WorldWideScience

Sample records for sandia outdoor test

  1. Sandia Laboratories technical capabilities: testing

    International Nuclear Information System (INIS)

    Lundergan, C.D.

    1975-12-01

    The testing capabilities at Sandia Laboratories are characterized. Selected applications of these capabilities are presented to illustrate the extent to which they can be applied in research and development programs

  2. Sandia National Laboratories: Locations: Kauai Test Facility

    Science.gov (United States)

    Locations Contact Us Employee Locator Search Menu About Leadership Mission Social Media Community History Diversity Social Media Careers View All Jobs Students & Postdocs Benefits & Perks Hiring Technology Deployment Centers New Mexico Small Business Assistance Program Sandia's Economic Impact Sandia

  3. Tonopah test range - outpost of Sandia National Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, L.

    1996-03-01

    Tonopah Test Range is a unique historic site. Established in 1957 by Sandia Corporation, Tonopah Test Range in Nevada provided an isolated place for the Atomic Energy Commission to test ballistics and non-nuclear features of atomic weapons. It served this and allied purposes well for nearly forty years, contributing immeasurably to a peaceful conclusion to the long arms race remembered as the Cold War. This report is a brief review of historical highlights at Tonopah Test Range. Sandia`s Los Lunas, Salton Sea, Kauai, and Edgewood testing ranges also receive abridged mention. Although Sandia`s test ranges are the subject, the central focus is on the people who managed and operated the range. Comments from historical figures are interspersed through the narrative to establish this perspective, and at the end a few observations concerning the range`s future are provided.

  4. Sandia National Laboratories: Fabrication, Testing and Validation

    Science.gov (United States)

    digital and analog elements. * Cadence Process-Design Kit. Structured ASIC Sandia National Laboratories demonstrate complex multilevel devices such as micro-mass-analysis systems up to 25 microns thick and novel possible to fabricate a wide very large variety of useful devices. Micro-Mass-Analysis Systems Applications

  5. Equipment qualification testing methodology research at Sandia Laboratories

    International Nuclear Information System (INIS)

    Jeppesen, D.

    1983-01-01

    The Equipment Qualification Research Testing (EQRT) program is an evolutionary outgrowth of the Qualification Testing Evaluation (QTE) program at Sandia. The primary emphasis of the program has been qualification methodology research. The EQRT program offers to the industry a research-oriented perspective on qualification-related component performance, as well as refinements to component testing standards which are based upon actual component testing research

  6. Radioactive material package testing capabilities at Sandia National Laboratories

    International Nuclear Information System (INIS)

    Uncapher, W.L.; Hohnstreiter, G.F.

    1995-01-01

    Evaluation and certification of radioactive and hazardous material transport packages can be accomplished by subjecting these packages to normal transport and hypothetical accident test conditions. The regulations allow package designers to certify packages using analysis, testing, or a combination of analysis and testing. Testing can be used to substantiate assumptions used in analytical models and to demonstrate package structural and thermal response. Regulatory test conditions include impact, puncture, crush, penetration, water spray, immersion, and thermal environments. Testing facilities are used to simulate the required test conditions and provide measurement response data. Over the past four decades, comprehensive testing facilities have been developed at Sandia National Laboratories to perform a broad range of verification and certification tests on hazardous and radioactive material packages or component sections. Sandia's facilities provide an experience base that has been established during the development and certification of many package designs. These unique facilities, along with innovative instrumentation data collection capabilities and techniques, simulate a broad range of testing environments. In certain package designs, package testing can be an economical alternative to complex analysis to resolve regulatory questions or concerns

  7. Radiation Testing at Sandia National Laboratories: Sandia – JPL Collaboration for Europa Lander

    Energy Technology Data Exchange (ETDEWEB)

    Hattar, Khalid Mikhiel [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Ion Beam Lab.; Olszewska-Wasiolek, Maryla Aleksandra [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Gamma Irradiation Facility

    2017-01-01

    Sandia National Laboratories (SNL) is assisting Jet Propulsion Laboratory in undertaking feasibility studies and performance assessments for the Planetary Protection aspect of the Europa Lander mission. The specific areas of interest for this project are described by task number. This white paper presents the evaluation results for Task 2, Radiation Testing, which was stated as follows: Survey SNL facilities and capabilities for simulating the Europan radiation environment and assess suitability for: A. Testing batteries, electronics, and other component and subsystems B. Exposing biological organisms to assess their survivability metrics. The radiation environment the Europa Lander will encounter on route and in orbit upon arrival at its destination consists primarily of charged particles, energetic protons and electrons with the energies up to 1 GeV. The charged particle environments can be simulated using the accelerators at the Ion Beam Laboratory. The Gamma Irradiation Facility and its annex, the Low Dose Rate Irradiation Facility, offer irradiations using Co-60 gamma sources (1.17 and 1.33 MeV), as well as Cs-137 gamma (0.661 MeV) AmBe neutron (0-10 MeV) sources.

  8. Mechanical simulations of sandia II tests OECD ISP 48 benchmark

    International Nuclear Information System (INIS)

    Ghavamian, Sh.; Courtois, A.; Valfort, J.-L.; Heinfling, G.

    2005-01-01

    This paper illustrates the work carried out by EDF within the framework of ISP48 post-test analysis of NUPEC/NRCN 1:4-scale model of a prestressed pressure containment vessel of a nuclear power plant. EDF as a participant of the International Standard Problem n degree 8 has performed several simulations to determine the ultimate response of the scale model. To determine the most influent parameter in such an analysis several studies were carried out. The mesh was built using a parametric tool to measure the influence of discretization on results. Different material laws of concrete were also used. The purpose of this paper is to illustrate the ultimate behaviour of SANDIA II model obtained by Code-Asterwith comparison to tests records, and also to share the lessons learned from the parametric computations and precautions that must be taken. (authors)

  9. The passive autocatalytic recombiner test program at Sandia National Laboratories

    International Nuclear Information System (INIS)

    Blanchat, T.K.; Malliakos, A.

    1998-01-01

    Sandia National Laboratories (SNL) has developed systems and methodologies to measure the amount of hydrogen that can be depleted in a containment by a passive autocatalytic recombiner (PAR). Experiments were performed that determined the hydrogen depletion rate of a PAR in the presence of steam and also evaluated the effect of scale (number of cartridges) on the PAR performance at both low and high hydrogen concentrations. (author)

  10. 1985 environmental report: Sandia National Laboratories, Tonopah Test Range, Tonopah, Nevada

    International Nuclear Information System (INIS)

    Millard, G.C.

    1986-04-01

    The Tonopah Test Range is located about 160 air miles northwest of Las Vegas, Nevada, and covers 525 square miles within the Nellis Air Force Base Bombing and Gunnery Range. The range is used for various DOE tests involving high and low altitude projectiles. Operations that affect the environment are mainly road construction, preparation of instrumentation sites, and disturbance of the terrain from projectile impacts. Monitoring of the test range is done annually by the US Environmental Protection Agency to supplement Sandia's monitoring effort associated with Sandia test activities. Monitoring results for 1984 indicate that test range operations do not adversely affect the offsite environment or the public

  11. 2013 Annual Site Environmental Report for Sandia National Laboratories Tonopah Test Range Nevada & Kauai Test Facility Hawaii

    Energy Technology Data Exchange (ETDEWEB)

    Griffith, Stacy Rene [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Agogino, Karen [National Nuclear Security Administration (NNSA), Washington, DC (United States); Li, Jun [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); White, Nancy [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Minitrez, Alexandra [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Avery, Penny [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Bailey-White, Brenda [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Bonaguidi, Joseph [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Catechis, Christopher [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); duMond, Michael [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Eckstein, Joanna [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Evelo, Stacie [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Forston, William [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Herring, III, Allen [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Lantow, Tiffany [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Martinez, Reuben [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Mauser, Joseph [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Miller, Amy [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Miller, Mark [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Payne, Jennifer [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Peek, Dennis [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Reiser, Anita [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Ricketson, Sherry [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Roma, Charles [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Salinas, Stephanie [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Ullrich, Rebecca [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)

    2014-08-01

    Tonopah Test Range (TTR) in Nevada and Kauai Test Facility (KTF) in Hawaii are government-owned, contractor-operated facilities managed and operated by Sandia Corporation (Sandia), a wholly owned subsidiary of Lockheed Martin Corporation. The U.S. Department of Energy (DOE), National Nuclear Security Administration (NNSA), through the Sandia Field Office (SFO), in Albuquerque, New Mexico, administers the contract and oversees contractor operations at TTR and KTF. Sandia manages and conducts operations at TTR in support of the DOE/NNSA’s Weapons Ordnance Program and has operated the site since 1957. Navarro Research and Engineering subcontracts to Sandia in administering most of the environmental programs at TTR. Sandia operates KTF as a rocket preparation launching and tracking facility. This Annual Site Environmental Report summarizes data and the compliance status of the sustainability, environmental protection, and monitoring program at TTR and KTF through Calendar Year 2013. The compliance status of environmental regulations applicable at these sites include state and federal regulations governing air emissions, wastewater effluent, waste management, terrestrial surveillance, Environmental Restoration (ER) cleanup activities, and the National Environmental Policy Act. Sandia is responsible only for those environmental program activities related to its operations. The DOE/NNSA/Nevada Field Office retains responsibility for the cleanup and management of TTR ER sites. Environmental monitoring and surveillance programs are required by DOE Order 231.1B, Environment, Safety, and Health Reporting (DOE 2012).

  12. Evaluating cyclic fatigue of sealants during outdoor testing

    Science.gov (United States)

    R. Sam Williams; Steven Lacher; Corey Halpin; Christopher White

    2009-01-01

    A computer-controlled test apparatus (CCTA) and other instrumentation for subjecting sealant specimens to cyclic fatigue during outdoor exposure was developed. The CCTA enables us to use weather-induced conditions to cyclic fatigue specimens and to conduct controlled tests in-situ during the outdoor exposure. Thermally induced dimensional changes of an aluminum bar...

  13. Development and Testing of an Integrated Sandia Cooler Thermoelectric Device (SCTD).

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Terry A.; Staats, Wayne Lawrence,; Leick, Michael Thomas; Zimmerman, Mark D.; Radermacher, Reinhard; Martin, Cara; Nasuta, Dennis; Kalinowski, Paul; Hoffman, William

    2014-12-01

    This report describes a FY14 effort to develop an integrated Sandia Cooler T hermoelectric D evice (SCTD) . The project included a review of feasible thermoelectric (TE) cooling applications, baseline performance testing of an existing TE device, analysis and design development of an integrated SCTD assembly, and performance measurement and validation of the integrated SCTD prototype.

  14. The Sandia MEMS Passive Shock Sensor : FY08 testing for functionality, model validation, and technology readiness.

    Energy Technology Data Exchange (ETDEWEB)

    Walraven, Jeremy Allen; Blecke, Jill; Baker, Michael Sean; Clemens, Rebecca C.; Mitchell, John Anthony; Brake, Matthew Robert; Epp, David S.; Wittwer, Jonathan W.

    2008-10-01

    This report summarizes the functional, model validation, and technology readiness testing of the Sandia MEMS Passive Shock Sensor in FY08. Functional testing of a large number of revision 4 parts showed robust and consistent performance. Model validation testing helped tune the models to match data well and identified several areas for future investigation related to high frequency sensitivity and thermal effects. Finally, technology readiness testing demonstrated the integrated elements of the sensor under realistic environments.

  15. Environmental Testing Philosophy for a Sandia National Laboratories' Small Satellite Project - A Retrospective

    Energy Technology Data Exchange (ETDEWEB)

    CAP,JEROME S.

    2000-08-24

    Sandia has recently completed the flight certification test series for the Multi-Spectral Thermal Imaging satellite (MTI), which is a small satellite for which Sandia was the system integrator. A paper was presented at the 16th Aerospace Testing Seminar discussing plans for performing the structural dynamics certification program for that satellite. The testing philosophy was originally based on a combination of system level vibroacoustic tests and component level shock and vibration tests. However, the plans evolved to include computational analyses using both Finite Element Analysis and Statistical Energy Analysis techniques. This paper outlines the final certification process and discuss lessons learned including both things that went well and things that should/could have been done differently.

  16. Results of tritium tests performed on Sandia Laboratories decontamination system

    International Nuclear Information System (INIS)

    Gildea, P.D.; Wall, W.R.; Gede, V.P.

    1978-05-01

    The Tritium Research Laboratory (TRL), a facility for performing experiments using gram amounts of tritium, became operational on October 1, 1977. As secondary containment, the TRL employs sealed glove boxes connected on demand to two central decontamination systems, the Gas Purification System and the Vacuum Effluent Recovery System. Performance tests on these systems show the tritium removal systems can achieve concentration reduction factors (ratio of inlet to exhaust concentrations) much in excess of 1000 per pass at inlet concentrations of 1 part per million or less for both tritium and tritiated methane

  17. Large-Scale Testing and High-Fidelity Simulation Capabilities at Sandia National Laboratories to Support Space Power and Propulsion

    International Nuclear Information System (INIS)

    Dobranich, Dean; Blanchat, Thomas K.

    2008-01-01

    Sandia National Laboratories, as a Department of Energy, National Nuclear Security Agency, has major responsibility to ensure the safety and security needs of nuclear weapons. As such, with an experienced research staff, Sandia maintains a spectrum of modeling and simulation capabilities integrated with experimental and large-scale test capabilities. This expertise and these capabilities offer considerable resources for addressing issues of interest to the space power and propulsion communities. This paper presents Sandia's capability to perform thermal qualification (analysis, test, modeling and simulation) using a representative weapon system as an example demonstrating the potential to support NASA's Lunar Reactor System

  18. Strain gauge validation experiments for the Sandia 34-meter VAWT (Vertical Axis Wind Turbine) test bed

    Science.gov (United States)

    Sutherland, Herbert J.

    1988-08-01

    Sandia National Laboratories has erected a research oriented, 34- meter diameter, Darrieus vertical axis wind turbine near Bushland, Texas. This machine, designated the Sandia 34-m VAWT Test Bed, is equipped with a large array of strain gauges that have been placed at critical positions about the blades. This manuscript details a series of four-point bend experiments that were conducted to validate the output of the blade strain gauge circuits. The output of a particular gauge circuit is validated by comparing its output to equivalent gauge circuits (in this stress state) and to theoretical predictions. With only a few exceptions, the difference between measured and predicted strain values for a gauge circuit was found to be of the order of the estimated repeatability for the measurement system.

  19. PASLINK and dynamic outdoor testing of building components

    NARCIS (Netherlands)

    Baker, P.H.; Dijk, H.A.L. van

    2008-01-01

    The PASLINK test facilities and analysis procedures aim to obtain the thermal and solar characteristics of building components under real dynamic outdoor conditions. Both the analysis and the test methodology have evolved since the start of the PASSYS Project in 1985. A programme of upgrading the

  20. Functional and operational requirements document : building 1012, Battery and Energy Storage Device Test Facility, Sandia National Laboratories, New Mexico.

    Energy Technology Data Exchange (ETDEWEB)

    Johns, William H. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2013-11-01

    This report provides an overview of information, prior studies, and analyses relevant to the development of functional and operational requirements for electrochemical testing of batteries and energy storage devices carried out by Sandia Organization 2546, Advanced Power Sources R&D. Electrochemical operations for this group are scheduled to transition from Sandia Building 894 to a new Building located in Sandia TA-II referred to as Building 1012. This report also provides background on select design considerations and identifies the Safety Goals, Stakeholder Objectives, and Design Objectives required by the Sandia Design Team to develop the Performance Criteria necessary to the design of Building 1012. This document recognizes the Architecture-Engineering (A-E) Team as the primary design entity. Where safety considerations are identified, suggestions are provided to provide context for the corresponding operational requirement(s).

  1. Melt/concrete interactions: the Sandia experimental program, model development, and code comparison test

    International Nuclear Information System (INIS)

    Powers, D.A.; Muir, J.F.

    1979-01-01

    High temperature melt/concrete interactions have been studied both experimentally and analytically at Sandia under sponsorship of Reactor Safety Research of the US Nuclear Regulatory Commission. The purpose of these studies has been to develop an understanding of these interactions suitable for risk assessment. Results of the experimental program are summarized and a computer model of melt/concrete interactions is described. A melt/concrete interaction test that will allow this and other models of the interaction to be compared is also described

  2. Test and evaluation procedures for Sandia's Teraflops Operating System (TOS) on Janus.

    Energy Technology Data Exchange (ETDEWEB)

    Barnette, Daniel Wayne

    2005-10-01

    This report describes the test and evaluation methods by which the Teraflops Operating System, or TOS, that resides on Sandia's massively-parallel computer Janus is verified for production release. Also discussed are methods used to build TOS before testing and evaluating, miscellaneous utility scripts, a sample test plan, and a proposed post-test method for quickly examining the large number of test results. The purpose of the report is threefold: (1) to provide a guide to T&E procedures, (2) to aid and guide others who will run T&E procedures on the new ASCI Red Storm machine, and (3) to document some of the history of evaluation and testing of TOS. This report is not intended to serve as an exhaustive manual for testers to conduct T&E procedures.

  3. Verification testing of the PKI collector at Sandia National Laboratories, Albuquerque, New Mexico

    Science.gov (United States)

    Hauger, J. S.; Pond, S. L.

    1982-07-01

    Verification testing of a solar collector was undertaken prior to its operation as part of an industrial process heat plant at Capitol Concrete Products in Topeka, Kansas. Testing was performed at a control plant installed at Sandia National Laboratory, Albuquerque, New Mexico (SNLA). Early results show that plant performance is even better than anticipated and far in excess of test criteria. Overall plant efficiencies of 65 to 80 percent were typical during hours of good insolation. A number of flaws and imperfections were detected during operability testing, the most important being a problem in elevation drive alignment due to a manufacturing error. All problems were corrected as they occurred and the plant, with over 40 hours of operation, is currently continuing operability testing in a wholly-automatic mode.

  4. Inside Sandia

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    Articles in this issue include ``Molten salt corrosion testing,`` ``Pulsed ion beams for thermal surface treatment: Improved corrosion, wear, and hardness properties at low cost,`` ``Unmasking hidden armaments: Superconducting gravity sensor could find underground weapons, bunkers,`` ``Charbroiled burgers, heterocyclic amines, and cancer: Molecular modeling identifies dangerous mutagens,`` ``Revolutionary airbag offers increased safety options,`` ``EcoSys{sup TM}: an expert system for `Green Design` ``, ``Sandia, salt, and oil: Labs` diagnostics and analysis help maintain vital US oil reserve,`` and ``Automated fixture design speeds development for prototypes and production``.

  5. OECD/NEA Sandia Fuel Project phase I: Benchmark of the ignition testing

    Energy Technology Data Exchange (ETDEWEB)

    Adorni, Martina, E-mail: martina_adorni@hotmail.it [UNIPI (Italy); Herranz, Luis E. [CIEMAT (Spain); Hollands, Thorsten [GRS (Germany); Ahn, Kwang-II [KAERI (Korea, Republic of); Bals, Christine [GRS (Germany); D' Auria, Francesco [UNIPI (Italy); Horvath, Gabor L. [NUBIKI (Hungary); Jaeckel, Bernd S. [PSI (Switzerland); Kim, Han-Chul; Lee, Jung-Jae [KINS (Korea, Republic of); Ogino, Masao [JNES (Japan); Techy, Zsolt [NUBIKI (Hungary); Velazquez-Lozad, Alexander; Zigh, Abdelghani [USNRC (United States); Rehacek, Radomir [OECD/NEA (France)

    2016-10-15

    Highlights: • A unique PWR spent fuel pool experimental project is analytically investigated. • Predictability of fuel clad ignition in case of a complete loss of coolant in SFPs is assessed. • Computer codes reasonably estimate peak cladding temperature and time of ignition. - Abstract: The OECD/NEA Sandia Fuel Project provided unique thermal-hydraulic experimental data associated with Spent Fuel Pool (SFP) complete drain down. The study conducted at Sandia National Laboratories (SNL) was successfully completed (July 2009 to February 2013). The accident conditions of interest for the SFP were simulated in a full scale prototypic fashion (electrically heated, prototypic assemblies in a prototypic SFP rack) so that the experimental results closely represent actual fuel assembly responses. A major impetus for this work was to facilitate severe accident code validation and to reduce modeling uncertainties within the codes. Phase I focused on axial heating and burn propagation in a single PWR 17 × 17 assembly (i.e. “hot neighbors” configuration). Phase II addressed axial and radial heating and zirconium fire propagation including effects of fuel rod ballooning in a 1 × 4 assembly configuration (i.e. single, hot center assembly and four, “cooler neighbors”). This paper summarizes the comparative analysis regarding the final destructive ignition test of the phase I of the project. The objective of the benchmark is to evaluate and compare the predictive capabilities of computer codes concerning the ignition testing of PWR fuel assemblies. Nine institutions from eight different countries were involved in the benchmark calculations. The time to ignition and the maximum temperature are adequately captured by the calculations. It is believed that the benchmark constitutes an enlargement of the validation range for the codes to the conditions tested, thus enhancing the code applicability to other fuel assembly designs and configurations. The comparison of

  6. Installation and Testing Instructions for the Sandia Automatic Report Generator (ARG).

    Energy Technology Data Exchange (ETDEWEB)

    Clay, Robert L.

    2018-04-01

    Robert L. CLAY Sandia National Laboratories P.O. Box 969 Livermore, CA 94551, U.S.A. rlclay@sandia.gov In this report, we provide detailed and reproducible installation instructions of the Automatic Report Generator (ARG), for both Linux and macOS target platforms.

  7. Modification and testing of the Sandia Laboratories Livermore tritium decontamination systems

    International Nuclear Information System (INIS)

    Gildea, P.D.; Birnbaum, H.G.; Wall, W.R.

    1978-08-01

    Sandia Laboratories, Livermore, has put into operation a new facility, the Tritium Research Laboratory. The laboratory incorporates containment and cleanup facilities such that any tritium accidentally released is captured rather than vented to the atmosphere. This containment is achieved with hermetically sealed glove boxes that are connected on demand by manifolds to two central decontamination systems called the Gas Purification System (GPS) and the Vacuum Effluent Recovery System (VERS). The primary function of the GPS is to remove tritium and tritiated water vapor from the glove box atmosphere. The primary function of the VERS is to decontaminate the gas exhausted from the glove box pressure control systems and vacuum pumps in the building before venting the gas to the stack. Both of these systems are designed to remove tritium to the few parts per billion range. Acceptance tests at the manufacturer's plant and preoperational testing at Livermore demonstrated that the systems met their design specifications. After preoperational testing the Gas Purification System was modified to enhance the safety of maintanance operations. Both the Gas Purification System and the Vacuum Effluent Recovery System were performance tested with tritium. Results show that concentraion reduction factors (ratio of inlet to exhaust concentrations) much in excess of 1000 per pass have been achieved for both systems at inlet concentrations of 1 ppM or less

  8. Modification and testing of the Sandia Laboratories Livermore tritium decontamination systems

    International Nuclear Information System (INIS)

    Gildea, P.D.; Birnbaum, H.G.; Wall, W.R.

    1979-01-01

    Sandia Laboratories, Livermore, has put into operation a new facility, the Tritium Research Laboratory. The laboratory incorporates containment and cleanup facilities such that any tritium accidentally released is captured rather than vented to the atmosphere. This containment is achieved with hermetically sealed glove boxes that are connected on demand by manifolds to two central decontamination systems called the Gas Purification System (GPS) and the Vacuum Effluent Recovery System (VERS). The primary function of the GPS is to remove tritium and tritiated water vapor from the glove box atmosphere. The primary function of the VERS is to decontaminate the gas exhausted from the glove box pressure control systems and vacuum pumps in the building before venting the gas to the stack. Both of these systems are designed to remove tritium to the few parts per billion range. Acceptance tests at the manufacturer's plant and preoperational testing at Livermore demonstrated that the systems met their design specifications. After preoperational testing the Gas Purification System was modified to enhance the safety of maintanance operations. Both the Gas Purification System and the Vacuum Effluent Recovery System were performance tested with tritium. Results show that concentration reduction factors (ratio of inlet to exhaust concentrations) much in excess of 1000 per pass have been achieved for both systems at inlet concentrations of 1 ppM or less

  9. Technique for Outdoor Test on Concentrating Photovoltaic Cells

    Directory of Open Access Journals (Sweden)

    Paola Sansoni

    2015-01-01

    Full Text Available Outdoor experimentation of solar cells is essential to maximize their performance and to assess utilization requirements and limits. More generally tests with direct exposure to the sun are useful to understand the behavior of components and new materials for solar applications in real working conditions. Insolation and ambient factors are uncontrollable but can be monitored to know the environmental situation of the solar exposure experiment. A parallel characterization of the photocells can be performed in laboratory under controllable and reproducible conditions. A methodology to execute solar exposure tests is proposed and practically applied on photovoltaic cells for a solar cogeneration system. The cells are measured with concentrated solar light obtained utilizing a large Fresnel lens mounted on a sun tracker. Outdoor measurements monitor the effects of the exposure of two multijunction photovoltaic cells to focused sunlight. The main result is the continuous acquisition of the V-I (voltage-current curve for the cells in different conditions of solar concentration and temperature of exercise to assess their behavior. The research investigates electrical power extracted, efficiency, temperatures reached, and possible damages of the photovoltaic cell.

  10. Historical sketches of Sandia National Laboratories nuclear field testing. Volume 1: Full discussion except for sensitive references

    International Nuclear Information System (INIS)

    Banister, J.R.

    1994-10-01

    This report contains historical sketches that cover the major activities of Sandia nuclear field testing, from early atmospheric shots until 1990. It includes a chronological overview followed by more complete discussions of atmospheric, high-altitude, underwater, cratering, and underground nuclear testing. Other activities related to nuclear testing and high-explosive tests are also described. A large number of references are cited for readers who wish to learn more about technical details. Appendices, written by several authors, provide more insight for a variety of special aspects of nuclear testing and related work. Two versions of this history were published: volume 1 has an unlimited distribution, and volume 2 has a limited distribution

  11. SABRE (Sandia Accelerator and Beam Research Experiment): A test bed for the light ion fusion program

    International Nuclear Information System (INIS)

    Cuneo, M.E.; Hanson, D.L.; McKay, P.F.; Maenchen, J.E.; Tisone, G.C.; Adams, R.G.; Nash, T.; Bernard, M.; Boney, C.; Chavez, J.R.; Fowler, W.F.; Ruscetti, J.; Stearns, W.F.; Noack, D.; Wenger, D.F.

    1992-01-01

    Extraction applied-B ion diode experiments are underway on the recently completed SABRE positive polarity linear induction accelerator (6 MV, 220 kA). The authors are performing these experiments in direct support of the light ion fusion program on PBFAII at Sandia. SABRE provides a test bed with a higher shot rate and improved diagnostic access for ion source development and ion beam divergence control experiments. These experiments will also address the coupling of an ion diode to the turbulent, wide spectrum feed electrons which occur on these inductive adders in positive polarity. This work continues previous work on the HELIA accelerator. The diode is a uniformly magnetically insulated, extraction ion diode, with a 5-cm mean anode surface radius. The uniform insulation field profiles are generated by four individual 60 kJ capacitor banks. Field-exclusion profiles are also anticipated. They have developed a wide array of electrical, ion beam, and plasma diagnostics to accomplish their objectives. MITL (magnetically insulated transmission line) and diode voltages are being measured with a magnetic spectrometer, a range-filtered-scintillator (RFS) fiber optic/PMT system, and a range-filtered CR-39 nuclear track film based system. Beam energy can be determined by these diagnostics as well as a filtered Faraday cup array. MITL and ion currents are being measured with an array of Rogowski coils, common-mode rejection and single turn Bs, and resistive shunts. The ion source experiments will investigate thin-film lithium ion sources, particularly the active LEVIS (Laser EVaporation Ion Source) and the passive LiF source. LEVIS uses two pulsed lasers to evaporate and then ionize lithium from a lithium bearing thin-film on the anode. A ruby laser (20 ns, 12 J) for evaporation, and a dye laser for resonant lithium ionization have been developed. The performance of LEVIS with an array of active and passive surface cleaning techniques will be studied

  12. Sandia National Laboratories: Working with Sandia: Procurement:

    Science.gov (United States)

    ; Technology Defense Systems & Assessments About Defense Systems & Assessments Program Areas Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios Contract Audit Working with Sandia Construction and Facilities Sandia establishes contracts to support

  13. Sandia National Laboratories, Tonopah Test Range Fire Control Bunker (Building 09-51): Photographs and Written Historical and Descriptive Data

    Energy Technology Data Exchange (ETDEWEB)

    Ullrich, Rebecca A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Corporate Archives and History Program

    2017-08-01

    The Fire Control Bunker (Building 09-51) is a contributing element to the Sandia National Laboratories (SNL) Tonopah Test Range (TTR) Historic District. The SNL TTR Historic District played a significant role in U.S. Cold War history in the areas of stockpile surveillance and non-nuclear field testing of nuclear weapons design. The district covers approximately 179,200 acres and illustrates Cold War development testing of nuclear weapons components and systems. This report includes historical information, architectural information, sources of information, project information, maps, blueprints, and photographs.

  14. Recent advances with quiescent power supply current (I(sub DDQ)) testing at Sandia using the HP82000

    Science.gov (United States)

    Righter, A. W.; Leong, D. J.; Cox, L. B.

    Last year at the HP82000 Users Group Meeting, Sandia National Laboratories gave a presentation on I(sub DDQ) testing. This year, some advances are presented on this testing including DUT board fixturing, external DC PMU measurement, and automatic IDD-All circuit calibration. Implementation is examined more than theory, with results presented from Sandia tests. After a brief summary I(sub DDQ) theory and testing concepts, how the break (hold state) vector and data formatting present a test vector generation concern for the HP82000 is described. Fixturing of the DUT board for both types of I(sub DDQ) measurement is then discussed, along with how the continuity test and test vector generation must be taken into account. Results of a test including continuity, IDD-All and I(sub DDQ) Value measurements is shown. Next, measurement of low current using an external PMU is discussed, including noise considerations, implementation and some test results showing nA-range measurements. A method is presented for automatic calibration of the IDD-All analog comparator circuit using RM BASIC on the HP82000, with implementation and measurement results. Finally, future directions for research in this area is explored.

  15. 78 FR 63971 - Notice of Availability of Record of Decision for Outdoor Research, Development, Test and...

    Science.gov (United States)

    2013-10-25

    ... DEPARTMENT OF DEFENSE Department of the Navy Notice of Availability of Record of Decision for Outdoor Research, Development, Test and Evaluation Activities at Naval Surface Warfare Center, Dahlgren... (NSWCDD) outdoor research, development, test and evaluation (RDT&E) activities within the Potomac River...

  16. Sandia National Laboratories: Working with Sandia

    Science.gov (United States)

    Defense Systems & Assessments About Defense Systems & Assessments Program Areas Accomplishments Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios /Facilities Contract Audit Technology Partnerships Sandia collaborates with industry, small businesses

  17. Sandia National Laboratories: Sandia National Laboratories: Missions:

    Science.gov (United States)

    Defense Systems & Assessments: About Us Sandia National Laboratories Exceptional service in ; Security Weapons Science & Technology Defense Systems & Assessments About Defense Systems & Information Construction & Facilities Contract Audit Sandia's Economic Impact Licensing & Technology

  18. Sandia National Laboratories: Sandia Enabled Communications and

    Science.gov (United States)

    Locator Search Menu About Leadership Mission Social Media Community Involvement Contribution Programs Social Media Careers View All Jobs Students & Postdocs Benefits & Perks Hiring Process Life at New Mexico Small Business Assistance Program Sandia's Economic Impact Sandia Science & Technology

  19. Sandia National Laboratories

    Data.gov (United States)

    Federal Laboratory Consortium — For more than 60 years, Sandia has delivered essential science and technology to resolve the nation's most challenging security issues.Sandia National Laboratories...

  20. Sandia WIPP calibration traceability

    Energy Technology Data Exchange (ETDEWEB)

    Schuhen, M.D. [Sandia National Labs., Albuquerque, NM (United States); Dean, T.A. [RE/SPEC, Inc., Albuquerque, NM (United States)

    1996-05-01

    This report summarizes the work performed to establish calibration traceability for the instrumentation used by Sandia National Laboratories at the Waste Isolation Pilot Plant (WIPP) during testing from 1980-1985. Identifying the calibration traceability is an important part of establishing a pedigree for the data and is part of the qualification of existing data. In general, the requirement states that the calibration of Measuring and Test equipment must have a valid relationship to nationally recognized standards or the basis for the calibration must be documented. Sandia recognized that just establishing calibration traceability would not necessarily mean that all QA requirements were met during the certification of test instrumentation. To address this concern, the assessment was expanded to include various activities.

  1. Sandia WIPP calibration traceability

    International Nuclear Information System (INIS)

    Schuhen, M.D.; Dean, T.A.

    1996-05-01

    This report summarizes the work performed to establish calibration traceability for the instrumentation used by Sandia National Laboratories at the Waste Isolation Pilot Plant (WIPP) during testing from 1980-1985. Identifying the calibration traceability is an important part of establishing a pedigree for the data and is part of the qualification of existing data. In general, the requirement states that the calibration of Measuring and Test equipment must have a valid relationship to nationally recognized standards or the basis for the calibration must be documented. Sandia recognized that just establishing calibration traceability would not necessarily mean that all QA requirements were met during the certification of test instrumentation. To address this concern, the assessment was expanded to include various activities

  2. Sandia Wake Imaging System Field Test Report: 2015 Deployment at the Scaled Wind Farm Technology (SWiFT) Facility.

    Energy Technology Data Exchange (ETDEWEB)

    Naughton, Brian Thomas [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Herges, Thomas [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-10-01

    This report presents the objectives, configuration, procedures, reporting , roles , and responsibilities and subsequent results for the field demonstration of the Sandia Wake Imaging System (SWIS) at the Sandia Scaled Wind Farm Technology (SWiFT) facility near Lubbock, Texas in June and July 2015.

  3. Global nuclear energy partnership fuels transient testing at the Sandia National Laboratories nuclear facilities : planning and facility infrastructure options

    International Nuclear Information System (INIS)

    Kelly, John E.; Wright, Steven Alan; Tikare, Veena; MacLean, Heather J.; Parma, Edward J.Jr; Peters, Curtis D.; Vernon, Milton E.; Pickard, Paul S.

    2007-01-01

    The Global Nuclear Energy Partnership fuels development program is currently developing metallic, oxide, and nitride fuel forms as candidate fuels for an Advanced Burner Reactor. The Advance Burner Reactor is being designed to fission actinides efficiently, thereby reducing the long-term storage requirements for spent fuel repositories. Small fuel samples are being fabricated and evaluated with different transuranic loadings and with extensive burnup using the Advanced Test Reactor. During the next several years, numerous fuel samples will be fabricated, evaluated, and tested, with the eventual goal of developing a transmuter fuel database that supports the down selection to the most suitable fuel type. To provide a comparative database of safety margins for the range of potential transmuter fuels, this report describes a plan to conduct a set of early transient tests in the Annular Core Research Reactor at Sandia National Laboratories. The Annular Core Research Reactor is uniquely qualified to perform these types of tests because of its wide range of operating capabilities and large dry central cavity which extents through the center of the core. The goal of the fuels testing program is to demonstrate that the design and fabrication processes are of sufficient quality that the fuel will not fail at its design limit--up to a specified burnup, power density, and operating temperature. Transient testing is required to determine the fuel pin failure thresholds and to demonstrate that adequate fuel failure margins exist during the postulated design basis accidents

  4. Global nuclear energy partnership fuels transient testing at the Sandia National Laboratories nuclear facilities : planning and facility infrastructure options.

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, John E.; Wright, Steven Alan; Tikare, Veena; MacLean, Heather J. (Idaho National Laboratory, Idaho Falls, ID); Parma, Edward J., Jr.; Peters, Curtis D.; Vernon, Milton E.; Pickard, Paul S.

    2007-10-01

    The Global Nuclear Energy Partnership fuels development program is currently developing metallic, oxide, and nitride fuel forms as candidate fuels for an Advanced Burner Reactor. The Advance Burner Reactor is being designed to fission actinides efficiently, thereby reducing the long-term storage requirements for spent fuel repositories. Small fuel samples are being fabricated and evaluated with different transuranic loadings and with extensive burnup using the Advanced Test Reactor. During the next several years, numerous fuel samples will be fabricated, evaluated, and tested, with the eventual goal of developing a transmuter fuel database that supports the down selection to the most suitable fuel type. To provide a comparative database of safety margins for the range of potential transmuter fuels, this report describes a plan to conduct a set of early transient tests in the Annular Core Research Reactor at Sandia National Laboratories. The Annular Core Research Reactor is uniquely qualified to perform these types of tests because of its wide range of operating capabilities and large dry central cavity which extents through the center of the core. The goal of the fuels testing program is to demonstrate that the design and fabrication processes are of sufficient quality that the fuel will not fail at its design limit--up to a specified burnup, power density, and operating temperature. Transient testing is required to determine the fuel pin failure thresholds and to demonstrate that adequate fuel failure margins exist during the postulated design basis accidents.

  5. 2016 Annual Site Environmental report Sandia National Laboratories Tonopah Test Range Nevada & Kaua'i Test Facility Hawai'i.

    Energy Technology Data Exchange (ETDEWEB)

    Salas, Angela Maria [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Griffith, Stacy R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-07-01

    Sandia National Laboratories (SNL) is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy’s (DOE’s), National Nuclear Security Administration (NNSA) under contract DE-NA0003525. The DOE/NNSA Sandia Field Office administers the contract and oversees contractor operations at the SNL, Tonopah Test Range (SNL/TTR) in Nevada and the SNL, Kaua‘i Test Facility (SNL/KTF) in Hawai‘i. SNL personnel manage and conduct operations at SNL/TTR in support of the DOE/NNSA’s Weapons Ordnance Program and have operated the site since 1957. Navarro Research and Engineering personnel perform most of the environmental programs activities at SNL/TTR. The DOE/NNSA/Nevada Field Office retains responsibility for cleanup and management of SNL/TTR Environmental Restoration sites. SNL personnel operate SNL/KTF as a rocket preparation launching and tracking facility. This Annual Site Environmental Report (ASER) summarizes data and the compliance status of sustainability, environmental protection, and monitoring programs at SNL/TTR and SNL/KTF during calendar year 2016. Major environmental programs include air quality, water quality, groundwater protection, terrestrial and biological surveillance, waste management, pollution prevention, environmental restoration, oil and chemical spill prevention, and implementation of the National Environmental Policy Act. This ASER is prepared in accordance with and as required by DOE O 231.1B, Admin Change 1, Environment, Safety, and Health Reporting.

  6. Review of Transient Fuel Test Results at Sandia National Laboratories and the Potential for Future Fast Reactor Fuel Transient Testing in the Annular Core Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Wright, Steven A.; Pickard, Paul S.; Parma, Edward J.; Vernon, Milton E.; Kelly, John; Tikare, Veena [Sandia National Laboratories, Org 6872 MS-1146, PO Box 5800 Albuquerque, New Mexico 87185 (United States)

    2009-06-15

    Reactor driven transient tests of fast reactor fuels may be required to support the development and certification of new fuels for Fast Reactors. The results of the transient fuel tests will likely be needed to support licensing and to provide validation data to support the safety case for a variety of proposed fast fuel types and reactors. In general reactor driven transient tests are used to identify basic phenomenology during reactor transients and to determine the fuel performance limits and margins to failure during design basis accidents such as loss of flow, loss of heat sink, and reactivity insertion accidents. This paper provides a summary description of the previous Sandia Fuel Disruption and Transient Axial Relocation tests that were performed in the Annular Core Research Reactor (ACRR) for the U.S. Nuclear Regulatory Commission almost 25 years ago. These tests consisted of a number of capsule tests and flowing gas tests that used fission heating to disrupt fresh and irradiated MOX fuel. The behavior of the fuel disruption, the generation of aerosols and the melting and relocation of fuel and cladding was recorded on high speed cinematography. This paper will present videos of the fuel disruption that was observed in these tests which reveal stark differences in fuel behavior between fresh and irradiated fuel. Even though these tests were performed over 25 years ago, their results are still relevant to today's reactor designs. These types of transient tests are again being considered by the Advanced Fuel Cycle Initiative to support the Global Nuclear Energy Partnership because of the need to perform tests on metal fuels and transuranic fuels. Because the Annular Core Research Reactor is the only transient test facility available within the US, a brief summary of Sandia's continued capability to perform these tests in the ACRR will also be provided. (authors)

  7. Sandia National Laboratories cask drop test programme: a demonstration of fracture mechanics principles for the prevention of brittle fracture

    International Nuclear Information System (INIS)

    McConnell, P.; Sorenson, K.B.

    1995-01-01

    Sandia National Laboratories recently completed a cask drop test programme. The aims of the programme were (1) to demonstrate the applicability of a fracture mechanics-based methodology for ensuring cask integrity, and (2) to assess the viability of using a ferritic materials for cask containment. The programme consisted of four phases: (i) materials characterisation; (ii) non-destructive examination of the cask; (iii) finite element analyses of the drop events; and (iv) a series of drop tests of a ductile iron cask. The first three phases of the programme provided information for fracture mechanics analyses and predictions for the drop test phase. The drop tests were nominally based upon the IAEA 9 m drop height hypothetical accident scenario although one drop test was from 18 m. All tests were performed in the side drop orientation at a temperature of -29 o C. A circumferential, mid-axis flaw was introduced into the cask body for each drop test. Flaw depth ranged from 19 to 76 mm. Steel saddles were welded to the side wall of the cask to enhance the stresses imposed upon the cask in the region of the introduced flaw. The programme demonstrated the applicability of a fracture mechanics methodology for predicting the conditions under which brittle fracture may occur and thereby the utility of fracture mechanics design for ensuring cask structural integrity by ensuring an appropriate margin of safety. Positive assessments of ductile iron for cask containment and the quality of the casting process for producing ductile iron casks were made. The results of this programme have provided data to support IAEA efforts to develop brittle fracture acceptance criteria for cask containment. (author)

  8. Biologic surveys for the Sandia National Laboratories, Coyote Canyon Test Complex, Kirtland Air Force Base, Albuquerque, New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, R.M. [4115 Allen Dr., Kingsville, TX (United States); Knight, P.J. [Marron and Associates, Inc., Corrales, NM (United States)

    1994-05-25

    This report provides results of a comprehensive biologic survey performed in Coyote Canyon Test Complex (CCTC), Sandia National Laboratories (SNL), Bernalillo County, New Mexico, which was conducted during the spring and summer of 1992 and 1993. CCTC is sited on land owned by the Department of Energy (DOE) and Kirtland Air Force Base and managed by SNL. The survey covered 3,760 acres of land, most of which is rarely disturbed by CCTC operations. Absence of grazing by livestock and possibly native ungulates, and relative to the general condition of private range lands throughout New Mexico, and relative to other grazing lands in central New Mexico. Widely dispersed, low intensity use by SNL as well as prohibition of grazing has probably contributed to abundance of special status species such as grama grass cactus within the CCTC area. This report evaluates threatened and endangered species found in the area, as well as comprehensive assessment of biologic habitats. Included are analyses of potential impacts and mitigative measures designed to reduce or eliminate potential impacts. Included is a summary of CCTC program and testing activities.

  9. Standard testing procedures for optical fiber and unshielded twisted pair at Sandia National Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Adams, R.L.

    1993-11-01

    This document will establish a working standard for testing optical fiber and unshielded twisted pair cables included in the Lab-wide telecommunications cabling system. The purpose of these standard testing procedures is to deliver to all Sandians a reliable, low-maintenance, state-of-the-art, ubiquitous telecommunications cabling infrastructure capable of satisfying all current and future telecommunication needs.

  10. Sandia Pulse Reactor-IV Project

    International Nuclear Information System (INIS)

    Reuscher, J.A.

    1983-01-01

    Sandia National Laboratories has developed, designed and operated fast burst reactors for over 20 years. These reactors have been used for a variety of radiation effects programs. During this period, programs have required larger irradiation volumes primarily to expose complex electronic systems to postulated threat environments. As experiment volumes increased, a new reactor was built so that these components could be tested. The Sandia Pulse Reactor-IV is a logical evolution of the two decades of fast burst reactor development at Sandia

  11. Sandia National Laboratories: Sandia National Laboratories: Missions:

    Science.gov (United States)

    Responsibility History Diversity Social Media Careers View All Jobs Students & Postdocs Benefits & Perks Technology Deployment Centers New Mexico Small Business Assistance Program Sandia's Economic Impact Sandia interest Menu Search Icon Locations Contact Us Employee Locator Search Menu About Leadership Mission Social

  12. Sandia National Laboratories: Feedback

    Science.gov (United States)

    Locations Contact Us Employee Locator Search Menu About Leadership Mission Social Media Community Responsibility History Diversity Social Media Careers View All Jobs Students & Postdocs Benefits & Perks Technology Deployment Centers New Mexico Small Business Assistance Program Sandia's Economic Impact Sandia

  13. Sandia National Laboratories: Working with Sandia: What Does Sandia Buy?

    Science.gov (United States)

    Environmental Management System Pollution Prevention History 60 impacts Diversity Locations Facts & Figures Does Sandia Buy? Opportunities Small Business Procurement Technical Assistance Program (PTAP) Current Technology Partnerships Business, Industry, & Non-Profits Government Universities Center for

  14. Indirect deformation (strain) measurements and calibrations in Sandia triaxial apparatus for rock testing to 2500C

    International Nuclear Information System (INIS)

    Wawersik, W.R.

    1979-09-01

    Indirect procedures for axial and radial strain measurements on rock in triaxial tests to 250 0 C are presented. The description of techniques includes discussions of all calibrations and of the accuracies of measurements. In addition, two examples are given to show how the techniques are implemented in triaxial compression and triaxial extension experiments. 10 figures

  15. This is Sandia

    Energy Technology Data Exchange (ETDEWEB)

    1995-02-01

    Sandia is a multiprogram engineering and science laboratory operated for the Department of Energy with major facilities at Albuquerque, New Mexico, and Livermore, California, and a test range near Tonapah, Nevada. It has major research and development responsibilities for nuclear weapons, arms control, energy, the environment, economic competitiveness, and other areas of importance to the needs of the nation. The principal mission is to support national defense policies by ensuring that the nuclear weapon stockpile meets the highest standards of safety, reliability, security, use control, and military performance. This publication gives a brief overview of the multifaceted research programs conducted by the laboratory.

  16. Sandia National Laboratories Small-Scale Sensitivity Testing (SSST) Report: Calcium Nitrate Mixtures with Various Fuels.

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, Jason Joe [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)

    2014-07-01

    Based upon the presented sensitivity data for the examined calcium nitrate mixtures using sugar and sawdust, contact handling/mixing of these materials does not present hazards greater than those occurring during handling of dry PETN powder. The aluminized calcium nitrate mixtures present a known ESD fire hazard due to the fine aluminum powder fuel. These mixtures may yet present an ESD explosion hazard, though this has not been investigated at this time. The detonability of these mixtures will be investigated during Phase III testing.

  17. NESHAP Annual Report for CY 2015 Sandia National Laboratories Tonopah Test Range

    Energy Technology Data Exchange (ETDEWEB)

    Evelo, Stacie [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-05-01

    This National Emission Standards for Hazardous Air Pollutants (NESHAP) Annual Report has been prepared in a format to comply with the reporting requirements of 40 CFR 61.94 and the April 5, 1995 Memorandum of Agreement (MOA) between the Department of Energy (DOE) and the Environmental Protection Agency (EPA). According to the EPA approved NESHAP Monitoring Plan for the Tonopah Test Range (TTR), 40 CFR 61, subpart H, and the MOA, no additional monitoring or measurements are required at TTR in order to demonstrate compliance with the NESHAP regulation.

  18. Sandia National Laboratories/New Mexico existing environmental analyses bounding environmental test facilities.

    Energy Technology Data Exchange (ETDEWEB)

    May, Rodney A.; Bailey-White, Brenda E. (Sandia Staffing Alliance, LLC, Albuquerque, NM); Cantwell, Amber (Sandia Staffing Alliance, LLC, Albuquerque, NM)

    2009-06-01

    This report identifies current environmental operating parameters for the various test and support facilities at SNL/NM. The intent of this report is solely to provide the limits which bound the facilities' operations. Understanding environmental limits is important to maximizing the capabilities and working within the existing constraints of each facility, and supports the decision-making process in meeting customer requests, cost and schedule planning, modifications to processes, future commitments, and use of resources. Working within environmental limits ensures that mission objectives will be met in a manner that protects human health and the environment. It should be noted that, in addition to adhering to the established limits, other approvals and permits may be required for specific projects.

  19. Results of the initial test program for the Sandia Pulsed Reactor III (SPR III)

    International Nuclear Information System (INIS)

    Estes, B.F.; Reuscher, J.A.

    1976-08-01

    This document presents a detailed discussion of the reactor including the mechanical and nuclear design characteristics. Also presented are the complete results of the Initial Approach to Critical and the Zero-and-Low Power testing programs. Reactivity worth measurements are given for such parameters as control element integral worth, Safety Block integral worth, and various materials (polyethylene, copper, lead, etc) as a function of position relative to the core. Subcritical reactivity measurements made during the approach to critical generally proved to be in reasonably good agreement with design values due to the good source-fuel-detector geometry possible with a reactor of this type. Subsequent dynamic measurements for reactivity worths are shown to be in good agreement with calculated results

  20. State-of-the-art methods for testing materials outdoors

    Science.gov (United States)

    R. Sam Williams

    2004-01-01

    In recent years, computers, sensors, microelectronics, and communication technologies have made it possible to automate the way materials are tested in the field. It is now possible to purchase monitoring equipment to measure weather and materials properties. The measurement of materials response often requires innovative approaches and added expense, but the...

  1. Sandia National Laboratories, Tonopah Test Range Assembly Building 9B (Building 09-54): Photographs and Written Historical and Descriptive Data

    Energy Technology Data Exchange (ETDEWEB)

    Ullrich, Rebecca A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Corporate Archives and History Program

    2017-08-01

    Assembly Building 9B (Building 09-54) is a contributing element to the Sandia National Laboratories (SNL) Tonopah Test Range (TTR) Historic District. The SNL TTR Historic District played a significant role in U.S. Cold War history in the areas of stockpile surveillance and non-nuclear field testing of nuclear weapons designs. The district covers approximately 179,200 acres and illustrates Cold War development testing of nuclear weapons components and systems. This report includes historical information, architectural information, sources of information, project information, maps, blueprints, and photographs.

