WorldWideScience

Sample records for sand solution ph

  1. Radiotracer study of sorption of europium on Gorleben sand from aqueous solutions containing humic substances

    International Nuclear Information System (INIS)

    Benes, P.; Stamberg, K.; Siroky, L.; Mizera, J.

    2002-01-01

    The sorption of trace europium, as a trivalent actinide homologue, was studied in the system Gorleben sand - aqueous solution with the aim to elucidate its mechanism. Radiotracer method ( 152/154 Eu) and batch experiments were used. Simultaneously, the distribution of humic substances present in, or added to the system was measured. The evaluation of the sorption was complicated by the adsorption of Eu on the walls of polyethylene vials used for the experiments, which was rather high and had to be taken into consideration. It has been found that Eu sorption on Gorleben sand increases from pH 2 to pH 5-7 and then it decreases. The decrease is due to the complexation of Eu with humic substances leached from Gorleben sand at pH>7. The position of the sorption maximum depends on the composition of the solution and on the liquid-to-solid ratio. It is shifted to lower pH values in the presence of added humic acid (HA), which enhances Eu sorption at low PH values and suppresses it at pH values higher than 5. The regions of the enhancing/suppressing effects coincidence with the high/low adsorption of HA on Gorleben sand, respectively. The increasing ionic strength (from 0.01 to 0.1) and europium concentration (3.4 x 10 -8 to 9.3 x 10 -7 mol/l) suppress the relative sorption (expressed in %) at low pH values and enhance it at pH>6-8. Addition of carbonates (5 x 10 -3 mol/l) supports Eu sorption at pH>7.5 so that no decrease with pH is observed till pH 9. Alkaline leaching of the sand significantly changes most of the effects found. These results were qualitatively interpreted and conclusions were drawn on the mechanism of the sorption. (author)

  2. Alteration behavior of bentonite barrier of radioactive waste disposal by alkaline solutions. Part 2. Effect of type of alkaline solution on permeability of compacted bentonite-sand mixture

    International Nuclear Information System (INIS)

    Yokoyama, Shingo; Nakamura, Kunihiko; Tanaka, Yukihisa; Hironaga, Michihiko

    2011-01-01

    Permeability tests were carried out using compacted bentonite-sand mixture with initial dry density of 1.55 Mg/m 3 and alkaline solutions at 50degC for about two years to estimate the alteration behavior and the change in the permeability. Bentonite-sand mixtures which contain bentonites of 15wt% were made using Na-bentonite or Ca-exchanged bentonite. 0.3M-NaOH solution with pH 13.3 and 5mM-Ca(OH) 2 solution with pH 12.0 were used to the permeability tests of Na-bentonite-sand mixture and of Ca-exchanged bentonite-sand mixture, respectively. In the case of the permeability test conducted using NaOH solution, montmorillonite and other associated minerals were dissolved, and consequently, the dry density and effective montmorillonite density of Na-bentonite-sand mixture were decreased. Furthermore, the mineralogical feature of montmorillonite was changed (i.e. beidellitization and an increase in the layer charge). The permeability of Na-bentonite-sand mixture was increased 5.6 times by the end of permeability test as a result of above alteration. In the case of the permeability test conducted using Ca(OH) 2 solution, montmorillonite and other associated minerals were dissolved, and calcium silicate hydrate (C-S-H) was precipitated. Consequently, the dry density of Ca-exchanged bentonite-sand mixture was increased, while the effective montmorillonite density was decreased. The mineralogical feature of montmorillonite was changed (i.e. beidellitization and an increase in the layer charge). The permeability of Ca-exchange bentonite-sand mixture was decreased by more than two orders of magnitude due to fill the pore of Ca-exchange bentonite-sand mixture by the precipitation of C-S-H. From above results, the type of alkaline solution affects the mineralogical alteration behavior of the compacted bentonite-sand mixture, and consequently, affects the changing trend of permeability. In conclusion, it is important not only to consider the dissolution of montmorillonite, but

  3. Solution weighting for the SAND-II Monte Carlo code

    International Nuclear Information System (INIS)

    Oster, C.A.; McElroy, W.N.; Simons, R.L.; Lippincott, E.P.; Odette, G.R.

    1976-01-01

    Modifications to the SAND-II Error Analysis Monte Carlo code to include solution weighting based on input data uncertainties have been made and are discussed together with background information on the SAND-II algorithm. The new procedure permits input data having smaller uncertainties to have a greater influence on the solution spectrum than do the data having larger uncertainties. The results of an indepth study to find a practical procedure and the first results of its application to three important Interlaboratory LMFBR Reaction Rate (ILRR) program benchmark spectra (CFRMF, ΣΣ, and 235 U fission) are discussed

  4. Sorption of europium by Haro river sand in aqueous solution

    International Nuclear Information System (INIS)

    Syed Moosa Hasany; Syed Javaid Khurshid

    1997-01-01

    The sorption of Eu(III) on Haro river sand has been investigated. Influences include composition of the sorptive medium, the concentration of sorbent and sorbate, and shaking time. Haro river sand can be exploited for the preconcentration and removal of europium from very dilute solutions, for the decontamination and treatment of radioactive waste water and effluents from nuclear installations. (Author)

  5. [Aluminum dissolution and changes of pH in soil solution during sorption of copper by aggregates of paddy soil].

    Science.gov (United States)

    Xu, Hai-Bo; Zhao, Dao-Yuan; Qin, Chao; Li, Yu-Jiao; Dong, Chang-Xun

    2014-01-01

    Size fractions of soil aggregates in Lake Tai region were collected by the low-energy ultrasonic dispersion and the freeze-desiccation methods. The dissolution of aluminum and changes of pH in soil solution during sorption of Cu2+ and changes of the dissolution of aluminum at different pH in the solution of Cu2+ by aggregates were studied by the equilibrium sorption method. The results showed that in the process of Cu2+ sorption by aggregates, the aluminum was dissoluted and the pH decreased. The elution amount of aluminum and the decrease of pH changed with the sorption of Cu2+, both increasing with the increase of Cu2+ sorption. Under the same conditions, the dissolution of aluminum and the decrease of pH were in the order of coarse silt fraction > silt fraction > sand fraction > clay fraction, which was negatively correlated with the amount of iron oxide, aluminum and organic matter. It suggested that iron oxide, aluminum and organic matters had inhibitory and buffering effect on the aluminum dissolution and the decrease of pH during the sorption of Cu2+.

  6. METHOD OF PROCESSING MONAZITE SAND

    Science.gov (United States)

    Welt, M.A.; Smutz, M.

    1958-08-26

    A process is described for recovering thorium, uranium, and rare earth values from monazite sand. The monazite sand is first digested with sulfuric acid and the resulting "monazite sulfate" solution is adjusted to a pH of between 0.4 and 3.0, and oxalate anions are added causing precipitation of the thorium and the rare earths as the oxalates. The oxalate precipitate is separated from the uranium containing supernatant solution, and is dried and calcined to the oxides. The thorium and rare earth oxides are then dissolved in nitric acid and the solution is contacted with tribntyl phosphate whereby an organic extract phase containing the cerium and thorium values is obtained, together with an aqueous raffinate containing the other rare earth values. The organic phase is then separated from the aqueous raffinate and the cerium and thorium are back extracted with an aqueous medium.

  7. Production and properties of a thickener with ability of suspending sand

    Energy Technology Data Exchange (ETDEWEB)

    Qin, B.; Wang, D.; Li, Z.; Chen, J. [China University of Mining and Technology, Xuzhou (China). School of Mineral and Safety Engineering

    2006-06-15

    To overcome the shortcomings of pouring sands, a thickener with the ability to suspend sands was developed. It is mixed with sands to form densified slurry, and can insure the sands against deposition, jamming pipelines and dehydration. The chemical structure of the thickener is introduced in this paper and the production process is studied. The main processes include immersion, decomposition, dilution and addition of additives. In order to produce a thickener with high viscosity to suspend sands, key factors must be controlled in each process: the immersion time is 2 h; the mass fraction of formaldehyde is 0.01% and mass of NaCO{sub 3} accounts for 15% of dry material; the water temperature is 65{sup o}C in summer and 72{sup o}C in winter and the decomposition time is 2 h in the reaction; the densified decomposition solution should be diluted to 1% mass fraction; the additives of calcium ions and pH indicators must be added to the diluted liquid; the mass fraction of CaCl{sub 2} is 0.048% and the pH value of the solution is 7.5. The thickener is a gel with three-dimensional network structure, a liquid with non-Newtonian behaviour and the characteristics of pseudo-plastic material, a solution with little resistance and the ability to revive its oral primary viscosity. It has been successfully applied in Shendong Mines and has great value and wide-spread prospective use. 10 refs., 6 figs.

  8. Adsorption of Radioactive Chromium onto Iron Oxide Coated Sand

    International Nuclear Information System (INIS)

    Tadros, N.

    2008-01-01

    Iron oxide coated sand (IOCS) has been prepared and used as granular sorbent for 51 Cr radionuclide at different and specified concentration Ievels in aqueous solutions of constant ph value. Effect of different parameters such as: ph variation, contact time, 51 Cr ion concentration and variation of temperature on the adsorption of the radionuclide onto IOCS material have been discussed. At high ph value about 9()% of 51 Cr is adsorbed onto IOCS from the aqueous solution, The sorption capability of 51 Cr and the effect of ion concentration on the adsorbitivity have been discussed. Adsorption isotherms of Langmuir and Freundlich were expressed and their adsorption isotherm parameters are tabulated

  9. Practical technical solution for clay-contaminated sands used in concrete

    Directory of Open Access Journals (Sweden)

    Estephane Pierre

    2017-01-01

    Full Text Available Sand, whether natural or manufactured, shows in many instances varying degrees of high levels of clay contamination. This fact is encountered in different parts of the globe and can lead to serious problems in adjusting concrete mix proportions and requiring high water to cement ratios and/or high dosages of superplasticizers without necessarily meeting the workability requirements, even when the sand is previously washed with fresh water. In this paper, different types of sand from the Gulf Cooperation Council (GCC region are being screened, analysed for their clay contents and consequent effects on plastic concrete quality. A technical solution is being proposed based on engineered superplasticizers. A testing protocol has been established to verify the robustness of optimized mix designs demonstrating the performance of the admixture in terms of initial and extended workability. In particular, it will be demonstrated that the customized concrete admixtures constitute by themselves a stand-alone answer to the usage of clay-contaminated sands in concrete.

  10. Continuous adsorption of Pb(II) and methylene blue by engineered graphite oxide coated sand in fixed-bed column

    Energy Technology Data Exchange (ETDEWEB)

    Gong, Ji-Lai, E-mail: jilaigong@gmail.com [College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082 (China); Zhang, Yong-Liang; Jiang, Yan [College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082 (China); Zeng, Guang-Ming, E-mail: zgming@hnu.edu.cn [College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082 (China); Cui, Zhi-Hui; Liu, Ke; Deng, Can-Hui; Niu, Qiu-Ya; Deng, Jiu-Hua [College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082 (China); Huan, Shuang-Yan [State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082 (China)

    2015-03-01

    Highlights: • GO-sand was prepared by coating GO on the surface of sand. • Pb(II) and MB were efficiently removed by GO-sand filter in column. • The removal of MB was enhanced with the presence of Pb(II). • GO-sand is low-cost and convenient for its application as packed bed filter. - Abstract: The mixture of several effluents, caused by the improper handling and management of effluents, generated multi-component wastewater containing both metals and dyes, leading to the complicated treatment process. In this study, a continuous adsorption of Pb(II) and methylene blue (MB) has been studied in single and binary solutions by using graphite oxide coated sand (GO-sand) as an adsorbent in a fixed-bed column. GO-sand was analyzed by X-ray photoelectron spectroscopy before and after analyte adsorption. Compared with sand filter, adsorption quantity and capacity for Pb(II) and MB by GO-sand filter were greatly increased. In Pb(II) and MB single solutions, the experimental parameters were investigated in detail including initial concentration, flow rate, bed depth and pH. Exhaustion time decreased with increasing initial concentration and flow rate, and increased with increasing bed depth and pH. In the Pb(II)-MB binary solution, exhaustion time significantly decreased for Pb(II) adsorption, but increased for MB adsorption. The reason was explained that the more favorable adsorption for MB onto the surface of GO-sand than that for Pb(II), which was derived from π–π interaction between MB and GO on sand surface in packed filter. The Yoon–Nelson model was applied at different concentration of Pb(II) and MB to predict the breakthrough curves. The experimental data were well fit with the model indicating that it was suitable for this column design.

  11. Fixation of Cr(III) traces onto Haro river sand from acidic solution

    International Nuclear Information System (INIS)

    Hasany, S.M.; Chaudhry, M.H.

    1998-01-01

    The sorption of chromium(III) onto Haro river sand has been investigated as a function of sorptive solution composition, amounts of sorbent (10-500 mg) and sorbate (4.33 x 10 -8 -5.17 x 10 -6 M), shaking time (I-60 minutes) and temperature (15-35 deg C). Maximum sorption has been achieved from 0.001M HCl solution using 50 mg of the sand and 20 minutes shaking time. The sorption data followed Freundlich and D-R isotherms. The sorption capacity of 0.4 μmole x g -1 and of sorption energy of 9.9 kJ x mole -1 have been computed from D-R parameters. Thermodynamic parameters ΔH = 84.4 kJ x mole -1 , ΔS 284.5 J x mole -1 x K -1 and ΔG = -3.32 kJ x mole -1 at 298 K have been evaluated. Fe(II), Al(III), citrate, borate, oxalate, tartrate and carbonate ions reduce the sorption significantly. Under similar experimental conditions Tc(VII), Re(VII), Sb(V) and Co(II) have very low sorption (<1%) and trivalent Eu and Sm have large distribution ratios. Haro river sand can be used to preconcentrate or to remove micro or submicro amounts of Cr(III) from very dilute solution and for the separation of Tc, Re and Sb from Cr, Eu and Sm. (author)

  12. Computer model of hydroponics nutrient solution pH control using ammonium.

    Science.gov (United States)

    Pitts, M; Stutte, G

    1999-01-01

    A computer simulation of a hydroponics-based plant growth chamber using ammonium to control pH was constructed to determine the feasibility of such a system. In nitrate-based recirculating hydroponics systems, the pH will increase as plants release hydroxide ions into the nutrient solution to maintain plant charge balance. Ammonium is an attractive alternative to traditional pH controls in an ALSS, but requires careful monitoring and control to avoid overdosing the plants with ammonium. The primary advantage of using NH4+ for pH control is that it exploits the existing plant nutrient uptake charge balance mechanisms to maintain solution pH. The simulation models growth, nitrogen uptake, and pH of a l-m2 stand of wheat. Simulation results indicated that ammonium-based control of nutrient solution pH is feasible using a proportional integral controller. Use of a 1 mmol/L buffer (Ka = 1.6 x 10(-6)) in the nutrient solution is required.

  13. Corrosion studies of thermally sensitised AGR fuel element brace in pH7 and pH9.2 borate solutions

    International Nuclear Information System (INIS)

    Tyfield, S.P.; Smith, C.A.

    1987-04-01

    Brace and cladding of AGR fuel elements sensitised in reactor are susceptible to intergranular and crevice corrosion, which may initiate in the pH7 borate pond storage environment of CEGB/SSEB stations. This report considers the benefit in corrosion control that is provided by raising the pond solution pH to 9.2, whilst maintaining the boron level at 1250 gm -3 . The greater corrosion protection provided by pH9.2 solution compared to the pH7 borate solution is demonstrated by a series of tests with non-active laboratory sensitised brace samples exposed to solutions dosed with chloride or sulphate in order to promote localised corrosion. The corrosion tests undertaken consisted of 5000 hour immersions at 32 0 C and shorter term electrochemically monitored experiments (rest potential, impedance, anodic current) generally conducted at 22 0 C. The pH9.2 solution effectively inhibited the initiation of crevice and intergranular corrosion in the presence of low levels of chloride and sulphate, whereas the pH7 solution did not always do so. However, the pH9.2 solution, dosed with 40 gm -3 chloride, failed to suppress fully crevice corrosion initiated in unborated 40 gm -3 chloride solution at 22 0 C. Fluoride is not deleterious at low levels ∼ 10 gm -3 in the borate solutions. The significant improvement in corrosion control demonstrated for the change from pH7 to pH9.2 borate solution on laboratory sensitised brace samples should ideally be confirmed using complete irradiated AGR fuel elements. (U.K.)

  14. Influence green sand system by core sand additions

    Directory of Open Access Journals (Sweden)

    N. Špirutová

    2012-01-01

    Full Text Available Today, about two thirds of iron alloys casting (especially for graphitizing alloys of iron are produced into green sand systems with usually organically bonded cores. Separation of core sands from the green sand mixture is very difficult, after pouring. The core sand concentration increase due to circulation of green sand mixture in a closed circulation system. Furthermore in some foundries, core sands have been adding to green sand systems as a replacement for new sands. The goal of this contribution is: “How the green sand systems are influenced by core sands?”This effect is considered by determination of selected technological properties and degree of green sand system re-bonding. From the studies, which have been published yet, there is not consistent opinion on influence of core sand dilution on green sand system properties. In order to simulation of the effect of core sands on the technological properties of green sands, there were applied the most common used technologies of cores production, which are based on bonding with phenolic resin. Core sand concentration added to green sand system, was up to 50 %. Influence of core sand dilution on basic properties of green sand systems was determined by evaluation of basic industrial properties: moisture, green compression strength and splitting strength, wet tensile strength, mixture stability against staling and physical-chemistry properties (pH, conductivity, and loss of ignition. Ratio of active betonite by Methylene blue test was also determined.

  15. Understanding and Mitigating Reservoir Compaction: an Experimental Study on Sand Aggregates

    Science.gov (United States)

    Schimmel, M.; Hangx, S.; Spiers, C. J.

    2016-12-01

    Fossil fuels continue to provide a source for energy, fuels for transport and chemicals for everyday items. However, adverse effects of decades of hydrocarbons production are increasingly impacting society and the environment. Production-driven reduction in reservoir pore pressure leads to a poro-elastic response of the reservoir, and in many occasions to time-dependent compaction (creep) of the reservoir. In turn, reservoir compaction may lead to surface subsidence and could potentially result in induced (micro)seismicity. To predict and mitigate the impact of fluid extraction, we need to understand production-driven reservoir compaction in highly porous siliciclastic rocks and explore potential mitigation strategies, for example, by using compaction-inhibiting injection fluids. As a first step, we investigate the effect of chemical environment on the compaction behaviour of sand aggregates, comparable to poorly consolidated, highly porous sandstones. The sand samples consist of loose aggregates of Beaujean quartz sand, sieved into a grainsize fraction of 180-212 µm. Uniaxial compaction experiments are performed at an axial stress of 35 MPa and temperature of 80°C, mimicking conditions of reservoirs buried at three kilometres depth. The chemical environment during creep is either vacuum-dry or CO2-dry, or fluid-saturated, with fluids consisting of distilled water, acid solution (CO2-saturated water), alkaline solution (pH 9), aluminium solution (pH 3) and solution with surfactants (i.e., AMP). Preliminary results show that compaction of quartz sand aggregates is promoted in a wet environment compared to a dry environment. It is inferred that deformation is controlled by subcritical crack growth when dry and stress corrosion cracking when wet, both resulting in grain failure and subsequent grain rearrangement. Fluids inhibiting these processes, have the potential to inhibit aggregate compaction.

  16. Measurements of distribution coefficient for Sn, Pb and Th on sand stone and tuff in saline type groundwater

    International Nuclear Information System (INIS)

    Nakazawa, Toshiyuki; Okada, Kenichi; Muroi, Masayuki; Shibata, Masahiro; Sasamoto, Hiroshi

    2004-02-01

    Japan Nuclear Cycle Development Institute (JNC) has developed the sorption database for bentonite and rocks in order to assess the retardation capacities of important radioactive elements in natural and engineered barriers in the H12 report. However, there are not enough distribution coefficient data for radioactive elements in saline type groundwater in the database. Sn (tin), Pb (lead) and Th(thorium) are important radioactive elements for performance assessment of high level radioactive waste disposal, thus we carried out the batch sorption experiments for these radioactive elements on sand stone and tuff. The experiments for each radioactive element were performed on the following conditions; Sn: Kd measurements using the solutions (distilled water or artificial sea water) reacted with sand stone. Pb: Kd measurements using solution (artificial sea water) reacted with sand stone or tuff. Th: Kd measurements using solution (artificial sea water) reacted with sand stone as a function of carbonate concentration. The results of experiment are summarized below; In the case of Sn, Kd were 0.4-1 m 3 /kg in distilled water type and approximately 1 m 3 /kg in artificial sea water type. And also, Kd was 0.3 m 3 /kg in artificial sea water adjusted Ph 12. In artificial sea water type, it was suggested that Kd decreased with pH. In the case of Pb, Kd were approximately 2 m 3 /kg on sand stone and 4-10 m 3 /kg on tuff in artificial sea water type. Kd on tuff was a little larger than that on sand stone. There were no distinctly differences depending on solid-liquid separation methods. In the case of Th, Kd was approximately 1-8 m 3 /kg in artificial sea water type. On the other hand, sorption of Th on sand stone was not observed (i.e., Kd = 0 m 3 /kg) in high carbonate solution. It was estimated that low Kd in high carbonate solution might be caused by speciation of because Th could form the anions in the solution such as hydroxo-carbonate complexes and carbonate complexes

  17. FeS-coated sand for removal of arsenic(III) under anaerobic conditions in permeable reactive barriers

    Science.gov (United States)

    Han, Y.-S.; Gallegos, T.J.; Demond, A.H.; Hayes, K.F.

    2011-01-01

    Iron sulfide (as mackinawite, FeS) has shown considerable promise as a material for the removal of As(III) under anoxic conditions. However, as a nanoparticulate material, synthetic FeS is not suitable for use in conventional permeable reactive barriers (PRBs). This study developed a methodology for coating a natural silica sand to produce a material of an appropriate diameter for a PRB. Aging time, pH, rinse time, and volume ratios were varied, with a maximum coating of 4.0 mg FeS/g sand achieved using a pH 5.5 solution at a 1:4 volume ratio (sand: 2 g/L FeS suspension), three days of aging and no rinsing. Comparing the mass deposited on the sand, which had a natural iron-oxide coating, with and without chemical washing showed that the iron-oxide coating was essential to the formation of a stable FeS coating. Scanning electron microscopy images of the FeS-coated sand showed a patchwise FeS surface coating. X-ray photoelectron spectroscopy showed a partial oxidation of the Fe(II) to Fe(III) during the coating process, and some oxidation of S to polysulfides. Removal of As(III) by FeS-coated sand was 30% of that by nanoparticulate FeS at pH 5 and 7. At pH 9, the relative removal was 400%, perhaps due to the natural oxide coating of the sand or a secondary mineral phase from mackinawite oxidation. Although many studies have investigated the coating of sands with iron oxides, little prior work reports coating with iron sulfides. The results suggest that a suitable PRB material for the removal of As(III) under anoxic conditions can be produced through the deposition of a coating of FeS onto natural silica sand with an iron-oxide coating. ?? 2010 Elsevier Ltd.

  18. Effect of moulding sand on statistically controlled hybrid rapid casting solution for zinc alloys

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Rupinder [Guru Nanak Dev Engineering College, Ludhiana (India)

    2010-08-15

    The purpose of the present investigations is to study the effect of moulding sand on decreasing shell wall thickness of mould cavities for economical and statistically controlled hybrid rapid casting solutions (combination of three dimensional printing and conventional sand casting) for zinc alloys. Starting from the identification of component/ benchmark, technological prototypes were produced at different shell wall thicknesses supported by three different types of sands (namely: dry, green and molasses). Prototypes prepared by the proposed process are for assembly check purpose and not for functional validation of the parts. The study suggested that a shell wall with a less than recommended thickness (12mm) is more suitable for dimensional accuracy. The best dimensional accuracy was obtained at 3mm shell wall thickness with green sand. The process was found to be under statistical control

  19. A comparative study of the adsorption of uranium on commercial and natural (Cypriot) sea sand samples

    International Nuclear Information System (INIS)

    Maria Efstathiou; Ioannis Pashalidis

    2013-01-01

    The adsorption of hexavalent uranium on two different types of sea sand [e.g. a local, Cypriot (N S S) and a commercially available marine sediment (C S S)] has been investigated as a function of pH, initial metal concentration, ionic strength and contact time under normal atmospheric conditions. Before carrying out the adsorption experiments, the sea sand samples have been characterized by XRD, XRF, N 2 -adsorption, acid/base titrations and FTIR spectroscopy. Sample characterization showed clearly that the two sea sand types differ significantly in their composition, particularly in their calcite and FeOOH content. According to experimental data obtained from acid/base titrations and adsorption batch experiments sea sand composition affects the acid/base and the adsorption properties of the adsorbents. The extraordinary high affinity of N S S for hexavalent uranium in the alkaline pH region can be attributed to the formation of mixed U(VI)-carbonato surface species on the FeOOH crystal phases present in N S S, which effectively compete the formation of U(VI)-carbonato complexes in solution. On the other hand, data obtained by adsorption experiments carried out in solution of different ionic strengths don't differ significantly from one another indicating the formation of inner-sphere complexes. Finally, the adsorption on sea sands is a relatively fast two-step process. (author)

  20. Barley root hair growth and morphology in soil, sand, and water solution media and relationship with nickel toxicity.

    Science.gov (United States)

    Lin, Yanqing; Allen, Herbert E; Di Toro, Dominic M

    2016-08-01

    Barley, Hordeum vulgare (Doyce), was grown in the 3 media of soil, hydroponic sand solution (sand), and hydroponic water solution (water) culture at the same environmental conditions for 4 d. Barley roots were scanned, and root morphology was analyzed. Plants grown in the 3 media had different root morphology and nickel (Ni) toxicity response. Root elongations and total root lengths followed the sequence soil > sand > water. Plants grown in water culture were more sensitive to Ni toxicity and had greater root hair length than those from soil and sand cultures, which increased root surface area. The unit root surface area as root surface area per centimeter of length of root followed the sequence water > sand > soil and was found to be related with root elongation. Including the unit root surface area, the difference in root elongation and 50% effective concentration were diminished, and percentage of root elongations can be improved with a root mean square error approximately 10% for plants grown in different media. Because the unit root surface area of plants in sand culture is closer to that in soil culture, the sand culture method, not water culture, is recommended for toxicity parameter estimation. Environ Toxicol Chem 2016;35:2125-2133. © 2016 SETAC. © 2016 SETAC.

  1. Natural silica sand modified by calcium oxide as a new adsorbent for uranyl ions removal from aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Elhefnawy, O.A.; Elabd, A.A. [Nuclear and Radiological Regulatory Authority (NRRA), Cairo (Egypt). Nuclear Safeguards and Physical Protection Dept.

    2017-07-01

    Calcium oxide modified El-Zafarana silica sand (CMZS) was prepared as a new adsorbent for U(VI) removal from aqueous solutions in a series of batch experiments. The new adsorbent CMZS was characterized by different analysis techniques SEM, EDX, XRD, and FTIR. The influence of many parameters on the removal process like; effect of pH, contact time, U(VI) initial concentration and temperature on U(VI) removal were investigated. Kinetic experiments showed that U(VI) removal on CMZS followed pseudo-second-order kinetics model appropriately and the equilibrium data agreed well with the Langmuir isotherm model. Kinetics and isothermal data reveal the chemisorption process of U(VI) on CMZS. The thermodynamic parameters (ΔH {sup circle}, ΔS {sup circle}, ΔG {sup circle}) were evaluated from temperature dependent adsorption data and the U(VI) removal on CMZS was found to be endothermic and spontaneous in nature. U(VI) desorption from CMZS was studied by a simple acid treatment. The results indicate that CMZS is an effective adsorbent for U(VI) from aqueous solutions.

  2. Potential of the application of the modified polysaccharides water solutions as binders of moulding sands

    Directory of Open Access Journals (Sweden)

    K. Kaczmarska

    2015-10-01

    Full Text Available The results of preliminary tests of selected properties of the moulding sands with the binder in the form of a 5 % water solution of the sodium salt of carboxymethyl starch (with a degree of substitution (DS of 0,2 and 0,87 arepresented in this study. The moulding sand properties such as permeability, abrasion resistance, tensile and bendingstrength - after curing - are shown in series of tests. The cure process was conducted in a field of electromagnetic radiation within the microwave range. The effect of the microwave treatment on the moulding sand was evaporating of water (solvent in a binder and cross-linking of the polymeric binder. As a result the cured moulding sands with particular properties, essential in the context of its application in the mould technology in the foundry industry, were obtained.

  3. Characterizing the correlation between dephosphorization and solution pH in a calcined water treatment plant sludge.

    Science.gov (United States)

    Zhou, Zhenming; Liu, Qidi; Li, Shuwen; Li, Fei; Zou, Jing; Liao, Xiaobin; Yuan, Baoling; Sun, Wenjie

    2018-04-26

    This study focused on characterizing the correlation between the dephosphorization process of calcined water treatment plant sludge (C-WTPS) and the solution initial pH in batch experiments. The specific aim was to illustrate the effect of different initial pH on the adsorption and desorption of phosphorous in C-WTPS. In addition, the effects of solution initial pH on the release of ammonia nitrogen and total organic carbon (TOC) from C-WTPS and the change of pH after adsorption were also investigated. The results demonstrated that the initial pH significantly influenced the adsorption of phosphorus on C-WTPS. When initial pH was increased from 3 to 10, the phosphorous absorption capacity reduced by 76.5%. Especially, when the initial pH reached to 11, the phosphorus adsorption capacity became a negative value, indicating that C-WTPS released phosphorus into the solution. The addition of C-WTPS to the solution had little impact on the initial pH of the solution. The absorbed phosphorous on C-WTPS was relatively stable in the pH range of 3 to 10. Nevertheless, when the solution pH was higher than 11, it can be easily released into the solution. Furthermore, by comparison with WTPS, C-WTPS released less ammonia nitrogen and TOC into the solution and adsorbed more phosphorus from the solution in the experimental pH range. Therefore, C-WTPS is more suitable to serve as a cost-effective sorbent for phosphorus removal.

  4. Reclaimability of the spent sand mixture – sand with bentonite – sand with furfuryl resin

    Directory of Open Access Journals (Sweden)

    J. Dańko

    2011-04-01

    Full Text Available Introduction of new binding materials and new technologies of their hardening in casting moulds and cores production requires theapplication of reclamation methods adequate to their properties as well as special devices realizing tasks. The spent sands circulationsystem containing the same kind of moulding and core sands is optimal from the point of view of the expected reclamation results.However, in the face of a significant variability of applied technologies and related to them various reclamation methods, the need - of theobtained reclamation products assessment on the grounds of systematic criteria and uniform bases – arises, with a tendency of indicatingwhich criteria are the most important for the given sand system. The reclaimability results of the mixture of the spent moulding sand withGeko S bentonite and the spent core sand with the Kaltharz 404U resin hardened by acidic hardener 100 T3, are presented in the paper.Investigations were performed with regard to the estimation of an influence of core sands additions (10 –25% on the reclaimed materialquality. Dusts and clay content in the reclaim, its chemical reaction (pH and ignition loss were estimated. The verification of the reclaiminstrumental assessment was performed on the basis of the technological properties estimation of moulding sand with bentonite, where the reclaimed material was used as a matrix.

  5. Effect of pH value of applied solution on radioiodine sorption by soils

    International Nuclear Information System (INIS)

    Szabova, T.

    1976-01-01

    Sorption of radioiodine by soils was followed under static conditions at different pH values of the initial solution in five soil types. Sorption of radioiodine by soils is affected by the amount of the organic mass and by the pH of solutions. With the same pH, soils containing a higher amount of the organic mass absorb more radioiodine. The highest sorption percentage of 131 I - for all pH values was found in meadow chernozem soil and the lowest in the rendzina and in carboniferous meadow soils. The highest sorption of 131 I - for degraded chernozem, meadow chernozem soils and brown soil was recorded at pH 5 and for carboniferous meadow soil and rendzina at pH 7. (author)

  6. Effect of pH Upper Control Limit on Nutrient Solution Component and Water Spinach Growth under Hydroponics

    OpenAIRE

    Xuzhang Xue; Yinkun Li; Feng Li; Fang Zhang; Wenzhong Guo

    2015-01-01

    In this study, experiment with four levels of nutrient solution pH control upper limit was conducted to explore the optimal nutrient solution pH management scheme under hydroponics by evaluating the nutrient solution characters i.e., pH, Electric Conductivity (EC), nitrate, soluble phosphorus (soluble-P), water spinach growth and quality. The results showed that the nutrient solution pH was 8.2 and unsuitable for water spinach growth under the treatment with no pH regulation during the experi...

  7. The effect of pH on phosphorus availability and speciation in an aquaponics nutrient solution.

    Science.gov (United States)

    Cerozi, Brunno da Silva; Fitzsimmons, Kevin

    2016-11-01

    The interaction between the main ions in aquaponics nutrient solutions affects chemical composition and availability of nutrients, and nutrient uptake by plant roots. This study determined the effect of pH on phosphorus (P) speciation and availability in an aquaponics nutrient solution and used Visual MINTEQ to simulate P species and P activity. In both experimental and simulated results, P availability decreased with increase in pH of aquaponics nutrient solutions. According to simulations, P binds to several cations leaving less free phosphate ions available in solution. High pH values resulted in the formation of insoluble calcium phosphate species. The study also demonstrated the importance of organic matter and alkalinity in keeping free phosphate ions in solution at high pH ranges. It is recommended though that pH in aquaponics systems is maintained at a 5.5-7.2 range for optimal availability and uptake by plants. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Study on Modified Sand Filtration Towards Water Quality of Wet Market Waste Water

    Directory of Open Access Journals (Sweden)

    Saad F.N.M.

    2016-01-01

    Full Text Available Investigation on the potential of sand filter as a pre-treatment of waste water was done in Kangar wet market, Perlis. Besides, the best composition of filter in order to treat wastewater based on BOD, COD, SS, AN, turbidity and pH levels are further examined. In this study, there are four types of sand filter composition which the medias consist of fine sand and coarse sand while the modified sand filter are consist of sand, course sand and activated carbon prepared from rice husk and coconut shells. After 10 weeks of treatment, the results show that the concentration of BOD, COD, SS, AN, turbidity and pH were reduced up to 86%, 84%, 63%, 88%, 73%, respectively while pH nearly to neutral with 6.83. Moreover, the result also revealed that the sand filter added with rice husk almost complied with Standard B of Malaysia Environmental Quality (Sewage Regulations 2009 as well as gives the highest number of WQI with 36.81. Overall, WQI obtained in this study are ranged from 12.77 to 36.81.

  9. Metal extraction from Cetraria islandica (L. Ach. lichen using low pH solutions

    Directory of Open Access Journals (Sweden)

    ANA A. CUCULOVIC

    2008-04-01

    Full Text Available Extraction of metals (K, Al, Ca, Mg, Fe, Cu, Ba, Zn, Mn and Sr from dry Cetraria islandica (L. Ach. lichen was performed using solutions similar to acid rain (solution A – H2SO4–HNO3–(NH42SO4 and solution B – H2SO4–HNO3–(NH42SO4–NH4NO3. The pH values of these solutions were 2.00, 2.58, 2.87, 3.28, and 3.75. Five consecutive extractions were performed with each solution. In all solutions, the extracted metal content, except Cu and Ca, was the highest in the first extract. The highest percentage of the metals desorbed in the first extraction was obtained using solutions with low pH values, 2.00, 2.58, and 2.87. The lowest percentage in the first extraction was obtained using solutions with pH 3.28 and 3.75, indicating influence of the H+ ion on the extraction. According to the results obtained, the investigated metals form two groups. The first group includes K, Al, Ca, Mg, and Fe. They were extracted in each of the five extractions at each of the pH values. The second group includes Ba, Zn, Mn, Cu, and Sr, which were not all extracted at each pH value. The first group yielded three types of extraction curves when the logarithms of extracted metal amounts were plotted as a function of the number of successive extractions. These effects indicate that three different positions (centres of metal ion accumulation exist in the lichen (due to sorption, complex formation, or other processes present in the tissues.

  10. Considerations on prevention of phlebitis and venous pain from intravenous prostaglandin E(1) administration by adjusting solution pH: in vitro manipulations affecting pH.

    Science.gov (United States)

    Kohno, Emiko; Nishikata, Mayumi; Okamura, Noboru; Matsuyama, Kenji

    2008-01-01

    Prostaglandin E(1) (PGE(1); Alprostadil Alfadex) is a potent vasodilator and inhibitor of platelet aggregation used to treat patients with peripheral vascular disease. The main adverse effects of intravenous PGE(1) administration, phlebitis and venous pain, arise from the unphysiologically low pH of infusion solutions. When PGE(1) infusion solutions with a pH value greater then 6 are used, phlebitis and venous pain are considered to be avoidable. Beginning with a PGE(1) infusion solution with pH greater than 6, we add the amount of 7% sodium bicarbonate needed to bring the solution to pH 7.4 if phlebitis or venous pain develops. In the present study we established a convenient nomogram showing the relationship between the titratable acidity of various infusion solutions and the volume of 7% sodium bicarbonate required to attain pH 7.4 for preventing the phlebitis and venous pain associated with PGE(1) infusion.

  11. Oil sands market and transportation solutions

    International Nuclear Information System (INIS)

    Sandahl, R.

    2004-01-01

    This presentation outlined the immense potential of the western Canadian oil sands reserves. Recoverable reserves have been estimated at 180 billion barrels, with production forecasts estimated at 5 million barrels per day by 2030. Resource development is occurring at a time when the world's largest oil importer is increasing supplies through concern for security of supply. The second and third largest oil importers in the world are experiencing economic and energy demand growth. These factors underscore the motivation for rapid growth of the Western Canadian Oil Sands reserves. One of the challenges that must be addressed is to ensure that incremental markets for the increased production are accessed. Another challenge is to ensure adequate infrastructure in terms of pipeline capacity to ensure deliverability of the product. tabs., figs

  12. Diffusion of plutonium in mixtures of bentonite and sand at pH 3

    International Nuclear Information System (INIS)

    Sharma, H.D.; Oscarson, D.W.

    1991-04-01

    Apparent diffusion coefficients, D, were measured for Pu in compacted mixtures of bentonite and sand (soil) at 25 degrees C and pH 3. The clay content of the soil ranged from 10 to 100 wt% and the clay dry density, p c (the mass of clay divided by the combined volume of clay and voids), varied from about 0.5 to 1.6 Mg/m 3 . At a clay content of ≥25% and p c > 0.7 Mg/m 3 , D was not significantly affected by either clay content or density and ranged from 2 x 10 -13 to 7 x 10 -13 m 2 /s; at lower clay contents and densities, however, D was as much as an order of magnitude higher. In all systems, a small fraction of the Pu (<10%) migrated faster than the bulk of the Pu; this is attributed to a second stable species of Pu that has a greater mobility

  13. Spectrophotometric Determination of Chromium (III) in Egyptian 11 manite from phosphate solution using Ewes as a selective adsorbent

    International Nuclear Information System (INIS)

    Abdu, A. A.

    2012-12-01

    Egyptian white sand (EWS) was used as an adsorbent for the selective separation of Cr(III) from phosphate solution to be determined colorimetrically using 1,5-diphenylcarbazide. The experimental factors affecting maximum selective adsorption/desorption of Cr(III) on / from EWS were the amount of adsorption (g), pH of initial concentration of Cr(III) in solution, contact time temperature and initial concentration of Cr(III) in solution were investigated. No effect of [PO 4 ] 3- , Ti(IV) and Fe(III) on Cr(III) sorption were verified. Accuracy and relative standard deviations (RSD) were acceptable for all analyses. The maximum sorption capacity, Q e , of adsorbed Cr(III) per gram of sand was 93.5 mg/g, at EWS concentration 20 g/1, pH 0.8 contact time 120 min and temperature 30 o C for adsorption of Cr(III) on EWS and pH 0.4, contact time 6 min and temperature 25o C for desorption of Cr(III) from EWS. (Author)

  14. From proton nuclear magnetic resonance spectra to pH. Assessment of {sup 1}H NMR pH indicator compound set for deuterium oxide solutions

    Energy Technology Data Exchange (ETDEWEB)

    Tynkkynen, Tuulia, E-mail: tuulia.tynkkynen@uku.fi [Laboratory of Chemistry, Department of Biosciences, University of Kuopio, PO Box 1627, 70211 Kuopio (Finland); Tiainen, Mika; Soininen, Pasi; Laatikainen, Reino [Laboratory of Chemistry, Department of Biosciences, University of Kuopio, PO Box 1627, 70211 Kuopio (Finland)

    2009-08-19

    In this study, a protocol for pH determination from D{sub 2}O samples using {sup 1}H NMR pH indicator compounds was developed and assessed by exploring the pH-dependency of 13 compounds giving pH-dependent {sup 1}H NMR signals. The indicators cover the pH range from pH* 0 to 7.2. Equations to transform the indicator chemical shifts to pH estimates are given here for acetic acid, formic acid, chloroacetic acid, dichloroacetic acid, creatine, creatinine, glycine, histidine, 1,2,4-triazole, and TSP (2,2,3,3-tetradeutero-3-(trimethylsilyl)-propionic acid). To characterize the method in presence of typical solutes, the effects of common metabolites, albumin and ionic strength were also evaluated. For the ionic strengths, the effects were also modelled. The experiments showed that the use of pH sensitive {sup 1}H NMR chemical shifts allows the pH determination of typical metabolite solutions with accuracy of 0.01-0.05 pH units. Also, when the ionic strength is known with accuracy better than 0.1 mol dm{sup -3} and the solute concentrations are low, pH{sub nmr}{sup *} (the NMR estimate of pH) can be assumed to be within 0.05 pH units from potentiometrically determined pH.

  15. Solution and surface chemistry of the Se(IV)-Fe(0) reactions: Effect of initial solution pH.

    Science.gov (United States)

    Xia, Xuefen; Ling, Lan; Zhang, Wei-Xian

    2017-02-01

    Aspects of solution and solid-phase reactions between selenite (Se(IV)) and nanoscale zero-valent iron (nZVI) were investigated. Experimental results on the effects of initial solution pH, formation and evolution of nZVI corrosion products, and speciation of selenium in nZVI were presented. In general, the rate of Se(IV) removal decreases with increasing initial pH. The observed rate constants of Se(IV) removal decreased from 0.3530 to 0.0364 min -1 as pH increased from 4.0 to 10.0. Composition and morphology of nZVI corrosion products and selenium species were characterized using scanning electron microscopy (SEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). Results confirmed that Se(IV) was reduced to Se(0) and Se(-II) by nZVI. Lower solution pH favored further reduction of Se(0) to Se(-II). Amorphous FeOOH, magnetite/maghemite (Fe 3 O 4 /γ-Fe 2 O 3 ) and ferrous hydroxide (Fe(OH) 2 ) were identified as the main corrosion products. Under alkaline conditions, the corrosion products were mainly of Fe(OH) 2 along with small amounts of Fe 3 O 4 , while nZVI in acidic solutions was oxidized to mostly Fe 3 O 4 and amorphous FeOOH. Furthermore, these corrosion products acted as intermediates for electron transfer and reactive/sorptive sites for Se(IV) adsorption and reduction, thus played a crucial role in the removal of aqueous Se(IV). Copyright © 2016. Published by Elsevier Ltd.

  16. Geochemical behavior and dissolved species control in acid sand pit lakes, Sepetiba sedimentary basin, Rio de Janeiro, SE - Brazil

    Science.gov (United States)

    Marques, Eduardo D.; Sella, Sílvia M.; Bidone, Edison D.; Silva-Filho, Emmanoel V.

    2010-12-01

    This work shows the influence of pluvial waters on dissolved components and mineral equilibrium of four sand pit lakes, located in the Sepetiba sedimentary basin, SE Brazil. The sand mining activities promote sediment oxidation, lowering pH and increasing SO 4 contents. The relatively high acidity of these waters, similar to ore pit lakes environment and associated acid mine drainage, increases weathering rate, especially of silicate minerals, which produces high Al concentrations, the limiting factor for fish aquaculture. During the dry season, basic cations (Ca, Mg, K and Na), SiO 2 and Al show their higher values due to evapoconcentration and pH are buffered. In the beginning of the wet season, the dilution factor by rainwater increases SO 4 and decreases pH values. The aluminum monomeric forms (Al(OH) 2+ and Al(OH) 2+), the most toxic species for aquatic organisms, occur during the dry season, while AlSO 4+ species predominate during the wet season. Gibbsite, allophane, alunite and jurbanite are the reactive mineral phases indicated by PHREEQC modeling. During the dry season, hydroxialuminosilicate allophane is the main phase in equilibrium with the solution, while the sulphate salts alunite and jurbanite predominate in the rainy season due to the increasing of SO 4 values. Gibbsite is also in equilibrium with sand pit lakes waters, pointing out that hydrolysis reaction is a constant process in the system. Comparing to SiO 2, sulphate is the main Al retriever in the pit waters because the most samples (alunite and jurbanite) are in equilibrium with the solution in both seasons. This Al hydrochemical control allied to some precaution, like pH correction and fertilization of these waters, allows the conditions for fishpond culture. Equilibrium of the majority samples with kaolinite (Ca, Mg, Na diagrams) and primary minerals (K diagram) points to moderate weathering rate in sand pit sediments, which cannot be considered for the whole basin due to the anomalous

  17. Study of Black Sand Particles from Sand Dunes in Badr, Saudi Arabia Using Electron Microscopy

    Directory of Open Access Journals (Sweden)

    Haider Abbas Khwaja

    2015-08-01

    Full Text Available Particulate air pollution is a health concern. This study determines the microscopic make-up of different varieties of sand particles collected at a sand dune site in Badr, Saudi Arabia in 2012. Three categories of sand were studied: black sand, white sand, and volcanic sand. The study used multiple high resolution electron microscopies to study the morphologies, emission source types, size, and elemental composition of the particles, and to evaluate the presence of surface “coatings or contaminants” deposited or transported by the black sand particles. White sand was comprised of natural coarse particles linked to wind-blown releases from crustal surfaces, weathering of igneous/metamorphic rock sources, and volcanic activities. Black sand particles exhibited different morphologies and microstructures (surface roughness compared with the white sand and volcanic sand. Morphological Scanning Electron Microscopy (SEM and Laser Scanning Microscopy (LSM analyses revealed that the black sand contained fine and ultrafine particles (50 to 500 nm ranges and was strongly magnetic, indicating the mineral magnetite or elemental iron. Aqueous extracts of black sands were acidic (pH = 5.0. Fe, C, O, Ti, Si, V, and S dominated the composition of black sand. Results suggest that carbon and other contaminant fine particles were produced by fossil-fuel combustion and industrial emissions in heavily industrialized areas of Haifa and Yanbu, and transported as cloud condensation nuclei to Douf Mountain. The suite of techniques used in this study has yielded an in-depth characterization of sand particles. Such information will be needed in future environmental, toxicological, epidemiological, and source apportionment studies.

  18. Manganese Coated Sand for Copper (II Removal from Water in Batch Mode

    Directory of Open Access Journals (Sweden)

    Nidal Hilal

    2013-09-01

    Full Text Available Removal of heavy metals, such as copper ions, from water is important to protect human health and the environment. In this study, manganese coated sand (MCS was used as an adsorbent to remove copper ions in a batch system. Equilibrium data were determined at a temperature of 25.6 °C and the Langmuir model was used to describe the experimental data. Mn-coating improved the removal of copper ions by 70% as compared to uncoated sand. Based on a kinetics study, the adsorption of copper ions on MCS was found to occur through a chemisorption process and the pseudo-second-order model was found to fit the kinetics experimental data well. Due to particle interactions, the equilibrium uptake was reduced as the ratio of sand to volume of solution increased. pH affected the removal of copper ions with lowest uptakes found at pH 3 and pHs >7, whilst at pHs in the range of 4 to 7, the uptake was highest and almost constant at the value of 0.0179 mg/g ± 4%. This study has also revealed that copper ions removal was dissolved oxygen (DO dependent with the highest removal occurring at ambient DO concentration, which suggests that DO should be carefully studied when dealing with copper ions adsorption.

  19. Numerical modeling of solute transport in a sand tank physical model under varying hydraulic gradient and hydrological stresses

    Science.gov (United States)

    Atlabachew, Abunu; Shu, Longcang; Wu, Peipeng; Zhang, Yongjie; Xu, Yang

    2018-03-01

    This laboratory study improves the understanding of the impacts of horizontal hydraulic gradient, artificial recharge, and groundwater pumping on solute transport through aquifers. Nine experiments and numerical simulations were carried out using a sand tank. The variable-density groundwater flow and sodium chloride transport were simulated using the three-dimensional numerical model SEAWAT. Numerical modelling results successfully reproduced heads and concentrations observed in the sand tank. A higher horizontal hydraulic gradient enhanced the migration of sodium chloride, particularly in the groundwater flow direction. The application of constant artificial recharge increased the spread of the sodium chloride plume in both the longitudinal and lateral directions. In addition, groundwater pumping accelerated spreading of the sodium chloride plume towards the pumping well. Both higher hydraulic gradient and pumping rate generated oval-shaped plumes in the horizontal plane. However, the artificial recharge process produced stretched plumes. These effects of artificial recharge and groundwater pumping were greater under higher hydraulic gradient. The concentration breakthrough curves indicated that emerging solutions never attained the concentration of the originally injected solution. This is probably because of sorption of sodium chloride onto the silica sand and/or the exchange of sodium chloride between the mobile and immobile liquid domains. The fingering and protruding plume shapes in the numerical models constitute instability zones produced by buoyancy-driven flow. Overall, the results have substantiated the influences of hydraulic gradient, boundary condition, artificial recharge, pumping rate and density differences on solute transport through a homogeneous unconfined aquifer. The implications of these findings are important for managing liquid wastes.

  20. Predictive hydrogeochemical modelling of bauxite residue sand in field conditions.

    Science.gov (United States)

    Wissmeier, Laurin; Barry, David A; Phillips, Ian R

    2011-07-15

    The suitability of residue sand (the coarse fraction remaining from Bayer's process of bauxite refining) for constructing the surface cover of closed bauxite residue storage areas was investigated. Specifically, its properties as a medium for plant growth are of interest to ensure residue sand can support a sustainable ecosystem following site closure. The geochemical evolution of the residue sand under field conditions, its plant nutrient status and soil moisture retention were studied by integrated modelling of geochemical and hydrological processes. For the parameterization of mineral reactions, amounts and reaction kinetics of the mineral phases natron, calcite, tricalcium aluminate, sodalite, muscovite and analcime were derived from measured acid neutralization curves. The effective exchange capacity for ion adsorption was measured using three independent exchange methods. The geochemical model, which accounts for mineral reactions, cation exchange and activity corrected solution speciation, was formulated in the geochemical modelling framework PHREEQC, and partially validated in a saturated-flow column experiment. For the integration of variably saturated flow with multi-component solute transport in heterogeneous 2D domains, a coupling of PHREEQC with the multi-purpose finite-element solver COMSOL was established. The integrated hydrogeochemical model was applied to predict water availability and quality in a vertical flow lysimeter and a cover design for a storage facility using measured time series of rainfall and evaporation from southwest Western Australia. In both scenarios the sand was fertigated and gypsum-amended. Results show poor long-term retention of fertilizer ions and buffering of the pH around 10 for more than 5 y of leaching. It was concluded that fertigation, gypsum amendment and rainfall leaching alone were insufficient to render the geochemical conditions of residue sand suitable for optimal plant growth within the given timeframe. The

  1. Temperature and pH driven association in uranyl aqueous solutions

    Directory of Open Access Journals (Sweden)

    M. Druchok

    2012-12-01

    Full Text Available An association behavior of uranyl ions in aqueous solutions is explored. For this purpose a set of all-atom molecular dynamics simulations is performed. During the simulation, the fractions of uranyl ions involved in dimer and trimer formations were monitored. To accompany the fraction statistics one also collected distributions characterizing average times of the dimer and trimer associates. Two factors effecting the uranyl association were considered: temperature and pH. As one can expect, an increase of the temperature decreases an uranyl capability of forming the associates, thus lowering bound fractions/times and vice versa. The effect of pH was modeled by adding H+ or OH- ions to a "neutral" solution. The addition of hydroxide ions OH- favors the formation of the associates, thus increasing bound times and fractions. The extra H+ ions in a solution produce an opposite effect, thus lowering the uranyl association capability. We also made a structural analysis for all the observed associates to reveal the mutual orientation of the uranyl ions.

  2. Automated pH Control of Nutrient Solution in a Hydroponic Plant Growth System

    Science.gov (United States)

    Smith, B.; Dogan, N.; Aglan, H.; Mortley, D.; Loretan, P.

    1998-01-01

    Over, the years, NASA has played an important role in providing to and the development of automated nutrient delivery and monitoring, systems for growing crops hydroponically for long term space missions. One example are the systems used in the Biomass Production Chamber (BPC) at Kennedy Space Center (KSC). The current KSC monitoring system is based on an engineering workstation using standard analog/digital input/output hardware and custom written software. The monitoring system uses completely separate sensors to provide a check of control sensor accuracy and has the ability to graphically display and store data form past experiment so that they are available for data analysis [Fortson, 1992]. In many cases, growing systems have not been fitted with the kind of automated control systems as used at KSC. The Center for Food and Environmental Systems for Human Exploration of Space (CFESH) located on the campus of Tuskegee University, has effectively grown sweetpotatoes and peanuts hydroponically for the past five years. However they have adjusted the pH electrical conductivity and volume of the hydroponic nutrient solution only manually at times when the solution was to be replenished or changed out according to its protocol (e.g. one-week, two-week, or two-day cycle). But the pH of the nutrient solution flowing through the channel is neither known nor controlled between the update, change out, or replenishment period. Thus, the pH of the nutrient solution is not held at an optimum level over the span of the plant's growth cycle. To solve this dilemma, an automated system for the control and data logging of pH data relative to sweetpotato production using the nutrient film technique (NFT) has been developed, This paper discusses a microprocessor-based system, which was designed to monitor, control, and record the pH of a nutrient solution used for growing sweetpotatoes using NFT.

  3. Pathogen removal using saturated sand colums supplemented with hydrochar

    NARCIS (Netherlands)

    Chung, J.W.

    2015-01-01

    This PhD study has evaluated hydrochars derived from biowastes as adsorbents for pathogen removal in water treatment. Pathogen removal experiments were conducted by carrying out breakthrough analysis using a simple sand filtration set-up. Glass columns packed by 10 cm sand bed supplemented with

  4. A study of specific sorption of neptunium(V) on smectite in low pH solution

    International Nuclear Information System (INIS)

    Kozai, Naofumi; Ohnuki, Toshihiko; Matsumoto, Junko; Banba, Tsunetaka; Ito, Yoshimoto

    1996-01-01

    The 'specific sorption' of neptunium(V) on smectite, in other words, a strong sorption undesorbable by 1 M KCl, is studied with a combination of batch type sorption and desorption experiments over a pH range of 2 to 5. Six types of homoionic smectite (Li-, Na-, K-, Cs-, Mg-, and Ca-smectite) are used in this study. Distribution coefficients (K d ) of neptunium for smectite vary over a wide pH range; the maximum K d value of ∝300 cm 3 x g -1 at around pH 2 for Li- and Na-smectite and the minimum value of ∝2 cm 3 x g -1 for Cs-smectite. The specific sorption of neptunium depends on pH and on the affinity of the exchangeable cation for smectite; the lower the pH of solution or the affinity, the larger the specific sorption. The neptunium-smectite association varies with the elapse of contact time. Within the first day of the neptunium-smectite contact the neptunium sorbed on na-smectite at low pH is desorbable by 1 M KCl solution, and on the passage of time most of the neuptunium sorbed becomes undesorbable by KCl (the specific sorption). Hydronium ion in solution is sorbed on smectite at low pH and dissociates the exchangeable cation from smectite into solution, and the specific sorption of neuptunium increases with increasing the exchangeable cation that is dissociated from smectite. (orig.)

  5. Oil sands tailings management project

    Energy Technology Data Exchange (ETDEWEB)

    Godwalt, C. [Alberta WaterSMART, Calgary, AB (Canada); Kotecha, P. [Suncor Energy Inc, Calgary, AB (Canada); Aumann, C. [Alberta Innovates - Technology Futures, Alberta Governement, AB (Canada)

    2010-11-15

    The Oil sands leadership initiative (OSLI) works with the Government of Alberta on the development of the oil sands industry, considering environmental, economical and social aspects. Water management was identified as one of most important areas to focus on. Alberta WaterSMART was requested to support the development and the management of projects resulting from the work done or underway in this field. The development of a regional water management solution stood out as the most interesting solution to obtain significant results. In the Athabasca Region, oil sands producers work independently on their water sourcing and disposal with particular attention to fresh water conservation and economics. The Athabasca River represents a source for mines and distant saline aquifers are the target of steam assisted gravity drainage (SAGD) operators. As part of a four-phase project aiming to study the environmental and economic footprint (EEF) benefit of alternatives for Athabasca oil sands production water supply and disposal, the purpose of the tailings water management project was to identify tailings treatment technologies that are ready to be implemented, and to design and evaluate solutions in order to improve regional oil sands production water sourcing and disposal. Alternatives were evaluated based on their total EEF, applying a lifecycle assessment methodology with a particular attention on the quantification of important performance indicators. 25 refs., 8 tabs., 40 figs.

  6. Oil sands tailings management project

    International Nuclear Information System (INIS)

    Godwalt, C.; Kotecha, P.; Aumann, C.

    2010-11-01

    The Oil sands leadership initiative (OSLI) works with the Government of Alberta on the development of the oil sands industry, considering environmental, economical and social aspects. Water management was identified as one of most important areas to focus on. Alberta WaterSMART was requested to support the development and the management of projects resulting from the work done or underway in this field. The development of a regional water management solution stood out as the most interesting solution to obtain significant results. In the Athabasca Region, oil sands producers work independently on their water sourcing and disposal with particular attention to fresh water conservation and economics. The Athabasca River represents a source for mines and distant saline aquifers are the target of steam assisted gravity drainage (SAGD) operators. As part of a four-phase project aiming to study the environmental and economic footprint (EEF) benefit of alternatives for Athabasca oil sands production water supply and disposal, the purpose of the tailings water management project was to identify tailings treatment technologies that are ready to be implemented, and to design and evaluate solutions in order to improve regional oil sands production water sourcing and disposal. Alternatives were evaluated based on their total EEF, applying a lifecycle assessment methodology with a particular attention on the quantification of important performance indicators. 25 refs., 8 tabs., 40 figs.

  7. Retention of silica nanoparticles on calcium carbonate sands immersed in electrolyte solutions

    KAUST Repository

    Li, Yan Vivian

    2014-12-01

    © 2014 Elsevier Inc. Understanding nanoparticle-surface adhesion is necessary to develop inert tracers for subsurface applications. Here we show that nanoparticles with neutral surface charge may make the best subsurface tracers, and that it may be possible to used SiO2 nanoparticle retention to measure the fraction of solid surface that has positive charge. We show that silica nanoparticles dispersed in NaCl electrolyte solutions are increasingly retained in calcium carbonate (calcite) sand-packed columns as the solution ionic strength increases, but are not retained if they are injected in pure water or Na2SO4 electrolyte solutions. The particles retained in the NaCl experiments are released when the column is flushed with pure water or Na2SO4 solution. AFM measurements on calcite immersed in NaCl solutions show the initial repulsion of a silica colloidal probe as the surface is approached is reduced as the solution ionic strength increases, and that at high ionic strengths it disappears entirely and only attraction remains. These AFM measurements and their interpretation with Derjaguin-Landau-Verwey-Overbeek (DLVO) theory shows the calcite surface charge is always negative for Na2SO4 solutions, but changes from negative to positive in a patchy fashion as the ionic strength of the NaCl solution increases. Since mixed-charge (patchy) surfaces may be common in the subsurface, nanoparticles with near-zero charge may make the best tracers.

  8. Effect of initial pH and temperature of iron salt solutions on formation of magnetite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Gnanaprakash, G. [Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India); Mahadevan, S. [Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India); Jayakumar, T. [Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India); Kalyanasundaram, P. [Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India); Philip, John [Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India)]. E-mail: philip@igcar.gov.in; Raj, Baldev [Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India)

    2007-05-15

    We report the effect of initial pH and temperature of iron salt solutions on formation of magnetite (Fe{sub 3}O{sub 4}) nanoparticles during co-precipitation. We synthesized nanoparticles by keeping the initial pH at 0.7, 1.5, 3.0, 4.7, 5.7, 6.7 for two different temperatures of 30 and 60 deg. C. When the initial pH (prior to alkali addition) of the salt solution was below 5, the nanoparticles formed were 100% spinel iron oxide. Average size of the magnetite particles increases with initial pH until ferrihydrite is formed at a pH of 3 and the size remains the same till 4.7 pH. The percentage of goethite formed along with non-stoichiometric magnetite was 35 and 78%, respectively, when the initial pH of the solution was 5.7 and 6.7. As the reaction temperature was increased to 60 deg. C, maintaining a pH of 6.7, the amount of goethite increased from 78 to 100%. These results show that the initial pH and temperature of the ferrous and ferric salt solution before initiation of the precipitation reaction are critical parameters controlling the composition and size of nanoparticles formed. We characterize the samples using X-ray diffraction, transmission electron microscopy and vibrating sample magnetometer. The results of the present work provide the right conditions to synthesis pure magnetite nanoparticles, without goethite impurities, through co-precipitation technique for ferrofluid applications.

  9. Effect of nitrogen form and pH of nutrient solution on the changes in pH and EC of spinach rhizosphere in hydroponic culture

    OpenAIRE

    M. Parsazadeh; N. Najafi

    2011-01-01

    In this study, the effect of nitrate to ammonium ratio and pH of nutrient solution on the changes in pH and EC of rhizosphere during spinach growth period in perlite culture, under greenhouse conditions, was investigated. A split factorial experiment in a completely randomized design with four replications was conducted with three factors including nutrient solution’s pH in three levels (4.5, 6.5 and 8), nitrate to ammonium ratio of nutrient solution in five levels (100:0, 75:25, 50:50, 25:75...

  10. Effect of Solution pH on the Adsorption of Paracetamol on Chemically Modified Activated Carbons

    Directory of Open Access Journals (Sweden)

    Valentina Bernal

    2017-06-01

    Full Text Available Paracetamol adsorption in acidic, neutral and basic media on three activated carbons with different chemistry surfaces was studied. A granular activated carbon (GAC was prepared from coconut shell; starting from this sample, an oxidized activated carbon (GACo was obtained by treating the GAC with a boiling solution of 6 M nitric acid, so to generate a greater number of oxygenated surface groups. In addition, a reduced activated carbon (GACr was obtained by heating the GAC at 1173 K, to remove the oxygenated surface groups. Paracetamol adsorption was higher for GACr due to the lower presence of oxygenated surface functional groups. Moreover, adsorption was highest at neutral pH. The magnitude of the interactions between paracetamol molecules and activated carbons was studied by measuring the immersion enthalpies of activated carbons in solution of paracetamol at different concentrations and pH values and by calculating the interaction enthalpy. The highest value was obtained for GACr in a paracetamol solution of 1000 mg L−1 at pH 7, confirming that paracetamol adsorption is favoured on basic activated carbons at pH values near to neutrality. Finally, the Gibbs energy changes confirmed the latter result, allowing explaining the different magnitudes of the interactions between paracetamol and activated carbons, as a function of solution pH.

  11. Ph3CCOOSnPh3.Ph3PO AND Ph3CCOOSnPh3.Ph3AsO: SYNTHESIS AND INFRARED STUDY

    Directory of Open Access Journals (Sweden)

    ABDOU MBAYE

    2014-08-01

    Full Text Available The mixture of ethanolic solutions of Ph3CCOOSnPh3 and Ph3PO or Ph3AsO gives Ph3CCOOSnPh3.Ph3PO and Ph3CCOOSnPh3.Ph3AsO adducts which have been characterized by infrared spectroscopy. A discrete structure is suggested for both, the environment around the tin centre being trigonal bipyramidal, the triphenylacetate anion behaving as a mondentate ligand.

  12. Removal of nitrate, ammonia and phosphate from aqueous solutions in packed bed filter using biochar augmented sand media

    Directory of Open Access Journals (Sweden)

    El Hanandeh Ali

    2017-01-01

    Full Text Available Nutrients from wastewater are a major source of pollution because they can cause significant impact on the ecosystem. Accordingly, it is important that the nutrient concentrations are kept to admissible levels to the receiving environment. Often regulatory limits are set on the maximum allowable concentrations in the effluent. Therefore, wastewater must be treated to meet safe levels of discharge. In this study, laboratory investigation of the efficiency of packed bed filters to remove nitrate, ammonium and phosphate from aqueous solutions were conducted. Sand and sand augmented with hydrochloric acid treated biochar (SBC were used as packing media. Synthetic wastewater solution was prepared with PO43−, NO3−, NH4+ concentrations 20, 10, 50 mg/L, respectively. Each experiment ran for a period of five days; samples from the effluent were collected on alternate days. All experiments were duplicated. Over the experiment period, the average removal efficiency of PO43−, NO3−, NH4+ were 99.2%, 72.9%, 96.7% in the sand packed columns and 99.2%, 82.3%, 97.4% in the SBC packed columns, respectively. Although, the presence of biochar in the packing media had little effect on phosphate and ammonium removal, it significantly improved nitrate removal.

  13. Gravity flow and solute dispersion in variably saturated sand

    Science.gov (United States)

    Kumahor, Samuel K.; de Rooij, Gerrit H.; Vogel, Hans-Joerg

    2014-05-01

    Solute dispersion in porous media depends on the structure of the velocity field at the pore scale. Hence, dispersion is expected to change with water content and with mean flow velocity. We performed laboratory experiments using a column of repacked fine-grained quartz sand (0.1-0.3 mm grain size) with a porous plate at the bottom to controle the water potential at the lower boundary. We established gravity flow conditions - i.e. constant matric potential and water content throughout the column - for a number of different irrigation rates. We measured breakthrough curves during unit gradient flow for an inert tracer which could be described by the convection-dispersion equation. As the soil water content decreased we observed an initially gradual increase in dispersivity followed by an abrupt increase below a threshold water content (0.19) and pressure head (-38 hPa). This phenomena can be explained by the geometry of phase distribution which was simulated based on Xray-CT images of the porous structure.

  14. Integrating chemical imaging of cationic trace metal solutes and pH into a single hydrogel layer

    Energy Technology Data Exchange (ETDEWEB)

    Hoefer, Christoph [Department of Forest and Soil Sciences, Institute of Soil Research, University of Natural Resources and Life Sciences, Vienna, Konrad-Lorenz-Strasse 24, A-3430 Tulln (Austria); Santner, Jakob, E-mail: jakob.santner@boku.ac.at [Department of Forest and Soil Sciences, Institute of Soil Research, University of Natural Resources and Life Sciences, Vienna, Konrad-Lorenz-Strasse 24, A-3430 Tulln (Austria); Department of Crop Sciences, Division of Agronomy, University of Natural Resources and Life Sciences, Vienna, Konrad-Lorenz-Strasse 24, 3430 Tulln (Austria); Borisov, Sergey M. [Institute of Analytical Chemistry and Food Chemistry, Graz University of Technology, Stremayrgasse 9, A-8010, Graz (Austria); Wenzel, Walter W.; Puschenreiter, Markus [Department of Forest and Soil Sciences, Institute of Soil Research, University of Natural Resources and Life Sciences, Vienna, Konrad-Lorenz-Strasse 24, A-3430 Tulln (Austria)

    2017-01-15

    Gel-based, two-dimensional (2D) chemical imaging techniques are versatile methods for investigating biogeochemically active environments at high spatial resolution (sub-mm). State-of-the-art solute imaging techniques, such as diffusive gradients in thin films (DGT) and planar optodes (PO), employ passive solute sampling or sensing. Combining these methods will provide powerful tools for studying the biogeochemistry of biological niches in soils and sediments. In this study we aimed at developing a combined single-layer gel for direct pH imaging using PO and sampling of anionic and cationic solutes by DGT, with subsequent analysis of the bound solutes by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). We tested three ultra-thin (<100 μm) polyurethane-based gels, incorporating anion and cation binding materials and the fluorescent pH indicator DCIFODA (2′,7′-dichloro-5(6)-N-octadecyl-carboxamidofluorescein). Results showed that PO-based pH sensing using DCIFODA was impossible in the presence of the anion binding materials due to interferences with DCIFODA protonation. One gel, containing only a cation binding material and DCIFODA, was fully characterized and showed similar performance characteristics as comparable DGT-only gels (applicable pH range: pH 5–8, applicable ionic strength range: 1–20 mmol L{sup -1}, cation binding capacity ∼24 μg cm{sup −2}). The dynamic range for PO-based pH mapping was between pH 5.5 and 7.5 with t{sub 90} response time of ∼60 min. In a case study we demonstrated the gel's suitability for multi-analyte solute imaging and mapped pH gradients and concurrent metal solubility patterns in the rhizosphere of Salix smithiana. pH decreases in the rooted soil were co-localized with elevated solute fluxes of Al{sup 3+}, Co{sup 2+}, Cu{sup 2+}, Fe, Mn{sup 2+}, Ni{sup 2+} and Pb{sup 2+}, indicating pH-induced metal solubilisation. - Highlights: • Diffusive gradients in thin films (DGT) and planar

  15. Integrating chemical imaging of cationic trace metal solutes and pH into a single hydrogel layer

    International Nuclear Information System (INIS)

    Hoefer, Christoph; Santner, Jakob; Borisov, Sergey M.; Wenzel, Walter W.; Puschenreiter, Markus

    2017-01-01

    Gel-based, two-dimensional (2D) chemical imaging techniques are versatile methods for investigating biogeochemically active environments at high spatial resolution (sub-mm). State-of-the-art solute imaging techniques, such as diffusive gradients in thin films (DGT) and planar optodes (PO), employ passive solute sampling or sensing. Combining these methods will provide powerful tools for studying the biogeochemistry of biological niches in soils and sediments. In this study we aimed at developing a combined single-layer gel for direct pH imaging using PO and sampling of anionic and cationic solutes by DGT, with subsequent analysis of the bound solutes by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). We tested three ultra-thin (<100 μm) polyurethane-based gels, incorporating anion and cation binding materials and the fluorescent pH indicator DCIFODA (2′,7′-dichloro-5(6)-N-octadecyl-carboxamidofluorescein). Results showed that PO-based pH sensing using DCIFODA was impossible in the presence of the anion binding materials due to interferences with DCIFODA protonation. One gel, containing only a cation binding material and DCIFODA, was fully characterized and showed similar performance characteristics as comparable DGT-only gels (applicable pH range: pH 5–8, applicable ionic strength range: 1–20 mmol L"-"1, cation binding capacity ∼24 μg cm"−"2). The dynamic range for PO-based pH mapping was between pH 5.5 and 7.5 with t_9_0 response time of ∼60 min. In a case study we demonstrated the gel's suitability for multi-analyte solute imaging and mapped pH gradients and concurrent metal solubility patterns in the rhizosphere of Salix smithiana. pH decreases in the rooted soil were co-localized with elevated solute fluxes of Al"3"+, Co"2"+, Cu"2"+, Fe, Mn"2"+, Ni"2"+ and Pb"2"+, indicating pH-induced metal solubilisation. - Highlights: • Diffusive gradients in thin films (DGT) and planar optode (PO) imaging is combined. • A

  16. Measurements of distribution coefficient for U and Th on sand stone in synthesized sea water and distilled water

    International Nuclear Information System (INIS)

    Nakazawa, Toshiyuki; Okada, Kenichi; Saito, Yoshihiko; Shibata, Masahiro; Sasamoto, Hiroshi

    2005-01-01

    Japan Nuclear Cycle Development Institute (JNC) has developed the sorption database for bentonite and rocks in order to assess the retardation property of important radioactive elements in natural and engineered barriers in the H12 report. However, there are not enough distribution coefficient data for radioactive elements in saline type groundwater in the database. Thus the batch sorption tests were performed for uranium (U) and thorium (Th) in saline type groundwater. For these elements, there are little registration numbers in the JNC's sorption database, and also these elements are important to evaluate the safety of disposal system. The experiments for each radioactive element were performed on the following conditions; U: Kd measurements using the solutions (synthesized sea water and distilled water) reacted with sand stone as a function of carbonate concentration, under reducing conditions. Th: Kd measurements using the solutions (synthesized sea water and distilled water) reacted with sand stone. The results of the experiments are summarized below; In the case of U, Kd was approximately 6.5E-01 - 9.2E-01 m 3 /kg in synthesized sea water. On the other hand, Kd was 2.2E-02 - 2.4E-02 m 3 /kg in the high carbonate solution. And also, Kd was 6.5E-02 - 7.2E-02 m 3 /kg in synthesized sea water adjusted pH 10 and 3.4E-02 - 4.1E-02 m 3 /kg in distilled water adjusted pH 10, respectively. In the case of Th, Kd was measured in synthesized sea water adjusted to pH 10 and in distilled water adjusted to pH 10. At the sorption measurements of Th, precipitation might be occurred by very low solubility of Th. (author)

  17. Nitrate-cancrinite precipitation on quartz sand in simulated Hanford tank solutions.

    Science.gov (United States)

    Bickmore, B R; Nagy, K L; Young, J S; Drexler, J W

    2001-11-15

    Caustic NaNO3 solutions containing dissolved Al were reacted with quartz sand at 89 degrees C to simulate possible reactions between leaked nuclear waste and primary subsurface minerals at the U.S. Department of Energy's Hanford site in Washington. Nitrate-cancrinite began to precipitate onto the quartz after 2-10 days, cementing the grains together. Estimates of the equilibrium constant for the precipitation reaction differ for solutions with 0.1 or 1.0 m OH- (log Keq = 30.4 +/- 0.8 and 36.2 +/- 0.6, respectively). The difference in solubility may be attributable to more perfect crystallinity (i.e., fewer stacking faults) in the higher-pH cancrinite structure. This is supported by electron micrographs of crystal morphology and measured rates of Na volatilization under an electron beam. Precipitate crystallinity may affect radionuclide mobility, because stacking faults in the cancrinite structure can diminish its zeolitic cation exchange properties. The precipitation rate near the onset of nucleation depends on the total Al and Si concentrations in solution. The evolution of experimental Si concentrations was modeled by considering the dependence of quartz dissolution rate on AI(OH)4- activity, cancrinite precipitation, and the reduction of reactive surface area of quartz due to coverage by cancrinite.

  18. Numerical simulation of flow and compression of green sand

    DEFF Research Database (Denmark)

    Hovad, Emil

    The focus of the industrial PhD project was concentrated on the production of the sand mold (green sand) which gives the cast component its final geometrical shape. In order to ensure a high quality of the cast component, it is important to control the manufacturing process of the mold itself so...... that it is homogeneous and stable. Therefore gaining a basic understanding of how the flow and deposition of green sand should be characterized and modelled was important, so that it could be used for simulation of the manufacturing process of the sand mold. The flowability of the green sand is important when the sand...... flows down through the hopper filling the chamber with sand during the sand shot. The flowability of green sand is mostly governed by the amount of water and bentonite which both decrease it. The flowability and the internal forces thus control how well you can fill a complex mold geom-etry in which...

  19. Facilitated transport of Cu with hydroxyapatite nanoparticles in saturated sand: Effects of solution ionic strength and composition

    Science.gov (United States)

    Column experiments were conducted to investigate the facilitated transport of Cu in association with hydroxyapatite nanoparticles (nHAP) in water-saturated quartz sand at different solution concentrations of NaCl (0 to 100 mM) or CaCl2 (0.1 to 1.0 mM). The experimental breakthrough curves and retent...

  20. Influence of pH of spray solution on optoelectronic properties of cadmium oxide thin films

    International Nuclear Information System (INIS)

    Hodlur, R. M.; Rabinal, M. K.

    2015-01-01

    Highly conducting transparent cadmium oxide thin films were prepared by the conventional spray pyrolysis technique. The pH of the spray solution is varied by adding ammonia/hydrochloric acid. The effect of pH on the morphology, crystallinity and optoelectronic properties of these films is studied. The structural analysis showed all the films in the cubic phase. For the films with pH < 7 (acidic condition), the preferred orientation is along the (111) direction and for those with pH >7 (alkaline condition), the preferred orientation is along the (200) direction. A lowest resistivity of 9.9 × 10 −4 Ω·cm (with carrier concentration = 5.1 × 10 20 cm −3 , mobility = 12.4 cm 2 /(V·s)) is observed for pH ≈ 12. The resistivity is tuned almost by three orders of magnitude by controlling the bath pH with optical transmittance more than 70%. Thus, the electrical conductivity of CdO films could be easily tuned by simply varying the pH of the spray solution without compromising the optical transparency. (paper)

  1. The effect of organics on the sorption of cobalt by glacial sand in laboratory experiments

    International Nuclear Information System (INIS)

    Haigh, G.; Williams, G.M.; Hooker, P.J.; Ross, C.A.M.; Allen, M.R.

