WorldWideScience

Sample records for sand sagebrush vegetation

  1. Wyoming big sagebrush associations of eastern Oregon; vegetation attributes

    Science.gov (United States)

    This report provides a synopsis of several vegetative characteristics for the Wyoming big sagebrush complex in eastern Oregon covering the High Desert , Snake River, and Owyhee Ecological Provinces in Harney, Lake, and Malheur Counties. The complex has been grouped into six associations defined by t...

  2. Ecosystem engineering of harvester ants: effects on vegetation in a sagebrush-steppe ecosystem

    Science.gov (United States)

    Gosselin, Elyce N; Holbrook, Joseph D.; Huggler, Katey; Brown, Emily; Vierling, Kerri T.; Arkle, Robert; Pilliod, David

    2016-01-01

    Harvester ants are influential in many ecosystems because they distribute and consume seeds, remove vegetation, and redistribute soil particles and nutrients. Understanding the interaction between harvester ants and plant communities is important for management and restoration efforts, particularly in systems altered by fire and invasive species such as the sagebrush-steppe. Our objective was to evaluate how vegetation cover changed as a function of distance from Owyhee harvester ant (Pogonomyrmex salinus) nests within a sagebrush-steppe ecosystem. We sampled 105 harvester ant nests within southern Idaho, USA, that occurred in different habitats: annual grassland, perennial grassland, and native shrubland. The influence of Owyhee harvester ants on vegetation was larger at the edge of ant nests, but the relationship was inconsistent among plant species. Percent cover was positively associated with distance from harvester ant nests for plant species that were considered undesirable food sources and were densely distributed. However, percent cover was negatively associated with distance-from-nests for patchily distributed and desirable plant species. For some plant species, there was no change in cover associated with distance-from-nests. Total vegetation cover was associated with distance-from-nests in the shrubland habitat but not in the 2 grasslands. The dominant plant species in the shrubland habitat was a densely distributed shrub (winterfat, Krascheninnikovia lanata) that was defoliated by harvester ants. Our results suggest that Owyhee harvester ants increase spatial heterogeneity in plant communities through plant clearing, but the direction and magnitude of effect will likely be contingent on the dominant vegetation groups. This information may inform future management and plant restoration efforts in sagebrush-steppe by directly considering the islands of influence associated with harvester ant engineering.

  3. Sand Lake WMD vegetation mapping project update

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Final report on the vegetation mapping project at Sand Lake Wetland Management District. This project is being completed by the use of SPRING software and ground...

  4. Using Unmanned Aerial Vehicles to Assess Vegetative Cover in Sagebrush Steppe Ecosytstems

    Energy Technology Data Exchange (ETDEWEB)

    Robert P. Breckenridge

    2005-09-01

    The Idaho National Laboratory (INL), in conjunction with the University of Idaho, is evaluating novel approaches for using unmanned aerial vehicles (UAVs) as a quicker and safer method for monitoring biotic resources. Evaluating vegetative cover is an important factor in understanding the sustainability of many ecosystems. In assessing vegetative cover, methods that improve accuracy and cost efficiency could revolutionize how biotic resources are monitored on western federal lands. Sagebrush steppe ecosystems provide important habitat for a variety of species, some of which are important indicator species (e.g., sage grouse). Improved methods are needed to support monitoring these habitats because there are not enough resource specialists or funds available for comprehensive ground evaluation of these ecosystems. In this project, two types of UAV platforms (fixed wing and helicopter) were used to collect still-frame imagery to assess cover in sagebrush steppe ecosystems. This paper discusses the process for collecting and analyzing imagery from the UAVs to (1) estimate total percent cover, (2) estimate percent cover for six different types of vegetation, and (3) locate sage grouse based on representative decoys. The field plots were located on the INL site west of Idaho Falls, Idaho, in areas with varying amounts and types of vegetative cover. A software program called SamplePoint developed by the U.S. Department of Agriculture, Agricultural Research Service (USDA-ARS) was used to evaluate the imagery for percent cover for the six vegetation types (bare ground, litter, shrubs, dead shrubs, grasses, and forbs). Results were compared against standard field measurements to assess accuracy.

  5. Comparison of Unmanned Aerial Vehicle Platforms for Assessing Vegetation Cover in Sagebrush Steppe Ecosystems

    Energy Technology Data Exchange (ETDEWEB)

    Robert P. Breckenridge; Maxine Dakins; Stephen Bunting; Jerry Harbour; Sera White

    2011-09-01

    In this study, the use of unmanned aerial vehicles (UAVs) as a quick and safe method for monitoring biotic resources was evaluated. Vegetation cover and the amount of bare ground are important factors in understanding the sustainability of many ecosystems and assessment of rangeland health. Methods that improve speed and cost efficiency could greatly improve how biotic resources are monitored on western lands. Sagebrush steppe ecosystems provide important habitat for a variety of species (including sage grouse and pygmy rabbit). Improved methods are needed to support monitoring these habitats because there are not enough resource specialists or funds available for comprehensive ground evaluations. In this project, two UAV platforms, fixed wing and helicopter, were used to collect still-frame imagery to assess vegetation cover in sagebrush steppe ecosystems. This paper discusses the process for collecting and analyzing imagery from the UAVs to (1) estimate percent cover for six different vegetation types (shrub, dead shrub, grass, forb, litter, and bare ground) and (2) locate sage grouse using representative decoys. The field plots were located on the Idaho National Engineering (INL) site west of Idaho Falls, Idaho, in areas with varying amounts and types of vegetation cover. A software program called SamplePoint was used along with visual inspection to evaluate percent cover for the six cover types. Results were compared against standard field measurements to assess accuracy. The comparison of fixed-wing and helicopter UAV technology against field estimates shows good agreement for the measurement of bare ground. This study shows that if a high degree of detail and data accuracy is desired, then a helicopter UAV may be a good platform to use. If the data collection objective is to assess broad-scale landscape level changes, then the collection of imagery with a fixed-wing system is probably more appropriate.

  6. Ecogeomorphology of Sand Dunes Shaped by Vegetation

    Science.gov (United States)

    Tsoar, H.

    2014-12-01

    Two dune types associated with vegetation are known: Parabolic and Vegetated Linear Dunes (VLDs), the latters are the dominant dune type in the world deserts. Parabolic dunes are formed in humid, sub-humid and semi-arid environments (rather than arid) where vegetation is nearby. VLDs are known today in semiarid and arid lands where the average yearly rainfall is ≥100 mm, enough to support sparse cover of vegetation. These two dune types are formed by unidirectional winds although they demonstrate a different form and have a distinct dynamics. Conceptual and mathematical models of dunes mobility and stability, based on three control parameters: wind power (DP), average annual precipitation (p), and the human impact parameter (μ) show that where human impact is negligible the effect of wind power (DP) on vegetative cover is substantial. The average yearly rainfall of 60-80 mm is the threshold of annual average rainfall for vegetation growth on dune sand. The model is shown to follow a hysteresis path, which explains the bistability of active and stabilized dunes under the same climatic conditions with respect to wind power. We have discerned formation of parabolic dunes from barchans and transverse dunes in the coastal plain of Israel where a decrease in human activity during the second half of the 20th century caused establishment of vegetation on the crest of the dunes, a process that changed the dynamics of these barchans and transverse dunes and led to a change in the shape of the windward slope from convex to concave. These dunes gradually became parabolic. It seems that VLDs in Australia or the Kalahari have always been vegetated to some degree, though the shrubs were sparser in colder periods when the aeolian erosion was sizeable. Those ancient conditions are characterized by higher wind power and lower rainfall that can reduce, but not completely destroy, the vegetation cover, leading to the formation of lee (shadow) dunes behind each shrub. Formation of

  7. Using Unmanned Aerial Vehicles to Assess Vegetative Cover and Identify Biotic Resources in Sagebrush Steppe Ecosystems: Preliminary Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Robert P. Breckenridge

    2006-04-01

    The Idaho National Laboratory (INL), in conjunction with the University of Idaho, is evaluating novel approaches for using unmanned aerial vehicles (UAVs) as a quicker and safer method for monitoring biotic resources. Evaluating vegetative cover is an important factor in understanding the sustainability of many ecosystems. In assessing vegetative cover, methods that improve accuracy and cost efficiency could revolutionize how biotic resources are monitored on western federal lands. Sagebrush steppe ecosystems provide important habitat for a variety of species, some of which are important indicator species (e.g., sage grouse). Improved methods are needed to support monitoring these habitats because there are not enough resource specialists or funds available for comprehensive ground evaluation of these ecosystems. In this project, two types of UAV platforms (fixed wing and helicopter) were used to collect still-frame imagery to assess cover in sagebrush steppe ecosystems. This paper discusses the process for collecting and analyzing imagery from the UAVs to (1) estimate total percent cover, (2) estimate percent cover for six different types of vegetation, and (3) locate sage grouse based on representative decoys. The field plots were located on the INL site west of Idaho Falls, Idaho, in areas with varying amounts and types of vegetative cover. A software program called SamplePoint developed by the U.S. Department of Agriculture, Agricultural Research Service was used to evaluate the imagery for percent cover for the six vegetation types (bare ground, litter, shrubs, dead shrubs, grasses, and forbs). Results were compared against standard field measurements to assess accuracy.

  8. Alteration of soil hydraulic properties and soil water repellency by fire and vegetation succession in a sagebrush steppe ecosystem

    Science.gov (United States)

    Chandler, D. G.; Seyfried, M. S.

    2016-12-01

    This study explores the impacts of fire and plant community succession on soil water repellency (SWR) and infiltration properties to improve understanding the long term impacts of prescribed fire on SWR and infiltration properties in sagebrush-steppe ecosystem. The objectives of this study were: 1) To explore the temporal effects of prescribed burning in sagebrush dominated landscape; 2) To investigate spatial variability of soil hydrologic properties; 3) To determine the relationship among soil organic fraction, soil hydrophobicity and infiltration properties. Fieldwork was conducted in paired catchments with three dominant vegetation cover communities: Low sage, big mountain sage and aspen. Detailed, heavily replicated analyses were conducted for unsaturated hydraulic conductivity, sorptivity water drop penetration time and static soil-water-air contact angle. The results show that the severity and presence of surface soil water repellency were considerably reduced six years after fire and that hydraulic conductivity increased significantly in each vegetation cover compared to pre-burn condition. Comparisons among soil hydrological properties shows that hydraulic conductivity is not strongly related to SWR, and that sorptivity is negatively correlated with SWR. The spatial variance of hydraulic properties within the burned high sage and low sage, in particularly, spatial variability of hydraulic conductivity is basically controlled by soil texture and sorptivity is affected by soil wettability. The average water repellency in Low Sage area was significantly different with Big Sage and Aspen as the gap of organic content between Low Sage and other vegetation area. The result of contact angle measurement and organic content analysis shows a strong positive correlation between SWR and organic matter.

  9. The influence of precipitation, vegetation and soil properties on the ecohydrology of sagebrush steppe rangelands on the INL site

    Science.gov (United States)

    Germino, Matthew J.

    2013-01-01

    The INL Site and other landscapes having sagebrush steppe vegetation are experiencing a simultaneous change in climate and floristics that result from increases in exotic species. Determining the separate and combined/interactive effects of climate and vegetation change is important for assessing future changes on the landscape and for hydrologic processes. This research uses the 72 experimental plots established and initially maintained for many years as the “Protective Cap Biobarrier Experiment” by Dr. Jay Anderson and the Stoller ESER program, and the experiment is also now referred to as the “INL Site Ecohydrology Study.” We are evaluating long-term impacts of different plant communities commonly found throughout Idaho subject to different precipitation regimes and to different soil depths. Treatments of amount and timing of precipitation (irrigation), soil depth, and either native/perennial or exotic grass vegetation allow researchers to investigate how vegetation, precipitation and soil interact to influence soil hydrology and ecosystem biogeochemistry. This information will be used to improve a variety of models, as well as provide data for these models.

  10. Restoring mountain big sagebrush communities after prescribed fire in juniper encroached rangelands

    Science.gov (United States)

    Western juniper encroachment into sagebrush steppe communities has reduced livestock forage production, increased erosion and runoff risk, and degraded sagebrush-associated wildlife habitat. We evaluated seeding perennial herbaceous vegetation and sagebrush at five sites where juniper was controlle...

  11. Sand Bed Morphodynamics under Standing Waves and Vegetated Conditions

    Science.gov (United States)

    Landry, B. J.; Garcia, M. H.

