetary materials has implications for numerous geophysical and planetary processes. The continuing discovery of exosolar super-Earths demonstrates the need for accurate equation of state data to better inform our models of their interior structures. Planetary collision processes, such as the moon-forming giant impact, require understanding planetary materials over a wide-range of pressures and temperatures. Using Z, we examined the shock compression response of some common planetary materials: MgO, Mg2SiO4, and Fe2O3 (hematite). We compare the experimental shock compression measurements with density functional theory (DFT) based quantum molecular dynamics (QMD) simulations. The combination of experiment and theory provides clearer understanding of planetary materials properties at extreme conditions. Sandia National Laboratories is a multi-mission laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  19. Loss of shear strength in polycrystalline tungsten under shock compression

    International Nuclear Information System (INIS)

    Dandekar, D.P.

    1976-01-01

    A reexamination of existing data on shock compression of polycrystalline tungsten at room temperature indicates that tungsten may be an exception to the common belief that metals do not behave like elastic-isotropic solids under shock compression

  20. Shock waves in weakly compressed granular media.

    Science.gov (United States)

    van den Wildenberg, Siet; van Loo, Rogier; van Hecke, Martin

    2013-11-22

    We experimentally probe nonlinear wave propagation in weakly compressed granular media and observe a crossover from quasilinear sound waves at low impact to shock waves at high impact. We show that this crossover impact grows with the confining pressure P0, whereas the shock wave speed is independent of P0-two hallmarks of granular shocks predicted recently. The shocks exhibit surprising power law attenuation, which we model with a logarithmic law implying that shock dissipation is weak and qualitatively different from other granular dissipation mechanisms. We show that elastic and potential energy balance in the leading part of the shocks.

  1. Vibrational spectroscopy of shock-compressed fluid N2 and O2

    International Nuclear Information System (INIS)

    Schmidt, S.C.; Moore, D.S.; Shaw, M.S.; Johnson, J.D.

    1987-01-01

    Single-pulse multiplex coherent anti-Stokes Raman scattering (CARS) was used to observe the vibrational spectra of liquid N 2 shock-compressed to several pressures and temperatures up to 41 GPa and 5200 K and liquid O 2 shock-compressed to several pressures and temperatures up to 10 GPa and 1000 K. For N 2 , the experimental spectra were compared to synthetic spectra calculated using a semiclassical model for CARS intensities and estimated vibrational frequencies, peak Raman susceptibilities, and Raman line widths. The question of excited state populations in the shock-compressed state is addressed

  2. Bacterial survival following shock compression in the GigaPascal range

    Science.gov (United States)

    Hazael, Rachael; Fitzmaurice, Brianna C.; Foglia, Fabrizia; Appleby-Thomas, Gareth J.; McMillan, Paul F.

    2017-09-01

    The possibility that life can exist within previously unconsidered habitats is causing us to expand our understanding of potential planetary biospheres. Significant populations of living organisms have been identified at depths extending up to several km below the Earth's surface; whereas laboratory experiments have shown that microbial species can survive following exposure to GigaPascal (GPa) pressures. Understanding the degree to which simple organisms such as microbes survive such extreme pressurization under static compression conditions is being actively investigated. The survival of bacteria under dynamic shock compression is also of interest. Such studies are being partly driven to test the hypothesis of potential transport of biological organisms between planetary systems. Shock compression is also of interest for the potential modification and sterilization of foodstuffs and agricultural products. Here we report the survival of Shewanella oneidensis bacteria exposed to dynamic (shock) compression. The samples examined included: (a) a "wild type" (WT) strain and (b) a "pressure adapted" (PA) population obtained by culturing survivors from static compression experiments to 750 MPa. Following exposure to peak shock pressures of 1.5 and 2.5 GPa the proportion of survivors was established as the number of colony forming units (CFU) present after recovery to ambient conditions. The data were compared with previous results in which the same bacterial samples were exposed to static pressurization to the same pressures, for 15 minutes each. The results indicate that shock compression leads to survival of a significantly greater proportion of both WT and PA organisms. The significantly shorter duration of the pressure pulse during the shock experiments (2-3 μs) likely contributes to the increased survival of the microbial species. One reason for this can involve the crossover from deformable to rigid solid-like mechanical relaxational behavior that occurs for

  3. Probing planetary interiors: Shock compression of water to 700 GPa and 3.8 g/cc, and recent high precision Hugoniot measurements of deuterium

    Science.gov (United States)

    Knudson, Marcus

    2013-06-01

    The past several years have seen tremendous increase in the number of identified extra-solar planetary systems. Our understanding of the formation of these systems is tied to our understanding of the internal structure of these exoplanets, which in turn rely upon equations of state of light elements and compounds such as water and hydrogen. Here we present shock compression data for water with unprecedented accuracy that shows commonly used models for water in planetary modeling significantly overestimate the compressibility at conditions relevant to planetary interiors. Furthermore, we show that its behavior at these conditions, including reflectivity and isentropic response, is well described by a recent first-principles based equation of state. These findings advocate the use of this model as the standard for modeling Neptune, Uranus, and ``hot Neptune'' exoplanets, and should contribute to improved understanding of the interior structure of these planets, and perhaps improved understanding of formation mechanisms of planetary systems. We also present very recent experiments on deuterium that have taken advantage of continued improvements in both experimental configuration and the understanding of the quartz shock standard to obtain Hugoniot data with a significant increase in precision. These data will prove to provide a stringent test for the equation of state of hydrogen and its isotopes. Sandia is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, for the US Department of Energy's National Nuclear Security Administration under Contract No. DE-ACO4-94AL85000.

  4. Shock compression of geological materials

    International Nuclear Information System (INIS)

    Kirk, S; Braithwaite, C; Williamson, D; Jardine, A

    2014-01-01

    Understanding the shock compression of geological materials is important for many applications, and is particularly important to the mining industry. During blast mining the response to shock loading determines the wave propagation speed and resulting fragmentation of the rock. The present work has studied the Hugoniot of two geological materials; Lake Quarry Granite and Gosford Sandstone. For samples of these materials, the composition was characterised in detail. The Hugoniot of Lake Quarry Granite was predicted from this information as the material is fully dense and was found to be in good agreement with the measured Hugoniot. Gosford Sandstone is porous and undergoes compaction during shock loading. Such behaviour is similar to other granular material and we show how it can be described using a P-a compaction model.

  5. Advances in ferroelectric polymers for shock compression sensors

    International Nuclear Information System (INIS)

    Bauer, F.; Moulard, H.; Samara, G.

    1997-01-01

    Our studies of the shock compression response of PVDF polymer are continuing in order to understand the physical properties under shock loading and to develop high fidelity, reproducible, time-resolved dynamic stress gauges. New PVDF technology, new electrode configurations and piezoelectric analysis have resulted in enhanced precision gauges. Our new standard gauges have a precision of better than 1% in electric charge release under shock up to 15 GPa. The piezoelectric response of shock compressed PVDF gauges 1 mm 2 in active area has been studied and yielded well-behaved reproducible data up to 20 GPa. Analysis of the response of these gauges in the open-quotes thin mode regimeclose quotes using a Lagrangian hydrocode will be presented. P(VDF-TrFE) copolymers exhibit unique piezoelectric properties over a wide range of temperature depending on the composition. Their properties and phase transitions are being investigated. Emphasis of the presentation will be on key results and implications

  6. Investigation of shock compressed plasma parameters by interaction with magnetic field

    International Nuclear Information System (INIS)

    Dudin, S. V.; Fortov, V. E.; Gryaznov, V. K.; Mintsev, V. B.; Shilkin, N. S.; Ushnurtsev, A. E.

    1998-01-01

    The Hall effect parameters in shock compressed air, helium and xenon have been estimated and results of experiments with air and helium plasma are presented. Explosively driven shock tubes were used for the generation of strong shock waves. To obtain magnetic field a solenoid was winded over the shock tube. Calculations of dense shock compressed plasma parameters were carried out to plan the experiments. In the experiments with the magnetic field of ∼5 T it was found, that air plasma slug was significantly heated by the whirlwind electrical field. The reflected shock waves technique was used in the experiments with helium. Results on measurements of electrical conductivity and electron concentration of helium are presented

  7. Finsler-Geometric Continuum Dynamics and Shock Compression

    Science.gov (United States)

    2018-01-01

    version of Finsler theory is newly applied to shock compression of this ceramic. An order parameter is linked simultaneously to densification and...set of algebraic equations that may be solved simultaneously (albeit, not in closed form) for the shock stress, order param- eter, entropy, and shock...δxa ⊗ dX A = ∂ϕ a(X, D, t) ∂X A δ δxa ⊗ dX A = ∂x(X, D, t) ∂X , FaA = ∂Aϕa = ∂Axa . (2.28) The inverse tangent mapping from spatial to referential

  8. Dynamic Compression Experiments on Hydrogen and Deuterium in the Warm Dense Liquid.

    Science.gov (United States)

    Desjarlais, Michael; McCoy, Chad; Cochrane, Kyle; Mattsson, Thomas; Knudson, Marcus; Redmer, Ronald

    2017-06-01

    Recently a shock-ramp platform has been developed on the Z Accelerator to access off-Hugoniot states in liquids. The accelerator delivers a two-step current pulse; the first accelerates the electrode to a constant velocity, which upon impact with the sample cell creates a well-defined shock, the subsequent current rise produces ramp compression from the initially shocked state producing relatively cool (1-2 kK), high pressure (>300 GPa), high compression (10 to 15-fold compression) states. This technique allows experimental access to the region of phase space where hydrogen is predicted to undergo a first-order phase transition from an insulating molecular-like to a conducting atomic-like liquid. Here we discuss the experimental platform, survey various theoretical predictions for the liquid-liquid, insulator-to-metal transition in hydrogen, and present results of experiments on both deuterium and hydrogen that clearly show an abrupt transition to a metallic state. We also present results from recent experiments at higher temperatures (3-4 kK) and compare the observations to both first-principles theory and previous step-wise loading experiments that exhibited a minimum metallic conductivity. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  9. Time-resolved shock compression of porous rutile: Wave dispersion in porous solids

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, M.U.; Graham, R.A.; Holman, G.T.

    1993-08-01

    Rutile (TiO{sub 2}) samples at 60% of solid density have been shock-loaded from 0.21 to 6.1 GPa with sample thickness of 4 mm and studied with the PVDF piezoelectric polymer stress-rate gauge. The technique uses a copper capsule to contain the sample which has PVDF gauge packages in direct contact with front and rear surfaces. A precise measure is made of the compressive stress wave velocity through the sample, as well as the input and propagated shock stress. Initial density is known from sample preparation, and the amount of shock-compression is calculated from the measurement of shock velocity and input stress. Shock states and re-shock states are measured. Observed data are consistent with previously published high pressure data. It is observed that rutile has a ``crush strength`` near 6 GPa. Propagated stress-pulse rise times vary from 234 to 916 nsec. Propagated stress-pulse rise times of shock-compressed HMX, 2Al + Fe{sub 2}O{sub 3}, 3Ni + Al, and 5Ti + 3Si are presented.

  10. Anomalous elastic response of silicon to uniaxial shock compression on nanosecond time scales.

    Science.gov (United States)

    Loveridge-Smith, A; Allen, A; Belak, J; Boehly, T; Hauer, A; Holian, B; Kalantar, D; Kyrala, G; Lee, R W; Lomdahl, P; Meyers, M A; Paisley, D; Pollaine, S; Remington, B; Swift, D C; Weber, S; Wark, J S

    2001-03-12

    We have used x-ray diffraction with subnanosecond temporal resolution to measure the lattice parameters of orthogonal planes in shock compressed single crystals of silicon (Si) and copper (Cu). Despite uniaxial compression along the (400) direction of Si reducing the lattice spacing by nearly 11%, no observable changes occur in planes with normals orthogonal to the shock propagation direction. In contrast, shocked Cu shows prompt hydrostaticlike compression. These results are consistent with simple estimates of plastic strain rates based on dislocation velocity data.

  11. Experimental Study of Shock Generated Compressible Vortex Ring

    Science.gov (United States)

    Das, Debopam; Arakeri, Jaywant H.; Krothapalli, Anjaneyulu

    2000-11-01

    Formation of a compressible vortex ring and generation of sound associated with it is studied experimentally. Impulse of a shock wave is used to generate a vortex ring from the open end of a shock-tube. Vortex ring formation process has been studied in details using particle image Velocimetry (PIV). As the shock wave exits the tube it diffracts and expands. A circular vortex sheet forms at the edge and rolls up into a vortex ring. Far field microphone measurement shows that the acoustic pressure consists of a spike due to shock wave followed by a low frequency pressure wave of decaying nature, superimposed with high frequency pressure wave. Acoustic waves consist of waves due to expansion, waves formed in the tube during diaphragm breakage and waves associated with the vortex ring and shear-layer vortices. Unsteady evolution of the vortex ring and shear-layer vortices in the jet behind the ring is studied by measuring the velocity field using PIV. Corresponding vorticity field, circulation around the vortex core and growth rate of the vortex core is calculated from the measured velocity field. The velocity field in a compressible vortex ring differs from that of an incompressible ring due to the contribution from both shock and vortex ring.

  12. P. W. Bridgman's contributions to the foundations of shock compression of condensed matter

    Energy Technology Data Exchange (ETDEWEB)

    Nellis, W J, E-mail: nellis@physics.harvard.ed [Department of Physics, Harvard University, Cambridge MA 02138 (United States)

    2010-03-01

    Based on his 50-year career in static high-pressure research, P. W. Bridgman (PWB) is the father of modern high-pressure physics. What is not generally recognized is that Bridgman was also intimately connected with establishing shock compression as a scientific tool and he predicted major events in shock research that occurred up to 40 years after his death. In 1956 the first phase transition under shock compression was reported in Fe at 13 GPa (130 kbar). PWB said a phase transition could not occur in a {approx}microsec, thus setting off a controversy. The scientific legitimacy of shock compression resulted 5 years later when static high-pressure researchers confirmed with x-ray diffraction the existence of epsilon-Fe. Once PWB accepted the fact that shock waves generated with chemical explosives were a valid scientific tool, he immediately realized that substantially higher pressures would be achieved with nuclear explosives. He included his ideas for achieving higher pressures in articles published a few years after his death. L. V. Altshuler eventually read Bridgman's articles and pursued the idea of using nuclear explosives to generate super high pressures, which subsequently morphed today into giant lasers. PWB also anticipated combining static and shock methods, which today is done with pre-compression of a soft sample in a diamond anvil cell followed by laser-driven shock compression. One variation of that method is the reverberating-shock technique, in which the first shock pre-compresses a soft sample and subsequent reverberations isentropically compress the first-shocked state.

  13. The Sandia MEMS Passive Shock Sensor : FY08 testing for functionality, model validation, and technology readiness.

    Energy Technology Data Exchange (ETDEWEB)

    Walraven, Jeremy Allen; Blecke, Jill; Baker, Michael Sean; Clemens, Rebecca C.; Mitchell, John Anthony; Brake, Matthew Robert; Epp, David S.; Wittwer, Jonathan W.

    2008-10-01

    This report summarizes the functional, model validation, and technology readiness testing of the Sandia MEMS Passive Shock Sensor in FY08. Functional testing of a large number of revision 4 parts showed robust and consistent performance. Model validation testing helped tune the models to match data well and identified several areas for future investigation related to high frequency sensitivity and thermal effects. Finally, technology readiness testing demonstrated the integrated elements of the sensor under realistic environments.

  14. Shock compression and quasielastic release in tantalum

    International Nuclear Information System (INIS)

    Johnson, J.N.; Hixson, R.S.; Tonks, D.L.; Gray, G.T. III

    1994-01-01

    Previous studies of quasielastic release in shock-loaded FCC metals have shown a strong influence of the defect state on the leading edge, or first observable arrival, of the release wave. This is due to the large density of pinned dislocation segments behind the shock front, their relatively large pinning separation, and a very short response time as determined by the drag coefficient in the shock-compressed state. This effect is entirely equivalent to problems associated with elastic moduli determination using ultrasonic methods. This is particularly true for FCC metals, which have an especially low Peierls stress, or inherent lattice resistance, that has little influence in pinning dislocation segments and inhibiting anelastic deformation. BCC metals, on the other hand, have a large Peierls stress that essentially holds dislocation segments in place at low net applied shear stresses and thus allows fully elastic deformation to occur in the complete absence of anelastic behavior. Shock-compression and release experiments have been performed on tantalum (BCC), with the observation that the leading release disturbance is indeed elastic. This conclusion is established by examination of experimental VISAR records taken at the tantalum/sapphire (window) interface in a symmetric-impact experiment which subjects the sample to a peak longitudinal stress of approximately 7.3 GPa, in comparison with characteristic code calculations. copyright 1994 American Institute of Physics

  15. Heterogeneous free-surface profile of B4C polycrystal under shock compression

    International Nuclear Information System (INIS)

    Mashimo, T.; Uchino, M.

    1997-01-01

    Observations of the free-surface behavior under shock compression by the gapped-flat mirror method were performed on B 4 C and Si 3 N 4 ceramics to study their shock-yielding properties. Jagged profiles of the moving free-surface in the plastic region, with a special scale of about one mm and a maximum local displacement of a few 10s of μm, were observed for B 4 C polycrystals. Similar profiles for Si 3 N 4 polycrystals were smooth. Such profiles for B 4 C polycrystals were also observed in the elastic region. It is suggested that these observations reflect the heterogeneous nature of shock compression in solids, and further indicate that a macroscopic slip system plays an important role in the elastoplastic transition of B 4 C material under shock compression and decompression. copyright 1997 American Institute of Physics

  16. Shock tubes: compressions in the low pressure chamber

    International Nuclear Information System (INIS)

    Schins, H.; Giuliani, S.

    1986-01-01

    The gas shock tube used in these experiments consists of a low pressure chamber and a high pressure chamber, divided by a metal-diaphragm-to-rupture. In contrast to the shock mode of operation, where incident and reflected shocks in the low pressure chamber are studied which occur within 3.5 ms, in this work the compression mode of operation was studied, whose maxima occur (in the low pressure chamber) about 9 ms after rupture. Theoretical analysis was done with the finite element computer code EURDYN-1M, where the computation was carried out to 30 ms

  17. A soap film shock tube to study two-dimensional compressible flows

    Energy Technology Data Exchange (ETDEWEB)

    Wen, C.Y.; Chen, Y.M.; Chang-Jian, S.K. [Dept. of Mechanical Engineering, Da-Yeh University Chang-Hwa (Taiwan)

    2001-07-01

    A new experimental approach to the study of the two-dimensional compressible flow phenomena is presented. In this technique, a variety of compressible flows were generated by bursting plane vertical soap films. An aureole and a ''shock wave'' preceding the rim of the expanding hole were clearly observed using traditional high-speed flash photography and a fast line-scan charge coupled device (CCD) camera. The moving shock wave images obtained from the line-scan CCD camera were similar to the x-t diagrams in gas dynamics. The moving shock waves cause thickness jumps and induce supersonic flows. Photographs of the supersonic flows over a cylinder and a wedge are presented. The results suggest clearly the feasibility of the ''soap film shock tube''. (orig.)

  18. Laser driven single shock compression of fluid deuterium from 45 to 220 GPa

    Energy Technology Data Exchange (ETDEWEB)

    Hicks, D; Boehly, T; Celliers, P; Eggert, J; Moon, S; Meyerhofer, D; Collins, G

    2008-03-23

    The compression {eta} of liquid deuterium between 45 and 220 GPa under laser-driven shock loading has been measured using impedance matching to an aluminum (Al) standard. An Al impedance match model derived from a best fit to absolute Hugoniot data has been used to quantify and minimize the systematic errors caused by uncertainties in the high-pressure Al equation of state. In deuterium below 100 GPa results show that {eta} {approx_equal} 4.2, in agreement with previous impedance match data from magnetically-driven flyer and convergent-explosive shock wave experiments; between 100 and 220 GPa {eta} reaches a maximum of {approx}5.0, less than the 6-fold compression observed on the earliest laser-shock experiments but greater than expected from simple extrapolations of lower pressure data. Previous laser-driven double-shock results are found to be in good agreement with these single-shock measurements over the entire range under study. Both sets of laser-shock data indicate that deuterium undergoes an abrupt increase in compression at around 110 GPa.

  19. Behavior of porous tungsten under shock compression at room temperature

    International Nuclear Information System (INIS)

    Dandekar, D.P.; Lamothe, R.M.

    1977-01-01

    This work reports the results of room-temperature shock-compression experiments on porous tungsten. The porous tungsten was fabricated by sintering 1-μm tungsten particles. The initial density of the material was 15290 kg/m 3 . Around 97% of the pores in the material were interconnected. The main features of the results are as follows: (1) porous tungsten behaves as a linear elastic material to 1.43 GPa; (2) the shock wave following the elastic precursor is unstable in the material in the stress range 1.43--2.7 GPa; (3) a stable two-wave structure is established at and above 6.4 GPa; (4) the response of porous tungsten is accurately described by the Mie-Grueneisen equation of state at stresses above 4.9 GPa, the stress at which the voids suffer a complete extinction in the material; (5) the deformations induced in the material due to shock compression are irreversible; (6) the recentered Hugoniot of porous tungsten becomes stiffer with the increasing magnitude of initial compressive stress

  20. Modeling ramp compression experiments using large-scale molecular dynamics simulation.

    Energy Technology Data Exchange (ETDEWEB)

    Mattsson, Thomas Kjell Rene; Desjarlais, Michael Paul; Grest, Gary Stephen; Templeton, Jeremy Alan; Thompson, Aidan Patrick; Jones, Reese E.; Zimmerman, Jonathan A.; Baskes, Michael I. (University of California, San Diego); Winey, J. Michael (Washington State University); Gupta, Yogendra Mohan (Washington State University); Lane, J. Matthew D.; Ditmire, Todd (University of Texas at Austin); Quevedo, Hernan J. (University of Texas at Austin)

    2011-10-01

    Molecular dynamics simulation (MD) is an invaluable tool for studying problems sensitive to atomscale physics such as structural transitions, discontinuous interfaces, non-equilibrium dynamics, and elastic-plastic deformation. In order to apply this method to modeling of ramp-compression experiments, several challenges must be overcome: accuracy of interatomic potentials, length- and time-scales, and extraction of continuum quantities. We have completed a 3 year LDRD project with the goal of developing molecular dynamics simulation capabilities for modeling the response of materials to ramp compression. The techniques we have developed fall in to three categories (i) molecular dynamics methods (ii) interatomic potentials (iii) calculation of continuum variables. Highlights include the development of an accurate interatomic potential describing shock-melting of Beryllium, a scaling technique for modeling slow ramp compression experiments using fast ramp MD simulations, and a technique for extracting plastic strain from MD simulations. All of these methods have been implemented in Sandia's LAMMPS MD code, ensuring their widespread availability to dynamic materials research at Sandia and elsewhere.

  1. Ultra high-speed x-ray imaging of laser-driven shock compression using synchrotron light

    Science.gov (United States)

    Olbinado, Margie P.; Cantelli, Valentina; Mathon, Olivier; Pascarelli, Sakura; Grenzer, Joerg; Pelka, Alexander; Roedel, Melanie; Prencipe, Irene; Laso Garcia, Alejandro; Helbig, Uwe; Kraus, Dominik; Schramm, Ulrich; Cowan, Tom; Scheel, Mario; Pradel, Pierre; De Resseguier, Thibaut; Rack, Alexander

    2018-02-01

    A high-power, nanosecond pulsed laser impacting the surface of a material can generate an ablation plasma that drives a shock wave into it; while in situ x-ray imaging can provide a time-resolved probe of the shock-induced material behaviour on macroscopic length scales. Here, we report on an investigation into laser-driven shock compression of a polyurethane foam and a graphite rod by means of single-pulse synchrotron x-ray phase-contrast imaging with MHz frame rate. A 6 J, 10 ns pulsed laser was used to generate shock compression. Physical processes governing the laser-induced dynamic response such as elastic compression, compaction, pore collapse, fracture, and fragmentation have been imaged; and the advantage of exploiting the partial spatial coherence of a synchrotron source for studying low-density, carbon-based materials is emphasized. The successful combination of a high-energy laser and ultra high-speed x-ray imaging using synchrotron light demonstrates the potentiality of accessing complementary information from scientific studies of laser-driven shock compression.

  2. History of the APS Topical Group on Shock Compression of Condensed Matter

    International Nuclear Information System (INIS)

    Forbes, J W

    2001-01-01

    In order to provide broader scientific recognition and to advance the science of shock compressed condensed matter, a group of American Physical Society (APS) members worked within the Society to make this field an active part of the APS. Individual papers were presented at APS meetings starting in the 1940's and shock wave sessions were organized starting with the 1967 Pasadena meeting. Shock wave topical conferences began in 1979 in Pullman, WA. Signatures were obtained on a petition in 1984 from a balanced cross-section of the shock wave community to form an APS Topical Group (TG). The APS Council officially accepted the formation of the Shock Compression of Condensed Matter (SCCM) TG at its October 1984 meeting. This action firmly aligned the shock wave field with a major physical science organization. Most early topical conferences were sanctioned by the APS while those held after 1992 were official APS meetings. The topical group organizes a shock wave topical conference in odd numbered years while participating in shock wavehigh pressure sessions at APS general meetings in even numbered years

  3. High-energy synchrotron X-ray radiography of shock-compressed materials

    Science.gov (United States)

    Rutherford, Michael E.; Chapman, David J.; Collinson, Mark A.; Jones, David R.; Music, Jasmina; Stafford, Samuel J. P.; Tear, Gareth R.; White, Thomas G.; Winters, John B. R.; Drakopoulos, Michael; Eakins, Daniel E.

    2015-06-01

    This presentation will discuss the development and application of a high-energy (50 to 250 keV) synchrotron X-ray imaging method to study shock-compressed, high-Z samples at Beamline I12 at the Diamond Light Source synchrotron (Rutherford-Appleton Laboratory, UK). Shock waves are driven into materials using a portable, single-stage gas gun designed by the Institute of Shock Physics. Following plate impact, material deformation is probed in-situ by white-beam X-ray radiography and complimentary velocimetry diagnostics. The high energies, large beam size (13 x 13 mm), and appreciable sample volumes (~ 1 cm3) viable for study at Beamline I12 compliment existing in-house pulsed X-ray capabilities and studies at the Dynamic Compression Sector. The authors gratefully acknowledge the ongoing support of Imperial College London, EPSRC, STFC and the Diamond Light Source, and AWE Plc.

  4. The effect of shock dynamics on compressibility of ignition-scale National Ignition Facility implosions

    Energy Technology Data Exchange (ETDEWEB)

    Zylstra, A. B., E-mail: zylstra@mit.edu; Frenje, J. A.; Séguin, F. H.; Rosenberg, M. J.; Rinderknecht, H. G.; Gatu Johnson, M.; Li, C. K.; Manuel, M. J.-E.; Petrasso, R. D.; Sinenian, N.; Sio, H. W. [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Hicks, D. G.; Dewald, E. L.; Robey, H. F.; Rygg, J. R.; Meezan, N. B.; Friedrich, S.; Bionta, R.; Atherton, J.; Barrios, M. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); and others

    2014-11-15

    The effects of shock dynamics on compressibility of indirect-drive ignition-scale surrogate implosions, CH shells filled with D{sup 3}He gas, have been studied using charged-particle spectroscopy. Spectral measurements of D{sup 3}He protons produced at the shock-bang time probe the shock dynamics and in-flight characteristics of an implosion. The proton shock yield is found to vary by over an order of magnitude. A simple model relates the observed yield to incipient hot-spot adiabat, suggesting that implosions with rapid radiation-power increase during the main drive pulse may have a 2× higher hot-spot adiabat, potentially reducing compressibility. A self-consistent 1-D implosion model was used to infer the areal density (ρR) and the shell center-of-mass radius (R{sub cm}) from the downshift of the shock-produced D{sup 3}He protons. The observed ρR at shock-bang time is substantially higher for implosions, where the laser drive is on until near the compression bang time (“short-coast”), while longer-coasting implosions have lower ρR. This corresponds to a much larger temporal difference between the shock- and compression-bang time in the long-coast implosions (∼800 ps) than in the short-coast (∼400 ps); this will be verified with a future direct bang-time diagnostic. This model-inferred differential bang time contradicts radiation-hydrodynamic simulations, which predict constant 700–800 ps differential independent of coasting time; this result is potentially explained by uncertainties in modeling late-time ablation drive on the capsule. In an ignition experiment, an earlier shock-bang time resulting in an earlier onset of shell deceleration, potentially reducing compression and, thus, fuel ρR.

  5. The effect of shock dynamics on compressibility of ignition-scale National Ignition Facility implosions

    International Nuclear Information System (INIS)

    Zylstra, A. B.; Frenje, J. A.; Séguin, F. H.; Rosenberg, M. J.; Rinderknecht, H. G.; Gatu Johnson, M.; Li, C. K.; Manuel, M. J.-E.; Petrasso, R. D.; Sinenian, N.; Sio, H. W.; Hicks, D. G.; Dewald, E. L.; Robey, H. F.; Rygg, J. R.; Meezan, N. B.; Friedrich, S.; Bionta, R.; Atherton, J.; Barrios, M.

    2014-01-01

    The effects of shock dynamics on compressibility of indirect-drive ignition-scale surrogate implosions, CH shells filled with D 3 He gas, have been studied using charged-particle spectroscopy. Spectral measurements of D 3 He protons produced at the shock-bang time probe the shock dynamics and in-flight characteristics of an implosion. The proton shock yield is found to vary by over an order of magnitude. A simple model relates the observed yield to incipient hot-spot adiabat, suggesting that implosions with rapid radiation-power increase during the main drive pulse may have a 2× higher hot-spot adiabat, potentially reducing compressibility. A self-consistent 1-D implosion model was used to infer the areal density (ρR) and the shell center-of-mass radius (R cm ) from the downshift of the shock-produced D 3 He protons. The observed ρR at shock-bang time is substantially higher for implosions, where the laser drive is on until near the compression bang time (“short-coast”), while longer-coasting implosions have lower ρR. This corresponds to a much larger temporal difference between the shock- and compression-bang time in the long-coast implosions (∼800 ps) than in the short-coast (∼400 ps); this will be verified with a future direct bang-time diagnostic. This model-inferred differential bang time contradicts radiation-hydrodynamic simulations, which predict constant 700–800 ps differential independent of coasting time; this result is potentially explained by uncertainties in modeling late-time ablation drive on the capsule. In an ignition experiment, an earlier shock-bang time resulting in an earlier onset of shell deceleration, potentially reducing compression and, thus, fuel ρR

  6. Shock compression of nitrobenzene; Nitoro benzen no shogeki asshoku

    Energy Technology Data Exchange (ETDEWEB)

    Kozu, Naoshi; Arai, Mitsuru; Tamura, Masamitsu [The University of Tokyo, Tokyo (Japan). Department of Chemical System Engineering; Yoshida, Masatake [National Institute of Materials and Chemical Research, Tsukuba (Japan)

    1999-08-31

    The Hugoniot (4 - 30 x 10{sup 9}Pa) of nitrobenzene has been obtained by shock compression experiments. Explosive plane-wae generators were used for plane shock wave generation. The obtained Hugoniot consists of two linear lines (U{sub s} (x 10{sup 3}m/s) = 2.52 + 1.23U{sub p} (x 10{sup 3}m/s)(0.8shock compression of nitrobenzene. (author)

  7. Shock absorbing properties of toroidal shells under compression, 3

    International Nuclear Information System (INIS)

    Sugita, Yuji

    1985-01-01

    The author has previously presented the static load-deflection relations of a toroidal shell subjected to axisymmetric compression between rigid plates and those of its outer half when subjected to lateral compression. In both these cases, the analytical method was based on the incremental Rayleigh-Ritz method. In this paper, the effects of compression angle and strain rate on the load-deflection relations of the toroidal shell are investigated for its use as a shock absorber for the radioactive material shipping cask which must keep its structural integrity even after accidental falls at any angle. Static compression tests have been carried out at four angles of compression, 10 0 , 20 0 , 50 0 , 90 0 and the applications of the preceding analytical method have been discussed. Dynamic compression tests have also been performed using the free-falling drop hammer. The results are compared with those in the static compression tests. (author)

  8. Bright emissive core-shell spherical microparticles for shock compression spectroscopy

    International Nuclear Information System (INIS)

    Christensen, James M.; Banishev, Alexandr A.; Dlott, Dana D.

    2014-01-01

    Experiments were performed to study the response to shock compression of rhodamine 6G (R6G) dye encapsulated in 1.25 μm diameter silica microspheres. When R6G was encapsulated in microspheres, the emission intensity under steady-state irradiation (the brightness) was 3.4 times greater than the same dye in solution (the free dye). At least part of the brightness improvement was caused by an enhanced radiative rate. When the microspheres were embedded in poly-methylmethacrylate subjected to planar shocks in the 3–8.4 GPa range by laser-driven flyer plates, the dye emission redshifted and lost intensity. The dye emission redshift represents an instantaneous response to changes in the local density. In free dye samples, the shock-induced intensity loss had considerably slower rise times and fall times than the redshift. When dye was encapsulated in microspheres, the time dependence of the intensity loss matched the redshift almost exactly over a range of shock pressures and durations. The faster response to shock of dye in silica microspheres was explained by dye photophysics. The microsphere environment decreased the singlet state lifetime, which decreased the rise time, and it also decreased the triplet state lifetime, which decreased the fall time. Since it is much easier and more convenient to make measurements of intensity rather than spectral shift, these microspheres represent a substantial improvement in optical sensors to monitor shock compression of microstructured materials.

  9. Transport properties of LiF under strong compression: modeling using advanced electronic structure methods and classical molecular dynamics

    Science.gov (United States)

    Mattsson, Thomas R.; Jones, Reese; Ward, Donald; Spataru, Catalin; Shulenburger, Luke; Benedict, Lorin X.

    2015-06-01

    Window materials are ubiquitous in shock physics and with high energy density drivers capable of reaching multi-Mbar pressures the use of LiF is increasing. Velocimetry and temperature measurements of a sample through a window are both influenced by the assumed index of refraction and thermal conductivity, respectively. We report on calculations of index of refraction using the many-body theory GW and thermal ionic conductivity using linear response theory and model potentials. The results are expected to increase the accuracy of a broad range of high-pressure shock- and ramp compression experiments. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, for the U.S. Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000.

  10. Shock and Release Data on Forsterite (Mg2SiO4) Single Crystals

    Science.gov (United States)

    Root, S.; Townsend, J. P.; Shulenburger, L.; Davies, E.; Kraus, R. G.; Spaulding, D.; Stewart, S. T.; Jacobsen, S. B.; Mattsson, T. R.

    2016-12-01

    The Kepler mission has discovered numerous extra-solar rocky planets with sizes ranging from Earth-size to the super-Earths with masses 40 times larger than Earth. The solid solution series of (Mg, Fe)2SiO4 (olivine) is a major component in the mantle of Earth and likely these extra-solar rocky planets. However, understanding how the (Mg, Fe)2SiO4 system behaves at Earth like and super-Earth like pressures is still unknown. Using Sandia's Z machine facility, we shock compress single crystal forsterite, the Mg end-member of the olivine series. Solid aluminum flyers are accelerated up to 28 km/s to generate steady shock states up to 950 GPa. Release states from the Hugoniot are determined as well. In addition to experiments, we perform density functional theory (DFT) calculations to examine the potential phases along the Mg2SiO4 Hugoniot. We compare our results to other recent shock experiments on forsterite. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  11. Shock compression profiles in ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Grady, D.E.; Moody, R.L.

    1996-03-01

    An investigation of the shock compression properties of high-strength ceramics has been performed using controlled planar impact techniques. In a typical experimental configuration, a ceramic target disc is held stationary, and it is struck by plates of either a similar ceramic or by plates of a well-characterized metal. All tests were performed using either a single-stage propellant gun or a two-stage light-gas gun. Particle velocity histories were measured with laser velocity interferometry (VISAR) at the interface between the back of the target ceramic and a calibrated VISAR window material. Peak impact stresses achieved in these experiments range from about 3 to 70 GPa. Ceramics tested under shock impact loading include: Al{sub 2}O{sub 3}, AlN, B{sub 4}C, SiC, Si{sub 3}N{sub 4}, TiB{sub 2}, WC and ZrO{sub 2}. This report compiles the VISAR wave profiles and experimental impact parameters within a database-useful for response model development, computational model validation studies, and independent assessment of the physics of dynamic deformation on high-strength, brittle solids.

  12. On the failure of NiAl bicrystals during laser-induced shock compression

    International Nuclear Information System (INIS)

    Loomis, Eric; Swift, Damian; Peralta, Pedro; McClellan, Ken

    2005-01-01

    Thin NiAl bicrystals 5 mm in diameter and 150-350 μm thick were tested under laser-induced shock compression to evaluate the material behavior and the effect of localized strain at the grain boundary on the failure of these specimens. Circular NiAl bicrystal samples with random misorientation were grown using a modified Czochralski technique and samples were prepared for shock compression at moderate pressures (<10 GPa). The observed crack patterns on the drive surface as well as the free surface were examined using optical microscopy. Transmission electron microscopy (TEM) of the drive surface as well as in the bulk of one grain was performed on recovered specimens following shock compression. This revealed that a nanocrystalline region with a grain size of 15-20 nm formed on a thin layer at the drive surface following the plasma expansion phase of the laser-induced shock. TEM in the bulk of one grain showed that plastic deformation occurred in a periodic fashion through propagation of dislocation clusters. Cracking on the free surface of the samples revealed a clear grain boundary affected zone (GBAZ) due to scattering of the shock wave and variations in wave speed across the inclined boundary. Damage tended to accumulate in the grain into which the elastic wave refracted. This damage accumulation corresponds well to the regions in which the transmitted waves impinged on the free surface as predicted by elastic scattering models

  13. Forsterite Shock Temperatures and Entropy: New Scaling Laws for Impact Melting and Vaporization

    Science.gov (United States)

    Davies, E.; Root, S.; Kraus, R. G.; Townsend, J. P.; Spaulding, D.; Stewart, S. T.; Jacobsen, S. B.; Fratanduono, D.; Millot, M. A.; Mattsson, T. R.; Hanshaw, H. L.

    2017-12-01

    The observed masses, radii and temperatures of thousands of extra-solar planets have challenged our theoretical understanding of planet formation and planetary structures. Planetary materials are subject to extreme pressures and temperatures during formation and within the present-day interiors of large bodies. Here, we focus on improving understanding of the physical properties of rocky planets for calculations of internal structure and the outcomes of giant impacts. We performed flyer plate impact experiments on forsterite [Mg2SiO4] on the Z-Machine at Sandia National Laboratory and decaying shock temperature measurements at the Omega EP laser at U. Rochester. At Z, planar, supported shock waves are generated in single crystal samples, permitting observation of both compressed and released states. Using available static and dynamic thermodynamic data, we calculate absolute entropy and heat capacity along the forsterite shock Hugoniot. Entropy and heat capacity on the Hugoniot are larger than previous estimates. Our data constrain the thermodynamic properties of forsterite liquid at high pressures and temperatures and the amount of melt and vapor produced during impact events. For an ambient pressure of 1 bar, shock-vaporization begins upon reaching the liquid region on the forsterite Hugoniot (about 200 GPa). Using hydrocode simulations of giant impacts between rocky planets with forsterite mantles and iron cores and the new experimentally-constrained forsterite shock entropy, we present a new scaling law for the fraction of mantle that is melted or vaporized by the initial shock wave. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525. Prepared by LLNL under Contract DE-AC52-07NA27344. Prepared by the Center

  14. A study of binder materials subjected to isentropic compression loading

    International Nuclear Information System (INIS)

    Hall, Clint Allen; Orler, E. Bruce; Sheffield, Steve A.; Gustavsen, Rick L.; Sutherland, Gerrit; Baer, Melvin R.; Hooks, D.E.

    2005-01-01

    Binders such as Estane, Teflon, Kel F and HTPB are typically used in heterogeneous explosives to bond polycrystalline constituents together as an energetic composite. Combined theoretical and experimental studies are underway to unravel the mechanical response of these materials when subjected to isentropic compression loading. Key to this effort is the determination of appropriate constitutive and EOS property data at extremely high stress-strain states as required for detailed mesoscale modeling. The Sandia Z accelerator and associated diagnostics provides new insights into mechanical response of these nonreactive constituents via isentropic ramp-wave compression loading. Several thicknesses of samples, varied from 0.3 to 1.2 mm, were subjected to a ramp load of ∼42 Kbar over 500 ns duration using the Sandia Z-machine. Profiles of transmitted ramp waves were measured at window interfaces using conventional VISAR. Shock physics analysis is then used to determine the nonlinear material response of the binder materials. In this presentation we discuss experimental and modeling details of the ramp wave loading ICE experiments designed specifically for binder materials.

  15. The size effects upon shock plastic compression of nanocrystals

    Science.gov (United States)

    Malygin, G. A.; Klyavin, O. V.

    2017-10-01

    For the first time a theoretical analysis of scale effects upon the shock plastic compression of nanocrystals is implemented in the context of a dislocation kinetic approach based on the equations and relationships of dislocation kinetics. The yield point of crystals τy is established as a quantitative function of their cross-section size D and the rate of shock deformation as τy ɛ2/3 D. This dependence is valid in the case of elastic stress relaxation on account of emission of dislocations from single-pole Frank-Read sources near the crystal surface.

  16. Shock compression and flash-heating of molecular adsorbates on the picosecond time scale

    Science.gov (United States)

    Berg, Christopher Michael

    An ultrafast nonlinear coherent laser spectroscopy termed broadband multiplex vibrational sum-frequency generation (SFG) with nonresonant suppression was employed to monitor vibrational transitions of molecular adsorbates on metallic substrates during laser-driven shock compression and flash-heating. Adsorbates were in the form of well-ordered self-assembled monolayers (SAMs) and included molecular explosive simulants, such as nitroaromatics, and long chain-length alkanethiols. Based on reflectance measurements of the metallic substrates, femtosecond flash-heating pulses were capable of producing large-amplitude temperature jumps with DeltaT = 500 K. Laser-driven shock compression of SAMs produced pressures up to 2 GPa, where 1 GPa ≈ 1 x 104 atm. Shock pressures were estimated via comparison with frequency shifts observed in the monolayer vibrational transitions during hydrostatic pressure measurements in a SiC anvil cell. Molecular dynamics during flash-heating and shock loading were probed with vibrational SFG spectroscopy with picosecond temporal resolution and sub-nanometer spatial resolution. Flash-heating studies of 4-nitrobenzenethiolate (NBT) on Au provided insight into effects from hot-electron excitation of the molecular adsorbates at early pump-probe delay times. At longer delay times, effects from the excitation of SAM lattice modes and lower-energy NBT vibrations were shown. In addition, flash-heating studies of alkanethiolates demonstrated chain disordering behaviors as well as interface thermal conductances across the Au-SAM junction, which was of specific interest within the context of molecular electronics. Shock compression studies of molecular explosive simulants, such as 4-nitrobenzoate (NBA), demonstrated the proficiency of this technique to observe shock-induced molecular dynamics, in this case orientational dynamics, on the picosecond time scale. Results validated the utilization of these refined shock loading techniques to probe the shock

  17. Strength properties and structure of a submicrocrystalline Al-Mg-Mn alloy under shock compression

    Science.gov (United States)

    Petrova, A. N.; Brodova, I. G.; Razorenov, S. V.

    2017-06-01

    The results of studying the strength of a submicrocrystalline aluminum A5083 alloy (chemical composition was 4.4Mg-0.6Mn-0.11Si-0.23Fe-0.03Cr-0.02Cu-0.06Ti wt % and Al base) under shockwave compression are presented. The submicrocrystalline structure of the alloy was produced in the process of dynamic channel-angular pressing at a strain rate of 104 s-1. The average size of crystallites in the alloy was 180-460 nm. Hugoniot elastic limit σHEL, dynamic yield stress σy, and the spall strength σSP of the submicrocrystalline alloy were determined based on the free-surface velocity profiles of samples during shock compression. It has been established that upon shock compression, the σHEL and σy of the submicrocrystalline alloy are higher than those of the coarse-grained alloy and σsp does not depend on the grain size. The maximum value of σHEL reached for the submicrocrystalline alloy is 0.66 GPa, which is greater than that in the coarse-crystalline alloy by 78%. The dynamic yield stress is σy = 0.31 GPa, which is higher than that of the coarse-crystalline alloy by 63%. The spall strength is σsp = 1.49 GPa. The evolution of the submicrocrystalline structure of the alloy during shock compression was studied. It has been established that a mixed nonequilibrium grain-subgrain structure with a fragment size of about 400 nm is retained after shock compression, and the dislocation density and the hardness of the alloy are increased.

  18. Assessment of high-resolution methods for numerical simulations of compressible turbulence with shock waves

    International Nuclear Information System (INIS)

    Johnsen, Eric; Larsson, Johan; Bhagatwala, Ankit V.; Cabot, William H.; Moin, Parviz; Olson, Britton J.; Rawat, Pradeep S.; Shankar, Santhosh K.; Sjoegreen, Bjoern; Yee, H.C.; Zhong Xiaolin; Lele, Sanjiva K.

    2010-01-01

    Flows in which shock waves and turbulence are present and interact dynamically occur in a wide range of applications, including inertial confinement fusion, supernovae explosion, and scramjet propulsion. Accurate simulations of such problems are challenging because of the contradictory requirements of numerical methods used to simulate turbulence, which must minimize any numerical dissipation that would otherwise overwhelm the small scales, and shock-capturing schemes, which introduce numerical dissipation to stabilize the solution. The objective of the present work is to evaluate the performance of several numerical methods capable of simultaneously handling turbulence and shock waves. A comprehensive range of high-resolution methods (WENO, hybrid WENO/central difference, artificial diffusivity, adaptive characteristic-based filter, and shock fitting) and suite of test cases (Taylor-Green vortex, Shu-Osher problem, shock-vorticity/entropy wave interaction, Noh problem, compressible isotropic turbulence) relevant to problems with shocks and turbulence are considered. The results indicate that the WENO methods provide sharp shock profiles, but overwhelm the physical dissipation. The hybrid method is minimally dissipative and leads to sharp shocks and well-resolved broadband turbulence, but relies on an appropriate shock sensor. Artificial diffusivity methods in which the artificial bulk viscosity is based on the magnitude of the strain-rate tensor resolve vortical structures well but damp dilatational modes in compressible turbulence; dilatation-based artificial bulk viscosity methods significantly improve this behavior. For well-defined shocks, the shock fitting approach yields good results.

  19. Electrical conductivity measurements in shock compressed liquid nitrogen

    International Nuclear Information System (INIS)

    Hamilton, D.C.; Mitchell, A.C.; Nellis, W.J.

    1985-06-01

    The electrical conductivity of shock compressed liquid nitrogen was measured in the pressure range 20 to 50 GPa using a two-stage light-gas gun. The conductivities covered a range 4 x 10 -2 to 1 x 10 2 ohm -1 cm -1 . The data are discussed in terms of a liquid semiconductor model below the onset of the dissociative phase transition at 30 GPa. 15 refs., 1 fig

  20. A new apparatus to induce lysis of planktonic microbial cells by shock compression, cavitation and spray

    Science.gov (United States)

    Schiffer, A.; Gardner, M. N.; Lynn, R. H.; Tagarielli, V. L.

    2017-03-01

    Experiments were conducted on an aqueous growth medium containing cultures of Escherichia coli (E. coli) XL1-Blue, to investigate, in a single experiment, the effect of two types of dynamic mechanical loading on cellular integrity. A bespoke shock tube was used to subject separate portions of a planktonic bacterial culture to two different loading sequences: (i) shock compression followed by cavitation, and (ii) shock compression followed by spray. The apparatus allows the generation of an adjustable loading shock wave of magnitude up to 300 MPa in a sterile laboratory environment. Cultures of E. coli were tested with this apparatus and the spread-plate technique was used to measure the survivability after mechanical loading. The loading sequence (ii) gave higher mortality than (i), suggesting that the bacteria are more vulnerable to shear deformation and cavitation than to hydrostatic compression. We present the results of preliminary experiments and suggestions for further experimental work; we discuss the potential applications of this technique to sterilize large volumes of fluid samples.

  1. Stress relaxation in vanadium under shock and shockless dynamic compression

    International Nuclear Information System (INIS)

    Kanel, G. I.; Razorenov, S. V.; Garkushin, G. V.; Savinykh, A. S.; Zaretsky, E. B.

    2015-01-01

    Evolutions of elastic-plastic waves have been recorded in three series of plate impact experiments with annealed vanadium samples under conditions of shockless and combined ramp and shock dynamic compression. The shaping of incident wave profiles was realized using intermediate base plates made of different silicate glasses through which the compression waves were entered into the samples. Measurements of the free surface velocity histories revealed an apparent growth of the Hugoniot elastic limit with decreasing average rate of compression. The growth was explained by “freezing” of the elastic precursor decay in the area of interaction of the incident and reflected waves. A set of obtained data show that the current value of the Hugoniot elastic limit and plastic strain rate is rather associated with the rate of the elastic precursor decay than with the local rate of compression. The study has revealed the contributions of dislocation multiplications in elastic waves. It has been shown that independently of the compression history the material arrives at the minimum point between the elastic and plastic waves with the same density of mobile dislocations

  2. A comparative study on shock compression of nanocrystalline Al and Cu: Shock profiles and microscopic views of plasticity

    International Nuclear Information System (INIS)

    Ma, Wen; Hou, Yong; Zhu, Wenjun

    2013-01-01

    Shock compressions of nanocrystalline (nc) metals Al and Cu with the same grain size and texture are studied by using molecular dynamics simulations. Results have revealed that the shock front of both Al and Cu can be divided into three stages: elastic, grain-boundary-mediated, and dislocation-mediated plastic deformation. The transition planes among these three stages are proven to be non-planar by two-dimensional shock response analysis, including local stress, shear, temperature, and atom configuration. The difference between shocked Al and Cu is that the rise rate of the elastic stage of Cu is slightly higher than that of Al, and that the shock-front width of Al is wider than Cu at the same loading conditions. For the plastic stage, the dislocation density of shocked Al is lower than Cu, and the contribution of grain-boundary-mediated plasticity to shock front and strain for nc Al is more pronounced than for nc Cu. These results are explained through intrinsic material properties and atomistic analysis of the plastic process. In the case of the shocked Al sample, partial dislocations, perfect dislocations, and twins are observed, but few evidence of perfect dislocations and twins are observed in the shocked Cu

  3. Exploration of CdTe quantum dots as mesoscale pressure sensors via time-resolved shock-compression photoluminescent emission spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Zhitao [Georgia Tech Research Institute, Georgia Institute of Technology, Atlanta, Georgia 30332-0826 (United States); School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0245 (United States); Banishev, Alexandr A.; Christensen, James; Dlott, Dana D. [School of Chemical Sciences and Fredrick Seitz Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States); Lee, Gyuhyon; Scripka, David A.; Breidenich, Jennifer; Summers, Christopher J.; Thadhani, Naresh N., E-mail: naresh.thadhani@mse.gatech.edu [School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0245 (United States); Xiao, Pan [LNM, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190 (China); George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0405 (United States); Zhou, Min [George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0405 (United States)

    2016-07-28

    The nanometer size of CdTe quantum dots (QDs) and their unique optical properties, including size-tunable narrow photoluminescent emission, broad absorption, fast photoluminescence decay, and negligible light scattering, are ideal features for spectrally tagging the shock response of localized regions in highly heterogeneous materials such as particulate media. In this work, the time-resolved laser-excited photoluminescence response of QDs to shock-compression was investigated to explore their utilization as mesoscale sensors for pressure measurements and in situ diagnostics during shock loading experiments. Laser-driven shock-compression experiments with steady-state shock pressures ranging from 2.0 to 13 GPa were performed on nanocomposite films of CdTe QDs dispersed in a soft polyvinyl alcohol polymer matrix and in a hard inorganic sodium silicate glass matrix. Time-resolved photoluminescent emission spectroscopy was used to correlate photoluminescence changes with the history of shock pressure and the dynamics of the matrix material surrounding the QDs. The results revealed pressure-induced blueshifts in emitted wavelength, decreases in photoluminescent emission intensity, reductions in peak width, and matrix-dependent response times. Data obtained for these QD response characteristics serve as indicators for their use as possible time-resolved diagnostics of the dynamic shock-compression response of matrix materials in which such QDs are embedded as in situ sensors.

  4. Exploration of CdTe quantum dots as mesoscale pressure sensors via time-resolved shock-compression photoluminescent emission spectroscopy

    International Nuclear Information System (INIS)

    Kang, Zhitao; Banishev, Alexandr A.; Christensen, James; Dlott, Dana D.; Lee, Gyuhyon; Scripka, David A.; Breidenich, Jennifer; Summers, Christopher J.; Thadhani, Naresh N.; Xiao, Pan; Zhou, Min

    2016-01-01

    The nanometer size of CdTe quantum dots (QDs) and their unique optical properties, including size-tunable narrow photoluminescent emission, broad absorption, fast photoluminescence decay, and negligible light scattering, are ideal features for spectrally tagging the shock response of localized regions in highly heterogeneous materials such as particulate media. In this work, the time-resolved laser-excited photoluminescence response of QDs to shock-compression was investigated to explore their utilization as mesoscale sensors for pressure measurements and in situ diagnostics during shock loading experiments. Laser-driven shock-compression experiments with steady-state shock pressures ranging from 2.0 to 13 GPa were performed on nanocomposite films of CdTe QDs dispersed in a soft polyvinyl alcohol polymer matrix and in a hard inorganic sodium silicate glass matrix. Time-resolved photoluminescent emission spectroscopy was used to correlate photoluminescence changes with the history of shock pressure and the dynamics of the matrix material surrounding the QDs. The results revealed pressure-induced blueshifts in emitted wavelength, decreases in photoluminescent emission intensity, reductions in peak width, and matrix-dependent response times. Data obtained for these QD response characteristics serve as indicators for their use as possible time-resolved diagnostics of the dynamic shock-compression response of matrix materials in which such QDs are embedded as in situ sensors.

  5. Sandia National Laboratories: Working with Sandia: Procurement:

    Science.gov (United States)

    ; Technology Defense Systems & Assessments About Defense Systems & Assessments Program Areas Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios Contract Audit Working with Sandia Construction and Facilities Sandia establishes contracts to support

  6. Neurofilaments Function as Shock Absorbers: Compression Response Arising from Disordered Proteins

    Science.gov (United States)

    Kornreich, Micha; Malka-Gibor, Eti; Zuker, Ben; Laser-Azogui, Adi; Beck, Roy

    2016-09-01

    What can cells gain by using disordered, rather than folded, proteins in the architecture of their skeleton? Disordered proteins take multiple coexisting conformations, and often contain segments which act as random-walk-shaped polymers. Using x-ray scattering we measure the compression response of disordered protein hydrogels, which are the main stress-responsive component of neuron cells. We find that at high compression their mechanics are dominated by gaslike steric and ionic repulsions. At low compression, specific attractive interactions dominate. This is demonstrated by the considerable hydrogel expansion induced by the truncation of critical short protein segments. Accordingly, the floppy disordered proteins form a weakly cross-bridged hydrogel, and act as shock absorbers that sustain large deformations without failure.

  7. Expansion and compression shock wave calculation in pipes with the C.V.M. numerical method

    International Nuclear Information System (INIS)

    Raymond, P.; Caumette, P.; Le Coq, G.; Libmann, M.

    1983-03-01

    The Control Variables Method for fluid transients computations has been used to compute expansion and compression shock waves propagations. In this paper, first analytical solutions for shock wave and rarefaction wave propagation are detailed. Then after a rapid description of the C.V.M. technique and its stability and monotonicity properties, we will present some results about standard shock tube problem, reflection of shock wave, finally a comparison between experimental results obtained on the ELF facility and calculations is given

  8. Analysis of Z Pinch Shock Wave Experiments

    International Nuclear Information System (INIS)

    Asay, James; Budge, Kent G.; Chandler, Gordon; Fleming, Kevin; Hall, Clint; Holland, Kathleen; Konrad, Carl; Lawrence, Jeffery; Trott, Wayne; Trucano, Timothy

    1999-01-01

    In this paper, we report details of our computational study of two shock wave physics experiments performed on the Sandia Z machine in 1998. The novelty of these particular experiments is that they represent the first successful application of VISAR interferometry to diagnose shock waves generated in experimental payloads by the primary X-ray pulse of the machine. We use the Sandia shock-wave physics code ALEGRA to perform the simulations reported in this study. Our simulations are found to be in fair agreement with the time-resolved VISAR experimental data. However, there are also interesting and important discrepancies. We speculate as to future use of time-resolved shock wave data to diagnose details of the Z machine X-ray pulse in the future

  9. Process and application of shock compression by nanosecond pulses of frequency-doubled Nd:YAG laser

    Science.gov (United States)

    Sano, Yuji; Kimura, Motohiko; Mukai, Naruhiko; Yoda, Masaki; Obata, Minoru; Ogisu, Tatsuki

    2000-02-01

    The authors have developed a new process of laser-induced shock compression to introduce a residual compressive stress on material surface, which is effective for prevention of stress corrosion cracking (SCC) and enhancement of fatigue strength of metal materials. The process developed is unique and beneficial. It requires no pre-conditioning for the surface, whereas the conventional process requires that the so-called sacrificial layer is made to protect the surface from damage. The new process can be freely applied to water- immersed components, since it uses water-penetrable green light of a frequency-doubled Nd:YAG laser. The process developed has the potential to open up new high-power laser applications in manufacturing and maintenance technologies. The laser-induced shock compression process (LSP) can be used to improve a residual stress field from tensile to compressive. In order to understand the physics and optimize the process, the propagation of a shock wave generated by the impulse of laser irradiation and the dynamic response of the material were analyzed by time-dependent elasto-plastic calculations with a finite element program using laser-induced plasma pressure as an external load. The analysis shows that a permanent strain and a residual compressive stress remain after the passage of the shock wave with amplitude exceeding the yield strength of the material. A practical system materializing the LSP was designed, manufactured, and tested to confirm the applicability to core components of light water reactors (LWRs). The system accesses the target component and remotely irradiates laser pulses to the heat affected zone (HAZ) along weld lines. Various functional tests were conducted using a full-scale mockup facility, in which remote maintenance work in a reactor vessel could be simulated. The results showed that the system remotely accessed the target weld lines and successfully introduced a residual compressive stress. After sufficient training

  10. Transport in aluminized RDX under shock compression explored using molecular dynamics simulations

    International Nuclear Information System (INIS)

    Losada, M; Chaudhuri, S

    2014-01-01

    Shock response of energetic materials is controlled by a combination of mechanical response, thermal, transport, and chemical properties. How these properties interplay in condensed-phase energetic materials is of fundamental interest for improving predictive capabilities. Due to unknown nature of chemistry during the evolution and growth of high-temperature regions within the energetic material (so called hot spots), the connection between reactive and unreactive equations of state contain a high degree of empiricism. In particular, chemistry in materials with high degree of heterogeneity such as aluminized HE is of interest. In order to identify shock compression states and transport properties in high-pressure/temperature (HP-HT) conditions, we use molecular dynamics (MD) simulations in conjunction with the multi-scale shock technique (MSST). Mean square displacement calculations enabled us to track the diffusivity of stable gas products. Among decomposition products, H 2 O and CO 2 are found to be the dominant diffusing species under compression conditions. Heat transport and diffusion rates in decomposed RDX are compared and the comparison shows that around 2000 K, transport can be a major contribution during propagation of the reaction front.