  2. Radiological dispersal device outdoor simulation test: Cesium chloride particle characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sang Don, E-mail: lee.sangdon@epa.gov [U.S. Environmental Protection Agency, Research Triangle Park, NC 27711 (United States); Snyder, Emily G.; Willis, Robert [U.S. Environmental Protection Agency, Research Triangle Park, NC 27711 (United States); Fischer, Robert; Gates-Anderson, Dianne; Sutton, Mark [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); Viani, Brian [Simbol Mining Corp., Pleasanton, CA 94566 (United States); Drake, John [U.S. Environmental Protection Agency, Cincinnati, OH 45268 (United States); MacKinney, John [U.S. Department of Homeland Security, Washington, DC 20528 (United States)

    2010-04-15

    Particles were generated from the detonation of simulated radiological dispersal devices (RDDs) using non-radioactive CsCl powder and explosive C4. The physical and chemical properties of the resulting particles were characterized. Two RDD simulation tests were conducted at Lawrence Livermore National Laboratory: one of the simulated RDDs was positioned 1 m above a steel plate and the other was partially buried in soil. Particles were collected with filters at a distance of 150 m from the origin of the RDD device, and particle mass concentrations were monitored to identify the particle plume intensity using real time particle samplers. Particles collected on filters were analyzed via computer-controlled scanning electron microscopy coupled with energy dispersive X-ray spectrometry (CCSEM/EDX) to determine their size distribution, morphology, and chemical constituents. This analysis showed that particles generated by the detonation of explosives can be associated with other materials (e.g., soil) that are in close proximity to the RDD device and that the morphology and chemical makeup of the particles change depending on the interactions of the RDD device with the surrounding materials.

  3. Radiological dispersal device outdoor simulation test: Cesium chloride particle characteristics

    International Nuclear Information System (INIS)

    Lee, Sang Don; Snyder, Emily G.; Willis, Robert; Fischer, Robert; Gates-Anderson, Dianne; Sutton, Mark; Viani, Brian; Drake, John; MacKinney, John

    2010-01-01

    Particles were generated from the detonation of simulated radiological dispersal devices (RDDs) using non-radioactive CsCl powder and explosive C4. The physical and chemical properties of the resulting particles were characterized. Two RDD simulation tests were conducted at Lawrence Livermore National Laboratory: one of the simulated RDDs was positioned 1 m above a steel plate and the other was partially buried in soil. Particles were collected with filters at a distance of 150 m from the origin of the RDD device, and particle mass concentrations were monitored to identify the particle plume intensity using real time particle samplers. Particles collected on filters were analyzed via computer-controlled scanning electron microscopy coupled with energy dispersive X-ray spectrometry (CCSEM/EDX) to determine their size distribution, morphology, and chemical constituents. This analysis showed that particles generated by the detonation of explosives can be associated with other materials (e.g., soil) that are in close proximity to the RDD device and that the morphology and chemical makeup of the particles change depending on the interactions of the RDD device with the surrounding materials.

  4. Analysis of instantaneous profile test data from soils near the Mixed Waste Landfill, Technical Area 3, Sandia National Laboratories/New Mexico

    International Nuclear Information System (INIS)

    Goering, T.J.; McVey, M.D.; Strong, W.R.; Peace, J.L.

    1996-02-01

    This paper presents the results of an instantaneous profile test conducted near the Mixed Waste Landfill at Sandia National Laboratories/New Mexico. The purpose of the test was to measure the unsaturated hydraulic properties of soils near the Mixed Waste Landfill, including the relations between hydraulic conductivity, moisture content, and soil water tension. A 4.7 meter by 4.7 meter plot was saturated with water to a depth of 2 meters, and the wetting and drying responses of the vertical profile were observed. These data were analyzed to obtain in situ measurements of the unsaturated hydraulic properties

  5. Sandia National Laboratories: About Sandia: Community Involvement:

    Science.gov (United States)

    Does Sandia Buy? Opportunities Small Business Procurement Technical Assistance Program (PTAP) Current . In the 1960s, employees initiated the Shoes for Kids Program. Rather than giving each other gifts holidays, New Mexico employees enjoy the opportunity to provide gifts for more than 600 children who are

  6. Sensor design for outdoor racing bicycle field testing for human vibration comfort evaluation

    International Nuclear Information System (INIS)

    Vanwalleghem, Joachim; De Baere, Ives; Van Paepegem, Wim; Loccufier, Mia

    2013-01-01

    This paper is concerned with the vibrational comfort evaluation of the cyclist when cycling a rough surface. Outdoor comfort tests have so far only been done through instrumenting the bicycle with accelerometers. This work instruments a racing bicycle with custom-made contact force sensors and velocity sensors to acquire human comfort through the absorbed power method. Comfort evaluation is assessed at the hand–arm and seat interface of the cyclist with the bicycle. By means of careful finite-element analysis for designing the force gauges at the handlebar and the seat combined with precise calibration of both force and velocity sensors, all sensors have proven to work properly. Initial field tests are focused on the proper functioning of the designed sensors and their suitability for vibration comfort measurements. Tests on a cobblestone road reveal that the outcome of the absorbed power values is within the same range as those from laboratory tests found in the literature. This sensor design approach for outdoor testing with racing bicycles may give a new interpretation on evaluating the cyclist's comfort since the vibrational load is not only quantified in terms of acceleration but also in terms of force and velocity at the bicycle–cyclist contact points. (paper)

  7. Preliminary data from an instantaneous profile test conducted near the Mixed Waste Landfill, Technical Area 3, Sandia National Laboratories/New Mexico

    International Nuclear Information System (INIS)

    Bayliss, S.C.; Goering, T.J.; McVey, M.D.; Strong, W.R.; Peace, J.L.

    1996-04-01

    This paper presents data from an instantaneous profile test conducted near the Sandia National Laboratories/New Mexico Mixed Waste Landfill in Technical Area 3. The test was performed from December 1993 through 1995 as part of the environmental Restoration Project's Phase 2 RCRA Facility Investigation of the Mixed Waste Landfill. The purpose of the test was to measure the unsaturated hydraulic properties of soils near the Mixed Waste Landfill. The instantaneous profile test and instrumentation are described, and the pressure and moisture content data from the test are presented. These data may be useful for understanding the unsaturated hydraulic properties of soils in Technical Area 3 and for model validation, verification, and calibration

  8. Real-time and accelerated outdoor endurance testing of solar cells

    Science.gov (United States)

    Forestieri, A. F.; Anagnostou, E.

    1977-01-01

    Real-time and accelerated outdoor endurance testing was performed on a variety of samples of interest to the National Photovoltaic Conversion Program. The real-time tests were performed at seven different sites and the accelerated tests were performed at one of those sites in the southwestern United States. The purpose of the tests were to help evaluate the lifetime of photovoltaic systems. Three types of samples were tested; transmission samples of possible cover materials, sub-modules constructed using these materials attached to solar cells, and solar cell modules produced by the manufacturers for the ERDA program. Results indicate that suitable cover materials are glass, FEP-A and PFA. Dirt accumulation and cleanability are important factors in the selection of solar cell module covers and encapsulants.

  9. Sandia National Laboratories

    Science.gov (United States)

    Gilliom, Laura R.

    1992-01-01

    Sandia National Laboratories has identified technology transfer to U.S. industry as a laboratory mission which complements our national security mission and as a key component of the Laboratory's future. A number of technology transfer mechanisms - such as CRADA's, licenses, work-for-others, and consortia - are identified and specific examples are given. Sandia's experience with the Specialty Metals Processing Consortium is highlighted with a focus on the elements which have made it successful. A brief discussion of Sandia's potential interactions with NASA under the Space Exploration Initiative was included as an example of laboratory-to-NASA technology transfer. Viewgraphs are provided.

  10. Sandia QIS Capabilities.

    Energy Technology Data Exchange (ETDEWEB)

    Muller, Richard P. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-07-01

    Sandia National Laboratories has developed a broad set of capabilities in quantum information science (QIS), including elements of quantum computing, quantum communications, and quantum sensing. The Sandia QIS program is built atop unique DOE investments at the laboratories, including the MESA microelectronics fabrication facility, the Center for Integrated Nanotechnologies (CINT) facilities (joint with LANL), the Ion Beam Laboratory, and ASC High Performance Computing (HPC) facilities. Sandia has invested $75 M of LDRD funding over 12 years to develop unique, differentiating capabilities that leverage these DOE infrastructure investments.

  11. Sandia National Laboratories: Agreements

    Science.gov (United States)

    Environmental Management System Pollution Prevention History 60 impacts Diversity Locations Facts & Figures Does Sandia Buy? Opportunities Small Business Procurement Technical Assistance Program (PTAP) Current Technology Partnerships Business, Industry, & Non-Profits Government Universities Center for

  12. Testing low cost OEM CO2 sensors for outdoor ecological studies

    Science.gov (United States)

    Macintyre, C. M.; Risk, D. A.

    2011-12-01

    IR (Infrared) gas sensors are used extensively in CO2 research but price and power requirement often limits low-cost distributed sensing. In the past three years, sensors have been introduced to the industrial market at prices as low as $100 US for air-handling and automotive application. These inexpensive sensors are small in size, and have low power demand making them potentially ideal for low-cost distributed deployments. However, the sensors are only tested and calibrated for indoor use and for industrial standards and may not show their true potential for outdoor ecological studies. This poster summarizes the results of a sensor inter-comparison test, to document functionality, response time, electrical noise, precision, and accuracy, under varying moistures and temperatures broadly representative of a wide range of outdoor settings. The three selected sensors were placed in a closed loop system with a valving system using a LiCor Li-7000 as reference, controlled by a CR1000 datalogger that controlled CO2 and moisture concentrations content within the cell on the basis of LiCor readings. To achieve different temperatures, the tests were repeated at room temperature, inside a freezer (-18°C) and incubator (40°C). The tests involved repeatedly stepping the sensors from 2000 ppm CO2 to 400 ppm CO2 in 200 ppm or 400 ppm increments, at various moisture contents, and under the various temperature regimes. Vaisala 222 and 343 sensors were also part of the test group as comparators, as both are used widely in ecological research. The OEM sensors displayed good linearity, fast response time, and results comparable to Vaisala probes. In most cases the sensors performed beyond our expectations with notably less electrical noise than the Vaisala sensors and excellent power thriftiness. Some sensors showed better response to extreme moisture and temperature conditions. Provided that suitable protective embodiments were built around them, and that they are deployed in an

  13. Effects of the pyrethroid insecticide gamma-cyhalothrin on aquatic invertebrates in laboratory and outdoor microcosm tests

    NARCIS (Netherlands)

    Wijngaarden, van R.P.A.; Barber, I.; Brock, T.C.M.

    2009-01-01

    The sensitivity of a range of freshwater lentic invertebrates to gamma-cyhalothrin (GCH), a single enantiomer of the synthetic pyrethroid lambda-cyhalothrin, was assessed in single species laboratory tests and an outdoor multi-species ecosystem test. The most sensitive species in the laboratory

  14. Sandia National Laboratories: Working with Sandia: Accounts Payable

    Science.gov (United States)

    Defense Systems & Assessments About Defense Systems & Assessments Program Areas Accomplishments Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios and Facilities Contract Audit Working with Sandia Accounts Payable Invoice processing Electronic

  15. Sandia National Laboratories: Working with Sandia: Small Business

    Science.gov (United States)

    Does Sandia Buy? Opportunities Small Business Procurement Technical Assistance Program (PTAP) Current Technology Partnerships Business, Industry, & Non-Profits Government Universities Center for Mexico Small Business Assistance Program Sandia Science & Technology Park Careers Community

  16. Characterization of indoor and outdoor pool fires with active calorimetry

    International Nuclear Information System (INIS)

    Koski, J.A.; Gill, W.; Gritzo, L.A.; Kent, L.A.; Wix, S.D.

    1994-01-01

    A water cooled, 1 m x 1 m, vertical calorimeter panel has been used in conjunction with other fire diagnostics to characterize a 6 m x 6 m outdoor and three 3 m x 3 m indoor JP-4 pool fires. Measurements reported include calorimeter surface heat flux and surface temperatures, flame temperatures, and gas flow velocities in the fire. From the data, effective radiative absorption coefficients for various zones in the fires have been estimated. The outdoor test was conducted at Sandia's Coyote Canyon test facility, while indoor tests were conducted at the indoor SMokE Reduction Facility (SMERF) at the same location. The measurements provide data useful in calibrating simple analytic fire models intended for the analysis of packages containing hazardous materials

  17. Elementary Science Education in Classrooms and Outdoors: Stakeholder Views, Gender, Ethnicity, and Testing

    Science.gov (United States)

    Carrier, Sarah J.; Thomson, Margareta M.; Tugurian, Linda P.; Stevenson, Kathryn Tate

    2014-01-01

    In this article, we present a mixed-methods study of 2 schools' elementary science programs including outdoor instruction specific to each school's culture. We explore fifth-grade students in measures of science knowledge, environmental attitudes, and outdoor comfort levels including gender and ethnic differences. We further examine students'…

  18. Sandia National Laboratories: News: Publications

    Science.gov (United States)

    Locations Contact Us Employee Locator Search Menu About Leadership Mission Social Media Community Community Involvement Leadership Mission Environmental Responsibility History Diversity Social Media Careers Small Business Assistance Program Sandia's Economic Impact Sandia Science & Technology Park © 2018

  19. Sandia National Laboratories: Search Results

    Science.gov (United States)

    Locations Contact Us Employee Locator Search Menu About Leadership Mission Social Media Community Diversity Social Media Careers View All Jobs Students & Postdocs Benefits & Perks Hiring Process Deployment Centers New Mexico Small Business Assistance Program Sandia's Economic Impact Sandia Science &

  20. Evaluating weather factors and material response during outdoor exposure to determine accelerated test protocols for predicting service life

    Science.gov (United States)

    R. Sam Williams; Steven Lacher; Corey Halpin; Christopher White

    2005-01-01

    To develop service life prediction methods for the study of sealants, a fully instrumented weather station was installed at an outdoor test site near Madison, WI. Temperature, relative humidiy, rainfall, ultraviolet (UV) radiation at 18 wavelengths, and wind speed and direction are being continuously measured and stored. The weather data can be integrated over time to...

  1. Transportation Energy - Sandia Energy

    Science.gov (United States)

    Energy Energy Secure & Sustainable Energy Future Search Icon Sandia Home Locations Contact Us Employee Locator Menu Stationary Power solar Energy Conversion Efficiency Increasing the amount of electricity produced from a given thermal energy input. Solar Energy Wind Energy Water Power Supercritical CO2

  2. Energy Research - Sandia Energy

    Science.gov (United States)

    Energy Energy Secure & Sustainable Energy Future Search Icon Sandia Home Locations Contact Us Employee Locator Menu Stationary Power solar Energy Conversion Efficiency Increasing the amount of electricity produced from a given thermal energy input. Solar Energy Wind Energy Water Power Supercritical CO2

  3. Energy - Sandia National Laboratories

    Science.gov (United States)

    Energy Energy Secure & Sustainable Energy Future Search Icon Sandia Home Locations Contact Us Employee Locator Menu Stationary Power solar Energy Conversion Efficiency Increasing the amount of electricity produced from a given thermal energy input. Solar Energy Wind Energy Water Power Supercritical CO2

  4. A History of Building 828, Sandia National Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Ullrich, Rebecca

    1999-08-01

    This report documents the history of Building 828 in Sandia National Laboratories' Technical Area I. Building 828 was constructed in 1946 as a mechanical test laboratory for Los Alamos' Z-Division (later Sandia) as it moved to Sandia Base. The building has undergone significant remodeling over the years and has had a variety of occupants. The building was evaluated in compliance with the National Historic Preservation Act, but was not eligible for the National Register of Historic Places. Nevertheless, for many Labs employees, it was a symbol of Sandia's roots in World War II and the Manhattan Project.

  5. Sandia Laboratories plutonium protection system

    International Nuclear Information System (INIS)

    Bernard, E.A.; Miyoshi, D.S.; Gutierrez, F.D.

    1977-01-01

    Sandia Laboratories is developing an improved plutonium protection system (PPS) to demonstrate new concepts for enhancing special nuclear materials safeguards. PPS concepts include separation of functions, real-time item accountability and improved means for control of materials, activities and personnel access. Physical barriers and a secure communications network are designed into the system to offer greater protection against sabotage, diversion and theft attempts. Prototype systems are being constructed at Hanford, Washington and Albuquerque, New Mexico and will be subjected to a comprehensive testing and evaluation program

  6. Testing of a new morphing trailing edge flap system on a novel outdoor rotating test rig

    DEFF Research Database (Denmark)

    Aagaard Madsen, Helge; Barlas, Athanasios; Løgstrup Andersen, Tom

    2015-01-01

    The morphing trailing edge system or flap system, CRTEF, has been developed over the last 10 years at DTU Wind Energy. After a promising wind tunnel test of the system in 2009 the INDUFLAP project has been carried out from 2011-2014 to transfer the technology from laboratory to industrial...... manufacturing and application. To narrow the gap between wind tunnel testing and full scale prototype testing we developed the rotating test rig. The overall objectives with the rotating test rig are: 1) to test the flap system in a realistic rotating environment with a realistic g-loading; 2) to measure...... the flap performance in real turbulent inflow and 3) to test the flap system in a realistic size and Reynolds number when comparing with full scale applications.. The rotating test rig consists of a 2.2m blade section attached to a 10m boom and mounted on a 100kW turbine platform. It was installed in June...

  7. Testing and evaluation of a wearable augmented reality system for natural outdoor environments

    Science.gov (United States)

    Roberts, David; Menozzi, Alberico; Cook, James; Sherrill, Todd; Snarski, Stephen; Russler, Pat; Clipp, Brian; Karl, Robert; Wenger, Eric; Bennett, Matthew; Mauger, Jennifer; Church, William; Towles, Herman; MacCabe, Stephen; Webb, Jeffrey; Lupo, Jasper; Frahm, Jan-Michael; Dunn, Enrique; Leslie, Christopher; Welch, Greg

    2013-05-01

    This paper describes performance evaluation of a wearable augmented reality system for natural outdoor environments. Applied Research Associates (ARA), as prime integrator on the DARPA ULTRA-Vis (Urban Leader Tactical, Response, Awareness, and Visualization) program, is developing a soldier-worn system to provide intuitive `heads-up' visualization of tactically-relevant geo-registered icons. Our system combines a novel pose estimation capability, a helmet-mounted see-through display, and a wearable processing unit to accurately overlay geo-registered iconography (e.g., navigation waypoints, sensor points of interest, blue forces, aircraft) on the soldier's view of reality. We achieve accurate pose estimation through fusion of inertial, magnetic, GPS, terrain data, and computer-vision inputs. We leverage a helmet-mounted camera and custom computer vision algorithms to provide terrain-based measurements of absolute orientation (i.e., orientation of the helmet with respect to the earth). These orientation measurements, which leverage mountainous terrain horizon geometry and mission planning landmarks, enable our system to operate robustly in the presence of external and body-worn magnetic disturbances. Current field testing activities across a variety of mountainous environments indicate that we can achieve high icon geo-registration accuracy (<10mrad) using these vision-based methods.

  8. Sandia National Laboratories, Tonopah Test Range Askania Tower (Building 02-00): Photographs and Written Historical and Descriptive Data

    Energy Technology Data Exchange (ETDEWEB)

    Ullrich, Rebecca A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Corporate Archives and History Program

    2017-08-01

    The Askania Tower (Building 02-00) was built in 1956 as part of the first wave of construction at the newly established Tonopah Test Range (TTR). Located at Station 2, near the primary target area at the range, the tower was one of the first four built to house Askania phototheodolites used in tracking test units dropped from aircraft. This report includes historical information, architectural information, sources of information, project information, maps, blueprints, and photographs.

  9. Sandia National Laboratories: Up on the roof

    Science.gov (United States)

    Library Events Careers View All Jobs Students & Postdocs Internships & Co-ops Fellowships load of rooftop solar photovoltaic (PV) installations," says structural engineer Steve Dwyer (6912 structural issues. "I couldn't believe it was a problem," says Steve, who led the Sandia test team

  10. U.S. Department of Energy NESHAP Annual Report for CY 2014 Sandia National Laboratories Tonopah Test Range

    Energy Technology Data Exchange (ETDEWEB)

    Evelo, Stacie [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Miller, Mark L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-05-01

    This National Emission Standards for Hazardous Air Pollutants (NESHAP) Annual Report has been prepared in a format to comply with the reporting requirements of 40 CFR 61.94 and the April 5, 1995 Memorandum of Agreement (MOA) between the Department of Energy (DOE) and the Environmental Protection Agency (EPA). According to the EPA approved NESHAP Monitoring Plan for the Tonopah Test Range (TTR), 40 CFR 61, subpart H, and the MOA, no additional monitoring or measurements are required at TTR in order to demonstrate compliance with the NESHAP regulation.

  11. Testing tools for outdoor recreation, environmental education, and stewardship: Allowing children to choose the rules

    Science.gov (United States)

    Laura E. Baird; Logan O. Park

    2014-01-01

    Engaging children in natural settings enhances learning, promotes early childhood development, and makes use of protected natural areas. Unfortunately, many schoolchildren, especially from economically disadvantaged areas, lack support for environmental education (EE) to develop skills and attitudes that increase rates of appropriate outdoor behaviors. Improved access...

  12. Lessons learned from early microelectronics production at Sandia National Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Weaver, H.T.

    1998-02-01

    During the 1980s Sandia designed, developed, fabricated, tested, and delivered hundreds of thousands of radiation hardened Integrated Circuits (IC) for use in weapons and satellites. Initially, Sandia carried out all phases, design through delivery, so that development of next generation ICs and production of current generation circuits were carried out simultaneously. All this changed in the mid-eighties when an outside contractor was brought in to produce ICs that Sandia developed, in effect creating a crisp separation between development and production. This partnership had a severe impact on operations, but its more damaging effect was the degradation of Sandia`s microelectronics capabilities. This report outlines microelectronics development and production in the early eighties and summarizes the impact of changing to a separate contractor for production. This record suggests that low volume production be best accomplished within the development organization.

  13. Classification of soft-shell materials for leisure outdoor jackets by clo defined from thermal properties testing

    Science.gov (United States)

    Tesinova, P.; Steklova, P.; Duchacova, T.

    2017-10-01

    Materials for outdoor activities are produced in various combinations and lamination helps to combine two or more components for gaining high comfort properties and lighten the structure. Producers can choose exact suitable material for construction of part or set of so called layered clothing for expected activity. Decreasing the weight of materials when preserving of high quality of water-vapour permeability, wind resistivity and hydrostatic resistivity and other comfort and usage properties is a big task nowadays. This paper is focused on thermal properties as an important parameter for being comfort during outdoor activities. Softshell materials were chosen for testing and computation of clo. Results compared with standardised clo table helps us to classify thermal insulation of the set of fabrics when defining proper clothing category.

  14. Sandia Combustion Research Program

    Energy Technology Data Exchange (ETDEWEB)

    Johnston, S.C.; Palmer, R.E.; Montana, C.A. (eds.)

    1988-01-01

    During the late 1970s, in response to a national energy crisis, Sandia proposed to the US Department of Energy (DOE) a new, ambitious program in combustion research. Shortly thereafter, the Combustion Research Facility (CRF) was established at Sandia's Livermore location. Designated a ''user facility,'' the charter of the CRF was to develop and maintain special-purpose resources to support a nationwide initiative-involving US inventories, industry, and national laboratories--to improve our understanding and control of combustion. This report includes descriptions several research projects which have been simulated by working groups and involve the on-site participation of industry scientists. DOE's Industry Technology Fellowship program, supported through the Office of Energy Research, has been instrumental in the success of some of these joint efforts. The remainder of this report presents results of calendar year 1988, separated thematically into eleven categories. Referred journal articles appearing in print during 1988 and selected other publications are included at the end of Section 11. Our traditional'' research activities--combustion chemistry, reacting flows, diagnostics, engine and coal combustion--have been supplemented by a new effort aimed at understanding combustion-related issues in the management of toxic and hazardous materials.

  15. Technical comparison of the commercialized Racon model 21000 Portable, Reconfigurable Line Sensor (PRLS) and original Sandia/USAF prototype

    International Nuclear Information System (INIS)

    Blattman, D.A.

    1993-01-01

    The military has been moving from a global strategic response with fixed site asset protection to regional tactical response requirements. This change necessitates high security sensor systems that can be easily relocated and rapidly placed in operation by unskilled operators. The Portable, Reconfigurable Line Sensor (PRLS) was developed by Sandia National Laboratories with United States Air Force funding. Racon, Inc. is now commercializing the PRLS through a Cooperative Research and Development Agreement (CRDA) with the United States Air Force. The commercialized design of the new PRLS bi-static radar sensor benefits from the extensive field testing of the original Sandia/USAF-developed engineering prototype systems of the 1980s. Tests conducted in hot, cold, wind, rain, and snow conditions verified exceptional intruder detection capability, resistance to spoofing attempts, and insusceptibility to mutual interference and nuisance alarms caused by birds or small animals. The use of 1990's implementation technology combined with extensive testing information has resulted in significant product performance enhancements as well as cost savings. This paper compares technical features of the original Sandia/USAF prototypes with the new commercialized Racon model 21000 Portable, Reconfigurable Line Sensor. The PRLS advances the art of outdoor security to meet the Relocatable Sensor System (RSS) challenge of the 1990s

  16. Application of a NAPL partitioning interwell tracer test (PITT) to support DNAPL remediation at the Sandia National Laboratories/New Mexico chemical waste landfill

    International Nuclear Information System (INIS)

    Studer, J.E.; Mariner, P.; Jin, M.

    1996-01-01

    Chlorinated solvents as dense non-aqueous phase liquid (DNAPL) are present at a large number of hazardous waste sites across the U.S. and world. DNAPL is difficult to detect in the subsurface, much less characterize to any degree of accuracy. Without proper site characterization, remedial decisions are often difficult to make and technically effective, cost-efficient remediations are even more difficult to obtain. A new non-aqueous phase liquid (NAPL) characterization technology that is superior to conventional technologies has been developed and applied at full-scale. This technology, referred to as the Partitioning Interwell Tracer Test (PITT), has been adopted from oil-field practices and tailored to environmental application in the vadose and saturated zones. A PITT has been applied for the first time at full-scale to characterize DNAPL in the vadose zone. The PITT was applied in December 1995 beneath two side-by-side organic disposal pits at Sandia National Laboratories/New Mexico (SNL/NM) RCRA Interim Status Chemical Waste Landfill (CWL), located in Albuquerque, New Mexico. DNAPL, consisting of a mixture of chlorinated solvents, aromatic hydrocarbons, and PCE oils, is known to exist in at least one of the two buried pits. The vadose zone PITT was conducted by injecting a slug of non-partitioning and NAPL-partitioning tracers into and through a zone of interest under a controlled forced gradient. The forced gradient was created by a balanced extraction of soil gas at a location 55 feet from the injector. The extracted gas stream was sampled over time to define tracer break-through curves. Soil gas sampling ports from multilevel monitoring installations were sampled to define break-through curves at specific locations and depths. Analytical instrumentation such as gas chromatographs and a photoacoustical analyzers operated autonomously, were used for tracer detection

  17. Sandia National Laboratories embraces ISDN

    Energy Technology Data Exchange (ETDEWEB)

    Tolendino, L.F.; Eldridge, J.M.

    1994-08-01

    Sandia National Laboratories (Sandia), a multidisciplinary research and development laboratory located on Kirtland Air Force Base, has embraced Integrated Services Digital Network technology as an integral part of its communication network. Sandia and the Department of Energy`s Albuquerque Operations Office have recently completed the installation of a modernized and expanded telephone system based, on the AT&T 5ESS telephone switch. Sandia is committed to ISDN as an integral part of data communication services, and it views ISDN as one part of a continuum of services -- services that range from ISDN`s asynchronous and limited bandwidth Ethernet (250--1000 Kbps) through full bandwidth Ethernet, FDDI, and ATM at Sonet rates. Sandia has demonstrated this commitment through its use of ISDN data features to support critical progmmmatic services such as access to corporate data base systems. In the future, ISDN will provide enhanced voice, data communication, and video services.

  18. Sandia National Laboratories: Working with Sandia: Prospective Suppliers

    Science.gov (United States)

    Environmental Management System Pollution Prevention History 60 impacts Diversity Locations Facts & Figures Does Sandia Buy? Opportunities Small Business Procurement Technical Assistance Program (PTAP) Current Technology Partnerships Business, Industry, & Non-Profits Government Universities Center for

  19. Sandia National Laboratories: What Sandia Looks For In Our Suppliers

    Science.gov (United States)

    Environmental Management System Pollution Prevention History 60 impacts Diversity Locations Facts & Figures Does Sandia Buy? Opportunities Small Business Procurement Technical Assistance Program (PTAP) Current Technology Partnerships Business, Industry, & Non-Profits Government Universities Center for

  20. Sandia National Laboratories: Working with Sandia: Current Suppliers

    Science.gov (United States)

    Defense Systems & Assessments About Defense Systems & Assessments Program Areas Accomplishments Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios Suppliers iSupplier Account Accounts Payable Contract Information Construction and Facilities Contract Audit

  1. Sandia National Laboratories: Working with Sandia: Contract Audit

    Science.gov (United States)

    Defense Systems & Assessments About Defense Systems & Assessments Program Areas Accomplishments Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios Audit iSupplier Account Accounts Payable Contract Information Construction and Facilities Contract Audit

  2. Development of the Sandia Cooler

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Terry Alan [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Koplow, Jeffrey P. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Staats, Wayne Lawrence [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Curgus, Dita Brigitte [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Leick, Michael Thomas. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Matthew, Ned Daniel [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Zimmerman, Mark D. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Arienti, Marco [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Gharagozloo, Patricia E. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Hecht, Ethan S. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Spencer, Nathan A. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Vanness, Justin William. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Gorman, Ryan [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2013-12-01

    This report describes an FY13 effort to develop the latest version of the Sandia Cooler, a breakthrough technology for air-cooled heat exchangers that was developed at Sandia National Laboratories. The project was focused on fabrication, assembly and demonstration of ten prototype systems for the cooling of high power density electronics, specifically high performance desktop computers (CPUs). In addition, computational simulation and experimentation was carried out to fully understand the performance characteristics of each of the key design aspects. This work culminated in a parameter and scaling study that now provides a design framework, including a number of design and analysis tools, for Sandia Cooler development for applications beyond CPU cooling.

  3. SANDIA-ORIGEN user's manual

    International Nuclear Information System (INIS)

    Bennett, D.E.

    1979-10-01

    The SANDIA-ORIGEN code calculates the detailed isotopic composition as a function of time in nuclear reactor fuel irradiation and radioactive decay problems. This code was developed specifically for Control Data Corporation computers from the original Oak Ridge National Laboratory ORIGEN code. The nuclear data file used with the code at Sandia Laboratories contains 1063 isotopes (254 structural materials, 101 actinides, and 708 fission products). SANDIA-ORIGEN is oriented toward simple, easy use and includes NAMELIST input, convenient control of the output, and versatile options for the blending and reprocessing of reactor fuel. System operating instructions and the input decks for numerous sample problems are also presented. 13 references, 14 figures

  4. Outdoor Classrooms

    Science.gov (United States)

    Mayes, Valynda

    2010-01-01

    An outdoor classroom is the ideal vehicle for community involvement: Parents, native plant societies, 4-H, garden clubs, and master naturalists are all resources waiting to be tapped, as are local businesses offering support. If you enlist your community in the development and maintenance of your outdoor classroom, the entire community will…

  5. Critical experiments at Sandia National Laboratories

    International Nuclear Information System (INIS)

    Harms, G.A.; Ford, J.T.; Barber, A.D.

    2011-01-01

    Sandia National Laboratories (SNL) has conducted radiation effects testing for the Department of Energy (DOE) and other contractors supporting the DOE since the 1960's. Over this period, the research reactor facilities at Sandia have had a primary mission to provide appropriate nuclear radiation environments for radiation testing and qualification of electronic components and other devices. The current generation of reactors includes the Annular Core Research Reactor (ACRR), a water-moderated pool-type reactor, fueled by elements constructed from UO2-BeO ceramic fuel pellets, and the Sandia Pulse Reactor III (SPR-III), a bare metal fast burst reactor utilizing a uranium-molybdenum alloy fuel. The SPR-III is currently defueled. The SPR Facility (SPRF) has hosted a series of critical experiments. A purpose-built critical experiment was first operated at the SPRF in the late 1980's. This experiment, called the Space Nuclear Thermal Propulsion Critical Experiment (CX), was designed to explore the reactor physics of a nuclear thermal rocket motor. This experiment was fueled with highly-enriched uranium carbide fuel in annular water-moderated fuel elements. The experiment program was completed and the fuel for the experiment was moved off-site. A second critical experiment, the Burnup Credit Critical Experiment (BUCCX) was operated at Sandia in 2002. The critical assembly for this experiment was based on the assembly used in the CX modified to accommodate low-enriched pin-type fuel in water moderator. This experiment was designed as a platform in which the reactivity effects of specific fission product poisons could be measured. Experiments were carried out on rhodium, an important fission product poison. The fuel and assembly hardware for the BUCCX remains at Sandia and is available for future experimentation. The critical experiment currently in operation at the SPRF is the Seven Percent Critical Experiment (7uPCX). This experiment is designed to provide benchmark

  6. Critical experiments at Sandia National Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Harms, G.A.; Ford, J.T.; Barber, A.D., E-mail: gaharms@sandia.gov [Sandia National Laboratories, Albuquerque, NM (United States)

    2011-07-01

    Sandia National Laboratories (SNL) has conducted radiation effects testing for the Department of Energy (DOE) and other contractors supporting the DOE since the 1960's. Over this period, the research reactor facilities at Sandia have had a primary mission to provide appropriate nuclear radiation environments for radiation testing and qualification of electronic components and other devices. The current generation of reactors includes the Annular Core Research Reactor (ACRR), a water-moderated pool-type reactor, fueled by elements constructed from UO2-BeO ceramic fuel pellets, and the Sandia Pulse Reactor III (SPR-III), a bare metal fast burst reactor utilizing a uranium-molybdenum alloy fuel. The SPR-III is currently defueled. The SPR Facility (SPRF) has hosted a series of critical experiments. A purpose-built critical experiment was first operated at the SPRF in the late 1980's. This experiment, called the Space Nuclear Thermal Propulsion Critical Experiment (CX), was designed to explore the reactor physics of a nuclear thermal rocket motor. This experiment was fueled with highly-enriched uranium carbide fuel in annular water-moderated fuel elements. The experiment program was completed and the fuel for the experiment was moved off-site. A second critical experiment, the Burnup Credit Critical Experiment (BUCCX) was operated at Sandia in 2002. The critical assembly for this experiment was based on the assembly used in the CX modified to accommodate low-enriched pin-type fuel in water moderator. This experiment was designed as a platform in which the reactivity effects of specific fission product poisons could be measured. Experiments were carried out on rhodium, an important fission product poison. The fuel and assembly hardware for the BUCCX remains at Sandia and is available for future experimentation. The critical experiment currently in operation at the SPRF is the Seven Percent Critical Experiment (7uPCX). This experiment is designed to provide

  7. Sandia Laboratories technical capabilities: electronics

    International Nuclear Information System (INIS)

    Lundergan, C.D.

    1975-12-01

    This report characterizes the electronics capabilities at Sandia Laboratories. Selected applications of these capabilities are presented to illustrate the extent to which they can be applied in research and development programs

  8. Sandia Technology engineering and science accomplishments

    Energy Technology Data Exchange (ETDEWEB)

    1994-02-01

    This report briefly discusses the following research being conducted at Sandia Laboratories: Advanced Manufacturing -- Sandia technology helps keep US industry in the lead; Microelectronics-Sandia`s unique facilities transform research advances into manufacturable products; Energy -- Sandia`s energy programs focus on strengthening industrial growth and political decisionmaking; Environment -- Sandia is a leader in environmentally conscious manufacturing and hazardous waste reduction; Health Care -- New biomedical technologies help reduce cost and improve quality of health care; Information & Computation -- Sandia aims to help make the information age a reality; Transportation -- This new initiative at the Labs will help improve transportation, safety,l efficiency, and economy; Nonproliferation -- Dismantlement and arms control are major areas of emphasis at Sandia; and Awards and Patents -- Talented, dedicated employees are the backbone of Sandia`s success.

  9. Is outdoor use of the six-minute walk test with a global positioning system in stroke patients' own neighbourhoods reproducible and valid?

    NARCIS (Netherlands)

    Wevers, L.E.; Kwakkel, G.; van de Port, I.G.

    2011-01-01

    Objective: To examine the reproducibility, responsiveness and concurrent validity of the six-minute walk test (6MWT) when tested outdoors in patients' own neighbourhoods using a global positioning system (GPS) or a measuring wheel. Methods: A total of 27 chronic stroke patients, discharged to their

  10. Real test-bed studies at the ETH House of Natural Resources – wood surface protection for outdoor applications

    Directory of Open Access Journals (Sweden)

    H. Guo

    2018-02-01

    Full Text Available The increasing demand for sustainable construction materials used in urban areas calls for novel wood protective coatings, which retain the natural appearance of wood while minimizing maintenance intervals. This work reports on three different wood surface modification processes and evaluates their protective effect against weathering after installation at a testing façade of the ETH House of Natural Resources (HoNR, a recently opened living lab located in Zürich, Switzerland. We monitored the discoloration upon outdoor exposure of subsequently improved generations of thin metal oxide coatings developed in our lab. We target almost transparent and durable coatings with water repellent properties to diminish discoloration due to UV light and biological attack. This should lead to wooden facades with increased reliability and thereby boost an enhanced utilization of the renewable and CO2 storing resource wood.

  11. Sandia capabilities for the measurement, characterization, and analysis of heliostats for CSP.

    Energy Technology Data Exchange (ETDEWEB)

    Andraka, Charles E.; Christian, Joshua Mark; Ghanbari, Cheryl M.; Gill, David Dennis; Ho, Clifford Kuofei; Kolb, William J.; Moss, Timothy A.; Smith, Edward J.; Yellowhair, Julius

    2013-07-01

    The Concentrating Solar Technologies Organization at Sandia National Laboratories has a long history of performing important research, development, and testing that has enabled the Concentrating Solar Power Industry to deploy full-scale power plants. Sandia continues to pursue innovative CSP concepts with the goal of reducing the cost of CSP while improving efficiency and performance. In this pursuit, Sandia has developed many tools for the analysis of CSP performance. The following capabilities document highlights Sandias extensive experience in the design, construction, and utilization of large-scale testing facilities for CSP and the tools that Sandia has created for the full characterization of heliostats. Sandia has extensive experience in using these tools to evaluate the performance of novel heliostat designs.

  12. A Sandia telephone database system

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, S.D.; Tolendino, L.F.

    1991-08-01

    Sandia National Laboratories, Albuquerque, may soon have more responsibility for the operation of its own telephone system. The processes that constitute providing telephone service can all be improved through the use of a central data information system. We studied these processes, determined the requirements for a database system, then designed the first stages of a system that meets our needs for work order handling, trouble reporting, and ISDN hardware assignments. The design was based on an extensive set of applications that have been used for five years to manage the Sandia secure data network. The system utilizes an Ingres database management system and is programmed using the Application-By-Forms tools.

  13. Statement of Work Electrical Energy Storage System Installation at Sandia National Laboratories.

    Energy Technology Data Exchange (ETDEWEB)

    Schenkman, Benjamin L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-03-01

    Sandia is seeking to procure a 1 MWh energy storage system. It will be installed at the existing Energy Storage Test Pad, which is located at Sandia National Laboratories in Albuquerque, New Mexico. This energy storage system will be a daily operational system, but will also be used as a tool in our Research and development work. The system will be part of a showcase of Sandia distributed energy technologies viewed by many distinguished delegates.

  14. Critical experiments at Sandia National Laboratories

    International Nuclear Information System (INIS)

    Harms, Gary A.; Ford, John T.; Barber, Allison Delo

    2010-01-01

    Sandia National Laboratories (SNL) has conducted radiation effects testing for the Department of Energy (DOE) and other contractors supporting the DOE since the 1960's. Over this period, the research reactor facilities at Sandia have had a primary mission to provide appropriate nuclear radiation environments for radiation testing and qualification of electronic components and other devices. The current generation of reactors includes the Annular Core Research Reactor (ACRR), a water-moderated pool-type reactor, fueled by elements constructed from UO2-BeO ceramic fuel pellets, and the Sandia Pulse Reactor III (SPR-III), a bare metal fast burst reactor utilizing a uranium-molybdenum alloy fuel. The SPR-III is currently defueled. The SPR Facility (SPRF) has hosted a series of critical experiments. A purpose-built critical experiment was first operated at the SPRF in the late 1980's. This experiment, called the Space Nuclear Thermal Propulsion Critical Experiment (CX), was designed to explore the reactor physics of a nuclear thermal rocket motor. This experiment was fueled with highly-enriched uranium carbide fuel in annular water-moderated fuel elements. The experiment program was completed and the fuel for the experiment was moved off-site. A second critical experiment, the Burnup Credit Critical Experiment (BUCCX) was operated at Sandia in 2002. The critical assembly for this experiment was based on the assembly used in the CX modified to accommodate low-enriched pin-type fuel in water moderator. This experiment was designed as a platform in which the reactivity effects of specific fission product poisons could be measured. Experiments were carried out on rhodium, an important fission product poison. The fuel and assembly hardware for the BUCCX remains at Sandia and is available for future experimentation. The critical experiment currently in operation at the SPRF is the Seven Percent Critical Experiment (7uPCX). This experiment is designed to provide benchmark

  15. Sandia National Laboratories: News: Publications: Annual Report

    Science.gov (United States)

    Locations Contact Us Employee Locator Search Menu About Leadership Mission Social Media Community Social Media Careers View All Jobs Students & Postdocs Benefits & Perks Hiring Process Life at New Mexico Small Business Assistance Program Sandia's Economic Impact Sandia Science & Technology

  16. Sandia National Laboratories: News: Image Gallery

    Science.gov (United States)

    Locations Contact Us Employee Locator Search Menu About Leadership Mission Social Media Community Diversity Social Media Careers View All Jobs Students & Postdocs Benefits & Perks Hiring Process Deployment Centers New Mexico Small Business Assistance Program Sandia's Economic Impact Sandia Science &

  17. Sandia National Laboratories: News: Publications: Strategic Plan

    Science.gov (United States)

    Locations Contact Us Employee Locator Search Menu About Leadership Mission Social Media Community Involvement Leadership Mission Environmental Responsibility History Diversity Social Media Careers View All Small Business Assistance Program Sandia's Economic Impact Sandia Science & Technology Park © 2018

  18. Sandia National Laboratories: News: Economic Impact

    Science.gov (United States)

    Locations Contact Us Employee Locator Search Menu About Leadership Mission Social Media Community Involvement Leadership Mission Environmental Responsibility History Diversity Social Media Careers View All Small Business Assistance Program Sandia's Economic Impact Sandia Science & Technology Park © 2018

  19. Sandia Combustion Research: Technical review

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-01

    This report contains reports from research programs conducted at the Sandia Combustion Research Facility. Research is presented under the following topics: laser based diagnostics; combustion chemistry; reacting flow; combustion in engines and commercial burners; coal combustion; and industrial processing. Individual projects were processed separately for entry onto the DOE databases.

  20. Energy Fact Sheets - Sandia Energy

    Science.gov (United States)

    Energy Energy Secure & Sustainable Energy Future Search Icon Sandia Home Locations Contact Us Employee Locator Menu Stationary Power solar Energy Conversion Efficiency Increasing the amount of electricity produced from a given thermal energy input. Solar Energy Wind Energy Water Power Supercritical CO2

  1. Sandia National Laboratories: Research: Biodefense

    Science.gov (United States)

    Energy Stationary Power Earth Science Transportation Energy Energy Research Global Security WMD knowledge to counter disease Sandia conducts research into how pathogens interact and subvert a host's immune response to develop the knowledge base needed to create new novel environmental detectors, medical

  2. Sandia National Laboratories: Contact Us

    Science.gov (United States)

    Employment (VOE) - New Mexico and California Please submit your requests by fax OR email - not both. Fax Number: (505) 845-0097, ATTN: HR Records Email Address: HR-Records@sandia.gov HR Records' Hotline: (505 in Writing Requester's Contact Information: Requester's name, company name (if applicable), phone

  3. Power source evaluation capabilities at Sandia National Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Doughty, D.H.; Butler, P.C.

    1996-04-01

    Sandia National Laboratories maintains one of the most comprehensive power source characterization facilities in the U.S. National Laboratory system. This paper describes the capabilities for evaluation of fuel cell technologies. The facility has a rechargeable battery test laboratory and a test area for performing nondestructive and functional computer-controlled testing of cells and batteries.

  4. Outdoor recreation

    Science.gov (United States)

    J. M. Bowker; Ashley Askew; H. Ken Cordell; John C. Bergstrom

    2013-01-01

    Key FindingsBy 2060, the number of southern adults participating in each of 10 different popular outdoor recreation activities is projected to increase. Depending on future demographic, economic, land use, and population changes, the activity demonstrating the least growth in participants is hunting (8–25 percent). The activity projected to...

  5. Is outdoor use of the six-minute walk test with a global positioning system in stroke patients' own neighbourhoods reproducible and valid?

    OpenAIRE

    Wevers, L.E.; Kwakkel, G.; Port, van de, I.G.

    2011-01-01

    Objective: To examine the reproducibility, responsiveness and concurrent validity of the six-minute walk test (6MWT) when tested outdoors in patients' own neighbourhoods using a global positioning system (GPS) or a measuring wheel. Methods: A total of 27 chronic stroke patients, discharged to their own homes, were tested twice, within 5 consecutive days. The 6MWT was conducted using a GPS and an measuring wheel simultaneously to determine walking distance. Reproducibility was determined as te...

  6. Sandia technology engineering and science accomplishments

    Energy Technology Data Exchange (ETDEWEB)

    1993-03-01

    Sandia is a DOE multiprogram engineering and science laboratory with major facilities at Albuquerque, New Mexico, and Livermore, California, and a test range near Tonapah, Nevada. We have major research and development responsibilities for nuclear weapons, arms control, energy, the environment, economic competitiveness, and other areas of importance to the needs of the nation. Our principal mission is to support national defense policies by ensuring that the nuclear weapon stockpile meets the highest standards of safety, reliability, security, use control, and military performance. Selected unclassified technical activities and accomplishments are reported here. Topics include advanced manufacturing technologies, intelligent machines, computational simulation, sensors and instrumentation, information management, energy and environment, and weapons technology.

  7. Outdoor test method to determine the thermal behavior of solar domestic water heating systems

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Valladares, O.; Pilatowsky, I. [Centro de Investigacion en Energia, Universidad Nacional Autonoma de Mexico, Privada Xochicalco, s/n, Colonia Centro, 62580 Temixco, Morelos (Mexico); Ruiz, V. [Escuela Tecnica Superior de Ingenieros, Universidad de Sevilla, Camino de los Descubrimientos, s/n, Isla de la Cartuja, 41092 Sevilla, Espana (Spain)

    2008-07-15

    The dynamics of the market, the generation of new promotion programs, fiscal incentives and many other factors are to be considered for the massive application of solar domestic water heating systems (SDWHS) mainly of the compact thermosiphon type, makes it necessary to choose simple and inexpensive procedure tests that permit to know their characteristic thermal behaviors without an official standard being necessary. Moreover, it allows the comparison among systems and offers enough and reliable information to consumers and manufacturers. In most developing countries, an official national standard for SDWHS is not available, therefore it is necessary to adopt an international test procedure in which the cost and time of implementation is very important. In this work, a simple and inexpensive test method to determine the thermal behavior of SDWHS is proposed. Even though these procedure tests do not have an official standard structure they permit, by comparing different solar systems under identical solar, ambient, and initial conditions, the experimental determination of: (a) the maximum available volume of water for solar heating; (b) water temperature increment and available thermal energy at the end of the day; (c) temperature profiles (stratification) and the average temperature in the storage tank after it is homogenized; (d) the average global thermal efficiency; (e) water temperature decrement and energy lost overnight; and (f) the relationship between hot water volume and solar collector area as function of the average heating temperature. An additional proposed test permits to know the heat losses caused by the reverse flow in the collector loop. These tests will be carried out independently of the configuration between the solar collector and the storage tank, the way the fluid circulates and the type of thermal exchange. The results of this procedure test can be very useful, firstly, for the local solar manufacturers' equipment in order to design

  8. Outdoor test method to determine the thermal behavior of solar domestic water heating systems

    International Nuclear Information System (INIS)

    Garcia-Valladares, O.; Pilatowsky, I.; Ruiz, V.

    2008-01-01

    The dynamics of the market, the generation of new promotion programs, fiscal incentives and many other factors are to be considered for the massive application of solar domestic water heating systems (SDWHS) mainly of the compact thermosiphon type, makes it necessary to choose simple and inexpensive procedure tests that permit to know their characteristic thermal behaviors without an official standard being necessary. Moreover, it allows the comparison among systems and offers enough and reliable information to consumers and manufacturers. In most developing countries, an official national standard for SDWHS is not available, therefore it is necessary to adopt an international test procedure in which the cost and time of implementation is very important. In this work, a simple and inexpensive test method to determine the thermal behavior of SDWHS is proposed. Even though these procedure tests do not have an official standard structure they permit, by comparing different solar systems under identical solar, ambient, and initial conditions, the experimental determination of: (a) the maximum available volume of water for solar heating; (b) water temperature increment and available thermal energy at the end of the day; (c) temperature profiles (stratification) and the average temperature in the storage tank after it is homogenized; (d) the average global thermal efficiency; (e) water temperature decrement and energy lost overnight; and (f) the relationship between hot water volume and solar collector area as function of the average heating temperature. An additional proposed test permits to know the heat losses caused by the reverse flow in the collector loop. These tests will be carried out independently of the configuration between the solar collector and the storage tank, the way the fluid circulates and the type of thermal exchange. The results of this procedure test can be very useful, firstly, for the local solar manufacturers' equipment in order to design and

  9. Committee to evaluate Sandia`s risk expertise: Final report. Volume 1: Presentations

    Energy Technology Data Exchange (ETDEWEB)

    Dudley, E.C.

