WorldWideScience

Sample records for sandhopper talitrus saltator

  1. Relationship between heavy metals pollution and genetic diversity in Mediterranean populations of the sandhopper Talitrus saltator (Montagu) (Crustacea, Amphipoda)

    International Nuclear Information System (INIS)

    Ungherese, G.; Mengoni, A.; Somigli, S.; Baroni, D.; Focardi, S.; Ugolini, A.

    2010-01-01

    Trace metals are one of the groups of pollutants that reduce genetic variability in natural populations, causing the phenomenon known as 'genetic erosion'. In this study we evaluate the relationship between trace metals contamination (Hg, Cd and Cu) and genetic variability, assessed using fluorescent Inter-Simple Sequence Repeats (fISSRs). We used eight populations of a well-established biomonitor of trace metals on sandy beaches: the amphipod Talitrus saltator. The trace metals analysis confirmed the ability of sandhoppers to accumulate Hg, Cd and Cu. Moreover, populations from sites with high Hg availability had the lowest values of genetic diversity. Our results validate the use of fISSR markers in genetic studies in sandhoppers and support the 'genetic erosion' hypothesis by showing the negative influence of Hg contamination on sandhopper genetic diversity. Therefore, genetic variability assessed with fISSR markers could be successfully employed as a biomarker of Hg exposure. - Genetic variability of sandhoppers is affected by heavy metals contamination.

  2. Sandhopper solar orientation as a behavioural biomarker of trace metals contamination

    International Nuclear Information System (INIS)

    Ungherese, Giuseppe; Ugolini, Alberto

    2009-01-01

    Although many studies have focused on trace metals accumulation, investigations of talitrid amphipods as biomarkers are rare. This study explores the possibility of using the solar orientation capacity of Talitrus saltator as a behavioural marker of exposure to two essential (Cu and Zn) and two non-essential (Cd and Hg) metals. LC 50 analyses performed before the solar orientation tests showed that the 72 h LC 50 for Hg was 0.02 ppm while the 96 h LC 50 values for Cu, Cd and Zn were 13.28 ppm, 27.66 ppm, and 62.74 ppm, respectively. The presence of metals in seawater affects the solar orientation capacity of T. saltator in a concentration-dependent manner and according to the toxicity ranking of the metals (Hg > Cu > Cd > Zn). Therefore, the solar orientation capacity of T. saltator seems to be a promising behavioural marker for exposure to trace metals. - Solar orientation capacity is a promising behavioural marker for exposure to trace metals in sandhoppers

  3. Diet and gut microbiota of two supralittoral amphipods Orchestia montagui and Talitrus saltator living in different microhabitats

    Science.gov (United States)

    Abdelrhman, Khaled F. A.; Bacci, Giovanni; Nistri, Annamaria; Mengoni, Alessio; Ugolini, Alberto

    2017-10-01

    Talitrus saltator (Montagu) and Orchestia montagui Audouin live in different microhabitats of the same supralittoral belt. T. saltator can be found in the damp sand of beaches with scarce or absent wracked material near the water line. O. montagui is frequently found in the Posidonia banquettes or under wracked material, often in contact with the substrate. This study investigates the effect of diet on species-specific gut microbiota patterns in these talitrid species. Adults were collected and fed with artificial food (commercial fish food and pieces of blotting paper) for 51 days. Gut microbiota were analyzed at five time intervals (0 h, 24 h, 7, 23 and 51 days) by 16S rRNA gene metagenomic analysis and by estimating the relative abundance of cellulases (glycosyl hydrolase gene family 48, GHF48) gene copies. The gut microbiota of O. montagui was more affected than that of T. saltator by diet shift. Although the taxonomic profile of the gut microbiota varied with time in both species, with an increase of Protobacteria in O. montagui and of Actinobacteria and Bacteroidetes in T. saltator, genes involved in cellulose degradation (GHF48 family) showed a large-scale increase in O. montagui but not in T. saltator. We conclude that the diet variation has different influence on the composition of gut microbiota in the two talitrid species in accordance with their different alimentary habits: the more generalist T. saltator (detritivore, grazer, and scavenger) showed less changes in its gut microbiota composition than the more specialist O. montagui (detritivore and grazer), which strongly modified its gut microbiota composition by the captivity diet.

  4. Behaviour of Talitrus saltator (Crustacea: Amphipoda) on a rehabilitated sandy beach on the European Atlantic Coast (Portugal)

    Science.gov (United States)

    Bessa, Filipa; Rossano, Claudia; Nourisson, Delphine; Gambineri, Simone; Marques, João Carlos; Scapini, Felicita

    2013-01-01

    Environmental and human controls are widely accepted as the main structuring forces of the macrofauna communities on sandy beaches. A population of the talitrid amphipod Talitrus saltator (Montagu, 1808) was investigated on an exposed sandy beach on the Atlantic coast of Portugal (Leirosa beach) to estimate orientation capabilities and endogenous rhythms in conditions of recent changes in the landscape (artificial reconstruction of the foredune) and beach morphodynamics (stabilization against erosion from the sea). We tested sun orientation of talitrids on the beach and recorded their locomotor activity rhythms under constant conditions in the laboratory. The orientation data were analysed with circular statistics and multiple regression models adapted to angular distributions, to highlight the main factors and variables influencing the variation of orientation. The talitrids used the sun compass, visual cues (landscape and sun visibility) to orient and the precision of orientation varied according to the tidal regime (rising or ebbing tides). A well-defined free-running rhythm (circadian with in addition a bimodal rhythmicity, likely tidal) was highlighted in this population. This showed a stable behavioural adaptation on a beach that has experienced a process of artificial stabilization of the dune through nourishment actions over a decade. Monitoring the conditions of such dynamic environments and the resilience capacity of the inhabiting macroinfauna is a main challenge for sandy beach ecologists.

  5. Behavioural adaptations of two sympatric sandhoppers living on a mesotidal European Atlantic sandy beach

    Science.gov (United States)

    Bessa, Filipa; Marques, João Carlos; Scapini, Felicita

    2014-06-01

    Behavioural adaptations of supralittoral species on sandy beaches are expressed as responses to environmental changes and constitute a key factor in their survival and evolution. Two sympatric talitrid amphipods (Talitrus saltator and Britorchestia brito) from a mesotidal exposed sandy beach on the European Atlantic coast (Portugal) were compared as regards orientation and littoral zonation patterns under natural conditions. Orientation experiments were carried out during spring and summer 2011 and 2012 at Quiaios beach, a highly dynamic exposed sandy beach. Multiple regression models were fitted to the angular data and the environmental effects on orientation were investigated for each species. Both talitrids were shown to be well orientated towards the shoreline and finely adapted to the mesotidal environment but a different use of local cues and climatic features between the two species was apparent. T. saltator showed a lower precision in the orientation performance (with a bimodal distribution sea- and land-wards), with less dependence on the sun cues and higher dependence on climatic features. In addition, the zonation of T. saltator was across the land-sea axis during both seasons. For B. brito the landscape vision, sun visibility and the tidal range enhanced the orientation to the shoreline. On this mesotidal Atlantic beach, T. saltator appeared to have a more flexible orientation with respect to B. brito, which appeared to be more dependent on the conditions offered by the intertidal zone, a behaviour confirmed by its restricted zonation below the high tide mark. Consequently, T. saltator showed a more flexible behaviour that may be considered an important evolutionary adaptation to dynamic and mesotidal sandy beaches.

  6. Saltation of non-spherical sand particles.

    Directory of Open Access Journals (Sweden)

    Zhengshi Wang

    Full Text Available Saltation is an important geological process and the primary source of atmospheric mineral dust aerosols. Unfortunately, no studies to date have been able to precisely reproduce the saltation process because of the simplified theoretical models used. For example, sand particles in most of the existing wind sand movement models are considered to be spherical, the effects of the sand shape on the structure of the wind sand flow are rarely studied, and the effect of mid-air collision is usually neglected. In fact, sand grains are rarely round in natural environments. In this paper, we first analyzed the drag coefficients, drag forces, and starting friction wind speeds of sand grains with different shapes in the saltation process, then established a sand saltation model that considers the coupling effect between wind and the sand grains, the effect of the mid-air collision of sand grains, and the effect of the sand grain shape. Based on this model, the saltation process and sand transport rate of non-spherical sand particles were simulated. The results show that the sand shape has a significant impact on the saltation process; for the same wind speed, the sand transport rates varied for different shapes of sand grains by as much as several-fold. Therefore, sand shape is one of the important factors affecting wind-sand movement.

  7. On the mathematical modeling of aeolian saltation

    DEFF Research Database (Denmark)

    Jensen, Jens Ledet; Sørensen, Michael

    1983-01-01

    The development of a mathematical model for aeolian saltation is a promising way of obtaining further progress in the field of wind-blown sand. Interesting quantities can be calculated from a model defined in general terms, and a specific model is defined and compared to previously published data...... on aeolian saltation. This comparison points out the necessity of discriminating between pure and real saltation. -Authors...

  8. Distal impacts of aquarium trade: Exploring the emerging sandhopper (Orchestoidea tuberculata) artisanal shore gathering fishery in Chile.

    Science.gov (United States)

    Tapia-Lewin, Sebastián; Vergara, Karina; De La Barra, Christian; Godoy, Natalio; Castilla, Juan Carlos; Gelcich, Stefan

    2017-10-01

    Artisanal fishery activities support the livelihoods of millions of people worldwide, particularly in developing countries. Within these fisheries, distal global drivers can promote switching between alternative target resources. These drivers can promote the rapid development of new, unregulated and previously unexploited fisheries that pose a threat to the sustainability of ecosystems. In this paper, we describe a new artisanal shore gathering activity that targets a previously unexploited resource: the sandhopper (Orchestoidea tuberculata). The activity is driven by aquarium trade demand for food. We used mixed methods to describe the activity, assessed basic socio-economic incentives, and estimated Catches per Unit Effort. Results show that the sandhopper plays an important role for the livelihoods of shore gatherers engaged in the activity. Gatherers have adapted and developed two main extraction methods with different degrees of investment and extraction rates. Furthermore, gatherers have developed local knowledge regarding the ecology and management of the resource. Results show that economic incentives can motivate a rapid expansion of this unregulated activity. Future research gaps and management options to address the development of this fishery are discussed in light of these findings.

  9. High-frequency measurements of aeolian saltation flux: Field-based methodology and applications

    Science.gov (United States)

    Martin, Raleigh L.; Kok, Jasper F.; Hugenholtz, Chris H.; Barchyn, Thomas E.; Chamecki, Marcelo; Ellis, Jean T.

    2018-02-01

    Aeolian transport of sand and dust is driven by turbulent winds that fluctuate over a broad range of temporal and spatial scales. However, commonly used aeolian transport models do not explicitly account for such fluctuations, likely contributing to substantial discrepancies between models and measurements. Underlying this problem is the absence of accurate sand flux measurements at the short time scales at which wind speed fluctuates. Here, we draw on extensive field measurements of aeolian saltation to develop a methodology for generating high-frequency (up to 25 Hz) time series of total (vertically-integrated) saltation flux, namely by calibrating high-frequency (HF) particle counts to low-frequency (LF) flux measurements. The methodology follows four steps: (1) fit exponential curves to vertical profiles of saltation flux from LF saltation traps, (2) determine empirical calibration factors through comparison of LF exponential fits to HF number counts over concurrent time intervals, (3) apply these calibration factors to subsamples of the saltation count time series to obtain HF height-specific saltation fluxes, and (4) aggregate the calibrated HF height-specific saltation fluxes into estimates of total saltation fluxes. When coupled to high-frequency measurements of wind velocity, this methodology offers new opportunities for understanding how aeolian saltation dynamics respond to variability in driving winds over time scales from tens of milliseconds to days.

  10. Equal Susceptibility and Size-selective Mobility in Aeolian Saltation

    Science.gov (United States)

    Martin, R. L.; Kok, J. F.

    2017-12-01

    Natural wind-eroded soils generally contain a mixture of particle sizes. However, models for aeolian saltation are typically derived for sediment bed surfaces containing only a single particle size. To treat natural mixed beds, models for saltation and associated dust aerosol emission have typically simplified aeolian transport either as a series of non-interacting single particle size beds or as a bed containing only the median or mean particle size. Here, we test these common assumptions underpinning aeolian transport models using measurements of size-resolved saltation fluxes at three natural field sites. We find that a wide range of sand size classes experience "equal susceptibility" to saltation at a single common threshold wind shear stress, contrary to the "selective susceptibility" expected for treatment of a mixed bed as multiple single particle size beds. Furthermore, we observe strong size-selectivity in the mobility of different particle sizes, which is not adequately accounted for in current models. At all field sites, mobility is enhanced for particles that are 0.4-0.8 times the median bed particle diameter, while mobility declines rapidly with increasing particle size above this range. We further observe that the most mobile particles also experience the largest saltation heights, which helps to explain variations in size-selective mobility. These observations refute the common simplification of saltation as a series of non-interacting single particle sizes. Sand transport and dust emission models that use this incorrect assumption can be both simplified and improved by instead using a single particle size representative of the mixed bed.

  11. Trajectories of saltating sand particles behind a porous fence

    Science.gov (United States)

    Zhang, Ning; Lee, Sang Joon; Chen, Ting-Guo

    2015-01-01

    Trajectories of aeolian sand particles behind a porous wind fence embedded in a simulated atmospheric boundary layer were visualized experimentally, to investigate the shelter effect of the fence on sand saltation. Two sand samples, one collected from a beach (d = 250 μm) and the other from a desert (d = 100 μm), were tested in comparison with the previous studies of a 'no-fence' case. A wind fence (ε = 38.5%) was installed on a flat sand bed filled with each sand sample. A high-speed photography technique and the particle tracking velocimetry (PTV) method were employed to reconstruct the trajectories of particles saltating behind the fence. The collision processes of these sand particles were analyzed, momentum and kinetic energy transfer between saltating particles and ground surface were also investigated. In the wake region, probability density distributions of the impact velocities agree well with the pattern of no-fence case, and can be explained by a log-normal law. The horizontal component of impact velocity for the beach sand is decreased by about 54%, and about 76% for the desert sand. Vertical restitution coefficients of bouncing particles are smaller than 1.0 due to the presence of the wind fence. The saltating particles lose a large proportion of their energy during the collision process. These results illustrate that the porous wind fence effectively abates the further evolution of saltating sand particles.

  12. The impacts of moisture transport on drifting snow sublimation in the saltation layer

    Directory of Open Access Journals (Sweden)

    N. Huang

    2016-06-01

    Full Text Available Drifting snow sublimation (DSS is an important physical process related to moisture and heat transfer that happens in the atmospheric boundary layer, which is of glaciological and hydrological importance. It is also essential in order to understand the mass balance of the Antarctic ice sheets and the global climate system. Previous studies mainly focused on the DSS of suspended snow and ignored that in the saltation layer. Here, a drifting snow model combined with balance equations for heat and moisture is established to simulate the physical DSS process in the saltation layer. The simulated results show that DSS can strongly increase humidity and cooling effects, which in turn can significantly reduce DSS in the saltation layer. However, effective moisture transport can dramatically weaken the feedback effects. Due to moisture advection, DSS rate in the saltation layer can be several orders of magnitude greater than that of the suspended particles. Thus, DSS in the saltation layer has an important influence on the distribution and mass–energy balance of snow cover.

  13. Wind driven saltation: a hitherto overlooked challenge for life on Mars

    Science.gov (United States)

    Bak, Ebbe; Goul, Michael; Rasmussen, Martin; Moeller, Ralf; Nørnberg, Per; Knak Jensen, Svend; Finster, Kai

    2017-04-01

    The Martian surface is a hostile environment characterized by low water availability, low atmospheric pressure and high UV and ionizing radiation. Furthermore, wind-driven saltation leads to abrasion of silicates with a production of reactive surface sites and, through triboelectric charging, a release of electrical discharges with a concomitant production of reactive oxygen species. While the effects of low water availability, low pressure and radiation have been extensively studied in relation to the habitability of the Martian surface and the preservation of organic biosignatures, the effects of wind-driven saltation have hitherto been ignored. In this study, we have investigated the effect of exposing bacteria to wind-abraded silicates and directly to wind-driven saltation on Mars in controlled laboratory simulation experiments. Wind-driven saltation was simulated by tumbling mineral samples in a Mars-like atmosphere in sealed quartz ampoules. The effects on bacterial survival and structure were evaluated by colony forming unit counts in combination with scanning electron microscopy, quantitative polymerase chain reaction and life/dead-staining with flow cytometry. The viability of vegetative cells of P. putida, B. subtilis and D. radiodurans in aqueous suspensions was reduced by more than 99% by exposure to abraded basalt, while the viability of B. subtilis endospores was unaffected. B. subtilis mutants lacking different spore components were likewise highly resistant to the exposure to abraded basalt, which indicates that the resistance of spores is not associated with any specific spore component. We found a significant but reduced effect of abraded quartz and we suggest that the stress effect of abraded silicates is induced by a production of reactive oxygen species and hydroxyl radicals produced by Fenton-like reactions in the presence of transition metals. Direct exposure to simulated saltation had a dramatic effect on both D. radiodurans cells and B

  14. Model of rough bed for numerical simulation of saltation

    Czech Academy of Sciences Publication Activity Database

    Kharlamova, Irina; Vlasák, Pavel

    2015-01-01

    Roč. 19, č. 3 (2015), s. 366-385 ISSN 1964-8189 R&D Projects: GA ČR GA103/09/1718; GA ČR GAP105/10/1574 Institutional support: RVO:67985874 Keywords : saltation * bed load transport * rough bed * armoured bed * bed roughness Subject RIV: BK - Fluid Dynamics Impact factor: 0.636, year: 2015

  15. Evidence of repeated and independent saltational evolution in a peculiar genus of sphinx moths (Proserpinus: Sphingidae.

    Directory of Open Access Journals (Sweden)

    Daniel Rubinoff

    Full Text Available Saltational evolution in which a particular lineage undergoes relatively rapid, significant, and unparalleled change as compared with its closest relatives is rarely invoked as an alternative model to the dominant paradigm of gradualistic evolution. Identifying saltational events is an important first-step in assessing the importance of this discontinuous model in generating evolutionary novelty. We offer evidence for three independent instances of saltational evolution in a charismatic moth genus with only eight species.Maximum parsimony, maximum likelihood and Bayesian search criteria offered congruent, well supported phylogenies based on 1,965 base pairs of DNA sequence using the mitochondrial gene cytochrome oxidase subunit I, and the nuclear genes elongation factor-1 alpha and wingless. Using a comparative methods approach, we examined three taxa exhibiting novelty in the form of Batesian mimicry, host plant shift, and dramatic physiological differences in light of the phylogenetic data. All three traits appear to have evolved relatively rapidly and independently in three different species of Proserpinus. Each saltational species exhibits a markedly different and discrete example of discontinuous trait evolution while remaining canalized for other typical traits shared by the rest of the genus. All three saltational taxa show insignificantly different levels of overall genetic change as compared with their congeners, implying that their divergence is targeted to particular traits and not genome-wide.Such rapid evolution of novel traits in individual species suggests that the pace of evolution can be quick, dramatic, and isolated--even on the species level. These results may be applicable to other groups in which specific taxa have generated pronounced evolutionary novelty. Genetic mechanisms and methods for assessing such relatively rapid changes are postulated.

  16. Evidence of repeated and independent saltational evolution in a peculiar genus of sphinx moths (Proserpinus: Sphingidae).

    Science.gov (United States)

    Rubinoff, Daniel; Le Roux, Johannes J

    2008-01-01

    Saltational evolution in which a particular lineage undergoes relatively rapid, significant, and unparalleled change as compared with its closest relatives is rarely invoked as an alternative model to the dominant paradigm of gradualistic evolution. Identifying saltational events is an important first-step in assessing the importance of this discontinuous model in generating evolutionary novelty. We offer evidence for three independent instances of saltational evolution in a charismatic moth genus with only eight species. Maximum parsimony, maximum likelihood and Bayesian search criteria offered congruent, well supported phylogenies based on 1,965 base pairs of DNA sequence using the mitochondrial gene cytochrome oxidase subunit I, and the nuclear genes elongation factor-1 alpha and wingless. Using a comparative methods approach, we examined three taxa exhibiting novelty in the form of Batesian mimicry, host plant shift, and dramatic physiological differences in light of the phylogenetic data. All three traits appear to have evolved relatively rapidly and independently in three different species of Proserpinus. Each saltational species exhibits a markedly different and discrete example of discontinuous trait evolution while remaining canalized for other typical traits shared by the rest of the genus. All three saltational taxa show insignificantly different levels of overall genetic change as compared with their congeners, implying that their divergence is targeted to particular traits and not genome-wide. Such rapid evolution of novel traits in individual species suggests that the pace of evolution can be quick, dramatic, and isolated--even on the species level. These results may be applicable to other groups in which specific taxa have generated pronounced evolutionary novelty. Genetic mechanisms and methods for assessing such relatively rapid changes are postulated.

  17. Height profile of particle concentration in an aeolian saltating cloud: A wind tunnel investigation by PIV MSD

    Science.gov (United States)

    Dong, Zhibao; Wang, Hongtao; Zhang, Xiaohang; Ayrault, Michael

    2003-10-01

    Attempt is made to define the particle concentration in an aeolian saltating cloud and its variation with height using artificial spherical quartz sand in a wind tunnel. The height profiles of the relative particle concentration in aeolian saltating cloud at three wind velocities were detected by the state of the art PIV (Particle Image Velocimetry) MSD (Mie Scattering Diffusion) technique, and converted to actual concentration based on sand transport rate and the variation with height of velocity of the saltating cloud. The particle concentration was found to decay exponentially with height and to increase with wind velocity. It decayed more rapidly when the wind velocity decreased. The volume/volume concentration in the near-surface layer was at the order of 10-4. The results obtained by PIV MSD technique were in good agreement with those derived from the sand flux and velocity profiles, the former being about 15% greater than the later.

  18. Intrachromosomal rearrangements in two representatives of the genus Saltator (Thraupidae, Passeriformes) and the occurrence of heteromorphic Z chromosomes.

    Science.gov (United States)

    dos Santos, Michelly da Silva; Kretschmer, Rafael; Silva, Fabio Augusto Oliveira; Ledesma, Mario Angel; O'Brien, Patricia C M; Ferguson-Smith, Malcolm A; Del Valle Garnero, Analía; de Oliveira, Edivaldo Herculano Corrêa; Gunski, Ricardo José

    2015-10-01

    Saltator is a genus within family Thraupidae, the second largest family of Passeriformes, with more than 370 species found exclusively in the New World. Despite this, only a few species have had their karyotypes analyzed, most of them only with conventional staining. The diploid number is close to 80, and chromosome morphology is similar to the usual avian karyotype. Recent studies using cross-species chromosome painting have shown that, although the chromosomal morphology and number are similar to many species of birds, Passeriformes exhibit a complex pattern of paracentric and pericentric inversions in the chromosome homologous to GGA1q in two different suborders, Oscines and Suboscines. Hence, considering the importance and species richness of Thraupidae, this study aims to analyze two species of genus Saltator, the golden-billed saltator (S. aurantiirostris) and the green-winged saltator (S. similis) by means of classical cytogenetics and cross-species chromosome painting using Gallus gallus and Leucopternis albicollis probes, and also 5S and 18S rDNA and telomeric sequences. The results show that the karyotypes of these species are similar to other species of Passeriformes. Interestingly, the Z chromosome appears heteromorphic in S. similis, varying in morphology from acrocentric to metacentric. 5S and 18S probes hybridize to one pair of microchromosomes each, and telomeric sequences produce signals only in the terminal regions of chromosomes. FISH results are very similar to the Passeriformes already analyzed by means of molecular cytogenetics (Turdus species and Elaenia spectabilis). However, the paracentric and pericentric inversions observed in Saltator are different from those detected in these species, an observation that helps to explain the probable sequence of rearrangements. As these rearrangements are found in both suborders of Passeriformes (Oscines and Suboscines), we propose that the fission of GGA1 and inversions in GGA1q have occurred very

  19. Exploration of probability distribution of velocities of saltating sand particles based on the stochastic particle-bed collisions

    International Nuclear Information System (INIS)

    Zheng Xiaojing; Xie Li; Zhou Youhe

    2005-01-01

    The wind-blown sand saltating movement is mainly categorized into two mechanical processes, that is, the interaction between the moving sand particles and the wind in the saltation layer, and the collisions of incident particles with sand bed, and the latter produces a lift-off velocity of a sand particle moving into saltation. In this Letter a methodology of phenomenological analysis is presented to get probability density (distribution) function (pdf) of the lift-off velocity of sand particles from sand bed based on the stochastic particle-bed collision. After the sand particles are dealt with by uniform circular disks and a 2D collision between an incident particle and the granular bed is employed, we get the analytical formulas of lift-off velocity of ejected and rebound particles in saltation, which are functions of some random parameters such as angle and magnitude of incident velocity of the impacting particles, impact and contact angles between the collision particles, and creeping velocity of sand particles, etc. By introducing the probability density functions (pdf's) of these parameters in communion with all possible patterns of sand bed and all possible particle-bed collisions, and using the essential arithmetic of multi-dimension random variables' pdf, the pdf's of lift-off velocities are deduced out and expressed by the pdf's of the random parameters in the collisions. The numerical results of the distributions of lift-off velocities display that they agree well with experimental ones

  20. Model of the saltation transport by Discrete Element Method coupled with wind interaction

    Directory of Open Access Journals (Sweden)

    Oger Luc

    2017-01-01

    Full Text Available We study the Aeolian saltation transport problem by analysing the collision of incident energetic beads with granular packing. We investigate the collision process for the case where the incident bead and those from the packing have identical mechanical properties. We analyse the features of the consecutive collision process. We used a molecular dynamics method known as DEM (soft Discrete Element Method with 20000 particles (2D. The grains were displayed randomly in a box (250X60. A few incident disks are launched with a constant velocity and angle with high random position to initiate the flow. A wind velocity profile is applied on the flowing zone of the saltation. The velocity profile is obtained by the calculi of the counter-flow due to the local packing fraction induced by the granular flow. We analyse the evolution of the upper surface of the disk packing. In the beginning, the saltation process can be seen as the classical “splash function” in which one bead hits a fully static dense packing. Then, the quasi-fluidized upper layer of the packing creates a completely different behaviour of the “animated splash function”. The dilation of the upper surface due to the previous collisions is responsible for a need of less input energy for launching new ejected disks. This phenomenon permits to maintain a constant granular flow with a “small” wind velocity on the surface of the disk bed.

  1. Saltation under Martian gravity and its influence on the global dust distribution

    Science.gov (United States)

    Musiolik, Grzegorz; Kruss, Maximilian; Demirci, Tunahan; Schrinski, Björn; Teiser, Jens; Daerden, Frank; Smith, Michael D.; Neary, Lori; Wurm, Gerhard

    2018-05-01

    Dust and sand motion are a common sight on Mars. Understanding the interaction of atmosphere and Martian soil is fundamental to describe the planet's weather, climate and surface morphology. We set up a wind tunnel to study the lift of a mixture between very fine sand and dust in a Mars simulant soil. The experiments were carried out under Martian gravity in a parabolic flight. The reduced gravity was provided by a centrifuge under external microgravity. The onset of saltation was measured for a fluid threshold shear velocity of 0.82 ± 0.04 m/s. This is considerably lower than found under Earth gravity. In addition to a reduction in weight, this low threshold can be attributed to gravity dependent cohesive forces within the sand bed, which drop by 2/3 under Martian gravity. The new threshold for saltation leads to a simulation of the annual dust cycle with a Mars GCM that is in agreement with observations.

  2. Strong feedbacks between hillslope sediment production and channel incision by saltation-abrasion

    Science.gov (United States)

    Lundbek Egholm, David; Faurschou Knudsen, Mads; Sandiford, Mike

    2013-04-01

    While it is well understood that rivers erode mountain ranges by incising the bedrock and by transporting sediments away from the ranges, the basic physical mechanisms that drive long-term bedrock erosion and control the lifespan of mountain ranges remain uncertain. A particularly challenging paradox is reconciling the dichotomy associated with the high incision rates observed in active mountain belts, and the long-term (108 years) preservation of significant topographic reliefs in inactive orogenic belts (e.g. von Blankenburg, 2005). We have performed three-dimensional computational experiments with a landscape evolution model that couples bedrock landslides and sediment flux-dependent river erosion by saltation-abrasion (Sklar & Dietrich, 2004). The coupled model experiments show strong feedbacks between the channel erosion and the hillslope delivery of sediments. The feedbacks point to hillslope sediment production rate as the main control on channel erosion rates where saltation-abrasion dominates over other fluvial erosion processes. Our models results thus highlight the importance of hillslope sediment production controlled by climate and tectonic activity for scaling erosion rates in fluvial systems. Because of variations in landslide frequency, the feedbacks make tectonic activity a primary driver of fluvial erosion and help clarifying the long-standing paradox associated with the persistence of significant relief in old orogenic belts, up to several hundred-million-years after tectonic activity has effectively ceased. References F. von Blankenburg. The control mechanisms of erosion and weathering at basin scale from cosmogenic nuclides in river sediment. Earth Planet. Sci. Lett. 237, 462-479 (2005). L. S. Sklar, W. E. Dietrich. A mechanistic model for river incision into bedrock by saltating bed load. Water Resour. Res. 40, W06301 (2004).

  3. Dependence of saltation characteristics on bed organisation in numerical simulation

    Czech Academy of Sciences Publication Activity Database

    Kharlamova, Irina; Vlasák, Pavel

    2015-01-01

    Roč. 19, č. 1 (2015), s. 177-184 ISSN 1226-4806 R&D Projects: GA ČR GA103/09/1718; GA ČR GAP105/10/1574 Institutional support: RVO:67985874 Keywords : saltation parameters * bed roughness * bed structure * bed load transport * armoured bed Subject RIV: BK - Fluid Dynamics Impact factor: 0.922, year: 2015 http://link.springer.com/content/pdf/10.1007%2Fs12303-014-0029-3.pdf

  4. Saltation movement of large spherical particles

    Science.gov (United States)

    Chara, Z.; Dolansky, J.; Kysela, B.

    2017-07-01

    The paper presents experimental and numerical investigations of the saltation motion of a large spherical particle in an open channel. The channel bottom was roughed by one layer of glass rods of diameter 6 mm. The plastic spheres of diameter 25.7 mm and density 1160 kgm-3 were fed into the water channel and theirs positions were viewed by a digital camera. Two light sheets were placed above and under the channel, so the flow was simultaneously lighted from the top and the bottom. Only particles centers of which moved through the light sheets were recorded. Using a 2D PIV method the trajectories of the spheres and the velocity maps of the channel flow were analyzed. The Lattice-Boldzmann Method (LBM) was used to simulate the particle motion.

  5. 3D Lagrangian Model of Particle Saltation in an Open Channel Flow with Emphasis on Particle-Particle Collisions

    Science.gov (United States)

    Moreno, P. A.; Bombardelli, F. A.

    2012-12-01

    Particles laying motionless at the bed of rivers, lakes and estuaries can be put into motion when the shear stress exerted by the flow on the particles exceeds the critical shear stress. When these particles start their motion they can either remain suspended by long periods of time (suspended load) or move close to the bed (bed load). Particles are transported as bed load in three different modes: Sliding, rolling and saltation. Saltation is usually described as the bouncing motion of sediment particles in a layer a few particle diameters thick. The amount of particles and the bed-load mode in which they move depend on the particle size and density, and the flow intensity, usually quantified by the shear velocity. The bottom shear stress in natural streams will most likely be large enough to set saltation as the most important bed-load transport mechanism among all three modes. Thus, studying the saltation process is crucial for the overall understanding of bed-load transport. Particularly, numerical simulations of this process have been providing important insight regarding the relative importance of the physical mechanisms involved in it. Several processes occur when particles are saltating near the bed: i) Particles collide with the bed, ii) they "fly" between collisions with the bed, as a result of their interaction with the fluid flow, iii) and they collide among themselves. These processes can be simulated using a three-dimensional Eulerian-Lagrangian model. In order to mimic these processes we have experimented with an averaged turbulent flow field represented by the logarithmic law of the wall, and with a more involved approach in which a computed turbulent velocity field for a flat plate was used as a surrogate of the three-dimensional turbulent conditions present close to stream beds. Since flat-plate and open-channel boundary layers are essentially different, a dynamic similarity analysis was performed showing that the highly-resolved three

  6. Ecologia da comunidade de metazoários parasitos da anchova Pomatomus saltator (Linnaeus (Osteichthyes, Pomatomidae do litoral do estado do Rio de Janeiro, Brasil Community ecology of metazoan parasites of bluefish Pomatomus saltator (Linnaeus (Osteichthyes, Pomatomidae from the littoral of State of Rio de Janeiro, Brazil

    Directory of Open Access Journals (Sweden)

    José Luis Luque

    1999-01-01

    Full Text Available Fifty-five specimens of bluefish, Pomatomus saltator (Linnaeus, 1766, collected at Cabo Frio (23ºS, 42ºW, State of Rio de Janeiro, Brazil, between March 1995 and November 1995, were necropsied to study their infracommunities of metazoan parasites. Sixteen species of metazoan parasites were collected. All fish were parasitized by one or more metazoan. The digeneans were the majority of the parasite specimens collected, with 44.2%, followed by the helminth larval stages (cestodes, acanthocephalans, and nematodes with 40.6%. The Simpson index for all parasite species was 0.097, indicating lack of dominance by any species in the parasite community. Microcotyle pomatomi Goto, 1899 showed the higher frequency of dominance and mean relative dominance. The parasite species of P. saltator showed the typical overdispersed pattern of distribution. The majority of parasite species showed positive correlation between the host's total body length and prevalence or parasite abundance. Two species, Brachyphallus parvus (Manter, 1947 and Phocanema sp. have differences in their prevalences and abundances in relation to sex of the hosts. The mean diversity in the infracommunities of P. saltator was H'=1.243±0.521, with correlation with the host's total length and without difference between male and female fish. The components of the parasite community of P. saltator showed overall positive association. All pairs confonned by ectoparasites and adult endoparasites species showed signiticant positive association or covariation between their abundances. Five pairs of endoparasites larval species showed positive association or covariation, and two pairs, showed negative association and covariation. The parasite community of P. saltator was dominated by species with high prevalence values, that composed a high number of associations, thus, is considered closer to the interactive type.

  7. Oocyst shedding by green-winged-saltator (Saltator similis in the diagnostic of coccidiosis and Isospora similisi n. sp. (Apicomplexa: Eimeriidae Eliminação de oocistos por trinca-ferro-verdadeiro (Saltator similis no diagnóstico da coccidiose e Isospora similisi n. sp. (Apicomplexa: Eimeriidae

    Directory of Open Access Journals (Sweden)

    Cleide Domingues Coelho

    2013-03-01

    Full Text Available Diurnal periodicity is a phenomenon that has been observed in coccidian of Isospora parasites of passerines, which have been eliminated great number of oocysts at dusk. The objective of this study was to evaluate the occurrence of periodicity of oocysts presence in the green-winged-saltator Saltator similis, and its use in the diagnosis of coccidiosis in wild birds in captivity. A total of 220 fecal samples were collected from birds, apprehended from illegal trading and kept in quarantine in CETAS∕IBAMA, in the morning and late afternoon, from May to November 2010. It was observed that 1.82% of the samples collected in the morning were positive, while 31.36% of samples were positive in the late afternoon. In addition, the number of oocysts shed was greater in the afternoon. Therefore, it was concluded that the sampling in the late afternoon provided greater reliability for the diagnosis of coccidiosis in green-winged-saltators. Moreover, in this study a new isosporoid coccidian parasite from the green-winged-saltator S. similis was observed and is herein described. Isospora similisi n. sp. oocysts are spheroidal to sub-spheroidal, 27.5 × 25.9 µm, with a smooth and bi-layered wall, ∼1.2 mm. Micropyle and oocyst residuum are absent, but splinter-like or comma-like granules are present. Sporocysts are ellipsoidal or slightly ovoidal, 17.4 × 12.2 mm. A stieda body and substieda body are present. The sporocyst residuum is composed of granules of different sizes. Sporozoites are vermiform with a single refractile body and a nucleus. This is the fourth description of an isosporoid coccidium infecting S. similis and the sixth description from Cardinalidae.A periodicidade diurna é um fenômeno que tem sido observado em coccídios do gênero Isospora parasitas de pássaros, os quais eliminam uma maior quantidade de oocistos ao entardecer. O objetivo deste estudo foi determinar a periodicidade de eliminação de oocistos pelas fezes no trinca

  8. Aeolian Erosion on Mars - a New Threshold for Saltation

    Science.gov (United States)

    Teiser, J.; Musiolik, G.; Kruss, M.; Demirci, T.; Schrinski, B.; Daerden, F.; Smith, M. D.; Neary, L.; Wurm, G.

    2017-12-01

    The Martian atmosphere shows a large variety of dust activity, ranging from local dust devils to global dust storms. Also, sand motion has been observed in form of moving dunes. The dust entrainment into the Martian atmosphere is not well understood due to the small atmospheric pressure of only a few mbar. Laboratory experiments on Earth and numerical models were developed to understand these processes leading to dust lifting and saltation. Experiments so far suggested that large wind velocities are needed to reach the threshold shear velocity and to entrain dust into the atmosphere. In global circulation models this threshold shear velocity is typically reduced artificially to reproduce the observed dust activity. Although preceding experiments were designed to simulate Martian conditions, no experiment so far could scale all parameters to Martian conditions, as either the atmospheric or the gravitational conditions were not scaled. In this work, a first experimental study of saltation under Martian conditions is presented. Martian gravity is reached by a centrifuge on a parabolic flight, while pressure (6 mbar) and atmospheric composition (95% CO2, 5% air) are adjusted to Martian levels. A sample of JSC 1A (grain sizes from 10 - 100 µm) was used to simulate Martian regolith. The experiments showed that the reduced gravity (0.38 g) not only affects the weight of the dust particles, but also influences the packing density within the soil and therefore also the cohesive forces. The measured threshold shear velocity of 0.82 m/s is significantly lower than the measured value for 1 g in ground experiments (1.01 m/s). Feeding the measured value into a Global Circulation Model showed that no artificial reduction of the threshold shear velocity might be needed to reproduce the global dust distribution in the Martian atmosphere.