    1989-02-01

    The effect of acetate, EDTA and natural organic compounds in groundwater at Drigg test site, on the sorption of cobalt by glacial sand has been studied in a series of batch experiments. Removing 50% of the organic material from the groundwater with DEAE cellulose increased the distribution ratio (R d ) of cobalt by a factor of about two. The addition of both EDTA and acetate to the sand/water system led to the removal of Ca, Mg, Sr and Ba from solution. Both organic compounds had the effect of reducing the pH and bicarbonated concentrations. EDTA also removed iron from the solution. EDTA reduced the R d for Co by up to 2 orders of magnitude. At EDTA concentrations greater than 5mg/1, there was no further reduction in sorption. EDTA was not itself sorbed, but formed a mobile complex with Co. Within the same period of equilibrium, the R d values were lower when EDTA was allowed to equilibrate with the sand before adding cobalt. The desorption of cobalt from the minerals surface may be a rate limiting step such that equilibrium was not achieved within the 14 day period of these experiments. Acetate had no effect of cobalt sorption. (author)

  2. Comparative study of buffered 50% glycolic acid (pH 3.0) + 0.5% salicylic acid solution vs Jessner's solution in patients with acne vulgaris.

    Science.gov (United States)

    In Jae, Jeong; Dong Ju, Hyun; Dong Hyun, Kim; Yoon, Moon Soo; Lee, Hee Jung

    2017-11-21

    Superficial chemical peels are frequently used in acne vulgaris treatment. Although glycolic acid (GA) has been widely used in clinical practice, its pH ranges from 0.08-2.75 and thus should be neutralized after application to avoid burns. To evaluate treatment efficacy and safety of chemical peeling using buffered 50% GA (pH 3.0) + 0.5% salicylic acid (SA) solution that does not need to be neutralized in the treatment of acne vulgaris compared to the conventional peeling using Jessner's solution. We performed a prospective, randomized, evaluator-blind, split-face clinical trial. Twenty patients were randomized by assigning one side of each patient's face to receive a 50% GA (pH 3.0) + 0.5% SA peel (GA side) and the other side to receive the Jessner's solution (Jessner's solution side). All patients underwent 2 sessions of treatment spaced 2 weeks apart. Lesion count, acne severity, subjective efficacy assessment, and side effects were evaluated. The total lesion count was significantly reduced for the GA and Jessner's solution sides (P  .05). The GA side had fewer side effects than the Jessner's solution side. The results of this study suggest that chemical peeling using the 50% GA (pH 3.0) + 0.5% SA solution can be as effective and convenient as the conventional peeling using Jessner's solution in the treatment of acne vulgaris and may show fewer adverse events than the conventional peeling. © 2017 Wiley Periodicals, Inc.

  3. Biodesulfurization of vanadium-bearing titanomagnetite concentrates and pH control of bioleaching solution

    Science.gov (United States)

    Liu, Xiao-rong; Jiang, Sheng-cai; Liu, Yan-jun; Li, Hui; Wang, Hua-jun

    2013-10-01

    Vanadium-bearing titanomagnetite concentrates were desulfurized with Acidithiobacillus ferrooxidans ( A. ferrooxidans). The sulfur content of the concentrates was reduced from 0.69wt% to 0.14wt% after bioleaching for 15 d with a 10% pulp density at 30°C. Maintaining a stable pH value during biodesulfurization was critical because of high acid consumption, resulting from a combination of nonoxidative and oxidative dissolution of pyrrhotite in acid solution. It is discovered that the citric acid-disodium hydrogen phosphate buffer of pH 2.0 can control the solution pH value smoothly in the optimal range of 2.0-3.0 for A. ferrooxidans growth. Using the buffer in the volume fraction range of 5.0%-15.0% stimulates A. ferrooxidans growth and improves the biodesulfurization efficiency. Compared with the buffer-free control case, the maximum increase of biodesulfurization rate is 29.7% using a 10.0vol% buffer. Bioleaching provides an alternative process for desulfurization of vanadium-bearing titanomagnetite ores.

  4. Identification of causes of oil sands coke leachate toxicity

    International Nuclear Information System (INIS)

    Puttaswamy, N.; Liber, K.

    2010-01-01

    The potential causes of oil sands coke leachate toxicity were investigated. Chronic 7-day toxicity tests were conducted to demonstrate that oil sands coke leachates (CL) are acutely toxic to Ceriodaphnia dubia (C. dubia). CLs were generated in a laboratory to perform toxicity identification evaluation (TIE) tests in order to investigate the causes of the CL toxicity. The coke was subjected to a 15-day batch leaching process at 5.5 and 9.5 pH values. The leachates were then filtered and used for chemical and toxicological characterization. The 7-day estimates for the C. dubia survival were 6.3 for a pH of 5.5 and 28.7 per cent for the 9.5 CLs. The addition of EDTA significantly improved survival and reproduction in a pH of 5.5 CL, but not in a pH of 9.5 CL. The toxicity of the pH 5.5 CL was removed with a cationic resin treatment. The toxicity of the 9.5 pH LC was removed using an anion resin treatment. Toxicity re-appeared when nickel (Ni) and vanadium (V) were added back to the resin-treated CLs. Results of the study suggested that Ni and V were acting as primary toxicants in the pH 5.5 CL, while V was the primary cause of toxicity in the pH 9.5 CL.

  5. Sorption of fluoride by quartz sand: batch tests

    Directory of Open Access Journals (Sweden)

    Eduardo Usunoff

    2009-06-01

    Full Text Available Despite the many efforts of scientists, in particular those from the field of soil science, the fate and distribution of fluorine (F species in soils and aquifers remain relatively unraveled. As for groundwater systems, such a shortcoming makes difficult the finding and development of safe water supplies. Likewise, the use of transport models does not render acceptable results because of the many uncertainties related to the behavior of F in aqueous media. This paper presents the results of four batch test in which solutions of different pH and [F-] (concentration of fluoride were in contact during 48 hours with clean quartz sand grains. The resulting data were fitted by linear versions of the Freundlich, the Langmuir, and the Langmuir-Freundlich models. The [F-] was varied between 0,5 and 10 mg L-1, except in one batch where a large initial concentration of F was used (45 mg L-1, and the range of pH used was 2,95 to 5,02. From a sieve analysis, the quartz grains had a medium size (d50 of 0,25 mm, and a uniformity coefficient (d40/d90 of 1,65. According to the fits and some dedicated goodness of fit indices, the Langmuir-Freundlich approach gave the best results for the batch test at the lowest pH, whereas the three remaining tests data were fitted by the Freundlich equation. It has to be mentioned that the pH of the equilibrium solutions were higher than the pH of the initial solutions, which was interpreted as an exchange process of OH- by F- on the quartz sand surface. However, such an exchange does not stand out as the exclusive mechanism promoting the F- disappearance from solution. It is deemed that the obtained results can be used as initial estimates of parameters in models used for calibrating the transport of F- in aquifers.A pesar de los muchos esfuerzos de los científicos, en particular de aquellos dedicados a las ciencias del suelo, el destino y la distribución de las especies de F (flúor en suelos y acuíferos continúan siendo

  6. contaminant migration in a sand aquifer near an inactive uranium tailings impoundment, Elliot Lake, Ontario

    International Nuclear Information System (INIS)

    Morin, K.A.; Cherry, J.A.

    1982-01-01

    An investigation of the movement of contaminated groundwater from inactive uranium tailings through a sand aquifer is being conducted at the Nordic Main tailings impoundment near Elliot Lake, Ontario. During 1979 and 1980, multilevel bundle-type piezometers were installed at several locations around the edge of the tailings impoundment. Chemical analysis of water samples from the bundle piezometers indicate that a major contaminant plume extends outward through a sand aquifer from the southeastern part of the Nordic Main impoundment dam. In the vincinity of the contaminant plume, the sand aquifer varies in thickness from about 9 to 15 m. The plume has two distinct segments, referred to as the inner core and the outer zone. The inner core, which has a pH of 4.3-5.0 and extends about 15 m from the foot of the tailings dam, contains several grams per litre of iron and sulfate, and tens of pCi/L of 226 Ra and 210 Pb. Water levels in piezometers within the inner core show that groundwater is moving horizontally, away from the tailings impoundment, with a velocity of up to several hundred metres per year. The outer zone, which extends a few hundred metres downgradient from the dam, is characterized by hundreds to thousands of milligrams per litre of iron and sulfate, less than 15pCi/L of 226 Ra, and a pH greater than 5.7. Comparison of 1979 and 1980 data shows that the front of the inner core is advancing a few metres per year, which is less than a few percent of the groundwater velocity. This retardation of movement of the inner core is caused by neutralization of the acidic water as a result of dissolution of calcium carbonate in the sand. With the rise in pH, precipitation of iron carbonate and possibly some iron hydroxide occurs and the contaminants of main concern such as 226 Ra, 210 Pb, and uranium are removed from solution by adsorption or coprecipitation

  7. Used Furan Sand Reclamation in REGMAS Vibratory Unit

    Directory of Open Access Journals (Sweden)

    Dańko J.

    2015-09-01

    Full Text Available The paper, especially dealt with problems of reclamation of used furan sand, carried out in new, vibratory sand reclamation unit REGMAS developed by researches from AGH-University of Science and Technology, Faculty of Foundry Engineering in Cracow (Poland. Functional characteristics of reclamation unit as well as the results of reclamation of used sand with furfuryl resin are discussed in the paper. The quality of reclaim was tested by means of the LOI and pH value, dust content in the reclaim and at least by the the quality of the castings produced in moulds prepared with the use of reclaimed matrix.

  8. Providing floating capabilities in latest-generation sand screens

    Energy Technology Data Exchange (ETDEWEB)

    Bowen, E.G.; Coronado, M.P. [Society of Petroleum Engineers, Richardson, TX (United States)]|[Baker Hughes, Houston, TX (United States)

    2008-10-15

    Alternative production methods are needed for the massive reserves located in the bitumen region of Canada's tar sands. The area has over 100 installations of sand screens/slotted liners in both injection and production legs using steam-assisted gravity drainage (SAGD) technology. Multiple wells must be drilled from a single pad because of the sensitive nature of the environment. With significant depths of these wells, a floating sand screen provides assurance that the sand screen will reach the desired depth. Paraffin is generally used to plug the flow access of the screen during installation. This paper discussed a new technology that has been developed to allow for sand screen installations without relying on paraffin wax to withstand differential pressure. The new technology uses a hydro-mechanical valving system incorporated into the screen design to temporarily close off the screen while being run in the hole. The paper described how the technology could provide a reliable, time-saving solution for SAGD installations when floating sand control screens are needed. The paper discussed current technology and its limitations, sand screen installation, screen design for floating applications, and additional applications. It was concluded that this technology solution provides a unique alternative to the methods currently used to install sand screens with SAGD technology in the fast growing Canadian market for bitumen recovery. 2 refs., 5 figs.

  9. Leishmania attachment in permissive vectors and the role of sand fly midgut proteins in parasite-vector interaction

    OpenAIRE

    Dostálová, Anna

    2012-01-01

    of PhD. thesis named "Leishmania attachment in permissive vectors and the role of sand fly midgut proteins in parasite-vector interaction", Anna Dostálová, 2011 This thesis focuses on the development of protozoan parasites of the genus Leishmania in their insect vectors, sand flies. It sums up results of three projects I was involved in during my PhD studies. Main emphasis was put on permissive sand fly species that support development of various species of Leishmania. Using a novel method of...

  10. Effect of pH on corrosion behavior of CuCrZr in solution without and with NaCl

    Energy Technology Data Exchange (ETDEWEB)

    Kwok, C.T.; Wong, P.K. [Department of Electromechanical Engineering, University of Macau (China); Man, H.C. [Department of Industrial and Systems Engineering, Hong Kong Polytechnic University (Hong Kong); Cheng, F.T., E-mail: apaftche@polyu.edu.h [Department of Applied Physics, Hong Kong Polytechnic University (Hong Kong)

    2009-10-01

    CuCrZr is a high copper alloy widely used as electrical and thermal conducting material, especially in heat exchangers in nuclear reactors. In this respect, the physical and fatigue properties of CuCrZr have been extensively studied. The electrochemical behavior of CuCrZr, on the other hand, has not been adequately investigated. In the present study, the effect of pH on the corrosion behavior of CuCrZr in aqueous solutions without and with chloride (0.6 M NaCl) was studied. The pH of the solutions is found to exert significant influence on the corrosion behavior of CuCrZr. In acidic solutions without chloride, the corrosion of CuCrZr is ascribed to active dissolution with soluble products. In neutral and alkaline solutions without NaCl, the presence of oxides on the surface of CuCrZr leads to a noble shift in corrosion potential and passivation results in increased corrosion resistance. In chloride solutions at various pH values, the chloride ions influence the formation of the surface layers and the anodic dissolution process during polarization. At high pH, CuCrZr shows significant passivity and high corrosion resistance due to the growth of Cu{sub 2}O/Cu(OH) film which hinders further dissolution whereas at low pH the corrosion resistance is lowered due to active dissolution of Cu.

  11. Effect of pH on corrosion behavior of CuCrZr in solution without and with NaCl

    International Nuclear Information System (INIS)

    Kwok, C.T.; Wong, P.K.; Man, H.C.; Cheng, F.T.

    2009-01-01

    CuCrZr is a high copper alloy widely used as electrical and thermal conducting material, especially in heat exchangers in nuclear reactors. In this respect, the physical and fatigue properties of CuCrZr have been extensively studied. The electrochemical behavior of CuCrZr, on the other hand, has not been adequately investigated. In the present study, the effect of pH on the corrosion behavior of CuCrZr in aqueous solutions without and with chloride (0.6 M NaCl) was studied. The pH of the solutions is found to exert significant influence on the corrosion behavior of CuCrZr. In acidic solutions without chloride, the corrosion of CuCrZr is ascribed to active dissolution with soluble products. In neutral and alkaline solutions without NaCl, the presence of oxides on the surface of CuCrZr leads to a noble shift in corrosion potential and passivation results in increased corrosion resistance. In chloride solutions at various pH values, the chloride ions influence the formation of the surface layers and the anodic dissolution process during polarization. At high pH, CuCrZr shows significant passivity and high corrosion resistance due to the growth of Cu 2 O/Cu(OH) film which hinders further dissolution whereas at low pH the corrosion resistance is lowered due to active dissolution of Cu.

  12. Calorimetric and diffractometric evidence for the sequential crystallization of buffer components and the consequential pH swing in frozen solutions.

    Science.gov (United States)

    Sundaramurthi, Prakash; Shalaev, Evgenyi; Suryanarayanan, Raj

    2010-04-15

    Sequential crystallization of succinate buffer components in the frozen solution has been studied by differential scanning calorimetry and X-ray diffractometry (both laboratory and synchrotron sources). The consequential pH shifts were monitored using a low-temperature electrode. When a solution buffered to pH pK(a)(2), the freeze-concentrate pH first decreased and then increased due to the sequential crystallization of the basic (disodium succinate) followed by the acidic (monosodium succinate and succinic acid) buffer components. XRD provided direct evidence of the crystallization events in the frozen buffer solutions, including the formation of disodium succinate hexahydrate [Na(2)(CH(2)COO)(2).6H(2)O]. When the frozen solution was warmed in a differential scanning calorimeter, multiple endotherms attributable to the melting of buffer components and ice were observed. When the frozen solutions were dried under reduced pressure, ice sublimation was followed by dehydration of the crystalline hexahydrate to a poorly crystalline anhydrate. However, crystalline succinic acid and monosodium succinate were retained in the final lyophiles. The pH and the buffer salt concentration of the prelyo solution influenced the crystalline salt content in the final lyophile. The direction and magnitude of the pH shift in the frozen solution depended on both the initial pH and the buffer concentration. In light of the pH-sensitive nature of a significant fraction of pharmaceuticals (especially proteins), extreme care is needed in both the buffer selection and its concentration.

  13. THE PREDICTION OF pH BY GIBBS FREE ENERGY MINIMIZATION IN THE SUMP SOLUTION UNDER LOCA CONDITION OF PWR

    Directory of Open Access Journals (Sweden)

    HYOUNGJU YOON

    2013-02-01

    Full Text Available It is required that the pH of the sump solution should be above 7.0 to retain iodine in a liquid phase and be within the material compatibility constraints under LOCA condition of PWR. The pH of the sump solution can be determined by conventional chemical equilibrium constants or by the minimization of Gibbs free energy. The latter method developed as a computer code called SOLGASMIX-PV is more convenient than the former since various chemical components can be easily treated under LOCA conditions. In this study, SOLGASMIX-PV code was modified to accommodate the acidic and basic materials produced by radiolysis reactions and to calculate the pH of the sump solution. When the computed pH was compared with measured by the ORNL experiment to verify the reliability of the modified code, the error between two values was within 0.3 pH. Finally, two cases of calculation were performed for the SKN 3&4 and UCN 1&2. As results, pH of the sump solution for the SKN 3&4 was between 7.02 and 7.45, and for the UCN 1&2 plant between 8.07 and 9.41. Furthermore, it was found that the radiolysis reactions have insignificant effects on pH because the relative concentrations of HCl, HNO3, and Cs are very low.

  14. Application conditions for ester cured alkaline phenolic resin sand

    Directory of Open Access Journals (Sweden)

    Ren-he Huang

    2016-07-01

    Full Text Available Five organic esters with different curing speeds: propylene carbonate (i.e. high-speed ester A; 1, 4-butyrolactone; glycerol triacetate (i.e. medium-speed ester B; glycerol diacetate; dibasic ester (DBE (i.e. low-speed ester C, were chosen to react with alkaline phenolic resin to analyze the application conditions of ester cured alkaline phenolic resin. The relationships between the curing performances of the resin (including pH value, gel pH value, gel time of resin solution, heat release rate of the curing reaction and tensile strength of the resin sand and the amount of added organic ester and curing temperature were investigated. The results indicated the following: (1 The optimal added amount of organic ester should be 25wt.%-30wt.% of alkaline phenolic resin and it must be above 20wt.%-50 wt.% of the organic ester hydrolysis amount. (2 High-speed ester A (propylene carbonate has a higher curing speed than 1, 4-butyrolactone, and they were both used as high-speed esters. Glycerol diacetate is not a high-speed ester in alkaline phenolic resin although it was used as a high-speed ester in ester cured sodium silicate sand; glycerol diacetate and glycerol triacetate can be used as medium-speed esters in alkaline phenolic resin. (3 High-speed ester A, medium-speed ester B (glycerol triacetate and low-speed ester C (dibasic ester, i.e., DBE should be used below 15 ìC, 35 ìC and 50 ìC, respectively. High-speed ester A or low-speed ester C should not be used alone but mixed with medium-speed ester B to improve the strength of the resin sand. (4 There should be a suitable solid content (generally 45wt.%-65wt.% of resin, alkali content (generally 10wt.%-15wt.% of resin and viscosity of alkaline phenolic resin (generally 50-300 mPa≤s in the preparation of alkaline phenolic resin. Finally, the technique conditions of alkaline phenolic resin preparation and the application principles of organic ester were discussed.

  15. Unusual Salt and pH Induced Changes in Polyethylenimine Solutions.

    Directory of Open Access Journals (Sweden)

    Kimberly A Curtis

    Full Text Available Linear PEI is a cationic polymer commonly used for complexing DNA into nanoparticles for cell-transfection and gene-therapy applications. The polymer has closely-spaced amines with weak-base protonation capacity, and a hydrophobic backbone that is kept unaggregated by intra-chain repulsion. As a result, in solution PEI exhibits multiple buffering mechanisms, and polyelectrolyte states that shift between aggregated and free forms. We studied the interplay between the aggregation and protonation behavior of 2.5 kDa linear PEI by pH probing, vapor pressure osmometry, dynamic light scattering, and ninhydrin assay. Our results indicate that: At neutral pH, the PEI chains are associated and the addition of NaCl initially reduces and then increases the extent of association.The aggregate form is uncollapsed and co-exists with the free chains.PEI buffering occurs due to continuous or discontinuous charging between stalled states.Ninhydrin assay tracks the number of unprotonated amines in PEI.The size of PEI-DNA complexes is not significantly affected by the free vs. aggregated state of the PEI polymer. Despite its simple chemical structure, linear PEI displays intricate solution dynamics, which can be harnessed for environment-sensitive biomaterials and for overcoming current challenges with DNA delivery.

  16. Transport and Deposition of Suspended Soil-Colloids in Saturated Sand Columns

    DEFF Research Database (Denmark)

    Sharma, Anu; Kawamoto, Ken; Møldrup, Per

    2011-01-01

    Understanding colloid mobilization, transport and deposition in the subsurface is a prerequisite for predicting colloid‐facilitated transport of strongly adsorbing contaminants and further developing remedial activities. This study investigated the transport behavior of soil‐colloids extracted from...... caused tailing of colloid BTCs with higher reversible entrapment and release of colloids than high flow velocity. The finer Toyoura sand retained more colloids than the coarser Narita sand at low pH conditions. The deposition profile and particle size distribution of colloids in the Toyoura sand clearly...

  17. Diel coral reef acidification driven by porewater advection in permeable sands, Heron Island, Great Barrier Reef

    DEFF Research Database (Denmark)

    Santos, Isaac R.; Glud, Ronnie N.; Maher, Damien

    2011-01-01

    Little is known about how biogeochemical processes in permeable sediments affect the pH of coastal waters. We demonstrate that seawater recirculation in permeable sands can play a major role in proton (H+) cycling in a coral reef lagoon. The diel pH range (up to 0.75 units) in the Heron Island...... lagoon was the broadest ever reported for reef waters, and the night‐time pH (7.69) was comparable to worst‐case scenario predictions for seawater pH in 2100. The net contribution of coarse carbonate sands to the whole system H+ fluxes was only 9% during the day, but approached 100% at night when small...... scale (i.e., flow and topography‐induced pressure gradients) and large scale (i.e., tidal pumping as traced by radon) seawater recirculation processes were synergistic. Reef lagoon sands were a net sink for H+, and the sink strength was a function of porewater flushing rate. Our observations suggest...

  18. Effect of Aging Temperature on Corrosion Behavior of Sintered 17-4 PH Stainless Steel in Dilute Sulfuric Acid Solution

    Science.gov (United States)

    Szewczyk-Nykiel, Aneta; Kazior, Jan

    2017-07-01

    The general corrosion behavior of sintered 17-4 PH stainless steel processed under different processing conditions in dilute sulfuric acid solution at 25 °C was studied by open-circuit potential measurement and potentiodynamic polarization technique. The corrosion resistance was evaluated based on electrochemical parameters, such as polarization resistance, corrosion potential, corrosion current density as well as corrosion rate. The results showed that the precipitation-hardening treatment could significantly improve the corrosion resistance of the sintered 17-4 PH stainless steel in studied environment. As far as the influence of aging temperature on corrosion behavior of the sintered 17-4 PH stainless steel is concerned, polarization resistance and corrosion rate are reduced with increasing aging temperature from 480 up to 500 °C regardless of the temperature of solution treatment. It can be concluded that the highest corrosion resistance in 0.5 M H2SO4 solution exhibits 17-4 PH after solution treatment at 1040 °C followed by aging at 480 °C.

  19. Low-temperature solution processing of palladium/palladium oxide films and their pH sensing performance.

    Science.gov (United States)

    Qin, Yiheng; Alam, Arif U; Pan, Si; Howlader, Matiar M R; Ghosh, Raja; Selvaganapathy, P Ravi; Wu, Yiliang; Deen, M Jamal

    2016-01-01

    Highly sensitive, easy-to-fabricate, and low-cost pH sensors with small dimensions are required to monitor human bodily fluids, drinking water quality and chemical/biological processes. In this study, a low-temperature, solution-based process is developed to prepare palladium/palladium oxide (Pd/PdO) thin films for pH sensing. A precursor solution for Pd is spin coated onto pre-cleaned glass substrates and annealed at low temperature to generate Pd and PdO. The percentages of PdO at the surface and in the bulk of the electrodes are correlated to their sensing performance, which was studied by using the X-ray photoelectron spectroscope. Large amounts of PdO introduced by prolonged annealing improve the electrode's sensitivity and long-term stability. Atomic force microscopy study showed that the low-temperature annealing results in a smooth electrode surface, which contributes to a fast response. Nano-voids at the electrode surfaces were observed by scanning electron microscope, indicating a reason for the long-term degradation of the pH sensitivity. Using the optimized annealing parameters of 200°C for 48 h, a linear pH response with sensitivity of 64.71±0.56 mV/pH is obtained for pH between 2 and 12. These electrodes show a response time shorter than 18 s, hysteresis less than 8 mV and stability over 60 days. High reproducibility in the sensing performance is achieved. This low-temperature solution-processed sensing electrode shows the potential for the development of pH sensing systems on flexible substrates over a large area at low cost without using vacuum equipment. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Effect of pH and chloride on the micro-mechanism of pitting corrosion for high strength pipeline steel in aerated NaCl solutions

    International Nuclear Information System (INIS)

    Wang, Yafei; Cheng, Guangxu; Wu, Wei; Qiao, Qiao; Li, Yun; Li, Xiufeng

    2015-01-01

    Highlights: • Pitting behavior of X80 steel in aerated NaCl solutions is studied systematically. • Unique large pit morphology is observed in neutral/acidic NaCl solutions. • In low pH solutions, pit will propagate in the horizontal direction, leading to the shallow shape of pitting morphology; in high pH solutions, the pit sizes are much smaller. • Film growth, which is dependent on the pH and chloride concentration, has great influence on the cathodic reaction by affecting oxygen diffusion process. - Abstract: The pitting corrosion mechanism of high strength pipeline steel in aerated NaCl solutions with different pH and chloride content was investigated, using potentiodynamic polarization, electrochemical impedance spectroscopy (EIS) and scanning electron microscope (SEM). The pitting behavior in alkaline solutions was found to be significantly different from that in neutral and acidic solutions. Electrochemical results and SEM images indicate that the product film formed on the steel surface results in different corrosion behavior in an alkaline solution. SEM images show that pH and chloride concentration in the bulk solution have a great influence on the pitting morphology. Unique large pit morphology due to corrosion in neutral/acidic solutions with 0.05 mol/L NaCl was observed. The relationship between solution pH and the effect of chloride concentration is also discussed

  1. Gammaradiation effect on spectral properties of oxyhemoglobin solutions of different pH in the presence of serotonin

    International Nuclear Information System (INIS)

    Artyukhov, V.G.

    1979-01-01

    Changes in spectral properties of oxyhemoglobin solutions (pH 3 to 12) of mice exposed to gammaradiation (6000R) in the presence of serotonin have been studied. It was established that serotonin (5x10 -5 M) exerts a radioprotective effect in respect of oxyhemoglobin solutions of pH 5 to 9. Serotonin fails to protect protein in the presence of catalase (1x10 -6 M). It is stated that the process of formation of hydrogen peroxide/serotonin complex appreciably contributes to the protective action of the radioprotective agent in respect of gammairradiated oxyhemoglobin solutions

  2. Gravity-driven pH adjustment for site-specific protein pKa measurement by solution-state NMR

    Science.gov (United States)

    Li, Wei

    2017-12-01

    To automate pH adjustment in site-specific protein pKa measurement by solution-state NMR, I present a funnel with two caps for the standard 5 mm NMR tube. The novelty of this simple-to-build and inexpensive apparatus is that it allows automatic gravity-driven pH adjustment within the magnet, and consequently results in a fully automated NMR-monitored pH titration without any hardware modification on the NMR spectrometer.

  3. Influence of pH on the transport of nanoscale zinc oxide in saturated porous media

    Energy Technology Data Exchange (ETDEWEB)

    Kanel, Sushil R. [Pegasus Technical Services, Inc. (United States); Al-Abed, Souhail R., E-mail: al-abed.souhail@epa.gov [National Risk Management Research Laboratory, U.S. Environmental Protection Agency (United States)

    2011-09-15

    Widespread use of nanoscale zinc oxide (nZnO) in various fields causes subsurface environment contamination. Even though the transport of dissolved zinc ions in subsurface environments such as soils and sediments has been widely studied, the transport mechanism of nZnO in such environments is poorly understood. In addition, nZnO is often combined with stabilizers or dispersing agents to prevent its aggregation in products. The purpose of this study is to determine the influence of pH on the transport properties of pristine nZnO and carboxymethyl cellulose (CMC) stabilized nZnO (CMC-nZnO) suspensions in silica sand packed column under saturated flow conditions. Transport data were collected at different pHs (pHs: 3, 7, 9, and 11) under 1 mL/min flow rate conditions in a 1.1 cm diameter column. It is found that the transport trends of pristine nZnO and CMC-nZnO were different. For pristine nZnO, mobility of total Zn reached a minimum around its point of zero charge (pH 8.9). Whereas in the case of CMC-nZnO, the mobility of total Zn decreased as the pH of the solution pH increased from 3 to 11. ZnO and Zn ion mixture were separated using diafiltration membrane. It showed that most of the nZnO and CMC-nZnO exists as Zn ion at pH 3 before and after eluting from the sand packed column whereas at pH 11, they exist as particles. This study shows the strong influence of pH and stabilizing agents on nZnO transport. These factors should be considered during subsurface transport of nZnO.

  4. Influence of pH on the transport of nanoscale zinc oxide in saturated porous media

    International Nuclear Information System (INIS)

    Kanel, Sushil R.; Al-Abed, Souhail R.

    2011-01-01

    Widespread use of nanoscale zinc oxide (nZnO) in various fields causes subsurface environment contamination. Even though the transport of dissolved zinc ions in subsurface environments such as soils and sediments has been widely studied, the transport mechanism of nZnO in such environments is poorly understood. In addition, nZnO is often combined with stabilizers or dispersing agents to prevent its aggregation in products. The purpose of this study is to determine the influence of pH on the transport properties of pristine nZnO and carboxymethyl cellulose (CMC) stabilized nZnO (CMC–nZnO) suspensions in silica sand packed column under saturated flow conditions. Transport data were collected at different pHs (pHs: 3, 7, 9, and 11) under 1 mL/min flow rate conditions in a 1.1 cm diameter column. It is found that the transport trends of pristine nZnO and CMC–nZnO were different. For pristine nZnO, mobility of total Zn reached a minimum around its point of zero charge (pH 8.9). Whereas in the case of CMC–nZnO, the mobility of total Zn decreased as the pH of the solution pH increased from 3 to 11. ZnO and Zn ion mixture were separated using diafiltration membrane. It showed that most of the nZnO and CMC–nZnO exists as Zn ion at pH 3 before and after eluting from the sand packed column whereas at pH 11, they exist as particles. This study shows the strong influence of pH and stabilizing agents on nZnO transport. These factors should be considered during subsurface transport of nZnO.

  5. Effect of pH and Calcium on the Adsorptive Removal of Cadmium and Copper by Iron Oxide–Coated Sand and Granular Ferric Hydroxide

    KAUST Repository

    Uwamariya, V.

    2015-08-17

    Iron oxide-coated sand (IOCS) and granular ferric hydroxide (GFH) were used to study the effect of Ca2+ and pH on the adsorptive removal of Cu2+ and Cd2+ from groundwater using batch adsorption experiments and kinetic modeling. It was observed that Cu2+ and Cd2+ were not stable in synthetic waters. The extent of precipitation increased with increasing pH. Removal of Cu2+ and Cd2+ was achieved through both precipitation and adsorption, with IOCS showing higher adsorption efficiency. Increase of pH (from 6 to 8) resulted in a higher overall removal efficiency of both Cu2+ and Cd2+, with precipitation as predominant removal mechanisms at higher pH values, especially for Cu2+. An increase in Ca2+ concentration increased the precipitation of Cu2+ [as Cu2(OH)2CO3 and Cu3(OH)2(CO3)2] and Cd2+ [as Cd(OH)2 and CdCO3]. In addition, Ca2+ competes with Cu2+ and Cd2+ for surface adsorption sites on IOCS and GFH, and reduces their adsorption capacity. The kinetic modeling revealed that the adsorption of Cd2+ onto IOCS is a complex process, with limited contribution of chemisorption that increases in the presence of Ca2+. © 2015 American Society of Civil Engineers.

  6. Enhanced Fenton-like degradation of TCE in sand suspensions with magnetite by NTA/EDTA at circumneutral pH.

    Science.gov (United States)

    Wang, Na; Jia, Daqing; Jin, Yaoyao; Sun, Sheng-Peng; Ke, Qiang

    2017-07-01

    The present study investigated the degradation of trichloroethylene (TCE) in sand suspensions by Fenton-like reaction with magnetite (Fe 3 O 4 ) in the presence of various chelators at circumneutral pH. The results showed that ethylenediaminetetraacetic acid (EDTA) and nitrilotriacetic acid (NTA) greatly improved the rate of TCE degradation, while [S,S]-ethylenediaminedisuccinic acid (s,s-EDDS), malonate, citrate, and phytic acid (IP6) have minimal effects on TCE degradation. Quenching tests suggested that TCE was mainly degraded by hydroxyl radical (HO · ) attack, with about 90% inhibition on TCE degradation by the addition of HO · scavenger 2-propanol. The presence of 0.1-0.5% Fe 3 O 4 /sand (w/w) contributed to 40% increase in TCE degradation rates. In particular, the use of chelators can avoid high concentrations of H 2 O 2 required for the Fenton-like reaction with Fe 3 O 4 , and moreover improve the stoichiometric efficiencies of TCE degradation to H 2 O 2 consumption. The suitable concentrations of chelators (EDTA and NTA) and H 2 O 2 were suggested to be 0.5 and 20 mM, respectively. Under the given conditions, degradation rate constants of TCE were obtained at 0.360 h -1 with EDTA and 0.526 h -1 with NTA, respectively. Enhanced degradation of TCE and decreased usage of H 2 O 2 in this investigation suggested that Fenton-like reaction of Fe 3 O 4 together with NTA (or EDTA) may be a promising process for remediation of TCE-contaminated groundwater.

  7. Effects of pH on the stability of cyanidin and cyanidin 3-O-β-glucopyranoside in aqueous solution

    Directory of Open Access Journals (Sweden)

    Rakić Violeta P.

    2015-01-01

    Full Text Available The colour variation, colour intensity and stability at various pH values (2.0, 4.0, 7.0 and 9.0 of cyanidin 3-O-β-glucopyranoside (Cy3Glc and its aglycone cyanidin was investigated during a period of 8 hours storage at 25ºC. Our data showed that pH of aqueous solution had impact on spectroscopic profile of cyanidin and Cy3Glc. Beginning with the most acidic solutions, increasing the pH induce bathochromic shifts of absorbance maximum in the visible range for all examined pH values (with the exception pH 4.0 for cyanidin, while the presence of the 3-glucosidic substitution induce hypsochromic shift. Compared to cyanidin, Cy3Glc has higher colour intensity and higher stability in the whole pH range, except at pH 7.0. The 3-glucosidic substitution influences on the colour intensity of Cy3Glc in the alkaline region. After 8-hour incubation of Cy3Glc and cyanidin at pH 2.0 and 25 ºC, 99% of Cy3Glc and only 27% of cyanidin remained unchanged.

  8. Effect of pH Changes on Antioxidant Capacity and the Content of Betalain Pigments During the Heating of a Solution of Red Beet Betalains

    Directory of Open Access Journals (Sweden)

    Mikołajczyk-Bator Katarzyna

    2017-06-01

    Full Text Available Red beets and their products are mainly consumed after processing. In this study, the effect of pH on changes in antioxidant capacity (AC and the content of betalain pigments were analysed during the heating of a betalain preparation solution. With pH ranging from 4 to 9 during the heat-treatment, the content of red pigments decreased depending on the pH level of the sample. The losses of red pigments in the investigated betalain preparation solution increased along with rising pH levels of the heated solution. The greatest losses were recorded at pH of 9.0. An opposite correlation was observed for yellow pigments. The content of yellow pigments in the heated betalain preparation solution was increasing along with increasing pH. The most pronounced increase in the content of yellow pigments was found at pH of 6.5 and 7.0. At the same time, the heated betalain preparation solution was shown to exhibit a higher antioxidant capacity at pH of 6.0 (14.9 μmol Trolox/mL than at pH of 4.0 (12.6 μmol Trolox/mL. It was observed that the increase in the antioxidant capacity in heated betalain preparation solutions with pH in the 6.0–6.5 range occurred as a result of increased concentrations of neobetanin, assessed by HPLC, within the pH range from 5.0 to 6.5.

  9. Alkaline Plume in the Aptian Sand Aquifer in the Context of Low-Level Radioactive Waste Surface Disposal

    Science.gov (United States)

    Cochepin, B.; Munier, I.; MADE, B.

    2017-12-01

    The storage vaults for low and intermediate-level short-lived radioactive waste in the East of France are settled on the Aptian sand layer. In the context of the periodic examination by the nuclear regulators, it has been recommended to assess more precisely the chemical conditions for a potential release of radionuclides in the underlying water table. In particular, this study aims at assessing the eventuality of spreading an alkaline plume in the Aptian sand pore water by the chemical degradation of the vault cementitious materials. The numerical approach developed for this purpose is supported by both experimental characterizations of tracers in the water table and results from preliminary numerical studies on the hydrology of the site and the hydraulic evolution of the storage. The results from these specific simulations were simplified in the reactive transport model to focus on the mechanistic description of the chemical processes taking place in the waste and vaults and on their consequences on the underlying water table. During the operating period of the disposal, the reactive transport modelling shows that the low water saturation in the vaults material and in the vadose zone prevents the aquifer from a significant increase of the water pH under the cement-based vaults. These results are in reasonable agreement with the pH regularly measured in the underlying water table. After storage closure, during the few hundred years of the monitoring period and furthermore beyond, the reactive transport modelling shows a noticeable release of hydroxyls and alkali ions under the disposal vaults and their spread downstream the storage site leading to pH values above 10. It is noteworthy that the pH is not buffered in the Aptian sands because of their low amount in clayey minerals. This effect is now considered for pH-sensitive radionuclide solutes in safety assessment calculations by weighting correspondingly their retention parameters.

  10. Effect of pH Value on the Electrochemical and Stress Corrosion Cracking Behavior of X70 Pipeline Steel in the Dilute Bicarbonate Solutions

    Science.gov (United States)

    Cui, Z. Y.; Liu, Z. Y.; Wang, L. W.; Ma, H. C.; Du, C. W.; Li, X. G.; Wang, X.

    2015-11-01

    In this work, effects of pH value on the electrochemical and stress corrosion cracking (SCC) behavior of X70 pipeline steel in the dilute bicarbonate solutions were investigated using electrochemical measurements, slow strain rate tensile tests and surface analysis techniques. Decrease of the solution pH from 6.8 to 6.0 promotes the anodic dissolution and cathodic reduction simultaneously. Further decrease of the pH value mainly accelerates the cathodic reduction of X70 pipeline steel. As a result, when the solution pH decreases form 6.8 to 5.5, SCC susceptibility decreases because of the enhancement of the anodic dissolution. When the solution pH decreases from 5.5 to 4.0, SCC susceptibility increases gradually because of the acceleration of cathodic reactions.

  11. Treatment and conditioning of radioactive waste solution by natural clay minerals

    International Nuclear Information System (INIS)

    El-Dessouky, M.I.; El-Massry, E.H.; Khalifa, S.M.; Aly, H.F.

    1999-01-01

    Natural inorganic exchangers. Was used to remove caesium, cobalt and europium using zinc sulfate as coagulant also different clay minerals. These calys include, feldrspare, aswanly, bentionite, hematite, mud, calcite, basalt, magnetite, kaoline sand stone, limonite and sand. The factros affecting the removal process namely PH, particle size, temperature and weight of the clay have been studied. Highest removal for Cs-137, Co-60 and Eu-152 and 154 was achived by asswanly and bentonite. Sand stone is more effective than the other clays. Removal of Cs-137 from low level waste solution is in the order the sequence, aswanly (85.5%)> bentonite (82.2%)> sandstone (65.4%). Solidified cement products have been evaluated to determine optimum conditions of mixing most sludges contained clays by testing mechanical strength and leaching rates of the waste products. The solidified waste forms were found more acceptable for handing, storage and ultimate disposal

  12. Effects of solution pH and complexing reagents on uranium and thorium desorption under saturated equilibrium conditions

    International Nuclear Information System (INIS)

    Wang, Yug-Yea; Yu, C.

    1992-01-01

    Three contaminated bulk surface soils were used for investigating the effect of solution pH and complexing reagents on uranium and thorium desorption. At a low solution pH, the major chemical species of uranium and thorium, uranyl UO 2 +2 , thorium dihydroxide Th(OH) 2 +2 , and thorium hydroxide Th(OH) +3 , tend to form complexes with acetates in the solution phase, which increases the fractions of uranium and thorium desorbed into this phase. At a high solution pH, important uranium and thorium species such as uranyl tricarbonate complex UO 2 (CO) 33 -4 and thorium tetrahydroxide complex Th(OH) 4 tend to resist complexation with acetates. The presence of complexing reagents in solution can release radionuclides such as uranium and/or thorium from the soil to the solution by forming soluble complexes. Sodium bicarbonate (NaHCO 3 ) and diethylenetriaminepentaacetic acid (DTPA) are strong complex formers that released 38% to 62% of total uranium activity and 78% to 86% of total thorium activity, respectively, from the soil samples investigated. Solutions of 0.1 molar sodium nitrate (NaNO 3 ) and 0.1 molar sodium sulfate (Na 2 SO 4 ) were not effective complex formers with uranium and thorium under the experimental conditions. Fractions of uranium and thorium desorbed by 0.15g/200ml humic acid ranged from 4.62% to 6.17% and 1.59% to 7.09%, respectively. This work demonstrates the importance of a knowledge of solution chemistry in investigating the desorption of radionuclides

  13. Revealing the Dimeric Crystal and Solution Structure of β-Lactoglobulin at pH 4 and Its pH and Salt Dependent Monomer–Dimer Equilibrium

    DEFF Research Database (Denmark)

    Khan, Sanaullah; Ipsen, Richard; Almdal, Kristoffer

    2018-01-01

    The dimeric structure of bovine β-lactoglobulin A (BLGA) at pH 4.0 was solved to 2.0 Å resolution. Fitting the BLGA pH 4.0 structure to SAXS data at low ionic strength (goodness of fit R-factor = 3.6%) verified the dimeric state in solution. Analysis of the monomer–dimer equilibrium at varying pH...... and ionic strength by SAXS and scattering modeling showed that BLGA is dimeric at pH 3.0 and 4.0, shifting toward a monomer at pH 2.2, 2.6, and 7.0 yielding monomer/dimer ratios of 80/20%, 50/50%, and 25/75%, respectively. BLGA remained a dimer at pH 3.0 and 4.0 in 50–150 mM NaCl, whereas the electrostatic...... shielding raised the dimer content at pH 2.2, 2.6, and 7.0, i.e., below and above the pI. Overall, the findings provide new insights into the molecular characteristics of BLGA relevant for dairy product formulations and for various biotechnological and pharmaceutical applications....

  14. Development tendencies of moulding and core sands

    Directory of Open Access Journals (Sweden)

    Stanislaw M. Dobosz1

    2011-11-01

    Full Text Available Further development of the technology for making moulding and core sands will be strictly limited by tough requirements due to protection of the natural environment. These tendencies are becoming more and more tense, so that we will reach a point when even processes, that from technological point of view fulfill high requirements of the foundry industry, must be replaced by more ecologically-friendly solutions. Hence, technologies using synthetic resins as binding materials will be limited. This paper presents some predictable development tendencies of moulding and core sands. The increasing role of inorganic substances will be noticed, including silicate binders with significantly improved properties, such as improved knock-out property or higher reclamation strength. Other interesting solutions might also be moulding sands bonded by geo-polymers and phosphate binders or salts and also binders based on degradable biopolymers. These tendencies and the usefulness of these binders are put forward in this paper.

  15. pH Sensing Properties of Flexible, Bias-Free Graphene Microelectrodes in Complex Fluids: From Phosphate Buffer Solution to Human Serum.

    Science.gov (United States)

    Ping, Jinglei; Blum, Jacquelyn E; Vishnubhotla, Ramya; Vrudhula, Amey; Naylor, Carl H; Gao, Zhaoli; Saven, Jeffery G; Johnson, Alan T Charlie

    2017-08-01

    Advances in techniques for monitoring pH in complex fluids can have a significant impact on analytical and biomedical applications. This study develops flexible graphene microelectrodes (GEs) for rapid (pH of complex biofluids by measuring real-time Faradaic charge transfer between the GE and a solution at zero electrical bias. For an idealized sample of phosphate buffer solution (PBS), the Faradaic current is varied monotonically and systematically with the pH, with a resolution of ≈0.2 pH unit. The current-pH dependence is well described by a hybrid analytical-computational model, where the electric double layer derives from an intrinsic, pH-independent (positive) charge associated with the graphene-water interface and ionizable (negative) charged groups. For ferritin solution, the relative Faradaic current, defined as the difference between the measured current response and a baseline response due to PBS, shows a strong signal associated with ferritin disassembly and the release of ferric ions at pH ≈2.0. For samples of human serum, the Faradaic current shows a reproducible rapid (pH. By combining the Faradaic current and real-time current variation, the methodology is potentially suitable for use to detect tumor-induced changes in extracellular pH. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Effect of Nutrition Solution pH and Electrical Conductivity on Fusarium Wilt on Strawberry Plants in Hydroponic Culture

    Directory of Open Access Journals (Sweden)

    Myeong Hyeon Nam

    2018-03-01

    Full Text Available Fusarium wilt on strawberry plants caused by Fusarium oxysporum f. sp. fragariae (Fof is a major disease in Korea. The prevalence of this disease is increasing, especially in hydroponic cultivation in strawberry field. This study assessed the effect of nutrition solution pH and electrical conductivity (EC on Fusarium wilt in vitro and in field trials. pH levels of 5.0, 5.5, 6.0, 6.5, 7.0, and 7.5 were assayed in vitro and in field trials. EC levels at 0, 0.5, 0.8, 1.0, and 1.5 dS∙m⁻¹ were assayed in field trials. Mycelial growth of Fof increased with increasing pH and was highest at 25°C pH 7 and lowest at 20°C, pH 5.0 in vitro. The incidence of Fusarium wilt was lowest in the pH 6.5 treatment and highest in the pH 5 treatment in field trials. At higher pH levels, the EC decreased in the drain solution and the potassium content of strawberry leaves increased. In the EC assay, the severity of Fusarium wilt and nitrogen content of leaves increased as the EC increased. These results indicate that Fusarium wilt is related to pH and EC in hydroponic culture of strawberry plants.

  17. Transport of titanium dioxide nanoparticles in saturated porous media under various solution chemistry conditions

    International Nuclear Information System (INIS)

    Wang Yu; Gao Bin; Morales, Verónica L.; Tian Yuan; Wu Lei; Gao Jie; Bai Wei; Yang Liuyan

    2012-01-01

    Because of its wide applications, nanosized titanium dioxide may become a potential environmental risk to soil and groundwater system. It is therefore important to improve current understanding of the environmental fate and transport of titanium oxides nanoparticles (TONPs). In this work, the effect of solution chemistry (i.e., pH, ionic strength, and natural organic matter (NOM) concentration) on the deposition and transport of TONPs in saturated porous media was examined in detail. Laboratory columns packed with acid-cleaned quartz sand were used in the experiment as porous media. Transport experiments were conducted with various chemistry combinations, including four ionic strengths, three pH levels, and two NOM concentrations. The results showed that TONP mobility increased with increasing solution pH, but decreased with increasing solution ionic strength. It is also found that the presence of NOM in the system enhanced the mobility of TONPs in the saturated porous media. The Derjaguin–Landau–Verwey–Overbeek (DLVO) theory was used to justify the mobility trends observed in the experimental data. Predictions from the theory agreed excellently with the experimental data.

  18. Influence of clay particles on the transport and retention of titanium dioxide nanoparticles in quartz sand.

    Science.gov (United States)

    Cai, Li; Tong, Meiping; Wang, Xueting; Kim, Hyunjung

    2014-07-01

    This study investigated the influence of two representative suspended clay particles, bentonite and kaolinite, on the transport of titanium dioxide nanoparticles (nTiO2) in saturated quartz sand in both NaCl (1 and 10 mM ionic strength) and CaCl2 solutions (0.1 and 1 mM ionic strength) at pH 7. The breakthrough curves of nTiO2 with bentonite or kaolinite were higher than those without the presence of clay particles in NaCl solutions, indicating that both types of clay particles increased nTiO2 transport in NaCl solutions. Moreover, the enhancement of nTiO2 transport was more significant when bentonite was present in nTiO2 suspensions relative to kaolinite. Similar to NaCl solutions, in CaCl2 solutions, the breakthrough curves of nTiO2 with bentonite were also higher than those without clay particles, while the breakthrough curves of nTiO2 with kaolinite were lower than those without clay particles. Clearly, in CaCl2 solutions, the presence of bentonite in suspensions increased nTiO2 transport, whereas, kaolinite decreased nTiO2 transport in quartz sand. The attachment of nTiO2 onto clay particles (both bentonite and kaolinite) were observed under all experimental conditions. The increased transport of nTiO2 in most experimental conditions (except for kaolinite in CaCl2 solutions) was attributed mainly to the clay-facilitated nTiO2 transport. The straining of larger nTiO2-kaolinite clusters yet contributed to the decreased transport (enhanced retention) of nTiO2 in divalent CaCl2 solutions when kaolinite particles were copresent in suspensions.

  19. Diffusive transport of strontium-85 in sand-bentonite mixtures

    International Nuclear Information System (INIS)

    Gillham, R.W.; Robin, M.J.L.; Dytynyshyn, D.J.

    1983-06-01

    Diffusion experiments have been used to determine the transport of 85 Sr in sand-bentonite mixtures. The diffusion experiments were performed on one natural soil (Chalk River sand) and on seven mixtures of bentonite and silica sand, containing from 0 percent to 100 percent bentonite. Two non-reactive solutes ( 36 Cl and 3 H) and one reactive solute ( 85 Sr) were used in the study. The experiments with non-reactive solutes yielded estimates of tortuosity factors. Retardation factors were obtained from experimental porosities, experimental bulk densities, and from batch distribution coefficients (Ksub(d)). These Ksub(d) values are a simple way of describing the solute/medium reaction, and are based on the assumption that the cation-exchange reaction may be described by a linear adsorption isotherm passing through the origin. The results demonstrate that, for practical purposes and for our experimental conditions, the use of the distribution coefficient provides a convenient means of calculating the effective diffusion coefficient for 85 Sr. The porosity and bulk density were also found to have a considerable influence on the effective diffusion coefficient, through the retardation factor. Mixtures containing 5-10 percent bentonite were found to be more effective in retarding 85 Sr than either sand alone, or mixtures containing more bentonite. In the soils of higher bentonite content, the effect of increased cation-exchange capacity was balanced by a decreasing ratio of bulk density to porosity

  20. Estimation of Hydrazine Decomposition on Measuring the High-Temperature pH in Hydrazine/ETA Solutions at 553 K

    International Nuclear Information System (INIS)

    Hwang, Jae Sik; Yeon, Jei Won; Yun, Myung Hee; Song, Kyu Seok; Lee, Sang Ill

    2010-01-01

    Hydrazine is one of the most excellent oxygen scavengers used in the secondary circuit of nuclear power plants. Furthermore, in some pants, the hydrazine is used as a source of hydrogen required to suppress radiolysis of the coolant water in the primary loop. When hydrazine was exposed in the high temperature and high pressure water, it can be decomposed into the various products such as NH 3 , N 2 , H 2 , and NO 3 ions. As the result, the pH of solution containing hydrazine in the condition of the high temperature and high pressure can be changed by those decomposed products. In the present work, we investigated the decomposition behavior of hydrazine in ETA (ethanol amine) solution. In addition, we measured the high temperature pH at 553 K on the various hydrazine/ETA solutions for confirming the applicability of the yttria stabilized zirconia (YSZ)- based pH electrode in secondary circuit of the nuclear power plants

  1. Preparation and characterization of poly(acrylic acid)—corn starch blend for use as chemical sand-fixing materials

    Science.gov (United States)

    Dang, Xugang; Chen, Hui; Shan, Zhihua

    2017-07-01

    One chemical sand-fixing materials based on poly(acrylic acid)-corn starch (PACS) blend was studied in this work. The PACS blend was prepared by solution mixing method between PA and CS. In order to prepare sand-fixing materials for environmental applications using the well-established method of spraying evenly PACS blend solution on the surfaces of fine sand. Fourier transform infrared spectroscopy (FT-IR) revealed the existence of the intermolecular interactions between the blend components. Scanning electron microscope (SEM) analysis showed a continuous phase of blend, and it also showed the good sand-fixing capacity. The test results of hygroscopicity and water retention experiments indicated that the blends had excellent water-absorbing and water-retention capacity. The results of contact angle measurements between the PACS solutions and fine sand showed that the PACS blend has a satisfactory effect on fine sand wetting. And the PACS, as a sand-fixation material, has excellent sand-fixation rate up to 99.5%.

  2. Differences in phytotoxicity and dissipation between ionized and nonionized oil sands naphthenic acids in wetland plants.

    Science.gov (United States)

    Armstrong, Sarah A; Headley, John V; Peru, Kerry M; Germida, James J

    2009-10-01

    Naphthenic acids (NAs) are composed of alkyl-substituted acyclic and cycloaliphatic carboxylic acids and, because they are acutely toxic to fish, are of toxicological concern. During the caustic hot-water extraction of oil from the bitumen in oil sands deposits, NAs become concentrated in the resulting tailings pond water. The present study investigated if dissipation of NAs occurs in the presence of hydroponically grown emergent macrophytes (Typha latifolia, Phragmites australis, and Scirpus acutus) to determine the potential for phytoremediation of these compounds. Plants were grown with oil sands NAs (pKa approximately 5-6) in medium at pH 7.8 (predominantly ionized NAs) and pH 5.0 (predominantly nonionized NAs) to determine if, by altering their chemical form, NAs may be more accessible to plants and, thus, undergo increased dissipation. Whereas the oil sands NA mixture in its nonionized form was more toxic to wetland plants than its ionized form, neither form appeared to be sequestered by wetland plants. The present study demonstrated that plants may selectively enhance the dissipation of individual nonionized NA compounds, which contributes to toxicity reduction but does not translate into detectable total NA dissipation within experimental error and natural variation. Plants were able to reduce the toxicity of a NA system over 30 d, increasing the median lethal concentration (LC50; % of hydroponic solution) of the medium for Daphnia magna by 23.3% +/- 8.1% (mean +/- standard error; nonionized NAs) and 37.0% +/- 2.7% (ionized NAs) as determined by acute toxicity bioassays. This reduction in toxicity was 7.3% +/- 2.6% (nonionized NAs) and 45.0% +/- 6.8% (ionized NAs) greater than that in unplanted systems.

  3. Treatment and Conditioning of Radioactive Waste Solution by Natural Clay Minerals

    International Nuclear Information System (INIS)

    El-Dessouky, M.I.; Abdel-Raouf, M.W.; El-Massry, E.H.; Khalifa, S.M.; Aly, H.F.

    1999-01-01

    Chemical precipitation processes have been used for the treatment of radioactive elements from aqueous solution. The volume reduction is not very great and storage facilities are expensive. There are some radionuclides which are so difficult to be precipitated by this common method, so they may be precipitated by adding solid materials such as natural inorganic exchangers. In this woek, improvement the removal of caesium, cobalt and europium with zinc sulfate as coagulant and different clay minerals have been investigated. These include, Feldespare, Aswanly, Bentionite, Hematite, Mud, Calcite, Basalt, Magnetite, Kaoline, Sand stone, Limonite and Sand. The parameters affecting the precipitation process such as pH, particle size, temperature and weight of the clay have been studied. The results indicate that, the highest removal for Cs-137, Co-60 and Eu-152 and154 by Asswanly, Bentonite and Sand stone is more than the other clays. Removal of Cs-137 from low level waste solution with these three natural clays took the sequence, Aswanly (85.5%) > Bentonite (82.2%) > Sandstone (65.4%). Solidified cement products have been evaluated to determine mechanical strength and leaching rates of the waste products. The solidified waste forms were found more acceptable for handling ,storage and ultimate disposal

  4. Adsorption of surfactants on sand surface in enhanced oil recovery: Isotherms, kinetics and thermodynamic studies

    Energy Technology Data Exchange (ETDEWEB)

    Bera, Achinta; Kumar, T.; Ojha, Keka; Mandal, Ajay, E-mail: mandal_ajay@hotmail.com

    2013-11-01

    Adsorption of surfactants onto reservoir rock surface may result in the loss and reduction of their concentrations in surfactant flooding, which may render them less efficient or ineffective in practical applications of enhanced oil recovery (EOR) techniques. Surfactant flooding for EOR received attraction due to its ability to increase the displacement efficiency by lowering the interfacial tension between oil and water and mobilizing the residual oil. This article highlights the adsorption of surfactants onto sand surface with variation of different influencing factors. It has been experimentally found that adsorption of cationic surfactant on sand surface is more and less for anionic surfactant, while non-ionic surfactant shows intermediate behaviour. X-ray diffraction (XRD) study of clean sand particles has been made to determine the main component present in the sand particles. The interaction between sand particles and surfactant has been studied by Fourier Transform Infrared (FTIR) Spectroscopy of the sand particles before and after aging with surfactant. Salinity plays an important role in adsorption of anionic surfactant. Batch experiments were also performed to understand the effects of pH and adsorbent dose on the sorption efficiency. The sand particles exhibited high adsorption efficiency at low pH for anionic and nonionic surfactants. But opposite trend was found for cationic surfactant. Adsorption data were analyzed by fitting with Langmuir, Freundlich, Redlich-Peterson, and Sips isotherm models. Results show that the Langmuir isotherm and pseudo-second order kinetics models suit the equilibrium and kinetics of adsorption on sand surface. Thermodynamics feasibility of the adsorption process was also studied to verify the spontaneity of the process.

  5. Removal method of radium in mine water by filter sand

    International Nuclear Information System (INIS)

    Taki, Tomihiro; Naganuma, Masaki

    2003-01-01

    Trace radium is contained in mine water from the old mine road in Ningyo-Toge Environmental Engineering Center, JNC. We observed that filter sand with hydrated manganese oxide adsorbed radium in the mine water safely for long time. The removal method of radium by filter sand cladding with hydrated manganese oxide was studied. The results showed that radium was removed continuously and last for a long time from mine water with sodium hypochlorite solution by passing through the filter sand cladding with hydrated manganese. Only sodium hypochlorite solution was used. When excess of it was added, residue chlorine was used as chlorine disinfection. Filter sand cladding with hydrated manganese on the market can remove radium in the mine water. The removal efficiency of radium is the same as the radium coprecipitation method added with barium chloride. The cost is much lower than the ordinary methods. Amount of waste decreased to about 1/20 of the coprecipitation method. (S.Y.)

  6. Microbially-accelerated consolidation of oil sands tailings. Pathway I: changes in porewater chemistry.

    Science.gov (United States)

    Siddique, Tariq; Kuznetsov, Petr; Kuznetsova, Alsu; Arkell, Nicholas; Young, Rozlyn; Li, Carmen; Guigard, Selma; Underwood, Eleisha; Foght, Julia M

    2014-01-01

    Dispersed clay particles in mine tailings and soft sediments remain suspended for decades, hindering consolidation and challenging effective management of these aqueous slurries. Current geotechnical engineering models of self-weight consolidation of tailings do not consider microbial contribution to sediment behavior, however, here we show that microorganisms indigenous to oil sands tailings change the porewater chemistry and accelerate consolidation of oil sands tailings. A companion paper describes the role of microbes in alteration of clay chemistry in tailings. Microbial metabolism in mature fine tailings (MFT) amended with an organic substrate (hydrolyzed canola meal) produced methane (CH4) and carbon dioxide (CO2). Dissolution of biogenic CO2 lowered the pH of amended MFT to pH 6.4 vs. unamended MFT (pH 7.7). About 12% more porewater was recovered from amended than unamended MFT during 2 months of active microbial metabolism, concomitant with consolidation of tailings. The lower pH in amended MFT dissolved carbonate minerals, thereby releasing divalent cations including calcium (Ca(2+)) and magnesium (Mg(2+)) and increasing bicarbonate (HCO(-) 3) in porewater. The higher concentrations increased the ionic strength of the porewater, in turn reducing the thickness of the diffuse double layer (DDL) of clay particles by reducing the surface charge potential (repulsive forces) of the clay particles. The combination of these processes accelerated consolidation of oil sands tailings. In addition, ebullition of biogenic gases created transient physical channels for release of porewater. In contrast, saturating the MFT with non-biogenic CO2 had little effect on consolidation. These results have significant implications for management and reclamation of oil sands tailings ponds and broad importance in anaerobic environments such as contaminated harbors and estuaries containing soft sediments rich in clays and organics.

  7. New analytical methodology for analysing S(IV) species at low pH solutions by one stage titration method (bichromatometry) with a clear colour change. Could potentially replace the state-of-art-method iodometry at low pH analysis due higher accuracy.

    Science.gov (United States)

    Santasalo-Aarnio, Annukka; Galfi, Istvan; Virtanen, Jorma; Gasik, Michael M

    2017-01-01

    A new, faster and more reliable analytical methodology for S(IV) species analysis at low pH solutions by bichromatometry is proposed. For decades the state of the art methodology has been iodometry that is still well justified method for neutral solutions, thus at low pH media possess various side reactions increasing inaccuracy. In contrast, the new methodology has no side reactions at low pH media, requires only one titration step and provides a clear color change if S(IV) species are present in the solution. The method is validated using model solutions with known concentrations and applied to analyses of gaseous SO2 from purged solution in low pH media samples. The results indicate that bichromatometry can accurately analyze SO2 from liquid samples having pH even below 0 relevant to metallurgical industrial processes.

  8. Effect of pH on the corrosion behaviour of SUS321 in the ammonia aqueous solution

    International Nuclear Information System (INIS)

    Park, Sang Yoon; Jeong, Y. H.; Baek, J. H.; Choi, B. K.; Lee, M. H.; Choi, B. S.; Yoon, J. H.; Lee, D. J.

    2003-02-01

    The corrosion characteristics of SUS321 for pressure vessel of SMART in pure water, ammonia aqueous solutions of pH 8.5 ∼ 11.5 at 300 .deg. C were evaluated by using static autoclaves. SUS321 specimen in the high temperature ammonia aqueous solution has weight gain or loss by the 4 reactions. And it depends on the refreshing period of the aqueous solution. So additional experiments by recirculating loop system were required to evaluate the corrosion behaviour of SUS321 in the ammonia aqueous solution

  9. Influence of pH and oxygen content of buffer solutions on the corrosion behaviour of metallic materials

    International Nuclear Information System (INIS)

    Wiedemann, K.H.

    1977-05-01

    The application of solutions to the decontamination of materials in nuclear installations is based on the condition that their corrosion behaviour is clearly understood. Since electrochemical corrosion is due to cathodic and anodic partial reactions which are influenced in different ways by the pH of the solution and the oxygen content it is suggested that the results of electrochemical experiments with buffer solutions be used as a model for predicting the corrosion behaviour of materials in other solutions. In the tests described here potentio-kinetic current-potential-curves have been traced and galvanic corrosion tests have been made. The results obtained in ascorbic acid, potassium hydrogen phthalate, ammonium citrate and acetate, sodium and potassium tartrate, ammonium hydrogen phosphate, sodium carbonate, hexamethylene tetramin, ethylene diamine enable - on the basis of summarized current-potential-curves - the metals studied to be classified in four groups characterized by clear differences concerning the influence of pH on the corrosion behaviour. (Auth.)

  10. Fluoride retardation from quartz sand-packed column tests

    Directory of Open Access Journals (Sweden)

    Eduardo Usunoff

    2009-06-01

    Full Text Available Inasmuch as both low and high concentrations of F- in groundwater have different detrimental effects on human health (increased dental caries, and mottled enamel or even severe structural bone deformations, respectively, many efforts have focused on the movement of such anion in aqueous systems. It is so because water drinking is the main intake of F- by humans. This paper presents the results of seven dynamic experiments in which solutions of varying [F-], pH, and flow velocities circulated through columns packed with clean quartz sand. The breakthrough data were analyzed by means of a computer code adapted to the estimation of equilibrium and non-equilibrium solute transport parameters from miscible displacement experiments in a steady-state, uniform flow field using a pulse-type or continuous source. It was found that larger retardation factors (R are associated with low pH, low [F-] in the feed solutions, and larger flow velocities. Such results appear to be related to the form of the F species, the rather weak bond between the adsorbate and the quartz sand, and stronger anion repulsion at low pore velocities. The estimated values for R vary between 1,22 and 1,50, whereas the distribution coefficients were in the range of 0,1 to 0,05 L kg-1. It should be said that the breakthrough curves display hysteresis, leading to a desorption behavior that proceeds faster than the adsorption process.Puesto que tanto valores bajos como altos de F- en las aguas subterráneas tienen efectos adversos en la salud de los humanos (mayor cantidad de caries, y manchas del esmalte dental e incluso deformaciones óseas, respectivamente, han sido muchos los esfuerzos destinados a dilucidar el movimiento de especies fluoradas en ambientes acuosos. Ello es así porque el consumo de agua por parte de seres humanos representa la mayor fuente de ingreso de F-. Este trabajo presenta los resultados de siete experimentos dinámicos en los que soluciones de diferentes [F

  11. Transport of citrate-coated silver nanoparticles in unsaturated sand

    Science.gov (United States)

    Kumahor, Samuel; Hron, Pavel; Metreveli, George; Schaumann, Gabriele; Vogel, Hans-Jörg

    2015-04-01

    Chemical factors and physical constraints lead to coupled effects during particle transport in unsaturated porous media. Unlike for saturated transport, studies on unsaturated transport as typical for soil are currently scarce. We investigated the mobility of citrate-coated Ag NPs in unsaturated sand (grain diameter: 0.1-0.3 mm). For three flux rates and a given pore-water ionic strength (1 mM KNO3), the citrate-coated Ag NPs were less mobile at pH = 5 compared to pH = 9. The classic Derjaguin-Landau-Verwey-Overbeek (DLVO) theory suggests unfavorable deposition conditions at both, the air-water interface and solid-water interface. Breakthrough curves measured under quasi-steady state unsaturated flow showed retardation of the citrate-coated Ag NPs compared to inert solute (KBr). After flushing with nanoparticle-free 1 mM KNO3 solution (pH-adjusted), retention was much lower in deeper depths compared to the surface where the particles entered the flow field. The results show a non-linear dependence of nanoparticle (NP) mobility on flux rate and water content. Especially the observed retardation similar to equilibrium sorption is in contrast to observations under saturated flow conditions. A convection-dispersion and reaction model that combines a reversible equilibrium process and a non-equilibrium interaction process reproduced the measured breakthrough curves reasonably well. From comparison between saturated and unsaturated experiments we conclude that the air-water interface is responsible for the reversible equilibrium process while the water-solid interface accounts for irreversible soption.

  12. Oil sands supply outlook

    International Nuclear Information System (INIS)

    Dunbar, R.

    2004-01-01

    In March 2004, The Canadian Energy Research Institute released a report on the expected future supply from Alberta's oil sands. The report indicates that the future for the already well-established oil sands industry is promising, particularly given the outlook for oil prices. The challenges facing the industry include higher industry supply costs and the need for innovative commercial and technological solutions to address the risks of irregularities and changes in crude oil prices. In 2003, the industry produced 874 thousand barrels per day of synthetic crude oil and unprocessed crude bitumen. This represents 35 per cent of Canada's total oil production. Current production capacity has increased to 1.0 million barrels per day (mbpd) due to new projects. This number may increase to 3.5 mbpd by 2017. Some new projects may be deferred due to the higher raw bitumen and synthetic crude oil supply costs. This presentation provided supply costs for a range of oil sands recovery technologies and production projections under various business scenarios. tabs., figs

  13. Influence of the Reclaim from the Cordis Technology on the Core Sand Strength

    Directory of Open Access Journals (Sweden)

    Dańko J.

    2014-12-01

    Full Text Available The investigation results of the mechanical reclamation of spent moulding sands from the Cordis technology are presented in the paper. The quality assessment of the obtained reclaim and the influence of the reclaim fraction in a matrix on the core sand strength is given. The reclaim quality assessment was performed on the basis of the determination of losses on ignition, Na2O content on reclaim grains and pH values. The reclaim constituted 100%, 75% and 50% of the core sand matrix, for which the bending strength was determined. The matrix reclamation treatment was performed in the experimental rotor reclaimer RD-6. Spent sands were applied in as-delivered condition and after the heating to a temperature of 140 °C. Shaped samples for strength tests were made by shooting and hardening of sands in the warmbox technology.

  14. Separation of Ce and La from Synthetic Chloride Leach Solution of Monazite Sand by Precipitation and Solvent Extraction

    Science.gov (United States)

    Banda, Raju; Jeon, Ho Seok; Lee, Man Seung

    2014-12-01

    Precipitation and solvent extraction experiments have been performed to recover light rare earths from simulated monazite sand chloride leach solutions. Precipitation conditions were obtained to recover Ce by adding NaClO as an oxidant. Among some cationic extractants (PC 88A, D2EHPA, Cyanex 272, LIX 63), PC 88A showed the best performance to separate La from the resulting chloride solution. Furthermore, the mixture of PC 88A with other solvating (TBP, TOPO) and amine extractants (Alamine 336, Aliquat 336) was tested to increase the separation factor of La from Pr and Nd. The use of mixed extractants greatly enhanced the separation of La from the two other metals. McCabe-Thiele diagrams for the extraction of Pr and Nd with the PC 88A/Alamine 336 mixture were constructed.

  15. [Effect of concomitant substances and addition order on the adsorption of Tween 80 on sand].

    Science.gov (United States)

    Xu, Wei; Zhao, Yong-sheng; Li, Sui; Dai, Ning

    2008-08-01

    Adsorption of Tween 80 on sand was investigated, and the effect of inorganic salts (CaCl2), anionic surfactant (SDS) and lignosulphonates (sodium lignosulphonate or ammonium lignosulphonate) on the adsorption of Tween 80 on sand were evaluated at 25 degrees C. The results show that saturated adsorption amount of Tween 80 on sand enhance when CaCl2 or SDS is added into flushing solution of Tween 80. And the adsorption of Tween 80 on sand increase with the increase of molar fraction of CaCl2 or SDS in mixed flushing solution. And adsorption amount of Tween 80 on sand also enhance when SDS is added into sand firstly. The effects of mixing ratios and addition order of lignosulphonates on adsorption of Tween 80 were considered. The results show that with the increase of molar fraction of lignosulphonates in mixing flushing solution, adsorption amount of Tween 80 on sand decrease. The adsorption amount of Tween 80 reduce 20%-75% due to the exist of ammonium lignosulphonate is superior to sodium lignosulphonate (10%-60%) when mix the lignosulphonates-Tween 80 at the total mass ratios of 1:10, while the adsorption amount of Tween 80 reduce 70%-90% at the total mass ratios of 1:2. Lignosulphonates added into sand firstly is more efficient than that together. Therefore,use of lignosulphonates as a preflush can reduce the adsorption of surfactants on sand and is a better method to applied in in situ flushing.

  16. Big picture thinking in oil sands tailings disposal

    Energy Technology Data Exchange (ETDEWEB)

    Boswell, J. [Thurber Engineering Ltd., Calgary, AB (Canada)

    2010-07-01

    This PowerPoint presentation discussed methods of disposing oil sands tailings. Oil sands operators are currently challenged by a variety of legislative and environmental factors concerning the creation and disposal of oil sands tailings. The media has focused on the negative ecological impact of oil sands production, and technical issues are reducing the effect of some mitigation processes. Operators must learn to manage the interface between tailings production and removal, the environment, and public opinion. The successful management of oil sand tailings will include procedures designed to improve reclamation processes, understand environmental laws and regulations, and ensure that the cumulative impacts of tailings are mitigated. Geotechnical investigations, engineering designs and various auditing procedures can be used to develop tailings management plans. Environmental screening and impact assessments can be used to develop sustainable solutions. Public participation and environmental mediation is needed to integrate the public, environmental and technical tailings management strategies. Operators must ensure public accountability for all stakeholders. tabs., figs.

  17. High purity Fe3O4 from Local Iron Sand Extraction

    Science.gov (United States)

    Gunanto, Y. E.; Izaak, M. P.; Jobiliong, E.; Cahyadi, L.; Adi, W. A.

    2018-04-01

    Indonesia has a long coastline and is rich with iron sand. The iron sand is generally rich in various elements such as iron and titanium. One of the products processing of the iron sand mineral is iron (II) (III) oxide (magnetite Fe3O4). The stages of purification process to extracting magnetite phase and discarding the other phases has been performed. Magnetite phase analysis of ironsand extraction retrieved from Indonesia have been investigated. The result of analysis element of iron sand shows that it consists of majority Fe around 65 wt%. However, there are still 17 impurities such as Ti, Al, Ce, Co, Cr, Eu, La, Mg, Mn, Na, Sc, Sm, Th, V, Yb, and Zn. After extraction process, Fe element content increases up to 94%. The iron sand powder after milling for 10 hours and separating using a magnetic separator, the iron sand powders are dissolved in acid chloride solution to form a solution of iron chloride, and this solution is sprinkled with sodium hydroxide to obtain fine powders of Fe3O4. The fine powders which formed were washed with de-mineralization water. The X-ray diffraction pattern shows that the fine powders have a single phase of Fe3O4. The analysis result shows that the sample has the chemical formula: Fe3O4 with a cubic crystal system, space group: Fd-3m and lattice parameters: a = b = c = 8.3681 (1) Å, α = β = γ = 90°. The microstructure analysis shows that the particle of Fe3O4 homogeneously shaped like spherical. The magnetic properties using vibrating sample magnetometer shows that Fe3O4 obtained have ferromagnetic behavior with soft magnetic characteristics. We concluded that this purification of iron sand had been successfully performed to obtain fine powders of Fe3O4 with high purity.

  18. Dansyl-8-aminoquinoline as a sensitive pH fluorescent probe with dual-responsive ranges in aqueous solutions.

    Science.gov (United States)

    Zhang, Min; Zheng, Shuyu; Ma, Liguo; Zhao, Meili; Deng, Lengfang; Yang, Liting; Ma, Li-Jun

    2014-04-24

    A sensitive pH fluorescent probe based on dansyl group, dansyl-8-aminoquinoline (DAQ), has been synthesized. The probe showed dual-responsive ranges to pH changes, one range from 2.00 to 7.95 and another one from 7.95 to 10.87 in aqueous solution, as it showed pKa values of 5.73 and 8.56 under acid and basic conditions, respectively. Furthermore, the pH response mechanism of the probe was explored successfully by using NMR spectra. The results indicated that the responses of DAQ to pH changes should attribute to the protonation of the nitrogen atom in the dimethylamino group and deprotonation of sulfonamide group. Copyright © 2014. Published by Elsevier B.V.

  19. Coupling Solute and Fine Particle Transport with Sand Bed Morphodynamics within a Field Experiment

    Science.gov (United States)

    Phillips, C. B.; Ortiz, C. P.; Schumer, R.; Jerolmack, D. J.; Packman, A. I.

    2017-12-01

    Fine suspended particles are typically considered to pass through streams and rivers as wash load without interacting with the bed, however experiments have demonstrated that hyporheic flow causes advective exchange of fine particles with the stream bed, yielding accumulation of fine particle deposits within the bed. Ultimately, understanding river morphodynamics and ecosystem dynamics requires coupling both fine particle and solute transport with bed morphodynamics. To better understand the coupling between these processes we analyze a novel dataset from a controlled field experiment conducted on Clear Run, a 2nd order sand bed stream located within the North Carolina coastal plain. Data include concentrations of continuously injected conservative solutes and fine particulate tracers measured at various depths within the stream bed, overhead time lapse images of bed forms, stream discharge, and geomorphological surveys of the stream. We use image analysis of bed morphodynamics to assess exchange, retention, and remobilization of solutes and fine particles during constant discharge and a short duration experimental flood. From the images, we extract a time series of bedform elevations and scour depths for the duration of the experiment. The high-resolution timeseries of bed elevation enables us to assess coupling of bed morphodynamics with both the solute and fine particle flux during steady state mobile bedforms prior to the flood and to changing bedforms during the flood. These data allow the application of a stochastic modeling framework relating bed elevation fluctuations to fine particle residence times. This combined experimental and modeling approach ultimately informs our ability to predict not only the fate of fine particulate matter but also associated nutrient and carbon dynamics within streams and rivers.

  20. The influence of pore-water advection, benthic photosynthesis, and respiration on calcium carbonate dynamics in reef sands

    NARCIS (Netherlands)

    Rao, A.M.F.; Polerecky, L.; Ionescu, D.; Meysman, F.J.R.; de-Beer, D.