    2010-12-01

    Littoral processes such as sediment transport, wave attenuation, and boundary layer development are governed by the presence of bathymetric features, which include large-scale sand bars upon which smaller-scale sand ripples are superimposed, as well as the presence of submarine vegetation. Numerous studies on sand ripples and bars have aided to elucidate the dynamics in oscillatory flows; however, the effect of vegetation on the system is less understood. Recent laboratory studies have focused on quantifying wave attenuation by emergent vegetation as a natural method to mitigate storm surges. The emergent vegetation, while promising for coastal protection, alters sediment transport rates directly by the physical presence of the plants near the bed and indirectly from reduction in near-bed shear stresses due to attenuated wave energy. The experimental work herein focuses on the area near the deeply submerged vegetated canopy limit (current work has a ratio of mean still water depth to plant height, H/h, = 7.9) to minimize the effect on the surface waves and discern the direct impact vegetation has on sand bed morphodynamics. Experiments were conducted in the large wave tank (49-m long by 1.83-m wide by 1.22-m deep) in the Ven Te Chow Hydrosystems Laboratory at the University of Illinois in which a high reflection wave forcing was used over a uniform sand bed with a 0.25-mm median sediment diameter in which staggered and uniform arrangements of idealized vegetation (i.e., 6.35-mm diameter rigid wooden cylinders) were positioned along the bed (e.g., at predetermined sand bar troughs and over an entire sand bar). The resulting bathymetric evolution from the vegetated case experiments were compared to the base case of no vegetation using two optical methods: a high-resolution laser displacement sensor for three-dimensional surveys and digitized profiles via high-definition panoramic images of the entire test section. The experimental findings illustrate the profound

  12. Modelling Spatial Patterns of Vegetation in Desert Sand Dunes

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    A stochastic numerical approach was developed to model the actual standing biomass in the sand dunes of the northwestern Negev (Israel) and probable boundary conditions that may be responsible for the vegetation patterns investigated in detail. Our results for several variables characteristic for the prevailing climate, geomorphology, hydrology and biologicy at four measurement stations along a transect from northwest to southeast allowed for the development of a stochastic model for biomass distribution over the entire sand dune field (mesoscale) and at Nizzana experimental station (microscale). With this equation it was possible to compute andinterpolate a biomass index value for each grid point on the mesoscale and micro scale. The spatial distribution of biomass is negatively linked to distance from the sea, to rainfall and relief energy.

  13. Complexity confers stability: Climate variability, vegetation response and sand transport on longitudinal sand dunes in Australia's deserts

    Science.gov (United States)

    Hesse, Paul P.; Telfer, Matt W.; Farebrother, Will

    2017-04-01

    The relationship between antecedent precipitation, vegetation cover and sand movement on sand dunes in the Simpson and Strzelecki Deserts was investigated by repeated (up to four) surveys of dune crest plots (≈25 × 25 m) over a drought cycle (2002-2012) in both winter (low wind) and spring (high wind). Vegetation varied dramatically between surveys on vegetated and active dune crests. Indices of sand movement had significant correlations with vegetation cover: the depth of loose sand has a strong inverse relationship with crust (cyanobacterial and/or physical) while the area covered by ripples has a strong inverse relationship with the areal cover of vascular plants. However, the relationship between antecedent rainfall and vegetation cover was found to be complex. We tentatively identify two thresholds; (1) >10 mm of rainfall in the preceding 90 days leads to rapid and near total cover of crust and/or small plants 400 mm of rainfall in the preceding three years leads to higher cover of persistent and longer-lived plants >50 cm tall. These thresholds were used to predict days of low vegetation cover on dune crests. The combination of seasonality of predicted bare-crest days, potential sand drift and resultant sand drift direction explains observed patterns of sand drift on these dunes. The complex vegetation and highly variable rainfall regime confer meta-stability on the dunes through the range of responses to different intervals of antecedent rainfall and non-linear growth responses. This suggests that the geomorphic response of dunes to climate variation is complex and non-linear.

  14. Strandline and sand dune vegetation of coasts of Greece and some other Aegean countries.

    NARCIS (Netherlands)

    Sykora, K.V.; Babalonas, D.; Papastergiadou, E.S.

    2003-01-01

    The coastal strandline and sand-dune vegetation of Greece has been reviewed. All published relevés available were collected and classified using numerical methods (TWINSPAN). The communities studied belong to three classes, one for strandline vegetation (Cakiletea maritimae), and two for sand-dune v

  15. Strandline and sand dune vegetation of coasts of Greece and some other Aegean countries.

    NARCIS (Netherlands)

    Sykora, K.V.; Babalonas, D.; Papastergiadou, E.S.

    2003-01-01

    The coastal strandline and sand-dune vegetation of Greece has been reviewed. All published relevés available were collected and classified using numerical methods (TWINSPAN). The communities studied belong to three classes, one for strandline vegetation (Cakiletea maritimae), and two for sand-dune

  16. Influence of vegetations and snow cover on sand-dust events in the west of China

    Institute of Scientific and Technical Information of China (English)

    XU Xingkui; CHEN Hong

    2006-01-01

    By using Normalized Difference Vegetation Index (NDVI) with the resolution of 80km(80km, satellite remote sensing data, derived from the National Oceanic and Atmospheric Administration (NOAA) and Empirical Orthogonal Function (EOF) analysis showed that surface vegetation cover in large areas of northwest China took on a significantly increasing trend between 1982 and 1994, and decreased after 1995. The first two temporal coefficients corresponding to respective eigenvector can reflect the annual change of vegetation exactly in the west of China. The correlation analysis between NDVI and the frequency of sand storms, blowing sand and floating dust illuminate that annual change of vegetation is one of the most important factors affecting disaster weather, such as sand-dust events. Meanwhile, correlation analyses also demonstrate that the snowfall in the part of western China plays an important role in sand-dust events. In this study, the influence of vegetation and snow cover in the west of China on the frequency of sand-dust events is revealed directly in virtue of remote sensing data, weather observational data and statistical methods.

  17. 沙蒿木蠹蛾生物学特性研究%Bionomics of the sand sagebrush carpenterworm, Holcocerus artemisiae (Lepidoptera: Cossidae)

    Institute of Scientific and Technical Information of China (English)

    王建伟; 骆有庆; 宗世祥

    2011-01-01

    沙蒿木蠹蛾Holcocerus artemisiae Chou et Hua是危害油蒿Artemisia ordosica Krasch和籽蒿A.sphaerocephala Krasch的重要钻蛀性害虫,以幼虫蛀食根部,导致寄主植物长势衰弱甚至死亡.为有效控制其危害,我们对该虫形态和生物学特征结合野外调查和室内饲养观察进行了研究.结果表明:在宁夏,该虫2年发生1代,以幼虫在被害油蒿根部越冬;老熟幼虫于5月中旬从受害根部钻出,在周围的沙土里结茧化蛹,蛹期平均19.5±3.5 d;成虫始见于6月初,终见于8月末,期间经历3次羽化高峰,分别为6,7,8月的上旬.成虫羽化主要在14:00-17:00,整个过程持续30~45 min;羽化当日即可交配,交配时间为20:00-21:00,高峰期为20:30左右;雄虫有2次交尾现象.雄虫寿命2~3 d,雌虫寿命1~3 d,极少4 d.雌雄性比约为1∶2.16.卵初见于6月中旬,初孵幼虫初见于6月下旬.幼虫常单独危害,且具有转移危害的习性,蛀食坑道不规则.5-9月,油蒿受害率为11%~44%,平均24%,株虫口密度为0.13头/株.幼虫对油蒿的树龄和地径有较明显的选择性,主要危害1~4年生、地径16~34mm的油蒿.沙蒿木蠹蛾生物学特征的系统研究为其控制措施的制定提供了科学依据.%The sand sagebrush carpenterworm, Holcocerus artemisiae Chou et Hua, is a severe pest of Artemisia ordosica and A.sphaerocephala, with the larval stages boring into the roots of the host plants.Morphological and biological characteristics of H.artemisiae in Ningxia were studied through field survey and laboratory breeding and observation.The results showed that a generation takes two years in fields of Ningxia.Larvae of all instars were found to overwinter in the host plant roots.Mature larvae begin to pupate in mid May in the soil around the base of plant stems, with the average pupal stage lasting 19.5 ±3.5 d.Moths emerge from the beginning of June to the end of August, with three peaks of eclosion observed in the early June

  18. Restoration of Mountain Big Sagebrush Steppe Following Prescribed Burning to Control Western Juniper

    Science.gov (United States)

    Davies, K. W.; Bates, J. D.; Madsen, M. D.; Nafus, A. M.

    2014-05-01

    Western juniper ( Juniperus occidentalis ssp. occidentalis Hook) encroachment into mountain big sagebrush ( Artemisia tridentata spp. vaseyana (Rydb.) Beetle) steppe has reduced livestock forage production, increased erosion risk, and degraded sagebrush-associated wildlife habitat. Western juniper has been successfully controlled with partial cutting followed by prescribed burning the next fall, but the herbaceous understory and sagebrush may be slow to recover. We evaluated the effectiveness of seeding perennial herbaceous vegetation and sagebrush at five sites where juniper was controlled by partially cutting and prescribed burning. Treatments tested at each site included an unseeded control, herbaceous seed mix (aerially seeded), and the herbaceous seed mix plus sagebrush seed. In the third year post-treatment, perennial grass cover and density were twice as high in plots receiving the herbaceous seed mix compared to the control plots. Sagebrush cover and density in the sagebrush seeded plots were between 74- and 290-fold and 62- and 155-fold greater than the other treatments. By the third year after treatment, sagebrush cover was as high as 12 % in the sagebrush seeded plots and between 0 % and 0.4 % where it was not seeded. These results indicate that aerial seeding perennial herbaceous vegetation can accelerate the recovery of perennial grasses which likely stabilize the site. Our results also suggest that seeding mountain big sagebrush after prescribed burning encroaching juniper can rapidly recover sagebrush cover and density. In areas where sagebrush habitat is limited, seeding sagebrush after juniper control may increase sagebrush habitat and decrease the risks to sagebrush-associated species.

  19. Vegetation change in a lichen-rich inland drift sand area in the Netherlands

    NARCIS (Netherlands)

    Ketner-Oostra, R.; Sykora, K.V.

    2008-01-01

    In this paper we compare the cryptogam vegetation in the Spergulo-Corynephoretum and Genisto-Callunetum in an inland drift-sand area in three periods (1968, 1993 and 2004). In the early period the lichen diversity in these plant communities appeared to be very high. The aspect was formed by Coryneph

  20. Spatial Vegetation Data for Sand Creek Massacre National Historic Site Vegetation Mapping Project

    Data.gov (United States)

    National Park Service, Department of the Interior — High resolution vegetation polygons mapped by the National Park Service. Multivariate ordination and clustering analyses were used to classify the vegetation. As a...

  1. Sagebrush Ecosystems Under Fire

    Energy Technology Data Exchange (ETDEWEB)

    Downs, Janelle L.

    2014-12-30

    Since settlement of the western United States began, sagebrush (Artemisia L. spp.) ecosystems have decreased both in quantity and quality. Originally encompassing up to 150 million acres in the West, the “interminable fields” of sage described by early explorers (Fremont 1845) have been degraded and often eliminated by conversion to agriculture, urbanization, livestock grazing, invasion by alien plants, and alteration of wildfire cycles (Hann et al. 1997; West 1999). More than half of the original sagebrush steppe ecosystems in Washington have been converted to agriculture and many of the remaining stands of sagebrush are degraded by invasion of exotic annuals such as cheatgrass (Bromus tectorum L.). Today, sagebrush ecosystems are considered to be one of the most imperiled in the United States (Noss, LeRoe and Scott 1995), and more than 350 sagebrush-associated plants and animals have been identified as species of conservation concern (Suring et al. 2005; Wisdom et al. 2005). The increasing frequency of wildfire in sagebrush-dominated landscapes is one of the greatest threats to these habitats and also presents one of the most difficult to control.

  2. Historical fire regimes, reconstructed from land-survey data, led to complexity and fluctuation in sagebrush landscapes.