  9. 3D numerical model of the spherical particle saltation in a channel with a rough fixed bed

    Czech Academy of Sciences Publication Activity Database

    Lukerchenko, Nikolay; Piatsevich, Siarhei; Chára, Zdeněk; Vlasák, Pavel

    2009-01-01

    Roč. 57, č. 2 (2009), s. 100-112 ISSN 0042-790X R&D Projects: GA ČR GA103/06/1487 Institutional research plan: CEZ:AV0Z20600510 Keywords : 3D Saltation Model * Bed-Load Transport * Particle-Bed Collision * Particle Rotation * Particle Lateral Dispersion Subject RIV: BK - Fluid Dynamics Impact factor: 1.000, year: 2009

  10. Seven years of macroinfauna monitoring at Ladeira beach (Corrubedo Bay, NW Spain after the Prestige oil spill

    Directory of Open Access Journals (Sweden)

    Juan Junoy

    2013-05-01

    Full Text Available The exposed sandy beach of Ladeira (Corrubedo Bay, NW Spain was sampledduring seven years (2003-2009 after the Prestige oil spill(winter 2002-03, todetermine interannual variations in the macroinfaunal community in two ways:(i through ecological indices (species richness and abundances, Shannon'sdiversityand Pielou's evenness and (ii through the density of the most representativespecies. A clear zonation pattern was found, consisting of two zones:(i the supralittoral, occupied by talitrid amphipods, isopods and insects,and(ii the intertidal, where marine crustaceans and polychaetes prevailed. Theamphipods Talitrus saltator and Talorchestia deshayesiidominated from the driftline upwards, and isopods (Eurydice spp., polychaetes (Scolelepisspp. andthe amphipod Pontocrates arenarius dominated the intertidal. Univariateindices remained constant throughout the study period in the supralittoral,but they varied widely in the intertidal zone. Multivariate analysis showedthat the Prestige oil spill scarcely affected the macroinfaunalcommunity structure during the study period (2003-2009 and its effect waslimited just to the first campaign (2003, six months after the Prestigeaccident.

  11. An experimental study of the dynamics of saltation within a three-dimensional framework

    Science.gov (United States)

    O'Brien, Patrick; McKenna Neuman, Cheryl

    2018-04-01

    Our understanding of aeolian sand transport via saltation lacks an experimental determination of the particle borne kinetic energy partitioned into 3 dimensions relative to the mean flow direction. This in turn creates a disconnect between global wind erosion estimates and particle scale processes. The present study seeks to address this deficiency through an extended analysis of data obtained from a series of particle tracking velocimetry experiments conducted in a boundary layer wind tunnel under transport limited conditions. Particle image diameter, as it appeared within each camera frame, was extensively calibrated against that obtained by sieving, and the ballistic trajectories detected were disassembled into discrete particle image pairs whose distribution and dynamics were then examined in vertical profile with sub-millimeter resolution. The vertical profile of the wind aligned particle transport rate was found to follow a power relation within 10 mm of the bed surface. The exponent of this power function changes with increasing spanwise angle (θ) to produce a family of curves representing particle diffusion in 3 dimensions. Particle mass was found to increase with θ, and the distribution of the total particle kinetic energy was found to be very similar to that for the particle concentration. The spanwise component of the kinetic energy of a saltating particle peaks at θ = 45°, with the stream-aligned component an order of magnitude higher in value. Low energy, splashed particles near the bed account for a majority of the kinetic energy distributed throughout the particle cloud, regardless of their orientation.

  12. Particle–particle collisions in the Lagrangian modelling of saltating grains By ROBERT J. BIALIK, Journal of Hydraulic Research, Vol. 49, No. 1 (2011), pp. 23–31

    Czech Academy of Sciences Publication Activity Database

    Lukerchenko, Nikolay

    2012-01-01

    Roč. 50, č. 2 (2012), s. 251-252 ISSN 0022-1686 Institutional research plan: CEZ:AV0Z20600510 Keywords : saltation * spherical particle * particle-particle collision * numerical model Subject RIV: BK - Fluid Dynamics

  13. HABITAT PREFERENSIAL TARSIUS BELITUNG (Cephalopachus bancanus saltator Elliot, 1910

    Directory of Open Access Journals (Sweden)

    Fifin Fitriana

    2017-04-01

    Full Text Available Belitung tarsier (Cephalopachus bancanus saltator is an endemic species in Belitung Island from Cephalopachus genus. Existence of belitung tarsier in its habitat is now under threatened by deforestatition. Due to lack information about its habitat and as conservation effort, this research was tackled to reveal the characteristic of habitat preference of belitung tarsier. The aim of this study are to identify characteristic of habitat preference of belitung tarsier. This research was conducted in March until May 2016 at around Mount Tajam Protected Forest and plantation area. Presence of tarsiers were identified by direct observation, urine odor detection, identifying based tarsier habitat suitability and the local information. Chi-square and Neu methode was used to analyze the variable of habitat preference of belitung tarsiers. This research found that characteristics of habitat preference of belitung tarsier consisted of its homerange was prefer to dry land agricultural and shurb land cover type, not too tight canopy cover (Leaf Area Index /LAI value of 0,83-2,46, close to the edge of forest (0 -874 m, roads (0 – 3.698 m and settlements (0-403 m, elevation range was between 1 -142 m asl, slope slightly (0-15%, temperature 24-25 0C and high rainfall (3.222 – 3.229 mm/year. Characteristic of habitat preference information could be considered to develop conservation action of belitung tarsier. Keywords: belitung tarsiers, habitat, habitat preference, tarsier  

  14. Dynamic characteristics of motor-gear system under load saltations and voltage transients

    Science.gov (United States)

    Bai, Wenyu; Qin, Datong; Wang, Yawen; Lim, Teik C.

    2018-02-01

    In this paper, a dynamic model of a motor-gear system is proposed. The model combines a nonlinear permeance network model (PNM) of a squirrel-cage induction motor and a coupled lateral-torsional dynamic model of a planetary geared rotor system. The external excitations including voltage transients and load saltations, as well as the internal excitations such as spatial effects, magnetic circuits topology and material nonlinearity in the motor, and time-varying mesh stiffness and damping in the planetary gear system are considered in the proposed model. Then, the simulation results are compared with those predicted by the electromechanical model containing a dynamic motor model with constant inductances. The comparison showed that the electromechanical system model with the PNM motor model yields more reasonable results than the electromechanical system model with the lumped-parameter electric machine. It is observed that electromechanical coupling effect can induce additional and severe gear vibrations. In addition, the external conditions, especially the voltage transients, will dramatically affect the dynamic characteristics of the electromechanical system. Finally, some suggestions are offered based on this analysis for improving the performance and reliability of the electromechanical system.

  15. The effect of wet-dry weathering on the rate of bedrock river channel erosion by saltating gravel

    Science.gov (United States)

    Inoue, Takuya; Yamaguchi, Satomi; Nelson, Jonathan M.

    2017-01-01

    Previous work has shown that the bedrock erosion rate E because of collisions of saltating bedload can be expressed by E = βqb(1-Pc), where qb is the sediment transport rate, Pc is the extent of alluvial cover, and β is the abrasion coefficient. However, the dependence of the abrasion coefficient on the physical characteristics of the bedrock material is poorly known, and in particular, the effects of wet-dry weathering on the saltation-abrasion bedrock incision has not been specifically characterized. Observation suggests that the typical wet-dry cycling of exposed bedrock in river beds gives rise to cracks and voids that are likely to alter the incision rate of the material when subjected to impacts of moving sediment. In this study, flume experiments are performed to develop an understanding of how wet-dry cycling affects the rock tensile strength and the bedrock erosion rate. To represent the physical effects of weathering, boring cores taken from natural bedrock channel are exposed to artificial wet-dry cycles. The experimental results suggest the following: (1) the abrasion coefficient for fresh bedrock is estimated by β = 1.0 × 10− 4σT− 2(d/ksb)0.5, where σT is the tensile strength, d is the diameter of colliding gravel, and ksb is the hydraulic roughness height of bedrock; (2) the tensile strength of the bedrock decreases exponentially as a result of repeated wet-dry cycles, σT/σT0 = exp (-CTNWa0/σT0), where σT0 is the initial tensile strength, Wa0 is the initial normalized rate of water absorption., N is the number of wet-dry cycles, and CT is a constant; (3) the erosion rate of fresh bedrock depends on the inverse of the square of tensile strength, but the erosion rate of weathered bedrock depends on the − 1.5 power of tensile strength.

  16. Soil erosion rates caused by wind and saltating sand stresses in a wind tunnel

    International Nuclear Information System (INIS)

    Ligotke, M.W.

    1993-02-01

    Wind erosion tests were performed in a wind tunnel in support of the development of long-term protective barriers to cap stabilized waste sites at the Hanford Site. Controlled wind and saltating sand erosive stresses were applied to physical models of barrier surface layers to simulate worst-case eolian erosive stresses. The goal of these tests was to provide information useful to the design and evaluation of the surface layer composition of an arid-region waste site barrier concept that incorporates a deep fine-soil reservoir. A surface layer composition is needed that will form an armor resistant to eolian erosion during periods of extreme dry climatic conditions, especially when such conditions result in the elimination or reduction of vegetation by water deprivation or wildfire. Because of the life span required of Hanford waste barriers, it is important that additional work follow these wind tunnel studies. A modeling effort is planned to aid the interpretation of test results with respect to the suitability of pea gravel to protect the finite-soil reservoir during long periods of climatic stress. It is additionally recommended that wind tunnel tests be continued and field data be obtained at prototype or actual barrier sites. Results wig contribute to barrier design efforts and provide confidence in the design of long-term waste site caps for and regions

  17. The trophic significance of the invasive seaweed Sargassum muticum in sandy beaches

    Science.gov (United States)

    Rossi, Francesca; Olabarria, Celia; Incera, Mónica; Garrido, Josefina

    2010-01-01

    Native and exotic seaweeds frequently lie on the beach and sustain part of the benthic food web. However, the role of exotic seaweeds as food sources for beach consumers has been poorly studied. We studied the temporal and spatial variability in the trophic significance of the invasive brown seaweed Sargassum muticum on sandy beaches. We measured the stable isotopes ( δ13C and δ15N) in the tissues of S. muticum and of invertebrate consumers and estimated the dietary biomass proportion of S. muticum during four sampling dates at two beaches and heights on the shore. Samples were collected from eight pitfall traps placed at a distance of 2 m from each other. Detrital macroalgae and seagrasses were also collected by hand within an area of 30 cm around each pitfall trap. We measured the spatial and temporal variability in the isotope composition of the beach consumers and of S. muticum using different models of analyses of variance. We then calculated the biomass proportion of S. muticum to the animal diet with a two-isotopic mixing model. The invasive alga S. muticum seemed to be one of the main food sources for the amphipod Talitrus saltator and, to a less extent, for the isopod Tylos europaeus. The importance of S. muticum was however temporally variable and decreased during spring (in March and May), probably due to the availability of native macrophytes. The supply of invasive wrack to beach food webs thus deserves more attention if we want to understand their role in influencing food web dynamics.

  18. Disentangling the effects of solar radiation, wrack macroalgae and beach macrofauna on associated bacterial assemblages.

    Science.gov (United States)

    Rodil, Iván F; Fernandes, Joana P; Mucha, Ana P

    2015-12-01

    Wrack detritus plays a significant role in shaping community dynamics and food-webs on sandy beaches. Macroalgae is the most abundant beach wrack, and it is broken down by the combination of environmental processes, macrofauna grazing, and microbial degradation before returning to the sea as nutrients. The role of solar radiation, algal species and beach macrofauna as ecological drivers for bacterial assemblages associated to wrack was investigated by experimental manipulation of Laminaria ochroleuca and Sargassum muticum. We examined the effects of changes in solar radiation on wrack-associated bacterial assemblages by using cut-off filters: PAR + UVA + UVB (280-700 nm; PAB), PAR + UVA (320-700 nm; PA), PAR (400-700 nm; P), and a control with no filter (C). Results showed that moderate changes in UVR are capable to promote substantial differences on bacterial assemblages so that wrack patches exposed to full sunlight treatments (C and PAB) showed more similar assemblages among them than compared to patches exposed to treatments that blocked part of the solar radiation (P and PA). Our findings also suggested that specific algal nutrient quality-related variables (i.e. nitrogen, C:N ratio and phlorotannins) are main determinants of bacterial dynamics on wrack deposits. We showed a positive relationship between beach macrofauna, especially the most abundant and active wrack-users, the amphipod Talitrus saltator and the coleopteran Phaleria cadaverina, and both bacterial abundance and richness. Moderate variations in natural solar radiation and shifts in the algal species entering beach ecosystems can modify the role of wrack in the energy-flow of nearshore environments with unknown ecological implications for coastal ecosystems. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Wind sorting affects differently the organo-mineral composition of saltating and particulate materials in contrasting texture agricultural soils

    Science.gov (United States)

    Iturri, Laura Antonela; Funk, Roger; Leue, Martin; Sommer, Michael; Buschiazzo, Daniel Eduardo

    2017-10-01

    There is little information about the mineral and organic composition of sediments eroded by wind at different heights. Because of that, wind tunnel simulations were performed on four agricultural loess soils of different granulometry and their saltating materials collected at different heights. The particulate matter with an aerodynamic diameter mainly smaller than 10 μm (PM10) of these soils was obtained separately by a laboratory method. Results indicated that the granulometric composition of sediments collected at different heights was more homogeneous in fine- than in sandy-textured soils, which were more affected by sorting effects during wind erosion. This agrees with the preferential transport of quartz at low heights and of clay minerals at greater heights. SOC contents increased with height, but the composition of the organic materials was different: stable carboxylic acids, aldehydes, amides and aromatics were preferentially transported close to the ground because their were found in larger aggregates, while plant debris and polysaccharides, carbohydrates and derivatives of microbial origin from organic matter dominated at greater heights for all soil types. The amount of SOC in the PM10 fraction was higher when it was emitted from sandy than from fine textured soils. Because of the sorting process produced by wind erosion, the stable organic matter compounds will be transported at low heights and local scales, modifying soil fertility due to nutrient exportation, while less stable organic compounds will be part of the suspension losses, which are known to affect some processes at regional- or global scale.

  20. Behavioural adaptations in talitrids from two Atlantic beaches

    Science.gov (United States)

    Rossano, Claudia; Gambineri, Simone; Fanini, Lucia; Durier, Virginie; Rivault, Colette; Scapini, Felicita

    2009-12-01

    The aim of the present study was to test sun orientation and rhythmic activity of two sandhopper populations from two Atlantic macro-tidal beaches. A population from Le Verger beach (orientated to 346°, Ille et Vilaine, Brittany, France) and a population from Damgan (orientated to 195°, Morbihan, Brittany, France), were tested on the beach under clear sky discriminating for landscape vision. For both populations locomotor activity rhythm was recorded in the laboratory. The two beaches differed for climatic features, tidal range and for human use. Both talitrid populations resulted very well orientated toward the shoreline, and both used solar position and landscape vision to orient. However the multiple regression analysis of orientation with climatic features showed a different use of local cues by the two populations and a slight influence of tidal regime (ebbing and rising tide), in spite of the supralittoral zonation of sandhoppers. In the laboratory they showed a well defined rhythmic behaviour as well as a bimodal rhythmicity, explained as a tidal one. These results are a new brick in the complex picture of orientation and rhythm studies on sandy beach invertebrates.

  1. Difference in the wind speeds required for initiation versus continuation of sand transport on mars: implications for dunes and dust storms.

    Science.gov (United States)

    Kok, Jasper F

    2010-02-19

    Much of the surface of Mars is covered by dunes, ripples, and other features formed by the blowing of sand by wind, known as saltation. In addition, saltation loads the atmosphere with dust aerosols, which dominate the Martian climate. We show here that saltation can be maintained on Mars by wind speeds an order of magnitude less than required to initiate it. We further show that this hysteresis effect causes saltation to occur for much lower wind speeds than previously thought. These findings have important implications for the formation of dust storms, sand dunes, and ripples on Mars.

  2. Niche segregation amongst sympatric species at exposed sandy shores with contrasting wrack availabilities illustrated by stable isotopic analysis

    OpenAIRE

    Bessa, Filipa; Baeta, Alexandra; Marques, João Carlos

    2014-01-01

    Wrack supplies (macroalgae, seagrasses and carrion) are a common feature of sandy beaches worldwide. These allochthonous inputs are a potential high-quality food subsidy for beach fauna, but little is known about the feeding ecology and niche segregation strategies of these species in beaches with limited wrack availabilities. We used stable isotopic ratios of nitrogen and carbon to examine the diets and niche segregation among three sympatric crustaceans, the amphipods Talitrus s...

  3. Emergent properties of gene evolution: Species as attractors in phenotypic space

    Science.gov (United States)

    Reuveni, Eli; Giuliani, Alessandro

    2012-02-01

    The question how the observed discrete character of the phenotype emerges from a continuous genetic distance metrics is the core argument of two contrasted evolutionary theories: punctuated equilibrium (stable evolution scattered with saltations in the phenotype) and phyletic gradualism (smooth and linear evolution of the phenotype). Identifying phenotypic saltation on the molecular levels is critical to support the first model of evolution. We have used DNA sequences of ∼1300 genes from 6 isolated populations of the budding yeast Saccharomyces cerevisiae. We demonstrate that while the equivalent measure of the genetic distance show a continuum between lineage distance with no evidence of discrete states, the phenotypic space illustrates only two (discrete) possible states that can be associated with a saltation of the species phenotype. The fact that such saltation spans large fraction of the genome and follows by continuous genetic distance is a proof of the concept that the genotype-phenotype relation is not univocal and may have severe implication when looking for disease related genes and mutations. We used this finding with analogy to attractor-like dynamics and show that punctuated equilibrium could be explained in the framework of non-linear dynamics systems.

  4. The effect of adsorbed liquid and material density on saltation threshold: Insight from laboratory and wind tunnel experiments

    Science.gov (United States)

    Yu, Xinting; Hörst, Sarah M.; He, Chao; Bridges, Nathan T.; Burr, Devon M.; Sebree, Joshua A.; Smith, James K.

    2017-11-01

    Saltation threshold, the minimum wind speed for sediment transport, is a fundamental parameter in aeolian processes. Measuring this threshold using boundary layer wind tunnels, in which particles are mobilized by flowing air, for a subset of different planetary conditions can inform our understanding of physical processes of sediment transport. The presence of liquid, such as water on Earth or methane on Titan, may affect the threshold values to a great extent. Sediment density is also crucial for determining threshold values. Here we provide quantitative data on density and water content of common wind tunnel materials (including chromite, basalt, quartz sand, beach sand, glass beads, gas chromatograph packing materials, walnut shells, iced tea powder, activated charcoal, instant coffee, and glass bubbles) that have been used to study conditions on Earth, Titan, Mars, and Venus. The measured density values for low density materials are higher compared to literature values (e.g., ∼30% for walnut shells), whereas for the high density materials, there is no such discrepancy. We also find that low density materials have much higher water content and longer atmospheric equilibration timescales compared to high density sediments. We used thermogravimetric analysis (TGA) to quantify surface and internal water and found that over 80% of the total water content is surface water for low density materials. In the Titan Wind Tunnel (TWT), where Reynolds number conditions similar to those on Titan can be achieved, we performed threshold experiments with the standard walnut shells (125-150 μm, 7.2% water by mass) and dried walnut shells, in which the water content was reduced to 1.7%. The threshold results for the two scenarios are almost the same, which indicates that humidity had a negligible effect on threshold for walnut shells in this experimental regime. When the water content is lower than 11.0%, the interparticle forces are dominated by adsorption forces, whereas at

  5. Determining Wind Erosion in the Great Plains

    OpenAIRE

    Elwin G. Smith; Burton C. English

    1982-01-01

    Wind erosion is defined as the movement of soil particles resulting from strong turbulent winds. The movement of soil particles can be categorized as suspension, saltation, or surface creep. Fine soil particles can be suspended in the atmosphere and carried for great distances. Particles too large to be suspended move in a jumping action along the soil surface, known as saltation. Heavier particles have a rolling movement along the surface and this type of erosion is surface creep.

  6. Aeolian sand transport and aeolian deposits on Venus: A review

    Science.gov (United States)

    Kreslavsly, Mikhail A.; Bondarenko, Nataliya V.

    2017-06-01

    We review the current state of knowledge about aeolian sand transport and aeolian bedforms on planet Venus. This knowledge is limited by lack of observational data. Among the four planetary bodies of the Solar System with sufficient atmospheres in contact with solid surfaces, Venus has the densest atmosphere; the conditions there are transitional between those for terrestrial subaerial and subaqueous transport. The dense atmosphere causes low saltation threshold and short characteristic saltation length, and short scale length of the incipient dunes. A few lines of evidence indicate that the typical wind speeds exceed the saltation threshold; therefore, sand transport would be pervasive, if sand capable of saltation is available. Sand production on Venus is probably much slower than on the Earth; the major terrestrial sand sinks are also absent, however, lithification of sand through sintering is expected to be effective under Venus' conditions. Active transport is not detectable with the data available. Aeolian bedforms (transverse dunes) resolved in the currently available radar images occupy a tiny area on the planet; however, indirect observations suggest that small-scale unresolved aeolian bedforms are ubiquitous. Aeolian transport is probably limited by sand lithification causing shortage of saltation-capable material. Large impact events likely cause regional short-term spikes in aeolian transport by supplying a large amount of sand-size particles, as well as disintegration and activation of older indurated sand deposits. The data available are insufficient to understand whether the global aeolian sand transport occurs or not. More robust knowledge about aeolian transport on Venus is essential for future scientific exploration of the planet, in particular, for implementation and interpretation of geochemical studies of surface materials. High-resolution orbital radar imaging with local to regional coverage and desirable interferometric capabilities is the

  7. Surface renewal as a significant mechanism for dust emission

    Directory of Open Access Journals (Sweden)

    J. Zhang

    2016-12-01

    Full Text Available Wind tunnel experiments of dust emissions from different soil surfaces are carried out to better understand dust emission mechanisms. The effects of surface renewal on aerodynamic entrainment and saltation bombardment are analyzed in detail. It is found that flow conditions, surface particle motions (saltation and creep, soil dust content and ground obstacles all strongly affect dust emission, causing its rate to vary over orders of magnitude. Aerodynamic entrainment is highly effective, if dust supply is unlimited, as in the first 2–3 min of our wind tunnel runs. While aerodynamic entrainment is suppressed by dust supply limits, surface renewal through the motion of surface particles appears to be an effective pathway to remove the supply limit. Surface renewal is also found to be important to the efficiency of saltation bombardment. We demonstrate that surface renewal is a significant mechanism affecting dust emission and recommend that this mechanism be included in future dust models.

  8. Molecular confirmation of Trichomonas gallinae and other parabasalids from Brazil using the 5.8S and ITS-1 rRNA regions.

    Science.gov (United States)

    Ecco, Roselene; Preis, Ingred S; Vilela, Daniel A R; Luppi, Marcela M; Malta, Marcelo C C; Beckstead, Robert B; Stimmelmayr, Raphaela; Stimmelmayer, Raphaela; Gerhold, Richard W

    2012-11-23

    Clinical, gross, and histopathology lesions and molecular characterization of Trichomonas spp. infection were described in two striped owls (Asio (Rhinoptynx) clamator), one American kestrel (Falco sparverius), two green-winged saltators (Saltator similis), and in a toco toucan (Ramphastos toco) from Brazil. These birds presented clinical signs including emaciation, ruffled feathers, abundant salivation and open mouth breathing presumably due to abundant caseous material. Gross lesions were characterized by multifocal yellow friable plaques on the surface of the tongue, pharynx and/or caseous masses partially occluding the laryngeal entrance. In the owls, the caseous material extended into the mandibular muscles and invaded the sinuses of the skull. Histopathologically, marked necrotic and inflammatory lesions were associated with numerous round to oval, pale eosinophilic structures (6-10μm) with basophilic nuclei, consistent with trichomonads. Organisms similar to those described above also were found in the liver of the two green-winged saltators. To the authors' knowledge, this is the first report of trichomonosis in a striped owl and a toco toucan. Sequence analysis of the Trichomonas spp. internal transcribed spacer 1 (ITS-1) region and partial 5.8S of the ribosomal RNA (rRNA) disclosed significant genetic diversity. Two sequences had 100% identity to Trichomonas gallinae, whereas two sequences had a 99% and 92% identity to a Trichomonas vaginalis-like sequence, respectively. One sequence (green-winged saltator 502-08) had a 100% identity to a newly recognized genus Simplicomonas. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. A new turbulence-based model for sand transport

    Science.gov (United States)

    Mayaud, Jerome; Wiggs, Giles; Bailey, Richard

    2016-04-01

    Knowledge of the changing rate of sediment flux in space and time is essential for quantifying surface erosion and deposition in desert landscapes. While many aeolian studies have relied on time-averaged parameters such as wind velocity (U) and wind shear velocity (u*) to determine sediment flux, there is increasing evidence that high-frequency turbulence is an important driving force behind the entrainment and transport of sand. However, turbulence has yet to be incorporated into a functional sand transport model that can be used for predictive purposes. In this study we present a new transport model (the 'turbulence model') that accounts for high-frequency variations in the horizontal (u) and vertical (w) components of wind flow. The turbulence model is fitted to wind velocity and sediment transport data from a field experiment undertaken in Namibia's Skeleton Coast National Park, and its performance at three temporal resolutions (10 Hz, 1 Hz, 1 min) is compared to two existing models that rely on time-averaged wind velocity data (Radok, 1977; Dong et al., 2003). The validity of the three models is analysed under a variety of saltation conditions, using a 2-hour (1 Hz measurement resolution) dataset from the Skeleton Coast and a 5-hour (1 min measurement resolution) dataset from the southwestern Kalahari Desert. The turbulence model is shown to outperform the Radok and Dong models when predicting total saltation count over the three experimental periods. For all temporal resolutions presented in this study (10 Hz-10 min), the turbulence model predicted total saltation count to within at least 0.34%, whereas the Radok and Dong models over- or underestimated total count by up to 5.50% and 20.53% respectively. The strong performance of the turbulence model can be attributed to a lag in mass flux response built into its formulation, which can be adapted depending on the temporal resolution of investigation. This accounts for the inherent lag within the physical

  10. Shelter Index and a simple wind speed parameter to characterize vegetation control of sand transport threshold and Flu

    Science.gov (United States)

    Gillies, J. A.; Nield, J. M.; Nickling, W. G.; Furtak-Cole, E.

    2014-12-01

    Wind erosion and dust emissions occur in many dryland environments from a range of surfaces with different types and amounts of vegetation. Understanding how vegetation modulates these processes remains a research challenge. Here we present results from a study that examines the relationship between an index of shelter (SI=distance from a point to the nearest upwind vegetation/vegetation height) and particle threshold expressed as the ratio of wind speed measured at 0.45 times the mean plant height divided by the wind speed at 17 m when saltation commences, and saltation flux. The results are used to evaluate SI as a parameter to characterize the influence of vegetation on local winds and sediment transport conditions. Wind speed, wind direction, saltation activity and point saltation flux were measured at 35 locations in defined test areas (~13,000 m2) in two vegetation communities: mature streets of mesquite covered nebkhas and incipient nebkhas dominated by low mesquite plants. Measurement positions represent the most open areas, and hence those places most susceptible to wind erosion among the vegetation elements. Shelter index was calculated for each measurement position for each 10° wind direction bin using digital elevation models for each site acquired using terrestrial laser scanning. SI can show the susceptibility to wind erosion at different time scales, i.e., event, seasonal, or annual, but in a supply-limited system it can fail to define actual flux amounts due to a lack of knowledge of the distribution of sediment across the surface of interest with respect to the patterns of SI.

  11. Size-Selective Modes of Aeolian Transport on Earth and Mars

    Science.gov (United States)

    Swann, C.; Ewing, R. C.; Sherman, D. J.; McLean, C. J.

    2016-12-01

    Aeolian sand transport is a dominant driver of surface change and dust emission on Mars. Estimates of aeolian sand transport on Earth and Mars rely on terrestrial transport models that do not differentiate between transport modes (e.g., creep vs. saltation), which limits estimates of the critical threshold for transport and the total sand flux during a transport event. A gap remains in understanding how the different modes contribute to the total sand flux. Experiments conducted at the MARtian Surface WInd Tunnel separated modes of transport for uniform and mixed grain size surfaces at Earth and Martian atmospheric pressures. Crushed walnut shells with a density of 1.0 gm/cm3 were used. Experiments resolved grain size distributions for creeping and saltating grains over 3 uniform surfaces, U1, U2, and U3, with median grain sizes of 308 µm, 721 µm, and 1294 µm, and a mixed grain size surface, M1, with median grain sizes of 519 µm. A mesh trap located 5 cm above the test bed and a surface creep trap were deployed to capture particles moving as saltation and creep. Grains that entered the creep trap at angles ≥ 75° were categorized as moving in creep mode only. Only U1 and M1 surfaces captured enough surface creep at both Earth and Mars pressure for statistically significant grain size analysis. Our experiments show that size selective transport differs between Earth and Mars conditions. The median grain size of particles moving in creep for both uniform and mixed surfaces are larger under Earth conditions. (U1Earth = 385 µm vs. U1Mars = 355 µm; M1Earth = 762 vs. M1Mars = 697 µm ). However, particles moving in saltation were larger under Mars conditions (U1Earth = 282 µm; U1Mars = 309 µm; M1Earth = 347 µm; M1Mars = 454 µm ). Similar to terrestrial experiments, the median size of surface creep is larger than the median grain size of saltation. Median sizes of U1, U2, U3 at Mars conditions for creep was 355 µm, 774 µm and 1574 µm. Saltation at Mars

  12. Computer Modeling of Sand Transport on Mars Using a Compart-Mentalized Fluids Algorithm (CFA)

    Science.gov (United States)

    Marshall, J.; Stratton, D.

    1999-01-01

    It has been postulated that aeolian transport on Mars may be significantly different from that on Earth. From laboratory experiments simulating martian grain transport [2], it has been observed that (saltating) grains striking the bed can cause hundreds of secondary reptation trajectories when impact occurs at speeds postulated for Mars. Some of the ballistically induced trajectories "die ouf' and effectively join the ranks on the creep population that is merely nudged along by impact. Many of the induced reptation trajectories, however, are sufficiently high for the grains to become part of the saltation load (it is irrelevant to the boundary layer how a grain attained its initial lift force). When these grains, in turn, strike the surface, they too are capable of inducing more reptating grains. This cascading effect has been discussed in connection with terrestrial aeolian transport in an attempt to dispel the notion that sand motion is divisible only into creep and saltation loads. On Earth, only a few grains are splashed by impact. On Mars, it may be hundreds. We developed a computer model to address this phenomenon because there are some important ramifications: First, this ratio may mean that martian aeolian transport is dominated by reptation flux rather than saltation. On Earth, the flux would be a roughly balanced mixture between reptation/creep and saltation. On Venus, there would be no transport other than by saltation. In other words, an understanding of planetary aeolian processes may not be necessarily understood by extrapolating from the "Earth case", with only gravity and atmospheric density/viscosity being considered as variables. Second, the reptation flux on Mars may be self sustaining, so that little input is required by the wind once transport has been initiated. The number of grains saturating the boundary layer near the bed may mean that average grain speed on Mars might conceivably be less than that on Earth. This would say much for models

  13. Numerical simulation of aeolian sand ripples

    International Nuclear Information System (INIS)

    Kang Liqiang; Guo Liejin

    2004-01-01

    With a new horizontal saltation displacement vector, a model is implemented to simulate the initiation and evolution of aeolian sand ripples. In the model, saltation distance considers the effects of surface height and slope. A linear stability analysis is also carried out for formation of sand ripples. The results show that, the model can be able to successfully reproduce sand ripples which can increase in scale by merging of small ripples. The linear stability analysis indicates that sand ripples appear when the relaxation rate parameter is below a threshold value and wind strength parameter is larger than a critical value. The results also verified that the formation of sand ripples is a self-organization process

  14. Wind forces and related saltation transport

    NARCIS (Netherlands)

    Leenders, J.K.; van Boxel, J.H.; Sterk, G.

    2005-01-01

    The effect of several wind characteristics on sand transport was studied in three experiments in north Burkina Faso, West Africa. The first experiment is used to analyse the relation between wind speed and shear stress fluctuations across height. The second experiment is used to study the relation

  15. Specialized odorant receptors in social insects that detect cuticular hydrocarbon cues and candidate pheromones.

    Science.gov (United States)

    Pask, Gregory M; Slone, Jesse D; Millar, Jocelyn G; Das, Prithwiraj; Moreira, Jardel A; Zhou, Xiaofan; Bello, Jan; Berger, Shelley L; Bonasio, Roberto; Desplan, Claude; Reinberg, Danny; Liebig, Jürgen; Zwiebel, Laurence J; Ray, Anandasankar

    2017-08-17

    Eusocial insects use cuticular hydrocarbons as components of pheromones that mediate social behaviours, such as caste and nestmate recognition, and regulation of reproduction. In ants such as Harpegnathos saltator, the queen produces a pheromone which suppresses the development of workers' ovaries and if she is removed, workers can transition to a reproductive state known as gamergate. Here we functionally characterize a subfamily of odorant receptors (Ors) with a nine-exon gene structure that have undergone a massive expansion in ants and other eusocial insects. We deorphanize 22 representative members and find they can detect cuticular hydrocarbons from different ant castes, with one (HsOr263) that responds strongly to gamergate extract and a candidate queen pheromone component. After systematic testing with a diverse panel of hydrocarbons, we find that most Harpegnathos saltator Ors are narrowly tuned, suggesting that several receptors must contribute to detection and discrimination of different cuticular hydrocarbons important in mediating eusocial behaviour.Cuticular hydrocarbons (CHC) mediate the interactions between individuals in eusocial insects, but the sensory receptors for CHCs are unclear. Here the authors show that in ants such as H. saltator, the 9-exon subfamily of odorant receptors (HsOrs) responds to CHCs, and ectopic expression of HsOrs in Drosophila neurons imparts responsiveness to CHCs.

  16. Simplification of a dust emission scheme and comparison with data

    Science.gov (United States)

    Shao, Yaping

    2004-05-01

    A simplification of a dust emission scheme is proposed, which takes into account of saltation bombardment and aggregates disintegration. The statement of the scheme is that dust emission is proportional to streamwise saltation flux, but the proportionality depends on soil texture and soil plastic pressure p. For small p values (loose soils), dust emission rate is proportional to u*4 (u* is friction velocity) but not necessarily so in general. The dust emission predictions using the scheme are compared with several data sets published in the literature. The comparison enables the estimate of a model parameter and soil plastic pressure for various soils. While more data are needed for further verification, a general guideline for choosing model parameters is recommended.

  17. [Spatial change of the grain-size of aeolian sediments in Qira oasis-desert ecotone, Northwest China].

    Science.gov (United States)

    Lin, Yong Chong; Xu, Li Shuai

    2017-04-18

    In order to understand the environmental influence of oasis-desert ecotone to oasis ecological system, we comparatively analyzed the grain size characteristics of various aeolian sediments, including the sediments in oasis-desert ecotone, shelterbelt and the inside oasis and in Qira River valley. The results showed that the grain size characteristics (including grain-size distribution curve, grain size parameters, and content of different size classes) of sediments in the oasis-desert ecotone were consistent along the prevailing wind direction with a grain-size range of 0.3-200 μm and modal size of 67 μm. All of the sediments were good sorting and mainly composed of suspension components and saltation components, but not denatured saltation and creeping components (>200 μm). They were typically aeolian deposits being short-range transported. The grain sizes of sediments in oasis-desert ecotone were smaller than that in the material sources of Qira River valley and desert (0.3-800 μm), but very similar to those of the modern aeolian deposits in oasis-desert ecotone, shelterbelt and the inside oasis. The denatured saltation and creep components (>200 μm) were suppressed to transport into oasis-desert ecotone because of the high vegetation cover in oasis-desert ecotone. Therefore, like the shelterbelts, the oasis-desert ecotone could also block the invasion of desert. They safeguarded the oasis ecological environment together.

  18. Basset force in numerical models of saltation

    Czech Academy of Sciences Publication Activity Database

    Lukerchenko, Nikolay; Dolanský, Jindřich; Vlasák, Pavel

    2012-01-01

    Roč. 60, č. 4 (2012), s. 277-287 ISSN 0042-790X R&D Projects: GA ČR GA103/09/1718 Institutional research plan: CEZ:AV0Z20600510 Keywords : basset force * bed load transport * numerical model * particle-bed collision Subject RIV: BK - Fluid Dynamics Impact factor: 0.653, year: 2012

  19. Control of Eolian soil erosion from waste site surface barriers

    International Nuclear Information System (INIS)

    Ligotke, M.W.

    1994-11-01

    Physical models were tested in a wind tunnel to determine optimum surface-ravel admixtures for protecting silt-loam soil from erosion by, wind and saltating, sand stresses. The tests were performed to support the development of a natural-material surface barrier for and waste sites. Plans call for a 2-m deep silt-loam soil reservoir to retain infiltrating water from rainfall and snowmelt. The objective of the study was to develop a gravel admixture that would produce an erosion-resistant surface layer during, periods of extended dry climatic stress. Thus, tests were performed using simulated surfaces representing dry, unvegetated conditions present just after construction, after a wildfire, or during an extended drought. Surfaces were prepared using silt-loam soil mixed with various grades of sand and Travel. Wind-induced surface shear stresses were controlled over the test surfaces, as were saltating, sand mass flow rates and intensities. Tests were performed at wind speeds that approximated and exceeded local 100-year peak gust intensities. Surface armors produced by pea gravel admixtures were shown to provide the best protection from wind and saltating sand stresses. Compared with unprotected silt-loam surfaces, armored surfaces reduced erosion rates by more than 96%. Based in part on wind tunnel results, a pea gravel admixture of 15% will be added to the top 1 in of soil in a prototype barrier under construction in 1994. Field tests are planned at the prototype site to provide data for comparison with wind tunnel results

  20. Discussion of “Computation of the particle Basset force with a fractional-derivative approach” by F. A. Bombardelli, A. E. González, and Y. I. Nino

    Czech Academy of Sciences Publication Activity Database

    Lukerchenko, Nikolay

    2010-01-01

    Roč. 136, č. 10 (2010), s. 853-854 ISSN 0733-9429 R&D Projects: GA ČR GA103/09/1718 Institutional research plan: CEZ:AV0Z20600510 Keywords : Basset force * saltation * particle collision Subject RIV: BK - Fluid Dynamics

  1. Cytogenetic study of murine rodents inhabiting in uranium-mining regions of Akmolinskaya oblast

    International Nuclear Information System (INIS)

    Kazymbet, P.; Altaeva, N.; Bakhtin, M.; Zhapbasov, R.