    2012-01-01

    To investigate diel calcium carbonate (CaCO3) dynamics in permeable coral reef sands, we measured pore-water profiles and fluxes of oxygen (O2), nutrients, pH, calcium (Ca2+), and alkalinity (TA) across the sediment-water interface in sands of different permeability

  1. Varying Inundation Regimes Differentially Affect Natural and Sand-Amended Marsh Sediments.

    Directory of Open Access Journals (Sweden)

    C Wigand

    Full Text Available Climate change is altering sea level rise rates and precipitation patterns worldwide. Coastal wetlands are vulnerable to these changes. System responses to stressors are important for resource managers and environmental stewards to understand in order to best manage them. Thin layer sand or sediment application to drowning and eroding marshes is one approach to build elevation and resilience. The above- and below-ground structure, soil carbon dioxide emissions, and pore water constituents in vegetated natural marsh sediments and sand-amended sediments were examined at varying inundation regimes between mean sea level and mean high water (0.82 m NAVD88 to 1.49 m NAVD88 in a field experiment at Laws Point, part of the Plum Island Sound Estuary (MA. Significantly lower salinities, pH, sulfides, phosphates, and ammonium were measured in the sand-amended sediments than in the natural sediments. In natural sediments there was a pattern of increasing salinity with increasing elevation while in the sand-amended sediments the trend was reversed, showing decreasing salinity with increasing elevation. Sulfide concentrations generally increased from low to high inundation with highest concentrations at the highest inundation (i.e., at the lowest elevations. High pore water phosphate concentrations were measured at low elevations in the natural sediments, but the sand-amended treatments had mostly low concentrations of phosphate and no consistent pattern with elevation. At the end of the experiment the lowest elevations generally had the highest measures of pore water ammonium. Soil carbon dioxide emissions were greatest in the sand-amended mesocosms and at higher elevations. Differences in coarse root and rhizome abundances and volumes among the sediment treatments were detected with CT imaging, but by 20 weeks the natural and sand-amended treatments showed similar total belowground biomass at the intermediate and high elevations. Although differences in

  2. Electric conductivity for laboratory and field monitoring of induced partial saturation (IPS) in sands

    Science.gov (United States)

    Kazemiroodsari, Hadi

    Liquefaction is loss of shear strength in fully saturated loose sands caused by build-up of excess pore water pressure, during moderate to large earthquakes, leading to catastrophic failures of structures. Currently used liquefaction mitigation measures are often costly and cannot be applied at sites with existing structures. An innovative, practical, and cost effective liquefaction mitigation technique titled "Induced Partial Saturation" (IPS) was developed by researchers at Northeastern University. The IPS technique is based on injection of sodium percarbonate solution into fully saturated liquefaction susceptible sand. Sodium percarbonate dissolves in water and breaks down into sodium and carbonate ions and hydrogen peroxide which generates oxygen gas bubbles. Oxygen gas bubbles become trapped in sand pores and therefore decrease the degree of saturation of the sand, increase the compressibility of the soil, thus reduce its potential for liquefaction. The implementation of IPS required the development and validation of a monitoring and evaluation technique that would help ensure that the sands are indeed partially saturated. This dissertation focuses on this aspect of the IPS research. The monitoring system developed was based on using electric conductivity fundamentals and probes to detect the transport of chemical solution, calculate degree of saturation of sand, and determine the final zone of partial saturation created by IPS. To understand the fundamentals of electric conductivity, laboratory bench-top tests were conducted using electric conductivity probes and small specimens of Ottawa sand. Bench-top tests were used to study rate of generation of gas bubbles due to reaction of sodium percarbonate solution in sand, and to confirm a theory based on which degree of saturation were calculated. In addition to bench-top tests, electric conductivity probes were used in a relatively large sand specimen prepared in a specially manufactured glass tank. IPS was

  3. Properties of dune sand concrete containing coffee waste

    Directory of Open Access Journals (Sweden)

    Mohamed Guendouz

    2018-01-01

    Full Text Available In the last years, an increase of coffee beverages consumption has been observed all over the world; and its consumption increases the waste coffee grounds which will become an environmental problems. Recycling of this waste to produce new materials like sand concrete appears as one of the best solutions for reduces the problem of pollution. This work aims to study the possibility of recycling waste coffee grounds (Spent Coffee Grounds (SCG as a fine aggregate by replacing the sand in the manufacturing of dune sand concrete. For this; sand concrete mixes were prepared with substitution of sand with the spent coffee grounds waste at different percentage (0%, 5%, 10%, 15% and 20% by volume of the sand in order to study the influence of this wastes on physical (Workability, bulk density and porosity, mechanical (compressive and flexural strength and Thermal (Thermal conductivity and thermal diffusivity properties of dune sand concrete. The results showed that the use of spent coffee grounds waste as partial replacement of natural sand contributes to reduce workability, bulk density and mechanical strength of sand concrete mixes with an increase on its porosity. However, the thermal characteristics are improved and especially for a level of 15% and 20% of substitution. So, it is possible to obtain an insulating material which can be used in the various types of structural components. This study ensures that reusing of waste coffee grounds in dune sand concrete gives a positive approach to reduce the cost of materials and solve some environmental problems.

  4. Colloid mobilization and heavy metal transport in the sampling of soil solution from Duckum soil in South Korea.

    Science.gov (United States)

    Lee, Seyong; Ko, Il-Won; Yoon, In-Ho; Kim, Dong-Wook; Kim, Kyoung-Woong

    2018-03-24

    Colloid mobilization is a significant process governing colloid-associated transport of heavy metals in subsurface environments. It has been studied for the last three decades to understand this process. However, colloid mobilization and heavy metal transport in soil solutions have rarely been studied using soils in South Korea. We investigated the colloid mobilization in a variety of flow rates during sampling soil solutions in sand columns. The colloid concentrations were increased at low flow rates and in saturated regimes. Colloid concentrations increased 1000-fold higher at pH 9.2 than at pH 7.3 in the absence of 10 mM NaCl solution. In addition, those were fourfold higher in the absence than in the presence of the NaCl solution at pH 9.2. It was suggested that the mobility of colloids should be enhanced in porous media under the basic conditions and the low ionic strength. In real field soils, the concentrations of As, Cr, and Pb in soil solutions increased with the increase in colloid concentrations at initial momentarily changed soil water pressure, whereas the concentrations of Cd, Cu, Fe, Ni, Al, and Co lagged behind the colloid release. Therefore, physicochemical changes and heavy metal characteristics have important implications for colloid-facilitated transport during sampling soil solutions.

  5. Peroxidase-mediated polymerization of 1-naphthol: impact of solution pH and ionic strength.

    Science.gov (United States)

    Bhandari, Alok; Xu, Fangxiang; Koch, David E; Hunter, Robert P

    2009-01-01

    Peroxidase-mediated oxidation has been proposed as a treatment method for naphthol-contaminated water. However, the impact of solution chemistry on naphthol polymerization and removal has not been documented. This research investigated the impact of pH and ionic strength on peroxidase-mediated removal of 1-naphthol in completely mixed batch reactors. The impact of hydrogen peroxide to 1-naphthol ratio and activity of horseradish peroxidase was also studied. Size exclusion chromatography was used to estimate the molecular weight distribution of oligomeric products, and liquid chromatography/mass spectrometry was used to estimate product structure. Naphthol transformation decreased with ionic strength, and substrate removal was lowest at neutral pHs. Solution pH influenced the size and the composition of the oligomeric products. An equimolar ratio of H(2)O(2):naphthol was sufficient for optimal naphthol removal. Polymerization products included naphthoquinones and oligomers derived from two, three, and four naphthol molecules. Our results illustrate the importance of water chemistry when considering a peroxidase-based approach for treatment of naphthol-contaminated waters.

  6. Contribution of solution pH and buffer capacity to suppress intergranular stress corrosion cracking of sensitized type 304 stainless steel at 95 C

    International Nuclear Information System (INIS)

    Zhang, S.; Shibata, T.; Haruna, T.

    1999-01-01

    Controlling pH of high-temperature water to ∼pH 7 at 300 C by adding lithium hydroxide (LiOH) into the coolant system of a pressurized water reactor (PWR) successfully has been mitigating the corrosion of PWR component materials. The effects of solution pH and buffer capacity on intergranular stress corrosion cracking (IGSCC) of sensitized type 304 stainless steel ([SS] UNS S30400) was examined at 95 C by slow strain rate technique (SSRT) with an in-situ cracking observation system. It was found that an increase in solution pH or buffer capacity increased crack initiation time and decreased mean crack initiation frequency, but exerted almost no effect on crack propagation. This inhibition effect on IGSCC initiation was explained as resulting from a retarding effect of solution pH and buffer capacity on the decrease in pH at crack nuclei caused by the hydrolysis of metal ions dissolved when the passive film was ruptured by strain in SSRT

  7. Sorption behavior of Sn(II) onto Haro river sand from aqueous acidic solutions

    International Nuclear Information System (INIS)

    Hasany, S.M.; Khurshid, S.J.

    1999-01-01

    The sorption behavior of Sn(II) onto Haro river sand has been examined with respect to nature of electrolyte, agitation time, dosage of sorbent and concentration of sorbate. Maximum sorption (95.5%) has been achieved from 0.034M hydrochloric acid solution after equilibrating sorbate (2 x 10 -5 M) and sorbent (50 mg) for 120 minutes at a V/W ratio of 90 cm 3 x g -1 . The kinetic data have been subjected to Morris-Weber and Lagergren equations. The kinetics of sorption proceeds a two stage process consisting of a relatively slow initial uptake followed by a much rapid increase in the sorption. The rate constant of intraparticle transport, K d , comes out to be 8.75 x 10 -8 mol x g -1 x min -1/2 and the first order rate constant for sorption is 0.0416 min -1 . The sorption data of Sn(II) onto Haro river sand followed Langmuir, Freundlich and Dubinin-Radushkevich (D-R) type isotherms. The Langmuir constant, Q, related to sorption capacity and, b, related to sorption energy are computed to be 10.6±1.1 μmol x g -1 and 1123±137 dm 3 x mol -1 , respectively. The D-R isotherm yields the values of C m = 348±151 μmol x g -1 and β = -0.01044±0.0008 mol 2 x kJ -2 and of E = 6.9±0.3 kJ x mol -1 . In all three isotherms correlation factor (γ) is ≥ 0.99. The influence of common anions and cations on the sorption has been investigated. Zn(II), Mg(II), oxalate, Pb(II), Mn(II) and tartrate reduce the sorption significantly whereas Fe(II) causes substantial increase in the sorption. (author)

  8. Mitigating in situ oil sands carbon costs

    Energy Technology Data Exchange (ETDEWEB)

    Theriault, D.J.; Peterson, J. [Laricina Energy Ltd., Calgary, AB (Canada); Heinrichs, H. [Canadian Chemical Technology Inc., Calgary, AB (Canada)

    2008-10-15

    Carbon capture and sequestration is a complex problem with a variety of dimensions that need to be considered. The political, social, and regulatory pressures are forcing carbon costs on the oil sands industry in an effort to reduce the carbon footprint of oil sands operations. This paper reviewed the political, social, and regulatory pressures and obligations for the in-situ oil sands industry. It presented the views and insights of Laricina Energy on the carbon challenge. It also described the initiatives that Laricina Energy is taking to manage these imperatives and outlined the challenges the industry is facing. The purpose of the paper was to encourage dialogue and collaboration by the oil sands industry. The paper also described the dimensions of the carbon problem and how the industry can contribute to a solution. Last, the paper reviewed the parameters of carbon dioxide or greenhouse gas containment and storage issues. It was concluded that the regulatory and policy requirements need to be clarified so that industry understands the new business landscape as well as the requirements that influence the economics of in-situ oil sands development. 7 refs., 7 figs.

  9. Statics of loose triangular embankment under Nadai’s sand hill analogy

    Science.gov (United States)

    Pipatpongsa, Thirapong; Heng, Sokbil; Iizuka, Atsushi; Ohta, Hideki

    2010-10-01

    In structural mechanics, Nadai's sand hill analogy is the interpretation of an ultimate torque applied to a given structural member with a magnitude that is analogously twice the volume of stable sand heap which can be accommodated on a transverse cross-section basis. Nadai's analogy is accompanied by his observation of a loose triangular embankment, based on the fact that gravitating loose earth is stable if inclined just under the angle of repose. However, Nadai's analysis of stress distribution in a planar sand heap was found to be inaccurate because the total pressure obtained from Nadai's solution is greater than the self-weight calculated from the heap geometry. This raises a question about the validity of his observation in relation to the analogy. To confirm his criterion, this article presents and corrects the error found in Nadai's solution by analyzing a radially symmetric stress field for a wedge-shaped sand heap with the purpose of satisfying both force balance and Nadai's closure. The fundamental equation was obtained by letting the friction state vary as a function of angular position and deduce it under the constraint that the principal stress orientation obeys Nadai's closure. The theoretical solution sufficiently agreed with the past experimental measurements.

  10. pH sensing characteristics and biosensing application of solution-gated reduced graphene oxide field-effect transistors.

    Science.gov (United States)

    Sohn, Il-Yung; Kim, Duck-Jin; Jung, Jin-Heak; Yoon, Ok Ja; Thanh, Tien Nguyen; Quang, Trung Tran; Lee, Nae-Eung

    2013-07-15

    Solution-gated reduced graphene oxide field-effect transistors (R-GO FETs) were investigated for pH sensing and biochemical sensing applications. A channel of a networked R-GO film formed by self-assembly was incorporated as a sensing layer into a solution-gated FET structure for pH sensing and the detection of acetylcholine (Ach), which is a neurotransmitter in the nerve system, through enzymatic reactions. The fabricated R-GO FET was sensitive to protons (H(+)) with a pH sensitivity of 29 mV/pH in terms of the shift of the charge neutrality point (CNP), which is attributed to changes in the surface potential caused by the interaction of protons with OH surface functional groups present on the R-GO surface. The R-GO FET immobilized with acetylcholinesterase (AchE) was used to detect Ach in the concentration range of 0.1-10mM by sensing protons generated during the enzymatic reactions. The results indicate that R-GO FETs provide the capability to detect protons, demonstrating their applicability as a biosensing device for enzymatic reactions. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Spectroscopic determination of pH

    International Nuclear Information System (INIS)

    Faanu, A.; Glover, E.T.; Bailey, E.; Rochelle, C.

    2009-01-01

    A technique of measuring pH at temperature range of 20 - 70 0 C and high pressure conditions of 1 - 200 atmospheres has been developed by relating the ratio of absorbance peaks of indicator solutions (basic and acidic) as a function of pH, using ultraviolet-visible spectrophotometer. The pH values of the buffer solutions measured at 20 0 C and 70 0 C indicated slight temperature dependence, while the pressure had no effect. The pH of the buffer solutions increased with temperature with relative standard deviations in the range 0.4 - 0.5 % at 95 % confidence interval. The possible causes of the temperature dependence were attributed to changes in pH values as the temperature changed. (au)

  12. Influence of the pH value of a colloidal gold solution on the absorption spectra of an LSPR-assisted sensor

    International Nuclear Information System (INIS)

    Zhu, Jin; Li, Wenbin; Zhu, Mao; Zhang, Wei; Niu, Wencheng; Liu, Guohua

    2014-01-01

    The localized surface plasmon resonances (LSPRs) of gold particles assembled on a crystal plate are a powerful tool for biological sensors. Here, we prepare gold colloids in different pH solutions. We monitor the effects of the particle radius and particle coverage on the absorption spectra of AT-cut (r-face dihedral angle of about 3°) crystal plates supporting gold nanoparticles. The surface morphologies were monitored on silicon dioxide substrates using ultraviolet and visible (UV-vis) spectroscopy, and atomic force microscopy (AFM). The results showed that the gold particle coverage decreases with increasing pH value of the gold colloid solution. This phenomenon demonstrates that self-assembled gold surfaces were formed via the electrostatic adsorption of gold particles on the positively charged, ionized amino groups on the crystal plates in the acidic solution. The spectrum of gold nanoparticles with different coverage degree on the crystal plates showed that the LSPR properties are highly dependent on pH

  13. Environmental Impacts of Sand Exploitation. Analysis of Sand Market

    Directory of Open Access Journals (Sweden)

    Marius Dan Gavriletea

    2017-06-01

    Full Text Available Sand is an indispensable natural resource for any society. Despite society’s increasing dependence on sand, there are major challenges that this industry needs to deal with: limited sand resources, illegal mining, and environmental impact of sand mining. The purpose of this paper is twofold: to present an overview of the sand market, highlighting the main trends and actors for production, export and import, and to review the main environmental impacts associated with sand exploitation process. Based on these findings, we recommend different measures to be followed to reduce negative impacts. Sand mining should be done in a way that limits environmental damage during exploitation and restores the land after mining operations are completed.

  14. Transport of citrate-coated silver nanoparticles in unsaturated sand

    Energy Technology Data Exchange (ETDEWEB)

    Kumahor, Samuel K., E-mail: samuel.kumahor@ufz.de [Department of Soil Physics, Helmholtz Centre for Environmental Research–UFZ, Theodor-Lieser-Strasse 4, 06120 Halle-Saale (Germany); Hron, Pavel, E-mail: pavel.hron@iwr.uni-heidelberg.de [Interdisciplinary Center for Scientific Computing, University of Heidelberg, Im Neuenheimer Feld 368, Raum 422, 69120 Heidelberg (Germany); Metreveli, George, E-mail: metreveli@uni-landau.de [Universität Koblenz-Landau, Institute for Environmental Sciences, Group of Environmental and Soil Chemistry, Fortstr. 7, D-76829 Landau (Germany); Schaumann, Gabriele E., E-mail: schaumann@uni-landau.de [Universität Koblenz-Landau, Institute for Environmental Sciences, Group of Environmental and Soil Chemistry, Fortstr. 7, D-76829 Landau (Germany); Vogel, Hans-Jörg, E-mail: hans-joerg.vogel@ufz.de [Department of Soil Physics, Helmholtz Centre for Environmental Research–UFZ, Theodor-Lieser-Strasse 4, 06120 Halle-Saale (Germany); Institute of Soil Science and Plant Nutrition, Martin-Luther-University Halle-Wittenberg, Von-Seckendorff-Platz 3, 06120 Halle-Saale (Germany)

    2015-12-01

    Chemical factors and physical constraints lead to coupled effects during particle transport in unsaturated porous media. Studies on unsaturated transport as typical for soils are currently scarce. In unsaturated porous media, particle mobility is determined by the existence of an air–water interface in addition to a solid–water interface. To this end, we measured breakthrough curves and retention profiles of citrate-coated Ag nanoparticles in unsaturated sand at two pH values (5 and 9) and three different flow rates corresponding to different water contents with 1 mM KNO{sub 3} as background electrolyte. The classical DLVO theory suggests unfavorable deposition conditions at the air–water and solid–water interfaces. The breakthrough curves indicate modification in curve shapes and retardation of nanoparticles compared to inert solute. Retention profiles show sensitivity to flow rate and pH and this ranged from almost no retention for the highest flow rate at pH = 9 to almost complete retention for the lowest flow rate at pH = 5. Modeling of the breakthrough curves, thus, required coupling two parallel processes: a kinetically controlled attachment process far from equilibrium, responsible for the shape modification, and an equilibrium sorption, responsible for particle retardation. The non-equilibrium process and equilibrium sorption are suggested to relate to the solid–water and air–water interfaces, respectively. This is supported by the DLVO model extended for hydrophobic interactions which suggests reversible attachment, characterized by a secondary minimum (depth 3–5 kT) and a repulsive barrier at the air–water interface. In contrast, the solid–water interface is characterized by a significant repulsive barrier and the absence of a secondary minimum suggesting kinetically controlled and non-equilibrium interaction. This study provides new insights into particle transport in unsaturated porous media and offers a model concept representing the

  15. Meeting the challenge - solutions for managing oil sands tailings: report of the fine tailings fundamentals consortium 1989-1995

    International Nuclear Information System (INIS)

    1996-01-01

    The development and demonstration of effective alternatives for the management of fine tailings in the oil sands industry were discussed in a report describing the work of the Fine Tailings Fundamentals Consortium during the period from 1989 to 1995. The final report of the Consortium is a four-volume publication entitled 'Advances in Oil Sands Tailings Research' which is the state-of-the-art reference to key issues in the reclamation of fine tailings. Government regulations now make it the responsibility of industry to integrate the fine tailings into reclaimed landscapes, so that the final landscape is equal in productive capability to the pre-disturbed state. Impressive progress has been made in understanding the formation of fine tailings and in characterizing their properties, much of it through the work of this Consortium. Fundamental research on the clay particles within fine tailings provides a better understanding of how to manage them. Although there is no 'magic bullet', research has demonstrated that an integrated approach incorporating fine tailings with a variety of elements, uplands, lakes and wetlands, offer the best hope for an environmentally sound solution. figs

  16. Migration characteristics of cobalt-60 through sandy soil in high pH solution

    International Nuclear Information System (INIS)

    Ohnuki, Toshihiko

    1992-01-01

    Migration characteristics of 60 Co through sandy soil in high pH solution has been investigated by both column and batch techniques. The association of 60 Co with the sandy soil and its components were studied by sequential extraction techniques. The concentration profile of 60 Co in the sandy soil column was composed of two exponential curves showing that 60 Co would consist of immobile and mobile fractions. The immobile 60 Co was retained by the sandy soil and was distributed near the top. Though the mobile 60 Co was little sorbed by soil and migrated through the soil column, maximum concentration of 60 Co in the effluents decreased slightly with increasing path length of the soil column. The sequential extraction of 60 Co from the sandy soil and from its components showed that 60 Co was sorbed by both manganese oxide and clay minerals. And manganese oxide is one of the responsible soil components for the observed decrease in the maximum concentration of 60 Co in the effluents. Although the content of manganese oxide in the sandy soil was 0.13%, manganese oxide is the important component to prevent from the migration of 60 Co in the high pH solution. (author)

  17. The electrochemical behaviour of stainless steel AISI 304 in alkaline solutions with different pH in the presence of chlorides

    International Nuclear Information System (INIS)

    Freire, L.; Carmezim, M.J.; Ferreira, M.G.S.; Montemor, M.F.

    2011-01-01

    Highlights: → The passivation and passivation breakdown of AISI 304 in alkaline solutions with different pH was studied. → The electrochemical behaviour and the corrosion resistance in chloride environments were evaluated using d.c. potentiodynamic polarization and electrochemical impedance spectroscopy. → The results were modelled using a hierarchically distributed circuit and revealed a more susceptible surface at pH 9. → The passive film characterization was carried out by SEM and EDS analysis, revealing the existence of MnS inclusions and the increase of Cr/Fe ratio in the attacked areas, preferably the vicinity of those inclusions. - Abstract: Nowadays, stainless steel reinforcements appear as an effective solution to increase the durability of reinforced concrete structures exposed to very aggressive environments. AISI 304 is widely used for this purpose. Although the improved durability of reinforcing AISI 304, when compared to carbon steel, there is a high probability of pitting susceptibility in the presence of chlorides. Thus, the present work aims at studying the passivation and passivation breakdown of AISI 304 in alkaline solutions of different pH (pH from 13 to 9), simulating the interstitial concrete electrolyte. These solutions were contaminated with different concentrations of chloride ions (3% and 10%, as NaCl). The electrochemical behaviour was evaluated by d.c. potentiodynamic polarization and by electrochemical impedance spectroscopy (EIS). The morphological features and the changes observed in the surface composition were evaluated by Scanning Electron Microscopy (SEM) together with EDS chemical analysis. The results evidence that pH plays an important role in the evolution of the film resistance and charge transfer processes. Moreover, the effect is highly dependent upon the chloride content and immersion time.

  18. Impact of Initial pH and Pyrolysis Temperature on the Adsorption of Cr(Ⅵ from Aqueous Solutions on Corn Straw-based Materials

    Directory of Open Access Journals (Sweden)

    WANG Shuai

    2016-09-01

    Full Text Available Batch experiments were performed on Cr(Ⅵ adsorption using four straw-based materials including corn straw and three kinds of biochar pyrolysed at 300 ℃, 450 ℃ and 600 ℃, respectively. The results showed that the Cr(Ⅵ adsorption were significantly affected by initial pH and pyrolysis temperature. The data were described by kinetic and isotherm models, and showed that the adsorption of Cr(Ⅵ was increased with the decrease of initial pH. The removal rates of Cr(Ⅵ were decreased with the increase of the pyrolysis temperature at pH=3 or pH=5. The biochar pyrolysed at 300 ℃ had the best capability of removing Cr(Ⅵ from aqueous solution at pH=1, and the maxi-mum adsorption quantity was 141.24 mg·g-1 approximately. It observed that both the lower initial pH and the lower pyrolysis temperature had positive effects on the removal of Cr(Ⅵ from aqueous solution.

  19. Synthesis of cristobalite from silica sands of Tuban and Tanah Laut

    Science.gov (United States)

    Nurbaiti, U.; Pratapa, S.

    2018-03-01

    Synthesis of SiO2 cristobalite powders has been successfully carried out by a coprecipitation method by making use of local silica sands from districts of Tuban and Tanah Laut, Indonesia. Cristobalite is a phase of SiO2 polymorphs which can be used as a composite filler, a coating material, a surface finishing media, and structural ceramics. In the first stage of the synthesis, the as-received sands were processed by a magnetic separation, grinding, and soaking with HCl to increase the purity of silica content. X-ray fluorescence (XRF) spectroscopy showed that the atomic content of Si (excluding oxygen) in both powders reached 95.3 and 97.4%. A coprecipitation process was then performed by dissolving the silica powders in a 7M NaOH solution followed by a titration with 2M HCl to achieve a normal pH and to form a gel. Furthermore, the silica gel is washed, dried and then calcined at a temperature of between 950-1200 °C with a variation of holding time for 1, 4 dan 10 hrs to produce white powders. X-ray diffraction (XRD) data analyses showed that the powder with calcination temperature of 1150 °C for 4 hrs exhibited the highest cristobalite content of up to 95wt%. Its scanning electron microscopy (SEM) image showed that its grain morphology was relatively homogeneous.

  20. Calculation of the equilibrium pH in a multiple-buffered aqueous solution based on partitioning of proton buffering: a new predictive formula.

    Science.gov (United States)

    Nguyen, Minhtri K; Kao, Liyo; Kurtz, Ira

    2009-06-01

    Upon the addition of protons to an aqueous solution containing multiple buffers, the final H+ concentration ([H+]) at equilibrium is determined by the partitioning of added H+ among the various buffer components. In the analysis of acid-base chemistry, the Henderson-Hasselbalch equation and the Stewart strong ion formulation can only describe (rather than predict) the equilibrium pH following a proton load since these formulas calculate the equilibrium pH only when the reactant concentrations at equilibrium(1) 1The term "equilibrium" refers to the steady state proton and reactant concentrations when the buffering of excess protons by the various buffers is complete. are already known. In this regard, it is simpler to directly measure the equilibrium pH rather than measure the equilibrium reactant concentrations to calculate the equilibrium pH. As these formulas cannot predict the final equilibrium [H+] following a proton load to a multiple-buffered aqueous solution, we developed a new quantitative approach for predicting the equilibrium [H+] that is based on the preequilibrium(2)2 The term "preequilibrium" refers to the initial proton and reactant concentrations immediately upon addition of protons and before the buffering of excess protons by the various buffers. concentrations of all buffers in an aqueous solution. The mathematical model used to derive our equation is based on proton transfer buffer equilibria without requiring the incorporation of electroneutrality considerations. The model consists of a quartic polynomial equation that is derived based solely on the partitioning of H+ among the various buffer components. We tested the accuracy of the model using aqueous solutions with various buffers and measured the equilibrium pH values following the addition of HCl. Our results confirmed the accuracy of our new equation (r2 = 1; measured pH vs. predicted pH), indicating that it quantitatively accounts for the underlying acid-base phenomenology.

  1. Calculation of the equilibrium pH in a multiple-buffered aqueous solution based on partitioning of proton buffering: a new predictive formula

    Science.gov (United States)

    Nguyen, Minhtri K.; Kao, Liyo; Kurtz, Ira

    2009-01-01

    Upon the addition of protons to an aqueous solution containing multiple buffers, the final H+ concentration ([H+]) at equilibrium is determined by the partitioning of added H+ among the various buffer components. In the analysis of acid-base chemistry, the Henderson-Hasselbalch equation and the Stewart strong ion formulation can only describe (rather than predict) the equilibrium pH following a proton load since these formulas calculate the equilibrium pH only when the reactant concentrations at equilibrium1 1The term “equilibrium” refers to the steady state proton and reactant concentrations when the buffering of excess protons by the various buffers is complete. are already known. In this regard, it is simpler to directly measure the equilibrium pH rather than measure the equilibrium reactant concentrations to calculate the equilibrium pH. As these formulas cannot predict the final equilibrium [H+] following a proton load to a multiple-buffered aqueous solution, we developed a new quantitative approach for predicting the equilibrium [H+] that is based on the preequilibrium22The term “preequilibrium” refers to the initial proton and reactant concentrations immediately upon addition of protons and before the buffering of excess protons by the various buffers. concentrations of all buffers in an aqueous solution. The mathematical model used to derive our equation is based on proton transfer buffer equilibria without requiring the incorporation of electroneutrality considerations. The model consists of a quartic polynomial equation that is derived based solely on the partitioning of H+ among the various buffer components. We tested the accuracy of the model using aqueous solutions with various buffers and measured the equilibrium pH values following the addition of HCl. Our results confirmed the accuracy of our new equation (r2 = 1; measured pH vs. predicted pH), indicating that it quantitatively accounts for the underlying acid-base phenomenology. PMID

  2. The passivation of calcite by acid mine water. Column experiments with ferric sulfate and ferric chloride solutions at pH 2

    Energy Technology Data Exchange (ETDEWEB)

    Soler, Josep M. [Institute of Earth Sciences ' Jaume Almera' (CSIC), Lluis Sole i Sabaris s/n, 08028 Barcelona, Catalonia (Spain); Institute of Environmental Assessment and Water Research (CSIC), Jordi Girona 18, 08034 Barcelona, Catalonia (Spain)], E-mail: jsoler@ija.csic.es; Boi, Marco [Institute of Earth Sciences ' Jaume Almera' (CSIC), Lluis Sole i Sabaris s/n, 08028 Barcelona, Catalonia (Spain); Institute of Environmental Assessment and Water Research (CSIC), Jordi Girona 18, 08034 Barcelona, Catalonia (Spain); Mogollon, Jose Luis [Institute of Earth Sciences ' Jaume Almera' (CSIC), Lluis Sole i Sabaris s/n, 08028 Barcelona, Catalonia (Spain); Instituto de Ciencias de la Tierra, Universidad Central de Venezuela, Caracas 1020-A (Venezuela, Bolivarian Republic of); Cama, Jordi; Ayora, Carlos [Institute of Earth Sciences ' Jaume Almera' (CSIC), Lluis Sole i Sabaris s/n, 08028 Barcelona, Catalonia (Spain); Institute of Environmental Assessment and Water Research (CSIC), Jordi Girona 18, 08034 Barcelona, Catalonia (Spain); Nico, Peter S.; Tamura, Nobumichi; Kunz, Martin [Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States)

    2008-12-15

    Column experiments, simulating the behavior of passive treatment systems for acid mine drainage, have been performed. Acid solutions (HCl or H{sub 2}SO{sub 4}, pH 2), with initial concentrations of Fe(III) ranging from 250 to 1500 mg L{sup -1}, were injected into column reactors packed with calcite grains at a constant flow rate. The composition of the solutions was monitored during the experiments. At the end of the experiments (passivation of the columns), the composition and structure of the solids were measured. The dissolution of calcite in the columns caused an increase in pH and the release of Ca into the solution, leading to the precipitation of gypsum and Fe-oxyhydroxysulfates (Fe(III)-SO{sub 4}-H{sup +} solutions) or Fe-oxyhydroxychlorides (Fe(III)-Cl-H{sup +} solutions). The columns worked as an efficient barrier for some time, increasing the pH of the circulating solutions from 2 to {approx}6-7 and removing its metal content. However, after some time (several weeks, depending on the conditions), the columns became chemically inert. The results showed that passivation time increased with decreasing anion and metal content of the solutions. Gypsum was the phase responsible for the passivation of calcite in the experiments with Fe(III)-SO{sub 4}-H{sup +} solutions. Schwertmannite and goethite appeared as the Fe(III) secondary phases in those experiments. Akaganeite was the phase responsible for the passivation of the system in the experiments with Fe(III)-Cl-H{sup +} solutions.

  3. The Study of Sand Fly Fauna in an Endemic Focus for Cutaneous Leishmaniasis in Fasa from April to October in the year 2013

    Directory of Open Access Journals (Sweden)

    Mehdi Sharafi

    2015-02-01

    Full Text Available Background & Objectives: Leishmaniasis as a zoonosis disease seen in three forms including Cutaneous, mucocutaneous, and visceral (kala- azar. The Leishmania transferred by sand flies is the causative agent of this disease. Considering that leishmaniasis is an endemic disease in Fasa, this study was performed to determine the sand fly species of Fasa, Materials & Methods: In this cross- sectional study from April to September 2014, the fauna of sand flies was investigated. Sampling was done in villages with above, medium, and low incidence by using sticky traps every 15 days. Then, captured specimens were mounted and identified by specific key. Results: 3842 sand flies were captured for ecological studies. 2305 of them (60% were males and the rest of them were females. 1152 specimens (30% of them were from indoors and the rest were from outdoors. Totally, 10 species were identified including Phlebotomus. Papatasi, Ph. Alexandri, Ph. Sergenti, Ph. Mongolensis, Ph. Bergeroti, Ph. Caucasicus, Sergentomyia theodori, S. Baghdadis, S. sintuni, and S. antennata. Among captured specimens Phlebotomus Papatasi, Ph. Sergenti had the first and the second places, respectively. Conclusion: Sandflies in Fasa are very active with high prevalence and species diversity. Phlebotomus Papatasi as the predominant species transfers Leishmania from rodents to humans. This subject is related to the prevalence of rural leishmaniasis in this area. According to the semi-domestic vector, spraying is not helpful in a rural foci of cutaneous leishmaniasis. But the control of reservoir and educating the residents about prevention ways of bite are effective in disease control and prevention.

  4. Behavior of engineered nanoparticles in aqueous solutions and porous media: Connecting experimentation to probabilistic analysis

    Science.gov (United States)

    Contreras, Carolina

    2011-12-01

    Engineered nanoparticles have enhanced products and services in the fields of medicine, energy, engineering, communications, personal care, environmental treatment, and many others. The increased use of engineered nanoparticles in consumer products will lead to these materials in natural systems, inevitably becoming a potential source of pollution. The study of the stability and mobility of these materials is fundamental to understand their behavior in natural systems and predict possible health and environmental implications. In addition, the use of probabilistic methods such as sensitivity analysis applied to the parameters controlling their behavior is useful in providing support in performing a risk assessment. This research investigated the stability and mobility of two types of metal oxide nanoparticles (aluminum oxide and titanium dioxide). The stability studies tested the effect of sand, pH 4, 7, and 10, and the NaCl in concentrations of 10mM, 25mM, 50mM, and 75mM. The mobility was tested using saturated quartz sand columns and nanoparticles suspension at pH 4 and 7 and in the presence of NaCl and CaCl2 in concentrations of 0.1mM, 1mM, and 10mM. Additionally, this work performed a sensitivity analysis of physical parameters used in mobility experiment performed for titanium dioxide and in mobility experiments taken from the literature for zero valent iron nanoparticles and fluorescent colloids to determine their effect on the value C/Co of by applying qualitative and quantitative methods. The results from the stability studies showed that titanium dioxide nanoparticles (TiO2) could remain suspended in solution for up to seven days at pH 10 and pH 7 even after settling of the sand; while for pH 4 solutions titanium settled along with the sand and after seven days no particles were observed in suspension. Other stability studies showed that nanoparticle aluminum oxide (Al2O3) and titanium dioxide (TiO2) size increased with increasing ionic strength (10 to 75

  5. Kinetic Rate Law Parameter Measurements on a Borosilicate Waste Glass: Effect of Temperature, pH, and Solution Composition on Alkali Ion Exchange

    International Nuclear Information System (INIS)

    Pierce, Eric M.; McGrail, B PETER.; Icenhower, J P.; Rodriguez, Elsa A.; Steele, Jackie L.; Baum, Steven R.

    2004-01-01

    The reaction kinetics of glass is controlled by matrix dissolution and ion exchange (IEX). Dissolution of an alkali-rich simulated borosilicate waste glass was investigated using single-pass flow-through (SPFT) experiments. Experiments were conducted as a function of temperature, pH, and solution composition by varying the SiO 2 (aq) activity in the influent solution. Results showed that under dilute conditions matrix dissolution increased with increasing pH and temperature, and decreased with increasing SiO 2 (aq) activity. IEX rates decreased with increasing pH and temperature, and increased with increasing SiO 2 (aq) activity. Over the solution composition range interrogated in this study the dominant dissolution mechanism changed from matrix dissolution to IEX. These results suggest that ''secondary'' reactions may become dominant under certain environmental conditions and emphasize the need to incorporate these reactions into dissolution rate models

  6. Enriching acid rock drainage related microbial communities from surface-deposited oil sands tailings.

    Science.gov (United States)

    Dean, Courtney; Xiao, Yeyuan; Roberts, Deborah J

    2016-10-01

    Little is known about the microbial communities native to surface-deposited pyritic oil sands tailings, an environment where acid rock drainage (ARD) could occur. The goal of this study was to enrich sulfur-oxidizing organisms from these tailings and determine whether different populations exist at pH levels 7, 4.5, and 2.5. Using growth-based methods provides model organisms for use in the future to predict potential activities and limitations of these organisms and to develop possible control methods. Thiosulfate-fed enrichment cultures were monitored for approximately 1 year. The results showed that the enrichments at pH 4.5 and 7 were established quicker than at pH 2.5. Different microbial community structures were found among the 3 pH environments. The sulfur-oxidizing microorganisms identified were most closely related to Halothiobacillus neapolitanus, Achromobacter spp., and Curtobacterium spp. While microorganisms related to Chitinophagaceae and Acidocella spp. were identified as the only possible iron-oxidizing and -reducing microbes. These results contribute to the general knowledge of the relatively understudied microbial communities that exist in pyritic oil sands tailings and indicate these communities may have a potential role in ARD generation, which may have implications for future tailings management.

  7. Fate of cadmium at the soil-solution interface: a thermodynamic study as influenced by varying pH at South 24 Parganas, West Bengal, India.

    Science.gov (United States)

    Karak, Tanmoy; Paul, Ranjit Kumar; Das, Sampa; Das, Dilip K; Dutta, Amrit Kumar; Boruah, Romesh K

    2015-11-01

    A study on the sorption kinetics of Cd from soil solution to soils was conducted to assess the persistence of Cd in soil solution as it is related to the leaching, bioavailability, and potential toxicity of Cd. The kinetics of Cd sorption on two non-contaminated alkaline soils from Canning (22° 18' 48.02″ N and 88° 39' 29.0″ E) and Lakshmikantapur (22° 06' 16.61″ N and 88° 19' 08.66″ E) of South 24 Parganas, West Bengal, India, were studied using conventional batch experiment. The variable soil suspension parameters were pH (4.00, 6.00, 8.18, and 9.00), temperatures (308, 318, and 328 K) and Cd concentrations (5-100 mg L(-1)). The average rate coefficient (kavg) and half-life (t1/2) values indicate that the persistence of Cd in soil solution is influenced by both temperature and soil suspension pH. The concentration of Cd in soil solution decreases with increase of temperature; therefore, Cd sorption on the soil-solution interface is an endothermic one. Higher pH decreases the t 1/2 of Cd in soil solution, indicating that higher pH (alkaline) is not a serious concern in Cd toxicity than lower pH (acidic). Based on the energy of activation (Ea) values, Cd sorption in acidic pH (14.76±0.29 to 64.45±4.50 kJ mol(-1)) is a surface control phenomenon and in alkaline pH (9.33±0.09 to 44.60±2.01 kJ mol(-1)) is a diffusion control phenomenon The enthalpy of activation (ΔH∓) values were found to be between 7.28 and 61.73 kJ mol(-1). Additionally, higher positive energy of activation (ΔG∓) values (46.82±2.01 to 94.47±2.36 kJ mol(-1)) suggested that there is an energy barrier for product formation.

  8. Method for producing rapid pH changes

    Science.gov (United States)

    Clark, J.H.; Campillo, A.J.; Shapiro, S.L.; Winn, K.R.

    A method of initiating a rapid pH change in a solution comprises irradiating the solution with an intense flux of electromagnetic radiation of a frequency which produces a substantial pK change to a compound in solution. To optimize the resulting pH change, the compound being irradiated in solution should have an excited state lifetime substantially longer than the time required to establish an excited state acid-base equilibrium in the solution. Desired pH changes can be accomplished in nanoseconds or less by means of picosecond pulses of laser radiation.

  9. Electrochemical Corrosion Behavior of Carbon Steel and Hot Dip Galvanized Steel in Simulated Concrete Solution with Different pH Values

    Directory of Open Access Journals (Sweden)

    Wanchen XIE

    2017-08-01

    Full Text Available Hot dip galvanizing technology is now widely used as a method of protection for steel rebars. The corrosion behaviors of Q235 carbon steel and hot galvanized steel in a Ca(OH2 solution with a pH from 10 to 13 was investigated by electrode potential and polarization curves testing. The results indicated that carbon steel and hot galvanized steel were all passivated in a strong alkaline solution. The electrode potential of hot dip galvanized steel was lower than that of carbon steel; thus, hot dip galvanized steel can provide very good anodic protection for carbon steel. However, when the pH value reached 12.5, a polarity reversal occurred under the condition of a certain potential. Hot dip galvanized coating became a cathode, and the corrosion of carbon steel accelerated. The electrochemical behaviors and passivation abilities of hot dip galvanized steel and carbon steel were affected by pH. The higher the pH value was, the more easily they were passivated.DOI: http://dx.doi.org/10.5755/j01.ms.23.3.16675

  10. Aggregation and transport of rutile titanium dioxide nanoparticles with montmorillonite and diatomite in the presence of phosphate in porous sand.

    Science.gov (United States)

    Guo, Peng; Xu, Nan; Li, Duo; Huangfu, Xinxing; Li, Zuling

    2018-08-01

    Crop soil is inevitably contaminated by the excess of phosphate (P) fertilizers. A large amount of nanoparticle titanium dioxide (nTiO 2 ) entered soils as well due to the wide use of engineered nanomaterials. It is of great urgency and a high priority to investigate the mechanisms of nTiO 2 deposition with the presence of P in crop soils. This study investigated the transport behavior of (1.0 g L -1 ) rutile nTiO 2 with two representative clay particles (montmorillonite or diatomite) in the presence of P through the saturated quartz sand. In 10 mM NaCl electrolyte solution at pH 6.0, the recovery percentage of nTiO 2 was 36.3% from sand column. Nevertheless, it was reduced to 18.6% and 11.1% while montmorillonite and diatomite present in suspensions, respectively. Obviously, the improvement of nTiO 2 retention in sand was more pronounced by diatomite than montmorillonite. The likely mechanism for this result was that large aggregates were formed due to the attachment of nTiO 2 to montmorillonite and diatomite. Moreover, the surface of diatomite with the larger hydrodynamic radius was less negatively charged by comparison with montmorillonite. However, this phenomenon disappeared with the addition of P. P adsorption increases the repulsive force between particles and sand and the fast release of attached nTiO 2 -montmorillonite and diatomite from sand. The two-site kinetic retention model and the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory suggested that the combination of k 1/ k 1d , k 2 and secondary minimum energy can be used to accurately describe the attachment of nTiO 2 -montmorillonite and diatomite to sand in the presence of P. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Sand transportation and reverse patterns over leeward face of sand dune

    Science.gov (United States)

    Jiang, Hong; Dun, Hongchao; Tong, Ding; Huang, Ning

    2017-04-01

    Sand saltation has complex interactions with turbulent flow and dune form. Most models of wind-blown sand consider ideal circumstances such as steady wind velocity and a flat surface, and the bulk of data on wind flow and sand transport over an individual dune has focused mostly on the influence of dune shape or inter-dune space on the wind flow, neglecting the effect of morphology on sand saltation, particularly airflow and sand transportation over the leeward slope. Wind flow structures over the leeward slope of sand dunes have a fundamental influence on the organization of sand dunes. In order to understand sand dune dynamics, lee face airflow and sediment transportation should be paid more attention. Previous field observations could not measure turbulent flow structure well because of the limited observation points and the influence of experiment structure on wind field. In addition, the reverse sand particles over leeward face could not be collected by sand trap in field. Numerous field observations could not measure turbulent flow structure because of the limited observation points and the influence of experimental structures on the wind field. In addition, the reverse transport of sand particles over leeward face could not be collected by sand traps in field. Therefore, this paper aims to investigate the turbulent flow structure and sand transport pattern over the leeward slope. A numerical model of sand saltation over slope terrain is constructed, which also considers the coupling effects between air flow and sand particles. The large eddy simulation method is used to model turbulent flow. Sand transport is simulated by tracking the trajectory of each sand particle. The results show that terrain significantly alters the turbulent air flow structure and wind-blown sand movement, especially over the leeward slope. Here, mass flux increases initially and then decreases with height in the reversed flow region in the direction of wind flow, and the mass flux

  12. Suitability of a South African silica sand for three-dimensional printing of foundry moulds and cores

    Directory of Open Access Journals (Sweden)

    Nyembwe, Kasongo

    2016-11-01

    Full Text Available Applications of three-dimensional printing (3DP to metal casting include, among other things, the direct manufacturing of foundry moulds and cores in refractory materials such as silica sand. The main properties of silica sand that are essentially related to the traditional moulding and core-making processes are: size distribution, clay content, pH, acid demand, and refractoriness. The silica sand used for 3DP must also be appropriately selected for the layer-based manufacturing process involved in 3DP. Properties such as grain size distribution, grain surface morphology, angularity, flowability, and recoating abilities have a particular importance when determining sand suitability. Because of these extra requirements, only a limited range of available foundry silica sands can be used for 3DP processes. The latter situation explains the scarcity and high cost of suitable silica sands, thus contributing to the relatively high operational costs of the 3DP processes for the production of sand moulds and cores. This research paper investigates the suitability of a locally-available silica sand for use in a Voxeljet VX1000 3DP machine. The local silica sand was assessed and compared with an imported silica sand recommended by the manufacturer of 3DP equipment in terms of foundry characteristics and recoating behaviour. The study shows that, despite the differences between the characteristics of the two silica sands, the local sand could be considered a suitable alternative to imported sand for rapid sand casting applications.

  13. Recombinant Salivary Proteins of Phlebotomus orientalis are Suitable Antigens to Measure Exposure of Domestic Animals to Sand Fly Bites.

    Science.gov (United States)

    Sima, Michal; Ferencova, Blanka; Warburg, Alon; Rohousova, Iva; Volf, Petr

    2016-03-01

    Certain salivary proteins of phlebotomine sand flies injected into the host skin during blood-feeding are highly antigenic and elicit strong antibody-mediated immune responses in repeatedly-exposed hosts. These antibodies can be measured by enzyme-linked immuno sorbent assays (ELISAs) using salivary gland homogenates (SGHs) as the source of antigens and serve as a markers for exposure to biting sand flies. Large-scale screening for anti-sand fly saliva antibodies requires replacement of SGH with recombinant salivary proteins. In East Africa, Phlebotomus orientalis is the main vector of Leishmania donovani, a trypanosomatid parasite causing visceral leishmaniasis. We tested recombinant salivary proteins derived from Ph. orientalis saliva to study exposure of domestic animals to this sand fly species. Antigenic salivary proteins from Ph. orientalis were identified by immunoblot and mass spectrometry. Recombinant apyrase rPorSP15, yellow-related protein rPorSP24, ParSP25-like protein rPorSP65, D7-related protein rPorSP67, and antigen 5-related protein rPorSP76 were tested using ELISA with sera of domestic animals from L. donovani foci in Ethiopia where Ph. orientalis is present. Our results highlighted recombinant yellow-related protein rPorSP24 as the most promising antigen, displaying a high positive correlation coefficient as well as good sensitivity and specificity when compared to SGH. This recombinant protein was the most suitable one for testing sera of dogs, sheep, and goats. In addition, a different antigen, rPorSP65 was found efficacious for testing canine sera. Recombinant salivary proteins of Ph. orientalis, specifically rPorSP24, were shown to successfully substitute SGH in serological experiments to measure exposure of domestic animals to Ph. orientalis, the vector of L. donovani. The results suggest that rPorSP24 might be a suitable antigen for detecting anti-Ph. orientalis antibody-mediated reactions also in other host species.

  14. Application and appreciation of chemical sand fixing agent-poly (aspartic acid) and its composites

    Energy Technology Data Exchange (ETDEWEB)

    Yang Jun; Cao Hui; Wang Fang [Beijing Key Laboratory of Bioprocess, Beijing University of Chemical Technology, Beijing 100029 (China); Tan Tianwei [Beijing Key Laboratory of Bioprocess, Beijing University of Chemical Technology, Beijing 100029 (China)], E-mail: twtan@mail.buct.edu.cn

    2007-12-15

    The sand fixing agent-poly (aspartic acid) (PASP) and its composites were applied in the field by two forms (spraying around by PASP solution and PASP powder directly). It was found that the sand fixing effect in powder form was not as good as in solution form, but it was more practical in dry region. It needed 9, 6 and 7 days for PASP, xanthan gum-PASP (X2) and ethyl cellulose-PASP (E3) to attain the maximal mechanical strength after they were applied, respectively. The sand fixing effect decreased when the material was subjected to repeated hydration-dehydration cycles and the material had no negative influence on plant growth. The PASP and its composites had water-retaining ability and could reduce the water evaporation. - The sand fixing agent was applied in powder form and it had no negative influence on plant growth.

  15. Influence of pH, temperature and thermal treatment on site corrosion of SAE 304 steel in chlorinated solutions

    International Nuclear Information System (INIS)

    Konrad, I.B.

    1982-01-01

    The electrochemical behaviour and fracture morphology of homogenized and sensitized type SAE 304 stainless steel U bent specimens, in 3% NaCl solution, at pH=2.0 and pH=7.0 both at room temperature and 100 0 C was studied. Polarization curves, galvanostatic and potentiostatic experiments were run. It could be observed that high temperature and low pH favour transgranular cracking and longer sensitization times lower fracture time and tend to give rise to intergranular fracture. Light sensitization can produce transgranular cracking even at room temperature, when the homogenized alloy does not present stress-corrosion cracking for the same condition. (Author) [pt

  16. Sorption, desorption and extraction of uranium from some sands under dynamic conditions

    International Nuclear Information System (INIS)

    Palagyi, S.; Laciok, A.

    2006-01-01

    Sorption, desorption and extraction behavior of uranium in various fluvial sands of domestic origin were investigated in continuous dynamic column experiments. For the sorption of U(VI) an aqueous 10 -4 M UO 2 (NO 3 ) 2 solution was used at a flow rate of about 0.3 cm 3 /min. Desorption was carried out with demineralized water, and the extraction with 10 -2 M Na 2 CO 3 solution following desorption. The retardation coefficients (R) and hydrodynamic dispersion coefficients (D d ), were determined using an ADE equation. From the experimentally determined values of R, bulk density and porosity, the distribution coefficients (K d ) of the UO 2 2+ species have been calculated for the respective processes. The extent of U sorption in sands, as well as the proportion of desorbed and extracted U from these sands, was also calculated. (author)

  17. X-ray absorption spectroscopic study of trivalent and tetravalent actinides in solution at varying pH values

    Energy Technology Data Exchange (ETDEWEB)

    Brendebach, B.; Banik, N.L.; Marquardt, C.M.; Rothe, J.; Denecke, M.A.; Geckeis, H. [Forschungszentrum Karlsruhe (Germany). Inst. fuer Nukleare Entsorgung

    2009-07-01

    We perform X-ray absorption spectroscopy (XAS) investigations to monitor the stabilization of redox sensitive trivalent and tetravalent actinide ions in solution at acidic conditions in a pH range from 0 to 3 after treatment with holding reductants, hydroxylamine hydrochloride (NH{sub 2}OHHCl) and Rongalite (sodium hydroxymethanesulfinate, CH{sub 3}NaO{sub 3}S). X-ray absorption near edge structure (XANES) measurements clearly demonstrate the stability of the actinide species for several hours under the given experimental conditions. Hence, structural parameters can be accurately derived by extended X-ray absorption fine structure (EXAFS) investigations. The coordination structure of oxygen atoms belonging to water ligands surrounding the actinide ions does not change with increasing pH value (approximately 11 O atoms at 2.42 A in the case of U(IV) at pH 1, 9 0 atoms at 2.52 A for Np(III) at pH 1.5, and 10 O atoms at 2.49 A for Pu(III) up to pH 3), indicating that hydrolysis reactions are suppressed under the given chemical conditions. (orig.)

  18. Evaluation of automatic vacuum- assisted compaction solutions

    Directory of Open Access Journals (Sweden)

    M. Brzeziński

    2011-01-01

    Full Text Available Currently on the mould-making machines market the companies like: DiSA, KUENKEL WAGNER, HAFLINGER, HEINRICH WAGNER SINTO, HUNTER, SAVELLI AND TECHNICAL play significant role. These companies are the manufacturers of various solutions in machines and instalations applied in foundry engineering. Automatic foundry machines for compaction of green sand have the major role in mechanisation and automation processes of making the mould. The concept of operation of automatic machines is based on the static and dynamic methods of compacting the green sand. The method which gains the importance is the compacting method by using the energy of the air pressure. It's the initial stage or the supporting process of compacting the green sand. However in the automatic mould making machines using this method it's essential to use the additional compaction of the mass in order to receive the final parameters of the form. In the constructional solutions of the machines there is the additional division which concerns the method of putting the sand into the mould box. This division distinquishes the transport of the sand with simultaneous compaction or the putting of the sand without the pre-compaction. As the solutions of the major manufacturers are often the subject for application in various foundries, the authors of the paper would like/have the confidence to present their own evaluation process confirmed by their own researches and independent analysis of the producers' solutions.

  19. Chemical Composition and Evaluation of Nicotine, Tobacco Alkaloids, pH and Selected Flavors in e-Cigarette Cartridges and Refill Solutions

    Science.gov (United States)

    Lisko, Joseph G.; Tran, Hang; Stanfill, Stephen B.; Blount, Benjamin C.; Watson, Clifford H.

    2015-01-01

    Introduction Electronic cigarette (e-cigarette) use is increasing dramatically in developed countries, but little is known about these rapidly evolving products. This study analyzed and evaluated the chemical composition including nicotine, tobacco alkaloids, pH and flavors in 36 e-liquids brands from four manufacturers. Methods We determined the concentrations of nicotine, alkaloids, and select flavors and measured pH in solutions used in e-cigarettes. E-cigarette products were chosen based upon favorable consumer approval ratings from online review websites. Quantitative analyses were performed using strict quality assurance/quality control (QC) validated methods previously established by our lab for the measurement of nicotine, alkaloids, pH and flavors. Results Three-quarters of the products contained lower measured nicotine levels than the stated label values (6% - 42% by concentration). The pH for e-liquids ranged from 5.1 – 9.1. Minor tobacco alkaloids were found in all samples containing nicotine, and their relative concentrations varied widely among manufacturers. A number of common flavor compounds were analyzed in all e-liquids. Conclusions Free nicotine levels calculated from the measurement of pH correlated with total nicotine content. The direct correlation between the total nicotine concentration and pH suggests that the alkalinity of nicotine drives the pH of e-cigarette solutions. A higher percentage of nicotine exists in the more absorbable free form as total nicotine concentration increases. A number of products contained tobacco alkaloids at concentrations that exceed U.S. Pharmacopeia limits for impurities in nicotine used in pharmaceutical and food products. PMID:25636907

  20. Zirconium oxide-coated sand based batch and column adsorptive removal of arsenic from water: Isotherm, kinetic and thermodynamic studies

    Directory of Open Access Journals (Sweden)

    Saif Ali Chaudhry

    2017-06-01

    Full Text Available This paper reports zirconium oxide-coated sand preparation, characterization by SEM, EDX, XRD, FT-IR and thermoanalytical techniques, and use as an adsorbent for the removal of most toxic form of arsenic, As(III, from aqueous solution in both batch and column methods. Batch experimental parameters such as contact time, concentration, dose of adsorbent, pH of As(III solution and temperature were optimized. The adsorption data was fitted to Langmuir, Freundlich, Temkin and Dubinin-Radushkevich isotherms at 303, 308 and 313 K. The maximum Langmuir monolayer adsorption capacity was found to be 136.98 μg/g at 313 K. Values of ΔH°, ΔG° and ΔS° were found to be −12.90, −8.74 to –8.28 and 0.014 kJ/mol, suggesting exothermic and spontaneous adsorption process with slight increase in entropy. The adsorption process followed pseudo-second order kinetics and was controlled by film diffusion step. The column studies showed that when flow rate was increased from 3.0 to 5.0 mL/min, the arsenic adsorption capacity of ZrOCS increased from 33.104 to 42.231 μg/g and breakthrough, and exhaustion times got reduced reduced. The results indicated that zirconium oxide-coated sand (ZrOCS is an excellent adsorbent for the removal of As(III from water.

  1. Influence of alkaline (PH 8.3-12.0) and saline solutions on chemical, mineralogical and physical properties of two different bentonites - batch experiments at 25 deg. C

    International Nuclear Information System (INIS)

    Heikola, Tiina; Vuorinen, Ulla; Kumpulainen, Sirpa; Kiviranta, Leena; Korkeakoski, Petri

    2012-01-01

    Document available in extended abstract form only. Construction of a spent fuel repository deep in the bedrock will need supporting structures using cement materials. A part of them can be removed before closure but still it is estimated that about 1000 tonnes will remain in the host rock. Degradation of cementitious materials produces leachates of high pH. If such an alkaline plume reaches the bentonite buffer, it may induce mineralogical and chemical changes in bentonite over long term, and further affect the safety functions of the buffer. Laboratory experiments were done with the objective to gain data of possible alterations in mineralogical, chemical and physical properties of bentonites contacted with high-pH saline solutions. Two untreated, high grade, Na- and Ca-bentonites, were used in batch experiments, which were carried out in an anaerobic glove-box at 25±1 deg. C for 554 days. Each bentonite sample (20 g) was leached with approximately 3.8 L of leaching solution, which equals 190 mL/g of bentonite. The bentonites were leached with three types of simulated cement waters (pH 9.7, 11.3 and 12.0) and one saline groundwater simulate (pH 8.3) as a reference. The leaching solutions were 0.3 M, and contained NaCl and CaCl 2 , and trace amounts of SiO 2 , K, Br, Mg and SO 4 . Dissolved oxygen and carbon dioxide were removed from leaching solutions before mixing of bentonite in PC bottles. The samples were placed on a platform shaker in order to allow better contact between bentonite and the leaching solution. The evolution of pH in the samples was followed by measuring the pH-value of each sample in the solution phase approximately twice a week and the solution was renewed when values of two to three consecutive measurements did not change. On average, the leaching solution was renewed once a month. For each renewal of the leaching solution the phases were separated, the reacted solution withdrawn, and the chemical composition analysed. Before analysis the

  2. pH sensing in aqueous solutions using a MnO2 thin film electrodeposited on a glassy carbon electrode

    International Nuclear Information System (INIS)

    Cherchour, N.; Deslouis, C.; Messaoudi, B.; Pailleret, A.

    2011-01-01

    An electrolysis technique at a constant potential was used to develop a highly reproducible and fast elaboration method of adherent manganese dioxide thin films on a glassy carbon electrode from aqueous solutions containing sulfuric acid and manganese sulfate. The resulting films were found to have a nanostructured character presumably due rather to birnessite (δ-MnO 2 ) than to γ-MnO 2 , as suggested by their Raman and XRD signatures. They lead to modified electrodes that present an obvious although complex pH dependent potentiometric response. This sensor indeed showed a single slope non-Nernstian linear behaviour over the 1.5-12 pH range for increasing pH direction ('trace'), whereas a Nernstian two slopes linear behaviour was observed for decreasing pH direction ('re-trace'). Preliminary EIS experiments carried out at a pH value of 1.8 seem to reveal a sensitivity mechanism based on proton insertion process at least at highly acidic pH values.

  3. Soil mixing of stratified contaminated sands.

    Science.gov (United States)

    Al-Tabba, A; Ayotamuno, M J; Martin, R J

    2000-02-01

    Validation of soil mixing for the treatment of contaminated ground is needed in a wide range of site conditions to widen the application of the technology and to understand the mechanisms involved. Since very limited work has been carried out in heterogeneous ground conditions, this paper investigates the effectiveness of soil mixing in stratified sands using laboratory-scale augers. This enabled a low cost investigation of factors such as grout type and form, auger design, installation procedure, mixing mode, curing period, thickness of soil layers and natural moisture content on the unconfined compressive strength, leachability and leachate pH of the soil-grout mixes. The results showed that the auger design plays a very important part in the mixing process in heterogeneous sands. The variability of the properties measured in the stratified soils and the measurable variations caused by the various factors considered, highlighted the importance of duplicating appropriate in situ conditions, the usefulness of laboratory-scale modelling of in situ conditions and the importance of modelling soil and contaminant heterogeneities at the treatability study stage.

  4. Discovery and description of complete ammonium oxidizers in groundwater-fed rapid sand filters

    DEFF Research Database (Denmark)

    Palomo, Alejandro

    as biological filtration has long been acknowledged and recently been investigated. Biological filtration technology is widely used around the world and is especially important in Denmark as groundwater is the main source water for drinking water production. Because the groundwater has a relative high-quality......, aeration followed by biological filtration is the only required treatment before distribution. In the last years, the microbial communities in rapid gravity sand filters, the typical biological filter used in Denmark, have been characterized, but little knowledge had been required about their physiological...... activity and roles in compound removal from the source water. This PhD project focused on a comprehensive investigation of the microbial communities in rapid sand filters beyond their purely taxonomical identification. For this purpose, samples collected from a rapid sand filter were subjected...

  5. Evaporation Rates of Chemical Warfare Agents Measured Using 5 CM Wind Tunnels. 2. Munitions Grade Sulfur Mustard From Sand

    Science.gov (United States)

    2009-07-01

    micropores and the pH of 0.1 g sand in 2 mL water, measured after 24 hr using pH paper, was 6. The measured bulk and tapped densities of the sand...o oasr^^roryrgQcor-»infO KNceend’-ojnrS^’u:* ^ t\\i kO N © co uS oS - <- eg CM M (M n eft ^ eg ni r»i s rt...O cn o o 2 eft — cn co in ^ ^ iri — 3 *- t- — n vt rt CD £ 2 9 a H d a -i --’ p | E •i = ° 2r ^ A

  6. Humic acid facilitates the transport of ARS-labeled hydroxyapatite nanoparticles in iron oxyhydroxide-coated sand

    Science.gov (United States)

    Wang, Dengjun; Bradford, Scott A.; Harvey, Ronald W.; Gao, Bin; Cang, Long; Zhou, Dongmei

    2012-01-01

    Hydroxyapatite nanoparticles (nHAP) have been widely used to remediate soil and wastewater contaminated with metals and radionuclides. However, our understanding of nHAP transport and fate is limited in natural environments that exhibit significant variability in solid and solution chemistry. The transport and retention kinetics of Alizarin red S (ARS)-labeled nHAP were investigated in water-saturated packed columns that encompassed a range of humic acid concentrations (HA, 0–10 mg L–1), fractional surface coverage of iron oxyhydroxide coatings on sand grains (λ, 0–0.75), and pH (6.0–10.5). HA was found to have a marked effect on the electrokinetic properties of ARS-nHAP, and on the transport and retention of ARS-nHAP in granular media. The transport of ARS-nHAP was found to increase with increasing HA concentration because of enhanced colloidal stability and the reduced aggregate size. When HA = 10 mg L–1, greater ARS-nHAP attachment occurred with increasing λ because of increased electrostatic attraction between negatively charged nanoparticles and positively charged iron oxyhydroxides, although alkaline conditions (pH 8.0 and 10.5) reversed the surface charge of the iron oxyhydroxides and therefore decreased deposition. The retention profiles of ARS-nHAP exhibited a hyperexponential shape for all test conditions, suggesting some unfavorable attachment conditions. Retarded breakthrough curves occurred in sands with iron oxyhydroxide coatings because of time-dependent occupation of favorable deposition sites. Consideration of the above effects is necessary to improve remediation efficiency of nHAP for metals and actinides in soils and subsurface environments.

  7. The study on the pH behavior of the HFSC leached solution. The development of model considering the pozzolanic reaction

    International Nuclear Information System (INIS)

    Yoshida, Yasushi; Mihara, Morihiro

    2005-09-01

    The development of low alkalinity cement (high fly-ash contained silica-fume cement, HFSC) has been carried out in JNC. Low alkalinity for this cement is achieved by adding pozzolan materials to ordinary portland cement and Ca ion attributed to high alkalinity is consumed by forming CHS gel. This report shows the calculation model to predict the composition for HFSC reacted solution which considers cement mineral dissolution/precipitation as equilibrium reactions and dissolution for pozzolan material as a kinetic reaction. The dissolution kinetic equation for pozzolan material is also derived from leaching experiment. This calculation model is applied to the leaching experiment where powdered HFSC was reacted with distilled water. As a result of comparison between calculation and experimental measurement at the early stage for leaching the tendency for pH, pH decrease from 12.5 to 11.5 drastically, could be interpreted by this calculation model, however, after this drastic pH decreasing pH predicted by calculation model also shows drastic decrease whereas pH for experiment decreased mildly around pH 11.5. It could be thought that this difference between experiment and calculation is caused by inappropriate modelling for CSH gel dissolution/precipitation of C/S value lower than 1.0. For this C/S range thermodynamic data for intermediate and end member for solid solution for CSH gel and in addition the reaction kinetic for CSH gel should be examined in detail. (author)

  8. Effect of Nitrogen Form and pH of Nutrient Solution on the Shoot Concentration of Phosphorus, Nitrate, and Nitrogen of Spinach in Hydroponic Culture

    OpenAIRE

    N. Najafi; M. Parsazadeh

    2010-01-01

    In order to study the effect of nitrogen form and pH of nutrient solution on the shoot concentration of P, nitrate, organic N + inorganic ammonium, and total N of spinach, a factorial experiment was conducted with two factors including pH of nutrient solution in three levels (4.5, 6.5 and 8.0) and nitrate to ammonium ratio of nutrient solution in five levels (100:0, 75:25, 50:50, 25:75 and 0:100). This factorial experiment was carried out in a completely randomized design with four replicatio...

  9. Gamma radiation and osmotic potential of the nutrient solution differentially affect macronutrient concentrations, pH and EC in chilhuacle pepper fruits

    International Nuclear Information System (INIS)

    Victor Garcia-Gaytan, Libia Iris Trejo-Tellez; Olga Tejeda-Sartorius; Maribel Ramirez-Martinez; Julian Delgadillo-Martinez; Fernando Carlos Gomez-Merino; Soledad Garcia-Morales

    2018-01-01

    Chilhuacle pepper (Capsicum annuum L.) seeds were exposed to gamma radiation (GR) doses (0, 10, 80 and 120 Gy), and plants were grown in hydroponics with different osmotic potentials (OP) (- 0.036, - 0.072, - 0.092, and - 0.108 MPa) in the nutrient solution. We measured the nutrient concentrations, pH and electrical conductivity (EC) in fruits at different time points after transplanting (70, 90 and 130 dat), and found the GR, nutrient solution OP and their interactions differentially affected N, P, K, Ca, and Mg concentrations, as well as pH and EC in chilhuacle peppers. (author)

  10. Evaluation of the Synergistic Effect of Erosion-Corrosion on AISI 4330 Steel in Saline-Sand Multiphase Flow by Electrochemical and Gravimetric Techniques

    Directory of Open Access Journals (Sweden)

    Dario Yesid Peña Ballesteros

    2016-01-01

    Full Text Available The synergistic effects of fluid flow, sand particles, and solution pH on erosion-corrosion of AISI 4330 steel alloy in saline-sand medium were studied through a rotating cylinder electrode (RCE system by weight-loss and electrochemical measurements. The worn surface was analyzed by X-ray diffraction (XRD and scanning electron microscopy (SEM. Results show that, under all the test conditions assessed, the passivity of the steel alloy could not be maintained; as a result, an activation mechanism dominates the corrosion process of steel alloy. Furthermore, the potentiodynamic curves show that, with the increasing of the electrode flow rate and particle size, the anodic current density increased, which is due to deterioration of the electrode by the impacting slurry. Although the increase of particle size affects the anodic current density, the effect of particle size does not cause a significant change in the polarization behavior of the steel electrode. The electrochemical impedance and potentiodynamic curves suggest that erosion-corrosion phenomenon of the ASISI 4330 steel is under mixed control of mass transport and charge transfer. The inductive loops formed in the impedance plots are representative of an increase in roughness of the electrode caused by the particles impacting at the surface. The change in the passivity of the steel alloy as the pH is altered plays an important role in the corrosion rate.

  11. Molecular detection of Leishmania infection in sand flies in border line of Iran-Turkmenistan: restricted and permissive vectors.

    Science.gov (United States)

    Bakhshi, H; Oshaghi, M A; Abai, M R; Rassi, Y; Akhavan, A A; Sheikh, Z; Mohtarami, F; Saidi, Z; Mirzajani, H; Anjomruz, M

    2013-10-01

    A molecular study was carried out to incriminate sand fly vectors of cutaneous leishmaniasis (CL) in rural areas of Sarakhs district, Khorassane-Razavi Province, northeastern Iran, in 2011. Sand flies of Sergentomyia with three species and Phlebotomus with six species respectively comprised 73.3% and 26.7% of the specimens. Phlebotomus papatasi was the most common Phlebotomine species in outdoor and indoor resting places. Leishmania infection was found at least in 17 (22%) specimens including Ph. papatasi (n=9 pool samples), Phlebotomus caucasicus (n=6), Phlebotomus alexandri (n=1), and Sergentomyia sintoni (n=1). The parasites were found comprised Leishmania major (n=5), Leishmania turanica (n=10), and Leishmania gerbilli (n=4). Infection of Ph. papatasi with both L. major and L. turanica supporting the new suggestion indicating that it is not restricted only with L. major. Circulation of L. major by Ph. alexandri, and both L. gerbilli and L. turanica by Ph. caucasicus, in addition to previous data indicating the ability of Ph. alexandri to circulate Leishmania infantum and Leishmania donovani, and Ph. caucasicus to circulate L. major, suggests that these two species can be permissive vectors. The results suggest that Ph. papatasi and Ph. alexandri are the primary and secondary vectors of CL where circulating L. major between human and reservoirs, whereas Ph. caucasicus is circulating L. turanica and L. gerbilli between the rodents in the region. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Semi-mechanistic partial buffer approach to modeling pH, the buffer properties, and the distribution of ionic species in complex solutions.

    Science.gov (United States)

    Dougherty, Daniel P; Da Conceicao Neta, Edith Ramos; McFeeters, Roger F; Lubkin, Sharon R; Breidt, Frederick

    2006-08-09

    In many biological science and food processing applications, it is very important to control or modify pH. However, the complex, unknown composition of biological media and foods often limits the utility of purely theoretical approaches to modeling pH and calculating the distributions of ionizable species. This paper provides general formulas and efficient algorithms for predicting the pH, titration, ionic species concentrations, buffer capacity, and ionic strength of buffer solutions containing both defined and undefined components. A flexible, semi-mechanistic, partial buffering (SMPB) approach is presented that uses local polynomial regression to model the buffering influence of complex or undefined components in a solution, while identified components of known concentration are modeled using expressions based on extensions of the standard acid-base theory. The SMPB method is implemented in a freeware package, (pH)Tools, for use with Matlab. We validated the predictive accuracy of these methods by using strong acid titrations of cucumber slurries to predict the amount of a weak acid required to adjust pH to selected target values.

  13. Influence of pH on Cr(VI) ions removal from aqueous solutions using carboxymethyl cellulose-based hydrogel as adsorbent

    Science.gov (United States)

    Anah, L.; Astrini, N.

    2017-03-01

    The major problem in heavy metal pollution is that these metals are not biodegradable and accordingly accumulate in the bodies of living organisms, causing dangerous diseases and serious cell disorder. According to World Health Organization (WHO), the long term exposure of Cr(VI) levels of over 0.1 ppm causes respiratory problems, liver and kidney damage, and carcinogenicity.Due to its easy operation and of various cheap adsorbents development, adsorption has been proved to be efficient and most economically attractive technique and feasible to the removal of toxic heavy metal from wastewater. The study aimed to report the removal of Cr(VI) ions from aqueous solutions through adsorption process using carboxymethyl cellulose-graft-poly(acrylic acid) (CMC-g-PAA) hydrogel as adsorbent.Effect of pH was studied to remove hexavalent chromium.Graft copolymerization of poly(acrylic acid) onto carboxymethyl cellulose was carried out in the presence of benzoyl peroxide redox initiator and methylenbisacrylamide as crosslinker agent. Batch experiments were carried out to investigate the effects ofinitial pH.The adsorption of Cr(VI) ions as a function of pH was conducted in the initial pH range of 1 to 8. The results indicated that acidic pH strongly favored the adsorption. The optimum pH for adsorption of Cr(VI) ranged from 1 to 3, and the maximum uptake of Cr(VI) from the solution was 6.53 mg/g at pH 1 and 30°C. FTIR spectroscopy, SEM analyses were performed on the adsorbent before and after Cr(VI) binding. All analyses confirmed the complexation of Cr(VI) ions on the adsorbent.

  14. The effect of pH on the corrosion behavior of intermetallic compounds Ni{sub 3}(Si,Ti) and Ni{sub 3}(Si,Ti) + 2Mo in sodium chloride solutions

    Energy Technology Data Exchange (ETDEWEB)

    Priyotomo, Gadang, E-mail: gada001@lipi.go.id; Nuraini, Lutviasari, E-mail: Lutviasari@gmail.com [Research Center for Metallurgy and Material, Indonesian Institute of Sciences, Kawasan PUSPIPTEK Gd.474, Setu, Tangerang Selatan, Banten 15314 (Indonesia); Kaneno, Yasuyuki, E-mail: kaneno@mtr.osakafu-u.ac.id [Department of Materials Science, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Sakai, Osaka 599-8531 (Japan)

    2015-12-29

    The corrosion behavior of the intermetallic compounds, Ni{sub 3}(Si,Ti) (L1{sub 2}: single phase) and Ni{sub 3}(Si,Ti) + 2Mo (L1{sub 2} and (L12 + Ni{sub ss}) mixture region), has been investigated using an immersion test, electrochemical method and surface analytical method (SEM; scanning electron microscope and EDAX: Energy Dispersive X-ray) in 0.5 kmol/m{sup 3} NaCl solutions at various pH. The corrosion behavior of nickel alloy C-276 was studied under the same experimental conditions as a reference. It was found that the uniform attack was observed on Ni{sub 3}(Si,Ti) for the immersion test at lower pH, while the pitting attack was observed on this compound for this test at neutral solution. Furthermore, Ni{sub 3}(Si,Ti)+2Mo had the preferential dissolution of L1{sub 2} compared to (L1{sub 2} + Ni{sub ss}) mixture region at lower pH, while pitting attack occurred in (L1{sub 2} + Ni{sub ss}) mixture region at neutral solution. For both intermetallic compounds, the magnitude of pitting and uniform attack decrease with increasing pH of solutions. From the immersion test and polarization curves, the corrosion resistance of Ni{sub 3}(Si,Ti)+2Mo is lower than that of Ni{sub 3}(Si,Ti), while the nickel alloy C-276 is the highest one at various pH of solutions. On the other hand, in the lower pH of solutions, the corrosion resistance of tested materials decreased significantly compared to those in neutral and higher pH of solutions.

  15. Deflouridation of water using physico-chemically treated sand as a ...

    African Journals Online (AJOL)

    Prof. Dr. Mahamadi

    chemically modified sand has potential application as an adsorbent for fluoride ions removal. ... activated carbon, minerals, fish bone charcoal, coconut ... (2003), established that red soils ..... solutions by granular ferric hydroxide (GFH). Water ...

  16. Eastern Scheldt Sand, Baskarp Sand No. 15

    DEFF Research Database (Denmark)

    Andersen, A. T; Madsen, E. B.; Schaarup-Jensen, A. L.

    The present data report contains data from 13 drained triaxial tests, performed on two different sand types in the Soil Mechanics Laboratory at Aalborg University in March, 1997. Two tests have been performed on Baskarp Sand No. 15, which has already ken extensively tested in the Soil Mechanics...... Laboratory. The remaining 11 triaxial tests have ben performed on Eastern Scheldt Sand, which is a material not yet investigated at the Soil Mechanics Laboratory. In the first pari of this data report, the characteristics of the two sand types in question will be presented. Next, a description...... will described. In this connection, the procedure for preparation of the soil specimens will be presented, and the actual performance of the tests will be briefly outlined. Finally, the procedure for processing of the measurements from the laboratory in order to obtain usable data will be described. The final...