    Science.gov (United States)

    Bukowski, Beth E; Baker, William L

    2013-04-01

    Sagebrush landscapes provide habitat for Sage-Grouse and other sagebrush obligates, yet historical fire regimes and the structure of historical sagebrush landscapes are poorly known, hampering ecological restoration and management. To remedy this, General Land Office Survey (GLO) survey notes were used to reconstruct over two million hectares of historical vegetation for four sagebrush-dominated (Artemisia spp.) study areas in the western United States. Reconstructed vegetation was analyzed for fire indicators used to identify historical fires and reconstruct historical fire regimes. Historical fire-size distributions were inverse-J shaped, and one fire > 100 000 ha was identified. Historical fire rotations were estimated at 171-342 years for Wyoming big sagebrush (A. tridentata ssp. wyomingensis) and 137-217 years for mountain big sagebrush (A. tridentata ssp. vaseyana). Historical fire and patch sizes were significantly larger in Wyoming big sagebrush than mountain big sagebrush, and historical fire rotations were significantly longer in Wyoming big sagebrush than mountain big sagebrush. Historical fire rotations in Wyoming were longer than those in other study areas. Fine-scale mosaics of burned and unburned area and larger unburned inclusions within fire perimeters were less common than in modern fires. Historical sagebrush landscapes were dominated by large, contiguous areas of sagebrush, though large grass-dominated areas and finer-scale mosaics of grass and sagebrush were also present in smaller amounts. Variation in sagebrush density was a common source of patchiness, and areas classified as "dense" made up 24.5% of total sagebrush area, compared to 16.3% for "scattered" sagebrush. Results suggest significant differences in historical and modern fire regimes. Modern fire rotations in Wyoming big sagebrush are shorter than historical fire rotations. Results also suggest that historical sagebrush landscapes would have fluctuated, because of infrequent

  3. Semi-arid Vegetation Pattern, Stability and Suitability to Suppress Sand Movement in Central Sudan

    Directory of Open Access Journals (Sweden)

    N.K.N. Al-Amin

    2011-01-01

    Full Text Available Moving sand that threatens Gezira scheme is the dominant land degradation feature in central Sudan and the front line defence is the sparse scattered natural vegetation of the area. The study aimed to assess the role of this vegetation to suppress drifting sand and to monitor their ability to face the impact of climate change and human activity (deforestation. The dimensions of the sand captured by single tree of dominant species, Acacia tortilis, Leptadenia pyrotechnica, Prosopis juliflora and Panicum turgidum were measured and the volumes were calculated. To picture the drought pattern 5-year running means of annual rainfalls (1941-2007 of the study area were calculated and compared with long-term mean. Deforestation was indicated by local community wood consumption in relation to the average woody biomass (in good condition. The results show that scattered trees of the right densities had potentiality to settle drifting sand, but they were subjected to 20 years dry seasons followed by only 4 wet years and now are subjected to a new era of dry spell. This condition is not in favour of the semi-arid vegetation pattern sustainability and a suitable measure to enhance natural regeneration is needed. In addition, the community's wood demand was higher than the resource, where a person would destroy 0.5 ha/year compared to 0.9 ha/year per person available reveals the magnitude of deforestation. Encouragement of farmers to use alternative energy sources and functional application of laws and regulations to protect the existing vegetation rem ain crucial.

  4. Effects of woody vegetation on overbank sand transport during a large flood, Rio Puerco, New Mexico

    Science.gov (United States)

    Griffin, Eleanor R.; Perignon, Mariela C.; Friedman, Jonathan M.; Tucker, Gregory E.

    2014-01-01

    Distributions of woody vegetation on floodplain surfaces affect flood-flow erosion and deposition processes. A large flood along the lower Rio Puerco, New Mexico, in August 2006 caused extensive erosion in a reach that had been sprayed with herbicide in September 2003 for the purpose of saltcedar (Tamarix spp.) control. Large volumes of sediment, including a substantial fraction of sand, were delivered to the reach downstream, which had not been treated with herbicide. We applied physically based, one-dimensional models of flow and suspended-sediment transport to compute volume concentrations of sand in suspension in floodplain flow at a site within the sprayed reach and at a site downstream from the sprayed reach. We computed the effects of drag on woody stems in reducing the skin friction shear stress, velocity of flow, and suspended-sand transport from open paths into patches of dense stems. Total flow and suspended-sand fluxes were computed for each site using well-constrained flood-flow depths, water-surface slopes, and measured shrub characteristics. Results show that flow in open paths carried high concentrations of sand in suspension with nearly uniform vertical distributions. Drag on woody floodplain stems reduced skin friction shear stresses by two orders of magnitude, yet sufficient velocities were maintained to transport sand more than 50 m into fields of dense, free-surface-penetrating stems. An increase in shrub canopy extent from 31% in the sprayed reach site to 49% in the downstream site was found to account for 69% of the computed decrease in discharge between the two sites. The results demonstrate the need to compute the spatial distribution of skin friction shear stress in order to effectively compute suspended-sand transport and to predict the fate of sediment and contaminants carried in suspension during large floods.

  5. Mesophilic Actinomycetes in the natural and reconstructed sand dune vegetation zones of Fraser Island, Australia.

    Science.gov (United States)

    Kurtböke, D I; Neller, R J; Bellgard, S E

    2007-08-01

    The natural coastal habitat of Fraser Island located in the State of Queensland, Australia, has been disturbed in the past for mining of the mineral sand ilmenite. Currently, there is no information available on whether these past mining disturbances have affected the distribution, diversity, and survival of beneficial soil microorganisms in the sand dunes of the island. This in turn could deleteriously affect the success of the natural regeneration, plant growth, and establishment on the sand dunes. To support ongoing restoration efforts at sites like these mesophilic actinomycetes were isolated using conventional techniques, with particular emphasis on the taxa previously reported to produce plant-growth-promoting substances and providing support to mycorrhizal fungi, were studied at disturbed sites and compared with natural sites. In the natural sites, foredunes contained higher densities of micromonosporae replaced by increasing numbers of streptomycete species in the successional dune and finally leading to complex actinomycete communities in the mature hind dunes. Whereas in the disturbed zones affected by previous mining activities, which are currently being rehabilitated, no culturable actinomycete communities were detected. These findings suggest that the paucity of beneficial microflora in the rehabilitated sand dunes may be limiting the successful colonization by pioneer plant species. Failure to establish a cover of plant species would result in the mature hind dune plants being exposed to harsh salt and climatic conditions. This could exacerbate the incidence of wind erosion, resulting in the destabilization of well-defined and vegetated successional dunal zones.

  6. Developing the Guidelines for Reclamation to Forest Vegetation in the Athabasca Oil Sands Region

    Energy Technology Data Exchange (ETDEWEB)

    Straker, J. [Integral Ecology Group Ltd., Victoria, BC (Canada); Cumulative Environmental Management Association, Fort McMurray, AB (Canada). Reclamation Working Group, Terrestrial Subgroup; Donald, G. [Donald Functional and Applied Ecology Inc., Victoria, BC (Canada); Cumulative Environmental Management Association, Fort McMurray, AB (Canada). Reclamation Working Group, Terrestrial Subgroup

    2010-07-01

    This paper discussed the development process behind and the structure of the Guidelines for Reclamation to Forest Vegetation in the Athabasca Oil Sands Region. The advances present in the second edition, published in 2010, were described relative to the first edition, which was published in 1998. Oils sands mining companies are mandated to use the manual under the Alberta Environmental Protection and Enhancement Act. The paper provided an overview of the structure of the second edition and presented the process used to develop the second edition. It also described the planning approaches for revegetative treatments and the planning guidance of overstory and understory species selection. The methods for evaluating revegetative success were also described with particular reference to plant community composition and soil salinity indicators as examples of indicator development. The goal of the manual is to provide guidance on re-establishing the vegetation component of upland ecosystems on reclaimed landscapes and on evaluating the success of the re-establishment, assuming that the reclaimed plant communities should have species characteristic of native plant communities in the region, that the trends of vegetation community and structure development on reclaimed land should be similar to native plant communities in the region, and that the reclaimed ecosystems should have development trajectories that satisfy land-use objectives and provide resilience against natural disturbances. 15 refs., 1 tab., 1 fig.

  7. Natural regeneration processes in big sagebrush (Artemisia tridentata)

    Science.gov (United States)

    Schlaepfer, Daniel R.; Lauenroth, William K.; Bradford, John B.

    2014-01-01

    Big sagebrush, Artemisia tridentata Nuttall (Asteraceae), is the dominant plant species of large portions of semiarid western North America. However, much of historical big sagebrush vegetation has been removed or modified. Thus, regeneration is recognized as an important component for land management. Limited knowledge about key regeneration processes, however, represents an obstacle to identifying successful management practices and to gaining greater insight into the consequences of increasing disturbance frequency and global change. Therefore, our objective is to synthesize knowledge about natural big sagebrush regeneration. We identified and characterized the controls of big sagebrush seed production, germination, and establishment. The largest knowledge gaps and associated research needs include quiescence and dormancy of embryos and seedlings; variation in seed production and germination percentages; wet-thermal time model of germination; responses to frost events (including freezing/thawing of soils), CO2 concentration, and nutrients in combination with water availability; suitability of microsite vs. site conditions; competitive ability as well as seedling growth responses; and differences among subspecies and ecoregions. Potential impacts of climate change on big sagebrush regeneration could include that temperature increases may not have a large direct influence on regeneration due to the broad temperature optimum for regeneration, whereas indirect effects could include selection for populations with less stringent seed dormancy. Drier conditions will have direct negative effects on germination and seedling survival and could also lead to lighter seeds, which lowers germination success further. The short seed dispersal distance of big sagebrush may limit its tracking of suitable climate; whereas, the low competitive ability of big sagebrush seedlings may limit successful competition with species that track climate. An improved understanding of the

  8. Changes in soil and vegetation on moving sand dunes after exclosure in Horqin Sandy Land, Northern China

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    In the semiarid Horqin Sandy Land of northern China, land desertification is the main causation in vegetation degradation and formation of moving dunes. A study was conducted from 1996 to 2005 to monitor the changes of vegetation characteristics and soil properties after moving dunes were fenced. The changes were compared between moving sand dunes with exclosure and without exclosure to evaluate the effectiveness of vegetation and soil restoration after exclosure establishment. The results show that exlosure establishment facilitated the colonization and development of plant species by ameliorating stressful environmental conditions. Species diversity, average coverage, and plant density significantly increased after exclosure of moving sand dunes along sequence compared with sand dunes without exclosure. Vegetation recovery on moving sand dunes accelerated by exclosure resulted in significant changes in soil properties including increased silt and clay contents, organic C and total N and decreased sand content, especially at the 0-5 cm depth. The results implied that moving sand dunes can be rapidly fixed by construction of exclosure.

  9. Ecological influence and pathways of land use in sagebrush

    Science.gov (United States)

    Knick, Steven T.; Hanser, Steven E.; Miller, Richard F.; Pyke, David A.; Wisdom, Michael J.; Finn, Sean P.; Rinkes, E. Thomas; Henny, Charles J.; Knick, Steven T.; Connelly, John W.

    2011-01-01

    Land use in sagebrush (Artemisia spp.) landscapes influences all sage-grouse (Centrocer-cus spp.) populations in western North America. Croplands and the network of irrigation canals cover 230,000 km2 and indirectly influence up to 77% of the Sage-Grouse Conservation Area and 73% of sagebrush land cover by subsidizing synanthropic predators on sage-grouse. Urbanization and the demands of human population growth have created an extensive network of con-necting infrastructure that is expanding its influence on sagebrush landscapes. Over 2,500 km2 are now covered by interstate highways and paved roads; when secondary roads are included, 15% of the Sage-Grouse Conservation Area and 5% of existing sagebrush habitats are 2.5 km from roads. Density of secondary roads often exceeds 5 km/km2, resulting in widespread motorized access for recreation, creating extensive travel corridors for management actions and resource development, subsidizing predators adapted to human presence, and facilitating spread of exotic or invasive plants. Sagebrush lands also are being used for their wilderness and recreation values, including off highway vehicle use. Approximately 12,000,000 animal use months (AUM amount of forage to support one livestock unit per month) are permitted for grazing livestock on public lands in the western states. Direct effects of grazing on sage-grouse populations or sagebrush landscapes are not possible to assess from current data. However, management of lands grazed by livestock has influenced sagebrush ecosystems by vegetation treatments to increase forage and reduce sagebrush and other plant species unpalatable to livestock. Fences (2 km/km2 in some regions), roads, and water developments to manage livestock movements further modify the landscape. Oil and gas development influences 8% of the sagebrush habitats with the highest intensities occurring in the eastern range of sage-grouse; 20% of the sagebrush distribution is indirectly influenced in the Great

  10. The effect of wind and precipitation on vegetation and biogenic crust covers in the Sde-Hallamish sand dunes

    Science.gov (United States)