    2010-01-01

    Republic of Kazakhstan is ranked as the world's leading uranium ore reserves. About 25% of the world's proven uranium ore reserves occur here. Strategy of study concerning ecology effects conditioned by ionizing radiation includes as one main element an analysis of genetic processes in natural populations and ecosystems. Therefore analysis of cytogenetic effects of murine rodents inhabiting in influence zones of uranium-mining regions is one of the most important elements of radio-bio-ecological monitoring and are not completed so far. In habitat of murine rodents in influence zone of Stepnogorsk Mining-Chemical Complex tailing it is shown that gamma radiation equivalent dose rate and beta-particle flux density exceed from 6 to 15 times check measurements. In soil, plant, and water samples the activity of radionuclides like 238 U, 226 Ra, 232 Th and 210 Pb exceeds the testing level from 2 to 52 times. Dose of ionizing radiation absorbed by murine rodents inhabited in radioactive contaminated areas exceeds from 10 to 19 times the one absorbed by control animals. Big Jerboa (Allactaga major Kern) inhabited nearby of Stepnogorsk Mining-Chemical Complex tailing has rate of occurrence of cells with hypo diploidy, and hyper diploidy in hematopoietic tissue which correspondingly 1,85 and 3,5 times exceeds the control level; and this factor of Jerboa (Allactaga saltator Eversman) is correspondingly 1,7 and 4,1 times higher than control level. Rate of occurrence of cells with polyploidy in Big Jerboa (Allactaga major Kern) from radioactively contaminated areas is 2,7 times higher than in control animal; and this factor of Jerboa (Allactaga saltator Eversman) by 6,4 times exceeds control level. Levels of chromosomal rearrangements of Big Jerboa (Allactaga major Kern) from trail and control areas are 3,39±0,60% and 0,60±0,19% correspondently; and these factors of Jerboa (Allactaga saltator Eversman) are 4,63±0,91% and 1,22±0,37%, correspondently which confirms existence

  2. Particles of bottom and suspended sediments: height of rise

    Directory of Open Access Journals (Sweden)

    Khodzinskaya Anna Gennadievna

    2014-12-01

    Full Text Available In the article, characteristic values of dynamic sizes of bottom and suspended sediments, including their probabilistic assessment, are considered. The article presents the processing results in respect of the experimental data for bottom and suspended sediments, obtained in the laboratory environment using samples and filming methods. The experiments have proven that the dynamic hydraulic size determines the height of rise for the particles of the saltation load, rather than suspended ones. In the laboratory environment, the maximal height of rise is mainly driven by the relative flow depth. According to the assessment made by the co-authors, depths of flows employed in the experiments designated for the identification of heights of rises, were comparable to saltation heights of particles. Besides, the saltation height of particles, having relative density well below 2.65, nearly always exceeded half of the depth of the laboratory flow. Hydrodynamic conditions favourable for the separation and motion of artificial particles in coarse surface tanks are far different from the motion of sand particles on the bottom of lowland rivers. Values of hydraulic resistance ratios typical for laboratory experiments by far exceed their values typical for lowland rivers, and it means that the conditions of the experiments performed in the laboratory were similar to those typical for mountain rivers. The research findings have proven that the particle separation and motion pattern, if artificial particles are made of the materials demonstrating variable density and elasticity values and if loose particles travel over fixed ones, is different from the pattern typical for natural particles having variable coarseness.

  3. A new depositional model for sand-rich loess on the Buckley Flats outwash plain, northwestern Lower Michigan

    Science.gov (United States)

    Nyland, Kelsey E.; Schaetzl, Randall J.; Ignatov, Anthony; Miller, Bradley A.

    2018-04-01

    Loess was first studied in Michigan on the Buckley Flats, where outwash, overlain by ≈70 cm of loamy sediment, was originally interpreted as loess mixed with underlying sands. This paper re-evaluates this landscape through a spatial analysis of data from auger samples and soil pits. To better estimate the loamy sediment's initial textures, we utilized "filtered" laser diffraction data, which remove much of the coarser sand data. Textures of filtered silt data for the loamy sediment are similar to loess. The siltiest soils are found in the low-relief, central part of the Flats. Spatial analyses revealed that many silt fractions are nearly uniformly distributed, suggesting that the loess was not derived from a single source. The previous depositional model for the loamy mantle relied on loessfall followed by pedoturbation, but does not explain (1) the variation in sand contents across the Flats, or (2) the abrupt contact below the loamy mantle. This contact suggests that the outwash was frozen when the sediments above were deposited. Deep gullies at the western margins of the Flats were likely cut as permafrost facilitated runoff. Our new model for the origin of the loamy mantle suggests that the sands on the uplands were generated from eroding gullies and saltated onto the uplands along with loess that fell more widely. Sands saltating to the west of the Flats may have entrained some silts, facilitating loessfall downwind. At most sites, the loamy mantle gets increasingly silty near the surface, suggesting that saltation ended before loess deposition.

  4. Grain transport mechanics in shallow flow

    Science.gov (United States)

    A physical model based on continuum multiphase flow is described to represent saltating transport of grains in shallow overland flows. The two-phase continuum flow of water and sediment considers coupled St.Venant type equations. The interactive cumulative effect of grains is incorporated by a dispe...

  5. Grain transport mechanics in shallow overland flow

    Science.gov (United States)

    A physical model based on continuum multiphase flow is described to represent saltating transport of grains in shallow overland flow. The two phase continuum flow of water and sediment considers coupled St.Venant type equations. The interactive cumulative effect of grains is incorporated by a disper...

  6. A preliminary assessment of the Titan planetary boundary layer

    Science.gov (United States)

    Allison, Michael

    1992-01-01

    Results of a preliminary assessment of the characteristic features of the Titan planetary boundary are addressed. These were derived from the combined application of a patched Ekman surface layer model and Rossby number similarity theory. Both these models together with Obukhov scaling, surface speed limits and saltation are discussed. A characteristic Akman depth of approximately 0.7 km is anticipated, with an eddy viscosity approximately equal to 1000 sq cm/s, an associated friction velocity approximately 0.01 m/s, and a surface wind typically smaller than 0.6 m/s. Actual values of these parameters probably vary by as much as a factor of two or three, in response to local temporal variations in surface roughness and stability. The saltation threshold for the windblown injection of approximately 50 micrometer particulates into the atmosphere is less than twice the nominal friction velocity, suggesting that dusty breezes might be an occassional feature of the Titan meteorology.

  7. 2D numerical model of particle-bed collision in fluid-particle flows over bed

    Czech Academy of Sciences Publication Activity Database

    Lukerchenko, Nikolay; Chára, Zdeněk; Vlasák, Pavel

    2006-01-01

    Roč. 44, č. 1 (2006), s. 70-78 ISSN 0022-1686 R&D Projects: GA AV ČR IAA2060201 Institutional research plan: CEZ:AV0Z20600510 Keywords : saltation * particle-bed collision * collision angle * bed roughness Subject RIV: BK - Fluid Dynamics Impact factor: 0.527, year: 2006

  8. Aeolian transport of biota with dust: A wind tunnel experiment

    Science.gov (United States)

    Rivas, J. A., Jr.; Gill, T. E.; Van Pelt, R. S.; Walsh, E.

    2015-12-01

    Ephemeral wetlands are ideal sources for dust emission, as well as repositories for dormant stages of aquatic invertebrates. An important component of invertebrate dispersal and colonization to new areas is the ability to be entrained into the atmosphere. Aquatic invertebrate eggs fall within the size of dust and sand grains (30-600μm), are less dense and aerodynamically shaped. We have shown previously that aquatic invertebrates can be dispersed long distances in dust storms but the extent of transport of taxa based on diapausing egg size/morphology has not been investigated. Here, we control the wind erosion process in a wind tunnel to test entrainment of diapausing stages of brine shrimp, clam shrimp, tadpole shrimp, fairy shrimp, Daphnia, and the rotifers Brachionus plicatilis and B. calyciflorus into the air by saltation. Diapausing eggs were mixed with sterilized wind-erodible soil. The soil/egg mixture was moistened with distilled water and air dried to form a crust. Dust was generated in a wind tunnel by releasing sand grains that act as saltator material similar to wind-entrained natural sands. Maximum wind velocity was 10m/s and entrained particles were sampled through an isokinetic horizontal intake opening. Aeolian sediment was collected from three points in the system; transfer section for coarse sediment, the pan subtending a settling chamber for finer saltation-sized sediment, and two paper filters for suspension-sized sediment. Samples were then passed through 250 and 350 μm sieves to remove abrader sand and rehydrated with various sterile media depending on the type of organism. We retrieved viable brine, fairy, and tadpole shrimp, ostracods, Daphnia, and diapausing eggs of the rotifers after hydration. This experiment demonstrates that resting stages of many invertebrates can be wind-eroded due to size and egg morphology and remain viable under controlled conditions mimicking dust emission.

  9. Analysis of wind-blown sand movement over transverse dunes.

    Science.gov (United States)

    Jiang, Hong; Huang, Ning; Zhu, Yuanjian

    2014-12-01

    Wind-blown sand movement often occurs in a very complicated desert environment where sand dunes and ripples are the basic forms. However, most current studies on the theoretic and numerical models of wind-blown sand movement only consider ideal conditions such as steady wind velocity, flat sand surface, etc. In fact, the windward slope gradient plays a great role in the lift-off and sand particle saltation. In this paper, we propose a numerical model for the coupling effect between wind flow and saltating sand particles to simulate wind-blown sand movement over the slope surface and use the SIMPLE algorithm to calculate wind flow and simulate sands transport by tracking sand particle trajectories. We furthermore compare the result of numerical simulation with wind tunnel experiments. These results prove that sand particles have obvious effect on wind flow, especially that over the leeward slope. This study is a preliminary study on windblown sand movement in a complex terrain, and is of significance in the control of dust storms and land desertification.

  10. Spatiotemporal Structure of Aeolian Particle Transport on Flat Surface

    Science.gov (United States)

    Niiya, Hirofumi; Nishimura, Kouichi

    2017-05-01

    We conduct numerical simulations based on a model of blowing snow to reveal the long-term properties and equilibrium state of aeolian particle transport from 10-5 to 10 m above the flat surface. The numerical results are as follows. (i) Time-series data of particle transport are divided into development, relaxation, and equilibrium phases, which are formed by rapid wind response below 10 cm and gradual wind response above 10 cm. (ii) The particle transport rate at equilibrium is expressed as a power function of friction velocity, and the index of 2.35 implies that most particles are transported by saltation. (iii) The friction velocity below 100 µm remains roughly constant and lower than the fluid threshold at equilibrium. (iv) The mean particle speed above 300 µm is less than the wind speed, whereas that below 300 µm exceeds the wind speed because of descending particles. (v) The particle diameter increases with height in the saltation layer, and the relationship is expressed as a power function. Through comparisons with the previously reported random-flight model, we find a crucial problem that empirical splash functions cannot reproduce particle dynamics at a relatively high wind speed.

  11. Experimental studies on the resuspension of plutonium from aged sources at the Nevada Test Site

    International Nuclear Information System (INIS)

    Anspaugh, L.R.; Phelps, P.L.; Kennedy, N.C.; Shinn, J.H.; Reichman, J.M.

    1976-01-01

    Measurements of 239 240 Pu concentrations in air, distributions with particle size, and saltation fluxes were carried out at the GMX area of the Nevada Test Site, an area contaminated with plutonium nearly 20 years prior to the measurements. At the center of the source, the concentrations were directly proportional to the square of the friction velocity as expected on the basis of collateral dust concentration measurements. Healy's model of transport and diffusion was used to derive values of the resuspension rate from these measurements. The resuspension rates varied from 2.7 x 10 -12 to 4.8 x 10 -10 sec -1 . Much of the variance was removed by normalizing the resuspension rate to the cube of the friction velocity. The activity median aerodynamic diameter of the plutonium aerosol varied from 1.6 to 8 μm, which corresponds to calculated pulmonary depositions of 25 and 15 percent, respectively. The movement of soil in saltation at this site was generally not significant. Measured fluxes were less than 10 -5 g/cm-sec averaged over the long time periods required to accumulate a measurable sample

  12. Production of reactive oxygen species from abraded silicates. Implications for the reactivity of the Martian soil

    Science.gov (United States)

    Bak, Ebbe N.; Zafirov, Kaloyan; Merrison, Jonathan P.; Jensen, Svend J. Knak; Nørnberg, Per; Gunnlaugsson, Haraldur P.; Finster, Kai

    2017-09-01

    The results of the Labeled Release and the Gas Exchange experiments conducted on Mars by the Viking Landers show that compounds in the Martian soil can cause oxidation of organics and a release of oxygen in the presence of water. Several sources have been proposed for the oxidizing compounds, but none has been validated in situ and the cause of the observed oxidation has not been resolved. In this study, laboratory simulations of saltation were conducted to examine if and under which conditions wind abrasion of silicates, a process that is common on the Martian surface, can give rise to oxidants in the form of hydrogen peroxide (H2O2) and hydroxyl radicals (ṡOH). We found that silicate samples abraded in simulated Martian atmospheres gave rise to a significant production of H2O2 and ṡOH upon contact with water. Our experiments demonstrated that abraded silicates could lead to a production of H2O2 facilitated by atmospheric O2 and inhibited by carbon dioxide. Furthermore, during simulated saltation the silicate particles became triboelectrically charged and at pressures similar to the Martian surface pressure we observed glow discharges. Electrical discharges can cause dissociation of CO2 and through subsequent reactions lead to a production of H2O2. These results indicate that the reactions linked to electrical discharges are the dominant source of H2O2 during saltation of silicates in a simulated Martian atmosphere, given the low pressure and the relatively high concentration of CO2. Our experiments provide evidence that wind driven abrasion could enhance the reactivity of the Martian soil and thereby could have contributed to the oxidation of organic compounds and the O2 release observed in the Labeled Release and the Gas Exchange experiments. Furthermore, the release of H2O2 and ṡOH from abraded silicates could have a negative effect on the persistence of organic compounds in the Martian soil and the habitability of the Martian surface.

  13. First Insights with a Vibrotactile Interface for Children with Multiple Disabilities

    DEFF Research Database (Denmark)

    Manresa-Yee, Cristina; Morrison, Ann; Jordi Muntaner, Joan

    2015-01-01

    for users with multiple disabilities. We developed V-Sense, a vibrotactile interface that encourages children with multiple disabilities to move their arms by using vibrations and exploiting the saltation perceptual illusion. In this paper we describe our initial experience evaluating the interface with 5...... children for 7 weeks and we discuss the first insights concerning the use of the interface and the difficulties encountered while conducting the evaluation sessions....

  14. An olfactory shift is associated with male perfume differentiation and species divergence in orchid bees.

    Science.gov (United States)

    Eltz, Thomas; Zimmermann, Yvonne; Pfeiffer, Carolin; Pech, Jorge Ramirez; Twele, Robert; Francke, Wittko; Quezada-Euan, J Javier G; Lunau, Klaus

    2008-12-09

    Saltational changes may underlie the diversification of pheromone communication systems in insects, which are normally under stabilizing selection favoring high specificity in signals and signal perception. In orchid bees (Euglossini), the production of male signals depends on the sense of smell: males collect complex blends of volatiles (perfumes) from their environment, which are later emitted as pheromone analogs at mating sites. We analyzed the behavioral and antennal response to perfume components in two male morphotypes of Euglossa cf. viridissima from Mexico, which differ in the number of mandibular teeth. Tridentate males collected 2-hydroxy-6-nona-1,3-dienyl-benzaldehyde (HNDB) as the dominant component of their perfume. In bidentate males, blends were broadly similar but lacked HNDB. Population genetic analysis revealed that tri- and bidentate males belong to two reproductively isolated lineages. Electroantennogram tests (EAG and GC-EAD) showed substantially lower antennal responses to HNDB in bidentate versus tridentate males, revealing for the first time a mechanism by which closely related species acquire different chemical compounds from their habitat. The component-specific differences in perfume perception and collection in males of two sibling species are in agreement with a saltational, olfaction-driven mode of signal perfume evolution. However, the response of females to the diverged signals remains unknown.

  15. Three-dimensional simulation of the motion of a single particle under a simulated turbulent velocity field

    Science.gov (United States)

    Moreno-Casas, P. A.; Bombardelli, F. A.

    2015-12-01

    A 3D Lagrangian particle tracking model is coupled to a 3D channel velocity field to simulate the saltation motion of a single sediment particle moving in saltation mode. The turbulent field is a high-resolution three dimensional velocity field that reproduces a by-pass transition to turbulence on a flat plate due to free-stream turbulence passing above de plate. In order to reduce computational costs, a decoupled approached is used, i.e., the turbulent flow is simulated independently from the tracking model, and then used to feed the 3D Lagrangian particle model. The simulations are carried using the point-particle approach. The particle tracking model contains three sub-models, namely, particle free-flight, a post-collision velocity and bed representation sub-models. The free-flight sub-model considers the action of the following forces: submerged weight, non-linear drag, lift, virtual mass, Magnus and Basset forces. The model also includes the effect of particle angular velocity. The post-collision velocities are obtained by applying conservation of angular and linear momentum. The complete model was validated with experimental results from literature within the sand range. Results for particle velocity time series and distribution of particle turbulent intensities are presented.

  16. The Geography of Trust and Betrayal: Moral disputes and Late Pleistocene dispersal

    OpenAIRE

    Spikins, Penny

    2015-01-01

    The explanations for a rapid dispersal of modern humans after 100,000 BP remain enigmatic. Populations of modern humans took new routes – crossing significant topographic and environmental barriers, including making major sea crossings, and moving into and through risky and difficult environments. Neither population increase nor ecological changes provide an adequate explanation for a pattern of rapid movement, including leaping into new regions (saltation events). Here it is argued that the ...

  17. Technical Guidelines on Performing a Sediment Erosion and Deposition Assessment (SEDA) at Superfund Sites

    Science.gov (United States)

    2014-09-01

    introduced to a water body because of the failure of a river bank due to, for example, flow-induced erosion of the bank toe and/or surface, or...under supercritical flows (with Froude number greater than one). Antidunes are usually more symmetrical (in their longitudinal profile) than dunes ... dunes , and anti- dunes . Bedload Sediment material moving on top of or near a channel bed by rolling, sliding, and saltating, i.e., jumping

  18. Effect of the particle to fluid density ratio on bedform development: An application of PTV

    Science.gov (United States)

    McKenna Neuman, C. L.; Gordon, M. D.

    2009-05-01

    The particle to fluid density ratio plays a key role in sediment transport and strongly governs the relative importance of the transport mode. In aeolian systems, this ratio is three orders of magnitude larger than for the transport of sedimentary particles in water, such that saltation is the dominant mode for diameters (250 microns) commonly found in ripples and dunes. The partitioning of fluid momentum to saltators, and therefore to the surface upon impact, is extremely important to the entrainment of sediment, the maintenance of transport, and the scaling of aeolian bedforms. This paper demonstrates the use of Particle Tracking Velocimetry in measuring the partitioning of momentum associated with particle collisions on beds of quartz sand (2630 kg m-3) typical of aeolian dunes, and acrylic particles (1210 kg m-3) similar to blowing snow (920 kg m-3). The experiments were carried out in the boundary layer wind tunnel at Trent University on full beds that were 13.8 m in length and 0.71 m in width. In the majority of experiments, the wind speeds were either at or just above the threshold for saltation so that we could distinguish discrete particle trajectories. Surface ripples formed in the majority of experiments and passed through the camera's field of view so that the height, length and rate of migration could be measured in relation to the distributions of particle impact speed and angle, as well as those for the number, speed and angle of the particles ejected. Although similar in height, the ripples comprised of acrylic particles were 2 to 4 times longer, much more asymmetric, and migrated significantly faster than those in sand. The particle impact and ejection speeds were very similar, although the sand particles approached and left the bed at substantially larger angles than observed for the lighter acrylic particles of similar diameter. In a separate experiment, glass beads were flung onto each bed material at 4 ms-1 in still air. It was discovered that

  19. Behavioural Study of Sanan and Jamnapari Cross Bred Goats Kept in a Stilted House

    Directory of Open Access Journals (Sweden)

    Ganiesha Jayamini De silva

    2014-07-01

    Full Text Available A sound understanding of the normal behaviour of an animal is important to assess its welfare standards. Behaviour of confined animals is useful in order to design proper housing systems. Objective of this study was to understand the behaviour of goats kept in a stilted house. Behaviour of 14 Sanan and Jamnapari goats (14Kg-37Kg kept in stilted house was observed using an ethograme for six one hour sessions in two days (rainy and hot. Each session lasted for five minutes. Frequency and times spent on seventeen mutually exhaustive behaviours were recorded. Goats spent significantly (P<0.05 more time on eating (31% than any of the other behaviours. Other important behaviours were resting (11%, licking (10%, ruminating (10% and walking (9.5%. Goats spent a substantial time on behaviours such as lying (7.3%, running (6.3%, freezing (6% and animal interaction (5.7%. The time budget on behaviours such as saltate (0.5%, sniffing (0.59%, chattering (0.59% and importantly on drinking (0.6% were very low. Behaviors such as freezing, head movement, animal interaction, saltate, running, rumination, chattering and chirping were affected by the climatic condition of the day. It was concluded that goats kept in stilted houses spend one third of their time budget on eating and but very little time on drinking.

  20. Cape Cod Easterly Shore Beach Erosion Study. Volume 2

    Science.gov (United States)

    1979-04-01

    by a process known as creep . As a particle descending from its saltation leap strikes the ground, the force of its impact will force other grains to...accelerated the whole process. Colon- ial man disturbed the balance by overgrazing cattle on the dune grasses and removing the trees. Modern man has...sand eroded from the marine scarp to the north are in transit past Nauset Harbor inlet. Some of the sand feeds the spits north and south of the inlet

  1. Wind driven saltation: a hitherto overlooked challenge for life on Mars

    DEFF Research Database (Denmark)

    Bak, Ebbe Norskov; Goul, Michael; Rasmussen, Martin

    , a release of electrical discharges with a concomitant production of reactive oxygen species. While the effects of low water availability, low pressure and radiation have been extensively studied in relation to the habitability of the Martian surface and the preservation of organic biosignatures, the effects...... in a Mars-like atmosphere in sealed quartz ampoules. The effects on bacterial survival and structure were evaluated by colony forming unit counts in combination with scanning electron microscopy, quantitative polymerase chain reaction and life/dead-staining with flow cytometry. The viability of vegetative...... to abraded basalt, which indicates that the resistance of spores is not associated with any specific spore component. We found a significant but reduced effect of abraded quartz and we suggest that the stress effect of abraded silicates is induced by a production of reactive oxygen species and hydroxyl...

  2. Sand transportation and reverse patterns over leeward face of sand dune

    Science.gov (United States)

    Jiang, Hong; Dun, Hongchao; Tong, Ding; Huang, Ning

    2017-04-01

    Sand saltation has complex interactions with turbulent flow and dune form. Most models of wind-blown sand consider ideal circumstances such as steady wind velocity and a flat surface, and the bulk of data on wind flow and sand transport over an individual dune has focused mostly on the influence of dune shape or inter-dune space on the wind flow, neglecting the effect of morphology on sand saltation, particularly airflow and sand transportation over the leeward slope. Wind flow structures over the leeward slope of sand dunes have a fundamental influence on the organization of sand dunes. In order to understand sand dune dynamics, lee face airflow and sediment transportation should be paid more attention. Previous field observations could not measure turbulent flow structure well because of the limited observation points and the influence of experiment structure on wind field. In addition, the reverse sand particles over leeward face could not be collected by sand trap in field. Numerous field observations could not measure turbulent flow structure because of the limited observation points and the influence of experimental structures on the wind field. In addition, the reverse transport of sand particles over leeward face could not be collected by sand traps in field. Therefore, this paper aims to investigate the turbulent flow structure and sand transport pattern over the leeward slope. A numerical model of sand saltation over slope terrain is constructed, which also considers the coupling effects between air flow and sand particles. The large eddy simulation method is used to model turbulent flow. Sand transport is simulated by tracking the trajectory of each sand particle. The results show that terrain significantly alters the turbulent air flow structure and wind-blown sand movement, especially over the leeward slope. Here, mass flux increases initially and then decreases with height in the reversed flow region in the direction of wind flow, and the mass flux

  3. Grain size statistics and depositional pattern of the Ecca Group sandstones, Karoo Supergroup in the Eastern Cape Province, South Africa

    Directory of Open Access Journals (Sweden)

    Baiyegunhi Christopher

    2017-11-01

    Full Text Available Grain size analysis is a vital sedimentological tool used to unravel the hydrodynamic conditions, mode of transportation and deposition of detrital sediments. In this study, detailed grain-size analysis was carried out on thirty-five sandstone samples from the Ecca Group in the Eastern Cape Province of South Africa. Grain-size statistical parameters, bivariate analysis, linear discriminate functions, Passega diagrams and log-probability curves were used to reveal the depositional processes, sedimentation mechanisms, hydrodynamic energy conditions and to discriminate different depositional environments. The grain-size parameters show that most of the sandstones are very fine to fine grained, moderately well sorted, mostly near-symmetrical and mesokurtic in nature. The abundance of very fine to fine grained sandstones indicate the dominance of low energy environment. The bivariate plots show that the samples are mostly grouped, except for the Prince Albert samples that show scattered trend, which is due to the either mixture of two modes in equal proportion in bimodal sediments or good sorting in unimodal sediments. The linear discriminant function analysis is dominantly indicative of turbidity current deposits under shallow marine environments for samples from the Prince Albert, Collingham and Ripon Formations, while those samples from the Fort Brown Formation are lacustrine or deltaic deposits. The C-M plots indicated that the sediments were deposited mainly by suspension and saltation, and graded suspension. Visher diagrams show that saltation is the major process of transportation, followed by suspension.

  4. Grain size statistics and depositional pattern of the Ecca Group sandstones, Karoo Supergroup in the Eastern Cape Province, South Africa

    Science.gov (United States)

    Baiyegunhi, Christopher; Liu, Kuiwu; Gwavava, Oswald

    2017-11-01

    Grain size analysis is a vital sedimentological tool used to unravel the hydrodynamic conditions, mode of transportation and deposition of detrital sediments. In this study, detailed grain-size analysis was carried out on thirty-five sandstone samples from the Ecca Group in the Eastern Cape Province of South Africa. Grain-size statistical parameters, bivariate analysis, linear discriminate functions, Passega diagrams and log-probability curves were used to reveal the depositional processes, sedimentation mechanisms, hydrodynamic energy conditions and to discriminate different depositional environments. The grain-size parameters show that most of the sandstones are very fine to fine grained, moderately well sorted, mostly near-symmetrical and mesokurtic in nature. The abundance of very fine to fine grained sandstones indicate the dominance of low energy environment. The bivariate plots show that the samples are mostly grouped, except for the Prince Albert samples that show scattered trend, which is due to the either mixture of two modes in equal proportion in bimodal sediments or good sorting in unimodal sediments. The linear discriminant function analysis is dominantly indicative of turbidity current deposits under shallow marine environments for samples from the Prince Albert, Collingham and Ripon Formations, while those samples from the Fort Brown Formation are lacustrine or deltaic deposits. The C-M plots indicated that the sediments were deposited mainly by suspension and saltation, and graded suspension. Visher diagrams show that saltation is the major process of transportation, followed by suspension.

  5. Pervasive aeolian activity along Curiosity's traverse in Gale Crater on Mars

    Science.gov (United States)

    Silvestro, S.; Vaz, D.; Ewing, R. C.; Rossi, A.; Flahaut, J.; Fenton, L. K.; Geissler, P. E.; Michaels, T. I.

    2012-12-01

    The NASA Mars Science Laboratory (MSL) has safely landed in Gale Crater (Mars). This crater has been severely modified by the action of the wind which has led to the development of several dark dune fields. One of these fields crosses the landing ellipse from the NE to the SW, and despite its fresh appearance, no evidence of sand movement has been detected until recently. Here we present evidence of current aeolian activity in the form of ripple and dune migration close to the expected traverse of the MSL rover, Curiosity. We calculate a minimum ripple displacement of 1.16 m and a dune migration rate of 0.4 meters/Earth year. Both ripples and dunes migrated toward the SW, suggesting winds above the saltation threshold from the NE. Such winds are predicted by the MRAMS atmospheric model (Fig. 1). The dunes are undergoing changes on a timescale of weeks to a few years that should be detectable by rover instruments. Using theoretical and experimental considerations, we calculate a wind gust velocity of 35 m/s at 1.5 m of height. In addition, we estimate that saltating grains would reach a distance of ~27 m and extend a maximum height of 2 m above the surface. Our constraints on the wind regime provide a unique opportunity to use ground measurements from MSL to test the accuracy of winds predicted from orbital data.RAMS modeled winds in the MSL landing site

  6. Sedimentological characteristics and depositional environment of Upper Gondwana rocks in the Chintalapudi sub-basin of the Godavari valley, Andhra Pradesh, India

    Science.gov (United States)

    Ramamohanarao, T.; Sairam, K.; Venkateswararao, Y.; Nagamalleswararao, B.; Viswanath, K.

    2003-03-01

    The Kota (Early to Middle Jurassic) and Gangapur (Early Cretaceous) rocks of the Chintalapudi sub-basin of Gondwana are poorly to very poorly sorted, positively to very positively skewed, and leptokurtic to very leptokurtic. The Kota rocks show a single prominent truncation line at the inflection of saltation/suspension at 2.0 φ of the river mode of transportation. The Gangapur rocks show two truncation lines of saltation/suspension, one at 0.5-1.7 φ and the other at 2.4-4.0 φ. These are inferred to be due to a high turbulent phase of the river. On the multigroup multivariant discriminant functions V1- V2 diagram, the bulk of the samples from Kota and Gangapur fall in the field of turbidite deposition. This study supports the view that the discrimination of river from turbidite deposits on this diagram is poor since both deposits are identical in terms of settling velocity distribution. On the C- M diagram, the Kota and Gangapur rocks show segments of rolling, bottom suspension, and graded suspension during river transport of sediment. The Q-R segments of graded suspension for these rocks have a C/ M ratio of 2.5, which is close to the ratio of the turbidites. The Kota and Gangapur rocks have nearly the same assemblage of heavy minerals. The provenance is inferred to consist of basic igneous rocks, acid igneous rocks, high-grade metamorphic rocks and sedimentary rocks.

  7. Fugitive emissions control on dry copper tailing with crushed rock armor

    International Nuclear Information System (INIS)

    Haase, E.F.

    1992-01-01

    Four inactive copper tailing impoundments totalling 1,900 acres near Ajo in southwestern Arizona were covered on horizontal surfaces with a 2 in. nominal thickness of crushed rock to control particulate emissions. The tailings are typically dominated by sand-sized particles but may also include significant PM 10 fractions towards the centers of the impoundments. The technology was selected by Phelps Dodge Corporation, after investigation of several alternatives, as a permanent and practical cover that essentially eliminates fugitive emissions. It simulates the natural desert pavement that characterizes this arid area of the Sonoran Desert. Rocky overburden was crushed to minus 3 in. diameter and broadcast on dry surfaces of tailing impoundments with all-terrain, balloon-tired spreaders. Stony residues in the rock armor tend to cement together following rainfall, forming a crust that enhances surface stability and erosion control. Slopes with windblown tailing deposition were covered to a nominal 6 in. thickness by conventional dozer pushing and blading of minus 10 in. rock over the sides. Athel trees, planted extensively since 1970 on two of the four inactive impoundments, provided partial control of fugitives, but were subjected to harsh environmental conditions, including abrasion from saltating particles. The rock armor functions as a mulch which is expected to improve water relations for existing vegetation and areas seeded with native species. New surface microenvironments, and the virtual elimination of surface creep and saltation, are expected to support native plant growth under favorable climatic conditions

  8. Caracterização molecular da mielina do camarão Litopenaeus Vannamei

    OpenAIRE

    Carvalho, Gabriela de Castro e

    2010-01-01

    Originalmente conceituava-se a mielina como uma inovação evolutiva exclusiva dos vertebrados com mandíbulas, capaz de permitir o aumento na velocidade de transmissão de impulsos nervosos graças à transmissão saltatória. Este conceito tem sido desafiado pela identificação de estruturas morfologicamente equivalentes à mielina em grupos independentes de invertebrados, incluindo anelídeos e crustáceos capazes de garantir propagação de impulsos nervosos em velocidades superiores à de vertebrados. ...

  9. The cultural evolution of democracy: saltational changes in a political regime landscape.

    Science.gov (United States)

    Lindenfors, Patrik; Jansson, Fredrik; Sandberg, Mikael

    2011-01-01

    Transitions to democracy are most often considered the outcome of historical modernization processes. Socio-economic changes, such as increases in per capita GNP, education levels, urbanization and communication, have traditionally been found to be correlates or 'requisites' of democratic reform. However, transition times and the number of reform steps have not been studied comprehensively. Here we show that historically, transitions to democracy have mainly occurred through rapid leaps rather than slow and incremental transition steps, with a median time from autocracy to democracy of 2.4 years, and overnight in the reverse direction. Our results show that autocracy and democracy have acted as peaks in an evolutionary landscape of possible modes of institutional arrangements. Only scarcely have there been slow incremental transitions. We discuss our results in relation to the application of phylogenetic comparative methods in cultural evolution and point out that the evolving unit in this system is the institutional arrangement, not the individual country which is instead better regarded as the 'host' for the political system.

  10. Dark material in the polar layered deposits and dunes on Mars

    Science.gov (United States)

    Herkenhoff, Ken E.; Vasavada, Ashwin R.

    1999-07-01

    Viking infrared thermal mapping and bistatic radar data suggest that the bulk density of the north polar erg material is much lower than that of the average Martian surface or of dark dunes at lower latitudes. We have derived a thermal inertia of 245-280Jm-2s-1/2K-1(5.9-6.7×10-3calcm-2s-1/2K-1) for the Proctor dune field and 25-150Jm-2s-1/2K-1(0.6-3.6×10-3calcm-2s-1/2K-1) for the north polar erg. The uniqueness of the thermophysical properties of the north polar erg material may be due to a unique polar process that has created them. The visible and near-infrared spectral reflectance of the erg suggests that the dark material may be composed of basalt or ferrous clays. These data are consistent with the dark material being composed of basaltic ash or filamentary sublimate residue (FSR) particles derived from erosion of the layered deposits. Dark dust may be preferentially concentrated at the surface of the layered deposits by the formation of FSR particles upon sublimation of water ice. Further weathering and erosion of these areas of exposed layered deposits may form the dark, saltating material that is found in both polar regions. Dark FSR particles may saltate for great distances before eventually breaking down into dust grains, re-mixing with the global dust reservoir, and being recycled into the polar layered deposits via atmospheric suspension.

  11. Modelling soil dust aerosol in the Bodélé depression during the BoDEx campaign

    Science.gov (United States)

    Tegen, I.; Heinold, B.; Todd, M.; Helmert, J.; Washington, R.; Dubovik, O.

    2006-09-01

    We present regional model simulations of the dust emission events during the Bodélé Dust Experiment (BoDEx) that was carried out in February and March 2005 in Chad. A box model version of the dust emission model is used to test different input parameters for the emission model, and to compare the dust emissions computed with observed wind speeds to those calculated with wind speeds from the regional model simulation. While field observations indicate that dust production occurs via self-abrasion of saltating diatomite flakes in the Bodélé, the emission model based on the assumption of dust production by saltation and using observed surface wind speeds as input parameters reproduces observed dust optical thicknesses well. Although the peak wind speeds in the regional model underestimate the highest wind speeds occurring on 10-12 March 2005, the spatio-temporal evolution of the dust cloud can be reasonably well reproduced by this model. Dust aerosol interacts with solar and thermal radiation in the regional model; it is responsible for a decrease in maximum daytime temperatures by about 5 K at the beginning the dust storm on 10 March 2005. This direct radiative effect of dust aerosol accounts for about half of the measured temperature decrease compared to conditions on 8 March. Results from a global dust model suggest that the dust from the Bodélé is an important contributor to dust crossing the African Savannah region towards the Gulf of Guinea and the equatorial Atlantic, where it can contribute up to 40% to the dust optical thickness.

  12. Understanding snow-transport processes shaping the mountain snow-cover

    Directory of Open Access Journals (Sweden)

    R. Mott

    2010-12-01

    Full Text Available Mountain snow-cover is normally heterogeneously distributed due to wind and precipitation interacting with the snow cover on various scales. The aim of this study was to investigate snow deposition and wind-induced snow-transport processes on different scales and to analyze some major drift events caused by north-west storms during two consecutive accumulation periods. In particular, we distinguish between the individual processes that cause specific drifts using a physically based model approach. Very high resolution wind fields (5 m were computed with the atmospheric model Advanced Regional Prediction System (ARPS and used as input for a model of snow-surface processes (Alpine3D to calculate saltation, suspension and preferential deposition of precipitation. Several flow features during north-west storms were identified with input from a high-density network of permanent and mobile weather stations and indirect estimations of wind directions from snow-surface structures, such as snow dunes and sastrugis. We also used Terrestrial and Airborne Laser Scanning measurements to investigate snow-deposition patterns and to validate the model. The model results suggest that the in-slope deposition patterns, particularly two huge cross-slope cornice-like drifts, developed only when the prevailing wind direction was northwesterly and were formed mainly due to snow redistribution processes (saltation-driven. In contrast, more homogeneous deposition patterns on a ridge scale were formed during the same periods mainly due to preferential deposition of precipitation. The numerical analysis showed that snow-transport processes were sensitive to the changing topography due to the smoothing effect of the snow cover.

  13. Validation of SWEEP for creep, saltation, and suspension in a desert-oasis ecotone

    Science.gov (United States)

    Wind erosion in the desert-oasis ecotone can accelerate desertification and thus impacts oasis ecological security. Little is known about the susceptibility of the desert-oasis ecotone to wind erosion in the Tarim Basin even though the ecotone is a major source of windblown dust in China. The object...