  11. Isentropic compression studies using the NHMFL single turn

    Energy Technology Data Exchange (ETDEWEB)

    Tasker, Douglas G [Los Alamos National Laboratory; Mielke, Charles [Los Alamos National Laboratory; Rodriguez, George [Los Alamos National Laboratory; Rickel, Dwight [Los Alamos National Laboratory

    2010-10-19

    Magnetic isentropic compression experiments (ICE) provide the most accurate shock free compression data for materials at megabar stresses. Recent ICE experiments performed on the Sandia Z-machine (Asay, 1999) and at the Los Alamos High Explosive Pulsed Power facility (Tasker, 2006) are providing our nation with data on material properties in extreme dynamic high stress environments. The LANL National High Magnetic Field Laboratory (NHMFL) can offer a less complex ICE experiment at high stresses (up to {approx}1Mbar) with a high sample throughput and relatively low cost. This is not to say that the NHMFL technique will replace the other methods but rather complement them. For example, NHMFL-ICE is ideal for the development of advanced diagnostics, e.g., to detect phase changes. We will discuss the physics of the NHMFL-ICE experiments and present data from the first proof-of-principle experiments that were performed in September 2010.

  12. Effect of a core-softened O-O interatomic interaction on the shock compression of fused silica

    Science.gov (United States)

    Izvekov, Sergei; Weingarten, N. Scott; Byrd, Edward F. C.

    2018-03-01

    Isotropic soft-core potentials have attracted considerable attention due to their ability to reproduce thermodynamic, dynamic, and structural anomalies observed in tetrahedral network-forming compounds such as water and silica. The aim of the present work is to assess the relevance of effective core-softening pertinent to the oxygen-oxygen interaction in silica to the thermodynamics and phase change mechanisms that occur in shock compressed fused silica. We utilize the MD simulation method with a recently published numerical interatomic potential derived from an ab initio MD simulation of liquid silica via force-matching. The resulting potential indicates an effective shoulder-like core-softening of the oxygen-oxygen repulsion. To better understand the role of the core-softening we analyze two derivative force-matching potentials in which the soft-core is replaced with a repulsive core either in the three-body potential term or in all the potential terms. Our analysis is further augmented by a comparison with several popular empirical models for silica that lack an explicit core-softening. The first outstanding feature of shock compressed glass reproduced with the soft-core models but not with the other models is that the shock compression values at pressures above 20 GPa are larger than those observed under hydrostatic compression (an anomalous shock Hugoniot densification). Our calculations indicate the occurrence of a phase transformation along the shock Hugoniot that we link to the O-O repulsion core-softening. The phase transformation is associated with a Hugoniot temperature reversal similar to that observed experimentally. With the soft-core models, the phase change is an isostructural transformation between amorphous polymorphs with no associated melting event. We further examine the nature of the structural transformation by comparing it to the Hugoniot calculations for stishovite. For stishovite, the Hugoniot exhibits temperature reversal and associated

  13. Propagation of Shock on NREL Phase VI Wind Turbine Airfoil under Compressible Flow

    Directory of Open Access Journals (Sweden)

    Mohammad A. Hossain

    2013-01-01

    Full Text Available The work is focused on numeric analysis of compressible flow around National Renewable Energy Laboratory (NREL phase VI wind turbine blade airfoil S809. Although wind turbine airfoils are low Reynolds number airfoils, a reasonable investigation of compressible flow under extreme condition might be helpful. A subsonic flow (mach no. M=0.8 has been considered for this analysis and the impacts of this flow under seven different angles of attack have been determined. The results show that shock takes place just after the mid span at the top surface and just before the mid span at the bottom surface at zero angle of attack. Slowly the shock waves translate their positions as angle of attack increases. A relative translation of the shock waves in upper and lower face of the airfoil are presented. Variation of Turbulent viscosity ratio and surface Y+ have also been determined. A k-ω SST turbulent model is considered and the commercial CFD code ANSYS FLUENT is used to find the pressure coefficient (Cp as well as the lift (CL and drag coefficients (CD. A graphical comparison of shock propagation has been shown with different angle of attack. Flow separation and stream function are also determined.

  14. Phase transition of KCl under shock compression

    CERN Document Server

    Mashimo, T; Tsumoto, K; Zhang, Y; Ando, S; Tonda, H

    2002-01-01

    It had been reported that for potassium chloride (KCl) the B1-B2 phase transition (PT) occurs under shock and static compressions, but the measured transition points showed large scatter. In this study, Hugoniot measurement experiments were performed on KCl single crystals by the inclined-mirror method combined with use of a powder gun. The anisotropic Hugoniot elastic limits and PT points were observed. The PT points along the (100), (110) and (111) axis directions were determined as 2.5, 2.2 and 2.1 GPa, respectively. The anisotropic transition was reasonably explained in terms of the displacement mechanism along the (111) axis direction.

  15. The density compression ratio of shock fronts associated with coronal mass ejections

    Directory of Open Access Journals (Sweden)

    Kwon Ryun-Young

    2018-01-01

    Full Text Available We present a new method to extract the three-dimensional electron density profile and density compression ratio of shock fronts associated with coronal mass ejections (CMEs observed in white light coronagraph images. We demonstrate the method with two examples of fast halo CMEs (∼2000 km s−1 observed on 2011 March 7 and 2014 February 25. Our method uses the ellipsoid model to derive the three-dimensional geometry and kinematics of the fronts. The density profiles of the sheaths are modeled with double-Gaussian functions with four free parameters, and the electrons are distributed within thin shells behind the front. The modeled densities are integrated along the lines of sight to be compared with the observed brightness in COR2-A, and a χ2 approach is used to obtain the optimal parameters for the Gaussian profiles. The upstream densities are obtained from both the inversion of the brightness in a pre-event image and an empirical model. Then the density ratio and Alfvénic Mach number are derived. We find that the density compression peaks around the CME nose, and decreases at larger position angles. The behavior is consistent with a driven shock at the nose and a freely propagating shock wave at the CME flanks. Interestingly, we find that the supercritical region extends over a large area of the shock and lasts longer (several tens of minutes than past reports. It follows that CME shocks are capable of accelerating energetic particles in the corona over extended spatial and temporal scales and are likely responsible for the wide longitudinal distribution of these particles in the inner heliosphere. Our results also demonstrate the power of multi-viewpoint coronagraphic observations and forward modeling in remotely deriving key shock properties in an otherwise inaccessible regime.

  16. Nanosecond formation of diamond and lonsdaleite by shock compression of graphite.

    Science.gov (United States)

    Kraus, D; Ravasio, A; Gauthier, M; Gericke, D O; Vorberger, J; Frydrych, S; Helfrich, J; Fletcher, L B; Schaumann, G; Nagler, B; Barbrel, B; Bachmann, B; Gamboa, E J; Göde, S; Granados, E; Gregori, G; Lee, H J; Neumayer, P; Schumaker, W; Döppner, T; Falcone, R W; Glenzer, S H; Roth, M

    2016-03-14

    The shock-induced transition from graphite to diamond has been of great scientific and technological interest since the discovery of microscopic diamonds in remnants of explosively driven graphite. Furthermore, shock synthesis of diamond and lonsdaleite, a speculative hexagonal carbon polymorph with unique hardness, is expected to happen during violent meteor impacts. Here, we show unprecedented in situ X-ray diffraction measurements of diamond formation on nanosecond timescales by shock compression of pyrolytic as well as polycrystalline graphite to pressures from 19 GPa up to 228 GPa. While we observe the transition to diamond starting at 50 GPa for both pyrolytic and polycrystalline graphite, we also record the direct formation of lonsdaleite above 170 GPa for pyrolytic samples only. Our experiment provides new insights into the processes of the shock-induced transition from graphite to diamond and uniquely resolves the dynamics that explain the main natural occurrence of the lonsdaleite crystal structure being close to meteor impact sites.

  17. Shock wave and flame front induced detonation in a rapid compression machine

    Science.gov (United States)

    Wang, Y.; Qi, Y.; Xiang, S.; Mével, R.; Wang, Z.

    2018-05-01

    The present study focuses on one mode of detonation initiation observed in a rapid compression machine (RCM). This mode is referred to as shock wave and flame front-induced detonation (SWFID). Experimental high-speed imaging and two-dimensional numerical simulations with skeletal chemistry are combined to unravel the dominant steps of detonation initiation under SWFID conditions. It is shown that the interaction between the shock wave generated by the end-gas auto-ignition and the spherical flame creates a region of high pressure and temperature which enables the acceleration of the flame front and the detonation onset. The experimental observation lacks adequate spatial and temporal resolution despite good reproducibility of the detonation onset. Based on the numerical results, phenomenological interpretation of the event within the framework of shock wave refraction indicates that the formation of a free-precursor shock wave at the transition between regular and irregular refraction may be responsible for detonation onset. The present results along with previous findings on shock wave reflection-induced detonation in the RCM indicate that super-knock occurs after the interaction of the shock wave generated by end-gas auto-ignition with the RCM walls, preignition flame, or another shock wave.

  18. Flow Strength of Shocked Aluminum in the Solid-Liquid Mixed Phase Region

    Science.gov (United States)

    Reinhart, William

    2011-06-01

    Shock waves have been used to determine material properties under high shock stresses and very-high loading rates. The determination of mechanical properties such as compressive strength under shock compression has proven to be difficult and estimates of strength have been limited to approximately 100 GPa or less in aluminum. The term ``strength'' has been used in different ways. For a Von-Mises solid, the yield strength is equal to twice the shear strength of the material and represents the maximum shear stress that can be supported before yield. Many of these concepts have been applied to materials that undergo high strain-rate dynamic deformation, as in uni-axial strain shock experiments. In shock experiments, it has been observed that the shear stress in the shocked state is not equal to the shear strength, as evidenced by elastic recompressions in reshock experiments. This has led to an assumption that there is a yield surface with maximum (loading)and minimum (unloading), shear strength yet the actual shear stress lies somewhere between these values. This work provides the first simultaneous measurements of unloading velocity and flow strength for transition of solid aluminum to the liquid phase. The investigation describes the flow strength observed in 1100 (pure), 6061-T6, and 2024 aluminum in the solid-liquid mixed phase region. Reloading and unloading techniques were utilized to provide independent data on the two unknowns (τc and τo) , so that the actual critical shear strength and the shear stress at the shock state could be estimated. Three different observations indicate a change in material response for stresses of 100 to 160 GPa; 1) release wave speed (reloading where applicable) measurements, 2) yield strength measurements, and 3) estimates of Poisson's ratio, all of which provide information on the melt process including internal consistency and/or non-equilibrium and rate-dependent melt behavior. The study investigates the strength properties

  19. Sandia National Laboratories: Working with Sandia

    Science.gov (United States)

    Defense Systems & Assessments About Defense Systems & Assessments Program Areas Accomplishments Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios /Facilities Contract Audit Technology Partnerships Sandia collaborates with industry, small businesses

  20. Laser-excited optical emission response of CdTe quantum dot/polymer nanocomposite under shock compression

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Pan [LNM, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190 (China); George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0405 (United States); Kang, Zhitao; Summers, Christopher J. [Phosphor Technology Center of Excellence, Georgia Tech Research Institute, Georgia Institute of Technology, Atlanta, Georgia 30332-0826 (United States); Bansihev, Alexandr A.; Christensen, James M.; Dlott, Dana D. [School of Chemical Sciences and Frederick Seitz Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States); Breidenich, Jennifer; Scripka, David A.; Thadhani, Naresh N. [School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0245 (United States); Zhou, Min, E-mail: min.zhou@gatech.edu [George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0405 (United States); School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0245 (United States)

    2016-01-04

    Laser-driven shock compression experiments and corresponding finite element method simulations are carried out to investigate the blueshift in the optical emission spectra under continuous laser excitation of a dilute composite consisting of 0.15% CdTe quantum dots by weight embedded in polyvinyl alcohol polymer. This material is a potential candidate for use as internal stress sensors. The analyses focus on the time histories of the wavelength blue-shift for shock loading with pressures up to 7.3 GPa. The combined measurements and calculations allow a relation between the wavelength blueshift and pressure for the loading conditions to be extracted. It is found that the blueshift first increases with pressure to a maximum and subsequently decreases with pressure. This trend is different from the monotonic increase of blueshift with pressure observed under conditions of quasistatic hydrostatic compression. Additionally, the blueshift in the shock experiments is much smaller than that in hydrostatic experiments at the same pressure levels. The differences in responses are attributed to the different stress states achieved in the shock and hydrostatic experiments and the time dependence of the mechanical response of the polymer in the composite. The findings offer a potential guide for the design and development of materials for internal stress sensors for shock conditions.

  1. A volume-filtered formulation to capture particle-shock interactions in multiphase compressible flows

    Science.gov (United States)

    Shallcross, Gregory; Capecelatro, Jesse

    2017-11-01

    Compressible particle-laden flows are common in engineering systems. Applications include but are not limited to water injection in high-speed jet flows for noise suppression, rocket-plume surface interactions during planetary landing, and explosions during coal mining operations. Numerically, it is challenging to capture these interactions due to the wide range of length and time scales. Additionally, there are many forms of the multiphase compressible flow equations with volume fraction effects, some of which are conflicting in nature. The purpose of this presentation is to develop the capability to accurately capture particle-shock interactions in systems with a large number of particles from dense to dilute regimes. A thorough derivation of the volume filtered equations is presented. The volume filtered equations are then implemented in a high-order, energy-stable Eulerian-Lagrangian framework. We show this framework is capable of decoupling the fluid mesh from the particle size, enabling arbitrary particle size distributions in the presence of shocks. The proposed method is then assessed against particle-laden shock tube data. Quantities of interest include fluid-phase pressure profiles and particle spreading rates. The effect of collisions in 2D and 3D are also evaluated.

  2. Shock-wave compression of lithium niobate from 2.4 to 44 GPa

    International Nuclear Information System (INIS)

    Stanton, P.L.; Graham, R.A.

    1979-01-01

    Shock compression of lithium niobate above the Hugoniot elastic limit (about 2.5 GPa) reveals a succession of unusual features. Just above the Hugoniot elastic limit, the shock velocity is observed to be well below the bulk sound speed, indicative of a drastic reduction of shear strength. The shock velocity is observed to increase with particle velocity at an unusually large rate due to the reduction of strength in a very stiff material and an anomalously large pressure derivative of the bulk modulus. This later behavior may be due to the effects of localized shock heating resulting from heterogeneous shear deformation in ferroelectrics like lithium niobate and lithium tantalate in which increases in temperature are shown to have a strong effect on bulk modulus. A shock-induced polymorphic phase transition occurs at 13.9 GPa. Above the transition point the slope of the Hugoniot curve relating shock velocity and particle velocity is unusually low, indicative of a broad mixed phase region of undetermined extent. Limited work is reported on the isomorphous crystal, lithium tantalate, which exhibits features similar to lithium niobate with a Hugoniot elastic limit of 4 GPa and a phase transition in the vicinity of 19 GPa

  3. Simulations of X-ray diffraction of shock-compressed single-crystal tantalum with synchrotron undulator sources.

    Science.gov (United States)

    Tang, M X; Zhang, Y Y; E, J C; Luo, S N

    2018-05-01

    Polychromatic synchrotron undulator X-ray sources are useful for ultrafast single-crystal diffraction under shock compression. Here, simulations of X-ray diffraction of shock-compressed single-crystal tantalum with realistic undulator sources are reported, based on large-scale molecular dynamics simulations. Purely elastic deformation, elastic-plastic two-wave structure, and severe plastic deformation under different impact velocities are explored, as well as an edge release case. Transmission-mode diffraction simulations consider crystallographic orientation, loading direction, incident beam direction, X-ray spectrum bandwidth and realistic detector size. Diffraction patterns and reciprocal space nodes are obtained from atomic configurations for different loading (elastic and plastic) and detection conditions, and interpretation of the diffraction patterns is discussed.

  4. Simulations of X-ray diffraction of shock-compressed single-crystal tantalum with synchrotron undulator sources

    Energy Technology Data Exchange (ETDEWEB)

    Tang, M. X.; Zhang, Y. Y.; E, J. C.; Luo, S. N.

    2018-04-24

    Polychromatic synchrotron undulator X-ray sources are useful for ultrafast single-crystal diffraction under shock compression. Here, simulations of X-ray diffraction of shock-compressed single-crystal tantalum with realistic undulator sources are reported, based on large-scale molecular dynamics simulations. Purely elastic deformation, elastic–plastic two-wave structure, and severe plastic deformation under different impact velocities are explored, as well as an edge release case. Transmission-mode diffraction simulations consider crystallographic orientation, loading direction, incident beam direction, X-ray spectrum bandwidth and realistic detector size. Diffraction patterns and reciprocal space nodes are obtained from atomic configurations for different loading (elastic and plastic) and detection conditions, and interpretation of the diffraction patterns is discussed.

  5. Analysis of internal stress and anelasticity in the shock-compressed state from unloading wave data

    International Nuclear Information System (INIS)

    Johnson, J.N.; Lomdahl, P.S.; Wills, J.M.

    1991-01-01

    This paper reports on time resolved shock-wave measurements have often been used to infer microstructural behavior in crystalline solids. The authors apply this approach to an interpretation of the release-wave response of an aluminum alloy (6061-T6) as it is dynamically unloaded from a shock-compressed state of 20.7 GPa. The anelastic behavior in the initial portion of the unloading wave is attributed to the accumulation of internal stresses created by the shock process. Specific internal-stress models which are investigated are the double pile-up, the single pile-up, and single dislocation loops between pinning points. It is found that the essential characteristics of double and single pile-ups can be represented by a single dislocation between two pinned dislocations of like sing. Calculations of anelastic wave speeds at constant unloading strain rate are then compared with experimental data. The results suggest that the residual internal stress is due to pinned loops of density 10 15 M - 2 , and the viscous drag coefficient in the shock-compressed state is on the order of 10 - 7 MPa s (approximately two orders of magnitude greater than expected under ambient conditions)

  6. The α-γ-ɛ triple point and phase boundaries of iron under shock compression

    Science.gov (United States)

    Li, Jun; Wu, Qiang; Xue, Tao; Geng, Huayun; Yu, Jidong; Jin, Ke; Li, Jiabo; Tan, Ye; Xi, Feng

    2017-07-01

    The phase transition of iron under shock compression has attracted much attention in recent decades because of its importance in fields such as condensed matter physics, geophysics, and metallurgy. At room temperature, the transition of iron from the α-phase (bcc) to the ɛ-phase (hpc) occurs at a stress of 13 GPa. At high temperature, a triple point followed by transformation to the γ-phase (fcc) is expected. However, the details of the high-temperature phase transitions of iron are still under debate. Here, we investigate the phase-transition behavior of polycrystalline iron under compression from room temperature to 820 K. The results show that the shock-induced phase transition is determined unequivocally from the measured three-wave-structure profiles, which clearly consist of an elastic wave, a plastic wave, and a phase-transition wave. The phase transition is temperature-dependent, with an average rate Δσtr/ΔT of -6.91 MPa/K below 700 K and -34.7 MPa/K at higher temperatures. The shock α-ɛ and α-γ phase boundaries intersect at 10.6 ± 0.53 GPa and 763 K, which agrees with the α-ɛ-γ triple point from early shock wave experiments and recent laser-heated diamond-anvil cell resistivity and in situ X-ray diffraction data but disagrees with the shock pressure-temperature phase diagram reported in 2009 by Zaretsky [J. Appl. Phys. 106, 023510 (2009)].

  7. Numerical investigation on target implosions driven by radiation ablation and shock compression in dynamic hohlraums

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Delong; Sun, Shunkai; Zhao, Yingkui; Ding, Ning; Wu, Jiming; Dai, Zihuan; Yin, Li; Zhang, Yang; Xue, Chuang [Institute of Applied Physics and Computational Mathematics, Beijing 100088 (China)

    2015-05-15

    In a dynamic hohlraum driven inertial confinement fusion (ICF) configuration, the target may experience two different kinds of implosions. One is driven by hohlraum radiation ablation, which is approximately symmetric at the equator and poles. The second is caused by the radiating shock produced in Z-pinch dynamic hohlraums, only taking place at the equator. To gain a symmetrical target implosion driven by radiation ablation and avoid asymmetric shock compression is a crucial issue in driving ICF using dynamic hohlraums. It is known that when the target is heated by hohlraum radiation, the ablated plasma will expand outward. The pressure in the shocked converter plasma qualitatively varies linearly with the material temperature. However, the ablation pressure in the ablated plasma varies with 3.5 power of the hohlraum radiation temperature. Therefore, as the hohlraum temperature increases, the ablation pressure will eventually exceed the shock pressure, and the expansion of the ablated plasma will obviously weaken the shock propagation and decrease its velocity after propagating into the ablator plasma. Consequently, longer time duration is provided for the symmetrical target implosion driven by radiation ablation. In this paper these processes are numerically investigated by changing drive currents or varying load parameters. The simulation results show that a critical hohlraum radiation temperature is needed to provide a high enough ablation pressure to decelerate the shock, thus providing long enough time duration for the symmetric fuel compression driven by radiation ablation.

  8. Finite Strain Analysis of Shock Compression of Brittle Solids Applied to Titanium Diboride

    Science.gov (United States)

    2014-07-01

    dislocation motion [18,19] may take place at high pressures. Multiple investigations have discovered that tita - nium diboride demonstrates a rather unique...mean stress under shock compression. It has been suggested [5] that pore collapse may be an important source of inelasticity in tita - nium diboride

  9. Sandia National Laboratories: Sandia National Laboratories: Missions:

    Science.gov (United States)

    Defense Systems & Assessments: About Us Sandia National Laboratories Exceptional service in ; Security Weapons Science & Technology Defense Systems & Assessments About Defense Systems & Information Construction & Facilities Contract Audit Sandia's Economic Impact Licensing & Technology

  10. Density Functional Methods for Shock Physics and High Energy Density Science

    Science.gov (United States)

    Desjarlais, Michael

    2017-06-01

    Molecular dynamics with density functional theory has emerged over the last two decades as a powerful and accurate framework for calculating thermodynamic and transport properties with broad application to dynamic compression, high energy density science, and warm dense matter. These calculations have been extensively validated against shock and ramp wave experiments, are a principal component of high-fidelity equation of state generation, and are having wide-ranging impacts on inertial confinement fusion, planetary science, and shock physics research. In addition to thermodynamic properties, phase boundaries, and the equation of state, one also has access to electrical conductivity, thermal conductivity, and lower energy optical properties. Importantly, all these properties are obtained within the same theoretical framework and are manifestly consistent. In this talk I will give a brief history and overview of molecular dynamics with density functional theory and its use in calculating a wide variety of thermodynamic and transport properties for materials ranging from ambient to extreme conditions and with comparisons to experimental data. I will also discuss some of the limitations and difficulties, as well as active research areas. Sandia is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  11. MMS observations of the Earth bow shock during magnetosphere compression and expansion: comparison of whistler wave properties around the shock ramp

    Science.gov (United States)

    Russell, C. T.; Strangeway, R. J.; Schwartz, S. J.

    2017-12-01

    The Magnetospheric Multiscale (MMS) spacecraft, with their state-of-the-art plasma and field instruments onboard, allow us to investigate electromagnetic waves at the bow shock and their association with small-scale disturbances in the shocked plasmas. Understanding these waves could improve our knowledge on the heating of electrons and ions across the shock ramp and the energy dissipation of supercritical shocks. We have found broad-band and narrow band waves across the shock ramp and slightly downstream. The broad-band waves propagate obliquely to the magnetic field direction and have frequencies up to the electron cyclotron frequency, while the narrow-band waves have frequencies of a few hundred Hertz, durations under a second, and are right-handed circularly polarized and propagate along the magnetic field lines. Both wave types are likely to be whistler mode with different generation mechanisms. When the solar wind pressure changes, MMS occasionally observed a pair of bow shocks when the magnetosphere was compressed and then expanded. We compare the wave observations under these two situations to understand their roles in the shock ramp as well as the upstream and downstream plasmas.

  12. Sandia National Laboratories: Sandia Enabled Communications and

    Science.gov (United States)

    Locator Search Menu About Leadership Mission Social Media Community Involvement Contribution Programs Social Media Careers View All Jobs Students & Postdocs Benefits & Perks Hiring Process Life at New Mexico Small Business Assistance Program Sandia's Economic Impact Sandia Science & Technology

  13. Nitro Stretch Probing of a Single Molecular Layer to Monitor Shock Compression with Picosecond Time-Resolution

    Science.gov (United States)

    Berg, Christopher; Lagutchev, Alexei; Fu, Yuanxi; Dlott, Dana

    2011-06-01

    To obtain maximum possible temporal resolution, laser-driven shock compression of a molecular monolayer was studied using vibrational spectroscopy. The stretching transitions of nitro groups bound to aromatic rings was monitored using a nonlinear coherent infrared spectroscopy termed sum-frequency generation, which produced high-quality signals from this very thin layer. To overcome the shock opacity problem, a novel polymer overcoat method allowed us to make the observation window (witness plate) a few micrometers thick. The high signal-to-noise ratios (>100:1) obtained via this spectroscopy allowed us to study detailed behavior of the shocked molecules. To help interpret these vibrational spectra, additional spectra were obtained under conditions of static pressures up to 10 GPa and static temperatures up to 1000 C. Consequently, this experiment represents a significant step in resolving molecular dynamics during shock compression and unloading with both high spatial and temporal resolution. Supported by the Stewardship Sciences Academic Alliance Program from the Carnegie-DOE Alliance Center under grant number DOE CIW 4-3253-13 and the US Air Force Office of Scientific Research under award number FAA9550-09-1-0163.

  14. Committee to evaluate Sandia`s risk expertise: Final report. Volume 1: Presentations

    Energy Technology Data Exchange (ETDEWEB)

    Dudley, E.C.

    1998-05-01

    On July 1--2, 1997, Sandia National Laboratories hosted the External Committee to Evaluate Sandia`s Risk Expertise. Under the auspices of SIISRS (Sandia`s International Institute for Systematic Risk Studies), Sandia assembled a blue-ribbon panel of experts in the field of risk management to assess their risk programs labs-wide. Panelists were chosen not only for their own expertise, but also for their ability to add balance to the panel as a whole. Presentations were made to the committee on the risk activities at Sandia. In addition, a tour of Sandia`s research and development programs in support of the US Nuclear Regulatory Commission was arranged. The panel attended a poster session featuring eight presentations and demonstrations for selected projects. Overviews and viewgraphs from the presentations are included in Volume 1 of this report. Presentations are related to weapons, nuclear power plants, transportation systems, architectural surety, environmental programs, and information systems.

  15. Sandia National Laboratories: Sandia National Laboratories: Missions:

    Science.gov (United States)

    Responsibility History Diversity Social Media Careers View All Jobs Students & Postdocs Benefits & Perks Technology Deployment Centers New Mexico Small Business Assistance Program Sandia's Economic Impact Sandia interest Menu Search Icon Locations Contact Us Employee Locator Search Menu About Leadership Mission Social

  16. Thermophysical properties of liquid carbon dioxide under shock compressions: quantum molecular dynamic simulations.

    Science.gov (United States)

    Wang, Cong; Zhang, Ping

    2010-10-07

    Quantum molecular dynamics were used to calculate the equation of state, electrical, and optical properties of liquid carbon dioxide along the Hugoniot at shock pressures up to 74 GPa. The principal Hugoniot derived from the calculated equation of state is in good agreement with experimental results. Molecular dissociation and recombination are investigated through pair correlation functions and decomposition of carbon dioxide is found to be between 40 and 50 GPa along the Hugoniot, where nonmetal-metal transition is observed. In addition, the optical properties of shock compressed carbon dioxide are also theoretically predicted along the Hugoniot.

  17. Melting under shock compression

    International Nuclear Information System (INIS)

    Bennett, B.I.

    1980-10-01

    A simple model, using experimentally measured shock and particle velocities, is applied to the Lindemann melting formula to predict the density, temperature, and pressure at which a material will melt when shocked from room temperature and zero pressure initial conditions

  18. Sandia National Laboratories: Working with Sandia: Accounts Payable

    Science.gov (United States)

    Defense Systems & Assessments About Defense Systems & Assessments Program Areas Accomplishments Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios and Facilities Contract Audit Working with Sandia Accounts Payable Invoice processing Electronic

  19. Sandia National Laboratories: Working with Sandia: Small Business

    Science.gov (United States)

    Does Sandia Buy? Opportunities Small Business Procurement Technical Assistance Program (PTAP) Current Technology Partnerships Business, Industry, & Non-Profits Government Universities Center for Mexico Small Business Assistance Program Sandia Science & Technology Park Careers Community

  20. Shock Thermodynamic Applied Research Facility (STAR)

    Data.gov (United States)

    Federal Laboratory Consortium — The STAR facility, within Sandia's Solid Dynamic Physics Department, is one of a few institutions in the world with a major shock-physics program. This is the only...

  1. Measurements of the equations of state and spectrum of nonideal xenon plasma under shock compression

    International Nuclear Information System (INIS)

    Zheng, J.; Gu, Y. J.; Chen, Z. Y.; Chen, Q. F.

    2010-01-01

    Experimental equations of state on generation of nonideal xenon plasma by intense shock wave compression was presented in the ranges of pressure of 2-16 GPa and temperature of 31-50 kK, and the xenon plasma with the nonideal coupling parameter Γ range from 0.6-2.1 was generated. The shock wave was produced using the flyer plate impact and accelerated up to ∼6 km/s with a two-stage light gas gun. Gaseous specimens were shocked from two initial pressures of 0.80 and 4.72 MPa at room temperature. Time-resolved spectral radiation histories were recorded by using a multiwavelength channel pyrometer. The transient spectra with the wavelength range of 460-700 nm were recorded by using a spectrometer to evaluate the shock temperature. Shock velocity was measured and particle velocity was determined by the impedance matching methods. The equations of state of xenon plasma and ionization degree have been discussed in terms of the self-consistent fluid variational theory.

  2. Measurements of the equations of state and spectrum of nonideal xenon plasma under shock compression

    Science.gov (United States)

    Zheng, J.; Gu, Y. J.; Chen, Z. Y.; Chen, Q. F.

    2010-08-01

    Experimental equations of state on generation of nonideal xenon plasma by intense shock wave compression was presented in the ranges of pressure of 2-16 GPa and temperature of 31-50 kK, and the xenon plasma with the nonideal coupling parameter Γ range from 0.6-2.1 was generated. The shock wave was produced using the flyer plate impact and accelerated up to ˜6km/s with a two-stage light gas gun. Gaseous specimens were shocked from two initial pressures of 0.80 and 4.72 MPa at room temperature. Time-resolved spectral radiation histories were recorded by using a multiwavelength channel pyrometer. The transient spectra with the wavelength range of 460-700 nm were recorded by using a spectrometer to evaluate the shock temperature. Shock velocity was measured and particle velocity was determined by the impedance matching methods. The equations of state of xenon plasma and ionization degree have been discussed in terms of the self-consistent fluid variational theory.

  3. The principal Hugoniot of Mg2SiO4 to 950 GPa

    Science.gov (United States)

    Townsend, J. P.; Root, S.; Shulenburger, L.; Lemke, R. W.; Kraus, R. G.; Jacobsen, S. B.; Spaulding, D.; Davies, E.; Stewart, S. T.

    2017-12-01

    We present new measurements and ab-initio calculations of the principal Hugoniot states of forsterite Mg2SiO4 in the liquid regime between 200-950 GPa.Forsterite samples were shock compressed along the principal Hugoniot using plate-impact shock compression experiments on the Sandia National Laboratories Z machine facility.In order to gain insight into the physical state of the liquid, we performed quantum molecular dynamics calculations of the Hugoniot and compare the results to experiment.We show that the principal Hugoniot is consistent with that of a single molecular fluid phase of Mg2SiO4, and compare our results to previous dynamic compression experiments and QMD calculations.Finally, we discuss how the results inform planetary accretion and impact models.Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

  4. The high current, fast, 100ns, Linear Transformer Driver (LTD) developmental project at Sandia National Laboratories

    International Nuclear Information System (INIS)

    Ward, Kevin S.; Long, Finis W.; Sinebryukhov, Vadim A.; Kim, Alexandre A.; Wakeland, Peter Eric; McKee, G. Randall; Woodworth, Joseph Ray; McDaniel, Dillon Heirman; Fowler, William E.; Mazarakis, Michael Gerrassimos; Porter, John Larry Jr.; Struve, Kenneth William; Stygar, William A.; LeChien, Keith R.; Matzen, Maurice Keith

    2010-01-01

    Sandia National Laboratories, Albuquerque, N.M., USA, in collaboration with the High Current Electronic Institute (HCEI), Tomsk, Russia, is developing a new paradigm in pulsed power technology: the Linear Transformer Driver (LTD) technology. This technological approach can provide very compact devices that can deliver very fast high current and high voltage pulses straight out of the cavity with out any complicated pulse forming and pulse compression network. Through multistage inductively insulated voltage adders, the output pulse, increased in voltage amplitude, can be applied directly to the load. The load may be a vacuum electron diode, a z-pinch wire array, a gas puff, a liner, an isentropic compression load (ICE) to study material behavior under very high magnetic fields, or a fusion energy (IFE) target. This is because the output pulse rise time and width can be easily tailored to the specific application needs. In this paper we briefly summarize the developmental work done in Sandia and HCEI during the last few years, and describe our new MYKONOS Sandia High Current LTD Laboratory.

  5. Isentropic Compression of Iron with the Z Accelerator

    International Nuclear Information System (INIS)

    Asay, J.R.; Bernard, M.A.; Hall, C.A.; Hayes, D.B.; Holland, K.G.; McDaniel, D.H.; Rosenthal, S.E.; Spielman, R.B.; Stygar, W.A.

    1999-01-01

    Development of isentropic loading techniques is a long standing goal of the shock physics community. The authors have used the Sandia Z Accelerator to produce smoothly increasing pressure loading on planar iron specimens over time durations of 100 ns and for pressures to 300 Mbar. Free surface velocity measurements on the rear surface of the continuously loaded specimens were made on specimens 0.5-mm and 0.8-mm thick and clearly show the effects of wave evolution into the well known two-wave structure resulting from the α-var e psilon phase transition beginning at 125 kbar. The resulting wave profiles are analyzed with a rate-dependent, phase transition model to extract information on phase transformation kinetics for isentropic compression of iron. Comparison of the experiments and calculations demonstrate the value of isentropic loading for studying phase transition kinetics

  6. Time-resolved light emission of a, c, and r-cut sapphires shock-compressed to 65 GPa

    Science.gov (United States)

    Liu, Q. C.; Zhou, X. M.

    2018-04-01

    To investigate light emission and dynamic deformation behaviors, sapphire (single crystal Al2O3) samples with three crystallographic orientations (a, c, and r-cut) were shock-compressed by the planar impact method, with final stress ranges from 47 to 65 GPa. Emission radiance and velocity versus time profiles were simultaneously measured with a fast pyrometer and a Doppler pin system in each experiment. Wave profile results show anisotropic elastic-plastic transitions, which confirm the literature observations. Under final shock stress of about 52 GPa, lower emission intensity is observed in the r-cut sample, in agreement with the previous report in the literature. When final shock stress increases to 57 GPa and 65 GPa, spectral radiance histories of the r-cut show two stages of distinct features. In the first stage, the emission intensity of r-cut is lower than those of the other two, which agrees with the previous report in the literature. In the second stage, spectral radiance of r-cut increases with time at much higher rate and it finally peaks over those of the a and c-cut. These observations (conversion of intensified emission in the r-cut) may indicate activation of a second slip system and formation of shear bands which are discussed with the resolved shear stress calculations for the slip systems in each of the three cuts under shock compression.

  7. Shock waves in gas and plasma

    International Nuclear Information System (INIS)

    Niu, K.

    1996-01-01

    A shock wave is a discontinuous surface that connects supersonic flow with subsonic flow. After a shock wave, flow velocity is reduced, and pressure and temperature increase; entropy especially increases across a shock wave. Therefore, flow is in nonequilibrium, and irreversible processes occur inside the shock layer. The thickness of a shock wave in neutral gas is of the order of the mean free path of the fluid particle. A shock wave also appears in magnetized plasma. Provided that when the plasma flow is parallel to the magnetic field, a shock wave appears if the governing equation for velocity potential is in hyperbolic type in relation with the Mach number and the Alfven number. When the flow is perpendicular to the magnetic field, the Maxwell stress, in addition to the pressure, plays a role in the shock wave in plasma. When the plasma temperature is so high, as the plasma becomes collision-free, another type of shock wave appears. In a collision-free shock wave, gyromotions of electrons around the magnetic field lines cause the shock formation instead of collisions in a collision-dominant plasma or neutral gas. Regardless of a collision-dominant or collision-free shock wave, the fluid that passes through the shock wave is heated in addition to being compressed. In inertial confinement fusion, the fuel must be compressed. Really, implosion motion performs fuel compression. A shock wave, appearing in the process of implosion, compresses the fuel. The shock wave, however, heats the fuel more intensively, and it makes it difficult to compress the fuel further because high temperatures invite high pressure. Adiabatic compression of the fuel is the desired result during the implosion, without the formation of a shock wave. (Author)

  8. Birefringence and incipient plastic deformation in elastically overdriven [100] CaF2 under shock compression

    Science.gov (United States)

    Li, Y.; Zhou, X. M.; Cai, Y.; Liu, C. L.; Luo, S. N.

    2018-04-01

    [100] CaF2 single crystals are shock-compressed via symmetric planar impact, and the flyer plate-target interface velocity histories are measured with a laser displacement interferometry. The shock loading is slightly above the Hugoniot elastic limit to investigate incipient plasticity and its kinetics, and its effects on optical properties and deformation inhomogeneity. Fringe patterns demonstrate different features in modulation of fringe amplitude, including birefringence and complicated modulations. The birefringence is attributed to local lattice rotation accompanying incipient plasticity. Spatially resolved measurements show inhomogeneity in deformation, birefringence, and fringe pattern evolutions, most likely caused by the inhomogeneity associated with lattice rotation and dislocation slip. Transiently overdriven elastic states are observed, and the incubation time for incipient plasticity decreases inversely with increasing overdrive by the elastic shock.

  9. The Sandia MEMS passive shock sensor : FY07 maturation activities.

    Energy Technology Data Exchange (ETDEWEB)

    Houston, Jack E.; Blecke, Jill; Mitchell, John Anthony; Wittwer, Jonathan W.; Crowson, Douglas A.; Clemens, Rebecca C.; Walraven, Jeremy Allen; Epp, David S.; Baker, Michael Sean

    2008-08-01

    This report describes activities conducted in FY07 to mature the MEMS passive shock sensor. The first chapter of the report provides motivation and background on activities that are described in detail in later chapters. The second chapter discusses concepts that are important for integrating the MEMS passive shock sensor into a system. Following these two introductory chapters, the report details modeling and design efforts, packaging, failure analysis and testing and validation. At the end of FY07, the MEMS passive shock sensor was at TRL 4.

  10. Evaluation of XHVRB for Capturing Explosive Shock Desensitization

    Science.gov (United States)

    Tuttle, Leah; Schmitt, Robert; Kittell, Dave; Harstad, Eric

    2017-06-01

    Explosive shock desensitization phenomena have been recognized for some time. It has been demonstrated that pressure-based reactive flow models do not adequately capture the basic nature of the explosive behavior. Historically, replacing the local pressure with a shock captured pressure has dramatically improved the numerical modeling approaches. Models based upon shock pressure or functions of entropy have recently been developed. A pseudo-entropy based formulation using the History Variable Reactive Burn model, as proposed by Starkenberg, was implemented into the Eulerian shock physics code CTH. Improvements in the shock capturing algorithm were made. The model is demonstrated to reproduce single shock behavior consistent with published pop plot data. It is also demonstrated to capture a desensitization effect based on available literature data, and to qualitatively capture dead zones from desensitization in 2D corner turning experiments. This models shows promise for use in modeling and simulation problems that are relevant to the desensitization phenomena. Issues are identified with the current implementation and future work is proposed for improving and expanding model capabilities. Sandia National Laboratories is a multi-mission laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. DOE's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  11. Measurements of ionic structure in shock compressed lithium hydride from ultrafast x-ray Thomson scattering.

    Science.gov (United States)

    Kritcher, A L; Neumayer, P; Brown, C R D; Davis, P; Döppner, T; Falcone, R W; Gericke, D O; Gregori, G; Holst, B; Landen, O L; Lee, H J; Morse, E C; Pelka, A; Redmer, R; Roth, M; Vorberger, J; Wünsch, K; Glenzer, S H

    2009-12-11

    We present the first ultrafast temporally, spectrally, and angularly resolved x-ray scattering measurements from shock-compressed matter. The experimental spectra yield the absolute elastic and inelastic scattering intensities from the measured density of free electrons. Laser-compressed lithium-hydride samples are well characterized by inelastic Compton and plasmon scattering of a K-alpha x-ray probe providing independent measurements of temperature and density. The data show excellent agreement with the total intensity and structure when using the two-species form factor and accounting for the screening of ion-ion interactions.

  12. PARTICLE ACCELERATION AT THE HELIOSPHERIC TERMINATION SHOCK WITH A STOCHASTIC SHOCK OBLIQUITY APPROACH

    International Nuclear Information System (INIS)

    Arthur, Aaron D.; Le Roux, Jakobus A.

    2013-01-01

    Observations by the plasma and magnetic field instruments on board the Voyager 2 spacecraft suggest that the termination shock is weak with a compression ratio of ∼2. However, this is contrary to the observations of accelerated particle spectra at the termination shock, where standard diffusive shock acceleration theory predicts a compression ratio closer to ∼2.9. Using our focused transport model, we investigate pickup proton acceleration at a stationary spherical termination shock with a moderately strong compression ratio of 2.8 to include both the subshock and precursor. We show that for the particle energies observed by the Voyager 2 Low Energy Charged Particle (LECP) instrument, pickup protons will have effective length scales of diffusion that are larger than the combined subshock and precursor termination shock structure observed. As a result, the particles will experience a total effective termination shock compression ratio that is larger than values inferred by the plasma and magnetic field instruments for the subshock and similar to the value predicted by diffusive shock acceleration theory. Furthermore, using a stochastically varying magnetic field angle, we are able to qualitatively reproduce the multiple power-law structure observed for the LECP spectra downstream of the termination shock

  13. An efficient shock-capturing scheme for simulating compressible homogeneous mixture flow

    Energy Technology Data Exchange (ETDEWEB)

    Dang, Son Tung; Ha, Cong Tu; Park, Warn Gyu [School of Mechanical Engineering, Pusan National University, Busan (Korea, Republic of); Jung, Chul Min [Advanced Naval Technology CenterNSRDI, ADD, Changwon (Korea, Republic of)

    2016-09-15

    This work is devoted to the development of a procedure for the numerical solution of Navier-Stokes equations for cavitating flows with and without ventilation based on a compressible, multiphase, homogeneous mixture model. The governing equations are discretized on a general structured grid using a high-resolution shock-capturing scheme in conjunction with appropriate limiters to prevent the generation of spurious solutions near shock waves or discontinuities. Two well-known limiters are examined, and a new limiter is proposed to enhance the accuracy and stability of the numerical scheme. A sensitivity analysis is first conducted to determine the relative influences of various model parameters on the solution. These parameters are adopted for the computation of water flows over a hemispherical body, conical body and a divergent/convergent nozzle. Finally, numerical calculations of ventilated supercavitating flows over a hemispherical cylinder body with a hot propulsive jet are conducted to verify the capabilities of the numerical scheme.

  14. An efficient shock-capturing scheme for simulating compressible homogeneous mixture flow

    International Nuclear Information System (INIS)

    Dang, Son Tung; Ha, Cong Tu; Park, Warn Gyu; Jung, Chul Min

    2016-01-01

    This work is devoted to the development of a procedure for the numerical solution of Navier-Stokes equations for cavitating flows with and without ventilation based on a compressible, multiphase, homogeneous mixture model. The governing equations are discretized on a general structured grid using a high-resolution shock-capturing scheme in conjunction with appropriate limiters to prevent the generation of spurious solutions near shock waves or discontinuities. Two well-known limiters are examined, and a new limiter is proposed to enhance the accuracy and stability of the numerical scheme. A sensitivity analysis is first conducted to determine the relative influences of various model parameters on the solution. These parameters are adopted for the computation of water flows over a hemispherical body, conical body and a divergent/convergent nozzle. Finally, numerical calculations of ventilated supercavitating flows over a hemispherical cylinder body with a hot propulsive jet are conducted to verify the capabilities of the numerical scheme

  15. Uncertainty Assessments of 2D and Axisymmetric Hypersonic Shock Wave - Turbulent Boundary Layer Interaction Simulations at Compression Corners

    Science.gov (United States)

    Gnoffo, Peter A.; Berry, Scott A.; VanNorman, John W.

    2011-01-01

    This paper is one of a series of five papers in a special session organized by the NASA Fundamental Aeronautics Program that addresses uncertainty assessments for CFD simulations in hypersonic flow. Simulations of a shock emanating from a compression corner and interacting with a fully developed turbulent boundary layer are evaluated herein. Mission relevant conditions at Mach 7 and Mach 14 are defined for a pre-compression ramp of a scramjet powered vehicle. Three compression angles are defined, the smallest to avoid separation losses and the largest to force a separated flow engaging more complicated flow physics. The Baldwin-Lomax and the Cebeci-Smith algebraic models, the one-equation Spalart-Allmaras model with the Catrix-Aupoix compressibility modification and two-equation models including Menter SST, Wilcox k-omega 98, and Wilcox k-omega 06 turbulence models are evaluated. Each model is fully defined herein to preclude any ambiguity regarding model implementation. Comparisons are made to existing experimental data and Van Driest theory to provide preliminary assessment of model form uncertainty. A set of coarse grained uncertainty metrics are defined to capture essential differences among turbulence models. Except for the inability of algebraic models to converge for some separated flows there is no clearly superior model as judged by these metrics. A preliminary metric for the numerical component of uncertainty in shock-turbulent-boundary-layer interactions at compression corners sufficiently steep to cause separation is defined as 55%. This value is a median of differences with experimental data averaged for peak pressure and heating and for extent of separation captured in new, grid-converged solutions presented here. This value is consistent with existing results in a literature review of hypersonic shock-turbulent-boundary-layer interactions by Roy and Blottner and with more recent computations of MacLean.

  16. Simulations of Converging Shock Collisions for Shock Ignition

    Science.gov (United States)

    Sauppe, Joshua; Dodd, Evan; Loomis, Eric

    2016-10-01

    Shock ignition (SI) has been proposed as an alternative to achieving high gain in inertial confinement fusion (ICF) targets. A central hot spot below the ignition threshold is created by an initial compression pulse, and a second laser pulse drives a strong converging shock into the fuel. The collision between the rebounding shock from the compression pulse and the converging shock results in amplification of the converging shock and increases the hot spot pressure above the ignition threshold. We investigate shock collision in SI drive schemes for cylindrical targets with a polystyrene foam interior using radiation-hydrodynamics simulations with the RAGE code. The configuration is similar to previous targets fielded on the Omega laser. The CH interior results in a lower convergence ratio and the cylindrical geometry facilitates visualization of the shock transit using an axial X-ray backlighter, both of which are important for comparison to potential experimental measurements. One-dimensional simulations are used to determine shock timing, and the effects of low mode asymmetries in 2D computations are also quantified. LA-UR-16-24773.

  17. Shock compression behavior of a mixture of cubic and hexagonal boron nitride

    Science.gov (United States)

    Hu, Xiaojun; Yang, Gang; Zhao, Bin; Li, Peiyun; Yang, Jun; Leng, Chunwei; Liu, Hanyu; Huang, Haijun; Fei, Yingwei

    2018-05-01

    We report Hugoniot measurements on a mixture of cubic boron nitride (cBN) and hexagonal boron nitride (hBN, ˜10% in weight) to investigate the shock compression behavior of BN at Hugoniot stresses up to 110 GPa. We observed a discontinuity at ˜77 GPa along the Hugoniot and interpreted it as the manifestation of the shock-induced phase transition of hBN to cBN. The experimental stress at 77-110 GPa shows significant deviation from the hydrodynamic Hugoniot of cBN calculated using the Mie-Grüneisen model coupled with the reported 300 K-isotherms of cBN. Our investigation reveals that material strength in cBN increases with the experimental stress at least up to 110 GPa. The material strength might be preserved at higher stress if we consider the previously reported high stress data.

  18. Synchrotron hard X-ray imaging of shock-compressed metal powders

    Science.gov (United States)

    Rutherford, Michael E.; Chapman, David J.; Collinson, Mark A.; Jones, David R.; Music, Jasmina; Stafford, Samuel J. P.; Tear, Gareth R.; White, Thomas G.; Winters, John B. R.; Drakopoulos, Michael; Eakins, Daniel E.

    2015-06-01

    This poster will present the application of a new, high-energy (50 to 250 keV) synchrotron X-ray radiography technique to the study of shock-compressed granular materials. Following plate-impact loading, transmission radiography was used to quantitatively observe the compaction and release processes in a range of high-Z metal powders (e.g. Fe, Ni, Cu). By comparing the predictions of 3D numerical models initialized from X-ray tomograms-captured prior to loading-with experimental results, this research represents a new approach to refining mesoscopic compaction models. The authors gratefully acknowledge the ongoing support of Imperial College London, EPSRC, STFC and the Diamond Light Source, and AWE Plc.

  19. Sandia's Particle Beam Fusion Program

    International Nuclear Information System (INIS)

    Sweeney, M.A.

    1979-01-01

    Sandia's Particle Beam Fusion Program is investigating pulsed electron and light ion beam accelerators, with the goal of demonstrating the practical application of such drivers as igniters in inertial confinement fusion (ICF) reactors. Recent developments in the program are described. Traditionally, two requirements of ICF reactor operation have been the most difficult to satisfy in conceptual designs. Adequate standoff of critical components from damaging pellet emissions must be assured, and the shot repetition rate must be consistent with the desired reactor power level at reasonable pellet gains. Progress in power compression, beam focusing and transport, first-wall protection schemes, and net-energy-gain target design shows how these requirements can be met

  20. Sandia National Laboratories

    Data.gov (United States)

    Federal Laboratory Consortium — For more than 60 years, Sandia has delivered essential science and technology to resolve the nation's most challenging security issues.Sandia National Laboratories...

  1. A relaxation-projection method for compressible flows. Part II: Artificial heat exchanges for multiphase shocks

    International Nuclear Information System (INIS)

    Petitpas, Fabien; Franquet, Erwin; Saurel, Richard; Le Metayer, Olivier

    2007-01-01

    The relaxation-projection method developed in Saurel et al. [R. Saurel, E. Franquet, E. Daniel, O. Le Metayer, A relaxation-projection method for compressible flows. Part I: The numerical equation of state for the Euler equations, J. Comput. Phys. (2007) 822-845] is extended to the non-conservative hyperbolic multiphase flow model of Kapila et al. [A.K. Kapila, Menikoff, J.B. Bdzil, S.F. Son, D.S. Stewart, Two-phase modeling of deflagration to detonation transition in granular materials: reduced equations, Physics of Fluids 13(10) (2001) 3002-3024]. This model has the ability to treat multi-temperatures mixtures evolving with a single pressure and velocity and is particularly interesting for the computation of interface problems with compressible materials as well as wave propagation in heterogeneous mixtures. The non-conservative character of this model poses however computational challenges in the presence of shocks. The first issue is related to the Riemann problem resolution that necessitates shock jump conditions. Thanks to the Rankine-Hugoniot relations proposed and validated in Saurel et al. [R. Saurel, O. Le Metayer, J. Massoni, S. Gavrilyuk, Shock jump conditions for multiphase mixtures with stiff mechanical relaxation, Shock Waves 16 (3) (2007) 209-232] exact and approximate 2-shocks Riemann solvers are derived. However, the Riemann solver is only a part of a numerical scheme and non-conservative variables pose extra difficulties for the projection or cell average of the solution. It is shown that conventional Godunov schemes are unable to converge to the exact solution for strong multiphase shocks. This is due to the incorrect partition of the energies or entropies in the cell averaged mixture. To circumvent this difficulty a specific Lagrangian scheme is developed. The correct partition of the energies is achieved by using an artificial heat exchange in the shock layer. With the help of an asymptotic analysis this heat exchange takes a similar form as

  2. A relaxation-projection method for compressible flows. Part II: Artificial heat exchanges for multiphase shocks

    Science.gov (United States)

    Petitpas, Fabien; Franquet, Erwin; Saurel, Richard; Le Metayer, Olivier

    2007-08-01

    The relaxation-projection method developed in Saurel et al. [R. Saurel, E. Franquet, E. Daniel, O. Le Metayer, A relaxation-projection method for compressible flows. Part I: The numerical equation of state for the Euler equations, J. Comput. Phys. (2007) 822-845] is extended to the non-conservative hyperbolic multiphase flow model of Kapila et al. [A.K. Kapila, Menikoff, J.B. Bdzil, S.F. Son, D.S. Stewart, Two-phase modeling of deflagration to detonation transition in granular materials: reduced equations, Physics of Fluids 13(10) (2001) 3002-3024]. This model has the ability to treat multi-temperatures mixtures evolving with a single pressure and velocity and is particularly interesting for the computation of interface problems with compressible materials as well as wave propagation in heterogeneous mixtures. The non-conservative character of this model poses however computational challenges in the presence of shocks. The first issue is related to the Riemann problem resolution that necessitates shock jump conditions. Thanks to the Rankine-Hugoniot relations proposed and validated in Saurel et al. [R. Saurel, O. Le Metayer, J. Massoni, S. Gavrilyuk, Shock jump conditions for multiphase mixtures with stiff mechanical relaxation, Shock Waves 16 (3) (2007) 209-232] exact and approximate 2-shocks Riemann solvers are derived. However, the Riemann solver is only a part of a numerical scheme and non-conservative variables pose extra difficulties for the projection or cell average of the solution. It is shown that conventional Godunov schemes are unable to converge to the exact solution for strong multiphase shocks. This is due to the incorrect partition of the energies or entropies in the cell averaged mixture. To circumvent this difficulty a specific Lagrangian scheme is developed. The correct partition of the energies is achieved by using an artificial heat exchange in the shock layer. With the help of an asymptotic analysis this heat exchange takes a similar form as

  3. Sandia Technology engineering and science accomplishments

    Energy Technology Data Exchange (ETDEWEB)

    1994-02-01

    This report briefly discusses the following research being conducted at Sandia Laboratories: Advanced Manufacturing -- Sandia technology helps keep US industry in the lead; Microelectronics-Sandia`s unique facilities transform research advances into manufacturable products; Energy -- Sandia`s energy programs focus on strengthening industrial growth and political decisionmaking; Environment -- Sandia is a leader in environmentally conscious manufacturing and hazardous waste reduction; Health Care -- New biomedical technologies help reduce cost and improve quality of health care; Information & Computation -- Sandia aims to help make the information age a reality; Transportation -- This new initiative at the Labs will help improve transportation, safety,l efficiency, and economy; Nonproliferation -- Dismantlement and arms control are major areas of emphasis at Sandia; and Awards and Patents -- Talented, dedicated employees are the backbone of Sandia`s success.

  4. Euler-Lagrange Simulations of Shock Wave-Particle Cloud Interaction

    Science.gov (United States)

    Koneru, Rahul; Rollin, Bertrand; Ouellet, Frederick; Park, Chanyoung; Balachandar, S.

    2017-11-01

    Numerical experiments of shock interacting with an evolving and fixed cloud of particles are performed. In these simulations we use Eulerian-Lagrangian approach along with state-of-the-art point-particle force and heat transfer models. As validation, we use Sandia Multiphase Shock Tube experiments and particle-resolved simulations. The particle curtain upon interaction with the shock wave is expected to experience Kelvin-Helmholtz (KH) and Richtmyer-Meshkov (RM) instabilities. In the simulations evolving the particle cloud, the initial volume fraction profile matches with that of Sandia Multiphase Shock Tube experiments, and the shock Mach number is limited to M =1.66. Measurements of particle dispersion are made at different initial volume fractions. A detailed analysis of the influence of initial conditions on the evolution of the particle cloudis presented. The early time behavior of the models is studied in the fixed bed simulations at varying volume fractions and shock Mach numbers.The mean gas quantities are measured in the context of 1-way and 2-way coupled simulations. This work was supported by the U.S. Department of Energy, National Nuclear Security Administration, Advanced Simulation and Computing Program, as a Cooperative Agreement under the Predictive Science Academic Alliance Program, Contract No. DE-NA0002378.

  5. Shock compression of strongly correlated oxides: A liquid-regime equation of state for cerium(IV) oxide

    Science.gov (United States)

    Weck, Philippe F.; Cochrane, Kyle R.; Root, Seth; Lane, J. Matthew D.; Shulenburger, Luke; Carpenter, John H.; Sjostrom, Travis; Mattsson, Thomas R.; Vogler, Tracy J.