    1998-05-01

    On July 1--2, 1997, Sandia National Laboratories hosted the External Committee to Evaluate Sandia`s Risk Expertise. Under the auspices of SIISRS (Sandia`s International Institute for Systematic Risk Studies), Sandia assembled a blue-ribbon panel of experts in the field of risk management to assess their risk programs labs-wide. Panelists were chosen not only for their own expertise, but also for their ability to add balance to the panel as a whole. Presentations were made to the committee on the risk activities at Sandia. In addition, a tour of Sandia`s research and development programs in support of the US Nuclear Regulatory Commission was arranged. The panel attended a poster session featuring eight presentations and demonstrations for selected projects. Overviews and viewgraphs from the presentations are included in Volume 1 of this report. Presentations are related to weapons, nuclear power plants, transportation systems, architectural surety, environmental programs, and information systems.

  10. Sandia Laboratories technical capabilities. Auxiliary capabilities: environmental health information science

    International Nuclear Information System (INIS)

    1975-09-01

    Sandia Laboratories is an engineering laboratory in which research, development, testing, and evaluation capabilities are integrated by program management for the generation of advanced designs. In fulfilling its primary responsibility to ERDA, Sandia Laboratories has acquired extensive research and development capabilities. The purpose of this series of documents is to catalog the many technical capabilities of the Laboratories. After the listing of capabilities, supporting information is provided in the form of highlights, which show applications. This document deals with auxiliary capabilities, in particular, environmental health and information science. (11 figures, 1 table) (RWR)

  11. Sandia's severe human body Electrostatic Discharge Tester (SSET)

    International Nuclear Information System (INIS)

    Barnum, J.R.

    1991-01-01

    This paper reports that the Electromagnetic Testing Division at Sandia National Laboratories (SNL) has developed a simulator to replicate a severe human body electrostatic discharge event. This simulator is referred to as Sandia's Severe Human Body Electrostatic Discharge Tester (SSET). The SSET is configured as a coaxial transmission line, which allows control of parasitic inductance and capacitance to achieve the desired waveform signature, and operates reliably at voltages up to 35 kV. It is constructed from off-the-shelf or easily fabricated components and costs approximately $750 for materials, not including the power supply. The output is very repeatable and provides good simulation fidelity of a severe human body discharge

  12. The Sandia Report and U.S. Achievement: An Assessment.

    Science.gov (United States)

    Stedman, Lawrence C.

    1994-01-01

    The article assesses the report of the Sandia National Laboratory's contentions about decline in Scholactic Aptitude Test Scores, National Assessment of Educational Progress achievement, and international assessments. The article suggests the report is generally right about steady trends but seriously flawed by several errors. (SM)

  13. Mobile robotics research at Sandia National Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Morse, W.D.

    1998-09-01

    Sandia is a National Security Laboratory providing scientific and engineering solutions to meet national needs for both government and industry. As part of this mission, the Intelligent Systems and Robotics Center conducts research and development in robotics and intelligent machine technologies. An overview of Sandia`s mobile robotics research is provided. Recent achievements and future directions in the areas of coordinated mobile manipulation, small smart machines, world modeling, and special application robots are presented.

  14. Charter of the Sandia National Laboratories Sandia Postdoctoral Development (SPD) Association.

    Energy Technology Data Exchange (ETDEWEB)

    McBride, Amber Alane Fisher; McBride, Amber Alane Fisher; Rodgers, Theron; Dong, Wen; Juan, Pierre-Alexandre; Barkholtz, Heather; Alley, William Morgan; Wolk, Benjamin Matthew; Vane, Zachary Phillips; Priye, Aashish; Ball, Cameron Scott; McBride, Amber Alane Fisher

    2017-03-01

    The SNL SPD Association represents all personnel that are classified as Postdoctoral Appointees at Sandia National Laboratories. The purpose of the SNL SPD Association is to address the needs and concerns of Postdoctoral Appointees within Sandia National Laboratories.

  15. Sandia National Laboratories: The First Fifty Years

    Energy Technology Data Exchange (ETDEWEB)

    MORA,CARL J.

    1999-11-03

    On Nov. 1, 1999, Sandia National Laboratories celebrates its 50th birthday. Although Sandia has its roots in the World War II-era Manhattan Project, Sandia began operating as a separate nuclear weapons engineering laboratory under the management of AT&T on Nov. 1, 1949. Today the lab employs more than 7,000 people at its two sites in Albuquerque and Livermore, California, and has research and development missions in national security, energy and environmental technologies, and U.S. economic competitiveness. Lockheed Martin Corporation operates Sandia for the US. Department of Energy.

  16. SANDIA MOUNTAIN WILDERNESS, NEW MEXICO.

    Science.gov (United States)

    Hedlund, D.C.; Kness, R.F.

    1984-01-01

    Geologic and mineral-resource investigations in the Sandia Mountains in New Mexico indicate that a small part of the area has a probable mineral-resource potential. Most of the mineral occurrences are small barite-fluorite veins that occur along faults on the eastern slope of the range. The barite veins in the Landsend area and in the Tunnel Spring area are classed as having a probable mineral-resource potential. Fluorite veins which occur at the La Luz mine contain silver-bearing galeana and the area near this mine is regarded as having a probable resource potential for silver. No energy resources were identified in this study.

  17. Evaluation of Strontium Selectivity by Sandia Octahedral Molecular Sieves (SOMS).

    Energy Technology Data Exchange (ETDEWEB)

    Rigali, Mark J.; Stewart, Thomas Austin

    2016-01-01

    Sandia National Laboratories has collaborated with Pleasanton Ridge Research Company (PRRC) to determine whether Sandia Octahedral Molecular Sieves (SOMS) and modified SOMs materials can be synthesized in large batches and produced in granular form. Sandia National Laboratories tested these SOMS and its variants based in aqueous chemical environments for an application-based evaluation of material performance as a sorbent. Testing focused primarily on determining the distribution coefficients (K d ) and chemical selectivity SOMs for alkali earth (Sr) ions in aqueous and dilute seawater solutions. In general the well-crystallized SOMS materials tested exhibited very high K d values (>10 6 ) in distilled water but K d values dropped substantially (%7E10 2 -10 3 ) in the dilute seawater (3%). However, one set of SOMS samples (1.4.2 and 1.4.6) provided by PRRC yielded relatively high K d (approaching 10 4 ) in dilute seawater. Further examination of these samples by scanning electron microscopy (SEM) revealed the presence of at least two phases at least one of which may be accounting for the improved K d values in dilute seawater. Evaluation of Strontium Selectivity by Sandia Octahedral Molecular Sieves (SOMS) January 20, 2016

  18. Effects of sediment-spiked lufenuron on benthic macroinvertebrates in outdoor microcosms and single-species toxicity tests

    Energy Technology Data Exchange (ETDEWEB)

    Brock, T.C.M., E-mail: theo.brock@wur.nl [Alterra, Wageningen University and Research Centre, P.O. Box 47, 6700 AA Wageningen (Netherlands); Bas, D.A. [Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam (Netherlands); Belgers, J.D.M. [Alterra, Wageningen University and Research Centre, P.O. Box 47, 6700 AA Wageningen (Netherlands); Bibbe, L. [Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam (Netherlands); Boerwinkel, M-C.; Crum, S.J.H. [Alterra, Wageningen University and Research Centre, P.O. Box 47, 6700 AA Wageningen (Netherlands); Diepens, N.J. [Department of Aquatic Ecology and Water Quality Management, Wageningen University, P.O. Box 47, 6700 AA Wageningen (Netherlands); Kraak, M.H.S.; Vonk, J.A. [Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam (Netherlands); Roessink, I. [Alterra, Wageningen University and Research Centre, P.O. Box 47, 6700 AA Wageningen (Netherlands)

    2016-08-15

    Highlights: • In outdoor microcosms constructed with lufenuron-spiked sediment we observed that this insecticide persistent in the sediment compartment. • Sediment exposure to lufenuron caused population-level declines (insects and crustaceans) and increases (mainly oligochaete worms) of benthic invertebrates. • The direct and indirect effects observed in the microcosms were supported by results of sediment-spiked single species tests with Chironomus riparius, Hyalella azteca and Lumbriculus variegatus. • The tier-1 effect assessment procedure for sediment organisms recommended by the European Food Safety Authority is protective for the treatment-related responses observed in the microcosm test. - Abstract: Sediment ecotoxicity studies were conducted with lufenuron to (i) complement the results of a water-spiked mesocosm experiment with this lipophilic benzoylurea insecticide, (ii) to explore the predictive value of laboratory single-species tests for population and community-level responses of benthic macroinvertebrates, and (iii) to calibrate the tier-1 effect assessment procedure for sediment organisms. For this purpose the concentration-response relationships for macroinvertebrates between sediment-spiked microcosms and those of 28-d sediment-spiked single-species toxicity tests with Chironomus riparius, Hyalella azteca and Lumbriculus variegatus were compared. Lufenuron persisted in the sediment of the microcosms. On average, 87.7% of the initial lufenuron concentration could still be detected in the sediment after 12 weeks. Overall, benthic insects and crustaceans showed treatment-related declines and oligochaetes treatment-related increases. The lowest population-level NOEC in the microcosms was 0.79 μg lufenuron/g organic carbon in dry sediment (μg a.s./g OC) for Tanytarsini, Chironomini and Dero sp. Multivariate analysis of the responses of benthic macroinvertebrates revealed a community-level NOEC of 0.79 μg a.s./g OC. The treatment

  19. Some Outdoor Educators' Experiences of Outdoor Education

    Science.gov (United States)

    Gunn, Terry

    2006-01-01

    The phenomenological study presented in this paper attempts to determine, from outdoor educators, what it meant for them to be teaching outdoor education in Victorian secondary schools during 2004. In 1999, Lugg and Martin surveyed Victorian secondary schools to determine the types of outdoor education programs being run, the objectives of those…

  20. Sandia`s computer support units: The first three years

    Energy Technology Data Exchange (ETDEWEB)

    Harris, R.N. [Sandia National Labs., Albuquerque, NM (United States). Labs. Computing Dept.

    1997-11-01

    This paper describes the method by which Sandia National Laboratories has deployed information technology to the line organizations and to the desktop as part of the integrated information services organization under the direction of the Chief Information officer. This deployment has been done by the Computer Support Unit (CSU) Department. The CSU approach is based on the principle of providing local customer service with a corporate perspective. Success required an approach that was both customer compelled at times and market or corporate focused in most cases. Above all, a complete solution was required that included a comprehensive method of technology choices and development, process development, technology implementation, and support. It is the authors hope that this information will be useful in the development of a customer-focused business strategy for information technology deployment and support. Descriptions of current status reflect the status as of May 1997.

  1. Sandia National Laboratories: Employee & Retiree Resources: Emergency

    Science.gov (United States)

    Media Community Involvement Contribution Programs Volunteer Programs Education Programs Environmental & Figures Programs Nuclear Weapons About Nuclear Weapons Safety & Security Weapons Science & , twitter.com/SandiaLabs Sandia Kirtland Radio at 1640 AM Information regarding road conditions can be found at

  2. Sandia software guidelines, Volume 4: Configuration management

    Energy Technology Data Exchange (ETDEWEB)

    1992-06-01

    This volume is one in a series of Sandia Software Guidelines for use in producing quality software within Sandia National Laboratories. This volume is based on the IEEE standard and guide for software configuration management. The basic concepts and detailed guidance on implementation of these concepts are discussed for several software project types. Example planning documents for both projects and organizations are included.

  3. Sandia software guidelines: Software quality planning

    Energy Technology Data Exchange (ETDEWEB)

    1987-08-01

    This volume is one in a series of Sandia Software Guidelines intended for use in producing quality software within Sandia National Laboratories. In consonance with the IEEE Standard for Software Quality Assurance Plans, this volume identifies procedures to follow in producing a Software Quality Assurance Plan for an organization or a project, and provides an example project SQA plan. 2 figs., 4 tabs.

  4. Guidelines for Sandia ASCI Verification and Validation Plans - Content and Format: Version 1.0

    Energy Technology Data Exchange (ETDEWEB)

    TRUCANO,TIMOTHY G.; MOYA,JAIME L.

    1999-12-01

    This report summarizes general guidelines for the development of Verification and Validation (V and V) plans for ASCI code projects at Sandia National Laboratories. The main content categories recommended by these guidelines for explicit treatment in Sandia V and V plans are (1) stockpile drivers influencing the code development project (2) the key phenomena to be modeled by the individual code; (3) software verification strategy and test plan; and (4) code validation strategy and test plans. The authors of this document anticipate that the needed content of the V and V plans for the Sandia ASCI codes will evolve as time passes. These needs will be reflected by future versions of this document.

  5. Sandia National Laboratories analysis code data base

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, C.W.

    1994-11-01

    Sandia National Laboratories, mission is to solve important problems in the areas of national defense, energy security, environmental integrity, and industrial technology. The Laboratories` strategy for accomplishing this mission is to conduct research to provide an understanding of the important physical phenomena underlying any problem, and then to construct validated computational models of the phenomena which can be used as tools to solve the problem. In the course of implementing this strategy, Sandia`s technical staff has produced a wide variety of numerical problem-solving tools which they use regularly in the design, analysis, performance prediction, and optimization of Sandia components, systems and manufacturing processes. This report provides the relevant technical and accessibility data on the numerical codes used at Sandia, including information on the technical competency or capability area that each code addresses, code ``ownership`` and release status, and references describing the physical models and numerical implementation.

  6. Sandia's Particle Beam Fusion Program

    International Nuclear Information System (INIS)

    Sweeney, M.A.

    1979-01-01

    Sandia's Particle Beam Fusion Program is investigating pulsed electron and light ion beam accelerators, with the goal of demonstrating the practical application of such drivers as igniters in inertial confinement fusion (ICF) reactors. Recent developments in the program are described. Traditionally, two requirements of ICF reactor operation have been the most difficult to satisfy in conceptual designs. Adequate standoff of critical components from damaging pellet emissions must be assured, and the shot repetition rate must be consistent with the desired reactor power level at reasonable pellet gains. Progress in power compression, beam focusing and transport, first-wall protection schemes, and net-energy-gain target design shows how these requirements can be met

  7. Remediating the past and preparing for the future at Sandia National Laboratories

    International Nuclear Information System (INIS)

    Sanders, T.L.

    1996-01-01

    Sandia National Laboratories is one of the nation's largest multiprogram research, development, test, and evaluation (RDT ampersand E) facilities, with headquarters in Albuquerque, New Mexico, a laboratory in Livermore, California, and a test range near Tonopah, Nevada. Smaller testing facilities are also operated at other locations. Established in 1945, Sandia is currently operated for the U.S. Department of Energy by Lockheed-Martin's energy and environment sector. Sandia's responsibility is research and development for national security programs in defense, energy, and environment, with primary emphasis on nuclear weapons research and development. This article describes Sandia's program of remedial action which aims to use technology to reduce costs of decommissioning and decontamination, positioning itself for future opportunities

  8. Sandia Laboratories environment and safety programs

    International Nuclear Information System (INIS)

    Zak, B.D.; McGrath, P.E.; Trauth, C.A. Jr.

    1975-01-01

    Sandia, one of ERDA's largest laboratories, is primarily known for its extensive work in the nuclear weapons field. In recent years, however, Sandia's role has expanded to embrace sizeable programs in the energy, resource recovery, and the environment and safety fields. In this latter area, Sandia has programs which address nuclear, fossil fuel, and general environment and safety issues. Here we survey ongoing activities and describe in more detail aa few projects of particular interest. These range from a study of the impact of sealed disposal of radioactive wastes, through reactor safety and fossil fuel plume chemistry, to investigations of the composition and dynamics of the stratosphere

  9. Building business from technology: The Sandia experience

    Energy Technology Data Exchange (ETDEWEB)

    Traylor, L.B.

    1995-07-01

    This paper describes New Ventures, a new initiative at Sandia National Laboratories that encourages the creation of new businesses based on laboratory technology as a timely, efficient means of technology transfer. Sandia`s New Ventures program has shown that a dedicated effort can produce significant results. In the three years prior to this program`s launch, just two ventures per year on average were created based on laboratory technology. By comparison, the New Ventures program has enabled 20 new ventures in its first nine months of full operation.

  10. The Sandia transportable triggered lightning instrumentation facility

    Science.gov (United States)

    Schnetzer, George H.; Fisher, Richard J.

    1991-01-01

    Development of the Sandia Transportable Triggered Lightning Instrumentation Facility (SATTLIF) was motivated by a requirement for the in situ testing of a munitions storage bunker. Transfer functions relating the incident flash currents to voltages, currents, and electromagnetic field values throughout the structure will be obtained for use in refining and validating a lightning response computer model of this type of structure. A preliminary shakedown trial of the facility under actual operational conditions was performed during summer of 1990 at the Kennedy Space Center's (KSC) rocket-triggered lightning test site. A description is given of the SATTLIF, which is readily transportable on a single flatbed truck of by aircraft, and its instrumentation for measuring incident lightning channel currents and the responses of the systems under test. Measurements of return-stroke current peaks obtained with the SATTLIF are presented. Agreement with data acquired on the same flashes with existing KSC instrumentation is, on average, to within approximately 7 percent. Continuing currents were measured with a resolution of approximately 2.5 A. This field trial demonstrated the practicality of using a transportable triggered lightning facility for specialized test applications.

  11. Outdoors classes

    Science.gov (United States)

    Szymanska-Markowska, Barbara

    2016-04-01

    Why should students be trapped within the four walls of the classroom when there are a lot of ideas to have lessons led in the different way? I am not a fan of having lessons at school. For many students it is also boring to stay only at school, too. So I decided to organize workshops and trips to Universities or outdoors. I created KMO ( Discoverer's Club for Teenagers) at my school where students gave me some ideas and we started to make them real. I teach at school where students don't like science. I try hard to change their point of view about it. That's why I started to take parts in different competitions with my students. Last year we measured noise everywhere by the use of applications on a tablet to convince them that noise is very harmful for our body and us. We examined that the most harmful noises were at school's breaks, near the motorways and in the households. We also proved that acoustic screens, which were near the motorways, didn't protect us from noise. We measured that 30 meters from the screens the noise is the same as the motorway. We won the main prize for these measurements. We also got awards for calculating the costs of a car supplied by powered by a solar panel. We measured everything by computer. This year we decided to write an essay about trees and weather. We went to the forest and found the cut trees because we wanted to read the age of tree from the stump. I hadn't known earlier that we could read the weather from the tree's grain. We examined a lot of trees and we can tell that trees are good carriers of information about weather and natural disasters. I started studies safety education and I have a lot of ideas how to get my students interested in this subject that is similar to P.E., physics and chemistry, too. I hope that I will use my abilities from European Space Education Resource Office and GIFT workshop. I plan to use satellite and space to teach my students how they can check information about terrorism, floods or other

  12. Radiological results for samples collected on paired glass- and cellulose-fiber filters at the Sandia complex, Tonopah Test Range, Nevada

    International Nuclear Information System (INIS)

    Mizell, Steve A.; Shadel, Craig A.

    2016-01-01

    Airborne particulates are collected at U.S. Department of Energy sites that exhibit radiological contamination on the soil surface to help assess the potential for wind to transport radionuclides from the contamination sites. Collecting these samples was originally accomplished by drawing air through a cellulose-fiber filter. These filters were replaced with glass-fiber filters in March 2011. Airborne particulates were collected side by side on the two filter materials between May 2013 and May 2014. Comparisons of the sample mass and the radioactivity determinations for the side-by-side samples were undertaken to determine if the change in the filter medium produced significant results. The differences in the results obtained using the two filter types were assessed visually by evaluating the time series and correlation plots and statistically by conducting a nonparametric matched-pair sign test. Generally, the glass-fiber filters collect larger samples of particulates and produce higher radioactivity values for the gross alpha, gross beta, and gamma spectroscopy analyses. However, the correlation between the radioanalytical results for the glass-fiber filters and the cellulose-fiber filters was not strong enough to generate a linear regression function to estimate the glass-fiber filter sample results from the cellulose-fiber filter sample results.

  13. The evolution of interior intrusion detection technology at Sandia National Laboratories

    International Nuclear Information System (INIS)

    Graham, R.H.; Workhoven, R.M.

    1987-07-01

    Interior Intrusion Detection Technology began at Sandia National Laboratories (SNL) in 1975 as part of the Fixed Facilities Physical Protection Research and Development program sponsored by the US Department of Energy in connection with their nuclear safeguards effort. This paper describes the evolution of Interior Intrusion Detection Technology at Sandia National Laboratories from the beginning of the Interior Sensor Laboratory to the present. This Laboratory was established in 1976 to evaluate commercial interior intrusion sensors and to assist in site-specific intrusion detection system designs. Examples of special test techniques and new test equipment that were developed at the Lab are presented, including the Sandia Intruder Motion Simulator (SIMS), the Sensor and Environment Monitor (SEM), and the Sandia Interior Robot (SIR). We also discuss new sensors and unique sensor combination developed when commercial sensors were unavailable and the future application of expert systems. 5 refs

  14. The evolution of Interior Intrusion Detection Technology at Sandia National Laboratories

    International Nuclear Information System (INIS)

    Graham, R.H.; Workhoven, R.M.

    1987-07-01

    Interior Intrusion Detection Technology began at Sandia National Laboratories (SNL) in 1975 as part of the Fixed Facilities Physical Protection Research and Development program sponsored by the US Department of Energy in connection with their nuclear safeguards effort. This paper describes the evolution of Interior Intrusion Detection Technology at Sandia National Laboratories from the beginning of the Interior Sensor Laboratory to the present. This Laboratory was established in 1976 to evaluate commercial interior intrusion sensors and to assist in site-specific intrusion detection system designs. Examples of special test techniques and new test equipment that were developed at the Lab are presented, including the Sandia Intruder Motion Simulator (SIMS), the Sensor and Environment Monitor (SEM), and the Sandia Interior Robot (SIR). We also discuss new sensors and unique sensor combinations developed when commercial sensors were unavailable and the future application of expert systems

  15. The evolution of interior intrusion detection technology at Sandia National Laboratories

    International Nuclear Information System (INIS)

    Graham, R.H.; Workhoven, R.M.

    1987-01-01

    Interior Intrusion Detection Technology began at Sandia National Laboratories (SNL) in 1975 as part of the Fixed Facilities Physical Protection Research and Development program sponsored by the U.S. Department of Energy in connection with their nuclear safeguards effort. This paper describes the evolution of Interior Intrusion Detection Technology at Sandia National Laboratories from the beginning of the Interior Sensor Laboratory to the present. This Laboratory was established in 1976 to evaluate commercial interior intrusion sensors and to assist in site-specific intrusion detection system designs. Examples of special test techniques and new test equipment that were developed at the Lab are presented, including the Sandia Intruder Motion Simulator (SIMS), the Sensor and Environment Monitor (SEM), and the Sandia Interior Robot (SIR). The authors also discuss new sensors and unique sensor combinations developed when commercial sensors were unavailable and the future application of expert systems

  16. Sandia software guidelines: Volume 5, Tools, techniques, and methodologies

    Energy Technology Data Exchange (ETDEWEB)

    1989-07-01

    This volume is one in a series of Sandia Software Guidelines intended for use in producing quality software within Sandia National Laboratories. This volume describes software tools and methodologies available to Sandia personnel for the development of software, and outlines techniques that have proven useful within the Laboratories and elsewhere. References and evaluations by Sandia personnel are included. 6 figs.

  17. Sandia technology, Winter 1975--1976

    International Nuclear Information System (INIS)

    Weber, J.P.; Marcrum, L.S.

    1976-06-01

    Unclassified development activities at Sandia Laboratories are described. Information is included on rocket-powered aerial trolleys, material evaluation using a plasmajet, metal-hydride models, glass-ceramic tube insulators, ferroelectric ceramics, and systems to communicate with earth penetrators

  18. Environmental monitoring report, Sandia Laboratories 1975

    International Nuclear Information System (INIS)

    Holley, W.L.; Simmons, T.N.

    1976-04-01

    Water and vegetation are monitored to determine Sandia Laboratories impact on the surrounding environment. Nonradioactive pollutants released are reported. Radioactive effluents are also reported and their person-rem contribution to the population is calculated

  19. Sandia National Laboratories: Business Opportunities Website

    Science.gov (United States)

    Environmental Management System Pollution Prevention History 60 impacts Diversity Locations Facts & Figures Does Sandia Buy? Opportunities Small Business Procurement Technical Assistance Program (PTAP) Current Technology Partnerships Business, Industry, & Non-Profits Government Universities Center for

  20. Sandia National Laboratories: News: Publications: Fact Sheets

    Science.gov (United States)

    Environmental Management System Pollution Prevention History 60 impacts Diversity Locations Facts & Figures Does Sandia Buy? Opportunities Small Business Procurement Technical Assistance Program (PTAP) Current Technology Partnerships Business, Industry, & Non-Profits Government Universities Center for

  1. Sandia National Laboratories: Integrated Military Systems

    Science.gov (United States)

    Defense Systems & Assessments About Defense Systems & Assessments Program Areas Accomplishments Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios ; Culture Work-Life Balance Special Programs Integrated Military Systems (IMS) Capabilities Facilities

  2. Sandia National Laboratories: Research: Research Foundations: Engineering

    Science.gov (United States)

    Foundations Bioscience Computing & Information Science Electromagnetics Engineering Science Geoscience Mexico Small Business Assistance Program Sandia Science & Technology Park Careers Community Library Events Careers View All Jobs Students & Postdocs Internships & Co-ops Fellowships

  3. NNSA Master Asset Map - Sandia National Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Billie, Gepetta S. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-01-01

    This report gives information on the following topics related to Sandia National Laboratories: site leadership's vision, condition, footprint management, major gaps and risks, and proposed investment plan.

  4. Sandia National Laboratories analysis code data base

    Science.gov (United States)

    Peterson, C. W.

    1994-11-01

    Sandia National Laboratories' mission is to solve important problems in the areas of national defense, energy security, environmental integrity, and industrial technology. The laboratories' strategy for accomplishing this mission is to conduct research to provide an understanding of the important physical phenomena underlying any problem, and then to construct validated computational models of the phenomena which can be used as tools to solve the problem. In the course of implementing this strategy, Sandia's technical staff has produced a wide variety of numerical problem-solving tools which they use regularly in the design, analysis, performance prediction, and optimization of Sandia components, systems, and manufacturing processes. This report provides the relevant technical and accessibility data on the numerical codes used at Sandia, including information on the technical competency or capability area that each code addresses, code 'ownership' and release status, and references describing the physical models and numerical implementation.

  5. Sandia National Laboratories: Research: Research Foundations: Nanodevices

    Science.gov (United States)

    Technology Partnerships Business, Industry, & Non-Profits Government Universities Center for Mexico Small Business Assistance Program Sandia Science & Technology Park Careers Community support for research; technology advancement and maturation; and small-lot, fast-turn prototyping Our

  6. Sandia Laboratories technical capabilities: systems analysis

    International Nuclear Information System (INIS)

    Lundergan, C.D.

    1975-06-01

    The systems analysis capabilities at Sandia Laboratories are summarized. Selected applications of these capabilities are presented to illustrate the extent to which they can be applied in research and development programs. (U.S.)

  7. Sandia Laboratories technical capabilities: engineering analysis

    International Nuclear Information System (INIS)

    Lundergan, C.D.

    1975-12-01

    This report characterizes the engineering analysis capabilities at Sandia Laboratories. Selected applications of these capabilities are presented to illustrate the extent to which they can be applied in research and development programs

  8. Summary of Sandia Laboratories technical capabilities

    International Nuclear Information System (INIS)

    1977-05-01

    The technical capabilities of Sandia Laboratories are detailed in a series of companion reports. In this summary the use of the capabilities in technical programs is outlined and the capabilities are summarized. 25 figures, 3 tables

  9. Characterization of reactor neutron environments at Sandia National Laboratories

    International Nuclear Information System (INIS)

    Kelly, J.G.; Luera, T.F.; Griffin, P.J.; Vehar, D.W.

    1994-01-01

    To assure quality in the testing of electronic parts in neutron radiation environments, Sandia National Laboratories (SNL) has incorporated modern techniques and procedures, developed in the last two decades by the radiation effects community, into all of its experimental programs. Attention to the application of all of these methodologies, experiment designs, nuclear data, procedures and controls to the SNL radiation services has led to the much more accurate and reliable environment characterizations required to correlate the effects observed with the radiation delivered

  10. Sandia Laboratories technical capabilities: auxiliary capabilities

    International Nuclear Information System (INIS)

    1978-09-01

    The primary responsibility of the environmental health function is the evaluation and control of hazardous materials and conditions. The evaluation and control of toxic materials, nonionizing radiation such as laser beams and microwaves, and ionizing radiation such as from radiation machines and radioactive sources, are examples of the activities of environmental health programs. A chemical laboratory is operated for the analysis of toxic and radioactive substances and for the bioassay program to provide an index of internal exposure of personnel to toxic and radioactive materials. Instrumentation support and development is provided for environmental health activities. A dosimetry program is maintained to measure personnel exposure to external ionizing radiation. A radiation counting laboratory is maintained. Reentry safety control and effluent documentation support are provided for underground nuclear tests at the Nevada Test Site. A radiation training program is provided for laboratory personnel which covers all areas of radiation protection, from working with radioactive materials to radiation-producing machines. The information science activity functions within the framework of Sandia Laboratories' technical libraries. Information science is oriented toward the efficient dissemination of information to technical and administrative personnel. Computerized systems are used to collect, process and circulate books, reports, and other literature. Current-awareness, reference, translation, and literature-search services are also provided

  11. Optical and thermal performance of large-size parabolic-trough solar collectors from outdoor experiments: A test method and a case study

    International Nuclear Information System (INIS)

    Valenzuela, Loreto; López-Martín, Rafael; Zarza, Eduardo

    2014-01-01

    This article presents an outdoor test method to evaluate the optical and thermal performance of parabolic-trough collectors of large size (length ≥ 100 m), similar to those currently installed in solar thermal power plants. Optical performance in line-focus collectors is defined by three parameters, peak-optical efficiency and longitudinal and transversal incidence angle modifiers. In parabolic-troughs, the transversal incidence angle modifier is usually assumed equal to 1, and the incidence angle modifier is referred to the longitudinal incidence angle modifier, which is a factor less than or equal to 1 and must be quantified. These measurements are performed by operating the collector at low fluid temperatures for reducing heat losses. Thermal performance is measured during tests at various operating temperatures, which are defined within the working temperature range of the solar field, and for the condition of maximum optical response. Heat losses are measured from both the experiments performed to measure the overall efficiency and the experiments done by operating the collector to ensure that absorber pipes are not exposed to concentrated solar radiation. The set of parameters describing the performance of a parabolic-trough collector of large size has been measured following the test procedures proposed and explained in the article. - Highlights: • Outdoor test procedures of parabolic-trough solar collector (PTC) of large size working at high temperature are described. • Optical performance measured with cold fluid temperature and thermal performance measured in the complete temperature range. • Experimental data obtained in the testing of a PTC prototype are explained

  12. Experiences implementing the MPI standard on Sandia`s lightweight kernels

    Energy Technology Data Exchange (ETDEWEB)

    Brightwell, R.; Greenberg, D.S.

    1997-10-01

    This technical report describes some lessons learned from implementing the Message Passing Interface (MPI) standard, and some proposed extentions to MPI, at Sandia. The implementations were developed using Sandia-developed lightweight kernels running on the Intel Paragon and Intel TeraFLOPS platforms. The motivations for this research are discussed, and a detailed analysis of several implementation issues is presented.

  13. Multilayer Controller for Outdoor Vehicle

    DEFF Research Database (Denmark)

    Reske-Nielsen, Anders; Mejnertsen, Asbjørn; Andersen, Nils Axel

    2006-01-01

    A full software and hardware solution has been designed, implemented and tested for control of a small agricultural automatic tractor. The objective was to realise a user-friendly, multi-layer controller architecture for an outdoor platform. The collaborative research work was done as a part of a...

  14. Sandia National Laboratories 1979 environmental monitoring report

    International Nuclear Information System (INIS)

    Simmons, T.N.

    1980-04-01

    Sandia National Laboratories in Albuquerque is located south of the city on two broad mesas. The local climate is arid continental. Radionuclides are released from five technical areas from the Laboratories' resarch activities. Sandia's environmental monitoring program searches for cesium-137, tritium, uranium, alpha emitters, and beta emitters in water, soil, air, and vegetation. No activity was found in public areas in excess of local background in 1979. The Albuquerque population receives only 0.076 person-rem (estimated) from airborne radioactive releases. While national security research is the laboratories' major responsibility, energy research is a major area of activity. Both these research areas cause radioactive releases

  15. Sandia Software Guidelines, Volume 2. Documentation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    This volume is one in a series of Sandia Software Guidelines intended for use in producing quality software within Sandia National Laboratories. In consonance with the IEEE Standards for software documentation, this volume provides guidance in the selection of an adequate document set for a software project and example formats for many types of software documentation. A tutorial on life cycle documentation is also provided. Extended document thematic outlines and working examples of software documents are available on electronic media as an extension of this volume.

  16. Transuranic waste management at Sandia National Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Humphrey, Betty [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bland, Jesse John [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2018-01-01

    This paper documents the history of the TRU program at Sandia, previous and current activities associated with TRU material and waste, interfaces with other TRU waste generator sites and the Waste Isolation Pilot Plan (WIPP), and paths forward for TRU material and waste. This document is a snapshot in time of the TRU program and should be updated as necessary, or when significant changes have occurred in the Sandia TRU program or in the TRU regulatory environment. This paper should serve as a roadmap to capture past TRU work so that efforts are not repeated and ground is not lost due to future inactivity and personnel changes.

  17. The Effect of Chlorides on the Correlation of Accelerated Laboratory Corrosion Tests to Out-Door Exposure Tests for Ceramics-Aluminum Couples

    Science.gov (United States)

    2010-02-01

    approximately 2000 psi. (G-10 fiber glass) (G-10 fiber glass) Ceramic Coupon *Courtesy : George Hawthorn of Hawaii Corrosion Lab Outdoor Exposure Procedures...agricultural, and arid). • Hawaii’s climate is one of the most spatially diverse on Earth. Kahuku* Coconut Island* – Marine environment – Marine...T6 Al Kilauea Kahuku Coconut Island Manoa Campbell Waipahu Ewanui Mauna Loa C o rr o s io n r a te s a t th e i n te rf a c e r e g io n ( g m d

  18. A user`s guide to LHS: Sandia`s Latin Hypercube Sampling Software

    Energy Technology Data Exchange (ETDEWEB)

    Wyss, G.D.; Jorgensen, K.H. [Sandia National Labs., Albuquerque, NM (United States). Risk Assessment and Systems Modeling Dept.

    1998-02-01

    This document is a reference guide for LHS, Sandia`s Latin Hypercube Sampling Software. This software has been developed to generate either Latin hypercube or random multivariate samples. The Latin hypercube technique employs a constrained sampling scheme, whereas random sampling corresponds to a simple Monte Carlo technique. The present program replaces the previous Latin hypercube sampling program developed at Sandia National Laboratories (SAND83-2365). This manual covers the theory behind stratified sampling as well as use of the LHS code both with the Windows graphical user interface and in the stand-alone mode.

  19. Simulation and off-line programming at Sandia`s Intelligent Systems and Robotics Center

    Energy Technology Data Exchange (ETDEWEB)

    Xavier, P.G.; Fahrenholtz, J.C.; McDonald, M. [Sandia National Labs., Albuquerque, NM (United States). Intelligent Systems and Robotics Center] [and others

    1997-11-01

    One role of the Intelligent Robotics and System Center (ISRC) at Sandia National Laboratories is to address certain aspects of Sandia`s mission to design, manufacture, maintain, and dismantle nuclear weapon components. Hazardous materials, devices, and environments are often involved. Because of shrinking resources, these tasks must be accomplished with a minimum of prototyping, while maintaining high reliability. In this paper, the authors describe simulation, off-line programming/planning, and related tools which are in use, under development, and being researched to solve these problems at the ISRC.

  20. Sandia National Laboratories: News: Media Resources: Media Contacts

    Science.gov (United States)

    Foundations Bioscience Computing & Information Science Electromagnetics Engineering Science Geoscience computing, modeling and simulation and nanotechnology. Contact: (505) 845-7078; nsinger@sandia.gov Kristen specialist at Sandia/California. She covers biological and engineering sciences, homeland security and

  1. Sandia National Laboratories: Pathfinder Radar ISR and Synthetic Aperture

    Science.gov (United States)

    Radar (SAR) Systems Sandia National Laboratories Exceptional service in the national interest ; Technology Defense Systems & Assessments About Defense Systems & Assessments Program Areas Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios

  2. Sandia National Laboratories: Hydrogen Risk Assessment Models toolkit now

    Science.gov (United States)

    Icon Locations Contact Us Employee Locator Search Menu About Leadership Mission Social Media Community Responsibility History Diversity Social Media Careers View All Jobs Students & Postdocs Benefits & Perks Technology Deployment Centers New Mexico Small Business Assistance Program Sandia's Economic Impact Sandia

  3. Sandia National Laboratories: Careers: Special Programs

    Science.gov (United States)

    Program Master's Fellowship Program Wounded Warrior Career Development Program Careers Special Programs Special career opportunities for select individuals Join Sandia's workforce while receiving support and Laboratories' Affirmative Action Plan. Learn more about MFP. Wounded Warrior Career Development Program U.S

  4. SAPLE: Sandia Advanced Personnel Locator Engine.

    Energy Technology Data Exchange (ETDEWEB)

    Procopio, Michael J.

    2010-04-01

    We present the Sandia Advanced Personnel Locator Engine (SAPLE) web application, a directory search application for use by Sandia National Laboratories personnel. SAPLE's purpose is to return Sandia personnel 'results' as a function of user search queries, with its mission to make it easier and faster to find people at Sandia. To accomplish this, SAPLE breaks from more traditional directory application approaches by aiming to return the correct set of results while placing minimal constraints on the user's query. Two key features form the core of SAPLE: advanced search query interpretation and inexact string matching. SAPLE's query interpretation permits the user to perform compound queries when typing into a single search field; where able, SAPLE infers the type of field that the user intends to search on based on the value of the search term. SAPLE's inexact string matching feature yields a high-quality ranking of personnel search results even when there are no exact matches to the user's query. This paper explores these two key features, describing in detail the architecture and operation of SAPLE. Finally, an extensive analysis on logged search query data taken from an 11-week sample period is presented.

  5. Outdoorsman: Outdoor Cooking.

    Science.gov (United States)

    Alberta Dept. of Agriculture, Edmonton.

    This Outdoor Cookery manual provides information and instruction on the basic outdoor skills of building suitable cooking fires, handling fires safely, and storing food. The necessity of having the right kind of fire is stressed (high flames for boiling, low for stewing, and coals for frying and broiling). Tips on gauging temperature, what types…

  6. Rotor instrumentation circuits for the Sandia 34-meter vertical axis wind turbine

    Science.gov (United States)

    Sutherland, Herbert J.; Stephenson, William A.

    1988-07-01

    Sandia National Laboratories has erected a research oriented, 34-meter diameter, Darrieus vertical axis wind turbine near Bushland, Texas, which has been designated the Sandia 34-m VAWT Test Bed. To meet present and future research needs, the machine was equipped with a large array of sensors. This manuscript details the sensors initially placed on the rotor, their respective instrumentation circuits, and the provisions incorporated into the design of the rotor instrumentation circuits for future research. This manuscript was written as a reference manual for the rotor instrumentation of the Test Bed.

  7. Sandia Agile MEMS Prototyping, Layout Tools, Education and Services Program

    Energy Technology Data Exchange (ETDEWEB)

    Schriner, H.; Davies, B.; Sniegowski, J.; Rodgers, M.S.; Allen, J.; Shepard, C.

    1998-05-01

    Research and development in the design and manufacture of Microelectromechanical Systems (MEMS) is growing at an enormous rate. Advances in MEMS design tools and fabrication processes at Sandia National Laboratories` Microelectronics Development Laboratory (MDL) have broadened the scope of MEMS applications that can be designed and manufactured for both military and commercial use. As improvements in micromachining fabrication technologies continue to be made, MEMS designs can become more complex, thus opening the door to an even broader set of MEMS applications. In an effort to further research and development in MEMS design, fabrication, and application, Sandia National Laboratories has launched the Sandia Agile MEMS Prototyping, Layout Tools, Education and Services Program or SAMPLES program. The SAMPLES program offers potential partners interested in MEMS the opportunity to prototype an idea and produce hardware that can be used to sell a concept. The SAMPLES program provides education and training on Sandia`s design tools, analysis tools and fabrication process. New designers can participate in the SAMPLES program and design MEMS devices using Sandia`s design and analysis tools. As part of the SAMPLES program, participants` designs are fabricated using Sandia`s 4 level polycrystalline silicon surface micromachine technology fabrication process known as SUMMiT (Sandia Ultra-planar, Multi-level MEMS Technology). Furthermore, SAMPLES participants can also opt to obtain state of the art, post-fabrication services provided at Sandia such as release, packaging, reliability characterization, and failure analysis. This paper discusses the components of the SAMPLES program.

  8. Computational geomechanics and applications at Sandia National Laboratories

    International Nuclear Information System (INIS)

    Arguello, Jose Guadalupe Jr.

    2010-01-01

    Sandia National Laboratories (SNL) is a multi-program national laboratory in the business of national security, whose primary mission is nuclear weapons (NW). It is a prime contractor to the USDOE, operating under the NNSA and is one of the three NW national laboratories. It has a long history of involvement in the area of geomechanics, starting with the some of the earliest weapons tests at Nevada. Projects in which geomechanics support (in general) and computational geomechanics support (in particular) are at the forefront at Sandia, range from those associated with civilian programs to those in the defense programs. SNL has had significant involvement and participation in the Waste Isolation Pilot Plant (low-level defense nuclear waste), the Yucca Mountain Project (formerly proposed for commercial spent fuel and high-level nuclear waste), and the Strategic Petroleum Reserve (the nation's emergency petroleum store). In addition, numerous industrial partners seek-out our computational/geomechanics expertise, and there are efforts in compressed air and natural gas storage, as well as in CO 2 Sequestration. Likewise, there have also been collaborative past efforts in the areas of compactable reservoir response, the response of salt structures associated with reservoirs, and basin modeling for the Oil and Gas industry. There are also efforts on the defense front, ranging from assessment of vulnerability of infrastructure to defeat of hardened targets, which require an understanding and application of computational geomechanics. Several examples from some of these areas will be described and discussed to give the audience a flavor of the type of work currently being performed at Sandia in the general area of geomechanics.

  9. Environmental monitoring report: Sandia Laboratories, 1976

    International Nuclear Information System (INIS)

    Simmons, T.N.

    1977-04-01

    Water and vegetation are monitored to determine Sandia Laboratories impact on the surrounding environment. Nonradioactive pollutants released are reported. Radioactive effluents are also reported and their person-rem contribution to the Albuquerque population is calculated. The environmental monitoring for calendar year 1976 shows that concentrations of radioactive materials in the Albuquerque area are typical of natural background for the area. An exception is a single onsite location where slightly abnormal uranium concentrations are expected. An estimated 0.044 person-rem Albuquerque area (80 km radius) population dose commitment results from calculated Sandia Laboratories releases. Over the same area 57,000 person-rem is accumulated from natural background. There were no measurable offsite radioactive effluent releases in CY 1976

  10. Targets development at Sandia National Laboratories

    International Nuclear Information System (INIS)

    Smith, M.L.; Hebron, D.; Derzon, M.; Olson, R.; Alberts, T.

    1997-01-01

    For many years, Sandia National Laboratories under contract to the Department of Energy has produced targets designed to understand complex ion beam and z-pinch plasma physics. This poster focuses on the features of target designs that make them suitable for Z-pinch plasma physics applications. Precision diagnostic targets will prove critical in understanding the plasma physics model needed for future ion beam and z-pinch design. Targets are designed to meet specific physics needs; in this case the authors have fabricated targets to maximize information about the end-on versus side-on x-ray emission and z-pinch hohlraum development. In this poster, they describe the fabrication and characterization techniques. They include discussion of current targets under development as well as target fabrication capabilities. Advanced target designs are fabricated by Sandia National Laboratories in cooperation with General Atomics of San Diego, CA and W.J. Schafer Associates, Inc. of Livermore, CA

  11. Environmental Monitoring Plan, Sandia National Laboratories, Livermore

    International Nuclear Information System (INIS)

    Holland, R.C.

    1992-06-01

    This Environmental Monitoring Plan was written to fulfill the requirements of DOE Order 5400.1 and DOE Environmental Regulatory Guide DOE/EH 0173T. This Plan documents the background, organizational structure, and methods used for effluent monitoring and environmental surveillance at Sandia National Laboratories, Livermore. The design, rationale, and historical results of the environmental monitoring system are discussed in detail. Throughout the Plan, recommendations for improvements to the monitoring system are made. 61 refs

  12. Compilation of Sandia Laboratories technical capabilities

    International Nuclear Information System (INIS)

    Lundergan, C.D.; Mead, P.L.

    1975-11-01

    This report is a compilation of 17 individual documents that together summarize the technical capabilities of Sandia Laboratories. Each document in this compilation contains details about a specific area of capability. Examples of application of the capability to research and development problems are provided. An eighteenth document summarizes the content of the other seventeen. Each of these documents was issued with a separate report number (SAND 74-0073A through SAND 74-0091, except -0078)

  13. Compilation of Sandia Laboratories technical capabilities

    Energy Technology Data Exchange (ETDEWEB)

    Lundergan, C. D.; Mead, P. L. [eds.

    1975-11-01

    This report is a compilation of 17 individual documents that together summarize the technical capabilities of Sandia Laboratories. Each document in this compilation contains details about a specific area of capability. Examples of application of the capability to research and development problems are provided. An eighteenth document summarizes the content of the other seventeen. Each of these documents was issued with a separate report number (SAND 74-0073A through SAND 74-0091, except -0078). (RWR)

  14. Sandia National Laboratories focus issue: introduction.

    Science.gov (United States)

    Boye, Robert

    2014-08-20

    For more than six decades, Sandia has provided the critical science and technology to address the nation's most challenging issues. Our original nuclear weapons mission has been complemented with work in defense systems, energy and climate, as well as international and homeland security. Our vision is to be a premier science and engineering laboratory for technology solutions to the most challenging problems that threaten peace and freedom for our nation and the globe.

  15. The little book of maths outdoors

    CERN Document Server

    Gould, Terry

    2013-01-01

    This is a unique book that supports the current thinking behind outdoor learning. It features over 40 ideas for outdoor activities that support mathematics in the early years and the specific areas of learning in the revised EYFS. All the ideas are tried and tested by Terry and this book will prove to be popular in the early years and well into Key stage 1.

  16. Sandia Strehl Calculator Version 1.0

    Energy Technology Data Exchange (ETDEWEB)

    2017-12-05

    The Sandia Strehl Calculator is designed to calculate the Gibson and Lanni point spread function (PSF), Strehl ratio, and ensquared energy, allowing non-design immersion, coverslip, and sample layers. It also uses Abbe number calculations to determine the refractive index at specific wavelengths when given the refractive index at a different wavelength and the dispersion. The primary application of Sandia Strehl Calculator is to determine the theoretical impacts of using an optical microscope beyond its normal design parameters. Examples of non-design microscope usage include: a) using coverslips of non-design material b) coverslips of different thicknesses c) imaging deep into an aqueous sample with an immersion objective d) imaging a sample at 37 degrees. All of these changes can affect the imaging quality, sometimes profoundly, but are at the same time non-design conditions employed not infrequently. Rather than having to experimentally determine whether the changes will result in unacceptable image quality, Sandia Strehl Calculator uses existing optical theory to determine the approximate effect of the change, saving the need to perform experiments.

  17. Design and initial deployment of the wireless local area networking infrastructure at Sandia National Laboratories.

    Energy Technology Data Exchange (ETDEWEB)

    Long, John P.; Hamill, Michael J.; Mitchell, M. G.; Miller, Marc M.; Witzke, Edward L.; Wiener, Dallas J

    2006-11-01

    A major portion of the Wireless Networking Project at Sandia National Laboratories over the last few years has been to examine IEEE 802.11 wireless networking for possible use at Sandia and if practical, introduce this technology. This project team deployed 802.11a, b, and g Wireless Local Area Networking at Sandia. This report examines the basics of wireless networking and captures key results from project tests and experiments. It also records project members thoughts and designs on wireless LAN architecture and security issues. It documents some of the actions and milestones of this project, including pilot and production deployment of wireless networking equipment, and captures the team's rationale behind some of the decisions made. Finally, the report examines lessons learned, future directions, and conclusions.

  18. The Sandia/Arzamas-16 Magazine-to-Magazine Remote Monitoring Field Trial Evaluation

    International Nuclear Information System (INIS)

    Barkanov, Boris; Blagin, Sergei; Croessmann, Dennis; Damico, Joe; Ehle, Steve; Nilsen, Curt

    1999-01-01

    Sandia National Laboratories and the Russian Federal Nuclear Center-All Russian Research Institute for Experimental Physics (VNIIEF) (also known as Arzamas-16) are collaborating on ways to assure the highest standards of safety, security, and international accountability of fissile material. For these collaborations, sensors and information technologies have been identified as important in reaching these standards in a cost-effective manner. Specifically, Sandia and VNIIEF have established a series of remote monitoring field trials to provide a mechanism for joint research and development on storage monitoring systems. These efforts consist of the ''Container-to-Container'', ''Magazine-to-Magazine'', and ''Facility-to-Facility'' field trials. This paper will describe the evaluation exercise Sandia and VNIIEF conducted on the Magazine-to-Magazine systems. Topics covered will include a description of the evaluation philosophy, how the various sensors and system features were tested, evaluation results, and lessons learned

  19. Development and Evaluation of a Sandia Cooler-based Refrigerator Condenser

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Terry A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Kariya, Harumichi Arthur [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Leick, Michael T. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Zimmerman, Mark D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Li, Manjie [Univ. of Maryland, College Park, MD (United States); Du, Yilin [Univ. of Maryland, College Park, MD (United States); Lee, Hoseong [Univ. of Maryland, College Park, MD (United States); Hwang, Yunho [Univ. of Maryland, College Park, MD (United States); Radermacher, Reinhard [Univ. of Maryland, College Park, MD (United States)

    2015-07-01

    This report describes the first design of a refrigerator condenser using the Sandia Cooler, i.e. air - bearing supported rotating heat - sink impeller. The project included ba seline performance testing of a residential refrigerator, analysis and design development of a Sandia Cooler condenser assembly including a spiral channel baseplate, and performance measurement and validation of this condenser system as incorporated into the residential refrigerator. Comparable performance was achieved in a 60% smaller volume package. The improved modeling parameters can now be used to guide more optimized designs and more accurately predict performance.