  14. Model of averaged turbulent flow around cylindrical column for simulation of the saltation

    Czech Academy of Sciences Publication Activity Database

    Kharlamova, Irina; Kharlamov, Alexander; Vlasák, Pavel

    2014-01-01

    Roč. 21, č. 2 (2014), s. 103-110 ISSN 1802-1484 R&D Projects: GA ČR GA103/09/1718 Institutional research plan: CEZ:AV0Z20600510 Institutional support: RVO:67985874 Keywords : sediment transport * flow around cylinder * logarithmic profile * dipole line * averaged turbulent flow Subject RIV: BK - Fluid Dynamics

  15. Aeolian sand transport over complex intertidal bar-trough beach topography

    Science.gov (United States)

    Anthony, Edward J.; Ruz, Marie-Hélène; Vanhée, Stéphane

    2009-04-01

    Aeolian sand transport on macrotidal beaches with complex intertidal bar-trough topography (ridge-and-runnel beaches) was assessed from experiments in northern France that involved measurements of wind speed, saltation, surface moisture contents, and rates of sand trapping across surveyed portions of the upper beach profile. Beaches exhibiting intertidal bars and troughs are much more complex, topographically, than simple reflective or dissipative beaches. Furthermore, the intertidal bar-trough morphology commonly exhibits strong cross-shore variations in the moisture contents of the beach surface and in patterns of bedform development. The results of four 30-minute experiments, conducted along topographically surveyed portions of the upper beach-dune toe profile, show that troughs act as extremely efficient sand interceptors, because of their permanently saturated state, which also inhibits sand mobilisation. Troughs, thus, limit or segment the dry fetch during conditions of intermittent saltation. Flow lines, inferred from the wind profiles, suggest that complex interactions at the boundary layer are generated by the bar-trough topography. Troughs systematically appear to be characterised by air expansion, while bar faces generate ramp wind acceleration for onshore winds, and sometimes immediate downwind deceleration for offshore winds. These effects may also contribute to cross-shore variations in the rates of sand trapping. Finally, a simple conceptual model of effective fetch development, integrating the effects of the spring-neap tidal range and of gross bar-trough morphological variability over time, is proposed for bar-trough beaches. The model highlights the key theme of fetch segmentation induced by cross-shore differentiation in the moisture contents of the beach surface hinged on the complex topography of multiple bars and troughs.

  16. Aeolian nutrient fluxes following wildfire in sagebrush steppe: implications for soil carbon storage

    Directory of Open Access Journals (Sweden)

    N. J. Hasselquist

    2011-12-01

    Full Text Available Pulses of aeolian transport following fire can profoundly affect the biogeochemical cycling of nutrients in semi-arid and arid ecosystems. Our objective was to determine horizontal nutrient fluxes occurring in the saltation zone during an episodic pulse of aeolian transport that occurred following a wildfire in a semi-arid sagebrush steppe ecosystem in southern Idaho, USA. We also examined how temporal trends in nutrient fluxes were affected by changes in particle sizes of eroded mass as well as nutrient concentrations associated with different particle size classes. In the burned area, total carbon (C and nitrogen (N fluxes were as high as 235 g C m−1 d−1 and 19 g N m−1 d−1 during the first few months following fire, whereas C and N fluxes were negligible in an adjacent unburned area throughout the study. Temporal variation in C and N fluxes following fire was largely attributable to the redistribution of saltation-sized particles. Total N and organic C concentrations in the soil surface were significantly lower in the burned relative to the unburned area one year after fire. Our results show how an episodic pulse of aeolian transport following fire can affect the spatial distribution of soil C and N, which, in turn, can have important implications for soil C storage. These findings demonstrate how an ecological disturbance can exacerbate a geomorphic process and highlight the need for further research to better understand the role aeolian transport plays in the biogeochemical cycling of C and N in recently burned landscapes.

  17. Development of a computer model for calculation of radioactive materials into the atmosphere after an accident

    Energy Technology Data Exchange (ETDEWEB)

    Schershakov, V. [Federal Information Analytical Centre, Obinski (Russia)

    1997-11-01

    Secondary atmospheric contamination with radioactive dust and chemical species deposited on the ground and resuspended by wind occur very widely. This process is particularly pronounced in case of extensive contamination of soil and under extreme weather conditions, for example, during dust storms. The mechanism of wind dust generation consists in the following. At low wind speed U=2-3 m/s, which is most common in midlatitude, small radioactive dust particles (diameter of hundredth of a micron to 10-20 microns) are lifted from soil surface due to turbulent vortexes. Under the gravitational force the particles of 1-2 micron diameter practically do not settle. Larger dust particles cannot remain in the air for a long time: they are lifted by turbulent vortexes and settle, their motion in the wind flow is jump-wise and the interaction of particles with the flow is called saltation /I/. Saltation is the main mechanism of dust generation up to the wind velocity at which wind erosion starts. The size of dust particles can be as large as 100 pm. When dropping they can be ricocheting from ground or pass the impulse to other particles which begin rolling over and jumping up. The process of dust transport by wind can be compared to a chain reaction. At the velocity of 10 m/s large particles of about 500 pm stop skipping and roll over only, while particles of more than 1 mm remain stationary. Thus, the fine fraction is blown out from the polydispersed soil particles. The intensity of wind resuspension of radioactive dust from the ground is characterized either by a resuspension factor or a resuspension rate.

  18. Modelling soil dust aerosol in the Bodélé depression during the BoDEx campaign

    Directory of Open Access Journals (Sweden)

    I. Tegen

    2006-01-01

    Full Text Available We present regional model simulations of the dust emission events during the Bodélé Dust Experiment (BoDEx that was carried out in February and March 2005 in Chad. A box model version of the dust emission model is used to test different input parameters for the emission model, and to compare the dust emissions computed with observed wind speeds to those calculated with wind speeds from the regional model simulation. While field observations indicate that dust production occurs via self-abrasion of saltating diatomite flakes in the Bodélé, the emission model based on the assumption of dust production by saltation and using observed surface wind speeds as input parameters reproduces observed dust optical thicknesses well. Although the peak wind speeds in the regional model underestimate the highest wind speeds occurring on 10–12 March 2005, the spatio-temporal evolution of the dust cloud can be reasonably well reproduced by this model. Dust aerosol interacts with solar and thermal radiation in the regional model; it is responsible for a decrease in maximum daytime temperatures by about 5 K at the beginning the dust storm on 10 March 2005. This direct radiative effect of dust aerosol accounts for about half of the measured temperature decrease compared to conditions on 8 March. Results from a global dust model suggest that the dust from the Bodélé is an important contributor to dust crossing the African Savannah region towards the Gulf of Guinea and the equatorial Atlantic, where it can contribute up to 40% to the dust optical thickness.

  19. Silt-clay aggregates on Mars

    International Nuclear Information System (INIS)

    Greeley, R.

    1979-01-01

    Viking observations suggest abundant silt and clay particles on Mars. It is proposed that some of these particles agglomerate to form sand size aggregates that are redeposited as sandlike features such as drifts and dunes. Although the binding for the aggregates could include salt cementation or other mechanisms, electrostatic bonding is considered to be a primary force holding the aggregates together. Various laboratory experiments conducted since the 19th century, and as reported here for simulated Martian conditions, show that both the magnitude and sign of electrical charges on windblown particles are functions of particle velocity, shape and composition, atmospheric pressure, atmospheric composition, and other factors. Electrical charges have been measured for saltating particles in the wind tunnel and in the field, on the surfaces of sand dunes, and within dust clouds on earth. Similar, and perhaps even greater, charges are proposed to occur on Mars, which could form aggregates of silt and clay size particles. Electrification is proposed to occur within Martian dust clouds, generating silt-clay aggregates which would settle to the surface where they may be deposited in the form of sandlike structures. By analog, silt-clay dunes are known in many parts of the earth where silt-clay aggregated were transported by saltation and deposited as 'sand.' In these structures the binding forces were later destroyed, and the particles reassumed the physical properties of silt and clay, but the sandlike bedding structure within the 'dunes' was preserved. The bedding observed in drifts at the Viking landing site is suggested to result from a similar process involving silt-clay aggregates on Mars

  20. Effect of roughness formulation on the performance of a coupled wave, hydrodynamic, and sediment transport model

    Science.gov (United States)

    Ganju, Neil K.; Sherwood, Christopher R.

    2010-01-01

    A variety of algorithms are available for parameterizing the hydrodynamic bottom roughness associated with grain size, saltation, bedforms, and wave–current interaction in coastal ocean models. These parameterizations give rise to spatially and temporally variable bottom-drag coefficients that ostensibly provide better representations of physical processes than uniform and constant coefficients. However, few studies have been performed to determine whether improved representation of these variable bottom roughness components translates into measurable improvements in model skill. We test the hypothesis that improved representation of variable bottom roughness improves performance with respect to near-bed circulation, bottom stresses, or turbulence dissipation. The inner shelf south of Martha’s Vineyard, Massachusetts, is the site of sorted grain-size features which exhibit sharp alongshore variations in grain size and ripple geometry over gentle bathymetric relief; this area provides a suitable testing ground for roughness parameterizations. We first establish the skill of a nested regional model for currents, waves, stresses, and turbulent quantities using a uniform and constant roughness; we then gauge model skill with various parameterization of roughness, which account for the influence of the wave-boundary layer, grain size, saltation, and rippled bedforms. We find that commonly used representations of ripple-induced roughness, when combined with a wave–current interaction routine, do not significantly improve skill for circulation, and significantly decrease skill with respect to stresses and turbulence dissipation. Ripple orientation with respect to dominant currents and ripple shape may be responsible for complicating a straightforward estimate of the roughness contribution from ripples. In addition, sediment-induced stratification may be responsible for lower stresses than predicted by the wave–current interaction model.

  1. Environmental effects of solar thermal power systems: ecological observations during construction of the Barstow 10 MWe pilot STPS

    Energy Technology Data Exchange (ETDEWEB)

    Turner, F.B. (ed.)

    1981-10-01

    The environmental monitoring plan used consists of comparisons of a few meteorological variables and changes in the states of a limited array of indicator species or assemblages of species of plants and animals. Observations inlude aerial photography of the site, saltation meter measurements downwind from the site to measure fluxes of windblown sand, measurements of airborne particulates and atmospheric pollutants, and baseline temperature profiles made at two sites near the heliostat field to measure micro-meteorological patterns. Observations were made of annual plants both in off-field plots and in heliostat field, of shrubs, birds, rodents, reptiles, and sensitive species listed as rare or endangered. (LEW)

  2. The physics of wind-blown sand and dust.

    Science.gov (United States)

    Kok, Jasper F; Parteli, Eric J R; Michaels, Timothy I; Karam, Diana Bou

    2012-10-01

    The transport of sand and dust by wind is a potent erosional force, creates sand dunes and ripples, and loads the atmosphere with suspended dust aerosols. This paper presents an extensive review of the physics of wind-blown sand and dust on Earth and Mars. Specifically, we review the physics of aeolian saltation, the formation and development of sand dunes and ripples, the physics of dust aerosol emission, the weather phenomena that trigger dust storms, and the lifting of dust by dust devils and other small-scale vortices. We also discuss the physics of wind-blown sand and dune formation on Venus and Titan.

  3. A Threshold Continuum for Aeolian Sand Transport

    Science.gov (United States)

    Swann, C.; Ewing, R. C.; Sherman, D. J.

    2015-12-01

    The threshold of motion for aeolian sand transport marks the initial entrainment of sand particles by the force of the wind. This is typically defined and modeled as a singular wind speed for a given grain size and is based on field and laboratory experimental data. However, the definition of threshold varies significantly between these empirical models, largely because the definition is based on visual-observations of initial grain movement. For example, in his seminal experiments, Bagnold defined threshold of motion when he observed that 100% of the bed was in motion. Others have used 50% and lesser values. Differences in threshold models, in turn, result is large errors in predicting the fluxes associated with sand and dust transport. Here we use a wind tunnel and novel sediment trap to capture the fractions of sand in creep, reptation and saltation at Earth and Mars pressures and show that the threshold of motion for aeolian sand transport is best defined as a continuum in which grains progress through stages defined by the proportion of grains in creep and saltation. We propose the use of scale dependent thresholds modeled by distinct probability distribution functions that differentiate the threshold based on micro to macro scale applications. For example, a geologic timescale application corresponds to a threshold when 100% of the bed in motion whereas a sub-second application corresponds to a threshold when a single particle is set in motion. We provide quantitative measurements (number and mode of particle movement) corresponding to visual observations, percent of bed in motion and degrees of transport intermittency for Earth and Mars. Understanding transport as a continuum provides a basis for revaluating sand transport thresholds on Earth, Mars and Titan.

  4. Connecting meteorology to surface transport in aeolian landscapes: Peering into the boundary layer with Doppler lidar

    Science.gov (United States)

    Gunn, A.; Jerolmack, D. J.; Edmonds, D. A.; Ewing, R. C.; Wanker, M.; David, S. R.

    2017-12-01

    Aolian sand dunes grow to 100s or 1000s of meters in wavelength by sand saltation, which also produces dust plumes that feed cloud formation and may spread around the world. The relations among sediment transport, landscape dynamics and wind are typically observed at the limiting ends of the relevant range: highly resolved and localized ground observations of turbulence and relevant fluxes; or regional and synoptic-scale meteorology and satellite imagery. Between the geostrophic winds aloft and shearing stress on the Earth's surface is the boundary layer, whose stability and structure determines how momentum is transferred and ultimately entrains sediment. Although the literature on atmospheric boundary layer flows is mature, this understanding is rarely applied to aeolian landscape dynamics. Moreover, there are few vertically and time-resolved datasets of atmospheric boundary layer flows in desert sand seas, where buoyancy effects are most pronounced. Here we employ a ground-based upward-looking doppler lidar to examine atmospheric boundary layer flow at the upwind margin of the White Sands (New Mexico) dune field, providing continuous 3D wind velocity data from the surface to 300-m aloft over 70 days of the characteristically windy spring season. Data show highly resolved daily cyles of convective instabilty due to daytime heating and stable stratification due to nightime cooling which act to enhance or depress, respectively, the surface wind stresses for a given free-stream velocity. Our data implicate convective instability in driving strong saltation and dust emission, because enhanced mixing flattens the vertical velocity profile (raising surface wind speed) while upward advection helps to deliver dust to the high atmosphere. We also find evidence for Ekman spiralling, with a magnitude that depends on atmospheric stability. This spiralling gives rise to a deflection in the direction between geostrophic and surface winds, that is significant for the

  5. Particle transport patterns of short-distance soil erosion by wind-driven rain, rain and wind

    Science.gov (United States)

    Marzen, Miriam; Iserloh, Thomas; de Lima, João L. M. P.; Ries, Johannes B.

    2015-04-01

    Short distance erosion of soil surface material is one of the big question marks in soil erosion studies. The exact measurement of short-distance transported soil particles, prior to the occurrence of overland flow, is a challenge to soil erosion science due to the particular requirements of the experimental setup and test procedure. To approach a quantification of amount and distance of each type of transport, we applied an especially developed multiple-gutter system installed inside the Trier Portable Wind and Rainfall Simulator (PWRS). We measured the amount and travel distance of soil particles detached and transported by raindrops (splash), wind-driven rain (splash-saltation and splash-drift) and wind (saltation). The test setup included three different erosion agents (rain/ wind-driven rain/ wind), two substrates (sandy/ loamy), three surface structures (grain roughness/ rills lengthwise/ rills transversal) and three slope angles (0°/+7°/-7°). The results present detailed transport patterns of the three erosion agents under the varying soil and surface conditions up to a distance of 1.6 m. Under the applied rain intensity and wind velocity, wind-driven rain splash generates the highest erosion. The erodibility and travel distance of the two substrates depend on the erosion agent. The total erosion is slightly higher for the slope angle -7° (downslope), but for wind-driven rain splash, the inclination is not a relevant factor. The effect of surface structures (rills) changes with traveling distance. The wind driven rain splash generates a much higher amount of erosion and a further travel distance of the particles due to the combined action of wind and rain. The wind-driven rain factor appears to be much more significant than the other factors. The study highlights the effects of different erosion agents and surface parameters on short-distance particle transport and the powerful impact of wind-driven rain on soil erosion.

  6. Turbulent flow structures and aeolian sediment transport over a barchan sand dune

    Science.gov (United States)

    Wiggs, G. F. S.; Weaver, C. M.

    2012-03-01

    The turbulent structure of airflow over a barchan sand dune is determined using quadrant analysis of wind velocity data derived from sonic anemometers. Results indicate an increased frequency of ejection and sweep events in the toe region of the dune, characteristic of the turbulent bursting process. In contrast, at the crest there was a significant increase in the occurrence of outward interactions. Combined with high frequency saltation data our analyses show that turbulent structures characterised by a positive streamwise fluctuating velocity (+u‧ sweeps at the toe and outward interactions at the crest) have a dominant influence on sand transport on the dune, together accounting for up to 83% and 95% of transporting events at the toe and crest respectively.

  7. Saltation and incipient suspension above a flat particle bed below a turbulent boundary layer

    Science.gov (United States)

    Nishimura, K.; Hunt, J. C. R.

    2000-08-01

    Experiments were conducted in a wind tunnel in which a turbulent boundary layer was naturally grown over flat beds of three types of nearly mono-disperse spherical particles with different diameters, densities and coefficient of restitution (r) (snow, 0.48 mm, 910 kg m[minus sign]3; mustard seeds, 1.82 mm, 1670 kg m[minus sign]3, r = 0.7; ice particles, 2.80 mm, 910 kg m[minus sign]3, r = 0.8 0.9). The surface wind speeds (defined by the friction velocity u[low asterisk]) were varied between 1.0 and 1.9 times the threshold surface wind speed (defined by u[low asterisk]t). The trajectories, and ejection and impact velocities of the particles were recorded and analysed, even those that were raised only about one diameter into the flow.

  8. Rock Abrasion and Ventifact Formation on Mars from Field Analog, Theoretical, and Experimental Studies

    Science.gov (United States)

    Bridges, N. T.; Laity, J. E.

    2001-01-01

    Rocks observed by the Viking Landers and Pathfinder Lander/Sojourner rover exhibit a suite of perplexing rock textures. Among these are pits, spongy textures, penetrative flutes, lineaments, crusts, and knobs Fluvial, impact, chemical alteration, and aeolian mechanisms have been proposed for many of these. In an effort to better understand the origin and characteristics of Martian rock textures, abraded rocks in the Mojave Desert and other regions have been studied. We find that most Martian rock textures, as opposed to just a few, bear close resemblance to terrestrial aeolian textures and can most easily be explained by wind, not other, processes. Flutes, grooves, and some pits on Mars are consistent with abrasion by saltating particles, as described previously. However, many other rock textures probably also have an aeolian origin. Sills at the base of rocks that generally lie at high elevations, such as Half Dome, are consistent with such features on Earth that are related to moats or soil ramps that shield the basal part of the rock from erosion. Crusts consisting of fluted fabrics, such as those on Stimpy and Chimp, are similar to fluted crusts on Earth that spall off over time. Knobby and lineated rocks are similar to terrestrial examples of heterogeneous rocks that differentially erode. The location of specific rock textures on Mars also gives insight into their origin. Many of the most diagnostic ventifacts found at the Pathfinder site are located on rocks that lie near the crests or the upper slopes of ridges. On Earth, the most active ventifact formation occurs on sloped or elevated topography, where windflow is accelerated and particle kinetic energy and flux are increased. Integrated 0 together, these observations point to significant aeolian 0 modification of rocks on Mars and cast doubt on whether many primary textures resulting from other processes are preserved. Experimental simulations of abrasion in the presence of abundant sand indicate that

  9. Application of the Filippov Method for the Stability Analysis of a Photovoltaic System

    Directory of Open Access Journals (Sweden)

    PETREUS, D.

    2011-11-01

    Full Text Available This paper describes bifurcation phenomena of a photovoltaic system. The studied photovoltaic (PV system includes a solar panel, a boost converter, a maximum power point tracking (MPPT controller and a storage device. Computer simulations are performed to capture the effects of variation of some chosen parameters on the qualitative behavior of the system. The impact of the maximum power point (MPP current and voltage variations due to luminosity changes is determinate, as well as the load variation. The stability of the system is analyzed using the state transition matrix over one switching cycle (the monodromy matrix including the state transition matrices during each switching (the saltation matrices. This investigation is important to predict nonlinear phenomena and for the components dimensioning for a proper functioning.

  10. Comparison of two different dust emission mechanisms over the Horqin Sandy Land area: Aerosols contribution and size distributions

    Science.gov (United States)

    Ju, Tingting; Li, Xiaolan; Zhang, Hongsheng; Cai, Xuhui; Song, Yu

    2018-03-01

    Dust aerosols (PM10) emission fluxes due to convective turbulent dust emissions (CTDE) and saltation-bombardment and/or aggregation-disintegration dust emissions (SADE) events were comparatively studied using the data obtained from the Naiman station over the Horqin Sandy Land area in Inner Mongolia, China from 2011 to 2015. The annual cumulative dust fluxes released by CTDE events was about one third of that by SADE events, with the order of 103∼104 μg m-2 s-1. The particle size distributions (PSDs) with diameter between 0.1 and 20 μm during CTDE and SADE events over the Horqin Sandy Land area were simulated based on the fragmentation theory, respectively. The results indicated that an improved equation based on fragmentation theory could be applied to describe the PSDs over the Horqin site which may be because the scale-invariant fragmentation theory mainly explains the PSDs of free dust particles on the surface, which differ from the PSDs of suspend airborne dust and the improved equation was more applicable to the PSDs of SADE events because the dust emission mechanism of SADE are saltation bombardment and aggregation disintegration. The number-related mean aerosol diameters (DN) barely varied under different friction velocity (u*) for SADE events, while the volume-related mean aerosol diameters (DV) changed distinctly with the change of u*. For CTDE events, the DN and DV had no obvious relationship with the change of u* because the dominating influence factor during CTDE event was thermal convection rather than u*. The mass-related PSDs usually exhibited a peak between 0.45 and 0.70 μm during SADE events, while for CTDE events there was a wide peak in the range of 0.10 0.70 μm. The results suggest that DN should be not be recommended as an individual parameter to describe the PSDs. The mass-related PSDs can effectively distinguish the SADE and CTDE events.

  11. [Estimation of the effect derived from wind erosion of soil and dust emission in Tianjin suburbs on the central district based on WEPS model].

    Science.gov (United States)

    Chen, Li; Han, Ting-Ting; Li, Tao; Ji, Ya-Qin; Bai, Zhi-Peng; Wang, Bin

    2012-07-01

    Due to the lack of a prediction model for current wind erosion in China and the slow development for such models, this study aims to predict the wind erosion of soil and the dust emission and develop a prediction model for wind erosion in Tianjin by investigating the structure, parameter systems and the relationships among the parameter systems of the prediction models for wind erosion in typical areas, using the U.S. wind erosion prediction system (WEPS) as reference. Based on the remote sensing technique and the test data, a parameter system was established for the prediction model of wind erosion and dust emission, and a model was developed that was suitable for the prediction of wind erosion and dust emission in Tianjin. Tianjin was divided into 11 080 blocks with a resolution of 1 x 1 km2, among which 7 778 dust emitting blocks were selected. The parameters of the blocks were localized, including longitude, latitude, elevation and direction, etc.. The database files of blocks were localized, including wind file, climate file, soil file and management file. The weps. run file was edited. Based on Microsoft Visualstudio 2008, secondary development was done using C + + language, and the dust fluxes of 7 778 blocks were estimated, including creep and saltation fluxes, suspension fluxes and PM10 fluxes. Based on the parameters of wind tunnel experiments in Inner Mongolia, the soil measurement data and climate data in suburbs of Tianjin, the wind erosion module, wind erosion fluxes, dust emission release modulus and dust release fluxes were calculated for the four seasons and the whole year in suburbs of Tianjin. In 2009, the total creep and saltation fluxes, suspension fluxes and PM10 fluxes in the suburbs of Tianjin were 2.54 x 10(6) t, 1.25 x 10(7) t and 9.04 x 10(5) t, respectively, among which, the parts pointing to the central district were 5.61 x 10(5) t, 2.89 x 10(6) t and 2.03 x 10(5) t, respectively.

  12. Spatio-temporal variability of several eco-precipitation indicators in China

    Science.gov (United States)

    Guo, B. B.; Zhang, J.; Wang, F.

    2016-12-01

    Climate change is expected to have large impacts on the eco-hydrological processes. Precipitation as one of the most important meteorological factors is a significant parameter in ecohydrology. Many studies and precipitation indexes focused on the long-term precipitation variability have been put forward. However, these former studies did not consider the vegetation response and these indexes could not reflect it efficiently. Eco-precipitation indicators reflecting the features and patterns of precipitations and serving as significant input parameters of eco-hydrological models are of paramount significance to the studies of these models. Therefore we proposed 4 important eco-precipitation indicators—Precipitation Variability Index (PVI), Precipitation Occurrence Rate (λ), Mean Precipitation Depth (1/θ) and Annual Precipitation (AP). The PVI index depicts the precipitation variability with a value of zero for perfectly uniform and increases as precipitation events become more sporadic. The λ, 1/θ and AP depict the precipitation frequency, intensity and annual amount, respectively. With large precipitation and vegetation discrepancies, China is selected as a study area. Firstly, these indicators are calculated separately with 55-years (1961-2015) daily precipitation time-series from 693 weather stations in China. Then, the temporal trend is analyzed through Mann-Kendall (MK) test and parametric t-test in annual time scale. Furthermore, the spatial distribution is analyzed through the spatial interpolation tools ANUsplin. The result shows that: (1) 1/θ increased significantly (4.59cm/10yr) while λ decreased significantly (1.54 days/10yr), which means there is an increasing trend of extreme precipitation events; (2)there is a significant downward trend of PVI, which means the rhythm of precipitation has a uniform and concentrated trend; (3) AP increased insignificantly (0.57mm/10yr); and (4)the MK test of these indicators shows that there is saltation of

  13. Sand transport, erosion and granular electrification

    DEFF Research Database (Denmark)

    Merrison, J.P.

    2012-01-01

    is expanding our current understanding and outline the areas of advancement needed in the future. Presentation is made of current models for wind driven detachment/entrainment and the transport rates of sand and dust, including the effects of contact induced grain electrification. This ubiquitous phenomenon...... can affect grain transport through the generation of intense electric fields and processes of electrostatic assembly. Importantly the transport of sand is characterized by saltation, which is known to be an active process for erosion and therefore a source for dust and sand formation. Using novel...... erosion simulation techniques the link between grain transport rates and erosion rates has been quantified. Furthermore this can be linked to production rates for dust and has been associated with chemical and mineral alteration through a process of mechanical activation of fractured surfaces. This work...

  14. Aeolian Sand Transport in the Planetary Context: Respective Roles of Aerodynamic and Bed-Dilatancy Thresholds

    Science.gov (United States)

    Marshall, J. R.; Borucki, J.; Bratton, C.

    1999-09-01

    The traditional view of aeolian sand transport generally estimates flux from the perspective of aerodynamic forces creating the airborne grain population, although it has been recognized that "reptation" causes a significant part of the total airborne flux; reptation involves both ballistic injection of grains into the air stream by the impact of saltating grains as well as the "nudging" of surface grains into a creeping motion. Whilst aerodynamic forces may initiate sand motion, it is proposed here that within a fully-matured grain cloud, flux is actually governed by two thresholds: an aerodynamic threshold, and a bed-dilatancy threshold. It is the latter which controls the reptation population, and its significance increases proportionally with transport energy. Because we only have experience with terrestrial sand transport, extrapolations of aeolian theory to Mars and Venus have adjusted only the aerodynamic factor, taking gravitational forces and atmospheric density as the prime variables in the aerodynamic equations, but neglecting reptation. The basis for our perspective on the importance of reptation and bed dilatancy is a set of experiments that were designed to simulate sand transport across the surface of a martian dune. Using a modified sporting crossbow in which a sand-impelling sabot replaced the bolt-firing mechanism, individual grains of sand were fired at loose sand targets with glancing angles typical of saltation impact; grains were projected at about 80 m/s to simulate velocities commensurate with those predicted for extreme martian aeolian conditions. The sabot impelling method permitted study of individual impacts without the masking effect of bed mobilization encountered in wind-tunnel studies. At these martian impact velocities, grains produced small craters formed by the ejection of several hundred grains from the bed. Unexpectedly, the craters were not elongated, despite glancing impact; the craters were very close to circular in planform

  15. Coupled large eddy simulation and discrete element model of bedload motion

    Science.gov (United States)

    Furbish, D.; Schmeeckle, M. W.

    2011-12-01

    We combine a three-dimensional large eddy simulation of turbulence to a three-dimensional discrete element model of turbulence. The large eddy simulation of the turbulent fluid is extended into the bed composed of non-moving particles by adding resistance terms to the Navier-Stokes equations in accordance with the Darcy-Forchheimer law. This allows the turbulent velocity and pressure fluctuations to penetrate the bed of discrete particles, and this addition of a porous zone results in turbulence structures above the bed that are similar to previous experimental and numerical results for hydraulically-rough beds. For example, we reproduce low-speed streaks that are less coherent than those over smooth-beds due to the episodic outflow of fluid from the bed. Local resistance terms are also added to the Navier-Stokes equations to account for the drag of individual moving particles. The interaction of the spherical particles utilizes a standard DEM soft-sphere Hertz model. We use only a simple drag model to calculate the fluid forces on the particles. The model reproduces an exponential distribution of bedload particle velocities that we have found experimentally using high-speed video of a flat bed of moving sand in a recirculating water flume. The exponential distribution of velocity results from the motion of many particles that are nearly constantly in contact with other bed particles and come to rest after short distances, in combination with a relatively few particles that are entrained further above the bed and have velocities approaching that of the fluid. Entrainment and motion "hot spots" are evident that are not perfectly correlated with the local, instantaneous fluid velocity. Zones of the bed that have recently experienced motion are more susceptible to motion because of the local configuration of particle contacts. The paradigm of a characteristic saltation hop length in riverine bedload transport has infused many aspects of geomorphic thought, including

  16. Silicates Eroded under Simulated Martian Conditions Effectively Kill Bacteria—A Challenge for Life on Mars

    DEFF Research Database (Denmark)

    Bak, Ebbe Norskov; Larsen, Michael G.; Moeller, Ralf

    2017-01-01

    The habitability of Mars is determined by the physical and chemical environment. The effect of low water availability, temperature, low atmospheric pressure and strong UV radiation has been extensively studied in relation to the survival of microorganisms. In addition to these stress factors......, it was recently found that silicates exposed to simulated saltation in a Mars-like atmosphere can lead to a production of reactive oxygen species. Here, we have investigated the stress effect induced by quartz and basalt abraded in Mars-like atmospheres by examining the survivability of the three microbial model...... of the basalt samples to oxygen after abrasion led to a significant reduction in the stress effect. Abraded quartz was generally less toxic than abraded basalt. We suggest that the stress effect of abraded silicates may be caused by a production of reactive oxygen species and enhanced by transition metal ions...

  17. An Engineered orco Mutation Produces Aberrant Social Behavior and Defective Neural Development in Ants.

    Science.gov (United States)

    Yan, Hua; Opachaloemphan, Comzit; Mancini, Giacomo; Yang, Huan; Gallitto, Matthew; Mlejnek, Jakub; Leibholz, Alexandra; Haight, Kevin; Ghaninia, Majid; Huo, Lucy; Perry, Michael; Slone, Jesse; Zhou, Xiaofan; Traficante, Maria; Penick, Clint A; Dolezal, Kelly; Gokhale, Kaustubh; Stevens, Kelsey; Fetter-Pruneda, Ingrid; Bonasio, Roberto; Zwiebel, Laurence J; Berger, Shelley L; Liebig, Jürgen; Reinberg, Danny; Desplan, Claude

    2017-08-10

    Ants exhibit cooperative behaviors and advanced forms of sociality that depend on pheromone-mediated communication. Odorant receptor neurons (ORNs) express specific odorant receptors (ORs) encoded by a dramatically expanded gene family in ants. In most eusocial insects, only the queen can transmit genetic information, restricting genetic studies. In contrast, workers in Harpegnathos saltator ants can be converted into gamergates (pseudoqueens) that can found entire colonies. This feature facilitated CRISPR-Cas9 generation of germline mutations in orco, the gene that encodes the obligate co-receptor of all ORs. orco mutations should significantly impact olfaction. We demonstrate striking functions of Orco in odorant perception, reproductive physiology, and social behavior plasticity. Surprisingly, unlike in other insects, loss of OR functionality also dramatically impairs development of the antennal lobe to which ORNs project. Therefore, the development of genetics in Harpegnathos establishes this ant species as a model organism to study the complexity of eusociality. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. The effect of the configuration of a single electrode corona discharge on its acoustic characteristics

    Science.gov (United States)

    Zhu, Xinlei; Zhang, Liancheng; Huang, Yifan; Wang, Jin; Liu, Zhen; Yan, Keping

    2017-07-01

    A new sparker system based on pulsed spark discharge with a single electrode has already been utilized for oceanic seismic exploration. However, the electro-acoustic energy efficiency of this system is lower than that of arc discharge based systems. A simple electrode structure was investigated in order to improve the electro-acoustic energy efficiency of the spark discharge. Experiments were carried out on an experimental setup with discharge in water driven by a pulsed power source. The voltage-current waveform, acoustic signal and bubble oscillation were recorded when the relative position of the electrode varied. The electro-acoustic energy efficiency was also calculated. The load voltage had a saltation for the invaginated electrode tip, namely an obvious voltage remnant. The more the electrode tip was invaginated, the larger the pressure peaks and first period became. The results show that electrode recessing into the insulating layer is a simple and effective way to improve the electro-acoustic energy efficiency from 2% to about 4%.

  19. Neurohormonal changes associated with ritualized combat and the formation of a reproductive hierarchy in the ant Harpegnathos saltator

    Science.gov (United States)

    Dominance rank in animal societies is correlated with changes in both reproductive physiology and behavior. In some social insects, dominance status is used to determine a reproductive division of labor, where a few colony members reproduce while most remain functionally sterile. Changes in reproduc...

  20. Aerosol transport simulations in indoor and outdoor environments using computational fluid dynamics (CFD)

    Science.gov (United States)

    Landazuri, Andrea C.

    This dissertation focuses on aerosol transport modeling in occupational environments and mining sites in Arizona using computational fluid dynamics (CFD). The impacts of human exposure in both environments are explored with the emphasis on turbulence, wind speed, wind direction and particle sizes. Final emissions simulations involved the digitalization process of available elevation contour plots of one of the mining sites to account for realistic topographical features. The digital elevation map (DEM) of one of the sites was imported to COMSOL MULTIPHYSICSRTM for subsequent turbulence and particle simulations. Simulation results that include realistic topography show considerable deviations of wind direction. Inter-element correlation results using metal and metalloid size resolved concentration data using a Micro-Orifice Uniform Deposit Impactor (MOUDI) under given wind speeds and directions provided guidance on groups of metals that coexist throughout mining activities. Groups between Fe-Mg, Cr-Fe, Al-Sc, Sc-Fe, and Mg-Al are strongly correlated for unrestricted wind directions and speeds, suggesting that the source may be of soil origin (e.g. ore and tailings); also, groups of elements where Cu is present, in the coarse fraction range, may come from mechanical action mining activities and saltation phenomenon. Besides, MOUDI data under low wind speeds (Computational Fluid Dynamics can be used as a source apportionment tool to identify areas that have an effect over specific sampling points and susceptible regions under certain meteorological conditions, and these conclusions can be supported with inter-element correlation matrices and lead isotope analysis, especially since there is limited access to the mining sites. Additional results concluded that grid adaption is a powerful tool that allows to refine specific regions that require lots of detail and therefore better resolve flow detail, provides higher number of locations with monotonic convergence than the

  1. Genome-wide and caste-specific DNA methylomes of the ants Camponotus floridanus and Harpegnathos saltator

    DEFF Research Database (Denmark)

    Bonasio, Roberto; Li, Qiye; Lian, Jinmin

    2012-01-01

    Ant societies comprise individuals belonging to different castes characterized by specialized morphologies and behaviors. Because ant embryos can follow different developmental trajectories, epigenetic mechanisms must play a role in caste determination. Ants have a full set of DNA methyltransfera...

  2. Estimation of aerosol plutonium transport by the dust-flux method: a perspective on application of detailed data

    International Nuclear Information System (INIS)

    Shinn, J.H.

    1976-01-01

    Two methods of dust-flux measurements are discussed which have been utilized to estimate aerosol plutonium deposition and resuspension. In previous studies the methods were found to be sufficiently detailed to permit parameterization of dust-flux to the erodibility of the soil, and a seventh-power dependency of dust-flux (or plutonium flux) to wind speed was observed in worst case conditions. The eddy-correlation method is technically more difficult, requires high-speed data acquisition, and requires an instrument response time better than one second, but the eddy-correlation method has been shown feasible with new fast-response sensors, and it is more useful in limited areas because it can be used as a probe. The flux-gradient method is limited by critical assumptions and is more bulky, but the method is more commonly used and accepted. The best approach is to use both methods simultaneously. It is suggested that several questions should be investigated by the methods, such as saltation stimulation of dust-flux, simultaneous suspension and deposition, foliar deposition and trapping, erodibility of crusted surfaces, and horizontally heterogeneous erodibility

  3. Red/violet contrast reversal on Mars - significance for eolian sediments

    International Nuclear Information System (INIS)

    Thomas, P.; Veverka, J.

    1986-01-01

    Viking Orbiter images of Mars are analyzed to define relationships between the observed contrast reversals (CR) and specific surface features. The link between CR phenomena and surface composition was first detected in contrast comparisons between UV and visible wavelength Mariner 9 data. Viking data, taken through red and violet filters, showed that the CRs occurred only with crater splotches and splotch-related streaks and in bright depositional and dark erosional streaks, both being low-albedo markings presumably caused by eolian forces. The splotch phenomena is confined mainly to the Oxia Palus region, although there are other regions where splotches and streaks commingle. Laboratory tests to mimic the CR characteristics showed that CRs are a common phenomena of different size fractions of iron oxides, e.g., goethite, where particles under 5 microns have been removed. The splotches, including dune formations, are therefore believed to indicate the presence of particles in the 100-800 microns diam range. Finer particles ride on the tops of the dust storms, and are continually removed from the surface by saltation. 51 references

  4. Soil erosion rates from mixed soil and gravel surfaces in a wind tunnel: A preliminary report

    International Nuclear Information System (INIS)

    Ligotke, M.W.