  17. Effect of chitosan on the heat stability of whey protein solution as a function of pH.

    Science.gov (United States)

    Zhao, Zhengtao; Xiao, Qian

    2017-03-01

    Chitosan was reported to interact with proteins through electrostatic interactions. Their interaction was influenced by pH, which was not fully characterized. Further research on the interactions between protein and chitosan at different pH and their influence on the thermal denaturation of proteins is necessary. In this research, the effect of chitosan on the heat stability of whey protein solution at pH 4.0-6.0 was studied. At pH 4.0, a small amount chitosan was able to prevent the heat-induced denaturation and aggregation of whey protein molecules. At higher pH values (5.5 and 6.0), whey proteins complexed with chitosan through electrostatic attraction. The formation of chitosan-whey protein complexes at pH 5.5 improved the heat stability of dispersions and no precipitation could be detected up to 20 days. The dispersion with a medium amount of chitosan (chitosan:whey protein 1:5) produced the most stable particles, which had an average radius of 135 ± 14 nm and a zeta potential value of 36 ± 1 mV. In contrast, at pH 6.0 only the dispersion with a high amount of chitosan (chitosan:whey protein 1:2) showed good shelf stability up to 20 days. It was possible to produce heat-stable whey protein beverages by regulating the interaction between chitosan and whey protein molecules. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  18. The influence of surface modification, coating agents and pH value of aqueous solutions on physical properties of magnetite nanoparticles investigated by ESR method

    Energy Technology Data Exchange (ETDEWEB)

    Dobosz, Bernadeta, E-mail: benia@amu.edu.pl [Medical Physics Division, Faculty of Physics, Adam Mickiewicz University, Umultowska 85, 61-614 Poznań (Poland); Krzyminiewski, Ryszard [Medical Physics Division, Faculty of Physics, Adam Mickiewicz University, Umultowska 85, 61-614 Poznań (Poland); Kurczewska, Joanna; Schroeder, Grzegorz [Faculty of Chemistry, Adam Mickiewicz University, Umultowska 89B, 61-614 Poznań (Poland)

    2017-05-01

    The article presents the results of electron spin resonance (ESR) studies for aqueous solutions of functionalized superparamagnetic iron(II,III) oxide nanoparticles. The samples studied differed in type of organic ligands at the magnetite surface, type of coating agent and pH value of aqueous solutions. The ESR spectra of the samples were obtained at room temperature and at 230 K. The field cooling (FC) experiment was performed for selected samples, and the effective anisotropy field (H{sub K2}) and the first order magnetocrystalline anisotropy constant (K{sub 1}) was calculated. The process of the nanoparticles diffusion in different environments (human blood, human serum) forced by an inhomogeneous magnetic field was monitored and their interactions with different solvents have been discussed. It has been shown that ESR method is useful to observe the impact of organic ligands at the magnetite surface, type of coating agent and pH value of aqueous solutions on the properties of iron(II,III) oxide nanoparticles. - Highlights: • The influence of different organic ligands, coatings and pH values of aqueous solutions on the physical properties of the magnetite nanoparticles studied by ESR method. • Nanoparticles diffusion forced by inhomogeneous magnetic field monitored by ESR and explained. • A narrow line separated in ESR spectra by CREM. • The influence of different coatings and pH values of aqueous solutions on ESR spectra of TEMPO attached to the magnetite core.

  19. Passivation Characteristics of Alloy Corrosion-Resistant Steel Cr10Mo1 in Simulating Concrete Pore Solutions: Combination Effects of pH and Chloride.

    Science.gov (United States)

    Ai, Zhiyong; Sun, Wei; Jiang, Jinyang; Song, Dan; Ma, Han; Zhang, Jianchun; Wang, Danqian

    2016-09-01

    The electrochemical behaviour for passivation of new alloy corrosion-resistant steel Cr10Mo1 immersed in alkaline solutions with different pH values (13.3, 12.0, 10.5, and 9.0) and chloride contents (0.2 M and 1.0 M), was investigated by various electrochemical techniques: linear polarization resistance, electrochemical impedance spectroscopy and capacitance measurements. The chemical composition and structure of passive films were determined by XPS. The morphological features and surface composition of the immersed steel were evaluated by SEM together with EDS chemical analysis. The results evidence that pH plays an important role in the passivation of the corrosion-resistant steel and the effect is highly dependent upon the chloride contents. In solutions with low chloride (0.2 M), the corrosion-resistant steel has notably enhanced passivity with pH falling from 13.3 to 9.0, but does conversely when in presence of high chloride (1.0 M). The passive film on the corrosion-resistant steel presents a bilayer structure: an outer layer enriched in Fe oxides and hydroxides, and an inner layer, rich in Cr species. The film composition varies with pH values and chloride contents. As the pH drops, more Cr oxides are enriched in the film while Fe oxides gradually decompose. Increasing chloride promotes Cr oxides and Fe oxides to transform into their hydroxides with little protection, and this is more significant at lower pH (10.5 and 9.0). These changes annotate passivation characteristics of the corrosion-resistant steel in the solutions of different electrolyte.

  20. Sea sand for reactive barriers

    International Nuclear Information System (INIS)

    Garcia R, G.; Ordonez R, E.; Ordonez R, En.

    2002-01-01

    Some phosphates have the property to suck in radioactive metals in solution, what it is taken in advance to make reactive barriers which are placed in the nuclear waste repositories. In an effort for contributing to the study of this type of materials, it has been obtained the zirconium silicate (ZrSiO 4 ) and the alpha zirconium hydrogen phosphate (Zr(HPO 4 ) 2H 2 O) starting from sea sand in an easy and economic way. (Author)

  1. Influence of Geometric Parameters of the Hydrocyclone and Sand Concentration on the Water/Sand/Heavy-Oil Separation Process: Modeling and Simulation

    Directory of Open Access Journals (Sweden)

    F Farias

    2016-09-01

    Full Text Available In the oil exploitation, produced fluids are composed of oil, gas, water and sand (depending on the reservoir location. The presence of sand in flow oil leads to several industrial problems for example: erosion and accumulation in valves and pipeline. Thus, it is necessary to stop production for manual cleaning of equipments and pipes. These facts have attracted attention of academic and industrial areas, enabling the appearing of new technologies or improvement of the water/oil/sand separation process. One equipment that has been used to promote phase separation is the hydrocyclone due to high performance of separation and required low cost to installation and maintenance. In this sense, the purpose of this work is to study numerically the effect of geometric parameters (vortex finder diameter of the hydrocyclone and sand concentration on the inlet fluid separation process. A numerical solution of the governing equations was obtained by the ANSYS CFX-11 commercial code. Results of the streamlines, pressure drop and separation efficiency on the hydrocyclone are presented and analyzed. It was observed that the particles concentration and geometry affect the separation efficiency of the hydrocyclone.

  2. Simultaneous removal of As, Cd, Cr, Cu, Ni and Zn from stormwater using high-efficiency industrial sorbents: Effect of pH, contact time and humic acid

    DEFF Research Database (Denmark)

    Genc-Fuhrman, Hülya; Mikkelsen, Peter Steen; Ledin, Anna

    2016-01-01

    The effect of contact time, solution pH, and the presence of humic acid (HA) on the combined removal of As, Cd, Cr, Cu, Ni and Zn is investigated in batch tests using alumina, granulated activated carbon (GAC), and bauxsol coated sand (BCS) as sorbents. It is found that the equilibrium time for Cd......, Cu, Ni and Zn is about 4 h, while no clear equilibrium is observed for As and Cr. It is also found that increasing the pH until pH ~. 8 enhanced Cd, Cu, Ni and Zn removal, but increasing the pH above this point had no major effect. In the cases of As and Cr, higher pH values (i.e. >. 7) decreased...... that natural organic matter may severely influence the removal efficiency, such that, for most metals the removal was reduced to the half, while for Cr it was increased to the double for alumina and BCS. Consequently, a properly working filter set up may not work properly anymore when receiving high loads...

  3. Influence of the reclamation method of spent moulding sands on the possibility of creating favourable conditions for gases flow in a mould

    Directory of Open Access Journals (Sweden)

    Łucarz M.

    2017-03-01

    Full Text Available The results of investigations concerning the influence of the applied sand matrix (fresh sand, reclaim on the properties of moulding sands used for production of large dimensional castings (ingot moulds, ladles, are presented in the hereby paper. The performed investigations were aimed at determining the influence of various reclamation methods of spent moulding sands on the quality of the obtained reclaimed material. Moulding sands were prepared on the fresh quartz matrix as well as on sand matrices obtained after various reclamation methods. The selected moulding sand parameters were tested (strength, permeability, grindability, ignition losses, pH reactions. It can be stated, on the basis of the performed investigations, that the kind of the applied moulding sand matrix is of an essential meaning from the point of view of creating conditions minimising formation of large amounts of gases and their directional migration in a casting mould.

  4. Soil solution Zn and pH dynamics in non-rhizosphere soil and in the rhizosphere of Thlaspi caerulescens grown in a Zn/Cd-contaminated soil.

    Science.gov (United States)

    Luo, Y M; Christie, P; Baker, A J

    2000-07-01

    Temporal changes in soil solution properties and metal speciation were studied in non-rhizosphere soil and in the rhizosphere of the hyperaccumulator Thlaspi caerulescens J. & C. Presl (population from Prayon, Belgium) grown in a Zn- and Cd-contaminated soil. This paper focuses on soil solution Zn and pH dynamics during phytoextraction. The concentration of Zn in both non-rhizosphere and rhizosphere soil solutions decreased from 23 mg/l at the beginning to 2 mg/l at the end of the experiment (84 days after transplanting of seedlings), mainly due to chemical sorption. There was no significant difference in overall Zn concentration between the planted and the unplanted soil solutions (P > 0.05). Soil solution pH decreased initially and then increased slightly in both planted and unplanted soil zones. From 60 to 84 days after transplanting, the pH of the rhizosphere soil solution was higher than that of non-rhizosphere soil solution (P<0.05). Zn uptake by the hyperaccumulator plants was 8.8 mg per pot (each containing 1 kg oven-dry soil) on average. The data indicate that the potential of T. caerulescens to remove Zn from contaminated soil may not be related to acidification of the rhizosphere.

  5. Influence of the solution pH in the 6-mercaptopurine self-assembled monolayer (6MP-SAM) on a Au(111) single-crystal electrode.

    Science.gov (United States)

    Madueño, Rafael; García-Raya, Daniel; Viudez, Alfonso J; Sevilla, José M; Pineda, Teresa; Blázquez, Manuel

    2007-10-23

    Self-assembled monolayers (SAMs) of 6-mercaptopurine (6MP) have been prepared on a Au(111) single-crystal electrode by immersion of the metal surface in a 100 microM 6MP and 0.01 M HClO4 solution. The 6MP-SAM Au(111) single-crystal electrodes were transferred to the cell and allowed to equilibrate with the different aqueous working solutions before the electrochemical experiments. The influence of the solution pH was studied by cyclic voltammetry, double layer capacitance curves, and electrochemical impedance spectroscopy. The electrochemical behavior of the 6MP-SAM in acetic acid at pH 4 presents important differences in comparison to that obtained in 0.1 M KOH solutions. Cyclic voltammograms for the reductive desorption process in acid medium are broad and show some features that can be explained by a phase transition between a chemisorbed and a physisorbed state of the 6MP molecules. The low solubility of these molecules in acid medium could explain this phenomenon and the readsorption of the complete monolayer when the potential is scanned in the positive direction. The variation of the double-layer capacitance values in the potential range of monolayer stability with the pH suggests that the acid-base chemistry of the 6MP molecules is playing a role. This fact has been studied by following the variations of the electron-transfer rate constant of the highly charged redox probes as are Fe(CN)(6)-3/-4 and Ru(NH3)(6)+3/+2 as a function of solution pH. The apparent surface pKa value for the 6MP-SAM (pKa approximately 8) is explained by the total conversion of the different 6MP tautomers that exist in solution to the thiol species in the adsorbed state.

  6. pH sensing in aqueous solutions using a MnO{sub 2} thin film electrodeposited on a glassy carbon electrode

    Energy Technology Data Exchange (ETDEWEB)

    Cherchour, N. [Laboratoire de Technologie des Materiaux et Genie des Procedes (LTMGP), Departement de Genie des Procedes, Universite A. Mira, Route de Targa Ouzemmour, 06000 Bejaia (Algeria); CNRS, UPR 15, Laboratoire Interfaces et Systemes Electrochimiques (LISE, case courrier 133), 4 Place Jussieu, F-75005 Paris (France); UPMC Univ. Paris VI, UPR 15, Laboratoire Interfaces et Systemes Electrochimiques (LISE, case courrier 133), 4 Place Jussieu, F-75005 Paris (France); Deslouis, C. [CNRS, UPR 15, Laboratoire Interfaces et Systemes Electrochimiques (LISE, case courrier 133), 4 Place Jussieu, F-75005 Paris (France); UPMC Univ. Paris VI, UPR 15, Laboratoire Interfaces et Systemes Electrochimiques (LISE, case courrier 133), 4 Place Jussieu, F-75005 Paris (France); Messaoudi, B. [Laboratoire de Technologie des Materiaux et Genie des Procedes (LTMGP), Departement de Genie des Procedes, Universite A. Mira, Route de Targa Ouzemmour, 06000 Bejaia (Algeria); Pailleret, A., E-mail: alain.pailleret@upmc.fr [CNRS, UPR 15, Laboratoire Interfaces et Systemes Electrochimiques (LISE, case courrier 133), 4 Place Jussieu, F-75005 Paris (France); UPMC Univ. Paris VI, UPR 15, Laboratoire Interfaces et Systemes Electrochimiques (LISE, case courrier 133), 4 Place Jussieu, F-75005 Paris (France)

    2011-11-30

    An electrolysis technique at a constant potential was used to develop a highly reproducible and fast elaboration method of adherent manganese dioxide thin films on a glassy carbon electrode from aqueous solutions containing sulfuric acid and manganese sulfate. The resulting films were found to have a nanostructured character presumably due rather to birnessite ({delta}-MnO{sub 2}) than to {gamma}-MnO{sub 2}, as suggested by their Raman and XRD signatures. They lead to modified electrodes that present an obvious although complex pH dependent potentiometric response. This sensor indeed showed a single slope non-Nernstian linear behaviour over the 1.5-12 pH range for increasing pH direction ('trace'), whereas a Nernstian two slopes linear behaviour was observed for decreasing pH direction ('re-trace'). Preliminary EIS experiments carried out at a pH value of 1.8 seem to reveal a sensitivity mechanism based on proton insertion process at least at highly acidic pH values.

  7. Removal of COD and TSS From Dye Solution Using Sand Filtration and Adsorption

    Directory of Open Access Journals (Sweden)

    Heny Juniar

    2016-11-01

    Full Text Available This research was conducted in order to obtain proper compositions and the standard condition for the simple filtration equipments and optimum operational conditions in adsorption column. The research was carried out by analyzing parameters COD and TSS. The result showed that the process was able to reduced parameters observed from filtration step until the process in adsorptions column. The optimum conditions for sand filter equipment were 10 cm sand height, at least 7 cm fibers, 3-4 cm gravel. In the adsorption column, the optimum conditions for green waste water were flow rate at 40 ml/min 60 min adsorptions time, and 60 cm bed height. While purple for waste water; 20 mL/min of flowrate, 60 min of adsorption time, and the 60 cm of bed height

  8. Study on hardness and microstructural characteristics of sand cast ...

    Indian Academy of Sciences (India)

    Administrator

    casting in green sand molds at 690°C. The solution treatment has been performed at 500°C for 7 h and then ... that specimens were water quenched to obtain super satu- ... structure and (b) distribution of silicon platelets (grey) and fine.

  9. Chemical Composition and Evaluation of Nicotine, Tobacco Alkaloids, pH, and Selected Flavors in E-Cigarette Cartridges and Refill Solutions.

    Science.gov (United States)

    Lisko, Joseph G; Tran, Hang; Stanfill, Stephen B; Blount, Benjamin C; Watson, Clifford H

    2015-10-01

    Electronic cigarette (e-cigarette) use is increasing dramatically in developed countries, but little is known about these rapidly evolving products. This study analyzed and evaluated the chemical composition including nicotine, tobacco alkaloids, pH, and flavors in 36 e-liquids brands from 4 manufacturers. We determined the concentrations of nicotine, alkaloids, and select flavors and measured pH in solutions used in e-cigarettes. E-cigarette products were chosen based upon favorable consumer approval ratings from online review websites. Quantitative analyses were performed using strict quality assurance/quality control validated methods previously established by our lab for the measurement of nicotine, alkaloids, pH, and flavors. Three-quarters of the products contained lower measured nicotine levels than the stated label values (6%-42% by concentration). The pH for e-liquids ranged from 5.1-9.1. Minor tobacco alkaloids were found in all samples containing nicotine, and their relative concentrations varied widely among manufacturers. A number of common flavor compounds were analyzed in all e-liquids. Free nicotine levels calculated from the measurement of pH correlated with total nicotine content. The direct correlation between the total nicotine concentration and pH suggests that the alkalinity of nicotine drives the pH of e-cigarette solutions. A higher percentage of nicotine exists in the more absorbable free form as total nicotine concentration increases. A number of products contained tobacco alkaloids at concentrations that exceed U.S. pharmacopeia limits for impurities in nicotine used in pharmaceutical and food products. © Published by Oxford University Press on behalf of the Society for Research on Nicotine and Tobacco 2015. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  10. Adsorption of phenol by activated carbon: Influence of activation methods and solution pH

    International Nuclear Information System (INIS)

    Beker, Ulker; Ganbold, Batchimeg; Dertli, Halil; Guelbayir, Dilek Duranoglu

    2010-01-01

    Cherry stone based activated carbon derived from a canning industry was evaluated for its ability to remove phenol from an aqueous solution in a batch process. A comparative adsorption on the uptake of phenol by using commercial activated carbon (Chemviron CPG-LF), and two non-functional commercial polymeric adsorbents (MN-200 and XAD-2) containing a styrene-divinylbenzene macroporous hyperreticulated network have been also examined. Equilibrium studies were conducted in 25 mg L -1 initial phenol concentrations, 6.5-9 solution pH and at temperature of 30 deg. C. The experimental data were analyzed by the Langmuir and Freundlich isotherm models. Besides, the cherry stone based activated carbons were carried out by using zinc chloride and KOH activation agents at different chemical ratios (activating agent/precursor), to develop carbons with well-developed porosity. The cherry stone activated carbon prepared using KOH as a chemical agent showed a high surface area. According to the results, activated carbons had excellent adsorptive characteristics in comparison with polymeric sorbents and commercial activated carbon for the phenol removal from the aqueous solutions.

  11. SPATIAL AND TEMPORAL PATTERN OF SOIL pH AND Eh AND THEIR IMPACT ON SOLUTE IRON CONTENT IN A WETLAND (TRANSDANUBIA, HUNGARY

    Directory of Open Access Journals (Sweden)

    SZALAI ZOLTÁN

    2008-06-01

    Full Text Available Land mosaics have direct and indirect influence on chemical reaction and redox condition of soils. The present paper deals with the relationship between some environmental factors (such as soil andvegetation patterns, micro-relief, water regime, temperature and incident solar radiation and the pH, Eh of soils and solute iron in a headwater wetland in Transdanubia, Hungary. Measurements have been taken in four different patches and along their boundaries: sedge (Carex vulpina, Carex riparia, three patches and two species, horsetail (Equisetum arvense, common nettle (Urtica dioica. Thespatial pattern of the studied parameters are influenced by the water regime, micro-topography, climatic conditions and by direct and indirect effects of vegetation. The indirect effect can be the shading, which has influence on soil temperature and on the incident solar radiation (PAR. Root respiration and excretion of organic acids appear as direct effects.. There have been measured individual pH and Eh characteristic in the studied patches. Soil Eh, pH and solute iron have shown seasonal dynamics. Higher redox potentials (increasingly oxidative conditions and higher pH values were measured between late autumn and early spring. The increasing physiological activity of plants causes lower pH and Eh and it leads to higher spatial differences. Although temperature is an essential determining factor for Eh and pH, but our results suggest it rather has indirect effectsthrough plants on wetlands.

  12. Effect of the pH in the adsorption and in the immersion enthalpy of monohydroxylated phenols from aqueous solutions on activated carbons.

    Science.gov (United States)

    Blanco-Martínez, D A; Giraldo, L; Moreno-Piraján, J C

    2009-09-30

    An activated carbon Carbochem--PS230 was modified by chemical and thermal treatment in flow of H(2) in order to evaluate the influence of the activated carbon chemical surface in the adsorption of the monohydroxylated phenols. The solid-solution interaction was determined by analyzing the adsorption isotherms at 298 K at pH 7, 9 and 11 during 48 h. The adsorption capacity of activated carbons increases when the pH solution decreases. The amount adsorbed increases in the reduced carbon at the maximum adsorption pH and decreases in the oxidized carbon. In the sample of granulated activated carbon, CAG, the monohydroxylated phenols adsorption capacity diminishes in the following order catechol >hydroquinone >resorcinol, at the three pH values. The experimental data are evaluated with Freundlich's and Langmuir's models. The immersion enthalpies are determined and increase with the retained amount, ranging between 21.5 and 45.7 J g(-1). In addition, the immersion enthalpies show more interaction with the reduced activated carbon that has lower total acidity contents.

  13. Transport of vanadium (V in saturated porous media: effects of pH, ionic-strength and clay mineral

    Directory of Open Access Journals (Sweden)

    Yulu Wang

    2016-10-01

    Full Text Available Vanadium, a hazardous pollutant, has been frequently detected in soil and groundwater, however, its transport behavior in porous media were not clearly understood. In this study, the effects of solution pH, ionic strength (IS and the effect of clay mineral on the transport of vanadium in saturated porous media were investigated. Laboratory experiments using a series of columns packed with quartz sand were carried out to explore the retention and transport of vanadium with a range of ionic-strength (0.001–0.1 M and pH (4–8 and two different types of clay minerals montmorillonite and kaolinite. Results of the breakthrough experiments showed that vanadium was highly mobile in the saturated porous media. The increase in pH rendered a higher transport of vanadium in saturated porous media. The study also indicated an easier transfer of vanadium with an increase in IS. Montmorillonite enhanced the mobility of vanadium in the column when compared to kaolinite. A mathematical model based on advection-dispersion equation coupled with equilibrium and kinetic reactions was used to describe the retention and transport of vanadium in the columns very well.

  14. Submarine sand ridges and sand waves in the eastern part of the China Sea

    Science.gov (United States)

    Wu, Ziyin; Li, Shoujun; Shang, Jihong; Zhou, Jieqiong; Zhao, Dineng; Liang, Yuyang

    2016-04-01

    Integrated with multi-beam and single-beam echo sounding data, as well as historical bathymetric data, submarine bathymetric maps of the eastern part of the China Sea, including the Bohai Sea, Huanghai Sea, and East China Sea, are constructed to systematically study submarine sand ridges and sand waves in the eastern part of the China Sea, combined with high-resolution seismic, sub-bottom profile and borehole data. Submarine sand ridges are extraordinarily developed in the eastern part of the China Sea, and 7 sand ridge areas can be divided from north to south, that is, the Laotieshan Channel sand ridge area in the Bohai Sea, the Korea Bay sand ridge area in the southern Huanghai Sea, the sand ridge area in the eastern Huanghai islands and the Huanghai Troughs, the Jianggang sand ridge area in the western Huanghai Sea, the sand ridge area in the East China Sea shelf, and the sand ridge and sand wave area in the Taiwan Strait and Taiwan Banks. The distribution area of the sand ridges and sand waves covers more than 450,000 km2, wherein ~10,000 km2 in the Bohai Bay, ~200,000 km2 in the Huanghai Sea, ~200,000 km2 in the East China Sea shelf, and ~40,000 km2 in the Taiwan Strait and Taiwan Banks, respectively. The great mass of sand ridges are distributed within water depth of 5-160 m, with a total length of over 160 km and a main width of 5-10 km. The inner structure of the sand ridges presents features of high-angle inclined beddings, with main lithology of sands, sand-mud alternations partly visible, and a small number of mud cores. Dating results indicate that the sand ridges in the eastern part of the China Sea are mainly developed in the Holocene. Sea-level variation dominates the sand ridge evolution in the eastern part of the China Sea since the LGM, and the sand ridges developed in the area of < 60m water depth are appeared in bad activity, meanwhile sand ridges with good activity are still developed in large scale.

  15. Pollutant deposition impacts on lichens, mosses, wood and soil in the Athabasca oil sands area

    International Nuclear Information System (INIS)

    Pauls, R.W.; Abboud, S.A.; Turchenek, L.W.

    1996-01-01

    A study was conducted to monitor the accumulation and impact on the environment of emissions from oil sands processing plants. SO 2 , H 2 S, NO x and hydrocarbon concentrations in the air were monitored. Syncrude Canada Ltd. conducted surveys to determine elemental levels in lichens and mosses. The objective of the study was to monitor the pattern of accumulation of emissions by oil sand plants in, and their effects on, lichens and mosses, and examine changes in wood induced by soil acidity. The moss, lichen and wood samples were analyzed for total elemental content. Soils were analyzed for pH, soluble sulphate and other properties related to soil acidity and soil composition. Little or no evidence was found to indicate that wood tissue chemistry has been affected by atmospheric deposition of substances originating from oil sands plants. These results led to the inference that no large changes in soil acidity have resulted from oil sands plant emissions either. 66 refs., 21 tabs., 124 figs

  16. pH effect on pit potential and protection potential of stainless steels AISI-304, 310 and 316 in NaCl solution

    International Nuclear Information System (INIS)

    Cabral, U.Q.; Sathler, L.; Mariano Neto, F.

    1973-06-01

    For three austenitic stainless steels, AISI 304, 310 and 316, the pH influence on the rupture, protection and corrosion potentials was studied in a 0,5N NACl solution. The pit potentials determined by the chronogalvonometric method, are pH independent within the acid range. They showed a rough linear variation within the basic range having a maximum corresponding to the pH value of 8.8. The electrochemical hysteresis method, employed for determining the protection potential, presented a total pH independence for the AISI 316. The other steels showed a small dependence within the basic range but with a tendency for the protection potential to become slightly more active with increasing pH, within the acid range. It was also noted for the three steels studied that the corrosion potental became more active with increasing pH, within the basic range [pt

  17. Evaluating the oil sands reclamation process: Assessing policy capacity and stakeholder access for government and non-governmental organizations operating in Alberta's oil sands

    Science.gov (United States)

    Patterson, Tyler

    By employing interpretive policy analysis this thesis aims to assess, measure, and explain policy capacity for government and non-government organizations involved in reclaiming Alberta's oil sands. Using this type of analysis to assess policy capacity is a novel approach for understanding reclamation policy; and therefore, this research will provide a unique contribution to the literature surrounding reclamation policy. The oil sands region in northeast Alberta, Canada is an area of interest for a few reasons; primarily because of the vast reserves of bitumen and the environmental cost associated with developing this resource. An increase in global oil demand has established incentive for industry to seek out and develop new reserves. Alberta's oil sands are one of the largest remaining reserves in the world, and there is significant interest in increasing production in this region. Furthermore, tensions in several oil exporting nations in the Middle East remain unresolved, and this has garnered additional support for a supply side solution to North American oil demands. This solution relies upon the development of reserves in both the United States and Canada. These compounding factors have contributed to the increased development in the oil sands of northeastern Alberta. Essentially, a rapid expansion of oil sands operations is ongoing, and is the source of significant disturbance across the region. This disturbance, and the promises of reclamation, is a source of contentious debates amongst stakeholders and continues to be highly visible in the media. If oil sands operations are to retain their social license to operate, it is critical that reclamation efforts be effective. One concern non-governmental organizations (NGOs) expressed criticizes the current monitoring and enforcement of regulatory programs in the oil sands. Alberta's NGOs have suggested the data made available to them originates from industrial sources, and is generally unchecked by government

  18. Magnetite synthesis from ferrous iron solution at pH 6.8 in a continuous stirred tank reactor.

    Science.gov (United States)

    Mos, Yvonne M; Zorzano, Karin Bertens; Buisman, Cees J N; Weijma, Jan

    2018-04-01

    Partial oxidation of defined Fe 2+ solutions is a well-known method for magnetite synthesis in batch systems. The partial oxidation method could serve as basis for an iron removal process in drinking water production, yielding magnetite (Fe 3 O 4 ) as a compact and valuable product. As a first step toward such a process, a series of experiments was carried out, in which magnetite was synthesized from an Fe 2+ solution in a 2 L continuous stirred tank reactor (CSTR) at atmospheric pressure and 32 °C. In four experiments, elevating the pH from an initial value of 5.5 or 6.0 to a final value of 6.8, 7.0 or 7.5 caused green rust to form, eventually leading to magnetite. Formation of NH 4 + in the reactor indicated that NO 3 - and subsequently NO 2 - served as the oxidant. However, mass flow analysis revealed an influx of O 2 to the reactor. In a subsequent experiment, magnetite formation was achieved in the absence of added nitrate. In another experiment, seeding with magnetite particles led to additional magnetite precipitation without the need for a pH elevation step. Our results show, for the first time, that continuous magnetite formation from an Fe 2+ solution is possible under mild conditions, without the need for extensive addition of chemicals.

  19. PROSPECTS FOR APPLICATION OF COMPLEX-MODIFIED SAND ASPHALT CONCRETE IN ROAD CONSTRUCTION

    Directory of Open Access Journals (Sweden)

    D. Yu. Alexandrov

    2017-01-01

    Full Text Available The paper considers a possibility to use sand asphalt concrete as a material for protection of asphalt concrete and cement concrete road pavements against affection of external destructive factors. Advantages and disadvantages of sand asphalt concrete road pavements have been determined in the paper. The paper provides recommendations on improvement of sand asphalt concrete properties and contains an analysis of possible variants for usage of complex-modified sand asphalt concrete in the road construction. It has been noted that according to its potentially possible physical and mechanical properties activated quartz sand being micro-reinforced by dispersive industrial wastes is considered as an efficient component for creation of constructive layers in road asphalt concrete pavements. The paper reveals only specific aspects of the efficient application of quartz sand in road asphalt concrete. The subject of the paper loоks rather interesting for regions where there are no rock deposits for obtaining broken-stone ballast but there is rather significant spreading of local quarts sand. Its successful application is connected with the necessity to develop special equipment for physical and chemical activation of sand grain surface that permits strongly to increase an adhesive strength in the area of phase separation within the “bitumen–SiO2” system. The considered problem is a topical one and its solution will make it possible to local sand in a maximum way and partially to exclude application of broken stone in road construction.

  20. PCE and BNS admixture adsorption in sands with different composition and particle size distribution

    International Nuclear Information System (INIS)

    Alonso, M.M.; Martínez-Gaitero, R.; Gismera-Diez, S.; Puertas, F.

    2017-01-01

    The choice of a superplasticiser (SP) for concrete is of great complexity, as it is well known that properties of the end product are related to admixture and its compatibility with concrete components. Very few studies have been conducted on the compatibility between SPs and the sand of mortars and concretes, however. Practical experience has shown that sand fineness and mineralogical composition affect water demand and admixture consumption. Clay-containing sand has been found also to adsorb SPs, reducing the amount available in solution for adsorption by the cement. This study analysed the isotherms for PCE and BNS superplasticiser adsorption on four sands with different fineness and compositions commonly used to prepare mortars and concretes. BNS-based SP did not adsorb on sands, while PCE-based admixtures exhibited variable adsorption depending on different factors. The adsorption curves obtained revealed that the higher the sand fineness, the finer the particle size distribution and the higher the clay material, the greater was PCE admixture adsorption/ consumption. [es

  1. PCE and BNS admixture adsorption in sands with different composition and particle size distribution

    Directory of Open Access Journals (Sweden)

    M. M. Alonso

    2017-02-01

    Full Text Available The choice of a superplasticiser (SP for concrete is of great complexity, as it is well known that properties of the end product are related to admixture and its compatibility with concrete components. Very few studies have been conducted on the compatibility between SPs and the sand of mortars and concretes, however. Practical experience has shown that sand fineness and mineralogical composition affect water demand and admixture consumption. Clay-containing sand has been found also to adsorb SPs, reducing the amount available in solution for adsorption by the cement. This study analysed the isotherms for PCE and BNS superplasticiser adsorption on four sands with different fineness and compositions commonly used to prepare mortars and concretes. BNS-based SP did not adsorb on sands, while PCE-based admixtures exhibited variable adsorption depending on different factors. The adsorption curves obtained revealed that the higher the sand fineness, the finer the particle size distribution and the higher the clay material, the greater was PCE admixture adsorption/ consumption.

  2. ph Sensitive hydrogel as colon specific drug delivery

    International Nuclear Information System (INIS)

    Alarifi, A.S.

    2011-01-01

    γ-radiation induced graft copolymerization and crosslinking was for the synthesis of ph-sensitive hydrogels composed of poly (vinyl pyrrolidone) acrylic acid. The prepared hydrogels were subjected to swelling test to evaluate the effects of ph and ionic strength of the surrounding solution. Drastic changes in the swelling parameters where observed by changing the surrounding solution ph values. The release of ibuprofen from hydrogels was monitored as a function of time at ph 1 and ph 7 in order to evaluate the prepared copolymer ability for colon- specific drug carrier uses.

  3. Fontainebleau Sand

    DEFF Research Database (Denmark)

    Leth, Caspar Thrane

    2006-01-01

    The report is a summary of results from laboratory tests in the geotechncial research group on Fontainebleau sand.......The report is a summary of results from laboratory tests in the geotechncial research group on Fontainebleau sand....

  4. Corrosion of zirconium alloys in alternating pH environment

    International Nuclear Information System (INIS)

    Mayer, P.; Manolescu, A.V.

    1985-01-01

    Behaviour of two commercial alloys, Zircaloy-2 and zirconium-2.5 wt% niobium were investigated in an environment of alternating pH. Corrosion advancement and scale morphology of coupons exposed to aqueous solution of LiOH (pH 10.2 and 14) were followed as a function of temperature (300-360 degreesC) and time (up to 165 days). The test sequence consisted of short term exposure to high pH and re-exposure to low pH solutions for extended period of time followed by a short term test in high pH. The results of these tests and detailed post-corrosion analysis indicate a fundamental difference between the corrosion behaviour of these two materials. Both alloys corrode fast in high pH environments, but only zirconium-2.5 wt% niobium continues to form detectable new oxide in low pH solution

  5. A new slurry pH model accounting for effects of ammonia and carbon dioxide volatilization on solution speciation

    DEFF Research Database (Denmark)

    Petersen, V.; Markfoged, R.; Hafner, S. D.

    2014-01-01

    a reduced variable that combines time and location and an analytical approach to solving the resulting system of equations using Mathematica. To evaluate the model, we made measurements of pH at a resolution of 0.1 mm in the top 30 mm of an ammonium bicarbonate solution. These measurements show the creation...

  6. Removal of dissolved heavy metals from pre-settled stormwater runoff by iron-oxide coated sand (IOCS)

    DEFF Research Database (Denmark)

    Møller, J.; Ledin, Anna; Mikkelsen, Peter Steen

    2002-01-01

    (Pb=20, Cu=40, Zn=110, and Cr=15 ppb). Column experiments were conducted to test the influence of the infiltration rate (1 or 3 m/h) and the type of iron(hydr)oxide mineral (amorphous ferrihydrite and goethite coated sand). The results show that at least 90% of lead, copper and zinc can be removed......Sorption to iron-oxide coated sand (IOCS) is a promosing technology for removal of the dissolved heavy metal fraction in stormwater runoff. The development of a new technology is necessary since studies of stormwater runoff from traffic areas indicate that an oil separator and detention pond may...... by IOCS after 480 pore volumes. Control columns with uncoated filter sand show that lead, copper and zinc were removed with >95%, 35% and 5%, respectively. The removal of the negative metaloxy-ion, CrO4-3 was insignificant in both IOCS and sand columns at pH=7.7. Destruction of the columns after...

  7. The Semen pH Affects Sperm Motility and Capacitation.

    Science.gov (United States)

    Zhou, Ji; Chen, Li; Li, Jie; Li, Hongjun; Hong, Zhiwei; Xie, Min; Chen, Shengrong; Yao, Bing

    2015-01-01

    As the chemical environment of semen can have a profound effect on sperm quality, we examined the effect of pH on the motility, viability and capacitation of human sperm. The sperm in this study was collected from healthy males to avoid interference from other factors. The spermatozoa cultured in sperm nutrition solution at pH 5.2, 6.2, 7.2 and 8.2 were analyzed for sperm total motility, progressive motility (PR), hypo-osmotic swelling (HOS) rate, and sperm penetration. Our results showed that these parameters were similar in pH 7.2 and 8.2 sperm nutrition solutions, but decreased in pH 5.2 and 6.2 solutions. The HOS rate exhibited positive correlation with the sperm total motility and PR. In addition, the sperm Na(+)/K(+)-ATPase activity at different pHs was measured, and the enzyme activity was significantly lower in pH 5.2 and 6.2 media, comparing with that in pH 8.2 and pH 7.2 solutions. Using flow cytometry (FCM) and laser confocal scanning microscopy (LCSM) analysis, the intracellular Ca2(+ )concentrations of sperm cultured in sperm capacitation solution at pH 5.2, 6.2, 7.2 and 8.2 were determined. Compared with that at pH 7.2, the mean fluorescence intensity of sperm in pH 5.2 and 6.2 media decreased significantly, while that of pH 8.2 group showed no difference. Our results suggested that the declined Na(+)/K(+)-ATPase activity at acidic pHs result in decreased sperm movement and capacitation, which could be one of the mechanisms of male infertility.

  8. Proceedings of the oil sands and heavy oil technologies conference and exhibition

    International Nuclear Information System (INIS)

    2009-01-01

    This conference provided a forum for oil sands industry leaders to review the current and future state of technology in this frontier environment. Presentations were delivered by key personnel involved in groundbreaking projects with a renewed focus on oil sands technology and equipment, viewed from the strategic level with case studies and reports on application technologies designed to optimize oil sands operations. The presentations addressed a wide range of issues related to the environmental impacts of oil sands processing facilities, including innovative water and wastewater solutions for heavy oil producers for bitumen mining, in-situ and upgrading facilities. New advances in sulphur treatment technologies were highlighted along with technologies designed to increase the energy efficiency and energy consumption rates of upgrader and processing facilities. Advances in carbon dioxide (CO 2 ) capture and storage systems were also discussed along with geopolitical and economic evaluations of the future of the oil sands industry. The conference featured 59 presentations, of which 48 have been catalogued separately for inclusion in this database. refs., tabs., figs

  9. Nutrient solution and substrates for ‘cedro doce’ (Pochota fendleri seedling production

    Directory of Open Access Journals (Sweden)

    Oscar J. Smiderle

    Full Text Available ABSTRACT This study assessed the effect of different substrates and addition of nutrient solution on the production of Pochota fendleri seedlings, leaf contents of macro and micronutrients and chlorophyll a and b. The experimental design was completely randomized, in a 3 x 2 factorial scheme, with four replicates. The factors were three substrates, with or without addition of nutrient solution, composing six treatments: (T1 = sand; (T2 = soil; (T3 = sand + soil (1:1; (T4 = sand + nutrient solution; (T5 = soil + nutrient solution; (T6 = sand + soil + nutrient solution. Growth characteristics (height, collar diameter, shoot dry matter, root dry matter, root/shoot ratio and total dry matter and contents of macro- and micronutrients and chlorophyll a and b were evaluated. The use of nutrient solution reduces the time to obtain seedlings of Pochota fendleri, and it is important for proper growth and quality of seedlings. The sequence of nutritional requirement presented by Pochota fendleri seedlings in three substrates with addition of nutrient solution follows the descending order: macronutrients (N > Ca > K > Mg > P > S and micronutrients (Fe > Mn > B > Zn > Cu.

  10. Enzymatic characterization of peptidic materials isolated from aqueous solutions of ammonium cyanide (pH 9) and hydrocyanic acid (pH 6) exposed to ionizing radiation.

    Science.gov (United States)

    Niketic, V; Draganić, Z; Nesković, S; Draganić, I

    1982-01-01

    The enzymatic digestion of some radiolytically produced peptidic materials was examined. The substrates were compounds isolated from 0.1 molar solutions of NH4CN (pH 9) and HCN (pH 6), after their exposure to gamma rays from a 60Co source (15-20 Mrad doses). Commercial proteolytic enzymes pronase and aminopeptidase M were used. The examined materials were of composite nature and proteolytic action was systematically observed after their subsequent purification. In some fractions the effect was found to be positive with up to 30% of peptide bonds cleaved with respect to the amino acid content. These findings support our previous conclusions on the free radical induced formation of peptidic backbones without the intervention of amino acids. Some side effects were also noted which might be of interest in observations on enzymatic cleavage of other composite peptidic materials of abiotic origin.

  11. Comparison of SAND-II and FERRET

    International Nuclear Information System (INIS)

    Wootan, D.W.; Schmittroth, F.

    1981-01-01

    A comparison was made of the advantages and disadvantages of two codes, SAND-II and FERRET, for determining the neutron flux spectrum and uncertainty from experimental dosimeter measurements as anticipated in the FFTF Reactor Characterization Program. This comparison involved an examination of the methodology and the operational performance of each code. The merits of each code were identified with respect to theoretical basis, directness of method, solution uniqueness, subjective influences, and sensitivity to various input parameters

  12. BIOTIGER, A NATURAL MICROBIAL PRODUCT FOR ENHANCED HYDROCARBON RECOVERY FROM OIL SANDS.

    Energy Technology Data Exchange (ETDEWEB)

    Brigmon, R; Topher Berry, T; Whitney Jones, W; Charles Milliken, C

    2008-05-27

    BioTiger{trademark} is a unique microbial consortia that resulted from over 8 years of extensive microbiology screening and characterization of samples collected from a century-old Polish waste lagoon. BioTiger{trademark} shows rapid and complete degradation of aliphatic and aromatic hydrocarbons, produces novel surfactants, is tolerant of both chemical and metal toxicity and shows good activity at temperature and pH extremes. Although originally developed and used by the U.S. Department of Energy for bioremediation of oil-contaminated soils, recent efforts have proven that BioTiger{trademark} can also be used to increase hydrocarbon recovery from oil sands. This enhanced ex situ oil recovery process utilizes BioTiger{trademark} to optimize bitumen separation. A floatation test protocol with oil sands from Ft. McMurray, Canada was used for the BioTiger{trademark} evaluation. A comparison of hot water extraction/floatation test of the oil sands performed with BioTiger{trademark} demonstrated a 50% improvement in separation as measured by gravimetric analysis in 4 h and a five-fold increase at 25 hr. Since BioTiger{trademark} performs well at high temperatures and process engineering can enhance and sustain metabolic activity, it can be applied to enhance recovery of hydrocarbons from oil sands or other complex recalcitrant matrices.

  13. Effects of EDTA on the electronic properties of passive film formed on Fe-20Cr in pH 8.5 buffer solution

    International Nuclear Information System (INIS)

    Cho, Eun Ae; Kwon, Hyuk Sang; Beranrd, Frederic

    2003-01-01

    The electronic properties of the passive film formed on Fe-20Cr ferritic stainless steel in pH 8.5 buffer solution containing 0.05 M EDTA (ethylene diammine tetraacetic acid) were examined by the photocurrent measurements and Mott-Schottky analysis for the film. XPS depth profile for the film demonstrated that Cr content in the outermost layer of the passive film was higher in the solution with EDTA than that in the solution without EDTA, due to selective dissolution of Fe by EDTA. In the solution with EDTA, the passive film showed characteristics of an amorphous or highly disordered n-type semiconductor. The band gap energies of the passive film are estimated to be ∼ 3.0 eV, irrespective of film formation potential from 0 to 700 mV SCE and of presence of EDTA. However, the donor density of the passive film formed in the solution with EDTA is much higher than that formed in the solution without EDTA, due to an increase in oxygen vacancy resulted from the dissolution of Fe-oxide in the outermost layer of the passive film. These results support the proposed model that the passive film formed on Fe-20Cr in pH 8.5 buffer solution mainly consists of Cr-substituted γ-Fe 2 O 3

  14. Removal of radiocobalt from aqueous solutions by kaolinite affected by solid content, pH, ionic strength, contact time and temperature

    International Nuclear Information System (INIS)

    Kan Li; Zhengjie Liu; Lei Chen; Yunhui Dong; Jun Hu; Chinese Academy of Sciences, Hefei

    2013-01-01

    The kaolinite sample was characterized by Fourier transform infrared spectroscopy (FT-IR) and X-ray powder diffraction, and was applied as adsorbent for the removal of radiocobalt ions from radioactive wastewater. The results demonstrated that the sorption of Co(II) was strongly dependent on pH and ionic strength at low pH values, and independent of pH and ionic strength at high pH values. The sorption of Co(II) was dominated by outer-sphere surface complexation or ion exchange at low pH values, whereas inner-sphere surface complexation was the main sorption mechanism at high pH values. The sorption isotherms were well described by Langmuir, Freundlich and Dubinin-Radushkevich models. The thermodynamic parameters (i.e., ΔGdeg, ΔSdeg, ΔHdeg) calculated from the temperature-dependent sorption isotherms indicated that the sorption of Co(II) on kaolinite was an endothermic and spontaneous process. The results of high sorption capacity of kaolinite suggested that the kaolinite sample was a suitable material for the preconcentration of Co(II) from large volumes of aqueous solutions and as backfill materials in nuclear waste management. (author)

  15. A method for measuring pH at high temperatures is presented

    International Nuclear Information System (INIS)

    Chaudon, Luc.

    1979-01-01

    Two hydrogen electrodes are used and set up in a PTFE cell comprising two chambers connected through a saturated potassium chloride solution bridge. This cell is put in an autoclave containing hydrogen. The potential difference of the following cell is measured: H 2 , Pt, R solution - KCl saturated solution at 25 0 C - X solution, Pt, H 2 - The pH of the reference solution R is known up to 300 0 C and the X solution must have its pH to be determined. The precision of the measures at 300 0 C is estimated about +-0,1 pH unit. The dissociation constant of water is calculated from pH variations of alcaline solutions up to 300 0 C. The method has helped to measure the pH at 300 0 C of some boric acid solutions, with or without lithium hydroxide additions, in the following concentration range: B: 250 to 1500 ppm and Li: 0 to 3 ppm. Some concentrations are in fact those chosen for the primary circuits of pressurized water reactors. The pH of ammoniacal solutions is measured too and helped to determine the variations of the dissociation constant of ammonia with temperature [fr

  16. New generation expandable sand screens

    OpenAIRE

    Syltøy, Christer

    2014-01-01

    Master's thesis in Petroleum engineering This thesis aims to give a general insight into sand control and various sorts of sand control measures and applications of sand control tools. Special focus will be given to expandable sand screens – a technology which came about in the late 1990’s through the use of flexible, expandable tubulars as base pipe in sand screens. More specifically Darcy’s Hydraulic Endurance Screens, a compliant sand screen system using hydraulic activation, and the fu...

  17. A combined CFD-experimental method for developing an erosion equation for both gas-sand and liquid-sand flows

    Science.gov (United States)

    Mansouri, Amir

    The surface degradation of equipment due to consecutive impacts of abrasive particles carried by fluid flow is called solid particle erosion. Solid particle erosion occurs in many industries including oil and gas. In order to prevent abrupt failures and costly repairs, it is essential to predict the erosion rate and identify the locations of the equipment that are mostly at risk. Computational Fluid Dynamics (CFD) is a powerful tool for predicting the erosion rate. Erosion prediction using CFD analysis includes three steps: (1) obtaining flow solution, (2) particle tracking and calculating the particle impact speed and angle, and (3) relating the particle impact information to mass loss of material through an erosion equation. Erosion equations are commonly generated using dry impingement jet tests (sand-air), since the particle impact speed and angle are assumed not to deviate from conditions in the jet. However, in slurry flows, a wide range of particle impact speeds and angles are produced in a single slurry jet test with liquid and sand particles. In this study, a novel and combined CFD/experimental method for developing an erosion equation in slurry flows is presented. In this method, a CFD analysis is used to characterize the particle impact speed, angle, and impact rate at specific locations on the test sample. Then, the particle impact data are related to the measured erosion depth to achieve an erosion equation from submerged testing. Traditionally, it was assumed that the erosion equation developed based on gas testing can be used for both gas-sand and liquid-sand flows. The erosion equations developed in this work were implemented in a CFD code, and CFD predictions were validated for various test conditions. It was shown that the erosion equation developed based on slurry tests can significantly improve the local thickness loss prediction in slurry flows. Finally, a generalized erosion equation is proposed which can be used to predict the erosion rate in

  18. Saltation of non-spherical sand particles.

    Directory of Open Access Journals (Sweden)

    Zhengshi Wang

    Full Text Available Saltation is an important geological process and the primary source of atmospheric mineral dust aerosols. Unfortunately, no studies to date have been able to precisely reproduce the saltation process because of the simplified theoretical models used. For example, sand particles in most of the existing wind sand movement models are considered to be spherical, the effects of the sand shape on the structure of the wind sand flow are rarely studied, and the effect of mid-air collision is usually neglected. In fact, sand grains are rarely round in natural environments. In this paper, we first analyzed the drag coefficients, drag forces, and starting friction wind speeds of sand grains with different shapes in the saltation process, then established a sand saltation model that considers the coupling effect between wind and the sand grains, the effect of the mid-air collision of sand grains, and the effect of the sand grain shape. Based on this model, the saltation process and sand transport rate of non-spherical sand particles were simulated. The results show that the sand shape has a significant impact on the saltation process; for the same wind speed, the sand transport rates varied for different shapes of sand grains by as much as several-fold. Therefore, sand shape is one of the important factors affecting wind-sand movement.

  19. Application of forward osmosis membrane technology for oil sands process-affected water desalination.

    Science.gov (United States)

    Jiang, Yaxin; Liang, Jiaming; Liu, Yang

    2016-01-01

    The extraction process used to obtain bitumen from the oil sands produces large volumes of oil sands process-affected water (OSPW). As a newly emerging desalination technology, forward osmosis (FO) has shown great promise in saving electrical power requirements, increasing water recovery, and minimizing brine discharge. With the support of this funding, a FO system was constructed using a cellulose triacetate FO membrane to test the feasibility of OSPW desalination and contaminant removal. The FO systems were optimized using different types and concentrations of draw solution. The FO system using 4 M NH4HCO3 as a draw solution achieved 85% water recovery from OSPW, and 80 to 100% contaminant rejection for most metals and ions. A water backwash cleaning method was applied to clean the fouled membrane, and the cleaned membrane achieved 77% water recovery, a performance comparable to that of new FO membranes. This suggests that the membrane fouling was reversible. The FO system developed in this project provides a novel and energy efficient strategy to remediate the tailings waters generated by oil sands bitumen extraction and processing.

  20. Rare Earth Element Concentrations and Fractionation Patterns Along Groundwater Flow Paths in Two Different Aquifer Types (i.e., Sand vs. Carbonate)

    Science.gov (United States)

    Johannesson, K. H.; Tang, J.

    2003-12-01

    Groundwater samples were collected in two different types of aquifer (i.e., Carrizo Sand Aquifer, Texas and Upper Floridan carbonate Aquifer, west-central Florida) to study the concentrations, fractionation, and speciation of rare earth elements (REE) along groundwater flow paths in each aquifer. Major solutes and dissolved organic carbon (DOC) were also measured in these groundwaters. The Carrizo Sand aquifer was sampled in October 2002 and June 2003, whereas, to date, we have only sampled the Floridan once (i.e., June 2003). The data reveal no significant seasonal differences in major solute and REE concentrations for the Carrizo. In Carrizo sand aquifer, groundwaters from relatively shallow wells (i.e., less than 167 m) in the recharge zone are chiefly Ca-Na-HCO3-Cl type waters. With flow down-gradient the groundwaters shift composition to the Na-HCO3 waters. pH and alkalinity initially decrease with flow away from the recharge zone before increasing again down-gradient. DOC is generally low (0.65 mg/L) along the flow path. REE concentrations are highest in groundwaters from the recharge zone (Nd 40.5 pmol/kg), and decrease substantially with flow down-gradient reaching relatively low and stable values (Nd 4.1-8.6 pmol/kg) roughly 10 km from the recharge zone. Generally, Carrizo groundwaters exhibit HREE-enriched shale-normalized patterns. The HREE enrichments are especially strong for waters from the recharge zone [(Yb/Nd)SN =1.7-5.6], whereas down-gradient (deep) groundwaters have flatter patterns [(Yb/Nd)SN =0.7-2.5]. All groundwaters have slightly positive Eu anomalies (Eu/Eu* 0.09-0.14) and negative Ce anomalies (Ce/Ce* -0.85 - -0.07). In the Upper Floridan Aquifer, Ca, Mg, SO4, and Cl concentrations generally increase along groundwater flow path, whereas pH and alkalinity generally decrease. DOC is higher (0.64 - 2.29 mg/L) than in the Carrizo and initially increases along the flow path and then decreases down-gradient. LREE (Nd) concentrations generally

  1. Effects of Iodide and Hydrogen Peroxide on Measuring High Temperature pH in Various Lithium Borate Buffer Solutions

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Jae Sik; Yun, Myung Hee; Yeon, Jei Won; Song, Kyu Seok [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2008-10-15

    In a reactor coolant system of nuclear power plants, the need for reliable high temperature pH electrodes has resulted from interests in the corrosion and corrosion product behaviors of the structural materials in a high temperature coolant system. In developing the electrodes for measuring the high temperature pH of aqueous solutions, it is necessary to note two major problems: the chemical stability of an electrode against other chemical impurities, and an electrode's integrity as the temperature and pressure are varied between operational extremes. Over the past decade Macdonald et al. and Danielson et al. have developed many ceramic membrane pH electrodes based on a yttrium stabilized zirconium oxide. However, there are still many experimental difficulties associated with the problems in obtaining electrochemical information across different pressure boundaries and against many kinds of chemical impurities caused by the radiolysis of water and the leakage of a fuel clad. In the present work, we investigated the effects of the environmental factors on a high temperature pH. The selected environmental factors are as follows: system pressure, and chemical species such as iodide and hydrogen peroxide ions.

  2. Measurements of spectral responses for developing fiber-optic pH sensor

    Science.gov (United States)

    Yoo, Wook Jae; Heo, Ji Yeon; Jang, Kyoung Won; Seo, Jeong Ki; Moon, Jin Soo; Park, Jang-Yeon; Park, Byung Gi; Cho, Seunghyun; Lee, Bongsoo

    2011-01-01

    In this study, we have fabricated a fiber-optic pH sensor, which is composed of a light source, a pH-sensing probe, plastic optical fibers and a spectrometer, for determining the degree of infection by Helicobacter pylori in the stomach. As pH indicators, phenol red and m-cresol purple are used, and pH liquid solutions are prepared by mixing phenol red or m-cresol purple solutions and various kinds of pH buffer solutions. The light emitted by a light source is guided by plastic optical fibers to the pH liquid solution, and the optical characteristic of a reflected light is changed according to the color variations of the pH indicator in the pH-sensing probe. Therefore, we have measured the intensities and wavelength shifts of the reflected lights, which change according to the color variations of indicators at different pH values, by using a spectrometer for spectral analysis. Also, the relationships between the pH values of liquid solutions and the optical properties of the modulated lights are obtained on the basis of the changes of the colors of indicators.

  3. Changes in hydraulic conductivity of sand-bentonite mixtures accompanied with alkaline alteration

    International Nuclear Information System (INIS)

    Yamaguchi, Tetsuji; Sawaguchi, Takuma; Tsukada, Manabu; Tanaka, Tadao

    2012-01-01

    Document available in extended abstract form only. Montmorillonite is the main constituent of bentonite clay buffer materials in radioactive waste repositories. Highly alkaline environments induced by cement based materials are likely to alter montmorillonite, and to deteriorate the physical and/or chemical properties of the buffer materials. The deterioration may cause variation in hydraulic conductivity of the buffer and induce major uncertainties in the radionuclide migration analysis. Empirical data on the variation of hydraulic conductivity are, however, scarce mainly because the alteration of compacted buffer materials, sand-bentonite mixture specimen, is extremely slow (1). In this study, laboratory experiments were performed to observe changes in hydraulic conductivity of sand-bentonite mixtures accompanied with their alkaline alteration using NaOH based solutions at 80 - 90 deg. C. Our preliminary attempt to degrade sand-bentonite mixture by permeating alkaline solutions was unsuccessful, in which the flow rate of water became unstable. This was interpreted as an artifact due to generation and stagnation of air in the mixture specimen. The water conduction experimental apparatus was modified by removing membrane filter and leaving only sintered stainless steel filter, and by equipping the pressurizing tank with a preheater. Three types of experiments were performed afterwards. Series-1: Multi step alteration / water-conduction experiments. Two sand-bentonite mixture specimens with 50 mm in diameter, 10 mm in thickness and 1,600 kg m -3 in dry density were applied to hydraulic conductivity measurement and alkaline alteration process alternately. The mixture ratio was 1:1 in dry weight. The hydraulic conductivity was determined by permeating the specimens with 1.0 mol L -1 NaCl solution at 40 deg. C. While the specimens were immersed in Si, Al and Ca-adjusted 1.0 mol L -1 NaOH solution at 90 deg. C to allow alteration. In the final water-conduction step, the

  4. Migration behavior and sorption mechanisms of radionuclides in sedimentary sand stones

    International Nuclear Information System (INIS)

    Tanaka, Tadao; Kamiyama, Hideo; Sriyotha, K.

    1993-05-01

    The influence of crushed particle size and weathering of sedimentary rock on migration behavior and sorption mechanisms of 60 Co, 85 Sr and 137 Cs has been investigated by using the fresh sand stones (classified into two particle size ranges of 1 ∼ 3 mm and 2 , KCl, NH 2 OH-HCl, K-oxalate and H 2 O 2 solutions were carried out, to elucidate their dominated sorption mechanisms. Distribution coefficient values of the all three radionuclides, Kds, for the sand stone of 1 ∼ 3 mm was smaller than that of 85 Sr, and the same irreversible sorptions as the selective sorption of Co onto manganese oxides and fixation of Cs by the layer silicate for 60 Co and 137 Cs, respectively. Larger sorbability of the weathered sand stone was explained to be related to an increase of amounts of the effective sorption site, such as cation exchangeable site, calcite, smectite and manganese oxides, which was possibly caused from metamorphism induced by weathering the fresh sand stone. (author)

  5. Sand Particles Impact on the Tribological Behavior of Sliding Contact

    Directory of Open Access Journals (Sweden)

    Aldajah Saud

    2016-01-01

    Full Text Available Lubricant contaminants cause severe problems to machines. Substantial research has been conducted to study the impact of such contaminates on the tribological performance of lubricated contacts. The primary goal of such studies is to find solutions to avoid the dirtiest cause of damaging machines’ parts and to reduce energy consumption and maintenance costs. The current study investigates the tribological behavior of contaminated lubricated contacts; the contaminants considered in this research are sand particles. The effect of the sand particles concentration levels on friction and wear of a tribological system under sliding contact was studied. Three different concentration levels were tested; 5%, 10% and 15%.The experimental program was carried out using an in-house built ball on disc machine at room temperature, constant normal load, constant speed, constant running time and constant travelling distance. Results showed that both friction coefficient and wear volume of the contacting surfaces are dependent on the concentration level of the sand particles. Both friction coefficient and wear volume increased by increasing the sand particles concentration. SEM was utilized to study the wear mechanisms of the contacting surfaces, it was found that the dominant wear mechanism in all cases was abrasive wear.

  6. Evaluation method of iodine re-evolution from an in-containment water pool after a loss of coolant accident, Part I: pH estimation of a solution with various chemicals

    International Nuclear Information System (INIS)

    Kim, Tae Hyeon; Jeong, Ji Hwan

    2016-01-01

    Highlights: • It is required to evaluate re-evolved iodine from sump water after LOCA. • pH evaluation based on Gibbs free energy minimization. • Program was developed to evaluate chemical equilibrium and pH solutions. • Predictions are in good agreement with experimental data. - Abstract: Radioactive iodine, which is released into the atmosphere of the containment building, is absorbed into the containment spray water and dissolved to be ionized. This iodine-rich water is then transported to the in-containment refueling water storage tank (IRWST) in APR1400 nuclear power plants. When the pH of the water is below 7, the dissolved iodine converts to molecular iodine and re-evolves from the water and returns to the atmosphere. A series of studies have been conducted in order to evaluate the iodine re-evolution from the IRWST. This study consists of two parts: the pH evaluation method and the evaluation of the iodine re-evolution. This paper presents the first part, i.e. the pH evaluation method. The equilibrium concentrations of various chemicals in a solution are determined at the minimum Gibbs’ free energy. This method is useful for complex reactant problems rather than equilibrium constants method because the latter method requires numerous equilibrium constants and there might be missing equilibrium constants associated with the solution. The calculated pH values of solutions are compared with the experimental measurements in order to validate this method and the thermodynamic data of the chemicals incorporated into the program. The estimated values for solutions are in good agreement with the experimental measurements within a difference of less than 3.3%.

  7. Preparation of Fe3O4/Bentonite Nanocomposite from Natural Iron Sand by Co-precipitation Method for Adsorbents Materials

    Science.gov (United States)

    Sebayang, Perdamean; Kurniawan, Candra; Aryanto, Didik; Arief Setiadi, Eko; Tamba, Konni; Djuhana; Sudiro, Toto

    2018-03-01

    An adsorption method is one of the effective ways to filter the heavy metals wastes in aqueous system. In this paper, the Fe3O4/bentonite nanocomposites were successfully prepared from natural iron sand by co-precipitation method. The chemical process was carried out by dissolving and hot stirring the milled iron sand and bentonite in acid solution and precipitating it by NH4OH. The sediment was then washed using distilled water to neutralize pH and dried at 100 °C for 5 hours to produce Fe3O4/bentonite powders. The samples were characterized by XRD, FTIR, BET, TEM, VSM and AAS. All samples were composed by Fe3O4 single phase with a spinnel structure and lattice parameter of 8.373 Å. The transmittance peak of FTIR curve proved that the Fe3O4 particles and bentonite had a molecular bonding. The addition of bentonite to Fe3O4 nanoparticles generally reduced the magnetic properties of Fe3O4/bentonite nanocomposites. The optimum condition of 30 wt% bentonite resulted 105.9 m2/g in surface area, 14 nm in an average particle size and 3.2 nm in pore size. It can be used as Cu and Pb adsorbent materials.

  8. Liquefaction resistance of calcareous sands

    International Nuclear Information System (INIS)

    Sandoval Vallejo, Eimar

    2012-01-01

    Calcareous sands are unique in terms of their origin, mineralogy, shape, fragility and intra particle porosity. This article presents results from an experimental program carried out to study the liquefaction resistance of a calcareous sand retrieved from Cabo Rojo at Puerto Rico. The experimental program included mineralogical characterization, index properties, and undrained cyclic triaxial tests on isotropically consolidated reconstituted samples. Due to the large variation in the calcareous sand properties, results are compared with previous researches carried out on other calcareous sands around the world. Results showed a wide range in the liquefaction resistance of the studied calcareous sands. Cabo Rojo sand experienced greater liquefaction resistance than most of the calcareous sands used for comparison. Important differences in the excess pore pressure generation characteristics were also found.

  9. Influence of pH on the localized corrosion of iron

    International Nuclear Information System (INIS)

    Webley, R.; Henry, R.

    1986-06-01

    The influence of pH on the pitting corrosion of iron in chloride and sulfate solutions was determined using two artificial pit apparatuses to obtain the pH near the surface of the pit bottom. A glass membrane electrode and an antimony electrode were used to measure pH in the two apparatuses. Using solutions of NaCl and Na 2 SO 4 at current densities of 0.5, 5.0, and 10 mA/cm 2 pH's in the range 5 to 6 were obtained with the first apparatus. The antimony probe did not measure pH accurately in solutions of 1 N NaCl and 1 N Na 2 SO 4 and had an error of approximately 2 pH units. A one-dimensional transport model was developed to predict pH variations around the pit mouth and inside the pit. The validity of this model was not verified due to the relative lack of precision with pH measurement techniques

  10. A plugging solution

    Energy Technology Data Exchange (ETDEWEB)

    Gen, O P; Azhigaliyev, G K; Dodonova, S Ye; Dyaltlova, N M; Novokhatskaya, I D; Ryabova, L I

    1984-01-01

    The purpose of the invention is to increase the durability of cement stone at 150 to 200C. The patent covers a plugging solution which consists of Portlandcement, sand and water. It additionally contains metal organic complexes of nitrylotrimethylphosphonic acid and organosiliconates of alkali or alkaline earth metals with the following component relationship in percent by mass: Portland cement, 42 to 43; sand, 27 to 28; metal organic complexes of nitrylotrimethylphosphonic acid, 0.01 to 1.5; organosiliconates of alkaline or alkaline earthmetals, 0.0025 to 0.375 and water, the remainder.

  11. Effect of surface chemistry, solution pH, and ionic strength on the removal of herbicides diuron and amitrole from water by an activated carbon fiber.

    Science.gov (United States)

    Fontecha-Cámara, M A; López-Ramón, M V; Alvarez-Merino, M A; Moreno-Castilla, C

    2007-01-30

    A study was conducted on the effects of carbon surface chemistry, solution pH, and ionic strength on the removal of diuron and amitrole from aqueous solutions by adsorption on an as-received and oxidized activated carbon fiber. Results obtained were explained by the surface characteristics of the adsorbents and the characteristics of the herbicide molecules. Under the experimental conditions used, diuron uptake was much higher than that of amitrole, despite its larger molecular dimensions, due to the lesser water solubility, greater hydrophobicity, and larger dipolar moment of diuron compared with amitrole. Uptake variations associated with differences in carbon surface oxidation, solution pH, and ionic strength were explained by corresponding changes in electrostatic, hydrophobic, and van der Waals interactions.

  12. Adsorption and transport of cadmium and rhodamine WT in pumice sand columns

    International Nuclear Information System (INIS)

    Pang, L.; Close, M.; Greenfield, H.; Stanton, G.

    2004-01-01

    The transport and attenuation of cadmium (Cd) and rhodamine WT (RWT) in a pumice sand aquifer media was investigated using column experiments to study a scenario of point-source contamination. A pore-water velocity of 1.7-1.8 m/day, which is a typical field groundwater velocity in a pumice sand aquifer system, was applied to triplicate columns. A pulse of a solution containing Cd and RWT, together with the conservative tracer tritiated water ( 3 H 2 O) at pH = 7, was introduced into the columns. Experimental results showed that concentration breakthrough curves (BTCs) of 3 H 2 O were symmetrical and fitted well into an equilibrium model. In contrast, BTCs of Cd and RWT were asymmetrical with significant tailings and fitted well with a two-site adsorption/desorption model. The symmetric 3 H 2 O BTCs suggest that physical non-equilibrium was absent in the experimental system, therefore the asymmetrical BTCs of Cd and RWT were attributed to chemical non-equilibrium. Modelling results showed that, in comparison with 3 H 2 O, Cd was apparently retarded by 101-108 times in pumice sand aquifer media (apparent adsorption coefficient 7.33-9.24 ml/g) and underwent a mass loss of 20-30% that was probably because of precipitation of CdCO 3 . As CdCO 3 is extremely insoluble, Cd precipitation would be irreversible and therefore it would not contribute to the tailing of the Cd BTCs. The experimental results suggest that the adsorption and desorption of Cd in pumice sand aquifer media in hydrodynamic conditions was a kinetic process. Cd desorption rates were two orders-of-magnitude slower than its adsorption rates. This resulted in a prolonged mean residence time for Cd in pumice sand aquifer media, which was 10-12 days in the 18-cm-long columns under a flow velocity of 1.7-1.8 m/day. Since the mean residence time is only indicative for the arrival of the central of mass in a contaminant BTC, the time required for the total disappearance of Cd will be much longer than the mean

  13. pH in atomic scale simulations of electrochemical interfaces

    DEFF Research Database (Denmark)

    Rossmeisl, Jan; Chan, Karen; Ahmed, Rizwan

    2013-01-01

    Electrochemical reaction rates can strongly depend on pH, and there is increasing interest in electrocatalysis in alkaline solution. To date, no method has been devised to address pH in atomic scale simulations. We present a simple method to determine the atomic structure of the metal......|solution interface at a given pH and electrode potential. Using Pt(111)|water as an example, we show the effect of pH on the interfacial structure, and discuss its impact on reaction energies and barriers. This method paves the way for ab initio studies of pH effects on the structure and electrocatalytic activity...

  14. Role of Metal Cations on the corrosion behaviour of 8090-T851 in a pH 2.0 solution

    DEFF Research Database (Denmark)

    Murthy, K.S.N.; Ambat, Rajan; Dwarakadasa, E.S.

    1994-01-01

    The influence of cations such as Cu2+, Al3+ and Li+ on the corrosion behaviour of 8090-T851(Al-Li) alloy in a pH 2.0 HCl solution was investigated by weight loss and polarisation techniques. Weight loss experiments showed that the effect of cation is a strong function of its nature...

  15. Studies on sorption of cadmium (II) ions onto Haro river sand from aqueous media using radiotracer and voltammetric techniques

    International Nuclear Information System (INIS)

    Ahmed, R.; Hasany, S.M.; Yamin, T.; Ansari, M.S.

    2006-01-01

    Sorption of Cd(II) ions on Haro river sand has been studied using radiotracer technique. The effects of pH and acid concentrations on the sorption were studied. The sorption increases with pH. reaches a maximum at pH 7 and decreases at higher pH values. With acids, it was found that sorption decreases with increasing acid concentration, and for more oxidizing acids sorption was less. Kinetic studies indicate that mostly intra particle diffusion occurs with first order rate constant of 18.45 x 10 -2 min -1 . The sorption data follow the Freundlich and Dubinin-Radushkevich (D-R) isotherms. In addition to the radiotracer method, voltammetric technique was applied and the results by the two techniques are in good agreement. The sorption free energy value indicates that adsorption process is chemisorption. The effect of temperature was studied and values of ΔH, ΔS and ΔG for Cd(II) have been calculated which are 20.15 kJ mol -1 , 74.04 J mol -1 K -1 and -1.754 kJ mol -1 . Adsorption of Cd(II) on Haro river sand is endothermic, spontaneous and entropy driven. The effect of different anions and cations at different concentrations was studied. Levels of cadmium have been monitored in water and sediments. (orig.)

  16. Acid rock drainage passive remediation using alkaline clay and impacts of vegetation and saturated sand barrier

    Science.gov (United States)

    Plaza, F.; Wen, Y.; Liang, X.

    2017-12-01

    Acid rock drainage (ARD) caused by abundance of coal refuse (CR) deposits in mining regions requires adequate treatment to prevent serious water pollution due to its acidity and high concentrations of sulfate and metals/metalloids. Over the past decades, various approaches have been explored and developed to remediate ARD. This study uses laboratory experiments to investigate the effectiveness and impacts of ARD passive remediation using alkaline clay (AC), a by-product of the aluminum refining process. Twelve column kinetic leaching experiments were set up with CR/AC mixing ratios ranging from 1%AC to 10%AC. Samples were collected from these columns to measure the pH, sulfate, metals/metalloids, acidity and alkalinity. Additional tests of XRD and acid base accounting were also conducted to better characterize the mineral phase in terms of the alkalinity and acidity potential. Based on the leachate measurement results, these columns were further classified into two groups of neutral/near neutral pH and acidic pH for further analysis. In addition, impacts of the vegetation and saturated sand layer on the remediation effectiveness were explored. The results of our long-term (more than three years in some cases) laboratory experiments show that AC is an effective ARD remediation material for the neutralization of leachate pH and immobilization of sulfate and metals such as Fe, Mn, Cu, Zn, Ni, Pb, Cd, Co. The CR/AC mixing ratios higher than 3%AC are found to be effective, with 10% close to optimal. Moreover, the results demonstrate the benefits of using vegetation and a saturated sand barrier. Vegetation acted as a phytoaccumulation/phytoextraction agent, causing an additional immobilization of metals. The saturated sand barrier blocked the oxygen and water diffusion downwards, leading to a reduction of the pyrite oxidation rate. Finally, the proposed remediation approach shows that the acidity consumption will likely occur before all the alkalinity is exhausted

  17. Enhanced Gravitational Drainage of Crude Oil Through Alabama Beach Sand Caused by the Dispersant Corexit 9500A

    Science.gov (United States)

    Steffy, D. A.; Nichols, A.; Hobbs, K.

    2017-12-01

    Oil spill material released by the 2010 Deepwater Horizon accident contaminated a majority of the 60 miles of Alabama coastline. In response to the oil spill, BP sprayed a dispersant, Corexit 9500A, as an initial remediation effort. An unforeseen impact of the saltwater-dispersant mixture includes the mobilization of oil-spilled material into the underlying beach sand. This study investigated the effect of the dispersant to promote gravitational drainage by measuring the physical characteristics of the sand, saltwater, crude oil, and the dispersant solution. The saltwater-dispersant mixture promoted the downward movement of oil mass 20 times greater extent than just saltwater. These tests are meant to simulate spill material on the beach being exposed to a low-energy, 1-meter mixed tide occurring along the Alabama coastline. A separate test simulated oilwet sand exposed to saltwater and a saltwater-dispersant mixture. The oil-wet sand impeded the vertical movement of saltwater, but allowed a saltwater-dispersant solution to mobilize the oil to migrate downward. The mobilization of oil in this three phase system of saltwater, oil, and air is controlled by: the pressure-saturation profile of the sand; interfacial tension with saltwater; and its surface tension with air.

  18. MECHANICAL REGENERATION OF SAND WASTE

    Directory of Open Access Journals (Sweden)

    D. I. Gnir

    2005-01-01

    Full Text Available The experimental activation of the sand regenerator of the firm SINTO is carried out at ОАО “MZOO". It is shown that sand grains are cleared from films of binding agents, that allows to use the treated sand for preparation of agglutinant and core sands.

  19. Thermochemical method for the treatment of oil contaminated sand; Metodo termoquimico para tratamento de areia contaminada por oleo

    Energy Technology Data Exchange (ETDEWEB)

    Pimenta, Rosana C.G.M. [Fundacao Gorceix, Ouro Preto, MG (Brazil)]|[PETROBRAS S.A., Rio de Janeiro, RJ (Brazil); Khalil, Carlos N. [PETROBRAS, Rio de Janeiro, RJ (Brazil). Centro de Pesquisas (CENPES)

    2004-07-01

    In January 2000 there was a major oil spill in Guanabara Bay, Rio de Janeiro, which contaminated 2400 tons of sand. This work, based on NGS (Nitrogen Generating System) technology, was adapted for cleaning contaminated sand and recovering of spilled oil. NGS is a thermochemical method first developed for removal of paraffin deposits in production and export pipelines. The method is based on a strongly exothermic redox chemical reaction between two salts catalyzed in acidic pH. The reaction products are harmless to the environment and consist of nitrogen, sodium chloride, water and heat. By combining simultaneous effects of the treatment such as heating, turbulence and floatation, one can remove, within 98% of efficiency, spilling oil from contaminated sand. After treatment, removed oil can be securely returned to refining process. The method has proved to be efficient, fast, low cost and ecologically correct method for cleaning contaminated sand and can be applied in place right after a contamination event. (author)

  20. BENTONITE-QUARTZ SAND AS THE BACKFILL MATERIALS ON THE RADIOACTIVE WASTE REPOSITORY

    Directory of Open Access Journals (Sweden)

    Raharjo Raharjo

    2010-06-01

    Full Text Available An investigation of the contribution of quartz sand in the bentonite mixture as the backfill materials on the shallow land burial of radioactive waste has been done. The experiment objective is to determine the effect of quartz sand in a bentonite mixture with bentonite particle sizes of -20+40, -40+60, and -60+80 mesh on the retardation factor and the uranium dispersion in the simulation of uranium migration in the backfill materials. The experiment was carried out by the fixed bed method in the column filled by the bentonite mixture with a bentonite-to-quartz sand weight percent ratio of 0/100, 25/75, 50/50, 75/25, and 100/0 on the water saturated condition flown by uranyl nitrate solution at concentration (Co of 500 ppm. The concentration of uranium in the effluents in interval 15 minutes represented as Ct was analyzed by spectrophotometer, then using Co and Ct, retardation factor (R and dispersivity ( were determined. The experiment data showed that the bentonite of -60+80 mesh and the quartz sand of -20+40 mesh on bentonite-to-quartz sand with weight percent ratio of 50/50 gave the highest retardation factor and dispersivity of 18.37 and 0.0363 cm, respectively.   Keywords: bentonite, quartz sand, backfill materials, radioactive waste

  1. Crushed rock sand – An economical and ecological alternative to natural sand to optimize concrete mix

    Directory of Open Access Journals (Sweden)

    Sanjay Mundra

    2016-09-01

    Full Text Available The study investigates the use of crushed rock sand as viable alternative to Natural River sand that is being conventionally used as fine aggregate in cement concrete. Various mix designs were developed for different grades of concrete based on IS, ACI and British codes using Natural River sand and crushed rock sand. In each case, the cube compressive strength test, and beam flexure tests were conducted. The results of the study show that, the strength properties of concrete using crushed rock sand are nearly similar to the conventional concrete. The study has shown that crushed stone sand can be used as economic and readily available alternative to river sand and can therefore help to arrest the detrimental effects on the environment caused due to excessive mining of river sand.