    Amir, Raz; Kinast, Shai; Tsoar, Haim; Yizhaq, Hezi; Zaady, Eli; Ashkenazy, Yosef

    2014-03-01

    Vegetation and biogenic crust covers play an important role in sand dune stabilization, yet there is a lack of high temporal and spatial resolution data on sand dune cover. A field experiment, aimed at measuring the dynamics of biogenic crust and vegetation in sand dunes, was conducted at the Sde-Hallamish sand dunes in the northwestern Negev Desert, Israel, from July 2008 to August 2010. The climate of the Sde-Hallamish sand dunes is arid (the mean annual precipitation over the past 13 years is 61 mm), and the dunes are linear and partially stable, mainly due to the presence of biogenic crust and partially due to the presence of vegetation. In July 2008, 10×10 m plots on the four dune habitats (crest, interdune, north slope, and south slope) were treated as follows: (i) removal of vegetation and biogenic crust, (ii) removal of biogenic crust only, (iii) removal of vegetation only, (iv) partial removal of biogenic crust and vegetation, and (v) control plot. The surface coverage of sand, biogenic crust, and vegetation was monitored on a monthly basis, using a remote-sensing technique especially developed for the Sde-Hallamish sand dunes. It was found that strong wind events, with durations of several days, accounted for the coverage changes in biogenic crust and vegetation. The response to precipitation was much slower. In addition, no rehabilitation of biogenic crust and vegetation was observed within the experiment time period. The changes in biogenic crust cover were not necessarily related to changes in dune dynamics, since often an increase in biogenic crust cover is a result of wind erosion that exposes old crust that was buried under the sand; wind hardly erodes biogenic crust at all due to its high durability to wind action. The Sde-Hallamish dunes seem to have become more active as a result of a prolonged drought during the past several years. The field experiment reported here indicates that biogenic crust cover exhibits large seasonal variations that are

  11. Vegetation community composition in wetlands created following oil sand mining in Alberta, Canada.

    Science.gov (United States)

    Roy, Marie-Claude; Foote, Lee; Ciborowski, Jan J H

    2016-05-01

    Reclaiming wetlands following open pit mining for industrial oil sand extraction is challenging due to the physical and chemical conditions of the post-mined landscape. The aim of our study was to examine and compare the influence of oil sands process water (OSPW) and material (fine fluid tails or FFT) on the plant community composition of created wetlands. Compared to created-unamended and natural wetlands, the created wetlands amended with OSPW and/or FFT (created-tailings wetlands) had significantly higher water salinity, conductivity, dissolved oxygen concentration and lower oxidative-reductive potential. Water chemistry parameters of created-unamended did not differ significantly from those of natural wetlands. The sediment of created wetlands had significantly less moisture, total nitrogen, and organic content than the natural wetlands. The application of OSPW/FFT in created wetlands will likely lead to initial vegetation composition atypical of natural regional wetlands. For the objective of reclaiming vegetation composition to the status of natural regional wetlands, unamended wetlands were the best reclamation option, based on the physical and chemical parameters measured. Despite being the favored reclamation option, created-unamended wetlands' physical and chemical characteristics remain atypical of natural wetlands. Most significantly, the basin morphometry of created wetlands was significantly different from that of naturally-formed wetlands in the region, and this appears to partly explain difference in vegetation composition. We also demonstrate that species richness alone is not a useful measure in wetland monitoring. Instead, plant community composition is a better indicator of wetland conditions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Vegetation changes of sand fields in Northern China in response to climatic change, 1982-2013

    Science.gov (United States)

    Yuan, W.; Wu, S. Y.; Hou, S.

    2016-12-01

    The semi-arid region in North China is one of the areas that has experienced expansion of sand fields in recent decades with serious consequences on the lives of hundreds of million people. How these sand fields respond to global warming is an important scientific question with great practical significance. This study focuses on the four major sand fields in this region, i.e. Hulunbeeir, Horqin, Otindag and Mu Us, and examines the past vegetation changes in response to climate change. Based on a comparison of common satellite datasets (SPOT, MODIS, GIMMS), the GIMMS NDVI product is selected for its relatively long time span and stability. We use both linear regression and nonparametric Greenness Rate of Change (GRC) index to calculate the trends, and both results are highly consistent with each other. Our results show that during the study period of 1982-2013, Mu Us, the southernmost sand field, experienced the largest amount of greening, whereas most of the other sand fields experienced little changes. NDVI showed most increase in the warm seasons (summer and fall), and generally decreased in winter. Spatial variations exists with such trends. For most of the sandy fields, NDVI increased in the South and East, and decreased in the North and West. These changes could be related to the decline of Eastern Asian Summer Monsoon in recent decades, which tends to increase precipitation in the South and decrease it in the North. Using ERA-Interim reanalysis data, we examine the relationship between NDVI and a variety of climate factors. We found that NDVI is most closely associated with temperature, evaporation, precipitation, surface sensible heat flux, and wind. A multiple linear regression model shows that these factors together could explain 76% of the total variance in NDVI. Using relative weights to assess the independent contribution of these variables, we found that the most important factor is temperature, followed by precipitation and evaporation, wind and

  13. Nitrogen removal in a combined system: vertical vegetated bed over horizontal flow sand bed.

    Science.gov (United States)

    Kantawanichkul, S; Neamkam, P; Shutes, R B

    2001-01-01

    Pig farm wastewater creates various problems in many areas throughout Thailand. Constructed wetland systems are an appropriate, low cost treatment option for tropical countries such as Thailand. In this study, a combined system (a vertical flow bed planted with Cyperus flabelliformis over a horizontal flow sand bed without plants) was used to treat settled pig farm wastewater. This system is suitable for using in farms where land is limited. The average COD and nitrogen loading rate of the vegetated vertical flow bed were 105 g/m2 x d and 11 g/m2 x d respectively. The wastewater was fed intermittently at intervals of 4 hours with a hydraulic loading rate of 3.7 cm/d. The recirculation of the effluent increased total nitrogen (TN) removal efficiency from 71% to 85%. The chemical oxygen demand (COD) and total Kjeldahl nitrogen (TKN) removal efficiencies were 95% and 98%. Nitrification was significant in vertical flow Cyperus bed, and the concentration of nitrate increased by a factor of 140. The horizontal flow sand bed enhanced COD removal and nitrate reduction was 60%. Plant uptake of nitrogen was 1.1 g N/m2 x d or dry biomass production was 2.8 kg/m2 over 100 days.

  14. Soil restoration research advances of artificial sand-binding vegetation ecosystem in the Tengger Desert, Northern China

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Soil plays an important role in desert ecosystem, and is vital in constructing a steady desert ecosystem. The management and restoration of desertified land have been the focus of much discussion. The soil in Shapotou desert region has developed remarkably since artificial sand-binding vegetation established in 1946. The longer the period of dune stabilization, the greater the thickness of microbiotic crusts and subsoil. Meanwhile, proportion of silt and clay increased significantly, and soil bulk density declinced. The content of soil organic matter, N, P, and K similarly increased. Therefore, soil has developed from aeolian sand soil to Calcic-Orthic aridisols. This paper discusses the effects brought about by dust, microbiotic soil crust and soil microbes on soil-forming process. Then, we analyzed the relation between soil formation and sand-binding vegetation evolution, in order to provide a baseline for both research on desert ecosystem recovery and ecological environment governance in arid and semi-arid areas.

  15. Measuring splash erosion potential under vegetation using sand-filled splash cups

    Science.gov (United States)

    Geißler, C.; Scholten, T.; Kühn, P.

    2009-04-01

    In soil erosion research it is widely accepted that vegetation is not only protecting the soil from the erosive power of rainfall. Under specific circumstances (like they occur e.g. in forests) vegetation can enhance the erosive power of rainfall by modifying its properties (esp. drop size distribution, kinetic energy). The adjacent processes are very complex and variable in time and space and depend on numerous variables (e.g. rainfall intensity, drop size distribution, drop fall velocity, height of the canopy, density of the canopy, crown and leaf traits, LAI). In the last decades a large number of studies focused this process-system using different methods and came to often different results (Brandt 1989; Calder 2001; Foot & Morgan 2005; Hall & Calder 1993; Mosley 1982; Nanko et al. 2006; Park & Cameron 2008; Vis 1986). The main objective of our field experiments in subtropical China is to quantify the modification of precipitation by its pass through the canopy layer for six different tree species, three different successional stages and three different biodiversity classes. For this, new splash cups were developed based on the archetype of Ellison (1947). In contrast to previous studies with splash cups (Vis 1986) or other forms of splash cups (Kinnell 1974; Morgan 1981) we measured the unit sand remaining inside the cup after single natural rainfall events. The new splash cups contain of a PE-flask to which a carrier system has been attached. In this carrier system a cup filled with unit sand of 125-200 µm particle size is inserted. At the bottom of the cup a silk cover is attached to avoid the loss of sand and to guarantee free drainage of water from the cup to the carrier and vice versa. Cup and PE-flask are hydraulically connected by a cotton wick to assure constant moisture content throughout the time of measuring. Additionally, vents in the carrier system ensure that the pressure arising from the insertion of the cup doesn't lead to a loss of sand. The

  16. Sand incursion into temperate (Lithuania) and tropical (the Bahamas) maritime vegetation: Georadar visualization of target-rich aeolian lithosomes

    Science.gov (United States)

    Buynevich, Ilya V.; Savarese, Michael; Curran, H. Allen; Bitinas, Albertas; Glumac, Bosiljka; Pupienis, Donatas; Kopcznski, Karen; Dobrotin, Nikita; Gnivecki, Perry; Boush, Lisa Park; Damušytė, Aldona

    2017-08-01

    Interaction of windblown sand with maritime vegetation, either as dune migration or episodic grain transport is a common phenomenon along many sandy coasts. Vegetation introduces antecedent surface roughness, especially when scaled to the landform height, but its role may be concealed if overwhelmed by aeolian incursion and burial. Where field observations and cores lack detail for characterizing this complex process, ground-penetrating radar (GPR) offers continuous visualization of aeolian sequences. Along the Curonian Spit, Lithuania, dune reactivation phases resulted in massive invasion of siliciclastic sand triggered by natural perturbations and land clearance. Massive (>30 m high) dunes entombed mature pine, oak, and alder stands and this process is ongoing. Mid-frequency (200 MHz) georadar surveys reveal landward-dipping lateral accretion surfaces interrupted by high-amplitude point-source anomalies produced by recently buried trees. In tropical regions, dense vegetation and potential for rapid lithification of carbonate sand results in more complex internal structures. Along the windward coast of San Salvador Island, the Bahamas, a massive dune has buried several generations of maritime scrubland, resulting in highly chaotic reflection pattern and high target density. On a nearby Little Exuma Island, numerous reentrants in aeolianites promoted formation of blowouts and incursion of windblown sand 10-25 m into a silver thatch palm forest. High-frequency (800 MHz) GPR images resolve diffractions from trunks and roots buried by > 2 m of oolitic sand. Basal refection morphology helps differentiate the irregular dune/beachrock surface from a smooth palm-frond mat. Aside from detecting and mapping buried vegetation, geophysical images capture its effect on sediment accumulation. This has the potential for differentiating its effect from other discordant structures within dunes (clasts, dissolution voids, trunk molds, burrows, and cultural remains).

  17. Effects of Sand Dune and Vegetation in the Coastal Area of Sri Lanka at the Indian Ocean Tsunami

    Science.gov (United States)

    Tanaka, Norio; Sasaki, Yasushi; Mowjood, M. I. M.

    This study explored the effects of coastal vegetation and sand dune on tsunami protection based on field observations carried out after the Indian Ocean tsunami on December 26, 2004. The representative vegetation was classified into six types according to their habitat and the stand structures of the trees. The impact of vegetation structure on drag forces was analyzed using the observed characteristics of the tree species. The drag coefficient, including the vertical stand structures of the trees, Cd-all, and the vegetation thickness in a unit area, dNu (d: reference diameter of trees, Nu: number of trees per unit area), varied greatly with the species classification. Based on the field survey and data analysis, Rhizophora apiculata and Rhizophora mucronata (Rhizophora apiculata-type), kinds of mangroves, and Pandanus odoratissimus, representative tree that grows in beach sand, were found to be especially effective in providing protection from tsunami-damage due to their complex aerial root structures. The breaking moment of the trees was investigated through a pulling test for the representative trees. The threshold value for breaking moment was compared to the drag-force moment acting on the trees located at the tsunami-damaged site. The breaking moment equation represents well the limitation of the representative species with the tsunami height. It arrives at a hypothesis about which species could better withstand the effects of a tsunami wave. Sand dune and lagoon is a typical landscape in most part of the coastal zone of Sri Lanka. The combination of the sand dune followed by vegetation toward landside played an important role in retarding tsunami. Two layers of forest in the vertical direction with P. odoratissimus and Casuarina equisetifolia and a horizontal forest structure of small and large diameter trees were also important for increasing drag, trapping floating objects, broken branches, houses, and people. These information should be considered in

  18. Mediterranean Coastal Sand Dune Vegetation: Influence of Natural and Anthropogenic Factors

    Science.gov (United States)

    Ciccarelli, Daniela

    2014-08-01

    The aim of the present work was to assess the conservation status of coastal dune systems in Tuscany (Italy). Emphasis was given to the presence and abundance of plant communities identified as habitat in accordance with the Directive 92/43/EEC. Twenty transects perpendicular to the shoreline were randomly positioned on the whole coastal area (30 km in length) in order to sample the full spectrum of plant communities. Vegetation zonation and relationships with the most frequent disturbance factors in the study area—beach cleaning, coastline erosion, presence of paths and roads, bathing settlements and trampling—were investigated through principal coordinate analysis and canonical correspondence analysis. Natural factors, such as distance from the sea and total length, were also considered. Differences in the conservation status of the sites were found, ranging from the total disappearance of the foredune habitats to the presence of the complete psammophilous (sand-loving) plant communities. Erosion, trampling, and paths were found to be closely correlated with degradation and habitat loss. Furthermore, the overall plant species diversity of dunes was measured with NHDune, a modified version of the Shannon index; while the incidence of invasive taxa was calculated using N, a naturalness index. However, these diversity indices proved to be a weaker bioindicator of ecosystem integrity than habitat composition along transects. A possible strategy for the conservation and management of these coastal areas could be to protect the foredunes from erosion and limit trampling through the installation of footbridges or the use of appropriate fences.