    1988-12-01

    Tests of wind erosion were performed in a controlled-environment wind tunnel to support the development of natural-material protective barriers for long-term isolation of radioactive waste. Barrier performance standards currently being developed for internal and external barrier performance are expected to mandate a surface layer that is resistant to wind erosion. The purpose of this study was to initiate a series of tests to determine suitable soil and gravel mixtures for such a barrier and to test worst-case surface layer conditions under the influence of high wind speeds. Six mixed soil and gravel surfaces were prepared, weathered to represent natural wind-blown desert areas, and subjected to controlled wind erosion forces in a wind tunnel. The applied erosive forces, including surface shear forces, were characterized to provide a means of relating wind tunnel results with actual field conditions. Soil particle losses from the surfaces caused by suspension, saltation, and surface creep were monitored by aerosol sample probes and mass balance measurements. 23 refs., 22 figs., 3 tabs

  5. Experimental investigation of coarse particle conveying in pipes

    Directory of Open Access Journals (Sweden)

    Vlasak Pavel

    2015-01-01

    Full Text Available The advanced knowledge of particle-water mixture flow behaviour is important for safe, reliable, and economical design and operation of the freight pipelines. The effect of the mixture velocity and concentration on the coarse particle – water mixtures flow behaviour was experimentally investigated on an experimental pipe loop of inner diameter D = 100 mm with horizontal, vertical, and inclined pipe sections. Narrow particle size distribution basalt pebbles were used as model of coarse-grained solid particles. The radiometric method was used to measure particle concentration distribution in pipe cross-section. Mixture flow behaviour and particles motion along the pipe invert were studied in a pipe viewing section. The study revealed that the coarse particlewater mixtures in the horizontal and inclined pipe sections were significantly stratified. The particles moved principally in a layer close to the pipe invert. However, for higher and moderate flow velocities the particles moved also in the central part of the pipe cross-section, and particle saltation was found to be dominant mode of particle conveying.

  6. The Effect of Air Density on Sand Transport Structures and the Adobe Abrasion Profile: A Field Wind-Tunnel Experiment Over a Wide Range of Altitude

    Science.gov (United States)

    Han, Qingjie; Qu, Jianjun; Dong, Zhibao; Zu, Ruiping; Zhang, Kecun; Wang, Hongtao; Xie, Shengbo

    2014-02-01

    Aeolian sand transport results from interactions between the surface and the airflow above. Air density strongly constrains airflow characteristics and the resulting flow of sand, and therefore should not be neglected in sand transport models. In the present study, we quantify the influence of air density on the sand flow structure, sand transport rate, adobe abrasion profiles, and abrasion rate using a portable wind-tunnel in the field. For a given wind speed, the flow's ability to transport sand decreases at low air density, so total sand transport decreases, but the saltation height increases. Thus, the damage to human structures increases compared with what occurs at lower altitudes. The adobe abrasion rate by the cloud of blowing sand decreases exponentially with increasing height above the surface, while the wind erosion and dust emission intensity both increase with increasing air density. Long-term feedback processes between air density and wind erosion suggest that the development of low-altitude areas due to long-term deflation plays a key role in dust emission, and will have a profound significance for surface Aeolian processes and geomorphology.

  7. Distribution and characterization of radionuclides in soils from Nevada Test Site

    International Nuclear Information System (INIS)

    Lee, S.Y.; Tamura, T.

    1985-01-01

    Selected physicochemical properties of plutonium-bearing radioactive particles and their association with host soils from the Nevada Test Site (NTS) were studied to aid in the environmental assessment of the radionuclides in the area and to provide technological concepts for potential cleanup operations. The dominant radioactive particles were amorphous to X-ray diffraction, very fragile by compression tests, and extremely porous with particle density 3 . The physical properties of the particles suggest that they can be broken to smaller respirable sizes by saltation during wind erosion and that their unique physical properties may be useful for mechanically separating them from the nonradioactive soil particles. Experimental results revealed that more than 90% of the total radioactivity was recovered in about 25% of the total sample weight through density separation techniques and in about 18% of the total weight by a grinding-sieving process. Radioactive particles might therefore be removed from the contaminated soil by a controlled vacuum collector, density separation, grinding-sieving separation, or a combination of these techniques on the basis of the density and compressibility differences between radioactive and nonradioactive particles. 21 references, 5 figures, 5 tables

  8. A Process-Based Transport-Distance Model of Aeolian Transport

    Science.gov (United States)

    Naylor, A. K.; Okin, G.; Wainwright, J.; Parsons, A. J.

    2017-12-01

    We present a new approach to modeling aeolian transport based on transport distance. Particle fluxes are based on statistical probabilities of particle detachment and distributions of transport lengths, which are functions of particle size classes. A computational saltation model is used to simulate transport distances over a variety of sizes. These are fit to an exponential distribution, which has the advantages of computational economy, concordance with current field measurements, and a meaningful relationship to theoretical assumptions about mean and median particle transport distance. This novel approach includes particle-particle interactions, which are important for sustaining aeolian transport and dust emission. Results from this model are compared with results from both bulk- and particle-sized-specific transport equations as well as empirical wind tunnel studies. The transport-distance approach has been successfully used for hydraulic processes, and extending this methodology from hydraulic to aeolian transport opens up the possibility of modeling joint transport by wind and water using consistent physics. Particularly in nutrient-limited environments, modeling the joint action of aeolian and hydraulic transport is essential for understanding the spatial distribution of biomass across landscapes and how it responds to climatic variability and change.

  9. Particle motion in atmospheric boundary layers of Mars and Earth

    Science.gov (United States)

    White, B. R.; Iversen, J. D.; Greeley, R.; Pollack, J. B.

    1975-01-01

    To study the eolian mechanics of saltating particles, both an experimental investigation of the flow field around a model crater in an atmospheric boundary layer wind tunnel and numerical solutions of the two- and three-dimensional equations of motion of a single particle under the influence of a turbulent boundary layer were conducted. Two-dimensional particle motion was calculated for flow near the surfaces of both Earth and Mars. For the case of Earth both a turbulent boundary layer with a viscous sublayer and one without were calculated. For the case of Mars it was only necessary to calculate turbulent boundary layer flow with a laminar sublayer because of the low values of friction Reynolds number; however, it was necessary to include the effects of slip flow on a particle caused by the rarefied Martian atmosphere. In the equations of motion the lift force functions were developed to act on a single particle only in the laminar sublayer or a corresponding small region of high shear near the surface for a fully turbulent boundary layer. The lift force functions were developed from the analytical work by Saffman concerning the lift force acting on a particle in simple shear flow.

  10. Fruit removal of a wild tomato, Solanum granulosoleprosum Dunal (Solanaceae, by birds, bats and non-flying mammals in an urban Brazilian environment

    Directory of Open Access Journals (Sweden)

    Cáceres Nilton Carlos

    2003-01-01

    Full Text Available A study of removal of fruits of the wild tomato, Solanum granulosoleprosum Dunal (N = 5 plants, by vertebrates was carried out in an urban environment of southern Brazil from January to May 1997 and February 1998. To verify diurnal and nocturnal removals, fruits were counted in several fruit bunches, being classified by size and color. Diurnal observations were made on plants to verify bird removal. A mist net was placed among the plants from the evening to 23:00 h to verify bat consumption. Live traps baited with S. granulosoleprosum fruits were placed on the ground among plants to verify terrestrial removers. On average it was found two ripe fruits available per bunch/day, but unripe, small, fruits were dominant (70%. Nocturnal mammals and birds-diurnal mammals partitioned fruits similarly. Bats removing fruits were Artibeus lituratus (Olfers, 1818, Pygoderma bilabiatum (Wagner, 1843 and Sturnira lilium (E. Geoffroy, 1810. Birds were Saltator similis Lafresnaye & d'Orbigny, 1837 and Thraupis sayaca (Linnaeus, 1766. Terrestrial mammals were a marsupial and three rodent species. Except for rodents, these vertebrates must be promoting the seed dispersal of S. granulosoleprosum seeds in disturbed mixed forests of southern Brazil.

  11. The rheology of non-suspended sediment transport mediated by a Newtonian fluid

    Science.gov (United States)

    Pähtz, Thomas; Durán, Orencio

    2017-04-01

    Using a coupled DEM/RANS numerical model of non-suspended sediment transport in a Newtonian fluid (Durán et al., POF 103306, 2012), we find that the gas-like part of the granular transport flow can be described by a universal condition that constrains the average geometry of interparticle collisions. We show that this condition corresponds to a constant sliding friction coefficient μ at an appropriately defined bed surface, thus explaining the success of Bagnold's old idea to describe the sediment transport in analogy to sliding friction. We are currently exploring whether this rheology applies to gas-like granular flows in general. We further find a transition of the gas-like flow to either a solid-like flow (solid-to-gas transition), which is typical for aeolian sediment transport ('saltation'), or a liquid-like flow (liquid-to-gas transition), which is typical for subaqueous sediment transport ('bedload'). The transition occurs at about the location of maximal particle collision frequency. If there is a liquid-like flow below the transition, we find that it can be described by a μ(I) rheology, where I is the visco-intertial number, an appropriately defined average of the viscous and intertial number.

  12. Routes to Chaos Induced by a Discontinuous Resetting Process in a Hybrid Spiking Neuron Model.

    Science.gov (United States)

    Nobukawa, Sou; Nishimura, Haruhiko; Yamanishi, Teruya

    2018-01-10

    Several hybrid spiking neuron models combining continuous spike generation mechanisms and discontinuous resetting processes following spiking have been proposed. The Izhikevich neuron model, for example, can reproduce many spiking patterns. This model clearly possesses various types of bifurcations and routes to chaos under the effect of a state-dependent jump in the resetting process. In this study, we focus further on the relation between chaotic behaviour and the state-dependent jump, approaching the subject by comparing spiking neuron model versions with and without the resetting process. We first adopt a continuous two-dimensional spiking neuron model in which the orbit in the spiking state does not exhibit divergent behaviour. We then insert the resetting process into the model. An evaluation using the Lyapunov exponent with a saltation matrix and a characteristic multiplier of the Poincar'e map reveals that two types of chaotic behaviour (i.e. bursting chaotic spikes and near-period-two chaotic spikes) are induced by the resetting process. In addition, we confirm that this chaotic bursting state is generated from the periodic spiking state because of the slow- and fast-scale dynamics that arise when jumping to the hyperpolarization and depolarization regions, respectively.

  13. A new species of the basal "kangaroo" Balbaroo and a re-evaluation of stem macropodiform interrelationships.

    Directory of Open Access Journals (Sweden)

    Karen H Black

    Full Text Available Exceptionally well-preserved skulls and postcranial elements of a new species of the plesiomorphic stem macropodiform Balbaroo have been recovered from middle Miocene freshwater limestone deposits in the Riversleigh World Heritage Area of northwestern Queensland, Australia. This constitutes the richest intraspecific sample for any currently known basal "kangaroo", and, along with additional material referred to Balbaroo fangaroo, provides new insights into structural variability within the most prolific archaic macropodiform clade--Balbaridae. Qualitative and metric evaluations of taxonomic boundaries demonstrate that the previously distinct species Nambaroo bullockensis is a junior synonym of B. camfieldensis. Furthermore, coupled Maximum Parsimony and Bayesian phylogenetic analyses reveal that our new Balbaroo remains represent the most derived member of the Balbaroo lineage, and are closely related to the middle Miocene B. camfieldensis, which like most named balbarid species is identifiable only from isolated jaws. The postcranial elements of Balbaroo concur with earlier finds of the stratigraphically oldest balbarid skeleton, Nambaroo gillespieae, and suggest that quadrupedal progression was a primary gait mode as opposed to bipedal saltation. All Balbaroo spp. have low-crowned bilophodont molars, which are typical for browsing herbivores inhabiting the densely forested environments envisaged for middle Miocene northeastern Australia.

  14. Ticks on birds from Cerrado forest patches along the Uberabinha river in the Triângulo Mineiro region of Minas Gerais, Brazil

    Directory of Open Access Journals (Sweden)

    Khelma Torga

    2013-10-01

    Full Text Available We herein describe ticks parasitizing birds in forest fragments along the Uberabinha River, a major watercourse that cuts through patches of remnants of Brazilian savannah in Uberlândia, Minas Gerais, Brazil. Overall 352 birds from 62 species, overwhelmingly, Passeriformes, were captured with mist-nets. The most abundant bird species was Basileuterus hypoleucus (n=36, followed by Lanio penicillata (n=24 and Thalurania furcata (n=23. Thirty one birds, all Passeriformes, were found infested with 56 ticks from which 12 were larvae and 44 nymphs, all from the Amblyomma genus. Highest infestation prevalence was found on Taraba major (66.6%, Thamnophilus pelzeni (60% and Saltator maximus (50%. The mean intensity of tick infestation was low (1.8 tick per infested bird with most of the parasites located on the neck (60% of birds, followed by the head (20%. All larvae were attached to the skin around the eyes of birds. Amblyomma nodosum was the most numerous tick species found attached to birds (n=23 nymphs, 52.3% of nymphs followed by Amblyomma longirostre (n=5, 11.4% of nymphs. Ecological relationships are discussed.

  15. Load-Unload Response Ratio (LURR), Accelerating Moment/Energy Release (AM/ER) and State Vector Saltation as Precursors to Failure of Rock Specimens

    Science.gov (United States)

    Yin, Xiang-Chu; Yu, Huai-Zhong; Kukshenko, Victor; Xu, Zhao-Yong; Wu, Zhishen; Li, Min; Peng, Keyin; Elizarov, Surgey; Li, Qi

    2004-12-01

    In order to verify some precursors such as LURR (Load/Unload Response Ratio) and AER (Accelerating Energy Release) before large earthquakes or macro-fracture in heterogeneous brittle media, four acoustic emission experiments involving large rock specimens under tri-axial stress, have been conducted. The specimens were loaded in two ways: monotonous or cycling. The experimental results confirm that LURR and AER are precursors of macro-fracture in brittle media. A new measure called the state vector has been proposed to describe the damage evolution of loaded rock specimens.

  16. Potential bird dispersers of Psychotria in a area of Atlantic forest on Ilha Grande, RJ, Southeastern Brazil: a biochemical analysis of the fruits

    Directory of Open Access Journals (Sweden)

    E. M. Almeida

    Full Text Available The present study assessed the fruiting pattern, bird foraging behavior, and sugar content of ripe fruits of two sympatric species of Rubiaceae (Psychotria brasiliensis and P. nuda. This study was carried out in an Atlantic forest area on Ilha Grande, RJ, between August 1998 and July 1999. Fruit production occurred year round, with a peak of mature P. brasiliensis fruits in December 1998 and another of P. nuda in February of 1999. Lipaugus lanioides (Cotingidae, Baryphtengus ruficapillus (Momotidae and Saltator similis (Emberizidae made the most frequent foraging visits to fruiting P. brasiliensis, so that L. lanioides and B. ruficapillus removed the fruits with sallying maneuvers while S. similis gleaned the fruits. Lipaugus lanioides was by far the most important consumer, and potentially the main disperser of P. brasiliensis. Birds of this genus are heavy frugivores in the tropical forests and are widely assumed to be important seed dispersers. The fruits were analyzed quantitatively and qualitatively in relation to the amounts of sucrose and starch. Psychotria brasiliensis (the visited species showed the smallest quantity of sucrose and the highest amount of starch. These findings suggest that what may influence the birds' choice of fruit is the proportion of starch in the Psychotria species studied here rather than the carbohydrate composition.

  17. The Mars Science Laboratory (MSL) Bagnold Dunes Campaign, Phase I: Overview and introduction to the special issue

    Science.gov (United States)

    Bridges, Nathan T.; Ehlmann, Bethany L.

    2018-01-01

    The Bagnold dunes in Gale Crater, Mars, are the first active aeolian dune field explored in situ on another planet. The Curiosity rover visited the Bagnold dune field to understand modern winds, aeolian processes, rates, and structures; to determine dune material composition, provenance, and the extent and type of compositional sorting; and to collect knowledge that informs the interpretation of past aeolian processes that are preserved in the Martian sedimentary rock record. The Curiosity rover conducted a coordinated campaign of activities lasting 4 months, interspersed with other rover activities, and employing all of the rover's science instruments and several engineering capabilities. Described in 13 manuscripts and summarized here, the major findings of the Bagnold Dunes Campaign, Phase I, include the following: the characterization of and explanation for a distinctive, meter-scale size of sinuous aeolian bedform formed in the high kinetic viscosity regime of Mars' thin atmosphere; articulation and evaluation of a grain splash model that successfully explains the occurrence of saltation even at wind speeds below the fluid threshold; determination of the dune sands' basaltic mineralogy and crystal chemistry in comparison with other soils and sedimentary rocks; and characterization of chemically distinctive volatile reservoirs in sand-sized versus dust-sized fractions of Mars soil, including two volatile-bearing types of amorphous phases.

  18. Tonopah Test Range Air Monitoring: CY2015 Meteorological, Radiological, and Airborne Particulate Observations

    International Nuclear Information System (INIS)

    Nikolich, George; Shadel, Craig; Chapman, Jenny; McCurdy, Greg; Etyemezian, Vicken; Miller, Julianne J.; Mizell, Steve

    2016-01-01

    In 1963, the U.S. Department of Energy (DOE) (formerly the Atomic Energy Commission [AEC]), implemented Operation Roller Coaster on the Tonopah Test Range (TTR) and an adjacent area of the Nevada Test and Training Range (NTTR) (formerly the Nellis Air Force Range). The operation resulted in radionuclide-contaminated soils at the Clean Slate I, II, and III sites. This report documents observations made during ongoing monitoring of radiological, meteorological, and dust conditions at stations installed adjacent to Clean Slate I and Clean Slate III, and at the TTR Sandia National Laboratories (SNL) Range Operations Control (ROC) center. The primary objective of the monitoring effort is to determine if winds blowing across the Clean Slate sites are transporting particles of radionuclide-contaminated soil beyond the physical and administrative boundaries of the sites. Radionuclide assessment of airborne particulates in 2015 found the gross alpha and gross beta values of dust collected from the filters at the monitoring stations are consistent with background conditions. The meteorological and particle monitoring indicate that conditions for wind-borne contaminant movement exist at the Clean Slate sites and that, although the transport of radionuclide-contaminated soil by suspension has not been detected, movement by saltation is occurring.

  19. Tonopah Test Range Air Monitoring: CY2015 Meteorological, Radiological, and Airborne Particulate Observations

    Energy Technology Data Exchange (ETDEWEB)

    Nikolich, George [Nevada University, Reno, NV (United States). Desert Research Inst.; Shadel, Craig [Nevada University, Reno, NV (United States). Desert Research Inst.; Chapman, Jenny [Nevada University, Reno, NV (United States). Desert Research Inst.; McCurdy, Greg [Nevada University, Reno, NV (United States). Desert Research Inst.; Etyemezian, Vicken [Nevada University, Reno, NV (United States). Desert Research Inst.; Miller, Julianne J. [Nevada University, Reno, NV (United States). Desert Research Inst.; Mizell, Steve [Nevada University, Reno, NV (United States). Desert Research Inst.

    2016-09-01

    In 1963, the U.S. Department of Energy (DOE) (formerly the Atomic Energy Commission [AEC]), implemented Operation Roller Coaster on the Tonopah Test Range (TTR) and an adjacent area of the Nevada Test and Training Range (NTTR) (formerly the Nellis Air Force Range). The operation resulted in radionuclide-contaminated soils at the Clean Slate I, II, and III sites. This report documents observations made during ongoing monitoring of radiological, meteorological, and dust conditions at stations installed adjacent to Clean Slate I and Clean Slate III, and at the TTR Sandia National Laboratories (SNL) Range Operations Control (ROC) center. The primary objective of the monitoring effort is to determine if winds blowing across the Clean Slate sites are transporting particles of radionuclide-contaminated soil beyond the physical and administrative boundaries of the sites. Radionuclide assessment of airborne particulates in 2015 found the gross alpha and gross beta values of dust collected from the filters at the monitoring stations are consistent with background conditions. The meteorological and particle monitoring indicate that conditions for wind-borne contaminant movement exist at the Clean Slate sites and that, although the transport of radionuclide-contaminated soil by suspension has not been detected, movement by saltation is occurring.

  20. Biological Systematics in the Evo-Devo era

    Directory of Open Access Journals (Sweden)

    Alessandro Minelli

    2015-06-01

    Full Text Available Evolutionary developmental biology (evo-devo suggests a distinction between modular and systemic variation. In the case of modular change, the conservation of the overall structure helps recognizing affinities, while a single, fast evolving module is likely to produce a bonanza for the taxonomist, while systemic changes produce strongly deviating morphologies that cause problems in tracing homologies. Similarly, changes affecting the whole life cycle are more challenging than those limited to one stage. Developmental modularity is a precondition for heterochrony. Analyzing a matrix of morphological data for paedomorphic taxa requires special care. It is, however, possible to extract phylogenetic signal from heterochronic patterns. The taxonomist should pay attention to the intricacies of the genotype→phenotype map. When using genetic data to infer phylogeny, a comparison of gene sequences is just a first step. To bridge the gap between genes and morphology we should consider the spatial and temporal patterns of gene expression, and their regulation. Minor genetic change can have major phenotypic effects, sometimes suggesting saltational evolution. Evo-devo is also relevant in respect to speciation: changes in developmental schedules are often implicated in the divergence between sympatric morphs, and a developmental modulation of ‘temporal phenotypes’ appears to be responsible for many cases of speciation.

  1. The Still Bay and Howiesons Poort at Sibudu and Blombos: Understanding Middle Stone Age Technologies.

    Directory of Open Access Journals (Sweden)

    Sylvain Soriano

    Full Text Available The classification of archaeological assemblages in the Middle Stone Age of South Africa in terms of diversity and temporal continuity has significant implications with respect to recent cultural evolutionary models which propose either gradual accumulation or discontinuous, episodic processes for the emergence and diffusion of cultural traits. We present the results of a systematic technological and typological analysis of the Still Bay assemblages from Sibudu and Blombos. A similar approach is used in the analysis of the Howiesons Poort (HP assemblages from Sibudu seen in comparison with broadly contemporaneous assemblages from Rose Cottage and Klasies River Cave 1A. Using our own and published data from other sites we report on the diversity between stone artifact assemblages and discuss to what extent they can be grouped into homogeneous lithic sets. The gradual evolution of debitage techniques within the Howiesons Poort sequence with a progressive abandonment of the HP technological style argues against the saltational model for its disappearance while the technological differences between the Sibudu and Blombos Still Bay artifacts considerably weaken an interpretation of similarities between the assemblages and their grouping into the same cultural unit. Limited sampling of a fragmented record may explain why simple models of cultural evolution do not seem to apply to a complex reality.

  2. Using hacked point and shoot cameras for time-lapse snow cover monitoring in an Alpine valley

    Science.gov (United States)

    Weijs, S. V.; Diebold, M.; Mutzner, R.; Golay, J. R.; Parlange, M. B.

    2012-04-01

    In Alpine environments, monitoring snow cover is essential get insight in the hydrological processes and water balance. Although measurement techniques based on LIDAR are available, their cost is often a restricting factor. In this research, an experiment was done using a distributed array of cheap consumer cameras to get insight in the spatio-temporal evolution of snowpack. Two experiments are planned. The first involves the measurement of eolic snow transport around a hill, to validate a snow saltation model. The second monitors the snowmelt during the melting season, which can then be combined with data from a wireless network of meteorological stations and discharge measurements at the outlet of the catchment. The poster describes the hardware and software setup, based on an external timer circuit and CHDK, the Canon Hack Development Kit. This latter is a flexible and developing software package, released under a GPL license. It was developed by hackers that reverse engineered the firmware of the camera and added extra functionality such as raw image output, more full control of the camera, external trigger and motion detection, and scripting. These features make it a great tool for geosciences. Possible other applications involve aerial stereo photography, monitoring vegetation response. We are interested in sharing experiences and brainstorming about new applications. Bring your camera!

  3. Temporal Shape Changes and Future Trends in European Automotive Design

    Directory of Open Access Journals (Sweden)

    Corrado Costa

    2015-09-01

    Full Text Available Evolution produces genuine novelty in morphology through the selection of competing designs as phenotypes. When applied to human creativity, the evolutionary paradigm can provide insight into the ways that our technology and its design are modified through time. The shape of European utilitarian cars in the past 60 years was analyzed in order to determine whether changes occur in a gradual fashion or through saltation, clarifying which are the more conserved and more variable parts of the designs. We also attempted to predict the future appearances of the cars within the next decade, discussing all results within the framework of relevant evolutionary-like equivalences. Here, we analyzed the modification in the shape of European utilitarian cars in the past 60 years by three-dimensional geometric morphometrics to test whether these changes occurred in a gradual or more saltatory fashion. The geometric morphometric shape analysis showed that even though car brands have always been preserving distinct shapes, all followed a gradual pattern of evolution which is now converging toward a more similar fusiform and compact asset. This process was described using Darwinian evolution as a metaphor to quantify and interpret changes over time and the societal pressures promoting them.

  4. Minimal size of a barchan dune

    Science.gov (United States)

    Parteli, E. J. R.; Durán, O.; Herrmann, H. J.

    2007-01-01

    Barchans are dunes of high mobility which have a crescent shape and propagate under conditions of unidirectional wind. However, sand dunes only appear above a critical size, which scales with the saturation distance of the sand flux [P. Hersen, S. Douady, and B. Andreotti, Phys. Rev. Lett. 89, 264301 (2002); B. Andreotti, P. Claudin, and S. Douady, Eur. Phys. J. B 28, 321 (2002); G. Sauermann, K. Kroy, and H. J. Herrmann, Phys. Rev. E 64, 31305 (2001)]. It has been suggested by P. Hersen, S. Douady, and B. Andreotti, Phys. Rev. Lett. 89, 264301 (2002)] that this flux fetch distance is itself constant. Indeed, this could not explain the protosize of barchan dunes, which often occur in coastal areas of high litoral drift, and the scale of dunes on Mars. In the present work, we show from three-dimensional calculations of sand transport that the size and the shape of the minimal barchan dune depend on the wind friction speed and the sand flux on the area between dunes in a field. Our results explain the common appearance of barchans a few tens of centimeter high which are observed along coasts. Furthermore, we find that the rate at which grains enter saltation on Mars is one order of magnitude higher than on Earth, and is relevant to correctly obtain the minimal dune size on Mars.

  5. Simulation of wind-induced snow transport in alpine terrain using a fully coupled snowpack/atmosphere model

    Science.gov (United States)

    Vionnet, V.; Martin, E.; Masson, V.; Guyomarc'h, G.; Naaim-Bouvet, F.; Prokop, A.; Durand, Y.; Lac, C.

    2013-06-01

    In alpine regions, wind-induced snow transport strongly influences the spatio-temporal evolution of the snow cover throughout the winter season. To gain understanding on the complex processes that drive the redistribution of snow, a new numerical model is developed. It couples directly the detailed snowpack model Crocus with the atmospheric model Meso-NH. Meso-NH/Crocus simulates snow transport in saltation and in turbulent suspension and includes the sublimation of suspended snow particles. A detailed representation of the first meters of the atmosphere allows a fine reproduction of the erosion and deposition process. The coupled model is evaluated against data collected around the experimental site of Col du Lac Blanc (2720 m a.s.l., French Alps). For this purpose, a blowing snow event without concurrent snowfall has been selected and simulated. Results show that the model captures the main structures of atmospheric flow in alpine terrain, the vertical profile of wind speed and the snow particles fluxes near the surface. However, the horizontal resolution of 50 m is found to be insufficient to simulate the location of areas of snow erosion and deposition observed by terrestrial laser scanning. When activated, the sublimation of suspended snow particles causes a reduction in deposition of 5.3%. Total sublimation (surface + blowing snow) is three times higher than surface sublimation in a simulation neglecting blowing snow sublimation.

  6. Compositional variations in sands of the Bagnold Dunes, Gale Crater, Mars, from visible-shortwave infrared spectroscopy and comparison with ground truth from the Curiosity Rover

    Science.gov (United States)

    Lapotre, Mathieu G.A.; Ehlmann, B. L.; Minson, Sarah E.; Arvidson, R. E.; Ayoub, F.; Fraeman, A. A.; Ewing, R. C.; Bridges, N. T.

    2017-01-01

    During its ascent up Mount Sharp, the Mars Science Laboratory Curiosity rover traversed the Bagnold Dune Field. We model sand modal mineralogy and grain size at four locations near the rover traverse, using orbital shortwave infrared single scattering albedo spectra and a Markov-Chain Monte Carlo implementation of Hapke's radiative transfer theory to fully constrain uncertainties and permitted solutions. These predictions, evaluated against in situ measurements at one site from the Curiosity rover, show that XRD-measured mineralogy of the basaltic sands is within the 95% confidence interval of model predictions. However, predictions are relatively insensitive to grain size and are non-unique, especially when modeling the composition of minerals with solid solutions. We find an overall basaltic mineralogy and show subtle spatial variations in composition in and around the Bagnold dunes, consistent with a mafic enrichment of sands with cumulative transport distance by sorting of olivine, pyroxene, and plagioclase grains during aeolian saltation. Furthermore, the large variations in Fe and Mg abundances (~20 wt%) at the Bagnold Dunes suggest that compositional variability induced by wind sorting may be enhanced by local mixing with proximal sand sources. Our estimates demonstrate a method for orbital quantification of composition with rigorous uncertainty determination and provide key constraints for interpreting in situ measurements of compositional variability within martian aeolian sandstones.

  7. Discovery of defense- and neuropeptides in social ants by genome-mining.

    Directory of Open Access Journals (Sweden)

    Christian W Gruber

    Full Text Available Natural peptides of great number and diversity occur in all organisms, but analyzing their peptidome is often difficult. With natural product drug discovery in mind, we devised a genome-mining approach to identify defense- and neuropeptides in the genomes of social ants from Atta cephalotes (leaf-cutter ant, Camponotus floridanus (carpenter ant and Harpegnathos saltator (basal genus. Numerous peptide-encoding genes of defense peptides, in particular defensins, and neuropeptides or regulatory peptide hormones, such as allatostatins and tachykinins, were identified and analyzed. Most interestingly we annotated genes that encode oxytocin/vasopressin-related peptides (inotocins and their putative receptors. This is the first piece of evidence for the existence of this nonapeptide hormone system in ants (Formicidae and supports recent findings in Tribolium castaneum (red flour beetle and Nasonia vitripennis (parasitoid wasp, and therefore its confinement to some basal holometabolous insects. By contrast, the absence of the inotocin hormone system in Apis mellifera (honeybee, another closely-related member of the eusocial Hymenoptera clade, establishes the basis for future studies on the molecular evolution and physiological function of oxytocin/vasopressin-related peptides (vasotocin nonapeptide family and their receptors in social insects. Particularly the identification of ant inotocin and defensin peptide sequences will provide a basis for future pharmacological characterization in the quest for potent and selective lead compounds of therapeutic value.

  8. Plasmodium spp. and Haemoproteus spp. infection in birds of the Brazilian Atlantic Forest detected by microscopy and polymerase chain reaction

    Directory of Open Access Journals (Sweden)

    Raquel Tostes

    2015-01-01

    Full Text Available In recent years haemosporidian infection by protozoa of the genus Plasmodium and Haemoproteus, has been considered one of the most important factors related to the extinction and/or population decline of several species of birds worldwide. In Brazil, despite the large avian biodiversity, few studies have been designed to detect this infection, especially among wild birds in captivity. Thus, the objective of this study was to analyze the prevalence of Plasmodium spp. and Haemoproteus spp. infection in wild birds in captivity in the Atlantic Forest of southeastern Brazil using microscopy and the polymerase chain reaction. Blood samples of 119 different species of birds kept in captivity at IBAMA during the period of July 2011 to July 2012 were collected. The parasite density was determined based only on readings of blood smears by light microscopy. The mean prevalence of Plasmodium spp. and Haemoproteus spp. infection obtained through the microscopic examination of blood smears and PCR were similar (83.19% and 81.3%, respectively, with Caracara plancus and Saltator similis being the most parasitized. The mean parasitemia determined by the microscopic counting of evolutionary forms of Plasmodium spp. and Haemoproteus spp. was 1.51%. The results obtained from this study reinforce the importance of the handling of captive birds, especially when they will be reintroduced into the wild.

  9. Complex coevolution of wing, tail, and vocal sounds of courting male bee hummingbirds.

    Science.gov (United States)

    Clark, Christopher J; McGuire, Jimmy A; Bonaccorso, Elisa; Berv, Jacob S; Prum, Richard O

    2018-03-01

    Phenotypic characters with a complex physical basis may have a correspondingly complex evolutionary history. Males in the "bee" hummingbird clade court females with sound from tail-feathers, which flutter during display dives. On a phylogeny of 35 species, flutter sound frequency evolves as a gradual, continuous character on most branches. But on at least six internal branches fall two types of major, saltational changes: mode of flutter changes, or the feather that is the sound source changes, causing frequency to jump from one discrete value to another. In addition to their tail "instruments," males also court females with sound from their syrinx and wing feathers, and may transfer or switch instruments over evolutionary time. In support of this, we found a negative phylogenetic correlation between presence of wing trills and singing. We hypothesize this transference occurs because wing trills and vocal songs serve similar functions and are thus redundant. There are also three independent origins of self-convergence of multiple signals, in which the same species produces both a vocal (sung) frequency sweep, and a highly similar nonvocal sound. Moreover, production of vocal, learned song has been lost repeatedly. Male bee hummingbirds court females with a diverse, coevolving array of acoustic traits. © 2018 The Author(s). Evolution © 2018 The Society for the Study of Evolution.

  10. Three dimensional model for particle saltation close to stream beds, including a detailed description of the particle interaction with turbulence and inter-particle collisions

    KAUST Repository

    Moreno, Pablo M.

    2011-05-19

    We present in this paper a new three-dimensional (3-D) model for bed-load sediment transport, based on a Lagrangian description. We analyze generalized sub-models for the velocities after collision and the representation of the bed-roughness. The free-flight sub-model includes the effect of several forces, such as buoyancy, drag, virtual mass, lift, Basset and Magnus, and also addresses the particle rotation. A recent methodology for saving computational time in the Basset force is also employed. The sub-models for the post-collision velocity and rotation are based on the conservation of linear and angular momentum during the collision with the bed. We develop a new 3-D representation for the bed roughness by using geometric considerations. In order to address the interaction of particles with the turbulent flow, we tracked the particles through a computed turbulent velocity field for a smooth flat plate. This velocity field was used as a surrogate of the 3-D turbulent conditions close to the bed in streams. We first checked that the basic turbulence statistics for this velocity field could be used to approximate those in an open-channel flow. We then analyzed the interaction of the sediment and the turbulence for a single and multiple particles. We compared numerical results with experimental data obtained by Niño and García (1998b). We show that model predictions are in good agreement with existing data, in the sand size range. © 2011 ASCE.

  11. Three dimensional model for particle saltation close to stream beds, including a detailed description of the particle interaction with turbulence and inter-particle collisions

    KAUST Repository

    Moreno, Pablo M.; Bombardelli, Fabiá n A.; Gonzá lez, Andrea E.; Calo, Victor M.

    2011-01-01

    We present in this paper a new three-dimensional (3-D) model for bed-load sediment transport, based on a Lagrangian description. We analyze generalized sub-models for the velocities after collision and the representation of the bed-roughness. The free-flight sub-model includes the effect of several forces, such as buoyancy, drag, virtual mass, lift, Basset and Magnus, and also addresses the particle rotation. A recent methodology for saving computational time in the Basset force is also employed. The sub-models for the post-collision velocity and rotation are based on the conservation of linear and angular momentum during the collision with the bed. We develop a new 3-D representation for the bed roughness by using geometric considerations. In order to address the interaction of particles with the turbulent flow, we tracked the particles through a computed turbulent velocity field for a smooth flat plate. This velocity field was used as a surrogate of the 3-D turbulent conditions close to the bed in streams. We first checked that the basic turbulence statistics for this velocity field could be used to approximate those in an open-channel flow. We then analyzed the interaction of the sediment and the turbulence for a single and multiple particles. We compared numerical results with experimental data obtained by Niño and García (1998b). We show that model predictions are in good agreement with existing data, in the sand size range. © 2011 ASCE.

  12. Soil deflation analyses from wind erosion events

    Directory of Open Access Journals (Sweden)

    Lenka Lackóová

    2015-09-01

    Full Text Available There are various methods to assess soil erodibility for wind erosion. This paper focuses on aggregate analysis by a laser particle sizer ANALYSETTE 22 (FRITSCH GmbH, made to determine the size distribution of soil particles detached by wind (deflated particles. Ten soil samples, trapped along the same length of the erosion surface (150–155 m but at different wind speeds, were analysed. The soil was sampled from a flat, smooth area without vegetation cover or soil crust, not affected by the impact of windbreaks or other barriers, from a depth of maximum 2.5 cm. Prior to analysis the samples were prepared according to the relevant specifications. An experiment was also conducted using a device that enables characterisation of the vertical movement of the deflated material. The trapped samples showed no differences in particle size and the proportions of size fractions at different hourly average wind speeds. It was observed that most of particles travelling in saltation mode (size 50–500 μm – 58–70% – moved vertically up to 26 cm above the soil surface. At greater heights, particles moving in suspension mode (floating in the air; size < 100 μm accounted for up to 90% of the samples. This result suggests that the boundary between the two modes of the vertical movement of deflated soil particles lies at about 25 cm above the soil surface.

  13. Simulation of wind-induced snow transport and sublimation in alpine terrain using a fully coupled snowpack/atmosphere model

    Science.gov (United States)

    Vionnet, V.; Martin, E.; Masson, V.; Guyomarc'h, G.; Naaim-Bouvet, F.; Prokop, A.; Durand, Y.; Lac, C.

    2014-03-01

    In alpine regions, wind-induced snow transport strongly influences the spatio-temporal evolution of the snow cover throughout the winter season. To gain understanding on the complex processes that drive the redistribution of snow, a new numerical model is developed. It directly couples the detailed snowpack model Crocus with the atmospheric model Meso-NH. Meso-NH/Crocus simulates snow transport in saltation and in turbulent suspension and includes the sublimation of suspended snow particles. The coupled model is evaluated against data collected around the experimental site of Col du Lac Blanc (2720 m a.s.l., French Alps). First, 1-D simulations show that a detailed representation of the first metres of the atmosphere is required to reproduce strong gradients of blowing snow concentration and compute mass exchange between the snowpack and the atmosphere. Secondly, 3-D simulations of a blowing snow event without concurrent snowfall have been carried out. Results show that the model captures the main structures of atmospheric flow in alpine terrain. However, at 50 m grid spacing, the model reproduces only the patterns of snow erosion and deposition at the ridge scale and misses smaller scale patterns observed by terrestrial laser scanning. When activated, the sublimation of suspended snow particles causes a reduction of deposited snow mass of 5.3% over the calculation domain. Total sublimation (surface + blowing snow) is three times higher than surface sublimation in a simulation neglecting blowing snow sublimation.