  20. Winter Weather: Outdoor Safety

    Science.gov (United States)

    ... Extreme Heat Older Adults (Aged 65+) Infants and Children Chronic Medical Conditions Low Income Athletes Outdoor Workers Pets Hot Weather Tips Warning Signs and Symptoms FAQs Social Media How to Stay Cool Missouri Cooling Centers Extreme ...

  1. Pulsed Power: Sandia's Plans for the New Millenium

    International Nuclear Information System (INIS)

    Quintenz, Jeffrey P.

    2000-01-01

    Pulsed power science and engineering activities at Sandia National Laboratories grew out of a programmatic need for intense radiation sources to advance capabilities in radiographic imaging and to create environments for testing and certifying the hardness of components and systems to radiation in hostile environments. By the early 1970s, scientists in laboratories around the world began utilizing pulsed power drivers with very short (10s of nanoseconds) pulse lengths for Inertial Confinement Fusion (ICF) experiments. In the United States, Defense Programs within the Department of Energy has sponsored this research. Recent progress in pulsed power, specifically fast-pulsed-power-driven z pinches, in creating temperatures relevant to ICF has been remarkable. Worldwide developments in pulsed power technologies and increased applications in both defense and industry are contrasted with ever increasing stress on research and development tiding. The current environment has prompted us at Sandia to evaluate our role in the continued development of pulsed power science and to consider options for the future. This presentation will highlight our recent progress and provide an overview of our plans as we begin the new millennium

  2. Outdoor thermal comfort.

    Science.gov (United States)

    Nikolopoulou, Marialena

    2011-06-01

    A review of the various approaches in understanding outdoor thermal comfort is presented. The emphasis on field surveys from around the world, particularly across Europe, enables us to understand thermal perception and evaluate outdoor thermal comfort conditions. The consistent low correlations between objective microclimatic variables, subjective thermal sensation and comfort outdoors, internationally, suggest that thermophysiology alone does not adequate describe these relationships. Focusing on the concept of adaptation, it tries to explain how this influences outdoor comfort, enabling us to inhabit and get satisfaction from outdoor spaces throughout the year. Beyond acclimatization and behavioral adaptation, through adjustments in clothing and changes to the metabolic heat, psychological adaptation plays a critical role to ensure thermal comfort and satisfaction with the outdoor environment. Such parameters include recent experiences and expectations; personal choice and perceived control, more important than whether that control is actually exercised; and the need for positive environmental stimulation suggesting that thermal neutrality is not a pre-requisite for thermal comfort. Ultimately, enhancing environmental diversity can influence thermal perception and experience of open spaces.

  3. Research and Development Program for transportation packagings at Sandia National Laboratories

    International Nuclear Information System (INIS)

    Hohnstreiter, G.F.; Sorenson, K.B.

    1995-01-01

    This document contains information about the research and development programs dealing with waste transport at Sandia National Laboratories. This paper discusses topics such as: Why new packaging is needed; analytical methodologies and design codes;evaluation of packaging components; materials characterization; creative packaging concepts; packaging engineering and analysis; testing; and certification support

  4. Site Environmental Report for 2007: Sandia National Laboratories, California

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Barbara L. [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Environmental Management Dept.

    2008-06-01

    Sandia National Laboratories, California (SNL/CA) is a government-owned/contractor-operated laboratory. Sandia Corporation, a Lockheed Martin Company, operates the laboratory for the Department of Energy’s National Nuclear Security Administration (NNSA). The NNSA Sandia Site Office oversees operations at the site, using Sandia Corporation as a management and operating contractor. This Site Environmental Report for 2007 was prepared in accordance with DOE Order 231.1A (DOE 2004a). The report provides a summary of environmental monitoring information and compliance activities that occurred at SNL/CA during calendar year 2007. General site and environmental program information is also included.

  5. Site environmental report for 2008 Sandia National Laboratories, California.

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Barbara L.

    2009-04-01

    Sandia National Laboratories, California (SNL/CA) is a government-owned/contractor operated laboratory. Sandia Corporation, a Lockheed Martin Company, operates the laboratory for the Department of Energy's National Nuclear Security Administration (NNSA). The NNSA Sandia Site Office oversees operations at the site, using Sandia Corporation as a management and operating contractor. This Site Environmental Report for 2008 was prepared in accordance with DOE Order 231.1A (DOE 2004a). The report provides a summary of environmental monitoring information and compliance activities that occurred at SNL/CA during calendar year 2008. General site and environmental program information is also included.

  6. Site environmental report for 2004 Sandia National Laboratories, California.

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Barbara L. (Sandia National Laboratories, Livermore, CA)

    2005-06-01

    Sandia National Laboratories, California (SNL/CA) is a government-owned/contractor-operated laboratory. Sandia Corporation, a Lockheed Martin Company, operates the laboratory for the Department of Energy's (DOE) National Nuclear Security Administration. The DOE Sandia Site Office oversees operations at the site, using Sandia Corporation as a management and operating contractor. This Site Environmental Report for 2004 was prepared in accordance with DOE Order 231.1A. The report provides a summary of environmental monitoring information and compliance activities that occurred at SNL/CA during calendar year 2004. General site and environmental program information is also included.

  7. Site environmental report for 2003 Sandia National Laboratories, California.

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Barbara L.

    2004-06-01

    Sandia National Laboratories, California (SNL/CA) is a government-owned/contractor-operated laboratory. Sandia Corporation, a Lockheed Martin Company, operates the laboratory for the Department of Energy's (DOE) National Nuclear Security Administration. The DOE Sandia Site Office oversees operations at the site, using Sandia Corporation as a management and operating contractor. This Site Environmental Report for 2003 was prepared in accordance with DOE Order 231.1A. The report provides a summary of environmental monitoring information and compliance activities that occurred at SNL/CA during calendar year 2003. General site and environmental program information is also included.

  8. Power supplies for space systems quality assurance by Sandia Laboratories

    International Nuclear Information System (INIS)

    Hannigan, R.L.; Harnar, R.R.

    1976-07-01

    The Sandia Laboratories' participation in Quality Assurance programs for Radioisotopic Thermoelectric Generators which have been used in space systems over the past 10 years is summarized. Basic elements of this QA program are briefly described and recognition of assistance from other Sandia organizations is included. Descriptions of the various systems for which Sandia has had the QA responsibility are presented, including SNAP 19 (Nimbus, Pioneer, Viking), SNAP 27 (Apollo), Transit, Multi-Hundred Watt (LES 8/9 and MJS), and a new program, High-Performance Generator Mod 3. The outlook for Sandia participation in RTG programs for the next several years is noted

  9. Teamwork and diversity: A survey at Sandia National Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Apodaca, T.; Berman, M.; Griego, C.; Jansma, R.; Leatherwood, M.; Lovato, L.; Sanchez, A.

    1995-11-01

    In September, 1994, Sandia`s Diversity Leadership and Education Outreach Center arid the Corporate Diversity Team commissioned a Diversity Action Team (DAT-Phase II) to address the area of team- work. The goal of this DAT was to identify ways to capitalize on the diversity of people to enhance team success at Sandia. Given a six- month lifetime and funding levels of 12 hours per person per month, we chose to accomplish our goal by gathering and analyzing data on the performance and diversity of Sandia teams and publishing this report of our findings. The work presented herein builds on earlier work of this team.

  10. Site environmental report for 2006 Sandia National Laboratories, California.

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Barbara L.

    2007-06-01

    Sandia National Laboratories, California (SNL/CA) is a government-owned/contractor-operated laboratory. Sandia Corporation, a Lockheed Martin Company, operates the laboratory for the Department of Energy's National Nuclear Security Administration (NNSA). The NNSA Sandia Site Office oversees operations at the site, using Sandia Corporation as a management and operating contractor. This Site Environmental Report for 2006 was prepared in accordance with DOE Order 231.1A (DOE 2004a). The report provides a summary of environmental monitoring information and compliance activities that occurred at SNL/CA during calendar year 2006. General site and environmental program information is also included.

  11. Site environmental report for 2005 Sandia National Laboratories, California.

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Barbara L.

    2006-06-01

    Sandia National Laboratories, California (SNL/CA) is a government-owned/contractor-operated laboratory. Sandia Corporation, a Lockheed Martin Company, operates the laboratory for the Department of Energy's (DOE) National Nuclear Security Administration (NNSA). The DOE/NNSA Sandia Site Office (SSO) oversees operations at the site, using Sandia Corporation as a management and operating contractor. This Site Environmental Report for 2005 was prepared in accordance with DOE Order 231.1A. The report provides a summary of environmental monitoring information and compliance activities that occurred at SNL/CA during calendar year 2005. General site and environmental program information is also included.

  12. Sandia's recent results in particle beam research

    International Nuclear Information System (INIS)

    Yonas, G.

    1977-01-01

    Recent results in the Sandia particle beam fusion research program are briefly discussed. Ignition of pellet fusion targets by both electron and ion beams are under study. Power concentration, dielectric breakdown, diode optimization, and beam-target interaction experiments are briefly described. Magnetic insulation considerations are discussed. Efforts to utilize higher impedance diode sources and reduce minimum power pulse widths are described. Analyses indicate that particle beam ignition systems might yield pellet gains greater than 10 in hybrid and approximately 100 in pure fusion reactors. A bibliography of 23 references is included

  13. The new Sandia light ion microbeam

    Energy Technology Data Exchange (ETDEWEB)

    Vizkelethy, G., E-mail: gvizkel@sandia.gov [Sandia National Laboratories, P.O. Box 5800, MS 1056, Albuquerque, NM 87185 (United States); Doyle, B.L. [Sandia National Laboratories, P.O. Box 5800, MS 1056, Albuquerque, NM 87185 (United States); McDaniel, F.L. [Sandia National Laboratories, P.O. Box 5800, MS 1056, Albuquerque, NM 87185 (United States); University of North Texas, Denton, TX 76203 (United States)

    2012-02-15

    The Ion Beam Laboratory of Sandia National Laboratories (SNL) was recently relocated into a brand new building. The 6 MV High Voltage Engineering (HVE) tandem accelerator (hosting the heavy ion microbeam and several analytical beam lines) and the 350 kV HVE implanter with a nanobeam were moved to the new building. There were several new pieces of equipment acquired associated with the move, among them a new high brightness 3 MV Pelletron accelerator, a high resolution light ion microbeam, a nanoimplanter, and a transmission electron microscope (TEM) connected to the tandem accelerator. In this paper this new facility will be described, and initial results of the new microbeam will be presented.

  14. An overview of equipment survivability studies at Sandia National Laboratories (SNL)

    International Nuclear Information System (INIS)

    Bonzon, L.L.; Craft, Ch.M.; McCulloch, W.H.; Sebrell, W.A.

    1983-01-01

    The USNRC sponsors a number of programs at Sandia National Laboratories (SNL) specifically addressing safety-related equipment survivability. The major thrust of these programs has been the physical testing of equipment. Test results illustrate the importance of a dedicated equipment design effort giving particular attention to the safety implications of the equipment operation. Several equipment survivability tests here have revealed equipment design and test-related deficiencies

  15. An overview of equipment survivability studies at Sandia National Labs. (SNL): Chapter 3

    International Nuclear Information System (INIS)

    Bonzon, L.L.; Craft, C.M.; McCulloch, W.H.; Sebrell, W.A.

    1983-01-01

    The USNRC sponsors a number of programs at Sandia National Laboratories (SNL) specifically addressing safety-related equipment survivability. The major thrust of these programs has been the physical testing of equipment. Test results illustrate the importance of a dedicated equipment design effort giving particular attention to the safety implications of the equipment operation. Several equipment survivability tests here have revealed equipment design and test-related deficiencies

  16. Sandia SWiFT Wind Turbine Manual.

    Energy Technology Data Exchange (ETDEWEB)

    White, Jonathan; LeBlanc, Bruce Philip; Berg, Jonathan Charles; Bryant, Joshua; Johnson, Wesley D.; Paquette, Joshua

    2016-01-01

    The Scaled Wind Farm Technology (SWiFT) facility, operated by Sandia National Laboratories for the U.S. Department of Energy's Wind and Water Power Program, is a wind energy research site with multiple wind turbines scaled for the experimental study of wake dynamics, advanced rotor development, turbine control, and advanced sensing for production-scale wind farms. The SWiFT site currently includes three variable-speed, pitch-regulated, three-bladed wind turbines. The six volumes of this manual provide a detailed description of the SWiFT wind turbines, including their operation and user interfaces, electrical and mechanical systems, assembly and commissioning procedures, and safety systems. Further dissemination only as authorized to U.S. Government agencies and their contractors; other requests shall be approved by the originating facility or higher DOE programmatic authority. 111 UNCLASSIFIED UNLIMITED RELEASE Sandia SWiFT Wind Turbine Manual (SAND2016-0746 ) approved by: Department Manager SWiFT Site Lead Dave Minster (6121) Date Jonathan White (6121) Date SWiFT Site Supervisor Dave Mitchell (6121) Date Note: Document revision logs are found after the title page of each volume of this manual. iv

  17. Sandia technology: Engineering and science applications

    Science.gov (United States)

    Maydew, M. C.; Parrot, H.; Dale, B. C.; Floyd, H. L.; Leonard, J. A.; Parrot, L.

    1990-12-01

    This report discusses: protecting environment, safety, and health; Sandia's quality initiative; Sandia vigorously pursues technology transfer; scientific and technical education support programs; nuclear weapons development; recognizing battlefield targets with trained artificial neural networks; battlefield robotics: warfare at a distance; a spinning shell sizes up the enemy; thwarting would-be nuclear terrorists; unattended video surveillance system for nuclear facilities; making the skies safer for travelers; onboard instrumentation system to evaluate performance of stockpile bombs; keeping track with lasers; extended-life lithium batteries; a remote digital video link acquires images securely; guiding high-performance missiles with laser gyroscopes; nonvolatile memory chips for space applications; initiating weapon explosives with lasers; next-generation optoelectronics and microelectronics technology developments; chemometrics: new methods for improving chemical analysis; research team focuses ion beam to record-breaking intensities; standardizing the volt to quantum accuracy; new techniques improve robotic software development productivity; a practical laser plasma source for generating soft x-rays; exploring metal grain boundaries; massively parallel computing; modeling the amount of desiccant needed for moisture control; attacking pollution with sunshine; designing fuel-conversion catalysts with computers; extending a nuclear power plant's useful life; plasma-facing components for the International Thermonuclear Experimental Reactor.

  18. HyMARC (Sandia) Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Allendorf, Mark D. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Stavila, Vitalie [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Klebanoff, Leonard E. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Kolasinski, Robert [Sandia National Lab. (SNL-CA), Livermore, CA (United States); El Gabaly Marquez, Farid [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Zhou, Xiaowang [Sandia National Lab. (SNL-CA), Livermore, CA (United States); White, James Lawrence [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2017-07-01

    The Sandia HyMARC team continued its development of new synthetic, modeling, and diagnostic tools that are providing new insights into all major classes of storage materials, ranging from relatively simple systems such as PdHx and MgH2, to exceptionally complex ones, such as the metal borohydrides, as well as materials thought to be very well-understood, such as Ti-doped NaAlH4. This unprecedented suite of capabilities, capable of probing all relevant length scales within storage materials, is already having a significant impact, as they are now being used by both Seedling projects and collaborators at other laboratories within HyMARC. We expect this impact to grow as new Seedling projects begin and through collaborations with other scientists outside HyMARC. In the coming year, Sandia efforts will focus on the highest impact problems, in coordination with the other HyMARC National Laboratory partners, to provide the foundational science necessary to accelerate the discovery of new hydrogen storage materials.

  19. Sandia National Laboratories Institutional Plan: FY 1996--2001

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    Sandia`s Institutional Plan is by necessity a large document. As their missions have grown and diversified over the past decades, the variety of technical and site activities has increased. The programs and activities described here cover an enormous breadth of scientific and technological effort--from the creation of new materials to the development of a Sandia-wide electronic communications system. Today, there are three major themes that greatly influence this work. First, every federally funded institution is being challenged to find ways to become more cost effective, as the US seeks to reduce the deficit and achieve a balanced federal spending plan. Sandia is evaluating its business and operational processes to reduce the overall costs. Second, in response to the Galvin Task Force`s report ``Alternative Futures for the Department of Energy National Laboratories``, Sandia and the Department of Energy are working jointly to reduce the burden of administrative and compliance activities in order to devote more of the total effort to their principal research and development missions. Third, they are reevaluating the match between their missions and the programs they will emphasize in the future. They must demonstrate that Sandia`s roles--in national security, energy security, environmental integrity, and national scientific and technology agenda support--fit their special capabilities and skills and thus ensure their place in these missions for the longer planning horizon. The following areas are covered here: Sandia`s mission; laboratory directives; programmatic activities; technology partnerships and commercialization; Sandia`s resources; and protecting resources and the community.

  20. Sandia Technology: Engineering and science accomplishments, February 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-02-01

    Sandia National Laboratories is one of the Department of Energy`s primary research and development laboratories. Our essential mission is to support the national interests of the US in defense, energy, and the environment. Managed by Martin Marietta Corporation for DOE, Sandia focuses its resources on problems of national interest that require the integration of science and technology for their solution. We all hope that this period of sweeping alterations in international affairs will result in a successful transition from the Cold War to a period of sustainable global security and prosperity. In the meantime, our nation`s interests are best served by continued commitment to Sandia`s traditional responsibilities. Nonetheless, as momentous developments are reshaping the world, Sandia is also changing from its beginning as a closed operation concentrating on classified defense programs, Sandia has become a more accessible resource that focuses on research and development partnerships with industry and universities as a way to ensure continued success in DOE`s evolving core mission area of nuclear weapons, energy, environment, and the basis sciences. Through these collaborative efforts, Sandia and its partners are also benefiting the economic competitiveness of our nation. Sandia places a special emphasis on working with small businesses as both technology transfer partners and suppliers of goods and services. We are also reaching out the the larger community surrounding Sandia, striving to provide technological solution and accurate information to meet community needs. We believe that the dialogue we are creating will benefit Sandia, the community, and the nation. Our goal is to render `` exceptional service in the national interest`` by returning maximum value on the investment in the labs. As you review this document, look for new ways in which Sandia can contribute to the solution of problems facing our nation.

  1. Predicting outdoor sound

    CERN Document Server

    Attenborough, Keith; Horoshenkov, Kirill

    2014-01-01

    1. Introduction  2. The Propagation of Sound Near Ground Surfaces in a Homogeneous Medium  3. Predicting the Acoustical Properties of Outdoor Ground Surfaces  4. Measurements of the Acoustical Properties of Ground Surfaces and Comparisons with Models  5. Predicting Effects of Source Characteristics on Outdoor Sound  6. Predictions, Approximations and Empirical Results for Ground Effect Excluding Meteorological Effects  7. Influence of Source Motion on Ground Effect and Diffraction  8. Predicting Effects of Mixed Impedance Ground  9. Predicting the Performance of Outdoor Noise Barriers  10. Predicting Effects of Vegetation, Trees and Turbulence  11. Analytical Approximations including Ground Effect, Refraction and Turbulence  12. Prediction Schemes  13. Predicting Sound in an Urban Environment.

  2. Sandia's recent results in particle beam fusion research

    International Nuclear Information System (INIS)

    Yonas, G.

    Sandia's latest achievements in the particle beam fusion program are enumerated and pulse power accelerators offering a route to an experimental reactor ignition system are discussed. Four interdependent elements of the program are investigated: 1) power concentration and dielectric breakdown, 2) beam focusing and transport, 3) beam target interaction, and 4) implosion hydrodynamics. Results of the spherical target irradiation experiment on the 1 TW Proto I accelerator and the successful neutron production experiment using the 0.25 TW electron beam from the Rehyd generator are reported. Beam propagation in plasma discharge channels and magnetically insulated vacuum transmission lines have been tested as alternative ways of the power transport. The first-time operation of the Proto II accelerator at 6 TW level is the first step in scaling of intense particle accelerators to higher power levels. (J.U.)

  3. Outdoor recreation and ethnicity

    DEFF Research Database (Denmark)

    Gentin, Sandra

    recreation, activities, and preferred outdoor recreation areas) between the minority and majority populations and related these differences to the ethnic minorities’ cultural background. The second paper presents the empirical work of this thesis, which is based on a survey of adolescents’ outdoor recreation....... In the UK the focus on underrepresented groups seems closely related to the focus on equality for access, while specific focus on access for ethnic minorities is not addressed in the forest and nature legislation and the national forest programs in Denmark, Germany and the Netherlands. Paper 4 proposes...

  4. Sandia National Laboratories: Strategic Partnership Projects, Non-Federal

    Science.gov (United States)

    Diversity Social Media Careers View All Jobs Students & Postdocs Benefits & Perks Hiring Process Deployment Centers New Mexico Small Business Assistance Program Sandia's Economic Impact Sandia Science & interest Menu Search Icon Locations Contact Us Employee Locator Search Menu About Leadership Mission Social

  5. Pulsed power driven hohlraum research at Sandia National Laboratories

    International Nuclear Information System (INIS)

    Leeper, R.J.; Alberts, T.E.; Allshouse, G.A.

    1996-01-01

    Three pulsed power driven hohlraum concepts are being investigated at Sandia for application to inertial fusion research. These hohlraums are driven by intense proton and Li ion beams as well as by two different types of z-pinch x-ray sources. Research on these hohlraum systems will continue on Sandia's PBFA II-Z facility

  6. Energy technologies at Sandia National Laboratories: Past, Present, Future

    Energy Technology Data Exchange (ETDEWEB)

    1989-08-01

    We at Sandia first became involved with developing energy technology when the nation initiated its push toward energy independence in the early 1970s. That involvement continues to be strong. In shaping Sandia's energy programs for the 1990s, we will build on our track record from the 70s and 80s, a record outlined in this publication. It contains reprints of three issues of Sandia's Lab News that were devoted to our non-nuclear energy programs. Together, they summarize the history, current activities, and future of Sandia's diverse energy concerns; hence my desire to see them in one volume. Written in the fall of 1988, the articles cover Sandia's extremely broad range of energy technologies -- coal, oil and gas, geothermal, solar thermal, photovoltaics, wind, rechargeable batteries, and combustion.

  7. The Dirt on Outdoor Classrooms.

    Science.gov (United States)

    Rich, Steve

    2000-01-01

    Explains the planning procedure for outdoor classrooms and introduces an integrated unit on monarch butterflies called the Monarch Watch program. Makes recommendations to solve financial problems of outdoor classrooms. (YDS)

  8. Sandia`s network for Supercomputing `94: Linking the Los Alamos, Lawrence Livermore, and Sandia National Laboratories using switched multimegabit data service

    Energy Technology Data Exchange (ETDEWEB)

    Vahle, M.O.; Gossage, S.A.; Brenkosh, J.P. [Sandia National Labs., Albuquerque, NM (United States). Advanced Networking Integration Dept.

    1995-01-01

    Supercomputing `94, a high-performance computing and communications conference, was held November 14th through 18th, 1994 in Washington DC. For the past four years, Sandia National Laboratories has used this conference to showcase and focus its communications and networking endeavors. At the 1994 conference, Sandia built a Switched Multimegabit Data Service (SMDS) network running at 44.736 megabits per second linking its private SMDS network between its facilities in Albuquerque, New Mexico and Livermore, California to the convention center in Washington, D.C. For the show, the network was also extended from Sandia, New Mexico to Los Alamos National Laboratory and from Sandia, California to Lawrence Livermore National Laboratory. This paper documents and describes this network and how it was used at the conference.

  9. Mapping of Outdoor Classrooms.

    Science.gov (United States)

    Horvath, Victor G.

    Mapping symbols adopted by the Michigan Department of Natural Resources are presented with their explanations. In an effort to provide standardization and familiarity teachers and other school people involved in an outdoor education program are encouraged to utilize the same symbols in constructing maps. (DK)

  10. Innovation and Outdoor Education

    Science.gov (United States)

    Beames, Simon

    2017-01-01

    Within our fast-paced, fluid society, it is arguable that outdoor education needs to be innovative to play a useful role in young people's overall educational enterprise. A critical view, however, would suggest that we must beware of accepting technological innovation for its own sake. Innovations (or improvements) in education can take the form…

  11. Massively Parallel Computing: A Sandia Perspective

    Energy Technology Data Exchange (ETDEWEB)

    Dosanjh, Sudip S.; Greenberg, David S.; Hendrickson, Bruce; Heroux, Michael A.; Plimpton, Steve J.; Tomkins, James L.; Womble, David E.

    1999-05-06

    The computing power available to scientists and engineers has increased dramatically in the past decade, due in part to progress in making massively parallel computing practical and available. The expectation for these machines has been great. The reality is that progress has been slower than expected. Nevertheless, massively parallel computing is beginning to realize its potential for enabling significant break-throughs in science and engineering. This paper provides a perspective on the state of the field, colored by the authors' experiences using large scale parallel machines at Sandia National Laboratories. We address trends in hardware, system software and algorithms, and we also offer our view of the forces shaping the parallel computing industry.

  12. Sandia Data Archive (SDA) file specifications

    Energy Technology Data Exchange (ETDEWEB)

    Dolan, Daniel H. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Ao, Tommy [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-02-01

    The Sandia Data Archive (SDA) format is a specific implementation of the HDF5 (Hierarchal Data Format version 5) standard. The format was developed for storing data in a universally accessible manner. SDA files may contain one or more data records, each associated with a distinct text label. Primitive records provide basic data storage, while compound records support more elaborate grouping. External records allow text/binary files to be carried inside an archive and later recovered. This report documents version 1.0 of the SDA standard. The information provided here is sufficient for reading from and writing to an archive. Although the format was original designed for use in MATLAB, broader use is encouraged.

  13. Superconducting technology program Sandia 1996 annual report

    International Nuclear Information System (INIS)

    Roth, E.P.

    1997-02-01

    Sandia's Superconductivity Technology Program is a thallium-based high-temperature superconductor (HTS) research and development program consisting of efforts in powder synthesis and process development, open-system thick film conductor development, wire and tape fabrication, and HTS motor design. The objective of this work is to develop high-temperature superconducting conductors (wire and tape) capable of meeting requirements for high-power electrical devices of interest to industry. The research efforts currently underway are: (1) Process development and characterization of thallium-based high-temperature superconducting closed system wire and tape, (2) Investigation of the synthesis and processing of thallium-based thick films using two-zone processing, and (3) Cryogenic design of a 30K superconducting motor. This report outlines the research that has been performed during FY96 in each of these areas

  14. Application of elasticity theory at Sandia Labortories

    International Nuclear Information System (INIS)

    Davison, L.

    1975-01-01

    Examples are given of the application of linear elasticity theory to the solution of practical problems encountered at Sandia Laboratories. It is being applied to a very broad range of problems: those in one, two, and three spatial dimensions, some involving static and some dynamic response, to materials having isotropic and anisotropic symmetry, to homogeneous and inhomogeneous bodies, etc. Various extensions of the theory to include electric, magnetic and thermal effects, to account for material microstructure, for radiation and spall damage, chemical reactions, and other phenomena have been developed and/or applied. In some applications linear elasticity represents the physics of a problem well and is the theory of choice. In others the theory was used because it lent insight into a larger problem that was also attacked by means of other theories and/or experiment, and in some cases it serves as a part of a more encompassing theory

  15. Outdoor Education and Science Achievement

    Science.gov (United States)

    Rios, José M.; Brewer, Jessica

    2014-01-01

    Elementary students have limited opportunities to learn science in an outdoor setting at school. Some suggest this is partially due to a lack of teacher efficacy teaching in an outdoor setting. Yet the research literature indicates that outdoor learning experiences develop positive environmental attitudes and can positively affect science…

  16. ByLaws for the Governance of the Sandia National Laboratories Sandia Postdoctoral Development (SPD) Association.

    Energy Technology Data Exchange (ETDEWEB)

    McBride, Amber Alane Fisher; McBride, Amber Alane Fisher; Rodgers, Theron; Dong, Wen; Juan, Pierre-Alexandre; Barkholtz, Heather; Alley, William Morgan; Wolk, Benjamin Matthew; Vane, Zachary Phillips; Priye, Aashish; Ball, Cameron Scott

    2017-03-01

    The purpose of this document is to define the rules of governance for the Sandia Postdoctoral Development (SPD) Association. This includes election procedures for filling vacancies on the SPD board, an all-purpose voting procedure, and definitions for the roles and responsibilities of each SPD board member. The voting procedures can also be used to amend the by-laws, as well as to create, dissolve, or consolidate vacant SPD board positions.

  17. Micromachined sensor and actuator research at Sandia`s Microelectronics Development Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Smith, J.H.

    1996-11-01

    An overview of the surface micromachining program at the Microelectronics Development Laboratory of Sandia National Laboratories is presented. Development efforts are underway for a variety of surface micromachined sensors and actuators for both defense and commercial applications. A technology that embeds micromechanical devices below the surface of the wafer prior to microelectronics fabrication has been developed for integrating microelectronics with surface-micromachined micromechanical devices. The application of chemical-mechanical polishing to increase the manufacturability of micromechanical devices is also presented.

  18. Neighborhood Poverty and Maternal Fears of Children's Outdoor Play

    Science.gov (United States)

    Kimbro, Rachel Tolbert; Schachter, Ariela

    2011-01-01

    Investigating children's outdoor play unites scholarship on neighborhoods, parental perceptions of safety, and children's health. Utilizing the Fragile Families and Child Well-being Study (N = 3,448), we examine mothers' fear of their 5-year-old children playing outdoors, testing associations with neighborhood social characteristics, city-level…

  19. Vibration control for precision manufacturing at Sandia National Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Hinnerichs, T.; Martinez, D. [Sandia National Labs., Albuquerque, NM (United States). Structural Dynamics and Vibration Control Dept.

    1995-04-01

    Sandia National Laboratories performs R and D in structural dynamics and vibration suppression for precision applications in weapon systems, space, underwater, transportation and civil structures. Over the last decade these efforts have expanded into the areas of active vibration control and ``smart`` structures and material systems. In addition, Sandia has focused major resources towards technology to support weapon product development and agile manufacturing capability for defense and industrial applications. This paper will briefly describe the structural dynamics modeling and verification process currently in place at Sandia that supports vibration control and some specific applications of these techniques to manufacturing in the areas of lithography, machine tools and flexible robotics.

  20. Programmable SAW development :Sandia/NASA project final report.

    Energy Technology Data Exchange (ETDEWEB)

    Brocato, Robert Wesley

    2004-10-01

    This report describes a project to develop both fixed and programmable surface acoustic wave (SAW) correlators for use in a low power space communication network. This work was funded by NASA at Sandia National Laboratories for fiscal years 2004, 2003, and the final part of 2002. The role of Sandia was to develop the SAW correlator component, although additional work pertaining to use of the component in a system and system optimization was also done at Sandia. The potential of SAW correlator-based communication systems, the design and fabrication of SAW correlators, and general system utilization of those correlators are discussed here.

  1. Site environmental report for 2011. Sandia National Laboratories, California

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Barbara L. [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2012-05-01

    Sandia National Laboratories, California (SNL/CA) is a government-owned/contractoroperated laboratory. Sandia Corporation, a wholly-owned subsidiary of Lockheed Martin Corporation, manages and operates the laboratory for the Department of Energy’s National Nuclear Security Administration (NNSA). The NNSA Sandia Site Office administers the contract and oversees contractor operations at the site. This Site Environmental Report for 2011 was prepared in accordance with DOE Order 231.1B, Environment, Safety and Health Reporting (DOE 2011d). The report provides a summary of environmental monitoring information and compliance activities that occurred at SNL/CA during calendar year 2011. General site and environmental program information is also included.

  2. Vibration control for precision manufacturing at Sandia National Laboratories

    International Nuclear Information System (INIS)

    Hinnerichs, T.; Martinez, D.

    1995-01-01

    Sandia National Laboratories performs R and D in structural dynamics and vibration suppression for precision applications in weapon systems, space, underwater, transportation and civil structures. Over the last decade these efforts have expanded into the areas of active vibration control and ''smart'' structures and material systems. In addition, Sandia has focused major resources towards technology to support weapon product development and agile manufacturing capability for defense and industrial applications. This paper will briefly describe the structural dynamics modeling and verification process currently in place at Sandia that supports vibration control and some specific applications of these techniques to manufacturing in the areas of lithography, machine tools and flexible robotics

  3. Market Assessment and Commercialization Strategy for the Radial Sandia Cooler

    Energy Technology Data Exchange (ETDEWEB)

    Goetzler, William [Navigant Consulting, Inc., Burlington, MA (United States); Shandross, Richard [Navigant Consulting, Inc., Burlington, MA (United States); Weintraub, Daniel [Navigant Consulting, Inc., Burlington, MA (United States); Young, Jim [Navigant Consulting, Inc., Burlington, MA (United States)

    2014-02-01

    This market assessment and commercialization report characterizes and assesses the market potential of the rotating heat exchanger technology developed at Sandia National Laboratories (SNL), known as the Radial Sandia Cooler. The RSC is a novel, motor-driven, rotating, finned heat exchanger technology. The RSC was evaluated for the residential, commercial, industrial, and transportation markets. Recommendations for commercialization were made based on assessments of the prototype RSC and the Sandia Cooler technology in general, as well as an in-depth analysis of the six most promising products for initial RSC commercialization.

  4. Technical review of the Sandia Laboratories' Particle Beam Fusion Program

    International Nuclear Information System (INIS)

    1979-01-01

    This report considers the technical aspects of Sandia Laboratories' Particle Beam Fusion Program and examines the program's initial goals, the progress made to date towards reaching those goals, and the future plans or methods of reaching those original or modified goals. A summary of Sandia Laboratories' effort, which seeks to demonstrate that high voltage pulsed power generated high-current electron or light ion beams can be used to ignite a deuterium or tritium pellet, is provided. A brief review and assessment of the Sandia Pulse Power Program is given. Several critical issues and summaries of the committee members' opinions are discussed

  5. Site Environmental Report for 2012 Sandia National Laboratories California

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Barbara L. [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2013-05-01

    Sandia National Laboratories, California (SNL/CA) is a government-owned/contractor-operated laboratory. Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, manages and operates the laboratory for the Department of Energy’s National Nuclear Security Administration (NNSA). The NNSA Sandia Field Office administers the contract and oversees contractor operations at the site. This Site Environmental Report for 2012 was prepared in accordance with DOE Order 231.1B, Environment, Safety and Health Reporting (DOE 2011d). The report provides a summary of environmental monitoring information and compliance activities that occurred at SNL/CA during calendar year 2012. General site and environmental program information is also included.

  6. 1987 environmental monitoring report, Sandia National Laboratories, Livermore, California

    International Nuclear Information System (INIS)

    Devlin, T.K.

    1988-04-01

    Sandia National Labortories conduct various research activities related to Department of Energy interests which have the potential for release of hazardous materials or radionuclides to the environment. A strict environmental control program places maximum emphasis on limiting releases. The environmental monitoring program conducted by Lawrence Livermore National Laboratory and augmented by Sandia is designed to measure the performance of the environmental controls. The program includes analysis of air, water, soil, vegetation, sewer effluent, ground water, and foodstuffs for various toxic, hazardous, or radioactive materials. Based on these studies, the releases of materials of concern at Sandia during 1987 were well below applicable Department of Energy standards. 8 refs., 3 figs., 12 tabs

  7. Outdoor recreation and ethnicity

    DEFF Research Database (Denmark)

    Gentin, Sandra

    recreation, activities, and preferred outdoor recreation areas) between the minority and majority populations and related these differences to the ethnic minorities’ cultural background. The second paper presents the empirical work of this thesis, which is based on a survey of adolescents’ outdoor recreation...... often reported using green areas to “drink beer with friends” and “do sunbathing”. The third paper reflects on the different national approaches towards ethnic minorities’ access to natural areas, in four example-countries Germany, Denmark, United Kingdom, and the Netherlands. This was done through....... In the UK the focus on underrepresented groups seems closely related to the focus on equality for access, while specific focus on access for ethnic minorities is not addressed in the forest and nature legislation and the national forest programs in Denmark, Germany and the Netherlands. Paper 4 proposes...

  8. Learning Arithmetic Outdoors in Junior High School--Influence on Performance and Self-Regulating Skills

    Science.gov (United States)

    Fägerstam, Emilia; Samuelsson, Joakim

    2014-01-01

    This study aims to explore the influence of outdoor teaching among students, aged 13, on arithmetic performance and self-regulation skills as previous research concerning outdoor mathematics learning is limited. This study had a quasi-experimental design. An outdoor and a traditional group answered a test and a self-regulation skills questionnaire…

  9. Sandia Laboratories technical capabilities: design, definition, and fabrication

    International Nuclear Information System (INIS)

    1976-12-01

    This report characterizes the design definition and fabrication capabilities at Sandia Laboratories. Selected applications of these capabilities are presented to illustrate the extent to which they can be applied in research and development programs. 13 figures

  10. Sandia Laboratories technical capabilities: instrumentation and data systems

    International Nuclear Information System (INIS)

    Lundergain, C.D.; Mead, P.L.

    1975-12-01

    This report characterizes the instrumentation and data systems capabilities at Sandia Laboratories. Selected applications of these capabilities are presented to illustrate the extent to which they can be applied in research and development programs

  11. Sandia National Laboratories: National Security Missions: Defense Systems

    Science.gov (United States)

    ; Technology Defense Systems & Assessments About Defense Systems & Assessments Program Areas Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios ; Culture Work-Life Balance Special Programs Nuclear Weapons Defense Systems Global Security Energy Facebook

  12. Sandia Laboratories technical capabilities: design, definition, and fabrication

    Energy Technology Data Exchange (ETDEWEB)

    1976-12-01

    This report characterizes the design definition and fabrication capabilities at Sandia Laboratories. Selected applications of these capabilities are presented to illustrate the extent to which they can be applied in research and development programs. 13 figures.

  13. DEMONSTRATION BULLETIN: IN SITU ELECTROKINETIC EXTRACTION SYSTEM - SANDIA NATIONAL LABORATORIES

    Science.gov (United States)

    Sandia National Laboratories (SNL) has developed an in situ soil remediation system that uses electrokinetic principles to remediate hexavalent chromium-contaminated unsaturated or partially saturated soils. The technology involves the in situ application of direct current to the...

  14. POLLUTION PREVENTION OPPORTUNITY ASSESSMENT - GEOCHEMISTRY LABORATORY AT SANDIA NATIONAL LABORATORIES

    Science.gov (United States)

    These reports summarize pollution prevention opportunity assessments conducted jointly by EPA and DOE at the Geochemistry Laboratory and the Manufacturing and Fabrication Repair Laboratory at the Department of Energy's Sandia National Laboratories facility in Albuquerque, New Mex...

  15. Site Environmental Report for 2016 Sandia National Laboratories California.

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Barbara L. [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2017-06-01

    Sandia National Laboratories, California (SNL/CA) is a Department of Energy (DOE) facility. The management and operations of the facility are under a contract with the DOE’s National Nuclear Security Administration (NNSA). On May 1, 2017, the name of the management and operating contractor changed from Sandia Corporation to National Technology and Engineering Solutions of Sandia, LLC (NTESS). The DOE, NNSA, Sandia Field Office administers the contract and oversees contractor operations at the site. This Site Environmental Report for 2016 was prepared in accordance with DOE Order 231.1B, Environment, Safety and Health Reporting (DOE 2012). The report provides a summary of environmental monitoring information and compliance activities that occurred at SNL/CA during calendar year 2016, unless noted otherwise. General site and environmental program information is also included.

  16. Superconducting Technology Program: Sandia 1993 annual report

    International Nuclear Information System (INIS)

    Roth, E.P.

    1994-05-01

    Sandia's STP program is a four-part high-temperature superconductor (HTS) research and development program consisting of efforts in powder synthesis and process development, thallium-based HTS film development, wire and tape fabrication, and HTS motor design. The objective of this work is to develop high-temperature superconducting conductors (wire and tape) capable of meeting requirements for high-power electrical devices of interest to industry. The four research efforts currently underway are: (1) process research on the material synthesis of high-temperature superconductors; (2) investigation of the synthesis and processing of thallium-based high-temperature superconducting thick films; (3) process development and characterization of high-temperature superconducting wire and tape, and (4) cryogenic design of a high-temperature superconducting motor. This report outlines the research that has been performed during FY93 in each of these four areas. A brief background of each project is included to provide historical context and perspective. Major areas of research are described, although no attempt has been made to exhaustively include all work performed in each of these areas

  17. Graphical programming at Sandia National Laboratories

    International Nuclear Information System (INIS)

    McDonald, M.J.; Palmquist, R.D.; Desjarlais, L.

    1993-09-01

    Sandia has developed an advanced operational control system approach, called Graphical Programming, to design, program, and operate robotic systems. The Graphical Programming approach produces robot systems that are faster to develop and use, safer in operation, and cheaper overall than altemative teleoperation or autonomous robot control systems. Graphical Programming also provides an efficient and easy-to-use interface to traditional robot systems for use in setup and programming tasks. This paper provides an overview of the Graphical Programming approach and lists key features of Graphical Programming systems. Graphical Programming uses 3-D visualization and simulation software with intuitive operator interfaces for the programming and control of complex robotic systems. Graphical Programming Supervisor software modules allow an operator to command and simulate complex tasks in a graphic preview mode and, when acceptable, command the actual robots and monitor their motions with the graphic system. Graphical Programming Supervisors maintain registration with the real world and allow the robot to perform tasks that cannot be accurately represented with models alone by using a combination of model and sensor-based control

  18. Development of the ANL plant dynamics code and control strategies for the supercritical carbon dioxide Brayton cycle and code validation with data from the Sandia small-scale supercritical carbon dioxide Brayton cycle test loop.

    Energy Technology Data Exchange (ETDEWEB)

    Moisseytsev, A.; Sienicki, J. J. (Nuclear Engineering Division)

    2011-11-07

    . Modeling in the Plant Dynamics Code has been compared with available data from the Sandia National Laboratories (SNL) small-scale S-CO{sub 2} Brayton cycle demonstration that is being assembled in a phased approach currently at Barber-Nichols Inc. and at SNL in the future. The available data was obtained with an earlier configuration of the S-CO{sub 2} loop involving only a single-turbo-alternator-compressor (TAC) instead of two TACs, a single low temperature recuperator (LTR) instead of both a LTR and a high temperature recuperator (HTR), and fewer than the later to be installed full set of electric heaters. Due to the absence of the full heating capability as well as the lack of a high temperature recuperator providing additional recuperation, the temperature conditions obtained with the loop are too low for the loop conditions to be prototypical of the S-CO{sub 2} cycle.

  19. Partnering with Sandia National Laboratories through alliances or consortia

    Energy Technology Data Exchange (ETDEWEB)

    Winchell, B.M.

    1994-12-01

    To better facilitate working with industry, groups of industrial participants, and partners in alliances or consortia, Sandia National Laboratories presents information helpful to those outside groups as to the forms of arrangements that may be used to better facilitate partnering relationships between Sandia National Laboratories and consortia or alliances of outside parties. It is expected that these alliances and consortia will include both large and small for-profit industrial concerns, as well as not-for-profit entities such as universities, institutes, other research facilities, and other nonprofit institutions or consortia containing institutions. The intent of this report is to provide such outside groups with information that will facilitate rapid interactions with Sandia National Laboratories through some of these forms of business which will be discussed in this report. These are not the only approaches to facilitating business interactions with Sandia National Laboratories and it is not intended that this report be legal advice or required approaches to doing business with Sandia National Laboratories. The intent of this report is merely to suggest ways in which Sandia National Laboratories can work with outside parties in the most expeditious manner.

  20. Sandia National Laboratories Institutional Plan: FY 1999-2004

    Energy Technology Data Exchange (ETDEWEB)

    Garber, D.P.

    1999-01-06

    This Institutional Plan is the most comprehensive yearly "snapshot" available of Sandia National Laboratories' major programs, facilities, human resources, and budget. The document also includes overviews of our missions, organization, capabilities, planning functions, milestones, and accomplishments. The document's purpose is to provide the above information to the US Department of Energy, key congressional committees, Sandia management, and other present and potential customers. Chapter 2 presents information about Sandia's mission and summarizes our recent revision of Sandia's Strategic Plan. Chapter 3 presents an overview of Sandia's strategic objectives, chapter 4 lists laboratory goals and milestones for FY 1999, and chapter 5 presents our accomplishments during FY 1998. Chapters 3 through 5 are organized around our eight strategic objectives. The four primary objectives cover nuclear weapons responsibilities, nonproliferation and materials control, energy and critical infrastructures, and emerging national security threats. The major programmatic initiatives are presented in chapter 7. However, the programmatic descriptions in chapter 6 and the Associated funding tables in chapter 9 continue to be presented by DOE Budget and Reporting Code, as in previous Sandia institutional plans. As an aid to the reader, the four primary strategic objectives in chapter 3 are cross-referenced to the program information in chapter 6.

  1. Partnering with Sandia National Laboratories through alliances or consortia

    Energy Technology Data Exchange (ETDEWEB)

    Winchell, B.M.

    1994-04-01

    To better facilitate working with industry, groups of industrial participants, and partners in alliances or consortia, Sandia National laboratories presents information helpful to those outside groups as to the forms of arrangements that may be used to better facilitate partnering relationships between Sandia National Laboratories and consortia or alliances of outside parties. It is expected that these alliances and consortia will include both large and small for-profit industrial concerns, as well as not-for-profit entities such as universities, institutes, other research facilities, and other nonprofit institutions or consortia containing institutions. The intent of this report is to provide such outside groups with information that will facilitate rapid interactions with Sandia National Laboratories through some of these forms of business which will be discussed in this report. These are not the only approaches to facilitating business interactions with Sandia National Laboratories and it is not intended that this report be legal advice or required approaches to doing business with Sandia National Laboratories. The intent of this report is merely to suggest ways in which Sandia National Laboratories can work with outside parties in the most expeditious manner.

  2. Structural design of the Sandia 34-M Vertical Axis Wind Turbine

    Science.gov (United States)

    Berg, D. E.

    Sandia National Laboratories, as the lead DOE laboratory for Vertical Axis Wind Turbine (VAWT) development, is currently designing a 34-meter diameter Darrieus-type VAWT. This turbine will be a research test bed which provides a focus for advancing technology and validating design and fabrication techniques in a size range suitable for utility use. Structural data from this machine will allow structural modeling to be refined and verified for a turbine on which the gravity effects and stochastic wind loading are significant. Performance data from it will allow aerodynamic modeling to be refined and verified. The design effort incorporates Sandia's state-of-the-art analysis tools in the design of a complete machine. The analytic tools used in this design are discussed and the conceptual design procedure is described.

  3. Description of heat flux measurement methods used in hydrocarbon and propellant fuel fires at Sandia.

    Energy Technology Data Exchange (ETDEWEB)

    Nakos, James Thomas

    2010-12-01

    The purpose of this report is to describe the methods commonly used to measure heat flux in fire applications at Sandia National Laboratories in both hydrocarbon (JP-8 jet fuel, diesel fuel, etc.) and propellant fires. Because these environments are very severe, many commercially available heat flux gauges do not survive the test, so alternative methods had to be developed. Specially built sensors include 'calorimeters' that use a temperature measurement to infer heat flux by use of a model (heat balance on the sensing surface) or by using an inverse heat conduction method. These specialty-built sensors are made rugged so they will survive the environment, so are not optimally designed for ease of use or accuracy. Other methods include radiometers, co-axial thermocouples, directional flame thermometers (DFTs), Sandia 'heat flux gauges', transpiration radiometers, and transverse Seebeck coefficient heat flux gauges. Typical applications are described and pros and cons of each method are listed.

  4. Indoor and Outdoor Allergies.

    Science.gov (United States)

    Singh, Madhavi; Hays, Amy

    2016-09-01

    In last 30 to 40 years there has been a significant increase in the incidence of allergy. This increase cannot be explained by genetic factors alone. Increasing air pollution and its interaction with biological allergens along with changing lifestyles are contributing factors. Dust mites, molds, and animal allergens contribute to most of the sensitization in the indoor setting. Tree and grass pollens are the leading allergens in the outdoor setting. Worsening air pollution and increasing particulate matter worsen allergy symptoms and associated morbidity. Cross-sensitization of allergens is common. Treatment involves avoidance of allergens, modifying lifestyle, medical treatment, and immunotherapy. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. THE GENOTOXICITY OF AMBIENT OUTDOOR AIR, A REVIEW: SALMONELLA MUTAGENICITY

    Science.gov (United States)

    The genotoxicity of ambient outdoor air, a review: Salmonella mutagenicityAbstractMutagens in urban air pollution come from anthropogenic sources (especially combustion sources) and are products of airborne chemical reactions. Bacterial mutation tests have been used ...

  6. Group Cooperation in Outdoor Education

    Science.gov (United States)

    Matthews, Bruce E.

    1978-01-01

    Utilizing the Beatles' Yellow Submarine fantasy (e.g., the Blue Meanies), this outdoor education program is designed for sixth graders and special education students. Activities developed at the Cortland Resident Outdoor Education Camp include a series of group stress/challenge activities to be accomplished by everyone in the group, as a group.…

  7. Outdoor Education: Definition and Philosophy.

    Science.gov (United States)

    Ford, Phyllis

    Because outdoor education programs occur in every geographic location, are sponsored by all levels of educational institutions, state and local government agencies, and private entrepreneurs, and have no nationally standardized curriculum or measures of competency or knowledge, outdoor education may best be defines as "education in, about, and for…

  8. Sulimar Queen environmental restoration project closure package Sandia environmental stewardship exemplar.

    Energy Technology Data Exchange (ETDEWEB)

    Tillman, Jack B.

    2008-09-01

    In March 2008, Sandia National Laboratories (Sandia), in partnership with the Bureau of Land Management, Roswell Field Office, completed its responsibilities to plug and abandon wells and restore the surface conditions for the Sulimar Queens Unit, a 2,500 acre oil field, in Chaves County, Southeast New Mexico. Sandia assumed this liability in an agreement to obtain property to create a field laboratory to perform extensive testing and experimentation on enhanced oil recovery techniques for shallow oil fields. In addition to plugging and abandoning 28 wells, the project included the removal of surface structures and surface reclamation of disturbed lands associated with all plugged and abandoned wells, access roads, and other auxiliary facilities within unit boundaries. A contracting strategy was implemented to mitigate risk and reduce cost. As the unit is an important wildlife habitat for prairie chickens, sand dune lizards, and mule deer, the criteria for the restoration and construction process were designed to protect and enhance the wildlife habitat. Lessons learned from this project include: (1) extreme caution should be exercised when entering agreements that include future liabilities, (2) partnering with the regulator has huge benefits, and (3) working with industry experts, who were familiar with the work, and subcontractors, who provided the network to complete the project cost effectively.