  19. Mediterranean coastal sand dune vegetation: influence of natural and anthropogenic factors.

    Science.gov (United States)

    Ciccarelli, Daniela

    2014-08-01

    The aim of the present work was to assess the conservation status of coastal dune systems in Tuscany (Italy). Emphasis was given to the presence and abundance of plant communities identified as habitat in accordance with the Directive 92/43/EEC. Twenty transects perpendicular to the shoreline were randomly positioned on the whole coastal area (30 km in length) in order to sample the full spectrum of plant communities. Vegetation zonation and relationships with the most frequent disturbance factors in the study area-beach cleaning, coastline erosion, presence of paths and roads, bathing settlements and trampling-were investigated through principal coordinate analysis and canonical correspondence analysis. Natural factors, such as distance from the sea and total length, were also considered. Differences in the conservation status of the sites were found, ranging from the total disappearance of the foredune habitats to the presence of the complete psammophilous (sand-loving) plant communities. Erosion, trampling, and paths were found to be closely correlated with degradation and habitat loss. Furthermore, the overall plant species diversity of dunes was measured with NHDune, a modified version of the Shannon index; while the incidence of invasive taxa was calculated using N, a naturalness index. However, these diversity indices proved to be a weaker bioindicator of ecosystem integrity than habitat composition along transects. A possible strategy for the conservation and management of these coastal areas could be to protect the foredunes from erosion and limit trampling through the installation of footbridges or the use of appropriate fences.

  20. Remote sensing of sagebrush canopy nitrogen

    Science.gov (United States)

    Mitchell, Jessica J.; Glenn, Nancy F.; Sankey, Temuulen T.; Derryberry, DeWayne R.; Germino, Matthew J.

    2012-01-01

    This paper presents a combination of techniques suitable for remotely sensing foliar Nitrogen (N) in semiarid shrublands – a capability that would significantly improve our limited understanding of vegetation functionality in dryland ecosystems. The ability to estimate foliar N distributions across arid and semi-arid environments could help answer process-driven questions related to topics such as controls on canopy photosynthesis, the influence of N on carbon cycling behavior, nutrient pulse dynamics, and post-fire recovery. Our study determined that further exploration into estimating sagebrush canopy N concentrations from an airborne platform is warranted, despite remote sensing challenges inherent to open canopy systems. Hyperspectral data transformed using standard derivative analysis were capable of quantifying sagebrush canopy N concentrations using partial least squares (PLS) regression with an R2 value of 0.72 and an R2 predicted value of 0.42 (n = 35). Subsetting the dataset to minimize the influence of bare ground (n = 19) increased R2 to 0.95 (R2 predicted = 0.56). Ground-based estimates of canopy N using leaf mass per unit area measurements (LMA) yielded consistently better model fits than ground-based estimates of canopy N using cover and height measurements. The LMA approach is likely a method that could be extended to other semiarid shrublands. Overall, the results of this study are encouraging for future landscape scale N estimates and represent an important step in addressing the confounding influence of bare ground, which we found to be a major influence on predictions of sagebrush canopy N from an airborne platform.

  1. Big sagebrush seed bank densities following wildfires

    Science.gov (United States)

    Big sagebrush (Artemisia spp.) is a critical shrub to many wildlife species including sage grouse (Centrocercus urophasianus), mule deer (Odocoileus hemionus), and pygmy rabbit (Brachylagus idahoensis). Big sagebrush is killed by wildfires and big sagebrush seed is generally short-lived and do not s...

  2. Ecological adaptation strategies of annual plants in artificial vegetation-stabilized sand dune in Shapotou Region

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jingguang; LI Xinrong; WANG Xinping; WANG Gang

    2004-01-01

    Taking annual plant Eragrostis poaeides in the artificial vegetation-stabilized sand dune in the Shapotou Experimental Research Station as example, study has been done on the adaptation strategies of annual plants to random environment through fixed quadrat observations of population changes and fixed plant determinations of individual growth, seed germination,population dynamics, spatial distribution pattern of population, competition and regulation. During the growing season, the survival rate of annual plants depends on the precipitation intensity and precipitation duration which activate the germination of seeds. The optimal germination strategy of annual plants in this habitat during the growing season appears as continuous germination under suitable conditions. Such continuous germination is an adaptive characteristic of annual plants to random environment. In addition, the variation processes of population size and regulation mechanism of E. poaeoides are studied. Statistical results of natural population in four consecutive years show that water condition in the habitat is the leading factor affecting the population dynamics of E. poaeoides. During the establishment period E. poaeoides had a higher death rate, but in the middle to later period they could survive stably. Due to the limitation of soil moisture, the competition among individuals for water inevitably led to self-thinning phenomena. Under very arid condition, the survival curve of annual herbs entirely appears as Deevey Ⅲ type (C type), but under relatively adequate precipitation condition, the survival curve appears as intermediate type. The strategy of life history obviously appears as r-strategy. Plant species of r-strategy often occurs in the early succession stage of the communities. In the relatively adequate and evenly-distributed rainfall years, E. poaeoides population exhibited a density-dependent, i. e., survival rate increased with decrease in population density. The main pattern to

  3. Multiscale sagebrush rangeland habitat modeling in the Gunnison Basin of Colorado

    Science.gov (United States)

    Homer, Collin G.; Aldridge, Cameron L.; Meyer, Debra K.; Schell, Spencer J.

    2013-01-01

    ). Results were validated with an independent accuracy assessment, with root mean square error values ranging from 3.5 (percent big sagebrush) to 10.8 (percent bare ground) at the QuickBird scale, and from 4.5 (percent Wyoming sagebrush) to 12.4 (percent herbaceous) at the full Landsat scale. These results offer significant improvement in sagebrush ecosystem quantification across the Gunnison Basin, and also provide maximum flexibility to users to employ for a wide variety of applications. Further refinement of these remote sensing component predictions in the future will be most likely achieved by focusing on more extensive ground plot sampling, employing new high and moderate-resolution satellite sensors that offer additional spectral bands for vegetation discrimination, and capturing more dates of satellite imagery to better represent phenological variation.

  4. Drought offset ecological restoration program-induced increase in vegetation activity in the Beijing-Tianjin Sand Source Region, China.

    Science.gov (United States)

    Wu, Zhitao; Wu, Jianjun; He, Bin; Liu, Jinghui; Wang, Qianfeng; Zhang, Hong; Liu, Yong

    2014-10-21

    To improve the ecological conditions, the Chinese government adopted six large-scale ecological restoration programs including 'Three-North Shelterbelt Project', "Grain for Green Project" and "Beijing-Tianjin Sand Source Control Project". Meanwhile, these ecologically vulnerable areas have experienced frequent droughts. However, little attention has been paid to the impact of drought on the effectiveness of these programs. Taking Beijing-Tianjin Sand Source Region (BTSSR) as study area, we investigated the role of droughts and ecological restoration program on trends of vegetation activities and to address the question of a possible "drought signal" in assessing effectiveness of ecological restoration program. The results demonstrate the following: (1) Vegetation activity increased in the BTSSR during 2000-2010, with 58.44% of the study area showing an increased NDVI, of which 11.80% had a significant increase at 0.95 confidential level. The decreasing NDVI trends were mainly concentrated in a southwest-to-northeast strip in the study area. (2) Drought was the main driving force for a decreasing trend of vegetation activity in the southwest-to-northeast regions of the BTSSR at the regional and spatial scales. Summer droughts in 2007 and 2009 contributed to the decreasing trend in NDVI. The severe and extreme droughts in summer reduced the NDVI by approximately 13.06% and 23.55%, respectively. (3) The residual analysis result showed that human activities, particularly the ecological restoration programs, have a positive impact on vegetation change. Hence, the decreasing trends in the southwest-to-northeast regions of the BTSSR cannot be explained by the improper ecological restoration program and is partly explained by droughts, especially summer droughts. Therefore, drought offset the ecological restoration program-induced increase in vegetation activity in the BTSSR.

  5. Common raven occurrence in relation to energy transmission line corridors transiting human-altered sagebrush steppe

    Science.gov (United States)

    Coates, Peter S.; Howe, Kristy B.; Casazza, Michael L.; Delehanty, David J.

    2014-01-01

    Energy-related infrastructure and other human enterprises within sagebrush steppe of the American West often results in changes that promote common raven (Corvus corax; hereafter, raven) populations. Ravens, a generalist predator capable of behavioral innovation, present a threat to many species of conservation concern. We evaluate the effects of detailed features of an altered landscape on the probability of raven occurrence using extensive raven survey (n= 1045) and mapping data from southern Idaho, USA. We found nonlinear relationships between raven occurrence and distances to transmission lines, roads, and facilities. Most importantly, raven occurrence was greater with presence of transmission lines up to 2.2 km from the corridor.We further explain variation in raven occurrence along anthropogenic features based on the amount of non-native vegetation and cover type edge, such that ravens select fragmented sagebrush stands with patchy, exotic vegetative introgression. Raven occurrence also increased with greater length of edge formed by the contact of big sagebrush (Artemisia tridentate spp.) with non-native vegetation cover types. In consideration of increasing alteration of sagebrush steppe, these findings will be useful for planning energy transmission corridor placement and other management activities where conservation of sagebrush obligate species is a priority.

  6. Sagebrush Types, Soil Regime Classes, and Fire Frequencies in Greater Sage-grouse Population Areas of the Snake River Plain (1984-2013)

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This three-band, 30-m resolution raster contains sagebrush vegetation types, soil temperature/moisture regime classes, and large fire frequencies across greater...

  7. Sagebrush Types, Soil Regime Classes, and Fire Frequencies in Greater Sage-grouse Population Areas of the Wyoming Basin (1984-2013)

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This three-band, 30-m resolution raster contains sagebrush vegetation types, soil temperature/moisture regime classes, and large fire frequencies across greater...

  8. Sagebrush Types, Soil Regime Classes, and Fire Frequencies in Greater Sage-grouse Population Areas of the Southern Great Basin (1984-2013)

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This three-band, 30-m resolution raster contains sagebrush vegetation types, soil temperature/moisture regime classes, and large fire frequencies across greater...

  9. Sagebrush Types, Soil Regime Classes, and Fire Frequencies in Greater Sage-grouse Population Areas of the Northern Great Basin (1984-2013)

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This three-band, 30-m resolution raster contains sagebrush vegetation types, soil temperature/moisture regime classes, and large fire frequencies across greater...

  10. Sagebrush Types, Soil Regime Classes, and Fire Frequencies in Greater Sage-grouse Population Areas of the Great Plains (1984-2013)

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This three-band, 30-m resolution raster contains sagebrush vegetation types, soil temperature/moisture regime classes, and large fire frequencies across greater...

  11. Sagebrush Types, Soil Regime Classes, and Fire Frequencies in Greater Sage-grouse Population Areas of the Colorado Plateau (1984-2013)

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This three-band, 30-m resolution raster contains sagebrush vegetation types, soil temperature/moisture regime classes, and large fire frequencies across greater...

  12. Sagebrush Types, Soil Regime Classes, and Fire Frequencies in Greater Sage-grouse Population Areas of the Columbia Basin (1984-2013)

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This three-band, 30-m resolution raster contains sagebrush vegetation types, soil temperature/moisture regime classes, and large fire frequencies across greater...