  14. Two-Dimensional Simulation of Mass Transfer in Unitized Regenerative Fuel Cells under Operation Mode Switching

    Directory of Open Access Journals (Sweden)

    Lulu Wang

    2016-01-01

    Full Text Available A two-dimensional, single-phase, isothermal, multicomponent, transient model is built to investigate the transport phenomena in unitized regenerative fuel cells (URFCs under the condition of switching from the fuel cell (FC mode to the water electrolysis (WE mode. The model is coupled with an electrochemical reaction. The proton exchange membrane (PEM is selected as the solid electrolyte of the URFC. The work is motivated by the need to elucidate the complex mass transfer and electrochemical process under operation mode switching in order to improve the performance of PEM URFC. A set of governing equations, including conservation of mass, momentum, species, and charge, are considered. These equations are solved by the finite element method. The simulation results indicate the distributions of hydrogen, oxygen, water mass fraction, and electrolyte potential response to the transient phenomena via saltation under operation mode switching. The hydrogen mass fraction gradients are smaller than the oxygen mass fraction gradients. The average mass fractions of the reactants (oxygen and hydrogen and product (water exhibit evident differences between each layer in the steady state of the FC mode. By contrast, the average mass fractions of the reactant (water and products (oxygen and hydrogen exhibit only slight differences between each layer in the steady state of the WE mode. Under either the FC mode or the WE mode, the duration of the transient state is only approximately 0.2 s.

  15. Silent genes and rare males: A fresh look at pheromone blend response specificity in the European corn borer moth, Ostrinia nubilalis

    Directory of Open Access Journals (Sweden)

    Charles Linn Jr.

    2003-05-01

    Full Text Available The response of male moths from two pheromone races of the European corn borer, Ostrinia nubilalis, was measured in a flight tunnel assay to different ratios of structurally different compounds that comprise the sex pheromone of the Asian corn borer, Ostrinia furnacalis. For both O. nubilalis races, between 1 and 5% of the males completed upwind flights to two different blends of the O. furnacalis pheromone components (the 2:1 Z/E12-14:OAc female-produced blend, and a 97:3 Z/E mix, confirming that rare males exist in the O. nubilalis populations that can detect and respond to mixtures of the O. furnacalis pheromone components. Rare males that responded to the O. furnacalis blends also responded to their own O. nubilalis blends (97:3 or 1:99 Z/E11-14:OAc, indicating that rare O. nubilalis males are not preferentially sensitive to mixtures of the O. furnacalis compounds, but rather that they have a broad range of response specificity, which includes recognition of a wide range of conspecific female-produced ratios, and also recognition of heterospecific mixtures. The results support the hypothesis that saltational shifts in pheromone blend composition (Roelofs et al., 2002 can lead to the evolution of a new species-specific communication system, in part because the broad response specificity of some males includes the ability to respond in an agonistic manner to novel mixtures of compounds.

  16. Oxidant enhancement in martian dust devils and storms: implications for life and habitability.

    Science.gov (United States)

    Atreya, Sushil K; Wong, Ah-San; Renno, Nilton O; Farrell, William M; Delory, Gregory T; Sentman, Davis D; Cummer, Steven A; Marshall, John R; Rafkin, Scot C R; Catling, David C

    2006-06-01

    We investigate a new mechanism for producing oxidants, especially hydrogen peroxide (H2O2), on Mars. Large-scale electrostatic fields generated by charged sand and dust in the martian dust devils and storms, as well as during normal saltation, can induce chemical changes near and above the surface of Mars. The most dramatic effect is found in the production of H2O2 whose atmospheric abundance in the "vapor" phase can exceed 200 times that produced by photochemistry alone. With large electric fields, H2O2 abundance gets large enough for condensation to occur, followed by precipitation out of the atmosphere. Large quantities of H2O2 would then be adsorbed into the regolith, either as solid H2O2 "dust" or as re-evaporated vapor if the solid does not survive as it diffuses from its production region close to the surface. We suggest that this H2O2, or another superoxide processed from it in the surface, may be responsible for scavenging organic material from Mars. The presence of H2O2 in the surface could also accelerate the loss of methane from the atmosphere, thus requiring a larger source for maintaining a steady-state abundance of methane on Mars. The surface oxidants, together with storm electric fields and the harmful ultraviolet radiation that readily passes through the thin martian atmosphere, are likely to render the surface of Mars inhospitable to life as we know it.

  17. Characterization of Pu-contaminated soils from Nuclear Site 201 at the Nevada Test Site

    International Nuclear Information System (INIS)

    Lee, S.Y.; Tamura, T.; Larsen, I.L.

    1983-01-01

    Distribution and characteristics of Pu-bearing radioactive particles throughout five soil profiles from Nuclear Site (NS) 201 were investigated. Concentrations of 239 240 Pu and 241 Am decreased with depth and most of the contamination was contained in the top 5 cm except in profile 4 where it extended to 10 cm. The mean activity ratio of 239 240 Pu to 241 Am and its standard error were 5.8 +- 0.3 (N=42). Most of the total radioactivity of the soils was contributed by 0.25 to 2 mm sand size fraction which comprised 20 to 50% by weight of the soils. The radioactive particles in the 0.25 to 2 mm size fraction occurred as spherical glass particles or as glass coatings on sand particles. The glass coatings had gas voids in the matrix but were not as porous as the radioactive particles from NS 219. After impact grinding the >0.25-mm size fractions for one hour, 85% of the initial activity in a NS 201 sample remained with the particles on the 0.25 mm sieve, whereas in the NS 219 sample only 10% remained. The results show that the radioactive particles from NS 201 were much more stable against the impact grinding force than those from NS 219. Therefore, the NS 201 soils would be expected to have a lower probability of producing respirable-size radioactive particles by saltation during wind erosion. 19 references, 3 figures, 3 tables

  18. Large-eddy simulation and Lagrangian stochastic modelling of solid particle and droplet dispersion and mixing. Application to atmospheric pollution; Dispersion et melange turbulents de particules solides et de gouttelettes par une simulation des grandes echelles et une modelisation stochastique lagrangienne. Application a la pollution de l'atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Vinkovic, I.

    2005-07-15

    In order to study atmospheric pollution and the dispersion of industrial stack emissions, a large eddy simulation with the dynamic Smagorinsky-Germano sub-grid-scale model is coupled with Lagrangian tracking of fluid particles containing scalar, solid particles and droplets. The movement of fluid particles at a sub-grid level is given by a three-dimensional Langevin model. The stochastic model is written in terms of sub-grid-scale statistics at a mesh level. By introducing a diffusion model, the coupling between the large-eddy simulation and the modified three-dimensional Langevin model is applied to passive scalar dispersion. The results are validated by comparison with the wind-tunnel experiments of Fackrell and Robins (1982). The equation of motion of a small rigid sphere in a turbulent flow is introduced. Solid particles and droplets are tracked in a Lagrangian way. The velocity of solid particles and droplets is considered to have a large scale component (directly computed by the large-eddy simulation) and a sub-grid scale part. Because of inertia and gravity effects, solid particles and droplets, deviate from the trajectories of the surrounding fluid particles. Therefore, a modified Lagrangian correlation timescale is introduced into the Langevin model previously developed for the sub-grid velocity of fluid particles. Two-way coupling and collisions are taken into account. The results of the large-eddy simulation with solid particles are compared with the wind-tunnel experiments of Nalpanis et al. (1993) and of Taniere et al. (1997) on sand particles in saltation and in modified saltation, respectively. A model for droplet coalescence and breakup is implemented which allows to predict droplet interactions under turbulent flow conditions in the frame of the Euler/Lagrange approach. Coalescence and breakup are considered as a stochastic process with simple scaling symmetry assumption for the droplet radius, initially proposed by Kolmogorov (1941). At high

  19. Aeolian sediment transport on a beach: Surface moisture, wind fetch, and mean transport

    Science.gov (United States)

    Bauer, B. O.; Davidson-Arnott, R. G. D.; Hesp, P. A.; Namikas, S. L.; Ollerhead, J.; Walker, I. J.

    2009-04-01

    Temporal and spatial changes in wind speed, wind direction, and moisture content are ubiquitous across sandy coastal beaches. Often these factors interact in unknown ways to create complexity that confounds our ability to model sediment transport at any point across the beach as well as our capacity to predict sediment delivery into the adjacent foredunes. This study was designed to measure wind flow and sediment transport over a beach and foredune at Greenwich Dunes, Prince Edward Island National Park, with the express purpose of addressing these complex interactions. Detailed measurements are reported for one stormy day, October 11, 2004, during which meteorological conditions were highly variable. Wind speed ranged from 4 ms - 1 to over 20 ms - 1 , wind direction was highly oblique varying between 60° and 85° from shore perpendicular, and moisture content of the sand surface ranged from a minimum of about 3% (by mass) to complete saturation depending on precipitation, tidal excursion, and storm surge that progressively inundated the beach. The data indicate that short-term variations (i.e., minutes to hours) in sediment transport across this beach arise predominantly because of short-term changes in wind speed, as is expected, but also because of variations in wind direction, precipitation intensity, and tide level. Even slight increases in wind speed are capable of driving more intense saltation events, but this relationship is mediated by other factors on this characteristically narrow beach. As the angle of wind approach becomes more oblique, the fetch distance increases and allows greater opportunity for the saltation system to evolve toward an equilibrium transport state before reaching the foredunes. Whether the theoretically-predicted maximum rate of transport is ever achieved depends on the character of the sand surface (e.g., grain size, slope, roughness, vegetation, moisture content) and on various attributes of the wind field (e.g., average wind

  20. Chemistry in the Dunes of Titan: Tribochemical Reactions of Complex Organics and Water Ice

    Science.gov (United States)

    Beauchamp, J. L.; Thomas, D. A.

    2010-12-01

    Titan’s N2-CH4 atmosphere provides the starting material for a wide array of organic compounds to be formed via photochemistry, and the presence of unsaturated hydrocarbon, amine, and polycyclic aromatic species has been supported by data from the Cassini-Huygens mission [1,2]. Production of tholins by UV irradiation of a simulated N2-CH4 environment has yielded products that match the observed optical properties of Titan haze, suggesting that these compounds provide suitable analogs to Titan aerosol compounds [3, 4, 5]. Organics produced in Titan’s atmosphere eventually settle to the surface and very likely contribute to the particulate matter comprising the expansive longitudinal dune features observed at mid-latitudes [6]. Once on the surface, conditions that lead to incorporation of oxygen via contact with water ice or liquid water in Titan’s low temperature environment are of particular interest and have important implications for astrobiology [7; 8]. In this work, we postulate that the mechanical energy from wind-driven grains in the dunes of Titan can ultimately drive chemical processes and lead to the incorporation of oxygen into organic compounds via tribochemical reactions [9] and describe experiments designed to test this hypothesis. While the exact composition of the dunes of Titan is unknown, it is likely that they mainly comprise organic and water ice particles approximately 0.2 mm in diameter, the ideal size for saltation by the winds of Titan [6]. During the saltation process, organic particles undergo charging due to friction between particles, leading in turn to formation of ions and free radicals in localized electrical discharges at particle interfaces [10]. These reactive intermediates can initiate processes such as free radical and ionic polymerization that further transform organics. Of particular interest is the incorporation of oxygen into organic molecules, providing a pathway to the synthesis of biologically relevant compounds

  1. Morphodynamic Model of Submarine Canyon Incision by Sandblasting

    Science.gov (United States)

    Zhang, L.; Parker, G.; Izumi, N.; Cartigny, M.; Li, T.; Wang, G.

    2017-12-01

    Submarine canyons are carved by turbidity currents under the deep sea. As opposed to subaerial canyons, the relevant processes are not easy to observe directly. Turbidity currents are bottom-hugging sediment gravity flows of that can incise or deposit on the seafloor to create submarine canyons or fans. The triggers of turbidity currents can be storms, edge waves, internal waves, canyon wall sapping, delta failure, breaching and hyperpycnal flows. The formation and evolution mechanisms of submarine canyons are similar to those of subaerial canyons, but have substantial differences. For example, sandblasting, rather than wear due to colliding gravel clasts is more likely to be the mechanism of bedrock incision. Submarine canyons incise downward, and often develop meander bends and levees within the canyon, so defining "fairways". Here we propose a simple model for canyon incision. The starting point of our model is the Macro Roughness Saltation Abrasion Alluviation model of Zhang et al. [2015], designed for bedrock incision by gravel clasts in mixed bedrock-alluvial rivers. We adapt this formulation to consider sandblasting as a means of wear. We use a layer-averaged model for turbidity current dynamics. The current contains a mixture of mud, which helps drive the flow but which does not cause incision, and sand, which is the agent of incision. We show that the model can successfully model channel downcutting, and indeed illustrate the early formation of net incisional cyclic steps, i.e. upstream-migrating undulations on the bed associated with transcritical (in the Froude sense) flow. These steps can be expected to abet the process of incision.

  2. "Cutaneous rabbit" hops toward a light: Unimodal and cross-modal causality on the skin

    Directory of Open Access Journals (Sweden)

    Tomohisa eAsai

    2012-10-01

    Full Text Available Our somatosensory system deals with not only spatial but also temporal imprecision, resulting in characteristic spatiotemporal illusions. Repeated rapid stimulation at the wrist, then near the elbow, can create the illusion of touch at intervening locations along the arm (as if a rabbit is hopping along the arm. This is known as the cutaneous rabbit effect (CRE. Previous studies have suggested that the CRE involves not only an intrinsic somatotopic representation but also the representation of an extended body schema that includes causality or animacy perception upon the skin. On the other hand, unlike other multi-modal causality couplings, it is possible that the CRE is not affected by concurrent auditory temporal information. The present study examined the effect of a simple visual flash on the CRE, which has both temporal and spatial information. Here, stronger cross-modal causality or correspondence could be provided. We presented three successive tactile stimuli on the inside of a participant’s left arm. Stimuli were presented on the wrist, elbow, and midway between the two. Results from our five experimental manipulations suggest that a one-shot flash enhances or attenuates the CRE depending on its congruency with cutaneous rabbit saltation. Our results reflect that 1 our brain interprets successive stimuli on the skin as motion in terms of time and space (unimodal causality and that 2 the concurrent signals from other modalities provide clues for creating unified representations of this external motion (multi-modal causality as to the extent that spatiotemporal synchronicity among modalities is provided.available information from other modalities should also provide a key clue as to the extent that spatiotemporal synchronicity among modalities is provided.

  3. Origin of the two scales of wind ripples on Mars

    Science.gov (United States)

    Lapotre, M. G. A.; Ewing, R. C.; Lamb, M. P.; Fischer, W. W.; Grotzinger, J. P.; Rubin, D. M.; Lewis, K. W.; Ballard, M.; Day, M. D.; Gupta, S.; Banham, S.; Bridges, N.; Des Marais, D. J.; Fraeman, A. A.; Grant, J. A., III; Ming, D. W.; Mischna, M.; Rice, M. S.; Sumner, D. Y.; Vasavada, A. R.; Yingst, R. A.

    2016-12-01

    Earth's sandy deserts host two main types of bedforms - decimeter-scale ripples and larger dunes. Years of orbital observations on Mars also confirmed the existence of two modes of active eolian bedforms - meter-scale ripples, and dunes. By analogy to terrestrial ripples, which are thought to form from a grain mechanism, it was hypothesized that large martian ripples also formed from grain impacts, but spaced further apart due to elongated saltation trajectories from the lower martian gravity and different atmospheric properties. However, the Curiosity rover recently documented the coexistence of three scales of bedforms in Gale crater. Because a grain impact mechanism cannot readily explain two distinct and coeval ripple modes in similar sand sizes, a new mechanism seems to be required to explain one of the scales of ripples. Small ripples are most similar to Earth's impact ripples, with straight crests and subdued profiles. In contrast, large martian ripples are sinuous and asymmetric, with lee slopes dominated by grain flows and grainfall deposits. Thus, large martian ripples resemble current ripples formed underwater on Earth, suggesting that they may form from a fluid-drag mechanism. To test this hypothesis, we develop a scaling relation to predict the spacing of fluid-drag ripples from an extensive flume data compilation. The size of large martian ripples is predicted by our scaling relation when adjusted for martian atmospheric properties. Specifically, we propose that the wavelength of martian wind-drag ripples arises from the high kinematic viscosity of the low-density atmosphere. Because fluid density controls drag-ripple size, our scaling relation can help constrain paleoatmospheric density from wind-drag ripple stratification.

  4. Quantitative complete tooth variation among east Asians and Native Americans: developmental biology as a tool for the assessment of human divergence.

    Science.gov (United States)

    Shields, E D

    1996-01-01

    The quantification of total tooth structure derived from X-rays of Vietnamese, Southern Chinese, Mongolians, Western Eskimos, and Peruvian pre-Inca (Huari Empire) populations was used to examine dental divergence and the morphogenetics of change. Multivariate derived distances between the samples helped identify a quasicontinuous web of ethnic groups with two binary clusters ensconced within the web. One cluster was composed of Mongolians, Western Eskimos, and pre-Inca, and the other group consisted of the Southern Chinese and Vietnamese. Mongolians entered the quasicontinuum from a divergent angle (externally influenced) from that of the Southeast Asians. The Chinese and pre-Inca formed the polar samples of the distance superstructure. The pre-Inca sample was the most isolated, its closest neighbor being the Western Eskimos. Univariate and multivariate analyses suggested that the pre-Inca, whose ancestors arrived in America perhaps approximately 30,000 years ago, was the least derived sample. Clearly, microevolutionary change occurred among the samples, but the dental phenotype was resistant to environmental developmental perturbations. An assessment of dental divergence and developmental biology suggested that the overall dental phenotype is a complex multigenic morphological character, and that the observed variation evolved through total genomic drift. The quantified dental phenotype is greater than its highly multigenic algorithm and its development homeostasis is tightly controlled, or canalized, by the deterministic organization of a complex nonlinear epigenetic milieu. The overall dental phenotype quantified here was selectively neutral and a good character to help reconstruct the sequence of human evolution, but if the outlying homeostatic threshold was or will be exceeded in antecedents and descendants, respectively, evolutionary saltation occurs.

  5. Silicates Eroded under Simulated Martian Conditions Effectively Kill Bacteria-A Challenge for Life on Mars.

    Science.gov (United States)

    Bak, Ebbe N; Larsen, Michael G; Moeller, Ralf; Nissen, Silas B; Jensen, Lasse R; Nørnberg, Per; Jensen, Svend J K; Finster, Kai

    2017-01-01

    The habitability of Mars is determined by the physical and chemical environment. The effect of low water availability, temperature, low atmospheric pressure and strong UV radiation has been extensively studied in relation to the survival of microorganisms. In addition to these stress factors, it was recently found that silicates exposed to simulated saltation in a Mars-like atmosphere can lead to a production of reactive oxygen species. Here, we have investigated the stress effect induced by quartz and basalt abraded in Mars-like atmospheres by examining the survivability of the three microbial model organisms Pseudomonas putida, Bacillus subtilis , and Deinococcus radiodurans upon exposure to the abraded silicates. We found that abraded basalt that had not been in contact with oxygen after abrasion killed more than 99% of the vegetative cells while endospores were largely unaffected. Exposure of the basalt samples to oxygen after abrasion led to a significant reduction in the stress effect. Abraded quartz was generally less toxic than abraded basalt. We suggest that the stress effect of abraded silicates may be caused by a production of reactive oxygen species and enhanced by transition metal ions in the basalt leading to hydroxyl radicals through Fenton-like reactions. The low survivability of the usually highly resistant D. radiodurans indicates that the effect of abraded silicates, as is ubiquitous on the Martian surface, would limit the habitability of Mars as well as the risk of forward contamination. Furthermore, the reactivity of abraded silicates could have implications for future manned missions, although the lower effect of abraded silicates exposed to oxygen suggests that the effects would be reduced in human habitats.

  6. Tonopah Test Range Air Monitoring. CY2014 Meteorological, Radiological, and Airborne Particulate Observations

    Energy Technology Data Exchange (ETDEWEB)

    Nikoloch, George [Desert Research Inst. (DRI), Las Vegas, NV (United States); Shadel, Craig [Desert Research Inst. (DRI), Las Vegas, NV (United States); Chapman, Jenny [Desert Research Inst. (DRI), Las Vegas, NV (United States); Mizell, Steve A. [Desert Research Inst. (DRI), Las Vegas, NV (United States); McCurdy, Greg [Desert Research Inst. (DRI), Las Vegas, NV (United States); Etyemezian, Vicken [Desert Research Inst. (DRI), Las Vegas, NV (United States); Miller, Julianne J. [Desert Research Inst. (DRI), Las Vegas, NV (United States)

    2015-10-01

    In 1963, the U.S. Department of Energy (DOE) (formerly the Atomic Energy Commission [AEC]), implemented Operation Roller Coaster on the Tonopah Test Range (TTR) and an adjacent area of the Nevada Test and Training Range (NTTR) (formerly the Nellis Air Force Range). This test resulted in radionuclide-contaminated soils at Clean Slate I, II, and III. This report documents observations made during ongoing monitoring of radiological, meteorological, and dust conditions at stations installed adjacent to Clean Slate I and Clean Slate III and at the TTR Range Operations Control center. The primary objective of the monitoring effort is to determine if winds blowing across the Clean Slate sites are transporting particles of radionuclide-contaminated soils beyond both the physical and administrative boundaries of the sites. Results for the calendar year (CY) 2014 monitoring are: (1) the gross alpha and gross beta values from the monitoring stations are approximately equivalent to the highest values observed during the CY2014 reporting at the surrounding Community Environmental Monitoring Program (CEMP) stations; (2) only naturally occurring radionuclides were identified in the gamma spectral analyses; (3) the ambient gamma radiation measurements indicate that the average annual gamma exposure is similar at all three monitoring stations and periodic intervals of increased gamma values appear to be associated with storm fronts passing through the area; and (4) the concentrations of both resuspended dust and saltated sand particles generally increase with increasing wind speed. Differences in the observed dust concentrations are likely the result of differences in the soil characteristics immediately adjacent to the monitoring stations. Neither the resuspended particulate radiological analyses nor the ambient gamma radiation measurements suggest wind transport of radionuclide-contaminated soils.

  7. Multidisciplinary studies of the diversity and evolution in river-weeds.

    Science.gov (United States)

    Kato, Masahiro

    2016-05-01

    The moss-like river-weeds or Podostemaceae offer a special opportunity to study the diversity and evolution of plants that are adapted to extreme environments. This paper reviews multidisciplinary studies on this subject. Based on field work in the four continents, we discovered many species and several genera that are new components of biodiversity, and revealed the Podostemaceae floras of East Asia, Southeast Asia, and Australia. The historical biogeography of the family, i.e., the change in distribution in space and time, is characterized by a few dispersals between continents, followed by diversification within each continent. Local species may be derived from parts of separated populations of parental species, which consequently are paraphyletic. The remarkable morphological adaptations of Podostemaceae include the development of the horizontal axis in plant body, with which the plants adhere to rock surfaces under violent current. The vertical axis is reduced or lost and the horizontal axis develops in the embryo and seedling. We also found saltational organ-level variation, such as presence or absence of shoot, shoot apical meristem, root, and root cap; the form of shoot and root; the mode of root branching and leaf production; and the number of cotyledons. Morphological evolution may not be always adaptive to the habitats, which are rocks periodically submerged across the distribution range. Analyses of shoot regulatory gene expression found that, in contrast to the expression pattern in primitive species with ordinary shoots, which is comparable with Arabidopsis, the unique pattern in derived species may result in 'fuzzy' morphology of the shoot and leaf. Finally, problems for future study are pointed out.

  8. Silicates Eroded under Simulated Martian Conditions Effectively Kill Bacteria—A Challenge for Life on Mars

    Directory of Open Access Journals (Sweden)

    Ebbe N. Bak

    2017-09-01

    Full Text Available The habitability of Mars is determined by the physical and chemical environment. The effect of low water availability, temperature, low atmospheric pressure and strong UV radiation has been extensively studied in relation to the survival of microorganisms. In addition to these stress factors, it was recently found that silicates exposed to simulated saltation in a Mars-like atmosphere can lead to a production of reactive oxygen species. Here, we have investigated the stress effect induced by quartz and basalt abraded in Mars-like atmospheres by examining the survivability of the three microbial model organisms Pseudomonas putida, Bacillus subtilis, and Deinococcus radiodurans upon exposure to the abraded silicates. We found that abraded basalt that had not been in contact with oxygen after abrasion killed more than 99% of the vegetative cells while endospores were largely unaffected. Exposure of the basalt samples to oxygen after abrasion led to a significant reduction in the stress effect. Abraded quartz was generally less toxic than abraded basalt. We suggest that the stress effect of abraded silicates may be caused by a production of reactive oxygen species and enhanced by transition metal ions in the basalt leading to hydroxyl radicals through Fenton-like reactions. The low survivability of the usually highly resistant D. radiodurans indicates that the effect of abraded silicates, as is ubiquitous on the Martian surface, would limit the habitability of Mars as well as the risk of forward contamination. Furthermore, the reactivity of abraded silicates could have implications for future manned missions, although the lower effect of abraded silicates exposed to oxygen suggests that the effects would be reduced in human habitats.

  9. Evolutionary morphology of the rabbit skull

    Directory of Open Access Journals (Sweden)

    Brian Kraatz

    2016-09-01

    Full Text Available The skull of leporids (rabbits and hares is highly transformed, typified by pronounced arching of the dorsal skull and ventral flexion of the facial region (i.e., facial tilt. Previous studies show that locomotor behavior influences aspects of cranial shape in leporids, and here we use an extensive 3D geometric morphometrics dataset to further explore what influences leporid cranial diversity. Facial tilt angle, a trait that strongly correlates with locomotor mode, significantly predicts the cranial shape variation captured by the primary axis of cranial shape space, and describes a small proportion (13.2% of overall cranial shape variation in the clade. However, locomotor mode does not correlate with overall cranial shape variation in the clade, because there are two district morphologies of generalist species, and saltators and cursorial species have similar morphologies. Cranial shape changes due to phyletic size change (evolutionary allometry also describes a small proportion (12.5% of cranial shape variation in the clade, but this is largely driven by the smallest living leporid, the pygmy rabbit (Brachylagus idahoensis. By integrating phylogenetic history with our geometric morphometric data, we show that the leporid cranium exhibits weak phylogenetic signal and substantial homoplasy. Though these results make it difficult to reconstruct what the ‘ancestral’ leporid skull looked like, the fossil records suggest that dorsal arching and facial tilt could have occurred before the origin of the crown group. Lastly, our study highlights the diversity of cranial variation in crown leporids, and highlights a need for additional phylogenetic work that includes stem (fossil leporids and includes morphological data that captures the transformed morphology of rabbits and hares.

  10. Evaluation of models of particulate suspension for a thorium ore stockpile

    International Nuclear Information System (INIS)

    Smith, W.J.

    1983-01-01

    Fifteen mathematical models of particle saltation, suspension, and resuspension were reviewed and categorized. Appropriate models were applied to the estimation of particulate releases from a hypothetical thorium ore storage pile. An assumed location (near Lemhi Pass, Montana) was used to permit the development of site specific information on ore characteristics and environmental influences. The available models were characterized in terms of suitability for representing aspects of the ore pile, such as rough surface features, wide particle size range, and site specific climate. Five models were selected for detailed study. A computer code for each of these is given. Site specific data for the assumed ore stockpile location were prepared. These data were manipulated to provide the input values required for each of the five models. Representative values and ranges for model variables are tabulated. The response of each model to input data for selected variables was determined. Each model was evaluated in terms of the physical realism of its response of each model to input data for selected variables was determined. Each model was evaluated in terms of the physical realism of its responses and its overall ability to represent the features of an ore stockpile. The two models providing the best representation were a modified version of the dust suspension subroutine TAILPS from the computer code MILDOS, and the dust suspension formulation from the computer code REDIST. Their responses are physically reasonable, although different from each other for two parameters: ore moisture and surface roughness. With the input values judged most representative of an ore pile near Lemhi Pass, the estimate of the release of suspended particulates is on the order of 1 g/m 2 -yr

  11. Aves do Parque Nacional da Serra do Cipó: o Vale do Rio Cipó, Minas Gerais, Brasil The birds of "Parque Nacional da Serra do Cipó": the Rio Cipó valley, Minas Gerais, Brazil

    Directory of Open Access Journals (Sweden)

    Marcos Rodrigues

    2005-06-01

    Full Text Available Foi conduzido um levantamento de espécies de aves do Vale do alto Rio Cipó durante o período de maio de 1998 a novembro de 2002. A região está totalmente inserida em uma das unidades de conservação mais importantes do sudeste do Brasil, o Parque Nacional da Serra do Cipó, em Minas Gerais. O método utilizado foi o de observação direta ao longo de 'transectos', captura com redes e identificação a partir do uso de vocalizações. A riqueza de espécies foi estimada usando-se o método de 'jackknife'. Foram registradas 226 espécies de aves pertencentes a 43 famílias. Isso corresponde cerca de 27% das 837 espécies já registradas para o bioma do Cerrado. Foram capturados 2.249 indivíduos num total de 4.486,82 horas-rede, onde foram amostradas 119 espécies pertencentes a 23 famílias. A riqueza foi estimada em 239 ± 5 espécies. Constam nesta lista seis espécies endêmicas do Cerrado: Augastes scutatus (Temminck, 1824 (Trochilidae, Hylocryptus rectirostris (Wied-NeuWied, 1821 (Furnariidae, Antilophia galeata (Lichtenstein, 1832 (Pipridae, Cyanocorax cristatellus (Temminck, 1823 (Corvidae, Charitospiza eucosma (Oberholser, 1905, Saltator atricollis (Vieillot, 1817, e Porphyrospiza caerulescens (Wied-Neuwied, 1830 (Emberizidae. Ocorrem também três espécies quase-ameaçadas de extinção: Sarcoramphus papa (Linnaeus, 1758 (Cathartidae, Cypsnagra hirundinacea (Lesson, 1831 e Charitospiza eucosma (Emberizidae. O Vale do Rio Cipó abriga uma porção significativa da avifauna do Cerrado. Alguns dos habitat encontrados no Vale estão se tornando cada vez mais raros na região do Cerrado de todo o Brasil, como as matas ciliares e o sistema de lagoas temporárias ao longo dos rios. Mesmo as cachoeiras, habitat importante para várias espécies, vêm desaparecendo em outras regiões do Brasil. Nesse sentido, a região do Vale do Rio Cipó dentro Parque consolida um dos seus objetivos que é a conservação da biodiversidade.It is

  12. Project 57 Air Monitoring Report: October 1, 2013, through December 31, 2014

    Energy Technology Data Exchange (ETDEWEB)

    Mizell, Steve A. [Desert Research Inst. (DRI), Las Vegas, NV (United States); Nikolich, George [Desert Research Inst. (DRI), Las Vegas, NV (United States); McCurdy, Greg [Desert Research Inst. (DRI), Reno, NV (United States); Shadel, Craig [Desert Research Inst. (DRI), Las Vegas, NV (United States); Miller, Julianne J. [Desert Research Inst. (DRI), Las Vegas, NV (United States)

    2016-02-01

    assessment of gross alpha and gross beta radioactivity and for determination of gamma-emitting radionuclides. Annual average gross alpha values at the Project 57 monitoring stations are in the same range as the highest two values reported for the CEMP stations surrounding the NTTR. Annual average gross beta values at the Project 57 monitoring stations are slightly higher than the lowest value reported for the CEMP stations surrounding the NTTR. Gamma spectroscopy analyses on samples collected from the Project 57 stations identified only naturally occurring radionuclides. No manmade radionuclides were detected. Thermoluminescent dosimeters (TLDs) indicated that the average annual radioactivity dose at the monitoring stations is higher than the dose determined at surrounding CEMP stations but approximately half of the estimated national average dose received by the general public as a result of exposure to natural sources. The TLDs at the Project 57 monitoring stations are exposed to both natural sources (terrestrial and cosmic) and radioactive releases from the Project 57 contamination area. These comparisons show that the gross alpha, gross beta, and gamma spectroscopy levels at the Project 57 monitoring stations are similar to levels observed at the CEMP stations but that the average annual dose rate is higher than at the CEMP stations. Winds in excess of approximately 15 mph begin to generate dust movement by saltation (migration of sand at the ground surface) or direct suspension in the air. Saltated sand, PM10 (inhalable) dust, and PM2.5 (fine particulate dust) exhibit an approximately exponential increase with increasing wind speed. The greatest concentrations of dust occur for winds exceeding 20 mph. During the reporting period, winds in excess of 20 mph occurred approximately 1.6 percent of the time. Preliminary assessment of individual wind events suggests that dust generation is highly variable likely because of the influence of other meteorological and

  13. Coexistence of Dunes and Humid Conditions at Titan's Tropics

    Science.gov (United States)

    Radebaugh, Jani; Lorenz, R. D.; Lunine, J. I.; Kirk, R. L.; Ori, G. G.; Farr, T. G.; Malaska, M.; Le Gall, A.; Liu, Z. Y. C.; Encrenaz, P. J.; Paillou, P.; Hayes, A.; Lopes, R. M. C.; Turtle, E. P.; Wall, S. D.; Stofan, E. R.; Wood, C. A.; Cassini RADAR Team

    2012-10-01

    At Titan's equatorial latitudes there are tens of thousands of dunes, a landform typical of desert environments where sand does not become anchored by vegetation or fluids. Model climate simulations predict generally dry conditions at the equator and humid conditions near the poles of Titan, where lakes of methane/ethane are found. However, moderate relative methane humidity was observed at the Huygens landing site, recent rainfall was seen by Cassini ISS near the Belet Sand Sea, and a putative transient lake in Shangri-La was observed by Cassini VIMS, all of which indicate abundant fluids may be present, at least periodically, at Titan's equatorial latitudes. Terrestrial observations and studies demonstrate dunes can exist and migrate in conditions of high humidity. Active dunes are found in humid climates, indicating the movement of sand is not always prohibited by the presence of fluids. Sand mobility is related to precipitation, evaporation and wind speed and direction. If dune surfaces become wetted by rainfall or rising subsurface fluids, they can become immobilized. However, winds can act to dry the uppermost layers, freeing sands for saltation and enabling dune migration in wet conditions. Active dunes are found in tropical NE Brazil and NE Australia, where there are alternating dry and wet periods, a condition possible for Titan's tropics. Rising and falling water levels lead to the alteration of dune forms, mainly from being anchored by vegetation, but also from cementation by carbonates or clays. Studies of Titan's dunes, which could undergo anchoring of organic sediments by hydrocarbon fluids, could inform the relative strength of vegetation vs. cementation at humid dune regions on Earth. Furthermore, a comprehensive survey of dune morphologies near regions deemed low by SARTopo and stereo, where liquids may collect in wet conditions, could reveal if bodies of liquid have recently existed at Titan's tropics.

  14. Wind tunnel tests of biodegradable fugitive dust suppressants being considered to reduce soil erosion by wind at radioactive waste construction sites

    International Nuclear Information System (INIS)

    Ligotke, M.W.; Dennis, G.W.; Bushaw, L.L.

    1993-10-01

    Wind tunnel tests were performed of three fugitive dust control agents derived from potato and sugar beet products. These materials are being considered for use as dust suppressants to reduce the potential for transport of radioactive materials by wind from radioactive waste construction and remediation sites. Soil and dust control agent type, solution concentrations, application quantities, aging (or drying) conditions, surface disturbance, and wind and saltating sand eolian erosive stresses were selected and controlled to simulate application and exposure of excavated soil surfaces in the field. A description of the tests, results, conclusions, and recommendations are presented in this report. The results of this study indicate that all three dust control agents can protect exposed soil surfaces from extreme eolian stresses. It is also clear that the interaction and performance of each agent with various soil types may differ dramatically. Thus, soils similar to that received from ML should be best protected by high concentration (∼2.5%) solutions of potato starch at low water application levels (∼1 to 2 L/m 2 ). Because the effectiveness of PS on this soil type is degraded after a moderate amount of simulated rainfall, other options or additives should be considered if surfaces are to be protected for long intervals or during periods of intermittent rainfall and hot, windy conditions. On the other hand, XDCA should be considered when excavating sandy soils. It should be noted, however, that because the Hanford soil test results are based on a small number of tests, it would be prudent to perform additional tests prior to selecting a fugitive dust control agent for use at the Hanford Site. While fermented potato waste was not the best fixative used on either soil, it did perform reasonably well on both soil types (better than XDCA on Idaho soil and better than PS on Hanford soil)

  15. Synthesizing large-scale pyroclastic flows: Experimental design, scaling, and first results from PELE

    Science.gov (United States)

    Lube, G.; Breard, E. C. P.; Cronin, S. J.; Jones, J.

    2015-03-01

    Pyroclastic flow eruption large-scale experiment (PELE) is a large-scale facility for experimental studies of pyroclastic density currents (PDCs). It is used to generate high-energy currents involving 500-6500 m3 natural volcanic material and air that achieve velocities of 7-30 m s-1, flow thicknesses of 2-4.5 m, and runouts of >35 m. The experimental PDCs are synthesized by a controlled "eruption column collapse" of ash-lapilli suspensions onto an instrumented channel. The first set of experiments are documented here and used to elucidate the main flow regimes that influence PDC dynamic structure. Four phases are identified: (1) mixture acceleration during eruption column collapse, (2) column-slope impact, (3) PDC generation, and (4) ash cloud diffusion. The currents produced are fully turbulent flows and scale well to natural PDCs including small to large scales of turbulent transport. PELE is capable of generating short, pulsed, and sustained currents over periods of several tens of seconds, and dilute surge-like PDCs through to highly concentrated pyroclastic flow-like currents. The surge-like variants develop a basal <0.05 m thick regime of saltating/rolling particles and shifting sand waves, capped by a 2.5-4.5 m thick, turbulent suspension that grades upward to lower particle concentrations. Resulting deposits include stratified dunes, wavy and planar laminated beds, and thin ash cloud fall layers. Concentrated currents segregate into a dense basal underflow of <0.6 m thickness that remains aerated. This is capped by an upper ash cloud surge (1.5-3 m thick) with 100 to 10-4 vol % particles. Their deposits include stratified, massive, normally and reversely graded beds, lobate fronts, and laterally extensive veneer facies beyond channel margins.