    2018-03-01

    The shock Hugoniot for full-density and porous CeO2 was investigated in the liquid regime using ab initio molecular dynamics (AIMD) simulations with Erpenbeck's approach based on the Rankine-Hugoniot jump conditions. The phase space was sampled by carrying out NVT simulations for isotherms between 6000 and 100 000 K and densities ranging from ρ =2.5 to 20 g /cm3 . The impact of on-site Coulomb interaction corrections +U on the equation of state (EOS) obtained from AIMD simulations was assessed by direct comparison with results from standard density functional theory simulations. Classical molecular dynamics (CMD) simulations were also performed to model atomic-scale shock compression of larger porous CeO2 models. Results from AIMD and CMD compression simulations compare favorably with Z-machine shock data to 525 GPa and gas-gun data to 109 GPa for porous CeO2 samples. Using results from AIMD simulations, an accurate liquid-regime Mie-Grüneisen EOS was built for CeO2. In addition, a revised multiphase SESAME-type EOS was constrained using AIMD results and experimental data generated in this work. This study demonstrates the necessity of acquiring data in the porous regime to increase the reliability of existing analytical EOS models.

  6. Release path temperatures of shock-compressed tin from dynamic reflectance and radiance measurements

    Energy Technology Data Exchange (ETDEWEB)

    La Lone, B. M., E-mail: lalonebm@nv.doe.gov; Stevens, G. D.; Turley, W. D. [National Security Technologies, LLC, Special Technologies Laboratory, Santa Barbara, California 93111 (United States); Holtkamp, D. B. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Iverson, A. J. [National Security Technologies, LLC, Los Alamos Operations, Los Alamos, New Mexico 87544 (United States); Hixson, R. S.; Veeser, L. R. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); National Security Technologies, LLC, Los Alamos Operations, Los Alamos, New Mexico 87544 (United States)

    2013-08-14

    Dynamic reflectance and radiance measurements were conducted for tin samples shock compressed to 35 GPa and released to 15 GPa using high explosives. We determined the reflectance of the tin samples glued to lithium fluoride windows using an integrating sphere with an internal xenon flashlamp as an illumination source. The dynamic reflectance (R) was determined at near normal incidence in four spectral bands with coverage in visible and near-infrared spectra. Uncertainties in R/R{sub 0} are <2%, and uncertainties in absolute reflectance are <5%. In complementary experiments, thermal radiance from the tin/glue/lithium fluoride interface was recorded with similar shock stress and spectral coverage as the reflectance measurements. The two sets of experiments were combined to obtain the temperature history of the tin surface with an uncertainty of <2%. The stress at the interface was determined from photonic Doppler velocimetry and combined with the temperatures to obtain temperature-stress release paths for tin. We discuss the relationship between the experimental release paths and release isentropes that begin on the principal shock Hugoniot.

  7. Femtosecond visualization of lattice dynamics in shock-compressed matter.

    Science.gov (United States)

    Milathianaki, D; Boutet, S; Williams, G J; Higginbotham, A; Ratner, D; Gleason, A E; Messerschmidt, M; Seibert, M M; Swift, D C; Hering, P; Robinson, J; White, W E; Wark, J S

    2013-10-11

    The ultrafast evolution of microstructure is key to understanding high-pressure and strain-rate phenomena. However, the visualization of lattice dynamics at scales commensurate with those of atomistic simulations has been challenging. Here, we report femtosecond x-ray diffraction measurements unveiling the response of copper to laser shock-compression at peak normal elastic stresses of ~73 gigapascals (GPa) and strain rates of 10(9) per second. We capture the evolution of the lattice from a one-dimensional (1D) elastic to a 3D plastically relaxed state within a few tens of picoseconds, after reaching shear stresses of 18 GPa. Our in situ high-precision measurement of material strength at spatial (<1 micrometer) and temporal (<50 picoseconds) scales provides a direct comparison with multimillion-atom molecular dynamics simulations.

  8. Environmental Testing Philosophy for a Sandia National Laboratories' Small Satellite Project - A Retrospective

    Energy Technology Data Exchange (ETDEWEB)

    CAP,JEROME S.

    2000-08-24

    Sandia has recently completed the flight certification test series for the Multi-Spectral Thermal Imaging satellite (MTI), which is a small satellite for which Sandia was the system integrator. A paper was presented at the 16th Aerospace Testing Seminar discussing plans for performing the structural dynamics certification program for that satellite. The testing philosophy was originally based on a combination of system level vibroacoustic tests and component level shock and vibration tests. However, the plans evolved to include computational analyses using both Finite Element Analysis and Statistical Energy Analysis techniques. This paper outlines the final certification process and discuss lessons learned including both things that went well and things that should/could have been done differently.

  9. Long conduction time plasma opening switch experiments at Sandia National Laboratories

    International Nuclear Information System (INIS)

    Savage, M.E.; Simpson, W.W.; Cooper, G.W.; Usher, M.A.

    1993-01-01

    Sandia National Laboratories has undertaken an ambitious program to reduce the size and cost of large pulsed power drivers. The program basis is inductive energy storage and Plasma Opening Switches (POS). Inductive energy storage has well known advantages, including increased efficiency and reduced stress on the vacuum interface. The Sandia approach is to retain the reliable and efficient Marx generator and the temporal pulse compression of the water dielectric capacitor. A triggered closing switch, developed at Sandia, transfers the capacitor charge into the energy storage inductor. This approach has several advantages, including relaxed requirements on Marx jitter and inductance, and much faster current risetime in the energy storage inductor. The POS itself is the key to the Sandia program. The switch design uses an auxiliary magnetic field to inject the plasma and hold it in place during conduction. After opening begins, the self magnetic field of the power pulse pushes on the plasma to increase the opened gap. The authors use magnetic pressure because they desire POS gaps of several cm. Typical plasma opening switches do not achieve large gaps. Improved opening allows more efficient transfer to loads. They present results from recent experiments at Sandia. Their driver presently supplies 650 kA with a 240 ns risetime to the input of the POS. The storage inductor is a 17 Ohm magnetically insulated transmission line (MITL) that is five meters long. They discuss the ways in which magnetic field influences the POS, and the ways in which they control the magnetic fields

  10. Nonstandard Analysis and Shock Wave Jump Conditions in a One-Dimensional Compressible Gas

    Energy Technology Data Exchange (ETDEWEB)

    Roy S. Baty, F. Farassat, John A. Hargreaves

    2007-05-25

    Nonstandard analysis is a relatively new area of mathematics in which infinitesimal numbers can be defined and manipulated rigorously like real numbers. This report presents a fairly comprehensive tutorial on nonstandard analysis for physicists and engineers with many examples applicable to generalized functions. To demonstrate the power of the subject, the problem of shock wave jump conditions is studied for a one-dimensional compressible gas. It is assumed that the shock thickness occurs on an infinitesimal interval and the jump functions in the thermodynamic and fluid dynamic parameters occur smoothly across this interval. To use conservations laws, smooth pre-distributions of the Dirac delta measure are applied whose supports are contained within the shock thickness. Furthermore, smooth pre-distributions of the Heaviside function are applied which vary from zero to one across the shock wave. It is shown that if the equations of motion are expressed in nonconservative form then the relationships between the jump functions for the flow parameters may be found unambiguously. The analysis yields the classical Rankine-Hugoniot jump conditions for an inviscid shock wave. Moreover, non-monotonic entropy jump conditions are obtained for both inviscid and viscous flows. The report shows that products of generalized functions may be defined consistently using nonstandard analysis; however, physically meaningful products of generalized functions must be determined from the physics of the problem and not the mathematical form of the governing equations.

  11. Sandia QIS Capabilities.

    Energy Technology Data Exchange (ETDEWEB)

    Muller, Richard P. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-07-01

    Sandia National Laboratories has developed a broad set of capabilities in quantum information science (QIS), including elements of quantum computing, quantum communications, and quantum sensing. The Sandia QIS program is built atop unique DOE investments at the laboratories, including the MESA microelectronics fabrication facility, the Center for Integrated Nanotechnologies (CINT) facilities (joint with LANL), the Ion Beam Laboratory, and ASC High Performance Computing (HPC) facilities. Sandia has invested $75 M of LDRD funding over 12 years to develop unique, differentiating capabilities that leverage these DOE infrastructure investments.

  12. Shock compression of simulated adobe

    Science.gov (United States)

    Braithwaite, C. H.; Church, P. D.; Gould, P. J.; Stewart, B.; Jardine, A. P.

    2017-01-01

    A series of plate impact experiments were conducted to investigate the shock response of a simulant for adobe, a traditional form of building material widely used around the world. Air dried bricks were sourced from the London brick company, dry machined and impacted at a range of velocities in a single stage gas gun. The shock Hugoniot was determined (Us =2.26up+0.37) as well as release information. The material was found to behave in a manner which was similar to that of loose sand and considerably less stiff than a weak porous sandstone. The effect of any cementing of the grains was examined by shocking powdered samples contained within a cell arrangement.

  13. Phase transitions to 120 GPa for shock-compressed pyrolytic and hot-pressed boron nitride

    International Nuclear Information System (INIS)

    Gust, W.H.; Young, D.A.

    1977-01-01

    Shock-compression characteristics of two types of hexagonal graphitelike boron nitride have been investigated. Highly oriented very pure pyrolytic boron nitride exhibits shock-velocity versus particle-velocity discontinuities that appear to be manifestations of the initiation of a sluggish phase transition. This transition begins at 20 GPa and is driven to completion (melting) at 75 GPa. Discontinuities in the plot for impure hot-pressed boron nitride indicate initiation at 10 GPa and completion at 20 GPa. The (U/sub s/, U/sub p/) plots follow essentially the same paths for 4.0 < U/sub p/ < 5.2 km/sec. No evidence for a transition to a metalliclike state was seen. Temperature calculations indicate that the material is liquid above approx.80 GPa

  14. Advanced and Exploratory Shock Sensing Mechanisms.

    Energy Technology Data Exchange (ETDEWEB)

    Nelsen, Nicholas H. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Kolb, James D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Kulkarni, Akshay G. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Sorscher, Zachary [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Habing, Clayton D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Mathis, Allen [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Beller, Zachary J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-09-01

    Mechanical component response to shock environments must be predictable in order to ensure reliability and safety. Whether the shock input results from accidental drops during transportation to projectile impact scenarios, the system must irreversibly transition into a safe state that is incapable of triggering the component . With this critical need in mind, the 2017 Nuclear Weapons Summer Product Realization Institute (NW SPRINT) program objective sought the design of a passive shock failsafe with emphasis on additively manufactured (AM) components. Team Advanced and Exploratory (A&E) responded to the challenge by designing and delivering multiple passive shock sensing mech anisms that activate within a prescribed mechanical shock threshold. These AM failsafe designs were tuned and validated using analytical and computational techniques including the shock response spectrum (SRS) and finite element analysis (FEA). After rapid prototyping, the devices experienced physical shock tests conducted on Sandia drop tables to experimentally verify performance. Keywords: Additive manufacturing, dynamic system, failsafe, finite element analysis, mechanical shock, NW SPRINT, shock respon se spectrum

  15. Introduction to compressible fluid flow

    CERN Document Server

    Oosthuizen, Patrick H

    2013-01-01

    IntroductionThe Equations of Steady One-Dimensional Compressible FlowSome Fundamental Aspects of Compressible FlowOne-Dimensional Isentropic FlowNormal Shock WavesOblique Shock WavesExpansion Waves - Prandtl-Meyer FlowVariable Area FlowsAdiabatic Flow with FrictionFlow with Heat TransferLinearized Analysis of Two-Dimensional Compressible FlowsHypersonic and High-Temperature FlowsHigh-Temperature Gas EffectsLow-Density FlowsBibliographyAppendices

  16. A study of shock mitigating materials in a split Hopkinson bar configuration. Phase 1

    International Nuclear Information System (INIS)

    Bateman, V.I.; Brown, F.A.; Hansen, N.R.

    1998-06-01

    Sandia National Laboratories (SNL) designs mechanical systems with electronics that must survive high shock environments. These mechanical systems include penetrators that must survive soil, rock, and ice penetration, nuclear transportation casks that must survive transportation environments, and laydown weapons that must survive delivery impact of 125 fps. These mechanical systems contain electronics that may operate during and after the high shock environment and that must be protected from the high shock environments. A study has been started to improve the packaging techniques for the advanced electronics utilized in these mechanical systems because current packaging techniques are inadequate for these more sensitive electronics. In many cases, it has been found that the packaging techniques currently used not only do not mitigate the shock environment but actually amplify the shock environment. An ambitious goal for this packaging study is to avoid amplification and possibly attenuate the shock environment before it reaches the electronics contained in the various mechanical systems. As part of the investigation of packaging techniques, a two phase study of shock mitigating materials is being conducted. The purpose of the first phase reported here is to examine the performance of a joint that consists of shock mitigating material sandwiched in between steel and to compare the performance of the shock mitigating materials. A split Hopkinson bar experimental configuration simulates this joint and has been used to study the shock mitigating characteristics of seventeen, unconfined materials. The nominal input for these tests is an incident compressive wave with 50 fps peak (1,500 micro var-epsilon peak) amplitude and a 100 micros duration (measured at 10% amplitude)

  17. Charter of the Sandia National Laboratories Sandia Postdoctoral Development (SPD) Association.

    Energy Technology Data Exchange (ETDEWEB)

    McBride, Amber Alane Fisher; McBride, Amber Alane Fisher; Rodgers, Theron; Dong, Wen; Juan, Pierre-Alexandre; Barkholtz, Heather; Alley, William Morgan; Wolk, Benjamin Matthew; Vane, Zachary Phillips; Priye, Aashish; Ball, Cameron Scott; McBride, Amber Alane Fisher

    2017-03-01

    The SNL SPD Association represents all personnel that are classified as Postdoctoral Appointees at Sandia National Laboratories. The purpose of the SNL SPD Association is to address the needs and concerns of Postdoctoral Appointees within Sandia National Laboratories.

  18. A magnetic particle time-of-flight (MagPTOF) diagnostic for measurements of shock- and compression-bang time at the NIF (invited)

    Energy Technology Data Exchange (ETDEWEB)

    Rinderknecht, H. G., E-mail: hgr@mit.edu; Sio, H.; Frenje, J. A.; Gatu Johnson, M.; Zylstra, A. B.; Sinenian, N.; Rosenberg, M. J.; Li, C. K.; Sèguin, F. H.; Petrasso, R. D. [Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Magoon, J.; Agliata, A.; Shoup, M.; Glebov, V. U.; Hohenberger, M.; Stoeckl, C.; Sangster, T. C. [Laboratory for Laser Energetics, Rochester, New York 14623 (United States); Ayers, S.; Bailey, C. G.; Rygg, J. R. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); and others

    2014-11-15

    A magnetic particle time-of-flight (MagPTOF) diagnostic has been designed to measure shock- and compression-bang time using D{sup 3}He-fusion protons and DD-fusion neutrons, respectively, at the National Ignition Facility (NIF). This capability, in combination with shock-burn weighted areal density measurements, will significantly constrain the modeling of the implosion dynamics. This design is an upgrade to the existing particle time-of-flight (pTOF) diagnostic, which records bang times using DD or DT neutrons with an accuracy better than ±70 ps [H. G. Rinderknecht et al., Rev. Sci. Instrum. 83, 10D902 (2012)]. The inclusion of a deflecting magnet will increase D{sup 3}He-proton signal-to-background by a factor of 1000, allowing for the first time simultaneous measurements of shock- and compression-bang times in D{sup 3}He-filled surrogate implosions at the NIF.

  19. A magnetic particle time-of-flight (MagPTOF) diagnostic for measurements of shock- and compression-bang time at the NIF (invited).

    Science.gov (United States)

    Rinderknecht, H G; Sio, H; Frenje, J A; Magoon, J; Agliata, A; Shoup, M; Ayers, S; Bailey, C G; Gatu Johnson, M; Zylstra, A B; Sinenian, N; Rosenberg, M J; Li, C K; Sèguin, F H; Petrasso, R D; Rygg, J R; Kimbrough, J R; Mackinnon, A; Bell, P; Bionta, R; Clancy, T; Zacharias, R; House, A; Döppner, T; Park, H S; LePape, S; Landen, O; Meezan, N; Robey, H; Glebov, V U; Hohenberger, M; Stoeckl, C; Sangster, T C; Li, C; Parat, J; Olson, R; Kline, J; Kilkenny, J

    2014-11-01

    A magnetic particle time-of-flight (MagPTOF) diagnostic has been designed to measure shock- and compression-bang time using D(3)He-fusion protons and DD-fusion neutrons, respectively, at the National Ignition Facility (NIF). This capability, in combination with shock-burn weighted areal density measurements, will significantly constrain the modeling of the implosion dynamics. This design is an upgrade to the existing particle time-of-flight (pTOF) diagnostic, which records bang times using DD or DT neutrons with an accuracy better than ±70 ps [H. G. Rinderknecht et al., Rev. Sci. Instrum. 83, 10D902 (2012)]. The inclusion of a deflecting magnet will increase D(3)He-proton signal-to-background by a factor of 1000, allowing for the first time simultaneous measurements of shock- and compression-bang times in D(3)He-filled surrogate implosions at the NIF.

  20. Sandia National Laboratories: Working with Sandia: What Does Sandia Buy?

    Science.gov (United States)

    Environmental Management System Pollution Prevention History 60 impacts Diversity Locations Facts & Figures Does Sandia Buy? Opportunities Small Business Procurement Technical Assistance Program (PTAP) Current Technology Partnerships Business, Industry, & Non-Profits Government Universities Center for

  1. Sandia National Laboratories

    Science.gov (United States)

    Gilliom, Laura R.

    1992-01-01

    Sandia National Laboratories has identified technology transfer to U.S. industry as a laboratory mission which complements our national security mission and as a key component of the Laboratory's future. A number of technology transfer mechanisms - such as CRADA's, licenses, work-for-others, and consortia - are identified and specific examples are given. Sandia's experience with the Specialty Metals Processing Consortium is highlighted with a focus on the elements which have made it successful. A brief discussion of Sandia's potential interactions with NASA under the Space Exploration Initiative was included as an example of laboratory-to-NASA technology transfer. Viewgraphs are provided.

  2. Experiences implementing the MPI standard on Sandia`s lightweight kernels

    Energy Technology Data Exchange (ETDEWEB)

    Brightwell, R.; Greenberg, D.S.

    1997-10-01

    This technical report describes some lessons learned from implementing the Message Passing Interface (MPI) standard, and some proposed extentions to MPI, at Sandia. The implementations were developed using Sandia-developed lightweight kernels running on the Intel Paragon and Intel TeraFLOPS platforms. The motivations for this research are discussed, and a detailed analysis of several implementation issues is presented.

  3. Sandia`s network for Supercomputing `94: Linking the Los Alamos, Lawrence Livermore, and Sandia National Laboratories using switched multimegabit data service

    Energy Technology Data Exchange (ETDEWEB)

    Vahle, M.O.; Gossage, S.A.; Brenkosh, J.P. [Sandia National Labs., Albuquerque, NM (United States). Advanced Networking Integration Dept.

    1995-01-01

    Supercomputing `94, a high-performance computing and communications conference, was held November 14th through 18th, 1994 in Washington DC. For the past four years, Sandia National Laboratories has used this conference to showcase and focus its communications and networking endeavors. At the 1994 conference, Sandia built a Switched Multimegabit Data Service (SMDS) network running at 44.736 megabits per second linking its private SMDS network between its facilities in Albuquerque, New Mexico and Livermore, California to the convention center in Washington, D.C. For the show, the network was also extended from Sandia, New Mexico to Los Alamos National Laboratory and from Sandia, California to Lawrence Livermore National Laboratory. This paper documents and describes this network and how it was used at the conference.

  4. Shock-wave induced mechanoluminescence: A new technique for studying effects of shock pressure on crystals

    Energy Technology Data Exchange (ETDEWEB)

    Chandra, B.P.; Parganiha, S.; Sonwane, V.D. [School of Studies in Physics and Astrophysics, Pt. Ravishankar Shukla University, Raipur 492010, Chhattisgarh (India); Chandra, V.K. [Department of Electrical and Electronics Engineering, Chhatrapati Shivaji Institute of Technology, Shivaji Nagar, Kolihapuri, Durg 491001, Chhattisgarh (India); Jha, Piyush, E-mail: piyushjha22@rediffmail.com [Department of Applied Physics, Raipur Institute of Technology, Chhatauna, Mandir Hasuad, Raipur 492101, Chhattisgarh (India); Baghel, R.N. [School of Studies in Physics and Astrophysics, Pt. Ravishankar Shukla University, Raipur 492010, Chhattisgarh (India)

    2016-10-15

    The impact of a projectile propelled to velocities in the range of 0.5–2.5 km/s on to a target (X-cut quartz crystal) produces shock waves travelling at velocity of nearly 10 km/s in target, in which intense mechanoluminescence (ML) pulses of microsecond duration are produced, both in compression and post-compression conditions. The piezoelectric field produced due to surface charges of fractured target, causes band bending and subsequently, the free charge carriers are generated in the respective bands and the emission of ML occurs. The ML appears after a delay time t{sub th} whose value decreases with increasing value of the shock pressure. Initially, the ML intensity increases with the shock pressure because of the creation of more surfaces; however, for higher values of the shock pressure, the ML intensity tends to attain a saturation value because of the hardening of the crystals due to the creation of small crystallites in which the creation of new surfaces becomes difficult. The ratio between peak ML intensity in the uncompressed region and the maximum ML intensity in the compressed region decreases with increasing shock pressure because more defects produced at high pressure generate higher barrier for the relaxation of blocked cracks under compression. The expressions derived for characteristics of shock-induced ML are able to explain satisfactorily the experimental results. Shock-wave velocity, shock pressure, transit time, lifetime of electrons in conduction band, etc. can be determined by the shock-induced ML.As such, the shock-induced ML provides a new optical technique for the studies of materials under shock pressure.

  5. Pulsed power driven hohlraum research at Sandia National Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Leeper, R J; Alberts, T E; Allshouse, G A [Sandia Labs., Albuquerque, NM (United States); and others

    1997-12-31

    Three pulsed power driven hohlraum concepts are being investigated at Sandia National Laboratories. These hohlraums are driven by intense proton and Li ion beams as well as by two different types of z-pinch x-ray sources. The paper is an overview of the experiments that have been conducted on these hohlraum systems and discusses several new and novel hohlraum characterization diagnostics that have been developed for this work. These diagnostics include an active shock breakout measurement of hohlraum temperature and a new transmission grating spectrograph for detailed thermal radiation spectral measurements. (author). 3 figs., 6 refs.

  6. Pulsed power driven hohlraum research at Sandia National Laboratories

    International Nuclear Information System (INIS)

    Leeper, R.J.; Alberts, T.E.; Allshouse, G.A.

    1996-01-01

    Three pulsed power driven hohlraum concepts are being investigated at Sandia National Laboratories. These hohlraums are driven by intense proton and Li ion beams as well as by two different types of z-pinch x-ray sources. The paper is an overview of the experiments that have been conducted on these hohlraum systems and discusses several new and novel hohlraum characterization diagnostics that have been developed for this work. These diagnostics include an active shock breakout measurement of hohlraum temperature and a new transmission grating spectrograph for detailed thermal radiation spectral measurements. (author). 3 figs., 6 refs

  7. Shock wave compression of hexagonal-close-packed metal single crystals: Time-dependent, anisotropic elastic-plastic response of beryllium

    International Nuclear Information System (INIS)

    Winey, J. M.; Gupta, Y. M.

    2014-01-01

    Understanding and modeling the response of hcp metals to high stress impulsive loading is challenging because the lower crystal symmetry, compared to cubic metals, results in a significantly more complex material response. To gain insight into the inelastic deformation of hcp metals subjected to high dynamic stresses, shock wave compression of single crystals provides a useful approach because different inelastic deformation mechanisms can be examined selectively by shock compression along different crystal orientations. As a representative example, we report, here, on wave propagation simulations for beryllium (Be) single crystals shocked along the c-axis, a-axis, and several low-symmetry directions to peak stresses reaching 7 GPa. The simulations utilized a time-dependent, anisotropic material model that incorporated dislocation dynamics, deformation twinning, and shear cracking based descriptions of inelastic deformation. The simulation results showed good overall agreement with measured wave profiles for all the different crystal orientations examined [Pope and Johnson, J. Appl. Phys. 46, 720 (1975)], including features arising from wave mode coupling due to the highly anisotropic inelastic response of Be. This good agreement demonstrates that the measured profiles can be understood in terms of dislocation slip along basal, prismatic, and pyramidal planes, together with deformation twinning along (101 ¯ 2) planes. Our results show that the response of shocked Be single crystals involves the simultaneous operation of multiple, distinct inelastic deformation mechanisms for all orientations except the c-axis. For shocked c-axis Be, the measured wave profiles do not provide good discrimination between pyramidal slip and other inelastic deformation mechanisms, such as shear cracking. The findings presented here provide insight into the complex inelastic deformation response of shocked Be single crystals and are expected to be useful for other hcp crystals. More

  8. The Shock and Vibration Bulletin. Part 1. Opening Session, Panel Session, Shock Analysis Shock Testing, Isolation and Damping.

    Science.gov (United States)

    1977-09-01

    ORTHOTROPIC PLATES WITH VARIOUS ,I PLANFORMS AND EDGE CONDITIONS C.W. Bert, The University of Oklahoma, Norman , OK - -’ DYNAMIC RESPONSE OF LAMINATED...EVALUATION OF AN ADAPTIVE FILTER AS A DIGITAL TRACKING FILTER D.O. Smallwood and D.L. Gregory, Sandia Laboratories, Albuquerque, NM TOTAL MISSION ENVIRONMENTAL...June 1967. ration Bulletin No. 40, Part 2, 1969. 6. J. P. Barthmaier, "Shock Testing Under 2. D. 0. Smallwood , "Time History Synthesis Minicomputer

  9. Scaling impact and shock-compression response for porous materials: Application to planetary formation

    Science.gov (United States)

    Jeanloz, R.

    2016-12-01

    A thermodynamic model based on the Mie-Grüneisen equation of state does a good job of describing the response of porous materials to impact, so can provide insights into the accretion and cohesion of planetesimals too small to be significantly held together by gravity (e.g., tens of km or less in average diameter). The model identifies an offset in Hugoniot pressure (ΔPH) due to porosity that is found to be in agreement with experimental shock-compression measurements for samples having a wide range of initial porosities. Assuming the Grüneisen parameter (γ) is proportional to volume (γ/V = constant), the relative offset in Hugoniot pressure as a function of initial porosity (φ = 1 - V0/V0por) and compression (η = 1 - V/V0) is ΔPH/PH = γ0 φ/[2(1 - φ) - γ0 (φ + η(1 - φ))] where subscripts 0 and por represent zero-pressure (non-porous) conditions and a porous sample, respectively. This additional thermal pressure at a given volume is due to the extra internal energy and corresponding temperature increase associated with collapsing pores (Fig. 1: near-identical curves for φ = 0.001 and 0.01). This result can be interpreted as indicating that upon collapse individual pores create hot spots with temperatures of order 103-104K above the background, suggesting that impact into an initially porous target can result in cohesion due to partial melting and vaporization. Moreover, the waste heat associated with pore closure far exceeds the dissipation in shock loading of non-porous material, reflecting the ability of a porous target to absorb and dissipate impact energy. The Mie-Grüneisen model along with analysis of waste heat thus provides a scaling for planetesimal impact that might explain how rock and regolith accrete into a gravitationally bound planet. Fig. 1. Porosity-induced anomaly in Hugoniot temperature per unit of porosity, shown as a function of compression for samples with initial porosity φ = 0.001 (green), 0.01 (blue) and 0.1 (gold) assuming

  10. Dynamic loads on human and animal surrogates at different test locations in compressed-gas-driven shock tubes

    Science.gov (United States)

    Alay, E.; Skotak, M.; Misistia, A.; Chandra, N.

    2018-01-01

    Dynamic loads on specimens in live-fire conditions as well as at different locations within and outside compressed-gas-driven shock tubes are determined by both static and total blast overpressure-time pressure pulses. The biomechanical loading on the specimen is determined by surface pressures that combine the effects of static, dynamic, and reflected pressures and specimen geometry. Surface pressure is both space and time dependent; it varies as a function of size, shape, and external contour of the specimens. In this work, we used two sets of specimens: (1) anthropometric dummy head and (2) a surrogate rodent headform instrumented with pressure sensors and subjected them to blast waves in the interior and at the exit of the shock tube. We demonstrate in this work that while inside the shock tube the biomechanical loading as determined by various pressure measures closely aligns with live-fire data and shock wave theory, significant deviations are found when tests are performed outside.

  11. Thin Foil Acceleration Method for Measuring the Unloading Isentropes of Shock-Compressed Matter

    International Nuclear Information System (INIS)

    Asay, J.R.; Chhabildas, L.C.; Fortov, V.E.; Kanel, G.I.; Khishchenko, K.V.; Lomonosov, I.V.; Mehlhorn, T.; Razorenov, S.V.; Utkin, A.V.

    1999-01-01

    This work has been performed as part of the search for possible ways to utilize the capabilities of laser and particle beams techniques in shock wave and equation of state physics. The peculiarity of these techniques is that we have to deal with micron-thick targets and not well reproducible incident shock wave parameters, so all measurements should be of a high resolution and be done in one shot. Besides the Hugoniots, the experimental basis for creating the equations of state includes isentropes corresponding to unloading of shock-compressed matter. Experimental isentrope data are most important in the region of vaporization. With guns or explosive facilities, the unloading isentrope is recovered from a series of experiments where the shock wave parameters in plates of standard low-impedance materials placed behind the sample are measured [1,2]. The specific internal energy and specific volume are calculated from the measured p(u) release curve which corresponds to the Riemann integral. This way is not quite suitable for experiments with beam techniques where the incident shock waves are not well reproducible. The thick foil method [3] provides a few experimental points on the isentrope in one shot. When a higher shock impedance foil is placed on the surface of the material studied, the release phase occurs by steps, whose durations correspond to that for the shock wave to go back and forth in the foil. The velocity during the different steps, connected with the knowledge of the Hugoniot of the foil, allows us to determine a few points on the isentropic unloading curve. However, the method becomes insensitive when the low pressure range of vaporization is reached in the course of the unloading. The isentrope in this region can be measured by recording the smooth acceleration of a thin witness plate foil. With the mass of the foil known, measurements of the foil acceleration will give us the vapor pressure

  12. A user`s guide to LHS: Sandia`s Latin Hypercube Sampling Software

    Energy Technology Data Exchange (ETDEWEB)

    Wyss, G.D.; Jorgensen, K.H. [Sandia National Labs., Albuquerque, NM (United States). Risk Assessment and Systems Modeling Dept.

    1998-02-01

    This document is a reference guide for LHS, Sandia`s Latin Hypercube Sampling Software. This software has been developed to generate either Latin hypercube or random multivariate samples. The Latin hypercube technique employs a constrained sampling scheme, whereas random sampling corresponds to a simple Monte Carlo technique. The present program replaces the previous Latin hypercube sampling program developed at Sandia National Laboratories (SAND83-2365). This manual covers the theory behind stratified sampling as well as use of the LHS code both with the Windows graphical user interface and in the stand-alone mode.

  13. Polymerized phase and amorphous diamond synthesized from C60 fullerene by shock compression

    International Nuclear Information System (INIS)

    Niwase, K.; Homae, T.; Nakamura, K.G.; Kondo, K.

    2006-01-01

    C 60 fullerene films were shock compressed to 23 and 52GPa. Both the recovered samples exhibit fracture into platelets and broad photoluminescence, and intensity of these increases with increasing pressure. At 23GPa, a characteristic single broad band appears at 1560-1570cm -1 , which is similar to the one found for three-dimensional (3D) polymerized C 60 fullerene under high-pressure-high-temperature treatment. At 52GPa, on the other hand, the single broad band has disappeared and a diamond peak sometimes appears, depending on platelets

  14. Temperature measurements of shock-compressed deuterium

    International Nuclear Information System (INIS)

    Holmes, N.C.; Ross, M.; Nellis, W.J.

    1994-11-01

    The authors measured the temperatures of single and double-shocked D 2 and H 2 up to 85 GPa (0.85 Mbar) and 5,200 K. While single shock temperatures, at pressures to 23 GPa, agree well with previous models, the double shock temperatures are as much as 40% lower than predicted. This is believed to be caused by molecular dissociation, and a new model of the hydrogen EOS at extreme conditions has been developed which correctly predicts their observations. These data and model have important implications for programs which use condensed-phase hydrogen in implosion systems

  15. Shock waves in relativistic nuclear matter, I

    International Nuclear Information System (INIS)

    Gleeson, A.M.; Raha, S.

    1979-02-01

    The relativistic Rankine-Hugoniot relations are developed for a 3-dimensional plane shock and a 3-dimensional oblique shock. Using these discontinuity relations together with various equations of state for nuclear matter, the temperatures and the compressibilities attainable by shock compression for a wide range of laboratory kinetic energy of the projectile are calculated. 12 references

  16. Sandia National Laboratories: Feedback

    Science.gov (United States)

    Locations Contact Us Employee Locator Search Menu About Leadership Mission Social Media Community Responsibility History Diversity Social Media Careers View All Jobs Students & Postdocs Benefits & Perks Technology Deployment Centers New Mexico Small Business Assistance Program Sandia's Economic Impact Sandia

  17. MacCormack's technique-based pressure reconstruction approach for PIV data in compressible flows with shocks

    Science.gov (United States)

    Liu, Shun; Xu, Jinglei; Yu, Kaikai

    2017-06-01

    This paper proposes an improved approach for extraction of pressure fields from velocity data, such as obtained by particle image velocimetry (PIV), especially for steady compressible flows with strong shocks. The principle of this approach is derived from Navier-Stokes equations, assuming adiabatic condition and neglecting viscosity of flow field boundaries measured by PIV. The computing method is based on MacCormack's technique in computational fluid dynamics. Thus, this approach is called the MacCormack method. Moreover, the MacCormack method is compared with several approaches proposed in previous literature, including the isentropic method, the spatial integration and the Poisson method. The effects of velocity error level and PIV spatial resolution on these approaches are also quantified by using artificial velocity data containing shock waves. The results demonstrate that the MacCormack method has higher reconstruction accuracy than other approaches, and its advantages become more remarkable with shock strengthening. Furthermore, the performance of the MacCormack method is also validated by using synthetic PIV images with an oblique shock wave, confirming the feasibility and advantage of this approach in real PIV experiments. This work is highly significant for the studies on aerospace engineering, especially the outer flow fields of supersonic aircraft and the internal flow fields of ramjets.

  18. Sandia National Laboratories embraces ISDN

    Energy Technology Data Exchange (ETDEWEB)

    Tolendino, L.F.; Eldridge, J.M.

    1994-08-01

    Sandia National Laboratories (Sandia), a multidisciplinary research and development laboratory located on Kirtland Air Force Base, has embraced Integrated Services Digital Network technology as an integral part of its communication network. Sandia and the Department of Energy`s Albuquerque Operations Office have recently completed the installation of a modernized and expanded telephone system based, on the AT&T 5ESS telephone switch. Sandia is committed to ISDN as an integral part of data communication services, and it views ISDN as one part of a continuum of services -- services that range from ISDN`s asynchronous and limited bandwidth Ethernet (250--1000 Kbps) through full bandwidth Ethernet, FDDI, and ATM at Sonet rates. Sandia has demonstrated this commitment through its use of ISDN data features to support critical progmmmatic services such as access to corporate data base systems. In the future, ISDN will provide enhanced voice, data communication, and video services.

  19. Simulation and off-line programming at Sandia`s Intelligent Systems and Robotics Center

    Energy Technology Data Exchange (ETDEWEB)

    Xavier, P.G.; Fahrenholtz, J.C.; McDonald, M. [Sandia National Labs., Albuquerque, NM (United States). Intelligent Systems and Robotics Center] [and others

    1997-11-01

    One role of the Intelligent Robotics and System Center (ISRC) at Sandia National Laboratories is to address certain aspects of Sandia`s mission to design, manufacture, maintain, and dismantle nuclear weapon components. Hazardous materials, devices, and environments are often involved. Because of shrinking resources, these tasks must be accomplished with a minimum of prototyping, while maintaining high reliability. In this paper, the authors describe simulation, off-line programming/planning, and related tools which are in use, under development, and being researched to solve these problems at the ISRC.

  20. Converging shocks in elastic-plastic solids.

    Science.gov (United States)

    Ortega, A López; Lombardini, M; Hill, D J

    2011-11-01

    We present an approximate description of the behavior of an elastic-plastic material processed by a cylindrically or spherically symmetric converging shock, following Whitham's shock dynamics theory. Originally applied with success to various gas dynamics problems, this theory is presently derived for solid media, in both elastic and plastic regimes. The exact solutions of the shock dynamics equations obtained reproduce well the results obtained by high-resolution numerical simulations. The examined constitutive laws share a compressible neo-Hookean structure for the internal energy e=e(s)(I(1))+e(h)(ρ,ς), where e(s) accounts for shear through the first invariant of the Cauchy-Green tensor, and e(h) represents the hydrostatic contribution as a function of the density ρ and entropy ς. In the strong-shock limit, reached as the shock approaches the axis or origin r=0, we show that compression effects are dominant over shear deformations. For an isothermal constitutive law, i.e., e(h)=e(h)(ρ), with a power-law dependence e(h) is proportional to ρ(α), shock dynamics predicts that for a converging shock located at r=R(t) at time t, the Mach number increases as M is proportional to [log(1/R)](α), independently of the space index s, where s=2 in cylindrical geometry and 3 in spherical geometry. An alternative isothermal constitutive law with p(ρ) of the arctanh type, which enforces a finite density in the strong-shock limit, leads to M is proportional to R(-(s-1)) for strong shocks. A nonisothermal constitutive law, whose hydrostatic part e(h) is that of an ideal gas, is also tested, recovering the strong-shock limit M is proportional to R(-(s-1)/n(γ)) originally derived by Whitham for perfect gases, where γ is inherently related to the maximum compression ratio that the material can reach, (γ+1)/(γ-1). From these strong-shock limits, we also estimate analytically the density, radial velocity, pressure, and sound speed immediately behind the shock. While the

  1. Direct Observation of Strong Ion Coupling in Laser-Driven Shock-Compressed Targets

    International Nuclear Information System (INIS)

    Ravasio, A.; Benuzzi-Mounaix, A.; Loupias, B.; Ozaki, N.; Rabec le Gloahec, M.; Koenig, M.; Gregori, G.; Daligault, J.; Delserieys, A.; Riley, D.; Faenov, A. Ya.; Pikuz, T. A.

    2007-01-01

    In this Letter we report on a near collective x-ray scattering experiment on shock-compressed targets. A highly coupled Al plasma was generated and probed by spectrally resolving an x-ray source forward scattered by the sample. A significant reduction in the intensity of the elastic scatter was observed, which we attribute to the formation of an incipient long-range order. This speculation is confirmed by x-ray scattering calculations accounting for both electron degeneracy and strong coupling effects. Measurements from rear side visible diagnostics are consistent with the plasma parameters inferred from x-ray scattering data. These results give the experimental evidence of the strongly coupled ionic dynamics in dense plasmas

  2. SANDIA-ORIGEN user's manual

    International Nuclear Information System (INIS)

    Bennett, D.E.

    1979-10-01

    The SANDIA-ORIGEN code calculates the detailed isotopic composition as a function of time in nuclear reactor fuel irradiation and radioactive decay problems. This code was developed specifically for Control Data Corporation computers from the original Oak Ridge National Laboratory ORIGEN code. The nuclear data file used with the code at Sandia Laboratories contains 1063 isotopes (254 structural materials, 101 actinides, and 708 fission products). SANDIA-ORIGEN is oriented toward simple, easy use and includes NAMELIST input, convenient control of the output, and versatile options for the blending and reprocessing of reactor fuel. System operating instructions and the input decks for numerous sample problems are also presented. 13 references, 14 figures

  3. Computational geomechanics and applications at Sandia National Laboratories

    International Nuclear Information System (INIS)

    Arguello, Jose Guadalupe Jr.

    2010-01-01

    Sandia National Laboratories (SNL) is a multi-program national laboratory in the business of national security, whose primary mission is nuclear weapons (NW). It is a prime contractor to the USDOE, operating under the NNSA and is one of the three NW national laboratories. It has a long history of involvement in the area of geomechanics, starting with the some of the earliest weapons tests at Nevada. Projects in which geomechanics support (in general) and computational geomechanics support (in particular) are at the forefront at Sandia, range from those associated with civilian programs to those in the defense programs. SNL has had significant involvement and participation in the Waste Isolation Pilot Plant (low-level defense nuclear waste), the Yucca Mountain Project (formerly proposed for commercial spent fuel and high-level nuclear waste), and the Strategic Petroleum Reserve (the nation's emergency petroleum store). In addition, numerous industrial partners seek-out our computational/geomechanics expertise, and there are efforts in compressed air and natural gas storage, as well as in CO 2 Sequestration. Likewise, there have also been collaborative past efforts in the areas of compactable reservoir response, the response of salt structures associated with reservoirs, and basin modeling for the Oil and Gas industry. There are also efforts on the defense front, ranging from assessment of vulnerability of infrastructure to defeat of hardened targets, which require an understanding and application of computational geomechanics. Several examples from some of these areas will be described and discussed to give the audience a flavor of the type of work currently being performed at Sandia in the general area of geomechanics.

  4. Sandia Pulse Reactor-IV Project

    International Nuclear Information System (INIS)

    Reuscher, J.A.

    1983-01-01

    Sandia National Laboratories has developed, designed and operated fast burst reactors for over 20 years. These reactors have been used for a variety of radiation effects programs. During this period, programs have required larger irradiation volumes primarily to expose complex electronic systems to postulated threat environments. As experiment volumes increased, a new reactor was built so that these components could be tested. The Sandia Pulse Reactor-IV is a logical evolution of the two decades of fast burst reactor development at Sandia

  5. A simple, robust and efficient high-order accurate shock-capturing scheme for compressible flows: Towards minimalism

    Science.gov (United States)

    Ohwada, Taku; Shibata, Yuki; Kato, Takuma; Nakamura, Taichi

    2018-06-01

    Developed is a high-order accurate shock-capturing scheme for the compressible Euler/Navier-Stokes equations; the formal accuracy is 5th order in space and 4th order in time. The performance and efficiency of the scheme are validated in various numerical tests. The main ingredients of the scheme are nothing special; they are variants of the standard numerical flux, MUSCL, the usual Lagrange's polynomial and the conventional Runge-Kutta method. The scheme can compute a boundary layer accurately with a rational resolution and capture a stationary contact discontinuity sharply without inner points. And yet it is endowed with high resistance against shock anomalies (carbuncle phenomenon, post-shock oscillations, etc.). A good balance between high robustness and low dissipation is achieved by blending three types of numerical fluxes according to physical situation in an intuitively easy-to-understand way. The performance of the scheme is largely comparable to that of WENO5-Rusanov, while its computational cost is 30-40% less than of that of the advanced scheme.

  6. Shocks in fragile matter

    Science.gov (United States)

    Vitelli, Vincenzo

    2012-02-01

    Non-linear sound is an extreme phenomenon typically observed in solids after violent explosions. But granular media are different. Right when they unjam, these fragile and disordered solids exhibit vanishing elastic moduli and sound speed, so that even tiny mechanical perturbations form supersonic shocks. Here, we perform simulations in which two-dimensional jammed granular packings are continuously compressed, and demonstrate that the resulting excitations are strongly nonlinear shocks, rather than linear waves. We capture the full dependence of the shock speed on pressure and compression speed by a surprisingly simple analytical model. We also treat shear shocks within a simplified viscoelastic model of nearly-isostatic random networks comprised of harmonic springs. In this case, anharmonicity does not originate locally from nonlinear interactions between particles, as in granular media; instead, it emerges from the global architecture of the network. As a result, the diverging width of the shear shocks bears a nonlinear signature of the diverging isostatic length associated with the loss of rigidity in these floppy networks.

  7. Sound velocity of tantalum under shock compression in the 18–142 GPa range

    Energy Technology Data Exchange (ETDEWEB)

    Xi, Feng, E-mail: xifeng@caep.cn; Jin, Ke; Cai, Lingcang, E-mail: cai-lingcang@aliyun.com; Geng, Huayun; Tan, Ye; Li, Jun [National Key Laboratory of Shock Waves and Detonation Physics, Institute of Fluid Physics, CAEP, P.O. Box 919-102 Mianyang, Sichuan 621999 (China)

    2015-05-14

    Dynamic compression experiments of tantalum (Ta) within a shock pressure range from 18–142 GPa were conducted driven by explosive, a two-stage light gas gun, and a powder gun, respectively. The time-resolved Ta/LiF (lithium fluoride) interface velocity profiles were recorded with a displacement interferometer system for any reflector. Sound velocities of Ta were obtained from the peak state time duration measurements with the step-sample technique and the direct-reverse impact technique. The uncertainty of measured sound velocities were analyzed carefully, which suggests that the symmetrical impact method with step-samples is more accurate for sound velocity measurement, and the most important parameter in this type experiment is the accurate sample/window particle velocity profile, especially the accurate peak state time duration. From these carefully analyzed sound velocity data, no evidence of a phase transition was found up to the shock melting pressure of Ta.

  8. Emissive spectra of shock-heated argon

    International Nuclear Information System (INIS)

    Tang Jingyou; Gu Yan; Peng Qixian; Bai Yulin; Li Ping

    2003-01-01

    To study the radiant properties of argon under weak shock compression, an aluminum target filled with gaseous argon at ambient states was impacted by a tungsten alloy projectile which was launched from a two-stage light gun to 2.00 km/s. The radiant signals of single shock-compressed argon were recorded by a six-channel pyrometer and oscilloscopes, which varied with time linearly for the five channels from 405 nm to 700 nm and exponentially for the channel 800 nm, and the corresponding velocity of shock wave was determined to be 4.10 ± 0.09 km/s. By the present experiment, it has been shown that the absorbability of the shock-heated argon is low for visual light and the optical depths of argon gas turn from thin to thick as wavelengths gradually increase. The time-resolved spectra in the rising-front of the radiant signal in the re-shocked argon were recorded by means of an OMA, and strong emissive spectrum bands near 450 nm light-wave length but no linear spectrum were found. The emissive spectrum properties of shock-compression argon were qualitatively explained by the state parameters and ionization degree

  9. Update on Engine Combustion Research at Sandia National Laboratories

    International Nuclear Information System (INIS)

    Jay Keller; Gurpreet Singh

    2001-01-01

    The objectives of this paper are to describe the research efforts in diesel engine combustion at Sandia National Laboratories' Combustion Research Facility and to provide recent experimental results. We have four diesel engine experiments supported by the Department of Energy, Office of Heavy Vehicle Technologies: a one-cylinder version of a Cummins heavy-duty engine, a diesel simulation facility, a one-cylinder Caterpillar engine to evaluate combustion of alternative fuels, and a homogeneous-charge, compression ignition (HCCI) engine. Recent experimental results of diesel combustion research will be discussed and a description will be given of our HCCI experimental program and of our HCCI modeling work

  10. Sandia National Laboratories: News: Publications

    Science.gov (United States)

    Locations Contact Us Employee Locator Search Menu About Leadership Mission Social Media Community Community Involvement Leadership Mission Environmental Responsibility History Diversity Social Media Careers Small Business Assistance Program Sandia's Economic Impact Sandia Science & Technology Park © 2018

  11. Shock Response of Boron Carbide

    National Research Council Canada - National Science Library

    Dandekar, D. P. (Dattatraya Purushottam)

    2001-01-01

    .... The present work was undertaken to determine tensile/spall strength of boron carbide under plane shock wave loading and to analyze all available shock compression data on boron carbide materials...

  12. Sandia National Laboratories: Working with Sandia: Current Suppliers

    Science.gov (United States)

    Defense Systems & Assessments About Defense Systems & Assessments Program Areas Accomplishments Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios Suppliers iSupplier Account Accounts Payable Contract Information Construction and Facilities Contract Audit

  13. Sandia National Laboratories: Working with Sandia: Contract Audit

    Science.gov (United States)

    Defense Systems & Assessments About Defense Systems & Assessments Program Areas Accomplishments Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios Audit iSupplier Account Accounts Payable Contract Information Construction and Facilities Contract Audit

  14. Sandia National Laboratories: Search Results

    Science.gov (United States)

    Locations Contact Us Employee Locator Search Menu About Leadership Mission Social Media Community Diversity Social Media Careers View All Jobs Students & Postdocs Benefits & Perks Hiring Process Deployment Centers New Mexico Small Business Assistance Program Sandia's Economic Impact Sandia Science &

  15. Hydride transport vessel vibration and shock test report

    Energy Technology Data Exchange (ETDEWEB)

    Tipton, D.G.

    1998-06-01

    Sandia National Laboratories performed vibration and shock testing on a Savannah River Hydride Transport Vessel (HTV) which is used for bulk shipments of tritium. This testing is required to qualify the HTV for transport in the H1616 shipping container. The main requirement for shipment in the H1616 is that the contents (in this case the HTV) have a tritium leak rate of less than 1x10{sup {minus}7} cc/sec after being subjected to shock and vibration normally incident to transport. Helium leak tests performed before and after the vibration and shock testing showed that the HTV remained leaktight under the specified conditions. This report documents the tests performed and the test results.

  16. Hydride transport vessel vibration and shock test report

    International Nuclear Information System (INIS)

    Tipton, D.G.

    1998-06-01

    Sandia National Laboratories performed vibration and shock testing on a Savannah River Hydride Transport Vessel (HTV) which is used for bulk shipments of tritium. This testing is required to qualify the HTV for transport in the H1616 shipping container. The main requirement for shipment in the H1616 is that the contents (in this case the HTV) have a tritium leak rate of less than 1x10 -7 cc/sec after being subjected to shock and vibration normally incident to transport. Helium leak tests performed before and after the vibration and shock testing showed that the HTV remained leaktight under the specified conditions. This report documents the tests performed and the test results

  17. Sandia National Laboratories: Working with Sandia: Prospective Suppliers

    Science.gov (United States)

    Environmental Management System Pollution Prevention History 60 impacts Diversity Locations Facts & Figures Does Sandia Buy? Opportunities Small Business Procurement Technical Assistance Program (PTAP) Current Technology Partnerships Business, Industry, & Non-Profits Government Universities Center for

  18. Equation of state of laser-shocked compressed iron; Equation d'etat du fer comprime par choc laser

    Energy Technology Data Exchange (ETDEWEB)

    Huser, G

    2004-01-01

    This thesis enters the field of highly compressed materials equation of state studies. In particular, it focuses on the case of laser shock compressed iron. This work indeed aims at getting to the conditions of the earth's core, comprising a solid inner core and a liquid outer core. The understanding of phenomena governing the core's thermodynamics and the geodynamic process requires the knowledge of iron melting line locus around the solid-liquid interface at 3.3 Mbar. Several experiments were performed to that extent. First, an absolute measurement of iron Hugoniot was obtained. Following is a study of partially released states of iron into a window material: lithium fluoride (LiF). This configuration enables direct access to compressed iron optical properties such as reflectivity and self-emission. Interface velocity measurement is dominated by compressed LiF optical properties and is used as a pressure gauge. Using a dual wavelength reflectivity diagnostic, compressed iron electrical conductivity was estimated and found to be in good agreement with previous results found in geophysics literature. Self-emission diagnostic was used to measure temperature of partially released iron and revealed a solid-liquid phase transition at Mbar pressures. (author)

  19. Sandia National Laboratories Institutional Plan: FY 1996--2001

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    Sandia`s Institutional Plan is by necessity a large document. As their missions have grown and diversified over the past decades, the variety of technical and site activities has increased. The programs and activities described here cover an enormous breadth of scientific and technological effort--from the creation of new materials to the development of a Sandia-wide electronic communications system. Today, there are three major themes that greatly influence this work. First, every federally funded institution is being challenged to find ways to become more cost effective, as the US seeks to reduce the deficit and achieve a balanced federal spending plan. Sandia is evaluating its business and operational processes to reduce the overall costs. Second, in response to the Galvin Task Force`s report ``Alternative Futures for the Department of Energy National Laboratories``, Sandia and the Department of Energy are working jointly to reduce the burden of administrative and compliance activities in order to devote more of the total effort to their principal research and development missions. Third, they are reevaluating the match between their missions and the programs they will emphasize in the future. They must demonstrate that Sandia`s roles--in national security, energy security, environmental integrity, and national scientific and technology agenda support--fit their special capabilities and skills and thus ensure their place in these missions for the longer planning horizon. The following areas are covered here: Sandia`s mission; laboratory directives; programmatic activities; technology partnerships and commercialization; Sandia`s resources; and protecting resources and the community.

  20. Thermodynamic bounds for existence of normal shock in compressible fluid flow in pipes

    Directory of Open Access Journals (Sweden)

    SERGIO COLLE

    Full Text Available Abstract The present paper is concerned with the thermodynamic theory of the normal shock in compressible fluid flow in pipes, in the lights of the pioneering works of Lord Rayleigh and G. Fanno. The theory of normal shock in pipes is currently presented in terms of the Rayleigh and Fanno curves, which are shown to cross each other in two points, one corresponding to a subsonic flow and the other corresponding to a supersonic flow. It is proposed in this paper a novel differential identity, which relates the energy flux density, the linear momentum flux density, and the entropy, for constant mass flow density. The identity so obtained is used to establish a theorem, which shows that Rayleigh and Fanno curves become tangent to each other at a single sonic point. At the sonic point the entropy reaches a maximum, either as a function of the pressure and the energy density flux or as a function of the pressure and the linear momentum density flux. A Second Law analysis is also presented, which is fully independent of the Second Law analysis based on the Rankine-Hugoniot adiabatic carried out by Landau and Lifshitz (1959.

  1. Strain Rate Dependence of Compressive Yield and Relaxation in DGEBA Epoxies

    Science.gov (United States)

    Arechederra, Gabriel K.; Reprogle, Riley C.; Clarkson, Caitlyn M.; McCoy, John D.; Kropka, Jamie M.; Long, Kevin N.; Chambers, Robert S.

    2015-03-01

    The mechanical response in uniaxial compression of two diglycidyl ether of bisphenol-A epoxies were studied. These were 828DEA (Epon 828 cured with diethanolamine (DEA)) and 828T403 (Epon 828 cured with Jeffamine T-403). Two types of uniaxial compression tests were performed: A) constant strain rate compression and B) constant strain rate compression followed by a constant strain relaxation. The peak (yield) stress was analyzed as a function of strain rate from Eyring theory for activation volume. Runs at different temperatures permitted the construction of a mastercurve, and the resulting shift factors resulted in an activation energy. Strain and hold tests were performed for a low strain rate where a peak stress was lacking and for a higher strain rate where the peak stress was apparent. Relaxation from strains at different places along the stress-strain curve was tracked and compared. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  2. Sandia National Laboratories: About Sandia: Community Involvement:

    Science.gov (United States)

    Does Sandia Buy? Opportunities Small Business Procurement Technical Assistance Program (PTAP) Current . In the 1960s, employees initiated the Shoes for Kids Program. Rather than giving each other gifts holidays, New Mexico employees enjoy the opportunity to provide gifts for more than 600 children who are

  3. Study on Reflected Shock Wave/Boundary Layer Interaction in a Shock Tube

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong Wook; Kim, Tae Ho; Kim, Heuy Dong [Andong Nat’l Univ., Andong (Korea, Republic of)

    2017-07-15

    The interaction between a shock wave and a boundary layer causes boundary layer separation, shock train, and in some cases, strong unsteadiness in the flow field. Such a situation is also observed in a shock tube, where the reflected shock wave interacts with the unsteady boundary layer. However, only a few studies have been conducted to investigate the shock train phenomenon in a shock tube. In the present study, numerical studies were conducted using the two-dimensional axisymmetric domain of a shock tube, and compressible Navier-Stokes equations were solved to clarify the flow characteristics of shock train phenomenon inside a shock tube. A detailed wave diagram was developed based on the present computational results, which were validated with existing experimental data.

  4. Shock compression behavior of bi-material powder composites with disparate melting temperatures

    International Nuclear Information System (INIS)

    Sullivan, Kyle T.; Swift, Damian; Barham, Matthew; Stölken, James; Kuntz, Joshua; Kumar, Mukul

    2014-01-01

    Laser driven experiments were used to investigate the shock compression behavior of powder processed Bismuth/Tungsten (Bi/W) composite samples. The constituents provide different functionality to the composite behavior as Bi could be shock melted at the pressures attained in this work, while the W could not. Samples were prepared by uniaxial pressing, and the relative density was measured as a function of particle size, applied pressure, and composition for both hot and cold pressing conditions. This resulted in sample densities between 73% and 99% of the theoretical maximum density, and also noticeable differences in microstructure in the hot and cold pressed samples. The compression waves were generated with a 1.3 × 1.3 mm square spot directly onto the surface of the sample, using irradiances between 10 12 and 10 13  W/cm 2 , which resulted in calculated peak pressures between 50 and 150 GPa within a few micrometers. Sample recovery and post-mortem analysis revealed the formation of a crater on the laser drive surface, and the depth of this crater corresponded to the depth to which the Bi had been melted. The melt depth was found to be primarily a function of residual porosity and composition, and ranged from 167 to 528 μm. In general, a higher porosity led to a larger melt depth. Direct numerical simulations were performed, and indicated that the observed increase in melt depth for low-porosity samples could be largely attributed to increased heating associated with work done for pore collapse. However, the relative scaling was sensitive to composition, with low volume fraction Bi samples exhibiting a much stronger dependence on porosity than high Bi content samples. Select samples were repeated using an Al foil ablator, but there were no noticeable differences ensuring that the observed melting was indeed pressure-driven and was not a result of direct laser heating. The resultant microstructures and damage near the spall surface were also investigated

  5. Sandia National Laboratories: The First Fifty Years

    Energy Technology Data Exchange (ETDEWEB)

    MORA,CARL J.

    1999-11-03

    On Nov. 1, 1999, Sandia National Laboratories celebrates its 50th birthday. Although Sandia has its roots in the World War II-era Manhattan Project, Sandia began operating as a separate nuclear weapons engineering laboratory under the management of AT&T on Nov. 1, 1949. Today the lab employs more than 7,000 people at its two sites in Albuquerque and Livermore, California, and has research and development missions in national security, energy and environmental technologies, and U.S. economic competitiveness. Lockheed Martin Corporation operates Sandia for the US. Department of Energy.

  6. Data collected by the Shock Wave Data Center

    International Nuclear Information System (INIS)

    Van Thiel, M.