  2. Evaluation of sorption affinity of cadmium(II) on Haro river sand from aqueous solutions

    International Nuclear Information System (INIS)

    Hasany, S.M.; Chaudhary, M.H.

    2001-01-01

    The sorption of Cd(II) on Haro river sand from deionized water is reported. The sorption system obeyed according to the Freundlich and Dubinin-Radushkevich (D-R) isotherms. The Freundlich parameters 1/n = 0.67±0.05 and of A = 1.38±1.14 mmole x g -1 have been ascertained. D-R isotherm yields the values of β = -0.003741±0.000321 kJ 2 x mole -2 , X m = 0.23±0.21 μmole x g -1 and of E = 11.6±0.5 kJ x mole -1 . The influence of common anions and cations on the sorption was examined. Trivalent Bi enhances the sorption whereas Fe, Cr, Al and chromate ions reduce the sorption significantly. Hf(IV) and Ag(I) indicate substantial sorption (61-98%) whereas Gd(III), Re(VII) and Sc(III) show low sorption (<5%). The elements having low sorption can be separated from elements indicating higher sorption using Haro river sand column. (author)

  3. BioTiger{sup TM} : a natural microbial product for enhanced hydrocarbon recovery from oil sands

    Energy Technology Data Exchange (ETDEWEB)

    Brigmon, R.L.; Berry, C.J.; Milliken, C.E.; Jones, W. [Savannah River National Laboratory, Aiken, SC (United States)

    2008-07-01

    This presentation discussed the feasibility of using BioTiger{sup TM} technology to increase hydrocarbon recovery from oil sands. This enhanced ex situ oil recovery processes was initially developed and used by the United States Department of Energy for bioremediation of soils contaminated with oil, but it may also be used to optimize bitumen separation. BioTiger was described as being a unique microbial consortia that has resulted from nearly a decade of extensive microbiology screening and characterization of samples collected from an old waste lagoon. The technology offers rapid and complete degradation of aliphatic and aromatic hydrocarbons and produces new surfactants. It is tolerant of both chemical and metal toxicity and has good activity at high temperatures at extreme pH levels. A flotation test protocol with oil sands from Fort McMurray, Alberta was used for the BioTiger evaluation. A comparison of hot water extraction/flotation test of the oil sands performed with BioTiger showed a 50 per cent improvement in separation as measured by gravimetric analysis. BioTiger is well suited for enhanced hydrocarbon recovery from oil sands because it performs well at high temperatures. 8 figs.

  4. Residual diesel measurement in sand columns after surfactant/alcohol washing

    International Nuclear Information System (INIS)

    Martel, R.; Gelinas, P.J.

    1996-01-01

    A new simple gravimetric technique has been designed to determine residual oil saturation of complex hydrocarbon mixtures (e.g., diesel) in sand column experiments because reliable methods are lacking. The He/N 2 technique is based on drying of sand columns by circulating helium gas to drag oil droplets in a cold trap (liquid nitrogen). With this technique, residual diesel measurement can be performed easily immediately after alcohol/surfactant washing and in the same lab. For high residual diesel content in Ottawa sand (25 to 30 g/kg), the technique is much more accurate (± 2% or 600 mg/kg) than the standard analytical methods for the determination of mineral oil and grease. The average relative error on partial diesel dissolution in sand column estimated after alcohol/surfactant flooding (residual saturation of 10 to 15 g/kg) is as low as 5%. The precision of the He/N 2 technique is adequate to compare relative efficiency of washing solutions when partial extraction of residual oil in Ottawa sand columns is performed. However, this technique is not adapted for determination of traces of oil in sediment or for environmental control of contaminated soils. Each diesel determination by the He/N 2 technique costs less than $8 in chemical products (helium and liquid nitrogen). A simple laboratory drying setup can be built for less than $400 which makes this technique valuable for diesel analyses when a large number of tests are required

  5. Mining aspects of hard to access oil sands deposits

    Energy Technology Data Exchange (ETDEWEB)

    Stephenson, G.; Wright, D.; Lukacs, Z. [Norwest Corp., Calgary, AB (Canada)

    2006-07-01

    While a variety of oil sands mining technologies have been explored since the 1960s, the oil sands industry has generally favoured truck and shovel mining as a proven, low-cost mining solution. However, surface mining economics are affected by the price of bitumen, haul distances, tailings storage and geotechnical constraints. Maintenance, labour and the cost of replacing tires and ground engaging tools also have a significant impact on the economics of surface mining. Large volumes of water are used in surface mining, and remediation of surface mined areas can take hundreds of years. Damage to machinery is common as oil sands are abrasive and adhere to equipment. This presentation examined recent technologies developed to improve the economics of surface mining. Various extraction and tailings technologies were reviewed. Issues concerning the integration of mining and extraction processes were discussed. Various monitoring tools were evaluated. A review of new underground mining options included outlines of: longwall mining; sub-level caving; tunnel boring; and room and pillar extraction techniques. A generalized regional geology was presented. It was concluded that the oil sands surfacing mining industry should concentrate on near-term research needs to improve the performance and economics of proven technologies. Screening studies should also be conducted to determine the focus for the development of underground technologies. refs., tabs., figs.

  6. Rheological Characterization of Green Sand Flow

    DEFF Research Database (Denmark)

    Jabbaribehnam, Mirmasoud; Spangenberg, Jon; Hovad, Emil

    2016-01-01

    The main aim of this paper is to characterize experimentally the flow behaviour of the green sand that is used for casting of sand moulds. After the sand casting process is performed, the sand moulds are used for metal castings. The rheological properties of the green sand is important to quantif...

  7. Identification and Purification of Nyalo River Silica Sand as Raw Material for the Synthesis of Sodium Silicate

    Science.gov (United States)

    Aini, S.; Nizar, U. K.; NST, A. Amelia; Efendi, J.

    2018-04-01

    This research is on identification and purification of silica sand from Nyalo River. It will be used as a raw material for synthesis of sodium silicate. Silica sand was separated from clay by washing it with water, and then the existing alumina and iron oxide were removed by soaking the silica sand with 1 M HNO3 solution. Qualitative and quantitative analysis of the silica sand with X-ray diffraction and X-ray fluorescence revealed that, silica sand existed in quartz form and contained a small amount of impurity oxide such as Al2O3, K2O, MgO, CaO, Fe2O3 with percentage below the minimum threshold. The percentages of silica were 80.59% before purification. After three purificationsteps the silica percentage become 98.38%. It exceedsthe minimum threshold of silica percentage for industry.So, the silica sand from Nyalo River has high potency as a raw material for sodium silicate synthesizing.

  8. Chromatographic studies of thorium(IV) and its extraction from monazite sand

    International Nuclear Information System (INIS)

    Bandyopadhyay, Arup; Roy, Uday Sankar

    1998-01-01

    A simple, rapid and selective method has been developed for reversed phase extraction chromatographic studies of Th IV with high molecular mass monocarboxylic acid (C 15 -C 16 ), SRS-100 as a stationary phase on a column of silica gel. Quantitative extraction of Th IV has been achieved in the pH range 4.8-5.5. The extracted Th IV has been stripped with 1:1 (v/v) mixture of 0.2 M HNO 3 and 0.2 M NaNO 3 and estimated spectrophotometrically. The effect of variables as pH, stripping agents, flow rate on extraction and elution have been studied. Th IV has been separated from various commonly associated elements in binary and synthetic multicomponent mixtures. The method has been applied successfully for the extraction of thorium from monazite sand. (author)

  9. pH dependent polymeric micelle adsorption

    Energy Technology Data Exchange (ETDEWEB)

    McLean, S C; Gee, M L [The University of Melbourne, VIC (Australia). School of Chemistry

    2003-07-01

    Full text: Poly(2-vinylpyridine)-poly(ethylene oxide) (P2VP-PEO) shows potential as a possible drug delivery system for anti-tumour drugs since it forms pH dependent polymeric micelles. Hence to better understand the adsorption behaviour of this polymer we have studied the interaction forces between layers of P2VP-PEO adsorbed onto silica as a function of solution pH using an Atomic Force Microscope (AFM). When P2VP-PEO is initially adsorbed above the pKa of the P2VP block, P2VP-PEO adsorbs from solution as micelles that exist as either partially collapsed- or a hemi-micelles at the silica surface. Below the pKa of P2VP, the P2VP-PEO adsorbs as unimers, forming a compact layer with little looping and tailing into solution. When initial adsorption of P2VP-PEO is in the form of unimers, any driving force to self-assembly of the now charge neutral polymer is kinetically hindered. Hence, after initial adsorption at pH 3.6, a subsequent increase in pH to 6.6 results in a slow surface restructuring towards self-assembly and equilibrium. When the pH is increased from pH 6.6 to 9.7 there is a continuation of the evolution of the system to its equilibrium position during which the adsorbed P2VP-PEO unimers continue to 'unravel' from the surface, extending away from it, towards eventual complete surface self-assembly.

  10. The Alberta oil sands story

    Energy Technology Data Exchange (ETDEWEB)

    1974-01-01

    This report serves as a detailed introduction to the Alberta oil sands and their development. It includes a description of the oil sands deposits, an outline of crude bitumen recovery and upgrading processes, the role of Alberta Energy Company in oil sands development, environmental aspects, manpower requirements for oil sands development, research needs, and further oil sands projects. Presently proven recoverable reserves in the oil sands amount to 26.5 billion bbl of synthetic crude. Production from the Syncrude plant (125,000 bbl/d capacity) is expected to begin in 1977, followed by a Shell Canada operation around 1980. The provincial government will participate in the oil sand industry through its joint venture participation in Syncrude and its 50% share in Alberta Energy Company; the latter company participates in related aspects of the Syncrude project, such as pipelines. The result of Alberta's participation in the industry will mean that, directly or indirectly, the province will realize 60% of the total profits. The job creation potential of oil sands projects is estimated to be extensive, with a direct and indirect work force supported by oil sands activities possibly reaching 180,000 persons by the year 2000. Research needs have been identified, particularly in the area of in-situ thermal recovery technology, and the creation of the Alberta Oil Sands Technology and Research Authority has been authorized in order to meet these needs. Although current reserves are sufficient to support 20-30 synthetic crude plants, a number of factors will limit expansion of the industry. 8 figs., 5 tabs.

  11. pH tolerance of Daphnia pulex (leydig, emend. , richard)

    Energy Technology Data Exchange (ETDEWEB)

    Davis, P; Ozburn, G W

    1969-01-01

    The survival time and reproduction of female Daphnia pulex in solutions varying in pH have been observed. Dilute sodium hydroxide or sulfuric acid solutions were added to four different diluent waters: distilled water, aerated tap water, aerated and filtered tap water from an aquarium containing Dace minnows, and Mcintyre River water. D. Pulex (initially up to 72 hours old) survived for the duration of the experiment (32 hours) in river water within a pH range of 6.1 to 10.3; in aquarium water within a pH range of 4.3 to 10.4; only at pH 6.4 and pH 7.6 in distilled water; and in none of the solutions using aerated tap water. The dissolved oxygen content was measured at the beginning and end of every experiment and was found never to fall below 6.2 p.p.M. Those individuals which survived were cultured in the laboratory and parthenogenesis was observed at pH values between 7.0 and 8.7.

  12. Using the SAND-II and MLM methods to reconstruct fast neutron spectra

    International Nuclear Information System (INIS)

    Bondars, Kh.Ya.; Kamnev, V.A.; Lapenas, A.A.; Troshin, V.S.

    1981-01-01

    The reconstruction of fast neutron spectra from measured reaction rates may be reduced to the solution of Fredholm's integral equation of the first kind. This problem falls in the category of incorrectly formulated problems, and so additional information is required concerning the unknown function i.e. concerning the differential energy dependence of the neutron, flux density sup(phi)(E). There are various methods for seeking a solution to the problem as formulated above. One of the best-known methods used in the USSR is the maximum likelihood method (MLM) (or directional difference method (DDM)), whereas SAND-II is commonly used abroad. The purpose of this paper is to compare the MLM and SAND-II methods, taking as an example the processing of measurement data which were obtained in the B-2 beam line at the BR-10 reactor in order to determine the composition of shielding for a fast reactor

  13. Intracellular pH in rat pancreatic ducts

    DEFF Research Database (Denmark)

    Novak, I; Hug, M; Greger, R

    1997-01-01

    In order to study the mechanism of H+ and HCO3- transport in a HCO3- secreting epithelium, pancreatic ducts, we have measured the intracellular pH (pHi) in this tissue using the pH sensitive probe BCECF. We found that exposures of ducts to solutions containing acetate/acetic acid or NH4+/NH3...... buffers (20 mmol/l) led to pHi changes in accordance with entry of lipid-soluble forms of the buffers, followed by back-regulation of pHi by duct cells. In another type of experiment, changes in extracellular pH of solutions containing HEPES or HCO3-/CO2 buffers led to significant changes in pHi that did....... Under some conditions, these exchangers can be invoked to regulate cell pH....

  14. Economical wireless optical ratiometric pH sensor

    International Nuclear Information System (INIS)

    Vuppu, Sandeep; Kostov, Yordan; Rao, Govind

    2009-01-01

    The development and application of a portable, wireless fluorescence-based optical pH sensor is presented. The design incorporates the MSP430 microcontroller as the control unit, an RF transceiver for wireless communication, digital filters and amplifiers and a USB-based communication module for data transmission. The pH sensor is based on ratiometric fluorescence detection from pH sensitive dye incorporated in a peel-and-stick patch. The ability of the instrument to detect the pH of the solution with contact only between the sensor patch and the solution makes it partially non-invasive. The instrument also has the ability to transmit data wirelessly, enabling its use in processes that entail stringent temperature control and sterility. The use of the microcontroller makes it a reliable, low-cost and low-power device. The luminous intensity of the light source can be digitally controlled to maximize the sensitivity of the instrument. It has a resolution of 0.05 pH. The sensor is accurate and reversible over the pH range of 6.5–9

  15. Radiolysis of permanganate and its mixtures with bromate and nitrate ions in solution at pH 10

    International Nuclear Information System (INIS)

    Dedgaonkar, V.G.; Kulkarni, S.A.; Mahajan, C.T.

    1981-01-01

    γ-radiolysis of aqueous solutions of pure permanganate and its binary mixture with nitrite and bromate ions at pH 10 is studied as a function of concentration and dose. In pure system G(-MnO 4 - ) increases with the increase in initial concentration from 0.68 to a maximum of 25. The rise is sharp above 10 -2 M concentration which indicates the occurrence of a chain mechanism. In the presence of bromate or nitrite the G value decreases: the G(-MnO 4 - ) in 10 -3 M permanganate solution is 1.07, with 10 -1 M bromate it is 0.2 and with 10 -2 M nitrite it is 0.7. A mechanism based on the cometitive kinetics is envisaged to explain the observed results. (author)

  16. Compressive behavior of fine sand.

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Bradley E. (Air Force Research Laboratory, Eglin, FL); Kabir, Md. E. (Purdue University, West Lafayette, IN); Song, Bo; Chen, Wayne (Purdue University, West Lafayette, IN)

    2010-04-01

    The compressive mechanical response of fine sand is experimentally investigated. The strain rate, initial density, stress state, and moisture level are systematically varied. A Kolsky bar was modified to obtain uniaxial and triaxial compressive response at high strain rates. A controlled loading pulse allows the specimen to acquire stress equilibrium and constant strain-rates. The results show that the compressive response of the fine sand is not sensitive to strain rate under the loading conditions in this study, but significantly dependent on the moisture content, initial density and lateral confinement. Partially saturated sand is more compliant than dry sand. Similar trends were reported in the quasi-static regime for experiments conducted at comparable specimen conditions. The sand becomes stiffer as initial density and/or confinement pressure increases. The sand particle size become smaller after hydrostatic pressure and further smaller after dynamic axial loading.

  17. Log analysis in the shallow oil sands of the San Joaquin Valley, California

    International Nuclear Information System (INIS)

    Vohs, J.B.

    1976-01-01

    Many fields in the San Joaquin Valley of California produce oil from a depth of 2,500 ft or less. During the period of primary production in these fields, evaluation of potential pay intervals from logs was restricted to examination of ES logs and correlation. With the introduction of secondary and tertiary recovery techniques the need for more and better answers, more quickly available, became apparent. However, several log-analysis problems had to be resolved. Formation evaluation using well logs was complicated by the shaliness of the sand intervals, the low and variable salinity of the formation waters, and the presence of low-pressure-gas (depleted) zones in many of the shallow sands. Solutions to these problems have required more modern logging programs and interpretation techniques. Logs available for the evaluation of these sands are the dual induction-laterolog, the compensated formation density log, the compensated neutron log, and the microlaterolog or proximity log. With this suite of logs it is possible to determine the shale content, porosity, saturation in the flushed zone, and water saturation of the sand, and to locate the low-pressure-gas sands and depleted zones. In cases where freshwater and oil are interlayered, it is possible to tell which sands contain oil and which contain only water. Because a quick interpretation is required, wellsite techniques are called for. These will be described

  18. Programmable pH buffers

    Science.gov (United States)

    Gough, Dara Van; Huber, Dale L.; Bunker, Bruce C.; Roberts, Mark E.

    2017-01-24

    A programmable pH buffer comprises a copolymer that changes pK.sub.a at a lower critical solution temperature (LCST) in water. The copolymer comprises a thermally programmable polymer that undergoes a hydrophobic-to-hydrophilic phase change at the LCST and an electrolytic polymer that exhibits acid-base properties that are responsive to the phase change. The programmable pH buffer can be used to sequester CO.sub.2 into water.

  19. Utilisation of Sand from Kaolin Washing for the Manufacture of Alkali-activated Artificial Sandstone

    Science.gov (United States)

    Vavro, Martin; Vavro, Leona; Mec, Pavel; Soucek, Kamil; Pticen, Frantisek; Reiterman, Pavel

    2017-04-01

    sand from kaolin-washing process is of several hundred thousand tonnes and it thus represent so far a relatively rarely used natural building material which is currently usually deposited in worked-out areas of kaolin quarries. One of the main reasons of very difficult usability of this sands in building material industry is their behavior when exposed to the weather. In only a very short time of exposure in outdoor condition they may change in colour from greyish white to yellow-brown or golden yellow. This colour change is accompanied by significant decrease of pH values of sand leachate up to pH ranging between 3.5 and 5.5, in extreme cases even up to 2.0. Despite these extreme chemical properties of sands under study, the artificial sandstone, very similar in the physical and mechanical properties to natural ones, was successfully prepared in the laboratory. Due to the mineralogical composition of applied sands (i.e. the presence not only of quartz, but also of feldspar and muscovite), the artificial sandstone is characterized by relatively true natural appearance.

  20. Dielectrophoresis Aligned Single-Walled Carbon Nanotubes as pH Sensors.

    Science.gov (United States)

    Li, Pengfei; Martin, Caleb M; Yeung, Kan Kan; Xue, Wei

    2011-01-31

    Here we report the fabrication and characterization of pH sensors using aligned single-walled carbon nanotubes (SWNTs). The SWNTs are dispersed in deionized (DI) water after chemical functionalization and filtration. They are deposited and organized on silicon substrates with the dielectrophoresis process. Electrodes with "teeth"-like patterns-fabricated with photolithography and wet etching-are used to generate concentrated electric fields and strong dielectrophoretic forces for the SWNTs to deposit and align in desired locations. The device fabrication is inexpensive, solution-based, and conducted at room temperature. The devices are used as pH sensors with the electrodes as the testing pads and the dielectrophoretically captured SWNTs as the sensing elements. When exposed to aqueous solutions with various pH values, the SWNTs change their resistance accordingly. The SWNT-based sensors demonstrate a linear relationship between the sensor resistance and the pH values in the range of 5-9. The characterization of multiple sensors proves that their pH sensitivity is highly repeatable. The real-time data acquisition shows that the sensor response time depends on the pH value, ranging from 2.26 s for the pH-5 solution to 23.82 s for the pH-9 solution. The long-term stability tests illustrate that the sensors can maintain their original sensitivity for a long period of time. The simple fabrication process, high sensitivity, and fast response of the SWNT-based sensors facilitate their applications in a wide range of areas.

  1. Thermochemical methods for the treatment of oil contaminated sand; Metodo termoquimico para tratamento de areia contaminada por oleo

    Energy Technology Data Exchange (ETDEWEB)

    Pimenta, Rosana C.G.M. [Fundacao Jose Bonifacio, Rio de Janeiro, RJ (Brazil); Khalil, Carlos N. [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil)

    2003-07-01

    The Nitrogen Generating System (SGN in Portuguese) is a thermochemical method first developed for cleaning and removal of paraffin deposits in production and export pipelines. SGN is based on a redox chemical reaction between two salts which is catalyzed in acidic pH. The reaction is strongly exothermic and its products are nitrogen, sodium chloride, water and heat. All reaction products are harmless to the environment. In January 2000 there was a major oil spill in Guanabara Bay, Rio de Janeiro, which contaminated 2400 tons of sand. This work, developed at PETROBRAS Research Center (CENPES), was based on SGN technology which has been adapted for cleaning contaminated sand and recovering of spilled oil. By combining simultaneous effects of the SGN treatment such as heating, turbulence and floatation, one can remove, within 98% of efficiency, spilling oil from contaminated sand and removed oil can be securely returned to refining process. SGN technology has proved to be efficient, fast, low cost and ecologically correct method for cleaning contaminated sand and can be applied in loco right after a contamination event. (author)

  2. Radiometric Characterization of Sand in Northeast Sinai

    International Nuclear Information System (INIS)

    Ramadan, Kh.A.; Badran, H.M.; Ramadan, Kh.A.; Seddeek, M.K.; Sharshar, T.

    2009-01-01

    Thirty-eight locations covering an area of 350 km 2 in northeast Sinai were investigated by gamma-ray spectroscopy using a 50% HPGe detector. The limits of area are Al-Arish North, El-Hasana South, El-Oga East, and El- Gifgafa West. The range of activity concentrations of 238 U, 234 Th, 226 Ra, 232 Th and 40 K are 0.6-35.2, 3.9-22.6, 4.7-29.6, 4.7-23.9, and 108-295 Bq/kg for sands, respectively. 137 Cs in the region ranged from 0.1-8.0 Bq/kg. No major difference between the studied area and that previously investigated in the costal area in North Sinai. Reliable correlations (R2 = 0.8-0.9) among 238 U, 234 Th, and 226 Ra isotopes was obtained. On the other hand, low correlation (R 2 = 0.6-0.7) was obtained from the analysis of the isotopes of 238 U-seies and 232 Th. No evidence of correlation between the concentrations of radioisotopes and pH contents, TOM, and grain size were found. The soil-plant transfer factor are 226 Ra and 232 Th, 40 K, and 137 Cs, respectively. The wild vegetations collected from the studied area have average concentrations of 1.9, 1.4, 1.3, 254, and 0.3 for 234 Th, 226 Ra, 232 Th, 40 K, and 137 Cs, respectively. The average concentrations of 226 Ra, 232 Th, and 40 K in water samples collected from five wells are 0.02, 0.02, and 1.1 Bq/l, respectively. The average absorbed dose rate for the sand samples were calculated to be 19.4 n Gy h-1. The Raeq activities of the sands are lower than the recommended maximum value of 370 Bq kg-1 criterion limit of Raeq activity for building materials

  3. Importance of copper for nitrification in biological rapid sand filters for drinking water production

    DEFF Research Database (Denmark)

    Wagner, Florian Benedikt

    When anoxic groundwater is treated to produce drinking water, ammonium is commonly removed through nitrification in rapid sand filters. Nitrification is a biological process, and is mediated by chemoautotrophic microorganisms. Ammonia oxidizing bacteria (AOB) and archaea (AOA) oxidize ammonium...... to remove ammonium to below the national drinking water quality standard of 0.05 mg NH4+/L. A better process understanding of nitrifying biofilters is needed to optimize treatment performance, remediate existing filters, and to prevent future nitrification problems. The frequent incidents of insufficient...... in the oxidation of ammonia to hydroxylamine. Thus, slow and incomplete nitrification could be caused by a lack of sufficient amounts of copper. The overall aim of this PhD project was therefore to determine whether copper supplementation could enhance nitrification in rapid sand filters with incomplete...

  4. Computer simulation of the effect of temperature on pH.

    Science.gov (United States)

    Kipp, J E; Schuck, D F

    1995-11-01

    The effect of temperature on solution pH was simulated by computer (program PHTEMP). We have determined that the change in pH due to shifts in acid-base equilibria [delta pH = pH(60 degrees C) - pH(25 degrees C)] can be substantial for compounds such as aliphatic amines that have high enthalpies for acid dissociation. This is of particular significance during elevated temperature experiments in which changes in the pKa values of formulation components, and hence the solution pH, can accelerate decomposition as compared to those formulations where sensitive functionality is absent. PHTEMP afforded the following results at initial pH = 7 (25 degrees C): (a) 0.1 M triethylamine (delta H zero = 10.4 kcal/mol) delta pH approximately -0.8; (b) 0.1 M acetic acid (delta H zero = -0.1 kcal/mol) delta pH approximately 0; (c) 0.1 M sulfuric acid (delta H zero 1 = -12 kcal/mol; delta H zero 2 = -5.4 kcal/mol) delta pH approximately -0.4. Solutions of general pharmaceutical interest were also studied and included a 12-component amino acid mixture, 0.1 M glycine, and 0.1 M triethylamine in either 0.02 M citric acid or 0.05 M TRIS buffer. In each case the pH change with temperature was dependent on the concentrations of components, the enthalpies for each acid dissociation, and the starting pH. At lower pH ( 9). These results are interpreted as the effect of a relative change in hydronium ion activity, delta H+/H+(initial), due to temperature-induced shifts in equilibria (acid dissociation, water autoprotolysis). This relative change must become larger as H+ decreases (pH increases). The output of PHTEMP was experimentally verified with 0.1 M glycine and with a multiple component amino acid solution. In both cases, agreement with prediction was excellent. The results of this investigation underscore the need to critically review formulation choices for both thermodynamic and traditional kinetic effects on the resulting product stability.

  5. Hemoglobin bioconjugates with surface-protected gold nanoparticles in aqueous media: The stability depends on solution pH and protein properties.

    Science.gov (United States)

    Del Caño, Rafael; Mateus, Lucia; Sánchez-Obrero, Guadalupe; Sevilla, José Manuel; Madueño, Rafael; Blázquez, Manuel; Pineda, Teresa

    2017-11-01

    The identification of the factors that dictate the formation and physicochemical properties of protein-nanomaterial bioconjugates are important to understand their behavior in biological systems. The present work deals with the formation and characterization of bioconjugates made of the protein hemoglobin (Hb) and gold nanoparticles (AuNP) capped with three different molecular layers (citrate anions (c), 6-mercaptopurine (MP) and ω-mercaptoundecanoic acid (MUA)). The main focus is on the behavior of the bioconjugates in aqueous buffered solutions in a wide pH range. The stability of the bioconjugates have been studied by UV-visible spectroscopy by following the changes in the localized surface resonance plasmon band (LSRP), Dynamic light scattering (DLS) and zeta-potential pH titrations. It has been found that they are stable in neutral and alkaline solutions and, at pH lower than the protein isoelectric point, aggregation takes place. Although the surface chemical properties of the AuNPs confer different properties in respect to colloidal stability, once the bioconjugates are formed their properties are dictated by the Hb protein corona. The protein secondary structure, as analyzed by Attenuated total reflectance infrared (ATR-IR) spectroscopy, seems to be maintained under the conditions of colloidal stability but some small changes in protein conformation take place when the bioconjugates aggregate. These findings highlight the importance to keep the protein structure upon interaction with nanomaterials to drive the stability of the bioconjugates. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Dissolution and time-dependent compaction of albite sand: experiments at 100°C and 160°C in pH-buffered organic acids and distilled water

    Science.gov (United States)

    Hajash, Andrew; Carpenter, Thomas D.; Dewers, Thomas A.

    1998-09-01

    Aqueous fluids are important in the diagenesis and deformation of crustal rocks. Both chemical and physical interactions are involved and often they are strongly coupled. For example, pore waters not only dissolve, transport, and precipitate chemical species, but they also substantially affect the mechanical behavior of the rocks that contain them. Stresses magnified at grain contacts by differences in pore-fluid pressure ( Pp) and confining pressure ( Pc) can, in turn, influence the rate and extent of chemical exchange. To begin investigation of these coupled systems, compaction experiments were conducted using albite sand (250-500 μm) and distilled water (pH 5.8), 0.07 M acetate (pH 4.7), and 0.07 M acetate + 0.005 M citrate (pH 4.4) solutions in a hydrothermal flow-through system at conditions that simulate diagenesis. Pore-fluid chemistry and pore-volume loss were monitored to quantify the effects of organic acids on time-dependent compaction rates. The effects of stress and fluid chemistry on the dissolution kinetics were also examined. Albite dissolution rates, monitored by steady-state fluid chemistry, increased when an effective pressure ( Pe= Pc- Pp) was applied, probably due to increases in total surface area caused by grain breakage at contacts. These effects were transient in distilled water, however, Si and Al concentrations remained elevated in the acetate pore fluid. The average Si-based release rates indicate ≈35% increase in reactive surface area by application of Pe=34.5 MPa. At 100°C with Pe=34.5 MPa, steady-state Si concentrations were ≈2.3 times higher in 0.07 M acetate and 5.8 times higher in 0.07 M acetate + 0.005 M citrate than in distilled water. Al increased by even larger factors (3× in the acetate buffer and 10× in the citrate solution). These changes in fluid chemistry are attributed to both pH and ligand-enhanced reactions. Albite dissolution appears to be controlled by surface complexation reactions at Al sites. Rapid

  7. Effect of Strength and Microstructure on Stress Corrosion Cracking Behavior and Mechanism of X80 Pipeline Steel in High pH Carbonate/Bicarbonate Solution

    Science.gov (United States)

    Zhu, Min; Du, Cuiwei; Li, Xiaogang; Liu, Zhiyong; Wang, Shengrong; Zhao, Tianliang; Jia, Jinghuan

    2014-04-01

    The stress corrosion cracking (SCC) behaviors and mechanisms of X80 pipeline steels with different strength and microstructure in high pH carbonate/bicarbonate solution were investigated by slow strain rate testing and electrochemical test. The results showed that the cracking mode of low strength X80 steel composed of bulky polygonal ferrite and granular bainite in high pH solution was intergranular (IGSCC), and the SCC mechanism was anodic dissolution (AD). While the mixed cracking mode of high strength X80 steel consisted of fine acicular ferrite and granular bainite was intergranular (IGSCC) in the early stage, and transgranular (TGSCC) in the later stage. The decrease of pH value of crack tip was probably the key reason for the occurrence of TGSCC. The SCC mechanism may be a mixed mode of AD and hydrogen embrittlement (HE), and the HE mechanism may play a significant role in the deep crack propagation at the later stage. The cracking modes and SCC mechanisms of the two X80 steels were associated with its microstructure and strength.

  8. On Pluvial Compaction of Sand

    DEFF Research Database (Denmark)

    Jacobsen, Moust

    At the Institute of Civil Engineering in Aalborg model tests on dry sand specimens have been carried out during the last five years. To reduce deviations in test results, the sand laying technique has been carefully studied, and the sand mass spreader constructed. Preliminary results have been...

  9. MORPHOMETRIC CHARACTERIZATION OF THE SAND FRACTION IN A SAND GRAIN IMAGE CAPTURE SYSTEM1

    Directory of Open Access Journals (Sweden)

    Lucimar Arruda Viana

    Full Text Available ABSTRACT Morphology studies assume significant importance in analysis of phenomena of granular systems packaging, in particular with a view to the use of the technique of soil stabilization named particle size correction in forest roads. In this context, this study aimed to develop and operationalize a Sand Grain Image Capture System and, hereby, determine the morphological indices of the sand fractions of two sandy soils called João Pinheiro (JP and Cachoeira da Prata (CP. Soil samples, air-dried, were sieved (2.0 mm nominal mesh size for removal of gravels. The materials that passed through the sieve were subjected to dispersion, washing in 0.053 mm nominal mesh size sieve, removal of organic matter and iron oxides to obtain the clean sand fractions. Subsequently, each soil sample was sieved for separation into twelve classes, between the diameters of 0.149 mm and 1.190 mm, using a Rotap shaker. Next, tests were carried out to characterize the morphometric attributes of the twelve classes of sand fractions of the soils studied. For validation of the performance of the Sand Grain Image Capture System, the results were compared to those obtained using a standard procedure for image analysis. The analysis of the results led to the following conclusions: (i the sand fraction of the JP soil presented higher values for the morphometric indices roundness, elongation and compactness compared to sand fraction of the CP soil; and (ii the Sand Grain Image Capture System worked properly, with practicality.

  10. A highly selective chemosensor for colorimetric detection of Hg2+ and fluorescence detection of pH changes in aqueous solution

    International Nuclear Information System (INIS)

    Kavitha, Ramasamy; Stalin, Thambusamy

    2014-01-01

    A naturally existing and unmodified simple chemosensor, 2-hydroxy-1,4-naphthoquinone (2HNQ), was identified and used for both the colorimetric detection of Hg 2+ and the fluorescent (on-off) detection of pH. The distinct color change and quenching of fluorescence emission was visible to the naked eye. More importantly, the chemosensor was used in combination with β-cyclodextrin (β-CD), which enabled the sensor to be solubilized and stabilized in aqueous solutions. The sensor selectively detected Hg 2+ via the stable 1:1 complexation of the CåO and OH groups with Hg 2+ and reflected pH changes in the range from 6 to 12 via a fluorescence on–off response resulting from the deprotonation of the hydroxyl group in 2HNQ. - Highlights: • The 2-Hydroxy-1,4-Naphthoquinone (2HNQ) chemosensor is capable of both colorimetric detection of Hg 2+ and a fluorescence on-off response to pH. • The distinct color change and quenching of fluorescence emission are detectable with the naked eye. • The on– off fluorescence response in the pH range from 6– to 12 is due to the deprotonation of the hydroxyl group in 2HNQ

  11. Technology unlocks tar sands energy

    Energy Technology Data Exchange (ETDEWEB)

    Law, C

    1967-09-25

    Tar sand processing technology has been developed primarily in the categories of extraction techniques and in-situ processing. In October, a $235 million venture into tar sand processing will be inspected by visitors from many points on the globe. A synthetic crude of premium quality will be flowing through a 16-in. pipeline from the Tar Island plant site of Great Canadian Oil Sands to Edmonton. This processing plant uses an extractive mining technique. The tar sand pay zone in this area averages approximately 150 ft in thickness with a 50-ft overburden. It has been estimated that the tar sands cannot be exploited when the formation thickness is less than 100 ft and overburden exceeds the same amount. This indicates that extraction techniques can only be used to recover approximately 15% of the tar sand deposits. An in-situ recovery technique developed by Shell of Canada is discussed in detail. In essence it is selective hydraulic fracturing, followed by the injection of emulsifying chemicals and steam.

  12. Self-assembly behavior of pH- and thermosensitive amphiphilic triblock copolymers in solution: experimental studies and self-consistent field theory simulations.

    Science.gov (United States)

    Cai, Chunhua; Zhang, Liangshun; Lin, Jiaping; Wang, Liquan

    2008-10-09

    We investigated, both experimentally and theoretically, the self-assembly behaviors of pH- and thermosensitive poly(L-glutamic acid)- b-poly(propylene oxide)-b-poly(L-glutamic acid) (PLGA-b-PPO-b-PLGA) triblock copolymers in aqueous solution by means of transmission electron microscopy (TEM), scanning electron microscopy (SEM), dynamic light scattering (DLS), circular dichroism (CD), and self-consistent field theory (SCFT) simulations. Vesicles were observed when the hydrophilic PLGA block length is shorter or the pH value of solution is lower. The vesicles were found to transform to spherical micelles when the PLGA block length increases or its conformation changes from helix to coil with increasing the pH value. In addition, increasing temperature gives rise to a decrease in the size of aggregates, which is related to the dehydration of the PPO segments at higher temperatures. The SCFT simulation results show that the vesicles transform to the spherical micelles with increasing the fraction or statistical length of A block in model ABA triblock copolymer, which corresponds to the increase in the PLGA length or its conformation change from helix to coil in experiments, respectively. The SCFT calculations also provide chain distribution information in the aggregates. On the basis of both experimental and SCFT results, the mechanism of the structure change of the PLGA- b-PPO- b-PLGA aggregates was proposed.

  13. Redox properties of phenosafranine at zeolite-modified electrodes-Effect of surface modification and solution pH

    International Nuclear Information System (INIS)

    Easwaramoorthi, S.; Natarajan, P.

    2008-01-01

    Redox properties of cationic dye phenosafranine (3,7-diamino-5-phenylphenazenium chloride) (PS + ) were studied at zeolite-modified electrodes using Zeolite-Y and NaZSM-5. The peak current and peak potential of phenosafranine-adsorbed zeolite were found to be influenced by the pH of the electrolyte solution. Observation of a second redox couple is suggested to be due to formation of new species at low concentration from the reduced phenosafranine at the zeolite-modified electrodes. Titanium dioxide nanoparticles encapsulated in the cavities of the zeolite or anchored on the external surface of the zeolite do not seem to affect the redox properties of adsorbed PS + . When the cyclic voltammograms are recorded immediately after the electrode is immersed into the solution, the redox potential of PS + is found to be sensitive to the nature of the zeolite surface. The peak potential shifts towards positive region under continuous cycles as the surface hydroxyl groups get protonated in acidic electrolyte solution thereby forcing the movement of dye molecules from the zeolite surface to the zeolite electrode solution interface. The electron transfer rate constants for the adsorbed dye at the electrode are calculated to be 2.5 ± 0.2 s -1 and 3.5 ± 0.2 s -1 for the zeolite-Y electrode and the ZSM-5 electrode, respectively by the Laviron equation

  14. Phosphorus removal from aqueous solution using iron coated natural and engineered sorbents

    International Nuclear Information System (INIS)

    Boujelben, N.; Bouzid, J.; Elouear, Z.; Feki, M.; Jamoussi, F.; Montiel, A.

    2008-01-01

    New filtration materials covered with metallic oxides are good adsorbents for both cation and anion forms of pollutants. Sfax is one of the most important industrial towns in Tunisia. Its phosphate manufacture in particular is causing considerable amounts of water pollution. Therefore, there is a need to find out a new way of getting rid of this excessive phosphate from water. This work is aimed to examining the potential of three sorbent materials (synthetic iron oxide coated sand (SCS), naturally iron oxide coated sand (NCS) and iron oxide coated crushed brick (CB)) for removing phosphate ions from aqueous solutions. According to our literature survey CB was not used as adsorbent previously. Phosphate ions are used here as species model for the elimination of other similar pollutants (arsenates, antimonates). Optical microscope and scanning electron microscope (SEM) analyses were used to investigate the surface properties and morphology of the coated sorbents. Infra-red spectroscopy and X-ray diffraction techniques were also used to characterize the sorbent structures. Results showed that iron coated crushed brick possess more micro pores and a higher surface area owing to its clay nature. The comparative sorption of PO 4 3- from aqueous solutions by SCS, CB and NCS was investigated by batch experiments. The estimated optimum pH of phosphate ion retention for the considered sorbents was 5. The equilibrium data were analysed using the Langmuir and Freundlich isotherms. The sorption capacities of PO 4 3- at pH 5 were 1.5 mg/g for SCS, 1.8 mg/g for CB and 0.88 mg/g for NCS. The effect of temperature on sorption phenomenon was also investigated. The results indicated that adsorption is an endothermic process for phosphate ions removal. This study demonstrates that all the considered sorbents can be used as an alternative emerging technology for water treatment without any side effect or treatment process alteration

  15. Chemical Speciation and Bond Lengths of Organic Solutes by Core-Level Spectroscopy: pH and Solvent Influence on p-Aminobenzoic Acid.

    Science.gov (United States)

    Stevens, Joanna S; Gainar, Adrian; Suljoti, Edlira; Xiao, Jie; Golnak, Ronny; Aziz, Emad F; Schroeder, Sven L M

    2015-05-04

    Through X-ray absorption and emission spectroscopies, the chemical, electronic and structural properties of organic species in solution can be observed. Near-edge X-ray absorption fine structure (NEXAFS) and resonant inelastic X-ray scattering (RIXS) measurements at the nitrogen K-edge of para-aminobenzoic acid reveal both pH- and solvent-dependent variations in the ionisation potential (IP), 1s→π* resonances and HOMO-LUMO gap. These changes unequivocally identify the chemical species (neutral, cationic or anionic) present in solution. It is shown how this incisive chemical state sensitivity is further enhanced by the possibility of quantitative bond length determination, based on the analysis of chemical shifts in IPs and σ* shape resonances in the NEXAFS spectra. This provides experimental access to detecting even minor variations in the molecular structure of solutes in solution, thereby providing an avenue to examining computational predictions of solute properties and solute-solvent interactions. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Canada's oil sands: nuclear power in an integrated energy economy

    Energy Technology Data Exchange (ETDEWEB)

    Isaacs, E. [Alberta Energy Research Inst., Alberta (Canada)

    2008-06-15

    At a time of the expansive global growth in energy demand and the peaking of conventional oil, the Canadian Oil Sands have emerged as the largest new reserves to supply oil to world markets. Bitumen production in 2006 averaged 1.25 million barrels per day (an increase of 13% over 2005 and an 88% increase since 2000). If this trend continues Canada will be positioned as one of the world's premier suppliers of oil for many decades to come. The Oil Sands are one of the world's most challenging and complex oil resources. They require considerable amount of energy, water and land area to produce, resulting in contaminated tailings ponds, air emissions of concern and copious greenhouse gas (GHG) emissions. As the need to protect the environment and reduce GHG emissions moves higher on the public agenda Canada's ability to grow the energy supplies from oil sands will be severely tested. This paper focuses on the current and emerging methods and innovations that can be applied to produce these unconventional resources to value-added products with a decreasing impact on the environment. The paper will also describe the benefits and challenges for nuclear energy in the oil sands as a solution to the need for substitutes for natural gas in oil sands production and upgrading and in meeting Canada's GHG emission targets. (author)

  17. Salt content impact on the unsaturated property of bentonite-sand buffer backfilling materials

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Ming [Key Laboratory of Mechanics on Disaster and Environment in Western China, Lanzhou University, Lanzhou 730000 (China); Zhang Huyuan, E-mail: p1314lvp@yahoo.com.cn [Key Laboratory of Mechanics on Disaster and Environment in Western China, Lanzhou University, Lanzhou 730000 (China); Jia Lingyan; Cui Suli [Key Laboratory of Mechanics on Disaster and Environment in Western China, Lanzhou University, Lanzhou 730000 (China)

    2012-09-15

    Highlights: Black-Right-Pointing-Pointer SWCC and infiltration process of bentonite-sand mixtures is researched. Black-Right-Pointing-Pointer The k{sub u} of bentonite-sand mixtures was evaluated as the buffer backfilling materials. Black-Right-Pointing-Pointer Salt content impacting on the unsaturated property of bentonite-sand materials is small. - Abstract: Bentonite mixed with sand is often considered as possible engineered barrier in deep high-level radioactive waste disposal in China. In the present work, the vapor transfer technique and water infiltration apparatus were used to measure the soil water characteristic curve (SWCC) and unsaturated hydraulic conductivity (k{sub u}) of bentonite-sand mixtures (B/S) effected by salt content. Results show, the water-holding capacity and k{sub u} increase slightly with the concentration of Na{sup +} in pore liquid increasing from 0 g/L to 12 g/L, similar with the solution concentration of Beishan groundwater in China. Salt content in the laboratory produced only one order of magnitude increase in k{sub u}, which is the 'safe' value. The different pore liquid concentrations used in this study led to small differences in thickness of diffuse double layer of bentonite in mixtures, this might explain why some differences have been found in final values of k{sub u}.

  18. Bituminous sands : tax issues

    International Nuclear Information System (INIS)

    Patel, B.

    2004-01-01

    This paper examined some of the tax issues associated with the production of bitumen or synthetic crude oil from oil sands. The oil sands deposits in Alberta are gaining more attention as the supplies of conventional oil in Canada decline. The oil sands reserves located in the Athabasca, Cold Lake and Peace River areas contain about 2.5 trillion barrels of highly viscous hydrocarbons called bitumen, of which nearly 315 billion barrels are recoverable with current technology. The extraction method varies for each geographic area, and even within zones and reservoirs. The two most common extraction methods are surface mining and in-situ extraction such as cyclic steam stimulation (CSS); low pressure steam flood; pressure cycle steam drive; steam assisted gravity drainage (SAGD); hot water flooding; and, fire flood. This paper also discussed the following general tax issues: bituminous sands definition; bituminous sands leases and Canadian development expense versus Canadian oil and gas property expense (COGPE); Canadian exploration expense (CEE) for surface mining versus in-situ methods; additional capital cost allowance; and, scientific research and experimental development (SR and ED). 15 refs

  19. Oil sands tax expenditures

    International Nuclear Information System (INIS)

    Ketchum, K; Lavigne, R.; Plummer, R.

    2001-01-01

    The oil sands are a strategic Canadian resource for which federal and provincial governments provide financial incentives to develop and exploit. This report describes the Oil Sands Tax Expenditure Model (OSTEM) developed to estimate the size of the federal income tax expenditure attributed to the oil sands industry. Tax expenditures are tax concessions which are used as alternatives to direct government spending for achieving government policy objectives. The OSTEM was developed within the business Income Tax Division of Canada's Department of Finance. Data inputs for the model were obtained from oil sands developers and Natural Resources Canada. OSTEM calculates annual revenues, royalties and federal taxes at project levels using project-level projections of capital investment, operating expenses and production. OSTEM calculates tax expenditures by comparing taxes paid under different tax regimes. The model also estimates the foregone revenue as a percentage of capital investment. Total tax expenditures associated with investment in the oil sands are projected to total $820 million for the period from 1986 to 2030, representing 4.6 per cent of the total investment. 10 refs., 2 tabs., 7 figs

  20. Acid Rain, pH & Acidity: A Common Misinterpretation.

    Science.gov (United States)

    Clark, David B.; Thompson, Ronald E.

    1989-01-01

    Illustrates the basis for misleading statements about the relationship between pH and acid content in acid rain. Explains why pH cannot be used as a measure of acidity for rain or any other solution. Suggests that teachers present acidity and pH as two separate and distinct concepts. (RT)

  1. Synthesis and characterization of pH sensitive carboxySNARF-1 nanoreactors

    International Nuclear Information System (INIS)

    Chen Yenchi; Ostafin, Agnes; Mizukami, Hiroshi

    2010-01-01

    A rapid response dual wavelength emission pH sensor consisting of carboxySNARF-1 nanoreactors has been synthesized and shown to provide accurate pH measurements even in complex biological media, where the unprotected pH responsive dyes have failed. The carboxySNARF-1 nanoreactor is made of a calcium phosphate shell covering phosphatidylcholine liposomes filled with the dye. Its mean diameter is 150 nm with dynamic light scattering, the shell thickness is 5-7 nm with TEM, and it contains about 10 dyes/particle. The nanoreactor's response time to pH change nearly equals that of the dye in solution. Its pH titration curves at two different wavelengths are equivalent to those of the dye in solution and fluorescence intensity ratio dependent pH analysis is possible using the modified Henderson-Hasselbalch equation. However, the pH dependent fluorescence ratios of the dye in solution in the presence of plasma and albumin are distorted, and application of the Henderson-Hasselbalch equation is not possible. We have found that the distortions may be restored using cSNARF-1 nanoreactors and the pK a of the dye in the nanoreactor then equals that in solution. These results suggest that the interference to the dye for the pH analyses with the environmental molecules may be reduced or prohibited by usage of cSNARF-1 nanoreactors.

  2. Synthesis and characterization of pH sensitive carboxySNARF-1 nanoreactors

    Energy Technology Data Exchange (ETDEWEB)

    Chen Yenchi; Ostafin, Agnes [Department of Materials Science, University of Utah, Salt Lake City, UT (United States); Mizukami, Hiroshi, E-mail: a.ostafin@utah.edu [Department of Biological Science, Wayne State University, Detroit, MI (United States)

    2010-05-28

    A rapid response dual wavelength emission pH sensor consisting of carboxySNARF-1 nanoreactors has been synthesized and shown to provide accurate pH measurements even in complex biological media, where the unprotected pH responsive dyes have failed. The carboxySNARF-1 nanoreactor is made of a calcium phosphate shell covering phosphatidylcholine liposomes filled with the dye. Its mean diameter is 150 nm with dynamic light scattering, the shell thickness is 5-7 nm with TEM, and it contains about 10 dyes/particle. The nanoreactor's response time to pH change nearly equals that of the dye in solution. Its pH titration curves at two different wavelengths are equivalent to those of the dye in solution and fluorescence intensity ratio dependent pH analysis is possible using the modified Henderson-Hasselbalch equation. However, the pH dependent fluorescence ratios of the dye in solution in the presence of plasma and albumin are distorted, and application of the Henderson-Hasselbalch equation is not possible. We have found that the distortions may be restored using cSNARF-1 nanoreactors and the pK{sub a} of the dye in the nanoreactor then equals that in solution. These results suggest that the interference to the dye for the pH analyses with the environmental molecules may be reduced or prohibited by usage of cSNARF-1 nanoreactors.

  3. Nickel removal from nickel plating waste water using a biologically active moving-bed sand filter.

    Science.gov (United States)

    Pümpel, Thomas; Macaskie, Lynne E; Finlay, John A; Diels, Ludo; Tsezos, Marios

    2003-12-01

    Efficient removal of dissolved nickel was observed in a biologically active moving-bed 'MERESAFIN' sand filter treating rinsing water from an electroless nickel plating plant. Although nickel is fully soluble in this waste water, its passage through the sand filter promoted rapid removal of approximately 1 mg Ni/l. The speciation of Ni in the waste water was modelled; the most probable precipitates forming under the conditions in the filter were predicted using PHREEQC. Analyses of the Ni-containing biosludge using chemical, electron microscopical and X-ray spectroscopic techniques confirmed crystallisation of nickel phosphate as arupite (Ni3(PO4)2 x 8H2O), together with hydroxyapatite within the bacterial biofilm on the filter sand grains. Biosorption contributed less than 1% of the overall sequestered nickel. Metabolising bacteria are essential for the process; the definitive role of specific components of the mixed population is undefined but the increase in pH promoted by metabolic activity of some microbial components is likely to promote nickel desolubilisation by others.

  4. Investigation of the selected properties of dusts from the reclamation of spent sands with bentonite

    Directory of Open Access Journals (Sweden)

    J. Kamińska

    2011-10-01

    Full Text Available The investigation results of the selected properties of dusts generated during the mechanical reclamation of spent sands with bentonite as well as dusts from the dedusting system of sand processing plant are presented in the hereby paper. Investigations were performed with regard to determination conditions allowing to pelletise dusts in the bowl granulator. The verified methods of testing physical and chemical dust properties such as: specific density, bulk density of loosely put materials and apparent density of compacted materials together with their corresponding porosity, ignition losses and pH values, were applied. Granular composition of dusts generated during abrasion of spent binding materials in mechanical dry reclamation processes of spent sands with bentonite and coal dusts were performed by the laser diffraction analysis, allowing to broaden the measuring range of particle diameters. The optimal wetting agent content (in this case water at which the dust-water mixture obtains the best strength properties – after compacting by means of the standard moulder’s rammer – was determined.

  5. Singing Sand Dunes

    Indian Academy of Sciences (India)

    ble low-frequency (s. 75–105 Hz), that can some- times be heard up to 10 km away. Scientific in- vestigations suggest that the sustained low fre- quency sound of sand dunes that resembles a pure note from a musical instrument, is due to the synchronized motion of well-sorted dry sand grains when they spontaneously ...

  6. Dielectrophoresis Aligned Single-Walled Carbon Nanotubes as pH Sensors

    Directory of Open Access Journals (Sweden)

    Wei Xue

    2011-01-01

    Full Text Available Here we report the fabrication and characterization of pH sensors using aligned single-walled carbon nanotubes (SWNTs. The SWNTs are dispersed in deionized (DI water after chemical functionalization and filtration. They are deposited and organized on silicon substrates with the dielectrophoresis process. Electrodes with “teeth”-like patterns—fabricated with photolithography and wet etching—are used to generate concentrated electric fields and strong dielectrophoretic forces for the SWNTs to deposit and align in desired locations. The device fabrication is inexpensive, solution-based, and conducted at room temperature. The devices are used as pH sensors with the electrodes as the testing pads and the dielectrophoretically captured SWNTs as the sensing elements. When exposed to aqueous solutions with various pH values, the SWNTs change their resistance accordingly. The SWNT-based sensors demonstrate a linear relationship between the sensor resistance and the pH values in the range of 5–9. The characterization of multiple sensors proves that their pH sensitivity is highly repeatable. The real-time data acquisition shows that the sensor response time depends on the pH value, ranging from 2.26 s for the pH-5 solution to 23.82 s for the pH-9 solution. The long-term stability tests illustrate that the sensors can maintain their original sensitivity for a long period of time. The simple fabrication process, high sensitivity, and fast response of the SWNT-based sensors facilitate their applications in a wide range of areas.

  7. Determining pH of strip-mine spoils

    Science.gov (United States)

    W. A. Berg

    1969-01-01

    Results with the LaMotte-Morgan method for determining soil pH-or the solution modification of this method-usually agreed fairly well with the results from using a pH meter, the recognized standard. Results obtained with the Soiltex and Hellige-Truog methods often deviated somewhat from the pH meter readings; and the Hydrion papers and the Kelway pH tester often gave...

  8. Applications in the oil sands industry for Particlear{sup R} silica microgel

    Energy Technology Data Exchange (ETDEWEB)

    Moffett, B. [DuPont Chemical Solutions Enterprise, Wilmington, DE (United States)

    2009-07-01

    This presentation demonstrated the use of Particlear{sup R} silica microgel in the oil sands industry. The silica-based coagulant is an amorphous silicon dioxide microgel solution. The surface area of a football field can be obtained using 2.7 grams of the substance. The coagulation mechanism is achieved by charge neutralization and inter-particle bridging. The microgel is manufactured at the point of use from commodity chemicals, water, and carbon dioxide (CO{sub 2}). Applications for the microgel include potable water treatment, paper retention, and animal processing wastewater. In the oil sands industry, Particlear{sup R} can be used in tailings flocculation, thickened tailings drying, steam assisted gravity drainage (SAGD) water treatment, and enhanced bitumen recovery. It was concluded that the microgel can be used in many oil sands processing and liquid-solid separation processes in order to remove dissolved solids and organics and increase the rate of solids dewatering. tabs., figs.

  9. Changes in soil solution Zn and pH and uptake of Zn by arbuscular mycorrhizal red clover in Zn-contaminated soil.

    Science.gov (United States)

    Li, X; Christie, P

    2001-01-01

    Red clover plants inoculated with Glomus mosseae were grown in a sterile pasture soil containing 50 mg Zn kg(-1) in 'Plexiglas' (acrylic) containers with nylon net partitions (30 microm mesh) designed to separate the soil into a central root zone and two outer zones for hyphal growth with no root penetration. Two porous plastic soil moisture samplers were installed in each pot, one in the root compartment and the other in one of the hyphal compartments. The soil in the outer compartments was amended with one of the four application rates of Zn (as ZnSO4) ranging from 0 to 1000 mg kg(-1). Non-mycorrhizal controls were included, and there were five replicates of each treatment in a randomised block in a glasshouse. Uninoculated plants received supplementary P to avoid yield limitation due to low soil P status. Plants grew in the central compartment for nine weeks. Soil moisture samples were collected 4, 24 and 62 days after sowing to monitor changes in the Zn concentration and pH of the soil solution. At harvest, the mean mycorrhizal infection rate of inoculated plants ranged from 29% to 34% of total root length and was little affected by Zn application. Root and shoot yields were not affected by mycorrhizal infection. Plant Zn concentration and uptake were lower in mycorrhizal plants than non-mycorrhizal controls, and this effect was more pronounced with increasing Zn application rate to the soil. Soil solution Zn concentrations were lower and pH values were higher in mycorrhizal treatments than non-mycorrhizal controls and the mycorrhiza effect was more pronounced at higher Zn application rates. The protective effect of mycorrhiza against plant Zn uptake may have been associated with changes in Zn solubility mediated by changes in the soil solution pH, or by immobilisation of Zn in the extraradical mycelium.

  10. Technetium recovery from high alkaline solution

    Energy Technology Data Exchange (ETDEWEB)

    Nash, Charles A.

    2016-07-12

    Disclosed are methods for recovering technetium from a highly alkaline solution. The highly alkaline solution can be a liquid waste solution from a nuclear waste processing system. Methods can include combining the solution with a reductant capable of reducing technetium at the high pH of the solution and adding to or forming in the solution an adsorbent capable of adsorbing the precipitated technetium at the high pH of the solution.

  11. Supercritical fluid extraction of soybean oil from the surface of spiked quartz sand - modelling study

    OpenAIRE

    Stela Jokić; B. Nagy; K. Aladić; B. Simándi

    2013-01-01

    The extraction of soybean oil from the surface of spiked quartz sand using supercritical CO2 was investigated. Sand as solid was used; it is not porous material so the internal diffusion does not exist, all the soluble material is in the surface of the particles. Sovová’s model has been used in order to obtain an analytical solution to develop the required extraction yield curves. The model simplifies when the internal diffusion can be neglected. The external mass transfer coefficient was det...

  12. Sugar-based gemini surfactant with a vesicle-to-micelle transition at acidic pH and a reversible vesicle flocculation near neutral pH

    NARCIS (Netherlands)

    Johnsson, M; Wagenaar, A; Engberts, JBFN

    2003-01-01

    A sugar-based (reduced glucose) gemini surfactant forms vesicles in dilute aqueous solution near neutral pH. At lower pH, there is a vesicle-to-micelle transition within a narrow pH region (pH 6.0-5.6). The vesicles are transformed into large cylindrical micelles that in turn are transformed into

  13. Study of the crystallographic phase change on copper (I) selenide thin films prepared through chemical bath deposition by varying the pH of the solution

    Energy Technology Data Exchange (ETDEWEB)

    Sandoval-Paz, M.G., E-mail: myrnasandoval@udec.cl [Departament of Physics, Faculty of Physical Sciences and Mathematics, University of Concepcion, Box 160-C, Concepción (Chile); Rodríguez, C.A. [Department of Materials Engineering, Faculty of Engineering, University of Concepción, Edmundo Larenas 270, Concepción 4070409 (Chile); Porcile-Saavedra, P.F. [Departament of Physics, Faculty of Physical Sciences and Mathematics, University of Concepcion, Box 160-C, Concepción (Chile); Trejo-Cruz, C. [Department of Physics, Faculty of Science, University of Biobío, Avenue Collao 1202, Box 5C, Concepción 4051381 (Chile)

    2016-07-15

    Copper (I) selenide thin films with orthorhombic and cubic structure were deposited on glass substrates by using the chemical bath deposition technique. The effects of the solution pH on the films growth and subsequently the structural, optical and electrical properties of the films were studied. Films with orthorhombic structure were obtained from baths wherein both metal complex and hydroxide coexist; while films with cubic structure were obtained from baths where the metal hydroxide there is no present. The structural modifications are accompanied by changes in bandgap energy, morphology and electrical resistivity of the films. - Graphical abstract: “Study of the crystallographic phase change on copper (I) selenide thin films prepared through chemical bath deposition by varying the pH of the solution” by M. G. Sandoval-Paz, C. A. Rodríguez, P. F. Porcile-Saavedra, C. Trejo-Cruz. Display Omitted - Highlights: • Copper (I) selenide thin films were obtained by chemical bath deposition. • Orthorhombic to cubic phase change was induced by varying the reaction solution pH. • Orthorhombic phase is obtained mainly from a hydroxides cluster mechanism. • Cubic phase is obtained mainly from an ion by ion mechanism. • Structural, optical and electrical properties are presented as a function of pH.

  14. Proceedings of the Canadian Institute conference on maximizing oil sands growth : improving transportation logistics, labour supply and pipeline availability

    International Nuclear Information System (INIS)

    2005-01-01

    This conference focused on the development of a transportation infrastructure to accommodate oil sands growth, with particular reference to building a pipeline infrastructure to meet the delivery and supply requirements of oil sands producers. The need for transmission system upgrades and additions to meet the electric power requirements of the oil sands industry was also discussed. The transportation options and new proposed pipeline construction projects that will alleviate the current transportation challenges in the oil sands region were identified. These include the implementation of new infrastructure strategies based on current pipeline availability, Kyoto requirements and downstream market demands. The impact of labour shortages on the oil sands industry was reviewed along with solutions to prevent and overcome these shortages. The conference featured 15 presentations, of which 3 have been catalogued separately for inclusion in this database. tabs., figs

  15. Metal/Metal Oxide Differential Electrode pH Sensors

    Science.gov (United States)

    West, William; Buehler, Martin; Keymeulen, Didier

    2007-01-01

    Solid-state electrochemical sensors for measuring the degrees of acidity or alkalinity (in terms of pH values) of liquid solutions are being developed. These sensors are intended to supplant older electrochemical pH sensors that include glass electrode structures and reference solutions. The older sensors are fragile and subject to drift. The present developmental solid-state sensors are more rugged and are expected to be usable in harsh environments. The present sensors are based on a differential-electrode measurement principle. Each sensor includes two electrodes, made of different materials, in equilibrium with the solution of interest.

  16. Influence of storage solution on enamel demineralization submitted to pH cycling Influência da solução de armazenagem na desmineralização do esmalte submetido à ciclagem de pH

    Directory of Open Access Journals (Sweden)

    Juliana Silva Moura

    2004-09-01

    Full Text Available Extracted human teeth are frequently used for research or educational purposes. Therefore, it is necessary to store them in disinfectant solutions that do not alter dental structures. Thus, this study evaluated the influence of storage solution on enamel demineralization. For that purpose, sixty samples were divided into the following groups: enamel stored in formaldehyde (F1, stored in thymol (T1, stored in formaldehyde and submitted to pH cycling (F2, stored in thymol and submitted to pH cycling (T2. All samples were evaluated by cross-sectional microhardness analysis and had their percentage of mineral volume versus micrometer (integrated area determined. Differences between groups were found up to 30-µm depth from the enamel surface (p Dentes humanos extraídos são freqüentemente utilizados para propósitos educacionais ou de pesquisa. Desta forma, é necessário o armazenamento dos mesmos em soluções desinfetantes que não alterem a estrutura dental. Para tanto, sessenta espécimes foram divididos nos seguintes grupos: esmalte armazenado em formol (F1, armazenado em timol (T1, armazenado em formol e submetido à ciclagem de pH (F2 e armazenado em timol e submetido à ciclagem de pH (T2, sendo avaliados por meio de análise de microdureza longitudinal e tiveram a porcentagem de volume mineral pro micrômetro determinada. Diferenças entre os grupos foram encontradas até a profundidade de 30µm da superfície do esmalte (p<0,05, onde o grupo mais desmineralizado era T2. Foi concluído que a solução de armazenagem influenciou na reação do substrato dental a um desafio cariogênico, sugerindo que o formaldeído pode aumentar a resistência do esmalte à desmineralização promovida pelo modelo de ciclagem de pH, quando comparado à desmineralização ocorrida no esmalte armazenado em timol.

  17. Engineering properties of concrete with partial utilization of used foundry sand.

    Science.gov (United States)

    Manoharan, Thiruvenkitam; Laksmanan, Dhamothiran; Mylsamy, Kaliyannan; Sivakumar, Pandian; Sircar, Anirbid

    2018-01-01

    Solid wastes generated from manufacturing industries are increasing at an alarming rate and it is consistently increasing. One such industrial solid waste is Used Foundry Sand (UFS). On the other hand, fine aggregates involved in the concrete are generally river sand, which is scarce, high cost and excavation of the river sand that promote environmental degradation. So, there is an urge to find some alternative solution to dispose UFS and to limit the use of river sand. In this research work, river sand was partially replaced by UFS. The percentage replacements were 0, 5, 10, 15, 20 and 25 wt% respectively. Experimental investigations were carried out to evaluate the mechanical, durability and micro-structural properties of M20 concrete at the age of 7, 28 and 91 day. XRD (X-ray Diffraction), EDX (Energy Dispersive X-ray) and optical-microscopic imaging analysis were performed to identify the presence of various compounds and micro cracks in the concrete with UFS. Comparative studies on control mix against trial mix were carried out. It was found that compression strength, flexural strength and modulus of elasticity were approximately constant up to 20 wt% UFS and decreased with further addition. Whereas, split tensile strength was increased after 20 wt% addition but it affects the other properties of concrete. The durability test results showed that the resistance of concrete against abrasion and rapid chloride permeability of the concrete mixture containing UFS up to 20 wt% were almost similar to the values of control mix. The findings suggest that UFS can effectively replace river sand. However, it is recommended that the replacement should not exceed 20 wt%. Copyright © 2017. Published by Elsevier Ltd.

  18. Traceability of pH to the Mole

    Directory of Open Access Journals (Sweden)

    Maria Filomena Camões

    2015-08-01

    Full Text Available Free acidity of aqueous solutions was initially defined in 1909 by Søren Peter Lauritz Sørensen as pH = −lgcH+ (c/mol·dm−3 or m/mol·kg−1 of the free hydrogen ions in solution, H+ soon (1910 was changed to pH = paH+ = −lgaH+, integrating the new concepts of activity, ai and activity coefficient γi, for the ionic species i under concern, H+ in this case; it is ai = −lg(miγi. Since individual ions do not exist alone in solution, primary pH values cannot be assigned solely by experimental measurements, requiring extra thermodynamic model assumptions for the activity coefficient, γH+, which has put pH in a unique situation of not being fully traceable to the International System of Units (SI. Also the concept of activity is often not felt to be as perceptible as that of concentration which may present difficulties, namely with the interpretation of data. pH measurements on unknown samples rely on calibration of the measuring setup with adequate reference pH buffers. In this work, the assignment of pH values to buffers closely matching the samples, e.g., seawater, is revisited. An approach is presented to assess the quantity pmH+ = −lgmH+ profiting from the fact that, contrary to single ion activity coefficients, mean activity coefficients,   can be assessed based on experimentally assessed quantities alone, γExp ±, thus ensuring traceability to the mole, the SI base unit for amount of substance. Compatibility between γExp ± and mean activity coefficient calculated by means of Pitzer model equations, γPtz ±, validates the model for its intended use.

  19. Recovery of uranium from sulphate solutions containing molybdenum

    International Nuclear Information System (INIS)

    Weir, D.R.; Genik-Sas-Berezowsky, R.M.

    1983-01-01

    A process for recovering uranium from a sulphate solution containing dissolved uranium and molybdenum includes reacting the solution with ammonia (pH 8 to 10), the pH of the original solution must not exceed 5.5 and after the addition of ammonia the pH must not be in the vicinity of 7 for a significant time. The resultant uranium precipitate is relatively uncontaminated by molybdenum. The precipitate is then separated from the remaining solution while the pH is maintained within the stated range

  20. An All-Solid-State pH Sensor Employing Fluorine-Terminated Polycrystalline Boron-Doped Diamond as a pH-Insensitive Solution-Gate Field-Effect Transistor.

    Science.gov (United States)

    Shintani, Yukihiro; Kobayashi, Mikinori; Kawarada, Hiroshi

    2017-05-05

    A fluorine-terminated polycrystalline boron-doped diamond surface is successfully employed as a pH-insensitive SGFET (solution-gate field-effect transistor) for an all-solid-state pH sensor. The fluorinated polycrystalline boron-doped diamond (BDD) channel possesses a pH-insensitivity of less than 3mV/pH compared with a pH-sensitive oxygenated channel. With differential FET (field-effect transistor) sensing, a sensitivity of 27 mv/pH was obtained in the pH range of 2-10; therefore, it demonstrated excellent performance for an all-solid-state pH sensor with a pH-sensitive oxygen-terminated polycrystalline BDD SGFET and a platinum quasi-reference electrode, respectively.

  1. Analysis of the electric conductivity and pH behaviors in recycled drainage solution of rose cv. Charlotte plants grown in substrate

    Directory of Open Access Journals (Sweden)

    Luis Fernando Yepes V

    2013-12-01

    Full Text Available In open soilless cropping systems contamination from nutrient lixiviation is generated making it necessary to design closed or semi-closed systems, which require the determination of the maximum saline levels in recycling solutions. In this study, the electric conductivity (EC and pH behaviors were analyzed in drainage solution intended for recycling in the crop; in addition, parameters were used to estimate nutrient availability for the plants in a substrate based cropping system. This research project was carried out under greenhouse conditions in the municipality of Mosquera (Colombia. Rose cv. Charlotte grafted on "Natal briar" stocks were used, sown in pots arranged on elevated beds, 15 m in length. This project was carried out using a split-plot design with sub-plots (with the substrate as the main plot and the recycling as the sub-plot, three kinds of substrate and three recycling percentages (0, 50, and 100%, for a total of 27 experimental units. Substrate mixtures based on burned rice husk and coconut fiber were used. Recycling during one harvest cycle of the roses did not show EC and pH values above those that are considered to have a negative impact on production; however, an increasing behavior in the EC and pH values was observed. Likewise, no significant differences between the 50 and 100% recycling were observed, which means 100% recycling can be used, optimizing nutrient use and water conservation

  2. Drawer compacted sand filter: a new and innovative method for on-site grey water treatment.

    Science.gov (United States)

    Assayed, Almoayied; Chenoweth, Jonathan; Pedley, Steven

    2014-01-01

    In this paper, results ofa new sand filter design were presented. The drawer compacted sand filter (DCSF) is a modified design for a sand filter in which the sand layer is broken down into several layers, each of which is 10 cm high and placed in a movable drawer separated by a 10 cm space. A lab-scale DCSF was designed and operated for 330 days fed by synthetic grey water. The response of drawer sand filters to variable hydraulic and organic loading rates (HLR and OLR) in terms of biological oxygen demand (BODs), chemical oxygen demand (COD), total suspended solids (TSS), pH, electrical conductivity and Escherichia coli reductions were evaluated. The HLR was studied by increasing from 72 to 142 L m(-2) day(-1) and OLR was studied by increasing it from 23 to 30 g BOD5 m(-2) day(-1) while keeping the HLR constant at 142 L m(-2) day(-1). Each loading regime was applied for 110 days. Results showed that DCSF was able to remove >90% of organic matter and total suspended solids for all doses. No significant difference was noticed in terms of overall filter efficiency between different loads for all parameters. Significant reduction in BOD5 and COD (P water was drained through the third drawer in all tested loads. The paper concludes that DCSF would be appropriate for use in dense urban areas as its footprint is small and is appropriate for a wide range of users because of its convenience and low maintenance requirements.

  3. Field test on sand compaction pile method with copper slag sand; Dosuisai slag wo mochiita SCP koho no shiken seko

    Energy Technology Data Exchange (ETDEWEB)

    Minami, K.; Matsui, H.; Naruse, E.; Kitazume, M. [Port and Harbour Research Inst., Kanagawa (Japan)

    1997-09-20

    This paper describes the sand compaction pile (SCP) method using copper slag sand. The SCP method is a method by which sand compaction piles are constructed in the ground, and improvement can be obtained in a short period. This method has been widely used even in the port areas for enhancing the bearing power of soft clay ground and the lateral resistance of sheet pile. A great deal of sand is required as a material. The sand requires high permeability, proper size distribution with less fine particle fraction content, easy compaction property with enough strength, and easy discharging property from the casing of construction machines as required properties. Recently, it becomes hard to secure proper sand materials. The copper slag sand is obtained from refining process of copper as a by-product which is quenched in water flow and crushed in water. The copper slag sand has higher particle density than that of sand, excellent permeability, and similar size distribution to that of sand. From compaction drainage triaxial compression test and permeability test, it was found that the mechanical properties of copper slag sand did not change by the crushing of grains with keeping excellent permeability. Through the test construction, applicability of the copper slag sand to the SCP method could be confirmed as an alternate material of sand. 17 refs., 9 figs., 4 tabs.

  4. The influence of surface incorporated lime and gypsiferous by-products on surface and subsurface soil acidity. I. Soil solution chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Wang, H.L.; Hedley, M.J.; Bolan, N.S.; Horne, D.J. [New Zealand Forest Research Institute, Rotorua (New Zealand)

    1999-04-01

    Lime, fluidised bed boiler ash (FBA) and flue gas desulfurisation gypsum (FGDG) were incorporated in the top 50 mm of repacked columns of either an Allophanic (the Patua sand loam) or an Ultic (the Kaawa clay loam) soil, at rates containing calcium equivalent to 5000 kg/ha of CaCO{sub 3}. After leaching with water, the columns were sliced into sections for chemical analysis. In the columns of the variable-charged, allophanic Patua soil, topsoil-incorporated FBA ameliorated top and subsurface soil acidity through liming and the `self liming effect` induced by sulfate sorption, respectively. The soil solution pH of the top and subsurface layers of the Patua soil were raised to pH 6.40 and 5.35, respectively, by the FBA treatment. Consequently , phytotoxic labile monomeric aluminium (Al) concentration in the soil solution of the FBA treatment was reduced to {lt} 0.1 {mu}M Al. FGDG had a similar `self-liming effect` on subsurface of the Patua soil, but not the topsoil. Whereas FBA raised the pH of the Kaawa topsoil, no `self-liming effect` of subsurface soil by sulfate sorption was observed on the Kaawa subsurface soil, which is dominated by permanently charged clay minerals. Application of FBA and FGDG to both soils, however, caused significantly leaching of native soil Mg{sup 2+} and K{sup +}.

  5. Characterizing time-dependent contact angles for sands hydrophobized with oleic and stearic acids

    DEFF Research Database (Denmark)

    Subedi, S; Kawamoto, K; Jayarathna, L

    2012-01-01

    -frequency precipitation. A potential solution is to alter soil grain surfaces to become water repellent by mixing or coating the soil cover material with hydrophobic agents (HAs). In this study, hydrophobic CBs comprised of sands mixed with environmentally friendly HAs (oleic acid [OA] and stearic acid [SA]) were studied...

  6. Effect of pH and phosphate on calcium carbonate polymorphs precipitated at near-freezing temperature

    NARCIS (Netherlands)

    Hu, Yu-Bin; Wolthers, Mariëtte; Wolf-Gladrow, Dieter A.; Nehrke, Gernot

    2015-01-01

    The effects of pH and phosphate on the precipitation of calcium carbonate polymorphs from aqueous solution were investigated. Experiments were carried out at near-freezing temperature and two different pH conditions (pH 13.4 and 9.0). At each pH condition, solutions having different concentrations

  7. ISFET pH Sensitivity: Counter-Ions Play a Key Role.

    Science.gov (United States)

    Parizi, Kokab B; Xu, Xiaoqing; Pal, Ashish; Hu, Xiaolin; Wong, H S Philip

    2017-02-02

    The Field Effect sensors are broadly used for detecting various target analytes in chemical and biological solutions. We report the conditions under which the pH sensitivity of an Ion Sensitive Field Effect transistor (ISFET) sensor can be significantly enhanced. Our theory and simulations show that by using pH buffer solutions containing counter-ions that are beyond a specific size, the sensor shows significantly higher sensitivity which can exceed the Nernst limit. We validate the theory by measuring the pH response of an extended gate ISFET pH sensor. The consistency and reproducibility of the measurement results have been recorded in hysteresis free and stable operations. Different conditions have been tested to confirm the accuracy and validity of our experiment results such as using different solutions, various oxide dielectrics as the sensing layer and off-the-shelf versus IC fabricated transistors as the basis of the ISFET sensor.

  8. Galveston Island, Texas, Sand Management Strategies

    Science.gov (United States)

    2016-07-01

    billion m3 of beach quality sand . However, Texas projects to date have not utilized these sources because of transportation costs. The lack of nearby...estimate that the San Luis Pass flood shoal contains approximately 11.8 million yd3 of beach quality sand . However, it is expected that if permits...a source of beach- quality sand . 2. Sand could be intercepted before it reaches the present dry beach. ERDC/CHL TR-16-13 55 3. The volume of

  9. Continuous pH monitoring in a perfused bioreactor system using an optical pH sensor

    Science.gov (United States)

    Jeevarajan, Antony S.; Vani, Sundeep; Taylor, Thomas D.; Anderson, Melody M.