  13. Contrasting the patterns of aspen forest and sagebrush shrubland gross ecosystem exchange in montane Idaho, USA

    Science.gov (United States)

    Fellows, A.; Flerchinger, G. N.; Seyfried, M. S.

    2015-12-01

    We investigated the environmental controls on Gross Ecosystem Exchange (GEE) at an aspen forest and a sagebrush shrubland in southwest Idaho. The two sites were situated within a mosaic of vegetation that included temperate deciduous trees, shrublands, and evergreen conifer trees. The distribution of vegetation was presumably linked to water availability; aspen were located in wetter high-elevations sites, topographic drainages, or near snow drifts. Local temperatures have increased by ~2-3 °C over the past 50 years and less precipitation has arrived as snow. These ongoing changes in weather may impact snow water redistribution, plant-water availability, and plant-thermal stress, with associated impacts on vegetation health and production. We used eddy covariance to measure the exchange of water and carbon dioxide above the two sites and partitioned the net carbon flux to determine GEE. The sagebrush record was from 2003-2007 and the aspen record was from 2007-12. The region experienced a modest-to-severe drought in 2007, with ~73% of typical precipitation. We found that aspen were local "hotspots" for carbon exchange; peak rates of aspen GEE were ~ 60% greater than the peak rates of sagebrush GEE. Light, temperature, and water availability were dominant controls on the seasonality of GEE at both sites. Sagebrush and aspen were dormant during winter, limited by cold temperatures during winter and early spring, and water availability during mid-late summer. The onset of summer drought was typically later in the aspen than in the sagebrush. Drifting snow, lateral water redistribution, or increased rooting depths may have increased water availability in the aspen stand. Seasonal patterns of observed soil moisture and evaporation indicated aspen were rooted to >= 1 m. The sagebrush and aspen both responded strongly to the 2007 drought; peak GEE decreased by ~75%, peak GEE shifted to earlier parts of the year, and mid-summer GEE was decreased. We consider potential

  14. Carbon sequestration capacity of shifting sand dune after establishing new vegetation in the Tengger Desert, northern China.

    Science.gov (United States)

    Yang, Haotian; Li, Xinrong; Wang, Zengru; Jia, Rongliang; Liu, Lichao; Chen, Yongle; Wei, Yongping; Gao, Yanhong; Li, Gang

    2014-04-15

    Reconstructing vegetation in arid and semiarid areas has become an increasingly important management strategy to realize habitat recovery, mitigate desertification and global climate change. To assess the carbon sequestration potential in areas where sand-binding vegetation has been established on shifting sand dunes by planting xeric shrubs located near the southeastern edge of the Tengger Desert in northern China, we conducted a field investigation of restored dune regions that were established at different times (20, 30, 47, and 55 years ago) in the same area. We quantified the total organic carbon (TOC) in each ecosystem by summing the individual carbon contributions from the soil (soil organic carbon; SOC), shrubs, and grasses in each system. We found that the TOC, as well as the amount of organic carbon in the soil, shrubs, and grasses, significantly increased over time in the restored areas. The average annual rate of carbon sequestration was highest in the first 20 years after restoration (3.26 × 10(-2)kg·m(-2) ·year(-1)), and reached a stable rate (2.14 × 10(-2) kg·m(-2) ·year(-1)) after 47 years. Organic carbon storage in soil represented the largest carbon pool for both restored systems and a system containing native vegetation, accounting for 67.6%-85.0% of the TOC. Carbon in grass root biomass, aboveground grass biomass, litter, aboveground shrub biomass, and shrub root biomass account for 10.0%-21.0%, 0.2%-0.6%, 0.1%-0.2%, 1.7%-12.1% and 0.9%-6.2% of the TOC, respectively. Furthermore, we found that the 55-year-old restored system has the capacity to accumulate more TOC (1.02 kg·m(-2) more) to reach the TOC level found in the natural vegetation system. These results suggest that restoring desert ecosystems may be a cost-effective and environmentally friendly way to sequester CO2 from the atmosphere and mitigate the effects of global climate change.

  15. Characterization and Ecophysiological Observations on Coastal Sand Dune Vegetation from Goa, Central West Coast, India

    Digital Repository Service at National Institute of Oceanography (India)

    Rodrigues, R.S.

    was grouped together using the statistical package of PRIMER 6. Data on coastal land forms and erosion were calculated in terms of percentage, utilizing earlier published records. Data revealed a total 338 species of CSD flora, of which 92 species were... sand dune flora (a) C. arenarius (b) I. pes- caparae (c) S. littoreus. Plate 5.1 Effect of Cd exposure on I. pes-caparae. Plate 7.1: Erosion- natural threat to CSD habitat, Mandrem, Goa. Plate 7.2: Successful invaders in CSD areas (a) Lantana...

  16. Seasonal variation in soil microbial biomass carbon and nitrogen in an artificial sand-binding vegetation area in Shapotou, northern China

    Institute of Scientific and Technical Information of China (English)

    YuYan Zhou; XuanMing Zhang; XiaoHong Jia; JinQin Ma; YanHong Gao

    2013-01-01

    In this study, seasonal variation characteristics of surface soil microbial biomass carbon (MBC) and soil microbial biomass nitrogen (MBN) of an artificial vegetation area located in Shapotou for different time periods were studied using the chloroform fumigation method, and the results were compared with those of near-natural vegetation areas and mobile dunes. Results showed that the MBC and MBN levels in the 0-5 cm soil layer were higher in autumn than in summer and spring. As the prolongation of vegetation restoration raised the MBC and MBN levels in summer and autumn, no clear variation was found in spring. However, the MBC and MBN in 5-20 cm had no obvious seasonal variation. During summer and autumn, the variation trend of MBC and MBN in the vertical direction was shown to be 0-5>5-10>10-20 cm in the vegetation area, while for mobile dunes, the MBC and MBN levels increased as the depth increased. The natural vegetation area was shown to possess the highest MBC and MBN levels, and yet mobile dunes have the lowest MBC and MBN levels. MBC and MBN levels in artificial sand-binding vegetation increased with the prolongation of vegetation restoration, indicating that the succession of sand-binding vegetation will result in the ac-cumulation of soil carbon and nitrogen, as well as the restoration of soil fertility.

  17. Effects of sedimentation on soil physical and chemical properties and vegetation characteristics in sand dunes at the Southern Dongting Lake region, China

    Science.gov (United States)

    Pan, Ying; Zhang, Hao; Li, Xu; Xie, Yonghong

    2016-11-01

    Sedimentation is recognized as a major factor determining the ecosystem processes of lake beaches; however, the underlying mechanisms, especially in freshwater sand dunes, have been insufficiently studied. To this end, nine belt transects from nine freshwater sand dunes, classified into low (28.1 m) based on their elevations in 1972, were sampled to investigate differences in sedimentation rate and soil and vegetation characteristics in Southern Dongting Lake, China. Sedimentation rate, soil sand content, and soil pH increased, whereas soil clay, fine silt, moisture (MC), organic matter (OM), total N, and total K content, in addition to the growth and biodiversity of sand dune plants generally decreased with decreasing belt transect elevation. Regression analyses revealed that the negative effects of sedimentation on the ecosystem functions of sand dunes could be attributed to higher fine sand content in deposited sediments and stronger inhibition of plant growth. These results are consistent with previous studies performed in coastal sand dunes, which highlights the importance of sedimentation in determining ecological processes.

  18. Effects of disturbance on vegetation by sand accretion and erosion across coastal dune habitats on a barrier island.

    Science.gov (United States)

    Miller, Thomas E

    2015-01-12

    Coastal geomorphology and vegetation are expected to be particularly sensitive to climate change, because of disturbances caused by sea-level rise and increased storm frequency. Dunes have critical reciprocal interactions with vegetation; dunes create habitats for plants, while plants help to build dunes and promote geomorphological stability. These interactions are also greatly affected by disturbances associated with sand movement, either in accretion (dune building) or in erosion. The magnitude and intensity of disturbances are expected to vary with habitat, from the more exposed and less stable foredunes, to low-lying and flood-prone interdunes, to the protected and older backdunes. Permanent plots were established at three different spatial scales on St George Island, FL, USA, where the vegetation and dune elevation were quantified annually from 2011 to 2013. Change in elevation, either through accretion or erosion, was used as a measure of year-to-year disturbance over the 2 years of the study. At the scale of different dune habitats, foredunes were found to have the greatest disturbance, while interdunes had the least. Elevation and habitat (i.e. foredune, interdune, backdune) were significantly correlated with plant community composition. Generalized linear models conducted within each habitat show that the change in elevation (disturbance) is also significantly correlated with the plant community, but only within foredunes and interdunes. The importance of disturbance in exposed foredunes was expected and was found to be related to an increasing abundance of a dominant species (Uniola paniculata) in eroding areas. The significant effect of disturbance in the relatively stable interdunes was surprising, and may be due to the importance of flooding associated with small changes in elevation in these low-lying areas. Overall, this study documents changes in the plant community associated with elevation, and demonstrates that the foredune and interdune

  19. The impact of an increasing elephant population on the woody vegetation in southern Sabi Sand Wildtuin, South Africa

    Directory of Open Access Journals (Sweden)

    Kay Hiscocks

    1999-02-01

    Full Text Available In 1961, a fence was erected between privately owned Sabi Sand Wildtuin (SSW and the Kruger National Park (KNP, which largely prevented elephants entering the SSW. In 1993, the fence was removed. This lead to a rapid influx of elephants into the SSW during the winter months, most of which move back into the KNP during the wet summer season. In 1993, the SSW elephant population was 1/1045 ha but increased to 1/305.8 ha in 1996. It more than doubled to 1/146 ha in 1998. This study was undertaken on the property Kingston, in southern SSW, to assess the impact of elephants on woody vegetation and determine why they show seasonal dietary preferences for specific tree parts. Vegetation utilisation was recorded on a five kilometer transect of vehicle track in 1996 and repeated in 1998. From the transect, species density was calculated for those trees impacted on. Trees that had been newly bark stripped were recorded in 1996 and 1998. Cambium samples were collected in summer and winter from eight tree species. Field observations of elephants impacting on woody vegetation augmented the data base. Transect analysis showed a strong correlation between tree utilisation and density. The most visual damage was of Combretum apiculatum, Acacia burkei, Pterocarpus rotundifolius and Grewia species. Tree damage increased by 73 from 1996 to 1998. Significantly higher levels of nitrogen, sodium and magnesium were found in the species most regularly bark stripped. Bull elephants were responsible for 94 of the trees seen uprooted. The results suggested that SSW can sustain the present elephant population, but further influx at the present rate of increase, will have a negative impact on the reserve.

  20. Relative abundance of and composition within fungal orders differ between cheatgrass (Bromus tectorum and sagebrush (Artemisia tridentata-associated soils.

    Directory of Open Access Journals (Sweden)

    Carolyn F Wiber

    Full Text Available Nonnative Bromus tectorum (cheatgrass is decimating sagebrush steppe, one of the largest ecosystems in the Western United States, and is causing regional-scale shifts in the predominant plant-fungal interactions. Sagebrush, a native perennial, hosts arbuscular mycorrhizal fungi (AMF, whereas cheatgrass, a winter annual, is a relatively poor host of AMF. This shift is likely intertwined with decreased carbon (C-sequestration in cheatgrass-invaded soils and alterations in overall soil fungal community composition and structure, but the latter remain unresolved. We examined soil fungal communities using high throughput amplicon sequencing (ribosomal large subunit gene in the 0-4 cm and 4-8 cm depth intervals of six cores from cheatgrass- and six cores from sagebrush-dominated soils. Sagebrush core surfaces (0-4 cm contained higher nitrogen and total C than cheatgrass core surfaces; these differences mirrored the presence of glomalin related soil proteins (GRSP, which has been associated with AMF activity and increased C-sequestration. Fungal richness was not significantly affected by vegetation type, depth or an interaction of the two factors. However, the relative abundance of seven taxonomic orders was significantly affected by vegetation type or the interaction between vegetation type and depth. Teloschistales, Spizellomycetales, Pezizales and Cantharellales were more abundant in sagebrush libraries and contain mycorrhizal, lichenized and basal lineages of fungi. Only two orders (Coniochaetales and Sordariales, which contain numerous economically important pathogens and opportunistic saprotrophs, were more abundant in cheatgrass libraries. Pleosporales, Agaricales, Helotiales and Hypocreales were most abundant across all libraries, but the number of genera detected within these orders was as much as 29 times lower in cheatgrass relative to sagebrush libraries. These compositional differences between fungal communities associated with cheatgrass

  1. Relative abundance of and composition within fungal orders differ between cheatgrass (Bromus tectorum and sagebrush (Artemisia tridentate-associated soils.