    1976-01-01

    The Shock Wave Data Center of the Lawrence Livermore Lab collects and disseminates P.V.E. data obtained with shock waves. It has been in existence since 1964. An extensive number of papers reporting shock data had become available by that time. This was so in spite of the fact that the technology was developed only during the 2nd World War. Collection and partial evaluation of this data was therefore of value to facilitate its use by our laboratory and others who were involved with science and engineering in the high pressure field. The pressure range of the data collected is quite extensive and extends from 1 MPa to 1 TPa. One very important difference between shock wave compression data and those obtained with static presses must be emphasized, since it is often not fully appreciated. The pressure-volume locus of shock wave states (Hugoniot), which is obtained by passing increasingly stronger shocks into samples with the same initial state, rapidly increases in temperature as the shocks get stronger and the pressure and compression get higher. As a consequence, this Hugoniot locus must have a lower compressibility than isotherms obtained under static conditions. In fact, if porous or otherwise expanded samples are used, states at or near the critical region of metals can be obtained if the shock pressure is allowed to decrease in a controlled manner. Such pressure release measurements have so far only been utilized to a limited extent since the compression process has been of primary interest to workers in the field. As the use of this data in the energy field increases, however, such data will be needed more often. Applications are discussed that involve transient high pressure processes, practically all of which involve both compressed and expanded states

  7. Sandia Technology: Engineering and science accomplishments, February 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-02-01

    Sandia National Laboratories is one of the Department of Energy`s primary research and development laboratories. Our essential mission is to support the national interests of the US in defense, energy, and the environment. Managed by Martin Marietta Corporation for DOE, Sandia focuses its resources on problems of national interest that require the integration of science and technology for their solution. We all hope that this period of sweeping alterations in international affairs will result in a successful transition from the Cold War to a period of sustainable global security and prosperity. In the meantime, our nation`s interests are best served by continued commitment to Sandia`s traditional responsibilities. Nonetheless, as momentous developments are reshaping the world, Sandia is also changing from its beginning as a closed operation concentrating on classified defense programs, Sandia has become a more accessible resource that focuses on research and development partnerships with industry and universities as a way to ensure continued success in DOE`s evolving core mission area of nuclear weapons, energy, environment, and the basis sciences. Through these collaborative efforts, Sandia and its partners are also benefiting the economic competitiveness of our nation. Sandia places a special emphasis on working with small businesses as both technology transfer partners and suppliers of goods and services. We are also reaching out the the larger community surrounding Sandia, striving to provide technological solution and accurate information to meet community needs. We believe that the dialogue we are creating will benefit Sandia, the community, and the nation. Our goal is to render `` exceptional service in the national interest`` by returning maximum value on the investment in the labs. As you review this document, look for new ways in which Sandia can contribute to the solution of problems facing our nation.

  8. Shocking matter to extreme conditions

    International Nuclear Information System (INIS)

    Gupta, Y.M.; Sharma, S.M.

    1997-01-01

    A good understanding of the thermodynamic response of matter at high compression and high energy densities is important to several areas of physics. Shock-wave experiments are uniquely suited for obtaining data at extreme conditions, and a shock-compressed matter can be viewed as a condensed system with or without dissociation or as a strongly coupled plasma. This article reviews work by Da Silva et al. in which irradiances ranging from 5x10 superscript 12 to 2x10 superscript 14 W/cm 2 were used to generate 8- to 10-ns square pulses in liquid deuterium. The authors demonstrated negligible pre-heating of the sample, steady propagation of the shock wave, and direct determination of the shock wave velocity along with particle velocity and density in the shocked state. Da Silva et al. results are compared with models and other experimental information, and the usefulness of the data in other areas is assessed. 11 refs., 1 fig

  9. Microdamage in polycrystalline ceramics under dynamic compression and tension

    International Nuclear Information System (INIS)

    Zhang, K.S.; Zhang, D.; Feng, R.; Wu, M.S.

    2005-01-01

    In-grain microplasticity and intergranular microdamage in polycrystalline hexagonal-structure ceramics subjected to a sequence of dynamic compression and tension are studied computationally using the Voronoi polycrystal model, by which the topological heterogeneity and material anisotropy of the crystals are simulated explicitly. The constitutive modeling considers crystal plasticity by basal slip, intergranular shear damage during compression, and intergranular mode-I cracking during tension. The model parameters are calibrated with the available shock compression and spall strength data on polycrystalline α-6H silicon carbide. The numerical results show that microplasticity is a more plausible micromechanism for the inelastic response of the material under shock compression. On the other hand, the spallation behavior of the shocked material can be well predicted by intergranular mode-I microcracking during load reversal from dynamic compression to tension. The failure process and the resulting spall strength are, however, affected strongly by the intensity of local release heterogeneity induced by heterogeneous microplasticity, and by the grain-boundary shear damage during compression

  10. Shock absorbing structure

    International Nuclear Information System (INIS)

    Kojima, Naoki; Matsushita, Kazuo.

    1992-01-01

    Small pieces of shock absorbers are filled in a space of a shock absorbing vessel which is divided into a plurality of sections by partitioning members. These sections function to prevent excess deformation or replacement of the fillers upon occurrence of falling accident. Since the shock absorbing small pieces in the shock absorbing vessel are filled irregularly, shock absorbing characteristics such as compression strength is not varied depending on the direction, but they exhibit excellent shock absorbing performance. They surely absorb shocks exerted on a transportation vessel upon falling or the like. If existing artificial fillers such as pole rings made of metal or ceramic and cut pieces such as alumium extrusion molding products are used as the shock absorbing pieces, they have excellent fire-proofness and cold resistance since the small pieces are inflammable and do not contain water. (T.M.)

  11. Development of the Sandia Cooler

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Terry Alan [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Koplow, Jeffrey P. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Staats, Wayne Lawrence [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Curgus, Dita Brigitte [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Leick, Michael Thomas. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Matthew, Ned Daniel [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Zimmerman, Mark D. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Arienti, Marco [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Gharagozloo, Patricia E. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Hecht, Ethan S. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Spencer, Nathan A. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Vanness, Justin William. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Gorman, Ryan [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2013-12-01

    This report describes an FY13 effort to develop the latest version of the Sandia Cooler, a breakthrough technology for air-cooled heat exchangers that was developed at Sandia National Laboratories. The project was focused on fabrication, assembly and demonstration of ten prototype systems for the cooling of high power density electronics, specifically high performance desktop computers (CPUs). In addition, computational simulation and experimentation was carried out to fully understand the performance characteristics of each of the key design aspects. This work culminated in a parameter and scaling study that now provides a design framework, including a number of design and analysis tools, for Sandia Cooler development for applications beyond CPU cooling.

  12. Compression of the Venusian ionosphere on May 10, 1979, by the interplanetary shock generated by the solar eruption of May 8, 1979

    International Nuclear Information System (INIS)

    Dryer, M.; Perez-de-Tejada, H.; Taylor, H.A. Jr.; Intriligator, D.S.; Mihalov, J.D.; Rompolt, B.

    1982-01-01

    An interplanetary shock wave that was produced by a solar eruption and its associated coronal transient on May 8, 1979, has been 'tracked' through interplanetary space to a rendezvous 2 days later with Venus. The interaction of the shock wave with the ionospheric obstacle at Venus produced a significant compression of the dayside ionosphere. It is believed that the tracking, as it were, was accomplished for the first time via the diagnostic observations provided by Hα and white light imagery near the sun and the plasma and field measurements of two, nearly radially aligned, spacecraft

  13. Mechanical Properties of Shock-Damaged Rocks

    Science.gov (United States)

    He, Hongliang; Ahrens, T. J.

    1994-01-01

    Stress-strain tests were performed both on shock-damaged gabbro and limestone. The effective Young's modulus decreases with increasing initial damage parameter value, and an apparent work-softening process occurs prior to failure. To further characterize shock-induced microcracks, the longitudinal elastic wave velocity behavior of shock-damaged gabbro in the direction of compression up to failure was measured using an acoustic transmission technique under uniaxial loading. A dramatic increase in velocity was observed for the static compressive stress range of 0-50 MPa. Above that stress range, the velocity behavior of lightly damaged (D(sub 0) less than 0.1) gabbro is almost equal to unshocked gabbro. The failure strength of heavily-damaged (D(sub 0) greater than 0.1) gabbro is approx. 100-150 MPa, much lower than that of lightly damaged and unshocked gabbros (approx. 230-260 MPa). Following Nur's theory, the crack shape distribution was analyzed. The shock-induced cracks in gabbro appear to be largely thin penny-shaped cracks with c/a values below 5 x 10(exp -4). Moreover, the applicability of Ashby and Sammis's theory relating failure strength and damage parameter of shock-damaged rocks was examined and was found to yield a good estimate of the relation of shock-induced deficit in elastic modulus with the deficit in compressive strength.

  14. Quasi-isentropic compression using compressed water flow generated by underwater electrical explosion of a wire array

    Science.gov (United States)

    Gurovich, V.; Virozub, A.; Rososhek, A.; Bland, S.; Spielman, R. B.; Krasik, Ya. E.

    2018-05-01

    A major experimental research area in material equation-of-state today involves the use of off-Hugoniot measurements rather than shock experiments that give only Hugoniot data. There is a wide range of applications using quasi-isentropic compression of matter including the direct measurement of the complete isentrope of materials in a single experiment and minimizing the heating of flyer plates for high-velocity shock measurements. We propose a novel approach to generating quasi-isentropic compression of matter. Using analytical modeling and hydrodynamic simulations, we show that a working fluid composed of compressed water, generated by an underwater electrical explosion of a planar wire array, might be used to efficiently drive the quasi-isentropic compression of a copper target to pressures ˜2 × 1011 Pa without any complex target designs.

  15. Sandia National Laboratories analysis code data base

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, C.W.

    1994-11-01

    Sandia National Laboratories, mission is to solve important problems in the areas of national defense, energy security, environmental integrity, and industrial technology. The Laboratories` strategy for accomplishing this mission is to conduct research to provide an understanding of the important physical phenomena underlying any problem, and then to construct validated computational models of the phenomena which can be used as tools to solve the problem. In the course of implementing this strategy, Sandia`s technical staff has produced a wide variety of numerical problem-solving tools which they use regularly in the design, analysis, performance prediction, and optimization of Sandia components, systems and manufacturing processes. This report provides the relevant technical and accessibility data on the numerical codes used at Sandia, including information on the technical competency or capability area that each code addresses, code ``ownership`` and release status, and references describing the physical models and numerical implementation.

  16. Sandia National Laboratories: News: Economic Impact

    Science.gov (United States)

    Locations Contact Us Employee Locator Search Menu About Leadership Mission Social Media Community Involvement Leadership Mission Environmental Responsibility History Diversity Social Media Careers View All Small Business Assistance Program Sandia's Economic Impact Sandia Science & Technology Park © 2018

  17. Shock-front compression of the magnetic field in the Canis Majoris R1 star-formation region

    International Nuclear Information System (INIS)

    Vrba, F.J.; Baierlein, R.; Herbst, W.; Wesleyan Univ., Middletown, CT; Van Vleck Observatory, Middletown, CT)

    1987-01-01

    Results are presented from a linear polarization survey at optical wavelengths of over 140 stars in the direction of the CMa R1 star-formation region; 26 of these are clearly associated with nebulosity within the area. The observations were obtained in order to test the argument of Herbst et al. (1978) that star formation in CMa R1 is driven by a shock wave from a nearby supernova (Herbs and Assousa, 1977 and 1978). The polarizations are found to be consistent with a simple model of the compression by a supernova-induced spherical shock front of an initially uniform interstellar magnetic field. The polarization vectors are inconsistent with a scenario of quiescent cloud collapse along magnetic-field lines. Multicolor polarimetry of the nebular stars provides evidence of grain growth toward increasing cloud optical depth, characterized by a ratio of total-to-selective extinction of R = 3.0 at E(B-V) = 0.23, increasing to R = 4.2 at E(B-V) = 0.7. 15 references

  18. Sandia National Laboratories: News: Image Gallery

    Science.gov (United States)

    Locations Contact Us Employee Locator Search Menu About Leadership Mission Social Media Community Diversity Social Media Careers View All Jobs Students & Postdocs Benefits & Perks Hiring Process Deployment Centers New Mexico Small Business Assistance Program Sandia's Economic Impact Sandia Science &

  19. Target design for shock ignition

    International Nuclear Information System (INIS)

    Schurtz, G; Ribeyre, X; Lafon, M

    2010-01-01

    The conventional approach of laser driven inertial fusion involves the implosion of cryogenic shells of deuterium-tritium ice. At sufficiently high implosion velocities, the fuel ignites by itself from a central hot spot. In order to reduce the risks of hydrodynamic instabilities inherent to large implosion velocities, it was proposed to compress the fuel at low velocity, and ignite the compressed fuel by means of a convergent shock wave driven by an intense spike at the end of the laser pulse. This scheme, known as shock ignition, reduces the risks of shell break-up during the acceleration phase, but it may be impeded by a low coupling efficiency of the laser pulse with plasma at high intensities. This work provides a relationship between the implosion velocity and the laser intensity required to ignite the target by a shock. The operating domain of shock ignition at different energies is described.

  20. Molecular dynamics simulations of shock compressed heterogeneous materials. II. The graphite/diamond transition case for astrophysics applications

    Science.gov (United States)

    Pineau, N.; Soulard, L.; Colombet, L.; Carrard, T.; Pellé, A.; Gillet, Ph.; Clérouin, J.

    2015-03-01

    We present a series of molecular dynamics simulations of the shock compression of copper matrices containing a single graphite inclusion: these model systems can be related to some specific carbon-rich rocks which, after a meteoritic impact, are found to contain small fractions of nanodiamonds embedded in graphite in the vicinity of high impedance minerals. We show that the graphite to diamond transformation occurs readily for nanometer-sized graphite inclusions, via a shock accumulation process, provided the pressure threshold of the bulk graphite/diamond transition is overcome, independently of the shape or size of the inclusion. Although high diamond yields (˜80%) are found after a few picoseconds in all cases, the transition is non-isotropic and depends substantially on the relative orientation of the graphite stack with respect to the shock propagation, leading to distinct nucleation processes and size-distributions of the diamond grains. A substantial regraphitization process occurs upon release and only inclusions with favorable orientations likely lead to the preservation of a fraction of this diamond phase. These results agree qualitatively well with the recent experimental observations of meteoritic impact samples.

  1. Sandia software guidelines: Volume 5, Tools, techniques, and methodologies

    Energy Technology Data Exchange (ETDEWEB)

    1989-07-01

    This volume is one in a series of Sandia Software Guidelines intended for use in producing quality software within Sandia National Laboratories. This volume describes software tools and methodologies available to Sandia personnel for the development of software, and outlines techniques that have proven useful within the Laboratories and elsewhere. References and evaluations by Sandia personnel are included. 6 figs.

  2. X-ray diffraction measurements to determine longitudinal and transverse lattice deformation in shocked LiF

    International Nuclear Information System (INIS)

    Rigg, P.A.; Gupta, Y.M.

    2000-01-01

    Experimental methods using both single and multiple x-ray diffraction were developed to determine real time, lattice deformation in directions parallel and perpendicular to shock wave propagation in single crystals subjected to plate impact loading. Initial experiments used single diffraction to monitor the interplanar spacing change, parallel to the shock propagation direction, in LiF crystals shocked along the [111] and [100] directions. These measurements, in combination with the macroscopic volume compression, were used to determine the state of compression of the unit cell. Subsequent development of a multiple diffraction technique permitted simultaneous determination of both the longitudinal and transverse lattice deformations. The present results showed that shock compression, below 4 GPa, along the [111] orientation--which results in macroscopic elastic deformation - produced one-dimensional unit cell compression. In contrast, shock compression along the [100] orientation - which results in macroscopic elastic-plastic deformation--produced isotropic unit cell compression. The implications of the present results and the ability to make quantitative x-ray diffraction measurements under shock loading are discussed

  3. Mobile robotics research at Sandia National Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Morse, W.D.

    1998-09-01

    Sandia is a National Security Laboratory providing scientific and engineering solutions to meet national needs for both government and industry. As part of this mission, the Intelligent Systems and Robotics Center conducts research and development in robotics and intelligent machine technologies. An overview of Sandia`s mobile robotics research is provided. Recent achievements and future directions in the areas of coordinated mobile manipulation, small smart machines, world modeling, and special application robots are presented.

  4. Shock formation within sonoluminescence bubbles

    International Nuclear Information System (INIS)

    Vuong, V.Q.; Szeri, A.J.; Young, D.A.

    1999-01-01

    A strong case has been made by several authors that sharp, spherically symmetric shocks converging on the center of a spherical bubble driven by a strong acoustic field give rise to rapid compression and heating that produces the brief flash of light known as sonoluminescence. The formation of such shocks is considered. It is found that, although at the main collapse the bubble wall does indeed launch an inwardly-traveling compression wave, and although the subsequent reflection of the wave at the bubble center produces a very rapid temperature peak, the wave is prevented from steepening into a sharp shock by an adverse gradient in the sound speed caused by heat transfer. It is shown that the mathematical characteristics of the flow can be prevented from accumulating into a shock front by this adverse sound speed gradient. A range of results is presented for a variety of bubble ambient radii and sound field amplitudes suggested by experiments. The time scale of the peak temperature in the bubble is set by the dynamics of the compression wave: this is typically in the range 100 - 300 ps (FWHM) in concert with recent measurements of the sonoluminescence pulse width. copyright 1999 American Institute of Physics

  5. Shocks near Jamming

    Science.gov (United States)

    Gómez, Leopoldo R.; Turner, Ari M.; van Hecke, Martin; Vitelli, Vincenzo

    2012-02-01

    Nonlinear sound is an extreme phenomenon typically observed in solids after violent explosions. But granular media are different. Right when they jam, these fragile and disordered solids exhibit a vanishing rigidity and sound speed, so that even tiny mechanical perturbations form supersonic shocks. Here, we perform simulations in which two-dimensional jammed granular packings are dynamically compressed and demonstrate that the elementary excitations are strongly nonlinear shocks, rather than ordinary phonons. We capture the full dependence of the shock speed on pressure and impact intensity by a surprisingly simple analytical model.

  6. Temperature measurement of tin under shock compression

    International Nuclear Information System (INIS)

    Hereil, Pierre-Louis; Mabire, Catherine

    2002-01-01

    The results of pyrometric measurements performed at the interface of a tin target with a LiF window material are presented for stresses ranging from 38 to 55 GPa. The purpose of the study is to analyze the part of the interface in the temperature measurement by a multi-channel pyrometric device. The results show that the glue used at target/window interface remains transparent under shock. The values of temperature measured at the tin/LiF interface are consistent with the behavior of tin under shock

  7. Shock-Induced and Shock-Assisted Reaction Synthesis of Materials

    National Research Council Canada - National Science Library

    Thadhani, N. N

    1997-01-01

    The beneficial effects of shock-compression of powders and solid-state chemical reactions were utilized to synthesize Ti-Si and Ti-A1 intermetallics, Ti-B and Ti-C ceramics, and Ti-Si:Ti-A1 composites...

  8. Sandia National Laboratories: What Sandia Looks For In Our Suppliers

    Science.gov (United States)

    Environmental Management System Pollution Prevention History 60 impacts Diversity Locations Facts & Figures Does Sandia Buy? Opportunities Small Business Procurement Technical Assistance Program (PTAP) Current Technology Partnerships Business, Industry, & Non-Profits Government Universities Center for

  9. Determining the phase diagram of lithium via ab initio calculation and ramp compression

    Science.gov (United States)

    Shulenburger, Luke; Seagle, Chris; Haill, Thomas; Harding, Eric

    2015-06-01

    Diamond anvil cell experiments have shown elemental lithium to have an extraordinarily complex phase diagram under pressure exhibiting numerous solid phases at pressures below 1 Mbar, as well as a complicated melting behavior. We explore this phase diagram utilizing a combination of quantum mechanical calculations and ramp compression experiments performed on Sandia National Laboratories' Z-machine. We aim to extend our knowledge of the high pressure behavior to moderate temperatures at pressures above 50 GPa with a specific focus on the melt line above 70 GPa. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, for the US Dept of Energy's Natl. Nuclear Security Administration under Contract DE-AC04-94AL85000.

  10. Sandia Agile MEMS Prototyping, Layout Tools, Education and Services Program

    Energy Technology Data Exchange (ETDEWEB)

    Schriner, H.; Davies, B.; Sniegowski, J.; Rodgers, M.S.; Allen, J.; Shepard, C.

    1998-05-01

    Research and development in the design and manufacture of Microelectromechanical Systems (MEMS) is growing at an enormous rate. Advances in MEMS design tools and fabrication processes at Sandia National Laboratories` Microelectronics Development Laboratory (MDL) have broadened the scope of MEMS applications that can be designed and manufactured for both military and commercial use. As improvements in micromachining fabrication technologies continue to be made, MEMS designs can become more complex, thus opening the door to an even broader set of MEMS applications. In an effort to further research and development in MEMS design, fabrication, and application, Sandia National Laboratories has launched the Sandia Agile MEMS Prototyping, Layout Tools, Education and Services Program or SAMPLES program. The SAMPLES program offers potential partners interested in MEMS the opportunity to prototype an idea and produce hardware that can be used to sell a concept. The SAMPLES program provides education and training on Sandia`s design tools, analysis tools and fabrication process. New designers can participate in the SAMPLES program and design MEMS devices using Sandia`s design and analysis tools. As part of the SAMPLES program, participants` designs are fabricated using Sandia`s 4 level polycrystalline silicon surface micromachine technology fabrication process known as SUMMiT (Sandia Ultra-planar, Multi-level MEMS Technology). Furthermore, SAMPLES participants can also opt to obtain state of the art, post-fabrication services provided at Sandia such as release, packaging, reliability characterization, and failure analysis. This paper discusses the components of the SAMPLES program.

  11. Sandia Laboratories environment and safety programs

    International Nuclear Information System (INIS)

    Zak, B.D.; McGrath, P.E.; Trauth, C.A. Jr.

    1975-01-01

    Sandia, one of ERDA's largest laboratories, is primarily known for its extensive work in the nuclear weapons field. In recent years, however, Sandia's role has expanded to embrace sizeable programs in the energy, resource recovery, and the environment and safety fields. In this latter area, Sandia has programs which address nuclear, fossil fuel, and general environment and safety issues. Here we survey ongoing activities and describe in more detail aa few projects of particular interest. These range from a study of the impact of sealed disposal of radioactive wastes, through reactor safety and fossil fuel plume chemistry, to investigations of the composition and dynamics of the stratosphere

  12. A History of Building 828, Sandia National Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Ullrich, Rebecca

    1999-08-01

    This report documents the history of Building 828 in Sandia National Laboratories' Technical Area I. Building 828 was constructed in 1946 as a mechanical test laboratory for Los Alamos' Z-Division (later Sandia) as it moved to Sandia Base. The building has undergone significant remodeling over the years and has had a variety of occupants. The building was evaluated in compliance with the National Historic Preservation Act, but was not eligible for the National Register of Historic Places. Nevertheless, for many Labs employees, it was a symbol of Sandia's roots in World War II and the Manhattan Project.

  13. Inelastic response of silicon to shock compression.

    Science.gov (United States)

    Higginbotham, A; Stubley, P G; Comley, A J; Eggert, J H; Foster, J M; Kalantar, D H; McGonegle, D; Patel, S; Peacock, L J; Rothman, S D; Smith, R F; Suggit, M J; Wark, J S

    2016-04-13

    The elastic and inelastic response of [001] oriented silicon to laser compression has been a topic of considerable discussion for well over a decade, yet there has been little progress in understanding the basic behaviour of this apparently simple material. We present experimental x-ray diffraction data showing complex elastic strain profiles in laser compressed samples on nanosecond timescales. We also present molecular dynamics and elasticity code modelling which suggests that a pressure induced phase transition is the cause of the previously reported 'anomalous' elastic waves. Moreover, this interpretation allows for measurement of the kinetic timescales for transition. This model is also discussed in the wider context of reported deformation of silicon to rapid compression in the literature.

  14. Tonopah test range - outpost of Sandia National Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, L.

    1996-03-01

    Tonopah Test Range is a unique historic site. Established in 1957 by Sandia Corporation, Tonopah Test Range in Nevada provided an isolated place for the Atomic Energy Commission to test ballistics and non-nuclear features of atomic weapons. It served this and allied purposes well for nearly forty years, contributing immeasurably to a peaceful conclusion to the long arms race remembered as the Cold War. This report is a brief review of historical highlights at Tonopah Test Range. Sandia`s Los Lunas, Salton Sea, Kauai, and Edgewood testing ranges also receive abridged mention. Although Sandia`s test ranges are the subject, the central focus is on the people who managed and operated the range. Comments from historical figures are interspersed through the narrative to establish this perspective, and at the end a few observations concerning the range`s future are provided.

  15. Shock physics with the nova laser for ICF applications. Revision 1

    International Nuclear Information System (INIS)

    Hammel, B.A.; Cauble, R.; Celliers, P.

    1995-01-01

    The physics of high pressure shocks plays a central role in Inertial Confinement Fusion (ICF). In indirect drive ICF, x-rays from a gold cavity (hohlraum) are used to ablatively drive a series of high pressure shocks into a spherical target (capsule). These shocks converge at the center, compressing the fuel and forming a hot dense core. The target performance, such as peak fuel density and temperature and neutron yield, depends critically on hock timing, and material compressibility. Accurate predictions of NIF target performance depends critically on shock timing and material compressibility. Current measurement techniques enable us to accurately determine shock timing in planar samples of abator material as a function of laser drive. Although this technique does not separately address uncertainties in material EOS and opacity, it does allow us to tune the laser drive until the desired shock timing is achieved. Experiments to directly address the EOS of D 2 ice are planned to further increase the margin for ignition in current target designs

  16. Complete equation of state for shocked liquid nitrogen: Analytical developments

    International Nuclear Information System (INIS)

    Winey, J. M.; Gupta, Y. M.

    2016-01-01

    The thermodynamic response of liquid nitrogen has been studied extensively, in part, due to the long-standing interest in the high pressure and high temperature dissociation of shocked molecular nitrogen. Previous equation of state (EOS) developments regarding shocked liquid nitrogen have focused mainly on the use of intermolecular pair potentials in atomistic calculations. Here, we present EOS developments for liquid nitrogen, incorporating analytical models, for use in continuum calculations of the shock compression response. The analytical models, together with available Hugoniot data, were used to extrapolate a low pressure reference EOS for molecular nitrogen [Span, et al., J. Phys. Chem. Ref. Data 29, 1361 (2000)] to high pressures and high temperatures. Using the EOS presented here, the calculated pressures and temperatures for single shock, double shock, and multiple shock compression of liquid nitrogen provide a good match to the measured results over a broad range of P-T space. Our calculations provide the first comparison of EOS developments with recently-measured P-T states under multiple shock compression. The present EOS developments are general and are expected to be useful for other liquids that have low pressure reference EOS information available.

  17. Radiation- and pair-loaded shocks

    Science.gov (United States)

    Lyutikov, Maxim

    2018-06-01

    We consider the structure of mildly relativistic shocks in dense media, taking into account the radiation and pair loading, and diffusive radiation energy transfer within the flow. For increasing shock velocity (increasing post-shock temperature), the first important effect is the efficient energy redistribution by radiation within the shock that leads to the appearance of an isothermal jump, whereby the flow reaches the final state through a discontinuous isothermal transition. The isothermal jump, on scales much smaller than the photon diffusion length, consists of a weak shock and a quick relaxation to the isothermal conditions. Highly radiation-dominated shocks do not form isothermal jump. Pair production can mildly increase the overall shock compression ratio to ≈10 (4 for matter-dominated shocks and 7 of the radiation-dominated shocks).

  18. Air box shock absorber for a nuclear reactor

    International Nuclear Information System (INIS)

    Pradhan, A.V.; George, J.A.

    1977-01-01

    Disclosed is an air box type shock absorber primarily for use in an ice condenser compartment of a nuclear reactor. The shock absorber includes a back plate member and sheet metal top, bottom, and front members. The front member is prefolded, and controlled clearances are provided among the members for predetermined escape of air under impact and compression. Prefolded internal sheet metal stiffeners also absorb a portion of the kinetic energy imparted to the shock absorber, and limit rebound. An external restraining rod guided by restraining straps insures that the sheet metal front member compresses inward upon impact. 6 claims, 11 figures

  19. Shock characterization of an ultra-high strength concrete

    International Nuclear Information System (INIS)

    Erzar, B.; Pontiroli, C.; Buzaud, E.

    2016-01-01

    Nowadays, the design of protective structures may imply ultra-high performance concretes. These materials present a compressive strength 5 times higher than standard concretes. However, few reliable data on the shock response of such materials are available in the literature. Thus, a characterization of an ultra-high strength concrete has been conducted by means of hydrostatic and triaxial tests in the quasi-static regime, and plate impact experiments for shock response. Data have been gathered up to 6 GPa and a simple modelling approach has been applied to get a reliable representation of the shock compression of this concrete. (authors)

  20. Compression of interstellar clouds in spiral density-wave shocks

    International Nuclear Information System (INIS)

    Woodward, P.R.

    1979-01-01

    A mechanism of triggering star formation by galactic shocks is discussed. The possibilty that shocks may form along spiral arms in the gaseous component of a galactic disk is by now a familiar feature of spiral wave theory. It was suggested by Roberts (1969) that these shocks could trigger star formation in narrow bands forming a coherent spiral pattern over most of the disk of a galaxy. Some results of computer simulations of such a triggering process for star formation are reported. (Auth.)

  1. Building business from technology: The Sandia experience

    Energy Technology Data Exchange (ETDEWEB)

    Traylor, L.B.

    1995-07-01

    This paper describes New Ventures, a new initiative at Sandia National Laboratories that encourages the creation of new businesses based on laboratory technology as a timely, efficient means of technology transfer. Sandia`s New Ventures program has shown that a dedicated effort can produce significant results. In the three years prior to this program`s launch, just two ventures per year on average were created based on laboratory technology. By comparison, the New Ventures program has enabled 20 new ventures in its first nine months of full operation.

  2. One-dimensional model of steady, compressible channel flow with mass, momentum, and energy addition

    International Nuclear Information System (INIS)

    Johnston, S.C.

    1976-09-01

    A one-dimensional model of steady, compressible channel flow with mass, momentum and energy addition is discussed. An exact solution to the governing equations was found and from it a similarity parameter relating dimensionless mass, momentum and energy addition identified. This similarity parameter is used to make two flows having different dimensionless mass, momentum and energy additions equivalent. Application of the similarity parameter to the LASL Intense Neutron Source experiment and the Sandia simulation of that experiment results in an expression relating the dimensionless mass addition of combustible gas required in the Sandia experiment to dimensionless energy addition in the LASL experiment. Results of the analysis indicate that the Sandia experiment can realistically simulate the energy addition in the LASL Intense Neutron Source experiment

  3. Sandia National Laboratories: Locations: Kauai Test Facility

    Science.gov (United States)

    Locations Contact Us Employee Locator Search Menu About Leadership Mission Social Media Community History Diversity Social Media Careers View All Jobs Students & Postdocs Benefits & Perks Hiring Technology Deployment Centers New Mexico Small Business Assistance Program Sandia's Economic Impact Sandia

  4. Sandia National Laboratories: News: Publications: Annual Report

    Science.gov (United States)

    Locations Contact Us Employee Locator Search Menu About Leadership Mission Social Media Community Social Media Careers View All Jobs Students & Postdocs Benefits & Perks Hiring Process Life at New Mexico Small Business Assistance Program Sandia's Economic Impact Sandia Science & Technology

  5. Sandia National Laboratories: News: Publications: Strategic Plan

    Science.gov (United States)

    Locations Contact Us Employee Locator Search Menu About Leadership Mission Social Media Community Involvement Leadership Mission Environmental Responsibility History Diversity Social Media Careers View All Small Business Assistance Program Sandia's Economic Impact Sandia Science & Technology Park © 2018

  6. Compressibility, turbulence and high speed flow

    CERN Document Server

    Gatski, Thomas B

    2009-01-01

    This book introduces the reader to the field of compressible turbulence and compressible turbulent flows across a broad speed range through a unique complimentary treatment of both the theoretical foundations and the measurement and analysis tools currently used. For the computation of turbulent compressible flows, current methods of averaging and filtering are presented so that the reader is exposed to a consistent development of applicable equation sets for both the mean or resolved fields as well as the transport equations for the turbulent stress field. For the measurement of turbulent compressible flows, current techniques ranging from hot-wire anemometry to PIV are evaluated and limitations assessed. Characterizing dynamic features of free shear flows, including jets, mixing layers and wakes, and wall-bounded flows, including shock-turbulence and shock boundary-layer interactions, obtained from computations, experiments and simulations are discussed. Key features: * Describes prediction methodologies in...

  7. Unusual behaviour of usual materials in shock waves

    International Nuclear Information System (INIS)

    Kanel, G I

    2014-01-01

    Exotic results of investigations of inelastic deformation and fracture under shock wave loading are presented and briefly discussed. Temperature effects on the flow stress at high strain rate may differ even in sign from those we observe at low and moderate strain rates. Investigations of the temperature-rate dependence of the yield stress at shock compression demonstrate intense multiplication of dislocations. At the highest strain rates, so-called ideal (ultimate) shear and tensile strength is reached in experiments with picosecond durations of shock loading. Although grain boundaries, in general, reduce resistance to fracture as compared to single crystals, the spall strength of ultra-fine-grained metals usually slightly exceeds that of coarse-grain samples. Failure wave phenomena have been observed in shock-compressed glasses.

  8. Sandia National Laboratories: Employee & Retiree Resources: Emergency

    Science.gov (United States)

    Media Community Involvement Contribution Programs Volunteer Programs Education Programs Environmental & Figures Programs Nuclear Weapons About Nuclear Weapons Safety & Security Weapons Science & , twitter.com/SandiaLabs Sandia Kirtland Radio at 1640 AM Information regarding road conditions can be found at

  9. Laser shock wave and its applications

    Science.gov (United States)

    Yang, Chaojun; Zhang, Yongkang; Zhou, Jianzhong; Zhang, Fang; Feng, Aixin

    2007-12-01

    The technology of laser shock wave is used to not only surface modification but also metal forming. It can be divided into three parts: laser shock processing, laser shock forming (LSF) and laser peenforming(LPF). Laser shock processing as a surface treatment to metals can make engineering components have a residual compressive stress so that it obviously improves their fatigue strength and stress corrosion performances, while laser shock forming (LSF) is a novel technique that is used in plastic deformation of sheet metal recently and Laser peen forming (LPF) is another new sheet metal forming process presented in recent years. They all can be carried out by a high-power and repetition pulse Nd:Glass laser device made by Jiangsu University. Laser shock technology has characterized of ultrahigh pressure and high strain rate (10 6 - 10 7s -1). Now, for different materials, we are able to form different metals to contours and shapes and simultaneity leave their surfaces in crack-resistant compressive stress state. The results show that the technology of laser shock wave can strengthen surface property and prolong fatigue life and especially can deform metals to shapes that could not be adequately made using conventional methods. With the development of the technology of laser shock wave, the applied fields of laser will become greater and greater.

  10. Sandia National Laboratories analysis code data base

    Science.gov (United States)

    Peterson, C. W.

    1994-11-01

    Sandia National Laboratories' mission is to solve important problems in the areas of national defense, energy security, environmental integrity, and industrial technology. The laboratories' strategy for accomplishing this mission is to conduct research to provide an understanding of the important physical phenomena underlying any problem, and then to construct validated computational models of the phenomena which can be used as tools to solve the problem. In the course of implementing this strategy, Sandia's technical staff has produced a wide variety of numerical problem-solving tools which they use regularly in the design, analysis, performance prediction, and optimization of Sandia components, systems, and manufacturing processes. This report provides the relevant technical and accessibility data on the numerical codes used at Sandia, including information on the technical competency or capability area that each code addresses, code 'ownership' and release status, and references describing the physical models and numerical implementation.

  11. Sandia National Laboratories Institutional Plan: FY 1999-2004

    Energy Technology Data Exchange (ETDEWEB)

    Garber, D.P.

    1999-01-06

    This Institutional Plan is the most comprehensive yearly "snapshot" available of Sandia National Laboratories' major programs, facilities, human resources, and budget. The document also includes overviews of our missions, organization, capabilities, planning functions, milestones, and accomplishments. The document's purpose is to provide the above information to the US Department of Energy, key congressional committees, Sandia management, and other present and potential customers. Chapter 2 presents information about Sandia's mission and summarizes our recent revision of Sandia's Strategic Plan. Chapter 3 presents an overview of Sandia's strategic objectives, chapter 4 lists laboratory goals and milestones for FY 1999, and chapter 5 presents our accomplishments during FY 1998. Chapters 3 through 5 are organized around our eight strategic objectives. The four primary objectives cover nuclear weapons responsibilities, nonproliferation and materials control, energy and critical infrastructures, and emerging national security threats. The major programmatic initiatives are presented in chapter 7. However, the programmatic descriptions in chapter 6 and the Associated funding tables in chapter 9 continue to be presented by DOE Budget and Reporting Code, as in previous Sandia institutional plans. As an aid to the reader, the four primary strategic objectives in chapter 3 are cross-referenced to the program information in chapter 6.

  12. Sandia software guidelines: Software quality planning

    Energy Technology Data Exchange (ETDEWEB)

    1987-08-01

    This volume is one in a series of Sandia Software Guidelines intended for use in producing quality software within Sandia National Laboratories. In consonance with the IEEE Standard for Software Quality Assurance Plans, this volume identifies procedures to follow in producing a Software Quality Assurance Plan for an organization or a project, and provides an example project SQA plan. 2 figs., 4 tabs.

  13. Shock wave compression and metallization of simple molecules

    International Nuclear Information System (INIS)

    Ross, M.; Radousky, H.B.

    1988-03-01

    In this paper we combine shock wave studies and metallization of simple molecules in a single overview. The unifying features are provided by the high shock temperatures which lead to a metallic-like state in the rare gases and to dissociation of diatomic molecules. In the case of the rare gases, electronic excitation into the conduction band leads to a metallic-like inert gas state at lower than metallic densities and provides information regarding the closing of the band gap. Diatomic dissociation caused by thermal excitation also leads to a final metallic-like or monatomic state. Ina ddition, shock wave data can provide information concerning the short range intermolecular force of the insulator that can be useful for calculating the metallic phase transition as for example in the case of hydrogen. 69 refs., 36 figs., 2 tabs

  14. Interactive computer graphics applications for compressible aerodynamics

    Science.gov (United States)

    Benson, Thomas J.

    1994-01-01

    Three computer applications have been developed to solve inviscid compressible fluids problems using interactive computer graphics. The first application is a compressible flow calculator which solves for isentropic flow, normal shocks, and oblique shocks or centered expansions produced by two dimensional ramps. The second application couples the solutions generated by the first application to a more graphical presentation of the results to produce a desk top simulator of three compressible flow problems: 1) flow past a single compression ramp; 2) flow past two ramps in series; and 3) flow past two opposed ramps. The third application extends the results of the second to produce a design tool which solves for the flow through supersonic external or mixed compression inlets. The applications were originally developed to run on SGI or IBM workstations running GL graphics. They are currently being extended to solve additional types of flow problems and modified to operate on any X-based workstation.

  15. A brief history of Sandia's National security missions.

    Energy Technology Data Exchange (ETDEWEB)

    Drewien, Celeste A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); O' Canna, Myra Lynn [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Stikar, John Anthony. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-09-01

    To help members of the workforce understand what factors contribute to Sandia National Laboratories national security mission, the authors describe the evolution of Sandias core mission and its other mission components. The mission of Sandia first as a division of Los Alamos and later as Sandia Corporation underlies our core nuclear weapon mission of today. Sandias mission changed in 1963 and twice more in the 1970s. This report should help staff and management appreciate the need for mission evolution. A clear definition and communication of a consistent corporate mission statement is still needed.

  16. Remarks on stability of magneto-elastic shocks

    Directory of Open Access Journals (Sweden)

    Włodzimierz Domański

    2015-12-01

    Full Text Available The problem of stability of plane shock waves for a model of perfect magnetoelasticityis investigated. Important mathematical properties, like loss of strict hyperbolicityand loss of genuine nonlinearity, and their consequences for the stability ofmagneto-elastic shocks are discussed. It is shown that some of these shocks do not satisfyclassical Lax stability conditions. Both compressible and incompressible models ofmagneto-elasticity are discussed.[b]Keywords[/b]: perfect magneto-elasticity, shock waves, stability conditions

  17. Site environmental report for 2004 Sandia National Laboratories, California.

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Barbara L. (Sandia National Laboratories, Livermore, CA)

    2005-06-01

    Sandia National Laboratories, California (SNL/CA) is a government-owned/contractor-operated laboratory. Sandia Corporation, a Lockheed Martin Company, operates the laboratory for the Department of Energy's (DOE) National Nuclear Security Administration. The DOE Sandia Site Office oversees operations at the site, using Sandia Corporation as a management and operating contractor. This Site Environmental Report for 2004 was prepared in accordance with DOE Order 231.1A. The report provides a summary of environmental monitoring information and compliance activities that occurred at SNL/CA during calendar year 2004. General site and environmental program information is also included.

  18. Site Environmental Report for 2007: Sandia National Laboratories, California

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Barbara L. [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Environmental Management Dept.

    2008-06-01

    Sandia National Laboratories, California (SNL/CA) is a government-owned/contractor-operated laboratory. Sandia Corporation, a Lockheed Martin Company, operates the laboratory for the Department of Energy’s National Nuclear Security Administration (NNSA). The NNSA Sandia Site Office oversees operations at the site, using Sandia Corporation as a management and operating contractor. This Site Environmental Report for 2007 was prepared in accordance with DOE Order 231.1A (DOE 2004a). The report provides a summary of environmental monitoring information and compliance activities that occurred at SNL/CA during calendar year 2007. General site and environmental program information is also included.

  19. Site environmental report for 2008 Sandia National Laboratories, California.

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Barbara L.

    2009-04-01

    Sandia National Laboratories, California (SNL/CA) is a government-owned/contractor operated laboratory. Sandia Corporation, a Lockheed Martin Company, operates the laboratory for the Department of Energy's National Nuclear Security Administration (NNSA). The NNSA Sandia Site Office oversees operations at the site, using Sandia Corporation as a management and operating contractor. This Site Environmental Report for 2008 was prepared in accordance with DOE Order 231.1A (DOE 2004a). The report provides a summary of environmental monitoring information and compliance activities that occurred at SNL/CA during calendar year 2008. General site and environmental program information is also included.

  20. Site environmental report for 2006 Sandia National Laboratories, California.

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Barbara L.

    2007-06-01

    Sandia National Laboratories, California (SNL/CA) is a government-owned/contractor-operated laboratory. Sandia Corporation, a Lockheed Martin Company, operates the laboratory for the Department of Energy's National Nuclear Security Administration (NNSA). The NNSA Sandia Site Office oversees operations at the site, using Sandia Corporation as a management and operating contractor. This Site Environmental Report for 2006 was prepared in accordance with DOE Order 231.1A (DOE 2004a). The report provides a summary of environmental monitoring information and compliance activities that occurred at SNL/CA during calendar year 2006. General site and environmental program information is also included.

  1. Site environmental report for 2005 Sandia National Laboratories, California.

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Barbara L.

    2006-06-01

    Sandia National Laboratories, California (SNL/CA) is a government-owned/contractor-operated laboratory. Sandia Corporation, a Lockheed Martin Company, operates the laboratory for the Department of Energy's (DOE) National Nuclear Security Administration (NNSA). The DOE/NNSA Sandia Site Office (SSO) oversees operations at the site, using Sandia Corporation as a management and operating contractor. This Site Environmental Report for 2005 was prepared in accordance with DOE Order 231.1A. The report provides a summary of environmental monitoring information and compliance activities that occurred at SNL/CA during calendar year 2005. General site and environmental program information is also included.

  2. Site environmental report for 2003 Sandia National Laboratories, California.

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Barbara L.

    2004-06-01

    Sandia National Laboratories, California (SNL/CA) is a government-owned/contractor-operated laboratory. Sandia Corporation, a Lockheed Martin Company, operates the laboratory for the Department of Energy's (DOE) National Nuclear Security Administration. The DOE Sandia Site Office oversees operations at the site, using Sandia Corporation as a management and operating contractor. This Site Environmental Report for 2003 was prepared in accordance with DOE Order 231.1A. The report provides a summary of environmental monitoring information and compliance activities that occurred at SNL/CA during calendar year 2003. General site and environmental program information is also included.

  3. Critical experiments at Sandia National Laboratories

    International Nuclear Information System (INIS)

    Harms, G.A.; Ford, J.T.; Barber, A.D.

    2011-01-01

    Sandia National Laboratories (SNL) has conducted radiation effects testing for the Department of Energy (DOE) and other contractors supporting the DOE since the 1960's. Over this period, the research reactor facilities at Sandia have had a primary mission to provide appropriate nuclear radiation environments for radiation testing and qualification of electronic components and other devices. The current generation of reactors includes the Annular Core Research Reactor (ACRR), a water-moderated pool-type reactor, fueled by elements constructed from UO2-BeO ceramic fuel pellets, and the Sandia Pulse Reactor III (SPR-III), a bare metal fast burst reactor utilizing a uranium-molybdenum alloy fuel. The SPR-III is currently defueled. The SPR Facility (SPRF) has hosted a series of critical experiments. A purpose-built critical experiment was first operated at the SPRF in the late 1980's. This experiment, called the Space Nuclear Thermal Propulsion Critical Experiment (CX), was designed to explore the reactor physics of a nuclear thermal rocket motor. This experiment was fueled with highly-enriched uranium carbide fuel in annular water-moderated fuel elements. The experiment program was completed and the fuel for the experiment was moved off-site. A second critical experiment, the Burnup Credit Critical Experiment (BUCCX) was operated at Sandia in 2002. The critical assembly for this experiment was based on the assembly used in the CX modified to accommodate low-enriched pin-type fuel in water moderator. This experiment was designed as a platform in which the reactivity effects of specific fission product poisons could be measured. Experiments were carried out on rhodium, an important fission product poison. The fuel and assembly hardware for the BUCCX remains at Sandia and is available for future experimentation. The critical experiment currently in operation at the SPRF is the Seven Percent Critical Experiment (7uPCX). This experiment is designed to provide benchmark

  4. Critical experiments at Sandia National Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Harms, G.A.; Ford, J.T.; Barber, A.D., E-mail: gaharms@sandia.gov [Sandia National Laboratories, Albuquerque, NM (United States)

    2011-07-01

    Sandia National Laboratories (SNL) has conducted radiation effects testing for the Department of Energy (DOE) and other contractors supporting the DOE since the 1960's. Over this period, the research reactor facilities at Sandia have had a primary mission to provide appropriate nuclear radiation environments for radiation testing and qualification of electronic components and other devices. The current generation of reactors includes the Annular Core Research Reactor (ACRR), a water-moderated pool-type reactor, fueled by elements constructed from UO2-BeO ceramic fuel pellets, and the Sandia Pulse Reactor III (SPR-III), a bare metal fast burst reactor utilizing a uranium-molybdenum alloy fuel. The SPR-III is currently defueled. The SPR Facility (SPRF) has hosted a series of critical experiments. A purpose-built critical experiment was first operated at the SPRF in the late 1980's. This experiment, called the Space Nuclear Thermal Propulsion Critical Experiment (CX), was designed to explore the reactor physics of a nuclear thermal rocket motor. This experiment was fueled with highly-enriched uranium carbide fuel in annular water-moderated fuel elements. The experiment program was completed and the fuel for the experiment was moved off-site. A second critical experiment, the Burnup Credit Critical Experiment (BUCCX) was operated at Sandia in 2002. The critical assembly for this experiment was based on the assembly used in the CX modified to accommodate low-enriched pin-type fuel in water moderator. This experiment was designed as a platform in which the reactivity effects of specific fission product poisons could be measured. Experiments were carried out on rhodium, an important fission product poison. The fuel and assembly hardware for the BUCCX remains at Sandia and is available for future experimentation. The critical experiment currently in operation at the SPRF is the Seven Percent Critical Experiment (7uPCX). This experiment is designed to provide

  5. Energy technologies at Sandia National Laboratories: Past, Present, Future

    Energy Technology Data Exchange (ETDEWEB)

    1989-08-01

    We at Sandia first became involved with developing energy technology when the nation initiated its push toward energy independence in the early 1970s. That involvement continues to be strong. In shaping Sandia's energy programs for the 1990s, we will build on our track record from the 70s and 80s, a record outlined in this publication. It contains reprints of three issues of Sandia's Lab News that were devoted to our non-nuclear energy programs. Together, they summarize the history, current activities, and future of Sandia's diverse energy concerns; hence my desire to see them in one volume. Written in the fall of 1988, the articles cover Sandia's extremely broad range of energy technologies -- coal, oil and gas, geothermal, solar thermal, photovoltaics, wind, rechargeable batteries, and combustion.

  6. Terminal-shock and restart control of a Mach 2.5, axisymmetric, mixed compression inlet with 40 percent internal contraction. [wind tunnel tests

    Science.gov (United States)

    Baumbick, R. J.

    1974-01-01

    Results of experimental tests conducted on a supersonic, mixed-compression, axisymmetric inlet are presented. The inlet is designed for operation at Mach 2.5 with a turbofan engine (TF-30). The inlet was coupled to either a choked orifice plate or a long duct which had a variable-area choked exit plug. Closed-loop frequency responses of selected diffuser static pressures used in the terminal-shock control system are presented. Results are shown for Mach 2.5 conditions with the inlet coupled to either the choked orifice plate or the long duct. Inlet unstart-restart traces are also presented. High-response inlet bypass doors were used to generate an internal disturbance and also to achieve terminal-shock control.

  7. Elastic-plastic collapse of super-elastic shock waves in face-centered-cubic solids

    International Nuclear Information System (INIS)

    Zhakhovsky, Vasily V; Demaske, Brian J; Oleynik, Ivan I; Inogamov, Nail A; White, Carter T

    2014-01-01

    Shock waves in the [110] and [111] directions of single-crystal Al samples were studied using molecular dynamics (MD) simulations. Piston-driven simulations were performed to investigate the split shock-wave regime. At low piston velocities, the material is compressed initially to a metastable over-compressed elastic state leading to a super-elastic single shock wave. This metastable elastic state later collapses to a plastic state resulting in the formation of a two-wave structure consisting of an elastic precursor followed by a slower plastic wave. The single two-zone elastic-plastic shock-wave regime appearing at higher piston velocities was studied using moving window MD. The plastic wave attains the same average speed as the elastic precursor to form a single two-zone shock wave. In this case, repeated collapse of the highly over-compressed elastic state near the plastic shock front produces ultrashort triangle pulses that provide the pressure support for the leading elastic precursor.

  8. Survey of compressions in the SW (1 AU), and after termination shock at Voyager (in sheath & LISM)

    Science.gov (United States)

    Berdichevsky, D. B.

    2017-12-01

    Examples of the plasma compression as it is observed in the solar wind at 1 AU with the suite of instruments in the SC Wind, and after the termination shock with both Voyager SC, as well as with Voyager 1 in the local interstellar medium (LISM) are presented. The work will focus on similarities and differences in the observations at the different locations. At priory is fair to mention that the 4 regions differ in several aspects. At 1 AU the solar wind (SW) flow is mostly alfvenic. In the sheath after the termination shock the possibly subsonic solar wind is mostly compressional but fluctuation modes in scales of one hour are much less observed at Voyager 1 than at Voyager 2 path. Finally Burlaga and Ness1 documented the nature of the compressional flow in the `depletion' layer at the start of the LISM as well later in this medium, showing the low plasma-beta character of this LISM region in Voyager 1 path. 1Burlaga L.F., and N. Ness, ApJ, 784, 146 (14pp), 2014.

  9. Partnering with Sandia National Laboratories through alliances or consortia

    Energy Technology Data Exchange (ETDEWEB)

    Winchell, B.M.

    1994-12-01

    To better facilitate working with industry, groups of industrial participants, and partners in alliances or consortia, Sandia National Laboratories presents information helpful to those outside groups as to the forms of arrangements that may be used to better facilitate partnering relationships between Sandia National Laboratories and consortia or alliances of outside parties. It is expected that these alliances and consortia will include both large and small for-profit industrial concerns, as well as not-for-profit entities such as universities, institutes, other research facilities, and other nonprofit institutions or consortia containing institutions. The intent of this report is to provide such outside groups with information that will facilitate rapid interactions with Sandia National Laboratories through some of these forms of business which will be discussed in this report. These are not the only approaches to facilitating business interactions with Sandia National Laboratories and it is not intended that this report be legal advice or required approaches to doing business with Sandia National Laboratories. The intent of this report is merely to suggest ways in which Sandia National Laboratories can work with outside parties in the most expeditious manner.

  10. Partnering with Sandia National Laboratories through alliances or consortia

    Energy Technology Data Exchange (ETDEWEB)

    Winchell, B.M.

    1994-04-01

    To better facilitate working with industry, groups of industrial participants, and partners in alliances or consortia, Sandia National laboratories presents information helpful to those outside groups as to the forms of arrangements that may be used to better facilitate partnering relationships between Sandia National Laboratories and consortia or alliances of outside parties. It is expected that these alliances and consortia will include both large and small for-profit industrial concerns, as well as not-for-profit entities such as universities, institutes, other research facilities, and other nonprofit institutions or consortia containing institutions. The intent of this report is to provide such outside groups with information that will facilitate rapid interactions with Sandia National Laboratories through some of these forms of business which will be discussed in this report. These are not the only approaches to facilitating business interactions with Sandia National Laboratories and it is not intended that this report be legal advice or required approaches to doing business with Sandia National Laboratories. The intent of this report is merely to suggest ways in which Sandia National Laboratories can work with outside parties in the most expeditious manner.

  11. Influence of deposited nanoparticles on the spall strength of metals under the action of picosecond pulses of shock compression

    Science.gov (United States)

    Ebel, A. A.; Mayer, A. E.

    2018-01-01

    Molecular dynamic simulations of the generation and propagation of shock pulses of picosecond duration initiated by nanoscale impactors, and their interaction with the rear surface is carried out for aluminum and copper. It is shown that the presence of deposited nanoparticles on the rear surface increases the threshold value of the impact intensity leading to the rear spallation. The interaction of a shock wave with nanoparticles leads to severe plastic deformation in the surface layer of the metal including nanoparticles. A part of the compression pulse energy is expended on the plastic deformation, which suppresses the spall fracture. Spallation threshold substantially increases at large diameters of deposited nanoparticles, but instability develops on the rear surface of the target, which is accompanied by ejection of droplets. The instability disrupts the integrity of the rear surface, though the loss of integrity occurs through the ejection of mass, rather than a spallation.

  12. Sandia National Laboratories: News: Media Resources: Media Contacts

    Science.gov (United States)

    Foundations Bioscience Computing & Information Science Electromagnetics Engineering Science Geoscience computing, modeling and simulation and nanotechnology. Contact: (505) 845-7078; nsinger@sandia.gov Kristen specialist at Sandia/California. She covers biological and engineering sciences, homeland security and

  13. Teamwork and diversity: A survey at Sandia National Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Apodaca, T.; Berman, M.; Griego, C.; Jansma, R.; Leatherwood, M.; Lovato, L.; Sanchez, A.

    1995-11-01

    In September, 1994, Sandia`s Diversity Leadership and Education Outreach Center arid the Corporate Diversity Team commissioned a Diversity Action Team (DAT-Phase II) to address the area of team- work. The goal of this DAT was to identify ways to capitalize on the diversity of people to enhance team success at Sandia. Given a six- month lifetime and funding levels of 12 hours per person per month, we chose to accomplish our goal by gathering and analyzing data on the performance and diversity of Sandia teams and publishing this report of our findings. The work presented herein builds on earlier work of this team.

  14. SAPLE: Sandia Advanced Personnel Locator Engine.

    Energy Technology Data Exchange (ETDEWEB)

    Procopio, Michael J.

    2010-04-01

    We present the Sandia Advanced Personnel Locator Engine (SAPLE) web application, a directory search application for use by Sandia National Laboratories personnel. SAPLE's purpose is to return Sandia personnel 'results' as a function of user search queries, with its mission to make it easier and faster to find people at Sandia. To accomplish this, SAPLE breaks from more traditional directory application approaches by aiming to return the correct set of results while placing minimal constraints on the user's query. Two key features form the core of SAPLE: advanced search query interpretation and inexact string matching. SAPLE's query interpretation permits the user to perform compound queries when typing into a single search field; where able, SAPLE infers the type of field that the user intends to search on based on the value of the search term. SAPLE's inexact string matching feature yields a high-quality ranking of personnel search results even when there are no exact matches to the user's query. This paper explores these two key features, describing in detail the architecture and operation of SAPLE. Finally, an extensive analysis on logged search query data taken from an 11-week sample period is presented.

  15. Polymerization, shock cooling and ionization of liquid nitrogen

    International Nuclear Information System (INIS)

    Ross, M; Rogers, F

    2005-01-01

    The trajectory of thermodynamic states passed through by the nitrogen Hugoniot starting from the liquid and up to 10 6 GPa has been studied. An earlier report of cooling in the doubly shocked liquid, near 50 to 100 GPa and 7500 K, is revisited in light of the recent discovery of solid polymeric nitrogen. It is found that cooling occurs when the doubly shocked liquid is driven into a volume near the molecular to polymer transition and raising the possibility of a liquid-liquid phase transition (LLPT). By increasing the shock pressure and temperature by an order of magnitude, theoretical calculations predict thermal ionization of the L shell drives the compression maxima to 5-6 fold compression at 10 Mbar (T ∼ 3.5 10 5 K) and at 400 Mbar (T ∼ 2.3 10 6 K) from K shell ionization. Near a pressure of 10 6 GPa the K shell ionizes completely and the Hugoniot approaches the classical ideal gas compression fourfold limit

  16. High level compressive residual stresses produced in aluminum alloys by laser shock processing

    International Nuclear Information System (INIS)

    Gomez-Rosas, G.; Rubio-Gonzalez, C.; Ocana, J.L; Molpeceres, C.; Porro, J.A.; Chi-Moreno, W.; Morales, M.