    2002-01-01

    Monitoring and regulating the pH of the solution in a bioprocess is one of the key steps in the success of bioreactor operation. An in-line optical pH sensor, based on the optical absorption properties of phenol red present in the medium, was developed and tested in this work for use in NASA space bioreactors based on a rotating wall-perfused vessel system supporting a baby hamster kidney (BHK-21) cell culture. The sensor was tested over three 30-day and one 124-day cell runs. The pH sensor initially was calibrated and then used during the entire cell culture interval. The pH reported by the sensor was compared to that measured by a fiber optically coupled Shimadzu spectrophotometer and a blood gas analyzer. The maximum standard error of prediction for all the four cell runs for development pH sensor against BGA was +/-0.06 pH unit and for the fiber optically coupled Shimadzu spectrophotometer against the blood gas analyzer was +/-0.05 pH unit. The pH sensor system performed well without need of recalibration for 124 days. Copyright 2002 Wiley Periodicals, Inc.

  10. Radiolysis of nitrite, bromate and permanganate ions and their binary mixtures in aqueous solutions at pH 10

    International Nuclear Information System (INIS)

    Dedgaonkar, V.G.; Kulkarni, S.A.; Mahajan, C.T.

    1981-01-01

    #betta#-radiolysis of pure systems viz. nitrite, bromate and permanganate and their binary mixtures (MNO 4- /NO 2- , MnO 4- /BrO 3- ) in aqueous solution at pH 10 is studied as a function of dose and concentration. In pure systems the G(NO 3- ), G(Br - ) and G(-MnO 4- ) increase with increasing concentration. The first two show an identical limiting value of approximately 0.5 while the last increases from 0.68 below 10 4 M and reaches 2.5 at 10 - 2 M concentration. Presence of 10 - 1 M BrO 3- or 10 - 2 M NO 2- reduces the G(-MnO 4- ) from 1.07 for the pure 10 - 3 M permanganate solution to 0.2 and 0.7 respectively. A mechanism based on the competitive kinetics is envisaged to explain the observed results. (author)

  11. Effect of interactions between carbon dioxide enrichment and NH4+/NO3- ratio on pH of culturing nutrient solution,growth and vigor of tomato root system

    Institute of Scientific and Technical Information of China (English)

    Juan LI; Jianmin ZHOU

    2008-01-01

    A growth chamber experiment was conducted to investigate the influence of NH4+/NO3- ratio and elevated CO2 concentration on the pH in nutrient solution,growth and root vigor system of tomato seedling roots,which attempts to understand whether the elevated CO2 concentration can alleviate the harmful effects of higher NH4+-N concentration in nutrient solutions on the tomato root system.Tomato (Lycopersicon esculenturn Mill.var.Hezuo 906) was grown in pots with nutrient solutions varying in NH4+/NO3- ratio (0:1,1:3,1:1,3:1and 1:0) and the growth chambers were supplied with with the growth process and CO2 concentration increased.At both CO2 levels,pH increased when 100% NO3--N was supplied and decreased in other treatments.The pH decrease in the nutrient solution was directly correlated to the NH4+-N proportion.The pH value was more reduced in 100% NH4+-N nutrient solution than increased in the 100% NO3--N nutrient solution.CO2 enrichment increased the dry weight of shoots and roots,root vigor system,total absorbing area and active absorbing area of tomato seedlings.All the measurement indexes above were increased in the elevated CO2 concentration treatment with the NO3- proportion increase in the nutrient solutions.Thus,under the elevated CO2 concentration,the dry weights of shoots and roots,root vigor system,total root absorbing area and active absorbing area were found to be inversely correlated to NH4+/NO3- ratio,leading to about 65.8%,78.0%,18.9%,12.9% and 18.9% increase,respectively,compared with that under the ambient CO2 concentration.Our results indicated that tomato seedling roots may benefit mostly from CO2 enrichment when 100% NO3--N nutrient solutions was supplied,but the CO2 concentration elevation did not alleviate the harmful effects when 100% NHa+-N was supplied.

  12. Numerical simulation of aeolian sand ripples

    International Nuclear Information System (INIS)

    Kang Liqiang; Guo Liejin

    2004-01-01

    With a new horizontal saltation displacement vector, a model is implemented to simulate the initiation and evolution of aeolian sand ripples. In the model, saltation distance considers the effects of surface height and slope. A linear stability analysis is also carried out for formation of sand ripples. The results show that, the model can be able to successfully reproduce sand ripples which can increase in scale by merging of small ripples. The linear stability analysis indicates that sand ripples appear when the relaxation rate parameter is below a threshold value and wind strength parameter is larger than a critical value. The results also verified that the formation of sand ripples is a self-organization process

  13. Japan's involvement in oil sands development

    International Nuclear Information System (INIS)

    Sugiura, T.

    1994-01-01

    According to Japanese national policy, exploration and development by Japanese companies in overseas countries are promoted in order to ensure stable oil supplies. Japan Canada Oil Sands Limited (JACOS), part of the JAPEX group, was established during the 1978 world oil crisis to explore and develop Canadian oil sand resources in accordance with Japan's national policy. The JAPEX group, including JACOS, has invested $123 million in oil sands projects in Alberta. JAPEX's first involvement in oil sands was in the Primrose Project operated by Norcen in the Cold Lake area. Five years of cyclic steam stimulation pilot tests did not produce sufficiently good results to justify further operation. The second involvement was the PCEJ Project, a joint effort by four companies that are participating in a bitumen recovery test project in the Athabasca Deposit. JACOS holds 2,452 km 2 of oil sands leases in Alberta. Tests conducted since 1978 in the PCEJ Project include multiwell steam injection pilot tests, some of which showed promise. JACOS is also participating in steam assisted gravity drainage projects and in federal/provincial research programs. Obstacles identified in developing Alberta oil sands are the lack of a bitumen pipeline to Edmonton and the insufficient length of oil sands leases (currently 10 years), given the difficulties of oil sand development. 10 figs

  14. Stability of Adrenaline in Irrigating Solution for Intraocular Surgery.

    Science.gov (United States)

    Shibata, Yuuka; Kimura, Yasuhiro; Taogoshi, Takanori; Matsuo, Hiroaki; Kihira, Kenji

    2016-01-01

    Intraocular irrigating solution containing 1 µg/mL adrenaline is widely used during cataract surgery to maintain pupil dilation. Prepared intraocular irrigating solutions are recommended for use within 6 h. After the irrigating solution is admistered for dilution, the adrenaline may become oxidized, and this may result in a decrease in its biological activity. However, the stability of adrenaline in intraocular irrigating solution is not fully understood. The aim of this study was to evaluate the stability of adrenaline in clinically used irrigating solutions of varying pH. Six hours after mixing, the adrenaline percentages remaining were 90.6%±3.7 (pH 7.2), 91.1%±2.2 (pH 7.5), and 65.2%±2.8 (pH 8.0) of the initial concentration. One hour after mixing, the percentages remaining were 97.6%±2.0 (pH 7.2), 97.4%±2.7 (pH 7.5), and 95.6%±3.3 (pH 8.0). The degradation was especially remarkable and time dependent in the solution at pH 8.0. These results indicate that the concentration of adrenaline is decreased after preparation. Moreover, we investigated the influence of sodium bisulfite on adrenaline stability in irrigating solution. The percentage adrenaline remaining at 6 h after mixing in irrigating solution (pH 8.0) containing sodium bisulfite at 0.5 µg/mL (concentration in irrigating solution) or at 500 µg/mL (concentration in the undiluted adrenaline preparation) were 57.5 and 97.3%, respectively. Therefore, the low concentration of sodium bisulfite in the irrigating solution may be a cause of the adrenaline loss. In conclusion, intraocular irrigation solution with adrenaline should be prepared just prior to its use in surgery.

  15. Solution pH and oligoamine molecular weight dependence of the transition from monolayer to multilayer adsorption at the air-water interface from sodium dodecyl sulfate/oligoamine mixtures.

    Science.gov (United States)

    Halacheva, S S; Penfold, J; Thomas, R K; Webster, J R P

    2013-05-14

    Neutron reflectivity and surface tension have been used to investigate the solution pH and oligoamine molecular weight dependence of the adsorption of sodium dodecyl sulfate (SDS)/oligoamine mixtures at the air-water interface. For diethylenetriamine, triamine, or triethylenetetramine, tetramine mixed with SDS, there is monolayer adsorption at pH 7 and 10, and multilayer adsorption at pH 3. For the slightly higher molecular weight tetraethylenepentamine, pentamine, and pentaethylenehexamine, hexamine, the adsorption is in the form of a monolayer at pH 3 and multilayers at pH 7 and 10. Hence, there is a pH driven transition from monolayer to multilayer adsorption, which shifts from low pH to higher pH as the oligoamine molecular weight increases from tetramine to pentamine. This results from the relative balance between the electrostatic attraction between the SDS and amine nitrogen group which decreases as the charge density decreases with increasing pH, the ion-dipole interaction between the amine nitrogen and SDS sulfate group which is dominant at higher pH, and the hydrophobic interalkyl chain interaction between bound SDS molecules which changes with oligoamine molecular weight.

  16. MouldingSandDB – a modern database storing moulding sands properties research results

    Directory of Open Access Journals (Sweden)

    J. Jakubski

    2011-01-01

    Full Text Available The complexity of foundry processes requires the use of modern, advanced IT tools for optimization, storage and analysis of t echnicaldata. Properties of moulding and core sands that are collected in research laboratories, manufacturers, and finally in the foundries, are not in use later on. It seems important to create a database that will allow to use the results stored, along with the possibility of searching according to set criteria, adjusted to casting practice. This paper presents part of the database named „MouldingSandDB”, which allows to collect and search data for synthetic moulding sands.

  17. Stabilizing sodium hypochlorite at high pH: effects on soft tissue and dentin.

    Science.gov (United States)

    Jungbluth, Holger; Marending, Monika; De-Deus, Gustavo; Sener, Beatrice; Zehnder, Matthias

    2011-05-01

    When sodium hypochlorite solutions react with tissue, their pH drops and tissue sorption decreases. We studied whether stabilizing a NaOCl solution at a high pH would increase its soft-tissue dissolution capacity and effects on the dentin matrix compared with a standard NaOCl solution of the same concentration and similar initial pH. NaOCl solutions were prepared by mixing (1:1) a 10% stock solution with water (standard) or 2 mol/L NaOH (stabilized). Physiological saline and 1 mol/L NaOH served as the controls. Chlorine content and alkaline capacity of NaOCl solutions were determined. Standardized porcine palatal soft-tissue specimens and human root dentin bars were exposed to test and control solutions. Weight loss percentage was assessed in the soft-tissue dissolution assay. Three-point bending tests were performed on the root dentin bars to determine the modulus of elasticity and flexural strength. Values between groups were compared using one-way analysis of variance with the Bonferroni correction for multiple testing (α pH level of 7.5, respectively. The stabilized NaOCl dissolved significantly more soft tissue than the standard solution, and the pH remained high. It also caused a higher loss in elastic modulus and flexure strength (P < .05) than the control solutions, whereas the standard solution did not. NaOH-stabilized NaOCl solutions have a higher alkaline capacity and are thus more proteolytic than standard counterparts. Copyright © 2011 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  18. Methodologically controlled variations in laboratory and field pH measurements in waterlogged soils

    DEFF Research Database (Denmark)

    Elberling, Bo; Matthiesen, Henning

    2007-01-01

    artefacts is critical. But the study includes agricultural and forest soils for comparison. At a waterlogged site, Laboratory results were compared with three different field methods: calomel pH probes inserted in the soil from pits, pH measurements of soil solution extracted from the soil, and pH profiles...... using a solid-state pH electrode pushed into the soil from the surface. Comparisons between in situ and laboratory methods revealed differences of more than 1 pH unit. The content of dissolved ions in soil solution and field observations of O2 and CO2 concentrations were used in the speciation model...... PHREEQE in order to predict gas exchange processes. Changes in pH in soil solution following equilibrium in the laboratory could be explained mainly by CO2 degassing. Only soil pH measured in situ using either calomel or solid-state probes inserted directly into the soil was not affected by gas exchange...

  19. Effect of pH on Pulp Potential and Sulphide Mineral Flotation

    OpenAIRE

    GÖKTEPE, Ferihan

    2014-01-01

    Control of pH is one of the most widely applied methods for the modulation of mineral flotation. In this study the effect of pH on potential in solution and sulphur minerals flotation is discussed with various electrodes. The electrodes were platinum, gold, chalcopyrite, pyrite and galena. In solution, potentials were linearly dependent on pH with a different slope for each electrode. Chalcopyrite, pyrite, sphalerite and galena minerals flotation tests were performed in a microflot...

  20. Policy Analysis of the Canadian Oil Sands Experience

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2013-09-01

    For those who support U.S. oil sands development, the Canadian oil sands industry is often identified as a model the U.S. might emulate, yielding financial and energy security benefits. For opponents of domestic oil sands development, the Canadian oil sands experience illustrates the risks that opponents of development believe should deter domestic policymakers from incenting U.S. oil sands development. This report does not seek to evaluate the particular underpinnings of either side of this policy argument, but rather attempts to delve into the question of whether the Canadian experience has relevance as a foundational model for U.S. oil sands development. More specifically, this report seeks to assess whether and how the Canadian oil sands experience might be predictive or instructive in the context of fashioning a framework for a U.S. oil sands industry. In evaluating the implications of these underpinnings for a prospective U.S. oil sands industry, this report concentrates on prospective development of the oil sands deposits found in Utah.

  1. A study of global sand seas

    Science.gov (United States)

    McKee, Edwin D.

    1979-01-01

    The birth of the idea that led to this publication on "Global Sand Seas" dates back to the late 1920's. At that time I was engaged in a study of the Coconino Sandstone of Arizona's Grand Canyon. Considerable controversy existed then as to whether this sandstone was a subaqueous deposit or was composed of wind-formed dunes. It became apparent that definitive literature was sparse or lacking on types of dunes, global distribution of these types, the mechanics of their development, the precise nature of their internal structure of cross-stratificiation, and the relation of wind systems to these sand forms. Especially lacking were data on criteria that could confidently be used in the recognition of ancient dunes. The common denominator in this publication is eolian sand bodies. Although the book is concerned primarily with desert sand seas, the subject matter is not restricted to deserts; it includes many references to deposits of coastal sand and to sand bodies in humid climates. Nor does the book deal exclusively with dunes, which, according to most definitions, involve mounds or hills. Many references are made to sand sheets, sand stringers, and other types of sand deposits that have no prominent topographic expression. All sand bodies accumulated by the action of wind are discussed. Chapters A-J of this publication are primarily topical. Chapters cover the grain texture, the color, and the structure of modern dunes and other eolian sands. Special treatment is given to the relation of wind data to dune interpretation, the evolution of form in current-deposited sand bodies as determined from experimental studies, and the discriminant analysis technique for differentiating between coastal and inland desert sands. This topical part of the publication also includes an analysis of criteria used in ancient deposits to interpret their eolian genesis and a consideration of economic application of the principles described, including a discussion of potentials and problems

  2. Harding - a field case study: Sand control strategy for ultra-high productivity and injectivity wells

    Energy Technology Data Exchange (ETDEWEB)

    McKay, G.; Bennett, C.; Price-Smith, C.; Dowell, S.; McLellan, W. [British Petroleum (United Kingdom)

    1998-12-31

    The strategy adopted and the factors considered in the development of the sandface completion design for Phase One of the Harding Field in the unconsolidated Balder Massive Sand in the U.K. Sector of the North Sea is described. The field development utilizes a TPG 500 Jack-up Drilling and Production Unit in conjunction with a concrete gravity base tank (GBT). The first phase of the development involved drilling and completing horizontal wells sand-free, ultra-high production (over 30,000 BOPD/well, with PI in excess of 1,000 bbl/day/psi). The experiences showed that pre-packed screens can be successfully utilized to provide lasting sand control with high rate of production in clean homogenous sandstones, and that testing for fluid compatibility, formation damage, screen plugging, corrosion and erosion potential are essential pre-requisites in determining the optimal solution in any well with sand production potential.The experiences gained in Phase One have contributed to design enhancements for Phase Two of the project which include extended reach horizontal wells to neighbouring satellite pools. 3 refs., 1 tab., 8 figs.

  3. Numerical simulation of wind-sand movement in the reversed flow region of a sand dune with a bridge built downstream.

    Science.gov (United States)

    He, Wei; Huang, Ning; Xu, Bin; Wang, Wenbo

    2018-04-23

    A bridge built inside the reversed flow region of a sand dune will change the characteristics of wind-sand movement in this region. The Reynolds-averaged Navier-Stokes simulation and discrete particle tracing are used to simulate the wind-sand movement around a sand dune with a bridge built inside the reversed region. Three cases with different bridge positions are studied. The results show that 1) compared with the isolated dune case, a tall bridge built at the leeward toe leads to an increase in the deposition rate on the leeward slope and a longer reversed flow region downstream of the sand dune; meanwhile, the high speed of crosswind on the bridge indicates that some measures should be taken to protect trains from strong crosswind; 2) a low bridge at the leeward toe has little effect on the sand deposition and reversed flow region of the dune; however, low sand transport rate and crosswind speed on the bridge show that anti-crosswind/sand measures should be taken according to the actual situation and 3) a low bridge on the leeward slope has little effect on the length of reversed flow region, however, high crosswind speed and sand flux on the bridge reveal the need of anti-crosswind/sand measures on the bridge. Moreover, the bridges in the reversed flow region increase the sand flux near the leeward crest; as a result, the moving patterns of the sand dune are changed.

  4. Sand dune tracking from satellite laser altimetry

    Science.gov (United States)

    Dabboor, Mohammed

    Substantial problems arise from sand movement in arid and semi-arid countries. Sand poses a threat to infrastructure, agricultural and urban areas. These issues are caused by the encroachment of sand on roads and railway tracks, farmland, towns and villages, and airports, to name a few. Sand movement highly depends on geomorphology including vegetation cover, shape and height of the terrain, and grain size of the sand. However, wind direction and speed are the most important factors that affect efficient sand movement. The direction of the movement depends on the main direction of the wind, but it has been shown that a minimum wind speed is required, e.g. wind gusts, to initiate sand transport. This fact prevents a simple calculation of sand transport from conventional wind data as wind records rarely contain sub-minute intervals masking out any wind gusts. An alternative of predicting sand transport is the direct observation of sand advance by in situ measurements or via satellite. Until recently, satellite imagery was the only means to compare dune shape and position for predicting dune migration over several years. In 2003, the NASA laser altimetry mission ICESat became operational and monitors elevations over all surface types including sand dunes with an accuracy of about 10-20 cm. In this study, ICESat observations from repeat tracks (tracks overlapping eachother within 50 m) are used to derive sand dune advance and direction. The method employs a correlation of the elevation profiles over several dunes and was sucessfully validated with synthetic data. The accuracy of this method is 5 meters of dune advance. One of the most active areas exhibiting sand and dune movement is the area of the Arabian Peninsula. Approximately one-third of the Arabian Peninsula is covered by sand dunes. Different wind regimes (Shamal, Kaus) cause sand dune movement in the selected study area in the eastern part of the Arabian Peninsula between 20-25 degrees North and 45-55 degrees

  5. The recovery of rare earth elements (REE) from beach sands

    International Nuclear Information System (INIS)

    Petrache, Cristina A.; Santos, Gabriel P. Jr.; Fernandez, Lourdes G.; Castillo, Marilyn K.; Tabora, Estrellita U; Intoy, Socorro P.; Reyes, Rolando Y.

    2005-01-01

    This preliminary study describes a metallurgical process that will extract, recover and produce REE oxides from beach sands obtained from Ombo, San Vicente, northern Palawan. The beach sands contain REE minerals of allanite and small amounts of monazite. Allanite is a sorosilicate mineral containing rare earths, thorium and uranium. Monazite is the anhydrous phosphate of cerium and the lanthanum group of rare earths with thorium commonly present in replacement for cerium and lanthanum. Collected beach sand were first pan-concentrated in-situ to produce heavy mineral concentrates. Screening using a 32 mesh (0.500 mm) sieve was done at the Nuclear Materials Research Laboratory to remove oversize sand particles. The -32 mesh fraction was treated with bromoform (sp. gr. 2.89) to separate the heavy minerals from siliceous gangue. Grinding to -325 mesh size (0.044mm) followed to liberate the minerals prior to leaching. Two acids leachants were used - concentrated HCl for the first trial and a mixture of concentrated HCl and HNO 3 (10:1 volume ratio) for the second trial. Both leaching trials were carried out at 180 o C for 7 hours or until dry. The resulting leached residues were re-dissolved in concentrated HCl and filtered. Ionquest R 801, an organophosphorous extractant, was added to the filtrate to separate the radioactive thorium from REE. Sodium hydroxide was added to the aqueous phase to precipitate the REE. After filtering the precipitate, it was dissolved in HCl. The acid solution was repeatedly extracted three (3) times with Ionquest R 801 to remove iron and other contaminants. Ammonium hydroxide was added to the final solution to precipitate the REE, which was then dried in the oven. The precipitate was calcined/roasted in the furnace at two different temperatures for different periods of time to burn off the organic matter and to form oxides. Results of the XRD analysis showed peaks of the calcined precipitate matching with the peaks of lanthanum oxide

  6. Standardization of NaI gamma spectrometer using a newly developed standard for the estimation of 228Ra in rare earth chloride solution

    International Nuclear Information System (INIS)

    Sahu, A.; Patra, R.P.; Jha, S.K.; Tripathi, R.M.; Patro, P.

    2018-01-01

    Monazite is a naturally occurring mineral which is a phosphate of various rare earths and thorium with traces of uranium. Indian Rare Earths Limited has set up a Monazite Processing Plant (MoPP) at Orissa Sand Complex (OSCOM), Odisha for recovery of various elements from Monazite. The finely ground monazite is processed with hot NaOH to separate the phosphate component as Tri-Sodium Phosphate from the mixed hydroxide. Then the mixed hydroxide is treated with HCl at controlled pH to separate rare earth as rare earth chloride solution. The rare earth chloride solution also contains 228 Ra which is generated in the 232 Th decay series. The rare earth chloride solution is then treated with BaCl 2 , MgSO 4 and Na 2 S; 228 Ra gets co-precipitated with Ba as Lead-Barium Sulfate. To meet the regulatory requirement, 228 Ra activity is reduced to below 1 Bq/g limit

  7. Study of formation constant of molybdophosphate and it's application in the product of xenotime sand, tooth and bone

    International Nuclear Information System (INIS)

    Samin; Lahagu, F.; Basuki, K. T.; Ernawati, F.

    1996-01-01

    The formation constant of molybdophosphate complex and it's application in the product of xenotime sand, tooth and bone have been studied by spectrophotometric method. The molybdophosphate complex were formed from reaction between phosphate and molybdate on several of pH in the strong acid condition (pH = 0.45 - 0.71) and several of phosphate mole fraction (0.01 - 0.08). The several of complex formation reactions were determined by matrix disintegration technique. Molybdophosphate complex were founded three forms i.e. (P 2 Mo 18 O 62 ) 6- or 9 MPA, (PMo 11 O 39 ) 7- or 11 MPA and (PMo 12 O 40 ) 3- or 12 MPA. The formation constant of (PMo 12 O 40 ) 3- complex was found β = 10 46.95 ± 10 3.7 , while for (P 2 Mo 18 O 62 ) 6- and (PMo 11 O 39 ) 7- were not detected. The application in samples were found the concentration of P in product of xenotime sand : 5.37±0.08 μg/ml, in canine-tooth: 10.40 - 19.49 % in cutting-tooth : 11.08 - 18.05 % and in bone 10.94 - 14.29 %. (author)

  8. Numerical Study of Piping Limits for Suction Installation of Offshore Skirted Foundations an Anchors in Layered Sand

    DEFF Research Database (Denmark)

    Ibsen, Lars Bo; Thilsted, C. L.

    2010-01-01

    Skirted foundations and anchors have proved to be competitive solutions for various types of fixed offshore platforms, subsea systems and an attractive foundation alternative for offshore wind turbines. One main design challenge for skirted structures in sand is to penetrate the skirted deep enough...... to obtain the required capacity. In order to overcome the high penetration resistance in sand suction assisted penetration is needed. Suction installation may cause the formation of piping channels, which break down the hydraulic seal and prevent further installation. This paper presents a numerical study...... of failure limits during suction installation in respect to both homogenous and layered soil profile. A numerical flow analysis is performed to determine the hydraulic gradients developing in response to the suction applied, and the results are presented as simple closed form solutions useful for evaluation...

  9. Laboratory Investigation of Complex Conductivity and Magnetic Susceptibility on Natural Iron Oxide Coated Sand

    Science.gov (United States)

    Wang, C.; Slater, L. D.; Day-Lewis, F. D.; Briggs, M. A.

    2017-12-01

    Redox reactions occurring at the oxic/anoxic interface where groundwater discharges to surface water commonly result in iron oxide deposition that coats sediment grains. With relatively large total surface area, these iron oxide coated sediments serve as a sink for sorption of dissolved contaminants, although this sink may be temporary if redox conditions fluctuate with varied flow conditions. Characterization of the distribution of iron oxides in streambed sediments could provide valuable understanding of biogeochemical reactions and the ability of a natural system to sorb contaminants. Towards developing a field methodology, we conducted laboratory spectral induced polarization (SIP) and magnetic susceptibility (MS) measurements on natural iron oxide coated sand (Fe-sand) with grain sizes ranging from 0.3 to 2.0 mm in order to assess the sensitivity of these measurements to iron oxides in sediments. The Fe-sand was also sorted by sieving into various grain sizes to study the impact of grain size on the polarization mechanisms. The unsorted Fe-sand saturated with 0.01 S/m NaCl solution exhibited a distinct phase response ( > 4 mrad) in the frequency range from 0.001 to 100 Hz whereas regular silica sand was characterized by a phase response less than 1 mrad under the same conditions. The presence of iron oxide substantially increased MS (3.08×10-3 SI) over that of regular sand ( Laboratory results demonstrated that SIP and MS may be well suited to mapping the distribution of iron oxides in streambed sediments associated with anoxic groundwater discharge.

  10. Dry matter and nitrogen accumulation are not affected by superoptimal concentration of ammonium in flowing solution culture with pH control

    Science.gov (United States)

    Rideout, J. W.; Raper, C. D. Jr; Raper CD, J. r. (Principal Investigator)

    1994-01-01

    While it is known that superoptimal concentrations of the nitrate (NO3-) ion in solution culture do not increase NO3- uptake or dry matter accumulation, the same is not known for the ammonium (NH4+) ion. An experiment was conducted utilizing flowing solution culture with pH control to investigate the influence of superoptimal NH4+ concentrations on dry matter, nitrogen (N), potassium (K), calcium (Ca), and magnesium (Mg) accumulation by nonnodulated soybean plants. Increasing the NH4+ concentration in solution from 1 to 10 mM did not affect dry matter or N accumulation. Accumulations of K, Ca, and Mg were slightly decreased with increased NH4+ concentration. The NH4+ uptake system, which is saturated at less than 1mM NH4+, is able to regulate uptake of NH4+ at concentrations as high as 10 mM.

  11. Effect of pH and uranium concentration on interaction of uranium(VI) and uranium(IV) with organic ligands in aqueous solutions

    International Nuclear Information System (INIS)

    Li, W.C.; Victor, D.M.; Chakrabarti, C.L.

    1980-01-01

    The effect of pH and uranium concentration on the interactions of uranium(VI) and uranium(IV) with organic ligands was studied by employing dialysis and ultrafiltration techniques. The interactions of U(VI) and U(IV) with organic ligands in nitrate or chloride aqueous solution have been found to be pH-dependent. The stability constants of uranium-organic complexes decrease in the order: fulvic acid>humic acid>tannic acid for U(VI) and humic acid>tannic acid>fulvic acid for U(IV). Scatchard plots for the uranium-organic acid systems indicate two types of binding sites with a difference in stability constants of about 10 2 . Ultrafiltration of uranium-humic acid complexes indicates that U(VI) and U(IV) ions are concentrated in larger molecular size fractions (>5.1 nm) at pH less than or equal to 3 and in smaller molecular size fractions (in the range 5.1 to 3.1 nm and 2.4 to 1.9 nm) at pH greater than or equal to 5. 7 figures, 4 tables

  12. Synthesis and characterization of silica gel from siliceous sands of southern Tunisia

    Directory of Open Access Journals (Sweden)

    Ali Sdiri

    2014-09-01

    Full Text Available The present work aimed to achieve valorization of Albian sands for the preparation of sodium silicates that are commonly used as a precursor to prepare silica gel. A siliceous sand sample was mixed with sodium carbonate and heated at a high temperature (1060 °C to prepare sodium silicates. The sodium silicates were dissolved in distilled water to obtain high quality sodium silicate solution. Hydrochloric acid was then slowly added to the hydrated sodium silicates to obtain silica gel. The collected raw siliceous sands, as well as the prepared silica gels, were characterized by different techniques, such as X-ray fluorescence (XRF, X-ray diffraction (XRD, scanning electron microscopy (SEM and thermal analysis (DSC. XRF confirmed that the detrital sand deposits of southern Tunisia contain high amounts of silica, with content ranging from 88.8% to 97.5%. The internal porosity varied between 17% and 22%, and the specific surface area was less than 5 m2/g. After the treatment described above, it was observed that the porosity of the obtained silica gel reached 57% and the specific surface area exceeded 340 m2/g. Nitrogen adsorption isotherms showed that the prepared silica gels are microporous and mesoporous materials with high adsorption capacities. These results suggest that the obtained silica gels are promising materials for numerous environmental applications.

  13. Effect of water content on the water repellency for hydrophobized sands

    Science.gov (United States)

    Subedi, S.; Kawamoto, K.; Kuroda, T.; Moldrup, P.; Komatsu, T.

    2011-12-01

    Alternative earthen covers such as capillary barriers (CBs) and evapotranspirative covers are recognized as useful technical and low-cost solutions for limiting water infiltration and controlling seepage flow at solid waste landfills in semi-arid and arid regions. However, their application to the landfills at wet regions seems to be matter of concern due to loss of their impending capability under high precipitation. One of the possible techniques to enhance the impermeable properties of CBs is to alter soil grain surfaces to be water-repellent by mixing/coating hydrophobic agents (HAs). In order to examine a potential use of model sands hydrophobized with locally available and environmental-friendly HAs such as oleic acid (OA) and stearic acid (SA) for hydrophobic CBs. In the present study, we first characterized the effect of water content on the degree of water repellency (WR) for hydrophobized sands and volcanic ash soil at different depth. Secondly, the time dependency of the contact angle in hydrophobized sands and volcanic ash soils at different water content was evaluated. Further, the effects of hydrophobic organic matter contents on the WR of hydrophobized sands were investigated by horizontal infiltration test. We investigated the degree of WR as functions of volumetric water content (θ) of a volcanic ash soil samples from different depth and water adjusted hydrophobized sand samples with different ratio of HAs by using sessile drop method (SDM). The initial contact angle (αi) measured from SDM decreased gradually with increasing water content in OA and SA coated samples. Measured αi values for volcanic ash soils increased with increasing water content and reached a peak values of 111.7o at θ= 0.325 cm3 cm-3, where-after αi gradually decreased. Each test sample exhibited sharp decrease in contact angle with time at higher water content. Sorptivity values for oleic acid coated samples decreased with increasing HA content and reached the minimum

  14. Pressure solution of minerals in quartz-type buffer materials

    International Nuclear Information System (INIS)

    Erlstroem, M.

    1986-12-01

    Two samples, pure quartz sand and a sand-bentonite (10%) mixture, were tested under conditions of high pressure (200 bar) and temperature (115 0 C). The experiment was carried out over a period of 70 days. A series of thin slides were prepared on a resin embedded sample at the end of the test period. A microscopical study was performed as to obtain data concerning the effects of pressure and temperature. It showed that no pressure solution had taken place in the pure quartz sand. However, the individual grains had been severely fractured, thus causing significant internal sedimentation. The mixed sample showed that the clay component coated the quartz grains and significantly decreased the effect of stress in the grains by having a cushioning effect. Relative grain movement was facilitated by the clay, by which the grains rotated and slipped into stable positions with large contact areas and low contact stresses. This probably minimized pressure solution. However, a few contact regions indicated the presence of precipitated silica. The investigation shows no definite evidence of pressure solution after an experiment duration of 70 days. Since the effect of solution may be time dependent at the applied temperature, it is recommended that further experiments be conducted at higher effective and porewater pressures but still at 115 0 C. (orig.)

  15. CMOS COLOUR SENSOR BASED pH MEASUREMENT FOR WATER QUALITY ANALYSIS

    OpenAIRE

    Sanjay Kumar; Arvind Singh

    2016-01-01

    A Real-Time pH measurement system using a novel design Programmable CMOS optical Colour light to frequency converter TCS230 is presented. The system uses Bogen’s universal indicator solution combined with a white light source and the Programmable CMOS colour sensor TCS230 to measure pH as a function of colour change in a sample. Bogen’s universal indicator solution causes a colour change in a sample according to the pH of the sample. The output frequency from the colour-sensitive CM...

  16. Electrocatalytic hydrogen evolution under densely buffered neutral pH conditions

    KAUST Repository

    Shinagawa, Tatsuya

    2015-08-18

    Under buffered neutral pH conditions, solute concentrations drastically influence the hydrogen evolution reaction (HER). The iR-free HER performance as a function of solute concentration was found to exhibit a volcano-shaped trend in sodium phosphate solution at pH 5, with the maximum occurring at 2 M. A detailed microkinetic model that includes calculated activity coefficients, solution resistance, and mass-transport parameters accurately describes the measured values, clarifying that the overall HER performance is predominantly governed by mass-transport of slow phosphate ions (weak acid). In the HER at the optimum concentration of approximately 2 M sodium phosphate at pH 5, our theoretical model predicts that the concentration overpotential accounts for more than half of the required overpotential. The substantial concentration overpotential would originate from the electrolyte property, suggesting that the proper electrolyte engineering will result in an improved apparent HER performances. The significance of concentration overpotential shown in the study is critical in the advancement of electrocatalysis, biocatalysis, and photocatalysis.

  17. Electrocatalytic hydrogen evolution under densely buffered neutral pH conditions

    KAUST Repository

    Shinagawa, Tatsuya; Takanabe, Kazuhiro

    2015-01-01

    Under buffered neutral pH conditions, solute concentrations drastically influence the hydrogen evolution reaction (HER). The iR-free HER performance as a function of solute concentration was found to exhibit a volcano-shaped trend in sodium phosphate solution at pH 5, with the maximum occurring at 2 M. A detailed microkinetic model that includes calculated activity coefficients, solution resistance, and mass-transport parameters accurately describes the measured values, clarifying that the overall HER performance is predominantly governed by mass-transport of slow phosphate ions (weak acid). In the HER at the optimum concentration of approximately 2 M sodium phosphate at pH 5, our theoretical model predicts that the concentration overpotential accounts for more than half of the required overpotential. The substantial concentration overpotential would originate from the electrolyte property, suggesting that the proper electrolyte engineering will result in an improved apparent HER performances. The significance of concentration overpotential shown in the study is critical in the advancement of electrocatalysis, biocatalysis, and photocatalysis.

  18. bentonite-sand mixture as new backfill/buffer material

    International Nuclear Information System (INIS)

    Cui Suli; Liu Jisheng; Zhang Huyuan; Liang Jian

    2008-01-01

    The mixture of bentonite and quartz sand is suggested as a new backfill/buffer material for geological disposal of HLW. To improve the further design of underground laboratory and in-situ industrial construction test, the optimization of sand addition to bentonite is focused at present research stage. Based on summarizing the research results abroad, laboratory tests were conducted on the mixture of GMZ001 bentonite and quartz sand, such as compaction test and swelling tests etc. Test data shows that GMZ bentonite-sand mixture exhibits a favorite compaction with a 30% sand addition, a highest swelling pressure with a 20% sand addition, and a decreasing plasticity with increases in sand addition and pore liquid concentration. (authors)

  19. Reduction of exchangeable calcium and magnesium in soil with increasing pH

    Directory of Open Access Journals (Sweden)

    Miyazawa Mário

    2001-01-01

    Full Text Available A laboratory study was conducted with soil samples and synthetic solutions to investigate possible mechanisms related with reduction in KCl exchangeable Ca and Mg with increasing pH. Increasing soil pH over 5.3 with CaCO3 added to the soil and with NaOH solution added to soil/KCl suspension increased adsorptions of Ca and Mg. The reduction of Mg was greater than Ca and was related to the concentration of soil exchangeable Al. The decreases of soluble Ca and Mg following addition of Al in synthetic solution were at pH > 7.5. The isomorphic coprecipitation reaction with Al compounds may be the most possible mechanism responsible for the decrease of exchangeable Ca and Mg with increasing pH. Possible chemical reactions are presented.

  20. A simple protocol for the routine calibration of pH meters

    Directory of Open Access Journals (Sweden)

    A. FEDERMAN NETO

    2009-01-01

    Full Text Available

    A simplified laboratory protocol for the calibration of pH meters is described and tested. It is based on the use of two analytical primary buffer solutions, potassium hydrogen phthalate and Borax (sodium tetraborate decahydrate of precisely known concentrations and pH. The solutions may be stored at room temperature for long periods, without decomposition and used directly. The calibration of the meter can be checked with standard solutions of sodium dihydrogen phosphate, sodium carbonate, sodium benzoate, sodium salicylate or potassium oxalate. Methods for the purification of Borax and potassium chloride are also given, and a new method for the neutralization of 0.9% saline is suggested. Keywords: pH meters (calibration; saline (0.9%; pH standards; potassium biphthalate; Borax.

  1. Comparison between predicted and observed sand waves and sand banks in the North Sea

    NARCIS (Netherlands)

    Hulscher, Suzanne J.M.H.; van den Brink, G.M.

    2001-01-01

    For the first time a prediction model of regular morphological patterns on the seabed was tested against observations of sand wave and sand bank occurrence in the entire North Sea. The model, which originates from first physical principles, predicts this occurrence via two dimensionless parameters

  2. An experimental study on the erosion behavior of pseudoelastic TiNi alloy in dry sand and in aggressive media

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, T.; Li, D.Y. [Alberta Univ., Edmonton, AB (Canada). Dept. of Chemical Engineering

    2000-11-30

    The corrosive erosion behavior of Ti-51at.%Ni alloy under different erosion conditions was studied and compared to that of 304 stainless steel. Erosion tests were performed in a slurry-pot tester with dry sand, 3.5% NaCl slurry and 0.1 moll{sup -1} H{sub 2}SO{sub 4} slurry containing 30% silica sand, respectively. Synergistic effects of corrosion and erosion were studied in steady corrosion, polarization, dry sand erosion and micro-wear experiments. An electrochemical-scratching test characterized the failure and recovery of the passive film formed on TiNi alloy in 3.5% NaCl and 0.1 mol l{sup -1} H{sub 2}SO{sub 4} solutions, respectively. In both dry sand and the corrosive media, the TiNi alloy exhibited considerably greater erosion resistance than 304 stainless steel. (orig.)

  3. BSA-coated nanoparticles for improved SERS-based intracellular pH sensing.

    Science.gov (United States)

    Zheng, Xiao-Shan; Hu, Pei; Cui, Yan; Zong, Cheng; Feng, Jia-Min; Wang, Xin; Ren, Bin

    2014-12-16

    Local microenvironment pH sensing is one of the key parameters for the understanding of many biological processes. As a noninvasive and high sensitive technique, surface-enhanced Raman spectroscopy (SERS) has attracted considerable interest in the detection of the local pH of live cells. We herein develop a facile way to prepare Au-(4-MPy)-BSA (AMB) pH nanosensor. The 4-MPy (4-mercaptopyridine) was used as the pH sensing molecule. The modification of the nanoparticles with BSA not only provides a high sensitive response to pH changes ranging from pH 4.0 to 9.0 but also exhibits a high sensitivity and good biocompatibility, stability, and reliability in various solutions (including the solutions of high ionic strength or with complex composition such as the cell culture medium), both in the aggregation state or after long-term storage. The AMB pH nanosensor shows great advantages for reliable intracellular pH analysis and has been successfully used to monitor the pH distribution of live cells and can address the grand challenges in SERS-based pH sensing for practical biological applications.

  4. Critical State of Sand Matrix Soils

    Science.gov (United States)

    Marto, Aminaton; Tan, Choy Soon; Makhtar, Ahmad Mahir; Kung Leong, Tiong

    2014-01-01

    The Critical State Soil Mechanic (CSSM) is a globally recognised framework while the critical states for sand and clay are both well established. Nevertheless, the development of the critical state of sand matrix soils is lacking. This paper discusses the development of critical state lines and corresponding critical state parameters for the investigated material, sand matrix soils using sand-kaolin mixtures. The output of this paper can be used as an interpretation framework for the research on liquefaction susceptibility of sand matrix soils in the future. The strain controlled triaxial test apparatus was used to provide the monotonic loading onto the reconstituted soil specimens. All tested soils were subjected to isotropic consolidation and sheared under undrained condition until critical state was ascertain. Based on the results of 32 test specimens, the critical state lines for eight different sand matrix soils were developed together with the corresponding values of critical state parameters, M, λ, and Γ. The range of the value of M, λ, and Γ is 0.803–0.998, 0.144–0.248, and 1.727–2.279, respectively. These values are comparable to the critical state parameters of river sand and kaolin clay. However, the relationship between fines percentages and these critical state parameters is too scattered to be correlated. PMID:24757417

  5. The pH dependent Raman spectroscopic study of caffeine

    Science.gov (United States)

    Kang, Jian; Gu, Huaimin; Zhong, Liang; Hu, Yongjun; Liu, Fang

    2011-02-01

    First of all the surface enhanced Raman spectroscopy (SERS) and normal Raman spectra of caffeine aqueous solution were obtained at different pH values. In order to obtain the detailed vibrational assignments of the Raman spectroscopy, the geometry of caffeine molecule was optimized by density functional theory (DFT) calculation. By comparing the SERS of caffeine with its normal spectra at different pH values; it is concluded that pH value can dramatically affect the SERS of caffeine, but barely affect the normal Raman spectrum of caffeine aqueous solution. It can essentially affect the reorientation of caffeine molecule to the Ag colloid surface, but cannot impact the vibration of functional groups and chemical bonds in caffeine molecule.

  6. Production and global transport of Titan's sand particles

    Science.gov (United States)

    Barnes, Jason W.; Lorenz, Ralph D.; Radebaugh, Jani; Hayes, Alexander G.; Arnold, Karl; Chandler, Clayton

    2015-06-01

    Previous authors have suggested that Titan's individual sand particles form by either sintering or by lithification and erosion. We suggest two new mechanisms for the production of Titan's organic sand particles that would occur within bodies of liquid: flocculation and evaporitic precipitation. Such production mechanisms would suggest discrete sand sources in dry lakebeds. We search for such sources, but find no convincing candidates with the present Cassini Visual and Infrared Mapping Spectrometer coverage. As a result we propose that Titan's equatorial dunes may represent a single, global sand sea with west-to-east transport providing sources and sinks for sand in each interconnected basin. The sand might then be transported around Xanadu by fast-moving Barchan dune chains and/or fluvial transport in transient riverbeds. A river at the Xanadu/Shangri-La border could explain the sharp edge of the sand sea there, much like the Kuiseb River stops the Namib Sand Sea in southwest Africa on Earth. Future missions could use the composition of Titan's sands to constrain the global hydrocarbon cycle.

  7. Chapter A6. Section 6.4. pH

    Science.gov (United States)

    Wilde, Franceska D.; Busenberg, Eurybiades; Radtke, Dean B.

    2006-01-01

    Measurement of pH is critical to the understanding of the viability and vulnerability of environmental waters and is considered a master variable in determining the aqueous geochemistry of an aqueous system. pH is a measure that represents the hydrogen-ion concentration (activity) of a solution. This section of the National Field Manual (NFM) describes U.S. Geological Survey (USGS) guidance and protocols for measurement of pH in ground and surface waters.

  8. High temperature thermal energy storage in moving sand

    Science.gov (United States)

    Turner, R. H.; Awaya, H. I.

    1978-01-01

    Several high-temperature (to 500 C) heat-storage systems using sand as the storage medium are described. The advantages of sand as a storage medium include low cost for sand, widespread availability, non-toxicity, non-degradation characteristics, easy containment, and safety. The systems considered include: stationary sand with closely spaced tubes throughout the volume, the use of a fluidized bed, use of conveyor belt transporter, and the use of a blower rapid transport system. For a stationary sand bed, very close spacing of heat transfer tubes throughout the volume is required, manifesting as high power related system cost. The suggestion of moving sand past or around pipes is intended to reduce the power related costs at the penalty of added system complexity. Preliminary system cost estimates are offered. These rough calculations indicate that mobile sand heat storage systems cost less than the stationary sand approach.

  9. Sand to Root Transfer of PAHs and PCBs by Carrots Grown on Sand with Pure Substances and Biosolids Amended Sand

    OpenAIRE

    Sablayrolles, Caroline; Montréjaud-Vignoles, Mireille; Silvestre, Jérôme; Patria, Lucie

    2006-01-01

    A study on behaviour of trace organic compounds (Polycyclic Aromatic Hydrocarbons, PAH, and Polychlorinated Biphenyls, PCB) in a sand-plant system has been carried out, with the reclamation of wastewater treatment plant biosolids for agriculture in mind. Carrot plants (Daucus carota) were grown on soilless culture (sand), to provide optimal transfer conditions, in plant containers inside a temperature regulated greenhouse. There were two types of experiment. The trace organic compounds have i...

  10. Electrical Conductivity and Chemical Composition of Soil Solution: Comparison of Solution Samplers in Tropical Soils

    Directory of Open Access Journals (Sweden)

    Davi Lopes do Carmo

    2016-01-01

    Full Text Available ABSTRACT Soil solution samplers may have the same working principle, but they differ in relation to chemical and physical characteristics, cost and handling, and these aspects exert influence on the chemical composition of the soil solution obtained. This study was carried out to evaluate, over time, the chemical composition of solutions extracted by Suolo Acqua, with the hydrophilic membrane (HM as a standard, using soils with contrasting characteristics, and to determine the relationship between electrical conductivity (EC and concentration of ions and pH of soil solution samples. This study was carried out under laboratory conditions, using three soils samples with different clay and organic matter (OM contents. Soil solution contents of F−, Cl−, NO−3, Br−, SO42−, Na+, NH4+, K+, Mg2+, Ca2+, were analyzed, as well as inorganic, organic, and total C contents, pH, and EC, in four successive sampling times. Soil solution chemical composition extracted by the Suolo Acqua sampler is similar to that collected by the HM, but the Suolo Acqua extracted more Na+ and soluble organic C than the HM solution. Solution EC, cation and anion concentrations, and soluble C levels are higher in the soil with greater clay and OM contents (Latossolo and Cambissolo in this case. Soil solution composition varied over time, with considerable changes in pH, EC, and nutrient concentrations, especially associated with soil OM. Thus, single and isolated sampling of the soil solution must be avoided, otherwise composition of the soil solution may not be correctly evaluated. Soil solution EC was regulated by pH, as well as the sum of cation and anion concentrations, and the C contents determined in the soil liquid phase.

  11. Influence of pH on extracellular matrix preservation during lung decellularization.

    Science.gov (United States)

    Tsuchiya, Tomoshi; Balestrini, Jenna L; Mendez, Julio; Calle, Elizabeth A; Zhao, Liping; Niklason, Laura E

    2014-12-01

    The creation of decellularized organs for use in regenerative medicine requires the preservation of the organ extracellular matrix (ECM) as a means to provide critical cues for differentiation and migration of cells that are seeded onto the organ scaffold. The purpose of this study was to assess the influence of varying pH levels on the preservation of key ECM components during the decellularization of rat lungs. Herein, we show that the pH of the 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate (CHAPS)-based decellularization solution influences ECM retention, cell removal, and also the potential for host response upon implantation of acellular lung tissue. The preservation of ECM components, including elastin, fibronectin, and laminin, were better retained in the lower pH conditions that were tested (pH ranges tested: 8, 10, 12); glycosaminoglycans were preserved to a higher extent in the lower pH groups as well. The DNA content following decellularization of the rat lung was inversely correlated with the pH of the decellularization solution. Despite detectible levels of cyotoskeletal proteins and significant residual DNA, tissues decellularized at pH 8 demonstrated the greatest tissue architecture maintenance and the least induction of host response of all acellular conditions. These results highlight the effect of pH on the results obtained by organ decellularization and suggest that altering the pH of the solutions used for decellularization may influence the ability of cells to properly differentiate and home to appropriate locations within the scaffold, based on the preservation of key ECM components and implantation results.

  12. Road dust from pavement wear and traction sanding

    Energy Technology Data Exchange (ETDEWEB)

    Kupiainen, K.

    2007-07-01

    Vehicles affect the concentrations of ambient airborne particles through exhaust emissions, but particles are also formed in the mechanical processes in the tire-road interface, brakes, and engine. Particles deposited on or in the vicinity of the road may be re-entrained, or resuspended, into air through vehicle-induced turbulence and shearing stress of the tires. A commonly used term for these particles is 'road dust'. The processes affecting road dust emissions are complex and currently not well known. Road dust has been acknowledged as a dominant source of PM10 especially during spring in the sub-arctic urban areas, e.g. in Scandinavia, Finland, North America and Japan. The high proportion of road dust in sub-arctic regions of the world has been linked to the snowy winter conditions that make it necessary to use traction control methods. Traction control methods include dispersion of traction sand, melting of ice with brine solutions, and equipping the tires with either metal studs (studded winter tires), snow chains, or special tire design (friction tires). Several of these methods enhance the formation of mineral particles from pavement wear and/or from traction sand that accumulate in the road environment during winter. When snow and ice melt and surfaces dry out, traffic-induced turbulence makes some of the particles airborne. A general aim of this study was to study processes and factors underlying and affecting the formation and emissions of road dust from paved road surfaces. Special emphasis was placed on studying particle formation and sources during tire road interaction, especially when different applications of traction control, namely traction sanding and/or winter tires were in use. Respirable particles with aerodynamic diameter below 10 micrometers (PM10) have been the main concern, but other size ranges and particle size distributions were also studied. The following specific research questions were addressed: (i) How do traction

  13. Analysis of wind-blown sand movement over transverse dunes.

    Science.gov (United States)

    Jiang, Hong; Huang, Ning; Zhu, Yuanjian

    2014-12-01

    Wind-blown sand movement often occurs in a very complicated desert environment where sand dunes and ripples are the basic forms. However, most current studies on the theoretic and numerical models of wind-blown sand movement only consider ideal conditions such as steady wind velocity, flat sand surface, etc. In fact, the windward slope gradient plays a great role in the lift-off and sand particle saltation. In this paper, we propose a numerical model for the coupling effect between wind flow and saltating sand particles to simulate wind-blown sand movement over the slope surface and use the SIMPLE algorithm to calculate wind flow and simulate sands transport by tracking sand particle trajectories. We furthermore compare the result of numerical simulation with wind tunnel experiments. These results prove that sand particles have obvious effect on wind flow, especially that over the leeward slope. This study is a preliminary study on windblown sand movement in a complex terrain, and is of significance in the control of dust storms and land desertification.

  14. No-core fiber-based highly sensitive optical fiber pH sensor.

    Science.gov (United States)

    Bhardwaj, Vanita; Pathak, Akhilesh Kumar; Singh, Vinod Kumar

    2017-05-01

    The present work describes the fabrication and characterization of an optical fiber pH sensor using a sol–gel technique. The sensing head configuration is incorporated using a short section of no-core fiber, coated with tetraethyl orthosilicate and spliced at the end of a single mode fiber with a bulge. Different types of indicators (bromophenol blue, cresol red, and chlorophenol red) were used to achieve a wide pH range from 2 to 13. High sensitivities of the fabricated device were found to be 1.02 and ? 0.93 ?? nm / pH for acidic and alkaline solutions, respectively. From the characterization results, it was noted that there is an impact of ionic strength and an effect of the temperature of liquid on the response characteristic, which is an advantage of the existing device over the other pH sensors. The fabricated sensor exhibited good reflection spectrum, indicating a blueshift in resonance wavelength for alkaline solutions and a redshift for acidic solutions.

  15. Passivation condition of carbon steel in bentonite/sand mixture

    International Nuclear Information System (INIS)

    Taniguchi, Naoki; Kawakami, Susumu

    2002-03-01

    It is essential to understand the corrosion type of carbon steel under the repository conditions for the lifetime assessment of carbon steel overpack used for geological isolation of high-level radioactive waste. According to the previous study, carbon steel is hard to passivate in buffer material assuming a chemical condition range of groundwater in Japan. However, concrete support will be constructed around the overpack in the case of repository in the soft rock system and groundwater having a higher pH may infiltrate to buffer material. There is a possibility that the corrosion type of carbon steel will be influenced by the rise of the pH in groundwater. In this study, anodic polarization experiments were performed to understand the passivation condition of carbon steel in buffer material saturated with water contacted with concrete. An ordinary concrete an a low-alkalinity concrete were used in the experiment. The results of the experiments showed that the carbon steel can passivate under the condition that water having pH > 13 infiltrate to the buffer material assuming present property of buffer material. If the low-alkalinity concrete is selected as the support material, passivation can not occur on carbon steel overpack. The effect of the factors of buffer material such as dry density and mixing ratio of sand on the passivation of carbon steel was also studied. The results of the study showed that the present property of buffer material is enough to prevent passivation of carbon steel. (author)

  16. Sand consolidation

    Energy Technology Data Exchange (ETDEWEB)

    Spain, H H

    1965-01-21

    In a sand consolidation method in which there is injected a mixture of resin-forming liquids comprising an aryl-hydroxy low molecular weight compound, a water- soluble aldehyde, and a catalyst, an improvement is claimed which comprises diluting the resin-forming liquids with a diluent and with water so that the yield of the resin is sufficient to consolidate the sand particles with the minimum desirable pressure. The diluent may be mutually soluble in water and in the resin-forming liquids, and does not affect the setting time of the polymer. The aldehyde and the aryl-hydroxy compound may be in ratio of 5:1, and the diluent, methyl alcohol, is present in a ratio of 2:1 with reference to the water.

  17. Addressing a Common Misconception: Ammonium Acetate as Neutral pH "Buffer" for Native Electrospray Mass Spectrometry

    Science.gov (United States)

    Konermann, Lars

    2017-09-01

    Native ESI-MS involves the transfer of intact proteins and biomolecular complexes from solution into the gas phase. One potential pitfall is the occurrence of pH-induced changes that can affect the analyte while it is still surrounded by solvent. Most native ESI-MS studies employ neutral aqueous ammonium acetate solutions. It is a widely perpetuated misconception that ammonium acetate buffers the analyte solution at neutral pH. By definition, a buffer consists of a weak acid and its conjugate weak base. The buffering range covers the weak acid pKa ± 1 pH unit. NH4 + and CH3-COO- are not a conjugate acid/base pair, which means that they do not constitute a buffer at pH 7. Dissolution of ammonium acetate salt in water results in pH 7, but this pH is highly labile. Ammonium acetate does provide buffering around pH 4.75 (the pKa of acetic acid) and around pH 9.25 (the pKa of ammonium). This implies that neutral ammonium acetate solutions electrosprayed in positive ion mode will likely undergo acidification down to pH 4.75 ± 1 in the ESI plume. Ammonium acetate nonetheless remains a useful additive for native ESI-MS. It is a volatile electrolyte that can mimic the solvation properties experienced by proteins under physiological conditions. Also, a drop from pH 7 to around pH 4.75 is less dramatic than the acidification that would take place in pure water. It is hoped that the habit of referring to pH 7 solutions as ammonium acetate "buffer" will disappear from the literature. Ammonium acetate "solution" should be used instead. [Figure not available: see fulltext.

  18. Assessment of Suspended Sand Availability under Different Flow Conditions of the Lowermost Mississippi River at Tarbert Landing during 1973–2013

    Directory of Open Access Journals (Sweden)

    Sanjeev Joshi

    2015-12-01

    Full Text Available Rapid land loss in the Mississippi River Delta Plain has led to intensive efforts by state and federal agencies for finding solutions in coastal land restoration in the past decade. One of the proposed solutions includes diversion of the Mississippi River water into drowning wetland areas. Although a few recent studies have investigated flow-sediment relationships in the Lowermost Mississippi River (LmMR, defined as the 500 km reach from the Old River Control Structure to the river’s Gulf outlet, it is unclear how individual sediment fractions behave under varying flow conditions of the river. The information can be especially pertinent because the quantity of coarse sands plays a critical role for the Mississippi-Atchafalaya River deltaic development. In this study, we utilized long-term (1973–2013 records on discharge and sediments at Tarbert Landing of the LmMR to assess sand behavior and availability under different river flow regimes, and extreme sand transport events and their recurrence. We found an average annual sand load (SL of 27.2 megatonnes (MT during 1973 and 2013, varying largely from 3.37 to 52.30 MT. For the entire 41-year study period, a total of approximately 1115 MT sand were discharged at Tarbert Landing, half of which occurred during the peak 20% flow events. A combination of intermediate, high and peak flow stages (i.e., river discharge was ≥18,000 cubic meter per second produced about 71% of the total annual SL within approximately 120 days of a year. Based on the long-term sediment assessment, we predict that the LmMR has a high likelihood to transport 4 to 446 thousand tonnes of sand every day over the next 40 years, during which annual sand loads could reach a maximum of 51.68 MT. Currently, no effective plan is in place to utilize this considerably high sand quantity and we suggest that river engineering and sediment management in the LmMR consider practices of hydrograph-based approach for maximally capturing

  19. Differential Sensor for PH Monitoring of Environmental Objects

    Directory of Open Access Journals (Sweden)

    Romanenko Sergey

    2016-01-01

    Full Text Available Differential pH sensor is proposed. Reference electrode and measuring electrode are the same type. Reference electrode is immersed in standard buffer solution with known pH value. The differential pH sensor has longer service life as compared with the traditionally used sensors with silver chloride reference electrode. Ultrasonic cleaning system is proposed to clean the primary measuring transducer from pollution that form as result of silting during long-term operation with the sensor.

  20. Sands at Gusev Crater, Mars

    Science.gov (United States)

    Cabrol, Nathalie A.; Herkenhoff, Kenneth E.; Knoll, Andrew H.; Farmer, Jack D.; Arvidson, Raymond E.; Grin, E.A.; Li, Ron; Fenton, Lori; Cohen, B.; Bell, J.F.; Yingst, R. Aileen

    2014-01-01

    Processes, environments, and the energy associated with the transport and deposition of sand at Gusev Crater are characterized at the microscopic scale through the comparison of statistical moments for particle size and shape distributions. Bivariate and factor analyses define distinct textural groups at 51 sites along the traverse completed by the Spirit rover as it crossed the plains and went into the Columbia Hills. Fine-to-medium sand is ubiquitous in ripples and wind drifts. Most distributions show excess fine material, consistent with a predominance of wind erosion over the last 3.8 billion years. Negative skewness at West Valley is explained by the removal of fine sand during active erosion, or alternatively, by excess accumulation of coarse sand from a local source. The coarse to very coarse sand particles of ripple armors in the basaltic plains have a unique combination of size and shape. Their distribution display significant changes in their statistical moments within the ~400 m that separate the Columbia Memorial Station from Bonneville Crater. Results are consistent with aeolian and/or impact deposition, while the elongated and rounded shape of the grains forming the ripples, as well as their direction of origin, could point to Ma'adim Vallis as a possible source. For smaller particles on the traverse, our findings confirm that aeolian processes have dominated over impact and other processes to produce sands with the observed size and shape patterns across a spectrum of geologic (e.g., ripples and plains soils) and aerographic settings (e.g., wind shadows).

  1. Direct Chlorination of Zircon Sand

    International Nuclear Information System (INIS)

    Dwiretnani Sudjoko; Budi Sulistyo; Pristi Hartati; Sunardjo

    2002-01-01

    It was investigated the direct chlorination of zircon sand in a unit chlorination equipment. The process was in semi batch. The product gas was scrubbed in aqueous NaOH. It was search the influence of time, ratio of reactant and size of particle sand to the concentration of Zr and Si in the product. From these research it was found that as the times, ratio of reactant increased, the concentration of Zr increased, but the concentration of Si decreased, while as grain size of zircon sand decreased the concentration of Zr decreased, but the concentration of Si increased. (author)

  2. Colorimetric study of malvidin-3-O-glucoside copigmented by phenolic compounds: The effect of molar ratio, temperature, pH, and ethanol content on color expression of red wine model solutions.

    Science.gov (United States)

    Zhang, Bo; Yang, Xue-Shan; Li, Ning-Ning; Zhu, Xia; Sheng, Wen-Jun; He, Fei; Duan, Chang-Qing; Han, Shun-Yu

    2017-12-01

    In the recent research, the copigmentations of malvidin-3-O-glucoside with eight types of phenolic copigments have been investigated. The influence of the pigment/copigment molar ratio, the reaction temperature, the pH and the ethanol content of solutions has been examined. The results showed that the copigmentation effect was dependent on not only the particular structures of the phenolic compounds but also the factors of the reaction systems. The increase of the copigment concentration can strengthen the copigmentation effect, improve the solution color, and enhance the red-purple features. Different temperatures had different influences on the copigmentation reactions. The destruction of the copigmentation complexes can result in the hypsochromic shift of the reaction solution when the temperature was higher than 20°C. The bathochromic shift of the solution gradually progressed with the increase of the pH value. A significant copigmentation feature was spotted when pH reached 3.0, which demonstrates obvious red-purple characterization. The addition of the ethanol weakened the copigmentation effect. According to measurement through color analysis, it was found that the color differences caused by ethanol in red wine were typically attributed to quantitative changes. Remarkably, all of the above delicate color deviations caused by the structural or environmental factors can be precisely and conveniently depicted via the CIELAB space analysis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Impact of polymeric membrane filtration of oil sands process water on organic compounds quantification.

    Science.gov (United States)

    Moustafa, Ahmed M A; Kim, Eun-Sik; Alpatova, Alla; Sun, Nian; Smith, Scott; Kang, Seoktae; Gamal El-Din, Mohamed

    2014-01-01

    The interaction between organic fractions in oil sands process-affected water (OSPW) and three polymeric membranes with varying hydrophilicity (nylon, polyvinylidene fluoride and polytetrafluoroethylene) at different pHs was studied to evaluate the impact of filtration on the quantification of acid-extractable fraction (AEF) and naphthenic acids (NAs). Four functional groups predominated in OSPW (amine, phosphoryl, carboxyl and hydroxyl) as indicated by the linear programming method. The nylon membranes were the most hydrophilic and exhibited the lowest AEF removal at pH of 8.7. However, the adsorption of AEF on the membranes increased as the pH of OSPW decreased due to hydrophobic interactions between the membrane surfaces and the protonated molecules. The use of ultra pressure liquid chromatography-high resolution mass spectrometry (UPLC/HRMS) showed insignificant adsorption of NAs on the tested membranes at pH 8.7. However, 26±2.4% adsorption of NAs was observed at pH 5.3 following the protonation of NAs species. For the nylon membrane, excessive carboxylic acids in the commercial NAs caused the formation of negatively charged assisted hydrogen bonds, resulting in increased adsorption at pH 8.2 (25%) as compared to OSPW (0%). The use of membranes for filtration of soluble compounds from complex oily wastewaters before quantification analysis of AEF and NAs should be examined prior to application.

  4. pH dependent green synthesis of gold nanoparticles by completely C6-carboxylated curdlan under high temperature and various pH conditions.

    Science.gov (United States)

    Qiu, Wen-Yi; Wang, Kai; Wang, Yao-Yao; Ding, Zhi-Chao; Wu, Li-Xia; Cai, Wu-Dan; Yan, Jing-Kun

    2018-01-01

    A C6-carboxylated curdlan (C6-Cc) obtained from 4-acetamido-TEMPO-mediated oxidation of curdlan was used both as a reducing and stabilizing agent for green synthesis of pH-responsive AuNPs, which was carried out by controlling the pH of the C6-Cc solution at a high temperature (100°C). C6-Cc presented a semi-flexible random coil chain in the aqueous medium at pH 5.5 and became more expanded and rigid in alkaline conditions (pH 7.1-12.0), though the primary chemical structure of C6-Cc was virtually unchanged with the pH variation. The AuNPs prepared with C6-Cc at various pHs were characterized by various instrumental measurements. The shapes and sizes of AuNPs were found to be strongly dependent on the pH of the C6-Cc solution. The C6-Cc-decorated AuNPs exhibited a more well-dispersed spherical morphology with smaller particle sizes under alkaline conditions (pH 7.1-12.0). Through this study, a facile, simple, and green method has been demonstrated for preparation of stimuli-sensitive AuNPs using biocompatible polyanionic polysaccharides. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Biological and analytical studies of peritoneal dialysis solutions

    Directory of Open Access Journals (Sweden)

    N. Hudz

    2018-04-01

    Full Text Available The purpose of our work was to conduct biological and analytical studies of the peritoneal dialysis (PD solutions containing glucose and sodium lactate and establish correlations between cell viability of the Vero cell line and values of analytical indexes of the tested solutions. The results of this study confirm the cytotoxicity of the PD solutions even compared with the isotonic solution of sodium chloride, which may be due to the low pH of the solutions, presence of glucose degradation products (GDPs and high osmolarity of the solutions, and unphysiological concentrations of glucose and sodium lactate. However, it is not yet known what factors or their combination and to what extent cause the cytotoxicity of PD solutions. In the neutral red (NR test the weak, almost middle (r = -0.496 and 0.498, respectively and unexpected correlations were found between reduced viability of monkey kidney cells and increased pH of the PD solutions and between increased cell viability and increased absorbance at 228 nm of the tested PD solutions. These two correlations can be explained by a strong correlation (r = -0.948 between a decrease in pH and an increase in the solution absorbance at 228 nm. The opposite effect was observed in the MTT test. The weak, but expected correlations (r = 0.32 and -0.202, respectively were found between increased cell viability and increased pH in the PD solutions and between decreased cell viability and increased absorbance at 228 nm of the tested PD solutions. The middle and weak correlations (r = 0.56 and 0.29, respectively were detected between increased cell viability and increased lactate concentration in the NR test and MTT test. The data of these correlations can be partially explained by the fact that a correlation with a coefficient r = -0.34 was found between decreased pH in the solutions and increased lactate concentration. The very weak correlations (0.138 and 0.196, respectively were found between increased cell

  6. Electrochemical characteristics of bioresorbable binary MgCa alloys in Ringer's solution: Revealing the impact of local pH distributions during in-vitro dissolution

    Energy Technology Data Exchange (ETDEWEB)

    Mareci, D., E-mail: danmareci@yahoo.com [Faculty of Chemical Engineering and Environmental Protection, The “Gheorghe Asachi” Technical University of Iasi, 700050, Iasi (Romania); Bolat, G. [Faculty of Chemical Engineering and Environmental Protection, The “Gheorghe Asachi” Technical University of Iasi, 700050, Iasi (Romania); Izquierdo, J. [Department of Chemistry, University of La Laguna, P.O. Box 456, E-38200 La Laguna (Tenerife) (Spain); Crimu, C.; Munteanu, C. [Faculty of Mechanical Engineering, The “Gheorghe Asachi” Technical University of Iasi, 700050, Iasi (Romania); Antoniac, I. [Faculty of Materials Science and Engineering, Politehnica of Bucharest, 060042 Bucharest (Romania); Souto, R.M., E-mail: rsouto@ull.es [Department of Chemistry, University of La Laguna, P.O. Box 456, E-38200 La Laguna (Tenerife) (Spain); Faculty of Materials Science and Engineering, Politehnica of Bucharest, 060042 Bucharest (Romania)

    2016-03-01

    Biodegradable magnesium–calcium (MgCa) alloy is a very attractive biomaterial. Two MgCa alloys below the solid solubility of Ca were considered, as to solely investigate the effect of Ca content on the behavior of magnesium and the pH changes associated to metal dissolution. X-ray diffraction analysis and optical microscopy showed that both Mg–0.63Ca and Mg–0.89Ca alloys were solely composed of α(Mg) phase. Degradation characteristics and electrochemical characterization of MgCa alloys were investigated during exposure to Ringer's solution at 37 °C by electrochemical impedance spectroscopy and scanning electrochemical microscopy. The impedance behavior showed both capacitive and inductive features that are related to the alloy charge transfer reaction and the relaxation of the absorbed corrosion compounds, and can be described in terms of an equivalent circuit. Scanning electron microscopy (SEM) was employed to view the surface morphology of the MgCa samples after 1 week immersion in Ringer's solution showing extensive precipitation of corrosion products, whereas the substrate shows evidence of a non-uniform corrosion process. Energy dispersive analysis showed that the precipitates contained oxygen, calcium, magnesium and chlorine, and the Mg:Ca ratios were smaller than in the alloys. Scanning electrochemical microscopy (SECM) was used to visualize local pH changes associated to these physicochemical processes with high spatial resolution. The occurrence of pH variations in excess of 3 units between anodic and cathodic half-cell reactions was monitored in situ. - Highlights: • Spontaneous degradation of MgCa alloys in Ringer's solution characterized at 37 °C • Reactivity differences between Mg0.63Ca and Mg0.89Ca are evidenced using multiscale electrochemical characterization. • Electrochemical activation occurs heterogeneously on the alloy surface. • Metal dissolution is accompanied by local pH changes. • Mg0.63Ca degrades faster

  7. Thermal Conductivity of Polymer Composite poypropilene-Sand

    International Nuclear Information System (INIS)

    Betha; Mashuri; Sudirman; Karo Karo, Aloma

    2001-01-01

    Thermal conductivity composite materials polypropylene (PP)-sand have been investigated. PP composite with sand to increase thermal conductivity from the polymer. The composite in this observation is done by mixing matrix (PP melt flow 2/10)and filler sand)by means tool labo plastomil. The result of thermal conductivity is composite of PP-sand which is obtained increase and followed by the raising of filler particle volume fraction. The analysis of thermal conductivity based on the model Cheng and Vachon, model Lewis and Nielsen where this model has the function to support experiment finding. It is proved that Lewis' and Nielsen's model almost approach experiment result. And then thermal conductivity raising will be analyzed by the model of pararel-series conductive with the two (2)phases system. It is showed that sand in PP MF 2 composite have the big role to increase the thermal conductivity than sand in PP MF 10 composition, but it is not easy to shape conductive medium

  8. Final report on Thermally Modified Sand demonstration project

    Energy Technology Data Exchange (ETDEWEB)

    1994-09-23

    The use of salt and salt/sand mixtures on icy roadway surfaces has dramatically increased during the past 30 years. Despite extensive documentation on salt related damage to the roadway improvements, vehicles and the environment, road maintenance departments have continued to rely on this practice. Road maintenance departments in northern climate areas have long recognized the safety benefits for public mobility on icy roadways from the use of sand. As an abrasive material, the sand improves the surface traction that results in more drivable and less hazardous road conditions during the winter months. Stockpiles of pure sand stored during the winter months oftentimes freeze into large unworkable, monolithic piles. To maintain a free-flowing condition, it has been found to be necessary to add salt to the sand. The addition of salt in amounts ranging from 5 to 10 percent to that of sand, is usually sufficient to provide relatively free-flowing abrasive material that could be stored in stockpiles and applied to icy road surfaces with conventional sand spreading trucks. Another alternative for winter storage of pure sand to maintain a free-flowing condition is in humidity-controlled, heated buildings. As would be expected, this method has high capital and operating costs. and not cost effective for general highway maintenance use. The invention demonstrated herein is a method of thermally modifying pure sand that will remain in a free-flowing state throughout the winter season without the need for the salt additive. The thermally modified sand provides an abrasive material that when applied to icy roads does not cause environmental and corrosive damage as done by the application of sand with salt. By employing a very simple process of freezing screened sand particles by forced air convection under subfreezing conditions, the invention creates a product that has significant value in terms of economic and environmental benefits.

  9. Evaluate of head loss, sediment value and copper removal in sand media (rapid sand filter

    Directory of Open Access Journals (Sweden)

    Daneshi Navab

    2014-06-01

    Full Text Available Along with the technology development and increasing consumption of water resources, we are experiencing low qualities in the mentioned resources. Copper brings about serious environment al pollution, threatening human health and ecosystem. This metal found variously in water resources and industrial activities. Therefore, it needs to treat the water resources from these excessive amounts. Different methods have used for this reason but the most used method during recent years has been the absorption by economic absorbers such as sand. Rapid sand filters usually used in water and wastewater treatment plants for water clarification. In this research, a single layer gravity rapid sand filter has used to reduce different concentrations of copper. sediment value and head loss arising in filter media is simulated by using combination of Carman-Kozeny, Rose and Gregory models in different discharges of rapid sand filter. Results have shown that with increasing in discharge and decreasing in input copper concentration, arriving time to given head loss, is increasing. In addition, results demonstrated that with increasing in copper concentration in influent, removal efficiency is decreasing somewhat. Results of this research can applied in an appropriate design of rapid sand filter to copper removal, a prediction of rapid sand filter ability to copper removal and an estimation of arising head loss during filter work thus evaluating of time interval backwash. DOI: http://dx.doi.org/10.3126/ije.v3i2.10641 International Journal of the Environment Vol.3(2 2014: 276-286

  10. In situ recovery of oil from Utah tar sand: a summary of tar sand research at the Laramie Energy Technology Center

    Energy Technology Data Exchange (ETDEWEB)

    Marchant, L.C.; Westhoff, J.D.

    1985-10-01

    This report describes work done by the United States Department of Energy's Laramie Energy Technology Center from 1971 through 1982 to develop technology for future recovery of oil from US tar sands. Work was concentrated on major US tar sand deposits that are found in Utah. Major objectives of the program were as follows: determine the feasibility of in situ recovery methods applied to tar sand deposits; and establish a system for classifying tar sand deposits relative to those characteristics that would affect the design and operation of various in situ recovery processes. Contents of this report include: (1) characterization of Utah tar sand; (2) laboratory extraction studies relative to Utah tar sand in situ methods; (3) geological site evaluation; (4) environmental assessments and water availability; (5) reverse combustion field experiment, TS-1C; (6) a reverse combustion followed by forward combustion field experiment, TS-2C; (7) tar sand permeability enhancement studies; (8) two-well steam injection experiment; (9) in situ steam-flood experiment, TS-1S; (10) design of a tar sand field experiment for air-stream co-injection, TS-4; (11) wastewater treatment and oil analyses; (12) economic evaluation of an in situ tar sand recovery process; and (13) appendix I (extraction studies involving Utah tar sands, surface methods). 70 figs., 68 tabs.

  11. Microbial metabolism alters pore water chemistry and increases consolidation of oil sands tailings.

    Science.gov (United States)

    Arkell, Nicholas; Kuznetsov, Petr; Kuznetsova, Alsu; Foght, Julia M; Siddique, Tariq

    2015-01-01

    Tailings produced during bitumen extraction from surface-mined oil sands ores (tar sands) comprise an aqueous suspension of clay particles that remain dispersed for decades in tailings ponds. Slow consolidation of the clays hinders water recovery for reuse and retards volume reduction, thereby increasing the environmental footprint of tailings ponds. We investigated mechanisms of tailings consolidation and revealed that indigenous anaerobic microorganisms altered porewater chemistry by producing CO and CH during metabolism of acetate added as a labile carbon amendment. Entrapped biogenic CO decreased tailings pH, thereby increasing calcium (Ca) and magnesium (Mg) cations and bicarbonate (HCO) concentrations in the porewater through dissolution of carbonate minerals. Soluble ions increased the porewater ionic strength, which, with higher exchangeable Ca and Mg, decreased the diffuse double layer of clays and increased consolidation of tailings compared with unamended tailings in which little microbial activity was observed. These results are relevant to effective tailings pond management strategies. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  12. Study on sand particles creep model and open pit mine landslide mechanism caused by sand fatigue liquefaction

    Science.gov (United States)

    Du, Dong-Ning; Wang, Lai-Gui; Zhang, Xiang-Dong; Zhang, Shu-Kun

    2017-06-01

    The sand particles in the sand - rock composite slope of the open pit mine occurs creep deformation and fatigue liquefaction under the action of vehicle load vibration and hydraulic gradient, which causes landslide geological disasters and it destroys the surface environment. To reveal the mechanism, a mechanics model based on the model considering the soil structural change with a new “plastic hinge” element is developed, to improve its constitutive and creep curve equations. Data from sand creep experiments are used to identify the parameters in the model and to validate the model. The results show that the mechanical model can describe the rotation progress between the sand particles, disclose the negative acceleration creep deformation stage during the third phase, and require fewer parameters while maintaining accuracy. It provides a new creep model considering rotation to analyze sand creep mechanism, which provides a theoretical basis for revealing the open pit mine landslide mechanism induced by creep deformation and fatigue liquefaction of sandy soil.