    Directory of Open Access Journals (Sweden)

    Carolyn F Weber

    Full Text Available Nonnative Bromus tectorum (cheatgrass is decimating sagebrush steppe, one of the largest ecosystems in the Western United States, and is causing regional-scale shifts in the predominant plant-fungal interactions. Sagebrush, a native perennial, hosts arbuscular mycorrhizal fungi (AMF, whereas cheatgrass, a winter annual, is a relatively poor host of AMF. This shift is likely intertwined with decreased carbon (C-sequestration in cheatgrass-invaded soils and alterations in overall soil fungal community composition and structure, but the latter remain unresolved. We examined soil fungal communities using high throughput amplicon sequencing (ribosomal large subunit gene in the 0-4 cm and 4-8 cm depth intervals of six cores from cheatgrass- and six cores from sagebrush-dominated soils. Sagebrush core surfaces (0-4 cm contained higher nitrogen and total C than cheatgrass core surfaces; these differences mirrored the presence of glomalin related soil proteins (GRSP, which has been associated with AMF activity and increased C-sequestration. Fungal richness was not significantly affected by vegetation type, depth or an interaction of the two factors. However, the relative abundance of seven taxonomic orders was significantly affected by vegetation type or the interaction between vegetation type and depth. Teloschistales, Spizellomycetales, Pezizales and Cantharellales were more abundant in sagebrush libraries and contain mycorrhizal, lichenized and basal lineages of fungi. Only two orders (Coniochaetales and Sordariales, which contain numerous economically important pathogens and opportunistic saprotrophs, were more abundant in cheatgrass libraries. Pleosporales, Agaricales, Helotiales and Hypocreales were most abundant across all libraries, but the number of genera detected within these orders was as much as 29 times lower in cheatgrass relative to sagebrush libraries. These compositional differences between fungal communities associated with cheatgrass

  2. Relative abundance of and composition within fungal orders differ between cheatgrass (Bromus tectorum) and sagebrush (Artemisia tridentate)-associated soils.

    Science.gov (United States)

    Weber, Carolyn F; King, Gary M; Aho, Ken

    2015-01-01

    Nonnative Bromus tectorum (cheatgrass) is decimating sagebrush steppe, one of the largest ecosystems in the Western United States, and is causing regional-scale shifts in the predominant plant-fungal interactions. Sagebrush, a native perennial, hosts arbuscular mycorrhizal fungi (AMF), whereas cheatgrass, a winter annual, is a relatively poor host of AMF. This shift is likely intertwined with decreased carbon (C)-sequestration in cheatgrass-invaded soils and alterations in overall soil fungal community composition and structure, but the latter remain unresolved. We examined soil fungal communities using high throughput amplicon sequencing (ribosomal large subunit gene) in the 0-4 cm and 4-8 cm depth intervals of six cores from cheatgrass- and six cores from sagebrush-dominated soils. Sagebrush core surfaces (0-4 cm) contained higher nitrogen and total C than cheatgrass core surfaces; these differences mirrored the presence of glomalin related soil proteins (GRSP), which has been associated with AMF activity and increased C-sequestration. Fungal richness was not significantly affected by vegetation type, depth or an interaction of the two factors. However, the relative abundance of seven taxonomic orders was significantly affected by vegetation type or the interaction between vegetation type and depth. Teloschistales, Spizellomycetales, Pezizales and Cantharellales were more abundant in sagebrush libraries and contain mycorrhizal, lichenized and basal lineages of fungi. Only two orders (Coniochaetales and Sordariales), which contain numerous economically important pathogens and opportunistic saprotrophs, were more abundant in cheatgrass libraries. Pleosporales, Agaricales, Helotiales and Hypocreales were most abundant across all libraries, but the number of genera detected within these orders was as much as 29 times lower in cheatgrass relative to sagebrush libraries. These compositional differences between fungal communities associated with cheatgrass- and

  3. Relative abundance of and composition within fungal orders differ between cheatgrass (Bromus tectorum) and sagebrush (Artemisia tridentata)-associated soils.

    Science.gov (United States)

    Wiber, Carolyn F; King, Gary M; Aho, Ken

    2015-01-01

    Nonnative Bromus tectorum (cheatgrass) is decimating sagebrush steppe, one of the largest ecosystems in the Western United States, and is causing regional-scale shifts in the predominant plant-fungal interactions. Sagebrush, a native perennial, hosts arbuscular mycorrhizal fungi (AMF), whereas cheatgrass, a winter annual, is a relatively poor host of AMF. This shift is likely intertwined with decreased carbon (C)-sequestration in cheatgrass-invaded soils and alterations in overall soil fungal community composition and structure, but the latter remain unresolved. We examined soil fungal communities using high throughput amplicon sequencing (ribosomal large subunit gene) in the 0-4 cm and 4-8 cm depth intervals of six cores from cheatgrass- and six cores from sagebrush-dominated soils. Sagebrush core surfaces (0-4 cm) contained higher nitrogen and total C than cheatgrass core surfaces; these differences mirrored the presence of glomalin related soil proteins (GRSP), which has been associated with AMF activity and increased C-sequestration. Fungal richness was not significantly affected by vegetation type, depth or an interaction of the two factors. However, the relative abundance of seven taxonomic orders was significantly affected by vegetation type or the interaction between vegetation type and depth. Teloschistales, Spizellomycetales, Pezizales and Cantharellales were more abundant in sagebrush libraries and contain mycorrhizal, lichenized and basal lineages of fungi. Only two orders (Coniochaetales and Sordariales), which contain numerous economically important pathogens and opportunistic saprotrophs, were more abundant in cheatgrass libraries. Pleosporales, Agaricales, Helotiales and Hypocreales were most abundant across all libraries, but the number of genera detected within these orders was as much as 29 times lower in cheatgrass relative to sagebrush libraries. These compositional differences between fungal communities associated with cheatgrass- and

  4. Physical disturbance shapes vascular plant diversity more profoundly than fire in the sagebrush steppe of southeastern Idaho, U.S.A.

    Science.gov (United States)

    Lavin, Matt; Brummer, Tyler J; Quire, Ryan; Maxwell, Bruce D; Rew, Lisa J

    2013-06-01

    Fire is thought to profoundly change the ecology of the sagebrush steppe. The Idaho National Laboratory provides an ideal setting to compare the effects of fire and physical disturbance on plant diversity in high-native-cover sagebrush steppe. Seventy-eight 1-hectare transects were established along paved, green-striped, gravel, and two-track roads, in overgrazed rangeland, and within sagebrush steppe involving different fire histories. Transects were sampled for the diversity and abundance of all vascular plants. Alpha, beta, and phylogenetic beta diversity were analyzed as a response to fire and physical disturbance. Postfire vegetation readily rebounds to prefire levels of alpha plant diversity. Physical disturbance, in contrast, strongly shapes patterns of alpha, beta, and especially phylogenetic beta diversity much more profoundly than fire disturbance. If fire is a concern in the sagebrush steppe then the degree of physical-disturbance should be more so. This finding is probably not specific to the study area but applicable to the northern and eastern portions of the sagebrush biome, which is characterized by a pulse of spring moisture and cold mean minimum winter temperatures. The distinction of sagebrush steppe from Great Basin sagebrush should be revised especially with regard to reseeding efforts and the control of annual grasses.

  5. Percent Area of Sagebrush Habitat Within an 100-km Radius

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This map was developed to examine multi-scale spatial relationships between percentage of sagebrush and other response variables of interest. A map of sagebrush in...

  6. Percent Area of Sagebrush Habitat Within an 5-km Radius

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This map was developed to examine multi-scale spatial relationships between percentage of sagebrush and other response variables of interest. A map of sagebrush in...

  7. Percent Area of Sagebrush Habitat Within an 18-km Radius

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This map was developed to examine multi-scale spatial relationships between percentage of sagebrush and other response variables of interest. A map of sagebrush in...

  8. Percent Area of Sagebrush Habitat Within an 50-km Radius

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This map was developed to examine multi-scale spatial relationships between percentage of sagebrush and other response variables of interest. A map of sagebrush in...

  9. Sagebrush Flat Wildlife Area 2008 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, Dan [Washington Department of Fish and Wildlife

    2008-11-03

    The Sagebrush Flat Wildlife Area is a 12,718 acre complex located in Douglas County, Washington. Four distinct management units make up the area: Bridgeport, Chester Butte, Dormaier and Sagebrush Flat. The four Units are located across a wide geographic area within Douglas County. The Units are situated roughly along a north/south line from Bridgeport in the north to the Douglas/Grant county line in the south, 60 miles away. The wildlife area was established to conserve and enhance shrubsteppe habitat for the benefit shrubsteppe obligate and dependent wildlife species. In particular, the Sagebrush Flat Wildlife Area is managed to promote the recovery of three state-listed species: Columbian sharp-tailed grouse (threatened), greater sage grouse (threatened) and the pygmy rabbit (endangered). The US Fish and Wildlife Service also list the pygmy rabbit as endangered. Wildlife area staff seeded 250 acres of old agricultural fields located on the Sagebrush Flat, Dormaier and Chester Butte units. This has been a three project to reestablish high quality shrubsteppe habitat on fields that had either been abandoned (Dormaier) or were dominated by non-native grasses. A mix of 17 native grasses and forbs, most of which were locally collected and grown, was used. First year maintenance included spot spraying Dalmatian toadflax on all sites and mowing annual weeds to reduce competition. Photo points were established and will be integral to long term monitoring and evaluation. Additional monitoring and evaluation will come from existing vegetation transects. This year weed control efforts included spot treatment of noxious weeds, particularly Dalmatian toadflax, in previously restored fields on the Bridgeport Unit (150 acres). Spot treatment also took place within fields scheduled for restoration (40 acres) and in areas where toadflax infestations are small and relatively easily contained. Where toadflax is so widespread that chemical treatment would be impractical, we use the

  10. 75 FR 19643 - Sagebrush, a California Partnership; Notice of Filing

    Science.gov (United States)

    2010-04-15

    ...] Sagebrush, a California Partnership; Notice of Filing April 7, 2010. Take notice that on April 5, 2010, Sagebrush, a California partnership (Sagebrush) submits for filing a revised open access transmission tariff... TTY, call (202) 502-8659. Comment Date: 5 p.m. Eastern Time on April 26, 2010. Kimberly D....

  11. Habitat selection of the sagebrush Brewer’s sparrow Spizella breweri breweri in British Columbia

    OpenAIRE

    Harrison, Megan Louise

    2008-01-01

    When animals cluster their territories within larger patches of seemingly appropriate habitat it could mean that they have additional, finer scale habitat requirements or that non-habitat cues play a role in their selection decisions. Sagebrush Brewer’s Sparrows (Spizella breweri breweri) cluster their territories throughout their breeding range. I examined territory-scale selection by the species using two approaches: observation of individual selection for vegetation characteristics, and an...

  12. Crop type influences edge effects on the reproduction of songbirds in sagebrush habitat near agriculture

    Directory of Open Access Journals (Sweden)

    Elly C. Knight

    2014-06-01

    Full Text Available Extensive fragmentation of the sagebrush shrubsteppe of western North America could be contributing to observed population declines of songbirds in sagebrush habitat. We examined whether habitat fragmentation impacts the reproduction of songbirds in sagebrush edge habitat near agriculture, and if potential impacts vary depending on the adjacent crop type. Specifically, we evaluated whether nest abundance and nest survival varied between orchard edge habitat, vineyard edge habitat, and interior habitat. We then examined whether the local nest predator community and vegetation could explain the differences detected. We detected fewer nests in edge than interior habitat. Nest abundance per songbird was also lower in edge than interior habitat, although only adjacent to vineyards. Nest predation was more frequent in orchard edge habitat than vineyard edge or interior habitat. Predators identified with nest cameras were primarily snakes, however, reduced nest survival in orchard edge habitat was not explained by differences in the abundance of snakes or any other predator species identified. Information theoretic analysis of daily survival rates showed that greater study plot shrub cover and lower grass height at nests were partially responsible for the lower rate of predation-specific daily nest survival rate (PDSR observed in orchard edge habitat, but additional factors are likely important. Results of this study suggest that different crop types have different edge effects on songbirds nesting in sagebrush shrubsteppe, and that these reproductive edge effects may contribute to observed declines of these species. Habitat managers should avoid the creation of new orchard-sagebrush habitat edges to avoid further impacts on already declining songbird populations.