    2005-01-01

    Laser shock processing (LSP) has been proposed as a competitive alternative technology to classical treatments for improving fatigue and wear resistance of metals. We present a configuration and results for metal surface treatments in underwater laser irradiation at 1064 nm. A convergent lens is used to deliver 1.2 J/cm 2 in a 8 ns laser FWHM pulse produced by 10 Hz Q-switched Nd:YAG, two laser spot diameters were used: 0.8 and 1.5 mm. Results using pulse densities of 2500 pulses/cm 2 in 6061-T6 aluminum samples and 5000 pulses/cm 2 in 2024 aluminum samples are presented. High level of compressive residual stresses are produced -1600 MPa for 6061-T6 Al alloy, and -1400 MPa for 2024 Al alloy. It has been shown that surface residual stress level is higher than that achieved by conventional shot peening and with greater depths. This method can be applied to surface treatment of final metal products

  17. Sandia WIPP calibration traceability

    Energy Technology Data Exchange (ETDEWEB)

    Schuhen, M.D. [Sandia National Labs., Albuquerque, NM (United States); Dean, T.A. [RE/SPEC, Inc., Albuquerque, NM (United States)

    1996-05-01

    This report summarizes the work performed to establish calibration traceability for the instrumentation used by Sandia National Laboratories at the Waste Isolation Pilot Plant (WIPP) during testing from 1980-1985. Identifying the calibration traceability is an important part of establishing a pedigree for the data and is part of the qualification of existing data. In general, the requirement states that the calibration of Measuring and Test equipment must have a valid relationship to nationally recognized standards or the basis for the calibration must be documented. Sandia recognized that just establishing calibration traceability would not necessarily mean that all QA requirements were met during the certification of test instrumentation. To address this concern, the assessment was expanded to include various activities.

  18. Sandia WIPP calibration traceability

    International Nuclear Information System (INIS)

    Schuhen, M.D.; Dean, T.A.

    1996-05-01

    This report summarizes the work performed to establish calibration traceability for the instrumentation used by Sandia National Laboratories at the Waste Isolation Pilot Plant (WIPP) during testing from 1980-1985. Identifying the calibration traceability is an important part of establishing a pedigree for the data and is part of the qualification of existing data. In general, the requirement states that the calibration of Measuring and Test equipment must have a valid relationship to nationally recognized standards or the basis for the calibration must be documented. Sandia recognized that just establishing calibration traceability would not necessarily mean that all QA requirements were met during the certification of test instrumentation. To address this concern, the assessment was expanded to include various activities

  19. Ultrafast dynamic ellipsometry and spectroscopies of laser shocked materials

    Energy Technology Data Exchange (ETDEWEB)

    Mcgrane, Shawn David [Los Alamos National Laboratory; Bolme, Cindy B [Los Alamos National Laboratory; Whitley, Von H [Los Alamos National Laboratory; Moore, David S [Los Alamos National Laboratory

    2010-01-01

    Ultrafast ellipsometry and transient absorption spectroscopies are used to measure material dynamics under extreme conditions of temperature, pressure, and volumetric compression induced by shock wave loading with a chirped, spectrally clipped shock drive pulse.

  20. X-ray diffraction measurements in KCl shocked along [100

    International Nuclear Information System (INIS)

    D'Almeida, T.; Gupta, Y.M.

    2000-01-01

    Real time x-ray diffraction measurements were used to examine the polymorphic phase transformation in KCl shocked along the [100] direction. Shock wave continuum data, obtained previously by Hayes, were used to design the experiments and to predict diffraction from KCl shocked to different peak stresses. Here, we present the results obtained below the transition stress: between 1.4 and 2 GPa. Diffraction data obtained were quantitatively related to macroscopic compression. Interplanar spacing measurements revealed isotropic compression of the unit cell in contrast to previously reported results. Above the transition stress, descriptions of the atomic arrangement with respect to shock propagation (not available in the literature) are required for setting up the detection system. Hence, continuum results in combination with various crystallographic considerations were utilized to obtain data above the transition stress

  1. Electron transport and shock ignition

    Energy Technology Data Exchange (ETDEWEB)

    Bell, A R; Tzoufras, M, E-mail: t.bell1@physics.ox.ac.uk [Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU (United Kingdom)

    2011-04-15

    Inertial fusion energy (IFE) offers one possible route to commercial energy generation. In the proposed 'shock ignition' route to fusion, the target is compressed at a relatively low temperature and then ignited using high intensity laser irradiation which drives a strong converging shock into the centre of the fuel. With a series of idealized calculations we analyse the electron transport of energy into the target, which produces the pressure responsible for driving the shock. We show that transport in shock ignition lies near the boundary between ablative and heat front regimes. Moreover, simulations indicate that non-local effects are significant in the heat front regime and might lead to increased efficiency by driving the shock more effectively and reducing heat losses to the plasma corona.

  2. Sandia National Laboratories: Strategic Partnership Projects, Non-Federal

    Science.gov (United States)

    Diversity Social Media Careers View All Jobs Students & Postdocs Benefits & Perks Hiring Process Deployment Centers New Mexico Small Business Assistance Program Sandia's Economic Impact Sandia Science & interest Menu Search Icon Locations Contact Us Employee Locator Search Menu About Leadership Mission Social

  3. Shock response of porous metals: characterization of pressure field

    International Nuclear Information System (INIS)

    Xu Aiguo; Zhang Guangcai; Hao Pengcheng; Dong Yinfeng; Wei Xijun; Zhu Jianshi

    2012-01-01

    Shock wave reaction on porous metals is numerically simulated. When the pressure threshold is low, the increasing rate of high-pressure area gives roughly the propagation velocity of the compressive waves in the porous material. and the wave front in the condensed pressure map is nearly a plane: with the increasing of pressure threshold. more low-pressure-spots appear in the high-pressure background, and neighboring spots may coalesce, consequently, the topology of the pressure Turing pattern may change. The deviation from linearity of the increasing rate of high-pressure area is a pronounced effect of porous material under shock. The stronger the initial shock, the more pronounced the porosity effects. When the initial yield of material becomes higher, the material shows more elastic behaviors and the less porous effects, compressive and tension waves propagate more quickly, and the porous material becomes less compressible. (authors)

  4. The ''injection problem'' for quasiparallel shocks

    International Nuclear Information System (INIS)

    Zank, G. P.; Rice, W. K. M.; le Roux, J. A.; Cairns, I. H.; Webb, G. M.

    2001-01-01

    For a particle to be accelerated diffusively at a shock by the first-order Fermi acceleration mechanism, the particle must be sufficiently energetic that it can scatter across all the micro- and macrostructure of the shock, experiencing compression between the converging upstream and downstream states. This is the well-known ''injection problem.'' Here the interaction of ions with the ramp of a quasiparallel shock is investigated. Some ions incident on the shock experience specular reflection, caused either by the cross-shock electrostatic potential or by mirroring as the magnetic field is bent and compressed through the ramp. Scattering of reflected ions by self-generated and pre-existing turbulence in the region upstream of the shock then acts to trap backstreaming ions and return them to the ramp, where some experience further reflections. Such repeated reflections and scattering energize a subpopulation of ions up to energies sufficiently large that they can be diffusively shock accelerated. Two ion distributions are considered: pickup ions which are assumed to be described by a shell distribution, are thermal solar wind ions which may be described by a kappa distribution. Injection efficiencies are found analytically to be very high for pickup ions and much lower for thermal solar wind ions, suggesting that this injection mechanism, stochastic reflected ion or SRI acceleration, is a natural precursor for the acceleration of the anomalous cosmic ray component at a quasiparallel shock. While significantly less efficient, SRI acceleration is also viable for thermal solar wind ions described by a kappa distribution

  5. Simulations of Shock Wave Interaction with a Particle Cloud

    Science.gov (United States)

    Koneru, Rahul; Rollin, Bertrand; Ouellet, Frederick; Annamalai, Subramanian; Balachandar, S.'Bala'

    2016-11-01

    Simulations of a shock wave interacting with a cloud of particles are performed in an attempt to understand similar phenomena observed in dispersal of solid particles under such extreme environment as an explosion. We conduct numerical experiments in which a particle curtain fills only 87% of the shock tube from bottom to top. As such, the particle curtain upon interaction with the shock wave is expected to experience Kelvin-Helmholtz (KH) and Richtmyer-Meshkov (RM) instabilities. In this study, the initial volume fraction profile matches with that of Sandia Multiphase Shock Tube experiments, and the shock Mach number is limited to M =1.66. In these simulations we use a Eulerian-Lagrangian approach along with state-of-the-art point-particle force and heat transfer models. Measurements of particle dispersion are made at different initial volume fractions of the particle cloud. A detailed analysis of the evolution of the particle curtain with respect to the initial conditions is presented. This work was supported by the U.S. Department of Energy, National Nuclear Security Administration, Advanced Simulation and Computing Program, as a Cooperative Agreement under the Predictive Science Academic Alliance Program, Contract No. DE-NA0002378.

  6. Limiting density ratios in piston-driven compressions

    International Nuclear Information System (INIS)

    Lee, S.

    1985-07-01

    By using global energy and pressure balance applied to a shock model it is shown that for a piston-driven fast compression, the maximum compression ratio is not dependent on the absolute magnitude of the piston power, but rather on the power pulse shape. Specific cases are considered and a maximum density compression ratio of 27 is obtained for a square-pulse power compressing a spherical pellet with specific heat ratio of 5/3. Double pulsing enhances the density compression ratio to 1750 in the case of linearly rising compression pulses. Using this method further enhancement by multiple pulsing becomes obvious. (author)

  7. Sandia software guidelines, Volume 4: Configuration management

    Energy Technology Data Exchange (ETDEWEB)

    1992-06-01

    This volume is one in a series of Sandia Software Guidelines for use in producing quality software within Sandia National Laboratories. This volume is based on the IEEE standard and guide for software configuration management. The basic concepts and detailed guidance on implementation of these concepts are discussed for several software project types. Example planning documents for both projects and organizations are included.

  8. Programmable SAW development :Sandia/NASA project final report.

    Energy Technology Data Exchange (ETDEWEB)

    Brocato, Robert Wesley

    2004-10-01

    This report describes a project to develop both fixed and programmable surface acoustic wave (SAW) correlators for use in a low power space communication network. This work was funded by NASA at Sandia National Laboratories for fiscal years 2004, 2003, and the final part of 2002. The role of Sandia was to develop the SAW correlator component, although additional work pertaining to use of the component in a system and system optimization was also done at Sandia. The potential of SAW correlator-based communication systems, the design and fabrication of SAW correlators, and general system utilization of those correlators are discussed here.

  9. Shock-wave propagation and reflection in semicrystalline polyethylene: A molecular-level investigation

    Science.gov (United States)

    Elder, Robert M.; O'Connor, Thomas C.; Chantawansri, Tanya L.; Sliozberg, Yelena R.; Sirk, Timothy W.; Yeh, In-Chul; Robbins, Mark O.; Andzelm, Jan W.

    2017-09-01

    Semicrystalline polyethylene (PE) is attractive for a variety of mechanically demanding applications, where shock compression can occur. Although often highly crystalline, PE invariably contains nanoscale amorphous domains that influence shock propagation. Our objective in this work is to study the effects of such domains. To this end, we adopt a novel approach wherein we parametrize a simple continuum-level theory based on the shock impedance from molecular dynamics (MD) simulations. Using this theory, we predict how crystalline/amorphous interfaces attenuate shocks via energy reflection due to the impedance mismatch between the phases. The theory predicts that these interfaces attenuate weak shocks more effectively than strong shocks. We compare the theory to explicit nonequilibrium MD simulations of compressive shocks in semicrystalline PE containing nanometer-scale amorphous regions of varying size, where we analyze the pressure response and reflection of energy. The theory and simulations show good agreement for strong shocks (≥1.0 km /s ), but for weak shocks (shock front. However, the simulations show that when amorphous domains are narrow—with widths comparable to the shock front—reflection is reduced compared to the predictions. We identify several nanoscale mechanisms that reduce the impedance mismatch, and thus reduce reflection, at thin amorphous domains. First, the two-wave elastic-plastic structure of shocks in crystalline PE allows the faster-moving elastic precursor wave to compress small amorphous domains before the plastic wave arrives. Second, confinement between stiff, ordered crystalline domains increases the stiffness and chain ordering in small amorphous regions. Moreover, in terms of stiffness the interfaces are similar in width to the shock front, which may contribute to the underprediction of the theory for weak shocks, where the shock front is widest. We conclude by discussing the significance of these results, namely, how they can

  10. Sandia National Laboratories: Agreements

    Science.gov (United States)

    Environmental Management System Pollution Prevention History 60 impacts Diversity Locations Facts & Figures Does Sandia Buy? Opportunities Small Business Procurement Technical Assistance Program (PTAP) Current Technology Partnerships Business, Industry, & Non-Profits Government Universities Center for

  11. The Sandia MEMS passive shock sensor : FY08 design summary.

    Energy Technology Data Exchange (ETDEWEB)

    Walraven, Jeremy Allen; Baker, Michael Sean; Clemens, Rebecca C.; Mitchell, John Anthony; Brake, Matthew Robert; Epp, David S.; Wittwer, Jonathan W.

    2008-11-01

    This report summarizes design and modeling activities for the MEMS passive shock sensor. It provides a description of past design revisions, including the purposes and major differences between design revisions but with a focus on Revisions 4 through 7 and the work performed in fiscal year 2008 (FY08). This report is a reference for comparing different designs; it summarizes design parameters and analysis results, and identifies test structures. It also highlights some of the changes and or additions to models previously documented [Mitchell et al. 2006, Mitchell et al. 2008] such as the way uncertainty thresholds are analyzed and reported. It also includes dynamic simulation results used to investigate how positioning of hard stops may reduce vibration sensitivity.

  12. Power supplies for space systems quality assurance by Sandia Laboratories

    International Nuclear Information System (INIS)

    Hannigan, R.L.; Harnar, R.R.

    1976-07-01

    The Sandia Laboratories' participation in Quality Assurance programs for Radioisotopic Thermoelectric Generators which have been used in space systems over the past 10 years is summarized. Basic elements of this QA program are briefly described and recognition of assistance from other Sandia organizations is included. Descriptions of the various systems for which Sandia has had the QA responsibility are presented, including SNAP 19 (Nimbus, Pioneer, Viking), SNAP 27 (Apollo), Transit, Multi-Hundred Watt (LES 8/9 and MJS), and a new program, High-Performance Generator Mod 3. The outlook for Sandia participation in RTG programs for the next several years is noted

  13. Lessons learned from early microelectronics production at Sandia National Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Weaver, H.T.

    1998-02-01

    During the 1980s Sandia designed, developed, fabricated, tested, and delivered hundreds of thousands of radiation hardened Integrated Circuits (IC) for use in weapons and satellites. Initially, Sandia carried out all phases, design through delivery, so that development of next generation ICs and production of current generation circuits were carried out simultaneously. All this changed in the mid-eighties when an outside contractor was brought in to produce ICs that Sandia developed, in effect creating a crisp separation between development and production. This partnership had a severe impact on operations, but its more damaging effect was the degradation of Sandia`s microelectronics capabilities. This report outlines microelectronics development and production in the early eighties and summarizes the impact of changing to a separate contractor for production. This record suggests that low volume production be best accomplished within the development organization.

  14. A Sandia telephone database system

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, S.D.; Tolendino, L.F.

    1991-08-01

    Sandia National Laboratories, Albuquerque, may soon have more responsibility for the operation of its own telephone system. The processes that constitute providing telephone service can all be improved through the use of a central data information system. We studied these processes, determined the requirements for a database system, then designed the first stages of a system that meets our needs for work order handling, trouble reporting, and ISDN hardware assignments. The design was based on an extensive set of applications that have been used for five years to manage the Sandia secure data network. The system utilizes an Ingres database management system and is programmed using the Application-By-Forms tools.

  15. Sandia National Laboratories: Pathfinder Radar ISR and Synthetic Aperture

    Science.gov (United States)

    Radar (SAR) Systems Sandia National Laboratories Exceptional service in the national interest ; Technology Defense Systems & Assessments About Defense Systems & Assessments Program Areas Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios

  16. New experimental platform to study high density laser-compressed matter

    International Nuclear Information System (INIS)

    Gauthier, M.; Fletcher, L. B.; Galtier, E.; Gamboa, E. J.; Granados, E.; Hastings, J. B.; Heimann, P.; Lee, H. J.; Nagler, B.; Schropp, A.; Falcone, R.; Glenzer, S. H.; Ravasio, A.; Gleason, A.; Döppner, T.; LePape, S.; Ma, T.; Pak, A.; MacDonald, M. J.; Ali, S.

    2014-01-01

    We have developed a new experimental platform at the Linac Coherent Light Source (LCLS) which combines simultaneous angularly and spectrally resolved x-ray scattering measurements. This technique offers a new insights on the structural and thermodynamic properties of warm dense matter. The < 50 fs temporal duration of the x-ray pulse provides near instantaneous snapshots of the dynamics of the compression. We present a proof of principle experiment for this platform to characterize a shock-compressed plastic foil. We observe the disappearance of the plastic semi-crystal structure and the formation of a compressed liquid ion-ion correlation peak. The plasma parameters of shock-compressed plastic can be measured as well, but requires an averaging over a few tens of shots

  17. The high current, fast, 100ns, Linear Transformer Driver (LTD) developmental project at Sandia Laboratories and HCEI

    International Nuclear Information System (INIS)

    Ward, Kevin S.; Long, Finis W.; Sinebryukhov, Vadim A.; Kim, Alexandre A.; Wakeland, Peter Eric; McKee, G. Randall; Woodworth, Joseph Ray; McDaniel, Dillon Heirman; Fowler, William E.; Mazarakis, Michael Gerrassimos; Porter, John Larry Jr.; Struve, Kenneth William; Savage, Mark Edward; Stygar, William A.; LeChien, Keith R.; Matzen, Maurice Keith

    2010-01-01

    Sandia National Laboratories, Albuquerque, N.M., USA, in collaboration with the High Current Electronic Institute (HCEI), Tomsk, Russia, is developing a new paradigm in pulsed power technology: the Linear Transformer Driver (LTD) technology. This technological approach can provide very compact devices that can deliver very fast high current and high voltage pulses straight out of the cavity with out any complicated pulse forming and pulse compression network. Through multistage inductively insulated voltage adders, the output pulse, increased in voltage amplitude, can be applied directly to the load. The load may be a vacuum electron diode, a z-pinch wire array, a gas puff, a liner, an isentropic compression load (ICE) to study material behavior under very high magnetic fields, or a fusion energy (IFE) target. This is because the output pulse rise time and width can be easily tailored to the specific application needs. In this paper we briefly summarize the developmental work done in Sandia and HCEI during the last few years, and describe our new MYKONOS Sandia High Current LTD Laboratory. An extensive evaluation of the LTD technology is being performed at SNL and the High Current Electronic Institute (HCEI) in Tomsk Russia. Two types of High Current LTD cavities (LTD I-II, and 1-MA LTD) were constructed and tested individually and in a voltage adder configuration (1-MA cavity only). All cavities performed remarkably well and the experimental results are in full agreement with analytical and numerical calculation predictions. A two-cavity voltage adder is been assembled and currently undergoes evaluation. This is the first step towards the completion of the 10-cavity, 1-TW module. This MYKONOS voltage adder will be the first ever IVA built with a transmission line insulated with deionized water. The LTD II cavity renamed LTD III will serve as a test bed for evaluating a number of different types of switches, resistors, alternative capacitor configurations, cores

  18. Experimental and Theoretical Investigation of Shock-Induced Reactions in Energetic Materials

    Energy Technology Data Exchange (ETDEWEB)

    Kay, Jeffrey J. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Park, Samuel [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Kohl, Ian Thomas [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Knepper, Robert [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Farrow, Darcie [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Tappan, Alexander S. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-09-01

    In this work, shock-induced reactions in high explosives and their chemical mechanisms were investigated using state-of-the-art experimental and theoretical techniques. Experimentally, ultrafast shock interrogation (USI, an ultrafast interferometry technique) and ultrafast absorption spectroscopy were used to interrogate shock compression and initiation of reaction on the picosecond timescale. The experiments yielded important new data that appear to indicate reaction of high explosives on the timescale of tens of picoseconds in response to shock compression, potentially setting new upper limits on the timescale of reaction. Theoretically, chemical mechanisms of shock-induced reactions were investigated using density functional theory. The calculations generated important insights regarding the ability of several hypothesized mechanisms to account for shock-induced reactions in explosive materials. The results of this work constitute significant advances in our understanding of the fundamental chemical reaction mechanisms that control explosive sensitivity and initiation of detonation.

  19. Relativistic shocks and particle acceleration

    International Nuclear Information System (INIS)

    Heavens, A.F.

    1988-01-01

    In this paper, we investigate the fluid dynamics of relativistic shock waves, and use the results to calculate the spectral index of particles accelerated by the Fermi process in such shocks. We have calculated the distributions of Fermi-accelerated particles at shocks propagating into cold proton-electron plasma and also cold electron-positron plasma. We have considered two different power spectra for the scattering waves, and find, in contrast to the non-relativistic case, that the spectral index of the accelerated particles depends on the wave power spectrum. On the assumption of thermal equilibrium both upstream and downstream, we present some useful fits for the compression ratio of shocks propagating at arbitrary speeds into gas of any temperature. (author)

  20. Ultrafast dynamic ellipsometry and spectroscopy of laser shocked materials

    Energy Technology Data Exchange (ETDEWEB)

    Mcgrane, Shawn David [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Bolme, Cindy B [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Whitley, Von H [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Moore, David S [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2010-01-01

    Shock waves create extreme states of matter with very high pressures, temperatures, and volumetric compressions, at an exceedingly rapid rate of change. We review how to use a beamsplitter and a note card to turn a typical chirp pulse amplified femtosecond laser system into an ultrafast shock dynamics machine. Open scientific questions that can be addressed with such an apparatus are described. We report on the development of several single shot time resolved diagnostics needed to answer these questions. These single shot diagnostics are expected to be broadly applicable to other types of laser ablation experiments. Experimental results measured from shocked material dynamics of several systems are detailed. Finally, we report on progress towards using transient absorption as a measure of electronic excitation and coherent Raman as a picosecond probe of temperature in shock compressed condensed matter.

  1. Sandia Software Guidelines, Volume 2. Documentation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    This volume is one in a series of Sandia Software Guidelines intended for use in producing quality software within Sandia National Laboratories. In consonance with the IEEE Standards for software documentation, this volume provides guidance in the selection of an adequate document set for a software project and example formats for many types of software documentation. A tutorial on life cycle documentation is also provided. Extended document thematic outlines and working examples of software documents are available on electronic media as an extension of this volume.

  2. Bayesian model calibration of ramp compression experiments on Z

    Science.gov (United States)

    Brown, Justin; Hund, Lauren

    2017-06-01

    Bayesian model calibration (BMC) is a statistical framework to estimate inputs for a computational model in the presence of multiple uncertainties, making it well suited to dynamic experiments which must be coupled with numerical simulations to interpret the results. Often, dynamic experiments are diagnosed using velocimetry and this output can be modeled using a hydrocode. Several calibration issues unique to this type of scenario including the functional nature of the output, uncertainty of nuisance parameters within the simulation, and model discrepancy identifiability are addressed, and a novel BMC process is proposed. As a proof of concept, we examine experiments conducted on Sandia National Laboratories' Z-machine which ramp compressed tantalum to peak stresses of 250 GPa. The proposed BMC framework is used to calibrate the cold curve of Ta (with uncertainty), and we conclude that the procedure results in simple, fast, and valid inferences. Sandia National Laboratories is a multi-mission laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  3. Site Environmental Report for 2016 Sandia National Laboratories California.

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Barbara L. [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2017-06-01

    Sandia National Laboratories, California (SNL/CA) is a Department of Energy (DOE) facility. The management and operations of the facility are under a contract with the DOE’s National Nuclear Security Administration (NNSA). On May 1, 2017, the name of the management and operating contractor changed from Sandia Corporation to National Technology and Engineering Solutions of Sandia, LLC (NTESS). The DOE, NNSA, Sandia Field Office administers the contract and oversees contractor operations at the site. This Site Environmental Report for 2016 was prepared in accordance with DOE Order 231.1B, Environment, Safety and Health Reporting (DOE 2012). The report provides a summary of environmental monitoring information and compliance activities that occurred at SNL/CA during calendar year 2016, unless noted otherwise. General site and environmental program information is also included.

  4. Existence and Stability of Viscous Shock Profiles for 2-D Isentropic MHD with Infinite Electrical Resistivity

    International Nuclear Information System (INIS)

    Blake, B.; Zumbrun, K.; Lafitte, O.

    2010-01-01

    For the two-dimensional Navier Stokes equations of isentropic magnetohydrodynamics (MHD) with γ-law gas equation of state, γ≥1, and infinite electrical resistivity, we carry out a global analysis categorizing all possible viscous shock profiles. Precisely, we show that the phase portrait of the Crave ling-wave ODE generically consists of either two rest points connected by a viscous Lax profile, or else four rest points, two saddles and two nodes. In the latter configuration, which rest points are connected by profiles depends on the ratio of viscosities, and can involve Lax, over-compressive, or under-compressive shock profiles. Considered as three-dimensional solutions, under-compressive shocks are Lax-type (Alfven) waves. For the monatomic and diatomic cases γ=5/3 and γ=7/5, with standard viscosity ratio for a nonmagnetic gas, we find numerically that the the nodes are connected by a family of over-compressive profiles bounded by Lax profiles connecting saddles to nodes, with no under-compressive shocks occurring. We carry out a systematic numerical Evans function analysis indicating that all of these two-dimensional shock profiles are linearly and nonlinearly stable, both with respect to two- and three-dimensional perturbations. For the same gas constants, but different viscosity ratios, we investigate also cases for which under-compressive shocks appear; these are seen numerically to be stable as well, both with respect to two-dimensional and (in the neutral sense of convergence to nearby Riemann solutions) three-dimensional perturbations. (authors)

  5. Sandia capabilities for the measurement, characterization, and analysis of heliostats for CSP.

    Energy Technology Data Exchange (ETDEWEB)

    Andraka, Charles E.; Christian, Joshua Mark; Ghanbari, Cheryl M.; Gill, David Dennis; Ho, Clifford Kuofei; Kolb, William J.; Moss, Timothy A.; Smith, Edward J.; Yellowhair, Julius

    2013-07-01

    The Concentrating Solar Technologies Organization at Sandia National Laboratories has a long history of performing important research, development, and testing that has enabled the Concentrating Solar Power Industry to deploy full-scale power plants. Sandia continues to pursue innovative CSP concepts with the goal of reducing the cost of CSP while improving efficiency and performance. In this pursuit, Sandia has developed many tools for the analysis of CSP performance. The following capabilities document highlights Sandias extensive experience in the design, construction, and utilization of large-scale testing facilities for CSP and the tools that Sandia has created for the full characterization of heliostats. Sandia has extensive experience in using these tools to evaluate the performance of novel heliostat designs.

  6. Compressible Vortex Ring

    Science.gov (United States)

    Elavarasan, Ramasamy; Arakeri, Jayawant; Krothapalli, Anjaneyulu

    1999-11-01

    The interaction of a high-speed vortex ring with a shock wave is one of the fundamental issues as it is a source of sound in supersonic jets. The complex flow field induced by the vortex alters the propagation of the shock wave greatly. In order to understand the process, a compressible vortex ring is studied in detail using Particle Image Velocimetry (PIV) and shadowgraphic techniques. The high-speed vortex ring is generated from a shock tube and the shock wave, which precedes the vortex, is reflected back by a plate and made to interact with the vortex. The shadowgraph images indicate that the reflected shock front is influenced by the non-uniform flow induced by the vortex and is decelerated while passing through the vortex. It appears that after the interaction the shock is "split" into two. The PIV measurements provided clear picture about the evolution of the vortex at different time interval. The centerline velocity traces show the maximum velocity to be around 350 m/s. The velocity field, unlike in incompressible rings, contains contributions from both the shock and the vortex ring. The velocity distribution across the vortex core, core diameter and circulation are also calculated from the PIV data.

  7. Polymerization, shock cooling and ionization of liquid nitrogen

    Energy Technology Data Exchange (ETDEWEB)

    Ross, M; Rogers, F

    2005-07-21

    The trajectory of thermodynamic states passed through by the nitrogen Hugoniot starting from the liquid and up to 10{sup 6} GPa has been studied. An earlier report of cooling in the doubly shocked liquid, near 50 to 100 GPa and 7500 K, is revisited in light of the recent discovery of solid polymeric nitrogen. It is found that cooling occurs when the doubly shocked liquid is driven into a volume near the molecular to polymer transition and raising the possibility of a liquid-liquid phase transition (LLPT). By increasing the shock pressure and temperature by an order of magnitude, theoretical calculations predict thermal ionization of the L shell drives the compression maxima to 5-6 fold compression at 10 Mbar (T {approx} 3.5 10{sup 5} K) and at 400 Mbar (T {approx} 2.3 10{sup 6} K) from K shell ionization. Near a pressure of 10{sup 6} GPa the K shell ionizes completely and the Hugoniot approaches the classical ideal gas compression fourfold limit.

  8. A Numerical Scheme Based on an Immersed Boundary Method for Compressible Turbulent Flows with Shocks: Application to Two-Dimensional Flows around Cylinders

    Directory of Open Access Journals (Sweden)

    Shun Takahashi

    2014-01-01

    Full Text Available A computational code adopting immersed boundary methods for compressible gas-particle multiphase turbulent flows is developed and validated through two-dimensional numerical experiments. The turbulent flow region is modeled by a second-order pseudo skew-symmetric form with minimum dissipation, while the monotone upstream-centered scheme for conservation laws (MUSCL scheme is employed in the shock region. The present scheme is applied to the flow around a two-dimensional cylinder under various freestream Mach numbers. Compared with the original MUSCL scheme, the minimum dissipation enabled by the pseudo skew-symmetric form significantly improves the resolution of the vortex generated in the wake while retaining the shock capturing ability. In addition, the resulting aerodynamic force is significantly improved. Also, the present scheme is successfully applied to moving two-cylinder problems.

  9. High Pressure In Situ X-ray Diffraction Study of MnO to 120 GPa and Comparison with Shock Compression Experiment

    Science.gov (United States)

    Yagi, Takehiko; Kondo, Tadashi; Syono, Yasuhiko

    1997-07-01

    In order to clarify the nature of the phase transformation in MnO observed at around 90 GPa by shock compression experiment (Syono et al., this symposium), high pressure in situ x-ray experiments were carried out up to 120 GPa. Powdered sample was directly compressed in Mao-Bell type diamond anvil and x-ray experiments were carried out using angle dispersive technique by combining synchrotron radiation and imaging plate detector. Distortion of the B1 structured phase into hexagonal unit cell was observed from 25-40 GPa, which continues to increase up to 90 GPa. At around 90 GPa, discontinuous change of the diffraction was observed. This new phase cannot be explained by a simple B2 structure and the analysis of this phase is in progress. This high pressure phase has metallic appearance, which reverses to transparent MnO on release of pressure.

  10. Novel diagnostics for warm dense matter: application to shock compressed target; Nouveaux diagnostics pour l'etude de la matiere dense et chaude: application aux cibles comprimees par choc laser

    Energy Technology Data Exchange (ETDEWEB)

    Ravasio, A

    2007-03-15

    In this work, we present 3 novel diagnostics for warm dense plasma (WDM) investigations: hard X-ray radiography, proton radiography and X-ray Thomson scattering. Each of these techniques is applied in shock compression experiments. The main objective consists in accessing a new parameter, in addition to shock and particle velocity, for EOS (Equation of State) measurements. In the first chapter we give a deep description of WDM states as strongly coupled and Fermi degenerate states. Then, we introduce how we have generated a WDM state in our experiment: the shock wave. We, in particular, illustrate its formation in the classical laser-matter interaction regime. In the second chapter the principles of standard probing techniques are presented. We see that energetic probe sources are necessary to investigate high Z dense plasmas. The third chapter is dedicated to X-ray radiography results. We report on a first direct density measurement of a shock compressed high Z target using K{alpha} hard X-ray radiation. These results are of great interests as they allow an in-situ characterization of high Z material, impossible with standard techniques. We show that probing a well known material as Al will allow the comparison between our data and the results from already validated simulations. In the fourth chapter, we present the results obtained from proton radiography on low density carbon foam. The data analysis will require the development of a specific Monte-Carlo code to simulate the proton propagation through the shocked target. The comparison of the simulations with the experimental data show a low dependency on density. The fifth chapter is devoted to X-ray Thomson scattering results. For the first time, we have performed collective x-ray Thomson scattering measurement from a shock compressed target, accessing to electron density and temperature. The obtained results are compared with simulated x-ray scattered spectra. The novel technique is then used in the

  11. Radiative relativistic shock adiabate

    International Nuclear Information System (INIS)

    Tsintsadze, L.N.; Nishikawa, K.

    1997-01-01

    The influences of thermal radiation on the state equation of shock waves, derived in the previous paper [L. N. Tsintsadze, Phys. Plasmas 2, 4462 (1995)], are studied and a series of relations of thermodynamic quantities that hold for shock waves are derived. It is shown that the presence of radiation can strongly change the compressibility of the plasma. It is well known that for polytropic gases the compressibility cannot change more than four times the initial value in the case of nonrelativistic temperatures. The numerical calculations show that there are no such restrictions, when the radiation energy exceeds the kinetic energy of the plasma. The ultrarelativistic temperature range is also covered in our numerical calculations. Also studied are the influences of the radiation on the PT and the TV diagrams. A significant modification due to radiation is found in every case studied. copyright 1997 American Institute of Physics

  12. Sandia National Laboratories: Hydrogen Risk Assessment Models toolkit now

    Science.gov (United States)

    Icon Locations Contact Us Employee Locator Search Menu About Leadership Mission Social Media Community Responsibility History Diversity Social Media Careers View All Jobs Students & Postdocs Benefits & Perks Technology Deployment Centers New Mexico Small Business Assistance Program Sandia's Economic Impact Sandia

  13. Effects of shock waves on Rayleigh-Taylor instability

    International Nuclear Information System (INIS)

    Zhang Yongtao; Shu Chiwang; Zhou Ye

    2006-01-01

    A numerical simulation of two-dimensional compressible Navier-Stokes equations using a high-order weighted essentially nonoscillatory finite difference shock capturing scheme is carried out in this paper, to study the effect of shock waves on the development of Rayleigh-Taylor instability. Shocks with different Mach numbers are introduced ahead or behind the Rayleigh-Taylor interface, and their effect on the transition to instability is demonstrated and compared. It is observed that shock waves can speed up the transition to instability for the Rayleigh-Taylor interface significantly. Stronger shocks are more effective in this speed-up process

  14. Sandia Strehl Calculator Version 1.0

    Energy Technology Data Exchange (ETDEWEB)

    2017-12-05

    The Sandia Strehl Calculator is designed to calculate the Gibson and Lanni point spread function (PSF), Strehl ratio, and ensquared energy, allowing non-design immersion, coverslip, and sample layers. It also uses Abbe number calculations to determine the refractive index at specific wavelengths when given the refractive index at a different wavelength and the dispersion. The primary application of Sandia Strehl Calculator is to determine the theoretical impacts of using an optical microscope beyond its normal design parameters. Examples of non-design microscope usage include: a) using coverslips of non-design material b) coverslips of different thicknesses c) imaging deep into an aqueous sample with an immersion objective d) imaging a sample at 37 degrees. All of these changes can affect the imaging quality, sometimes profoundly, but are at the same time non-design conditions employed not infrequently. Rather than having to experimentally determine whether the changes will result in unacceptable image quality, Sandia Strehl Calculator uses existing optical theory to determine the approximate effect of the change, saving the need to perform experiments.

  15. Critical experiments at Sandia National Laboratories

    International Nuclear Information System (INIS)

    Harms, Gary A.; Ford, John T.; Barber, Allison Delo

    2010-01-01

    Sandia National Laboratories (SNL) has conducted radiation effects testing for the Department of Energy (DOE) and other contractors supporting the DOE since the 1960's. Over this period, the research reactor facilities at Sandia have had a primary mission to provide appropriate nuclear radiation environments for radiation testing and qualification of electronic components and other devices. The current generation of reactors includes the Annular Core Research Reactor (ACRR), a water-moderated pool-type reactor, fueled by elements constructed from UO2-BeO ceramic fuel pellets, and the Sandia Pulse Reactor III (SPR-III), a bare metal fast burst reactor utilizing a uranium-molybdenum alloy fuel. The SPR-III is currently defueled. The SPR Facility (SPRF) has hosted a series of critical experiments. A purpose-built critical experiment was first operated at the SPRF in the late 1980's. This experiment, called the Space Nuclear Thermal Propulsion Critical Experiment (CX), was designed to explore the reactor physics of a nuclear thermal rocket motor. This experiment was fueled with highly-enriched uranium carbide fuel in annular water-moderated fuel elements. The experiment program was completed and the fuel for the experiment was moved off-site. A second critical experiment, the Burnup Credit Critical Experiment (BUCCX) was operated at Sandia in 2002. The critical assembly for this experiment was based on the assembly used in the CX modified to accommodate low-enriched pin-type fuel in water moderator. This experiment was designed as a platform in which the reactivity effects of specific fission product poisons could be measured. Experiments were carried out on rhodium, an important fission product poison. The fuel and assembly hardware for the BUCCX remains at Sandia and is available for future experimentation. The critical experiment currently in operation at the SPRF is the Seven Percent Critical Experiment (7uPCX). This experiment is designed to provide benchmark

  16. Introduction to Shock Waves and Shock Wave Research

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, William Wyatt [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-02-02

    M-9 and a number of other organizations at LANL and elsewhere study materials in dynamic processes. Often, this is described as “shock wave research,” but in reality is broader than is implied by that term. Most of our work is focused on dynamic compression and associated phenomena, but you will find a wide variety of things we do that, while related, are not simple compression of materials, but involve a much richer variety of phenomena. This tutorial will introduce some of the underlying physics involved in this work, some of the more common types of phenomena we study, and common techniques. However, the list will not be exhaustive by any means.

  17. Transportation Energy - Sandia Energy

    Science.gov (United States)

    Energy Energy Secure & Sustainable Energy Future Search Icon Sandia Home Locations Contact Us Employee Locator Menu Stationary Power solar Energy Conversion Efficiency Increasing the amount of electricity produced from a given thermal energy input. Solar Energy Wind Energy Water Power Supercritical CO2

  18. Energy Research - Sandia Energy

    Science.gov (United States)

    Energy Energy Secure & Sustainable Energy Future Search Icon Sandia Home Locations Contact Us Employee Locator Menu Stationary Power solar Energy Conversion Efficiency Increasing the amount of electricity produced from a given thermal energy input. Solar Energy Wind Energy Water Power Supercritical CO2

  19. Energy - Sandia National Laboratories

    Science.gov (United States)

    Energy Energy Secure & Sustainable Energy Future Search Icon Sandia Home Locations Contact Us Employee Locator Menu Stationary Power solar Energy Conversion Efficiency Increasing the amount of electricity produced from a given thermal energy input. Solar Energy Wind Energy Water Power Supercritical CO2

  20. Shock compression parameters for a boron-loaded, silicone-rubber composite

    International Nuclear Information System (INIS)

    Gust, W.H.; Van Thiel, M.; Gathers, G.R.

    1975-01-01

    Hugoniot parameters under uniaxial-shock-wave-loading from 0.03 to 0.6 Mbar are presented for a composite with 70 wt percent boron loaded in a silicone-rubber matrix. The plot of shock velocity vs particle velocity was found to be nonlinear. Equations that describe fits of the data are presented. (U.S.)

  1. Theory of the shock process in dense fluids

    International Nuclear Information System (INIS)

    Wallace, D.C.

    1991-01-01

    A shock is assumed to be a steady plane wave, and irreversible thermodynamics is assumed valid. The fluid is characterized by heat conduction and by viscous or viscoelastic response, according to the strain rate. It is shown that setting the viscosity zero produces a solution which constitutes a lower bound through the shock process for the shear stress, and upper bounds for the temperature, entropy, pressure, and heat current. It is shown that there exists an upper bound to the dynamic stresses which can be achieved during shock compression, that this bound corresponds to a purely elastic response of the fluid, and that solution for the shock process along this bound constitutes lower bounds for the temperature and entropy. It is shown that a continuous steady shock is possible only if the heat current is positive and the temperature is an increasing function of compression almost everywhere. In his theory of shocks in gases, Rayleigh showed that there is a maximum shock strength for which a continuous steady solution can exist with heat conduction but without viscosity. Two more limits are shown to exist for dense fluids, based on the fluid response in the leading edge of the shock: for shocks at the overdriven threshold and above, no solution is possible without heat transport; for shocks near the viscous fluid limit and above, viscous fluid theory is not valid, and the fluid response in the leading edge of the shock is approximately that of a nonplastic solid. The viscous fluid limit is estimated to be 13 kbar for water and 690 kbar for mercury

  2. Enstrophy generation in a shock-dominated turbulence

    International Nuclear Information System (INIS)

    Miura, Hideaki.

    1995-09-01

    A mechanism of enstrophy generation is investigated numerically in a shock-dominated turbulence driven by a random external force which has only the compressible component. Enstrophy is generated, especially on collision of shock, as a pair of vortex tube of opposite sense of rotation behind curved shocks. The roles of various terms in enstrophy equation are clarified in enstrophy generation process. Generation of enstrophy is enhanced by strong alignment of each term of the enstrophy equation with the vorticity vector. (author)

  3. User's guide to the Sandia Mathematical Program Library at Livermore

    Energy Technology Data Exchange (ETDEWEB)

    Huddleston, R.E.; Jefferson, T.H.

    1976-03-01

    The Sandia Mathematical Program Library is a collection of general-purpose mathematical subroutines which are maintained within Sandia on a quick service basis. This document is intended to be a reference guide for using the library at Sandia Laboratories, Livermore. (auth)

  4. Sandia Laboratories technical capabilities: testing

    International Nuclear Information System (INIS)

    Lundergan, C.D.

    1975-12-01

    The testing capabilities at Sandia Laboratories are characterized. Selected applications of these capabilities are presented to illustrate the extent to which they can be applied in research and development programs

  5. Assessments of the probabilities of aircraft impact with the Sandia Pulsed Reactor and Building 836, Sandia Laboratories, Albuquerque

    International Nuclear Information System (INIS)

    Biringer, B.E.

    1976-11-01

    This report documents a study of the annual probabilities of aircraft impact with the Sandia Pulsed Reactor (SPR) and Bldg. 836 at Sandia Laboratories, Albuquerque. The probability of aircraft impact into each structure was estimated using total yearly operations, effective structure area, structure location relative to air activity, and accident rate per kilometer. The estimated probability for an aircraft impact with SPR is 1.1 x 10 -4 per year; the estimated probability for impact with Bldg. 836 is 1.0 x 10 -3 per year

  6. Supercritical CO2 Brayton cycle compression and control near the critical point

    International Nuclear Information System (INIS)

    Wright, S. A.; Fuller, R.; Noall, J.; Radel, R.; Vernon, M. E.; Pickard, P. S.

    2008-01-01

    This report describes the supercritical compression and control issues, the analysis, and the measured test results of a small-scale supercritical CO 2 (S-CO 2 ) compression test-loop. The test loop was developed by Sandia and is described in a companion paper in this conference. The results of these experiments will for the first time evaluate and experimentally demonstrate supercritical compression and the required compressor inlet control approaches on an appropriate scale in a series of test loops at Sandia National Laboratories. The Sandia effort is focused on the main compressor of a supercritical Brayton loop while a separate DOE Gen lV program focus is on studying similar behavior in re-compression Brayton cycles that have dual compressors. One of the main goals of this program is to develop and demonstrate the ability to design, operate, and control the supercritical compression process near the critical point due to highly non-linear behavior near this point. This Sandia supercritical test-loop uses a 50 kW radial compressor to pump supercritical CO 2 (S-CO 2 ) through an orifice and through a water-cooled gas-chiller. At the design point the compressor flow rate is 3.5 kg/s, the inlet pressure is 7, 690 kPa, the pressure ratio is 1.8, the inlet temperature is 305 K, and the shaft speed is 75, 000 rpm. The purpose of the loop is to study the compression and control issues near the critical point. To study compression we intend to compare the design code predictions for efficiency and change in enthalpy (or pressure ratio / head) of the radial compressor with the measured results from actual tests. In the tests the inlet flow, temperature, and pressure, will be varied around the critical point of CO 2 (Tc=304.2 K, and Pc=7.377 MPa). To study control, the test loop will use a variety of methods including inventory control, shaft speed control, and cooling water flow rate, and cooling water temperature control methods to set the compressor inlet temperature

  7. Shock dynamics of weak imploding cylindrical and spherical shock waves with non-ideal gas effects

    International Nuclear Information System (INIS)

    Anand, R K

    2013-01-01

    The author (Anand 2012 Astrophys. Space Sci. 342 377–88) recently obtained jump relations across a shock front in non-ideal gas flow taking into consideration the equation of state for a non-ideal gas as given by Landau and Lifshitz. In this paper an analytical solution for one-dimensional adiabatic flow behind weak converging shock waves propagating in a non-ideal gas is obtained by using Whitham's (1974 Linear and Nonlinear Waves (New York: Wiley)) geometrical shock dynamics approach. The effects of an increase in (i) the propagation distance from the centre of convergence, (ii) the non-idealness parameter and (iii) the adiabatic index of the gas, on the shock velocity, pressure, density, particle velocity, adiabatic compressibility and the change in entropy across the shock front, are analyzed. The results provided a clear picture of whether and how the non-idealness parameter and the adiabatic index affect the flow field behind the imploding shock front. (paper)

  8. Sandia Laboratories technical capabilities: electronics

    International Nuclear Information System (INIS)

    Lundergan, C.D.

    1975-12-01

    This report characterizes the electronics capabilities at Sandia Laboratories. Selected applications of these capabilities are presented to illustrate the extent to which they can be applied in research and development programs

  9. Cartesian anisotropic mesh adaptation for compressible flow

    International Nuclear Information System (INIS)

    Keats, W.A.; Lien, F.-S.

    2004-01-01

    Simulating transient compressible flows involving shock waves presents challenges to the CFD practitioner in terms of the mesh quality required to resolve discontinuities and prevent smearing. This paper discusses a novel two-dimensional Cartesian anisotropic mesh adaptation technique implemented for compressible flow. This technique, developed for laminar flow by Ham, Lien and Strong, is efficient because it refines and coarsens cells using criteria that consider the solution in each of the cardinal directions separately. In this paper the method will be applied to compressible flow. The procedure shows promise in its ability to deliver good quality solutions while achieving computational savings. The convection scheme used is the Advective Upstream Splitting Method (Plus), and the refinement/ coarsening criteria are based on work done by Ham et al. Transient shock wave diffraction over a backward step and shock reflection over a forward step are considered as test cases because they demonstrate that the quality of the solution can be maintained as the mesh is refined and coarsened in time. The data structure is explained in relation to the computational mesh, and the object-oriented design and implementation of the code is presented. Refinement and coarsening algorithms are outlined. Computational savings over uniform and isotropic mesh approaches are shown to be significant. (author)

  10. The plastic response of Tantalum in Quasi-Isentropic Compression Ramp and Release

    Science.gov (United States)

    Moore, Alexander; Brown, Justin; Lim, Hojun; Lane, J. Matthew D.

    2017-06-01

    The mechanical response of various forms of tantalum under extreme pressures and strain rates is studied using dynamic quasi-isentropic compression loading conditions in atomistic simulations. Ramp compression in bcc metals under these conditions tend to show a significant strengthening effect with increasing pressure; however, due to limitations of experimental methods in such regimes, the underlying physics for this phenomenon is not well understood. Molecular dynamics simulations provide important information about the plasticity mechanisms and can be used to investigate this strengthening. MD simulations are performed on nanocrystalline Ta and single crystal defective Ta with dislocations and point defects to uncover how the material responds and the underlying plasticity mechanisms. The different systems of solid Ta are seen to plastically deform through different mechanisms. Fundamental understanding of tantalum plasticity in these high pressure and strain rate regimes is needed to model and fully understand experimental results. Sandia National Labs is a multi program laboratory managed and operated by Sandia Corp., a wholly owned subsidiary of Lockheed Martin Corp., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  11. Inside Sandia

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    Articles in this issue include ``Molten salt corrosion testing,`` ``Pulsed ion beams for thermal surface treatment: Improved corrosion, wear, and hardness properties at low cost,`` ``Unmasking hidden armaments: Superconducting gravity sensor could find underground weapons, bunkers,`` ``Charbroiled burgers, heterocyclic amines, and cancer: Molecular modeling identifies dangerous mutagens,`` ``Revolutionary airbag offers increased safety options,`` ``EcoSys{sup TM}: an expert system for `Green Design` ``, ``Sandia, salt, and oil: Labs` diagnostics and analysis help maintain vital US oil reserve,`` and ``Automated fixture design speeds development for prototypes and production``.

  12. Numerical simulation of shock initiation of Ni/Al multilayered composites

    Energy Technology Data Exchange (ETDEWEB)

    Sraj, Ihab; Knio, Omar M., E-mail: omar.knio@duke.edu [Department of Mechanical Engineering and Materials Science, Duke University, 144 Hudson Hall, Durham, North Carolina 27708 (United States); Specht, Paul E.; Thadhani, Naresh N. [School of Materials Science and Engineering, Georgia Institute of Technology, 771 Ferst Drive, Atlanta, Georgia 30332 (United States); Weihs, Timothy P. [Department of Materials Science and Engineering, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218 (United States)

    2014-01-14

    The initiation of chemical reaction in cold-rolled Ni/Al multilayered composites by shock compression is investigated numerically. A simplified approach is adopted that exploits the disparity between the reaction and shock loading timescales. The impact of shock compression is modeled using CTH simulations that yield pressure, strain, and temperature distributions within the composites due to the shock propagation. The resulting temperature distribution is then used as initial condition to simulate the evolution of the subsequent shock-induced mixing and chemical reaction. To this end, a reduced reaction model is used that expresses the local atomic mixing and heat release rates in terms of an evolution equation for a dimensionless time scale reflecting the age of the mixed layer. The computations are used to assess the effect of bilayer thickness on the reaction, as well as the impact of shock velocity and orientation with respect to the layering. Computed results indicate that initiation and evolution of the reaction are substantially affected by both the shock velocity and the bilayer thickness. In particular, at low impact velocity, Ni/Al multilayered composites with thick bilayers react completely in 100 ms while at high impact velocity and thin bilayers, reaction time was less than 100 μs. Quantitative trends for the dependence of the reaction time on the shock velocity are also determined, for different bilayer thickness and shock orientation.

  13. Morphological characterization of shocked porous material

    International Nuclear Information System (INIS)

    Xu Aiguo; Zhang Guangcai; Pan, X F; Zhang Ping; Zhu Jianshi

    2009-01-01

    Morphological measures are introduced to probe the complex procedure of shock wave reaction on porous material. They characterize the geometry and the topology of the pixelized map of a state variable like temperature. The relevance to thermodynamical properties of a material is revealed and various experimental conditions are simulated. Numerical results indicate that the shock wave reaction results in a complicated sequence of compressions and rarefactions in porous material. The increasing rate of the total fractional white area A roughly gives the velocity D of a compressive-wave series. When a velocity D is mentioned, the corresponding threshold contour level of the state variable, such as temperature, should also be stated. When the threshold contour level increases, D becomes smaller. The area A increases parabolically with time t during the initial period. The A(t) curve goes back to being linear in the following three cases: (i) when the porosity δ approaches 1, (ii) when the initial shock becomes stronger and (iii) when the contour level approaches the minimum value of the state variable. The area with high temperature may continue to increase even after the early compressive waves have arrived at the downstream free surface and some rarefactive waves have come back into the target body. In the case of energetic material needing a higher temperature for initiation, a higher porosity is preferred and the material may be initiated after the precursory compressive waves have scanned the entire target body. In some cases we need scattered hot spots, but in others we need connected ones. One may desire the fabrication of a porous body and choose the appropriate shock strength according to what is needed. With the Minkowski measures, the dependence on experimental conditions is reflected simply by a few coefficients. They may be used as order parameters to classify the maps of physical variables in a similar way to thermodynamic phase transitions.

  14. Laser-driven shock-wave propagation in pure and layered targets

    International Nuclear Information System (INIS)

    Salzmann, D.; Eliezer, S.; Krumbein, A.D.; Gitter, L.

    1983-01-01

    The propagation properties of laser-driven shock waves in pure and layered polyethylene and aluminum slab targets are studied for a set of laser intensities and pulse widths. The laser-plasma simulations were carried out by means of our one-dimensional Lagrangian hydrodynamic code. It is shown that the various parts of a laser-driven compression wave undergo different thermodynamic trajectories: The shock front portion is on the Hugoniot curve whereas the rear part is closer to an adiabat. It is found that the shock front is accelerated into the cold material till troughly-equal0.8tau (where tau is the laser pulse width) and only later is a constant velocity propagation attained. The scaling laws obtained for the pressure and temperature of the compression wave in pure targets are in good agreement with those published in other works. In layered targets, high compression and pressure were found to occur at the interface of CH 2 on Al targets due to impedance mismatch but were not found when the layers were reversed. The persistence time of the high pressure on the interface in the CH 2 on Al case is long enough relative to the characteristic times of the plasma to have an appreciable influence on the shock-wave propagation into the aluminum layer. This high pressure and compression on the interface can be optimized by adjusting the CH 2 layer thickness

  15. Site environmental report for 2011. Sandia National Laboratories, California

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Barbara L. [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2012-05-01

    Sandia National Laboratories, California (SNL/CA) is a government-owned/contractoroperated laboratory. Sandia Corporation, a wholly-owned subsidiary of Lockheed Martin Corporation, manages and operates the laboratory for the Department of Energy’s National Nuclear Security Administration (NNSA). The NNSA Sandia Site Office administers the contract and oversees contractor operations at the site. This Site Environmental Report for 2011 was prepared in accordance with DOE Order 231.1B, Environment, Safety and Health Reporting (DOE 2011d). The report provides a summary of environmental monitoring information and compliance activities that occurred at SNL/CA during calendar year 2011. General site and environmental program information is also included.

  16. Vibration control for precision manufacturing at Sandia National Laboratories

    International Nuclear Information System (INIS)

    Hinnerichs, T.; Martinez, D.

    1995-01-01

    Sandia National Laboratories performs R and D in structural dynamics and vibration suppression for precision applications in weapon systems, space, underwater, transportation and civil structures. Over the last decade these efforts have expanded into the areas of active vibration control and ''smart'' structures and material systems. In addition, Sandia has focused major resources towards technology to support weapon product development and agile manufacturing capability for defense and industrial applications. This paper will briefly describe the structural dynamics modeling and verification process currently in place at Sandia that supports vibration control and some specific applications of these techniques to manufacturing in the areas of lithography, machine tools and flexible robotics

  17. Vibration control for precision manufacturing at Sandia National Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Hinnerichs, T.; Martinez, D. [Sandia National Labs., Albuquerque, NM (United States). Structural Dynamics and Vibration Control Dept.

    1995-04-01

    Sandia National Laboratories performs R and D in structural dynamics and vibration suppression for precision applications in weapon systems, space, underwater, transportation and civil structures. Over the last decade these efforts have expanded into the areas of active vibration control and ``smart`` structures and material systems. In addition, Sandia has focused major resources towards technology to support weapon product development and agile manufacturing capability for defense and industrial applications. This paper will briefly describe the structural dynamics modeling and verification process currently in place at Sandia that supports vibration control and some specific applications of these techniques to manufacturing in the areas of lithography, machine tools and flexible robotics.

  18. Site Environmental Report for 2012 Sandia National Laboratories California

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Barbara L. [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2013-05-01

    Sandia National Laboratories, California (SNL/CA) is a government-owned/contractor-operated laboratory. Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, manages and operates the laboratory for the Department of Energy’s National Nuclear Security Administration (NNSA). The NNSA Sandia Field Office administers the contract and oversees contractor operations at the site. This Site Environmental Report for 2012 was prepared in accordance with DOE Order 231.1B, Environment, Safety and Health Reporting (DOE 2011d). The report provides a summary of environmental monitoring information and compliance activities that occurred at SNL/CA during calendar year 2012. General site and environmental program information is also included.

  19. Shock wave physics group (M-6)

    International Nuclear Information System (INIS)

    Morris, C.E.

    1981-01-01

    Experimental facilities and activities of the shock wave physics group at LASL are described. The facilities include a compressed gas gun, two-stage gas gun, high explosive facilities, and a pulsed megagauss field facility

  20. Critical point anomalies include expansion shock waves

    Energy Technology Data Exchange (ETDEWEB)

    Nannan, N. R., E-mail: ryan.nannan@uvs.edu [Mechanical Engineering Discipline, Anton de Kom University of Suriname, Leysweg 86, PO Box 9212, Paramaribo, Suriname and Process and Energy Department, Delft University of Technology, Leeghwaterstraat 44, 2628 CA Delft (Netherlands); Guardone, A., E-mail: alberto.guardone@polimi.it [Department of Aerospace Science and Technology, Politecnico di Milano, Via La Masa 34, 20156 Milano (Italy); Colonna, P., E-mail: p.colonna@tudelft.nl [Propulsion and Power, Delft University of Technology, Kluyverweg 1, 2629 HS Delft (Netherlands)

    2014-02-15

    From first-principle fluid dynamics, complemented by a rigorous state equation accounting for critical anomalies, we discovered that expansion shock waves may occur in the vicinity of the liquid-vapor critical point in the two-phase region. Due to universality of near-critical thermodynamics, the result is valid for any common pure fluid in which molecular interactions are only short-range, namely, for so-called 3-dimensional Ising-like systems, and under the assumption of thermodynamic equilibrium. In addition to rarefaction shock waves, diverse non-classical effects are admissible, including composite compressive shock-fan-shock waves, due to the change of sign of the fundamental derivative of gasdynamics.

  1. Irreversible thermodynamics of overdriven shocks in solids

    International Nuclear Information System (INIS)

    Wallace, D.C.

    1981-01-01

    An isotropic solid capable of transporting heat and of undergoing dissipative plastic flow, is treated. The shock is assumed to be a steady wave, and any phase changes or macroscopic inhomogeneities which might be induced by the shock are neglected. Under these conditions it is established that for an overdriven shock, no solution is possible without heat transport, and when the heat transport is governed by the steady conduction equation, no solution is possible without plastic dissipation as well. Upper and lower bounds are established for the thermodynamic variables, namely the shear stress, temperature, entropy, plastic strain, and heat flux, as functions of compression through the shock

  2. Particle injection and cosmic ray acceleration at collisionless parallel shocks

    International Nuclear Information System (INIS)

    Quest, K.B.