  13. Effects of pH and chloride concentration on pitting corrosion of AA6061 aluminum alloy

    International Nuclear Information System (INIS)

    Zaid, B.; Saidi, D.; Benzaid, A.; Hadji, S.

    2008-01-01

    Effects of pH solution and chloride (Cl - ) ion concentration on the corrosion behaviour of alloy AA6061 immersed in aqueous solutions of NaCl have been investigated using measurements of weight loss, potentiodynamic polarisation, linear polarisation, cyclic polarisation experiment combined with open circuit potential transient technique and optical or scanning electron microscopy. The corrosion behaviour of the AA6061 aluminum alloy was found to be dependant on the pH and chloride concentration [NaCl] of solution. In acidic or slightly neutral solutions, general and pitting corrosion occurred simultaneously. In contrast, exposure to alkaline solutions results in general corrosion. Experience revealed that the alloy AA6061 was susceptible to pitting corrosion in all chloride solution of concentration ranging between 0.003 wt% and 5.5 wt% NaCl and an increase in the chloride concentration slightly shifted both the pitting E pit and corrosion E cor potentials to more active values. In function of the conditions of treatment, the sheets of the alloy AA6061 undergo two types of localised corrosion process, leading to the formation of hemispherical and crystallographic pits. Polarisation resistance measurements in acidic (pH = 2) and alkaline chloride solutions (pH = 12) which are in good agreement with those of weight loss, show that the corrosion kinetic is minimised in slightly neutral solutions (pH = 6)

  14. Influence of oxidation state on the pH dependence of hydrous iridium oxide films

    International Nuclear Information System (INIS)

    Steegstra, Patrick; Ahlberg, Elisabet

    2012-01-01

    Many electrochemical reactions taking place in aqueous solution consume or produce protons. The pH in the diffusion layer can therefore be significantly altered during the reaction and there is a need for in situ pH measurements tracing this near surface pH. In the present paper the rotating ring disc technique was used to measure near surface pH changes during oxygen reduction, utilising hydrous iridium oxide as the pH sensing probe. Before such experiments a good understanding of the pH sensing properties of these films is required and the impact of the oxidation state of the film on the pH sensing properties was investigated as well as the influence of solution redox species. The pH sensitivity (depicted by dE/dpH) was found to depend on the average oxidation state of the film in a manner resembling the cyclic voltammetry response. In all cases the pH response is “supernernstian” with more than one proton per electron. The origin of this behaviour is discussed in the context of acid-base properties of the film and the existence of both hydrous and anhydrous oxide phases. The pH response depends also on the redox properties of the solution but can be optimised for various purposes by conditioning the film at different potentials. This was clearly illustrated by adding hydrogen peroxide, an intermediate in the oxygen reduction reaction, to the solution. It was shown that hydrous iridium oxide can be used as a reliable in situ pH sensor provided that care is taken to optimise the oxidation state of the film.

  15. Retorting of bituminous sands

    Energy Technology Data Exchange (ETDEWEB)

    Chaney, P E; Ince, R W; Mason, C M

    1872-09-26

    This method of recovering oil from mined tar sands involves forming compacted tar sands pieces by special conditioning treatment that provides low internal permeability. The compacted pieces are then retorted in fixed bed form. The conditioning treatment can involve rolling of preformed pellets, compaction in a mold or pressure extrusion. Substantial collapsing of the bed during retorting is avoided. (9 claims) (Abstract only - original article not available from T.U.)

  16. Passive behaviour of alloy corrosion-resistant steel Cr10Mo1 in simulating concrete pore solutions with different pH

    International Nuclear Information System (INIS)

    Ai, Zhiyong; Jiang, Jinyang; Sun, Wei; Song, Dan; Ma, Han; Zhang, Jianchun; Wang, Danqian

    2016-01-01

    Highlights: • A new alloy corrosion-resistant steel Cr10Mo1 is developed for reinforcing rebar of concrete in severe environments. • The effects of pH on the passive behaviour of Cr10Mo1 steel compared with plain carbon steel were studied systematically by electrochemical techniques and surface analysis. • The mechanism for self-reinforcing passivity against carbonation of the corrosion-resistant steel is revealed. - Abstract: The passive behaviour of new alloy corrosion-resistant steel Cr10Mo1 and plain carbon steel (as a comparison) in simulating concrete pore solutions of different pH (ranging from 13.5 to 9.0) under open circuit potential conditions, was evaluated by various electrochemical techniques: potentiodynamic polarization, capacitance measurements and electrochemical impedance spectroscopy. The chemical composition and structure of passive films were investigated by X-ray photoelectron spectroscopy (XPS) and secondary ion mass spectroscopy (SIMS). The electrochemical responses of passive films show that Cr10Mo1 steel has an increasing passivity with pH decreasing while carbon steel dose conversely, revealing carbonation does no negative effect on passivation of the corrosion-resistant steel. SIMS reveals that the passive film on the corrosion-resistant steel presents a bilayer structure: an outer layer mainly consisting of Fe oxides and hydroxides, and an inner layer enriched in Cr species, while only a Fe-concentrated layer for carbon steel. According to the XPS analysis results, as the pH decreases, more stable and protective Cr oxides are enriched in the film on Cr10Mo1 steel while Fe oxides gradually decompose. Higher content of Cr oxides in the film layer provides Cr10Mo1 corrosion-resistant steel more excellent passivity at lower pH.

  17. Passive behaviour of alloy corrosion-resistant steel Cr10Mo1 in simulating concrete pore solutions with different pH

    Energy Technology Data Exchange (ETDEWEB)

    Ai, Zhiyong, E-mail: 230139452@seu.edu.cn [School of Materials Science and Engineering, Southeast University, Nanjing 211189, Jiangsu (China); Jiangsu Key Laboratory of Construction Materials, Nanjing 211189, Jiangsu (China); Jiang, Jinyang, E-mail: jiangjinyang16@163.com [School of Materials Science and Engineering, Southeast University, Nanjing 211189, Jiangsu (China); Jiangsu Key Laboratory of Construction Materials, Nanjing 211189, Jiangsu (China); Sun, Wei, E-mail: sunwei@seu.edu.cn [School of Materials Science and Engineering, Southeast University, Nanjing 211189, Jiangsu (China); Jiangsu Key Laboratory of Construction Materials, Nanjing 211189, Jiangsu (China); Song, Dan, E-mail: songdancharls@hhu.edu.cn [School of Materials Science and Engineering, Southeast University, Nanjing 211189, Jiangsu (China); Jiangsu Key Laboratory of Construction Materials, Nanjing 211189, Jiangsu (China); College of Mechanics and Materials, Hohai University, Nanjing 210098, Jiangsu (China); Ma, Han, E-mail: mahan-iris@shasteel.cn [Research Institute of Jiangsu Shasteel Iron and Steel, Zhangjiagang 215625, Jiangsu (China); Zhang, Jianchun, E-mail: Zhangjc-iris@shasteel.cn [Research Institute of Jiangsu Shasteel Iron and Steel, Zhangjiagang 215625, Jiangsu (China); Wang, Danqian, E-mail: wonderbaba@126.com [School of Materials Science and Engineering, Southeast University, Nanjing 211189, Jiangsu (China); Jiangsu Key Laboratory of Construction Materials, Nanjing 211189, Jiangsu (China)

    2016-12-15

    Highlights: • A new alloy corrosion-resistant steel Cr10Mo1 is developed for reinforcing rebar of concrete in severe environments. • The effects of pH on the passive behaviour of Cr10Mo1 steel compared with plain carbon steel were studied systematically by electrochemical techniques and surface analysis. • The mechanism for self-reinforcing passivity against carbonation of the corrosion-resistant steel is revealed. - Abstract: The passive behaviour of new alloy corrosion-resistant steel Cr10Mo1 and plain carbon steel (as a comparison) in simulating concrete pore solutions of different pH (ranging from 13.5 to 9.0) under open circuit potential conditions, was evaluated by various electrochemical techniques: potentiodynamic polarization, capacitance measurements and electrochemical impedance spectroscopy. The chemical composition and structure of passive films were investigated by X-ray photoelectron spectroscopy (XPS) and secondary ion mass spectroscopy (SIMS). The electrochemical responses of passive films show that Cr10Mo1 steel has an increasing passivity with pH decreasing while carbon steel dose conversely, revealing carbonation does no negative effect on passivation of the corrosion-resistant steel. SIMS reveals that the passive film on the corrosion-resistant steel presents a bilayer structure: an outer layer mainly consisting of Fe oxides and hydroxides, and an inner layer enriched in Cr species, while only a Fe-concentrated layer for carbon steel. According to the XPS analysis results, as the pH decreases, more stable and protective Cr oxides are enriched in the film on Cr10Mo1 steel while Fe oxides gradually decompose. Higher content of Cr oxides in the film layer provides Cr10Mo1 corrosion-resistant steel more excellent passivity at lower pH.

  18. Use of sand wave habitats by silver hake

    Science.gov (United States)

    Auster, P.J.; Lindholm, J.; Schaub, S.; Funnell, G.; Kaufman, L.S.; Valentine, P.C.

    2003-01-01

    Silver hake Merluccius bilinearis are common members of fish communities in sand wave habitats on Georges Bank and on Stellwagen Bank in the Gulf of Maine. Observations of fish size v. sand wave period showed that silver hake are not randomly distributed within sand wave landscapes. Regression analyses showed a significant positive relationship between sand wave period and fish length. Correlation coefficients, however, were low, suggesting other interactions with sand wave morphology, the range of current velocities, and available prey may also influence their distribution. Direct contact with sand wave habitats varied over diel periods, with more fish resting on the seafloor during daytime than at night. Social foraging, in the form of polarized groups of fish swimming in linear formations during crepuscular and daytime periods, was also observed. Sand wave habitats may provide shelter from current flows and mediate fish-prey interactions. ?? 2003 The Fisheries Society of the British Isles.

  19. Formation of Hg(II) Tetrathiolate Complexes with Cysteine at Neutral pH.

    Science.gov (United States)

    Warner, Thomas; Jalilehvand, Farideh

    2016-04-01

    Mercury(II) ions precipitate from aqueous cysteine (H 2 Cys) solutions containing H 2 Cys/Hg(II) mole ratio ≥ 2.0 as Hg( S -HCys) 2 . In absence of additional cysteine, the precipitate dissolves at pH ~12 with the [Hg( S,N -Cys) 2 ] 2- complex dominating. With excess cysteine (H 2 Cys/Hg(II) mole ratio ≥ 4.0), higher complexes form and the precipitate dissolves at lower pH values. Previously, we found that tetrathiolate [Hg( S -Cys) 4 ] 6- complexes form at pH = 11.0; in this work we extend the investigation to pH values of physiological interest. We examined two series of Hg(II)-cysteine solutions in which C Hg(II) varied between 8 - 9 mM and 80 - 100 mM, respectively, with H 2 Cys/Hg(II) mole ratios from 4 to ~20. The solutions were prepared in the pH range 7.1 - 8.8, at the pH at which the initial Hg( S -HCys) 2 precipitate dissolved. The variations in the Hg(II) speciation were followed by 199 Hg NMR, X-ray absorption and Raman spectroscopic techniques. Our results show that in the dilute solutions ( C Hg(II) = 8 - 9 mM), mixtures of di-, tri- (major) and tetrathiolate complexes exist at moderate cysteine excess ( C H2Cys ~ 0.16 M) at pH 7.1. In the more concentrated solutions ( C Hg(II) = 80 - 100 mM) with high cysteine excess ( C H2Cys > 0.9 M), tetrathiolate [Hg( S -cysteinate) 4 ] m -6 ( m = 0 - 4) complexes dominate in the pH range 7.3 - 7.8, with lower charge than for the [Hg( S -Cys) 4 ] 6- complex due to protonation of some ( m ) of the amino groups of the coordinated cysteine ligands. The results of this investigation could provide a key to the mechanism of biosorption and accumulation of Hg(II) ions in biological / environmental systems.

  20. Solution chemistry of lanthanide complexes

    International Nuclear Information System (INIS)

    Brittain, H.G.

    1979-01-01

    Intermolecular energy transfer from Tb 3+ to Eu 3+ , luminescence intensity measurements, potentiometric titrations, differential absorption spectroscopy, and spectroscopic titrations were all used to study the binding of lanthanide ions by serine and threonine. At low pH (3.0 to 6.0) the complexes are mononuclear and ligand is only weakly bound. In the pH interval of 6.0 to 8.5 stronger interaction takes place between the ligand and the metal (with possible coordination of the undissociated hydroxyl group), and self-association of complexes becomes important. Above pH 8.5, base hydrolysis of the complexes leads to highly associated species in solution and shortly above this pH an insoluble precipitate is formed. It was found that energy could be transferred from Tb 3+ to Eu 3+ more efficiently among complexes prepared from racemic ligands than in complexes made from resolved ligand, but this stereoselectivity was only observed at pH values greater than 6.5 and in solutions having a 1:10 ratio of metal-to-ligand. No stereoselectivity was found in solutions having 1:5 ratios, and this observation was explained by the existence of 1:2 metal-ligand complexes existing in solutions having the higher ratio of metal-to-ligand (only 1:1 complexes are then found at lower ratios of metal-to-ligand). (author)

  1. Tidal dynamics in the sand motor lagoon

    NARCIS (Netherlands)

    De Vries, S.; Radermacher, M.; De Schipper, M.A.; Stive, M.J.F.

    2015-01-01

    The Sand Motor is a mega-nourishment characterized by a very large sand volume of around 20 million m3 placed along the Dutch coast. The Sand Motor is a pilot project to evaluate the performance of an alternative nourishment strategy with respect to different functions of the coastal system. Within

  2. Effects of solution P H on the adsorption of aromatic compounds from aqueous solutions by activated carbon

    International Nuclear Information System (INIS)

    Nouri, S.; Haghseresht, F.; Lu, M.

    2002-01-01

    Absorption of p-Cresol, Benzoic acid and Nitro Benzene by activated carbon from dilute aqueous solutions was carried out under controlled ph conditions at 310 k. In acidic conditions, well below the pK a of all solutes, it was observed that the adsorbate solubility and the electron density of its aromatic ring were the influencing factors on the extent of the adsorption by affecting the extent of London dispersion forces. In higher solution ph conditions, on the other hand, it was found that the electrostatic forces played a significant role on the extent of adsorption. The Effect of ph must be considered from its combined effects on the carbon surface and on the solute molecules. It was found that the uptake of the molecular forms of the aromatic solutes was dependent on the substituents of the aromatic ring. Adsorption of the solutes in higher P H values was found to be dependent on the concentration of anionic form of the solutes. All isotherms were fitted into Freundlich Isotherm Equations

  3. Sand wave fields beneath the Loop Current, Gulf of Mexico: Reworking of fan sands

    Science.gov (United States)

    Kenyon, Neil H.; Akhmetzhanov, A.M.; Twichell, D.C.

    2002-01-01

    Extensive fields of large barchan-like sand waves and longitudinal sand ribbons have been mapped by deep-towed SeaMARC IA sidescan sonar on part of the middle and lower Mississippi Fan that lies in about 3200 m of water. The area is beneath the strongly flowing Loop Current. The bedforms have not been adequately sampled but probably consist of winnowed siliciclastic-foraminiferal sands. The size (about 200 m from wingtip to wingtip) and shape of the large barchans is consistent with a previously observed peak current speed of 30 cm/s, measured 25 m above the seabed. The types of small-scale bedforms and the scoured surfaces of chemical crusts, seen on nearby bottom photographs, indicate that near-bed currents in excess of 30 cm/s may sometimes occur. At the time of the survey the sand transport direction was to the northwest, in the opposite direction to the Loop Current but consistent with there being a deep boundary current along the foot of the Florida Escarpment. Some reworking of the underlying sandy turbidites and debris flow deposits is apparent on the sidescan sonar records. Reworking by deep-sea currents, resulting in erosion and in deposits characterised by coarsening upwards structures and cross-bedding, is a process that has been proposed for sand found in cores in shallower parts of the Gulf of Mexico. This process is more widespread than hitherto supposed. 

  4. Oil sands and the environment

    Energy Technology Data Exchange (ETDEWEB)

    Seeley, R. [Shell Canada Ltd., Calgary, AB (Canada). Calgary Research Centre

    2004-07-01

    Oil sands are a significant resource for Alberta and Canada with continuing growth opportunity. There is a need to ensure sustainable development of the oil sands resources from a social, economic and environmental perspective. The industry has succeeded in terms of proven reserves, technology advancements, reduced operating costs, reliability and market accessibility. Some of the major challenges facing the industry include high capital cost, infrastructure, social services and keeping pace with growth. This presentation outlined the proactive measures that the oil sands industry has taken to manage environmental issues such as sulphur dioxide and nitrogen oxide emissions, greenhouse gases, water management and land reclamation. tabs., figs.

  5. Alberta oil sands royalty regime

    International Nuclear Information System (INIS)

    Asgarpour, S.

    2004-01-01

    The long term objective of the Oil Sands Business Unit of Alberta Energy is to pave the way for Alberta's bitumen production to reach 3 million barrels per day by 2020. This presentation described the national government's role in resource development. It was emphasized that since the Crown is the owner of the oil sands resource, it would benefit by providing strategic leadership and by generating a larger royalty base. The oil sands fiscal regime was described with reference to generic royalty, risk sharing, investment, and project economics. Business rule principles were also outlined along with criteria for project expansions. Both upstream and downstream challenges and opportunities were listed. 4 figs

  6. Experimental study of optimal self compacting concrete with spent foundry sand as partial replacement for M-sand using Taguchi approach

    Directory of Open Access Journals (Sweden)

    Nirmala D.B.

    2016-06-01

    Full Text Available This paper presents the application of Taguchi approach to obtain optimal mix proportion for Self Compacting Concrete (SCC containing spent foundry sand and M-sand. Spent foundry sand is used as a partial replacement for M-sand. The SCC mix has seven control factors namely, Coarse aggregate, M-sand with Spent Foundry sand, Cement, Fly ash, Water, Super plasticizer and Viscosity modifying agent. Modified Nan Su method is used to proportion the initial SCC mix. L18 (21×37 Orthogonal Arrays (OA with the seven control factors having 3 levels is used in Taguchi approach which resulted in 18 SCC mix proportions. All mixtures are extensively tested both in fresh and hardened states to verify whether they meet the practical and technical requirements of SCC. The quality characteristics considering “Nominal the better” situation is applied to the test results to arrive at the optimal SCC mix proportion. Test results indicate that the optimal mix satisfies the requirements of fresh and hardened properties of SCC. The study reveals the feasibility of using spent foundry sand as a partial replacement of M-sand in SCC and also that Taguchi method is a reliable tool to arrive at optimal mix proportion of SCC.

  7. Experimental study of optimal self compacting concrete with spent foundry sand as partial replacement for M-sand using Taguchi approach

    Science.gov (United States)

    Nirmala, D. B.; Raviraj, S.

    2016-06-01

    This paper presents the application of Taguchi approach to obtain optimal mix proportion for Self Compacting Concrete (SCC) containing spent foundry sand and M-sand. Spent foundry sand is used as a partial replacement for M-sand. The SCC mix has seven control factors namely, Coarse aggregate, M-sand with Spent Foundry sand, Cement, Fly ash, Water, Super plasticizer and Viscosity modifying agent. Modified Nan Su method is used to proportion the initial SCC mix. L18 (21×37) Orthogonal Arrays (OA) with the seven control factors having 3 levels is used in Taguchi approach which resulted in 18 SCC mix proportions. All mixtures are extensively tested both in fresh and hardened states to verify whether they meet the practical and technical requirements of SCC. The quality characteristics considering "Nominal the better" situation is applied to the test results to arrive at the optimal SCC mix proportion. Test results indicate that the optimal mix satisfies the requirements of fresh and hardened properties of SCC. The study reveals the feasibility of using spent foundry sand as a partial replacement of M-sand in SCC and also that Taguchi method is a reliable tool to arrive at optimal mix proportion of SCC.

  8. The in-situ decontamination of sand and gravel aquifers by chemically enhanced solubilization of multiple-component DNAPLS with surfactant solutions. Topical report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-01-01

    Laboratory, numerical simulation, and field studies have been conducted to assess the potential use of micellar-surfactant solutions to solubilize chlorinated solvents contaminating sand and gravel aquifers. Laboratory studies were conducted at the State University of New York at Buffalo (SUNY) while numerical simulation and field work were undertaken by INTERA Inc. in collaboration with Martin Marietta Energy Systems Inc. at the Paducah Gaseous Diffusion Plant (PGDP) in Kentucky. Ninety-nine surfactants were screened for their ability to solubilize trichloroethene (TCE), perchloroethylene (PCE), and carbon tetrachloride (CTET). Ten of these were capable of solubilizing TCE to concentrations greater than 15,000 mg/L, compared to its aqueous solubility of 1,100 mg/L. Four surfactants were identified as good solubilizers of all three chlorinated solvents. Of these, a secondary alcohol ethoxylate was the first choice for in situ testing because of its excellent solubilizing ability and its low propensity to sorb. However, this surfactant did not meet the Commonwealth of Kentucky`s acceptance criteria. Consequently, it was decided to use a surfactant approved for use by the Food and Drug Administration as a food-grade additive. As a 1% micellar-surfactant solution, this sorbitan monooleate has a solubilization capacity of 16,000 mg TCE/L, but has a higher propensity to sorb to clays than has the alcohol ethoxylate.

  9. Pyrite oxidation at circumneutral pH

    Science.gov (United States)

    Moses, Carl O.; Herman, Janet S.

    1991-02-01

    Previous studies of pyrite oxidation kinetics have concentrated primarily on the reaction at low pH, where Fe(III) has been assumed to be the dominant oxidant. Studies at circumneutral pH, necessitated by effective pH buffering in some pyrite oxidation systems, have often implicitly assumed that the dominant oxidant must be dissolved oxygen (DO), owing to the diminished solubility of Fe(III). In fact, Fe(III)(aq) is an effective pyrite oxidant at circumneutral pH, but the reaction cannot be sustained in the absence of DO. The purpose of this experimental study was to ascertain the relative roles of Fe(III) and DO in pyrite oxidation at circumneutral pH. The rate of pyrite oxidation was first-order with respect to the ratio of surface area to solution volume. Direct determinations of both Fe(II) (aq)> and Fe(III) (aq) demonstrated a dramatic loss of Fe(II) from the solution phase in excess of the loss for which oxidation alone could account. Based on rate data, we have concluded that Fe(II) is adsorbed onto the pyrite surface. Furthermore, Fe(II) is preferred as an adsorbate to Fe(III), which we attribute to both electrostatic and acid-base selectivity. We also found that the rate of pyrite oxidation by either Fe(III) (aq) or DO is reduced in the presence of aqueous Fe(II), which leads us to conclude that, under most natural conditions, neither Fe(III) (aq) nor DO directly attacks the pyrite surface. The present evidence suggests a mechanism for pyrite oxidation that involves adsorbed Fe( II ) giving up electrons to DO and the resulting Fe(III) rapidly accepting electrons from the pyrite. The adsorbed Fe is, thus, cyclically oxidized and reduced, while it acts as a conduit for electrons traveling from pyrite to DO. Oxygen is transferred from the hydration sphere of the adsorbed Fe to pyrite S. The cycle of adsorbed Fe oxidation and reduction and the successive addition of oxygen to pyrite S continues until a stable sulfoxy species dissociates from the surface. Prior

  10. Adsorption and colloidal behaviour of carrier-free 7Be in aqueous solutions

    International Nuclear Information System (INIS)

    Benes, P.; Jiranek, V.

    1974-01-01

    The state of carrier-free 7 Be in aqueous nitrate solutions was studied by electrophoresis, centrifugation and dialysis. In solutions of pH 2+ cation. At pH > 4 hydrolysis of beryllium proceeds which results in the formation of BeOH + ions and Be(OH) 2 molecules. The larger part of these molecules is adsorbed on the surface of colloidal impurities present in the solution. The pseudocolloids thus formed are positively charged up to pH 11. In alkaline solutions (pH > 11), negatively charged pseudocolloids and anionic hydroxocomplexes of beryllium exist. Adsorption and desorption of carrier-free beryllium was studied on glass, plexiglass and polyethylene as a function of pH, age and ionic strength (NaNO 3 ) of the solution. It has been found that the adsorption begins at pH 3-5, passes through a maximum at pH 8-11 and decreases to a very low value at pH 14. Probable mechanismus of the adsorption were discussed. (orig.) [de

  11. Efficacy of Different Sampling Methods of Sand Flies (Diptera: Psychodidae in Endemic Focus of Cutaneous Leishmaniasis in Kashan District, Isfahan Province, Iran.

    Directory of Open Access Journals (Sweden)

    Marzieh Hesam-Mohammadi

    2014-12-01

    Full Text Available The aim of the study was to evaluate and compare the efficiency and practicality of seven trapping methods for adult phlebotominae sand flies. The results of this investigation provide information to determine the species composition and nocturnal activity pattern of different sand fly species.The study was carried out in both plain region (about 5km far from northeast and mountainous region (about 40km far from southwest of Kashan City. Seven traps were selected as sampling methods and sand flies were collected during 5 interval times starting July to September 2011 and from 8:00PM to 6:00AM in outdoors habitats. The traps include: sticky traps (4 papers for 2 hours, Disney trap, Malaise, CDC and CO2 light traps, Shannon traps (black and white nets and animal-baited trap.A total of 1445 sand flies belonging to 15 species of Phlebotomus spp. and five of Sergentomyia spp. were collected. Females and males comprised 44.91% and 55.09% of catches, respectively. Of the collected specimens, Se. sintoni was found to be the most prevalent (37.86% species, while Ph. papatasi, accounted for 31.76% of the sand flies.Disney trap and sticky traps exhibited the most productivity than other traps. In addition, in terms of the efficiency of sampling method, these two trapping methods appeared to be the most productive for both estimating the number of sand flies and the species composition in the study area.

  12. Agglomeration of a comprehensive model for the wind-driven sand transport at the Belgian Coast

    Science.gov (United States)

    Strypsteen, Glenn; Rauwoens, Pieter

    2016-04-01

    Although a lot of research has been done in the area of Aeolian transport, it is only during the last years that attention has been drawn to Aeolian transport in coastal areas. In these areas, the physical processes are more complex, due to a large number of transport limiting parameters. In this PhD-project, which is now in its early stage, a model will be developed which relates the wind-driven sand transport at the Belgian coast with physical parameters such as the wind speed, humidity and grain size of the sand, and the slope of beach and dune surface. For the first time, the interaction between beach and dune dynamics is studied at the Belgian coast. The Belgian coastline is only 67km long, but densely populated and therefore subject to coastal protection and safety. The coast mostly consists of sandy beaches and dikes. Although, still 33km of dunes exist, whose dynamics are far less understood. The overall research approach consists of three pathways: (i) field measurements, (ii) physical model tests, and (iii) numerical simulations. Firstly and most importantly, several field campaigns will provide accurate data of meteo-marine conditions, morphology, and sand transport events on a wide beach at the Belgian Coastline. The experimental set-up consists of a monitoring station, which will provide time series of vegetation cover, shoreline position, fetch distances, surficial moisture content, wind speed and direction and transport processes. The horizontal and vertical variability of the event scale Aeolian sand transport is analyzed with 8 MWAC sand traps. Two saltiphones register the intensity and variations of grain impacts over time. Two meteo-masts, each with four anemometers and one wind vane, provide quantitative measurements of the wind flow at different locations on the beach. Surficial moisture is measured with a moisture sensor. The topography measurements are typically done with laser techniques. To start, two sites are selected for measurement

  13. Influence Of Carboxymethyl Cellulose For The Transport Of Titanium Dioxide Nanoparticles In Clean Silica And Mineral-Coated Sands

    Science.gov (United States)

    The transport properties of titanium dioxide (anatase polymorph) nanoparticles encapsulated by carboxymethyl cellulose (CMC) were evaluated as a function of changes in the solute chemical properties in clean quartz, amorphous aluminum and iron hydroxide-coated sands. While prist...

  14. In vitro synthesis and purification of PhIP-deoxyguanosine and PhIP-DNA oligomer covalent complexes

    Energy Technology Data Exchange (ETDEWEB)

    Freeman, J.

    1994-12-01

    2-Amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) is a heterocyclic amine compound formed when meats are cooked at high temperatures. PhIP damages DNA by forming covalent complexes with DNA carcinogen. In an effort to understand how the binding of PhIP to DNA may cause cancer, it is important to characterize the structures of PhIP-damaged DNA molecules. Our HPLC data support fluorescence and {sup 32}P Post-labeling studies which indicate the formation of several species of 2{prime}deoxyguanosine-(dG) or oligodeoxynucleotide-PhIP adducts. The reaction of PhIP with dG resulted in a reddish precipitate that was likely the major adduct, N-(deoxyguanosin-8-yl)-PhIP (dG-C8-PhIP) adduct, with a more polar adduct fraction remaining in the supernatant. Reversed-phase HPLC analysis of the adducts in the supernatant revealed the existence of species of much shorter retention times than the dG-C8-PhIP adduct, confirming that these species are more polar than dG-C8-PhIP. At least four adducts were formed in the reaction of PhIP with DNA oligomer. HPLC analysis of the PhIP-DNA oligomer supernatant after butanol extractions revealed four unresolved peaks which spectra had maximum wavelengths between 340 and 360 nm. Though adduct peaks were not completely resolved, there was {approximately}3 minutes interval between the DNA oligomer peak and the adduct peaks. Furthermore, fluorescence emission data of the DNA oligomer-PhIP adduct solution show heterogeneous binding. The more polar PhIP adducts were fraction-collected and their structures will be solved by nuclear magnetic resonance or x-ray crystallography.

  15. Label-Free Carbon-Dots-Based Ratiometric Fluorescence pH Nanoprobes for Intracellular pH Sensing.

    Science.gov (United States)

    Shangguan, Jingfang; He, Dinggeng; He, Xiaoxiao; Wang, Kemin; Xu, Fengzhou; Liu, Jinquan; Tang, Jinlu; Yang, Xue; Huang, Jin

    2016-08-02

    Measuring pH in living cells is of great importance for better understanding cellular functions as well as providing pivotal assistance for early diagnosis of diseases. In this work, we report the first use of a novel kind of label-free carbon dots for intracellular ratiometric fluorescence pH sensing. By simple one-pot hydrothermal treatment of citric acid and basic fuchsin, the carbon dots showing dual emission bands at 475 and 545 nm under single-wavelength excitation were synthesized. It is demonstrated that the fluorescence intensities of the as-synthesized carbon dots at the two emissions are pH-sensitive simultaneously. The intensity ratio (I475 nm/I545 nm) is linear against pH values from 5.2 to 8.8 in buffer solution, affording the capability as ratiometric probes for intracellular pH sensing. It also displays that the carbon dots show excellent reversibility and photostability in pH measurements. With this nanoprobe, quantitative fluorescence imaging using the ratio of two emissions (I475 nm/I545 nm) for the detection of intracellular pH were successfully applied in HeLa cells. In contrast to most of the reported nanomaterials-based ratiometric pH sensors which rely on the attachment of additional dyes, these carbon-dots-based ratiometric probes are low in toxicity, easy to synthesize, and free from labels.

  16. Invasive plants on disturbed Korean sand dunes

    Science.gov (United States)

    Kim, Kee Dae

    2005-01-01

    The sand dunes in coastal regions of South Korea are important ecosystems because of their small size, the rare species found in this habitat, and the beautiful landscapes they create. This study investigated the current vegetative status of sand dunes on three representative coasts of the Korean peninsula, and on the coasts of Cheju Island, and assessed the conditions caused by invasive plants. The relationships between the degree of invasion and 14 environmental variables were studied. Plots of sand dunes along line transects perpendicular to the coastal lines were established to estimate vegetative species coverage. TWINSPAN (Two-Way Indicator Species Analysis), CCA (Canonical Correspondence Analysis), and DCCA (Detrended Canonical Correspondence Analysis) were performed to classify communities on sand dunes and assess species composition variation. Carex kobomugi, Elymus mollis, and Vitex rotundifolia were found to be the dominant species plotted on the east, the west, and the peripheral coasts of Cheju Island, respectively. Vegetation on the south coast was totally extinct. The 19 communities, including representative C. kobomugi, C. kobomugi- Ixeris repens, C. kobomugi- Oenothera biennis, E. mollis, Lolium multiflorum- Calystegia soldanella, and V. rotundifolia- C. kobomugi, were all classified according to TWINSPAN. Oenothera biennis and L. multiflorum were exotics observed within these native communities. CCA showed that invasive native and exotic species distribution was segregated significantly, according to disturbance level, exotic species number, gravel, sand and silt contents, as well as vegetation size. It further revealed that human disturbance can strongly favor the settlement of invasive and exotic species. Restoration options to reduce exotic plants in the South Korean sand dune areas were found to be the introduction of native plant species from one sand dune into other sand dune areas, prohibition of building and the introduction of exotic

  17. Plaque pH changes following consumption of two types of plain and bulky bread

    Directory of Open Access Journals (Sweden)

    Shiva Mortazavi

    2011-01-01

    Full Text Available Background: Consistency, backing process and content differences could influence cariogenic potential of foods. The aim was to compare plaque pH changes following consumption of two types of bread with different physical characteristics. Methods : In this clinical trial, interproximal plaque pH of 10 volunteers with high risk of dental caries (saliva Streptococcus mutans > 10 5 , high dental caries experience, and average DMFT =6.10 ± 1.56 was measured. Plain traditionally backed "Sangak bread" and soft bulky "Baguette bread" and %10 sucrose solution were tested in a cross over designed experiment. Baseline plaque pH was recorded and followed by 1, 5, 10, 15, 20, and 30 minutes intervals. Data was analyzed using ANOVA and Tukey test (α = 0.05. Results: Sucrose solution caused the most pronounced pH and ∆pH drop from 7.15 ± 0.33 at baseline to 6.78 ± 0.29. Means plaque pH of 10% sucrose solution and Baguette were not statistically different at 1, 20 and 30 minutes (P > 0.05. Mean plaque pH of Sangak and Baguette showed significant differences at 0, 1, 20 and30 minutes (P < 0.05. Sucrose solution caused a dramatic plaque pH drop during first 10 minutes and then within 30 minutes returned to baseline pH. For two bread samples within first 10 minutes, pH increased and then started to decrease during tenth to fifteenth minutes. Conclusion: During all experiment phases, the mean pH of Baguette with less consistency and carbohydrate content and higher rate of starch gelatination was lower compared to Sangak.

  18. Characteristics of SCC with Fly Ash and Manufactured Sand

    Science.gov (United States)

    Praveen Kumar, K.; Radhakrishna

    2016-09-01

    Self compacting concrete (SCC) of M40 grade was designed. The binder in SCC consists of OPC and fly ash in the ratio of 65:35. River sand was replaced by manufactured sand (M-sand) at replacement levels of 20,40,60,80 and 100%. An attempt was made to evaluate the workability and strength characteristics of self compacting concrete with river sand and manufactured sand as fine aggregates. For each replacement level, constant workability was maintained by varying the dosage of superplasticizer. T50 flow time, V Funnel time, V-funnel T5 time as well as compressive, split tensile and flexural strength of SCC were found at each replacement level of M-sand. They were compared to SCC with river sand. Results indicate favourable use of M-sand in preparation of Self Compacting Concrete.

  19. Transport and Retention of TiO2 Rutile Nanoparticles in Saturated Porous Media: Influence of Solution pH, Ionic Strength, and the Presence of Humic Acid

    Science.gov (United States)

    The influence of solution pH, ionic strength, and varying concentrations of the Suwannee River Humic Acid (SRHA) on the transport of titanium dioxide (TiO2, rutile) nanoparticle aggregates (nTiO2) in saturated porous media was investigated through systematically examining the tra...

  20. Influence of Bath Composition at Acidic pH on Electrodeposition of Nickel-Layered Silicate Nanocomposites for Corrosion Protection

    Directory of Open Access Journals (Sweden)

    Jeerapan Tientong

    2013-01-01

    Full Text Available Nickel-layered silicates were electrochemically deposited from acidic bath solutions. Citrate was used as a ligand to stabilize nickel (II ions in the plating solution. The silicate, montmorillonite, was exfoliated by stirring in aqueous solution over 24 hours. The plating solutions were analyzed for zeta-potential, particle size, viscosity, and conductivity to investigate the effects of the composition at various pHs. The solution particles at pH 2.5 (−22.2 mV and pH 3.0 (−21.9 mV were more stable than at pH 1.6 (−10.1 mV as shown by zeta-potential analysis of the nickel-citrate-montmorillonite plating solution. Ecorr for the films ranged from −0.32 to −0.39 V with varying pH from 1.6 to 3.0. The films were immersed in 3.5% NaCl and the open circuit potential monitored for one month. The coatings deposited at pH 3.0 were stable 13 days longer in the salt solution than the other coatings. X-ray diffraction showed a change in the (111/(200 ratio for the coatings at the various pHs. The scanning electron microscopy and hardness results also support that the electrodeposition of nickel-montmorillonite at pH 3.0 (234 GPa had improved hardness and morphology compared to pH 2.5 (174 GPa and pH 1.6 (147 GPa.

  1. Documenting the global impacts of beach sand mining

    Science.gov (United States)

    Young, R.; Griffith, A.

    2009-04-01

    For centuries, beach sand has been mined for use as aggregate in concrete, for heavy minerals, and for construction fill. The global extent and impact of this phenomenon has gone relatively unnoticed by academics, NGOs, and major news sources. Most reports of sand mining activities are found at the very local scale (if the mining is ever documented at all). Yet, sand mining in many localities has resulted in the complete destruction of beach (and related) ecosystems along with severe impacts to coastal protection and tourism. The Program for the Study of Developed Shorelines at Western Carolina University and Beachcare.org have initiated the construction of a global database of beach sand mining activities. The database is being built through a combination of site visits and through the data mining of media resources, peer reviewed papers, and reports from private and governmental entities. Currently, we have documented sand mining in 35 countries on 6 continents representing the removal of millions of cubic meters of sand. Problems extend from Asia where critical infrastructure has been disrupted by sand mining to the Caribbean where policy reform has swiftly followed a highly publicized theft of sand. The Program for the Study of Developed Shorelines recently observed extensive sand mining in Morocco at the regional scale. Tens of kilometers of beach have been stripped of sand and the mining continues southward reducing hope of a thriving tourism-based economy. Problems caused by beach sand mining include: destruction of natural beaches and the ecosystems they protect (e.g. dunes, wetlands), habitat loss for globally important species (e.g. turtles, shorebirds), destruction of nearshore marine ecosystems, increased shoreline erosion rates, reduced protection from storms, tsunamis, and wave events, and economic losses through tourist abandonment and loss of coastal aesthetics. The threats posed by sand mining are made even more critical given the prospect of a

  2. Water-rock interactions and the pH stability of groundwater from Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Ebinger, M.H.

    1992-01-01

    Titrations of acidic solutions in waters from the tuff and carbonate aquifers at Yucca Mountain were simulated using the geochemical codes PHREEQE and EQ3/6. The simulations tested pH stability of the waters in the presence of different minerals and in their absence. Two acidic solutions, 10 -4 HCl and 10 -4 M UO 2 (NO 3 ) 2 , were titrated in to the water. Little pH and/or compositional change resulted in the groundwater when the HCl solution was titrated, but significant pH and CO 2 fugacity changes were observed when UO 2 (NO 3 ) 2 was titrated. Water interactions with alkali feldspar, quartz or cristobalite, and Ca-smectite buffered the pH and compositional changes in the carbonate water and decreased the magnitude of pH and compositional changes when small volumes of UO 2 (NO 3 ) 2 added to the tuffaceous waters

  3. Studies on various characteristics of concrete structures using crushed sand

    International Nuclear Information System (INIS)

    Mimatsu, Makoto; Sugita, Hideaki; Yonemura, Masataka.

    1985-01-01

    With the recent advances of construction industry, the demands for concrete, hence for aggregate, are rising. The sand as such is in extreme shortage due to the exhaustion of river sand. Under the situation, the recent trends are for the use of crushed sand, i.e. the artificial sand obtained by crushing rocks, which have advantages of stabilized quality and adequate supplies. In building of nuclear power plants requiring large amounts of concrete, the usage of crushed sand is now unavoidable. The following are described : the situation of aggregate in Kyushu. production method of crushed sand and the quality standards, rocks used for crushed stone and sand and the properties, quality survey on crushed sand and the basic tests, characteristic tests of crushed-stone and -sand mixed concrete, the application of crushed sand in structures of the Sendai Nuclear Power Station. (Mori, K.)

  4. Electrochemical characteristics of bioresorbable binary MgCa alloys in Ringer's solution: Revealing the impact of local pH distributions during in-vitro dissolution.

    Science.gov (United States)

    Mareci, D; Bolat, G; Izquierdo, J; Crimu, C; Munteanu, C; Antoniac, I; Souto, R M

    2016-03-01

    Biodegradable magnesium-calcium (MgCa) alloy is a very attractive biomaterial. Two MgCa alloys below the solid solubility of Ca were considered, as to solely investigate the effect of Ca content on the behavior of magnesium and the pH changes associated to metal dissolution. X-ray diffraction analysis and optical microscopy showed that both Mg-0.63Ca and Mg-0.89Ca alloys were solely composed of α(Mg) phase. Degradation characteristics and electrochemical characterization of MgCa alloys were investigated during exposure to Ringer's solution at 37 °C by electrochemical impedance spectroscopy and scanning electrochemical microscopy. The impedance behavior showed both capacitive and inductive features that are related to the alloy charge transfer reaction and the relaxation of the absorbed corrosion compounds, and can be described in terms of an equivalent circuit. Scanning electron microscopy (SEM) was employed to view the surface morphology of the MgCa samples after 1 week immersion in Ringer's solution showing extensive precipitation of corrosion products, whereas the substrate shows evidence of a non-uniform corrosion process. Energy dispersive analysis showed that the precipitates contained oxygen, calcium, magnesium and chlorine, and the Mg:Ca ratios were smaller than in the alloys. Scanning electrochemical microscopy (SECM) was used to visualize local pH changes associated to these physicochemical processes with high spatial resolution. The occurrence of pH variations in excess of 3 units between anodic and cathodic half-cell reactions was monitored in situ. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. SEPARATION OF BARIUM VALUES FROM URANYL NITRATE SOLUTIONS

    Science.gov (United States)

    Tompkins, E.R.

    1959-02-24

    The separation of radioactive barium values from a uranyl nitrate solution of neutron-irradiated uranium is described. The 10 to 20% uranyl nitrate solution is passed through a flrst column of a cation exchange resin under conditions favoring the adsorption of barium and certain other cations. The loaded resin is first washed with dilute sulfuric acid to remove a portion of the other cations, and then wash with a citric acid solution at pH of 5 to 7 to recover the barium along with a lesser amount of the other cations. The PH of the resulting eluate is adjusted to about 2.3 to 3.5 and diluted prior to passing through a smaller second column of exchange resin. The loaded resin is first washed with a citric acid solution at a pH of 3 to elute undesired cations and then with citric acid solution at a pH of 6 to eluts the barium, which is substantially free of undesired cations.

  6. Aqueous solutions/nuclear glasses interactions

    International Nuclear Information System (INIS)

    Delage, F.; Advocat, T.; Vernaz, E.; Crovisier, J.L.

    1991-01-01

    Interactions results of the borosilicate glass used in radioactive wastes confinement and aqueous solutions at various temperature and PH show that for the glass components: - the release rate evolution follows an Arrhenius law, - in acid PH, there is a selective dissolution, - in basic PH, there is a stoechiometric dissolution [fr

  7. Study of the influence of humic acids (in solution or bound to a silica gel) on the migration of europium in a porous medium. Comparison with inorganic colloids

    International Nuclear Information System (INIS)

    Fleury, Ch.

    1998-01-01

    After having been reprocessed, radioactive wastes are stored in conditions which depend on the toxicity of the radioelements. In particular, for the actinides, the packaging has to be sure for several thousands years. In the case of a defective storage, phenomena which favour or diminish the migration of radioelements in the environment have to be identified. In water, organic or inorganic colloids able to bind radioelements can migrate. Among these colloids, are found the humic acids (HA), macromolecules (poly-electrolytes and poly-dispersed) known for their affinity towards some radioelements. These HA are either present on a soluble state or bound to mineral supports. Humic acids have then been studied in these two states and their influence on the europium migration in dynamical system have been observed (ion exchange and affinity chromatography). When HA are bound by covalent bonds to silica gel, they strongly retain the radioelement, whatever be the conditions of pH, flow rate or ionic strength, and either if phosphate ions are present. The study of HA in solution has shown that, on the one hand the formation of a Eu-HA complex alters the adsorption of the radioelement on sand and that the influence of the humic acids on the europium retention is superior to those of the inorganic colloids (silicon oxide, bentonite). On the other hand, the study has revealed that a solution containing HA desorbs almost entirely the europium beforehand bound to the sand. This desorption depends on the pH and on the flow rate but not on the presence of competitive ions as for instance phosphate ions. (O.M.)

  8. PH measurement under pressure and at high temperatures; Mesure du pH sous pression et a temperature elevee

    Energy Technology Data Exchange (ETDEWEB)

    Fournie, R [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires; Le Peintre, M; Mahieu, C [Centre National de la Recherche Scientifique (CNRS), 91 - Gif-sur-Yvette (France)

    1961-07-01

    In the first part the development and operation of a glass electrode under pressure at room temperature is described. The pressure equilibrium between the inside and outside of the glass membrane several centimetres thick is obtained instantaneously by means of a siphon. The use of a silicone oil as electrical insulator makes possible the working of the glass electrode with the siphon at high pressures (100 kg/cm{sup 2}). In the second part, we determined the pH of various buffer solutions up to 250 deg. C using a cell of our design having two hydrogen electrodes. The values thus obtained for the buffer solutions make it possible to verify and calibrate the pH electrodes independently of the oxido-reduction potential of the medium. In the third part we give the results obtained up to 200 deg. C with the glass electrodes developed in conjunction with the Societe St Gobain. (author) [French] Dans une premiere partie, nous exposons la mise au point et le fonctionnement d'une electrode en verre sous pression a la temperature ordinaire. L'equilibrage instantane de la pression a l'interieur et a l'exterieur de la membrane en verre de quelques diziemes de millimetres d'epaisseur s'effectue par l'intermediaire d'un siphon. L'emploi d'une huile de silicone comme isolant electrique a permis le fonctionnement de l'electrode en verre a siphon sous haute pression (1000 kg/cm{sup 2}). Dans une deuxieme partie, nous avons determine jusqu'a 250 deg. C les valeurs du pH des diverses solutions tampons avec une cellule de notre conception a deux electrodes d'hydrogene. Les valeurs des solutions tampons ainsi obtenues permettent de verifier et d'etalonner les electrodes a pH independantes du potentiel d'oxydo-reduction du milieu. Dans une troisieme partie, nous relatons les resultats obtenus jusqu'a 200 deg. C avec les electrodes en verre mis au point en collaboration avec la Societe Saint-Gobain. (auteur)

  9. Antimicrobial activity and pH of a endodontic sealer containing MTA

    DEFF Research Database (Denmark)

    Maliza, Amanda GA; de Andrade, Flaviana Bombarda; Arias, Marcela C

    Objective: To investigate the antimicrobial activity, calcium release, and pH of a new mineral trioxide aggregate endodontic sealer when compared to endodontic sealers containing calcium hydroxide and/or epoxy resin. Method: Specimens were fabricated from MTA Fillapex, Sealer 26, Sealapex, and AH...... Plus immediately, 24 or 48 hours prior to the tests. The antimicrobial activity against Enterococcus faecalis and Candida albicans was evaluated by the direct contact and the agar diffusion methods. Calcium release was determined by atomic absorption spectrometry. The pH from solutions containing...... in solution with an alkaline pH. Conclusion: The new mineral trioxide aggregate endodontic sealer presented higher antimicrobial activity when compared to the sealers containing calcium hydroxide and/or epoxy resin. As for pH and calcium release, the sealers containing calcium hydroxide resulted in presented...

  10. Influence of sand base preparation on properties of chromite moulding sands with sodium silicate hardened with selected methods

    Directory of Open Access Journals (Sweden)

    Stachowicz M.

    2017-03-01

    Full Text Available The paper presents a research on the relation between thermal preparation of chromite sand base of moulding sands containing sodium silicate, hardened with selected physical and chemical methods, and structure of the created bonding bridges. Test specimens were prepared of chromite sand - fresh or baked at 950°C for 10 or 24 hours - mixed with 0.5 wt.% of the selected non-modified inorganic binder and, after forming, were hardened with CO2 or liquid esters, dried traditionally or heated with microwaves at 2.45 GHz. It was shown on the grounds of SEM observations that the time of baking the base sand and the hardening method significantly affect structure of the bonding bridges and are correlated with mechanical properties of the moulding sands. It was found that hardening chromite-based moulding mixtures with physical methods is much more favourable than hardening with chemical methods, guaranteeing also more than ten times higher mechanical properties.

  11. Experimental perforation of tubing with a hydraulic sand jet

    Energy Technology Data Exchange (ETDEWEB)

    Semenov, Yu V

    1970-01-01

    A series of field tests has shown that perforation with a hydraulic sand jet improves the quality of well completion. The sand jet does not crack the cement sheath or the casing, and the perforations are larger and deeper than perforations formed by explosive charges. Fluid circulation during sand jet perforation can safely be stopped for at least 10 min. Water containing a surfactant can be used as a sand carrier. Sand jet perforation allows successful completion of wells cased by 2 tubing strings. Sand jet perforation can be used to clean the borehole well and to remove foreign objects from the well.

  12. Effect of manufactured sand on the durability characteristics of concrete

    Directory of Open Access Journals (Sweden)

    S. S. SARAVANAN

    2016-12-01

    Full Text Available Concrete is the most sought after material due to increase in construction activities and infrastructural developments. Availability of natural sand is decreasing thereby increase in the cost of construction. In the present work undertaken, an attempt has been made to give an alternative to natural sand. Optimization of replacement of natural sand with manufactured sand in concrete, durability studies such as water absorption, rapid chloride permeability test, sorptivity, acid resistance, alkaline resistance, impact resistance and abrasion resistance of M40 and M50 grades of concrete have been studied with manufactured sand as fine aggregate and compared the results with the conventional sand concrete. The results shows that there is an increase in the durability properties up to 70 % level of replacements of sand with manufactured sand as fine aggregate and for 100 % use of manufactured sand also gives the better durability than the conventional sand concrete.

  13. Retention of silica nanoparticles on calcium carbonate sands immersed in electrolyte solutions

    KAUST Repository

    Li, Yan Vivian; Cathles, Lawrence M.

    2014-01-01

    solution. AFM measurements on calcite immersed in NaCl solutions show the initial repulsion of a silica colloidal probe as the surface is approached is reduced as the solution ionic strength increases, and that at high ionic strengths it disappears entirely

  14. Acid-base equilibria in the reaction of tantalum pentafluoride with O,O-diphenyl-H-benzoylamidophosphate (PhO)2P(0)NHC(O)Ph

    International Nuclear Information System (INIS)

    Il'in, E.G.; Kharrmann, Eh.; Shcherbakova, M.N.; Buslaev, Yu.A.

    1987-01-01

    Method of 19 F NMR was used to study TaF 5 interaction with imidodiphosphoric acid ester (PhO) 2 P(O)NHC(O)Ph(LH) in methylene chloride. Dimeric molecular LH(TaF 5 ) 2 complex was the main form in the solution with towfold TaF 5 excess; phosphoryl and carbonyl groups partisipate in complexing at that. Increase of ligand content in the solution up to equimolar one results to preliminary ligand coordination via P=O-group. Introduction of the base excess to the solution results to formation of L - anion which is coordinated to TaF 5 in a monodentate way via phosphoryl group or in a chelate way with fluorine ion substitution and formation of LTaF 4 + cationw

  15. The increase in pH during aging of porous sol-gel silica spheres

    NARCIS (Netherlands)

    Titulaer, M.K.; Kegel, W.K.; Jansen, J.B.H.; Geus, John W.

    1994-01-01

    The increase in pH in the hydrothermal fluid is studied after hydrothermal aging of porous silica gel spheres of 1–3 mm diameter. The porous silica spheres are formed by the sol-gel process from a supersaturated silica solution. The increase of the pH of the hydrothermal solution affects the silica

  16. Resorcinol adsorption from aqueous solution over activated carbon

    International Nuclear Information System (INIS)

    Blanco, Diego A; Giraldo, Liliana; Moreno, Juan C

    2007-01-01

    In this paper, the adsorption behavior of Resorcinol a monohydroxylated phenol, poorly acid to 298 K, over activated carbon is analyzed by studying the solution's pH influence and the surface reduction in the adsorption process. To do this, an activated carbon of lignocellulose origin and a reduced activated carbon was used. The interaction solid solution is characterized by the analyses of adsorption in the isotherms to 298 K and pH values of 7. 00, 9.00 and 11.00 for a period of 48 hours. The capacity adsorption of activated carbons increases when the solution's pH decreases and the retained amount increases in the reduced coal to the pH of maximum adsorption.

  17. Advanced CANDU reactor: an optimized energy source of oil sands application

    International Nuclear Information System (INIS)

    Hopwood, J.M.; Bock, D.; Miller, A.; Kuran, S.; Keil, H.; Fiorino, L.; Duffey, R.; Dunbar, R.B.

    2003-01-01

    Atomic Energy of Canada Limited (AECL) is developing the ACR-700 TM (Advanced CANDU Reactor-700 TM ) to meet customer needs for reduced capital cost, shorter construction schedule, high capacity factor while retaining the benefits of the CANDU experience base. The ACR-700 is based on the concept of CANDU horizontal fuel channels surrounded by heavy water moderator. The major innovation of this design is the use of slightly enriched uranium fuel in a CANFLEX bundle that is cooled by light water. This ensures: higher main steam pressures and temperatures providing higher thermal efficiency; a compact and simpler reactor design with reduced capital costs and shorter construction schedules; and reduced heavy water inventory compared to existing CANDU reactors. ACR-700 is not only a technically advanced and cost effective solution for electricity generating utilities, but also a low-cost, long-life and sustainable steam source for increasing Alberta's Oil Sand production rates. Currently practiced commercial surface mining and extraction of Oil Sand resources has been well established over the last three decades. But a majority of the available resources are somewhat deeper underground require in-situ extraction. Economic removal of such underground resources is now possible through the Steam Assisted Gravity Drainage (SAGD) process developed and proto-type tested in-site. SAGD requires the injection of large quantities of high-pressure steam into horizontal wells to form reduced viscosity bitumen and condensate mixture that is then collected at the surface. This paper describes joint AECL studies with CERI (Canadian Energy Research Institute) for the ACR, supplying both electricity and medium-pressure steam to an oil sands facility. The extensive oil sands deposits in northern Alberta are a very large energy resource. Currently, 30% of Canda's oil production is from the oil sands and this is expected to expand greatly over the coming decade. The bitumen deposits in the

  18. Experimental Study on Superfine Sand Concrete Mixed by Double Mixing Technology

    OpenAIRE

    yuqing zhao

    2013-01-01

    Traditional concept thought that medium sand and fine sand can be used to mix concrete, superfine sand can not used to mix concrete. This makes the source of superfine sand limited. With the shortage of medium sand and fine sand, it is imperative to exploit the resource of superfine sand. Superfine sand concrete is mixed by means of Double-doped Technology-ultra-fine fly ash and super plasticizer. Primary factor influencing superfine sand concrete strength is studied by orthogonal test, the o...

  19. The potential of curcumin reagent as a natural pH indicator for the development of an optical pH sensor

    International Nuclear Information System (INIS)

    Rosmawani Mohammad; Musa Ahmad; Jamaluddin Mohd Daud

    2007-01-01

    The potential of curcumin reagent as a natural pH indicator for the development of an optical pH sensor was discussed in this study. Curcumin has been chosen because it has never been reported before for use in the development of an optical pH sensor. Curcumin is a coloring constituent of turmeric that giving yellow pigmentation. Curcumin showed clear color changes, for example yellow in acidic and reddish-brown in basic solutions. The color change is fast for example within 5 seconds. Results from the study showed that a linear pH range for this reagent was observed at pH 8-12 (R 2 =0.9854). Curcumin has a good photo stability with RSD value of 1.42 % for a study period of 6 months. The RSD values of the reproducibility study were found to be 1.43 % and 0.37 % for pH 9 and pH 12, respectively. Characterisation of the immobilised curcumin reagent also showed promising results, hence a good potential for use as a sensing reagent for an optical pH sensor. (author)

  20. Dendritic Zinc Growth in Acid Electrolyte: Effect of the pH

    Science.gov (United States)

    Bengoa, Leandro N.; Pary, Paola; Seré, Pablo R.; Conconi, M. Susana; Egli, Walter A.

    2018-03-01

    In this paper, dendritic growth at the edges of electrogalvanized steel strip has been studied using a specially designed rotating washer electrode which simulates the fluid dynamic conditions and the current density distribution at the steel strip edge found in a production line. The effect of electrolyte pH and current density on dendritic growth in an acidic zinc plating bath (ZnSO4 and H2SO4) was addressed. The temperature was kept constant at 60 °C. Solution pH was adjusted to 1, 2 or 3 using different amounts of H2SO4. In addition, the influence of temperature on the pH of the solution was determined. The current density was set at 40 or 60 A/dm2, similar to that used in the industry. Deposits were characterized using SEM and XRD. The results showed that pH strongly affects dendrites shape, length and texture. Furthermore, the morphology of dendrites at the washer edge and of deposits on the flat portion of the washer changed considerably as solution pH was increased from 1 to 3. It was found that the morphology of dendrites at the washer edge stems from the morphology of the deposit on its flat portion, which in turn determines their shape.

  1. Effect of pH on cadmium biosorption by coconut copra meal

    International Nuclear Information System (INIS)

    Ofomaja, Augustine E.; Ho, Y.-S.

    2007-01-01

    Biosorption of cadmium ion by coconut copra meal, an agricultural waste product was investigated as a function of initial solution pH and initial cadmium concentration. Pseudo-second-order kinetic analyses were performed to determine the rate constant of biosorption, the equilibrium capacity, and initial biosorption rate. Cadmium biosorption by copra meal was found to be dependent on the initial solution pH and initial cadmium concentration. Ion exchange occurred in the initial biosorption period. In addition, mathematical relationships were drawn to relate the change in the solution hydrogen ion concentration with equilibrium biosorption capacity, initial cadmium concentration, and equilibrium biosorption capacity

  2. The physics of wind-blown sand and dust.

    Science.gov (United States)

    Kok, Jasper F; Parteli, Eric J R; Michaels, Timothy I; Karam, Diana Bou

    2012-10-01

    The transport of sand and dust by wind is a potent erosional force, creates sand dunes and ripples, and loads the atmosphere with suspended dust aerosols. This paper presents an extensive review of the physics of wind-blown sand and dust on Earth and Mars. Specifically, we review the physics of aeolian saltation, the formation and development of sand dunes and ripples, the physics of dust aerosol emission, the weather phenomena that trigger dust storms, and the lifting of dust by dust devils and other small-scale vortices. We also discuss the physics of wind-blown sand and dune formation on Venus and Titan.

  3. Study of the pitting and repassiv,tion corrosion potential of zicaloy-4 halides solutions at 250C and several pH

    International Nuclear Information System (INIS)

    Gardiazabal, J.I.; Cordova, R.; Gomez, H.; Layana, G.; Schrebler, R.

    1987-01-01

    The electrochemical behaviour of Zircaloy-4 electrode in chloride, bromide and iodide acid solution was investigated at 25 0 C employing stationary, quasi-stationary and potentiodynamic techniques. The results show that the pitting and repassivation potentials are independent on pH but both are dependent on halice concentration, following linear relation ships in these cases. It is also possible to correlate the pitting potential with the ionic radius of the anions, allowing thus to establish an order in their agressive properties. This order was extrapolated for fluoride ion and further experimental measurements show that the corrosion potential of Zircaloy-4 in acid or neutra solution of this ion (which undergoes active dissolution) is coincident with that predicted from the Ep v/s ionic radius determined for the other halides. (Author) [pt

  4. Sand Dunes with Frost

    Science.gov (United States)

    2004-01-01

    9 May 2004 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a suite of frost-covered sand dunes in the north polar region of Mars in early spring, 2004. The dunes indicate wind transport of sand from left to right (west to east). These landforms are located near 78.1oN, 220.8oW. This picture is illuminated by sunlight from the lower left and covers an area about 3 km (1.9 mi) across.

  5. Dependence of precipitation of trace elements on pH in standard water

    Science.gov (United States)

    Verma, Shivcharan; Mohanty, Biraja P.; Singh, K. P.; Behera, B. R.; Kumar, Ashok

    2018-04-01

    The present work aimed to study the dependence of precipitation of trace elements on the pH of solution. A standard solution was prepared by using ultrapure deionized water (18.2 MΩ/cm) as the solvent and 11 water-soluble salts having different elements as solutes. Five samples of different pH values (2 acidic, 2 basic, and 1 neutral) were prepared from this standard solution. Sodium-diethyldithiocarbamate was used as the chelating agent to precipitate the metal ions present in these samples of different pH values. The targets were prepared by collecting these precipitates on mixed cellulose esters filter of 0.4 μm pore size by vacuum filtration. Elemental analysis of these targets was performed by particle-induced X-ray emission (PIXE) using 2.7 MeV protons from the single Dee variable energy cyclotron at Panjab University, Chandigarh, India. PIXE data were analyzed using GUPIXWIN software. For most of the elements, except Hg with oxidation state +2, such as Co, Ni, Zn, Ba, and Cd, a general trend of enhancement in precipitation was observed with the increase in pH. However, for other elements such as V, As, Mo, Ag, and Bi, which have oxidation state other than +2, no definite pattern was observed. Precipitation of Ba and As using this method was negligible at all five pH values. From these results, it can be concluded that the precipitation and recovery of elements depend strongly on the pH of the water sample.

  6. Relationships between sand and water quality at recreational beaches.

    Science.gov (United States)

    Phillips, Matthew C; Solo-Gabriele, Helena M; Piggot, Alan M; Klaus, James S; Zhang, Yifan

    2011-12-15

    Enterococci are used to assess the risk of negative human health impacts from recreational waters. Studies have shown sustained populations of enterococci within sediments of beaches but comprehensive surveys of multiple tidal zones on beaches in a regional area and their relationship to beach management decisions are limited. We sampled three tidal zones on eight South Florida beaches in Miami-Dade and Broward counties and found that enterococci were ubiquitous within South Florida beach sands although their levels varied greatly both among the beaches and between the supratidal, intertidal and subtidal zones. The supratidal sands consistently had significantly higher (p sand) than the other two zones. Levels of enterococci within the subtidal sand correlated with the average level of enterococci in the water (CFU/100mL) for the season during which samples were collected (r(s) = 0.73). The average sand enterococci content over all the zones on each beach correlated with the average water enterococci levels of the year prior to sand samplings (r(s) = 0.64) as well as the average water enterococci levels for the month after sand samplings (r(s) = 0.54). Results indicate a connection between levels of enterococci in beach water and sands throughout South Florida's beaches and suggest that the sands are one of the predominant reservoirs of enterococci impacting beach water quality. As a result, beaches with lower levels of enterococci in the sand had fewer exceedences relative to beaches with higher levels of sand enterococci. More research should focus on evaluating beach sand quality as a means to predict and regulate marine recreational water quality. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Compressive Strength of Compacted Clay-Sand Mixes

    Directory of Open Access Journals (Sweden)

    Faseel Suleman Khan

    2014-01-01

    Full Text Available The use of sand to improve the strength of natural clays provides a viable alternative for civil infrastructure construction involving earthwork. The main objective of this note was to investigate the compressive strength of compacted clay-sand mixes. A natural clay of high plasticity was mixed with 20% and 40% sand (SP and their compaction and strength properties were determined. Results indicated that the investigated materials exhibited a brittle behaviour on the dry side of optimum and a ductile behaviour on the wet side of optimum. For each material, the compressive strength increased with an increase in density following a power law function. Conversely, the compressive strength increased with decreasing water content of the material following a similar function. Finally, the compressive strength decreased with an increase in sand content because of increased material heterogeneity and loss of sand grains from the sides during shearing.

  8. The role of Eh and pH in leaching Saskatchewan uranium ores with chloride and nitrate leaching systems

    International Nuclear Information System (INIS)

    Nirdosh, I.; Muthuswami, S.V.

    1992-01-01

    The effects of solution E h and pH on the extractions of U, 230 Th, 226 Ra, As and Ni from two typical uranium ores from the province of Saskatchewan in Canada are discussed for the leachants ferric chloride, ferric nitrate, nitric acid and hydrochloric acid. It is concluded that E h > 700 mV and pH 230 Th extraction is more sensitive to solution pH than to E h whereas Ni extraction is sensitive mainly to the solution E h . Arsenic extraction is very sensitive to solution E h , and for a given E h , is high at pH 1.3. (orig.) [de

  9. Influence of pH on the adsorption of uranium ions by oxidized activated carbon and chitosan

    International Nuclear Information System (INIS)

    Park, G.I.; Park, H.S.; Woo, S.I.

    1999-01-01

    The adsorption characteristics of uranyl ions on surface-oxidized carbon were compared with those of powdered chitosan over a wide pH range. In particular, an extensive analysis was made on solution pH variation during the adsorption process or after adsorption equilibrium. Uranium adsorption on the two adsorbents was revealed to be strongly dependent on the initial pH of the solution. A quantitative comparison of the adsorption capacities of the two adsorbents was made, based on the isotherm data obtained at initial pH 3, 4, and 5. In order to analyze the adsorption kinetics incorporated with pH effects, batch experiments at various initial pH values were carried out, and solution pH profiles with the adsorption time were also evaluated. The breakthrough behavior in a column packed with oxidized carbon was also characterized with respect to the variation of effluent pH. Based on these experimental results, the practical applicability of oxidized carbon for uranium removal from acidic radioactive liquid waste was suggested

  10. Controls on the abruptness of gravel-sand transitions

    Science.gov (United States)

    Venditti, J. G.; Church, M. A.; Lamb, M. P.; Domarad, N.; Rennie, C. D.

    2014-12-01

    As gravel-bedded rivers fine downstream, they characteristically exhibit an abrupt transition from gravel- to sand-bed. This is the only abrupt transition in grain-size that occurs in the fluvial system and has attracted considerable attention. A number of competing theories have been proposed to account for the abruptness of the transition, including base-level control, attrition of ~10mm gravel to produce sand, and sediment sorting processes. The prevailing theory for the emergence of abrupt transitions is size selective sorting of bimodal sediment wherein gravel deposits due to downstream declining shear stress, fining the bedload until a sand-bed emerges. We explored this hypothesis by examining grain-size, shear stress, gravel mobility and sand suspension thresholds through the gravel-sand transition (GST) of the Fraser River, British Columbia. The Fraser GST is an arrested gravel wedge with patches of gravel downstream of the wedge forming a diffuse extension. There is an abrupt change in bed slope through the transition that leads to an abrupt change in shear stress. The GST, bed-slope change and backwater caused by the ocean are all coincident spatially, which enhances the sharpness of the GST. Interestingly, the bimodal reach of the river occurs downstream of the GST and exhibits no downstream gradients in shear stress, suspended sediment flux, gravel mobility or sand suspension thresholds. This calls into question the prevailing theory for the emergence of an abrupt GST by size selective sorting. We provide evidence, both empirical and theoretical, that suggests the emergence of an abrupt GST is caused by rapid deposition of sand when fine gravel deposits. We argue that the emergence of gravel-sand transitions is a consequence of gravel-bedded rivers adopting a steeper slope than sand-bedded rivers. The abruptness arises because the bed slope required to convey the gravel load fixes the distal location of a terminal gravel wedge, and once the river has

  11. The pH behavior of a 2-aminoethyl dihydrogen phosphate zwitterion studied with NMR-titrations

    Science.gov (United States)

    Myller, A. T.; Karhe, J. J.; Haukka, M.; Pakkanen, T. T.

    2013-02-01

    In this study a bifunctional 2-aminoethyl dihydrogen phosphate (AEPH2) was 1H and 31P NMR characterized in a pH range of 1-12 in order to determine the zwitterion properties in different pH regions in H2O and D2O solutions. NMR was also used to determine the pH range where AEPH2 exists as a zwitterion. The phosphate group has two deprotonation points, around pH 1 and 6, while the amino group deprotonates at pH 11. The zwitterion form of AEPH2 (NH3+sbnd CHsbnd CHsbnd OPOH) exists as the main ion between pH 1 and 6 in water solutions and also in the solid state.

  12. Oil sands to the rescue: oil sand microbial communities can degrade recalcitrant alkyl phenyl alkanoic acids

    Energy Technology Data Exchange (ETDEWEB)

    Whitby, Corinne [University of Essex (Canada)], email: cwhitby@essex.ac.uk

    2011-07-01

    Almost half of all global oil reserves are found as biodegraded heavy oils found in vast tar sand deposits located in North and South America and these account for 47% of Canadian oil production. Oil sand extraction generates large amounts of toxic waste water, known as oil sand process waters (OSPW), that are stored in large tailing ponds that contain toxic compounds like naphthenic acids (NAs). The presence of NAs creates problems like toxicity, corrosion, and the formation of calcium napthenate deposits which block pipelines and other infrastructure and need to be removed. This paper presents oil sand microbial communities that can degrade these NAs. The approach is to apply new aliphatic and aromatic NAs as substrates to supplement and identify NA degrading microbes and also to identify the metabolites produced and explain NA degradation pathways and the functional genes involved. The chemistry and the processes involved are explained. From the results, it is suggested that pure cultures of P. putida KT2440 be used against NAs.

  13. Sea sand for reactive barriers; Arena de mar para barreras reactivas

    Energy Technology Data Exchange (ETDEWEB)

    Garcia R, G.; Ordonez R, E.; Ordonez R, En. [Instituto Nacional de Investigaciones Nucleares, Km. 36.5 Carretera Mexico-Toluca, Municipio de Ocoyoacac, 52045 Estado de Mexico (Mexico)

    2002-07-01

    Some phosphates have the property to suck in radioactive metals in solution, what it is taken in advance to make reactive barriers which are placed in the nuclear waste repositories. In an effort for contributing to the study of this type of materials, it has been obtained the zirconium silicate (ZrSiO{sub 4}) and the alpha zirconium hydrogen phosphate (Zr(HPO{sub 4}) 2H{sub 2}O) starting from sea sand in an easy and economic way. (Author)

  14. Iridium Oxide pH Sensor Based on Stainless Steel Wire for pH Mapping on Metal Surface

    Science.gov (United States)

    Shahrestani, S.; Ismail, M. C.; Kakooei, S.; Beheshti, M.; Zabihiazadboni, M.; Zavareh, M. A.

    2018-03-01

    A simple technique to fabricate the iridium oxide pH sensor is useful in several applications such as medical, food processing and engineering material where it is able to detect the changes of pH. Generally, the fabrication technique can be classified into three types: electro-deposition iridium oxide film (EIrOF), activated iridium oxide film (AIROF) and sputtering iridium oxide film (SIROF). This study focuses on fabricating electrode, calibration and test. Electro-deposition iridium oxide film is a simple and effective method of fabricating this kind of sensor via cyclic voltammetry process. The iridium oxide thick film was successfully electrodeposited on the surface of stainless steel wire with 500 cycles of sweep potential. A further analysis under FESEM shows detailed image of iridium oxide film which has cauliflower-liked microstructure. EDX analysis shows the highest element present are iridium and oxygen which concluded that the process is successful. The iridium oxide based pH sensor has shown a good performance in comparison to conventional glass pH sensor when it is being calibrated in buffer solutions with 2, 4, 7 and 9 pH values. The iridium oxide pH sensor is specifically designed to measure the pH on the surface of metal plate.

  15. Potential building sand deposits in Songkhla province area

    Directory of Open Access Journals (Sweden)

    Kooptarnond, K.

    2002-10-01

    Full Text Available An investigation of potential building sand deposits in Songkhla province area subdivided them into four regions according to their accumulation in various alluvial plains, meanders throughout alluvial deposits and residual soils. Four selected deposits, were Rattaphum-Khuan Niang, U-Taphao river, Na Mom, and Chana-Thepha regions. Information obtained from these deposits revealed a good correlation between the geomorphological features as interpreted from aerial photographs and those identified from vertical electrical resistivity sounding results. Sand samples were analysed for their physical and chemical properties. Petrographic studies were also undertaken to characterize the composition types, texture and shapes. An overview of the sand properties was used them to be within the acceptable limits for building sand. However, relatively high organic impurities and soundness were found in sand from Khuan Niang and Na Mom deposits. The result indicated a potential reconnaissance mineral resource of about 46 square kilometres.A reserve evaluation for natural building sand was carried out by using Geographic Information System (GIS. Maps of the various parameters considered were constructed in digital database format with the aid of Arc/Info and ArcView software. Overlay mapping and buffer zone modules were performed to evaluate inferred resources of building sand. The key parameters of analysis included the distance from transportation, distance from streams, lithology and thickness of sand layers. The remaining inferred sand total was of about 386 million cubic metres or about 1,021 million metric tons was therefore estimated, of which 60 percent lies in the Rattaphum-Khuan Niang region and 40 percent in the other regions.

  16. Shelf-Life of Chlorine Solutions Recommended in Ebola Virus Disease Response.

    Science.gov (United States)

    Iqbal, Qais; Lubeck-Schricker, Maya; Wells, Emma; Wolfe, Marlene K; Lantagne, Daniele

    2016-01-01

    In Ebola Virus Disease (EVD) outbreaks, it is widely recommended to wash living things (handwashing) with 0.05% (500 mg/L) chlorine solution and non-living things (surfaces, personal protective equipment, dead bodies) with 0.5% (5,000 mg/L) chlorine solution. Chlorine solutions used in EVD response are primarily made from powdered calcium hypochlorite (HTH), granular sodium dichloroisocyanurate (NaDCC), and liquid sodium hypochlorite (NaOCl), and have a pH range of 5-11. Chlorine solutions degrade following a reaction highly dependent on, and unusually sensitive to, pH, temperature, and concentration. We determined the shelf-life of 0.05% and 0.5% chlorine solutions used in EVD response, including HTH, NaDCC, stabilized NaOCl, generated NaOCl, and neutralized NaOCl solutions. Solutions were stored for 30 days at 25, 30, and 35°C, and tested daily for chlorine concentration and pH. Maximum shelf-life was defined as days until initial concentration fell to pH = 7) had a maximum shelf-life of a few hours, NaDCC solutions (pH = 6) 2 days, generated NaOCl solutions (pH = 9) 6 days, and HTH and stabilized NaOCl solutions (pH 9-11) >30 days. Models were developed for solutions with maximum shelf-lives between 1-30 days. Extrapolating to 40°C, the maximum predicted shelf-life for 0.05% and 0.5% NaDCC solutions were 0.38 and 0.82 hours, respectively; predicted shelf-life for 0.05% and 0.5% generated NaOCl solutions were >30 and 5.4 days, respectively. Each chlorine solution type offers advantages and disadvantages to responders, as: NaDCC is an easy-to-import high-concentration effervescent powder; HTH is similar, but forms a precipitate that may clog pipes; and, NaOCl solutions can be made locally, but are difficult to transport. We recommend responders chose the most appropriate source chlorine compound for their use, and ensure solutions are stored at appropriate temperatures and used or replaced before expiring.

  17. Adsorção de cromo (VI por carvão ativado granular de soluções diluídas utilizando um sistema batelada sob pH controlado Chromium (VI adsorption by GAC from diluted solutions in batch system and controlled ph

    Directory of Open Access Journals (Sweden)

    Renata Santos Souza

    2009-09-01

    solutions, and batch systems with controlled pH. The functional groups on the CAG surface was carried out by the Boehm method. In addition, effect of pH on the Cr(VI adsorption, adsorption equilibrium, and kinetic were studied under experimental conditions (pH = 6, MA = 6g, for 90min.. On the GAC surface, carboxylic groups were found to be in higher concentrations (MAS=0,43 mmol/gCAG, which increase the Cr(VI adsorption, principally in acidic pH values. The adsorption capacity is dependent on the pH of the solution, due to its influence on the surface properties of the CAG and different ionic forms of the Cr(VI solutions. The adsorption equilibrium data was adjusted satisfactorily by the Langmuir isotherm (R²=0,988, favorable type. From kinetics adsorption of 20 mg/L and 5 mg/L, the results were compatible with the national legislation (Res. nº 357/05. Therefore, the experimental system using (CAG was efficient in removing the Cr(VI from liquid streams containing low concentrations of the metal.