  9. Outdoor schools: Limits and dilemmas

    Directory of Open Access Journals (Sweden)

    Irena Smetáčková

    2011-12-01

    Full Text Available Outdoor school is a stable element of Czech educational system. However,many changes have occurred during the last twenty years in the purposes of outdoorschools and in their organization. The article presents various school statistics andresults of research which included questionnaire survey in elementary schools in Pragueand a case study of two classes. The study found that the outdoor school programmesare getting shorter, budgets for outdoor schools are reduced, and prices of outdoorschool programmes for parents are increasing. Because of high prices, almost 20 % ofpupils cannot attend outdoor schools. Nevertheless, according to teachers, pupils andparents, the main purpose of outdoor school programmes is to create a better socialclimate in peer groups. Because of high rates of absence, this goal is partly invalid.Another purpose should be that teachers and children get to know each other better.This goal is invalid as well because many schools hire commercial agencies which limitsthe time that pupils and teachers spend together.

  10. Sandia National Laboratories ASCI Applications Software Quality Engineering Practices; TOPICAL

    International Nuclear Information System (INIS)

    ZEPPER, JOHN D.; ARAGON, KATHRYN MARY; ELLIS, MOLLY A.; BYLE, KATHLEEN A.; EATON, DONNA SUE

    2002-01-01

    This document provides a guide to the deployment of the software verification activities, software engineering practices, and project management principles that guide the development of Accelerated Strategic Computing Initiative (ASCI) applications software at Sandia National Laboratories (Sandia). The goal of this document is to identify practices and activities that will foster the development of reliable and trusted products produced by the ASCI Applications program. Document contents include an explanation of the structure and purpose of the ASCI Quality Management Council, an overview of the software development lifecycle, an outline of the practices and activities that should be followed, and an assessment tool. These sections map practices and activities at Sandia to the ASCI Software Quality Engineering: Goals, Principles, and Guidelines, a Department of Energy document

  11. 1993 Site environmental report Sandia National Laboratories, Albuquerque, New Mexico

    International Nuclear Information System (INIS)

    Culp, T.A.; Cheng, C.F.; Cox, W.; Durand, N.; Irwin, M.; Jones, A.; Lauffer, F.; Lincoln, M.; McClellan, Y.; Molley, K.

    1994-11-01

    This 1993 report contains monitoring data from routine radiological and nonradiological environmental surveillance activities. Summaries of significant environmental compliance programs in progress, such as National Environmental Policy Act documentation, environmental permits, environmental restoration, and various waste management programs for Sandia National Laboratories in Albuquerque, New Mexico, are included. The maximum offsite dose impact was calculated to be 0.0016 millirem. The total population within a 50-mile (80 kilometer) radius of Sandia National Laboratories/New Mexico received an estimated collective dose of 0.027 person-rem during 1993 from the laboratories operations, As in the previous year, the 1993 operations at Sandia National Laboratories/New Mexico had no discernible impact on the general public or on the environment. This report is prepared for the U.S. Department of Energy in compliance with DOE Order 5400.1

  12. 1992 Environmental monitoring report, Sandia National Laboratories, Albuquerque, New Mexico

    International Nuclear Information System (INIS)

    Culp, T.; Cox, W.; Hwang, H.; Irwin, M.; Jones, A.; Matz, B.; Molley, K.; Rhodes, W.; Stermer, D.; Wolff, T.

    1993-09-01

    This 1992 report contains monitoring data from routine radiological and nonradiological environmental surveillance activities. summaries of significant environmental compliance programs in progress, such as National Environmental Policy Act documentation, environmental permits, envirorunental restoration, and various waste management programs for Sandia National Laboratories in Albuquerque, New Mexico, are included. The maximum offsite dose impact was calculated to be 0.0034 millirem. The total population within a 50-mile radius of Sandia National Laboratories/New Mexico received an estimated collective dose of 0.019 person-rem during 1992 from the laboratories' operations. As in the previous year, the 1992 operations at Sandia National Laboratories/New Mexico had no discernible impact on the general public or on the environment

  13. Nuclear energy related capabilities at Sandia National Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Pickering, Susan Y. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-02-01

    Sandia National Laboratories' technology solutions are depended on to solve national and global threats to peace and freedom. Through science and technology, people, infrastructure, and partnerships, part of Sandia's mission is to meet the national needs in the areas of energy, climate and infrastructure security. Within this mission to ensure clean, abundant, and affordable energy and water is the Nuclear Energy and Fuel Cycle Programs. The Nuclear Energy and Fuel Cycle Programs have a broad range of capabilities, with both physical facilities and intellectual expertise. These resources are brought to bear upon the key scientific and engineering challenges facing the nation and can be made available to address the research needs of others. Sandia can support the safe, secure, reliable, and sustainable use of nuclear power worldwide by incorporating state-of-the-art technologies in safety, security, nonproliferation, transportation, modeling, repository science, and system demonstrations.

  14. Terrain Mapping and Classification in Outdoor Environments Using Neural Networks

    OpenAIRE

    Alberto Yukinobu Hata; Denis Fernando Wolf; Gustavo Pessin; Fernando Osório

    2009-01-01

    This paper describes a three-dimensional terrain mapping and classification technique to allow the operation of mobile robots in outdoor environments using laser range finders. We propose the use of a multi-layer perceptron neural network to classify the terrain into navigable, partially navigable, and non-navigable. The maps generated by our approach can be used for path planning, navigation, and local obstacle avoidance. Experimental tests using an outdoor robot and a laser sensor demonstra...

  15. Outdoor recreation-related outdoor education: scope of the research (1995-2010) 2

    OpenAIRE

    Lynch, Philippa

    2012-01-01

    Article made available with the permission of the New Zealand Journal of Outdoor Education. This is part two of an article on the scope of the New Zealand outdoor recreation-related outdoor education research published from January 1995 to June 2010. It draws on the literature covered the 2010 Sport and Recreation New Zealand-funded Outdoor Recreation Research Stocktake, which included outdoor education material. This part covers resources for outdoor recreation-related outdoor education, ...

  16. Renewable energy technology development at Sandia National Laboratories

    Science.gov (United States)

    Klimas, P. C.

    1994-02-01

    The use of renewable energy technologies is typically thought of as an integral part of creating and sustaining an environment that maximizes the overall quality of life of the Earth's present inhabitants and does not leave an undue burden on future generations. Sandia National Laboratories has been a leader in developing many of these technologies over the last two decades. This paper describes innovative solar, wind and geothermal energy systems and components that Sandia is helping to bring to the marketplace. A common but special aspect of all of these activities is that they are conducted in partnership with non-federal government entities. A number of these partners are from New Mexico.

  17. Sandia National Laboratories Institutional Plan FY1994--1999

    Energy Technology Data Exchange (ETDEWEB)

    1993-10-01

    This report presents a five year plan for the laboratory. This plan takes advantage of the technical strengths of the lab and its staff to address issues of concern to the nation on a scope much broader than Sandia`s original mission, while maintaining the general integrity of the laboratory. The plan proposes initiatives in a number of technologies which overlap the needs of its customers and the strengths of its staff. They include: advanced manufacturing technology; electronics; information and computational technology; transportation energy technology and infrastructure; environmental technology; energy research and technology development; biomedical systems engineering; and post-cold war defense imperatives.

  18. Technical Proposal for Loading 3000 Gallon Crude Oil Samples from Field Terminal to Sandia Pressurized Tanker to Support US DOE/DOT Crude Oil Characterization Research Study

    Energy Technology Data Exchange (ETDEWEB)

    Lord, David; Allen, Raymond

    2016-10-01

    Sandia National Laboratories is seeking access to crude oil samples for a research project evaluating crude oil combustion properties in large-scale tests at Sandia National Laboratories in Albuquerque, NM. Samples must be collected from a source location and transported to Albuquerque in a tanker that complies with all applicable regulations for transportation of crude oil over public roadways. Moreover, the samples must not gain or lose any components, to include dissolved gases, from the point of loading through the time of combustion at the Sandia testing facility. In order to achieve this, Sandia designed and is currently procuring a custom tanker that utilizes water displacement in order to achieve these performance requirements. The water displacement procedure is modeled after the GPA 2174 standard “Obtaining Liquid Hydrocarbons Samples for Analysis by Gas Chromatography” (GPA 2014) that is used routinely by crude oil analytical laboratories for capturing and testing condensates and “live” crude oils, though it is practiced at the liter scale in most applications. The Sandia testing requires 3,000 gallons of crude. As such, the water displacement method will be upscaled and implemented in a custom tanker. This report describes the loading process for acquiring a ~3,000 gallon crude oil sample from commercial process piping containing single phase liquid crude oil at nominally 50-100 psig. This document contains a general description of the process (Section 2), detailed loading procedure (Section 3) and associated oil testing protocols (Section 4).

  19. [Outdoor activity and myopia among 681 primary students in urban and rural regions of Beijing].

    Science.gov (United States)

    Guo, Yin; Liu, Lijuan; Xu, Liang; Lü, Yanyun; Tang, Ping; Feng, Yi

    2014-01-21

    To explore the association between outdoor activity and myopia among 681 primary students from Beijing. School-based, cross-sectional investigation. Eye examination includes the visual acuity test, auto-refractor, slit lamp, ocular biometry and non-mydriatic fundus camera. Questionnaire includes regular items, near work, outdoor activity and social-economic status. The mean time spent outdoors was 1.6 ± 0.8 hours daily. Time spent on outdoor sports and outdoor leisure were 0.7 ± 0.1 hours daily, 1.0 ± 0.8 hours daily, respectively. Mean time of outdoor activity in urban was 1.1 ± 0.4 hours daily, compared with 2.2 ± 0.8 hours daily in rural (P = 0.000). In grade-1, total time spent outdoors is significantly different between myopia and non-myopia (1.4 ± 0.6 vs 1.8 ± 0.8 hours daily, P = 0.000), similar to outdoor leisure (0.8 ± 0.6 vs 1.1 ± 0.9 hours daily, P = 0.000). The same trend was also found in grade-4. The mean time spent outdoors was 1.6 ± 0.8 hours daily. Myopia spent a lower outdoor activity compared with non-myopia. More outdoor activity, e.g., in schools, may potentially be helpful to reduce the high prevalence of myopia in the young generation.

  20. Assessments of the probabilities of aircraft impact with the Sandia Pulsed Reactor and Building 836, Sandia Laboratories, Albuquerque

    International Nuclear Information System (INIS)

    Biringer, B.E.

    1976-11-01

    This report documents a study of the annual probabilities of aircraft impact with the Sandia Pulsed Reactor (SPR) and Bldg. 836 at Sandia Laboratories, Albuquerque. The probability of aircraft impact into each structure was estimated using total yearly operations, effective structure area, structure location relative to air activity, and accident rate per kilometer. The estimated probability for an aircraft impact with SPR is 1.1 x 10 -4 per year; the estimated probability for impact with Bldg. 836 is 1.0 x 10 -3 per year

  1. Sandia National Laboratories/New Mexico 1994 site environmental report. Summary pamphlet

    International Nuclear Information System (INIS)

    1995-01-01

    This document presents details of the environmental activities that occurred during 1994 at Sandia National Laboratories. Topics include: Background about Sandia; radiation facts; sources of radiation; environmental monitoring; discussion of radiation detectors; radioactive waste management; environmental restoration; and quality assurance

  2. Sandia National Laboratories/New Mexico 1994 site environmental report. Summary pamphlet

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    This document presents details of the environmental activities that occurred during 1994 at Sandia National Laboratories. Topics include: Background about Sandia; radiation facts; sources of radiation; environmental monitoring; discussion of radiation detectors; radioactive waste management; environmental restoration; and quality assurance.

  3. Definition: Conservation Education, Environmental Education, Outdoor Education.

    Science.gov (United States)

    1970

    Conservation education, outdoor education, and environmental education all have as a common goal the understanding and appreciation of the natural world. Outdoor education is a method of teaching wherein established disciplines, topics, and concepts which can best be taught outdoors are taught outdoors. Conservation education is the study of man's…

  4. The Cost of Becoming an Outdoor Instructor.

    Science.gov (United States)

    Cashel, Chris

    This article describes instructor criteria in three outdoor organizations: Outward Bound (OB), the National Outdoor Leadership School (NOLS), and the Wilderness Education Association (WEA). Common requirements for outdoor leadership programs are outdoor experience and skills, advanced first aid, CPR, and a minimum age requirement. Traditionally…

  5. 9 CFR 3.27 - Facilities, outdoor.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Facilities, outdoor. 3.27 Section 3.27... Pigs and Hamsters Facilities and Operating Standards § 3.27 Facilities, outdoor. (a) Hamsters shall not be housed in outdoor facilities. (b) Guinea pigs shall not be housed in outdoor facilities unless...

  6. CFC Outdoor Tournament 2011

    CERN Multimedia

    2011-01-01

    Regardless of whether you’re a fan of the "beautiful game", you’ve probably heard that the CFC Outdoor Tournament 2011 is the sporting event of the year for the CERN Football Club. This unmissable social, cultural and sporting event will be a chance for CERNois to mingle with external visitors. In the 2011 edition of this legendary tournament, which is over 45 years old, the principle of “fair play” is once again on display. Ten teams – 8 from CERN – are competing for the CFC title. The tournament concludes with a final on 7 July final. Along with a thrilling match, there will also be a host of festivities for the final, including an exhibition game, the final awards ceremony, surprise gifts, a barbeque, musical performances, and more! Make sure to highlight 7 July (after 18.00) on your agenda, and take advantage of what will surely be an unforgettable day! The final tournament matches have been in progress since April and are ...

  7. Design and development of deep-water piezometer for the Sandia Subseabed Disposal Program

    International Nuclear Information System (INIS)

    Bennett, R.H.; Burns, J.T.; Lambert, D.N.

    1981-01-01

    The National Oceanic and Atmospheric Administration (NOAA), Atlantic Oceanographic and Meteorological Laboratories (AOML), Marine Geology and Geophysics Laboratory (MGGL) contracted with Sandia Laboratories, Subseabed Disposal Program (SDP) to prepare initial design and to begin development of a piezometer for the In Situ Heat Transfer Experiment (ISHTE). General design specifications and material types were established by mutual agreement between AOML and Sandia during planning meetings. ISHTE experimental objectives were considered of paramount importance in arriving at the piezometer specifications and on the types of materials to be used. AOML's objectives for the design and development of the piezometer in 1980 included: (1) preliminary design of the mechanical components of the piezometer probe, (2) purchasing of basic materials for fabrication of the initial probe, (3) purchasing of a few selected pressure sensors for high-pressure testing, (4) installation of a high-pressure test facility at AOML for testing pressure sensors, and (5) initiating preliminary testing of pressure sensors. Each of the objectives (1 to 5) were completed successfully in 1980. In addition, AOML constructed a prototype piezometer probe which was tested for mechanical performance in situ in submarine sediments on the US Atlantic continental slope aboard the DSRV ALVIN in October 1980 during NOAA allocated ALVIN time. The mechanical performance test was successful

  8. Design and initial performance of the Sandia Pulsed Reactor-III

    International Nuclear Information System (INIS)

    Reuscher, J.A.; Estes, B.F.

    1976-01-01

    The Sandia Pulsed Reactor-III (SPR-III) is a new fast pulsed reactor which has recently undergone initial testing at Sandia Laboratories. SPR-III is a uranium-10 weight percent molybdenum fuel assembly with a 17.78 cm irradiation cavity similar in design to SPR-II which has been in operation since 1967. The basic SPR-III design utilizes the same split-core configuration which has been proven with SPR-II; however, SPR-III uses external reflectors for control and external bolts to hold the fuel plates together. The core consists of sixteen fuel plates with an inside diameter of 17.78 cm, an outside diameter of 29.72 cm, and a core height of 31.9 cm. The fuel mass is about 227 kg of fully enriched uranium-10 weight percent molybdenum alloy. SPR III has completed the initial series of startup tests which included the critical experiment, zero and low-power tests, and pulse testing. The reactor design and results from the initial testing program are described in this paper. A portion of the startup experiments with SPR-III have been completed and this paper discusses the more important aspects of the initial testing program

  9. Isotopic power supplies for space and terrestrial systems: quality assurance by Sandia National Laboratories

    International Nuclear Information System (INIS)

    Hannigan, R.L.; Harnar, R.R.

    1981-09-01

    The Sandia National Laboratories participation in Quality Assurance (QA) programs for Radioisotopic Thermoelectric Generators which have been used in space and terrestrial systems over the past 15 years is summarized. Basic elements of the program are briefly described and recognition of assistance from other Sandia organizations is included. Descriptions of the various systems for which Sandia has had the QA responsibility are also presented. In addition, the outlook for Sandia participation in RTG programs for the next several years is noted

  10. Site environmental report for 2009 : Sandia National Laboratories, California.

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Barbara L.

    2010-06-01

    Sandia National Laboratories, California (SNL/CA) is a government-owned/contractor-operated laboratory. Sandia Corporation, a Lockheed Martin Company, operates the laboratory for the Department of Energy's National Nuclear Security Administration (NNSA). The NNSA Sandia Site Office oversees operations at the site, using Sandia Corporation as a management and operating contractor. This Site Environmental Report for 2009 was prepared in accordance with DOE Order 231.1A (DOE 2004a). The report provides a summary of environmental monitoring information and compliance activities that occurred at SNL/CA during calendar year 2009. General site and environmental program information is also included. The Site Environmental Report is divided into ten chapters. Chapter 1, the Executive Summary, highlights compliance and monitoring results obtained in 2009. Chapter 2 provides a brief introduction to SNL/CA and the existing environment found on site. Chapter 3 summarizes SNL/CA's compliance activities with the major environmental requirements applicable to site operations. Chapter 4 presents information on environmental management, performance measures, and environmental programs. Chapter 5 presents the results of monitoring and surveillance activities in 2009. Chapter 6 discusses quality assurance. Chapters 7 through 9 provide supporting information for the report and Chapter 10 is the report distribution list.

  11. Design and operation of the Sandia Pilot Plant

    International Nuclear Information System (INIS)

    Morris, M.E.

    1980-01-01

    An 8 ton/day dry sewage sludge irradiator was designed and constructed at Sandia National Laboratories in the last half of 1977 and in 1978; and was charged with 137 Cs and made operational in the spring of 1979. The design of the major subsystems of the irradiator is described. Subsequent operational experiences are also summarized

  12. 1995 Site environmental report Sandia National Laboratories, Albuquerque, New Mexico

    International Nuclear Information System (INIS)

    Shyr, L.J.; Duncan, D.; Sanchez, R.

    1996-09-01

    This 1995 report contains data from routine radiological and non-radiological environmental monitoring activities. Summaries of significant environmental compliance programs in progress, such as National Environmental Policy Act documentation, environmental permits, environmental restoration and various waste management programs at Sandia National Laboratories in Albuquerque, New Mexico, are included

  13. lambda-3, Sandia's 100-J HF laser system

    International Nuclear Information System (INIS)

    Klein, R.A.

    1979-09-01

    Sandia's lambda-geometry intermediate electron-beam-initiated HF amplifier is described in sufficient detail such that a similar system could be designed, constructed and characterized. Items included are the design of the laser cell, magnetic field design and measurements, electron-beam calorimetry, and typical laser results

  14. Sandia National Laboratories, California Environmental Management System program manual.

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Barbara L.

    2013-04-01

    The Sandia National Laboratories, California (SNL/CA) Environmental Management System (EMS) Program Manual documents the elements of the site EMS Program. The SNL/CA EMS Program conforms to the International Standard on Environmental Management Systems, ISO 14001:2004 and Department of Energy (DOE) Order 436.1.

  15. 1995 Site environmental report Sandia National Laboratories, Albuquerque, New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Shyr, L.J.; Duncan, D. [eds.; Sanchez, R.

    1996-09-01

    This 1995 report contains data from routine radiological and non-radiological environmental monitoring activities. Summaries of significant environmental compliance programs in progress, such as National Environmental Policy Act documentation, environmental permits, environmental restoration and various waste management programs at Sandia National Laboratories in Albuquerque, New Mexico, are included.

  16. Nuclear fuel cycle safety research at Sandia Laboratories

    International Nuclear Information System (INIS)

    Ericson, D.M. Jr.

    1978-11-01

    This paper provides a brief introduction to Sandia Laboratories and an overview of Nuclear Regulatory Commission sponsored safety research with particular emphasis on light water reactor related activities. Several experimental and analytical programs are highlighted and the range of activities of a typical staff member illustrated

  17. Student Assistance Program Sandia High School 1985-86 Report.

    Science.gov (United States)

    Boyce-Prather, Margaret; Shainline, Michael

    This document presents data from the second year of the Student Assistance Program, a counseling program to help students who may be abusing drugs or alcohol, implemented at Sandia High School in the Albuquerque (New Mexico) Public School system. Data are included from the program's monthly records sheets, from parent involvement questionnaires,…

  18. Dosimetry report for the Sandia irradiator for dried sewage solids

    International Nuclear Information System (INIS)

    Greene, R.T.; McFarland, E.W.; Dickson, H.W.

    1981-06-01

    Gamma dose measurements were made at the Sandia Irradiator for Dried Sewage Solids. Passive plastic, chemical, and thermoluminescent dosimeters were exposed in the facility under conditions designed to simulate typical plant operation. Absolute dose and dose distribution information were obtained in air, water, compost, fruit, and sewage sludge

  19. Sandia National Laboratories, California Environmental Management System program manual

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Barbara L.

    2014-04-01

    The Sandia National Laboratories, California (SNL/CA) Environmental Management System (EMS) Program Manual documents the elements of the site EMS Program. The SNL/CA EMS Program conforms to the International Standard on Environmental Management Systems, ISO 14001:2004 and Department of Energy (DOE) Order 436.1.

  20. Sandia National Laboratories Mixed Waste Landfill Integrated Demonstration

    International Nuclear Information System (INIS)

    Tyler, L.D.; Phelan, J.M.; Prindle, N.K.; Purvis, S.T.; Stormont, J.C.

    1992-01-01

    The Mixed-Waste Landfill Integrated Demonstration (MWLID) has been assigned to Sandia National Laboratories (SNL) by the US Department of Energy (DOE) Office of Technology Development. The mission of the MWLID is to assess, implement and transfer technologies and systems that lead to quicker, safer, and more efficient remediation of buried chemical and mixed-waste sites. The MWLID focus is on two landfills at SNL in Albuquerque, New Mexico: The Chemical Waste Landfill (CWL) and the Mixed-Waste Landfill (MWL). These landfills received chemical, radioactive and mixed wastes from various SNL nuclear research programs. A characterization system has been designed for the definition of the extent and concentration of contamination. This system includes historical records, directional drilling, and emplacement membrane, sensors, geophysics, sampling strategy, and on site sample analysis. In the remediation task, in-situ remediation systems are being designed to remove volatile organic compounds (VOC's) and heavy metals from soils. The VOC remediation includes vacuum extraction with electrical and radio-frequency heating. For heavy metal contamination, electrokinetic processes are being considered. The MWLID utilizes a phased, parallel approach. Initial testing is performed at an uncontaminated site adjacent to the CWL. Once characterization is underway at the CWL, lessons learned can be directly transferred to the more challenging problem of radioactive waste in the MWL. The MWL characterization can proceed in parallel with the remediation work at CWL. The technologies and systems demonstrated in the MWLID are to be evaluated based on their performance and cost in the real remediation environment of the landfills

  1. Advances in ion beam intensity at Sandia National Laboratories

    International Nuclear Information System (INIS)

    Mehlhorn, T.A.; Bailey, J.E.; Coats, R.S.

    1995-01-01

    In 1993 lithium beam intensities ≥1 TW/cm 2 were achieved and lithium-driven target experiments at the ∼1,400 TW/g level were performed on the Particle Beam Fusion Accelerator II (PBFA II) at Sandia National Laboratories. Hohlraum radiation temperatures of up to 60 eV were achieved using this lithium beam. The 1995 Light-Ion ICF Program milestone of achieving a 100 eV radiation temperature in an ion-driven hohlraum will require a lithium beam intensity of 5 ± 1 TW/cm 2 on a 4 mm diameter cylindrical target; this will require both an increase in coupled lithium power and a decrease in total lithium beam divergence. The lithium beam power has been limited to ∼5--6 TW by a so-called ''parasitic load.'' This parasitic current loss in the ion diodes has recently been identified as being carried by ions that are accelerated from plasmas that are formed when high voltage electrons are lost to anodes with many monolayers of hydrocarbon surface contamination. Control of anode and cathode plasmas on the SABRE accelerator using RF-discharge cleaning, anode heating, and cryogenic cooling of the cathode have increased the efficiency of the production of lithium current by a factor of 2--3. A new ion diode incorporating glow discharge cleaning and titanium gettering pumps has been installed in PBFA II and will be tested in December, 1994. Anode heaters should be available in January, 1995. Circuit model calculations indicate that one can more than double the coupled lithium ion power on PBFA II by eliminating the parasitic current. LiF source divergence presently dominates the total beam divergence. Progress in lithium beam focal intensity using diode cleaning techniques coupled with an active lithium source is reported

  2. User's guide to the Sandia Mathematical Program Library at Livermore

    Energy Technology Data Exchange (ETDEWEB)

    Huddleston, R.E.; Jefferson, T.H.

    1976-03-01

    The Sandia Mathematical Program Library is a collection of general-purpose mathematical subroutines which are maintained within Sandia on a quick service basis. This document is intended to be a reference guide for using the library at Sandia Laboratories, Livermore. (auth)

  3. An analysis of microsystems development at Sandia National Laboratories

    Science.gov (United States)

    Herrera, Gilbert V.; Myers, David R.

    2011-06-01

    While Sandia initially was motivated to investigate emergent microsystem technology to miniaturize existing macroscale structures, present designs embody innovative approaches that directly exploit the fundamentally different material properties of a new technology at the micro- and nano-scale. Direct, hands-on experience with the emerging technology gave Sandia engineers insights that not only guided the evolution of the technology but also enabled them to address new applications that enlarged the customer base for the new technology. Sandia's early commitment to develop complex microsystems demonstrated the advantages that early adopters gain by developing an extensive design and process tool kit and a shared awareness of multiple approaches to achieve the multiple goals. As with any emergent technology, Sandia's program benefited from interactions with the larger technical community. However, custom development followed a spiral path of direct trial-and-error experience, analysis, quantification of materials properties at the micro- and nano-scale, evolution of design tools and process recipes, and an understanding of reliability factors and failure mechanisms even in extreme environments. The microsystems capability at Sandia relied on three key elements. The first was people: a mix of mechanical and semiconductor engineers, chemists, physical scientists, designers, and numerical analysts. The second was a unique facility that enabled the development of custom technologies without contaminating mainline product deliveries. The third was the arrival of specialized equipment as part of a Cooperative Research And Development Agreement (CRADA) enabled by the National Competitiveness Technology Transfer Act of 1989. Underpinning all these, the program was guided and sustained through the research and development phases by accomplishing intermediate milestones addressing direct mission needs.

  4. Outdoor time and dietary patterns in children around the world.

    Science.gov (United States)

    Chaput, Jean-Philippe; Tremblay, Mark S; Katzmarzyk, Peter T; Fogelholm, Mikael; Mikkilä, Vera; Hu, Gang; Lambert, Estelle V; Maher, Carol; Maia, Jose; Olds, Timothy; Onywera, Vincent; Sarmiento, Olga L; Standage, Martyn; Tudor-Locke, Catrine; LeBlanc, Allana G

    2018-04-19

    Whether outdoor time is linked to dietary patterns of children has yet to be empirically tested. The objective of this study was to examine the association between outdoor time and dietary patterns of children from 12 countries around the world. This multinational, cross-sectional study included 6229 children 9-11 years of age. Children self-reported the time that they spent outside before school, after school and on weekends. A composite score was calculated to reflect overall daily outdoor time. Dietary patterns were assessed using a food frequency questionnaire, and two components were used for analysis: healthy and unhealthy dietary pattern scores. On average, children spent 2.5 h outside per day. After adjusting for age, sex, parental education, moderate-to-vigorous physical activity, screen time and body mass index z-score, greater time spent outdoors was associated with healthier dietary pattern scores. No association was found between outdoor time and unhealthy dietary pattern scores. Similar associations between outdoor time and dietary patterns were observed for boys and girls and across study sites. Greater time spent outside was associated with a healthier dietary pattern in this international sample of children. Future research should aim to elucidate the mechanisms behind this association.

  5. A brief history of Sandia's National security missions.

    Energy Technology Data Exchange (ETDEWEB)

    Drewien, Celeste A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); O' Canna, Myra Lynn [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Stikar, John Anthony. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-09-01

    To help members of the workforce understand what factors contribute to Sandia National Laboratories national security mission, the authors describe the evolution of Sandias core mission and its other mission components. The mission of Sandia first as a division of Los Alamos and later as Sandia Corporation underlies our core nuclear weapon mission of today. Sandias mission changed in 1963 and twice more in the 1970s. This report should help staff and management appreciate the need for mission evolution. A clear definition and communication of a consistent corporate mission statement is still needed.

  6. Sandia National Laboratories: 100 Resilient Cities

    Science.gov (United States)

    Suppliers iSupplier Account Accounts Payable Contract Information Construction & Facilities Contract front of monitors Emergency Response Cognitive testing Psychological/ Cognitive Effects The Rockefeller , Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE

  7. OUTDOOR EDUCATION AND GEOGRAPHICAL EDUCATION

    Directory of Open Access Journals (Sweden)

    ANDREA GUARAN

    2016-01-01

    Full Text Available This paper focuses on the reflection on the relationship between values and methodological principles of Outdoor Education and spatial and geographical education perspectives, especially in pre-school and primary school, which relates to the age between 3 and 10 years. Outdoor Education is an educational practice that is already rooted in the philosophical thought of the 16th and the 17th centuries, from John Locke to Jean-Jacques Rousseau, and in the pedagogical thought, in particular Friedrich Fröbel, and it has now a quite stable tradition in Northern Europe countries. In Italy, however, there are still few experiences and they usually do not have a systematic and structural modality, but rather a temporarily and experimentally outdoor organization. In the first part, this paper focuses on the reasons that justify a particular attention to educational paths that favour outdoors activities, providing also a definition of outdoor education and highlighting its values. It is also essential to understand that educational programs in open spaces, such as a forest or simply the schoolyard, surely offers the possibility to learn geographical situations. Therefore, the question that arises is how to finalize the best stimulus that the spatial location guarantees for the acquisition of knowledge, skills and abilities about space and geography.

  8. Sandia National Laboratories, California Environmental Management System Program Manual.

    Energy Technology Data Exchange (ETDEWEB)

    2009-04-01

    The Sandia National Laboratories, California (SNL/CA) Environmental Management System (EMS) Program Manual documents the elements of the site EMS Program. The SNL/CA EMS Program conforms to the International Standard on Environmental Management Systems, ISO 14001:2004 and Department of Energy (DOE) Order 450.1. Sandia National Laboratories, California (SNL/CA) has maintained functional environmental programs to assist with regulatory compliance for more than 30 years. During 2005, these existing programs were rolled into a formal environmental management system (EMS) that expands beyond the traditional compliance focus to managing and improving environmental performance and stewardship practices for all site activities. An EMS is a set of inter-related elements that represent a continuing cycle of planning, implementing, evaluating, and improving processes and actions undertaken to achieve environmental policy and goals. The SNL/CA EMS Program conforms to the International Standard for Environmental Management Systems, ISO 14001:2004 (ISO 2004). The site received ISO 14001 certification in September 2006. SNL/CA's EMS Program is applicable to the Sandia, Livermore site only. Although SNL/CA operates as one organizational division of the overall Sandia National Laboratories, the EMS Program is site-specific, with site-specific objectives and targets. SNL/CA (Division 8000) benefits from the organizational structure as it provides corporate level policies, procedures, and standards, and established processes that connect to and support elements of the SNL/CA EMS Program. Additionally, SNL/CA's EMS Program benefits from two corporate functional programs (Facilities Energy Management and Fleet Services Environmental programs) that maintain responsibility for energy management and fleet services for all Sandia locations. Each EMS element is further enhanced with site-specific processes and standards. Division 8000 has several groups operating at Sandia

  9. Sandia National Laboratories, California Environmental Management System program manual.

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Barbara L.

    2012-03-01

    The Sandia National Laboratories, California (SNL/CA) Environmental Management System (EMS) Program Manual documents the elements of the site EMS Program. The SNL/CA EMS Program conforms to the International Standard on Environmental Management Systems, ISO 14001:2004and Department of Energy (DOE) Order 436.1. Sandia National Laboratories, California (SNL/CA) has maintained functional environmental programs to assist with regulatory compliance for more than 30 years. During 2005, these existing programs were rolled into a formal environmental management system (EMS) that expands beyond the traditional compliance focus to managing and improving environmental performance and stewardship practices for all site activities. An EMS is a set of inter-related elements that represent a continuing cycle of planning, implementing, evaluating, and improving processes and actions undertaken to achieve environmental policy and goals. The SNL/CA EMS Program conforms to the International Standard for Environmental Management Systems, ISO 14001:2004 (ISO 2004). The site first received ISO 14001 certification in September 2006 and recertification in 2009. SNL/CA's EMS Program is applicable to the Sandia, Livermore site only. Although SNL/CA operates as one organizational division of the overall Sandia National Laboratories, the EMS Program is site-specific, with site-specific objectives and targets. SNL/CA (Division 8000) benefits from the organizational structure as it provides corporate level policies, procedures, and standards, and established processes that connect to and support elements of the SNL/CA EMS Program. Additionally, SNL/CA's EMS Program benefits from two corporate functional programs (Facilities Energy and Water Resource Management and Fleet Services programs) that maintain responsibility for energy management and fleet services for all Sandia locations. Each EMS element is further enhanced with site-specific processes and standards. Division 8000 has

  10. Sandia National Laboratories, California Environmental Management System Program Manual.

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Barbara L.

    2011-04-01

    The Sandia National Laboratories, California (SNL/CA) Environmental Management System (EMS) Program Manual documents the elements of the site EMS Program. The SNL/CA EMS Program conforms to the International Standard on Environmental Management Systems, ISO 14001:2004and Department of Energy (DOE) Order 450.1. Sandia National Laboratories, California (SNL/CA) has maintained functional environmental programs to assist with regulatory compliance for more than 30 years. During 2005, these existing programs were rolled into a formal environmental management system (EMS) that expands beyond the traditional compliance focus to managing and improving environmental performance and stewardship practices for all site activities. An EMS is a set of inter-related elements that represent a continuing cycle of planning, implementing, evaluating, and improving processes and actions undertaken to achieve environmental policy and goals. The SNL/CA EMS Program conforms to the International Standard for Environmental Management Systems, ISO 14001:2004 (ISO 2004). The site received ISO 14001 certification in September 2006. SNL/CA's EMS Program is applicable to the Sandia, Livermore site only. Although SNL/CA operates as one organizational division of the overall Sandia National Laboratories, the EMS Program is site-specific, with site-specific objectives and targets. SNL/CA (Division 8000) benefits from the organizational structure as it provides corporate level policies, procedures, and standards, and established processes that connect to and support elements of the SNL/CA EMS Program. Additionally, SNL/CA's EMS Program benefits from two corporate functional programs (Facilities Energy Management and Fleet Services programs) that maintain responsibility for energy management and fleet services for all Sandia locations. Each EMS element is further enhanced with site-specific processes and standards. Division 8000 has several groups operating at Sandia National Laboratories

  11. Seismic and geologic investigations of the Sandia Livermore Laboratory site

    International Nuclear Information System (INIS)

    Anon.

    1978-01-01

    This report describes results of a seismic and geologic investigation in the vicinity of Sandia Laboratories property and Sandia's Tritium Building at Livermore, California. The investigation was done to define any seismically capable faults in the immediate area and to obtain necessary information to support estimates of future possible or probable ground motions. The work included a variety of geophysical measurements, trenching, seismologic studies, geologic examination, and evaluation of possible ground surface rupture at the site. Ground motions due to the maximum potential earthquake are estimated, and probability of exceedance for various levels of peak ground acceleration is calculated. Descriptions of the various calculations and investigative techniques used and the data obtained are presented. Information obtained from other sources relevant to subsurface geology and faulting is also given. Correlation and evaluation of the various lines of evidence and conclusions regarding the seismic hazard to the Tritium Building are included

  12. Sandia National Laboratories, California proposed CREATE facility environmental baseline survey.

    Energy Technology Data Exchange (ETDEWEB)

    Catechis, Christopher Spyros

    2013-10-01

    Sandia National Laboratories, Environmental Programs completed an environmental baseline survey (EBS) of 12.6 acres located at Sandia National Laboratories/California (SNL/CA) in support of the proposed Collaboration in Research and Engineering for Advanced Technology and Education (CREATE) Facility. The survey area is comprised of several parcels of land within SNL/CA, County of Alameda, California. The survey area is located within T 3S, R 2E, Section 13. The purpose of this EBS is to document the nature, magnitude, and extent of any environmental contamination of the property; identify potential environmental contamination liabilities associated with the property; develop sufficient information to assess the health and safety risks; and ensure adequate protection for human health and the environment related to a specific property.

  13. Sandia and the Waste Isolation Pilot Plant, 1974--1999

    Energy Technology Data Exchange (ETDEWEB)

    MORA,CARL J.

    2000-04-11

    Engineers have learned to design and build big projects, which certainly describes the WIPP project, but also includes defense projects, highway networks, space exploration, the Internet, etc., through what has been called a messily complex embracing of contradictions. When something massive and complicated has to be built these days, it leads to a protracted political process in which every special interest makes a stand, lobbyists exert what influence they can, lawmakers bicker, contractors change things, Congress struggles with costs, environmentalists hold things up--and this is good. It may seem amazing that anything gets done, but when it does, everyone has had their say. It's an intensely democratic, even if expensive and time-consuming, process. The corporate historian of Sandia National Laboratories presents a unique background of the WIPP project and Sandia's part in it.

  14. Pulsed power safety and technical training at Sandia National Laboratories

    International Nuclear Information System (INIS)

    Goldstein, S.A.; Zawadzkas, G.A.; Donovan, G.L.; Mikkelson, K.A.; Sharpe, A.W.; Johnston, R.R.

    1987-01-01

    The expansion of pulsed power applications research at Sandia National Labs requires increasing technician-level support from individuals trained in high voltage, short pulse technology. Large superpower generators need a broad-based training curriculum in all aspects of accelerator operation to satisfy recent Department of Energy (DOE) desires for formal certification of accelerator operators. This paper discusses the status of Sandia's safety and technical training program in pulsed power technology directed mainly towards high school graduate and technical school level students. Present safety training methodology requires that hazards for experimental facilities are identified first, a specific curriculum is then tailored to individuals' background experiences and hazards involved with their current assignments. In the technical training program, certification requirements are being established and a coursework program has been initiated in which subjects are organized into two sections. The first covers electrical principles and physical properties of pulsed power components. The second presents various support-type subsystems for accelerators

  15. 1994 Site Environmental Report Sandia National Laboratories Albuquerque, New Mexico

    International Nuclear Information System (INIS)

    Shyr, L.J.; Wiggins, T.; White, B.B.

    1995-09-01

    This 1994 report contains data from routine radiological and nonradiological environmental monitoring activities. Summaries of significant environmental compliance programs in progress, such as National Environmental Policy Act documentation, environmental permits, environmental restoration, and various waste management programs for Sandia National Laboratories in Albuquerque, New Mexico, are included. The maximum off-site dose impact from air emissions was calculated to be 1.5 x 10 -4 millirem. The total population within a 50-mile radius of Sandia National Laboratories/New Mexico received an estimated collective dose of 0.012 person-rem during 1994 from the laboratories' operations. This report is prepared for the U.S. Department of Energy in compliance with DOE Order 5400.1

  16. Tiger Team assessment of the Sandia National Laboratories, Albuquerque

    Energy Technology Data Exchange (ETDEWEB)

    1991-05-01

    This report documents the Tiger Team Assessment of Sandia National Laboratories (SNL), Albuquerque, located in Albuquerque, New Mexico. SNL, Albuquerque, is operated by the Sandia Corporation (a wholly owned subsidiary of the American Telephone and Telegraph Company) for the US Department of Energy (DOE). The environmental assessment also included DOE tenant facilities at Ross Aviation, Albuquerque Microelectronics Operation, and the Central Training Academy. The assessment was conducted from April 15 to May 24, 1991, under the auspices of DOE's Office of Special Projects under the Assistant Secretary for Environment, Safety and Health (ES H). The assessment was comprehensive, encompassing ES H disciplines, management, self-assessments, and quality assurance; transportation; and waste management operations. Compliance with applicable federal, state, and local regulations; applicable DOE Orders; best management practices; and internal SNL, Albuquerque, requirements were assessed. In addition, an evaluation of the adequacy and effectiveness of DOE and SNL, Albuquerque management of ES H programs was conducted.

  17. Tiger Team assessment of the Sandia National Laboratories, Albuquerque

    International Nuclear Information System (INIS)

    1991-05-01

    This report documents the Tiger Team Assessment of Sandia National Laboratories (SNL), Albuquerque, located in Albuquerque, New Mexico. SNL, Albuquerque, is operated by the Sandia Corporation (a wholly owned subsidiary of the American Telephone and Telegraph Company) for the US Department of Energy (DOE). The environmental assessment also included DOE tenant facilities at Ross Aviation, Albuquerque Microelectronics Operation, and the Central Training Academy. The assessment was conducted from April 15 to May 24, 1991, under the auspices of DOE's Office of Special Projects under the Assistant Secretary for Environment, Safety and Health (ES ampersand H). The assessment was comprehensive, encompassing ES ampersand H disciplines, management, self-assessments, and quality assurance; transportation; and waste management operations. Compliance with applicable federal, state, and local regulations; applicable DOE Orders; best management practices; and internal SNL, Albuquerque, requirements were assessed. In addition, an evaluation of the adequacy and effectiveness of DOE and SNL, Albuquerque management of ES ampersand H programs was conducted

  18. Sandia and the Waste Isolation Pilot Plant, 1974-1999

    International Nuclear Information System (INIS)

    Mora, Carl J.

    2000-01-01

    Engineers have learned to design and build big projects, which certainly describes the WIPP project, but also includes defense projects, highway networks, space exploration, the Internet, etc., through what has been called a messily complex embracing of contradictions. When something massive and complicated has to be built these days, it leads to a protracted political process in which every special interest makes a stand, lobbyists exert what influence they can, lawmakers bicker, contractors change things, Congress struggles with costs, environmentalists hold things up--and this is good. It may seem amazing that anything gets done, but when it does, everyone has had their say. It's an intensely democratic, even if expensive and time-consuming, process. The corporate historian of Sandia National Laboratories presents a unique background of the WIPP project and Sandia's part in it

  19. National Environmental Policy Act (NEPA) Compliance Guide, Sandia National Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, R.P. [Hansen Environmental Consultants, Englewood, CO (United States)

    1995-08-01

    This report contains a comprehensive National Environmental Policy Act (NEPA) Compliance Guide for the Sandia National Laboratories. It is based on the Council on Environmental Quality (CEQ) NEPA regulations in 40 CFR Parts 1500 through 1508; the US Department of Energy (DOE) N-EPA implementing procedures in 10 CFR Part 102 1; DOE Order 5440.1E; the DOE ``Secretarial Policy Statement on the National Environmental Policy Act`` of June 1994- Sandia NEPA compliance procedures-, and other CEQ and DOE guidance. The Guide includes step-by-step procedures for preparation of Environmental Checklists/Action Descriptions Memoranda (ECL/ADMs), Environmental Assessments (EAs), and Environmental Impact Statements (EISs). It also includes sections on ``Dealing With NEPA Documentation Problems`` and ``Special N-EPA Compliance Issues.``

  20. Analysis of Sandia in-pile EOS experiments

    International Nuclear Information System (INIS)

    Breitung, W.; Gorham-Bergeron, E.; Murata, K.K.

    1979-01-01

    Preliminary analysis has been carried out of the dynamic in-pile equation-of-state measurements for UO 2 , conducted at Sandia Laboratories, aimed at reducing the uncertainties in the effective UO 2 enthalpy corresponding to the measured pressures. Of the remaining width of the p-H band of some 350 J/g, about 200 J/g originate in the uncertainties of the analytical modelling and about 150 J/g result from the scatter in the experimental data

  1. Sandia National Laboratories, California Waste Management Program annual report.

    Energy Technology Data Exchange (ETDEWEB)

    Brynildson, Mark E.

    2010-02-01

    The annual program report provides detailed information about all aspects of the Sandia National Laboratories, California (SNL/CA) Waste Management Program. It functions as supporting documentation to the SNL/CA Environmental Management System Program Manual. This annual program report describes the activities undertaken during the past year, and activities planned in future years to implement the Waste Management (WM) Program, one of six programs that supports environmental management at SNL/CA.

  2. Sandia National Laboratories, California Hazardous Materials Management Program annual report.

    Energy Technology Data Exchange (ETDEWEB)

    Brynildson, Mark E.

    2011-02-01

    The annual program report provides detailed information about all aspects of the Sandia National Laboratories, California (SNL/CA) Hazardous Materials Management Program. It functions as supporting documentation to the SNL/CA Environmental Management System Program Manual. This program annual report describes the activities undertaken during the calender past year, and activities planned in future years to implement the Hazardous Materials Management Program, one of six programs that supports environmental management at SNL/CA.

  3. Calculations of beam dynamics in Sandia linear electron accelerators, 1984

    International Nuclear Information System (INIS)

    Poukey, J.W.; Coleman, P.D.

    1985-03-01

    A number of code and analytic studies were made during 1984 which pertain to the Sandia linear accelerators MABE and RADLAC. In this report the authors summarize the important results of the calculations. New results include a better understanding of gap-induced radial oscillations, leakage currents in a typical MABE gas, emittance growth in a beam passing through a series of gaps, some new diocotron results, and the latest diode simulations for both accelerators. 23 references, 30 figures, 1 table

  4. Implementing a lessons learned process at Sandia National Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Fosshage, Erik D.; Drewien, Celeste A.; Eras, Kenneth; Hartwig, Ronald Craig; Post, Debra S.; Stoecker, Nora Kathleen

    2016-01-01

    The Lessons Learned Process Improvement Team was tasked to gain an understanding of the existing lessons learned environment within the major programs at Sandia National Laboratories, identify opportunities for improvement in that environment as compared to desired attributes, propose alternative implementations to address existing inefficiencies, perform qualitative evaluations of alternative implementations, and recommend one or more near-term activities for prototyping and/or implementation. This report documents the work and findings of the team.

  5. Sandia equation of state data base: seslan File

    Energy Technology Data Exchange (ETDEWEB)

    Kerley, G.I. [Sandia National Labs., Albuquerque, NM (US); Christian-Frear, T.L. [RE/SPEC Inc., Albuquerque, NM (US)

    1993-06-24

    Sandia National Laboratories maintains several libraries of equation of state tables, in a modified Sesame format, for use in hydrocode calculations and other applications. This report discusses one of those libraries, the seslan file, which contains 78 tables from the Los Alamos equation of state library. Minor changes have been made to these tables, making them more convenient for code users and reducing numerical difficulties that occasionally arise in hydrocode calculations.

  6. DESALINATION AND WATER TREATMENT RESEARCH AT SANDIA NATIONAL LABORATORIES.

    Energy Technology Data Exchange (ETDEWEB)

    Rigali, Mark J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Miller, James E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Altman, Susan J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Biedermann, Laura [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Brady, Patrick Vane. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Kuzio, Stephanie P. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Nenoff, Tina M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Rempe, Susan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-11-01

    Water is the backbone of our economy - safe and adequate supplies of water are vital for agriculture, industry, recreation, and human consumption. While our supply of water today is largely safe and adequate, we as a nation face increasing water supply challenges in the form of extended droughts, demand growth due to population increase, more stringent health-based regulation, and competing demands from a variety of users. To meet these challenges in the coming decades, water treatment technologies, including desalination, will contribute substantially to ensuring a safe, sustainable, affordable, and adequate water supply for the United States. This overview documents Sandia National Laboratories' (SNL, or Sandia) Water Treatment Program which focused on the development and demonstration of advanced water purification technologies as part of the larger Sandia Water Initiative. Projects under the Water Treatment Program include: (1) the development of desalination research roadmaps (2) our efforts to accelerate the commercialization of new desalination and water treatment technologies (known as the 'Jump-Start Program),' (3) long range (high risk, early stage) desalination research (known as the 'Long Range Research Program'), (4) treatment research projects under the Joint Water Reuse & Desalination Task Force, (5) the Arsenic Water Technology Partnership Program, (6) water treatment projects funded under the New Mexico Small Business Administration, (7) water treatment projects for the National Energy Technology Laboratory (NETL) and the National Renewable Energy Laboratory (NREL), (8) Sandia- developed contaminant-selective treatment technologies, and finally (9) current Laboratory Directed Research and Development (LDRD) funded desalination projects.

  7. Site Environmental Report for 2010 Sandia National Laboratories, California.

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Barbara L.

    2011-06-01

    Sandia National Laboratories, California (SNL/CA) is a government-owned/contractor-operated laboratory. Sandia Corporation, a Lockheed Martin Company, manages and operates the laboratory for the Department of Energy's National Nuclear Security Administration (NNSA). The NNSA Sandia Site Office administers the contract and oversees contractor operations at the site. This Site Environmental Report for 2010 was prepared in accordance with DOE Order 231.1A (DOE 2004a). The report provides a summary of environmental monitoring information and compliance activities that occurred at SNL/CA during calendar year 2010. General site and environmental program information is also included. The Site Environmental Report is divided into ten chapters. Chapter 1, the Executive Summary, highlights compliance and monitoring results obtained in 2010. Chapter 2 provides a brief introduction to SNL/CA and the existing environment found on site. Chapter 3 summarizes SNL/CA's compliance activities with the major environmental requirements applicable to site operations. Chapter 4 presents information on environmental management, performance measures, and environmental programs. Chapter 5 presents the results of monitoring and surveillance activities in 2010. Chapter 6 discusses quality assurance. Chapters 7 through 9 provide supporting information for the report and Chapter 10 is the report distribution list.

  8. Sandia National Laboratories support of the Iraq Nuclear Facility Dismantlement and Disposal Program.

    Energy Technology Data Exchange (ETDEWEB)

    Cochran, John Russell; Danneels, Jeffrey John

    2009-03-01

    -25, 2008. As noted in the report, there was significant teaming between the various participants to best help the GOI. On-the-ground progress is the focus of the Iraq NDs Program and much of the work is a transfer of technical and practical skills and knowledge that Sandia uses day-to-day. On-the-ground progress was achieved in July of 2008 when the GOI began the physical cleanup and dismantlement of the Active Metallurgical Testing Laboratory (LAMA) facility at Al Tuwaitha, near Baghdad.