    1987-01-01

    The structure of collisionless parallel shocks is studied using one-dimensional hybrid simulations, with emphasis on particle injection into the first-order Fermi acceleration process. It is argued that for sufficiently high Mach number shocks, and in the absence of wave turbulence, the fluid firehose marginal stability condition will be exceeded at the interface between the upstream, unshocked, plasma and the heated plasma downstream. As a consequence, nonlinear, low-frequency, electromagnetic waves are generated and act to slow the plasma and provide dissipation for the shock. It is shown that large amplitude waves at the shock ramp scatter a small fraction of the upstream ions back into the upstream medium. These ions, in turn, resonantly generate the electromagnetic waves that are swept back into the shock. As these waves propagate through the shock they are compressed and amplified, allowing them to non-resonantly scatter the bulk of the plasma. Moreover, the compressed waves back-scatter a small fraction of the upstream ions, maintaining the shock structure in a quasi-steady state. The back-scattered ions are accelerated during the wave generation process to 2 to 4 times the ram energy and provide a likely seed population for cosmic rays. 49 refs., 7 figs

  3. Market Assessment and Commercialization Strategy for the Radial Sandia Cooler

    Energy Technology Data Exchange (ETDEWEB)

    Goetzler, William [Navigant Consulting, Inc., Burlington, MA (United States); Shandross, Richard [Navigant Consulting, Inc., Burlington, MA (United States); Weintraub, Daniel [Navigant Consulting, Inc., Burlington, MA (United States); Young, Jim [Navigant Consulting, Inc., Burlington, MA (United States)

    2014-02-01

    This market assessment and commercialization report characterizes and assesses the market potential of the rotating heat exchanger technology developed at Sandia National Laboratories (SNL), known as the Radial Sandia Cooler. The RSC is a novel, motor-driven, rotating, finned heat exchanger technology. The RSC was evaluated for the residential, commercial, industrial, and transportation markets. Recommendations for commercialization were made based on assessments of the prototype RSC and the Sandia Cooler technology in general, as well as an in-depth analysis of the six most promising products for initial RSC commercialization.

  4. Standing shocks in adiabatic black hole accretion of rotating matter

    International Nuclear Information System (INIS)

    Abramowicz, M.A.; Chakrabarti, S.K.

    1988-08-01

    We present all the solutions for stationary, axially symmetric, transonic, adiabatic flows with polytropic, rotating fluid configurations of small transverse thickness, in an arbitrarily chosen potential. Special attention is paid to the formation of the standing shocks in the case of black hole accretion and winds. We point out the possibility of three types of shocks depending upon three extreme physical conditions at the shocks. These are: Rankine-Hugoniot shocks, isentropic compression waves, and isothermal shocks. We write down the shock conditions for these three cases and discuss briefly the physical situations under which these shocks may form. A complete discussion on the properties of these shocks will be presented elsewhere. (author). 21 refs, 4 figs

  5. Sandia technology, Winter 1975--1976

    International Nuclear Information System (INIS)

    Weber, J.P.; Marcrum, L.S.

    1976-06-01

    Unclassified development activities at Sandia Laboratories are described. Information is included on rocket-powered aerial trolleys, material evaluation using a plasmajet, metal-hydride models, glass-ceramic tube insulators, ferroelectric ceramics, and systems to communicate with earth penetrators

  6. Pulsed power driven hohlraum research at Sandia National Laboratories

    International Nuclear Information System (INIS)

    Leeper, R.J.; Alberts, T.E.; Allshouse, G.A.

    1996-01-01

    Three pulsed power driven hohlraum concepts are being investigated at Sandia for application to inertial fusion research. These hohlraums are driven by intense proton and Li ion beams as well as by two different types of z-pinch x-ray sources. Research on these hohlraum systems will continue on Sandia's PBFA II-Z facility

  7. A novel particle time of flight diagnostic for measurements of shock- and compression-bang times in D3He and DT implosions at the NIF.

    Science.gov (United States)

    Rinderknecht, H G; Johnson, M Gatu; Zylstra, A B; Sinenian, N; Rosenberg, M J; Frenje, J A; Waugh, C J; Li, C K; Sèguin, F H; Petrasso, R D; Rygg, J R; Kimbrough, J R; MacPhee, A; Collins, G W; Hicks, D; Mackinnon, A; Bell, P; Bionta, R; Clancy, T; Zacharias, R; Döppner, T; Park, H S; LePape, S; Landen, O; Meezan, N; Moses, E I; Glebov, V U; Stoeckl, C; Sangster, T C; Olson, R; Kline, J; Kilkenny, J

    2012-10-01

    The particle-time-of-flight (pTOF) diagnostic, fielded alongside a wedge range-filter (WRF) proton spectrometer, will provide an absolute timing for the shock-burn weighted ρR measurements that will validate the modeling of implosion dynamics at the National Ignition Facility (NIF). In the first phase of the project, pTOF has recorded accurate bang times in cryogenic DT, DT exploding pusher, and D(3)He implosions using DD or DT neutrons with an accuracy better than ±70 ps. In the second phase of the project, a deflecting magnet will be incorporated into the pTOF design for simultaneous measurements of shock- and compression-bang times in D(3)He-filled surrogate implosions using D(3)He protons and DD-neutrons, respectively.

  8. 1987 environmental monitoring report, Sandia National Laboratories, Livermore, California

    International Nuclear Information System (INIS)

    Devlin, T.K.

    1988-04-01

    Sandia National Labortories conduct various research activities related to Department of Energy interests which have the potential for release of hazardous materials or radionuclides to the environment. A strict environmental control program places maximum emphasis on limiting releases. The environmental monitoring program conducted by Lawrence Livermore National Laboratory and augmented by Sandia is designed to measure the performance of the environmental controls. The program includes analysis of air, water, soil, vegetation, sewer effluent, ground water, and foodstuffs for various toxic, hazardous, or radioactive materials. Based on these studies, the releases of materials of concern at Sandia during 1987 were well below applicable Department of Energy standards. 8 refs., 3 figs., 12 tabs

  9. Large-Scale Reactive Atomistic Simulation of Shock-induced Initiation Processes in Energetic Materials

    Science.gov (United States)

    Thompson, Aidan

    2013-06-01

    examine the effect of reaction rates on shock direction, fuel oil fraction, and crystal/fuel oil/void microstructural arrangement. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Dept. of Energy's National Nuclear Security Admin. under contract DEAC0494AL85000.

  10. Dynamic behaviors of a Zr-based bulk metallic glass under ramp wave and shock wave loading

    Directory of Open Access Journals (Sweden)

    Binqiang Luo

    2015-06-01

    Full Text Available Dynamic behaviors of Zr51Ti5Ni10Cu25Al9 bulk metallic glass were investigated using electric gun and magnetically driven isentropic compression device which provide shock and ramp wave loading respectively. Double-wave structure was observed under shock compression while three-wave structure was observed under ramp compression in 0 ∼ 18GPa. The HEL of Zr51Ti5Ni10Cu25Al9 is 8.97 ± 0.61GPa and IEL is 8.8 ± 0.3GPa, respectively. Strength of Zr51Ti5Ni10Cu25Al9 estimated from HEL is 5.0 ± 0.3GPa while the strength estimated from IEL is 3.6 ± 0.1GPa. Shock wave velocity versus particle velocity curve of Zr51Ti5Ni10Cu25Al9 under shock compression appears to be bilinear and a kink appears at about 18GPa. The Lagrangian sound speed versus particle velocity curve of Zr51Ti5Ni10Cu25Al9 under ramp wave compression exhibits two discontinuances and are divided to three regions: elastic, plastic-I and plastic-II. The first jump-down occurs at elastic-plastic transition and the second appears at about 17GPa. In elastic and plastic-I regions, Lagrangian sound speed increases linearly with particle velocity, respectively. Characteristic response of sound speed in plastic-I region disagree with shock result in the same pressure region(7GPa ∼ 18GPa, but is consistent with shock result at higher pressure(18-110GPa.

  11. Review of Heavy-Duty Engine Combustion Research at Sandia National Laboratories

    International Nuclear Information System (INIS)

    Robert W. Carling; Gurpreet Singh

    2000-01-01

    The objectives of this paper are to describe the research efforts in diesel engine combustion at Sandia National Laboratories' Combustion Research Facility and to provide recent experimental results. We have four diesel engine experiments supported by the Department of Energy, Office of Heavy Vehicle Technologies: a one-cylinder version of a Cummins heavy-duty engine, a diesel simulation facility, a one-cylinder Caterpillar engine to evaluate combustion of alternative fuels, and a homogeneous-charge, compression-ignition (HCCI) engine facility is under development. Recent experimental results to be discussed are: the effects of injection timing and diluent addition on late-combustion soot burnout, diesel-spray ignition and premixed-burn behavior, a comparison of the combustion characteristics of M85 (a mixture of 85% methanol and 15% gasoline) and DF2 (No.2 diesel reference fuel), and a description of our HCCI experimental program and modeling work

  12. Shock compression of a recrystallized anorthositic rock from Apollo 15

    Science.gov (United States)

    Ahrens, T. J.; Gibbons, R. V.; O'Keefe, J. D.

    1973-01-01

    Hugoniot measurements on 15,418, a recrystallized and brecciated gabbroic anorthosite, yield a value of the Hugoniot elastic limit (HEL) varying from 45 to 70 kbar as the final shock pressure is varied from 70 to 280 kbar. Above the HEL and to 150 kbar, the pressure-density Hugoniot is closely described by a hydrostatic equation of state constructed from ultrasonic data for single-crystal plagioclase and pyroxene. Above 150 kbar, the Hugoniot states indicate that a series of one or more shock-induced phase changes are occurring in the plagioclase and pyroxene. From Hugoniot data for both the single-crystal minerals and the Frederick diabase, we infer that the shock-induced high-pressure phases in 15,418 probably consists of a 3.71 g/cu cm density, high-pressure structure for plagioclase and a 4.70 g/cu cm perovskite-type structure for pyroxene.

  13. Environmental monitoring report: Sandia Laboratories, 1976

    International Nuclear Information System (INIS)

    Simmons, T.N.

    1977-04-01

    Water and vegetation are monitored to determine Sandia Laboratories impact on the surrounding environment. Nonradioactive pollutants released are reported. Radioactive effluents are also reported and their person-rem contribution to the Albuquerque population is calculated. The environmental monitoring for calendar year 1976 shows that concentrations of radioactive materials in the Albuquerque area are typical of natural background for the area. An exception is a single onsite location where slightly abnormal uranium concentrations are expected. An estimated 0.044 person-rem Albuquerque area (80 km radius) population dose commitment results from calculated Sandia Laboratories releases. Over the same area 57,000 person-rem is accumulated from natural background. There were no measurable offsite radioactive effluent releases in CY 1976

  14. Selfsimilar time dependent shock structures

    International Nuclear Information System (INIS)

    Beck, R.; Drury, L.O.

    1985-01-01

    Diffusive shock acceleration as an astrophysical mechanism for accelerating charged particles has the advantage of being highly efficient. This means however that the theory is of necessity nonlinear; the reaction of the accelerated particles on the shock structure and the acceleration process must be self-consistently included in any attempt to develop a complete theory of diffusive shock acceleration. Considerable effort has been invested in attempting, at least partially, to do this and it has become clear that in general either the maximum particle energy must be restricted by introducing additional loss processes into the problem or the acceleration must be treated as a time dependent problem (Drury, 1984). It is concluded that stationary modified shock structures can only exist for strong shocks if additional loss processes limit the maximum energy a particle can attain. This is certainly possible and if it occurs the energy loss from the shock will lead to much greater shock compressions. It is however equally possible that no such processes exist and we must then ask what sort of nonstationary shock structure develops. The same argument which excludes stationary structures also rules out periodic solutions and indeed any solution where the width of the shock remains bounded. It follows that the width of the shock must increase secularly with time and it is natural to examine the possibility of selfsimilar time dependent solutions

  15. Selfsimilar time dependent shock structures

    Science.gov (United States)

    Beck, R.; Drury, L. O.

    1985-01-01

    Diffusive shock acceleration as an astrophysical mechanism for accelerating charged particles has the advantage of being highly efficient. This means however that the theory is of necessity nonlinear; the reaction of the accelerated particles on the shock structure and the acceleration process must be self-consistently included in any attempt to develop a complete theory of diffusive shock acceleration. Considerable effort has been invested in attempting, at least partially, to do this and it has become clear that in general either the maximum particle energy must be restricted by introducing additional loss processes into the problem or the acceleration must be treated as a time dependent problem (Drury, 1984). It is concluded that stationary modified shock structures can only exist for strong shocks if additional loss processes limit the maximum energy a particle can attain. This is certainly possible and if it occurs the energy loss from the shock will lead to much greater shock compressions. It is however equally possible that no such processes exist and we must then ask what sort of nonstationary shock structure develops. The ame argument which excludes stationary structures also rules out periodic solutions and indeed any solution where the width of the shock remains bounded. It follows that the width of the shock must increase secularly with time and it is natural to examine the possibility of selfsimilar time dependent solutions.

  16. State equations and stability of shock wave fronts in homogeneous and heterogeneous metallic medium

    International Nuclear Information System (INIS)

    Romain, Jean-Pierre

    1977-01-01

    This research thesis in physical sciences reports a theoretical and experimental study of some mechanical and thermodynamic aspects related to a shock wave propagation in homogeneous and heterogeneous metallic media: state equations, stability and instability of shock wave fronts. In the first part, the author reports the study of the Grueneisen coefficient for some metallic elements with known static and dynamic compression properties. The second part reports the experimental investigation of dynamic compressibility of some materials (lamellar Al-Cu compounds). The front shock wave propagation has been visualised, and experimental Hugoniot curves are compared with those deduced from a developed numeric model and other models. The bismuth Hugoniot curve is also determined, and the author compares the existence and nature of phase transitions obtained by static and dynamic compression

  17. Technical review of the Sandia Laboratories' Particle Beam Fusion Program

    International Nuclear Information System (INIS)

    1979-01-01

    This report considers the technical aspects of Sandia Laboratories' Particle Beam Fusion Program and examines the program's initial goals, the progress made to date towards reaching those goals, and the future plans or methods of reaching those original or modified goals. A summary of Sandia Laboratories' effort, which seeks to demonstrate that high voltage pulsed power generated high-current electron or light ion beams can be used to ignite a deuterium or tritium pellet, is provided. A brief review and assessment of the Sandia Pulse Power Program is given. Several critical issues and summaries of the committee members' opinions are discussed

  18. Shock formation in small-data solutions to 3D quasilinear wave equations

    CERN Document Server

    Speck, Jared

    2016-01-01

    In 1848 James Challis showed that smooth solutions to the compressible Euler equations can become multivalued, thus signifying the onset of a shock singularity. Today it is known that, for many hyperbolic systems, such singularities often develop. However, most shock-formation results have been proved only in one spatial dimension. Serge Alinhac's groundbreaking work on wave equations in the late 1990s was the first to treat more than one spatial dimension. In 2007, for the compressible Euler equations in vorticity-free regions, Demetrios Christodoulou remarkably sharpened Alinhac's results and gave a complete description of shock formation. In this monograph, Christodoulou's framework is extended to two classes of wave equations in three spatial dimensions. It is shown that if the nonlinear terms fail to satisfy the null condition, then for small data, shocks are the only possible singularities that can develop. Moreover, the author exhibits an open set of small data whose solutions form a shock, and he prov...

  19. Solid - solid and solid - liquid phase transitions of iron and iron alloys under laser shock compression

    Science.gov (United States)

    Harmand, M.; Krygier, A.; Appel, K.; Galtier, E.; Hartley, N.; Konopkova, Z.; Lee, H. J.; McBride, E. E.; Miyanishi, K.; Nagler, B.; Nemausat, R.; Vinci, T.; Zhu, D.; Ozaki, N.; Fiquet, G.

    2017-12-01

    An accurate knowledge of the properties of iron and iron alloys at high pressures and temperatures is crucial for understanding and modelling planetary interiors. While Earth-size and Super-Earth Exoplanets are being discovered in increasingly large numbers, access to detailed information on liquid properties, melting curves and even solid phases of iron and iron at the pressures and temperatures of their interiors is still strongly limited. In this context, XFEL sources coupled with high-energy lasers afford unique opportunities to measure microscopic structural properties at far extreme conditions. Also the achievable time resolution allows the shock history and phase transition mechanisms to be followed during laser compression, improving our understanding of the high pressure and high strain experiments. Here we present recent studies devoted to investigate the solid-solid and solid-liquid transition in laser-shocked iron and iron alloys (Fe-Si, Fe-C and Fe-O alloys) using X-ray diffraction and X-ray diffuse scattering. Experiment were performed at the MEC end-station of the LCLS facility at SLAC (USA). Detection of the diffuse scattering allowed the identification of the first liquid peak position along the Hugoniot, up to 4 Mbar. The time resolution shows ultrafast (between several tens and several hundreds of picoseconds) solid-solid and solid-liquid phase transitions. Future developments at XFEL facilities will enable detailed studies of the solid and liquid structures of iron and iron alloys as well as out-of-Hugoniot studies.

  20. Nuclear energy related capabilities at Sandia National Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Pickering, Susan Y. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-02-01

    Sandia National Laboratories' technology solutions are depended on to solve national and global threats to peace and freedom. Through science and technology, people, infrastructure, and partnerships, part of Sandia's mission is to meet the national needs in the areas of energy, climate and infrastructure security. Within this mission to ensure clean, abundant, and affordable energy and water is the Nuclear Energy and Fuel Cycle Programs. The Nuclear Energy and Fuel Cycle Programs have a broad range of capabilities, with both physical facilities and intellectual expertise. These resources are brought to bear upon the key scientific and engineering challenges facing the nation and can be made available to address the research needs of others. Sandia can support the safe, secure, reliable, and sustainable use of nuclear power worldwide by incorporating state-of-the-art technologies in safety, security, nonproliferation, transportation, modeling, repository science, and system demonstrations.

  1. High pressure in situ X-ray diffraction study of MnO to 137 GPa and comparison with shock compression experiment

    Science.gov (United States)

    Yagi, T.; Kondo, T.; Syono, Y.

    1998-07-01

    In order to clarify the nature of the phase transformation in MnO observed at around 90 GPa by shock compression experiment, high pressure in situ X-ray observations were carried out up to 137 GPa. Powdered sample was directly compressed in Mao-Bell type diamond anvil cell and X-ray experiments were carried out using angle dispersive technique by combining synchrotron radiation and imaging plate detector. Distortion of the B1 structured phase was observed above about 40 GPa, which continues to increase up to 90 GPa. Two discontinuous changes of the diffraction profiles were observed at around 90 GPa and 120 GPa. The nature of the intermediate phase between 90 GPa and 120 GPa is not clear yet. It is neither cesium chloride (B2) nor nickel arsenide (B8) structure. On the other hand, the diffraction profile above 120 GPa can be reasonably well explained by the B8 structure. High pressure phases above 90 GPa have metallic luster and all the transformations are reversible on release of pressure.

  2. Energy Fact Sheets - Sandia Energy

    Science.gov (United States)

    Energy Energy Secure & Sustainable Energy Future Search Icon Sandia Home Locations Contact Us Employee Locator Menu Stationary Power solar Energy Conversion Efficiency Increasing the amount of electricity produced from a given thermal energy input. Solar Energy Wind Energy Water Power Supercritical CO2

  3. Sandia National Laboratories: Research: Biodefense

    Science.gov (United States)

    Energy Stationary Power Earth Science Transportation Energy Energy Research Global Security WMD knowledge to counter disease Sandia conducts research into how pathogens interact and subvert a host's immune response to develop the knowledge base needed to create new novel environmental detectors, medical

  4. Kinematical Compatibility Conditions for Vorticity Across Shock Waves

    Science.gov (United States)

    Baty, Roy

    2015-11-01

    This work develops the general kinematical compatibility conditions for vorticity across arbitrary shock waves in compressible, inviscid fluids. The vorticity compatibility conditions are derived from the curl of the momentum equation using singular distributions defined on two-dimensional shock wave surfaces embedded in three-dimensional flow fields. The singular distributions are represented as generalized differential operators concentrated on moving shock wave surfaces. The derivation of the compatibility conditions for vorticity requires the application of second-order generalized derivatives and elementary tensor algebra. The well-known vorticity jump conditions across a shock wave are then shown to follow from the general kinematical compatibility conditions for vorticity by expressing the flow field velocity in vectorial components normal and tangential to a shock surface.

  5. Sandia National Laboratories, California Environmental Management System Program Manual.

    Energy Technology Data Exchange (ETDEWEB)

    2009-04-01

    The Sandia National Laboratories, California (SNL/CA) Environmental Management System (EMS) Program Manual documents the elements of the site EMS Program. The SNL/CA EMS Program conforms to the International Standard on Environmental Management Systems, ISO 14001:2004 and Department of Energy (DOE) Order 450.1. Sandia National Laboratories, California (SNL/CA) has maintained functional environmental programs to assist with regulatory compliance for more than 30 years. During 2005, these existing programs were rolled into a formal environmental management system (EMS) that expands beyond the traditional compliance focus to managing and improving environmental performance and stewardship practices for all site activities. An EMS is a set of inter-related elements that represent a continuing cycle of planning, implementing, evaluating, and improving processes and actions undertaken to achieve environmental policy and goals. The SNL/CA EMS Program conforms to the International Standard for Environmental Management Systems, ISO 14001:2004 (ISO 2004). The site received ISO 14001 certification in September 2006. SNL/CA's EMS Program is applicable to the Sandia, Livermore site only. Although SNL/CA operates as one organizational division of the overall Sandia National Laboratories, the EMS Program is site-specific, with site-specific objectives and targets. SNL/CA (Division 8000) benefits from the organizational structure as it provides corporate level policies, procedures, and standards, and established processes that connect to and support elements of the SNL/CA EMS Program. Additionally, SNL/CA's EMS Program benefits from two corporate functional programs (Facilities Energy Management and Fleet Services Environmental programs) that maintain responsibility for energy management and fleet services for all Sandia locations. Each EMS element is further enhanced with site-specific processes and standards. Division 8000 has several groups operating at Sandia

  6. Sandia National Laboratories, California Environmental Management System program manual.

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Barbara L.

    2012-03-01

    The Sandia National Laboratories, California (SNL/CA) Environmental Management System (EMS) Program Manual documents the elements of the site EMS Program. The SNL/CA EMS Program conforms to the International Standard on Environmental Management Systems, ISO 14001:2004and Department of Energy (DOE) Order 436.1. Sandia National Laboratories, California (SNL/CA) has maintained functional environmental programs to assist with regulatory compliance for more than 30 years. During 2005, these existing programs were rolled into a formal environmental management system (EMS) that expands beyond the traditional compliance focus to managing and improving environmental performance and stewardship practices for all site activities. An EMS is a set of inter-related elements that represent a continuing cycle of planning, implementing, evaluating, and improving processes and actions undertaken to achieve environmental policy and goals. The SNL/CA EMS Program conforms to the International Standard for Environmental Management Systems, ISO 14001:2004 (ISO 2004). The site first received ISO 14001 certification in September 2006 and recertification in 2009. SNL/CA's EMS Program is applicable to the Sandia, Livermore site only. Although SNL/CA operates as one organizational division of the overall Sandia National Laboratories, the EMS Program is site-specific, with site-specific objectives and targets. SNL/CA (Division 8000) benefits from the organizational structure as it provides corporate level policies, procedures, and standards, and established processes that connect to and support elements of the SNL/CA EMS Program. Additionally, SNL/CA's EMS Program benefits from two corporate functional programs (Facilities Energy and Water Resource Management and Fleet Services programs) that maintain responsibility for energy management and fleet services for all Sandia locations. Each EMS element is further enhanced with site-specific processes and standards. Division 8000 has

  7. Sandia National Laboratories, California Environmental Management System Program Manual.

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Barbara L.

    2011-04-01

    The Sandia National Laboratories, California (SNL/CA) Environmental Management System (EMS) Program Manual documents the elements of the site EMS Program. The SNL/CA EMS Program conforms to the International Standard on Environmental Management Systems, ISO 14001:2004and Department of Energy (DOE) Order 450.1. Sandia National Laboratories, California (SNL/CA) has maintained functional environmental programs to assist with regulatory compliance for more than 30 years. During 2005, these existing programs were rolled into a formal environmental management system (EMS) that expands beyond the traditional compliance focus to managing and improving environmental performance and stewardship practices for all site activities. An EMS is a set of inter-related elements that represent a continuing cycle of planning, implementing, evaluating, and improving processes and actions undertaken to achieve environmental policy and goals. The SNL/CA EMS Program conforms to the International Standard for Environmental Management Systems, ISO 14001:2004 (ISO 2004). The site received ISO 14001 certification in September 2006. SNL/CA's EMS Program is applicable to the Sandia, Livermore site only. Although SNL/CA operates as one organizational division of the overall Sandia National Laboratories, the EMS Program is site-specific, with site-specific objectives and targets. SNL/CA (Division 8000) benefits from the organizational structure as it provides corporate level policies, procedures, and standards, and established processes that connect to and support elements of the SNL/CA EMS Program. Additionally, SNL/CA's EMS Program benefits from two corporate functional programs (Facilities Energy Management and Fleet Services programs) that maintain responsibility for energy management and fleet services for all Sandia locations. Each EMS element is further enhanced with site-specific processes and standards. Division 8000 has several groups operating at Sandia National Laboratories

  8. Remediating the past and preparing for the future at Sandia National Laboratories

    International Nuclear Information System (INIS)

    Sanders, T.L.

    1996-01-01

    Sandia National Laboratories is one of the nation's largest multiprogram research, development, test, and evaluation (RDT ampersand E) facilities, with headquarters in Albuquerque, New Mexico, a laboratory in Livermore, California, and a test range near Tonopah, Nevada. Smaller testing facilities are also operated at other locations. Established in 1945, Sandia is currently operated for the U.S. Department of Energy by Lockheed-Martin's energy and environment sector. Sandia's responsibility is research and development for national security programs in defense, energy, and environment, with primary emphasis on nuclear weapons research and development. This article describes Sandia's program of remedial action which aims to use technology to reduce costs of decommissioning and decontamination, positioning itself for future opportunities

  9. Sandia National Laboratories: Integrated Military Systems

    Science.gov (United States)

    Defense Systems & Assessments About Defense Systems & Assessments Program Areas Accomplishments Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios ; Culture Work-Life Balance Special Programs Integrated Military Systems (IMS) Capabilities Facilities

  10. Sandia Laboratories technical capabilities: engineering analysis

    International Nuclear Information System (INIS)

    Lundergan, C.D.

    1975-12-01

    This report characterizes the engineering analysis capabilities at Sandia Laboratories. Selected applications of these capabilities are presented to illustrate the extent to which they can be applied in research and development programs

  11. The evolution of Interior Intrusion Detection Technology at Sandia National Laboratories

    International Nuclear Information System (INIS)

    Graham, R.H.; Workhoven, R.M.

    1987-07-01

    Interior Intrusion Detection Technology began at Sandia National Laboratories (SNL) in 1975 as part of the Fixed Facilities Physical Protection Research and Development program sponsored by the US Department of Energy in connection with their nuclear safeguards effort. This paper describes the evolution of Interior Intrusion Detection Technology at Sandia National Laboratories from the beginning of the Interior Sensor Laboratory to the present. This Laboratory was established in 1976 to evaluate commercial interior intrusion sensors and to assist in site-specific intrusion detection system designs. Examples of special test techniques and new test equipment that were developed at the Lab are presented, including the Sandia Intruder Motion Simulator (SIMS), the Sensor and Environment Monitor (SEM), and the Sandia Interior Robot (SIR). We also discuss new sensors and unique sensor combinations developed when commercial sensors were unavailable and the future application of expert systems

  12. Sandia Laboratories technical capabilities: systems analysis

    International Nuclear Information System (INIS)

    Lundergan, C.D.

    1975-06-01

    The systems analysis capabilities at Sandia Laboratories are summarized. Selected applications of these capabilities are presented to illustrate the extent to which they can be applied in research and development programs. (U.S.)

  13. Sandia National Laboratories: Contact Us

    Science.gov (United States)

    Employment (VOE) - New Mexico and California Please submit your requests by fax OR email - not both. Fax Number: (505) 845-0097, ATTN: HR Records Email Address: HR-Records@sandia.gov HR Records' Hotline: (505 in Writing Requester's Contact Information: Requester's name, company name (if applicable), phone

  14. VizieR Online Data Catalog: Effects of preionization in radiative shocks (Sutherland+, 2017)

    Science.gov (United States)

    Sutherland, R. S.; Dopita, M. A.

    2017-06-01

    In this paper we treat the preionization problem in shocks over the velocity range 10shock-precursor parameter, {Psi}=Q/vs, where Q is the ionization parameter of the UV photons escaping upstream. This parameter determines both the temperature and the degree of ionization of the gas entering the shock. In increasing velocity, the shock solution regimes are cold neutral precursors (vs<~40km/s), warm neutral precursors (40<~vs<~75km/s), warm partly ionized precursors (75<~vs<~120km/s), and fast shocks in which the preshock gas is in photoionization equilibrium and is fully ionized. The main effect of a magnetic field is to push these velocity ranges to higher values and to limit the postshock compression. In order to facilitate comparison with observations of shocks, we provide a number of convenient scaling relationships for parameters, such as postshock temperature, compression factors, cooling lengths, and Hβ and X-ray luminosity. (4 data files).

  15. Statement of Work Electrical Energy Storage System Installation at Sandia National Laboratories.

    Energy Technology Data Exchange (ETDEWEB)

    Schenkman, Benjamin L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-03-01

    Sandia is seeking to procure a 1 MWh energy storage system. It will be installed at the existing Energy Storage Test Pad, which is located at Sandia National Laboratories in Albuquerque, New Mexico. This energy storage system will be a daily operational system, but will also be used as a tool in our Research and development work. The system will be part of a showcase of Sandia distributed energy technologies viewed by many distinguished delegates.

  16. Sandia National Laboratories/New Mexico 1994 site environmental report. Summary pamphlet

    International Nuclear Information System (INIS)

    1995-01-01

    This document presents details of the environmental activities that occurred during 1994 at Sandia National Laboratories. Topics include: Background about Sandia; radiation facts; sources of radiation; environmental monitoring; discussion of radiation detectors; radioactive waste management; environmental restoration; and quality assurance

  17. Sandia National Laboratories/New Mexico 1994 site environmental report. Summary pamphlet

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    This document presents details of the environmental activities that occurred during 1994 at Sandia National Laboratories. Topics include: Background about Sandia; radiation facts; sources of radiation; environmental monitoring; discussion of radiation detectors; radioactive waste management; environmental restoration; and quality assurance.

  18. HyMARC (Sandia) Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Allendorf, Mark D. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Stavila, Vitalie [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Klebanoff, Leonard E. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Kolasinski, Robert [Sandia National Lab. (SNL-CA), Livermore, CA (United States); El Gabaly Marquez, Farid [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Zhou, Xiaowang [Sandia National Lab. (SNL-CA), Livermore, CA (United States); White, James Lawrence [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2017-07-01

    The Sandia HyMARC team continued its development of new synthetic, modeling, and diagnostic tools that are providing new insights into all major classes of storage materials, ranging from relatively simple systems such as PdHx and MgH2, to exceptionally complex ones, such as the metal borohydrides, as well as materials thought to be very well-understood, such as Ti-doped NaAlH4. This unprecedented suite of capabilities, capable of probing all relevant length scales within storage materials, is already having a significant impact, as they are now being used by both Seedling projects and collaborators at other laboratories within HyMARC. We expect this impact to grow as new Seedling projects begin and through collaborations with other scientists outside HyMARC. In the coming year, Sandia efforts will focus on the highest impact problems, in coordination with the other HyMARC National Laboratory partners, to provide the foundational science necessary to accelerate the discovery of new hydrogen storage materials.

  19. Free Piston Double Diaphragm Shock Tube

    OpenAIRE

    OGURA, Eiji; FUNABIKI, Katsushi; SATO, Shunichi; ABE, Takashi; 小倉, 栄二; 船曳, 勝之; 佐藤, 俊逸; 安部, 隆士

    1997-01-01

    A free piston double diaphragm shock tube was newly developed for generation of high Mach number shock wave. Its characteristics was investigated for various operation parameters; such as a strength of the diaphragm at the end of the comparession tube, an initial pressure of low pressure tube, an initial pressure of medium pressure tube and the volume of compression tube. Under the restriction of fixed pressures for the driver high pressure tube (32×10^5Pa) and the low pressure tube (40Pa) in...

  20. Sandia National Laboratories 1979 environmental monitoring report

    International Nuclear Information System (INIS)

    Simmons, T.N.

    1980-04-01

    Sandia National Laboratories in Albuquerque is located south of the city on two broad mesas. The local climate is arid continental. Radionuclides are released from five technical areas from the Laboratories' resarch activities. Sandia's environmental monitoring program searches for cesium-137, tritium, uranium, alpha emitters, and beta emitters in water, soil, air, and vegetation. No activity was found in public areas in excess of local background in 1979. The Albuquerque population receives only 0.076 person-rem (estimated) from airborne radioactive releases. While national security research is the laboratories' major responsibility, energy research is a major area of activity. Both these research areas cause radioactive releases

  1. Transuranic waste management at Sandia National Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Humphrey, Betty [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bland, Jesse John [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2018-01-01

    This paper documents the history of the TRU program at Sandia, previous and current activities associated with TRU material and waste, interfaces with other TRU waste generator sites and the Waste Isolation Pilot Plan (WIPP), and paths forward for TRU material and waste. This document is a snapshot in time of the TRU program and should be updated as necessary, or when significant changes have occurred in the Sandia TRU program or in the TRU regulatory environment. This paper should serve as a roadmap to capture past TRU work so that efforts are not repeated and ground is not lost due to future inactivity and personnel changes.

  2. Rarefaction Shock Waves in Collisionless Plasma with Electronic Beam

    OpenAIRE

    Gurovich, Victor Ts.; Fel, Leonid G.

    2011-01-01

    We show that an electronic beam passing through the collisionless plasma of the "cold" ions and the "hot" Boltzmann electrons can give rise to the propagation of the supersonic ion-acoustic rarefaction shock waves. These waves are analogous to those predicted by Zeldovich [5] in gasodynamics and complementary to the ion-acoustic compression shock waves in collisionless plasma described by Sagdeev [3].

  3. Investigation of shock compression in toroidal geometry in the high voltage belt pinch

    International Nuclear Information System (INIS)

    Soeldner, F.

    1977-06-01

    Fast magnetic compression in investigated in the High Voltage Belt Pinch at two initial densities nsub(eo) = 3 x 10 13 cm -3 and nsub(eo) = 7 x 10 13 cm -3 . At the lower density the electrons are heated to 3 keV in the piston region, the ions trapped in the piston obtaining an energy of 0.7 keV. A third of the ions are reflected off the piston attaining an energy of 2.5 keV. At the higher initial density a central β = 1 plasma in formed. Electrons are heated to 1 keV in the sheath, the piston ions obtaining an energy of 0.4 keV. The degree of ion reflection is 60%. Ion acoustic turbulence in both cases dominates the implosion phase and gives rise to the anomalous field diffusion and electron heating observed. Steep electron density and temperature gradients decisively enhance the effective drift velocity for wave growth. The experimental results are compared with numerical calculations using a hybrid code which includes anomalous transport. Scaling studies with the hybrid code in a wider density range show in agreement with the experiment increasing efficiency of shock heating for higher initial densities due to increasing ion reflection. (orig.) [de

  4. Sandia National Laboratories: Business Opportunities Website

    Science.gov (United States)

    Environmental Management System Pollution Prevention History 60 impacts Diversity Locations Facts & Figures Does Sandia Buy? Opportunities Small Business Procurement Technical Assistance Program (PTAP) Current Technology Partnerships Business, Industry, & Non-Profits Government Universities Center for

  5. Environmental monitoring report, Sandia Laboratories 1975

    International Nuclear Information System (INIS)

    Holley, W.L.; Simmons, T.N.

    1976-04-01

    Water and vegetation are monitored to determine Sandia Laboratories impact on the surrounding environment. Nonradioactive pollutants released are reported. Radioactive effluents are also reported and their person-rem contribution to the population is calculated

  6. 1992 Environmental monitoring report, Sandia National Laboratories, Albuquerque, New Mexico

    International Nuclear Information System (INIS)

    Culp, T.; Cox, W.; Hwang, H.; Irwin, M.; Jones, A.; Matz, B.; Molley, K.; Rhodes, W.; Stermer, D.; Wolff, T.

    1993-09-01

    This 1992 report contains monitoring data from routine radiological and nonradiological environmental surveillance activities. summaries of significant environmental compliance programs in progress, such as National Environmental Policy Act documentation, environmental permits, envirorunental restoration, and various waste management programs for Sandia National Laboratories in Albuquerque, New Mexico, are included. The maximum offsite dose impact was calculated to be 0.0034 millirem. The total population within a 50-mile radius of Sandia National Laboratories/New Mexico received an estimated collective dose of 0.019 person-rem during 1992 from the laboratories' operations. As in the previous year, the 1992 operations at Sandia National Laboratories/New Mexico had no discernible impact on the general public or on the environment

  7. Installation and Testing Instructions for the Sandia Automatic Report Generator (ARG).

    Energy Technology Data Exchange (ETDEWEB)

    Clay, Robert L.

    2018-04-01

    Robert L. CLAY Sandia National Laboratories P.O. Box 969 Livermore, CA 94551, U.S.A. rlclay@sandia.gov In this report, we provide detailed and reproducible installation instructions of the Automatic Report Generator (ARG), for both Linux and macOS target platforms.

  8. An analysis of microsystems development at Sandia National Laboratories

    Science.gov (United States)

    Herrera, Gilbert V.; Myers, David R.

    2011-06-01

    While Sandia initially was motivated to investigate emergent microsystem technology to miniaturize existing macroscale structures, present designs embody innovative approaches that directly exploit the fundamentally different material properties of a new technology at the micro- and nano-scale. Direct, hands-on experience with the emerging technology gave Sandia engineers insights that not only guided the evolution of the technology but also enabled them to address new applications that enlarged the customer base for the new technology. Sandia's early commitment to develop complex microsystems demonstrated the advantages that early adopters gain by developing an extensive design and process tool kit and a shared awareness of multiple approaches to achieve the multiple goals. As with any emergent technology, Sandia's program benefited from interactions with the larger technical community. However, custom development followed a spiral path of direct trial-and-error experience, analysis, quantification of materials properties at the micro- and nano-scale, evolution of design tools and process recipes, and an understanding of reliability factors and failure mechanisms even in extreme environments. The microsystems capability at Sandia relied on three key elements. The first was people: a mix of mechanical and semiconductor engineers, chemists, physical scientists, designers, and numerical analysts. The second was a unique facility that enabled the development of custom technologies without contaminating mainline product deliveries. The third was the arrival of specialized equipment as part of a Cooperative Research And Development Agreement (CRADA) enabled by the National Competitiveness Technology Transfer Act of 1989. Underpinning all these, the program was guided and sustained through the research and development phases by accomplishing intermediate milestones addressing direct mission needs.

  9. On the Effects of Viscosity on the Shock Waves for a Hydrodynamical Case—Part I: Basic Mechanism

    Directory of Open Access Journals (Sweden)

    Huseyin Cavus

    2013-01-01

    Full Text Available The interaction of shock waves with viscosity is one of the central problems in the supersonic regime of compressible fluid flow. In this work, numerical solutions of unmagnetised fluid equations, with the viscous stress tensor, are investigated for a one-dimensional shock wave. In the algorithm developed the viscous stress terms are expressed in terms of the relevant Reynolds number. The algorithm concentrated on the compression rate, the entropy change, pressures, and Mach number ratios across the shock wave. The behaviour of solutions is obtained for the Reynolds and Mach numbers defining the medium and shock wave in the supersonic limits.

  10. Isotopic power supplies for space and terrestrial systems: quality assurance by Sandia National Laboratories

    International Nuclear Information System (INIS)

    Hannigan, R.L.; Harnar, R.R.

    1981-09-01

    The Sandia National Laboratories participation in Quality Assurance (QA) programs for Radioisotopic Thermoelectric Generators which have been used in space and terrestrial systems over the past 15 years is summarized. Basic elements of the program are briefly described and recognition of assistance from other Sandia organizations is included. Descriptions of the various systems for which Sandia has had the QA responsibility are also presented. In addition, the outlook for Sandia participation in RTG programs for the next several years is noted

  11. The evolution of interior intrusion detection technology at Sandia National Laboratories

    International Nuclear Information System (INIS)

    Graham, R.H.; Workhoven, R.M.

    1987-07-01

    Interior Intrusion Detection Technology began at Sandia National Laboratories (SNL) in 1975 as part of the Fixed Facilities Physical Protection Research and Development program sponsored by the US Department of Energy in connection with their nuclear safeguards effort. This paper describes the evolution of Interior Intrusion Detection Technology at Sandia National Laboratories from the beginning of the Interior Sensor Laboratory to the present. This Laboratory was established in 1976 to evaluate commercial interior intrusion sensors and to assist in site-specific intrusion detection system designs. Examples of special test techniques and new test equipment that were developed at the Lab are presented, including the Sandia Intruder Motion Simulator (SIMS), the Sensor and Environment Monitor (SEM), and the Sandia Interior Robot (SIR). We also discuss new sensors and unique sensor combination developed when commercial sensors were unavailable and the future application of expert systems. 5 refs

  12. The evolution of interior intrusion detection technology at Sandia National Laboratories

    International Nuclear Information System (INIS)

    Graham, R.H.; Workhoven, R.M.

    1987-01-01

    Interior Intrusion Detection Technology began at Sandia National Laboratories (SNL) in 1975 as part of the Fixed Facilities Physical Protection Research and Development program sponsored by the U.S. Department of Energy in connection with their nuclear safeguards effort. This paper describes the evolution of Interior Intrusion Detection Technology at Sandia National Laboratories from the beginning of the Interior Sensor Laboratory to the present. This Laboratory was established in 1976 to evaluate commercial interior intrusion sensors and to assist in site-specific intrusion detection system designs. Examples of special test techniques and new test equipment that were developed at the Lab are presented, including the Sandia Intruder Motion Simulator (SIMS), the Sensor and Environment Monitor (SEM), and the Sandia Interior Robot (SIR). The authors also discuss new sensors and unique sensor combinations developed when commercial sensors were unavailable and the future application of expert systems

  13. Site environmental report for 2009 : Sandia National Laboratories, California.

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Barbara L.

    2010-06-01

    Sandia National Laboratories, California (SNL/CA) is a government-owned/contractor-operated laboratory. Sandia Corporation, a Lockheed Martin Company, operates the laboratory for the Department of Energy's National Nuclear Security Administration (NNSA). The NNSA Sandia Site Office oversees operations at the site, using Sandia Corporation as a management and operating contractor. This Site Environmental Report for 2009 was prepared in accordance with DOE Order 231.1A (DOE 2004a). The report provides a summary of environmental monitoring information and compliance activities that occurred at SNL/CA during calendar year 2009. General site and environmental program information is also included. The Site Environmental Report is divided into ten chapters. Chapter 1, the Executive Summary, highlights compliance and monitoring results obtained in 2009. Chapter 2 provides a brief introduction to SNL/CA and the existing environment found on site. Chapter 3 summarizes SNL/CA's compliance activities with the major environmental requirements applicable to site operations. Chapter 4 presents information on environmental management, performance measures, and environmental programs. Chapter 5 presents the results of monitoring and surveillance activities in 2009. Chapter 6 discusses quality assurance. Chapters 7 through 9 provide supporting information for the report and Chapter 10 is the report distribution list.

  14. Shock ignition of thermonuclear fuel: principles and modelling

    International Nuclear Information System (INIS)

    Atzeni, S.; Ribeyre, X.; Schurtz, G.; Schmitt, A.J.; Canaud, B.; Betti, R.; Perkins, L.J.

    2014-01-01

    Shock ignition is an approach to direct-drive inertial confinement fusion (ICF) in which the stages of compression and hot spot formation are partly separated. The fuel is first imploded at a lower velocity than in conventional ICF. Close to stagnation, an intense laser spike drives a strong converging shock, which contributes to hot spot formation. Shock ignition shows potentials for high gain at laser energies below 1 MJ, and could be tested on the National Ignition Facility or Laser MegaJoule. Shock ignition principles and modelling are reviewed in this paper. Target designs and computer-generated gain curves are presented and discussed. Limitations of present studies and research needs are outlined. (special topic)

  15. Micromachined sensor and actuator research at Sandia`s Microelectronics Development Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Smith, J.H.

    1996-11-01

    An overview of the surface micromachining program at the Microelectronics Development Laboratory of Sandia National Laboratories is presented. Development efforts are underway for a variety of surface micromachined sensors and actuators for both defense and commercial applications. A technology that embeds micromechanical devices below the surface of the wafer prior to microelectronics fabrication has been developed for integrating microelectronics with surface-micromachined micromechanical devices. The application of chemical-mechanical polishing to increase the manufacturability of micromechanical devices is also presented.

  16. A study of shock mitigating materials in a split Hopkinson bar configuration

    International Nuclear Information System (INIS)

    Bateman, V.I.; Bell, R.G. III; Brown, F.A.; Hansen, N.R.

    1996-01-01

    Sandia National Laboratories (SNL) designs mechanical systems with electronics that must survive high shock environments. These mechanical systems include penetrators that must survive soil, rock, and ice penetration, nuclear transportation casks that must survive transportation environments, and laydown weapons that must survive delivery impact of 125-fps. These mechanical systems contain electronics that may operate during and after the high shock environment and that must be protected from the high shock environments. A study has been started to improve the packaging techniques for the advanced electronics utilized in these mechanical systems because current packaging techniques are inadequate for these more sensitive electronics. In many cases, it has been found that the packaging techniques currently used not only do not mitigate the shock environment but actually amplify the shock environment. An ambitious goal for this packaging study is to avoid amplification and possibly attenuate the shock environment before it reaches the electronics contained in the various mechanical system. As part of the investigation of packaging techniques, a two part study of shock mitigating materials is being conducted. This paper reports the first part of the shock mitigating materials study. A study to compare three thicknesses (0.125, 0.250, and 0.500 in.) of seventeen, unconfined materials for their shock mitigating characteristics has been completed with a split Hopkinson bar configuration. The nominal input as measured by strain gages on the incident Hopkinson bar is 50 fps at sign 100 micros for these tests. It is hypothesized that a shock mitigating material has four purposes: to lengthen the shock pulse, to attenuate the shock pulse, to mitigate high frequency content in the shock pulse, and to absorb energy. Both time domain and frequency domain analyses of the split Hopkinson bar data have been performed to compare the materials' achievement of these purposes

  17. Summary of Sandia Laboratories technical capabilities

    International Nuclear Information System (INIS)

    1977-05-01

    The technical capabilities of Sandia Laboratories are detailed in a series of companion reports. In this summary the use of the capabilities in technical programs is outlined and the capabilities are summarized. 25 figures, 3 tables

  18. Laser shock peening of titanium 6-4 alloy

    International Nuclear Information System (INIS)

    Brar, N.S.; Hopkins, A.; Laber, M.W.

    2000-01-01

    Laser shock peening of titanium 6-4 has been shown to improve its high cycle fatigue life. Residual compressive stresses generated on the surface of titanium 6-4, as a result of laser shocking, have shown dramatic improvement in the performance of aircraft turbine blades. Laser shocking of titanium was carried out with a 20 ns pulse width, 50 joule pulsed laser, operated by LSP Technologies, Columbus, OH. Titanium disks, 20-mm in diameter, and ranging in thicknesses from zero (bare LiF) to 3-mm were subjected to laser shock to monitor amplitude and temporal stress profiles of the pulsed laser. Laser shock stress amplitudes on the back of titanium disks were monitored with VISAR using LiF as the window material. The peak shock stress produced in LiF (titanium thickness zero) was measured to be 16±1 GPa. The laser shock amplitude decays to about 2.7 GPa while propagating through 3-mm thick disk of titanium 6-4

  19. Annual Site Environmental Report Sandia National Laboratories, Albuquerque, New Mexico, Calendar year 2007

    Energy Technology Data Exchange (ETDEWEB)

    Agogino, Karen [National Nuclear Security Administration (NNSA), Washington, DC (United States); Sanchez, Rebecca [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2008-09-30

    Sandia National Laboratories, New Mexico (SNL/NM) is a government-owned/contractor-operated facility. Sandia Corporation (Sandia), a wholly owned subsidiary of Lockheed Martin Corporation, manages and operates the laboratory for the U.S. Department of Energy (DOE), National Nuclear Security Administration (NNSA). The DOE/NNSA Sandia Site Office (SSO) administers the contract and oversees contractor operations at the site. This annual report summarizes data and the compliance status of Sandia Corporation’s environmental protection and monitoring programs through December 31, 2007. Major environmental programs include air quality, water quality, groundwater protection, terrestrial surveillance, waste management, pollution prevention (P2), environmental restoration (ER), oil and chemical spill prevention, and implementation of the National Environmental Policy Act (NEPA). Environmental monitoring and surveillance programs are required by DOE Order 450.1, Environmental Protection Program (DOE 2007a) and DOE Manual 231.1-1A, Environment, Safety, and Health Reporting (DOE 2007).

  20. Deformation of depleted uranium - 0.78 Ti under shock compression to 11.0 GPa at room temperature

    International Nuclear Information System (INIS)

    Dandekar, D.P.; Martin, A.G.; Kelley, J.V.

    1980-01-01

    The present work on depleted uranium alloyed with 0.78% titanium by weight (i.e., U-0.8 Ti) describes the nature of deformation it undergoes when subjected to shock compression at room temperature. The principal results emerging out of the present work are: (1) The stress limits of elastic deformation are dependent on the thickness of U-0.8Ti. The stress limit decreases from over 3.0 GPa at the impact surface to 1.2 GPa at a depth of 9 mm in U-0.8 Ti; (2) The lower limit of the stress agrees with the static yield stress in U-0.8 Ti; (3) Above the elastic stress limit, the deformation of U-0.8 Ti proceeds in a manner of the ideal plastic solid; and (4) The pressure derivative of Lame's parameter of U-0.8 Ti is estimated to be 3.8

  1. Sandia Combustion Research: Technical review

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-01

    This report contains reports from research programs conducted at the Sandia Combustion Research Facility. Research is presented under the following topics: laser based diagnostics; combustion chemistry; reacting flow; combustion in engines and commercial burners; coal combustion; and industrial processing. Individual projects were processed separately for entry onto the DOE databases.

  2. Fast-shock ignition: a new approach to inertial confinement fusion

    Directory of Open Access Journals (Sweden)

    AH Farahbod

    2013-03-01

    Full Text Available  A new concept for inertial confinement fusion called fast-shock ignition (FSI is introduced as a credible scheme in order to obtain high target gain. In the proposed model, the separation of fuel ignition into two successive steps, under the suitable conditions, reduces required ignitor energy for the fuel ignition. The main procedure in FSI concept is compressing the fuel up to stagnation. Then, two high intensity short pulse laser spikes with energy and power lower than those required for shock ignition (SI and fast ignition (FI with a proper delay time are launched at the fuel which increases the central hot-spot temperature and completes the ignition of the precompressed fuel. The introduced semi-analytical model indicates that with fast-shock ignition, the total required energy for compressing and igniting the fuel can be slightly reduced in comparison to pure shock ignition. Furthermore, for fuel mass greater than , the target energy gain increases up to 15 percent and the contribution of fast ignitor under the proper conditions could be decreased about 20 percent compared with pure fast ignition. The FSI scheme is beneficial from technological considerations for the construction of short pulse high power laser drivers. The general advantages of fast-shock ignition over pure shock ignition in terms of figure of merit can be more than 1.3.

  3. On acceleration of <1 MeV/n He ions in the corotating compression regions near 1 AU: STEREO observations

    Directory of Open Access Journals (Sweden)

    R. Bučík

    2009-09-01

    Full Text Available Observations of multi-MeV corotating interaction region (CIR ions are in general consistent with models of CIR shock acceleration and transport. The presence of suprathermal particles near 1 AU in unshocked compression regions is not adequately explained. Nonetheless, more recent works demonstrate that unshocked compression regions associated with CIRs near 1 AU could energize particles. In the energy range from ~0.1 to ~1 MeV/n we investigate CIR events observed in 2007–2008 by the STEREO A and B spacecraft. We treat the predictions of compression acceleration by comparing the observed ion intensities with the model parameters. These observations show that the ion intensity in CIR events with in-situ reverse shock is well organized by the parameters which characterize the compression region itself, like compression width, solar wind speed gradients and the total pressure. In turn, for CIR events with the absence of the shocks the model predictions are not fulfilled.

  4. International Shock-Wave Database: Current Status

    Science.gov (United States)

    Levashov, Pavel

    2013-06-01

    Shock-wave and related dynamic material response data serve for calibrating, validating, and improving material models over very broad regions of the pressure-temperature-density phase space. Since the middle of the 20th century vast amount of shock-wave experimental information has been obtained. To systemize it a number of compendiums of shock-wave data has been issued by LLNL, LANL (USA), CEA (France), IPCP and VNIIEF (Russia). In mid-90th the drawbacks of the paper handbooks became obvious, so the first version of the online shock-wave database appeared in 1997 (http://www.ficp.ac.ru/rusbank). It includes approximately 20000 experimental points on shock compression, adiabatic expansion, measurements of sound velocity behind the shock front and free-surface-velocity for more than 650 substances. This is still a useful tool for the shock-wave community, but it has a number of serious disadvantages which can't be easily eliminated: (i) very simple data format for points and references; (ii) minimalistic user interface for data addition; (iii) absence of history of changes; (iv) bad feedback from users. The new International Shock-Wave database (ISWdb) is intended to solve these and some other problems. The ISWdb project objectives are: (i) to develop a database on thermodynamic and mechanical properties of materials under conditions of shock-wave and other dynamic loadings, selected related quantities of interest, and the meta-data that describes the provenance of the measurements and material models; and (ii) to make this database available internationally through the Internet, in an interactive form. The development and operation of the ISWdb is guided by an advisory committee. The database will be installed on two mirrored web-servers, one in Russia and the other in USA (currently only one server is available). The database provides access to original experimental data on shock compression, non-shock dynamic loadings, isentropic expansion, measurements of sound

  5. A case for Sandia investment in complex adaptive systems science and technology.

    Energy Technology Data Exchange (ETDEWEB)

    Colbaugh, Richard; Tsao, Jeffrey Yeenien; Johnson, Curtis Martin; Backus, George A.; Brown, Theresa Jean; Jones, Katherine A.

    2012-05-01

    This white paper makes a case for Sandia National Laboratories investments in complex adaptive systems science and technology (S&T) -- investments that could enable higher-value-added and more-robustly-engineered solutions to challenges of importance to Sandia's national security mission and to the nation. Complex adaptive systems are ubiquitous in Sandia's national security mission areas. We often ignore the adaptive complexity of these systems by narrowing our 'aperture of concern' to systems or subsystems with a limited range of function exposed to a limited range of environments over limited periods of time. But by widening our aperture of concern we could increase our impact considerably. To do so, the science and technology of complex adaptive systems must mature considerably. Despite an explosion of interest outside of Sandia, however, that science and technology is still in its youth. What has been missing is contact with real (rather than model) systems and real domain-area detail. With its center-of-gravity as an engineering laboratory, Sandia's has made considerable progress applying existing science and technology to real complex adaptive systems. It has focused much less, however, on advancing the science and technology itself. But its close contact with real systems and real domain-area detail represents a powerful strength with which to help complex adaptive systems science and technology mature. Sandia is thus both a prime beneficiary of, as well as potentially a prime contributor to, complex adaptive systems science and technology. Building a productive program in complex adaptive systems science and technology at Sandia will not be trivial, but a credible path can be envisioned: in the short run, continue to apply existing science and technology to real domain-area complex adaptive systems; in the medium run, jump-start the creation of new science and technology capability through Sandia's Laboratory Directed Research

  6. Shock waves in helium at low temperatures

    International Nuclear Information System (INIS)

    Liepmann, H.W.; Torczynski, J.R.

    1986-01-01

    Results are reported from studies of the properties of low temperature He-4 using shock waves as a probe. Ideal shock tube theory is used to show that sonic speeds of Mach 40 are attainable in He at 300 K. Viscosity reductions at lower temperatures minimize boundary layer effects at the side walls. A two-fluid model is described to account for the phase transition which He undergoes at temperatures below 2.2 K, after which the quantum fluid (He II) and the normal compressed superfluid (He I) coexist. Analytic models are provided for pressure-induced shocks in He I and temperature-induced shock waves (called second sound) which appear in He II. The vapor-fluid interface of He I is capable of reflecting second and gasdynamic sound shocks, which can therefore be used as probes for studying phase transitions between He I and He II. 17 references

  7. Direct Laser-Driven Quasi-Isentropic Compression on HEAVEN-I Laser

    International Nuclear Information System (INIS)

    Zhang Pin-Liang; Tang Xiu-Zhang; Li Ye-Jun; Wang Zhao; Tian Bao-Xian; Yin Qian; Lu Ze; Xiang Yi-Huai; Gao Zhi-Xing; Li Jing; Hu Feng-Ming; Gong Zi-Zheng

    2015-01-01

    The HEAVEN-I laser is used for direct drive quasi-isentropic compression up to ∼18 GPa in samples of aluminum without being temporal pulse shaped. The monotonically increasing loading is with a rise time over 17 ns. The compression history is well reproduced by the 1D radiation hydrodynamics simulation. We find that a small shock precursor where the backward integration method cannot process is formed at the beginning of illumination. We compare the loading process of HEAVEN-I with the typical profile (concave down, prefect pulse shape), the results show that a typical profile can obtain more slowly rising and higher pressure, and the shock precursor has significant effects on temperature and entropy production. However, it is demonstrated that the HEAVEN-I is an excellent optical source for direct laser-driven quasi-isentropic compression, even if it produces more temperature rise and entropy than the typical profile. (paper)

  8. Sandia National Laboratories ASCI Applications Software Quality Engineering Practices; TOPICAL

    International Nuclear Information System (INIS)

    ZEPPER, JOHN D.; ARAGON, KATHRYN MARY; ELLIS, MOLLY A.; BYLE, KATHLEEN A.; EATON, DONNA SUE

    2002-01-01

    This document provides a guide to the deployment of the software verification activities, software engineering practices, and project management principles that guide the development of Accelerated Strategic Computing Initiative (ASCI) applications software at Sandia National Laboratories (Sandia). The goal of this document is to identify practices and activities that will foster the development of reliable and trusted products produced by the ASCI Applications program. Document contents include an explanation of the structure and purpose of the ASCI Quality Management Council, an overview of the software development lifecycle, an outline of the practices and activities that should be followed, and an assessment tool. These sections map practices and activities at Sandia to the ASCI Software Quality Engineering: Goals, Principles, and Guidelines, a Department of Energy document

  9. Physics of laser-plasma interaction for shock ignition of fusion reactions

    International Nuclear Information System (INIS)

    Tikhonchuk, V T; Colaïtis, A; Vallet, A; Llor Aisa, E; Duchateau, G; Nicolaï, Ph; Ribeyre, X

    2016-01-01

    The shock ignition scheme is an alternative approach, which aims to achieve ignition of fusion reactions in two subsequent steps: first, the target is compressed at a low implosion velocity and second, a strong converging shock is launched during the stagnation phase and ignites the hot spot. In this paper we describe the major elements of this scheme and recent achievements concerning the laser-plasma interaction, the crucial role of hot electrons in the shock generation, the shock amplification in the imploding shell and the ignition conditions. (paper)

  10. Formation of large-amplitude dust ion-acoustic shocks in dusty plasmas

    International Nuclear Information System (INIS)

    Eliasson, B.; Shukla, P.K.