  16. The WELSONS experiment: overview and presentation of first results on the surface atmospheric boundary-layer in semiarid Spain

    Directory of Open Access Journals (Sweden)

    J.-P. Frangi

    Full Text Available This study presents the preliminary results of the local energy budget and dynamic characteristics of the surface atmospheric boundary-layer (SBL during the WELSONS (wind erosion and losses of soil nutrients in semiarid Spain experiment. Some Mediterranean regions suffer land degradation by wind erosion as a consequence of their particular soil and climate conditions and inappropriate agricultural practice. In Spain, where land degradation by water erosion is well known, the lack of field studies to quantify soils losses by wind erosion resulted in the European Community organizing a scientific program for this specific issue. The European programme known as WELSONS was devoted to study the wind erosion process in central Aragon (NE Spain. This multidisciplinary experiment, which began in 1996 and finished in 1998, was carried out over an agricultural soil which was left fallow. Within the experimental field, two plots were delimited where two tillage treatments were applied, a mould-board ploughing (or conventional tillage denoted CT and chisel ploughing (reduced tillage denoted RT. This was to study on bare soil the influence of tillage method on surface conditions, saltation flux, vertical dust flux, erosion rates, dynamics characteristics such as friction velocity, roughness length, etc., and energy budget. The partitioning of the available energy, resulting from the dynamics of the SBL, are quite different over the two plots because of their own peculiar soil and surface properties. The first results show that the RT treatment seems to provide a wind erosion protection. Because of the long data recording time and particular phenomena (formation of a crust at the soil surface, very dry conditions, high wind speed for instance, these microclimatological data acquired during the WELSONS programmes may be helpful to test atmospheric boundary-layer models coupled with soil models.

    Key words: Hydrology (desertification - Meterology and

  17. Hydraulic-based empirical model for sediment and soil organic carbon loss on steep slopes for extreme rainstorms on the Chinese loess Plateau

    Science.gov (United States)

    Liu, L.; Li, Z. W.; Nie, X. D.; He, J. J.; Huang, B.; Chang, X. F.; Liu, C.; Xiao, H. B.; Wang, D. Y.

    2017-11-01

    Building a hydraulic-based empirical model for sediment and soil organic carbon (SOC) loss is significant because of the complex erosion process that includes gravitational erosion, ephemeral gully, and gully erosion for loess soils. To address this issue, a simulation of rainfall experiments was conducted in a 1 m × 5 m box on slope gradients of 15°, 20°, and 25° for four typical loess soils with different textures, namely, Ansai, Changwu, Suide, and Yangling. The simulated rainfall of 120 mm h-1 lasted for 45 min. Among the five hydraulic factors (i.e., flow velocity, runoff depth, shear stress, stream power, and unit stream power), flow velocity and stream power showed close relationships with SOC concentration, especially the average flow velocity at 2 m from the outlet where the runoff attained the maximum sediment load. Flow velocity controlled SOC enrichment by affecting the suspension-saltation transport associated with the clay and silt contents in sediments. In consideration of runoff rate, average flow velocity at 2 m location from the outlet, and slope steepness as input variables, a hydraulic-based sediment and SOC loss model was built on the basis of the relationships of hydraulic factors to sediment and SOC loss. Nonlinear regression models were built to calculate the parameters of the model. The difference between the effective and dispersed median diameter (δD50) or the SOC content of the original soil served as the independent variable. The hydraulic-based sediment and SOC loss model exhibited good performance for the Suide and Changwu soils, that is, these soils contained lower amounts of aggregates than those of Ansai and Yangling soils. The hydraulic-based empirical model for sediment and SOC loss can serve as an important reference for physical-based sediment models and can bring new insights into SOC loss prediction when serious erosion occurs on steep slopes.

  18. Where on Earth can we find Mars? Characterization of an Aeolian Analogue in Northwestern Argentina

    Science.gov (United States)

    Favaro, E. A.; Hugenholtz, C.; Barchyn, T.

    2017-12-01

    The Puna Plateau of northwestern Argentina is as a promising analogue for Martian aeolian processes owing to its altitude, low atmospheric pressure, aridity, and widespread granular and bedrock aeolian features. The study was conducted in and surrounding the area known as the Campo de Piedra Pómez - a prominent expanse of wind-carved ignimbrite in Argentina's Catamarca Province. To interpret the evolution of this unique laboratory, which is limited by its isolated location and dearth of in situ measurements, we investigated contemporary aeolian sediment transport through a combination of modeled meteorological data, satellite imagery, field measurements, and sediment traps. Our objective is to utilize modeled meteorological data, satellite imagery, and field measurements and samples to characterize the aeolian environment here to base analogue studies. Satellite imagery from Terra MODIS, GeoEye, and Ikonos indicate recent large-scale aeolian sediment transport events and migration of gravel in the region. A prominent, region-wide sediment transport event on 14 August 2015 coincided with synoptic-scale pressure patterns indicating a strong Zonda (Foehn) winds. Sediment traps and marbles provide additional evidence of wind-driven transport of sand and gravel. Yet, despite the body of evidence for sediment transport on the Puna Plateau, modeled wind data from the European Center for Midrange Weather Forecasting suggest wind rarely attains the speeds necessary to initiate sediment transport. This disconnect is reminiscent of the Martian Saltation Paradox which suggested winds on Mars were incapable of mobilizing sediment, despite widespread evidence from rover, lander, and satellite observations. This raises questions about: (i) the suitability of modeled wind data for characterizing aeolian processes on both planets, and (ii) the possibility that most geomorphic work is conducted in extreme, but infrequent events in this region (possibly analogous to Mars). We

  19. Long-term variability of dust-storms in Iceland

    Science.gov (United States)

    Dagsson-Waldhauserová, Pavla; Ólafsson, Haraldur; Arnalds, Ólafur

    2013-04-01

    Iceland is a volcanic island in the North Atlantic Ocean with maritime climate. In spite of moist climate, large areas are with limited vegetation cover where >40% of Iceland is classified with considerable to very severe erosion and 21% of Iceland are volcanic sandy deserts. Natural emissions from these sources influenced by strong winds affect not only regional air quality in Iceland ("Reykjavik haze") but dust particles are transported over the Atlantic ocean and Arctic Ocean > 1000 km at times. The study places Icelandic dust production area into international perspective, present long term frequency of dust storm events in NE Iceland, and estimate dust aerosol concentrations during reported dust events. Meteorological observations with dust presence codes and related visibility were used to identify the frequency and the long-term changes in dust production in NE Iceland. There were annually 16.4 days on average with reported dust observations on weather stations within the NE erosion area, indicating extreme dust plume activity and erosion within the NE deserts, even though the area is covered with snow during the major part of winter. During the 2000s the highest occurrence of dust events in six decades was reported. We have measured saltation and aeolian transport during dust/volcanic ash storms in Iceland which give some of the most intense wind erosion events ever measured. Icelandic dust affects the ecosystems over much of Iceland and causes regional haze. It is likely to affect the ecosystems of the oceans around Iceland, and it brings dust that lowers the albedo of the Icelandic glaciers, increasing melt-off due to global warming. The study indicates that Icelandic dust is not only a substantial source for regional air pollution, but may be considered to contribute to the Arctic haze phenomena and Arctic air pollution.

  20. Tonopah Test Range Air Monitoring: CY2013 Meteorological, Radiological, and Airborne Particulate Observations

    Energy Technology Data Exchange (ETDEWEB)

    Mizell, Steve A [DRI; Nikolich, George [DRI; Shadel, Craig [DRI; McCurdy, Greg [DRI; Etyemezian, Vicken [DRI; Miller, Julianne J [DRI

    2014-10-01

    In 1963, the U.S. Department of Energy (DOE) (formerly the Atomic Energy Commission [AEC]), implemented Operation Roller Coaster on the Tonopah Test Range (TTR) and an adjacent area of the Nevada Test and Training Range (NTTR) (formerly the Nellis Air Force Range). This test resulted in radionuclide-contaminated soils at Clean Slate I, II, and III. This report documents observations made during on-going monitoring of radiological, meteorological, and dust conditions at stations installed adjacent to Clean Slate I and Clean Slate III and at the TTR Range Operations Control center. The primary objective of the monitoring effort is to determine if winds blowing across the Clean Slate sites are transporting particles of radionuclide-contaminated soils beyond both the physical and administrative boundaries of the sites. Results for the calendar year (CY) 2013 monitoring include: (1) the gross alpha and gross beta values from the monitoring stations are approximately equivalent to the highest values observed during the CY2012 reporting at the surrounding Community Environmental Monitoring Program (CEMP) stations (this was the latest documented data available at the time of this writing); (2) only naturally occurring radionuclides were identified in the gamma spectral analyses; (3) the ambient gamma radiation measurements indicate that the average annual gamma exposure is similar at all three monitoring stations and periodic intervals of increased gamma values appear to be associated with storm fronts passing through the area; and (4) the concentrations of both resuspended dust and saltated sand particles generally increase with increasing wind speed. However, differences in the observed dust concentrations are likely due to differences in the soil characteristics immediately adjacent to the monitoring stations. Neither the resuspended particulate radiological analyses nor the ambient gamma radiation measurements suggest wind transport of radionuclide-contaminated soils.

  1. EFECTOS DE LA FLUCTUACIÓN DEL NIVEL DEL AGUA SOBRE LA ESTRUCTURA DEL ENSAMBLAJE DE ROTÍFEROS EN EL LAGO LARGO (SISTEMA YAHUARCACA - LLANURA DE INUNDACIÓN DEL RÍO AMAZONAS - COLOMBIA

    Directory of Open Access Journals (Sweden)

    Andrade Camilo

    2011-12-01

    Full Text Available Se realizó un reconocimiento taxonómico y estimación de la densidad en el ensamblaje de rotíferos en el lago Largo, del sistema de lagos Yahuarcaca, en la ribera colombiana del río Amazonas, a partir de muestreos en las fases hidrológicas de aguas bajas, ascenso y descenso. Se identificaron 68 especies, 28 de ellas son nuevos registros para ambientes colombianos. Se encontró aumento en la riqueza en las épocas de ascenso y descenso, siendo mayor en la zona litoral respecto de la limnética, y la tendencia a mayor similitud taxonómica entre ambas zonas en el periodo de aguas bajas, debido al mínimo desarrollo de macrófitas en esta fase y la consecuente menor heterogeneidad espacial. Se observó el predominio de rotíferos con trofi adaptados para moler y triturar partículas (maleado y maleorramado en las épocas de aguas bajas (Brachionus ahlstromi y descenso (Filina saltator y en la época de ascenso de Polyarthra vulgaris, con trofi adaptado para perforar y succionar fluidos de algas y otros organismos (virgado y apéndices que favorecen la rápida natación. En general, se establecieron posibles relaciones entre la riqueza y la densidad de rotíferos con cambios en características como el desarrollo de vegetación acuática en el litoral, profundidad del lago, nivel de conectividad con los otros lagos del sistema Yahuarcaca, influencia de aguas blancas del Amazonas y negras de origen local, potenciales recursos nutricionales y depredadores, y posible efecto de arrastre por la corriente.

  2. The WELSONS experiment: overview and presentation of first results on the surface atmospheric boundary-layer in semiarid Spain

    Directory of Open Access Journals (Sweden)

    J.-P. Frangi

    2000-03-01

    Full Text Available This study presents the preliminary results of the local energy budget and dynamic characteristics of the surface atmospheric boundary-layer (SBL during the WELSONS (wind erosion and losses of soil nutrients in semiarid Spain experiment. Some Mediterranean regions suffer land degradation by wind erosion as a consequence of their particular soil and climate conditions and inappropriate agricultural practice. In Spain, where land degradation by water erosion is well known, the lack of field studies to quantify soils losses by wind erosion resulted in the European Community organizing a scientific program for this specific issue. The European programme known as WELSONS was devoted to study the wind erosion process in central Aragon (NE Spain. This multidisciplinary experiment, which began in 1996 and finished in 1998, was carried out over an agricultural soil which was left fallow. Within the experimental field, two plots were delimited where two tillage treatments were applied, a mould-board ploughing (or conventional tillage denoted CT and chisel ploughing (reduced tillage denoted RT. This was to study on bare soil the influence of tillage method on surface conditions, saltation flux, vertical dust flux, erosion rates, dynamics characteristics such as friction velocity, roughness length, etc., and energy budget. The partitioning of the available energy, resulting from the dynamics of the SBL, are quite different over the two plots because of their own peculiar soil and surface properties. The first results show that the RT treatment seems to provide a wind erosion protection. Because of the long data recording time and particular phenomena (formation of a crust at the soil surface, very dry conditions, high wind speed for instance, these microclimatological data acquired during the WELSONS programmes may be helpful to test atmospheric boundary-layer models coupled with soil models.Key words: Hydrology (desertification - Meterology and atmospheric

  3. The vertical structure of airflow turbulence characteristics within a boundary layer during wind blown sand transport over a beach

    Science.gov (United States)

    Lee, Z. S.; Baas, A. C.; Jackson, D.; Cooper, J. A.; Lynch, K.; Delgado-Fernandez, I.; Beyers, M.

    2010-12-01

    Recent studies have suggested the significant role of boundary layer turbulence and coherent flow structures on sand transport by wind over beaches and desert dunes. Widespread use of sonic anemometry and high-frequency sand transport sensors and traps have facilitated a move beyond the basic monitoring of shear velocities and bulk sediment transport to more detailed measurements at much higher spatio-temporal resolutions. In this paper we present results of a small-scale point-location field study of boundary layer turbulence and shear stresses conducted under obliquely onshore winds over a beach at Magilligan Strand, Northern Ireland. High-frequency (25 Hz) 3D wind vector measurements were collected at five different heights between 0.13 and 1.67 metres above the bed using sonic anemometry for durations of several hours, and the associated sand transport response was measured using an array of Safires. The wind data are used to investigate the vertical structure of Reynolds shear stresses and burst-sweep event characteristics, as well as a comparison with the standard logarithmic (law-of-the-wall) wind profile. The study explores the identification and selection of a characteristic event duration based on integral time-scales as well as spectral analysis, and includes an assessment of the issues involved with data rotations for yaw, pitch, and roll corrections relative to flow streamlines, and the subsequently derived turbulence parameters based on fluctuating vector components (u’, v’, w’). Results show how the contributions to shear stress and the average pitch of bursts and sweeps changes as a function of height above the bed, indicating the transformation of top-down turbulent eddies as they travel toward the surface. A comparison between the turbulence data and the synchronous sand transport events, meanwhile, reveals the potential effects of enhanced saltation layer roughness feedback on eddies close to the bed.

  4. Fiber-Optic Monitoring System of Particle Counters

    Directory of Open Access Journals (Sweden)

    A. A. Titov

    2016-01-01

    Full Text Available The article considers development of a fiber-optic system to monitor the counters of particles. Presently, optical counters of particles, which are often arranged at considerable distance from each other, are used to study the saltation phenomenon. For monitoring the counters, can be used electric communication lines.However, it complicates and raises the price of system Therefore, we offered a fiber-optic system and the counter of particles, free from these shortcomings. The difference between the offered counter of particles and the known one is that the input of radiation to the counter and the output of radiation scattering on particles are made by the optical fibers, and direct radiation is entered the optical fiber rather than is delayed by a light trap and can be used for lighting the other counters thereby allowing to use their connection in series.The work involved a choice of the quartz multimode optical fiber for communication, defining the optical fiber and lenses parameters of the counter of particles, and a selection of the radiation source and the photo-detector.Using the theory of light diffraction on a particle, a measuring range of the particle sizes has been determined. The system speed has been estimated, and it has been shown that a range of communication can reach 200km.It should be noted that modulation noise of counters of particles connected in series have the impact on the useful signal. To assess the extent of this influence we have developed a calculation procedure to illustrate that with ten counters connected in series this influence on the signal-to-noise ratio will be insignificant.Thus, it has been shown that the offered fiber-optic system can be used for monitoring the counters of particles across the desertified territories. 

  5. The GEM-Mars general circulation model for Mars: Description and evaluation

    Science.gov (United States)

    Neary, L.; Daerden, F.

    2018-01-01

    GEM-Mars is a gridpoint-based three-dimensional general circulation model (GCM) of the Mars atmosphere extending from the surface to approximately 150 km based on the GEM (Global Environmental Multiscale) model, part of the operational weather forecasting and data assimilation system for Canada. After the initial modification for Mars, the model has undergone considerable changes. GEM-Mars is now based on GEM 4.2.0 and many physical parameterizations have been added for Mars-specific atmospheric processes and surface-atmosphere exchange. The model simulates interactive carbon dioxide-, dust-, water- and atmospheric chemistry cycles. Dust and water ice clouds are radiatively active. Size distributed dust is lifted by saltation and dust devils. The model includes 16 chemical species (CO2, Argon, N2, O2, CO, H2O, CH4, O3, O(1D), O, H, H2, OH, HO2, H2O2 and O2(a1Δg)) and has fully interactive photochemistry (15 reactions) and gas-phase chemistry (31 reactions). GEM-Mars provides a good simulation of the water and ozone cycles. A variety of other passive tracers can be included for dedicated studies, such as the emission of methane. The model has both a hydrostatic and non-hydrostatic formulation, and together with a flexible grid definition provides a single platform for simulations on a variety of horizontal scales. The model code is fully parallelized using OMP and MPI. Model results are evaluated by comparison to a selection of observations from instruments on the surface and in orbit, relating to atmosphere and surface temperature and pressure, dust and ice content, polar ice mass, polar argon, and global water and ozone vertical columns. GEM-Mars will play an integral part in the analysis and interpretation of data that is received by the NOMAD spectrometer on the ESA-Roskosmos ExoMars Trace Gas Orbiter. The present paper provides an overview of the current status and capabilities of the GEM-Mars model and lays the foundations for more in-depth studies in support

  6. Aeolian system dynamics derived from thermal infrared data

    Science.gov (United States)

    Scheidt, Stephen Paul

    Thermal infrared (TIR) remote-sensing and field-based observations were used to study aeolian systems, specifically sand transport pathways, dust emission sources and Saharan atmospheric dust. A method was developed for generating seamless and radiometrically accurate mosaics of thermal infrared data from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) instrument. Using a combination of high resolution thermal emission spectroscopy results of sand samples and mosaic satellite data, surface emissivity was derived to map surface composition, which led to improvement in the understanding of sand accumulation in the Gran Desierto of northern Sonora, Mexico. These methods were also used to map sand transport pathways in the Sahara Desert, where the interaction between sand saltation and dust emission sources was explored. The characteristics and dynamics of dust sources were studied at White Sands, NM and in the Sahara Desert. At White Sands, an application was developed for studying the response of dust sources to surface soil moisture based on the relationship between soil moisture, apparent thermal inertia and the erosion potential of dust sources. The dynamics of dust sources and the interaction with sand transport pathways were also studied, focusing on the Bodele Depression of Chad and large dust sources in Mali and Mauritania. A dust detection algorithm was developed using ASTER data, and the spectral emissivity of observed atmospheric dust was related to the dust source area in the Sahara. At the Atmospheric Observatory (IZO) in Tenerife, Spain where direct measurement of the Saharan Air Layer could be made, the cycle of dust events occurring in July 2009 were examined. From the observation tower at the IZO, measurements of emitted longwave atmospheric radiance in the TIR wavelength region were made using a Forward Looking Infrared Radiometer (FLIR) handheld camera. The use of the FLIR to study atmospheric dust from the Saharan is a

  7. The influence of rock strength on erosion processes and river morphology in central Arizona: the accumulation of damage from macro-abrasion

    Science.gov (United States)

    Larimer, J. E.; Yanites, B.

    2017-12-01

    River morphology reflects the interaction between the driving forces of erosion and the resisting properties of bedrock that limit erosion. Changes in energy dissipation at the riverbed are indicated by differences in channel geometry. To erode at the same rate, stronger rocks require more energy, and thus, an adjustment in river slope or width is necessary to accomplish this work. Therefore, morphological changes should reflect differences in the rock strength properties most relevant to the dominant erosion process. We investigate this hypothesis by comparing river morphology and rock-strength properties of reaches subject to different processes. Streams in Prescott National Forest, AZ expose bedrock through a variety of lithologies, which provides a natural testing ground. Measurements include channel geometry, surface P-wave velocity, fracture spacing, and bedload grain size distribution of 150 individual reaches, as well as 260 tensile and compressive-strength tests and P-wave velocity of cores up to depths of 20 cm. Based on observations, we infer that fluvial erosion processes in this region generally fall into three domains: (1) grain by grain abrasion, (2) progressive failure by damage accumulation due to bedload impacts or `macro-abrasion', and (3) `plucking' of jointed rocks. We focus analyses on the accumulation of damage from sub-critical stresses that weakens the surface of the bedrock, potentially leading to macroscopic fractures, fatigue, and rock failure. This plays a dual role facilitating the ease with which abrasion removes material and increasing the rate of production of pluck-able particles. We estimate the `damage potential' of saltating bedload using water discharge time-series, sediment transport models and grain size distribution. To determine the resistance to damage accumulation among different rocks, we measure the evolution of damage in core samples under uniaxial loading using strain energy and inherent flaw theory. Preliminary

  8. Investigating selective transport and abrasion on an alluvial fan using quantitative grain size and shape analysis

    Science.gov (United States)

    Litwin, K. L.; Jerolmack, D. J.

    2011-12-01

    Selective sorting and abrasion are the two major fluvial processes that are attributed to the downstream fining of sediments in rivers and alluvial fans. Selective transport is the process by which smaller grains are preferentially transported downstream while larger grains are deposited closer to the source. Abrasion is defined by the production of fine sediments and sand that occurs by saltation of gravel, where particle-to-particle collisions supply the energy required to break apart grains. We hypothesize that abrasion results in the gradual fining of large grains and the production of fine sands and silts, while sorting accounts for the differences in transport of these two grain-size fractions produced from abrasion, thereby creating the abrupt gravel-sand transition observed in many channel systems. In this research, we explore both selective transport and abrasion processes on the Dog Canyon alluvial fan near Alamogordo, New Mexico. We complete an extensive grain size analysis down the main channel of the fan employing an image-based technique that utilizes an autocorrelation process. We also characterize changes in grain shape using standard shape parameters, as well as Fourier analysis, which allows the study of contributions of grain roughness on a variety of length scales. Sorting appears to dominate the upper portion of the fan; the grain-size distribution narrows moving downstream until reaching a point of equal mobility, at which point sorting ceases. Abrasion exerts a subtle but persistent effect on grains during transport down the fan. Shape analysis reveals that particles become more rounded by the removal of small-scale textural features, a process that is expected to only modestly influence grain size of gravel, but should produce significant quantities of sand. This study provides a better understanding of the importance of grain abrasion and sorting on the downstream fining of channel grains in an alluvial fan, as well as an improved knowledge

  9. Clusters in nonsmooth oscillator networks

    Science.gov (United States)

    Nicks, Rachel; Chambon, Lucie; Coombes, Stephen

    2018-03-01

    For coupled oscillator networks with Laplacian coupling, the master stability function (MSF) has proven a particularly powerful tool for assessing the stability of the synchronous state. Using tools from group theory, this approach has recently been extended to treat more general cluster states. However, the MSF and its generalizations require the determination of a set of Floquet multipliers from variational equations obtained by linearization around a periodic orbit. Since closed form solutions for periodic orbits are invariably hard to come by, the framework is often explored using numerical techniques. Here, we show that further insight into network dynamics can be obtained by focusing on piecewise linear (PWL) oscillator models. Not only do these allow for the explicit construction of periodic orbits, their variational analysis can also be explicitly performed. The price for adopting such nonsmooth systems is that many of the notions from smooth dynamical systems, and in particular linear stability, need to be modified to take into account possible jumps in the components of Jacobians. This is naturally accommodated with the use of saltation matrices. By augmenting the variational approach for studying smooth dynamical systems with such matrices we show that, for a wide variety of networks that have been used as models of biological systems, cluster states can be explicitly investigated. By way of illustration, we analyze an integrate-and-fire network model with event-driven synaptic coupling as well as a diffusively coupled network built from planar PWL nodes, including a reduction of the popular Morris-Lecar neuron model. We use these examples to emphasize that the stability of network cluster states can depend as much on the choice of single node dynamics as it does on the form of network structural connectivity. Importantly, the procedure that we present here, for understanding cluster synchronization in networks, is valid for a wide variety of systems in

  10. Intertidal Sandbar Welding as a Primary Source of Sediment for Dune Growth: Evidence from a Large Scale Field Experiment

    Science.gov (United States)

    Cohn, N.; Ruggiero, P.; de Vries, S.

    2016-12-01

    Dunes provide the first line of defense from elevated water levels in low-lying coastal systems, limiting potentially major flooding, economic damages, and loss of livelihood. Despite the well documented importance of healthy dunes, our predictive ability of dune growth, particularly following erosive storm events, remains poor - resulting in part from traditionally studying the wet and dry beach as separate entities. In fact, however, dune recovery and growth is closely tied to the subtidal morphology and the nearshore hydrodynamic conditions, necessitating treating the entire coastal zone from the shoreface to the backshore as an integrated system. In this context, to further improve our understanding of the physical processes allowing for beach and dune growth during fair weather conditions, a large field experiment, the Sandbar-aEolian Dune EXchange EXperiment, was performed in summer 2016 in southwestern Washington, USA. Measurements of nearshore and atmospheric hydrodynamics, in-situ sediment transport, and morphology change provide insight into the time and space scales of nearshore-beach-dune exchanges along a rapidly prograding stretch of coast over a 6 week period. As part of this experiment, the hypothesis that dune growth is limited by the welding of intertidal sandbars to the shoreline (Houser, 2009) was tested. Using laser particle counters, bed elevation sensors (sonar altimeters and Microsoft Kinect), continuously logging sediment traps, RGB and IR cameras, and repeat morphology surveys (terrestrial lidar, kite based structure from motion, and RTK GPS), spatial and temporal trends in aeolian sediment transport were assessed in relation to the synoptic onshore migration and welding of intertidal sandbars. Observations from this experiment demonstrate that (1) the intertidal zone is the primary source of sediment to the dunes during non-storm conditions, (2) rates of saltation increase during later stages of bar welding but equivalent wind conditions

  11. Sediment transport processes at the head of Halibut Canyon, Eastern Canada margin: An interplay between internal tides and dense shelf water cascading.

    Science.gov (United States)

    Puig, Pere; Greenan, Blair J. W.; Li, Michael Z.; Prescott, Robert H.; Piper, David J. W.

    2013-04-01

    To investigate the processes by which sediment is transported through a submarine canyon incised in a glaciated margin, the bottom boundary layer quadrapod RALPH was deployed at 276-m depth in the West Halibut Canyon (off Newfoundland) during winter 2008-2009. Two main sediment transport processes were identified throughout the deployment. Firstly, periodic increases of near-bottom suspended-sediment concentrations (SSC) were recorded associated with the up-canyon propagation of the semidiurnal internal tidal bore along the canyon axis, carrying fine sediment particles resuspended from deeper canyon regions. The recorded SSC peaks, lasting less than one hour, were observed sporadically and were linked to bottom intensified up-canyon flows concomitant with sharp drops in temperature. Secondly, sediment transport was also observed during events of intensified down-canyon current velocities that occurred during periods of sustained heat loss from surface waters, but were not associated with large storms. High-resolution velocity profiles throughout the water column during these events revealed that the highest current speeds (~1 m s-1) were centered several meters above the sea floor and corresponded to the region of maximum velocities of a gravity flow. Such flows had associated low SSC and cold water temperatures and have been interpreted as dense shelf water cascading events channelized along the canyon axis. Sediment transport during these events was largely restricted to bedload and saltation, producing winnowing of sands and fine sediments around larger gravel particles. Analysis of historical hydrographic data suggests that the origin of such gravity flows is not related to the formation of coastal dense waters advected towards the canyon head. Rather, the dense shelf waters appear to be generated around the outer shelf, where convection during winter is able to reach the sea floor and generate a pool of near-bottom dense water that cascades into the canyon

  12. Dust Generation Resulting from Desiccation of Playa Systems: Studies on Mono and Owens Lakes, California

    Science.gov (United States)

    Gill, Thomas Edward

    1995-01-01

    Playas, evaporites, and aeolian sediments frequently are linked components within the Earth system. Anthropogenic water diversions from terminal lakes form playas that release fugitive dust. These actions, documented worldwide, simulate aeolian processes activated during palaeoclimatic pluvial/interpluvial transitions, and have significant environmental impacts. Pluvial lakes Russell and Owens in North America's Great Basin preceded historic Mono and Owens Lakes, now desiccated by water diversions into dust-generating, evaporite -encrusted playas. Geochemical and hydrologic cycles acting on the Owens (Dry) Lake playa form three distinct crust types each year. Although initial dust production results from deflation of surface efflorescences after the playa dries, most aerosols are created by saltation abrasion of salt/silt/clay crusts at crust/ sand sheet contacts. The warm-season, clastic "cemented" crust is slowest to degrade into dust. If the playa surface is stabilized by an unbroken, non-efflorescent crust, dust formation is discouraged. When Mono Lake's surFace elevation does not exceed 1951 meters (6400 feet), similar processes will also generate dust from its saline lower playa. Six factors--related to wind, topography, groundwater, and sediments--control dust formation at both playas. These factors were combined into a statistical model relating suspended dust concentrations to playa/lake morphometry. The model shows the extent and severity of Mono Lake dust storms expands significantly below the surface level 6376 feet (1943.5 meters). X-ray diffraction analysis of Mono Basin soils, playa sediments, and aerosols demonstrates geochemical cycling of materials through land, air and water during Mono Lake's 1982 low stand. Soils and clastic playa sediments contain silicate minerals and tephra. Saline groundwater deposited calcite, halite, thenardite, gaylussite, burkeite and glauberite onto the lower playa. Aerosols contained silicate minerals (especially

  13. A laboratory investigation of the suspension, transport, and settling of silver carp eggs using synthetic surrogates

    Science.gov (United States)

    Garcia, Tatiana; Zuniga Zamalloa, Carlo; Jackson, P. Ryan; Murphy, Elizabeth A.; Garcia, Marcelo H.

    2015-01-01

    Asian carp eggs are semi-buoyant and must remain suspended in the water to survive, supported by the turbulence of the flow, until they hatch and develop the ability to swim. Analysis of the transport and dispersal patterns of Asian carp eggs will facilitate the development and implementation of control strategies to target the early life stages. Experimenting with Asian carp eggs is complicated due to practical issues of obtaining eggs in close proximity to experimental facilities and extensive handling of eggs tends to damage them. Herein, we describe laboratory experiments using styrene beads (4.85 mm diameter) as synthetic surrogate eggs to mimic the physical properties of water-hardened silver carp eggs. The first set of experiments was completed in a rectangular vertical column filled with salt water. The salinity of the water was adjusted in an iterative fashion to obtain a close approximation of the fall velocity of the styrene beads to the mean fall velocity of silver carp water-hardened eggs. The terminal fall velocity of synthetic eggs was measured using an image processing method. The second set of experiments was performed in a temperature-controlled recirculatory flume with a sediment bed. The flume was filled with salt water, and synthetic eggs were allowed to drift under different flow conditions. Drifting behavior, suspension conditions, and settling characteristics of synthetic eggs were observed. At high velocities, eggs were suspended and distributed through the water column. Eggs that touched the sediment bed were re-entrained by the flow. Eggs saltated when they touched the bed, especially at moderate velocities and with a relatively flat bed. At lower velocities, some settling of the eggs was observed. With lower velocities and a flat bed, eggs were trapped near the walls of the flume. When bedforms were present, eggs were trapped in the lee of the bedforms in addition to being trapped near the flume walls. Results of this research study

  14. Future road salt use in Switzerland: an example of an effective climate service

    Science.gov (United States)

    Zubler, Elias M.; Fischer, Andreas M.; Schlegel, Thomas H.; Liniger, Mark A.

    2015-04-01

    The application of salt is the predominant measure taken to enhance road safety in Switzerland by clearing the roads from snow or preventing frozen surfaces during winter. The need for road salt exhibits a strong interannual variability, according to Schweizer Salinen AG - the Swiss monopolist for production and distribution of road salt. These fluctuations are to a large extent a direct consequence of the year-to-year variability in winter climate. In the course of the 21st century, Swiss climate is projected to depart significantly from present and past conditions. By the end of the century, winter temperatures over Switzerland are expected to rise by about 2-4°C relative to the mean over the period 1980-2009, while winter precipitation may either increase or decrease based on ENSEMBLES regional climate model projections under the SRES-scenario A1B. Faced with these changes, Schweizer Salinen AG asked for an estimate of the expected future road salt use for designing their long-term business strategy. The study is based on climate change projections from the CH2011 initiative and later extensions thereof as well as monthly sales data of road salt from Schweizer Salinen AG. For the period 1997-2013, a linear relationship was derived between the average number of days with snowfall and the road salt amount sold over "saltation years" defined from October 1st to September 30th in the 26 cantons (provinces) of Switzerland. The ad-hoc linear relationship was applied to the climate change projections to obtain future salt use information in three future periods for the greenhouse gas emission scenarios A1B, A2 and RCP3PD. We find that the expected future salt use is likely to be reduced by about 50% in 2045-2074 under the scenario A1B. Currently, the countrywide mean annual road salt use corresponds to about 220'000 tons. In a particularly snow-rich year, the company sells up to 400'000 tons. At the end of the century, following a pessimistic scenario such as A1B or A

  15. Planning for the Collection and Analysis of Samples of Martian Granular Materials Potentially to be Returned by Mars Sample Return

    Science.gov (United States)

    Carrier, B. L.; Beaty, D. W.

    2017-12-01

    NASA's Mars 2020 rover is scheduled to land on Mars in 2021 and will be equipped with a sampling system capable of collecting rock cores, as well as a specialized drill bit for collecting unconsolidated granular material. A key mission objective is to collect a set of samples that have enough scientific merit to justify returning to Earth. In the case of granular materials, we would like to catalyze community discussion on what we would do with these samples if they arrived in our laboratories, as input to decision-making related to sampling the regolith. Numerous scientific objectives have been identified which could be achieved or significantly advanced via the analysis of martian rocks, "regolith," and gas samples. The term "regolith" has more than one definition, including one that is general and one that is much more specific. For the purpose of this analysis we use the term "granular materials" to encompass the most general meaning and restrict "regolith" to a subset of that. Our working taxonomy includes the following: 1) globally sourced airfall dust (dust); 2) saltation-sized particles (sand); 3) locally sourced decomposed rock (regolith); 4) crater ejecta (ejecta); and, 5) other. Analysis of martian granular materials could serve to advance our understanding areas including habitability and astrobiology, surface-atmosphere interactions, chemistry, mineralogy, geology and environmental processes. Results of these analyses would also provide input into planning for future human exploration of Mars, elucidating possible health and mechanical hazards caused by the martian surface material, as well as providing valuable information regarding available resources for ISRU and civil engineering purposes. Results would also be relevant to matters of planetary protection and ground-truthing orbital observations. We will present a preliminary analysis of the following, in order to generate community discussion and feedback on all issues relating to: What are the

  16. A Laboratory Investigation of the Suspension, Transport, and Settling of Silver Carp Eggs Using Synthetic Surrogates

    Science.gov (United States)

    Garcia, Tatiana; Zuniga Zamalloa, Carlo; Jackson, P. Ryan; Murphy, Elizabeth A.; Garcia, Marcelo H.

    2015-01-01

    Asian carp eggs are semi-buoyant and must remain suspended in the water to survive, supported by the turbulence of the flow, until they hatch and develop the ability to swim. Analysis of the transport and dispersal patterns of Asian carp eggs will facilitate the development and implementation of control strategies to target the early life stages. Experimenting with Asian carp eggs is complicated due to practical issues of obtaining eggs in close proximity to experimental facilities and extensive handling of eggs tends to damage them. Herein, we describe laboratory experiments using styrene beads (4.85 mm diameter) as synthetic surrogate eggs to mimic the physical properties of water-hardened silver carp eggs. The first set of experiments was completed in a rectangular vertical column filled with salt water. The salinity of the water was adjusted in an iterative fashion to obtain a close approximation of the fall velocity of the styrene beads to the mean fall velocity of silver carp water-hardened eggs. The terminal fall velocity of synthetic eggs was measured using an image processing method. The second set of experiments was performed in a temperature-controlled recirculatory flume with a sediment bed. The flume was filled with salt water, and synthetic eggs were allowed to drift under different flow conditions. Drifting behavior, suspension conditions, and settling characteristics of synthetic eggs were observed. At high velocities, eggs were suspended and distributed through the water column. Eggs that touched the sediment bed were re-entrained by the flow. Eggs saltated when they touched the bed, especially at moderate velocities and with a relatively flat bed. At lower velocities, some settling of the eggs was observed. With lower velocities and a flat bed, eggs were trapped near the walls of the flume. When bedforms were present, eggs were trapped in the lee of the bedforms in addition to being trapped near the flume walls. Results of this research study

  17. The mate recognition protein gene mediates reproductive isolation and speciation in the Brachionus plicatilis cryptic species complex.

    Science.gov (United States)

    Gribble, Kristin E; Mark Welch, David B

    2012-08-01

    frequency via asexual reproduction. Our analyses indicate that mate recognition, controlled by MMR-B, may drive reproductive isolation and allow saltational sympatric speciation within the B. plicatilis cryptic species complex, and that this process may be largely neutral.

  18. Long-term dust aerosol production from natural sources in Iceland.

    Science.gov (United States)

    Dagsson-Waldhauserova, Pavla; Arnalds, Olafur; Olafsson, Haraldur

    2017-02-01

    Iceland is a volcanic island in the North Atlantic Ocean with maritime climate. In spite of moist climate, large areas are with limited vegetation cover where >40% of Iceland is classified with considerable to very severe erosion and 21% of Iceland is volcanic sandy deserts. Not only do natural emissions from these sources influenced by strong winds affect regional air quality in Iceland ("Reykjavik haze"), but dust particles are transported over the Atlantic ocean and Arctic Ocean >1000 km at times. The aim of this paper is to place Icelandic dust production area into international perspective, present long-term frequency of dust storm events in northeast Iceland, and estimate dust aerosol concentrations during reported dust events. Meteorological observations with dust presence codes and related visibility were used to identify the frequency and the long-term changes in dust production in northeast Iceland. There were annually 16.4 days on average with reported dust observations on weather stations within the northeastern erosion area, indicating extreme dust plume activity and erosion within the northeastern deserts, even though the area is covered with snow during the major part of winter. During the 2000s the highest occurrence of dust events in six decades was reported. We have measured saltation and Aeolian transport during dust/volcanic ash storms in Iceland, which give some of the most intense wind erosion events ever measured. Icelandic dust affects the ecosystems over much of Iceland and causes regional haze. It is likely to affect the ecosystems of the oceans around Iceland, and it brings dust that lowers the albedo of the Icelandic glaciers, increasing melt-off due to global warming. The study indicates that Icelandic dust may contribute to the Arctic air pollution. Long-term records of meteorological dust observations from Northeast Iceland indicate the frequency of dust events from Icelandic deserts. The research involves a 60-year period and

  19. A Laboratory Investigation of the Suspension, Transport, and Settling of Silver Carp Eggs Using Synthetic Surrogates.