  9. The Regional Test Center Data Transfer System

    Energy Technology Data Exchange (ETDEWEB)

    Riley, Daniel M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Photovoltaic and Distributed Systems Dept.; Stein, Joshua S. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Photovoltaic and Distributed Systems Dept.

    2016-09-01

    The Regional Test Centers are a group of several sites around the US for testing photovoltaic systems and components related to photovoltaic systems. The RTCs are managed by Sandia National Laboratories. The data collected by the RTCs must be transmitted to Sandia for storage, analysis, and reporting. This document describes the methods that transfer the data between remote sites and Sandia as well as data movement within Sandia’s network. The methods described are in force as of September, 2016.

  10. Formal education in outdoor studies: introduction

    OpenAIRE

    Prince, Heather

    2015-01-01

    Regional cultural perspectives involve outdoor studies in different ways in formal curricula. This section focuses on Western Europe, particularly the UK and Scandinavia, although also has a more international reach in Backman’s consideration of the training of teachers and in place-responsive teaching as described by Mannion and Lynch. ‘Outdoor studies’ is not seen in curricula per se but under various more specialised aspects such as outdoor play, outdoor learning, environmental education, ...

  11. Fear of moving outdoors and development of outdoor walking difficulty in older people

    DEFF Research Database (Denmark)

    Rantakokko, Merja; Mänty, Minna; Iwarsson, Susanne

    2009-01-01

    To study which individual characteristics and environmental factors correlate with fear of moving outdoors and whether fear of moving outdoors predicts development of mobility limitation.......To study which individual characteristics and environmental factors correlate with fear of moving outdoors and whether fear of moving outdoors predicts development of mobility limitation....

  12. Outdoor Education for Bereaved Children?

    Science.gov (United States)

    Renner, Hans-Georg

    2011-01-01

    For many outdoor education providers, bereaved children and young people at first appear to be a new target audience. A new target audience naturally raises questions of programme planning and can give the provider a pressurised need to succeed: "Do I as the organiser have to develop a whole new programme?", "May I be required to provide some form…

  13. Taking the New Curriculum Outdoors

    Science.gov (United States)

    Forsey, Katherine

    2014-01-01

    A review of research on outdoor learning by Rickinson "et al." (2004) highlights the demonstrable educational benefits and provides a source of support, justification and an evidence base for educators looking to undertake more learning outside the classroom. Bird (2004) also reviewed the widely reported health benefits of outdoor…

  14. Signature Pedagogies in Outdoor Education

    Science.gov (United States)

    Thomas, Glyn

    2015-01-01

    The new National health and physical education curriculum in Australia includes outdoor education activities as a viable way to achieve intended learning outcomes. However, most health and physical education teacher education courses do not provide a strong focus on the theories, skills and pedagogies that are unique to the effective use of…

  15. Expanding & strengthening outdoor recreation research

    Science.gov (United States)

    Walter S. Hopkins

    1971-01-01

    Though the Forest Service has pioneered in outdoor recreation research, the funding for recreation research has been inadequate. Specific needs for research are outlined. There is a need to define recreation and recreation research in terms that busy legislators can understand.

  16. A Phenomenology of Outdoor Education Leader Experiences

    Science.gov (United States)

    Field, Stephanie C.; Lauzon, Lara L.; Meldrum, John T.

    2016-01-01

    Limited qualitative research exists on the experiences of outdoor education leaders. The purpose of this phenomenological study was to explore the job-related experiences of outdoor education leaders within and outside the workplace. Five participants who had experience as outdoor education leaders completed in-depth, one-on-one interviews about…

  17. Benchmarking Outdoor Expeditionary Program Risk Management Strategies

    Science.gov (United States)

    Meerts-Brandsma, Lisa; Furman, Nate; Sibthorp, Jim

    2017-01-01

    In 2003, the University of Utah and the National Outdoor Leadership School (NOLS) completed a study that developed a risk management taxonomy in the outdoor adventure industry and assessed how different outdoor expeditionary programs (OEPs) managed risk (Szolosi, Sibthorp, Paisley, & Gookin, 2003). By unifying the language around risk, the…

  18. Hinterbrand Lodge Outdoor Education Center. Program Information.

    Science.gov (United States)

    Dependents Schools (DOD), Washington, DC. European Area.

    Describing Department of Defense Dependents Schools Europe (DODDSEUR) use of Hinterbrand Lodge Outdoor Education Center, this document is directed to sponsors wishing to take groups to Hinterbrand for one or more of the five program options (outdoor education week, teacher weekend, school-designed outdoor education program, administrative faculty…

  19. Outdoor Leadership Skills: A Program Perspective

    Science.gov (United States)

    Shooter, Wynn; Sibthorp, Jim; Paisley, Karen

    2009-01-01

    Successful hiring, training, and pairing or grouping of staff requires administrators to consider the relationship between their programs' goals and the specific outdoor leadership skills of individual leaders. Authors have divided outdoor leadership skills into a three-category structure, and models of outdoor leadership have focused on skills…

  20. 9 CFR 3.52 - Facilities, outdoor.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Facilities, outdoor. 3.52 Section 3.52 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE ANIMAL... outdoors when the atmospheric temperature falls below 40 °F. (d) Protection from predators. Outdoor housing...

  1. Sandia_HighTemperatureComponentEvaluation_2015

    Energy Technology Data Exchange (ETDEWEB)

    Cashion, Avery T. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-03-01

    The objective of this project is to perform independent evaluation of high temperature components to determine their suitability for use in high temperature geothermal tools. Development of high temperature components has been increasing rapidly due to demand from the high temperature oil and gas exploration and aerospace industries. Many of these new components are at the late prototype or first production stage of development and could benefit from third party evaluation of functionality and lifetime at elevated temperatures. In addition to independent testing of new components, this project recognizes that there is a paucity of commercial-off-the-shelf COTS components rated for geothermal temperatures. As such, high-temperature circuit designers often must dedicate considerable time and resources to determine if a component exists that they may be able to knead performance out of to meet their requirements. This project aids tool developers by characterization of select COTS component performances beyond published temperature specifications. The process for selecting components includes public announcements of project intent (e.g., FedBizOps), direct discussions with candidate manufacturers,and coordination with other DOE funded programs.

  2. Outdoor advertising, obesity, and soda consumption: a cross-sectional study

    OpenAIRE

    Lesser, Lenard I; Zimmerman, Frederick J; Cohen, Deborah A

    2013-01-01

    Abstract Background Recent research has shown that neighborhood characteristics are associated with obesity prevalence. While food advertising in periodicals and television has been linked to overweight and obesity, it is unknown whether outdoor advertising is related to obesity. Methods To test the association between outdoor food advertising and obesity, we analyzed telephone survey data on...

  3. Older persons afraid of falling reduce physical activity to prevent outdoor falls

    NARCIS (Netherlands)

    Wijlhuizen, G.J.; Jong, R. de; Hopman-Rock, M.

    2007-01-01

    Objective.: The aim of this study was to test the assumption that the level of outdoor physical activity mediates the relationship between fear of falling and actual outdoor falls according to the Task Difficulty Homeostasis Theory. Method.: A prospective follow-up study of 10 months conducted in

  4. Waste processing to support 99Mo production at Sandia National Laboratories

    International Nuclear Information System (INIS)

    Longley, S.; Carson, S.; McDonald, M.

    1997-01-01

    As part of the isotope production program at Sandia National Laboratories (SNL), procedures are being finalized for the production of 99 Mo from the irradiation of 235 U-coated stainless-steel targets at the Technical Area (TA) V reactor and hot-cell facilities. Methods have been identified and tested for the management of the nonproduct (waste) material as the final step in the production process. These methods were developed utilizing the waste material from a series of cold and hot tests, beginning with depleted uranium powder and culminating with a test involving an irradiated 235 U target with an initial fission product inventory of ∼18000 Ci at the end of the irradiation cycle. This paper describes the radioactive waste management from the isotope production

  5. Outdoor recreation-related outdoor education: scope of the research (1995-2010) I

    OpenAIRE

    Lynch, Philippa

    2012-01-01

    Article made available with the permission of the New Zealand Journal of Outdoor Education. This article reports on the scope of the New Zealand outdoor recreationrelated outdoor education research literature published from January 1995 to June 2010. It draws on the literature covered by the 2010 Sport and Recreation New Zealand-funded Outdoor Recreation Research Stocktake, which included outdoor education material. This article is divided into two parts, both published in this issue of th...

  6. US DOE Regional Test Centers Program - 2016 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Stein, Joshua [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-05-01

    The US Department of Energy’s Regional Test Center (RTC) program provides outdoor validation and bankability data for innovative solar technologies at five sites across the US representing a range of climate conditions. Data helps get new technologies to market faster and improves US industry competitiveness. Managed by Sandia National Laboratories and the National Renewable Energy Laboratory (NREL), the RTC program partners with US manufacturers of photovoltaic (PV) technologies, including modules, inverters, and balance-of-system equipment. The study is collaborative, with manufacturers (also known as RTC industry partners) and the national labs working together on a system design and validation strategy that meets a clearly defined set of performance and reliability objectives.

  7. Outdoor radon variation in Romania

    International Nuclear Information System (INIS)

    Simion, Elena; Simion, Florin

    2008-01-01

    Full text: The results of a long-term survey (1992 - 2006) of the variations of outdoor radon concentrations in semi-natural location from Romania are reported in the present paper. Measurements, covering between two and four sessions of the day (morning, afternoon, evening and night), were performed on a daily bases by 37 Environmental Radioactivity Monitoring Stations from National Environmental Radioactivity Survey Network. The method used was based on indirect determination of outdoor radon from aerosol samples collected on glass micro-fibre filters by drawing the air through the filters. The sampling was performed in a fixed place at a height of 2 m above the ground surface. Total beta counting of aerosol samples collected was performed immediately and after 20 hours. Values recorded during the years of continuous measurement indicated the presence of several patterns in the long-term variation of outdoor radon concentration: diurnal, seasonal and annual variation. For diurnal variation, outdoor radon concentration shows a maximum values in the night (early hours) and minimum values by day (in the afternoon). On average, this maximum is a factor of 2 higher than the minimum. Late autumn - beginning of winter maximum and an early spring minimum are characteristic for seasonal patterns. In the long term a seasonal pattern was observed for diurnal variation, with an average diurnal maximum to minimum ratio of 1.33 in winter compared with 3.0 in the summer months. The variations of outdoor radon levels showed little correlation with the uranium concentration of the ground and were attributed to changes in soil moisture content. In dry seasons, because of the low precipitation, the soil was drying out in the summer allowing fractures to develop and radon to migrate easily through the ground. Depending on micro-climatic and geological conditions, outdoor radon average concentrations in different regions of Romania are from 1200 mBq/mc to 13065 mBq/mc. The smallest

  8. Energetic materials research and development activities at Sandia National Laboratories supported under DP-10 programs

    Energy Technology Data Exchange (ETDEWEB)

    Ratzel, A.C. III

    1998-09-01

    This report provides summary descriptions of Energetic Materials (EM) Research and Development activities performed at Sandia National Laboratories and funded through the Department of Energy DP-10 Program Office in FY97 and FY98. The work falls under three major focus areas: EM Chemistry, EM Characterization, and EM Phenomenological Model Development. The research supports the Sandia component mission and also Sandia's overall role as safety steward for the DOE Nuclear Weapons Complex.

  9. Sandia National Laboratories, California Chemical Management Program annual report.

    Energy Technology Data Exchange (ETDEWEB)

    Brynildson, Mark E.

    2012-02-01

    The annual program report provides detailed information about all aspects of the Sandia National Laboratories, California (SNL/CA) Chemical Management Program. It functions as supporting documentation to the SNL/CA Environmental Management System Program Manual. This program annual report describes the activities undertaken during the calender past year, and activities planned in future years to implement the Chemical Management Program, one of six programs that supports environmental management at SNL/CA. SNL/CA is responsible for tracking chemicals (chemical and biological materials), providing Material Safety Data Sheets (MSDS) and for regulatory compliance reporting according to a variety of chemical regulations. The principal regulations for chemical tracking are the Emergency Planning Community Right-to-Know Act (EPCRA) and the California Right-to-Know regulations. The regulations, the Hazard Communication/Lab Standard of the Occupational Safety and Health Administration (OSHA) are also key to the CM Program. The CM Program is also responsible for supporting chemical safety and information requirements for a variety of Integrated Enabling Services (IMS) programs primarily the Industrial Hygiene, Waste Management, Fire Protection, Air Quality, Emergency Management, Environmental Monitoring and Pollution Prevention programs. The principal program tool is the Chemical Information System (CIS). The system contains two key elements: the MSDS library and the chemical container-tracking database that is readily accessible to all Members of the Sandia Workforce. The primary goal of the CM Program is to ensure safe and effective chemical management at Sandia/CA. This is done by efficiently collecting and managing chemical information for our customers who include Line, regulators, DOE and ES and H programs to ensure compliance with regulations and to streamline customer business processes that require chemical information.

  10. Merging weather data with materials response data during outdoor exposure

    Science.gov (United States)

    R. Sam Williams; Anand Sanadi; Corey Halpin; Christopher White

    2002-01-01

    As part of an outdoor exposure protocol for a study of sealants, a full weather station was installed at the Forest Products Laboratory field test site near Madison, Wisconsin. Tem-perature, relative humidity, rainfall, ultraviolet (UV) radiation at 18 different wavelengths, and wind speed and direction are continuously measured. Using a specially designed apparatus,...

  11. Overview of the joint US/Russia surety program in the Sandia National Laboratories Cooperative Measures Program

    International Nuclear Information System (INIS)

    Smith, R.E.; Vorontsova, O.S.; Blinov, I.M.

    1998-02-01

    Sandia National Laboratories has initiated many joint research and development projects with the two premier Russian nuclear laboratories, VNIIEF and VNIITF, (historically known as Arzamas-16 and Chelyabinsk-70) in a wide spectrum of areas. One of the areas in which critical dialogue and technical exchange is continuing to take place is in the realm of system surety. Activities primarily include either safety or security methodology development, processes, accident environment analyses and testing, accident data-bases, assessments, and product design. Furthermore, a continuing dialog has been established between the organizations with regard to developing a better understanding of how risk is perceived and analyzed in Russia versus that in the US. The result of such efforts could reduce the risk of systems to incur accidents or incidents resulting in high consequences to the public. The purpose of this paper is to provide a current overview of the Sandia surety program and its various initiatives with the Russian institutes, with an emphasis on the program scope and rationale. The historical scope of projects will be indicated. A few specific projects will be discussed, along with results to date. The extension of the joint surety initiatives to other government and industry organizations will be described. This will include the current status of a joint Sandia/VNIIEF initiative to establish an International Surety Center for Energy Intensive and High Consequence Systems and Infrastructures

  12. Sandia Sodium Purification Loop (SNAPL) description and operations manual

    International Nuclear Information System (INIS)

    Acton, R.U.; Weatherbee, R.L.; Smith, L.A.; Mastin, F.L.; Nowotny, K.E.

    1985-08-01

    Sandia's Sodium Purification Loop was constructed to purify sodium for fast reactor safety experiments. An oxide impurity of less than 10 parts per million is required by these in-pile experiments. Commercial, reactor grade sodium is purchased in 180 kg drums. The sodium is melted and transferred into the unit. The unit is of a loop design and purification is accomplished by ''cold trapping.'' Sodium purified in this loop has been chemically analysed at one part per million oxygen by weight. 5 refs., 22 figs., 7 tabs

  13. 1990 DOE/SANDIA crystalline photovoltaic technology project review meeting

    Energy Technology Data Exchange (ETDEWEB)

    Ruby, D.S. (ed.)

    1990-07-01

    This document serves as the proceedings for the annual project review meeting held by Sandia's Photovoltaic Cell Research Division and Photovoltaic Technology Division. It contains information supplied by each organization making a presentation at the meeting, which was held August 7 through 9, 1990 at the Sheraton Hotel in Albuquerque, New Mexico. Sessions were held to discuss national photovoltaic programs, one-sun crystalline silicon cell research, concentrator silicon cell research, concentrator 3-5 cell research, and concentrating collector development.

  14. Update on Engine Combustion Research at Sandia National Laboratories

    International Nuclear Information System (INIS)

    Jay Keller; Gurpreet Singh

    2001-01-01

    The objectives of this paper are to describe the research efforts in diesel engine combustion at Sandia National Laboratories' Combustion Research Facility and to provide recent experimental results. We have four diesel engine experiments supported by the Department of Energy, Office of Heavy Vehicle Technologies: a one-cylinder version of a Cummins heavy-duty engine, a diesel simulation facility, a one-cylinder Caterpillar engine to evaluate combustion of alternative fuels, and a homogeneous-charge, compression ignition (HCCI) engine. Recent experimental results of diesel combustion research will be discussed and a description will be given of our HCCI experimental program and of our HCCI modeling work

  15. Pulsed power driven hohlraum research at Sandia National Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Leeper, R J; Alberts, T E; Allshouse, G A [Sandia Labs., Albuquerque, NM (United States); and others

    1997-12-31

    Three pulsed power driven hohlraum concepts are being investigated at Sandia National Laboratories. These hohlraums are driven by intense proton and Li ion beams as well as by two different types of z-pinch x-ray sources. The paper is an overview of the experiments that have been conducted on these hohlraum systems and discusses several new and novel hohlraum characterization diagnostics that have been developed for this work. These diagnostics include an active shock breakout measurement of hohlraum temperature and a new transmission grating spectrograph for detailed thermal radiation spectral measurements. (author). 3 figs., 6 refs.

  16. Sandia and NJ TRANSIT Authority Developing Resilient Power Grid

    Energy Technology Data Exchange (ETDEWEB)

    Hanley, Charles J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Ellis, Abraham [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-11-01

    Through the memorandum of understanding between the Depratment of Energy (DOE), the New Jersey Transit Authority (NJ Transit), and the New Jersey Board of Public Utilities, Sandia National Labs is assisting NJ Transit in developing NJ TransitGrid: an electric microgrid that will include a large-scale gas-fired generation facility and distributed energy resources (photovoltaics [PV], energy storage, electric vehicles, combined heat and power [CHP]) to supply reliable power during storms or other times of significant power failure. The NJ TransitGrid was awarded $410M from the Department of Transportation to develop a first-of-its-kind electric microgrid capable of supplying highly-reliable power.

  17. Sandia high-power atomic iodine photodissociation laser

    International Nuclear Information System (INIS)

    Palmer, R.E.; Padrick, T.D.

    1975-01-01

    One of the more promising candidates for a laser to demonstrate the feasibility of laser fusion is the 1.315 μ atomic iodine laser. In a relatively short time it has been developed into a viable subnanosecond, high energy laser. Although at present the iodine laser cannot equal the output capabilities of a large Nd:glass laser system, there are no foreseeable obstacles in the construction of a 100 psec, 10 KJ or greater atomic iodine laser system. A 100 joule system being constructed at Sandia to investigate many of the scaling parameters essential to the design of a 10 KJ or greater system is described. (U.S.)

  18. Multidimensional elemental analysis with the Sandia nuclear microprobe

    International Nuclear Information System (INIS)

    Doyle, B.L.

    1988-01-01

    It is well known that many of the ion beam analysis techniques such as Rutherford backscattering spectrometry, elastic recoil detection, resonant and nonresonant nuclear reaction analysis can be used to nondestructively obtain concentration depth profiles of elements in solids. When these techniques are combined with the small beam spot capabilities of a scanned nuclear microprobe, sample composition can be determined in up to three dimensions. This paper will review the various procedures used to collect and analyze multidimensional data using the Sandia nuclear microprobe. In addition, examples of how these data are being used in the study of materials will be shown. (author)

  19. One-dimensional neutron imager for the Sandia Z facility.

    Science.gov (United States)

    Fittinghoff, David N; Bower, Dan E; Hollaway, James R; Jacoby, Barry A; Weiss, Paul B; Buckles, Robert A; Sammons, Timothy J; McPherson, Leroy A; Ruiz, Carlos L; Chandler, Gordon A; Torres, José A; Leeper, Ramon J; Cooper, Gary W; Nelson, Alan J

    2008-10-01

    A multiinstitution collaboration is developing a neutron imaging system for the Sandia Z facility. The initial system design is for slit aperture imaging system capable of obtaining a one-dimensional image of a 2.45 MeV source producing 5x10(12) neutrons with a resolution of 320 microm along the axial dimension of the plasma, but the design being developed can be modified for two-dimensional imaging and imaging of DT neutrons with other resolutions. This system will allow us to understand the spatial production of neutrons in the plasmas produced at the Z facility.

  20. Pulsed power driven hohlraum research at Sandia National Laboratories

    International Nuclear Information System (INIS)

    Leeper, R.J.; Alberts, T.E.; Allshouse, G.A.

    1996-01-01

    Three pulsed power driven hohlraum concepts are being investigated at Sandia National Laboratories. These hohlraums are driven by intense proton and Li ion beams as well as by two different types of z-pinch x-ray sources. The paper is an overview of the experiments that have been conducted on these hohlraum systems and discusses several new and novel hohlraum characterization diagnostics that have been developed for this work. These diagnostics include an active shock breakout measurement of hohlraum temperature and a new transmission grating spectrograph for detailed thermal radiation spectral measurements. (author). 3 figs., 6 refs

  1. Sandia, California Tritium Research Laboratory transition and reutilization project

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, T.B. [Sandia National Lab., Albuquerque, NM (United States)

    1997-02-01

    This paper describes a project within Sandia National Laboratory to convert the shut down Tritium Research Laboratory into a facility which could be reused within the laboratory complex. In the process of decommissioning and decontaminating the facility, the laboratory was able to save substantial financial resources by transferring much existing equipment to other DOE facilities, and then expeditiously implementing a decontamination program which has resulted in the building being converted into laboratory space for new lab programs. This project of facility reuse has been a significant financial benefit to the laboratory.

  2. PARENTS ATTITUDE ABOUT OUTDOOR ACTIVITIES

    Directory of Open Access Journals (Sweden)

    Dragan Martinović

    2013-07-01

    Full Text Available A questionnaire-based survey was conducted on a sample of 238 parents whose children attend the third and fourth grades in two Belgrade elementary schools: “Oslobodioci Beograda” and “Borislav Pekic”. The aim of this study was to deter¬mi¬ne the incidence of outdoor activities and the attitude of the third and fourth graders’ parents towards it. Statistical data processing was based on the use of the –R, and every question represented a random variable. The analysis of the collected data has proved the presence of outdoor activities among these pupils and their positive attitude towards camping out, as well as a positive attitude of their parents.

  3. Aquatic macroinvertebrates and water quality in Sandia Canyon

    International Nuclear Information System (INIS)

    Bennett, K.

    1994-05-01

    In 1990, field studies of water quality and stream macroinvertebrate communities were initiated in Sandia Canyon at Los Alamos National Laboratory. The studies were designed to establish baseline data and to determine the effects of routine discharges of industrial and sanitary waste. Water quality measurements were taken and aquatic macroinvertebrates sampled at three permanent stations within the canyon. Two of the three sample stations are located where the stream regularly receives industrial and sanitary waste effluents. These stations exhibited a low diversity of macroinvertebrates and slightly degraded water quality. The last sample station, located approximately 0.4 km (0.25 mi) downstream from the nearest wastewater outfall, appears to be in a zone of recovery where water quality parameters more closely resemble those found in natural streams in the Los Alamos area. A large increase in macroinvertebrate diversity was also observed at the third station. These results indicate that effluents discharged into Sandia Canyon have a marked effect on water quality and aquatic macroinvertebrate communities

  4. Psychological mechanisms in outdoor place and weather assessment: towards a conceptual model

    Science.gov (United States)

    Knez, Igor; Thorsson, Sofia; Eliasson, Ingegärd; Lindberg, Fredrik

    2009-01-01

    The general aim has been to illuminate the psychological mechanisms involved in outdoor place and weather assessment. This reasoning was conceptualized in a model, tentatively proposing direct and indirect links of influence in an outdoor place-human relationship. The model was subsequently tested by an empirical study, performed in a Nordic city, on the impact of weather and personal factors on participants’ perceptual and emotional estimations of outdoor urban places. In line with our predictions, we report significant influences of weather parameters (air temperature, wind, and cloudlessness) and personal factors (environmental attitude and age) on participants’ perceptual and emotional estimations of outdoor urban places. All this is a modest, yet significant, step towards an understanding of the psychology of outdoor place and weather assessment.

  5. Natural attenuation of metals and radionuclides - An overview of the Sandia/DOE approach

    International Nuclear Information System (INIS)

    Waters, R.D.; Brady, P.V.; Borns, D.J.

    1998-02-01

    Sandia National Laboratories is developing guidelines that outline the technical basis for relying on natural attenuation for the remediation of metals and radionuclide-contaminated soils and groundwaters at US Department of Energy (DOE) sites for those specific cases where natural processes are effective at ameliorating soil and groundwater toxicity. Remediation by monitored natural attenuation (MNA) requires a clear identification of the specific reaction(s) by which contaminant levels are made less available as well as considerable long-term monitoring. Central to MNA is the development of a conceptual model describing the biogeochemical behavior of contaminant(s) in the subsurface. The conceptual model will be used to make testable predictions of contaminant availability over time. In many cases, comparison between this prediction and field measurements will provide the test of whether MNA is to be implemented. As a result, development of the conceptual model should guide site characterization activities as well as long-term monitoring

  6. Reducing indoor residential exposures to outdoor pollutants

    Energy Technology Data Exchange (ETDEWEB)

    Sherman, Max H.; Matson, Nance E.

    2003-07-01

    The basic strategy for providing indoor air quality in residences is to dilute indoor sources with outdoor air. This strategy assumes that the outdoor air does not have pollutants at harmful levels or that the outdoor air is, at least, less polluted than the indoor air. When this is not the case, different strategies need to be employed to ensure adequate air quality in the indoor environment. These strategies include ventilation systems, filtration and other measures. These strategies can be used for several types of outdoor pollution, including smog, particulates and toxic air pollutants. This report reviews the impacts that typical outdoor air pollutants can have on the indoor environment and provides design and operational guidance for mitigating them. Poor quality air cannot be used for diluting indoor contaminants, but more generally it can become an indoor contaminant itself. This paper discusses strategies that use the building as protection against potentially hazardous outdoor pollutants, including widespread pollutants, accidental events, and potential attacks.

  7. NREL- and Sandia-Developed HyStEP Device Receives Far West FLC Award | News

    Science.gov (United States)

    | NREL NREL- and Sandia-Developed HyStEP Device Receives Far West FLC Award NREL- and Sandia -Developed HyStEP Device Receives Far West FLC Award September 1, 2016 The National Renewable Energy technologies and boost the regional economy. As FLC awards are granted for outstanding achievements in

  8. Outdoor Acoustics as a General Discipline

    DEFF Research Database (Denmark)

    Rasmussen, Karsten Bo

    1999-01-01

    A tutorial paper exploring the characteristics of sound outdoors. Outdoor acoustics is contrasted to room acoustics. A number of important aspects of outdoor acoustics are exemplified and theoretical approaches are outlined. These are influence of ground impedance, influence of weather, screening...... to the application in question. In this way results providing a certain level of accuracy are obtained using methods which are balanced with the accuracy of the input data. Advanced measurement techniques are looked into and suggestions for future research are made...

  9. Mobile Phones and Outdoor Advertising: Measurable Advertising

    OpenAIRE

    Quercia, Daniele; Di Lorenzo, Giusy; Calabrese, Francesco; Ratti, Carlo

    2011-01-01

    Television and newspapers sit at the top of many agency marketing plans, while outdoor advertising stays at the bottom. The reason for this is that it’s difficult to account for who views a billboard, so there is no way of consistently determining the effectiveness of outdoor advertising. As a result, agencies do not consider the medium and allocate their money elsewhere. To change this situation, one needs to create new credible audience measurements for the outdoor marketing industry. He...

  10. Annual Site Environmental Report Sandia National Laboratories, Albuquerque, New Mexico, Calendar year 2007

    Energy Technology Data Exchange (ETDEWEB)

    Agogino, Karen [National Nuclear Security Administration (NNSA), Washington, DC (United States); Sanchez, Rebecca [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2008-09-30

    Sandia National Laboratories, New Mexico (SNL/NM) is a government-owned/contractor-operated facility. Sandia Corporation (Sandia), a wholly owned subsidiary of Lockheed Martin Corporation, manages and operates the laboratory for the U.S. Department of Energy (DOE), National Nuclear Security Administration (NNSA). The DOE/NNSA Sandia Site Office (SSO) administers the contract and oversees contractor operations at the site. This annual report summarizes data and the compliance status of Sandia Corporation’s environmental protection and monitoring programs through December 31, 2007. Major environmental programs include air quality, water quality, groundwater protection, terrestrial surveillance, waste management, pollution prevention (P2), environmental restoration (ER), oil and chemical spill prevention, and implementation of the National Environmental Policy Act (NEPA). Environmental monitoring and surveillance programs are required by DOE Order 450.1, Environmental Protection Program (DOE 2007a) and DOE Manual 231.1-1A, Environment, Safety, and Health Reporting (DOE 2007).

  11. Calendar Year 2009 Annual Site Environmental Report for Sandia National Laboratories, New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Armstrong, Karen [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bailey-White, Brenda [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bonaguidi, Joseph [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Brown, Mendy [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Byrd, Caroline [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Cabble, Kevin [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Castillo, Dave [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Coplen, Amy [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Curran, Kelsey [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Deola, Regina [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Duran, Leroy [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Eckstein, Joanna [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Evelo, Stacie [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Fitzgerald, Tanja [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); French, Chris [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Gerard, Morgan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Gonzales, Linda [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Gorman, Susan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Jackson, Timothy [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Jarry, Jeff [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Jones, Adrian [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Lauffer, Franz [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Mauser, Joseph [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Mayeux, Lucie [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); McCord, Samuel [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Miller, Mark [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Oborny, Stephanie [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Perini, Robin [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Puissant, Pamela [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Reiser, Anita [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Roma, Charles [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Salinas, Stephanie [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Skelly, Michael [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Ullrich, Rebecca [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Wagner, Katrina [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Wrons, Ralph [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2010-09-30

    Sandia National Laboratories, New Mexico (SNL/NM) is a government-owned/contractor operated facility. Sandia Corporation (Sandia), a wholly owned subsidiary of Lockheed Martin Corporation (LMC), manages and operates the laboratory for the U.S. Department of Energy (DOE), National Nuclear Security Administration (NNSA). The DOE/NNSA, Sandia Site O ffice (SSO) administers the contract and oversees contractor operations at the site. This annual report summarizes data and the compliance status of Sandia Corporation’s environmental protection and monitoring programs through December 31, 2009. Major environmental programs include air quality, water quality, groundwater protection, terrestrial surveillance, waste management, pollution prevention (P2), environmental restoration (ER), oil and chemical spill prevention, and implementation of the National Environmental Policy Act (NEPA). Environmental monitoring and surveillance programs are required by DOE Order 450.1A, Environmental Protection Program (DOE 2008a) and DOE Manual 231.1-1A, Environment, Safety, and Health Reporting (DOE 2007).

  12. Definitions of Outdoor Recreation and Other Associated Terminology.

    Science.gov (United States)

    Phipps, Maurice L.

    This document defines terms related to outdoor recreation: (1) outdoor recreation includes activities that occur outdoors in an urban and man-made environment as well as those activities traditionally associated with the natural environment; (2) outdoor education is education in, about, and for the outdoors; (3) environmental education is an…

  13. 1990 Environmental Monitoring Report, Sandia National Laboratories, Albuquerque, New Mexico

    International Nuclear Information System (INIS)

    Hwang, S.; Yeager, G.; Wolff, T.; Parsons, A.; Dionne, D.; Massey, C.; Schwartz, B.; Fish, J.; Thompson, D.; Goodrich, M.

    1991-05-01

    This 1990 report contains monitoring data from routine radiological and nonradiological environmental surveillance activities. Summaries of significant environmental compliance programs in progress such as National Environmental Policy Act (NEPA) documentation, environmental permits, environmental restoration, and various waste management programs for Sandia National Laboratories in Albuquerque (SNL, Albuquerque) are included. The maximum offsite dose impact was calculated to be 2.0 x 10 -3 mrem. The total 50-mile population received a collective dose of 0.82 person-rem during 1990 from SNL, Albuquerque, operations. As in the previous year, the 1990 SNL operations had no adverse impact on the general public or on the environment. This report is prepared for the US Department of Energy in compliance with DOE Order 5400.1. 97 refs., 30 figs., 137 tabs

  14. Sandia reactor kinetics codes: SAK and PK1D

    International Nuclear Information System (INIS)

    Pickard, P.S.; Odom, J.P.

    1978-01-01

    The Sandia Kinetics code (SAK) is a one-dimensional coupled thermal-neutronics transient analysis code for use in simulation of reactor transients. The time-dependent cross section routines allow arbitrary time-dependent changes in material properties. The one-dimensional heat transfer routines are for cylindrical geometry and allow arbitrary mesh structure, temperature-dependent thermal properties, radiation treatment, and coolant flow and heat-transfer properties at the surface of a fuel element. The Point Kinetics 1 Dimensional Heat Transfer Code (PK1D) solves the point kinetics equations and has essentially the same heat-transfer treatment as SAK. PK1D can address extended reactor transients with minimal computer execution time

  15. Sandia National Laboratories, California sewer system management plan.

    Energy Technology Data Exchange (ETDEWEB)

    Holland, Robert C.

    2010-02-01

    A Sewer System Management Plan (SSMP) is required by the State Water Resources Control Board (SWRCB) Order No. 2006-0003-DWQ Statewide General Waste Discharge Requirements (WDR) for Sanitary Sewer Systems (General Permit). DOE, National Nuclear Security Administration (NNSA), Sandia Site Office has filed a Notice of Intent to be covered under this General Permit. The General Permit requires a proactive approach to reduce the number and frequency of sanitary sewer overflows (SSOs) within the State. SSMPs must include provisions to provide proper and efficient management, operation, and maintenance of sanitary sewer systems and must contain a spill response plan. Elements of this Plan are under development in accordance with the SWRCB's schedule.

  16. 1991 Environmental monitoring report Sandia National Laboratories, Albuquerque, New Mexico

    International Nuclear Information System (INIS)

    Culp, T.; Cox, W.; Hwang, S.; Jones, A.; Longley, S.; Parsons, A.; Wolff, T.; Fish, J.; Ward, S.

    1992-11-01

    This 1991 report contains monitoring data from routine radiological and nonradiological environmental surveillance activities. Summaries of significant environmental compliance programs in progress such as National Environmental Policy Act (NEPA) documentation, environmental permits, envirorunental restoration (ER), and various waste management programs for Sandia National Laboratories in Albuquerque (SNL, Albuquerque) are included. The maximum offsite dose impact was calculated to be 1.3 x 10 -3 mrem. The total population within a 50-mile radius of SNL, Albuquerque, received a collective dose of 0.53 person-rem during 1991 from SNL, Albuquerque, operations. As in the previous year, the 1991 operations at SNL, Albuquerque, had no discernible impact on the general public or on the environment

  17. Sandia Administrative Micrographics Facility, Building 802: Hazards assessment document

    International Nuclear Information System (INIS)

    Swihart, A.

    1994-12-01

    The Department of Energy Order 5500.3A requires facility-specific hazards assessments be prepared, maintained, and used for emergency planning purposes. This hazards assessment document describes the chemical and radiological hazards associated with the Sandia Administrative Micrographics Facility, Building 802. The entire inventory was screened according to the potential airborne impact to onsite and offsite individuals. The air dispersion model, ALOHA, estimated pollutant concentrations downwind from the source of a release, taking into consideration the toxicological and physical characteristics of the release site, the atmospheric conditions, and the circumstances of the release. The greatest distance at which a postulated facility event will produce consequences exceeding the Early Severe Health Effects threshold is 33 meters. The highest emergency classification is a Site Area Emergency. The Emergency Planning Zone is 75 meters

  18. Tritium monitoring at the Sandia Tritium Research Laboratory

    International Nuclear Information System (INIS)

    Devlin, T.K.

    1978-10-01

    Sandia Laboratories at Livermore, California, is presently beginning operation of a Tritium Research Laboratory (TRL). The laboratory incorporates containment and cleanup facilities such that any unscheduled tritium release is captured rather than vented to the atmosphere. A sophisticated tritium monitoring system is in use at the TRL to protect operating personnel and the environment, as well as ensure the safe and effective operation of the TRL decontamination systems. Each monitoring system has, in addition to a local display, a display in a centralized control room which, when coupled room which, when coupled with the TRL control computer, automatically provides an immediate assessment of the status of the entire facility. The computer controls a complex alarm array status of the entire facility. The computer controls a complex alarm array and integrates and records all operational and unscheduled tritium releases

  19. Sandia National Laboratories Internal Dosimetry Technical Basis Manual (Rev 4)

    Energy Technology Data Exchange (ETDEWEB)

    Goke, Sarah Hayes [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Elliott, Nathan Ryan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-09-01

    The Sandia National Laboratories’ Internal Dosimetry Technical Basis Manual is intended to provide extended technical discussion and justification of the internal dosimetry program at SNL. It serves to record the approach to evaluating internal doses from radiobioassay data, and where appropriate, from workplace monitoring data per the Department of Energy Internal Dosimetry Program Guide DOE G 441.1C. The discussion contained herein is directed primarily to current and future SNL internal dosimetrists. In an effort to conserve space in the TBM and avoid duplication, it contains numerous references providing an entry point into the internal dosimetry literature relevant to this program. The TBM is not intended to act as a policy or procedure statement, but will supplement the information normally found in procedures or policy documents. The internal dosimetry program outlined in this manual is intended to meet the requirements of Federal Rule 10CFR835 for monitoring the workplace and for assessing internal radiation doses to workers.

  20. Current Sandia programs and laboratory facilities for tritium research

    International Nuclear Information System (INIS)

    Swansiger, W.A.; West, L.A.

    1975-01-01

    Currently envisioned fusion reactor systems will contain substantial quantities of tritium. Strict control of the overall tritium inventory and environmental safety considerations require an accurate knowledge of the behavior of this isotope in the presence of Controlled Thermonuclear Reactor (CTR) materials. A 14,000 ft 2 laboratory for tritium research is currently under construction at Sandia Laboratories in Livermore. Details about the laboratory in general are provided. Results from studies of hydrogen isotope diffusion in surface-characterized metals will be presented. Details of two permeation systems (one for hydrogen and deuterium, the other for tritium) will be discussed. Data will also be presented concerning the gettering of hydrogen isotopes and application to CTR collector designs. (auth)

  1. Baseline ecological footprint of Sandia National Laboratories, New Mexico.

    Energy Technology Data Exchange (ETDEWEB)

    Coplen, Amy K.; Mizner, Jack Harry,; Ubechel, Norion M.

    2009-01-01

    The Ecological Footprint Model is a mechanism for measuring the environmental effects of operations at Sandia National Laboratories in Albuquerque, New Mexico (SNL/NM). This analysis quantifies environmental impact associated with energy use, transportation, waste, land use, and water consumption at SNL/NM for fiscal year 2005 (FY05). Since SNL/NMs total ecological footprint (96,434 gha) is greater than the waste absorption capacity of its landholdings (338 gha), it created an ecological deficit of 96,096 gha. This deficit is equal to 886,470lha, or about 3,423 square miles of Pinyon-Juniper woodlands and desert grassland. 89% of the ecological footprint can be attributed to energy use, indicating that in order to mitigate environmental impact, efforts should be focused on energy efficiency, energy reduction, and the incorporation of additional renewable energy alternatives at SNL/NM.

  2. Verification station for Sandia/Rockwell Plutonium Protection system

    International Nuclear Information System (INIS)

    Nicholson, N.; Hastings, R.D.; Henry, C.N.; Millegan, D.R.

    1979-04-01

    A verification station has been designed to confirm the presence of plutonium within a container module. These container modules [about 13 cm (5 in.) in diameter and 23 cm (9 in.) high] hold sealed food-pack cans containing either plutonium oxide or metal and were designed by Sandia Laboratories to provide security and continuous surveillance and safety. After the plutonium is placed in the container module, it is closed with a solder seal. The verification station discussed here is used to confirm the presence of plutonium in the container module before it is placed in a carousel-type storage array inside the plutonium storage vault. This measurement represents the only technique that uses nuclear detectors in the plutonium protection system

  3. Perspectives on the Science Advisor Program at Sandia National Laboratories

    International Nuclear Information System (INIS)

    Bennett, P.C.; Heath, R.B.; Podlesny, A.; Channon, P.A.

    1992-01-01

    This paper discusses a Science Advisor Program which has been established at Sandia National Laboratories (SNL) for the long term augmentation of math and science instruction in New Mexico schools. Volunteer SNL engineers and scientists team with the faculty of participating schools to enhance the teachers' abilities to capture and hold the student's scientific imagination and develop their scientific skills. This is done primarily through providing laboratory resources, training the teachers how to use those resources, and advising how to obtain them in the future. In its first year, over 140 advisors teamed with 132 schools, for average weekly contact with 500 teachers and 10,000 students. Surveys indicate a general rise in frequency and quality of hands-on science instruction, as well as teacher and student attitudes. An expanded evaluation is planned for subsequent years

  4. Indoor-Outdoor Detection Using a Smart Phone Sensor.

    Science.gov (United States)

    Wang, Weiping; Chang, Qiang; Li, Qun; Shi, Zesen; Chen, Wei

    2016-09-22

    In the era of mobile internet, Location Based Services (LBS) have developed dramatically. Seamless Indoor and Outdoor Navigation and Localization (SNAL) has attracted a lot of attention. No single positioning technology was capable of meeting the various positioning requirements in different environments. Selecting different positioning techniques for different environments is an alternative method. Detecting the users' current environment is crucial for this technique. In this paper, we proposed to detect the indoor/outdoor environment automatically without high energy consumption. The basic idea was simple: we applied a machine learning algorithm to classify the neighboring Global System for Mobile (GSM) communication cellular base station's signal strength in different environments, and identified the users' current context by signal pattern recognition. We tested the algorithm in four different environments. The results showed that the proposed algorithm was capable of identifying open outdoors, semi-outdoors, light indoors and deep indoors environments with 100% accuracy using the signal strength of four nearby GSM stations. The required hardware and signal are widely available in our daily lives, implying its high compatibility and availability.

  5. Indoor-Outdoor Detection Using a Smart Phone Sensor

    Directory of Open Access Journals (Sweden)

    Weiping Wang

    2016-09-01

    Full Text Available In the era of mobile internet, Location Based Services (LBS have developed dramatically. Seamless Indoor and Outdoor Navigation and Localization (SNAL has attracted a lot of attention. No single positioning technology was capable of meeting the various positioning requirements in different environments. Selecting different positioning techniques for different environments is an alternative method. Detecting the users’ current environment is crucial for this technique. In this paper, we proposed to detect the indoor/outdoor environment automatically without high energy consumption. The basic idea was simple: we applied a machine learning algorithm to classify the neighboring Global System for Mobile (GSM communication cellular base station’s signal strength in different environments, and identified the users’ current context by signal pattern recognition. We tested the algorithm in four different environments. The results showed that the proposed algorithm was capable of identifying open outdoors, semi-outdoors, light indoors and deep indoors environments with 100% accuracy using the signal strength of four nearby GSM stations. The required hardware and signal are widely available in our daily lives, implying its high compatibility and availability.

  6. 76 FR 70456 - Decision To Evaluate a Petition To Designate a Class of Employees From Sandia National Laboratory...

    Science.gov (United States)

    2011-11-14

    ... Employees From Sandia National Laboratory, Albuquerque, NM, To Be Included in the Special Exposure Cohort... evaluate a petition to designate a class of employees from Sandia National Laboratory, Albuquerque, New... revision as warranted by the evaluation, is as follows: Facility: Sandia National Laboratory. Location...

  7. 78 FR 56706 - Decision to Evaluate a Petition to Designate a Class of Employees from the Sandia National...

    Science.gov (United States)

    2013-09-13

    ... Employees from the Sandia National Laboratory-Livermore in Livermore, California To Be Included in the... decision to evaluate a petition to designate a class of employees from the Sandia National Laboratory...: Facility: Sandia National Laboratory-Livermore Location: Livermore, California. Job Titles and/or Job...

  8. 75 FR 22409 - Decision To Evaluate a Petition To Designate a Class of Employees From the Sandia National...

    Science.gov (United States)

    2010-04-28

    ... Employees From the Sandia National Laboratory in Albuquerque, NM, To Be Included in the Special Exposure... decision to evaluate a petition to designate a class of employees from the Sandia National Laboratory in..., subject to revision as warranted by the evaluation, is as follows: Facility: Sandia National Laboratory...

  9. Dairy cow preference for different types of outdoor access.

    Science.gov (United States)

    Smid, Anne-Marieke C; Weary, Daniel M; Costa, Joao H C; von Keyserlingk, Marina A G

    2018-02-01

    Dairy cows display a partial preference for being outside, but little is known about what aspects of the outdoor environment are important to cows. The primary aim of this study was to test the preference of lactating dairy cattle for pasture versus an outdoor sand pack during the night. A secondary aim was to determine whether feeding and perching behavior changed when cows were provided outdoor access. A third objective was to investigate how the lying behavior of cows changed when given access to different outdoor areas. Ninety-six lactating pregnant cows were assigned to 8 groups of 12 animals each. After a baseline phase of 2 d in which cows were kept inside the freestall barn, cows were habituated to the outdoor areas by providing them access to each of the 2 options for 24 h. Cows were then given access, in random order by group, to either the pasture (pasture phase) or the sand pack (sand phase). As we tested the 2 outdoor options using space allowances consistent with what would be practical on commercial dairy farms, the space provided on pasture was larger (21,000 m 2 ) than that provided on the sand pack (144 m 2 ). Cows were tested at night (for 2 nights in each condition), from 2000 h until morning milking at approximately 0800 h, as preference to be outdoors is strongest at this time. During the next 3 nights cows were given access to both outside options simultaneously (choice phase). Feeding and perching behaviors were recorded when cows were indoors during the day and night periods. Lying behavior was automatically recorded by HOBO data loggers (Onset, Bourne, MA). Cows spent more time outside in the pasture phase (90.0 ± 5.9%) compared with the sand phase (44.4 ± 6.3%). When provided simultaneous access to both options, cows spent more time on pasture than on the sand pack (90.5 ± 2.6% vs. 0.8 ± 0.5%, respectively). Time spent feeding indoors during the day did not change regardless of what type of outdoor access was provided, but there was a

  10. Smart sensor systems for outdoor intrusion detection

    International Nuclear Information System (INIS)

    Lynn, J.K.

    1988-01-01

    A major improvement in outdoor perimeter security system probability of detection (PD) and reduction in false alarm rate (FAR) and nuisance alarm rate (NAR) may be obtained by analyzing the indications immediately preceding an event which might be interpreted as an intrusion. Existing systems go into alarm after crossing a threshold. Very slow changes, which accumulate until the threshold is reached, may be assessed falsely as an intrusion. A hierarchial program has begun at Stellar to develop a modular, expandable Smart Sensor system which may be interfaced to most types of sensor and alarm reporting systems. A major upgrade to the SSI Test Site is in progress so that intrusions may be simulated in a controlled and repeatable manner. A test platform is being constructed which will operate in conduction with a mobile instrumentation center with CCTVB, lighting control, weather and data monitoring and remote control of the test platform and intrusion simulators. Additional testing was contracted with an independent test facility to assess the effects of severe winter weather conditions

  11. Air quality investigations of the Sandia National Laboratories Sol se Mete Aerial Cable Facility

    International Nuclear Information System (INIS)

    Gutman, W.M.; Silver, R.J.

    1994-12-01

    The air quality implications of the test and evaluation activities at the Sandia National Laboratories Sol se Mete Aerial Cable Facility are examined. All facets of the activity that affect air quality are considered. Air contaminants produced directly include exhaust products of rocket motors used to accelerate test articles, dust and gas from chemical explosives, and exhaust gases from electricity generators in the test arenas. Air contaminants produced indirectly include fugitive dust and exhaust contaminants from vehicles used to transport personnel and material to the test area, and effluents produced by equipment used to heat the project buildings. Both the ongoing program and the proposed changes in the program are considered. Using a reliable estimate of th maximum annual testing level, the quantities of contaminants released by project activities ar computed either from known characteristics of test items or from EPA-approved emission factors Atmospheric concentrations of air contaminants are predicted using EPA dispersion models. The predicted quantities and concentrations are evaluated in relation to Federal, New Mexico, an Bernalillo County air quality regulations and the human health and safety standards of the American Conference of Governmental Industrial Hygienists

  12. Compact, rugged in-chamber transmission spectrometers (7-28 keV) for the Sandia Z facility.

    Science.gov (United States)

    Sinars, D B; Wenger, D F; Pikuz, S A; Jones, B; Geissel, M; Hansen, S B; Coverdale, C A; Ampleford, D J; Cuneo, M E; McPherson, L A; Rochau, G A

    2011-06-01

    We describe a pair of time-integrated transmission spectrometers that are designed to survey 7-28 keV (1.9 to 0.43 Å) x-ray photons produced by experiments on the Sandia Z pulsed power facility. Each spectrometer uses a quartz 10-11 crystal in a Cauchois geometry with a slit to provide spatial resolution along one dimension. The spectrometers are located in the harsh environment of the Z vacuum chamber, which necessitates that their design be compact and rugged. Example data from calibration tests and Z experiments are shown that illustrate the utility of the instruments. © 2011 American Institute of Physics

  13. United States of America: outdoor recreation.

    Science.gov (United States)

    H.Ken Cordell; G.Theodore Green; V.R. Leeworthy; R. Stephens; M.J. Fly; Carter J. Betz

    2005-01-01

    the first nationwide survey of outdoor recreation in the USA was conducted in 1960 for the outdoor recreation resources review commission (ORRC, 1962; Cordell et al., 1996). since that time, seven additional national surveys have been conducted, in 1965, 1970, 1972, 1977, 1983, 1995, and 2000/01 - summary details are presented in Table 16.1.