  18. Physicochemistry of the plasma-electrolyte solution interface

    International Nuclear Information System (INIS)

    Chen Qiang; Saito, Kenji; Takemura, Yu-ichiro; Shirai, Hajime

    2008-01-01

    The atmospheric rf plasma discharge was successfully investigated using NaOH or HCl electrolyte solutions as a counter electrode at different pH values. The emission intensities of solution components, self bias, and electron density strongly depend on the pH value of electrolyte. An addition of ethanol to the electrolyte solutions enhanced the dehydration, which markedly promoted the emissions of solution components as well as electrons from the solution. An acidification of the solution was always observed after the plasma exposure and two coexisting mechanisms were proposed to give a reasonable interpretation. The plasma-electrolyte interface was discussed based on a model of hydrogen cycle

  19. Stakeholder relations in the oil sands : managing uncertainty

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-05-15

    Alberta's oil sands are now at the crossroads of a series of significant and complex global issues that will require careful negotiation by all stakeholders involved in the oil sands industry. This paper discussed methods of managing uncertainty and risk related to the oil sands industry's agenda for the future. Oil sands developers must continue to secure permission from communities and other key stakeholders in order to develop oil sand projects. Stakeholder relations between oil sands operators, First Nations, and Metis Nation communities must ensure that respect is maintained while environmental impacts are minimized and long-term economic benefits are secured for all parties. Environmental non-governmental organizations (ENGOs) must ensure that oil sands resources are developed responsibly, and that environmental standards are maintained. Seven key shifts in stakeholder relations resulting from the recent economic crisis were identified. These included (1) withdrawal from the multi-stakeholder process, (2) increased focus on government to demonstrate policy leadership, (3) a stronger push from ENGOs to express environmental concerns, (4) global lobby and public relations efforts from ENGOs, (5) companies retreating to local community stakeholders, (6) more active demands from First Nations and Metis Nations groups, and (7) companies challenging ENGO campaigns. The study concluded by suggesting that government leadership is needed to clear policy and regulatory frameworks for Canada's oil sands.

  20. Influences of salt concentration, loading and pH on strontium adsorption

    International Nuclear Information System (INIS)

    Atun, G.; Kaplan, Z.

    1996-01-01

    The adsorption of Sr on clay with contains zeolites and montmorillonite mixtures was investigated in solutions of NaCl by means of a batch technique. Sr retention was reduced with increasing NaCl concentration from 5*10 -4 to 5*10 -1 M. Distribution coefficients (K d ) linearly increased with pH in the acidic region but they were almost independent of pH in neutral and alkaline solutions. By fitting the data of the Dubinin-Radushkevich (D-R) isotherm, the mean energies of adsorption and adsorption capacities of Sr at different pH values were calculated. The results showed that the mode of adsorption below pH 4.5 is ion exchange, while above that value a multilayer adsorption occurs. Adsorption data were fitted to the Freundlich isotherm and from empirical Freundlich parameters a site distribution function was calculated. (author)

  1. Compositional variations in sands of the Bagnold Dunes, Gale crater, Mars, from visible-shortwave infrared spectroscopy and comparison with ground truth from the Curiosity rover

    Science.gov (United States)

    Lapotre, M. G. A.; Ehlmann, B. L.; Minson, S. E.; Arvidson, R. E.; Ayoub, F.; Fraeman, A. A.; Ewing, R. C.; Bridges, N. T.

    2017-12-01

    During its ascent up Mount Sharp, the Mars Science Laboratory Curiosity rover traversed the Bagnold Dune Field. We model sand modal mineralogy and grain size at four locations near the rover traverse, using orbital shortwave infrared single-scattering albedo spectra and a Markov chain Monte Carlo implementation of Hapke's radiative transfer theory to fully constrain uncertainties and permitted solutions. These predictions, evaluated against in situ measurements at one site from the Curiosity rover, show that X-ray diffraction-measured mineralogy of the basaltic sands is within the 95% confidence interval of model predictions. However, predictions are relatively insensitive to grain size and are nonunique, especially when modeling the composition of minerals with solid solutions. We find an overall basaltic mineralogy and show subtle spatial variations in composition in and around the Bagnold Dunes, consistent with a mafic enrichment of sands with cumulative aeolian-transport distance by sorting of olivine, pyroxene, and plagioclase grains. Furthermore, the large variations in Fe and Mg abundances ( 20 wt %) at the Bagnold Dunes suggest that compositional variability may be enhanced by local mixing of well-sorted sand with proximal sand sources. Our estimates demonstrate a method for orbital quantification of composition with rigorous uncertainty determination and provide key constraints for interpreting in situ measurements of compositional variability within Martian aeolian sandstones.

  2. Revegetation and management of tailings sand slopes from tar sand extraction: 1978 results

    Energy Technology Data Exchange (ETDEWEB)

    Rowell, M J

    1979-01-01

    The results are reported of research into the revegetation of two areas on a steeply sloping dike composed of tailings sand from tar sand extraction at the Great Canadian Oil Sand Limited plant at Fort McMurray, Alberta. One area was seeded with three pasture grasses and two legumes in 1971 after the slope surface had been mixed with peat to a depth of 15 cm. A second area had been amended with peat or peat and overburden and differing rates of fertilizer added. A mix containing nine grasses, four legumes, and oats, as a companion crop, was seeded in July 1976. The objectives of the research were to study methods for the establishment of a stable vegetative cover that would prevent erosion of the slope and, in time, might become a self maintaining unit. Tillage of soil amendments to a depth of 15 cm and 30 cm were compared in promoting deeper rooting and stabilizing of the slope.

  3. Developing new markets for oil sands products

    International Nuclear Information System (INIS)

    Crandall, G.

    2004-01-01

    This paper presents a review by Purvin and Gertz of western Canadian crude oil supply. This energy consulting firm provides advise to the energy sector. It suggests that oil sands production will surpass declining conventional production. Oil sands supply includes bitumen, synthetic crude oil (SCO), and diluent. It is forecasted that oil sands will increase from 42 per cent of western supply in 2002 to 78 per cent in 2015. The potential of Alberta's oil sands was discussed along with a recent study of refined products and petrochemicals from bitumen. Upgrading, refining and petrochemical case studies were presented. The author examined if a Canadian oil sands upgrading project with high capital costs can be competitive with competing projects in the United States and internationally. In addition to supply and demand issues, the presentation examined infrastructure capability and market potential in the United States. The economic potential and risks of preferred business cases compared to upgrading to SCO were also evaluated. 15 figs

  4. The behavior of gaseous iodine in sand

    International Nuclear Information System (INIS)

    Takahashi, Kanji

    1974-01-01

    Radioactive iodine gas was passed through 10 different sands collected at rivers and hills. The relation between the amount of the loaded gas and the amount of adsorbed gas was determined at room temperature, 50 -- 60 0 C, and 90 -- 100 0 C under humidity of 2 sand. This amount was about 1 -- 3 times as much as that of monomolecular membrane adsorption, 0.2 -- 0.3 μg/cm 2 . The decrease of adsorption amount that accompanies the increase of humidity is attributable to the decrease of effective surface area of sand due to the presence of water. The transport of iodine in sand was studied by passing gaseous iodine through a glass tubing packed with sand. The distribution in the flow direction of iodine indicated that the ease of desorption depends upon the situation of adsorption. Easily desorbed case was named Henry type adsorption. Hardly desorbed case was named absorption type. Discussion is made on experimental results. (Fukutomi, T.)

  5. The effect of high pH alkaline solutions on the mineral stability of the Boom Clay - Batch experiments at 60 deg. C

    International Nuclear Information System (INIS)

    Honty, M.; De Craen, M.; Wang, L.; Madejova, J.; Czimerova, A.; Pentrak, M.; Stricek, I.; Van Geet, M.

    2010-01-01

    Boom Clay is currently viewed as a reference host formation for studies on deep geological disposal of radioactive waste in Belgium. The interactions between bulk rock Boom Clay and 0.1 M KOH, 0.1 M NaOH, 0.1 M Ca(OH) 2 , young cement water and evolved cement water solutions, ranging in pH from 12.5 to 13.2, were examined as static batch experiments at 60 deg. C to simulate alkaline plume perturbations, which are expected to occur in the repository due to the presence of concrete. Both liquids and solids were investigated at specific times between 90 and 510 days in order to control the elemental budget and to search for potential mineralogical alterations. Also, the clay fraction was separated from the whole-rock Boom Clay at the end of each run and characterized for its mineralogical composition. Thereby, the importance of the mineral matrix to buffer the alkaline attack and the role of organic matter to protect clay minerals were also addressed. The results indicate that the degree of geochemical perturbation in Boom Clay is dependent on the initial pH of the applied solution together with the nature of the major cation in the reactant fluids. The higher the initial pH of the media, the stronger its interaction with Boom Clay. No major non-clay mineralogical alteration of the Boom Clay was detected, but dissolution of kaolinite, smectite and illite occurred within the studied experimental conditions. The dissolution of clays is accompanied by the decrease in the layer charge, followed by a decrease in the cation-exchange capacity. The highest TOC values coincide with the highest total elemental concentrations in the leachates, and correspondingly, the highest dissolution degree. However, no quantitative link could be established between the degree of organic matter decomposition and clay dissolution.

  6. Bioaugmentation of flow-through sand filters

    DEFF Research Database (Denmark)

    Samuelsen, Elin Djurhuus

    for degradation performances in flow-through sand columns, with the aim of identifying a suitable inoculant strain for future environmental applications. Another aim was to identify a suitable genetic marker to monitor phenoxy acid degradation in strain Sphingobium sp. PM2. We were not able to link motility...... and biofilm formation to the strains´ ability to adhere to sand. Nevertheless, a correlation was found between cell surface hydrophobicity and adhesion and overall degradation performances in flow-through sand columns. We identified S phingobium sp. PM2 as a promising inoculant strain, displaying efficient...... MCPA degradation for prolonged periods in flow-through sand columns. In an expression study of catabolic genes with putative roles in phenoxy acid degradation, we observed a marked upregulation of catabolic genes cadA and tfdC upon exposure to MCPA, 2,4-D, dichlorprop and mecoprop in strain PM2, which...

  7. George Sand et la République (entretien avec Michelle Perrot

    Directory of Open Access Journals (Sweden)

    Jean-Claude Vimont

    2012-06-01

    Full Text Available TRAMES : Vous présentez les figures passées de l’engagement politique, dans un numéro spécial de Vingtième siècle (n° 60, sous le titre « La cause du peuple » , éphémère journal de George Sand en avril 1848 et organe maoïste de la Gauche Prolétarienne après mai 1968. Est-ce pour fixer un point de départ, les années 1840, à la généalogie des engagements d’écrivains, d’intellectuels auprès d’un peuple qui est en passe de devenir prolétariat industriel, classe ouvrière ? Y a-t-il une filiation ...

  8. Biosynthesis of schwertmannite by Acidithiobacillus ferrooxidans cell suspensions under different pH condition

    Energy Technology Data Exchange (ETDEWEB)

    Liao Yuehua [Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095 (China); Zhou Lixiang [Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095 (China)], E-mail: lxzhou@njau.edu.cn; Liang Jianru; Xiong Huixin [Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095 (China)

    2009-01-01

    Oxidation of FeSO{sub 4} solution with initial pH in the range of 1.40-3.51 by Acidithiobacillus ferrooxidans LX5 cell at 26 deg. C and subsequent precipitation of resulting Fe(III) were investigated in the present study. Results showed that the oxidation rate of Fe(II) was around 1.2-3.9 mmol l{sup -1} h{sup -1}. X-ray diffraction (XRD) indicated that the formed precipitates were composed of natrojarosite with schwertmannite when the initial pH was 3.51, while only schwertmannite was produced when initial pH was in the range of 1.60-3.44 and no precipitate occurred when initial pH {<=} 1.40. Scanning electron microscope (SEM) analyses showed that precipitates formed in solution with initial pH 3.51 were spherical particles of about 0.4 {mu}m in diameter and had a smooth surface, whereas precipitates in solution with initial pH {<=} 3.44 were spherical particles of approximately 1.0 {mu}m in diameter, having specific sea-urchin morphology. Specific surface area of the precipitates varied from 3.42 to 23.45 m{sup 2} g{sup -1}. X-ray fluorescence analyses revealed that schwertmannite formed in solution with initial pH in the range of 2.00-3.44 had similar elemental composition and could be expressed as Fe{sub 8}O{sub 8}(OH){sub 4.42}(SO{sub 4}){sub 1.79,} whereas Fe{sub 8}O{sub 8}(OH){sub 4.36}(SO{sub 4}){sub 1.82} and Fe{sub 8}O{sub 8}(OH){sub 4.29}(SO{sub 4}){sub 1.86} as its chemical formula when the initial pH was 1.80 and 1.60, respectively.

  9. Oil sands thickened froth treatment tailings exhibit acid rock drainage potential during evaporative drying.

    Science.gov (United States)

    Kuznetsov, Petr; Kuznetsova, Alsu; Foght, Julia M; Siddique, Tariq

    2015-02-01

    Bitumen extraction from oil sands ores after surface mining produces different tailings waste streams: 'froth treatment tailings' are enriched in pyrite relative to other streams. Tailings treatment can include addition of organic polymers to produce thickened tailings (TT). TT may be further de-watered by deposition into geotechnical cells for evaporative drying to increase shear strength prior to reclamation. To examine the acid rock drainage (ARD) potential of TT, we performed predictive analyses and laboratory experiments on material from field trials of two types of thickened froth treatment tailings (TT1 and TT2). Acid-base accounting (ABA) of initial samples showed that both TT1 and TT2 initially had net acid-producing potential, with ABA values of -141 and -230 t CaCO₃ equiv. 1000 t(-1) of TT, respectively. In long-term kinetic experiments, duplicate ~2-kg samples of TT were incubated in shallow trays and intermittently irrigated under air flow for 459 days to simulate evaporative field drying. Leachates collected from both TT samples initially had pH~6.8 that began decreasing after ~50 days (TT2) or ~250 days (TT1), stabilizing at pH~2. Correspondingly, the redox potential of leachates increased from 100-200 mV to 500-580 mV and electrical conductivity increased from 2-5 dS m(-1) to 26 dS m(-1), indicating dissolution of minerals during ARD. The rapid onset and prolonged ARD observed with TT2 is attributed to its greater pyrite (13.4%) and lower carbonate (1.4%) contents versus the slower onset of ARD in TT1 (initially 6.0% pyrite and 2.5% carbonates). 16S rRNA gene pyrosequencing analysis revealed rapid shift in microbial community when conditions became strongly acidic (pH~2) favoring the enrichment of Acidithiobacillus and Sulfobacillus bacteria in TT. This is the first report showing ARD potential of TT and the results have significant implications for effective management of pyrite-enriched oil sands tailings streams/deposits. Copyright © 2014

  10. Alteration behavior of bentonite barrier of radioactive waste disposal by alkaline solutions. Part 1. Permeability change of compacted bentonite immersed in alkaline solutions

    International Nuclear Information System (INIS)

    Yokoyama, Shingo; Nakamura, Kunihiko

    2010-01-01

    Permeability tests using the compacted bentonites and alkaline solutions were carried out to estimate of alteration behavior and the change of permeability during the alteration reaction. The permeability tests of the compacted bentonites were carried out at 23degC for one week after they were immersed in alkaline solution at 60degC for four weeks (immersing test). After permeability tests, the compacted bentonites were repeatedly tested as the same procedure (i.e. repetition of permeability test and immersing test) at 11 cycles. The compacted bentonites with initial dry density of 1.6 Mg/m 3 were reacted with the different type of the alkaline solutions (deionized water, NaOH (pH=12 and 14), KOH (pH=12 and 14) and Ca(OH) 2 (pH=12)) in each experiments. In the case of deionized water and alkaline solutions of pH12, the mineral compositions of altered bentonite were similar to original bentonite while the exchangeable cations of altered bentonites were changed. No changes of the mineralogical features of montmorillonite in altered bentonites (i.e. illitization, baideritization and increasing of layer charge) were observed in the case of deionized water, pH12-NaOH and pH12-Ca(OH) 2 . The montmorillonite was changed to the illite/smectite interstratified mineral containing about 40% illite like component during the reaction with pH12-KOH. In the case of alkaline solutions with pH14, the component minerals of bentonite (e.g. montmorillonite, quartz and clinoptilolite) were dissolved, consequently secondly minerals (e.g. analcime and phillipsite) were crystallized during experiments. Furthermore, the mineralogical features of montmorillonite were changed as illitization (pH14-KOH), beidellitization (pH14-NaOH and pH14-KOH) and increasing of layer charge (pH14-NaOH and pH14-KOH). No increasing of permeability were observed during the experiment using pH12-NaOH and pH12-Ca(OH) 2 as well as the case of deionized water. In the case of pH12-KOH, the permeability continually

  11. Booming Sand Dunes

    Science.gov (United States)

    Vriend, Nathalie

    "Booming" sand dunes are able to produce low-frequency sound that resembles a pure note from a music instrument. The sound has a dominant audible frequency (70-105 Hz) and several higher harmonics and may be heard from far distances away. A natural or induced avalanche from a slip face of the booming dune triggers the emission that may last for several minutes. There are various references in travel literature to the phenomenon, but to date no scientific explanation covered all field observations. This thesis introduces a new physical model that describes the phenomenon of booming dunes. The waveguide model explains the selection of the booming frequency and the amplification of the sound in terms of constructive interference in a confined geometry. The frequency of the booming is a direct function of the dimensions and velocities in the waveguide. The higher harmonics are related to the higher modes of propagation in the waveguide. The experimental validation includes quantitative field research at the booming dunes of the Mojave Desert and Death Valley National Park. Microphone and geophone recordings of the acoustic and seismic emission show a variation of booming frequency in space and time. The analysis of the sensor data quantifies wave propagation characteristics such as speed, dispersion, and nonlinear effects and allows the distinction between the source mechanism of the booming and the booming itself. The migration of sand dunes results from a complicated interplay between dune building, wind regime, and precipitation. The morphological and morphodynamical characteristics of two field locations are analyzed with various geophysical techniques. Ground-penetrating radar images the subsurface structure of the dunes and reveal a natural, internal layering that is directly related to the history of dune migration. The seismic velocity increases abruptly with depth and gradually increases with downhill position due to compaction. Sand sampling shows local

  12. Oil sands economic impacts Canada : CERI report : backgrounder

    International Nuclear Information System (INIS)

    2005-09-01

    Oil sands production now accounts for 1 out of every 2 barrels of supply in Western Canada. It is anticipated that Alberta's oil sands sector will experience significant growth over the next few decades. This paper provided an outline of the challenges and economic impacts resulting from oil sands development in Canada. Alberta's oil sands reserves are estimated at 175 billion barrels that are deemed economically recoverable using current technology. At current production levels, reserves will sustain production of 2.5 million barrels per day for the next 200 years. A study by the Canadian Energy Research Institute (CERI) has forecast $100 billion in investment for the 2000-2020 period. Numerous companies hold leases and are planning new projects. A number of recent advances in oil sands technology are expected to further reduce costs as development matures. A royalty and tax regime that provides long-term fiscal certainty is a key factor that supports current oil sands growth forecasts. The CERI study has indicated that economic spinoffs from oil sands development relate to employment generated outside of Alberta, and that the largest percentage of government revenue accrues to the federal government. However, development may be constrained because the pace of growth in the sector may exceed underlying infrastructure related to roads, housing and municipal services. An adequate workforce of qualified trades and technical and professional people is also crucial. Several pipeline projects have been proposed to deliver oil sands crudes to new markets over the next decade. It was concluded that the billions of dollars invested in oil sands in Alberta will contribute to the economic prosperity of the entire country. 11 figs

  13. Synthesis and characterization of black, red and yellow nanoparticles pigments from the iron sand

    International Nuclear Information System (INIS)

    Mufti, Nandang; Atma, T.; Fuad, A.; Sutadji, E.

    2014-01-01

    The aim of this research is to synthesize nanoparticles of black pigment of Magnetite (Fe 3 O 4 ), red pigment of hematite (α-Fe 2 O 3 ), and yellow pigment of ghoetite (α-FeOOH) from the iron sand. The black pigment of Fe 3 O 4 and the yellow pigment α-FeOOH nanoparticles were synthesized by coprecipitation method with variation of pH. Whereas, the red pigment Fe 2 O 3 was synthesized by sintering Fe 3 O 4 nanoparticles at temperature between 400 °C and 700 7°C for 1 hour. All the pigments has been characterized using X-ray diffraction and SEM. The XRD results shown that the particle size of the black pigmen Fe 3 O 4 , red pigment Fe 3 O 4 and yellow pigment α-FeOOH are around 12, 32, and 30 nm respectively. The particle size of Fe 2 O 3 nanoparticles increase by increasing sintering temperature from 32 nm at 400 °C to 39 nm at 700 °C. For yellow pigment of α-FeOOH, the particle size increase by increasing pH from 30,54 nm at pH 4 to 48,60 nm at pH 7. The SEM results shown that the morphologies of black, yellow and red pigments are aglomarated

  14. Effect of substrate size on sympatric sand darter benthic habitat preferences

    Science.gov (United States)

    Thompson, Patricia A.; Welsh, Stuart A.; Rizzo, Austin A.; Smith, Dustin M.

    2017-01-01

    The western sand darter, Ammocrypta clara, and the eastern sand darter, A. pellucida, are sand-dwelling fishes that have undergone range-wide population declines, presumably owing to habitat loss. Habitat use studies have been conducted for the eastern sand darter, but literature on the western sand darter remains sparse. To evaluate substrate selection and preference, western and eastern sand darters were collected from the Elk River, West Virginia, one of the few remaining rivers where both species occur sympatrically. In the laboratory, individuals were given the choice to bury into five equally available and randomly positioned substrates ranging from fine sand to granule gravel (0.12–4.0 mm). The western sand darter selected for coarse and medium sand, while the eastern sand darter was more of a generalist selecting for fine, medium, and coarse sand. Substrate selection was significantly different (p = 0.02) between species in the same environment, where the western sand darter preferred coarser substrate more often compared to the eastern sand darter. Habitat degradation is often a limiting factor for many species of rare freshwater fish, and results from this study suggest that western and eastern sand darters may respond differently to variations in benthic substrate composition.

  15. Provenance and recycling of Arabian desert sand

    Science.gov (United States)

    Garzanti, Eduardo; Vermeesch, Pieter; Andò, Sergio; Vezzoli, Giovanni; Valagussa, Manuel; Allen, Kate; Kadi, Khalid A.; Al-Juboury, Ali I. A.

    2013-05-01

    This study seeks to determine the ultimate origin of aeolian sand in Arabian deserts by high-resolution petrographic and heavy-mineral techniques combined with zircon U-Pb geochronology. Point-counting is used here as the sole method by which unbiased volume percentages of heavy minerals can be obtained. A comprehensive analysis of river and wadi sands from the Red Sea to the Bitlis-Zagros orogen allowed us to characterize all potential sediment sources, and thus to quantitatively constrain provenance of Arabian dune fields. Two main types of aeolian sand can be distinguished. Quartzose sands with very poor heavy-mineral suites including zircon occupy most of the region comprising the Great Nafud and Rub' al-Khali Sand Seas, and are largely recycled from thick Lower Palaeozoic quartzarenites with very minor first-cycle contributions from Precambrian basement, Mesozoic carbonate rocks, or Neogene basalts. Instead, carbonaticlastic sands with richer lithic and heavy-mineral populations characterize coastal dunes bordering the Arabian Gulf from the Jafurah Sand Sea of Saudi Arabia to the United Arab Emirates. The similarity with detritus carried by the axial Tigris-Euphrates system and by transverse rivers draining carbonate rocks of the Zagros indicates that Arabian coastal dunes largely consist of far-travelled sand, deposited on the exposed floor of the Gulf during Pleistocene lowstands and blown inland by dominant Shamal northerly winds. A dataset of detrital zircon U-Pb ages measured on twelve dune samples and two Lower Palaeozoic sandstones yielded fourteen identical age spectra. The age distributions all show a major Neoproterozoic peak corresponding to the Pan-African magmatic and tectonic events by which the Arabian Shield was assembled, with minor late Palaeoproterozoic and Neoarchean peaks. A similar U-Pb signature characterizes also Jafurah dune sands, suggesting that zircons are dominantly derived from interior Arabia, possibly deflated from the Wadi al

  16. Corrosion Effects on the Fatigue Crack Propagation of Giga-Grade Steel and its Heat Affected Zone in pH Buffer Solutions for Automotive Application

    Science.gov (United States)

    Lee, H. S.

    2018-03-01

    Corrosion fatigue crack propagation test was conducted of giga-grade steel and its heat affected zone in pH buffer solutions, and the results were compared with model predictions. Pure corrosion effect on fatigue crack propagation, particularly, in corrosive environment was evaluated by means of the modified Forman equation. As shown in results, the average corrosion rate determined from the ratio of pure corrosion induced crack length to entire crack length under a cycle load were 0.11 and 0.37 for base metal and heat affected zone, respectively, with load ratio of 0.5, frequency of 0.5 and pH 10.0 environment. These results demonstrate new interpretation methodology for corrosion fatigue crack propagation enabling the pure corrosion effects on the behavior to be determined.

  17. The Geodiversity in Drift Sand Landscapes of The Netherlands

    Science.gov (United States)

    van den Ancker, Hanneke; Jungerius, Pieter Dirk; Riksen, Michel

    2015-04-01

    The authors carried out detailed field studies of more than twelve drift sand landscapes in The Netherlands. The objective of these studies was to restore Natura-2000 values by restoring the wind activity. Active drift sands occur almost exclusively in The Netherlands, Natura 2000 habitat 2330 'Inland dunes with open Corynephorus and Agrostis grasslands', for which reason our country is largely responsible for this European landscape. Active drift sands had almost disappeared for two reasons: first, the stabilization of the drift sands by air pollution, mainly nitrogen, which stimulates the growth of algae and grasses that initiate soil formation, and second, by the growth of forests surrounding the sands, which decreases the wind force. The restoration studies revealed differences in the geodiversity between and within the drift sand areas. Whereas the drift sands on geological and soil maps show as almost homogenous areas, they have in fact highly variable geo-conditions of which examples will be given. These geodiversity aspects concern differences in geomorphological structure, origin, sediments and age of the drift sands. Differences in wind and water erosion, trampling and soil formation add to the geodiversity within the drift sand areas. Especially in the primary stages of succession the differences in geodiversity are relevant for the Natura-2000 values. We discerned three main types of active sands. Firstly, the impressive drift sands with large parabolic dune structures, often consisting of series of interlocking parabolic dunes. They developed from the northeast towards the southwest, against the direction of the dominant wind, and must have taken centuries to develop. Small parts of these systems are still active, other parts show different degrees of soil formation. Their origin is still unclear but probably dates from medieval times (Heidinga, 1985, Jungerius & Riksen, 2008). Second are the drift sand areas with irregular hills from 0.5 to about 2

  18. Initial geochemical characteristics of fluid fine tailings in an oil sands end pit lake

    Energy Technology Data Exchange (ETDEWEB)

    Dompierre, Kathryn A. [Department of Civil and Geological Engineering, University of Saskatchewan, Saskatoon, Saskatchewan, Canada S7N 5A9 (Canada); Lindsay, Matthew B.J., E-mail: matt.lindsay@usask.ca [Department of Geological Sciences, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E2 (Canada); Cruz-Hernández, Pablo [Department of Geology, University of Huelva, Campus ‘El Carmen’, E-21071 Huelva (Spain); Halferdahl, Geoffrey M. [Environmental Research and Development, Syncrude Canada Limited, Edmonton, Alberta T6N 1H4 (Canada)

    2016-06-15

    Geochemical characteristics of fluid fine tailings (FFT) were examined in Base Mine Lake (BML), which is the first full-scale demonstration oil sands end pit lake (EPL) in northern Alberta, Canada. Approximately 186 Mm{sup 3} of FFT was deposited between 1994 and 2012, before BML was established on December 31, 2012. Bulk FFT samples (n = 588) were collected in July and August 2013 at various depths at 15 sampling sites. Temperature, solid content, electrical conductivity (EC), pH, Eh and alkalinity were measured for all samples. Detailed geochemical analyses were performed on a subset of samples (n = 284). Pore-water pH decreased with depth by approximately 0.5 within the upper 10 m of the FFT. Major pore-water constituents included Na (880 ± 96 mg L{sup −1}) and Cl (560 ± 95 mg L{sup −1}); Ca (19 ± 4.1 mg L{sup −1}), Mg (11 ± 2.0 mg L{sup −1}), K (16 ± 2.3 mg L{sup −1}) and NH{sub 3} (9.9 ± 4.7 mg L{sup −1}) were consistently observed. Iron and Mn concentrations were low within FFT pore water, whereas SO{sub 4} concentrations decreased sharply across the FFT–water interface. Geochemical modeling indicated that FeS{sub (s)} precipitation was favoured under SO{sub 4}-reducing conditions. Pore water was also under-saturated with respect to gypsum [CaSO{sub 4}·2H{sub 2}O], and near saturation with respect to calcite [CaCO{sub 3}], dolomite [CaMg(CO{sub 3}){sub 2}] and siderite [FeCO{sub 3}]. X-ray diffraction (XRD) suggested that carbonate-mineral dissolution largely depleted calcite and dolomite. X-ray absorption near edge structure (XANES) spectroscopy revealed the presence of FeS{sub (s)}, pyrite [FeS{sub 2}], and siderite. Carbonate-mineral dissolution and secondary mineral precipitation have likely contributed to FFT dewatering and settlement. However, the long-term importance of these processes within EPLs remains unknown. These results provide a reference for assessing the long-term geochemical evolution of oil sands EPLs, and offer

  19. Carbon dioxide sequestration in oil sands tailings streams

    Energy Technology Data Exchange (ETDEWEB)

    Mikula, R.; Afara, M.; Namsechi, B.; Demko, B.; Wong, P. [Natural Resources Canada, Devon, AB (Canada). CANMET Western Research Centre

    2010-07-01

    This PowerPoint presentation discussed the use of carbon dioxide (CO{sub 2}) as an oil sands tailings process aid and investigated its role in maximizing recycle water availability by rapid consolidation of the transition zone. The potential for CO{sub 2} sequestration was also investigated. CO{sub 2} composite tailings (CT) pilot plants were discussed and the results of cylinder tests and water chemistry analyses were presented. Issues related to physical entrapment, ionic trapping, and mineral trapping were discussed. The study showed that carbonic acid lowers pH, dissolving calcite and dolomite. Aluminum hydroxide groups on the clay surface reacted to produce water and Al{sup 3+} and Na+. Increased bicarbonate and calcium resulted in precipitated calcite. The reduction of a transition zone from 6 to 3 meters increased the available recycle water by 15 mm{sup 3} in a 5 km{sup 2} recycle water pond. Optimum CO{sub 2} additions to whole tailings are now being investigated. tabs., figs.

  20. Experimental investigation of sanding propensity for the Andrew completion

    Energy Technology Data Exchange (ETDEWEB)

    Venkitaraman, A.; Li, H. [Schlumberger Perforating and Testing Center (United Kingdom); Leonard, A. J.; Bowden, P. R. [BP Exploration (United Kingdom)

    1998-12-31

    A series of laboratory experiments were performed on three reservoir core samples selected from two plot wells to confirm the likelihood of sand production during the completion phase of the planned Andrew horizontal wells, and to perform risk analysis of formation failure at the time of underbalance perforation, and expected producing conditions. CT scans revealed no perforation failure, and the core samples did not show any propensity to produce sand during single-phase oil flow. Transient sand production was observed when water cut was introduced, but sand production declined as the percentage of water cut was increased. There was no evidence of sand production in the core samples during depletion testing either, and the wells were subsequently completed with perforated cemented liners without sand control. No sand problems have been encountered in two years of production, with some wells in water cut and declined reservoir pressure of 200 psi. 8 refs., 3 tabs., 5 figs.

  1. Evaluation of wettability of binders used in moulding sands

    Directory of Open Access Journals (Sweden)

    Hutera B.

    2007-01-01

    Full Text Available Binders used in moulding sand have the differential properties. One of the main parameters influencing on moulding sand properties is wettability of the sand grain by binding material. In the article some problems concerned with wettability evaluation have been presented and the importance of this parameter for quantity description of process occurring in system: binder- sand grain has been mentioned. The procedure of wetting angle measurement and operation of prototype apparatus for wettability investigation of different binders used in moulding sand have been described, as well as the results of wetting angle measurement for different binders at different conditions. The addition of little amount of proper diluent to binder results in the state of equilibrium reached almost immediately. Such addition can also reduce the value of equilibrium contact angle. The uniform distribution of binder on the surface of the sand grains and reducing of the required mixing time can be obtained. It has also a positive effect on the moulding sand strength.

  2. The Effect of Micro/Nano-metrics Size on the Interaction of Jordanian Aluminosilicate Raw Materials with High pH Solution

    Science.gov (United States)

    Aldabsheh, Islam; Garcia-Valles, Maite; Martinez, Salvador

    2014-05-01

    Environmental preservation has become a driving force behind the search for new sustainable and environmentally friendly composites to replace conventional concrete produced from ordinary Portland cement (OPC). Current researches concentrate on developing building products (geopolymers) through geopolymerization. The goal is to produce low cost construction materials for green housing. Geopolymerization is the process of polymerizing minerals with high silica and alumina at low temperature by the use of alkali solutions. Dissolution is the most important process for supplying the high initial Al and Si concentrations to produce the gel phase that is responsible for geopolymerization. This study has been focused on the influence of different micrometric particle sizes of three Jordanian raw materials on their dissolution behavior in sodium hydroxide solution. The samples are kaolinite, volcanic tuff and silica sand. The dissolution properties of each material, alone and mixed with the other two materials were studied in different concentrations (5 and 10 M) using (NaOH) at 25ºC, and shaking time for 24 and 168 h. To better understand the dissolution process, the alkaline solution was renewed after the desired time in order to know if the Al-Si raw material is completely dissolved or not. Different analytical techniques were used to characterize raw materials physically, mineralogically, chemically and thermally. All processed samples either centrifuged solutions or solid residues were fully characterized. The leached concentrations of Al and Si were determined by inductively coupled plasma (ICP). X-ray Diffraction Technique (XRD), Scanning Electron Microscopy (SEM), and Thermo Gravimetric Analysis (TGA) were used to evaluate the solid residue characterization compared with the original ones. The three aluminosilicate raw materials have indicated variable degrees of solubility under highly alkaline conditions. The method for the size reduction of the used raw

  3. Nuclear energy in the oils sands

    International Nuclear Information System (INIS)

    Arsenault, J.E.

    2014-01-01

    The major Canadian oil sands are located in Alberta and Saskatchewan, with most production from the strata along the Athabasca River in Alberta. The economically recoverable oil sands reserves are estimated to be 168 billion barrels which at a current production rate of 1.8 million barrels per day (2012), are projected to last a very long time. Canada has been blessed with vast energy resources which make it potentially energy-independent and able to provide significant exports but there are concerns that their development cannot be managed in a wholly acceptable manner. Comparable concerns have been applied to nuclear energy in the past and in recent times to the oil sands. The technologies associated with these energy sources have always been controversial because they are at the confluence of economics and politics where finding a balance between risk and reward is difficult. So it should be no surprise that when these technologies get linked together in certain proposals their prospect for success is doubly difficult. The possible use of nuclear energy for production of oil from the oil sands dates back to the late 1950s, when an experiment to mine the oil by detonating an underground nuclear device was proposed. It was predicted that the heat and pressure released from such a device would create a large cavern into which oil would flow, and from where it would be pumped to the surface. Almost at the same time, oil sands research using conventional sources of energy had culminated with the development of practical refining processes, essentially those still in use today. These methods require large amounts of heat energy in the form of hot water and steam. In this century nuclear energy was proposed as the source for the heat required by the oil sands production processes. To date neither of these nuclear proposals for oil sands projects have been successful, because the economic and political balance could not be struck. (author)

  4. The provenance of Taklamakan desert sand

    Science.gov (United States)

    Rittner, Martin; Vermeesch, Pieter; Carter, Andrew; Bird, Anna; Stevens, Thomas; Garzanti, Eduardo; Andò, Sergio; Vezzoli, Giovanni; Dutt, Ripul; Xu, Zhiwei; Lu, Huayu

    2016-03-01

    Sand migration in the vast Taklamakan desert within the Tarim Basin (Xinjiang Uyghur Autonomous region, PR China) is governed by two competing transport agents: wind and water, which work in diametrically opposed directions. Net aeolian transport is from northeast to south, while fluvial transport occurs from the south to the north and then west to east at the northern rim, due to a gradual northward slope of the underlying topography. We here present the first comprehensive provenance study of Taklamakan desert sand with the aim to characterise the interplay of these two transport mechanisms and their roles in the formation of the sand sea, and to consider the potential of the Tarim Basin as a contributing source to the Chinese Loess Plateau (CLP). Our dataset comprises 39 aeolian and fluvial samples, which were characterised by detrital-zircon U-Pb geochronology, heavy-mineral, and bulk-petrography analyses. Although the inter-sample differences of all three datasets are subtle, a multivariate statistical analysis using multidimensional scaling (MDS) clearly shows that Tarim desert sand is most similar in composition to rivers draining the Kunlun Shan (south) and the Pamirs (west), and is distinctly different from sediment sources in the Tian Shan (north). A small set of samples from the Junggar Basin (north of the Tian Shan) yields different detrital compositions and age spectra than anywhere in the Tarim Basin, indicating that aeolian sediment exchange between the two basins is minimal. Although river transport dominates delivery of sand into the Tarim Basin, wind remobilises and reworks the sediment in the central sand sea. Characteristic signatures of main rivers can be traced from entrance into the basin to the terminus of the Tarim River, and those crossing the desert from the south to north can seasonally bypass sediment through the sand sea. Smaller ephemeral rivers from the Kunlun Shan end in the desert and discharge their sediment there. Both river run

  5. Nuclear energy in the oils sands

    Energy Technology Data Exchange (ETDEWEB)

    Arsenault, J.E.

    2014-09-15

    The major Canadian oil sands are located in Alberta and Saskatchewan, with most production from the strata along the Athabasca River in Alberta. The economically recoverable oil sands reserves are estimated to be 168 billion barrels which at a current production rate of 1.8 million barrels per day (2012), are projected to last a very long time. Canada has been blessed with vast energy resources which make it potentially energy-independent and able to provide significant exports but there are concerns that their development cannot be managed in a wholly acceptable manner. Comparable concerns have been applied to nuclear energy in the past and in recent times to the oil sands. The technologies associated with these energy sources have always been controversial because they are at the confluence of economics and politics where finding a balance between risk and reward is difficult. So it should be no surprise that when these technologies get linked together in certain proposals their prospect for success is doubly difficult. The possible use of nuclear energy for production of oil from the oil sands dates back to the late 1950s, when an experiment to mine the oil by detonating an underground nuclear device was proposed. It was predicted that the heat and pressure released from such a device would create a large cavern into which oil would flow, and from where it would be pumped to the surface. Almost at the same time, oil sands research using conventional sources of energy had culminated with the development of practical refining processes, essentially those still in use today. These methods require large amounts of heat energy in the form of hot water and steam. In this century nuclear energy was proposed as the source for the heat required by the oil sands production processes. To date neither of these nuclear proposals for oil sands projects have been successful, because the economic and political balance could not be struck. (author)

  6. Sediment Source Fingerprinting of the Lake Urmia Sand Dunes.

    Science.gov (United States)

    Ahmady-Birgani, Hesam; Agahi, Edris; Ahmadi, Seyed Javad; Erfanian, Mahdi

    2018-01-09

    Aeolian sand dunes are continuously being discovered in inner dry lands and coastal areas, most of which have been formed over the Last Glacial Maximum. Presently, due to some natural and anthropogenic implications on earth, newly-born sand dunes are quickly emerging. Lake Urmia, the world's second largest permanent hypersaline lake, has started shrinking, vast lands comprising sand dunes over the western shore of the lake have appeared and one question has been playing on the minds of nearby dwellers: where are these sand dunes coming from, What there was not 15 years ago!! In the present study, the determination of the source of the Lake Urmia sand dunes in terms of the quantifying relative contribution of each upstream geomorphological/lithological unit has been performed using geochemical fingerprinting techniques. The findings demonstrate that the alluvial and the fluvial sediments of the western upstream catchment have been transported by water erosion and they accumulated in the lower reaches of the Kahriz River. Wind erosion, as a secondary agent, have carried the aeolian sand-sized sediments to the sand dune area. Hence, the Lake Urmia sand dunes have been originating from simultaneous and joint actions of alluvial, fluvial and aeolian processes.

  7. Electrochemical Impedance Spectroscopic Analysis of RuO2 Based Thick Film pH Sensors

    International Nuclear Information System (INIS)

    Manjakkal, Libu; Djurdjic, Elvira; Cvejin, Katarina; Kulawik, Jan; Zaraska, Krzysztof; Szwagierczak, Dorota

    2015-01-01

    The conductimetric interdigitated thick film pH sensors based on RuO 2 were fabricated and their electrochemical reactions with solutions of different pH values were studied by electrochemical impedance spectroscopy (EIS) technique. The microstructural properties and composition of the sensitive films were examined by scanning electron microscopy, X-ray energy dispersive spectroscopy and Raman spectroscopy. The EIS analysis of the sensor was carried out in the frequency range 10 mHz–2 MHz for pH values of test solutions 2–12. The electrical parameters of the sensor were found to vary with changing pH. The conductance and capacitance of the film were distinctly dependent on pH in the low frequency range. The Nyquist and Bode plots derived from the impedance data for the metal oxide thick film pH sensor provided information about the underlying electrochemical reactions

  8. Development of a microprocessor-controlled coulometric system for stable ph control

    NARCIS (Netherlands)

    Bergveld, Piet; van der Schoot, B.H.

    1983-01-01

    The coulometric pH control system utilizes a programmable coulostat for controlling the pH of a certain volume of unbuffered solution. Based on theoretical considerations, conditions are established which guarantee stable operation with maximum suppression of disturbances from the dissolution of

  9. Decomposition kinetics of aminoborane in aqueous solutions

    International Nuclear Information System (INIS)

    Shvets, I.B.; Erusalimchik, I.G.

    1984-01-01

    Kinetics of aminoborane hydrolysis has been studied using the method of polarization galvanostatical curves on a platinum electrode in buffer solutions at pH 3; 5; 7. The supposition that the reaction of aminoborane hydrolysis is the reaction of the first order by aminoborane is proved. The rate constant of aminoborane decomposition in the solution with pH 5 is equal to: K=2.5x10 -5 s -1 and with pH 3 it equals K=1.12x10 -4 s -1

  10. Changes in active eolian sand at northern Coachella Valley, California

    Science.gov (United States)

    Katra, Itzhak; Scheidt, Stephen; Lancaster, Nicholas

    2009-04-01

    Climate variability and rapid urbanization have influenced the sand environments in the northern Coachella Valley throughout the late 20th century. This paper addresses changes in the spatial relationships among different sand deposits at northern Coachella Valley between two recent time periods by using satellite data acquired from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER). The approach employed here, involving multispectral thermal infrared (TIR) data and spectral mixture analysis, has shown that the major sand deposits can be spatially modeled at northern Coachella Valley. The "coarse-grained (quartz-rich) sand" deposit is associated with active eolian sand, and the "mixed sandy soil" and "fine-grained (quartz-rich) sand" deposits are associated with inactive eolian sand. The fractional abundance images showed a significant decrease between 2000 and 2006 in the percentage of active sand in the major depositional area for fluvial sediment, the Whitewater River, but also in two downwind areas: the Whitewater and Willow Hole Reserves. The pattern of the active sand appears to be related to variations in annual precipitation (wet and dry years) and river discharge in the northern Coachella Valley. We suggest here that recent human modifications to the major watercourses that supply sand affect the capability of fluvial deposition areas to restore sediments over time and consequently the responses of the sand transport system to climate change, becoming more sensitive to dry years where areas of active sand may shrink, degrade, and/or stabilize faster. The approach utilized in this study can be advantageous for future monitoring of sand in the northern Coachella Valley for management of these and similar environments.

  11. Modified Organosilica Core-Shell Nanoparticles for Stable pH Sensing in Biological Solutions.

    Science.gov (United States)

    Robinson, Kye J; Huynh, Gabriel T; Kouskousis, Betty P; Fletcher, Nicholas L; Houston, Zachary H; Thurecht, Kristofer J; Corrie, Simon R

    2018-04-19

    Continuous monitoring using nanoparticle-based sensors has been successfully employed in complex biological systems, yet the sensors still suffer from poor long-term stability partially because of the scaffold materials chosen to date. Organosilica core-shell nanoparticles containing a mixture of covalently incorporated pH-sensitive (shell) and pH-insensitive (core) fluorophores is presented as a continuous pH sensor for application in biological media. In contrast to previous studies focusing on similar materials, we sought to investigate the sensor characteristics (dynamic range, sensitivity, response time, stability) as a function of material properties. The ratio of the fluorescence intensities at specific wavelengths was found to be highly sensitive to pH over a physiologically relevant range (4.5-8) with a response time of pH-specific signals when stored at room temperature for more than 80 days. Finally, we demonstrated that the nanosensors successfully monitored the pH of a bacterial culture over 15 h and that pH changes in the skin of mouse cadavers could also be observed via in vivo fluorescence imaging following subcutaneous injection. The understanding gained from linking sensor characteristics and material properties will inform the next generation of optical nanosensors for continuous-monitoring applications.

  12. Namibia : triaxial test on sand

    DEFF Research Database (Denmark)

    Steenfelt, Jørgen S.; Jacobsen, Kim P.

    In connection with a harbour project the friction angle of a fine sand is required. On Friday 13 March 1998 the Danish Geotechnical Institute (DGI) delivered app. 2.5 kg sand for testing at the Geotechnical Engineering Laboratory, Aalborg University. The present Data Report summarises the results...... of two CID, isotropically consolidated, drained triaxial tests carried out according to the instructions in DG1 letter dated 13 March 1998....

  13. Pattern formation - Instabilities in sand ripples

    DEFF Research Database (Denmark)

    Hansen, J. L.; v. Hecke, M.; Haaning, A.

    2001-01-01

    Sand ripples are seen below shallow wavy water and are formed whenever water oscillates over a bed of sand. Here we analyse the instabilities that can upset this perfect patterning when the ripples are subjected to large changes in driving amplitude or frequency, causing them to deform both...

  14. Southeast Florida Sediment Assessment and Needs Determination (SAND) Study

    Science.gov (United States)

    2014-09-01

    sand with some shell beds, sandstone , and limestone *Miami Limestone 0 to 80 ft Oolitic limestone, quartz sand, and sandstone Anastasia 0 to 100 ft...Sand, shell beds, marl, calcareous sandstone (coquina/calcarenite) Fort Thompson 0 to 80 ft Silty limestone, silty sand, clayey marl, shell marl...highly- to moderately- weathered quartzose sandstone , and highly-weathered (saprolitic) to moderately-weathered hard limestone. North-south and

  15. Modelling the behavior of an oil saturated sand

    International Nuclear Information System (INIS)

    Evgin, E.; Altaee, A.; Lord, S.; Konuk, I.

    1990-01-01

    The experiments carried out in an earlier study show the oil contamination affects the strength and deformation characteristics of a crushed quartz sand. In the present study, a mathematical soil model is used to simulate the mechanical behavior of the same sand. The model parameters are determined for both clean and oil contaminated soil. Simulations are made for the stress-strain behavior of the soil in drained and undrained conventional traixial compression tests. In order to illustrate the effect of changes in the soil properties on the behavior of an engineering structure, a finite element analysis is carried out. In this paper comparative results are presented to show the differences in the behavior of a foundation resting on a clean sand, on an oil contaminated sand, and on a sand contaminated locally

  16. A Wireless Sensor Network for the Real-Time Remote Measurement of Aeolian Sand Transport on Sandy Beaches and Dunes.

    Science.gov (United States)

    Pozzebon, Alessandro; Cappelli, Irene; Mecocci, Alessandro; Bertoni, Duccio; Sarti, Giovanni; Alquini, Fernanda

    2018-03-08

    Direct measurements of aeolian sand transport on coastal dunes and beaches is of paramount importance to make correct decisions about coast management. As most of the existing studies are mainly based on a statistical approach, the solution presented in this paper proposes a sensing structure able to orient itself according to wind direction and directly calculate the amount of wind-transported sand by collecting it and by measuring its weight. Measurements are performed remotely without requiring human action because the structure is equipped with a ZigBee radio module, which periodically sends readings to a local gateway. Here data are processed by a microcontroller and then transferred to a remote data collection centre, through GSM technology. The ease of installation, the reduced power consumption and the low maintenance required, make the proposed solution able to work independently, limiting human intervention, for all the duration of the expected experimental campaign. In order to analyze the cause-effect relationship between the transported sand and the wind, the sensing structure is integrated with a multi-layer anemoscope-anemometer structure. The overall sensor network has been developed and tested in the laboratory, and its operation has been validated in field through a 48 h measurement campaign.

  17. A Wireless Sensor Network for the Real-Time Remote Measurement of Aeolian Sand Transport on Sandy Beaches and Dunes

    Science.gov (United States)

    Cappelli, Irene; Mecocci, Alessandro; Alquini, Fernanda

    2018-01-01

    Direct measurements of aeolian sand transport on coastal dunes and beaches is of paramount importance to make correct decisions about coast management. As most of the existing studies are mainly based on a statistical approach, the solution presented in this paper proposes a sensing structure able to orient itself according to wind direction and directly calculate the amount of wind-transported sand by collecting it and by measuring its weight. Measurements are performed remotely without requiring human action because the structure is equipped with a ZigBee radio module, which periodically sends readings to a local gateway. Here data are processed by a microcontroller and then transferred to a remote data collection centre, through GSM technology. The ease of installation, the reduced power consumption and the low maintenance required, make the proposed solution able to work independently, limiting human intervention, for all the duration of the expected experimental campaign. In order to analyze the cause-effect relationship between the transported sand and the wind, the sensing structure is integrated with a multi-layer anemoscope-anemometer structure. The overall sensor network has been developed and tested in the laboratory, and its operation has been validated in field through a 48 h measurement campaign. PMID:29518060

  18. Tuning interionic interaction by rationally controlling solution pH for highly selective colorimetric sensing of arginine.

    Science.gov (United States)

    Qian, Qin; Hao, Jie; Ma, Wenjie; Yu, Ping; Mao, Lanqun

    2016-04-01

    Direct selective sensing of arginine in central nervous systems remains very essential to understanding of the molecular basis of some physiological events. This study presents the first demonstration on a simple yet effective method for arginine sensing with gold nanoparticles (Au-NPs) as the signal readout. The rationale for the method is based on the pH-dependent feature of the interionic interaction between cysteine and arginine. At pH 6.0, cysteine can only interact with arginine through the ion-pair interaction and such interaction can lead to the changes in both the solution color and UV-vis spectrum of the cysteine-protected Au-NPs upon the addition of arginine. These changes are further developed into an analytical strategy for effective sensing of arginine by rationally controlling the pH values of Au-NP dispersions with the ratio of the absorbance at 650 nm (A 650) to that at 520 nm (A 520) (A 650/A 520) as a parameter for analysis. The method is responsive to arginine without the interference from other species in the cerebral system; under the optimized conditions, the A 650/A 520 values are linear with the concentration of arginine within a concentration range from 0.80 to 64 μM, yet remain unchanged with the addition of other kinds of amino acids or the species in the central nervous system into the Au-NPs dispersion containing cysteine. The method demonstrated here is reliable and robust and could thus be used for detection of the increase of arginine in central nervous systems.

  19. Effects of pH on the crystallographic structure and magnetic properties of electrodeposited cobalt nanowires

    International Nuclear Information System (INIS)

    Zafar, N.; Shamaila, S.; Sharif, R.; Wali, H.; Naseem, S.; Riaz, S.; Khaleeq-ur-Rahman, M.

    2015-01-01

    Anodic aluminum oxide templates with pore diameter of 40 nm and inter pore separation of 100 nm are prepared by two step anodization in 0.3 M oxalic acid solution. These templates are used to fabricate dc-deposited Co nanowires at different pH values of acidic bath. Continuous and densely packed nanowires having length ∼8 µm are observed. The hcp configuration appeared at moderate and high pH whereas both fcc and hcp phases are observed at low pH. However the crystallinity distorted at high pH due to formation of polycrystalline structure of cobalt nanowires. Alignment of easy-axis of nanowires can be tailored by varying pH of solution. - Highlights: • Variation in the structure of dc deposited cobalt nanowires can be obtained by varying pH of acidic bath. • The hcp structure is stable at room temperature with low voltage deposition for electrodeposited Co nanowires. Co with fcc structure, is stable at temperatures above 422 °C or at pH<3 with high potential. • The hcp (100) plane is obtained with pH∼3.5 and (101) is stable at pH∼5.5 due to variation in temperature inside the pores with respect to the pH. • Alignment of easy-axis of nanowires can be tailored by varying pH of solution

  20. Oblique second-order sand transport pathways on an intertidal sand flat in a natural tidal inlet system

    DEFF Research Database (Denmark)

    Ernstsen, Verner Brandbyge; Lefebvre, Alice; Kroon, Aart

    2013-01-01

    tide, sand is transported along ESE-oriented pathways across the intertidal flat towards the inner tidal basin. During the late stages of ebb tide, sand is transported in drainage channels (WSWoriented) from the intertidal flat towards the inlet channel. During storm events with winds from SW, wave...

  1. Gasification of oil sand coke: review

    Energy Technology Data Exchange (ETDEWEB)

    Furimsky, E. [IMAF Group, Ottawa, ON (Canada)

    1998-08-01

    The production of synthetic crude from the tar sands in Western Canada has been steadily increasing. Most of the delayed coke produced by Suncor is combusted on site, whereas all fluid coke produced by Syncrude is stockpiled.The database on the chemical and physical properties of the oil sand coke, including the composition and fusion properties of the mineral matter, has been established. The reactivity of the coke was determined by oxygen chemisorption, fixed bed and fluid bed bench scale gasification and pilot plant gasification. The reactivity of the oil sand coke for gasification is rather low and comparable to high rank coals, such as anthracite. Slurrability tests revealed that a solid concentration in water, approaching 70 wt%, can be achieved. Gasification is the front runner among clean technologies for the conversion of carbonaceous solids to useful products. Several commercial gasifiers are available to cover the wide range of severity. Because of the low reactivity of oil sands coke, high severity conditions are required to achieve high gasification conversion. Such conditions can be attained in entrained bed gasifiers. Gasifiers employing both dry and slurry feeding systems are suitable. A high efficiency, low SO{sub x} and NO{sub x} emissions, as well as a low solid waste production are among the key advantages of the gasification technology compared with thecompeting technologies. Commercial gasification of oil sands coke is delayed because of the availability of natural gas on the site of the upgrading plants. Potential for the transportation of the oil sand coke to USA for electricity generation using the integrated gasification combined-cycle (IGCC) technology was evaluated. 27 refs., 17 figs., 9 tabs.

  2. Iodine evolution and pH control

    International Nuclear Information System (INIS)

    Beahm, E.C.; Lorenz, R.A.; Weber, C.F.

    1993-01-01

    The pH is the major factor in determining the extent of I 2 in solution. In containment where no pH-control chemicals are present, the acidity or basicity of the water pool will be determined by materials that are introduced into containment as a result of the accident itself. These materials may be fission products (i.e., cesium compounds), thermally produced products (i.e., core-concrete aerosols), or compounds produced by radiation (i.e., nitric acid). In situations where pH levels fall below ∼7, the formation of I 2 will occur in irradiated iodide solutions. A correlation between pH and iodine formation is needed so that the amounts I 2 in water pools can be assessed. This, in turn, determines the amount of I 2 in the atmosphere available for escape by containment leakage. A number of calculational routines based on more than 100 differential equations representing individual reactions can be found in the literature. In this work, it is shown that a simpler approach based on the steady-state decomposition of hydrogen peroxide should correctly describe iodine formation in severe accidents. Comparisons with test data show this approach to be valid. The most important acids in containment will be nitric acid (HNO 3 ), produced by irradiation of water and air, and hydrochloric acid (HCl), produced by irradiation or heating of electrical cable insulation. The most important bases in containment will be cesium hydroxide, cesium borate (or cesium carbonate), and in some plants pH additives, such as sodium hydroxide or sodium phosphate

  3. Ground-water quality in agricultural areas, Anoka Sand Plain Aquifer, east-central Minnesota, 1984-90

    Science.gov (United States)

    Landon, M.K.; Delin, G.N.

    1995-01-01

    Ground-water quality in the Anoka Sand Plain aquifer was studied as part of the multiscale Management Systems Evaluation Area (MSEA) study by collecting water samples from shallow wells during August through November 1990. The sampling was conducted to: (1) aid in selection of the MSEA research area; (2) facilitate comparison of results at the MSEA research area to the regional scale; and (3) evaluate changes in ground-water quality in the Anoka Sand Plain aquifer since a previous study during 1984 through 1987. Samples were collected from 34 wells screened in the upper 6 meters of the surficial aquifer and located in cultivated agricultural areas. Water temperature, pH, specific conductance, and presence or absence of triazine herbicides were determined at all sites and samples from selected wells were analyzed for concentrations of dissolved oxygen, alkalinity, major cations and anions, nutrients, and selected herbicides and herbicide metabolites. The results of the study indicate that the water-quality of some shallow ground water in areas of predominantly agricultural land use has been affected by applications of nitrogen fertilizers and the herbicide atrazine.

  4. Reuse of waste cutting sand at Lawrence Livermore National Laboratory

    International Nuclear Information System (INIS)

    Mathews, S.; Wilson, K.

    1998-01-01

    Lawrence Livermore National Laboratory (LLNL) examined the waste stream from a water jet cutting operation, to evaluate the possible reuse of waste garnet sand. The sand is a cutting agent used to shape a variety of materials, including metals. Nearly 70,000 pounds of waste sand is generated annually by the cutting operation. The Environmental Protection Department evaluated two potential reuses for the spent garnet sand: backfill in utility trenches; and as a concrete constituent. In both applications, garnet waste would replace the sand formerly purchased by LLNL for these purposes. Findings supported the reuse of waste garnet sand in concrete, but disqualified its proposed application as trench backfill. Waste sand stabilized in a concrete matrix appeared to present no metals-leaching hazard; however, unconsolidated sand in trenches could potentially leach metals in concentrations high enough to threaten ground water quality. A technical report submitted to the San Francisco Bay Regional Water Quality Control Board was reviewed and accepted by that body. Reuse of waste garnet cutting sand as a constituent in concrete poured to form walkways and patios at LLNL was approved

  5. Augmenting Sand Simulation Environments through Subdivision and Particle Refinement

    Science.gov (United States)

    Clothier, M.; Bailey, M.

    2012-12-01

    Recent advances in computer graphics and parallel processing hardware have provided disciplines with new methods to evaluate and visualize data. These advances have proven useful for earth and planetary scientists as many researchers are using this hardware to process large amounts of data for analysis. As such, this has provided opportunities for collaboration between computer graphics and the earth sciences. Through collaboration with the Oregon Space Grant and IGERT Ecosystem Informatics programs, we are investigating techniques for simulating the behavior of sand. We are also collaborating with the Jet Propulsion Laboratory's (JPL) DARTS Lab to exchange ideas and gain feedback on our research. The DARTS Lab specializes in simulation of planetary vehicles, such as the Mars rovers. Their simulations utilize a virtual "sand box" to test how a planetary vehicle responds to different environments. Our research builds upon this idea to create a sand simulation framework so that planetary environments, such as the harsh, sandy regions on Mars, are more fully realized. More specifically, we are focusing our research on the interaction between a planetary vehicle, such as a rover, and the sand beneath it, providing further insight into its performance. Unfortunately, this can be a computationally complex problem, especially if trying to represent the enormous quantities of sand particles interacting with each other. However, through the use of high-performance computing, we have developed a technique to subdivide areas of actively participating sand regions across a large landscape. Similar to a Level of Detail (LOD) technique, we only subdivide regions of a landscape where sand particles are actively participating with another object. While the sand is within this subdivision window and moves closer to the surface of the interacting object, the sand region subdivides into smaller regions until individual sand particles are left at the surface. As an example, let's say

  6. Dependency of the band gap of electrodeposited Copper oxide thin films on the concentration of copper sulfate (CuSO4.5H2O) and pH in bath solution for photovoltaic applications

    KAUST Repository

    Islam, Md. Anisul

    2016-03-10

    In this study, Copper oxide thin films were deposited on copper plate by electrodeposition process in an electrolytic bath containing CuSO4.5H2O, 3M lactic acid and NaOH. Copper oxide films were electrodeposited at different pH and different concentration of CuSO4.5H2O and the optical band gap was determined from their absorption spectrum which was obtained from UV-Vis absorption spectroscopy. It was found that copper oxide films which were deposited at low concentration of CuSO4.5H2O have higher band gap than those deposited at higher bath concentration. The band gap of copper oxide films also significantly changes with pH of the bath solution. It was also observed that with the increase of the pH of bath solution band gap of copper oxide film decreased. © 2015 IEEE.

  7. The role of pH variation on the growth of zinc oxide nanostructures

    International Nuclear Information System (INIS)

    Wahab, Rizwan; Ansari, S.G.; Kim, Young Soon; Song, Minwu; Shin, Hyung-Shik

    2009-01-01

    In this paper we present a systematic study on the morphological variation of ZnO nanostructure by varying the pH of precursor solution via solution method. Zinc acetate dihydrate and sodium hydroxide were used as a precursor, which was refluxed at 90 deg. C for an hour. The pH of the precursor solution (zinc acetate di hydrate) was increased from 6 to 12 by the controlled addition of sodium hydroxide (NaOH). Morphology of ZnO nanorods markedly varies from sheet-like (at pH 6) to rod-like structure of zinc oxide (pH 10-12). Diffraction patterns match well with standard ZnO at all pH values. Crystallinity and nanostructures were confirmed by high-resolution transmission electron microscopy (HRTEM) and selected area electron diffraction (SAED) pattern, which indicates structure grew along [0 0 0 1] direction with an ideal lattice fringes distance 0.52 nm. FTIR spectroscopic measurement showed a standard peak of zinc oxide at 464 cm -1 . Amount of H + and OH - ions are found key to the structure control of studied material, as discussed in the growth mechanism.

  8. Trimerization Dictates Solution Opalescence of a Monoclonal Antibody.

    Science.gov (United States)

    Yang, Teng-Chieh; Langford, Alex Jacob; Kumar, Sandeep; Ruesch, John Carl; Wang, Wei

    2016-08-01

    Opalescence, sometimes observed in antibody solutions, is thought to be mediated by light scattering of soluble oligomers or insoluble particulates. However, mechanistic features, such as stoichiometry and self-association affinity of oligomeric species related to opalescence, are poorly understood. Here, opalescence behavior of a monoclonal antibody (mAb-1) solution was studied over a wide range of solution conditions including different protein concentrations, pH, and in the presence or absence of salt. Hydrodynamic and thermodynamic properties of mAb-1 solutions were studied by analytical ultracentrifugation and dynamic light scattering. Opalescence in mAb-1 solutions is pH and concentration dependent. The degree of opalescence correlates with reversible monomer-trimer equilibrium detected by analytical ultracentrifugation. Increased trimer formation corresponds to increased opalescence in mAb-1 solutions at higher pH and protein concentrations. Addition of NaCl shifts this equilibrium toward monomer and reduces solution opalescence. This study demonstrates that opalescence in mAb-1 solutions does not arise from the light scattering of monomer or random molecular self-associations but is strongly correlated with a specific self-association stoichiometry and affinity. Importantly, at pH 5.5 (far below isoelectric point of mAb-1), the solution is not opalescent and with nonideal behavior. This study also dissects several parameters to describe the hydrodynamic and thermodynamic nonideality. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  9. In situ treatment of cyanide-contaminated groundwater by iron cyanide precipitation

    International Nuclear Information System (INIS)

    Ghosh, R.S.; Dzombak, D.A.; Luthy, R.G.; Smith, J.R.

    1999-01-01

    Groundwater contamination with cyanide is common at many former or active industrial sites. Metal-cyanide complexes typically dominate aqueous speciation of cyanide in groundwater systems, with iron-cyanide complexes often most abundant. Typically, metal-cyanide complexes behave as nonadsorbing solutes in sand-gravel aquifer systems in the neutral pH range, rendering cyanide relatively mobile in groundwater systems. Groundwater pump-and-treat systems have often been used to manage cyanide contamination in groundwater. This study examined the feasibility of using in situ precipitation of iron cyanide in a reactive barrier to attenuate the movement of cyanide in groundwater. Laboratory column experiments were performed in which cyanide solutions were passed through mixtures of sand and elemental iron filings. Removal of dissolved cyanide was evaluated in a variety of cyanide-containing influents under various flow rates and sand-to-iron weight ratios. Long-term column tests performed with various cyanide-containing influents under both oxic and anoxic conditions, at neutral pH and at flow rates typical of sand-gravel porous media, yielded effluent concentrations of total cyanide as low as 0.5 mg/L. Effluent cyanide concentrations achieved were close to the solubilities of Turnbull's blue-hydrous ferric oxide solid solutions, indicating co-precipitation of the two solids. Maximum cyanide removal efficiency was achieved with approximately 10% by weight of iron in the sand-iron mixtures; higher iron contents did not increase removal efficiency significantly. Results obtained indicate that in situ precipitation is a promising passive treatment approach for cyanide in groundwater

  10. Environmental Assessment for Wildland Fire Prevention Activities at Joint-Base Elmendorf-Richardson (JBER), Alaska

    Science.gov (United States)

    2015-04-01

    clay or dry sand. Report large spills to Dow AgroSciences at 800-992- 5994. 11. HANDLING AND STORAGE: PRECAUTIONS TO BE TAKEN IN HANDLING AND STORAGE...Methods for Containment: Dike spill using absorbent or impervious materials such as earth, sand or clay . Collect and contain contaminated absorbent and...Not determined Freezing Point: Not determined Vapor Pressure: Not determined pH: 3.3 (1% solution) Viscosity : Not determined Note: Physical data

  11. Understanding Colombian Amazonian white sand forests

    NARCIS (Netherlands)

    Peñuela-Mora, M.C.

    2014-01-01

    Although progress has been made in studies on white sand forests in the Amazon, there is still a considerable gap in our knowledge of the unique species composition of white sand forests and their structure and dynamics, especially in Western Amazon. This thesis aims to fill this gap by addressing

  12. Trajectories of saltating sand particles behind a porous fence

    Science.gov (United States)

    Zhang, Ning; Lee, Sang Joon; Chen, Ting-Guo

    2015-01-01

    Trajectories of aeolian sand particles behind a porous wind fence embedded in a simulated atmospheric boundary layer were visualized experimentally, to investigate the shelter effect of the fence on sand saltation. Two sand samples, one collected from a beach (d = 250 μm) and the other from a desert (d = 100 μm), were tested in comparison with the previous studies of a 'no-fence' case. A wind fence (ε = 38.5%) was installed on a flat sand bed filled with each sand sample. A high-speed photography technique and the particle tracking velocimetry (PTV) method were employed to reconstruct the trajectories of particles saltating behind the fence. The collision processes of these sand particles were analyzed, momentum and kinetic energy transfer between saltating particles and ground surface were also investigated. In the wake region, probability density distributions of the impact velocities agree well with the pattern of no-fence case, and can be explained by a log-normal law. The horizontal component of impact velocity for the beach sand is decreased by about 54%, and about 76% for the desert sand. Vertical restitution coefficients of bouncing particles are smaller than 1.0 due to the presence of the wind fence. The saltating particles lose a large proportion of their energy during the collision process. These results illustrate that the porous wind fence effectively abates the further evolution of saltating sand particles.

  13. Modelling of the effect of solute structure and mobile phase pH and composition on the retention of phenoxy acid herbicides in reversed-phase high-performance liquid chromatography

    International Nuclear Information System (INIS)

    Aschi, Massimiliano; D'Archivio, Angelo Antonio; Mazzeo, Pietro; Pierabella, Mirko; Ruggieri, Fabrizio

    2008-01-01

    A feed-forward artificial neural network (ANN) learned by error back-propagation is used to generate a retention predictive model for phenoxy acid herbicides in isocratic reversed-phase high-performance liquid chromatography. The investigated solutes (18 compounds), apart from the most common herbicides of this class, include some derivatives of benzoic acid and phenylacetic acid structurally related to phenoxy acids, as a whole covering a pK a range between 2.3 and 4.3. A mixed model in terms of both solute descriptors and eluent attributes is built with the aim of predicting retention in water-acetonitrile mobile phases within a large range of composition (acetonitrile from 30% to 70%, v/v) and acidity (pH of water before mixing with acetonitrile ranging between 2 and 5). The set of input variables consists of solute pK a and quantum chemical molecular descriptors of both the neutral and dissociated form, %v/v of acetonitrile in the mobile phase and pH of aqueous phase before mixing with acetonitrile. After elimination of redundant variables, a nine-dimensional model is identified and its prediction ability is evaluated by external validation based on three solutes not involved in model generation and by cross-validation. A multilinear counterpart in terms of the same descriptors is seen to provide a noticeably poorer retention prediction

  14. Modelling of the effect of solute structure and mobile phase pH and composition on the retention of phenoxy acid herbicides in reversed-phase high-performance liquid chromatography

    Energy Technology Data Exchange (ETDEWEB)

    Aschi, Massimiliano [Dipartimento di Chimica, Ingegneria Chimica e Materiali, Universita degli Studi di L' Aquila, Via Vetoio, 67010 Coppito, L' Aquila (Italy); D' Archivio, Angelo Antonio [Dipartimento di Chimica, Ingegneria Chimica e Materiali, Universita degli Studi di L' Aquila, Via Vetoio, 67010 Coppito, L' Aquila (Italy)], E-mail: darchivi@univaq.it; Mazzeo, Pietro; Pierabella, Mirko; Ruggieri, Fabrizio [Dipartimento di Chimica, Ingegneria Chimica e Materiali, Universita degli Studi di L' Aquila, Via Vetoio, 67010 Coppito, L' Aquila (Italy)

    2008-06-02

    A feed-forward artificial neural network (ANN) learned by error back-propagation is used to generate a retention predictive model for phenoxy acid herbicides in isocratic reversed-phase high-performance liquid chromatography. The investigated solutes (18 compounds), apart from the most common herbicides of this class, include some derivatives of benzoic acid and phenylacetic acid structurally related to phenoxy acids, as a whole covering a pK{sub a} range between 2.3 and 4.3. A mixed model in terms of both solute descriptors and eluent attributes is built with the aim of predicting retention in water-acetonitrile mobile phases within a large range of composition (acetonitrile from 30% to 70%, v/v) and acidity (pH of water before mixing with acetonitrile ranging between 2 and 5). The set of input variables consists of solute pK{sub a} and quantum chemical molecular descriptors of both the neutral and dissociated form, %v/v of acetonitrile in the mobile phase and pH of aqueous phase before mixing with acetonitrile. After elimination of redundant variables, a nine-dimensional model is identified and its prediction ability is evaluated by external validation based on three solutes not involved in model generation and by cross-validation. A multilinear counterpart in terms of the same descriptors is seen to provide a noticeably poorer retention prediction.

  15. Motion-Based pH Sensing Based on the Cartridge-Case-like Micromotor.

    Science.gov (United States)

    Su, Yajun; Ge, Ya; Liu, Limei; Zhang, Lina; Liu, Mei; Sun, Yunyu; Zhang, Hui; Dong, Bin

    2016-02-17

    In this paper, we report a novel cartridge-case-like micromotor. The micromotor, which is fabricated by the template synthesis method, consists of a gelatin shell with platinum nanoparticles decorating its inner surface. Intriguingly, the resulting cartridge-case-like structure exhibits a pH-dependent "open and close" feature, which originates from the pH responsiveness of the gelatin material. On the basis of the catalytic activity of the platinum nanoparticle inside the gelatin shell, the resulting cartridge-case-like structure is capable of moving autonomously in the aqueous solution containing the hydrogen peroxide fuel. More interestingly, we find out that the micromotor can be utilized as a motion-based pH sensor over the whole pH range. The moving velocity of the micromotor increases monotonically with the increase of pH of the analyte solution. Three different factors are considered to be responsible for the proportional relation between the motion speed and pH of the analyte solution: the peroxidase-like and oxidase-like catalytic behavior of the platinum nanoparticle at low and high pH, the volumetric decomposition of the hydrogen peroxide under the basic condition and the pH-dependent catalytic activity of the platinum nanoparticle caused by the swelling/deswelling behavior of the gelatin material. The current work highlights the impact of the material properties on the motion behavior of a micromotor, thus paving the way toward its application in the motion-based sensing field.

  16. Synthesis of xenotime(YPO4) by precipitation from aqueous solution

    International Nuclear Information System (INIS)

    Hikichi, Yasuo; Hukuo, Ken-iti; Shiokawa, Jiro.

    1978-01-01

    Xenotime (tetragonal YPO 4 ) was synthesized by the precipitation from a mixed solution of yttrium chloride and orthophosphoric acid or orthophosphate above 50 0 C. At 50 0 C, the initial precipitate from the solutions in the pH range from 0.8 to 2.9 was crystalline weinschenkite (monoclinic YPO 4 .2H 2 O) and amorphous phosphate was formed at pH above 3, while precipitation did not take place at pH 0.5. Weinschenkite was stable at 50 0 C, but amorphous phosphate gradually crystallized by aging and became crystalline xenotime at pH 3.7 after 5 days and at pH 5.0 after 28 days. At 90 0 C, xenotime was detected in the precipitate from the solution of pH 0.5, and was also obtained by aging weinschenkite at pH between 0.8 and 2.9 or amorphous phosphate at pH above 3. The unit cell parameters of the synthesized xenotime were as follows: a=b=6.893A, c=6.026A. (auth.)

  17. Biodegradable materials as binders for IVth generation moulding sands

    OpenAIRE

    K. Major-Gabry

    2015-01-01

    This paper focuses on the possibility of using the biodegradable materials as binders (or parts of binders?compositions) for foundry moulding and core sands. Results showed that there is a great possibility of using available biodegradable materials as foundry moulding sand binders. Using biodegradable materials as partial content of new binders, or additives to moulding sands may not only decrease the toxicity and increase reclamation ability of tested moulding sands, but also accelerate the...

  18. Plaque pH Changes Following Consumption of Two Types of Plain and Bulky Bread.

    Science.gov (United States)

    Mortazavi, Shiva; Noin, Sogol

    2011-01-01

    Consistency, backing process and content differences could influence cariogenic potential of foods. The aim was to compare plaque pH changes following consumption of two types of bread with different physical characteristics. In this clinical trial, interproximal plaque pH of 10 volunteers with high risk of dental caries (saliva Streptococcus mutans > 10(5), high dental caries experience, and average DMFT =6.10 ± 1.56) was measured. Plain traditionally backed "Sangak bread" and soft bulky "Baguette bread" and %10 sucrose solution were tested in a cross over designed experiment. Baseline plaque pH was recorded and followed by 1, 5, 10, 15, 20, and 30 minutes intervals. Data was analyzed using ANOVA and Tukey test (α = 0.05). Sucrose solution caused the most pronounced pH and ΔpH drop from 7.15 ± 0.33 at baseline to 6.78 ± 0.29. Means plaque pH of 10% sucrose solution and Baguette were not statistically different at 1, 20 and 30 minutes (P > 0.05). Mean plaque pH of Sangak and Baguette showed significant differences at 0, 1, 20 and30 minutes (P bread samples within first 10 minutes, pH increased and then started to decrease during tenth to fifteenth minutes. During all experiment phases, the mean pH of Baguette with less consistency and carbohydrate content and higher rate of starch gelatination was lower compared to Sangak.

  19. Antimony removal from aqueous solutions using Zirconium hydroxide

    International Nuclear Information System (INIS)

    Petrescu, D.; Velciu, L.; Bucur, C.

    2016-01-01

    In this paper it is presented an experimental test for non-radioactive antimony removal from aqueous solutions using zirconium hydroxide powder. Also, it was studied how the temperature and pH influences antimony adsorption onto zirconium hydroxide surface. After the adsorption, solutions were filtered on Cellulose Mixed Ester Membrane with 0.2 μm pore size to remove the zirconium powder and then the aqueous solutions were sent to Inductively Coupled Plasma Optic Emission Spectrometry (ICP-OES) for quantitative analysis of Sb. Zirconium hydroxide powders were examined by optical microscopy. For the solutions that were tested at pH 4.5 and 10.2 the antimony concentration dropped below the detection limit of ICP-OES device, proof of antimony adsorption on zirconium hydroxide. Also, for the other tested solutions which had pH=12 the antimony concentration reduced with 77% and 80%. The temperature had no influence upon adsorption mechanism. (authors)

  20. The Canadian oil sands--a sticky future

    Energy Technology Data Exchange (ETDEWEB)

    Cowtan, S A

    1977-01-01

    The oil sands have been known for 200 yr but only over the last decade have they been recognized as a potential major energy source for Canada. The study looks at the present GCOS plant, and briefly discusses Canada's future energy requirements and how she might fill those requirements from conventional and nonconventional sources, such as the Frontier areas, oil sands mining, oil sands in situ, and heavy oil. The economics and the future of these sources and the environment necessary for their development are analyzed.