    2005-01-01

    Theoretical and numerical studies of self-steepening and shock formation of large-amplitude dust ion-acoustic waves in dusty plasmas are presented. A comparison is made between the nondispersive two fluid model, which predicts the formation of large-amplitude compressive and rarefactive dust ion-acoustic shocks, Vlasov simulations, and recent laboratory experiments

  11. Recent Advances in High-Pressure Equation-of-State Capabilities

    International Nuclear Information System (INIS)

    ASAY, James R.; HALL, CLINT A.; KNUDSON, MARCUS D.

    2000-01-01

    For many scientific and programmatic applications, it is necessary to determine the shock compression response of materials to several tens of Mbar. In addition, a complete EOS is often needed in these applications, which requires that shock data be supplemented with other information, such as temperature measurements or by EOS data off the principal Hugoniot. Recent developments in the use of fast pulsed power techniques for EOS studies have been useful in achieving these goals. In particular, the Z accelerator at Sandia National Laboratories, which develops over 20 million amperes of current in 100-200 ns, can be used to produce muM-Mbar shock pressures and to obtain continuous compression data to pressures exceeding 1 Mbar. With this technique, isentropic compression data have been obtained on several materials to pressures of several hundred kbar. The technique has also been used to launch ultra-high velocity flyer plates to a maximum velocity of 14 km/s, which can be used to produce impact pressures of several Mbar in low impedance materials and over 10 Mbar in high impedance materials. The paper will review developments in both of these areas

  12. Shocks inside CMEs: A survey of properties from 1997 to 2006

    Science.gov (United States)

    Lugaz, N.; Farrugia, C. J.; Smith, C. W.; Paulson, K.

    2015-04-01

    We report on 49 fast-mode forward shocks propagating inside coronal mass ejections (CMEs) as measured by Wind and ACE at 1 AU from 1997 to 2006. Compared to typical CME-driven shocks, these shocks propagate in different upstream conditions, where the median upstream Alfvén speed is 85 km s-1, the proton β = 0.08 and the magnetic field strength is 8 nT. These shocks are fast with a median speed of 590 km s-1 but weak with a median Alfvénic Mach number of 1.9. They typically compress the magnetic field and density by a factor of 2-3. The most extreme upstream conditions found were a fast magnetosonic speed of 230 km s-1, a plasma β of 0.02, upstream solar wind speed of 740 km s-1 and density of 0.5 cm-3. Nineteen of these complex events were associated with an intense geomagnetic storm (peak Dst under -100 nT) within 12 h of the shock detection at Wind, and 15 were associated with a drop of the storm time Dst index of more than 50 nT between 3 and 9 h after shock detection. We also compare them to a sample of 45 shocks propagating in more typical upstream conditions. We show the average property of these shocks through a superposed epoch analysis, and we present some analytical considerations regarding the compression ratios of shocks in low β regimes. As most of these shocks are measured in the back half of a CME, we conclude that about half the shocks may not remain fast-mode shocks as they propagate through an entire CME due to the large upstream and magnetosonic speeds.

  13. User Guide for Compressible Flow Toolbox Version 2.1 for Use With MATLAB(Registered Trademark); Version 7

    Science.gov (United States)

    Melcher, Kevin J.

    2006-01-01

    This report provides a user guide for the Compressible Flow Toolbox, a collection of algorithms that solve almost 300 linear and nonlinear classical compressible flow relations. The algorithms, implemented in the popular MATLAB programming language, are useful for analysis of one-dimensional steady flow with constant entropy, friction, heat transfer, or shock discontinuities. The solutions do not include any gas dissociative effects. The toolbox also contains functions for comparing and validating the equation-solving algorithms against solutions previously published in the open literature. The classical equations solved by the Compressible Flow Toolbox are: isentropic-flow equations, Fanno flow equations (pertaining to flow of an ideal gas in a pipe with friction), Rayleigh flow equations (pertaining to frictionless flow of an ideal gas, with heat transfer, in a pipe of constant cross section.), normal-shock equations, oblique-shock equations, and Prandtl-Meyer expansion equations. At the time this report was published, the Compressible Flow Toolbox was available without cost from the NASA Software Repository.

  14. Calendar Year 2009 Annual Site Environmental Report for Sandia National Laboratories, New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Armstrong, Karen [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bailey-White, Brenda [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bonaguidi, Joseph [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Brown, Mendy [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Byrd, Caroline [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Cabble, Kevin [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Castillo, Dave [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Coplen, Amy [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Curran, Kelsey [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Deola, Regina [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Duran, Leroy [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Eckstein, Joanna [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Evelo, Stacie [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Fitzgerald, Tanja [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); French, Chris [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Gerard, Morgan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Gonzales, Linda [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Gorman, Susan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Jackson, Timothy [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Jarry, Jeff [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Jones, Adrian [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Lauffer, Franz [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Mauser, Joseph [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Mayeux, Lucie [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); McCord, Samuel [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Miller, Mark [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Oborny, Stephanie [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Perini, Robin [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Puissant, Pamela [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Reiser, Anita [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Roma, Charles [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Salinas, Stephanie [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Skelly, Michael [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Ullrich, Rebecca [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Wagner, Katrina [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Wrons, Ralph [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2010-09-30

    Sandia National Laboratories, New Mexico (SNL/NM) is a government-owned/contractor operated facility. Sandia Corporation (Sandia), a wholly owned subsidiary of Lockheed Martin Corporation (LMC), manages and operates the laboratory for the U.S. Department of Energy (DOE), National Nuclear Security Administration (NNSA). The DOE/NNSA, Sandia Site O ffice (SSO) administers the contract and oversees contractor operations at the site. This annual report summarizes data and the compliance status of Sandia Corporation’s environmental protection and monitoring programs through December 31, 2009. Major environmental programs include air quality, water quality, groundwater protection, terrestrial surveillance, waste management, pollution prevention (P2), environmental restoration (ER), oil and chemical spill prevention, and implementation of the National Environmental Policy Act (NEPA). Environmental monitoring and surveillance programs are required by DOE Order 450.1A, Environmental Protection Program (DOE 2008a) and DOE Manual 231.1-1A, Environment, Safety, and Health Reporting (DOE 2007).

  15. A shock absorber model for structure-borne noise analyses

    Science.gov (United States)

    Benaziz, Marouane; Nacivet, Samuel; Thouverez, Fabrice

    2015-08-01

    Shock absorbers are often responsible for undesirable structure-borne noise in cars. The early numerical prediction of this noise in the automobile development process can save time and money and yet remains a challenge for industry. In this paper, a new approach to predicting shock absorber structure-borne noise is proposed; it consists in modelling the shock absorber and including the main nonlinear phenomena responsible for discontinuities in the response. The model set forth herein features: compressible fluid behaviour, nonlinear flow rate-pressure relations, valve mechanical equations and rubber mounts. The piston, base valve and complete shock absorber model are compared with experimental results. Sensitivity of the shock absorber response is evaluated and the most important parameters are classified. The response envelope is also computed. This shock absorber model is able to accurately reproduce local nonlinear phenomena and improves our state of knowledge on potential noise sources within the shock absorber.

  16. Shock-acceleration of a pair of gas inhomogeneities

    Science.gov (United States)

    Navarro Nunez, Jose Alonso; Reese, Daniel; Oakley, Jason; Rothamer, David; Bonazza, Riccardo

    2014-11-01

    A shock wave moving through the interstellar medium distorts density inhomogeneities through the deposition of baroclinic vorticity. This process is modeled experimentally in a shock tube for a two-bubble interaction. A planar shock wave in nitrogen traverses two soap-film bubbles filled with argon. The two bubbles share an axis that is orthogonal to the shock wave and are separated from one another by a distance of approximately one bubble diameter. Atomization of the soap-film by the shock wave results in dispersal of droplets that are imaged using Mie scattering with a laser sheet through the bubble axis. Initial condition images of the bubbles in free-fall (no holder) are taken using a high-speed camera and then two post-shock images are obtained with two laser pulses and two cameras. The first post-shock image is of the early time compression stage when the sphere has become ellipsoidal, and the second image shows the emergence of vortex rings which have evolved due to vorticity depostion by the shock wave. Bubble morphology is characterized with length scale measurements.

  17. Effects of Alfvénic Drift on Diffusive Shock Acceleration at Weak Cluster Shocks

    Science.gov (United States)

    Kang, Hyesung; Ryu, Dongsu

    2018-03-01

    Non-detection of γ-ray emission from galaxy clusters has challenged diffusive shock acceleration (DSA) of cosmic-ray (CR) protons at weak collisionless shocks that are expected to form in the intracluster medium. As an effort to address this problem, we here explore possible roles of Alfvén waves self-excited via resonant streaming instability during the CR acceleration at parallel shocks. The mean drift of Alfvén waves may either increase or decrease the scattering center compression ratio, depending on the postshock cross-helicity, leading to either flatter or steeper CR spectra. We first examine such effects at planar shocks, based on the transport of Alfvén waves in the small amplitude limit. For the shock parameters relevant to cluster shocks, Alfvénic drift flattens the CR spectrum slightly, resulting in a small increase of the CR acceleration efficiency, η. We then consider two additional, physically motivated cases: (1) postshock waves are isotropized via MHD and plasma processes across the shock transition, and (2) postshock waves contain only forward waves propagating along with the flow due to a possible gradient of CR pressure behind the shock. In these cases, Alfvénic drift could reduce η by as much as a factor of five for weak cluster shocks. For the canonical parameters adopted here, we suggest η ∼ 10‑4–10‑2 for shocks with sonic Mach number M s ≈ 2–3. The possible reduction of η may help ease the tension between non-detection of γ-rays from galaxy clusters and DSA predictions.

  18. Sandia National Laboratories Institutional Plan FY1994--1999

    Energy Technology Data Exchange (ETDEWEB)

    1993-10-01

    This report presents a five year plan for the laboratory. This plan takes advantage of the technical strengths of the lab and its staff to address issues of concern to the nation on a scope much broader than Sandia`s original mission, while maintaining the general integrity of the laboratory. The plan proposes initiatives in a number of technologies which overlap the needs of its customers and the strengths of its staff. They include: advanced manufacturing technology; electronics; information and computational technology; transportation energy technology and infrastructure; environmental technology; energy research and technology development; biomedical systems engineering; and post-cold war defense imperatives.

  19. Sandia National Laboratories: Careers: Special Programs

    Science.gov (United States)

    Program Master's Fellowship Program Wounded Warrior Career Development Program Careers Special Programs Special career opportunities for select individuals Join Sandia's workforce while receiving support and Laboratories' Affirmative Action Plan. Learn more about MFP. Wounded Warrior Career Development Program U.S

  20. Shock Response of Lightweight Adobe Masonry

    Science.gov (United States)

    Sauer, C.; Bagusat, F.; Heine, A.; Riedel, W.

    2018-04-01

    The behavior of a low density and low-strength building material under shock loading is investigated. The considered material is lightweight adobe masonry characterized by a density of 1.2 g/cm3 and a quasi-static uniaxial compressive strength of 2.8 MPa. Planar-plate-impact (PPI) tests with velocities in between 295 and 950 m/s are performed in order to obtain Hugoniot data and to derive parameters for an equation of state (EOS) that captures the occurring phenomenology of porous compaction and subsequent unloading. The resulting EOS description is validated by comparing the experimental free surface velocity time curves with those obtained by numerical simulations of the performed PPI tests. The non-linear compression behavior, including the pore compaction mechanism, constitutes a main ingredient for modelling the response of adobe to blast and high-velocity impact loading. We hence present a modeling approach for lightweight adobe which can be applied to such high rate loading scenarios in future studies. In general, this work shows that PPI tests on lightweight and low-strength geological materials can be used to extract Hugoniot data despite significant material inhomogeneity. Furthermore, we demonstrate that a homogenous material model is able to numerically describe such a material under shock compression and release with a reasonable accuracy.

  1. Compressed gas fuel storage system

    Science.gov (United States)

    Wozniak, John J.; Tiller, Dale B.; Wienhold, Paul D.; Hildebrand, Richard J.

    2001-01-01

    A compressed gas vehicle fuel storage system comprised of a plurality of compressed gas pressure cells supported by shock-absorbing foam positioned within a shape-conforming container. The container is dimensioned relative to the compressed gas pressure cells whereby a radial air gap surrounds each compressed gas pressure cell. The radial air gap allows pressure-induced expansion of the pressure cells without resulting in the application of pressure to adjacent pressure cells or physical pressure to the container. The pressure cells are interconnected by a gas control assembly including a thermally activated pressure relief device, a manual safety shut-off valve, and means for connecting the fuel storage system to a vehicle power source and a refueling adapter. The gas control assembly is enclosed by a protective cover attached to the container. The system is attached to the vehicle with straps to enable the chassis to deform as intended in a high-speed collision.

  2. Investigation of turbulence models with compressibility corrections for hypersonic boundary flows

    Directory of Open Access Journals (Sweden)

    Han Tang

    2015-12-01

    Full Text Available The applications of pressure work, pressure-dilatation, and dilatation-dissipation (Sarkar, Zeman, and Wilcox models to hypersonic boundary flows are investigated. The flat plate boundary layer flows of Mach number 5–11 and shock wave/boundary layer interactions of compression corners are simulated numerically. For the flat plate boundary layer flows, original turbulence models overestimate the heat flux with Mach number high up to 10, and compressibility corrections applied to turbulence models lead to a decrease in friction coefficients and heating rates. The pressure work and pressure-dilatation models yield the better results. Among the three dilatation-dissipation models, Sarkar and Wilcox corrections present larger deviations from the experiment measurement, while Zeman correction can achieve acceptable results. For hypersonic compression corner flows, due to the evident increase of turbulence Mach number in separation zone, compressibility corrections make the separation areas larger, thus cannot improve the accuracy of calculated results. It is unreasonable that compressibility corrections take effect in separation zone. Density-corrected model by Catris and Aupoix is suitable for shock wave/boundary layer interaction flows which can improve the simulation accuracy of the peak heating and have a little influence on separation zone.

  3. Evolution of scalar and velocity dynamics in planar shock-turbulence interaction

    Science.gov (United States)

    Boukharfane, R.; Bouali, Z.; Mura, A.

    2018-01-01

    Due to the short residence time of air in supersonic combustors, achieving efficient mixing in compressible turbulent reactive flows is crucial for the design of supersonic ramjet (Scramjet) engines. In this respect, improving the understanding of shock-scalar mixing interactions is of fundamental importance for such supersonic combustion applications. In these compressible flows, the interaction between the turbulence and the shock wave is reciprocal, and the coupling between them is very strong. A basic understanding of the physics of such complex interactions has already been obtained through the analysis of relevant simplified flow configurations, including propagation of the shock wave in density-stratified media, shock-wave-mixing-layer interaction, and shock-wave-vortex interaction. Amplification of velocity fluctuations and substantial changes in turbulence characteristic length scales are the most well-known outcomes of shock-turbulence interaction, which may also deeply influence scalar mixing between fuel and oxidizer. The effects of the shock wave on the turbulence have been widely characterized through the use of so-called amplification factors, and similar quantities are introduced herein to characterize the influence of the shock wave on scalar mixing. One of the primary goals of the present study is indeed to extend previous analyses to the case of shock-scalar mixing interaction, which is directly relevant to supersonic combustion applications. It is expected that the shock wave will affect the scalar dissipation rate (SDR) dynamics. Special emphasis is placed on the modification of the so-called turbulence-scalar interaction as a leading-order contribution to the production of mean SDR, i.e., a quantity that defines the mixing rate and efficiency. To the best of the authors' knowledge, this issue has never been addressed in detail in the literature, and the objective of the present study is to scrutinize this influence. The turbulent mixing of a

  4. Sandia Combustion Research Program

    Energy Technology Data Exchange (ETDEWEB)

    Johnston, S.C.; Palmer, R.E.; Montana, C.A. (eds.)

    1988-01-01

    During the late 1970s, in response to a national energy crisis, Sandia proposed to the US Department of Energy (DOE) a new, ambitious program in combustion research. Shortly thereafter, the Combustion Research Facility (CRF) was established at Sandia's Livermore location. Designated a ''user facility,'' the charter of the CRF was to develop and maintain special-purpose resources to support a nationwide initiative-involving US inventories, industry, and national laboratories--to improve our understanding and control of combustion. This report includes descriptions several research projects which have been simulated by working groups and involve the on-site participation of industry scientists. DOE's Industry Technology Fellowship program, supported through the Office of Energy Research, has been instrumental in the success of some of these joint efforts. The remainder of this report presents results of calendar year 1988, separated thematically into eleven categories. Referred journal articles appearing in print during 1988 and selected other publications are included at the end of Section 11. Our traditional'' research activities--combustion chemistry, reacting flows, diagnostics, engine and coal combustion--have been supplemented by a new effort aimed at understanding combustion-related issues in the management of toxic and hazardous materials.

  5. NNSA Master Asset Map - Sandia National Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Billie, Gepetta S. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-01-01

    This report gives information on the following topics related to Sandia National Laboratories: site leadership's vision, condition, footprint management, major gaps and risks, and proposed investment plan.

  6. Estimation of fracture conditions of ceramics by thermal shock with laser beams based on the maximum compressive stress criterion

    International Nuclear Information System (INIS)

    Akiyama, Shigeru; Amada, Shigeyasu.

    1992-01-01

    Structural ceramics are attracting attention in the development of space planes, aircraft and nuclear fusion reactors because they have excellent wear-resistant and heat-resistant characteristics. However, in some applications it is anticipated that they will be exposed to very-high-temperature environments of the order of thousands of degrees. Therefore, it is very important to investigate their thermal shock characteristics. In this report, the distributions of temperatures and thermal stresses of cylindrically shaped ceramics under irradiation by laser beams are discussed using the finite-element computer code (MARC) with arbitrary quadrilateral axisymmetric ring elements. The relationships between spot diameters of laser beams and maximum values of compressive thermal stresses are derived for various power densities. From these relationships, a critical fracture curve is obtained, and it is compared with the experimental results. (author)

  7. Transient shocks beyond the heliopause

    International Nuclear Information System (INIS)

    Fermo, R L; Pogorelov, N V; Burlaga, L F

    2015-01-01

    The heliopause is a rich, dynamic surface affected by the time-dependent solar wind. Stream interactions due to coronal mass ejections (CMEs), corotating interaction regions (CIRs), and other transient phenomena are known to merge producing global merged interaction regions (GMIRs). Numerical simulations of the solar wind interaction with the local interstellar medium (LISM) show that GMIRs, as well other time-dependent structures in the solar wind, may produce compression/rarefaction waves and shocks in the LISM behind the heliopause. These shocks may initiate wave activity observed by the Voyager spacecraft. The magnetometer onboard Voyager 1 indeed observed a few structures that may be interpreted as shocks. We present numerical simulations of such shocks in the year of 2000, when both Voyager spacecraft were in the supersonic solar wind region, and in 2012, when Voyager 1 observed traveling shocks. In the former case, Voyager observations themselves provide time- dependent boundary conditions in the solar wind. In the latter case, we use OMNI data at 1 AU to analyze the plasma and magnetic field behavior after Voyager 1 crossed the heliospheric boundary. Numerical results are compared with spacecraft observations. (paper)

  8. ShockWave science and technology reference library

    CERN Document Server

    2007-01-01

    This book is the first of several volumes on solids in the Shock Wave Science and Technology Reference Library. These volumes are primarily concerned with high-pressure shock waves in solid media, including detonation, high-velocity impact, and penetration. Of the eight chapters in this volume three chapters survey recent, exciting experimental advances in - ultra-short shock dynamics at the atomic and molecular scale (D.S. More, S.D. Mcgrane, and D.J. Funk), - Z accelerator for ICE and Shock compression (M.D. Knudson), and - failure waves in glass and ceramics (S.J. Bless and N.S. Brar). The subsequent four chapters are foundational, and cover the subjects of - equation of state (R. Menikoff), - elastic-plastic shock waves (R. Menikoff), - continuum plasticity (R. M. Brannon), and - numerical methods (D. J. Benson). The last chapter, but not the least, describes a tour de force illustration of today’s computing power in - modeling heterogeneous reactive solids at the grain scale (M.R. Baer). All chapters a...

  9. Shock-induced transformations in crystalline RDX: a uniaxial constant-stress Hugoniostat molecular dynamics simulation study.

    Science.gov (United States)

    Bedrov, Dmitry; Hooper, Justin B; Smith, Grant D; Sewell, Thomas D

    2009-07-21

    Molecular dynamics (MD) simulations of uniaxial shock compression along the [100] and [001] directions in the alpha polymorph of hexahydro-1,3,5-trinitro-1,3,5-triazine (alpha-RDX) have been conducted over a wide range of shock pressures using the uniaxial constant stress Hugoniostat method [Ravelo et al., Phys. Rev. B 70, 014103 (2004)]. We demonstrate that the Hugoniostat method is suitable for studying shock compression in atomic-scale models of energetic materials without the necessity to consider the extremely large simulation cells required for an explicit shock wave simulation. Specifically, direct comparison of results obtained using the Hugoniostat approach to those reported by Thompson and co-workers [Phys. Rev. B 78, 014107 (2008)] based on large-scale MD simulations of shocks using the shock front absorbing boundary condition (SFABC) approach indicates that Hugoniostat simulations of systems containing several thousand molecules reproduced the salient features observed in the SFABC simulations involving roughly a quarter-million molecules, namely, nucleation and growth of nanoscale shear bands for shocks propagating along the [100] direction and the polymorphic alpha-gamma phase transition for shocks directed along the [001] direction. The Hugoniostat simulations yielded predictions of the Hugoniot elastic limit for the [100] shock direction consistent with SFABC simulation results.

  10. Magnetic field amplification in interstellar collisionless shock waves

    International Nuclear Information System (INIS)

    Chevalier, R.A.

    1977-01-01

    It is stated that it is commonly assumed that a simple compression of the magnetic field occurs in interstellar shock waves. Recent space observations of the Earth's bow shock have shown that turbulent amplification of the magnetic field can occur in a collisionless shock. It is shown here that radio observations of Tycho's supernova remnant indicate the presence of a shock wave with such magnetic field amplification. There is at present no theory for the microinstabilities that give rise to turbulent amplification of the magnetic field. Despite the lack of theoretical understanding the possibility of field amplification in interstellar shock waves is here considered. In Tycho's supernova remnant there is evidence for the presence of a collisionless shock, and this is discussed. On the basis of observations of the Earth's bow shock, it is expected that turbulent magnetic field amplification occurs in the shock wave of this remnant, and this is supported by radio observations of the remnant. Consideration is given as to what extent the magnetic field is amplified in the shock wave on the basis of the non-thermal radio flux. (U.K.)

  11. High-Gain Shock Ignition on the National Ignition Facility

    Science.gov (United States)

    Perkins, L. J.; Lafortune, K.; Bailey, D.; Lambert, M.; MacKinnon, A.; Blackfield, D.; Comley, A.; Schurtz, G.; Ribeyre, X.; Lebel, E.; Casner, A.; Craxton, R. S.; Betti, R.; McKenty, P.; Anderson, K.; Theobald, W.; Schmitt, A.; Atzeni, S.; Schiavi, A.

    2010-11-01

    Shock ignition offers the possibility for a near-term test of high-gain ICF on the NIF at less than 1MJ drive energy and with day-1 laser hardware. We will summarize the status of target performance simulations, delineate the critical issues and describe the R&D program to be performed in order to test the potential of a shock-ignited target on NIF. In shock ignition, compressed fuel is separately ignited by a late-time laser-driven shock and, because capsule implosion velocities are significantly lower than those required for conventional hotpot ignition, simulations indicate that fusion energy gains of 60 may be achievable at laser energies around 0.5MJ. Like fast ignition, shock ignition offers high gain but requires only a single laser with less demanding timing and focusing requirements. Conventional symmetry and stability constraints apply, thus a key immediate step towards attempting shock ignition on NIF is to demonstrate adequacy of low-mode uniformity and shock symmetry under polar drive

  12. Sandia National Laboratories: Research: Research Foundations: Engineering

    Science.gov (United States)

    Foundations Bioscience Computing & Information Science Electromagnetics Engineering Science Geoscience Mexico Small Business Assistance Program Sandia Science & Technology Park Careers Community Library Events Careers View All Jobs Students & Postdocs Internships & Co-ops Fellowships

  13. Sandia's severe human body Electrostatic Discharge Tester (SSET)

    International Nuclear Information System (INIS)

    Barnum, J.R.

    1991-01-01

    This paper reports that the Electromagnetic Testing Division at Sandia National Laboratories (SNL) has developed a simulator to replicate a severe human body electrostatic discharge event. This simulator is referred to as Sandia's Severe Human Body Electrostatic Discharge Tester (SSET). The SSET is configured as a coaxial transmission line, which allows control of parasitic inductance and capacitance to achieve the desired waveform signature, and operates reliably at voltages up to 35 kV. It is constructed from off-the-shelf or easily fabricated components and costs approximately $750 for materials, not including the power supply. The output is very repeatable and provides good simulation fidelity of a severe human body discharge

  14. Structure of boron nitride after the high-temperature shock compression

    International Nuclear Information System (INIS)

    Kurdyumov, A.V.; Ostrovskaya, N.F.; Pilipenko, V.A.; Pilyankevich, A.N.; Savvakin, G.I.; Trefilov, V.I.

    1979-01-01

    Boron nitride structure changes as a result of high temperature dynamic compression are studied. The X-ray technique and transmission electron microscopy have been applied. The data on the structure and regularities of formation of diamond-like modifications of boron nitride at high temperature impact compression permit to consider martensite transformation as the first stage of formation of the sphalerite phase stable at high pressures. The second stage is possible if the temperature at the impact moment is sufficiently high for intensive diffusion processes

  15. Evaluation of Strontium Selectivity by Sandia Octahedral Molecular Sieves (SOMS).

    Energy Technology Data Exchange (ETDEWEB)

    Rigali, Mark J.; Stewart, Thomas Austin

    2016-01-01

    Sandia National Laboratories has collaborated with Pleasanton Ridge Research Company (PRRC) to determine whether Sandia Octahedral Molecular Sieves (SOMS) and modified SOMs materials can be synthesized in large batches and produced in granular form. Sandia National Laboratories tested these SOMS and its variants based in aqueous chemical environments for an application-based evaluation of material performance as a sorbent. Testing focused primarily on determining the distribution coefficients (K d ) and chemical selectivity SOMs for alkali earth (Sr) ions in aqueous and dilute seawater solutions. In general the well-crystallized SOMS materials tested exhibited very high K d values (>10 6 ) in distilled water but K d values dropped substantially (%7E10 2 -10 3 ) in the dilute seawater (3%). However, one set of SOMS samples (1.4.2 and 1.4.6) provided by PRRC yielded relatively high K d (approaching 10 4 ) in dilute seawater. Further examination of these samples by scanning electron microscopy (SEM) revealed the presence of at least two phases at least one of which may be accounting for the improved K d values in dilute seawater. Evaluation of Strontium Selectivity by Sandia Octahedral Molecular Sieves (SOMS) January 20, 2016

  16. This is Sandia

    Energy Technology Data Exchange (ETDEWEB)

    1995-02-01

    Sandia is a multiprogram engineering and science laboratory operated for the Department of Energy with major facilities at Albuquerque, New Mexico, and Livermore, California, and a test range near Tonapah, Nevada. It has major research and development responsibilities for nuclear weapons, arms control, energy, the environment, economic competitiveness, and other areas of importance to the needs of the nation. The principal mission is to support national defense policies by ensuring that the nuclear weapon stockpile meets the highest standards of safety, reliability, security, use control, and military performance. This publication gives a brief overview of the multifaceted research programs conducted by the laboratory.

  17. Shock-jump conditions in a general medium: weak-solution approach

    Science.gov (United States)

    Forbes, L. K.; Krzysik, O. A.

    2017-05-01

    General conservation laws are considered, and the concept of a weak solution is extended to the case of an equation involving three space variables and time. Four-dimensional vector calculus is used to develop general jump conditions at a shock wave in the material. To illustrate the use of this result, jump conditions at a shock in unsteady three-dimensional compressible gas flow are presented. It is then proved rigorously that these reduce to the commonly assumed conditions in coordinates normal and tangential to the shock face. A similar calculation is also outlined for an unsteady three-dimensional shock in magnetohydrodynamics, and in a chemically reactive fluid. The technique is available for determining shock-jump conditions in quite general continuous media.

  18. POSTURAL SHOCK IN PREGNANCY

    Science.gov (United States)

    Wilkening, Ralph L.; Knauer, John; Larson, Roger K.

    1955-01-01

    Signs and symptoms of shock may be produced in some patients in late pregnancy by putting them in the dorsal recumbent posture. Change from this position will relieve the condition. The features of the supine hypotensive syndrome can be duplicated by applying pressure to the abdomen with the patient in a lateral position. The postural variations of venous pressure, blood pressure, and pulse appear to be due to obstruction of venous return from the lower portion of the body caused by the large uterus of late pregnancy compressing the vena cava. When shock is observed in a woman in late pregnancy, she should be turned to a lateral position before more active measures of treatment are begun. ImagesFigure 1. PMID:14351983

  19. 2016 Annual Site Environmental Report Sandia National Laboratories/New Mexico.

    Energy Technology Data Exchange (ETDEWEB)

    Salas, Angela Maria [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Griffith, Stacy R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-07-01

    Sandia National Laboratories (SNL) is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy’s (DOE’s), National Nuclear Security Administration (NNSA). The DOE/NNSA Sandia Field Office administers the contract and oversees contractor operations at SNL, New Mexico. This Annual Site Environmental Report (ASER) summarizes data and the compliance status of sustainability, environmental protection, and monitoring programs at SNL/NM during calendar year 2016. Major environmental programs include air quality, water quality, groundwater protection, terrestrial and ecological surveillance, waste management, pollution prevention, environmental restoration, oil and chemical spill prevention, and implementation of the National Environmental Policy Act. This ASER is prepared in accordance with and required by DOE O 231.1B, Admin Change 1, Environment, Safety, and Health Reporting.

  20. 1993 Site environmental report Sandia National Laboratories, Albuquerque, New Mexico

    International Nuclear Information System (INIS)

    Culp, T.A.; Cheng, C.F.; Cox, W.; Durand, N.; Irwin, M.; Jones, A.; Lauffer, F.; Lincoln, M.; McClellan, Y.; Molley, K.

    1994-11-01

    This 1993 report contains monitoring data from routine radiological and nonradiological environmental surveillance activities. Summaries of significant environmental compliance programs in progress, such as National Environmental Policy Act documentation, environmental permits, environmental restoration, and various waste management programs for Sandia National Laboratories in Albuquerque, New Mexico, are included. The maximum offsite dose impact was calculated to be 0.0016 millirem. The total population within a 50-mile (80 kilometer) radius of Sandia National Laboratories/New Mexico received an estimated collective dose of 0.027 person-rem during 1993 from the laboratories operations, As in the previous year, the 1993 operations at Sandia National Laboratories/New Mexico had no discernible impact on the general public or on the environment. This report is prepared for the U.S. Department of Energy in compliance with DOE Order 5400.1

  1. A FOCUSED TRANSPORT APPROACH TO THE TIME-DEPENDENT SHOCK ACCELERATION OF SOLAR ENERGETIC PARTICLES AT A FAST TRAVELING SHOCK

    International Nuclear Information System (INIS)

    Le Roux, J. A.; Webb, G. M.

    2012-01-01

    Some of the most sophisticated models for solar energetic particle (SEP) acceleration at coronal mass ejection driven shocks are based on standard diffusive shock acceleration theory. However, this theory, which only applies when SEP pitch-angle anisotropies are small, might have difficulty in describing first-order Fermi acceleration or the shock pre-heating and injection of SEPs into first-order Fermi acceleration accurately at lower SEP speeds where SEP pitch-angle anisotropies upstream near the shock can be large. To avoid this problem, we use a time-dependent focused transport model to reinvestigate first-order Fermi acceleration at planar parallel and quasi-parallel spherical traveling shocks between the Sun and Earth with high shock speeds associated with rare extreme gradual SEP events. The focused transport model is also used to investigate and compare three different shock pre-heating mechanisms associated with different aspects of the nonuniform cross-shock solar wind flow, namely, the convergence of the flow (adiabatic compression), the shear tensor of the flow, and the acceleration of the flow, and a fourth shock pre-heating mechanism associated with the cross-shock electric field, to determine which pre-heating mechanism contributes the most to injecting shock pre-heated source particles into the first-order Fermi acceleration process. The effects of variations in traveling shock conditions, such as increasing shock obliquity and shock slowdown, and variations in the SEP source with increasing shock distance from the Sun on the coupled processes of shock pre-heating, injection, and first-order Fermi acceleration are analyzed. Besides the finding that the cross-shock acceleration of the solar wind flow yields the dominant shock pre-heating mechanism at high shock speeds, we find that first-order Fermi acceleration at fast traveling shocks differs in a number of respects from the predictions and assumptions of standard steady-state diffusive shock

  2. Coherent structures in compressible free-shear-layer flows

    Energy Technology Data Exchange (ETDEWEB)

    Aeschliman, D.P.; Baty, R.S. [Sandia National Labs., Albuquerque, NM (United States). Engineering Sciences Center; Kennedy, C.A.; Chen, J.H. [Sandia National Labs., Livermore, CA (United States). Combustion and Physical Sciences Center

    1997-08-01

    Large scale coherent structures are intrinsic fluid mechanical characteristics of all free-shear flows, from incompressible to compressible, and laminar to fully turbulent. These quasi-periodic fluid structures, eddies of size comparable to the thickness of the shear layer, dominate the mixing process at the free-shear interface. As a result, large scale coherent structures greatly influence the operation and efficiency of many important commercial and defense technologies. Large scale coherent structures have been studied here in a research program that combines a synergistic blend of experiment, direct numerical simulation, and analysis. This report summarizes the work completed for this Sandia Laboratory-Directed Research and Development (LDRD) project.

  3. Phase Transitions in Aluminum Under Shockless Compression at the Z Machine

    Science.gov (United States)

    Davis, Jean-Paul; Brown, Justin; Shulenburger, Luke; Knudson, Marcus

    2017-06-01

    Aluminum 6061 alloy has been used extensively as an electrode material in shockless ramp-wave experiments at the Z Machine. Previous theoretical work suggests that the principal quasi-isentrope in aluminum should pass through two phase transitions at multi-megabar pressures, first from the ambient fcc phase to hcp at around 200 GPa, then to bcc at around 320 GPa. Previous static measurements in a diamond-anvil cell have detected the hcp phase above 200 GPa along the room-temperature isentherm. Recent laser-based dynamic compression experiments have observed both the hcp and bcc phases using X-ray diffraction. Here we present high-accuracy velocity waveform data taken on pure and alloy aluminum materials at the Z Machine under shockless compression with 200-ns rise-time to 400 GPa using copper electrodes and lithium-fluoride windows. These are compared to recent EOS tables developed at Los Alamos National Laboratory, to our own results from diffusion quantum Monte-Carlo calculations, and to multi-phase EOS models with phase-transition kinetics. We find clear evidence of a fast transition around 200 GPa as expected, and a possible suggestion of a slower transition at higher pressure. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE AC04-94AL85000.

  4. Impact of surface energy on the shock properties of granular explosives

    Science.gov (United States)

    Bidault, X.; Pineau, N.

    2018-01-01

    This paper presents the first part of a two-fold molecular dynamics study of the impact of the granularity on the shock properties of high explosives. Recent experimental studies show that the granularity can have a substantial impact on the properties of detonation products {i.e., variations in the size distributions of detonation nanodiamonds [V. Pichot et al., Sci. Rep. 3, 2159 (2013)]}. These variations can have two origins: the surface energy, which is a priori enhanced from micro- to nano-scale, and the porosity induced by the granular structure. In this first report, we study the impact of the surface-energy contribution on the inert shock compression of TATB, TNT, α-RDX, and β-HMX nano-grains (triaminotrinitrobenzene, trinitrotoluene, hexogen and octogen, respectively). We compute the radius-dependent surface energy and combine it with an ab initio-based equation of state in order to obtain the resulting shock properties through the Rankine-Hugoniot relations. We find that the enhancement of the surface energy results in a moderate overheating under shock compression. This contribution is minor with respect to porosity, when compared to a simple macroscopic model. This result motivates further atomistic studies on the impact of nanoporosity networks on the shock properties.

  5. Fusion by 1990: the Sandia ion beam program can do it

    International Nuclear Information System (INIS)

    Stevens, C.B.

    1985-01-01

    Recent experimental results at Sandia National Laboratories demonstrate that light ion beam accelerator devices can deliver considerably more than the power necessary for achieving high-gain fusion energy - millions of joules at power densities of 10,000 trillion watts/cm 2 . This means that commercial fusion energy with an inertial-confinement fusion device can be realized by the 1990s, despite the general curtailment of the US fusion research budget over the past eight years. Dr. J. Pace VanDevender, pulsed power sciences director at Sandia, and Professor Ravindra N. Sudan, director of the Cornell University Laboratory of Plasma Studies, discussed the experimental and theoretical advances underlying this happy prognosis at the April 17-19 conference at the Rochester University for Laser Energetics. Sudan showed that experiments with high-current ion beam pulses over the past decade have demonstrated that such pulses, instead of diffusing, tend to self-focus nonlinearly to higher power densities. Second, weak magnetic fields do not interact and change the trajectory of such high-current beam pulses. At the Rochester meeting, VanDevender reviewed experiments on Sandia's Proto I device in which 1.5 trillion watts per square centimeter were delivered to a target in May 1984. This spring, Sandia's Particle Beam Fusion Accelerator I, PBFA I, delivered an 8-trillion watt pulse onto a spot 4.0 to 4.5 millimeters in diameter. This demonstrated that the Sandia light ion beam focusing process maintains itself as the current is increased. 3 figures

  6. Extended Lagrangian Born-Oppenheimer molecular dynamics simulations of the shock-induced chemistry of phenylacetylene

    Energy Technology Data Exchange (ETDEWEB)

    Cawkwell, M. J., E-mail: cawkwell@lanl.gov; Niklasson, Anders M. N. [Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Dattelbaum, Dana M. [Weapons Experiments Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

    2015-02-14

    The initial chemical events that occur during the shock compression of liquid phenylacetylene have been investigated using self-consistent tight binding molecular dynamics simulations. The extended Lagrangian Born-Oppenheimer molecular dynamics formalism enabled us to compute microcanonical trajectories with precise conservation of the total energy. Our simulations revealed that the first density-increasing step under shock compression arises from the polymerization of phenylacetylene molecules at the acetylene moiety. The application of electronic structure-based molecular dynamics with long-term conservation of the total energy enabled us to identify electronic signatures of reactivity via monitoring changes in the HOMO-LUMO gap, and to capture directly adiabatic shock heating, transient non-equilibrium states, and changes in temperature arising from exothermic chemistry in classical molecular dynamics trajectories.

  7. Extended Lagrangian Born-Oppenheimer molecular dynamics simulations of the shock-induced chemistry of phenylacetylene.

    Science.gov (United States)

    Cawkwell, M J; Niklasson, Anders M N; Dattelbaum, Dana M

    2015-02-14

    The initial chemical events that occur during the shock compression of liquid phenylacetylene have been investigated using self-consistent tight binding molecular dynamics simulations. The extended Lagrangian Born-Oppenheimer molecular dynamics formalism enabled us to compute microcanonical trajectories with precise conservation of the total energy. Our simulations revealed that the first density-increasing step under shock compression arises from the polymerization of phenylacetylene molecules at the acetylene moiety. The application of electronic structure-based molecular dynamics with long-term conservation of the total energy enabled us to identify electronic signatures of reactivity via monitoring changes in the HOMO-LUMO gap, and to capture directly adiabatic shock heating, transient non-equilibrium states, and changes in temperature arising from exothermic chemistry in classical molecular dynamics trajectories.

  8. A robust and accurate approach to computing compressible multiphase flow: Stratified flow model and AUSM+-up scheme

    International Nuclear Information System (INIS)

    Chang, Chih-Hao; Liou, Meng-Sing

    2007-01-01

    In this paper, we propose a new approach to compute compressible multifluid equations. Firstly, a single-pressure compressible multifluid model based on the stratified flow model is proposed. The stratified flow model, which defines different fluids in separated regions, is shown to be amenable to the finite volume method. We can apply the conservation law to each subregion and obtain a set of balance equations. Secondly, the AUSM + scheme, which is originally designed for the compressible gas flow, is extended to solve compressible liquid flows. By introducing additional dissipation terms into the numerical flux, the new scheme, called AUSM + -up, can be applied to both liquid and gas flows. Thirdly, the contribution to the numerical flux due to interactions between different phases is taken into account and solved by the exact Riemann solver. We will show that the proposed approach yields an accurate and robust method for computing compressible multiphase flows involving discontinuities, such as shock waves and fluid interfaces. Several one-dimensional test problems are used to demonstrate the capability of our method, including the Ransom's water faucet problem and the air-water shock tube problem. Finally, several two dimensional problems will show the capability to capture enormous details and complicated wave patterns in flows having large disparities in the fluid density and velocities, such as interactions between water shock wave and air bubble, between air shock wave and water column(s), and underwater explosion

  9. Sandia National Laboratories: News: Publications: Fact Sheets

    Science.gov (United States)

    Environmental Management System Pollution Prevention History 60 impacts Diversity Locations Facts & Figures Does Sandia Buy? Opportunities Small Business Procurement Technical Assistance Program (PTAP) Current Technology Partnerships Business, Industry, & Non-Profits Government Universities Center for

  10. Compression and Reswelling of Microgel Particles after an Osmotic Shock

    Science.gov (United States)

    Sleeboom, Jelle J. F.; Voudouris, Panayiotis; Punter, Melle T. J. J. M.; Aangenendt, Frank J.; Florea, Daniel; van der Schoot, Paul; Wyss, Hans M.

    2017-09-01

    We use dedicated microfluidic devices to expose soft hydrogel particles to a rapid change in the externally applied osmotic pressure and observe a surprising, nonmonotonic response: After an initial rapid compression, the particle slowly reswells to approximately its original size. We theoretically account for this behavior, enabling us to extract important material properties from a single microfluidic experiment, including the compressive modulus, the gel permeability, and the diffusivity of the osmolyte inside the gel. We expect our approach to be relevant to applications such as controlled release, chromatography, and responsive materials.

  11. Targets development at Sandia National Laboratories

    International Nuclear Information System (INIS)

    Smith, M.L.; Hebron, D.; Derzon, M.; Olson, R.; Alberts, T.

    1997-01-01

    For many years, Sandia National Laboratories under contract to the Department of Energy has produced targets designed to understand complex ion beam and z-pinch plasma physics. This poster focuses on the features of target designs that make them suitable for Z-pinch plasma physics applications. Precision diagnostic targets will prove critical in understanding the plasma physics model needed for future ion beam and z-pinch design. Targets are designed to meet specific physics needs; in this case the authors have fabricated targets to maximize information about the end-on versus side-on x-ray emission and z-pinch hohlraum development. In this poster, they describe the fabrication and characterization techniques. They include discussion of current targets under development as well as target fabrication capabilities. Advanced target designs are fabricated by Sandia National Laboratories in cooperation with General Atomics of San Diego, CA and W.J. Schafer Associates, Inc. of Livermore, CA

  12. Stress relaxation of shear in metals during shock loading

    International Nuclear Information System (INIS)

    Glazyrin, V.P.; Platova, T.M.

    1988-01-01

    Constructed determining equation, taking into account stress relaxation of shear, was used to calculate the evolution of plane shock waves of primary and secondary compression in metals. Values of shear stress and viscosity coefficient were

  13. Performance data of the new free-piston shock tunnel T5 at GALCIT

    Science.gov (United States)

    Hornung, H.; Sturtevant, B.; Belanger, J.; Sanderson, S.; Brouillette, M.; Jenkins, M.

    1992-01-01

    A new free piston shock tunnel has been constructed at the Graduate Aeronautical Laboratories at Caltec. Compression tube length is 30 m and diameter 300 mm. Shock tube length is 12 m and diameter 90 mm. Piston mass is 150 kg and maximum diaphragm burst pressure is 130 MPa. Special features of this facility are that the pressure in the driver gas is monitored throughout the compression process until well after diaphragm rupture, and that the diaphragm burst pressure can be measured dynamically. An analysis of initial performance data including transient behavior of the flow over models is presented.

  14. Sandia National Laboratories: Research: Research Foundations: Nanodevices

    Science.gov (United States)

    Technology Partnerships Business, Industry, & Non-Profits Government Universities Center for Mexico Small Business Assistance Program Sandia Science & Technology Park Careers Community support for research; technology advancement and maturation; and small-lot, fast-turn prototyping Our

  15. Compression and expansion in central collisions

    International Nuclear Information System (INIS)

    Danielewicz, P.

    1997-01-01

    Dynamics of central collisions of heavy nuclei in the energy range from few tens of MeV/nucleon to a couple of GeV/nucleon is discussed. As the beam energy increases and/or the impact parameter decreases, the maximum compression increases. It is argued that the hydrodynamic behaviour of matter sets in the vicinity of balance energy. At higher energies shock fronts are observed to form within head-on reaction simulations, perpendicular to beam axis and separating hot compressed matter from cold. In the semi-central reactions a weak tangential discontinuity develops in-between these fronts. The hot compressed matter exposed to the vacuum in directions parallel to the shock front begin to expand collectively into these directions. The expansion affects particle angular distributions and mean energy components and further shapes of spectra and mean energies of particles emitted into any one direction. The variation of slopes and the relative yields measured within the FOPI collaboration are in a general agreement with the results of simulations. As to the FOPI data on stopping, they are consistent with the preference for transverse over the longitudinal motion in the head-on Au + Au collisions. Unfortunately, though, the data can not be used to decide directly on that preference due to acceptance cuts. Tied to the spatial and temporal changes in the reactions are changes in the entropy per nucleon. (authors)

  16. Thermofluidic compression effects to achieve combustion in a low-compression scramjet engine

    Science.gov (United States)

    Moura, A. F.; Wheatley, V.; Jahn, I.

    2017-12-01

    The compression provided by a scramjet inlet is an important parameter in its design. It must be low enough to limit thermal and structural loads and stagnation pressure losses, but high enough to provide the conditions favourable for combustion. Inlets are typically designed to achieve sufficient compression without accounting for the fluidic, and subsequently thermal, compression provided by the fuel injection, which can enable robust combustion in a low-compression engine. This is investigated using Reynolds-averaged Navier-Stokes numerical simulations of a simplified scramjet engine designed to have insufficient compression to auto-ignite fuel in the absence of thermofluidic compression. The engine was designed with a wide rectangular combustor and a single centrally located injector, in order to reduce three-dimensional effects of the walls on the fuel plume. By varying the injected mass flow rate of hydrogen fuel (equivalence ratios of 0.22, 0.17, and 0.13), it is demonstrated that higher equivalence ratios lead to earlier ignition and more rapid combustion, even though mean conditions in the combustor change by no more than 5% for pressure and 3% for temperature with higher equivalence ratio. By supplementing the lower equivalence ratio with helium to achieve a higher mass flow rate, it is confirmed that these benefits are primarily due to the local compression provided by the extra injected mass. Investigation of the conditions around the fuel plume indicated two connected mechanisms. The higher mass flow rate for higher equivalence ratios generated a stronger injector bow shock that compresses the free-stream gas, increasing OH radical production and promoting ignition. This was observed both in the higher equivalence ratio case and in the case with helium. This earlier ignition led to increased temperature and pressure downstream and, consequently, stronger combustion. The heat release from combustion provided thermal compression in the combustor, further

  17. Propagation of shock waves in elastic solids caused by cavitation microjet impact. II: Application in extracorporeal shock wave lithotripsy.

    Science.gov (United States)

    Zhong, P; Chuong, C J; Preminger, G M

    1993-07-01

    To better understand the mechanism of stone fragmentation during extracorporeal shock wave lithotripsy (ESWL), the model developed in Part I [P. Zhong and C.J. Chuong, J. Acoust. Soc. Am. 94, 19-28 (1993)] is applied to study cavitation microjet impingement and its resultant shock wave propagation in renal calculi. Impact pressure at the stone boundary and stress, strain at the propagating shock fronts in the stone were calculated for typical ESWL loading conditions. At the anterior surface of the stone, the jet induced compressive stress can vary from 0.82 approximately 4 times that of the water hammer pressure depending on the contact angles; whereas the jet-induced shear stress can achieve its maximum, with a magnitude of 30% approximately 54% of the water hammer pressure, near the detachment of the longitudinal (or P) wave in the solid. Comparison of model predictions with material failure strengths of renal calculi suggests that jet impact can lead to stone surface erosion by combined compressive and shear loadings at the jet impacting surface, and spalling failure by tensile forces at the distal surface of the stone. Comparing responses from four different stone types suggests that cystine is the most difficult stone to fragment in ESWL, as observed from clinical experience.

  18. Calendar year 2004 annual site environmental report:Sandia National Laboratories, Albuquerque, New Mexico.

    Energy Technology Data Exchange (ETDEWEB)

    Montoya, Amber L.; Goering, Teresa Lynn; Wagner, Katrina; Koss, Susan I.; Salinas, Stephanie A.

    2005-09-01

    Sandia National Laboratories, New Mexico (SNL/NM) is a government-owned, contractor-operated facility owned by the U.S. Department of Energy (DOE), National Nuclear Security Administration (NNSA) and managed by the Sandia Site Office (SSO), Albuquerque, New Mexico. Sandia Corporation, a wholly-owned subsidiary of Lockheed Martin Corporation, operates SNL/NM. This annual report summarizes data and the compliance status of Sandia Corporation's environmental protection and monitoring programs through December 31, 2004. Major environmental programs include air quality, water quality, groundwater protection, terrestrial surveillance, waste management, pollution prevention (P2), environmental restoration (ER), oil and chemical spill prevention, and the National Environmental Policy Act (NEPA). Environmental monitoring and surveillance programs are required by DOE Order 450.1, Environmental Protection Program (DOE 2005) and DOE Order 231.1A, Environment, Safety, and Health Reporting (DOE 2004a). (DOE 2004a).

  19. Improvement of the instability of compressible lattice Boltzmann model by shockdetecting sensor

    International Nuclear Information System (INIS)

    Esfahanian, Vahid; Ghadyani, Mohsen

    2015-01-01

    Recently, lattice Boltzmann method (LBM) has drawn attention as an alternative and promising numerical technique for simulating fluid flows. The stability of LBM is a challenging problem in the simulation of compressible flows with different types of embedded discontinuities. This study, proposes a complementary scheme for simulating inviscid flows by a compressible lattice Boltzmann model in order to improve the instability using a shock-detecting procedure. The advantages and disadvantages of using a numerical hybrid filter on the primitive or conservative variables, in addition to, macroscopic or mesoscopic variables are investigated. The study demonstrates that the robustness of the utilized LB model is improved for inviscid compressible flows by implementation of the complementary scheme on mesoscopic variables. The validity of the procedure to capture shocks and resolve contact discontinuity and rarefaction waves in well-known benchmark problems is investigated. The numerical results show that the scheme is capable of generating more robust solutions in the simulation of compressible flows and prevents the formation of oscillations. Good agreements are obtained for all test cases.

  20. Improvement of the instability of compressible lattice Boltzmann model by shockdetecting sensor

    Energy Technology Data Exchange (ETDEWEB)

    Esfahanian, Vahid [University of Tehran, Tehran (Iran, Islamic Republic of); Ghadyani, Mohsen [Islamic Azad University, Tehran (Iran, Islamic Republic of)

    2015-05-15

    Recently, lattice Boltzmann method (LBM) has drawn attention as an alternative and promising numerical technique for simulating fluid flows. The stability of LBM is a challenging problem in the simulation of compressible flows with different types of embedded discontinuities. This study, proposes a complementary scheme for simulating inviscid flows by a compressible lattice Boltzmann model in order to improve the instability using a shock-detecting procedure. The advantages and disadvantages of using a numerical hybrid filter on the primitive or conservative variables, in addition to, macroscopic or mesoscopic variables are investigated. The study demonstrates that the robustness of the utilized LB model is improved for inviscid compressible flows by implementation of the complementary scheme on mesoscopic variables. The validity of the procedure to capture shocks and resolve contact discontinuity and rarefaction waves in well-known benchmark problems is investigated. The numerical results show that the scheme is capable of generating more robust solutions in the simulation of compressible flows and prevents the formation of oscillations. Good agreements are obtained for all test cases.

  1. Renewable energy technology development at Sandia National Laboratories

    Science.gov (United States)

    Klimas, P. C.

    1994-02-01

    The use of renewable energy technologies is typically thought of as an integral part of creating and sustaining an environment that maximizes the overall quality of life of the Earth's present inhabitants and does not leave an undue burden on future generations. Sandia National Laboratories has been a leader in developing many of these technologies over the last two decades. This paper describes innovative solar, wind and geothermal energy systems and components that Sandia is helping to bring to the marketplace. A common but special aspect of all of these activities is that they are conducted in partnership with non-federal government entities. A number of these partners are from New Mexico.

  2. DESALINATION AND WATER TREATMENT RESEARCH AT SANDIA NATIONAL LABORATORIES.

    Energy Technology Data Exchange (ETDEWEB)

    Rigali, Mark J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Miller, James E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Altman, Susan J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Biedermann, Laura [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Brady, Patrick Vane. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Kuzio, Stephanie P. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Nenoff, Tina M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Rempe, Susan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-11-01

    Water is the backbone of our economy - safe and adequate supplies of water are vital for agriculture, industry, recreation, and human consumption. While our supply of water today is largely safe and adequate, we as a nation face increasing water supply challenges in the form of extended droughts, demand growth due to population increase, more stringent health-based regulation, and competing demands from a variety of users. To meet these challenges in the coming decades, water treatment technologies, including desalination, will contribute substantially to ensuring a safe, sustainable, affordable, and adequate water supply for the United States. This overview documents Sandia National Laboratories' (SNL, or Sandia) Water Treatment Program which focused on the development and demonstration of advanced water purification technologies as part of the larger Sandia Water Initiative. Projects under the Water Treatment Program include: (1) the development of desalination research roadmaps (2) our efforts to accelerate the commercialization of new desalination and water treatment technologies (known as the 'Jump-Start Program),' (3) long range (high risk, early stage) desalination research (known as the 'Long Range Research Program'), (4) treatment research projects under the Joint Water Reuse & Desalination Task Force, (5) the Arsenic Water Technology Partnership Program, (6) water treatment projects funded under the New Mexico Small Business Administration, (7) water treatment projects for the National Energy Technology Laboratory (NETL) and the National Renewable Energy Laboratory (NREL), (8) Sandia- developed contaminant-selective treatment technologies, and finally (9) current Laboratory Directed Research and Development (LDRD) funded desalination projects.

  3. Numerical simulation of compressible two-phase flow using a diffuse interface method

    International Nuclear Information System (INIS)

    Ansari, M.R.; Daramizadeh, A.

    2013-01-01

    Highlights: ► Compressible two-phase gas–gas and gas–liquid flows simulation are conducted. ► Interface conditions contain shock wave and cavitations. ► A high-resolution diffuse interface method is investigated. ► The numerical results exhibit very good agreement with experimental results. -- Abstract: In this article, a high-resolution diffuse interface method is investigated for simulation of compressible two-phase gas–gas and gas–liquid flows, both in the presence of shock wave and in flows with strong rarefaction waves similar to cavitations. A Godunov method and HLLC Riemann solver is used for discretization of the Kapila five-equation model and a modified Schmidt equation of state (EOS) is used to simulate the cavitation regions. This method is applied successfully to some one- and two-dimensional compressible two-phase flows with interface conditions that contain shock wave and cavitations. The numerical results obtained in this attempt exhibit very good agreement with experimental results, as well as previous numerical results presented by other researchers based on other numerical methods. In particular, the algorithm can capture the complex flow features of transient shocks, such as the material discontinuities and interfacial instabilities, without any oscillation and additional diffusion. Numerical examples show that the results of the method presented here compare well with other sophisticated modeling methods like adaptive mesh refinement (AMR) and local mesh refinement (LMR) for one- and two-dimensional problems

  4. Measurements of the Shock Release Of Quartz and Paralyene-N

    Science.gov (United States)

    Hawreliak, James; Karasik, Max; Oh, Jaechul; Aglitskiy, Yefim

    2017-06-01

    The shock and release properties of Quartz and hydrocarbons are important to high energy density (HED) research and inertial confinement fusion (ICF) science. The bulk of HED material research studies single shock or multiple shock conditions. The challenge with measuring release properties is unlike shocks which have a single interface from which to measure the properties, the release establishes gradients in the sample. The streaked x-ray imaging capability of the NIKE laser allow the interface between quartz and CH to be measured during the release, giving measurements of the interface velocity and CH density. Here, we present experimental results from the NIKE laser where quartz and parylene-N are shock compressed to high pressure and temperature and the release state is measured through x-ray imaging. The shock state is characterized by shock front velocity measurements using VISAR and the release state is characterized by using side-on streaked x-ray radiography Work supported by DOE/NNSA.

  5. Density ratios in compressions driven by radiation pressure

    International Nuclear Information System (INIS)

    Lee, S.