  14. Planning School Grounds for Outdoor Learning

    Science.gov (United States)

    Wagner, Cheryl; Gordon, Douglas

    2010-01-01

    This publication covers the planning and design of school grounds for outdoor learning in new and existing K-12 facilities. Curriculum development as well as athletic field planning and maintenance are not covered although some references on these topics are provided. It discusses the different types of outdoor learning environments that can be…

  15. The "F" Word: Feminism in Outdoor Education

    Science.gov (United States)

    Gray, Tonia

    2016-01-01

    Women have embarked on outdoor careers believing the profession to be a level playing field and one that offers occupational alternatives to traditional sporting activities and educational opportunities. This paper seeks to provide a critical analysis of the pockets of bias associated with the status of women in outdoor education (OE),…

  16. Monitoring Outdoor Alcohol Advertising in Developing Countries ...

    African Journals Online (AJOL)

    Analyses on the placement, channels, size and content of outdoor alcohol advertising practices (N=807) in relation to existing regulations are given. For example, in Gambia, the country with the most stringent alcohol marketing regulations of all countries studied, outdoor alcohol advertisements are on average smaller and ...

  17. UNBC: Outdoor Recreation and Tourism Management Program

    Science.gov (United States)

    Maher, Pat

    2007-01-01

    This article describes the University of Northern British Columbia's (UNBC's) Outdoor Recreation and Tourism Management (ORTM) Program, which focuses squarely on the management of outdoor recreation as it relates to conservation (i.e., in and around parks and protected areas), tourism that is both based in and concerned with the natural/cultural…

  18. Een toekomst voor outdoor fitness in Nederland?

    NARCIS (Netherlands)

    Wiggers, Hiske

    De eerste kennismaking met outdoor fitness was in het Fuxing Park in Shanghai, een park waar jong en oud samen komen om te sporten (outdoor fitness, dans en tai-chi) of om ontspannen hun vrije dag door te brengen. een unieke ervaring die verwarring en allerlei vragen tot gevolg had. waarom komen

  19. 77 FR 33597 - Great Outdoors Month, 2012

    Science.gov (United States)

    2012-06-07

    ... Outdoors Month, 2012 By the President of the United States of America A Proclamation America's natural... launch the America's Great Outdoors Initiative. Building on input from tens of thousands of people across... engine of growth. As part of our National Travel and Tourism Strategy, my Administration is working to...

  20. Lyme Disease: A Challenge for Outdoor Educators.

    Science.gov (United States)

    Whitcombe, Mark

    1989-01-01

    Describes signs and symptoms of Lyme disease; life cycle and feeding habits of the deer tick (Ixodes dammini), which transmits the spirochete bacterium; tick control measures; outdoor precautions; and veterinary considerations. Discusses the disease's potential impact on outdoor education, and suggests a reasoned, nonhysterical approach. Contains…

  1. Radon parameters in outdoor air

    International Nuclear Information System (INIS)

    Porstendoerfer, J.; Zock, Ch.; Wendt, J.; Reineking, A.

    2002-01-01

    For dose estimation by inhalation of the short lived radon progeny in outdoor air, the equilibrium factor (F), the unattached fraction (f p ), and the activity size distribution of the radon progeny were measured. Besides the radon parameter the meteorological parameter like temperature, wind speed, and rainfall intensity were registered. The measurements were carried out continuously for several weeks to find out the variation with time (day/night) and for different weather conditions. The radon gas, the unattached and aerosol-attached radon progenies were measured with an monitor developed for continuous measurements in outdoor air with low activity concentrations. For the determination of the activity size distribution a low pressure online alpha cascade impactor was used. The measured values of the equilibrium factor varied between 0.5-0.8 depending on weather conditions and time of the day. For high pressure weather conditions a diurnal variation of the F-factor was obtained. A lower average value (F=0.25) was registered during rainy days. The obtained f p -values varied between 0.04 and 0.12. They were higher than expected. The measured activity size distribution of the radon progeny averaged over a measurement period of three weeks can be approximated by a sum of three log-normal distributions. The greatest activity fraction is adsorbed on aerosol particles in the accumulation size range (100-1000 nm) with activity median diameters and geometric standard deviation values between 250-450 nm and 1.5-3.0, respectively. The activity median diameter of this accumulation mode in outdoor air was significantly greater than in indoor air (150-250 nm). An influence of the weather conditions on the activity of the accumulation particles was not significant. In contrast to the results of measurements in houses a small but significant fraction of the radon progeny (average value: 2%) is attached on coarse particles (>1000 nm). This fraction varied between 0-10%. 20

  2. PENGEMBANGAN PERANGKAT PEMBELAJARAN IPS TERPADU BERBASIS OUTDOOR LEARNING

    Directory of Open Access Journals (Sweden)

    Nugraheni Rachmawati

    2013-03-01

    Full Text Available AbstrakPelaksanaan kegiatan pembelajaran tematik di SD kota Semarang belum optimal. Sebagian besar guru belum menyusun dan menggunakan perangkat pembelaja- ran IPS Terpadu berbasis outdoor learning. Tujuan penelitian ini mengembangkan, mengkaji keefektifan dan kepraktisan perangkat pembelajaran. Penelitian ini meru- pakan penelitian pengembangan yang dimodifikasi dari penelitian Borg and Gall. Subjek penelitian adalah siswa kelas 3 SD N Jatingaleh 01-02 Kota Semarang ta- hun pelajaran 2012/2013. Spesifikasi produk yang dikembangkan adalah perangkat pembelajaran IPS terpadu berbasis outdoor learning berupa silabus, RPP, media CD Interaktif, LKS dan alat evaluasi meliputi test kognitif, lembar observasi aktivi- tas serta angket respons siswa dan guru. Data dianalisis secara deskriptif dan Pretest- Posttest Control Group Design. Hasil penelitian menunjukkan bahwa pengembangan perangkat pembelajaran tergolong valid. Keefektifan perangkat dilihat dari aktivitas dan hasil belajar siswa. Aktivitas siswa tergolong sangat tinggi. Hasil belajar kog- nitif siswa setelah mengikuti pembelajaran IPS Terpadu berbasis Outdoor Learning mengalami peningkatan yang signifikan serta mencapai ketuntasan belajar. Rata- rata hasil belajar kognitif siswa secara signifikan lebih besar daripada kelompok siswa yang mengikuti pembelajaran in door. Saran, hendaknya dapat dikembangkan lagi keefektifanya sehingga dapat lebih menggali kemampuan siswa, tidak hanya dalam segi kognitif dan afektif tetapi juga psikomotor. AbstractImplementation of thematic learning activities in elementary school of Semarang is not opti- mal. Most of the teachers do not prepare and use integrated social science learning tools based on outdoor learning. This research is aimed to develop the tools and to review the effectiveness and practicality of integrated social science learning based on outdoor learning. This is a research and development study modified from the research developed by Borg and

  3. Objective Method for Selecting Outdoor Reporting Conditions for Photovoltaic Performance

    International Nuclear Information System (INIS)

    Maish, A.

    1999-01-01

    Outdoor performance of photovoltaic modules and systems depends on prevailing conditions at the time of measurement. Outdoor test conditions must be relevant to device performance and readily attainable. Flat-plate, nonconcentrator PV device performance is reported with respect to fixed conditions referred to as Standard Reporting Conditions (SRC) of 1 kW/m plane of array total irradiance, 25 C device temperature, and a reference spectral distribution at air mass 1.5 under certain atmospheric conditions. We report a method of analyzing historical meteorological and irradiance data to determine the range of outdoor environmental parameters and solar irradiance components that affect solar collector performance when the SRC 1 kW/m total irradiance value occurs outdoors. We used data from the 30 year U.S. National Solar Radiation Data Base (NSRDB) , restricting irradiance conditions to within +/- 25 W/m of 1 kW/m on a solar tracking flat-plate collector. The distributions of environmental parameter values under these conditions are non-Gaussian and site dependent. Therefore the median, as opposed to the mean, of the observed distributions is chosen to represent appropriate outdoor reporting conditions. We found the average medians for the direct beam component (834 W/m), ambient temperature (24.4 C), total column water vapor (1.4 cm), and air mass (1.43) are near commonly used SRC values. Average median wind speed (4.4 m/s) and broadband aerosol optical depth (0.08) were significantly different from commonly used values

  4. Measurement of indoor and outdoor radon concentrations during Superstorm Sandy.

    Science.gov (United States)

    Kotrappa, Payasada; Paul, Prateek; Stieff, Alex; Stieff, Frederick

    2013-12-01

    Superstorm Sandy affected much of the US East Coast extending over 1800 km. It passed over the test location in the State of Maryland on 29 October 2012. Being 350 km away from the regions of highest intensity the storm was of lower intensity at the test location. Continuous radon monitors and passive radon monitors were used for the measurement. The test location was the basement of a single family home representing the indoor concentration. A partially opened garage of the same test home represented the outdoor radon concentration. In 24 h, the atmospheric pressure dropped from 990 to 960 mbar and the indoor radon concentration increased from 70 to 1500 Bq m(-3) and returned to the normal of 70 Bq m(-3) at the end of the storm. Throughout the storm, the outdoor radon concentration was not significantly affected. Probable reasons for such surprisingly large changes are discussed. However, the outdoor temperature dropped from 13°C to 7°C during the radon peak.

  5. Sandia technology. Volume 13, number 2 Special issue: verification of arms control treaties

    International Nuclear Information System (INIS)

    1989-01-01

    Nuclear deterrence, a cornerstone of US national security policy, has helped prevent global conflict for over 40 years. The DOE and DoD share responsibility for this vital part of national security. The US will continue to rely on nuclear deterrence for the foreseeable future. In the late 1950s, Sandia developed satellite-borne nuclear burst detection systems to support the treaty banning atmospheric nuclear tests. This activity has continued to expand and diversify. When the Non-Proliferation Treaty was ratified in 1970, we began to develop technologies to protect nuclear materials from falling into unauthorized hands. This program grew and now includes systems for monitoring the movement and storage of nuclear materials, detecting tampering, and transmiting sensitive data securely. In the late 1970s, negotiations to further limit underground nuclear testing were being actively pursued. In less than 18 months, we fielded the National Seismic Station, an unattended observatory for in-country monitoring of nuclear tests. In the mid-l980s, arms-control interest shifted to facility monitoring and on-site inspection. Our Technical On-site Inspection Facility is the national test bed for perimeter and portal monitoring technology and the prototype for the inspection portal that was recently installed in the USSR under the Intermediate-Range Nuclear Forces accord. The articles in the special issue of Sundiu Technology describe some of our current contributions to verification technology. This work supports the US policy to seek realistic arms control agreements while maintaining our national security.

  6. Outdoor recreation in forest policy and legislation

    DEFF Research Database (Denmark)

    Mann, Carsten; Pouta, Eija; Gentin, Sandra

    2010-01-01

    in the field of outdoor recreation, and reveal similarities, differences, gaps and future needs. Among the main findings is a contradiction between the expressed political importance of outdoor recreation at the national level, and the absence of binding commitments for action. The majority of the countries...... surveyed recognise and express outdoor recreation in some form of political and/or legislative way. However, recreation monitoring or measurements are rarely mentioned in relevant policies or acts at the national, regional or local level, perhaps due to a l ack of political will or resources. The analysis...

  7. Safety assessment of outdoor live fire range

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1989-05-01

    The following Safety Assessment (SA) pertains to the outdoor live fire range facility (LFR). The purpose of this facility is to supplement the indoor LFR. In particular it provides capacity for exercises that would be inappropriate on the indoor range. This SA examines the risks that are attendant to the training on the outdoor LFR. The outdoor LFR used by EG&G Mound is privately owned. It is identified as the Miami Valley Shooting Grounds. Mondays are leased for the exclusive use of EG&G Mound.

  8. Calendar year 2003 annual site environmental report for Sandia National Laboratories, New Mexico.

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, Katrina; Sanchez, Rebecca V.; Mayeux, Lucie; Koss, Susan I.; Salinas, Stephanie A.

    2004-09-01

    Sandia National Laboratories, New Mexico (SNL/NM) is a government-owned, contractor-operated facility owned by the U.S. Department of Energy (DOE), National Nuclear Security Administration (NNSA) and managed by the Sandia Site Office (SSO), Albuquerque, New Mexico. Sandia Corporation, a wholly-owned subsidiary of Lockheed Martin Corporation, operates SNL/NM. This annual report summarizes data and the compliance status of Sandia Corporation's environmental protection and monitoring programs through December 31, 2003. Major environmental programs include air quality, water quality, groundwater protection, terrestrial surveillance, waste management, pollution prevention (P2), environmental restoration (ER), oil and chemical spill prevention, and the National Environmental Policy Act (NEPA). Environmental monitoring and surveillance programs are required by DOE Order 450.1, ''Environmental Protection Program'' (DOE 2003a) and DOE Order 231.1 Chg.2, ''Environment, Safety, and Health Reporting'' (DOE 1996).

  9. Calendar Year 2013 Annual Site Environmental Report for Sandia National Laboratories, Albuquerque, New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Griffith, Stacy [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-09-01

    Sandia National Laboratories, New Mexico is a government-owned/contractor-operated facility. Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, manages and operates the laboratory for the U.S. Department of Energy (DOE), National Nuclear Security Administration (NNSA). The DOE/NNSA, Sandia Field Office administers the contract and oversees contractor operations at the site. This annual report summarizes data and the compliance status of Sandia Corporation’s sustainability, environmental protection, and monitoring programs through December 31, 2013. Major environmental programs include air quality, water quality, groundwater protection, terrestrial surveillance, waste management, pollution prevention, environmental restoration, oil and chemical spill prevention, and implementation of the National Environmental Policy Act. Environmental monitoring and surveillance programs are required by DOE Order 231.1B, Environment, Safety, and Health Reporting (DOE 2012).

  10. Calendar year 2004 annual site environmental report:Sandia National Laboratories, Albuquerque, New Mexico.

    Energy Technology Data Exchange (ETDEWEB)

    Montoya, Amber L.; Goering, Teresa Lynn; Wagner, Katrina; Koss, Susan I.; Salinas, Stephanie A.

    2005-09-01

    Sandia National Laboratories, New Mexico (SNL/NM) is a government-owned, contractor-operated facility owned by the U.S. Department of Energy (DOE), National Nuclear Security Administration (NNSA) and managed by the Sandia Site Office (SSO), Albuquerque, New Mexico. Sandia Corporation, a wholly-owned subsidiary of Lockheed Martin Corporation, operates SNL/NM. This annual report summarizes data and the compliance status of Sandia Corporation's environmental protection and monitoring programs through December 31, 2004. Major environmental programs include air quality, water quality, groundwater protection, terrestrial surveillance, waste management, pollution prevention (P2), environmental restoration (ER), oil and chemical spill prevention, and the National Environmental Policy Act (NEPA). Environmental monitoring and surveillance programs are required by DOE Order 450.1, Environmental Protection Program (DOE 2005) and DOE Order 231.1A, Environment, Safety, and Health Reporting (DOE 2004a). (DOE 2004a).

  11. Calendar Year 2013 Annual Site Environmental Report for Sandia National Laboratories, Albuquerque, New Mexico

    International Nuclear Information System (INIS)

    Griffith, Stacy

    2014-01-01

    Sandia National Laboratories, New Mexico is a government-owned/contractor-operated facility. Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, manages and operates the laboratory for the U.S. Department of Energy (DOE), National Nuclear Security Administration (NNSA). The DOE/NNSA, Sandia Field Office administers the contract and oversees contractor operations at the site. This annual report summarizes data and the compliance status of Sandia Corporation's sustainability, environmental protection, and monitoring programs through December 31, 2013. Major environmental programs include air quality, water quality, groundwater protection, terrestrial surveillance, waste management, pollution prevention, environmental restoration, oil and chemical spill prevention, and implementation of the National Environmental Policy Act. Environmental monitoring and surveillance programs are required by DOE Order 231.1B, Environment, Safety, and Health Reporting (DOE 2012).

  12. SANDIA NATIONAL LABORATORIES IN SITU ELECTROKINETIC EXTRACTION TECHNOLOGY; INNOVATIVE TECHNOLOGY EVALUATION REPORT

    Science.gov (United States)

    As a part of the Superfund Innovative Technology Evaluation (SITE) Program, the U.S. Environmental Protection Agency evaluated the In-Situ Electrokinetic Extraction (ISEE) system at Sandia National Laboratories, Albuquerque, New Mexico.The SITE demonstration results show ...

  13. POLLUTION PREVENTION OPPORTUNITY ASSESSMENT - MANUFACTURING AND FABRICATION REPAIR LABORATORY AT SANDIA NATIONAL LABORATORIES

    Science.gov (United States)

    These reports summarize pollution prevention opportunity assessments conducted jointly by EPA and DOE at the Geochemistry Laboratory and the Manufacturing and Fabrication Repair Laboratory at the Department of Energy's Sandia National Laboratories facility in Albuquerque, New Mex...

  14. Massively Parallel Computing at Sandia and Its Application to National Defense

    National Research Council Canada - National Science Library

    Dosanjh, Sudip

    1991-01-01

    Two years ago, researchers at Sandia National Laboratories showed that a massively parallel computer with 1024 processors could solve scientific problems more than 1000 times faster than a single processor...

  15. U.S. Department of Energy, Sandia National Laboratories: Printing Case Study

    Science.gov (United States)

    The U.S. Department of Energy, Sandia National Laboratories (SNL), New Mexico quantified the costs associated with individual desktop printing devices, for comparison with costs associated with using networked copiers as printers

  16. Sandia National Laboratories Strategic Context Workshop Series 2017: National Security Futures for Strategic Thinking.

    Energy Technology Data Exchange (ETDEWEB)

    Keller, Elizabeth James Kistin [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Roll, Elizabeth [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Aamir, Munaf Syed [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bull, Diana L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Deland, Sharon M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Haddal, Chad [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Passell, Howard D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Foley, John T. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Harwell, Amber Suzanne [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Otis, Monique [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Backus, George A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Jones, Wendell [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bawden, Michael Greet Shander [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Craft, Richard L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Kistin, David [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Martin, Jeffrey B. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); McNicol, Bradley Robert [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Vannoni, Michael G. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Trost, Lawrence C. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Tsao, Jeffrey Y. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Weaver, Karla [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2018-01-01

    In August 2017, Sandia convened five workshops to explore the future of advanced technologies and global peace and security through the lenses of deterrence, information, innovation, nonproliferation, and population and Earth systems.

  17. Mechanisms influencing student understanding on an outdoor guided field trip

    Science.gov (United States)

    Caskey, Nourah Al-Rashid

    Field trips are a basic and important, yet often overlooked part of the student experience. They provide the opportunity to integrate real world knowledge with classroom learning and student previous personal experiences. Outdoor guided field trips leave students with an increased understanding, awareness and interest and in science. However, the benefits of this experience are ambiguous at best (Falk and Balling, 1982; Falk and Dierking, 1992; Kisiel, 2006.) Students on an outdoor guided field trip to a local nature park experienced a significant increase in their understanding of the rock cycle. The changes in the pre-field trip test and the post-field trip test as well as their answers in interviews showed a profound change in the students' understanding and in their interest in the subject matter. The use of the "student's voice" (Bamberger and Tal, 2008) was the motivation for data analysis. By using the students' voice, I was able to determine the mechanisms that might influence their understanding of a subject. The central concepts emerging from the data were: the outdoor setting; the students' interest; the social interaction. From these central concepts, a conceptual model was developed. The outdoor setting allows for the freedom to explore, touch, smell and movement. This, in turn, leads to an increased interest in subject matter. As the students are exploring, they are enjoying themselves and become more open to learning. Interest leads to a desire to learn (Dewey, 1975). In addition to allowing the freedom to explore and move, the outdoor setting creates the condition for social interaction. The students talk to each other as they walk; they have in-depth discourse regarding the subject matter---with the teachers, each other and with the guides. The guides have an extremely important role in the students' learning. The more successful guides not only act as experts, but also adjust to the students' needs and act or speak accordingly. The

  18. Feasibility study of medical isotope production at Sandia National Laboratories

    International Nuclear Information System (INIS)

    Massey, C.D.; Miller, D.L.; Carson, S.D.

    1995-12-01

    In late 1994, Sandia National Laboratories in Albuquerque, New Mexico, (SNL/NM), was instructed by the Department of Energy (DOE) Isotope Production and Distribution Program (IPDP) to examine the feasibility of producing medically useful radioisotopes using the Annular Core Research Reactor (ACRR) and the Hot Cell Facility (HCF). Los Alamos National Laboratory (LANL) would be expected to supply the targets to be irradiated in the ACRR. The intent of DOE would be to provide a capability to satisfy the North American health care system demand for 99 Mo, the parent of 99m Tc, in the event of an interruption in the current Canadian supply. 99m Tc is used in 70 to 80% of all nuclear medicine procedures in the US. The goal of the SNL/NM study effort is to determine the physical plant capability, infrastructure, and staffing necessary to meet the North American need for 99 Mo and to identify and examine all issues with potential for environmental impact

  19. 1996 Site environmental report Sandia National Laboratories Albuquerque, New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Fink, C.H. [ed.] [Sandia National Labs., Albuquerque, NM (United States); Duncan, D. [ed.] [GRAM, Inc., Albuquerque, NM (United States); Sanchez, R. [Jobs Plus, Albuquerque, NM (United States)

    1997-08-01

    Sandia National Laboratories/New Mexico (SNL/NM) is operated in support of the U.S. Department of Energy (DOE) mission to provide weapon component technology and hardware for national security needs, and to conduct fundamental research and development (R&D) to advance technology in energy research, computer science, waste management, electronics, materials science, and transportation safety for hazardous and nuclear components. In support of this mission, the Environmental Safety and Health (ES&H) Center at SNL/NM conducts extensive environmental monitoring, surveillance, and compliance activities to assist SNL`s line organizations in meeting all applicable environmental regulations applicable to the site including those regulating radiological and nonradiological effluents and emissions. Also herein are included, the status of environmental programs that direct and manage activities such as terrestrial surveillance; ambient air and meteorological monitoring; hazardous, radioactive, and solid waste management; pollution prevention and waste minimization; environmental restoration (ER); oil and chemical spill prevention; and National Environmental Policy Act (NEPA) documentation. This report has been prepared in compliance with DOE order 5400.1, General Environmental Protection.

  20. Thermal hydraulics model for Sandia's annular core research reactor

    International Nuclear Information System (INIS)

    Rao, Dasari V.; El-Genk, Mohamed S.; Rubio, Reuben A.; Bryson, James W.; Foushee, Fabian C.

    1988-01-01

    A thermal hydraulics model was developed for the Annular Core Research Reactor (ACRR) at Sandia National Laboratories. The coupled mass, momentum and energy equations for the core were solved simultaneously using an explicit forward marching numerical technique. The model predictions of the temperature rise across the central channel of the ACRR core were within ± 10 percent agreement with the in-core temperature measurements. The model was then used to estimate the coolant mass flow rate and the axial distribution of the cladding surface temperature in the central and average channels as functions of the operating power and the water inlet subcooling. Results indicated that subcooled boiling occurs at the cladding surface in the central channels of the ACRR at power levels in excess of 0.5 MW. However, the high heat transfer coefficient due to subcooled boiling causes the cladding temperature along most of the active fuel rod region to be quite uniform and to increase very little with the reactor power. (author)

  1. Sandia National Laboratories, California: site environmental report for 1997

    International Nuclear Information System (INIS)

    Condouris, R.A.; Holland, R.C.

    1998-06-01

    Sandia National Laboratories (SNL) is committed to conducting its operations in an environmentally safe and sound manner. It is mandatory that activities at SNL/California comply with all applicable environmental statutes, regulations, and standards. Moreover, SNL/California continuously strives to reduce risks to employees, the public, and the environment to the lowest levels reasonably possible. To help verify effective protection of public safety and preservation of the environment, SNL/California maintains an extensive, ongoing environmental monitoring program. This program monitors all significant effluents and the environment at the SNL/California site perimeter. Lawrence Livermore National Laboratory (LLNL) performs off-site external radiation monitoring for both sites. These monitoring efforts ensure that emission controls are effective in preventing contamination of the environment. As part of SNL/California's Environmental Monitoring Program, an environmental surveillance system measures the possible presence of hazardous materials in groundwater, stormwater, and sewage. The program also includes an extensive environmental dosimetry program, which measures external radiation levels around the Livermore site and nearby vicinity. The Site Environmental Report describes the results of SNL/California's environmental protection activities during the calendar year. It also summarizes environmental monitoring data and highlights major environmental programs. Overall, it evaluates SNL/California's environmental management performance and documents the site's regulatory compliance status

  2. 1996 Site environmental report Sandia National Laboratories Albuquerque, New Mexico

    International Nuclear Information System (INIS)

    Fink, C.H.; Duncan, D.; Sanchez, R.

    1997-08-01

    Sandia National Laboratories/New Mexico (SNL/NM) is operated in support of the U.S. Department of Energy (DOE) mission to provide weapon component technology and hardware for national security needs, and to conduct fundamental research and development (R ampersand D) to advance technology in energy research, computer science, waste management, electronics, materials science, and transportation safety for hazardous and nuclear components. In support of this mission, the Environmental Safety and Health (ES ampersand H) Center at SNL/NM conducts extensive environmental monitoring, surveillance, and compliance activities to assist SNL's line organizations in meeting all applicable environmental regulations applicable to the site including those regulating radiological and nonradiological effluents and emissions. Also herein are included, the status of environmental programs that direct and manage activities such as terrestrial surveillance; ambient air and meteorological monitoring; hazardous, radioactive, and solid waste management; pollution prevention and waste minimization; environmental restoration (ER); oil and chemical spill prevention; and National Environmental Policy Act (NEPA) documentation. This report has been prepared in compliance with DOE order 5400.1, General Environmental Protection

  3. Environmental Survey preliminary report, Sandia National Laboratories, Livermore, California

    International Nuclear Information System (INIS)

    1988-01-01

    This report contains the preliminary findings based on the first phase of an Environmental Survey at the Department of Energy (DOE) Sandia National Laboratories Livermore (SNLL), located at Livermore, California. The Survey is being conducted by DOE's Office of Environment, Safety and Health. The SNLL Survey is a portion of the larger, comprehensive DOE Environmental Survey encompassing all major operating facilities of DOE. The DOE Environmental Survey is one of a series of initiatives announced on September 18, 1985, by Secretary of Energy, John S. Herrington, to strengthen the environmental, safety, and health programs and activities within DOE. The purpose of the Environmental Survey is to identify, via a ''no fault'' baseline Survey of all the Department's major operating facilities, environmental problems and areas of environmental risk. The identified problem areas will be prioritized on a Department-wide basis in order of importance in 1989. The findings in this report are subject to modification based on the results from the Sampling and Analysis Phase of the Survey. The findings are also subject to modification based on comments from the Albuquerque Operations Office concerning the technical accuracy of the findings. The modified preliminary findings and any other appropriate changes will be incorporated into an Interim Report. The Interim Report will serve as the site-specific source for environmental information generated by the Survey, and ultimately as the primary source of information for the DOE-wide prioritization of environmental problems in the Survey Summary Report. 43 refs., 21 figs., 24 tabs

  4. Technology integration project: Environmental Restoration Technologies Department Sandia National Laboratories

    International Nuclear Information System (INIS)

    Williams, C.V.; Burford, T.D.

    1996-08-01

    Sandia National Laboratories Environmental Restoration Technologies Department is developing environmental restoration technologies through funding form the US Department of Energy's (DOE's) Office of Science and Technology. Initially, this technology development has been through the Mixed Waste Landfill Integrated Demonstration (MWLID). It is currently being developed through the Contaminant Plume containment and Remediation Focus Area, the Landfill Stabilization Focus Area, and the Characterization, Monitoring, and Sensor Cross-Cutting Program. This Technology Integration Project (TIP) was responsible for transferring MWLID-developed technologies for routine use by environmental restoration groups throughout the DOE complex and commercializing these technologies to the private sector. The MWLID's technology transfer/commercialization successes were achieved by involving private industry in development, demonstration, and technology transfer/commercialization activities; gathering and disseminating information about MWLID activities and technologies; and promoting stakeholder and regulatory involvement. From FY91 through FY95, 30 Technical Task Plans (TTPs) were funded. From these TTPs, the MWLID can claim 15 technology transfer/commercialization successes. Another seven technology transfer/commercialization successes are expected. With the changeover to the focus areas, the TIP continued the technology transfer/commercialization efforts begun under the MWLID

  5. Technology integration project: Environmental Restoration Technologies Department Sandia National Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Williams, C.V.; Burford, T.D. [Sandia National Labs., Albuquerque, NM (United States). Environmental Restoration Technologies; Allen, C.A. [Tech Reps, Inc., Albuquerque, NM (United States)

    1996-08-01

    Sandia National Laboratories Environmental Restoration Technologies Department is developing environmental restoration technologies through funding form the US Department of Energy`s (DOE`s) Office of Science and Technology. Initially, this technology development has been through the Mixed Waste Landfill Integrated Demonstration (MWLID). It is currently being developed through the Contaminant Plume containment and Remediation Focus Area, the Landfill Stabilization Focus Area, and the Characterization, Monitoring, and Sensor Cross-Cutting Program. This Technology Integration Project (TIP) was responsible for transferring MWLID-developed technologies for routine use by environmental restoration groups throughout the DOE complex and commercializing these technologies to the private sector. The MWLID`s technology transfer/commercialization successes were achieved by involving private industry in development, demonstration, and technology transfer/commercialization activities; gathering and disseminating information about MWLID activities and technologies; and promoting stakeholder and regulatory involvement. From FY91 through FY95, 30 Technical Task Plans (TTPs) were funded. From these TTPs, the MWLID can claim 15 technology transfer/commercialization successes. Another seven technology transfer/commercialization successes are expected. With the changeover to the focus areas, the TIP continued the technology transfer/commercialization efforts begun under the MWLID.

  6. A Sandia National Laboratories decontamination and demolition success story

    International Nuclear Information System (INIS)

    Miller, D.R.; Barber, D.S.; Lipka, G.

    1994-01-01

    Sandia National Laboratories/New Mexico (SNL/NM) has established a formal facility assessment, decontamination and demolition oversight process with the goal of ensuring that excess or contaminated facilities are managed in a cost-effective manner that is protective of human health and the environment. The decontamination and demolition process is designed so that all disciplines are consulted and have input from the initiation of a project. The committee consists of all essential Environmental, Safety and Health (ES and H) and Facilities disciplines. The interdisciplinary-team approach has provided a mechanism that verifies adequate building and site assessment activities are conducted. This approach ensures that wastes generated during decontamination and demolition activities are handled and disposed according to Department of Energy (DOE), Federal, state, and local requirements. Because of the comprehensive nature of the SNL decontamination and demolition process, the strategy can be followed for demolition, renovation and new construction projects, regardless of funding source. An overview of the SNL/NM decontamination and demolition process is presented through a case study which demonstrates the practical importance of the formal process

  7. Sandia National Laboratories/California site environmental report for 1997

    Energy Technology Data Exchange (ETDEWEB)

    Condouris, R.A. [ed.] [Sandia National Labs., Livermore, CA (United States); Holland, R.C. [Science Applications International Corp. (United States)

    1998-06-01

    Sandia National Laboratories (SNL) is committed to conducting its operations in an environmentally safe and sound manner. It is mandatory that activities at SNL/California comply with all applicable environmental statutes, regulations, and standards. Moreover, SNL/California continuously strives to reduce risks to employees, the public, and the environment to the lowest levels reasonably possible. To help verify effective protection of public safety and preservation of the environment, SNL/California maintains an extensive, ongoing environmental monitoring program. This program monitors all significant effluents and the environment at the SNL/California site perimeter. Lawrence Livermore National Laboratory (LLNL) performs off-site external radiation monitoring for both sites. These monitoring efforts ensure that emission controls are effective in preventing contamination of the environment. As part of SNL/California`s Environmental Monitoring Program, an environmental surveillance system measures the possible presence of hazardous materials in groundwater, stormwater, and sewage. The program also includes an extensive environmental dosimetry program, which measures external radiation levels around the Livermore site and nearby vicinity. The Site Environmental Report describes the results of SNL/California`s environmental protection activities during the calendar year. It also summarizes environmental monitoring data and highlights major environmental programs. Overall, it evaluates SNL/California`s environmental management performance and documents the site`s regulatory compliance status.

  8. Sandia's experience in designing and implementing integrated high security physical protection systems

    International Nuclear Information System (INIS)

    Caskey, D.L.

    1986-01-01

    As DOE's lead laboratory for physical security, Sandia National Laboratories has had a major physical security program for over ten years. Activities have ranged from component development and evaluation, to full scale system design and implementation. This paper presents some of the lessons learned in designing and implementing state-of-the-art high security physical protection systems for a number of government facilities. A generic system design is discussed for illustration purposes. Sandia efforts to transfer technology to industry are described

  9. 1993 site environmental report Tonopah Test Range, Tonopah, Nevada

    International Nuclear Information System (INIS)

    Culp, T.; Howard, D.; McClellan, Y.

    1994-10-01

    This report summarizes the environmental surveillance activities conducted by Sandia National Laboratories, the US Environmental Protection Agency, and Reynolds Electrical and Engineering Company for the Tonopah Test Range operated by Sandia National Laboratories. Sandia National Laboratories' responsibility for environmental monitoring results extend to those activities performed by Sandia National Laboratories or under its direction. Results from other environmental monitoring activities are included to provide a measure of completeness in reporting. Other environmental compliance programs such as the National Environmental Policy Act of 1969, environmental permits, and environmental restoration and waste management programs are also included in this report, prepared for the US Department of Energy in compliance with DOE Order 5400.1

  10. 1994 site environmental report, Tonopah Test Range, Tonopah, Nevada

    International Nuclear Information System (INIS)

    Culp, T.; Forston, W.

    1995-09-01

    This report summarizes the environmental surveillance activities conducted by Sandia National Laboratories, the US Environmental Protection Agency, and Kirk-Mayer, Inc., for the Tonopah Test Range operated by Sandia National Laboratories. Sandia National Laboratories' responsibility for environmental surveillance results extends to those activities performed by Sandia National Laboratories or under its direction. Results from other environmental surveillance activities are included to provide a measure of completeness in reporting. Other environmental compliance programs such as the National Environmental Policy Act of 1969, environmental permits, and environmental restoration and waste management programs are also included in this report, prepared for the US Department of Energy (DOE) in compliance with DOE Order 5400. 1

  11. Fostering Trust in Outdoor Leaders: The Role of Personal Attributes

    Science.gov (United States)

    Shooter, Wynn; Paisley, Karen; Sibthorp, Jim

    2012-01-01

    This study examined trust development between participants of outdoor education programs and outdoor leaders. Participants were college students enrolled in outdoor education courses. Using a factorial survey design, the technical ability, interpersonal ability, benevolence, integrity, and gender of an outdoor leader was displayed randomly in a…

  12. Towards Consensus on the Nature of Outdoor Education. Editorial.

    Science.gov (United States)

    Higgins, Peter; Loynes, Chris

    1997-01-01

    At a European conference in Finland, various outdoor education organizations drafted a statement of intent for the newly created European Institute for Outdoor Adventure Education. Their common view of outdoor education is that it strives to stimulate personal and social development experientially through some experience of the outdoors. Discusses…

  13. Essential Outdoor Sun Safety Tips for Winter

    Science.gov (United States)

    ... Weekend Warriors expand/collapse Vitamin D Essential Outdoor Sun Safety Tips for Winter Winter sports enthusiasts are ... skiing! Be Mindful of Time Spent in the Sun, Regardless of the Season If possible, ski early ...

  14. Position Statement on Active Outdoor Play

    OpenAIRE

    Tremblay, Mark S.; Gray, Casey; Babcock, Shawna; Barnes, Joel; Costas Bradstreet, Christa; Carr, Dawn; Chabot, Guylaine; Choquette, Louise; Chorney, David; Collyer, Cam; Herrington, Susan; Janson, Katherine; Janssen, Ian; Larouche, Richard; Pickett, William

    2015-01-01

    A diverse, cross-sectorial group of partners, stakeholders and researchers, collaborated to develop an evidence-informed Position Statement on active outdoor play for children aged 3–12 years. The Position Statement was created in response to practitioner, academic, legal, insurance and public debate, dialogue and disagreement on the relative benefits and harms of active (including risky) outdoor play. The Position Statement development process was informed by two systematic reviews, a critic...

  15. A Study of Visual Descriptors for Outdoor Navigation Using Google Street View Images

    Directory of Open Access Journals (Sweden)

    L. Fernández

    2016-01-01

    Full Text Available A comparative analysis between several methods to describe outdoor panoramic images is presented. The main objective consists in studying the performance of these methods in the localization process of a mobile robot (vehicle in an outdoor environment, when a visual map that contains images acquired from different positions of the environment is available. With this aim, we make use of the database provided by Google Street View, which contains spherical panoramic images captured in urban environments and their GPS position. The main benefit of using these images resides in the fact that it permits testing any novel localization algorithm in countless outdoor environments anywhere in the world and under realistic capture conditions. The main contribution of this work consists in performing a comparative evaluation of different methods to describe images to solve the localization problem in an outdoor dense map using only visual information. We have tested our algorithms using several sets of panoramic images captured in different outdoor environments. The results obtained in the work can be useful to select an appropriate description method for visual navigation tasks in outdoor environments using the Google Street View database and taking into consideration both the accuracy in localization and the computational efficiency of the algorithm.

  16. DHCVIM - a direct heating containment vessel interactions module: applications to Sandia National Laboratories Surtsey experiments

    International Nuclear Information System (INIS)

    Ginsberg, T.; Tutu, N.K.

    1987-01-01

    Direct containment heating is the mechanism of severe nuclear reactor accident containment loading that results from transfer of thermal and chemical energy from high-temperature, finely divided, molten core material to the containment atmosphere. The direct heating containment vessel interactions module (DHCVIM) has been developed at Brookhaven National Laboratory to model the mechanisms of containment loading resulting from the direct heating accident sequence. The calculational procedure is being used at present to model the Sandia National Laboratories one-tenth-scale Surtsey direct containment heating experiments. The objective of the code is to provide a test bed for detailed modeling of various aspects of the thermal, chemical, and hydrodynamic interactions that are expected to occur in three regions of a containment building: reactor cavity, intermediate subcompartments, and containment dome. Major emphasis is placed on the description of reactor cavity dynamics. This paper summarizes the modeling principles that are incorporated in DHCVIM and presents a prediction of the Surtsey Test DCH-2 that was made prior to execution of the experiment

  17. ''We crash, burn, and crush'': A history of packaging at Sandia National Laboratories, 1978 -1997

    International Nuclear Information System (INIS)

    Mora, C.J.; McConnell, P.

    1997-11-01

    Even prior to the beginning of the nuclear age, the packaging and transportation of nuclear materials was a prime national concern. Nuclear materials such as uranium and plutonium had to be transported safely (and secretly) to the Manhattan Engineer District Laboratory in Los Alamos, New Mexico. The subsequent post war use of nuclear power for the generation of electricity and accelerated weapons development programs resulted in radioactive waste byproducts, such as spent fuel and plutonium, that were stored on site at utilities and federal weapons sites. While projected repositories for long term storage of radioactive waste are being planned, both low and high level radioactive materials on occasion must be moved safely. Movement to interim storage and, for low level waste, repository sites, is accomplished by a combination of truck, rail, ship, and air. The US Department of Energy (DOE) directs transportation activities including cask development technology for use in single or multimodal (a combination of land, water, and air) transport. In 1978, Sandia National Laboratories was selected as the lead contractor for basic transportation technology. This report is divided into the following topics: (1) early research and development (1936--1978); (2) radioactive material package test (1975--1977); (3) the SNL Transportation Technology Center; (4) TRUPACT-II; (5) beneficial uses of shipping system casks; (6) C-141B drop tests; (7) MIDAS; (8) MOSAIK; (9) SEARAM; (10) PATRAM; and (11) a chronology of transportation activities

  18. Position Statement on Active Outdoor Play.

    Science.gov (United States)

    Tremblay, Mark S; Gray, Casey; Babcock, Shawna; Barnes, Joel; Bradstreet, Christa Costas; Carr, Dawn; Chabot, Guylaine; Choquette, Louise; Chorney, David; Collyer, Cam; Herrington, Susan; Janson, Katherine; Janssen, Ian; Larouche, Richard; Pickett, William; Power, Marlene; Sandseter, Ellen Beate Hansen; Simon, Brenda; Brussoni, Mariana

    2015-06-08

    A diverse, cross-sectorial group of partners, stakeholders and researchers, collaborated to develop an evidence-informed Position Statement on active outdoor play for children aged 3-12 years. The Position Statement was created in response to practitioner, academic, legal, insurance and public debate, dialogue and disagreement on the relative benefits and harms of active (including risky) outdoor play. The Position Statement development process was informed by two systematic reviews, a critical appraisal of the current literature and existing position statements, engagement of research experts (N=9) and cross-sectorial individuals/organizations (N=17), and an extensive stakeholder consultation process (N=1908). More than 95% of the stakeholders consulted strongly agreed or somewhat agreed with the Position Statement; 14/17 participating individuals/organizations endorsed it; and over 1000 additional individuals and organizations requested their name be listed as a supporter. The final Position Statement on Active Outdoor Play states: "Access to active play in nature and outdoors--with its risks--is essential for healthy child development. We recommend increasing children's opportunities for self-directed play outdoors in all settings--at home, at school, in child care, the community and nature." The full Position Statement provides context for the statement, evidence supporting it, and a series of recommendations to increase active outdoor play opportunities to promote healthy child development.

  19. The Contribution of Outdoor Recreation and Outdoor Education to the Economy of Scotland: Case Studies and Preliminary Findings.

    Science.gov (United States)

    Higgins, Peter

    2000-01-01

    Outdoor recreation and education contribute substantially to the Scottish economy. Outdoor recreation generates considerable tourism income, much of it in rural areas, and also extends the traditional tourist season. Outdoor education centers are significant employers in certain rural areas. In addition, "therapeutic" outdoor programs…

  20. Advanced robotic technologies for transfer at Sandia National Laboratories

    International Nuclear Information System (INIS)

    Bennett, P.C.

    1994-01-01

    Hazardous operations which have in the past been completed by technicians are under increased scrutiny due to high costs and low productivity associated with providing protective clothing and environments. As a result, remote systems are needed to accomplish many hazardous materials handling tasks such as the clean-up of waste sites in which the exposure of personnel to radiation, chemical, explosive and other hazardous constituents is unacceptable. Computer models augmented by sensing, and structured, modular computing environments are proving effective in automating many unstructured hazardous tasks. Work at Sandia National Laboratories (SNL) has focused on applying flexible automation (robotics) to meet the needs of the U.S. Department of Energy (USDOE). Dismantling facilities, environmental remediation, and materials handling in changing, hazardous environments lead to many technical challenges. Computer planning, monitoring and operator assistance shorten training cycles, reduce errors, and speed execution of operations. Robotic systems that re-use well-understood generic technologies can be much better characterized than robotic systems developed for a particular application, leading to a more reliable and safer systems. Further safety in robotic operations results from use of environmental sensors and knowledge of the task and environment. Collision detection and avoidance is achieved from such sensor integration and model-based control. This paper discusses selected technologies developed at SNL for use within the USDOE complex that have been or are ready for transfer to government and industrial suppliers. These technologies include sensors, sub-systems, and the design philosophy applied to quickly integrate them into a working robotic system. This paper represents the work of many people at the Intelligent Systems and Robotics Center at SNL, to whom the credit belongs

  1. Environmental Survey preliminary report, Sandia National Laboratories, Livermore, California

    Energy Technology Data Exchange (ETDEWEB)

    1988-01-01

    This report contains the preliminary findings based on the first phase of an Environmental Survey at the Department of Energy (DOE) Sandia National Laboratories Livermore (SNLL), located at Livermore, California. The Survey is being conducted by DOE's Office of Environment, Safety and Health. The SNLL Survey is a portion of the larger, comprehensive DOE Environmental Survey encompassing all major operating facilities of DOE. The DOE Environmental Survey is one of a series of initiatives announced on September 18, 1985, by Secretary of Energy, John S. Herrington, to strengthen the environmental, safety, and health programs and activities within DOE. The purpose of the Environmental Survey is to identify, via a no fault'' baseline Survey of all the Department's major operating facilities, environmental problems and areas of environmental risk. The identified problem areas will be prioritized on a Department-wide basis in order of importance in 1989. The findings in this report are subject to modification based on the results from the Sampling and Analysis Phase of the Survey. The findings are also subject to modification based on comments from the Albuquerque Operations Office concerning the technical accuracy of the findings. The modified preliminary findings and any other appropriate changes will be incorporated into an Interim Report. The Interim Report will serve as the site-specific source for environmental information generated by the Survey, and ultimately as the primary source of information for the DOE-wide prioritization of environmental problems in the Survey Summary Report. 43 refs., 21 figs., 24 tabs.

  2. Dynamic modeling of temperature change in outdoor operated tubular photobioreactors.

    Science.gov (United States)

    Androga, Dominic Deo; Uyar, Basar; Koku, Harun; Eroglu, Inci

    2017-07-01

    In this study, a one-dimensional transient model was developed to analyze the temperature variation of tubular photobioreactors operated outdoors and the validity of the model was tested by comparing the predictions of the model with the experimental data. The model included the effects of convection and radiative heat exchange on the reactor temperature throughout the day. The temperatures in the reactors increased with increasing solar radiation and air temperatures, and the predicted reactor temperatures corresponded well to the measured experimental values. The heat transferred to the reactor was mainly through radiation: the radiative heat absorbed by the reactor medium, ground radiation, air radiation, and solar (direct and diffuse) radiation, while heat loss was mainly through the heat transfer to the cooling water and forced convection. The amount of heat transferred by reflected radiation and metabolic activities of the bacteria and pump work was negligible. Counter-current cooling was more effective in controlling reactor temperature than co-current cooling. The model developed identifies major heat transfer mechanisms in outdoor operated tubular photobioreactors, and accurately predicts temperature changes in these systems. This is useful in determining cooling duty under transient conditions and scaling up photobioreactors. The photobioreactor design and the thermal modeling were carried out and experimental results obtained for the case study of photofermentative hydrogen production by Rhodobacter capsulatus, but the approach is applicable to photobiological systems that are to be operated under outdoor conditions with significant cooling demands.

  3. Outdoor activities and depressive symptoms in displaced older adults following natural disaster: community cohesion as mediator and moderator.

    Science.gov (United States)

    Chao, Shiau-Fang

    2016-09-01

    This investigation examined whether community cohesion mediates or moderates the relationship between outdoor activities and depressive symptoms in older adults displaced by Typhoon Morakot in Taiwan. This cross-sectional study included 292 adults aged 65 years or older who were relocated to permanent houses after Typhoon Morakot damaged their homes on 8th August 2009. Multiple regression analysis was applied to test the role of community cohesion on the association between outdoor activities and depressive symptoms. The sample of displaced older adults displayed higher prevalence of depressive symptoms than the average for community dwelling older people in Taiwan. Community cohesion fully mediated the relationship between outdoor activities and depressive symptoms. Community cohesion also moderated the relationship between outdoor activities and depressive symptoms. Community cohesion occupies a key role on the link between outdoor activities and depressive symptoms. Participation in outdoor activities was associated positively with community cohesion, while high community cohesion was related negatively to depressive symptoms. Additionally, the benefit of outdoor activities to fewer depressive symptoms only manifested in older adults with high community cohesion. Programs and services should be designed to enhance community cohesion in order to maximize the benefit of outdoor activities to the mental health of displaced older adults after natural disasters.

  4. Pediatrician prescriptions for outdoor physical activity among children: A pilot study.

    Science.gov (United States)

    Christiana, Richard W; Battista, Rebecca A; James, Joy J; Bergman, Shawn M

    2017-03-01

    Research indicates that promoting time spent in the outdoors and outdoor physical activity increases children's daily physical activity and improves health. One method showing promise is doctor prescriptions for outdoor physical activity for children; however, no empirical evidence currently exists on prescriptions for children's outdoor physical activity. A pilot study was conducted at one pediatric practice in western North Carolina during 2015 to test the feasibility and potential effectiveness of conducting an outdoor physical activity prescription program for children aged 5-13 years. Three pediatricians wrote prescriptions for children ( n  = 38), discussed benefits of outdoor physical activity, and provided information packets to parents on nearby places for physical activity. Parents of patients of five pediatricians served as control ( n  = 32). Prior to seeing a pediatrician, parents completed a baseline survey that asked height and weight, assessed their views of children's physical activity, and their personal and child's physical activity/sedentary behaviors. A nurse measured children's height and weight. Parents were emailed one-month and three-month follow-up surveys that asked the questions listed above. Changes in children's physical activity, outdoor physical activity, time spent in the outdoors, and sedentary activities were not significant between intervention and control groups. About half of parents (49%) viewed prescriptions as beneficial for their children and most used the intervention materials at home (70%). A larger study is needed to assess whether prescriptions increase children's physical activity. A critical examination of the intervention, pilot study design, and suggestions for a larger future study are provided.

  5. Development and validation of the attitudes toward outdoor play scales for children.

    Science.gov (United States)

    Beyer, Kirsten; Bizub, Jessica; Szabo, Aniko; Heller, Beth; Kistner, Amy; Shawgo, Erin; Zetts, Corey

    2015-05-01

    The natural world has long been associated with health and described as a therapeutic landscape, and a growing body of research demonstrates the benefits of interacting with nature for mental and physical health. However, concern is growing that children have lost connection to the natural world and spend less time outdoors, despite the known health benefits of doing so. It is likely that healthy behaviors related to engagement with nature are mediated by beliefs about the value and safety of play in nature. While the literature abounds with qualitative examinations of children's attitudes toward outdoor play, there exist few instruments to quantitatively measure these attitudes. Informed by health behavior change theories, we describe the development and validation of the Attitudes toward Outdoor Play (ATOP) scales. As part of a community-academic partnership project called More Than a Pretty Place, the development of the ATOP scales unfolded in stages: (1) item generation based on a comprehensive literature review and consensus among the project team, (2) interviews with environmental educators, (3) initial pilot testing, (4) scale refinement, (5) administration during 2012 and 2013 to a sample of school children ages 9-13 (n = 362) in Milwaukee, WI, USA, and (6) quantitative psychometric evaluation. Two distinct scales emerged: ATOP-benefits (alpha = 0.79) and ATOP-fears (alpha = 0.79). Validity analyses found that both scales correlated as expected with measures of engagement in outdoor play, parental support for outdoor play, and sedentary behaviors. The ATOP scales are reliable and valid instruments for measuring attitudes toward outdoor play that may mediate children's outdoor activity in natural settings. The ATOP scales could be useful for evaluating the effects of programming, such as environmental education programming, on improving children's attitudes toward the benefits of nature and reducing their fears, and may predict more distal outcomes

  6. Pediatrician prescriptions for outdoor physical activity among children: A pilot study

    Directory of Open Access Journals (Sweden)

    Richard W. Christiana

    2017-03-01

    Full Text Available Research indicates that promoting time spent in the outdoors and outdoor physical activity increases children's daily physical activity and improves health. One method showing promise is doctor prescriptions for outdoor physical activity for children; however, no empirical evidence currently exists on prescriptions for children's outdoor physical activity. A pilot study was conducted at one pediatric practice in western North Carolina during 2015 to test the feasibility and potential effectiveness of conducting an outdoor physical activity prescription program for children aged 5–13 years. Three pediatricians wrote prescriptions for children (n = 38, discussed benefits of outdoor physical activity, and provided information packets to parents on nearby places for physical activity. Parents of patients of five pediatricians served as control (n = 32. Prior to seeing a pediatrician, parents completed a baseline survey that asked height and weight, assessed their views of children's physical activity, and their personal and child's physical activity/sedentary behaviors. A nurse measured children's height and weight. Parents were emailed one-month and three-month follow-up surveys that asked the questions listed above. Changes in children's physical activity, outdoor physical activity, time spent in the outdoors, and sedentary activities were not significant between intervention and control groups. About half of parents (49% viewed prescriptions as beneficial for their children and most used the intervention materials at home (70%. A larger study is needed to assess whether prescriptions increase children's physical activity. A critical examination of the intervention, pilot study design, and suggestions for a larger future study are provided.