    Science.gov (United States)

    Garcia, Tatiana; Zuniga Zamalloa, Carlo; Jackson, P Ryan; Murphy, Elizabeth A; Garcia, Marcelo H

    2015-01-01

    Asian carp eggs are semi-buoyant and must remain suspended in the water to survive, supported by the turbulence of the flow, until they hatch and develop the ability to swim. Analysis of the transport and dispersal patterns of Asian carp eggs will facilitate the development and implementation of control strategies to target the early life stages. Experimenting with Asian carp eggs is complicated due to practical issues of obtaining eggs in close proximity to experimental facilities and extensive handling of eggs tends to damage them. Herein, we describe laboratory experiments using styrene beads (4.85 mm diameter) as synthetic surrogate eggs to mimic the physical properties of water-hardened silver carp eggs. The first set of experiments was completed in a rectangular vertical column filled with salt water. The salinity of the water was adjusted in an iterative fashion to obtain a close approximation of the fall velocity of the styrene beads to the mean fall velocity of silver carp water-hardened eggs. The terminal fall velocity of synthetic eggs was measured using an image processing method. The second set of experiments was performed in a temperature-controlled recirculatory flume with a sediment bed. The flume was filled with salt water, and synthetic eggs were allowed to drift under different flow conditions. Drifting behavior, suspension conditions, and settling characteristics of synthetic eggs were observed. At high velocities, eggs were suspended and distributed through the water column. Eggs that touched the sediment bed were re-entrained by the flow. Eggs saltated when they touched the bed, especially at moderate velocities and with a relatively flat bed. At lower velocities, some settling of the eggs was observed. With lower velocities and a flat bed, eggs were trapped near the walls of the flume. When bedforms were present, eggs were trapped in the lee of the bedforms in addition to being trapped near the flume walls. Results of this research study

  20. The role of interfacial water layer in atmospherically relevant charge separation

    Science.gov (United States)

    Bhattacharyya, Indrani

    Charge separation at interfaces is important in various atmospheric processes, such as thunderstorms, lightning, and sand storms. It also plays a key role in several industrial processes, including ink-jet printing and electrostatic separation. Surprisingly, little is known about the underlying physics of these charging phenomena. Since thin films of water are ubiquitous, they may play a role in these charge separation processes. This talk will focus on the experimental investigation of the role of a water adlayer in interfacial charging, with relevance to meteorologically important phenomena, such as atmospheric charging due to wave actions on oceans and sand storms. An ocean wave generates thousands of bubbles, which upon bursting produce numerous large jet droplets and small film droplets that are charged. In the 1960s, Blanchard showed that the jet droplets are positively charged. However, the charge on the film droplets was not known. We designed an experiment to exclusively measure the charge on film droplets generated by bubble bursting on pure water and aqueous salt solution surfaces. We measured their charge to be negative and proposed a model where a slight excess of hydroxide ions in the interfacial water layer is responsible for generating these negatively charged droplets. The findings from this research led to a better understanding of the ionic disposition at the air-water interface. Sand particles in a wind-blown sand layer, or 'saltation' layer, become charged due to collisions, so much so, that it can cause lightning. Silica, being hydrophilic, is coated with a water layer even under low-humidity conditions. To investigate the importance of this water adlayer in charging the silica surfaces, we performed experiments to measure the charge on silica surfaces due to contact and collision processes. In case of contact charging, the maximum charge separation occurred at an optimum relative humidity. On the contrary, in collisional charging process, no

  1. Population genetical investigation of the level of mutagenesis and teratological events frequency in ecologically different regions of Kazakhstan

    International Nuclear Information System (INIS)

    Kashaganova, Zh.A.; Zhapbasov, R.; Kadyrova, N.Zh.; Karimbaeva, K.S.; Mamyrbaeva, A.N.; Altaeva, N.Z.

    2008-01-01

    Full text: Kazakhstan territory is unique including regions with radioactive pollution of Semipalatinsk nuclear test territory and storage of radioactive waste of uranium mines and metallurgy enterprises, and regions of drying Aral sea. These technogenic factors may cause some types of chromosome aberrations and developmental anomalies in mammals. The level of mutagenesis was estimated basing on chromosome aberrations and genomic mutation frequencies in bone marrow cells of natural rodents populations (Allactaga major Kern, Allactaga saltator Eversman, Cytellus eritrogenus Br.) and domestic animals (sheep, cattle, horse), which inhabit these regions. Sheep populations which are bred in the regions with different climatic conditions were used for teratological investigations. Different generations are met in the populations of mice family rodents caught in the nature. So studying the animals of different ages separately we can estimate the frequency of mutations in the animals of different age inhabiting the same radiation polluted regions. The frequency of chromosome abe rations in mice family rodents from such territories was twice as high as from the clear territories. In some animals chromosome aberration types characteristic for radiation mutagenesis (dicentrics, double acentric fragments) were found. High level of cytogenetical instability in somatic cells of agricultural animals which were bred on the pastures within former nuclear test territories for several generations may be caused by chronic radiation in low doses. The analysis of the spectrum of recorder chromosome aberrations in somatic cells and their dynamics in different animal species inhabiting for several generations these territories being chronically irradiated, allows us to investigate the direction of genetical evolution of mammals genofond structure induced by ecological factors. Comparative analysis of the frequencies of spontaneous abortuses, deadborn and newborn animals with innate

  2. The mate recognition protein gene mediates reproductive isolation and speciation in the Brachionus plicatilis cryptic species complex

    Directory of Open Access Journals (Sweden)

    Gribble Kristin E

    2012-08-01

    rapidly, and novel alleles may be maintained and increase in frequency via asexual reproduction. Our analyses indicate that mate recognition, controlled by MMR-B, may drive reproductive isolation and allow saltational sympatric speciation within the B. plicatilis cryptic species complex, and that this process may be largely neutral.

  3. Calibration of AN Acoustic Sensor (geophone) for Continuous Bedload Monitoring in Mountainous Streams

    Science.gov (United States)

    Tsakiris, A. G.; Papanicolaou, T.

    2010-12-01

    discernable peaks in the time series. The bedload rate over the plate correlated as a power law relation with the magnitude of the registered peaks. This relation can be used for estimating the temporal variations of bedload from the record of the geophones records, which can produce continuous records and thus bedload measurements over extended time periods. Future research on the geophones is guaranteed and will aim on calibrating the geophones for particle movement at higher flow conditions where general sediment movement and possibly particle saltation occur.

  4. A Laboratory Investigation of the Suspension, Transport, and Settling of Silver Carp Eggs Using Synthetic Surrogates.

    Directory of Open Access Journals (Sweden)

    Tatiana Garcia

    Full Text Available Asian carp eggs are semi-buoyant and must remain suspended in the water to survive, supported by the turbulence of the flow, until they hatch and develop the ability to swim. Analysis of the transport and dispersal patterns of Asian carp eggs will facilitate the development and implementation of control strategies to target the early life stages. Experimenting with Asian carp eggs is complicated due to practical issues of obtaining eggs in close proximity to experimental facilities and extensive handling of eggs tends to damage them. Herein, we describe laboratory experiments using styrene beads (4.85 mm diameter as synthetic surrogate eggs to mimic the physical properties of water-hardened silver carp eggs. The first set of experiments was completed in a rectangular vertical column filled with salt water. The salinity of the water was adjusted in an iterative fashion to obtain a close approximation of the fall velocity of the styrene beads to the mean fall velocity of silver carp water-hardened eggs. The terminal fall velocity of synthetic eggs was measured using an image processing method. The second set of experiments was performed in a temperature-controlled recirculatory flume with a sediment bed. The flume was filled with salt water, and synthetic eggs were allowed to drift under different flow conditions. Drifting behavior, suspension conditions, and settling characteristics of synthetic eggs were observed. At high velocities, eggs were suspended and distributed through the water column. Eggs that touched the sediment bed were re-entrained by the flow. Eggs saltated when they touched the bed, especially at moderate velocities and with a relatively flat bed. At lower velocities, some settling of the eggs was observed. With lower velocities and a flat bed, eggs were trapped near the walls of the flume. When bedforms were present, eggs were trapped in the lee of the bedforms in addition to being trapped near the flume walls. Results of this

  5. River longitudinal profiles and bedrock incision models: Stream power and the influence of sediment supply

    Science.gov (United States)

    Sklar, Leonard; Dietrich, William E.

    The simplicity and apparent mechanistic basis of the stream power river incision law have led to its wide use in empirical and theoretical studies. Here we identify constraints on its calibration and application, and present a mechanistic theory for the effects of sediment supply on incision rates which spotlights additional limitations on the applicability of the stream power law. On channels steeper than about 20%, incision is probably dominated by episodic debris flows, and on sufficiently gentle slopes, sediment may bury the bedrock and prevent erosion. These two limits bound the application of the stream power law and strongly constrain the possible combination of parameters in the law. In order to avoid infinite slopes at the drainage divide in numerical models of river profiles using the stream power law it is commonly assumed that the first grid cell is unchanneled. We show, however, that the size of the grid may strongly influence the calculated equilibrium relief. Analysis of slope-drainage area relationships for a river network in a Northern California watershed using digital elevation data and review of data previously reported by Hack reveal that non-equilibrium profiles may produce well defined slope-area relationships (as expected in equilibrium channels), but large differences between tributaries may point to disequilibrium conditions. To explore the role of variations in sediment supply and transport capacity in bedrock incision we introduce a mechanistic model for abrasion of bedrock by saltating bedload. The model predicts that incision rates reach a maximum at intermediate levels of sediment supply and transport capacity. Incision rates decline away from the maximum with either decreasing supply (due to a shortage of tools) or increasing supply (due to gradual bed alluviation), and with either decreasing transport capacity (due to less energetic particle movement) or increasing transport capacity (due less frequent particle impacts per unit bed

  6. "Coulombic Viscosity" In Granular Materials: Planetary and Astrophysical Implications

    Science.gov (United States)

    Marshall, J. R.

    1999-01-01

    very brief (30-60 sec) damping period, motion of the grains was observed to be retarded by the electrostatic interactions. The fact that the grains almost instantly formed aggregates was evidence that their ballistic motions had been constrained and redirected by the dipole-dipole interactions that led to filamentary aggregate development. Undoubtedly, the "Coulombic viscosity" of the cloud assisted in damping grain motion so rapidly. The electrostatically-induced grain-cloud viscosity or drag exerted on grain motion, is a complex function of three major parameters: charge magnitude, charge sign, and mean intergranular distance. The above experiments illustrate one particular type of granular behavior. The discussion here will therefore be restricted to drag relationships: (a) between grains that are naturally charged triboelectrically and thus exhibit dipole-dipole attractions between one another even if there are slight net charges present (which can be overwhelmed by dipole coupling at short distances), and (b) between grains that are densely spaced where the intergranular distance varies between zero and some value (usually tens or hundreds of grain diameters) that permits each grain to detect the dipole moment of another grain -- the distance is not so great that other grains appears as neutral electrical "singularities. I. Aeolian transport: During motion of grains in a saltation cloud (on Earth, Mars, or Venus), triboelectric charging must occur as a result of multiple grain contacts, and by friction with the entraining air. A situation might develop that is similar to the one described above in the attrition device: grain motion becoming significantly retarded (reduced flux) as grains find it increasingly difficult to either separate from the surface, or to pass one another without Coulombic retarding forces. A "Coulombic drag" will exist at flux initiation and increase with time to work in direct opposition to the aerodynamic drag that drives the grain motion

  7. Incidencia potencial de la erosión eólica sobre la degradación del suelo y la calidad del aire en distintas regiones de la Argentina Potential effects of wind erosion on soil degradation and air quality in different regions of Argentina

    Directory of Open Access Journals (Sweden)

    Daniel E Buschiazzo

    2009-12-01

    ía relativamente más a la calidad del aire que a la del suelo. La magnitud de este proceso estaría regida, principalmente, por el área disponible para la erosión. En suelos sometidos a manejos agrícolas, frecuentemente desnudos y de bajo grado de evolución como los Ustipsammentes y Haplustoles, la erosión eólica tendría efectos intermedios, afectando tanto a la calidad del suelo como a la del aire. Finalmente, en suelos relativamente más evolucionados y sometidos a manejos agrícolas como los Hapludoles, la erosión afectaría en mayor medida a la calidad del suelo, siendo la emisión de partículas finas de relativa menor importancia.Wind erosion can impact soil and air quality. The magnitude of these effects depends on the soil type and management conditions, and is associated with the transport conditions of soil particles: saltation and rolling affect soil quality to a greater extent while suspension tends to increase the emission of fine particles to the atmosphere. The objective of this research was to determine the magnitude of both type of movements in soils of Argentina, in order to predict potential effects on soil or air quality. This study was carried out in four provinces of Argentina: Chaco (CHA, San Luis (SLU, La Pampa (LPA and Río Negro (PAT. In each case, wind erosion was measured in the 1 ha-square fields by means of BSNE samplers. Results indicated that the total amount of transported material, the so-called mass flux (FM as well as the absolute amount of eroded soil (Q were higher in sites with less developed soils of SLU (Ustipsamment and LPA (Haplustoll and lower in sites with a better developed soil of CHA (Hapludoll or with less developed soil but with permanent soil cover with natural grasses of PAT (Haplargid. Saltation and rolling were the main transport forms in SLU, LPA and CHA and suspension in PAT. Though low (10%, the plant coverage existing in this last site was enough to increase the height of the wind profile and to favor the transport

  8. "Coulombic Viscosity" In Granular Materials: Planetary and Astrophysical Implications

    Science.gov (United States)

    Marshall, J. R.

    1999-09-01

    very brief (30-60 sec) damping period, motion of the grains was observed to be retarded by the electrostatic interactions. The fact that the grains almost instantly formed aggregates was evidence that their ballistic motions had been constrained and redirected by the dipole-dipole interactions that led to filamentary aggregate development. Undoubtedly, the "Coulombic viscosity" of the cloud assisted in damping grain motion so rapidly. The electrostatically-induced grain-cloud viscosity or drag exerted on grain motion, is a complex function of three major parameters: charge magnitude, charge sign, and mean intergranular distance. The above experiments illustrate one particular type of granular behavior. The discussion here will therefore be restricted to drag relationships: (a) between grains that are naturally charged triboelectrically and thus exhibit dipole-dipole attractions between one another even if there are slight net charges present (which can be overwhelmed by dipole coupling at short distances), and (b) between grains that are densely spaced where the intergranular distance varies between zero and some value (usually tens or hundreds of grain diameters) that permits each grain to detect the dipole moment of another grain -- the distance is not so great that other grains appears as neutral electrical "singularities. I. Aeolian transport: During motion of grains in a saltation cloud (on Earth, Mars, or Venus), triboelectric charging must occur as a result of multiple grain contacts, and by friction with the entraining air. A situation might develop that is similar to the one described above in the attrition device: grain motion becoming significantly retarded (reduced flux) as grains find it increasingly difficult to either separate from the surface, or to pass one another without Coulombic retarding forces. A "Coulombic drag" will exist at flux initiation and increase with time to work in direct opposition to the aerodynamic drag that drives the grain motion

  9. Foehn-induced effects on dust pollution, frontal clouds and solar radiation in the Dead Sea valley

    Science.gov (United States)

    Kishcha, Pavel; Starobinets, Boris; Alpert, Pinhas; Kaplan, Michael

    2017-04-01

    The significant drying up of the Dead Sea over the past 40 years has led to an increase in an exposed area contributing to local dust pollution. Measurements show that, sometimes, in the Dead Sea valley, dust pollution can reach extreme concentrations up to several thousands of micrograms per cubic meters. Our analysis of a meteorological situation shows that a foehn phenomenon can be a causal factor for the aforementioned extreme local dust concentration. This foehn phenomenon creates strong warm and dry winds, which are accompanied by air turbulence and temperature inversion. In our study, foehn-induced effects on dust pollution, frontal clouds and solar radiation were analyzed over the Judean Mountains ( 1000 m) and over the Dead Sea valley (-420 m), using high-resolution numerical simulations and in-situ observations at meteorological stations located across the mountain ridge. An extreme dust episode occurring on March 22, 2013, was analyzed, which was characterized by measured surface dust concentrations of up to 7000 µg m-3 in the Dead Sea valley. We simulated this foehn phenomenon with the 3-km resolution COSMO-ART model. Our analysis has shown that the foehn phenomenon could be observed even over the relatively low Judean Mountains. This analysis was based on various meteorological, pyranometer, radar, and aerosol measurements together with high-resolution model data. In the Dead Sea valley, the maximum aerosol optical depth (AOD) did not coincide with the maximum surface dust concentration. This lack of coincidence indicates difficulties in using satellite-based AOD for initializing dust concentration within numerical forecast systems over this region with complex terrain. In the western Dead Sea valley, strong foehn winds of over 20 m/s were accompanied by maximal air turbulence leading to maximal local dust emissions. Thus, the model showed that, by creating significant turbulence, the foehn phenomenon intensified the saltation (bombardment) mechanism

  10. Laboratory measurements of grain-bedrock interactions using inertial sensors.

    Science.gov (United States)

    Maniatis, Georgios; Hoey, Trevor; Hodge, Rebecca; Valyrakis, Manousos; Drysdale, Tim

    2016-04-01

    translational energy component of transport (defined as a function of 3-dimensional translational velocity) as well as the rotational component (a function of the 3-axis angular velocity measurements from the gyroscope) which is neglected in the majority of contemporary saltation models. The results suggest that, for this grain scale, the magnitude of the impact of mobile grains on the bed is primarily controlled by their inertia. References Maniatis et al. 2014 EGU General assembly http://meetingorganizer.copernicus.org/EGU2014/EGU2014-12829.pdf Maniatis et. al 2015: "CALCULATION OF EXPLICIT PROBABILITY OF ENTRAINMENT BASED ON INERTIAL ACCELERATION MEASUREMENTS" J. Hydraulic Engineering, Under review.

  11. Application of the Gillette model for windblown dust at Owens Lake, CA

    Science.gov (United States)

    Ono, Duane

    Windblown dust can have significant impacts on local air pollution levels, and in cases such as dust from Africa or Asia, can have global impacts on our environment. Models to estimate particulate matter emissions from windblown dust are generally based on the local wind speed, the threshold wind speed to initiate erosion, and the soil texture of a given surface. However, precipitation, soil crusting, and soil disturbance can dramatically change the threshold wind speed and erosion potential of a surface, making modeling difficult. A low-cost sampling and analysis method was developed to account for these surface changes in a wind erosion model. Windblown dust emissions measured as PM 10 (particulate matter less than a nominal 10 μm aerodynamic diameter) have been found to be generally proportional to sand flux (also known as saltation flux). In this study, a model was used to estimate sand flux using the relationship Q=AρG/g, where Q is horizontal sand flux, A is a surface erosion potential factor, ρ is air density, g is the gravitational constant, and G=∫ u*(u*2-u*t2)dt, where u* is friction velocity and u is the threshold friction velocity of the surface. The variable A in the model was derived by comparing the measured sand flux for a given period and area to G for the same period. Sand flux was monitored at Owens Lake, CA using low-cost Cox Sand Catchers (CSCs) for monthly measurements, and more expensive electronic sensors (Sensits) to measure hourly flux rates and u. Monitors were spaced 1 km apart at 114 sites, covering one clay and three sand-dominated soil areas. Good model results relied primarily on the erosion potential A, which could be determined from CSC measurements and wind speed data. Annual values for A were found to range from 1.3 to 3.5 in the three sand areas. The value of A was an order of magnitude lower (0.2) in the less erodible clay area. Previous studies showed similar values for A of 0.7 and 2.9 for a sandy site at Owens Lake, and

  12. Wind-blown sand on beaches: an evaluation of models

    Science.gov (United States)

    Sherman, Douglas J.; Jackson, Derek W. T.; Namikas, Steven L.; Wang, Jinkang

    1998-03-01

    for the effects of slope and moisture content were calculated using the models of Bagnold [Bagnold, R.A., 1973. The nature of saltation and 'bed-load' transport in water. Proc. R. Soc. London, Ser. A, 332, 473-504] and Belly [Belly, P.-Y., 1964. Sand movement by wind. U.S. Army Corps Eng. CERC. Tech. Mem. 1, Washington D.C., 38 pp.], respectively. None of the models was able to produce a strong correspondence between measured and predicted rates of transport. Best results were obtained using the Bagnold and Zingg models, and the Kadib model was the least viable of this group. The influence of sediment moisture content appeared to be the critical factor in degrading model viability. Overall, none of the models is adequate for general applications to coastal-aeolian environments where moisture content complications tend to override the predictive competence of the simple transport formulations.

  13. Climate-sensitive feedbacks between hillslope processes and fluvial erosion in sediment-driven incision models

    Science.gov (United States)

    Skov, Daniel S.; Egholm, David L.

    2016-04-01

    the same time the channel bed in the lower parts become shielded from incision by a perpetual sediment cover and incision stalls. These differences cause transients of erosion to migrate through the drainage network. Beer, Alexander R., and J. M. Turowski. "Bedload transport controls bedrock erosion under sediment-starved conditions." Earth Surface Dynamics 3.3 (2015): 291-309. Herman, Frédéric, et al. "Worldwide acceleration of mountain erosion under a cooling climate." Nature 504.7480 (2013): 423-426. Lease, Richard O., and Todd A. Ehlers. "Incision into the Eastern Andean plateau during Pliocene cooling." Science 341.6147 (2013): 774-776. Molnar, Peter. "Late Cenozoic increase in accumulation rates of terrestrial sediment: how might climate change have affected erosion rates?." Annu. Rev. Earth Planet. Sci. 32 (2004): 67-89. Reusser, Luke J., et al. "Rapid Late Pleistocene incision of Atlantic passive-margin river gorges." Science 305.5683 (2004): 499-502. Sklar, Leonard S., and William E. Dietrich. "Sediment and rock strength controls on river incision into bedrock." Geology 29.12 (2001): 1087-1090. Sklar, Leonard S., and William E. Dietrich. "A mechanistic model for river incision into bedrock by saltating bed load." Water Resources Research 40.6 (2004).

  14. An electrostatic charge measurement of blowing snow particles focusing on collision frequency to the snow surface

    Science.gov (United States)

    Omiya, S.; Sato, A.

    2010-12-01

    the fixed fetch (12m). The number of collisions of particle was converted from the wind velocity using an equation obtained by Kosugi et al. (2004). Blowing snow particles tend to accumulate negative charges gradually with increase of the number of collisions to the snow surface. As a result, it is demonstrated that the gaps between the field values and the wind tunnel ones were due to difference of the collision frequency of snow particles. Assuming a logarithmic relationship as first approximation between the measured charges and the number of collisions, the charge-to-mass ratios will reach roughly the same value which was obtained in the field with several hundreds collisions. For instance, fetch is needed roughly 200m for blowing snow particles to gain -30 μC/kg under the following conditions: air temperature -20 degrees Celsius, wind velocity 7m/s and hard snow surface. REFERENCE: Kosugi et al., (2004): Dependence of drifting snow saltation length on snow surface hardness. Cold Reg. Sci. Technol., 39, 133-139.

  15. Quantification of Plume-Soil Interaction and Excavation Due to the Sky Crane Descent Stage

    Science.gov (United States)

    Vizcaino, Jeffrey; Mehta, Manish

    2015-01-01

    The quantification of the particulate erosion that occurs as a result of a rocket exhaust plume impinging on soil during extraterrestrial landings is critical for future robotic and human lander mission design. The aerodynamic environment that results from the reflected plumes results in dust lifting, site alteration and saltation, all of which create a potentially erosive and contaminant heavy environment for the lander vehicle and any surrounding structures. The Mars Science Lab (MSL), weighing nearly one metric ton, required higher levels of thrust from its retro propulsive systems and an entirely new descent system to minimize these effects. In this work we seek to quantify plume soil interaction and its resultant soil erosion caused by the MSL's Sky Crane descent stage engines by performing three dimensional digital terrain and elevation mapping of the Curiosity rover's landing site. Analysis of plume soil interaction altitude and time was performed by detailed examination of the Mars Descent Imager (MARDI) still frames and reconstructed inertial measurement unit (IMU) sensor data. Results show initial plume soil interaction from the Sky Crane's eight engines began at ground elevations greater than 60 meters and more than 25 seconds before the rovers' touchdown event. During this time, viscous shear erosion (VSE) was dominant typically resulting in dusting of the surface with flow propagating nearly parallel to the surface. As the vehicle descended and decreased to four powered engines plume-plume and plume soil interaction increased the overall erosion rate at the surface. Visibility was greatly reduced at a height of roughly 20 meters above the surface and fell to zero ground visibility shortly after. The deployment phase of the Sky Crane descent stage hovering at nearly six meters above the surface showed the greatest amount of erosion with several large particles of soil being kicked up, recirculated, and impacting the bottom of the rover chassis. Image

  16. Winds Measured by the Rover Environmental Monitoring Station (REMS) During the Mars Science Laboratory (MSL) Rover's Bagnold Dunes Campaign and Comparison with Numerical Modeling Using MarsWRF

    Science.gov (United States)

    Newman, Claire E.; Gomez-Elvira, Javier; Marin, Mercedes; Navarro, Sara; Torres, Josefina; Richardson, Mark I.; Battalio, J. Michael; Guzewich, Scott D.; Sullivan, Robert; de la Torre, Manuel; hide

    2016-01-01

    A high density of REMS wind measurements were collected in three science investigations during MSL's Bagnold Dunes Campaign, which took place over approx. 80 sols around southern winter solstice (Ls approx. 90deg) and constituted the first in situ analysis of the environmental conditions, morphology, structure, and composition of an active dune field on Mars. The Wind Characterization Investigation was designed to fully characterize the near-surface wind field just outside the dunes and confirmed the primarily upslope/downslope flow expected from theory and modeling of the circulation on the slopes of Aeolis Mons in this season. The basic pattern of winds is 'upslope' (from the northwest, heading up Aeolis Mons) during the daytime (approx. 09:00-17:00 or 18:00) and 'downslope' (from the southeast, heading down Aeolis Mons) at night (approx. 20:00 to some time before 08:00). Between these times the wind rotates largely clockwise, giving generally westerly winds mid-morning and easterly winds in the early evening. The timings of these direction changes are relatively consistent from sol to sol; however, the wind direction and speed at any given time shows considerable intersol variability. This pattern and timing is similar to predictions from the MarsWRF numerical model, run at a resolution of approx. 490 m in this region, although the model predicts the upslope winds to have a stronger component from the E than the W, misses a wind speed peak at approx. 09:00, and under-predicts the strength of daytime wind speeds by approx. 2-4 m/s. The Namib Dune Lee Investigation reveals 'blocking' of northerly winds by the dune, leaving primarily a westerly component to the daytime winds, and also shows a broadening of the 1 Hz wind speed distribution likely associated with lee turbulence. The Namib Dune Side Investigation measured primarily daytime winds at the side of the same dune, in support of aeolian change detection experiments designed to put limits on the saltation

  17. Systematic studies of Oryzomyine rodents (Muridae, Sigmodontinae): diagnoses and distributions of species formerly assigned to Oryzomys 'capito'

    Science.gov (United States)

    Musser, G.G.; Carleton, M.D.; Brothers, E.M.; Gardner, A.L.

    1998-01-01

    We describe the morphological species-boundaries and geographic distributions of ten Neotropical Oryzomys based on analyses of museum specimens (skins and skulls, examples preserved in fluid, chromosomal spreads, and information about collection sites from skin tags, field catalogs, and other sources). These species have been regarded as members of an Oryzomys capito complex and for a long time were consolidated into a single entity identified as O. capito. Our study documents the following: 1. Defining the limits of species within the O. capito complex first requires a comprehensive review and rigorous definition of O. capito itself. We consider Fischer's (1814) Mus megacephalus to be valid and available, designate a neotype to bear the name, and reinstate it as a senior synonym of capito Olfers (1818). We then provide a working definition of O. megacephalus and its close relative, O. laticeps, derived from analyses of morphometric variation, estimates of geographic distributions, and evaluations of synonyms. In our view, O. megacephalus occurs in Amazonia but also extends into eastern Paraguay; its synonyms are capito Olfers (1818), cephalotes Desmarest (1819), velutinus Allen and Chapman (1893), goeldi Thomas (1897), modestus Allen (1899), and perenensis Allen (1901). Oryzomys laticeps Lund (1840) occurs in the Atlantic Forest region of eastern Brazil. We designate a lectotype for laticeps and allocate the names saltator Winge (1887) and oniscus Thomas (1904) as synonyms. 2. We provide the first comprehensive taxonomic revision of Oryzomys yunganus Thomas (1902). Its range covers tropical evergreen rainforest formations in the Guiana region and the Amazon Basin where, as documented by voucher specimens, it has been collected at the same localities as O. megacephalus, O. nitidus, and O. tern of carotid arterial circulation, occlusal patterns of second upper and lower molars, cranial proportions, and chromosomal features. Appreciable intraspecific geographic

  18. PERSPECTIVE: Dust, fertilization and sources

    Science.gov (United States)

    Remer, Lorraine A.

    2006-11-01

    fraction that arrives at another continent [2]. At the deposition end of the chain, it is still unclear how the limited minerals in the dust such as iron are released for uptake by organisms either on land or in the ocean. Not all dust deposited into oceans results in a phytoplankton bloom. The process requires a chemical pathway that mobilizes a fraction of the iron into soluble form. Meskhidze et al [3] show that phytoplankton blooms following dust transport from the Gobi desert in Asia into the Pacific ocean result in a phytoplankton bloom only if the dust is accompanied by high initial SO2-to-dust ratios, suggesting that sulfuric acid coatings on the dust particle mobilize the embedded iron in the dust for phytoplankton uptake. Quantifying transport, deposition and nutrient availability are the latter ends of a puzzle that must begin by identifying and quantifying dust emission at the sources. The emission process is complex at the microscale requiring the right conditions for saltation and bombardment, which makes identification and inclusion of sources in global transport models very difficult. The result is that estimates of annual global dust emissions range from 1000 to 3000 Tg per year [4]. Even as global estimates of dust emissions are uncertain, localizing the sources brings even greater uncertainty. It has been recognized for several years that dust sources are not uniformly distributed over the arid regions of the Earth, but are regulated to topographic lows associated with dried lake deposits [5]. Using aerosol information from satellites, a comprehensive map of the world's source regions shows sources localized to specific areas of the Earth's arid regions [6]. Still these maps suggest broad emission sources covering several degrees of latitude and longitude. In the paper by Koren and co-authors [7] appearing in this issue, one particular dust source, the Bodélé depression in Chad, is analyzed in detail. They find that the specific topography of the

  19. Mars Global Digital Dune Database; MC-1

    Science.gov (United States)

    Hayward, R.K.; Fenton, L.K.; Tanaka, K.L.; Titus, T.N.; Colaprete, A.; Christensen, P.R.

    2010-01-01

    The Mars Global Digital Dune Database presents data and describes the methodology used in creating the global database of moderate- to large-size dune fields on Mars. The database is being released in a series of U.S. Geological Survey (USGS) Open-File Reports. The first release (Hayward and others, 2007) included dune fields from 65 degrees N to 65 degrees S (http://pubs.usgs.gov/of/2007/1158/). The current release encompasses ~ 845,000 km2 of mapped dune fields from 65 degrees N to 90 degrees N latitude. Dune fields between 65 degrees S and 90 degrees S will be released in a future USGS Open-File Report. Although we have attempted to include all dune fields, some have likely been excluded for two reasons: (1) incomplete THEMIS IR (daytime) coverage may have caused us to exclude some moderate- to large-size dune fields or (2) resolution of THEMIS IR coverage (100m/pixel) certainly caused us to exclude smaller dune fields. The smallest dune fields in the database are ~ 1 km2 in area. While the moderate to large dune fields are likely to constitute the largest compilation of sediment on the planet, smaller stores of sediment of dunes are likely to be found elsewhere via higher resolution data. Thus, it should be noted that our database excludes all small dune fields and some moderate to large dune fields as well. Therefore, the absence of mapped dune fields does not mean that such dune fields do not exist and is not intended to imply a lack of saltating sand in other areas. Where availability and quality of THEMIS visible (VIS), Mars Orbiter Camera narrow angle (MOC NA), or Mars Reconnaissance Orbiter (MRO) Context Camera (CTX) images allowed, we classified dunes and included some dune slipface measurements, which were derived from gross dune morphology and represent the prevailing wind direction at the last time of significant dune modification. It was beyond the scope of this report to look at the detail needed to discern subtle dune modification. It was also

  20. Tonopah Test Range Air Monitoring: CY2012 Meteorological, Radiological, and Airborne Particulate Observations

    Energy Technology Data Exchange (ETDEWEB)

    Mizell, Steve A; Nikolich, George; Shadel, Craig; McCurdy, Greg; Miller, Julianne J

    2013-07-01

    401. This difference may be the result of using filter media at Station 400 with a smaller pore size than the media used at the other two stations. Average annual gamma exposure at Station 401 is slightly greater than at Station 400 and 402. Average annual gamma exposure at all three TTR stations are in the upper range to slightly higher than values reported for the CEMP stations surrounding the TTR. At higher wind speeds, the saltation counts are greater at Station 401 than at Station 402 while the suspended particulate concentrations are greater at Station 402 than at Statin 401. Although these observations seem counterintuitive, they are likely the result of differences in the soil material present at the two sites. Station 401 is located on an interfluve elevated above two adjacent drainage channels where the soil surface is likely to be composed of coarser material. Station 402 is located in finer sediments at the playa edge and is also subject to dust from a dirt road only 500 m to the north. During prolonged high wind events, suspended dust concentrations at Station 401 peaked with the initial winds then decreased whereas dust concentrations at Station 402 peaked with each peak in the wind speed. This likely reflects a limited PM10 source that is quickly expended at Station 401 relative to an abundant PM10 source at Station 402. In CY2013, to facilitate comparisons between radiological analyses of collected dust, the filter media at all three stations will be standardized. In addition, a sequence of samples will be collected at Station 400 using both types of filter media to enable development of a mathematical relationship between the results derived from the two filter types. Additionally, having acquired approximately four years of observations at Stations 400 and 401 and a year of observations at Station 402, a period-of-record analysis of the radiological and airborne dust conditions will be undertaken.

  1. Modeling Aeolian Transport of Contaminated Sediments at Los Alamos National Laboratory, Technical Area 54, Area G: Sensitivities to Succession, Disturbance, and Future Climate

    Energy Technology Data Exchange (ETDEWEB)

    Whicker, Jeffrey J. [Los Alamos National Laboratory; Kirchner, Thomas B. [New Mexico State University; Breshears, David D. [University of Arizona; Field, Jason P. [University of Arizona

    2012-03-27

    The Technical Area 54 (TA-54) Area G disposal facility is used for the disposal of radioactive waste at Los Alamos National Laboratory (LANL). U.S. Department of Energy (DOE) Order 435.1 (DOE, 2001) requires that radioactive waste be managed in a manner that protects public health and safety and the environment. In compliance with that requirement, DOE field sites must prepare and maintain site-specific radiological performance assessments for facilities that receive waste after September 26, 1988. Sites are also required to conduct composite analyses for facilities that receive waste after this date; these analyses account for the cumulative impacts of all waste that has been (and will be) disposed of at the facilities and other sources of radioactive material that may interact with these facilities. LANL issued Revision 4 of the Area G performance assessment and composite analysis in 2008. In support of those analyses, vertical and horizontal sediment flux data were collected at two analog sites, each with different dominant vegetation characteristics, and used to estimate rates of vertical resuspension and wind erosion for Area G. The results of that investigation indicated that there was no net loss of soil at the disposal site due to wind erosion, and suggested minimal impacts of wind on the long-term performance of the facility. However, that study did not evaluate the potential for contaminant transport caused by the horizontal movement of soil particles over long time frames. Since that time, additional field data have been collected to estimate wind threshold velocities for initiating sediment transport due to saltation and rates of sediment transport once those thresholds are reached. Data such as these have been used in the development of the Vegetation Modified Transport (VMTran) model. This model is designed to estimate patterns and long-term rates of contaminant redistribution caused by winds at the site, taking into account the impacts of plant

  2. Modeling Aeolian Transport of Contaminated Sediments at Los Alamos National Laboratory, Technical Area 54, Area G: Sensitivities to Succession, Disturbance, and Future Climate

    International Nuclear Information System (INIS)

    Whicker, Jeffrey J.; Kirchner, Thomas B.; Breshears, David D.; Field, Jason P.

    2012-01-01

    The Technical Area 54 (TA-54) Area G disposal facility is used for the disposal of radioactive waste at Los Alamos National Laboratory (LANL). U.S. Department of Energy (DOE) Order 435.1 (DOE, 2001) requires that radioactive waste be managed in a manner that protects public health and safety and the environment. In compliance with that requirement, DOE field sites must prepare and maintain site-specific radiological performance assessments for facilities that receive waste after September 26, 1988. Sites are also required to conduct composite analyses for facilities that receive waste after this date; these analyses account for the cumulative impacts of all waste that has been (and will be) disposed of at the facilities and other sources of radioactive material that may interact with these facilities. LANL issued Revision 4 of the Area G performance assessment and composite analysis in 2008. In support of those analyses, vertical and horizontal sediment flux data were collected at two analog sites, each with different dominant vegetation characteristics, and used to estimate rates of vertical resuspension and wind erosion for Area G. The results of that investigation indicated that there was no net loss of soil at the disposal site due to wind erosion, and suggested minimal impacts of wind on the long-term performance of the facility. However, that study did not evaluate the potential for contaminant transport caused by the horizontal movement of soil particles over long time frames. Since that time, additional field data have been collected to estimate wind threshold velocities for initiating sediment transport due to saltation and rates of sediment transport once those thresholds are reached. Data such as these have been used in the development of the Vegetation Modified Transport (VMTran) model. This model is designed to estimate patterns and long-term rates of contaminant redistribution caused by winds at the site, taking into account the impacts of plant