    1988-01-01

    It has been suggested that in the cannonball scheme of laser compression the pellet may be considered to be compressed by the 'brute force' of the radiation pressure. For such a radiation-driven compression, an energy balance method is applied to give an equation fixing the radius compression ratio K which is a key parameter for such intense compressions. A shock model is used to yield specific results. For a square-pulse driving power compressing a spherical pellet with a specific heat ratio of 5/3, a density compression ratio Γ of 27 is computed. Double (stepped) pulsing with linearly rising power enhances Γ to 1750. The value of Γ is not dependent on the absolute magnitude of the piston power, as long as this is large enough. Further enhancement of compression by multiple (stepped) pulsing becomes obvious. The enhanced compression increases the energy gain factor G for a 100 μm DT pellet driven by radiation power of 10 16 W from 6 for a square pulse power with 0.5 MJ absorbed energy to 90 for a double (stepped) linearly rising pulse with absorbed energy of 0.4 MJ assuming perfect coupling efficiency. (author)

  6. Gain curves and hydrodynamic modeling for shock ignition

    International Nuclear Information System (INIS)

    Lafon, M.; Ribeyre, X.; Schurtz, G.

    2010-01-01

    Ignition of a precompressed thermonuclear fuel by means of a converging shock is now considered as a credible scheme to obtain high gains for inertial fusion energy. This work aims at modeling the successive stages of the fuel time history, from compression to final thermonuclear combustion, in order to provide the gain curves of shock ignition (SI). The leading physical mechanism at work in SI is pressure amplification, at first by spherical convergence, and by collision with the shock reflected at center during the stagnation process. These two effects are analyzed, and ignition conditions are provided as functions of the shock pressure and implosion velocity. Ignition conditions are obtained from a non-isobaric fuel assembly, for which we present a gain model. The corresponding gain curves exhibit a significantly lower ignition threshold and higher target gains than conventional central ignition.

  7. Shock wave interactions with detonable clouds

    International Nuclear Information System (INIS)

    Ripley, R.C.; Josey, T.; Donahue, L.; Whitehouse, D.R.

    2004-01-01

    This paper presents results from the numerical simulation of compressible multi-species gases in an unstructured mesh CFD code called Chinook. Multiple species gases are significant to a wide range of CFD applications that involve chemical reactions, in particular detonation. The purpose of this paper is to investigate the interaction of shock waves with localized regions of reactive and non-reactive gas species. Test cases are chosen to highlight shock reflection and acceleration through combustion products resulting from the detonation of an explosive charge, and detonation wave propagation through a fuel-air cloud. Computations are performed in a 2D axi-symmetric framework. (author)

  8. Shock compression of monocrystalline copper: Experiments, characterization, and analysis

    International Nuclear Information System (INIS)

    Cao Buyang; Lassila, David H.; Huang Chongxiang; Xu Yongbo; Meyers, Marc Andre

    2010-01-01

    Monocrystalline copper samples with [0 0 1] and [2 2 1] orientations were subjected to shock/recovery experiments at 30 and 57 GPa and 90 K. The slip system activity and the microstructural evolution were investigated. Different defect structures, including dislocations, stacking faults, twins, microbands, and recrystallized grains were observed in the specimens. The residual microstructures were dependent on crystalline orientation and pressure. The differences with crystalline orientations are most likely due to different resolved shear stresses on specific crystalline planes. The geometric relationships between the shock propagation direction and crystalline orientation are presented under uniaxial strain. It is shown that the [2 2 1] orientation, by virtue of having fewer highly activated slip systems, exhibits greater concentration of deformation with more intense shear on the primary system. This, in turn leads to greater local temperature rise and full recrystallization, in spite of the thermodynamic residual temperature of ∼500 K and rapid cooling (within 20 s) to ambient temperature. The profuse observation of microbands is interpreted in terms of the mechanism proposed by Huang and Gray [J.C. Huang, G.T. Gray III, Acta Metallurgica 37 (1989) 3335-3347].

  9. Investigation of Shock-Induced Reactions in a Ni+Al Powder Mixture

    International Nuclear Information System (INIS)

    Eakins, D. E.; Thadhani, N. N.

    2006-01-01

    The shock-compression and reaction response of equi-volumetric micron-scale (∼50-60% dense) spherical nickel and aluminum powder mixtures is investigated in the range of the calculated crush-up pressure (P = 0.4 GPa) and up to 6 GPa. Time resolved stress measurements (using PVDF gauges) coupled with VISAR data is used to determine the shock states. Evidence of reaction or lack thereof is inferred by comparing the measured states with calculated Hugoniot state of reaction products based on the ballotechnic model proposed by Bennett and Horie, (Shock Waves 4:127-136). Post-impact micro-structural analysis of recovered material and comparison of calculated and measured product states is used to establish the criterion for reaction occurring in the shock or post-shock states

  10. Calendar year 2003 annual site environmental report for Sandia National Laboratories, New Mexico.

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, Katrina; Sanchez, Rebecca V.; Mayeux, Lucie; Koss, Susan I.; Salinas, Stephanie A.

    2004-09-01

    Sandia National Laboratories, New Mexico (SNL/NM) is a government-owned, contractor-operated facility owned by the U.S. Department of Energy (DOE), National Nuclear Security Administration (NNSA) and managed by the Sandia Site Office (SSO), Albuquerque, New Mexico. Sandia Corporation, a wholly-owned subsidiary of Lockheed Martin Corporation, operates SNL/NM. This annual report summarizes data and the compliance status of Sandia Corporation's environmental protection and monitoring programs through December 31, 2003. Major environmental programs include air quality, water quality, groundwater protection, terrestrial surveillance, waste management, pollution prevention (P2), environmental restoration (ER), oil and chemical spill prevention, and the National Environmental Policy Act (NEPA). Environmental monitoring and surveillance programs are required by DOE Order 450.1, ''Environmental Protection Program'' (DOE 2003a) and DOE Order 231.1 Chg.2, ''Environment, Safety, and Health Reporting'' (DOE 1996).

  11. A preliminary benefit-cost study of a Sandia wind farm.

    Energy Technology Data Exchange (ETDEWEB)

    Ehlen, Mark Andrew; Griffin, Taylor; Loose, Verne W.

    2011-03-01

    In response to federal mandates and incentives for renewable energy, Sandia National Laboratories conducted a feasibility study of installing an on-site wind farm on Sandia National Laboratories and Kirtland Air Force Base property. This report describes this preliminary analysis of the costs and benefits of installing and operating a 15-turbine, 30-MW-capacity wind farm that delivers an estimated 16 percent of 2010 onsite demand. The report first describes market and non-market economic costs and benefits associated with operating a wind farm, and then uses a standard life-cycle costing and benefit-cost framework to estimate the costs and benefits of a wind farm. Based on these 'best-estimates' of costs and benefits and on factor, uncertainty and sensitivity analysis, the analysis results suggest that the benefits of a Sandia wind farm are greater than its costs. The analysis techniques used herein are applicable to the economic assessment of most if not all forms of renewable energy.

  12. Experimental study of hot electrons propagation and energy deposition in solid or laser-shock compressed targets: applications to fast igniter

    International Nuclear Information System (INIS)

    Pisani, F.

    2000-02-01

    In the fast igniter scheme, a recent approach proposed for the inertial confinement fusion, the idea is to dissociate the fuel ignition phase from its compression. The ignition phase would be then achieved by means of an external energy source: a fast electron beam generated by the interaction with an ultra-intense laser. The main goal of this work is to study the mechanisms of the hot electron energy transfer to the compressed fuel. We intent in particular to study the role of the electric and collisional effects involved in the hot electron propagation in a medium with properties similar to the compressed fuel. We carried out two experiments, one at the Vulcan laser facility (England) and the second one at the new LULI 100 TW laser (France). During the first experiment, we obtained the first results on the hot electron propagation in a dense and hot plasma. The innovating aspect of this work was in particular the use of the laser-shock technique to generate high pressures, allowing the strongly correlated and degenerated plasma to be created. The role of the electric and magnetic effects due to the space charge associated with the fast electron beam has been investigated in the second experiment. Here we studied the propagation in materials with different electrical characteristics: an insulator and a conductor. The analysis of the results showed that only by taking into account simultaneously the two propagation mechanisms (collisions and electric effects) a correct treatment of the energy deposition is possible. We also showed the importance of taking into account the induced modifications due to the electrons beam crossing the target, especially the induced heating. (author)

  13. Shock wave science and technology reference library

    CERN Document Server

    2009-01-01

    This book, as a volume of the Shock Wave Science and Technology Reference Library, is primarily concerned with detonation waves or compression shock waves in reactive heterogeneous media, including mixtures of solid, liquid and gas phases. The topics involve a variety of energy release and control processes in such media - a contemporary research field that has found wide applications in propulsion and power, hazard prevention as well as military engineering. The six extensive chapters contained in this volume are: - Spray Detonation (SB Murray and PA Thibault) - Detonation of Gas-Particle Flow (F Zhang) - Slurry Detonation (DL Frost and F Zhang) - Detonation of Metalized Composite Explosives (MF Gogulya and MA Brazhnikov) - Shock-Induced Solid-Solid Reactions and Detonations (YA Gordopolov, SS Batsanov, and VS Trofimov) - Shock Ignition of Particles (SM Frolov and AV Fedorov) Each chapter is self-contained and can be read independently of the others, though, they are thematically interrelated. They offer a t...

  14. Calendar Year 2013 Annual Site Environmental Report for Sandia National Laboratories, Albuquerque, New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Griffith, Stacy [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-09-01

    Sandia National Laboratories, New Mexico is a government-owned/contractor-operated facility. Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, manages and operates the laboratory for the U.S. Department of Energy (DOE), National Nuclear Security Administration (NNSA). The DOE/NNSA, Sandia Field Office administers the contract and oversees contractor operations at the site. This annual report summarizes data and the compliance status of Sandia Corporation’s sustainability, environmental protection, and monitoring programs through December 31, 2013. Major environmental programs include air quality, water quality, groundwater protection, terrestrial surveillance, waste management, pollution prevention, environmental restoration, oil and chemical spill prevention, and implementation of the National Environmental Policy Act. Environmental monitoring and surveillance programs are required by DOE Order 231.1B, Environment, Safety, and Health Reporting (DOE 2012).

  15. Calendar Year 2013 Annual Site Environmental Report for Sandia National Laboratories, Albuquerque, New Mexico

    International Nuclear Information System (INIS)

    Griffith, Stacy

    2014-01-01

    Sandia National Laboratories, New Mexico is a government-owned/contractor-operated facility. Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, manages and operates the laboratory for the U.S. Department of Energy (DOE), National Nuclear Security Administration (NNSA). The DOE/NNSA, Sandia Field Office administers the contract and oversees contractor operations at the site. This annual report summarizes data and the compliance status of Sandia Corporation's sustainability, environmental protection, and monitoring programs through December 31, 2013. Major environmental programs include air quality, water quality, groundwater protection, terrestrial surveillance, waste management, pollution prevention, environmental restoration, oil and chemical spill prevention, and implementation of the National Environmental Policy Act. Environmental monitoring and surveillance programs are required by DOE Order 231.1B, Environment, Safety, and Health Reporting (DOE 2012).

  16. Compressible dynamic stall control using high momentum microjets

    Science.gov (United States)

    Beahan, James J.; Shih, Chiang; Krothapalli, Anjaneyulu; Kumar, Rajan; Chandrasekhara, Muguru S.

    2014-09-01

    Control of the dynamic stall process of a NACA 0015 airfoil undergoing periodic pitching motion is investigated experimentally at the NASA Ames compressible dynamic stall facility. Multiple microjet nozzles distributed uniformly in the first 12 % chord from the airfoil's leading edge are used for the dynamic stall control. Point diffraction interferometry technique is used to characterize the control effectiveness, both qualitatively and quantitatively. The microjet control has been found to be very effective in suppressing both the emergence of the dynamic stall vortex and the associated massive flow separation at the entire operating range of angles of attack. At the high Mach number ( M = 0.4), the use of microjets appears to eliminate the shock structures that are responsible for triggering the shock-induced separation, establishing the fact that the use of microjets is effective in controlling dynamic stall with a strong compressibility effect. In general, microjet control has an overall positive effect in terms of maintaining leading edge suction pressure and preventing flow separation.

  17. Sandia National Laboratories: Up on the roof

    Science.gov (United States)

    Library Events Careers View All Jobs Students & Postdocs Internships & Co-ops Fellowships load of rooftop solar photovoltaic (PV) installations," says structural engineer Steve Dwyer (6912 structural issues. "I couldn't believe it was a problem," says Steve, who led the Sandia test team

  18. Imaging Shock Waves in Diamond with Both High Temporal and Spatial Resolution at an XFEL.

    Science.gov (United States)

    Schropp, Andreas; Hoppe, Robert; Meier, Vivienne; Patommel, Jens; Seiboth, Frank; Ping, Yuan; Hicks, Damien G; Beckwith, Martha A; Collins, Gilbert W; Higginbotham, Andrew; Wark, Justin S; Lee, Hae Ja; Nagler, Bob; Galtier, Eric C; Arnold, Brice; Zastrau, Ulf; Hastings, Jerome B; Schroer, Christian G

    2015-06-18

    The advent of hard x-ray free-electron lasers (XFELs) has opened up a variety of scientific opportunities in areas as diverse as atomic physics, plasma physics, nonlinear optics in the x-ray range, and protein crystallography. In this article, we access a new field of science by measuring quantitatively the local bulk properties and dynamics of matter under extreme conditions, in this case by using the short XFEL pulse to image an elastic compression wave in diamond. The elastic wave was initiated by an intense optical laser pulse and was imaged at different delay times after the optical pump pulse using magnified x-ray phase-contrast imaging. The temporal evolution of the shock wave can be monitored, yielding detailed information on shock dynamics, such as the shock velocity, the shock front width, and the local compression of the material. The method provides a quantitative perspective on the state of matter in extreme conditions.

  19. ByLaws for the Governance of the Sandia National Laboratories Sandia Postdoctoral Development (SPD) Association.

    Energy Technology Data Exchange (ETDEWEB)

    McBride, Amber Alane Fisher; McBride, Amber Alane Fisher; Rodgers, Theron; Dong, Wen; Juan, Pierre-Alexandre; Barkholtz, Heather; Alley, William Morgan; Wolk, Benjamin Matthew; Vane, Zachary Phillips; Priye, Aashish; Ball, Cameron Scott

    2017-03-01

    The purpose of this document is to define the rules of governance for the Sandia Postdoctoral Development (SPD) Association. This includes election procedures for filling vacancies on the SPD board, an all-purpose voting procedure, and definitions for the roles and responsibilities of each SPD board member. The voting procedures can also be used to amend the by-laws, as well as to create, dissolve, or consolidate vacant SPD board positions.

  20. Advances in compressible turbulent mixing

    International Nuclear Information System (INIS)

    Dannevik, W.P.; Buckingham, A.C.; Leith, C.E.

    1992-01-01

    This volume includes some recent additions to original material prepared for the Princeton International Workshop on the Physics of Compressible Turbulent Mixing, held in 1988. Workshop participants were asked to emphasize the physics of the compressible mixing process rather than measurement techniques or computational methods. Actual experimental results and their meaning were given precedence over discussions of new diagnostic developments. Theoretical interpretations and understanding were stressed rather than the exposition of new analytical model developments or advances in numerical procedures. By design, compressibility influences on turbulent mixing were discussed--almost exclusively--from the perspective of supersonic flow field studies. The papers are arranged in three topical categories: Foundations, Vortical Domination, and Strongly Coupled Compressibility. The Foundations category is a collection of seminal studies that connect current study in compressible turbulent mixing with compressible, high-speed turbulent flow research that almost vanished about two decades ago. A number of contributions are included on flow instability initiation, evolution, and transition between the states of unstable flow onset through those descriptive of fully developed turbulence. The Vortical Domination category includes theoretical and experimental studies of coherent structures, vortex pairing, vortex-dynamics-influenced pressure focusing. In the Strongly Coupled Compressibility category the organizers included the high-speed turbulent flow investigations in which the interaction of shock waves could be considered an important source for production of new turbulence or for the enhancement of pre-existing turbulence. Individual papers are processed separately

  1. Advances in compressible turbulent mixing

    Energy Technology Data Exchange (ETDEWEB)

    Dannevik, W.P.; Buckingham, A.C.; Leith, C.E. [eds.

    1992-01-01

    This volume includes some recent additions to original material prepared for the Princeton International Workshop on the Physics of Compressible Turbulent Mixing, held in 1988. Workshop participants were asked to emphasize the physics of the compressible mixing process rather than measurement techniques or computational methods. Actual experimental results and their meaning were given precedence over discussions of new diagnostic developments. Theoretical interpretations and understanding were stressed rather than the exposition of new analytical model developments or advances in numerical procedures. By design, compressibility influences on turbulent mixing were discussed--almost exclusively--from the perspective of supersonic flow field studies. The papers are arranged in three topical categories: Foundations, Vortical Domination, and Strongly Coupled Compressibility. The Foundations category is a collection of seminal studies that connect current study in compressible turbulent mixing with compressible, high-speed turbulent flow research that almost vanished about two decades ago. A number of contributions are included on flow instability initiation, evolution, and transition between the states of unstable flow onset through those descriptive of fully developed turbulence. The Vortical Domination category includes theoretical and experimental studies of coherent structures, vortex pairing, vortex-dynamics-influenced pressure focusing. In the Strongly Coupled Compressibility category the organizers included the high-speed turbulent flow investigations in which the interaction of shock waves could be considered an important source for production of new turbulence or for the enhancement of pre-existing turbulence. Individual papers are processed separately.

  2. Calculation of external-internal flow fields for mixed-compression inlets

    Science.gov (United States)

    Chyu, W. J.; Kawamura, T.; Bencze, D. P.

    1987-01-01

    Supersonic inlet flows with mixed external-internal compressions were computed using a combined implicit-explicit (Beam-Warming-Steger/MacCormack) method for solving the three-dimensional unsteady, compressible Navier-Stokes equations in conservation form. Numerical calculations were made of various flows related to such inlet operations as the shock-wave intersections, subsonic spillage around the cowl lip, and inlet started versus unstarted conditions. Some of the computed results were compared with wind tunnel data.

  3. Ultrafast Laser Diagnostics for Energetic-Material Ignition Mechanisms: Tools for Physics-Based Model Development.

    Energy Technology Data Exchange (ETDEWEB)

    Kearney, Sean Patrick; Jilek, Brook Anton; Kohl, Ian Thomas; Farrow, Darcie; Urayama, Junji

    2014-11-01

    We present the results of an LDRD project to develop diagnostics to perform fundamental measurements of material properties during shock compression of condensed phase materials at micron spatial scales and picosecond time scales. The report is structured into three main chapters, which each focus on a different diagnostic devel opment effort. Direct picosecond laser drive is used to introduce shock waves into thin films of energetic and inert materials. The resulting laser - driven shock properties are probed via Ultrafast Time Domain Interferometry (UTDI), which can additionally be used to generate shock Hugoniot data in tabletop experiments. Stimulated Raman scattering (SRS) is developed as a temperature diagnostic. A transient absorption spectroscopy setup has been developed to probe shock - induced changes during shock compressio n. UTDI results are presented under dynamic, direct - laser - drive conditions and shock Hugoniots are estimated for inert polystyrene samples and for the explosive hexanitroazobenzene, with results from both Sandia and Lawrence Livermore presented here. SRS a nd transient absorption diagnostics are demonstrated on static thin - film samples, and paths forward to dynamic experiments are presented.

  4. Development and Evaluation of a Sandia Cooler-based Refrigerator Condenser

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Terry A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Kariya, Harumichi Arthur [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Leick, Michael T. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Zimmerman, Mark D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Li, Manjie [Univ. of Maryland, College Park, MD (United States); Du, Yilin [Univ. of Maryland, College Park, MD (United States); Lee, Hoseong [Univ. of Maryland, College Park, MD (United States); Hwang, Yunho [Univ. of Maryland, College Park, MD (United States); Radermacher, Reinhard [Univ. of Maryland, College Park, MD (United States)

    2015-07-01

    This report describes the first design of a refrigerator condenser using the Sandia Cooler, i.e. air - bearing supported rotating heat - sink impeller. The project included ba seline performance testing of a residential refrigerator, analysis and design development of a Sandia Cooler condenser assembly including a spiral channel baseplate, and performance measurement and validation of this condenser system as incorporated into the residential refrigerator. Comparable performance was achieved in a 60% smaller volume package. The improved modeling parameters can now be used to guide more optimized designs and more accurately predict performance.

  5. Sandia Laboratories technical capabilities. Auxiliary capabilities: environmental health information science

    International Nuclear Information System (INIS)

    1975-09-01

    Sandia Laboratories is an engineering laboratory in which research, development, testing, and evaluation capabilities are integrated by program management for the generation of advanced designs. In fulfilling its primary responsibility to ERDA, Sandia Laboratories has acquired extensive research and development capabilities. The purpose of this series of documents is to catalog the many technical capabilities of the Laboratories. After the listing of capabilities, supporting information is provided in the form of highlights, which show applications. This document deals with auxiliary capabilities, in particular, environmental health and information science. (11 figures, 1 table) (RWR)

  6. Energetic materials research and development activities at Sandia National Laboratories supported under DP-10 programs

    Energy Technology Data Exchange (ETDEWEB)

    Ratzel, A.C. III

    1998-09-01

    This report provides summary descriptions of Energetic Materials (EM) Research and Development activities performed at Sandia National Laboratories and funded through the Department of Energy DP-10 Program Office in FY97 and FY98. The work falls under three major focus areas: EM Chemistry, EM Characterization, and EM Phenomenological Model Development. The research supports the Sandia component mission and also Sandia's overall role as safety steward for the DOE Nuclear Weapons Complex.

  7. Magnetic compression/magnetized target fusion (MAGO/MTF)

    International Nuclear Information System (INIS)

    Kirkpatrick, R.C.; Lindemuth, I.R.

    1997-03-01

    Magnetized Target Fusion (MTF) was reported in two papers at the First Symposium on Current Trends in International Fusion Research. MTF is intermediate between two very different mainline approaches to fusion: Inertial Confinement Fusion (ICF) and magnetic confinement fusion (MCF). The only US MTF experiments in which a target plasma was compressed were the Sandia National Laboratory ''Phi targets''. Despite the very interesting results from that series of experiments, the research was not pursued, and other embodiments of MTF concept such as the Fast Liner were unable to attract the financial support needed for a firm proof of principle. A mapping of the parameter space for MTF showed the significant features of this approach. The All-Russian Scientific Research Institute of Experimental Physics (VNIIEF) has an on-going interest in this approach to thermonuclear fusion, and Los Alamos National Laboratory (LANL) and VNIIEF have done joint target plasma generation experiments relevant to MTF referred to as MAGO (transliteration of the Russian acronym for magnetic compression). The MAGO II experiment appears to have achieved on the order of 200 eV and over 100 KG, so that adiabatic compression with a relatively small convergence could bring the plasma to fusion temperatures. In addition, there are other experiments being pursued for target plasma generation and proof of principle. This paper summarizes the previous reports on MTF and MAGO and presents the progress that has been made over the past three years in creating a target plasma that is suitable for compression to provide a scientific proof of principle experiment for MAGO/MTF

  8. Failure Waves in Shock-Compressed Glasses

    International Nuclear Information System (INIS)

    Kanel, G. I.

    2006-01-01

    The failure wave is a network of cracks that are nucleated on the surface and propagate into the elastically stressed body. It is a mode of catastrophic fracture in an elastically stressed media whose relevance is not limited to impact events. In the paper, main properties of the failure waves are summarized and discussed. It has been shown that the failure wave is really a wave process which is characterized by small increase of the longitudinal stress and corresponding increments of the particle velocity and the density. The propagation velocity of the failure wave is less than the sound speed; it is not directly related to the compressibility but is determined by the crack growth speed. The failure wave is steady if the stress state ahead of it is supported unchanging. In some sense the process is similar to a subsonic combustion wave. Computer simulations based on the phenomenological combustion-like model reproduces well all kinematical aspects of the phenomenon

  9. Some numerical approaches of creep, thermal shock, damage

    Indian Academy of Sciences (India)

    Creep can be satisfactorily described by a kinematic hardening, and exhibits different creep rates in tension and compression. Concerning the thermal shock of materials, the numerical approach depends whether or not the material is able to develop a sprayed out damage, leading to micro- or macro-cracking. Finally ...

  10. Converging cylindrical shocks in ideal magnetohydrodynamics

    KAUST Repository

    Pullin, D. I.

    2014-09-01

    We consider a cylindrically symmetrical shock converging onto an axis within the framework of ideal, compressible-gas non-dissipative magnetohydrodynamics (MHD). In cylindrical polar co-ordinates we restrict attention to either constant axial magnetic field or to the azimuthal but singular magnetic field produced by a line current on the axis. Under the constraint of zero normal magnetic field and zero tangential fluid speed at the shock, a set of restricted shock-jump conditions are obtained as functions of the shock Mach number, defined as the ratio of the local shock speed to the unique magnetohydrodynamic wave speed ahead of the shock, and also of a parameter measuring the local strength of the magnetic field. For the line current case, two approaches are explored and the results compared in detail. The first is geometrical shock-dynamics where the restricted shock-jump conditions are applied directly to the equation on the characteristic entering the shock from behind. This gives an ordinary-differential equation for the shock Mach number as a function of radius which is integrated numerically to provide profiles of the shock implosion. Also, analytic, asymptotic results are obtained for the shock trajectory at small radius. The second approach is direct numerical solution of the radially symmetric MHD equations using a shock-capturing method. For the axial magnetic field case the shock implosion is of the Guderley power-law type with exponent that is not affected by the presence of a finite magnetic field. For the axial current case, however, the presence of a tangential magnetic field ahead of the shock with strength inversely proportional to radius introduces a length scale R = √μ0/p0 I/(2π) where I is the current, μ0 is the permeability, and p0 is the pressure ahead of the shock. For shocks initiated at r ≫ R, shock convergence is first accompanied by shock strengthening as for the strictly gas-dynamic implosion. The diverging magnetic field then

  11. Converging cylindrical shocks in ideal magnetohydrodynamics

    International Nuclear Information System (INIS)

    Pullin, D. I.; Mostert, W.; Wheatley, V.; Samtaney, R.

    2014-01-01

    We consider a cylindrically symmetrical shock converging onto an axis within the framework of ideal, compressible-gas non-dissipative magnetohydrodynamics (MHD). In cylindrical polar co-ordinates we restrict attention to either constant axial magnetic field or to the azimuthal but singular magnetic field produced by a line current on the axis. Under the constraint of zero normal magnetic field and zero tangential fluid speed at the shock, a set of restricted shock-jump conditions are obtained as functions of the shock Mach number, defined as the ratio of the local shock speed to the unique magnetohydrodynamic wave speed ahead of the shock, and also of a parameter measuring the local strength of the magnetic field. For the line current case, two approaches are explored and the results compared in detail. The first is geometrical shock-dynamics where the restricted shock-jump conditions are applied directly to the equation on the characteristic entering the shock from behind. This gives an ordinary-differential equation for the shock Mach number as a function of radius which is integrated numerically to provide profiles of the shock implosion. Also, analytic, asymptotic results are obtained for the shock trajectory at small radius. The second approach is direct numerical solution of the radially symmetric MHD equations using a shock-capturing method. For the axial magnetic field case the shock implosion is of the Guderley power-law type with exponent that is not affected by the presence of a finite magnetic field. For the axial current case, however, the presence of a tangential magnetic field ahead of the shock with strength inversely proportional to radius introduces a length scale R=√(μ 0 /p 0 ) I/(2 π) where I is the current, μ 0 is the permeability, and p 0 is the pressure ahead of the shock. For shocks initiated at r ≫ R, shock convergence is first accompanied by shock strengthening as for the strictly gas-dynamic implosion. The diverging magnetic field

  12. Converging cylindrical shocks in ideal magnetohydrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Pullin, D. I. [Graduate Aerospace Laboratories, California Institute of Technology, Pasadena, California 91125 (United States); Mostert, W.; Wheatley, V. [School of Mechanical and Mining Engineering, University of Queensland, Queensland 4072 (Australia); Samtaney, R. [Mechanical Engineering, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal (Saudi Arabia)

    2014-09-15

    We consider a cylindrically symmetrical shock converging onto an axis within the framework of ideal, compressible-gas non-dissipative magnetohydrodynamics (MHD). In cylindrical polar co-ordinates we restrict attention to either constant axial magnetic field or to the azimuthal but singular magnetic field produced by a line current on the axis. Under the constraint of zero normal magnetic field and zero tangential fluid speed at the shock, a set of restricted shock-jump conditions are obtained as functions of the shock Mach number, defined as the ratio of the local shock speed to the unique magnetohydrodynamic wave speed ahead of the shock, and also of a parameter measuring the local strength of the magnetic field. For the line current case, two approaches are explored and the results compared in detail. The first is geometrical shock-dynamics where the restricted shock-jump conditions are applied directly to the equation on the characteristic entering the shock from behind. This gives an ordinary-differential equation for the shock Mach number as a function of radius which is integrated numerically to provide profiles of the shock implosion. Also, analytic, asymptotic results are obtained for the shock trajectory at small radius. The second approach is direct numerical solution of the radially symmetric MHD equations using a shock-capturing method. For the axial magnetic field case the shock implosion is of the Guderley power-law type with exponent that is not affected by the presence of a finite magnetic field. For the axial current case, however, the presence of a tangential magnetic field ahead of the shock with strength inversely proportional to radius introduces a length scale R=√(μ{sub 0}/p{sub 0}) I/(2 π) where I is the current, μ{sub 0} is the permeability, and p{sub 0} is the pressure ahead of the shock. For shocks initiated at r ≫ R, shock convergence is first accompanied by shock strengthening as for the strictly gas-dynamic implosion. The

  13. Converging cylindrical shocks in ideal magnetohydrodynamics

    KAUST Repository

    Pullin, D. I.; Mostert, W.; Wheatley, V.; Samtaney, Ravi

    2014-01-01

    We consider a cylindrically symmetrical shock converging onto an axis within the framework of ideal, compressible-gas non-dissipative magnetohydrodynamics (MHD). In cylindrical polar co-ordinates we restrict attention to either constant axial magnetic field or to the azimuthal but singular magnetic field produced by a line current on the axis. Under the constraint of zero normal magnetic field and zero tangential fluid speed at the shock, a set of restricted shock-jump conditions are obtained as functions of the shock Mach number, defined as the ratio of the local shock speed to the unique magnetohydrodynamic wave speed ahead of the shock, and also of a parameter measuring the local strength of the magnetic field. For the line current case, two approaches are explored and the results compared in detail. The first is geometrical shock-dynamics where the restricted shock-jump conditions are applied directly to the equation on the characteristic entering the shock from behind. This gives an ordinary-differential equation for the shock Mach number as a function of radius which is integrated numerically to provide profiles of the shock implosion. Also, analytic, asymptotic results are obtained for the shock trajectory at small radius. The second approach is direct numerical solution of the radially symmetric MHD equations using a shock-capturing method. For the axial magnetic field case the shock implosion is of the Guderley power-law type with exponent that is not affected by the presence of a finite magnetic field. For the axial current case, however, the presence of a tangential magnetic field ahead of the shock with strength inversely proportional to radius introduces a length scale R = √μ0/p0 I/(2π) where I is the current, μ0 is the permeability, and p0 is the pressure ahead of the shock. For shocks initiated at r ≫ R, shock convergence is first accompanied by shock strengthening as for the strictly gas-dynamic implosion. The diverging magnetic field then

  14. Shock timing on the National Ignition Facility: First Experiments

    International Nuclear Information System (INIS)

    Celliers, P.M.; Robey, H.F.; Boehly, T.R.; Alger, E.; Azevedo, S.; Berzins, L.V.; Bhandarkar, S.D.; Bowers, M.W.; Brereton, S.J.; Callahan, D.; Castro, C.; Chandrasekaran, H.; Choate, C.; Clark, D.; Coffee, K.R.; Datte, P.S.; Dewald, E.L.; DiNicola, P.; Dixit, S.; Doeppner, T.; Dzenitis, E.; Edwards, M.J.; Eggert, J.H.; Fair, J.; Farley, D.R.; Frieders, G.; Gibson, C.R.; Giraldez, E.; Haan, S.; Haid, B.; Hamza, A.V.; Haynam, C.; Hicks, D.G.; Holunga, D.M.; Horner, J.B.; Jancaitis, K.; Jones, O.S.; Kalantar, D.; Kline, J.L.; Krauter, K.G.; Kroll, J.J.; LaFortune, K.N.; Pape, S.L.; Malsbury, T.; Maypoles, E.R.; Milovich, J.L.; Moody, J.D.; Moreno, K.; Munro, D.H.; Nikroo, A.; Olson, R.E.; Parham, T.; Pollaine, S.; Radousky, H.B.; Ross, G.F.; Sater, J.; Schneider, M.B.; Shaw, M.; Smith, R.F.; Thomas, C.A.; Throop, A.; Town, R.J.; Trummer, D.; Van Wonterghem, B.M.; Walters, C.F.; Widmann, K.; Widmayer, C.; Young, B.K.; Atherton, L.J.; Collins, G.W.; Landen, O.L.; Lindl, J.D.; MacGowan, B.J.; Meyerhofer, D.D.; Moses, E.I.

    2011-01-01

    An experimental campaign to tune the initial shock compression sequence of capsule implosions on the National Ignition Facility (NIF) was initiated in late 2010. The experiments use a NIF ignition-scale hohlraum and capsule that employs a reentrant cone to provide optical access to the shocks as they propagate in the liquid deuterium-filled capsule interior. The strength and timing of the shock sequence is diagnosed with velocity interferometry that provides target performance data used to set the pulse shape for ignition capsule implosions that follow. From the start, these measurements yielded significant new information on target performance, leading to improvements in the target design. We describe the results and interpretation of the initial tuning experiments.

  15. Confinement effects of shock waves on laser-induced plasma from a graphite target

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Feiling; Liang, Peipei; Yang, Xu; Cai, Hua; Wu, Jiada; Xu, Ning; Ying, Zhifeng; Sun, Jian, E-mail: jsun@fudan.edu.cn [Shanghai Ultra-Precision Optical Manufacturing Engineering Center, Department of Optical Science and Engineering, Fudan University, Shanghai 200433 (China)

    2015-06-15

    The spatial confinement effects of shock waves on the laser-induced plasma (LIP) from a graphite target in air were studied by probe beam deflection (PBD) measurements and optical emission spectroscopy (OES). A clear relationship between the confinement of the LIP by the shock wave and the effects on the LIP emission was observed, and the underlying mechanisms are discussed. PBD monitoring revealed that the laser-ablation induced shock wave could be well analogized to the shock wave generated by a point explosion and would be reflected by a block. OES measurements indicated that the optical emission of the LIP exhibited significant variations with the block placement. A first enhancement and then a fast decay of CN molecular emission as well as a suppression of carbon atomic emission were observed in the presence of the block. The results revealed that the reflected shock wave spatially confined the expansion of the LIP and compressed the LIP after encountering it, pushing back the species of the LIP and changing the density of the LIP species including luminous carbon atoms and CN molecules. It is suggested that the change of the LIP emission is attributed to the density variation of the LIP species due to the compression of the LIP and the reactions occurring in the plasma.

  16. Sandia Laboratories technical capabilities: instrumentation and data systems

    International Nuclear Information System (INIS)

    Lundergain, C.D.; Mead, P.L.

    1975-12-01

    This report characterizes the instrumentation and data systems capabilities at Sandia Laboratories. Selected applications of these capabilities are presented to illustrate the extent to which they can be applied in research and development programs

  17. Sandia National Laboratories: National Security Missions: Defense Systems

    Science.gov (United States)

    ; Technology Defense Systems & Assessments About Defense Systems & Assessments Program Areas Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios ; Culture Work-Life Balance Special Programs Nuclear Weapons Defense Systems Global Security Energy Facebook

  18. The Whitham approach to dispersive shocks in systems with cubic–quintic nonlinearities

    KAUST Repository

    Crosta, M

    2012-09-12

    By employing a rigorous approach based on the Whitham modulation theory, we investigate dispersive shock waves arising in a high-order nonlinear Schrödinger equation with competing cubic and quintic nonlinear responses. This model finds important applications in both nonlinear optics and Bose–Einstein condensates. Our theory predicts the formation of dispersive shocks with totally controllable properties, encompassing both steering and compression effects. Numerical simulations confirm these results perfectly. Quite remarkably, shock tuning can be achieved in the regime of a very small high order, i.e. quintic, nonlinearity.

  19. The Whitham approach to dispersive shocks in systems with cubic–quintic nonlinearities

    KAUST Repository

    Crosta, M; Trillo, S; Fratalocchi, Andrea

    2012-01-01

    By employing a rigorous approach based on the Whitham modulation theory, we investigate dispersive shock waves arising in a high-order nonlinear Schrödinger equation with competing cubic and quintic nonlinear responses. This model finds important applications in both nonlinear optics and Bose–Einstein condensates. Our theory predicts the formation of dispersive shocks with totally controllable properties, encompassing both steering and compression effects. Numerical simulations confirm these results perfectly. Quite remarkably, shock tuning can be achieved in the regime of a very small high order, i.e. quintic, nonlinearity.

  20. An overview of semiconductor bridge, SCB, applications at Sandia National Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Bickes, R.W. Jr.; Grubelich, M.C.; Harris, S.M.; Merson, J.A.; Weinlein, J.H.

    1995-05-01

    The semiconductor bridge, SCB, developed by Sandia National Laboratories is a maturing technology now being used in several applications by Sandia customers. Most applications arose because of a need at the system level to provide explosive assemblies that were light weight, small volume, low cost and required small quantities of electrical energy to function -- for the purposes of this paper we define an explosive assembly to mean the combination of the firing set and an explosive component. As a result, and because conventional firing systems could not meet the stringent size, weight and energy requirements of our customers, we designed and are investigating SCB applications that range from devices for Sandia applications to igniters for fireworks. We present in this paper an overview of SCB technology with specific examples of the system designed for our customers to meet modern requirements that sophisticated explosive systems must satisfy in today`s market environments.

  1. External cardiac compression may be harmful in some scenarios of pulseless electrical activity.

    Science.gov (United States)

    Hogan, T S

    2012-10-01

    Pulseless electrical activity occurs when organised or semi-organised electrical activity of the heart persists but the product of systemic vascular resistance and the increase in systemic arterial flow generated by the ejection of the left venticular stroke volume is not sufficient to produce a clinically detectable pulse. Pulseless electrical activity encompasses a very heterogeneous variety of severe circulatory shock states ranging in severity from pseudo-cardiac arrest to effective cardiac arrest. Outcomes of cardiopulmonary resuscitation for pulseless electrical activity are generally poor. Impairment of cardiac filling is the limiting factor to cardiac output in many scenarios of pulseless electrical activity, including extreme vasodilatory shock states. There is no evidence that external cardiac compression can increase cardiac output when impaired cardiac filling is the limiting factor to cardiac output. If impaired cardiac filling is the limiting factor to cardiac output and the heart is effectively ejecting all the blood returning to it, then external cardiac compression can only increase cardiac output if it increases venous return and cardiac filling. Repeated cardiac compression asynchronous with the patient's cardiac cycle and raised mean intrathoracic pressure due to chest compression can be expected to reduce rather than to increase cardiac filling and therefore to reduce rather than to increase cardiac output in such circumstances. The hypothesis is proposed that the performance of external cardiac compression will have zero or negative effect on cardiac output in pulseless electrical activity when impaired cardiac filling is the limiting factor to cardiac output. External cardiac compression may be both directly and indirectly harmful to significant sub-groups of patients with pulseless electrical activity. We have neither evidence nor theory to provide comfort that external cardiac compression is not harmful in many scenarios of pulseless

  2. External cardiac compression may be harmful in some scenarios of pulseless electrical activity.

    LENUS (Irish Health Repository)

    Hogan, T S

    2012-10-01

    Pulseless electrical activity occurs when organised or semi-organised electrical activity of the heart persists but the product of systemic vascular resistance and the increase in systemic arterial flow generated by the ejection of the left venticular stroke volume is not sufficient to produce a clinically detectable pulse. Pulseless electrical activity encompasses a very heterogeneous variety of severe circulatory shock states ranging in severity from pseudo-cardiac arrest to effective cardiac arrest. Outcomes of cardiopulmonary resuscitation for pulseless electrical activity are generally poor. Impairment of cardiac filling is the limiting factor to cardiac output in many scenarios of pulseless electrical activity, including extreme vasodilatory shock states. There is no evidence that external cardiac compression can increase cardiac output when impaired cardiac filling is the limiting factor to cardiac output. If impaired cardiac filling is the limiting factor to cardiac output and the heart is effectively ejecting all the blood returning to it, then external cardiac compression can only increase cardiac output if it increases venous return and cardiac filling. Repeated cardiac compression asynchronous with the patient\\'s cardiac cycle and raised mean intrathoracic pressure due to chest compression can be expected to reduce rather than to increase cardiac filling and therefore to reduce rather than to increase cardiac output in such circumstances. The hypothesis is proposed that the performance of external cardiac compression will have zero or negative effect on cardiac output in pulseless electrical activity when impaired cardiac filling is the limiting factor to cardiac output. External cardiac compression may be both directly and indirectly harmful to significant sub-groups of patients with pulseless electrical activity. We have neither evidence nor theory to provide comfort that external cardiac compression is not harmful in many scenarios of pulseless

  3. Shock-timing experiments for Inertial Confinement Fusion

    International Nuclear Information System (INIS)

    Debras, G.

    2012-01-01

    The Laser Megajoule (LMJ), which should achieve energy gain in an indirect drive inertial confinement fusion configuration, is being built in France by the CEA (Commissariat a l'Energie Atomique et aux Energies Alternatives). To achieve thermonuclear ignition, the compression of a spherical target will have to be controlled by a series of accurately timed centripetal shocks, with a finely tuned level. A first experiment, performed in 2010 on the LIL (Ligne d'Integration Laser) facility at CEA, has allowed us to study the coalescence of two planar shocks in an indirectly-driven sample of polystyrene, within the framework of shock timing. The main objectives were to validate the experimental concept and the numerical simulations, as a proof-of-principle for future shock-timing campaigns. The main diagnostics used for this study are VISAR (Velocity Interferometer System for Any Reflection) and an optical shock breakout diagnostic, taking into account optical perturbations caused by X-rays. In another experiment, conducted on the LULI (Laboratoire pour l'Utilisation des Lasers Intenses) laser facility in 2010, we studied the timing of two planar directly-driven shocks using the same diagnostics. This latter study is related to the shock ignition concept, with the long-term perspective of energy production. This thesis presents these two experiments and their results. (author) [fr

  4. Simulation of shock-induced bubble collapse using a four-equation model

    Science.gov (United States)

    Goncalves, E.; Hoarau, Y.; Zeidan, D.

    2018-02-01

    This paper presents a numerical study of the interaction between a planar incident shock wave with a cylindrical gas bubble. Simulations are performed using an inviscid compressible one-fluid solver based upon three conservation laws for the mixture variables, namely mass, momentum, and total energy along with a supplementary transport equation for the volume fraction of the gas phase. The study focuses on the maximum pressure generated by the bubble collapse. The influence of the strength of the incident shock is investigated. A law for the maximum pressure function of the Mach number of the incident shock is proposed.

  5. Sandia National Laboratories: Fabrication, Testing and Validation

    Science.gov (United States)

    digital and analog elements. * Cadence Process-Design Kit. Structured ASIC Sandia National Laboratories demonstrate complex multilevel devices such as micro-mass-analysis systems up to 25 microns thick and novel possible to fabricate a wide very large variety of useful devices. Micro-Mass-Analysis Systems Applications

  6. Implementing the Corrective Action Management Unit at Sandia National Laboratories, New Mexico

    International Nuclear Information System (INIS)

    Moore, Darlene R.; Schrader, Scott A.; King, Gabriel G.; Cormier, John

    2000-01-01

    In September 1997, following significant public and regulator interaction, Sandia Corporation (Sandia) was granted a Resource Conservation and Recovery Act (RCRA) and Hazardous Solid Waste Amendment (HSWA) permit modification allowing construction and operation of a Correction Action Management Unit (CAMU). The CAMU follows recent regulatory guidance that allows for cost-effective, expedient cleanup of contaminated sites and management of hazardous remediation wastes. The CAMU was designed to store, treat, and provide long-term management for Environmental Restoration (ER) derived wastes. The 154 square meter CAMU site at Sandia National Laboratories, New Mexico (SNL/NM), includes facilities for storing bulk soils and containerized wastes, for treatment of bulk soils, and has a containment cell for long-term disposition of waste. Proposed treatment operations include soil washing and low temperature thermal desorption. The first waste was accepted into the CAMU for temporary storage in January 1999. Construction at the CAMU was completed in March 1999, and baseline monitoring of the containment cell has commenced. At completion of operations the facility will be closed, the waste containment cell will be covered, and long-term post-closure monitoring will begin. Sandia's CAMU is the only such facility within the US Department of Energy (DOE) complex. Implementing this innovative approach to ER waste management has required successful coordination with community representatives, state and federal regulators, the DOE, Sandia corporate management, and contractors. It is expected that cost savings to taxpayers will be significant. The life-cycle CAMU project cost is currently projected to be approximately $12 million

  7. Three-dimensional lattice Boltzmann model for compressible flows.

    Science.gov (United States)

    Sun, Chenghai; Hsu, Andrew T

    2003-07-01

    A three-dimensional compressible lattice Boltzmann model is formulated on a cubic lattice. A very large particle-velocity set is incorporated in order to enable a greater variation in the mean velocity. Meanwhile, the support set of the equilibrium distribution has only six directions. Therefore, this model can efficiently handle flows over a wide range of Mach numbers and capture shock waves. Due to the simple form of the equilibrium distribution, the fourth-order velocity tensors are not involved in the formulation. Unlike the standard lattice Boltzmann model, no special treatment is required for the homogeneity of fourth-order velocity tensors on square lattices. The Navier-Stokes equations were recovered, using the Chapman-Enskog method from the Bhatnagar-Gross-Krook (BGK) lattice Boltzmann equation. The second-order discretization error of the fluctuation velocity in the macroscopic conservation equation was eliminated by means of a modified collision invariant. The model is suitable for both viscous and inviscid compressible flows with or without shocks. Since the present scheme deals only with the equilibrium distribution that depends only on fluid density, velocity, and internal energy, boundary conditions on curved wall are easily implemented by an extrapolation of macroscopic variables. To verify the scheme for inviscid flows, we have successfully simulated a three-dimensional shock-wave propagation in a box and a normal shock of Mach number 10 over a wedge. As an application to viscous flows, we have simulated a flat plate boundary layer flow, flow over a cylinder, and a transonic flow over a NACA0012 airfoil cascade.

  8. A Scramjet Compression System for Hypersonic Air Transportation Vehicle Combined Cycle Engines

    Directory of Open Access Journals (Sweden)

    Devendra Sen

    2018-06-01

    Full Text Available This paper proposes a compression system for a scramjet, to be used as part of a combined cycle engine on a hypersonic transport vehicle that can achieve sustained flight at 8 Mach 8. Initially research into scramjet compression system and shock wave interaction was conducted to establish the foundation of the scramjet inlet and isolator sections. A Computational Fluid Dynamics (CFD campaign was conducted, where the shock structure and flow characteristics was analysed between Mach 4.5–8. The compression system of a scramjet is of crucial importance in providing air at suitable Mach number, pressure and temperature to the combustion chamber. The use of turbojet engines in over-under configuration with the scramjet was investigated as well as the study of a combined cycle scramjet-ramjet configuration. It was identified that locating the scramjet in the centre with a rotated ramjet on either side, where its ramps make up the scramjet wall was the most optimal configuration, as it mitigated the effect of the oblique shocks propagating from the scramjet walls into the adjacent ramjet. Furthermore, this meant that the forebody of the vehicle could solely be used as the compression surface by the scramjet. In this paper, the sizing of the scramjet combustion chamber and nozzle were modified to match the flow properties of the oncoming flow with the purpose of producing the most optimum scramjet configuration for the cruise speed of Mach 8. CFD simulations showed that the scramjet inlet did not provide the levels of compression and stagnation pressure recovery initially required. However, it was found that the scramjet provided significantly more thrust than the drag of the aircraft at sustained Mach 8 flight, due to its utilisation of a very aerodynamic vehicle design.

  9. Analytical model for fast-shock ignition

    International Nuclear Information System (INIS)

    Ghasemi, S. A.; Farahbod, A. H.; Sobhanian, S.

    2014-01-01

    A model and its improvements are introduced for a recently proposed approach to inertial confinement fusion, called fast-shock ignition (FSI). The analysis is based upon the gain models of fast ignition, shock ignition and considerations for the fast electrons penetration into the pre-compressed fuel to examine the formation of an effective central hot spot. Calculations of fast electrons penetration into the dense fuel show that if the initial electron kinetic energy is of the order ∼4.5 MeV, the electrons effectively reach the central part of the fuel. To evaluate more realistically the performance of FSI approach, we have used a quasi-two temperature electron energy distribution function of Strozzi (2012) and fast ignitor energy formula of Bellei (2013) that are consistent with 3D PIC simulations for different values of fast ignitor laser wavelength and coupling efficiency. The general advantages of fast-shock ignition in comparison with the shock ignition can be estimated to be better than 1.3 and it is seen that the best results can be obtained for the fuel mass around 1.5 mg, fast ignitor laser wavelength ∼0.3  micron and the shock ignitor energy weight factor about 0.25

  10. Excitation of intense shock waves by soft X-radiation

    Energy Technology Data Exchange (ETDEWEB)

    Branitskij, A V; Fortov, V E; Danilenko, K N; Dyabilin, K S; Grabovskij, E V; Vorobev, O Yu; Lebedev, M E; Smirnov, V P; Zakharov, A E; Persyantsev, I V [Troitsk Inst. of Innovative and Fusion Research, Troitsk (Russian Federation)

    1997-12-31

    Investigation of the shock waves generated by soft x radiation in Al, Sn, Fe, and Pb targets is reported. The soft x radiation was induced by the dynamic compression and heating of the cylindrical z-pinch plasma generated in the ANGARA-5-1 pulsed power machine. The temperature of the z-pinch plasma was as high as 60 - 120 eV, and the duration of the x-ray pulse reached 30 ns FWHM. Thick stepped Al/Pb, Sn/Pb, and pure Pb targets were used. The results of experiments show that uniform intense shock waves can be generated by z-pinch plasma soft x-ray radiation. The uniformity of the shock is very high. At a flux power of the order of several TW/cm{sup 2}, a shock pressure of some hundreds of GPa was achieved. (J.U.). 3 figs., 11 refs.

  11. Excitation of intense shock waves by soft X-radiation

    International Nuclear Information System (INIS)

    Branitskij, A.V.; Fortov, V.E.; Danilenko, K.N.; Dyabilin, K.S.; Grabovskij, E.V.; Vorobev, O. Yu.; Lebedev, M.E.; Smirnov, V.P.; Zakharov, A.E.; Persyantsev, I.V.

    1996-01-01

    Investigation of the shock waves generated by soft x radiation in Al, Sn, Fe, and Pb targets is reported. The soft x radiation was induced by the dynamic compression and heating of the cylindrical z-pinch plasma generated in the ANGARA-5-1 pulsed power machine. The temperature of the z-pinch plasma was as high as 60 - 120 eV, and the duration of the x-ray pulse reached 30 ns FWHM. Thick stepped Al/Pb, Sn/Pb, and pure Pb targets were used. The results of experiments show that uniform intense shock waves can be generated by z-pinch plasma soft x-ray radiation. The uniformity of the shock is very high. At a flux power of the order of several TW/cm 2 , a shock pressure of some hundreds of GPa was achieved. (J.U.). 3 figs., 11 refs

  12. Sandia Laboratories technical capabilities: design, definition, and fabrication

    International Nuclear Information System (INIS)

    1976-12-01

    This report characterizes the design definition and fabrication capabilities at Sandia Laboratories. Selected applications of these capabilities are presented to illustrate the extent to which they can be applied in research and development programs. 13 figures

  13. Sandia Laboratories technical capabilities: design, definition, and fabrication

    Energy Technology Data Exchange (ETDEWEB)

    1976-12-01

    This report characterizes the design definition and fabrication capabilities at Sandia Laboratories. Selected applications of these capabilities are presented to illustrate the extent to which they can be applied in research and development programs. 13 figures.

  14. INTERFERENCE OF COUNTERPROPAGATING SHOCK WAVES

    Directory of Open Access Journals (Sweden)

    P. V. Bulat

    2015-03-01

    Full Text Available The subject of study. We examined the interaction of counterpropagating shock waves. The necessity of counterpropagating shock waves studying occurs at designing of high Mach number modern internal compression air intakes, Ramjets with subsonic and supersonic combustion, in asymmetrical supersonic nozzles and in some other cases. In a sense, this problem is a generalization of the case of an oblique shock reflection from the wall or from the plane of symmetry. With the renewed vigor, the interest to this problem emerged at the end of the 90s. This was due to the start of the programs for flight study at hypersonic speeds. The first experiments performed with air intakes, which realized the interaction of counterpropagating shock waves have shown that the change in flow velocity is accompanied by abrupt alteration of shock-wave structure, the occurrence of nonstationary and oscillatory phenomena. With an increase of flow velocity these phenomena undesirable for aircraft structure became more marked. The reason is that there are two fundamentally different modes of interaction of counterpropagating shock waves: a four-wave regular and a five-wave irregular. The transition from one mode to another can be nonstationary abrupt or gradual, it can also be accompanied by hysteresis. Main results. Criteria for the transition from regular reflection of counterpropagating shock waves to irregular are described: the criterion of von Neumann and the stationary Mach configuration criterion. We described areas in which the transition from one reflection type to another is possible only in abrupt way, as well as areas of possible gradual transition. Intensity dependences of the reflected shock waves from the intensity of interacting counterpropagating shocks were given. Qualitative pictures of shock-wave structures arising from the interaction of counterpropagating shock waves were shown. Calculation results of the intensity of outgoing gas

  15. Improvement of pump tubes for gas guns and shock tube drivers

    Science.gov (United States)

    Bogdanoff, D. W.

    1990-01-01

    In a pump tube, a gas is mechanically compressed, producing very high pressures and sound speeds. The intensely heated gas produced in such a tube can be used to drive light gas guns and shock tubes. Three concepts are presented that have the potential to allow substantial reductions in the size and mass of the pump tube to be achieved. The first concept involves the use of one or more diaphragms in the pump tube, thus replacing a single compression process by multiple, successive compressions. The second concept involves a radical reduction in the length-to-diameter ratio of the pump tube and the pump tube piston. The third concept involves shock heating of the working gas by high explosives in a cyclindrical geometry reusable device. Preliminary design analyses are performed on all three concepts and they appear to be quite feasible. Reductions in the length and mass of the pump tube by factors up to about 11 and about 7, respectively, are predicted, relative to a benchmark conventional pump tube.

  16. Sandia`s computer support units: The first three years

    Energy Technology Data Exchange (ETDEWEB)

    Harris, R.N. [Sandia National Labs., Albuquerque, NM (United States). Labs. Computing Dept.

    1997-11-01

    This paper describes the method by which Sandia National Laboratories has deployed information technology to the line organizations and to the desktop as part of the integrated information services organization under the direction of the Chief Information officer. This deployment has been done by the Computer Support Unit (CSU) Department. The CSU approach is based on the principle of providing local customer service with a corporate perspective. Success required an approach that was both customer compelled at times and market or corporate focused in most cases. Above all, a complete solution was required that included a comprehensive method of technology choices and development, process development, technology implementation, and support. It is the authors hope that this information will be useful in the development of a customer-focused business strategy for information technology deployment and support. Descriptions of current status reflect the status as of May 1997.

  17. Development of velocity interferometer and its application to piston motion measurement in a compression tube of freepiston shock tube; Sokudo kanshokei no kaihatsu to sono jiyu piston shogekihakan no asshuku kannai no piston undo no keisoku eno oyo ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Koremoto, K.; Hashimoto, T. [Tohoku University, Sendai (Japan); Takayama, K. [Tohoku University, Sendai (Japan). Inst. of Fluid Science; Ito, K [National Aerospace Laboratory, Tokyo (Japan)

    1999-10-25

    A free piston shock tunnel has been intensively used as a hypersonic flow ground test facility and its characteristics depend sensitively upon the piston motion in its compression tube. The continuous measurement of the piston motion in its compression tube was studied in an analogue facility in which a piston motion in a 50mm dia. and 2000mm long compression tube was measured continuously and accurately from its start to the collision with bumper section. To achieve it a velocity interferometer was developed particularly to measure the piston speed in it. Then piston motions were successfully measured and result agreed very well with numerical result. (author)

  18. Site Environmental Report for 2010 Sandia National Laboratories, California.

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Barbara L.

    2011-06-01

    Sandia National Laboratories, California (SNL/CA) is a government-owned/contractor-operated laboratory. Sandia Corporation, a Lockheed Martin Company, manages and operates the laboratory for the Department of Energy's National Nuclear Security Administration (NNSA). The NNSA Sandia Site Office administers the contract and oversees contractor operations at the site. This Site Environmental Report for 2010 was prepared in accordance with DOE Order 231.1A (DOE 2004a). The report provides a summary of environmental monitoring information and compliance activities that occurred at SNL/CA during calendar year 2010. General site and environmental program information is also included. The Site Environmental Report is divided into ten chapters. Chapter 1, the Executive Summary, highlights compliance and monitoring results obtained in 2010. Chapter 2 provides a brief introduction to SNL/CA and the existing environment found on site. Chapter 3 summarizes SNL/CA's compliance activities with the major environmental requirements applicable to site operations. Chapter 4 presents information on environmental management, performance measures, and environmental programs. Chapter 5 presents the results of monitoring and surveillance activities in 2010. Chapter 6 discusses quality assurance. Chapters 7 through 9 provide supporting information for the report and Chapter 10 is the report distribution list.

  19. 76 FR 70456 - Decision To Evaluate a Petition To Designate a Class of Employees From Sandia National Laboratory...

    Science.gov (United States)

    2011-11-14

    ... Employees From Sandia National Laboratory, Albuquerque, NM, To Be Included in the Special Exposure Cohort... evaluate a petition to designate a class of employees from Sandia National Laboratory, Albuquerque, New... revision as warranted by the evaluation, is as follows: Facility: Sandia National Laboratory. Location...

  20. 78 FR 56706 - Decision to Evaluate a Petition to Designate a Class of Employees from the Sandia National...

    Science.gov (United States)

    2013-09-13

    ... Employees from the Sandia National Laboratory-Livermore in Livermore, California To Be Included in the... decision to evaluate a petition to designate a class of employees from the Sandia National Laboratory...: Facility: Sandia National Laboratory-Livermore Location: Livermore, California. Job Titles and/or Job...