  7. Pengembangan Model Outdoor Learning melalui Project Berbasis Local Wisdom dalam Pembelajaran Fisika

    Directory of Open Access Journals (Sweden)

    Indah kurnia Putri Damayanti

    2017-12-01

    Full Text Available Abstrak Penelitian ini bertujuan untuk: (1 menghasilkan model outdoor learning melalui project berbasis local wisdom yang layak digunakan dalam pembelajaran fisika, (2 mengetahui keefektifan penggunaan model outdoor learning melalui project berbasis local wisdom. Penelitian pengembangan ini menggunakan metode pengembangan R & D (Research dan Development. Pada tahap Development, peneliti mengadopsi model 4D, yaitu Define, Design, Develop, dan Disseminate. Hasil penelitian menunjukkan bahwa model outdoor learning melalui project berbasis local wisdom yang dikembangkan layak digunakan dari segi produk pendukung pembelajaran yang memenuhi kriteria sangat tinggi menurut para ahli, praktis menurut guru dan peserta didik. Lembar observasi yang memenuhi kriteria valid dan reliabel berdasarkan hasil ICC dan tes hasil belajar yang memenuhi kriteria valid dan reliabel berdasarkan hasil Quest. Selain itu, model outdoor learning melalui project berbasis local wisdom lebih efektif digunakan dalam pembelajaran fisika dilihat dari hasil analisis multivariate dan GLMMDs yang memperoleh nilai signifikansi 0,000 dan MD yang tinggi.   AbstractThis research was aimed to: (1 produce outdoor learning via project based suitable local wisdom model used in physics learning, (2 know the effectiveness in using outdoor learning via project based local wisdom model. This developing research used a R & D method (Research and Development. On Development step, the researcher adopted 4D model, they were Define, Design, Develop, dan Dissemination. The results showed that the developed outdoor learning via project based local wisdom model was suitable to be used in terms of learning support product that was in very high category according expert, practical according teacher and students. In addition the observation sheet was in valid criteria and reliabel based on ICC and the learning outcome test was in valid criteria and reliabel based on Quest. Besides, outdoor learning via

  8. The Relationship between Outdoor Activity and Health in Older Adults Using GPS

    Directory of Open Access Journals (Sweden)

    David Buchner

    2012-12-01

    Full Text Available Physical activity (PA provides health benefits in older adults. Research suggests that exposure to nature and time spent outdoors may also have effects on health. Older adults are the least active segment of our population, and are likely to spend less time outdoors than other age groups. The relationship between time spent in PA, outdoor time, and various health outcomes was assessed for 117 older adults living in retirement communities. Participants wore an accelerometer and GPS device for 7 days. They also completed assessments of physical, cognitive, and emotional functioning. Analyses of variance were employed with a main and interaction effect tested for ±30 min PA and outdoor time. Significant differences were found for those who spent >30 min in PA or outdoors for depressive symptoms, fear of falling, and self-reported functioning. Time to complete a 400 m walk was significantly different by PA time only. QoL and cognitive functioning scores were not significantly different. The interactions were also not significant. This study is one of the first to demonstrate the feasibility of using accelerometer and GPS data concurrently to assess PA location in older adults. Future analyses will shed light on potential causal relationships and could inform guidelines for outdoor activity.

  9. The relationship between outdoor activity and health in older adults using GPS.

    Science.gov (United States)

    Kerr, Jacqueline; Marshall, Simon; Godbole, Suneeta; Neukam, Suvi; Crist, Katie; Wasilenko, Kari; Golshan, Shahrokh; Buchner, David

    2012-12-01

    Physical activity (PA) provides health benefits in older adults. Research suggests that exposure to nature and time spent outdoors may also have effects on health. Older adults are the least active segment of our population, and are likely to spend less time outdoors than other age groups. The relationship between time spent in PA, outdoor time, and various health outcomes was assessed for 117 older adults living in retirement communities. Participants wore an accelerometer and GPS device for 7 days. They also completed assessments of physical, cognitive, and emotional functioning. Analyses of variance were employed with a main and interaction effect tested for ±30 min PA and outdoor time. Significant differences were found for those who spent >30 min in PA or outdoors for depressive symptoms, fear of falling, and self-reported functioning. Time to complete a 400 m walk was significantly different by PA time only. QoL and cognitive functioning scores were not significantly different. The interactions were also not significant. This study is one of the first to demonstrate the feasibility of using accelerometer and GPS data concurrently to assess PA location in older adults. Future analyses will shed light on potential causal relationships and could inform guidelines for outdoor activity.

  10. The quality of the outdoor environment influences childrens health -- a cross-sectional study of preschools.

    Science.gov (United States)

    Söderström, M; Boldemann, C; Sahlin, U; Mårtensson, F; Raustorp, A; Blennow, M

    2013-01-01

    To test how the quality of the outdoor environment of child day care centres (DCCs) influences children's health. The environment was assessed using the Outdoor Play Environmental Categories (OPEC) tool, time spent outdoors and physical activity as measured by pedometer. 172/253 (68%) of children aged 3.0-5.9 from nine DCCs participated in Southern Sweden. Health data collected were body mass index, waist circumference, saliva cortisol, length of night sleep during study, and symptoms and well-being which were scored (1-week diary - 121 parent responders). Also, parent-rated well-being and health of their child were scored (questionnaire, 132 parent responders). MANOVA, ANOVA and principal component analyses were performed to identify impacts of the outdoor environment on health. High-quality outdoor environment at DCCs is associated with several health aspects in children such as leaner body, longer night sleep, better well-being and higher mid-morning saliva cortisol levels. The quality of the outdoor environment at DCCs influenced the health and well-being of preschool children and should be given more attention among health care professionals and community planners. ©2012 The Author(s)/Acta Paediatrica ©2012 Foundation Acta Paediatrica.

  11. 2017 Annual Terrestrial Sampling Plan for Sandia National Laboratories/New Mexico on Kirtland Air Force Base

    Energy Technology Data Exchange (ETDEWEB)

    Griffith, Stacy R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-02-01

    The 2017 Annual Terrestrial Sampling Plan for Sandia National Laboratories/New Mexico on Kirtland Air Force Base has been prepared in accordance with the “Letter of Agreement Between Department of Energy, National Nuclear Security Administration, Sandia Field Office (DOE/NNSA/SFO) and 377th Air Base Wing (ABW), Kirtland Air Force Base (KAFB) for Terrestrial Sampling” (signed January 2017), Sandia National Laboratories, New Mexico (SNL/NM). The Letter of Agreement requires submittal of an annual terrestrial sampling plan.

  12. 2018 Annual Terrestrial Sampling Plan for Sandia National Laboratories/New Mexico on Kirtland Air Force Base.

    Energy Technology Data Exchange (ETDEWEB)

    Griffith, Stacy R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2018-01-01

    The 2018 Annual Terrestrial Sampling Plan for Sandia National Laboratories/New Mexico on Kirtland Air Force Base has been prepared in accordance with the “Letter of Agreement Between Department of Energy, National Nuclear Security Administration, Sandia Field Office (DOE/NNSA/SFO) and 377th Air Base Wing (ABW), Kirtland Air Force Base (KAFB) for Terrestrial Sampling” (signed January 2017), Sandia National Laboratories, New Mexico (SNL/NM). The Letter of Agreement requires submittal of an annual terrestrial sampling plan.

  13. Passive soil venting at the Chemical Waste Landfill Site at Sandia National Laboratories, Albuquerque, New Mexico

    International Nuclear Information System (INIS)

    Phelan, J.M.; Reavis, B.; Cheng, W.C.

    1995-05-01

    Passive Soil Vapor Extraction was tested at the Chemical Waste Landfill (CWL) site at Sandia National Laboratories, New Mexico (SNLIW). Data collected included ambient pressures, differential pressures between soil gas and ambient air, gas flow rates into and out of the soil and concentrations of volatile organic compounds (VOCS) in vented soil gas. From the differential pressure and flow rate data, estimates of permeability were arrived at and compared with estimates from other studies. Flow, differential pressure, and ambient pressure data were collected for nearly 30 days. VOC data were collected for two six-hour periods during this time. Total VOC emissions were calculated and found to be under the limit set by the Resource Conservation and Recovery Act (RCRA). Although a complete process evaluation is not possible with the data gathered, some of the necessary information for designing a passive venting process was determined and the important parameters for designing the process were indicated. More study is required to evaluate long-term VOC removal using passive venting and to establish total remediation costs when passive venting is used as a polishing process following active soil vapor extraction

  14. Electrokinetic demonstration at Sandia National Laboratories: Use of transference numbers for site characterization and process evaluation

    International Nuclear Information System (INIS)

    Lindgren, E.R.; Mattson, E.D.

    1997-01-01

    Electrokinetic remediation is generally an in situ method using direct current electric potentials to move ionic contaminants and/or water to collection electrodes. The method has been extensively studied for application in saturated clayey soils. Over the past few years, an electrokinetic extraction method specific for sandy, unsaturated soils has been developed and patented by Sandia National Laboratories. A RCRA RD ampersand D permitted demonstration of this technology for the in situ removal of chromate contamination from unsaturated soils in a former chromic acid disposal pit was operated during the summer and fall of 1996. This large scale field test represents the first use of electrokinetics for the removal of heavy metal contamination from unsaturated soils in the United States and is part of the US EPA Superfund Innovative Technology Evaluation (SITE) Program. Guidelines for characterizing a site for electrokinetic remediation are lacking, especially for applications in unsaturated soil. The transference number of an ion is the fraction of the current carried by that ion in an electric field and represents the best measure of contaminant removal efficiency in most electrokinetic remediation processes. In this paper we compare the transference number of chromate initially present in the contaminated unsaturated soil, with the transference number in the electrokinetic process effluent to demonstrate the utility of evaluating this parameter

  15. Gamma Irradiation Facility at Sandia National Laboratories, Albuquerque, New Mexico. Final environmental assessment

    International Nuclear Information System (INIS)

    1995-11-01

    The US Department of Energy (DOE) has prepared an environmental assessment (EA) on the proposed construction and operation of a new Gamma Irradiation Facility (GIF) at Sandia National Laboratories/New Mexico (SNL/NM). This facility is needed to: enhance capabilities to assure technical excellence in nuclear weapon radiation environments testing, component development, and certification; comply with all applicable ES and H safeguards, standards, policies, and regulations; reduce personnel radiological exposure to comply with ALARA limits in accordance with DOE orders and standards; consolidate major gamma ray sources into a central, secured area; and reduce operational risks associated with operation of the GIF and LICA in their present locations. This proposed action provides for the design, construction, and operation of a new GIF located within TA V and the removal of the existing GIF and Low Intensity Cobalt Array (LICA). The proposed action includes potential demolition of the gamma shield walls and removal of equipment in the existing GIF and LICA. The shielding pool used by the existing GIF will remain as part of the ACRR facility. Transportation of the existing 60 Co sources from the existing LICA and GIF to the new facility is also included in the proposed action. Relocation of the gamma sources to the new GIF will be accomplished by similar techniques to those used to install the sources originally

  16. Sandia studies of high-level waste canisters and overpacks applicable for a salt repository

    International Nuclear Information System (INIS)

    Molecke, M.A.; Schaefer, D.W.; Glass, R.S.; Ruppen, J.A.

    1982-01-01

    An experimental program to develop candidate materials for use as high-level waste (HLW) overpacks or canisters in a salt repository has been in progress at Sandia National Laboratories since 1976. The main objective of this program is to provide a waste package barrier having a long lifetime in the chemical and physical environment of a repository. This paper summarizes the recent corrosion and metallurgical study results for the prime overpack material, TiCode-12, in the areas of uniform corrosion (extremely low rate and extent); local attack, e.g., pits and crevices (none were found); stress corrosion cracking susceptibility (no significant changes in macroscopic tensile properties were detected); hydrogen sorption-embrittlement effects; effects of gamma irradiation in solution; and sensitization effects (testing is still in process in the last three areas). Previous candidate screening analyses on other alloys and recent work on alternate overpack alloys are reviewed. All phases of these interrelated laboratory, hot-cell, and field experimental studies are described. 16 references, 8 figures, 4 tables

  17. Outdoor smoking behaviour and support for outdoor smoking restrictions before and after France's national smoking ban.

    Science.gov (United States)

    Kennedy, Ryan David; Behm, Ilan; Craig, Lorraine; Thompson, Mary E; Fong, Geoffrey T; Guignard, Romain; Beck, Francois

    2012-02-01

    On January 1, 2008, the French government implemented a national ban on indoor smoking in hospitality venues. Survey results indicate the indoor ban has been successful at dramatically reducing indoor smoking; however, there are reports of an increased number of outdoor hospitality spaces (patios) where smoking can take place. This study sought to understand if the indoor ban simply moved smoking to the outdoors, and to assess levels of support for smoking restrictions in outdoor hospitality settings after the smoke-free law. Telephone interviews were conducted among 1067 adult smokers before and after the 2008 indoor ban as part of the International Tobacco Control (ITC) France Survey. Among other topics, this survey measures how the smoking ban has influenced smoking behaviour relevant to outdoor sections of hospitality venues. In addition, 414 non-smoking adults and 164 respondents who had quit smoking between waves were also asked about support for outdoor smoking restrictions. Reported smoking outdoors at cafés/pubs/bars increased from 33.6% of smokers at Wave 1 to 75.9% at Wave 2. At restaurants, smoking outdoors increased from 28.9% to 59.0%. There was also an increase in reported non-smoking for both visits to cafés/pubs/bars, and restaurants from 13.4% to 24.7%, and 30.4% to 40.8% respectively. The majority of smokers (74.5%), non-smokers (89.4%) and quitters (74.0%) support a partial or complete ban on smoking in outdoor areas of restaurants. The indoor smoking ban moved smoking to outdoor spaces; however, the ban is also associated with increased non-smoking behaviour. The majority of respondents support outdoor smoking restrictions in patio environments.

  18. Position Statement on Active Outdoor Play

    Science.gov (United States)

    Tremblay, Mark S.; Gray, Casey; Babcock, Shawna; Barnes, Joel; Costas Bradstreet, Christa; Carr, Dawn; Chabot, Guylaine; Choquette, Louise; Chorney, David; Collyer, Cam; Herrington, Susan; Janson, Katherine; Janssen, Ian; Larouche, Richard; Pickett, William; Power, Marlene; Sandseter, Ellen Beate Hansen; Simon, Brenda; Brussoni, Mariana

    2015-01-01

    A diverse, cross-sectorial group of partners, stakeholders and researchers, collaborated to develop an evidence-informed Position Statement on active outdoor play for children aged 3–12 years. The Position Statement was created in response to practitioner, academic, legal, insurance and public debate, dialogue and disagreement on the relative benefits and harms of active (including risky) outdoor play. The Position Statement development process was informed by two systematic reviews, a critical appraisal of the current literature and existing position statements, engagement of research experts (N = 9) and cross-sectorial individuals/organizations (N = 17), and an extensive stakeholder consultation process (N = 1908). More than 95% of the stakeholders consulted strongly agreed or somewhat agreed with the Position Statement; 14/17 participating individuals/organizations endorsed it; and over 1000 additional individuals and organizations requested their name be listed as a supporter. The final Position Statement on Active Outdoor Play states: “Access to active play in nature and outdoors—with its risks— is essential for healthy child development. We recommend increasing children’s opportunities for self-directed play outdoors in all settings—at home, at school, in child care, the community and nature.” The full Position Statement provides context for the statement, evidence supporting it, and a series of recommendations to increase active outdoor play opportunities to promote healthy child development. PMID:26062040

  19. Position Statement on Active Outdoor Play

    Directory of Open Access Journals (Sweden)

    Mark S. Tremblay

    2015-06-01

    Full Text Available A diverse, cross-sectorial group of partners, stakeholders and researchers, collaborated to develop an evidence-informed Position Statement on active outdoor play for children aged 3–12 years. The Position Statement was created in response to practitioner, academic, legal, insurance and public debate, dialogue and disagreement on the relative benefits and harms of active (including risky outdoor play. The Position Statement development process was informed by two systematic reviews, a critical appraisal of the current literature and existing position statements, engagement of research experts (N = 9 and cross-sectorial individuals/organizations (N = 17, and an extensive stakeholder consultation process (N = 1908. More than 95% of the stakeholders consulted strongly agreed or somewhat agreed with the Position Statement; 14/17 participating individuals/organizations endorsed it; and over 1000 additional individuals and organizations requested their name be listed as a supporter. The final Position Statement on Active Outdoor Play states: “Access to active play in nature and outdoors—with its risks— is essential for healthy child development. We recommend increasing children’s opportunities for self-directed play outdoors in all settings—at home, at school, in child care, the community and nature.” The full Position Statement provides context for the statement, evidence supporting it, and a series of recommendations to increase active outdoor play opportunities to promote healthy child development.

  20. Long conduction time plasma opening switch experiments at Sandia National Laboratories

    International Nuclear Information System (INIS)

    Savage, M.E.; Simpson, W.W.; Cooper, G.W.; Usher, M.A.

    1993-01-01

    Sandia National Laboratories has undertaken an ambitious program to reduce the size and cost of large pulsed power drivers. The program basis is inductive energy storage and Plasma Opening Switches (POS). Inductive energy storage has well known advantages, including increased efficiency and reduced stress on the vacuum interface. The Sandia approach is to retain the reliable and efficient Marx generator and the temporal pulse compression of the water dielectric capacitor. A triggered closing switch, developed at Sandia, transfers the capacitor charge into the energy storage inductor. This approach has several advantages, including relaxed requirements on Marx jitter and inductance, and much faster current risetime in the energy storage inductor. The POS itself is the key to the Sandia program. The switch design uses an auxiliary magnetic field to inject the plasma and hold it in place during conduction. After opening begins, the self magnetic field of the power pulse pushes on the plasma to increase the opened gap. The authors use magnetic pressure because they desire POS gaps of several cm. Typical plasma opening switches do not achieve large gaps. Improved opening allows more efficient transfer to loads. They present results from recent experiments at Sandia. Their driver presently supplies 650 kA with a 240 ns risetime to the input of the POS. The storage inductor is a 17 Ohm magnetically insulated transmission line (MITL) that is five meters long. They discuss the ways in which magnetic field influences the POS, and the ways in which they control the magnetic fields

  1. The influence of outdoor thermal environment on young Japanese females

    DEFF Research Database (Denmark)

    Sakoi, Tomonori; Ishii, Jin; Kondo, Emi

    2014-01-01

    The influence of short wave solar radiation appears to be strong outdoors in summer, and the influence of airflow appears to be strong outdoors in winter. The purpose of this paper was to clarify the influence of the outdoor environment on young Japanese females. This research shows the relations......The influence of short wave solar radiation appears to be strong outdoors in summer, and the influence of airflow appears to be strong outdoors in winter. The purpose of this paper was to clarify the influence of the outdoor environment on young Japanese females. This research shows...

  2. Outdoor ultraviolet exposure of children and adolescents

    International Nuclear Information System (INIS)

    Diffey, B.L.; Gibson, C.J.

    1996-01-01

    The weekday and weekend outdoor ultraviolet exposure of young people from primary and secondary schools in three geographically distinct regions of England was determined over a 3-month period in summer. Ultraviolet exposure was measured using personal film badges worn by each young person and time spent outdoors, in hourly intervals, assessed using exposure records. In each area a class of 9-10 year-old children from a primary school and a class of 14-15-year-old adolescents from a secondary school took part, giving a total of 180 subjects. We found that primary school children received higher outdoor ultraviolet exposure than young people in secondary schools, and geographical differences in exposure could not be accounted for solely by differences in ambient ultraviolet. There was little difference between the exposure of males and females. Children and adolescents did not behave as homogeneous groups with regard to exposure. (Author)

  3. Subject related teaching in udeskole (outdoor school)

    DEFF Research Database (Denmark)

    Barfod, Karen Seierøe

    Subject related teaching in udeskole In this symposium, subject related teaching on a regular basis in the outdoors, known as udeskole will be described and discussed. Based on recent and ongoing research and development, the education taking the place of teaching into account of the learning...... will identify the necessity of doing research into the field, as 18,4% of all Danish schools is shown to have one or more classes working with udeskole (Barfod et al, 2016). Secondly, the subject related teaching in the outdoors will be exemplified by four research projects. First, the subject ‘Danish...... teaching in the outdoors will be supplemented with recent research upon barriers for using external learning environments ‘the open school’ in Skive Muncipiality. Closing the seminar will be a presentation of the national Danish Network UdeskoleNet and its application. Sources: Barfod, K., Ejbye-Ernst, N...

  4. Radiometric monitoring outdoor municipality Pocinhos-PB

    International Nuclear Information System (INIS)

    Cardinalli Araujo Costa, Michelle; Araujo dos Santos Junior, Jose; Dos Santos Amaral, Romilton

    2015-01-01

    Studies on human exposure to terrestrial radionuclides are important for human health. Therefore, this investigation presents aimed at making radiometric dosimetry Pocinhos municipality in the state of Paraiba. Monitoring was performed in 50 points in urban and rural areas Pocinhos. The estimated external effective dose rate in outdoor environments was obtained in triplicate using a portable gamma spectrometer, to 1.0 m away from the Earth's surface and time set acquisition in terms of environmental radiation levels. The values of these dose rates outdoor environments ranging from 0.53 to 3.94 mSv.y -1 . the arithmetic mean was 0.79 mSv.y -1 , which exceeds the value 0.07 mSv.y -1 corresponding to the global average in outdoor environments. In the city, found a higher radioactivity in rural areas that were uninhabited at the time of the survey. (Author)

  5. 2016 Annual Site Environmental Report Sandia National Laboratories/New Mexico.

    Energy Technology Data Exchange (ETDEWEB)

    Salas, Angela Maria [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Griffith, Stacy R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-07-01

    Sandia National Laboratories (SNL) is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy’s (DOE’s), National Nuclear Security Administration (NNSA). The DOE/NNSA Sandia Field Office administers the contract and oversees contractor operations at SNL, New Mexico. This Annual Site Environmental Report (ASER) summarizes data and the compliance status of sustainability, environmental protection, and monitoring programs at SNL/NM during calendar year 2016. Major environmental programs include air quality, water quality, groundwater protection, terrestrial and ecological surveillance, waste management, pollution prevention, environmental restoration, oil and chemical spill prevention, and implementation of the National Environmental Policy Act. This ASER is prepared in accordance with and required by DOE O 231.1B, Admin Change 1, Environment, Safety, and Health Reporting.

  6. Connecting the physical and psychosocial space to Sandia's mission

    Energy Technology Data Exchange (ETDEWEB)

    Emmanuel, Glory Ruth [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Silva, Austin Ray [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-07-01

    Sandia Labs has corporate, lab-wide efforts to enhance the research environment as well as improve physical space. However, these two efforts are usually done in isolation. The integration of physical space design with the nurturing of what we call psychosocial space can foster more efficient and effective creativity, innovation, collaboration, and performance. This paper presents a brief literature review on how academia and industry are studying the integration of physical and psychosocial space and focuses on the efforts that we, the authors, have made to improve the research environment in the Cyber Engineering Research Lab (CERL), home to Group 1460. Interviews with subject matter experts from Silicon Valley and the University of New Mexico plus changes to actual spaces in CERL provided us with six lessons learned when integrating physical and psychosocial space. We describe these six key takeaways in hopes that Sandia will see this area as an evolving research capability that Sandia can both contribute to and benefit from.

  7. An overview of semiconductor bridge, SCB, applications at Sandia National Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Bickes, R.W. Jr.; Grubelich, M.C.; Harris, S.M.; Merson, J.A.; Weinlein, J.H.

    1995-05-01

    The semiconductor bridge, SCB, developed by Sandia National Laboratories is a maturing technology now being used in several applications by Sandia customers. Most applications arose because of a need at the system level to provide explosive assemblies that were light weight, small volume, low cost and required small quantities of electrical energy to function -- for the purposes of this paper we define an explosive assembly to mean the combination of the firing set and an explosive component. As a result, and because conventional firing systems could not meet the stringent size, weight and energy requirements of our customers, we designed and are investigating SCB applications that range from devices for Sandia applications to igniters for fireworks. We present in this paper an overview of SCB technology with specific examples of the system designed for our customers to meet modern requirements that sophisticated explosive systems must satisfy in today`s market environments.

  8. Autonomy and Complexity at Sandia Executive Summary of Academic Alliance Workshop on Autonomy and Complex Systems.

    Energy Technology Data Exchange (ETDEWEB)

    Hayden, Nancy Kay [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Kleban, Stephen D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-05-01

    Sandia has identified autonomy as a strategic initiative and an important area for providing national leadership. A key question is, “How might autonomy change how we think about the national security challenges we address and the kinds of solutions we deliver?” Three workshops at Sandia early in 2017 brought together internal stakeholders and potential academic partners in autonomy to address this question. The first focused on programmatic applications and needs. The second explored existing internal capabilities and research and development needs. This report summarizes the outcome of the third workshop, held March 3, 2017 in Albuquerque, NM, which engaged Academic Alliance partners in autonomy efforts at Sandia by discussing research needs and synergistic areas of interest within the complex systems and system modeling domains, and identifying opportunities for partnering on laboratory directed and other joint research opportunities.

  9. Decontamination of large horizontal concrete surfaces outdoors

    International Nuclear Information System (INIS)

    Barbier, M.M.; Chester, C.V.

    1980-01-01

    A study is being conducted of the resources and planning that would be required to clean up an extensive contamination of the outdoor environment. As part of this study, an assessment of the fleet of machines needed for decontaminating large outdoor surfaces of horizontal concrete will be attempted. The operations required are described. The performance of applicable existing equipment is analyzed in terms of area cleaned per unit time, and the comprehensive cost of decontamination per unit area is derived. Shielded equipment for measuring directional radiation and continuously monitoring decontamination work are described. Shielding of drivers' cabs and remote control vehicles is addressed

  10. Relationships in indoor/outdoor air pollution

    International Nuclear Information System (INIS)

    Roed, J.

    1985-01-01

    Beryllium-7 and sulphurhexaflourid has been used as tracers in measurements designed to enable an estimate of the ratio of the outdoor to indoor time-integrated concentration for aerosols and non-reactive gasses of outdoor origin with a special reference to the reduction in inhalation dose that can be achieved by staying indoors during a pollution episode, especially a reactor accident. The effect of operating a vacuum cleaner during the pollution episode and airing shortly after is also investigated. Earlier relevant literature is reviewed and shows goos agreement with the results in this study. Protection factor from 1-12 has been found. (author)

  11. Continuous measurements of outdoor radon concentrations

    International Nuclear Information System (INIS)

    Iida, T.; Ikebe, Y.; Suzuki, K.; Ueno, K.; Komura, K.; Kato, I.; Jin Yihe

    1993-01-01

    The authors studied and developed an electrostatic 222 Rn monitor and have measured continuously outdoor radon ( 222 Rn) concentrations at Nagoya University since 1985. Four 222 Rn monitors were newly constructed to measure outdoor 222 Rn concentrations at other locations. The 222 Rn concentrations at Nagoya and Kasugai show a clear diurnal variation in autumn, and a seasonal pattern of a spring-summer minimum and a autumn-winter maximum. The results at Toki are the same pattern as that at Nagoya except spring. The concentrations at Kanazawa show a slight seasonal variation. A clear diurnal variation is observed in summer. (4 figs.)

  12. The high current, fast, 100ns, Linear Transformer Driver (LTD) developmental project at Sandia Laboratories and HCEI

    International Nuclear Information System (INIS)

    Ward, Kevin S.; Long, Finis W.; Sinebryukhov, Vadim A.; Kim, Alexandre A.; Wakeland, Peter Eric; McKee, G. Randall; Woodworth, Joseph Ray; McDaniel, Dillon Heirman; Fowler, William E.; Mazarakis, Michael Gerrassimos; Porter, John Larry Jr.; Struve, Kenneth William; Savage, Mark Edward; Stygar, William A.; LeChien, Keith R.; Matzen, Maurice Keith

    2010-01-01

    Sandia National Laboratories, Albuquerque, N.M., USA, in collaboration with the High Current Electronic Institute (HCEI), Tomsk, Russia, is developing a new paradigm in pulsed power technology: the Linear Transformer Driver (LTD) technology. This technological approach can provide very compact devices that can deliver very fast high current and high voltage pulses straight out of the cavity with out any complicated pulse forming and pulse compression network. Through multistage inductively insulated voltage adders, the output pulse, increased in voltage amplitude, can be applied directly to the load. The load may be a vacuum electron diode, a z-pinch wire array, a gas puff, a liner, an isentropic compression load (ICE) to study material behavior under very high magnetic fields, or a fusion energy (IFE) target. This is because the output pulse rise time and width can be easily tailored to the specific application needs. In this paper we briefly summarize the developmental work done in Sandia and HCEI during the last few years, and describe our new MYKONOS Sandia High Current LTD Laboratory. An extensive evaluation of the LTD technology is being performed at SNL and the High Current Electronic Institute (HCEI) in Tomsk Russia. Two types of High Current LTD cavities (LTD I-II, and 1-MA LTD) were constructed and tested individually and in a voltage adder configuration (1-MA cavity only). All cavities performed remarkably well and the experimental results are in full agreement with analytical and numerical calculation predictions. A two-cavity voltage adder is been assembled and currently undergoes evaluation. This is the first step towards the completion of the 10-cavity, 1-TW module. This MYKONOS voltage adder will be the first ever IVA built with a transmission line insulated with deionized water. The LTD II cavity renamed LTD III will serve as a test bed for evaluating a number of different types of switches, resistors, alternative capacitor configurations, cores

  13. Fear of moving outdoors and development of outdoor walking difficulty in older people.

    Science.gov (United States)

    Rantakokko, Merja; Mänty, Minna; Iwarsson, Susanne; Törmäkangas, Timo; Leinonen, Raija; Heikkinen, Eino; Rantanen, Taina

    2009-04-01

    To study which individual characteristics and environmental factors correlate with fear of moving outdoors and whether fear of moving outdoors predicts development of mobility limitation. Observational prospective cohort study and cross-sectional analyses. Community and research center. Seven hundred twenty-seven community-living people aged 75 to 81 were interviewed at baseline, of whom 314 took part in a 3.5-year follow-up. Fear of moving outdoors and its potential individual and environmental correlates were assessed at baseline. Perceived difficulties in walking 0.5 km and 2 km were assessed twice a year over a 3.5-year period. At baseline, 65% of the women and 29% of the men reported fear of moving outdoors. Poor socioeconomic status; musculoskeletal diseases; slow walking speed; and the presence of poor street conditions, hills in the nearby environment, and noisy traffic correlated with fear of moving outdoors. At the first 6-month follow-up, participants with fear of moving outdoors had more than four times the adjusted risk (odds ratio (OR)=4.6, 95% confidence interval (CI)=1.92-11.00) of developing difficulties in walking 0.5 km and a three times greater adjusted risk (OR=3.10, 95% CI=1.49-6.46) for developing difficulty in walking 2 km compared with those without fear. The difference in the prevalence of walking difficulties remained statistically significant over the 3.5-year follow-up (P=.02 and P=.009, respectively). Fear of moving outdoors is common in older adults and increases the risk of developing self-reported difficulties in walking 0.5 km and 2 km. Knowledge about individual and environmental factors underlying fear of moving outdoors and finding ways to alleviate fear of moving outdoors are important for community planning and prevention of disability.

  14. Turismo Activo y Outdoor Training: Metodología. (Adventure Sport Tourism and Outdoor Training: Methodology.

    Directory of Open Access Journals (Sweden)

    Vicente Gómez Encinas

    2008-10-01

    Full Text Available ResumenUno de los aspectos más atractivos que tiene el outdoor training es su supuesta capacidad para conseguir que los aprendizajes obtenidos a través de sus actividades sean transferidos a otros ámbitos de la vida personal y profesional de sus participantes. En este sentido, la clave está en la metodología empleada. Este artículo profundiza en las fases que estructuran el proceso formativo del outdoor training describiendo: 1 las bases folosóficas que lo apoyan y que están expresadas en la teoría de la “educación a través de la experiencia” y 2 las diferentes fases que estructuran el proceso de formación de un outdoor, haciendo una descripción en profundidad de cada una de ellas: a Pre-Outdoor (Análisis y valoración de las necesidades, diseño de la actividad y reunión previa a la actividad, b Outdoor, c Post-outdoor (Reflexión y transferencia, y d Seguimiento posterior.AbstractOne of the most attractive aspects that has the outdoor training is their supposed capacity to get that the learnings obtained through their activities are transferred to other environments of the personal life and their participants' professional. In this sense, the key is in the used methodology. This article deepens in the phases that structure the formative process of the outdoor training describing: 1 the philosophy´s bases that support this process and that are expressed in the theory of experiential education, and 2 the different phases that structure the process of formation of an outdoor, making a description in depth of each one of them: to Pre-Outdoor (Analysis and valuation of the necessities, design of the activity and previous meeting to the activity, b Outdoor, c Post-outdoor (Reflection and transfer, and d Later Pursuit.

  15. New model for public participation at Sandia National Laboratories: What comes after environmental restoration?

    International Nuclear Information System (INIS)

    KEENER R, WILLIAM; BACA, STEPHEN S.; BACA, MAUREEN R.; STOTTS, AL; TOOPS, TAMI; WOLFF, THEODORE A.

    2000-01-01

    As the Sandia National Laboratories' Environmental Restoration (ER) project moves toward closure, the project's experiences--including a number of successes in the public participation arena--suggest it is time for a new, more interactive model for future government-citizen involvement. This model would strive to improve the quality of public interaction with the Department of Energy (DOE) and Sandia, by using subject-specific working groups and aiming for long-term trustful relationships with the community. It would make use of interactive techniques, fewer formal public forums, and a variety of polling and communication technologies to improve information gathering and exchange

  16. National Environmental Policy Act (NEPA) compliance at Sandia National Laboratories/New Mexico (SNL/NM)

    International Nuclear Information System (INIS)

    Wolff, T.A.

    1998-08-01

    This report on National Environmental Policy Act (NEPA) compliance at Sandia National Laboratories/New Mexico (SNL/NM) chronicles past and current compliance activities and includes a recommended strategy that can be implemented for continued improvement. This report provides a list of important references. Attachment 1 contains the table of contents for SAND95-1648, National Environmental Policy Act (NEPA) Compliance Guide Sandia National Laboratories (Hansen, 1995). Attachment 2 contains a list of published environmental assessments (EAs) and environmental impact statements (EISs) prepared by SNL/NM. Attachment 3 contains abstracts of NEPA compliance papers authored by SNL/NM and its contractors

  17. Lessons Learned from Sandia National Laboratories' Operational Readiness Review of the Annular Core Research Reactor (ACRR)

    International Nuclear Information System (INIS)

    Bendure, Albert O.; Bryson, James W.

    1999-01-01

    The Sandia ACRR (a Hazard Category 2 Nuclear Reactor Facility) was defueled in June 1997 to modify the reactor core and control system to produce medical radioisotopes for the Department of Energy (DOE) Isotope Production Program. The DOE determined that an Operational Readiness Review (ORR) was required to confirm readiness to begin operations within the revised safety basis. This paper addresses the ORR Process, lessons learned from the Sandia and DOE ORRS of the ACRR, and the use of the ORR to confirm authorization basis implementation

  18. National Environmental Policy Act (NEPA) compliance at Sandia National Laboratories/New Mexico (SNL/NM)

    Energy Technology Data Exchange (ETDEWEB)

    Wolff, T.A. [Sandia National Labs., Albuquerque, NM (United States). Community Involvement and Issues Management Dept.; Hansen, R.P. [Hansen Environmental Consultants, Englewood, CO (United States)

    1998-08-01

    This report on National Environmental Policy Act (NEPA) compliance at Sandia National Laboratories/New Mexico (SNL/NM) chronicles past and current compliance activities and includes a recommended strategy that can be implemented for continued improvement. This report provides a list of important references. Attachment 1 contains the table of contents for SAND95-1648, National Environmental Policy Act (NEPA) Compliance Guide Sandia National Laboratories (Hansen, 1995). Attachment 2 contains a list of published environmental assessments (EAs) and environmental impact statements (EISs) prepared by SNL/NM. Attachment 3 contains abstracts of NEPA compliance papers authored by SNL/NM and its contractors.

  19. Annotated bibliography National Environmental Policy Act (NEPA) documents for Sandia National Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Harris, J.M.

    1995-04-01

    The following annotated bibliography lists documents prepared by the Department of Energy (DOE), and predecessor agencies, to meet the requirements of the National Environmental Policy Act (NEPA) for activities and facilities at Sandia National Laboratories sites. For each NEPA document summary information and a brief discussion of content is provided. This information may be used to reduce the amount of time or cost associated with NEPA compliance for future Sandia National Laboratories projects. This summary may be used to identify model documents, documents to use as sources of information, or documents from which to tier additional NEPA documents.

  20. Environmental assessment of the Environmental Restoration Project at Sandia National Laboratories/New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    Sandia National Laboratories/New Mexico (SNL/NM) is managed and operated for the U.S. Department of Energy (DOE) by Sandia Corporation, a subsidiary of the Lockheed Martin Company. SNL/NM is located on land controlled by DOE within the boundaries of Kirtland Air Force Base (KAFB) in Albuquerque, New Mexico. The major responsibilities of SNL/NM are the support of national security and energy projects. This report provides an environmental assessment of proposed remedial action activities at the solid waste management units at SNL/NM. A risk assessment of health hazards is also discussed.

  1. Annotated bibliography National Environmental Policy Act (NEPA) documents for Sandia National Laboratories

    International Nuclear Information System (INIS)

    Harris, J.M.

    1995-04-01

    The following annotated bibliography lists documents prepared by the Department of Energy (DOE), and predecessor agencies, to meet the requirements of the National Environmental Policy Act (NEPA) for activities and facilities at Sandia National Laboratories sites. For each NEPA document summary information and a brief discussion of content is provided. This information may be used to reduce the amount of time or cost associated with NEPA compliance for future Sandia National Laboratories projects. This summary may be used to identify model documents, documents to use as sources of information, or documents from which to tier additional NEPA documents

  2. A case for Sandia investment in complex adaptive systems science and technology.

    Energy Technology Data Exchange (ETDEWEB)

    Colbaugh, Richard; Tsao, Jeffrey Yeenien; Johnson, Curtis Martin; Backus, George A.; Brown, Theresa Jean; Jones, Katherine A.

    2012-05-01

    This white paper makes a case for Sandia National Laboratories investments in complex adaptive systems science and technology (S&T) -- investments that could enable higher-value-added and more-robustly-engineered solutions to challenges of importance to Sandia's national security mission and to the nation. Complex adaptive systems are ubiquitous in Sandia's national security mission areas. We often ignore the adaptive complexity of these systems by narrowing our 'aperture of concern' to systems or subsystems with a limited range of function exposed to a limited range of environments over limited periods of time. But by widening our aperture of concern we could increase our impact considerably. To do so, the science and technology of complex adaptive systems must mature considerably. Despite an explosion of interest outside of Sandia, however, that science and technology is still in its youth. What has been missing is contact with real (rather than model) systems and real domain-area detail. With its center-of-gravity as an engineering laboratory, Sandia's has made considerable progress applying existing science and technology to real complex adaptive systems. It has focused much less, however, on advancing the science and technology itself. But its close contact with real systems and real domain-area detail represents a powerful strength with which to help complex adaptive systems science and technology mature. Sandia is thus both a prime beneficiary of, as well as potentially a prime contributor to, complex adaptive systems science and technology. Building a productive program in complex adaptive systems science and technology at Sandia will not be trivial, but a credible path can be envisioned: in the short run, continue to apply existing science and technology to real domain-area complex adaptive systems; in the medium run, jump-start the creation of new science and technology capability through Sandia's Laboratory Directed Research

  3. Dynamic context discrimination : psychological evidence for the Sandia Cognitive Framework.

    Energy Technology Data Exchange (ETDEWEB)

    Speed, Ann Elizabeth

    2004-09-01

    Human behavior is a function of an iterative interaction between the stimulus environment and past experience. It is not simply a matter of the current stimulus environment activating the appropriate experience or rule from memory (e.g., if it is dark and I hear a strange noise outside, then I turn on the outside lights and investigate). Rather, it is a dynamic process that takes into account not only things one would generally do in a given situation, but things that have recently become known (e.g., there have recently been coyotes seen in the area and one is known to be rabid), as well as other immediate environmental characteristics (e.g., it is snowing outside, I know my dog is outside, I know the police are already outside, etc.). All of these factors combine to inform me of the most appropriate behavior for the situation. If it were the case that humans had a rule for every possible contingency, the amount of storage that would be required to enable us to fluidly deal with most situations we encounter would rapidly become biologically untenable. We can all deal with contingencies like the one above with fairly little effort, but if it isn't based on rules, what is it based on? The assertion of the Cognitive Systems program at Sandia for the past 5 years is that at the heart of this ability to effectively navigate the world is an ability to discriminate between different contexts (i.e., Dynamic Context Discrimination, or DCD). While this assertion in and of itself might not seem earthshaking, it is compelling that this ability and its components show up in a wide variety of paradigms across different subdisciplines in psychology. We begin by outlining, at a high functional level, the basic ideas of DCD. We then provide evidence from several different literatures and paradigms that support our assertion that DCD is a core aspect of cognitive functioning. Finally, we discuss DCD and the computational model that we have developed as an instantiation of DCD

  4. Integration of Kinect and Low-Cost Gnss for Outdoor Navigation

    Science.gov (United States)

    Pagliaria, D.; Pinto, L.; Reguzzoni, M.; Rossi, L.

    2016-06-01

    Since its launch on the market, Microsoft Kinect sensor has represented a great revolution in the field of low cost navigation, especially for indoor robotic applications. In fact, this system is endowed with a depth camera, as well as a visual RGB camera, at a cost of about 200. The characteristics and the potentiality of the Kinect sensor have been widely studied for indoor applications. The second generation of this sensor has been announced to be capable of acquiring data even outdoors, under direct sunlight. The task of navigating passing from an indoor to an outdoor environment (and vice versa) is very demanding because the sensors that work properly in one environment are typically unsuitable in the other one. In this sense the Kinect could represent an interesting device allowing bridging the navigation solution between outdoor and indoor. In this work the accuracy and the field of application of the new generation of Kinect sensor have been tested outdoor, considering different lighting conditions and the reflective properties of the emitted ray on different materials. Moreover, an integrated system with a low cost GNSS receiver has been studied, with the aim of taking advantage of the GNSS positioning when the satellite visibility conditions are good enough. A kinematic test has been performed outdoor by using a Kinect sensor and a GNSS receiver and it is here presented.

  5. 76 FR 50212 - Site-Wide Environmental Impact Statement for Sandia National Laboratories, New Mexico (SNL/NM)

    Science.gov (United States)

    2011-08-12

    ... Environmental Impact Statement for Sandia National Laboratories, New Mexico (DOE/EIS-0281-SA-04), DOE/NNSA... Environmental Impact Statement for Sandia National Laboratories, New Mexico for the Installation of a Petawatt..., New Mexico Final Supplement Analysis for the Site-Wide Environmental Impact Statement (2006 SNL/NM...

  6. Implementing Virtual Private Networking for Enabling Lower Cost, More Secure Wide Area Communications at Sandia National Laboratories; TOPICAL

    International Nuclear Information System (INIS)

    MILLER, MARC M.; YONEK JR., GEORGE A.

    2001-01-01

    Virtual Private Networking is a new communications technology that promises lower cost, more secure wide area communications by leveraging public networks such as the Internet. Sandia National Laboratories has embraced the technology for interconnecting remote sites to Sandia's corporate network, and for enabling remote access users for both dial-up and broadband access

  7. Outdoor air dominates burden of disease from indoor exposures

    DEFF Research Database (Denmark)

    Hänninen, O.; Asikainen, A.; Carrer, P.

    2014-01-01

    Both indoor and outdoor sources of air pollution have significant public health impacts in Europe. Based on quantitative modelling of the burden of disease the outdoor sources dominate the impacts by a clear margin.......Both indoor and outdoor sources of air pollution have significant public health impacts in Europe. Based on quantitative modelling of the burden of disease the outdoor sources dominate the impacts by a clear margin....

  8. 9 CFR 3.103 - Facilities, outdoor.

    Science.gov (United States)

    2010-01-01

    ... Administrator. The fence must be constructed so that it protects marine mammals by restricting animals and... effective natural barrier that restricts the marine mammals to the facility and restricts entry by animals... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Facilities, outdoor. 3.103 Section 3...

  9. 9 CFR 3.127 - Facilities, outdoor.

    Science.gov (United States)

    2010-01-01

    ... Warmblooded Animals Other Than Dogs, Cats, Rabbits, Hamsters, Guinea Pigs, Nonhuman Primates, and Marine... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Facilities, outdoor. 3.127 Section 3.127 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE...

  10. Sensory Perception, Rationalism and Outdoor Environmental Education

    Science.gov (United States)

    Auer, Matthew R.

    2008-01-01

    There is a strong emphasis on sensory perception and "hands-on" learning in the outdoor environmental education of children. In addition, normative concerns infuse children's environmental curricula, and in particular, the notion that environmental education is not a passive undertaking; when one appreciates the essential value of the…

  11. Sustainability in outdoor recreation and tourism

    Science.gov (United States)

    Patricia L. Winter; Kelly Bricker; Jeremy Schultz

    2013-01-01

    Outdoor recreation and tourism represents a major service by which the public identifies with and better understands natural resources, even to the extent that it can foster environmental stewardship (for example, see Winter and Chavez 2008). Yet, myriad threats to recreation and tourism exist which need to be addressed. Addressing these threats can be...

  12. Converging social trends - emerging outdoor recreation issues

    Science.gov (United States)

    Carl H. Reidel

    1980-01-01

    I can't recall when I have attended a national conference with a more clearly defined objective than this one. We are here to document outdoor recreation trends and explore their meaning for the future. The word "trend" appears no less than 45 times in the conference brochure, and the symposium organizers are determined that the proceedings will be...

  13. Outdoor i integrationsarbejde - et nyt EU projekt

    DEFF Research Database (Denmark)

    Kjeldsen, Lis Reinholdt

    2014-01-01

    Beskriver opstarten af det internationale projekt, hvor omgivelserne anvendes i læreprocesser for nytilkomne. Samarbejdspartnere er Linköbing Universitet i Sverige, Novia Yrkeshøgskola i Finland, Bologna Universitet i Italien. Projektet vil udvikle læreplan til anvendelse for undervisere af nytil...... nytilkomne, hvor Outdoor learning i naturen og de kulturelle omgivelser anvendes....

  14. Establishing the Competence of Outdoor Training Staff.

    Science.gov (United States)

    Everard, Bertie

    1997-01-01

    The United Kingdom lacks a framework of nationally recognized professional qualifications for outdoor trainers and facilitators. Various definitions of competence are examined, and suggestions are offered for improving approaches to establishing staff competence. Includes a model of personal development dimensions, and compares U.K. and U.S.…

  15. 76 FR 32857 - Great Outdoors Month, 2011

    Science.gov (United States)

    2011-06-07

    ... protecting an iconic vast public land, or by creating a community garden or an urban park. Last year, I was... leaders, students, and community groups led to a report unveiled in February, America's Great Outdoors: A Promise to Future Generations, which lays the foundation for smarter, more community-driven action to...

  16. Indoorising the outdoors: Lifestyle sports revisited

    NARCIS (Netherlands)

    Salome, L.R.

    2012-01-01

    Since the early nineties, lifestyle sports such as surfing, snowboarding and skydiving are on a large scale offered in artificial sport environments. In snow domes, on artificial white water courses, in climbing halls and in wind tunnels, these alternative outdoor sports are accessible for a broad

  17. Playing with Power: An Outdoor Classroom Exploration

    Science.gov (United States)

    Haywood-Bird, Eden

    2017-01-01

    In this ethnographic research, discovery of how preschool-aged children use play to wield their individual power in the outdoors is documented in a single classroom. Embedded as a participant-researcher and working from constructivist and critical theory orientations, the researcher seeks to understand how children use their play to construct the…

  18. Issues in Outdoor Recreation: Second Edition.

    Science.gov (United States)

    Jensen, Clayne R., Comp.; Thorstenson, Clark T., Comp.

    This book is a compilation of selected writings on the subject of outdoor recreation. It is addressed to students specializing in recreation and resource management, and teachers, conservationists, and the public in general. Seven chapters contain articles discussing issues, facts, and concerns in the field of recreation and represent various…

  19. Leave no trace in the outdoors

    Science.gov (United States)

    Marion, Jeffrey L.

    2014-01-01

    The essential guide for enjoying the outdoors without harming the environment. - Details the seven core principles of Leave No Trace ethics and practices - Covers hiking, campfires, food storage, and personal hygiene - Endorsed by the USDI National Park Service, Bureau of Land Management, Fish & Wildlife Service, U.S. Geological Survey, and the USDA Forest Service

  20. Learning Leadership: Becoming an Outdoor Leader

    Science.gov (United States)

    Enoksen, Elisabeth; Lynch, Pip

    2018-01-01

    Recent leadership research has demonstrated a need for better understanding the process of becominga leader because it might be qualitatively different to being a leader. If so, there is likely to be a need for pedagogies designed deliberately to support first-time outdoor leadership experiences and any such pedagogies must be informed by the…