  13. Vegetation development in a sand dune ten years after restoration, Parque Municipal das Dunas da Lagoa da Conceição, Florianópolis, Santa Catarina

    Directory of Open Access Journals (Sweden)

    Nina Rosa Zanin Zanella

    2010-01-01

    Full Text Available The vegetation cover of a sand dune was surveyed ten years after the improvement of a restoration project that utilized seed sowing, seedling planting and seedling transplantation from an adjacent area with watering in the first months. On the upper part of the restored dune, the vegetation was sparse (53% but more developed than that of the adjacent control area (34%, both presenting herbaceous/subshrub physiognomy with predominance of Panicum racemosum. On the slope of the restored dune, a shrub vegetation developed, presenting a percentage cover (90% similar to that of the control area (100%. Dodonaea viscosa was the dominant species on this restored face. The establishment of arboreal and shrub species seedlings on the upper dune was good. In part, this improved the species richness, but contributed to dissimilarity between this area and the control site.  A lower species richness was presented on the slope and the similarity to the control area was even lower. Plants introduced by sowing and seedling transplantation showed success and contributed to the similarity with the adjacent vegetation. Seedlings of arboreal and shrub plants survived on the upper dune. These species are represented in a more developed stage of succession, differing from the adjacent control area.

  14. Vegetation

    DEFF Research Database (Denmark)

    Epstein, H.E.; Walker, D.A.; Bhatt, U.S.;

    2012-01-01

    • Over the past 30 years (1982-2011), the Normalized Difference Vegetation Index (NDVI), an index of green vegetation, has increased 15.5% in the North American Arctic and 8.2% in the Eurasian Arctic. In the more southern regions of Arctic tundra, the estimated aboveground plant biomass has...

  15. Fine-scale patterns of vegetation assembly in the monitoring of changes in coastal sand-dune landscapes

    Directory of Open Access Journals (Sweden)

    J. Honrado

    2010-02-01

    Full Text Available Understanding dune ecosystem responses to multi-scale environmental changes can provide the framework for reliable forecasts and cost-efficient protocols for detecting shifts in prevailing coastal dynamics. Based on the hypothesis that stress and disturbance interact as primary community controls in coastal dunes, we studied the fine-scale floristic assembly of foredune vegetation, in its relation to topography, along regional and local environmental gradients in the 200 km long coastline of northern Portugal, encompassing a major biogeographic transition in western Europe. Thirty topographic profiles perpendicular to the shoreline were recorded at ten sites along the regional climate gradient, and vegetation was sampled by recording the frequency of plant species along those profiles. Quantitative topographic attributes of vegetated dune profiles (e.g. length or height exhibited wide variations relatable to differences in prevailing coastal dynamics. Metrics of taxonomic diversity (e.g. total species richness and its additive beta component and of the functional composition of vegetation were highly correlated to attributes of dune topography. Under transgressive dynamics, vegetation profiles have fewer species, increased dominance, lower turnover rates, and lower total vegetation cover. These changes may drive a decrease in structural and functional diversity, with important consequences for resistance, resilience and other ecosystem properties. Moreover, differences in both vegetation assembly (in meta-stable dunes and response to increased disturbance (in eroding dunes between distinct biogeographic contexts highlight a possible decline in facilitation efficiency under extreme physical stress (i.e. under Mediterranean climate and support the significance of functional approaches in the study of local ecosystem responses to disturbance along regional gradients. Our results strongly suggest that assessing fine-scale community assembly can

  16. Remote sensing and ecosystem simulation modeling of the intermountain sagebrush-steppe, with implications for global climate change

    Energy Technology Data Exchange (ETDEWEB)

    Kremer, R.G.

    1993-01-01

    Three papers are presented that focus on remote sensing and ecosystem simulation modeling of the Intermountain Northwest sagebrush-steppe ecosystem. The first utilizes Advanced Very High Resolution Radiometer data to derive seasonal greenness indices of three pre-dominant vegetation communities in south-central WashingtoN. Temporal signatures were statistically separated, and used to create a classification for the three communities by integrating Normalized Difference Vegetation Indices over the growing season. The classification accuracy was 75% when compared to 53 ground-truthed sites, but was less accurate (62%) in a more topographically variable region. The second paper develops a logic for treating the intermountain sagebrush-steepe as a mosaic of distinct, hydrologically partitioned vegetation communities, and identifies critical ecophysiological considerations for process modeling of arid ecosystems. Soil water and nutrient dynamics of an ecosystem process model were modified to simulate productivity and seasonal water use patterns in Artemisia, Agropyron, and Bromus communities for the same study site. 60 year simulations maintained steady state vegetation productivity while predicting soil moisture content for 65 dates in 1992 with R[sup 2] values ranging from 0.93 to 0.98. In the third paper, the model was used to derive projections of the response of the ecosystem to natural and general circulation model (GCM)-predicted climate variability. Simulations predicted the adaptability of a less productive, invasive grass community (Bromus) to climate change, while a native sagebrush (Artemisia) community does not survive the increased temperatures of the GCM climates. High humidity deficits and greater maintenance respiration costs associated with increased temperatures limit the ability of the sagebrush community to support a relatively high biomass, and substantial increases in soil water storage and subsurface outflow occur was the vegetation senesces.

  17. Shelter Index and a simple wind speed parameter to characterize vegetation control of sand transport threshold and Flu

    Science.gov (United States)

    Gillies, J. A.; Nield, J. M.; Nickling, W. G.; Furtak-Cole, E.

    2014-12-01

    Wind erosion and dust emissions occur in many dryland environments from a range of surfaces with different types and amounts of vegetation. Understanding how vegetation modulates these processes remains a research challenge. Here we present results from a study that examines the relationship between an index of shelter (SI=distance from a point to the nearest upwind vegetation/vegetation height) and particle threshold expressed as the ratio of wind speed measured at 0.45 times the mean plant height divided by the wind speed at 17 m when saltation commences, and saltation flux. The results are used to evaluate SI as a parameter to characterize the influence of vegetation on local winds and sediment transport conditions. Wind speed, wind direction, saltation activity and point saltation flux were measured at 35 locations in defined test areas (~13,000 m2) in two vegetation communities: mature streets of mesquite covered nebkhas and incipient nebkhas dominated by low mesquite plants. Measurement positions represent the most open areas, and hence those places most susceptible to wind erosion among the vegetation elements. Shelter index was calculated for each measurement position for each 10° wind direction bin using digital elevation models for each site acquired using terrestrial laser scanning. SI can show the susceptibility to wind erosion at different time scales, i.e., event, seasonal, or annual, but in a supply-limited system it can fail to define actual flux amounts due to a lack of knowledge of the distribution of sediment across the surface of interest with respect to the patterns of SI.

  18. Testing Shelter Index and a Simple Wind Speed Parameter to Characterize Vegetation Control of Sand Transport Threshold and Flux

    Science.gov (United States)

    Gillies, John; Nield, Joanna; Nickling, William; Furtak-Cole, Eden

    2013-04-01

    Wind erosion and dust emissions occur in the Chihuahuan Desert surrounding Las Cruces NM from a range of surfaces with different types and amounts of vegetation. Understanding how vegetation modulates these processes remains a research challenge. One important aspect of research is to develop a relationship between a descriptor of the surface roughness that can be used to provide an indication of how susceptible the sediment transport system is to activation by wind. Here we present results from a study that examines the relationship between an index of shelter (distance from a point to the nearest upwind vegetation/vegetation height), as originally proposed by Okin (2008), and particle threshold expressed as a ratio of wind measured at 0.45 times the plant height divided by the wind speed at 17 m, and saltation flux (g cm-2 s-1). Saltation flux was measured using sediment traps positioned 15 cm above the surface and nearby optical gate sensors (Wenglor® model YH03PCT8)measuring saltation activity also placed at a height of 15 cm. The results are used to evaluate shelter index as a parameter to characterize the local winds as influenced by the vegetation and sediment transport conditions (threshold and transport). Wind speed, wind direction, saltation activity and point saltation flux were measured at 35 locations in defined test areas (~13,000 m2) in three vegetation communities: mature mesquite covered nebkha dunes, incipient nebkha dunes dominated by low mesquite plants, and a mature creosote bush area. Measurement positions represent the most open areas, and hence those places most susceptible to wind erosion among the vegetation elements. Shelter index was calculated for each measurement position for each approximately 10 degree wind direction bin using digital elevation models for each site acquired using terrestrial laser scanning.

  19. Forecasting sagebrush ecosystem components and greater sage-grouse habitat for 2050: learning from past climate patterns and Landsat imagery to predict the future

    Science.gov (United States)

    Homer, Collin G.; Xian, George Z.; Aldridge, Cameron L.; Meyer, Debra K.; Loveland, Thomas R.; O'Donnell, Michael S.

    2015-01-01

    Sagebrush (Artemisia spp.) ecosystems constitute the largest single North American shrub ecosystem and provide vital ecological, hydrological, biological, agricultural, and recreational ecosystem services. Disturbances have altered and reduced this ecosystem historically, but climate change may ultimately represent the greatest future risk. Improved ways to quantify, monitor, and predict climate-driven gradual change in this ecosystem is vital to its future management. We examined the annual change of Daymet precipitation (daily gridded climate data) and five remote sensing ecosystem sagebrush vegetation and soil components (bare ground, herbaceous, litter, sagebrush, and shrub) from 1984 to 2011 in southwestern Wyoming. Bare ground displayed an increasing trend in abundance over time, and herbaceous, litter, shrub, and sagebrush showed a decreasing trend. Total precipitation amounts show a downward trend during the same period. We established statistically significant correlations between each sagebrush component and historical precipitation records using a simple least squares linear regression. Using the historical relationship between sagebrush component abundance and precipitation in a linear model, we forecasted the abundance of the sagebrush components in 2050 using Intergovernmental Panel on Climate Change (IPCC) precipitation scenarios A1B and A2. Bare ground was the only component that increased under both future scenarios, with a net increase of 48.98 km2 (1.1%) across the study area under the A1B scenario and 41.15 km2 (0.9%) under the A2 scenario. The remaining components decreased under both future scenarios: litter had the highest net reductions with 49.82 km2 (4.1%) under A1B and 50.8 km2 (4.2%) under A2, and herbaceous had the smallest net reductions with 39.95 km2 (3.8%) under A1B and 40.59 km2 (3.3%) under A2. We applied the 2050 forecast sagebrush component values to contemporary (circa 2006) greater sage-grouse (Centrocercus

  20. A synopsis of short-term response to alternative restoration treatments in sagebrush-steppe: the SageSTEP project

    Science.gov (United States)

    McIver, James; Brunson, Mark; Bunting, Steve; Chambers, Jeanne; Doescher, Paul; Grace, James; Hulet, April; Johnson, Dale; Knick, Steven T.; Miller, Richard; Pellant, Mike; Pierson, Fred; Pyke, David; Rau, Benjamin; Rollins, Kim; Roundy, Bruce; Schupp, Eugene; Tausch, Robin; Williams, Jason

    2014-01-01

    The Sagebrush Steppe Treatment Evaluation Project (SageSTEP) is an integrated long-term study that evaluates ecological effects of alternative treatments designed to reduce woody fuels and to stimulate the herbaceous understory of sagebrush steppe communities of the Intermountain West. This synopsis summarizes results through 3 yr posttreatment. Woody vegetation reduction by prescribed fire, mechanical treatments, or herbicides initiated a cascade of effects, beginning with increased availability of nitrogen and soil water, followed by increased growth of herbaceous vegetation. Response of butterflies and magnitudes of runoff and erosion closely followed herbaceous vegetation recovery. Effects on shrubs, biological soil crust, tree cover, surface woody fuel loads, and sagebrush-obligate bird communities will take longer to be fully expressed. In the short term, cool wet sites were more resilient than warm dry sites, and resistance was mostly dependent on pretreatment herbaceous cover. At least 10 yr of posttreatment time will likely be necessary to determine outcomes for most sites. Mechanical treatments did not serve as surrogates for prescribed fire in how each influenced the fuel bed, the soil, erosion, and sage-obligate bird communities. Woody vegetation reduction by any means resulted in increased availability of soil water, higher herbaceous cover, and greater butterfly numbers. We identified several trade-offs (desirable outcomes for some variables, undesirable for others), involving most components of the study system. Trade-offs are inevitable when managing complex natural systems, and they underline the importance of asking questions about the whole system when developing management objectives. Substantial spatial and temporal heterogeneity in sagebrush steppe ecosystems emphasizes the point that there will rarely be a “recipe” for choosing management actions on any specific area. Use of a consistent evaluation process linked to monitoring may be the

  1. Seed bank and big sagebrush plant community composition in a range margin for big sagebrush

    Science.gov (United States)

    Martyn, Trace E.; Bradford, John B.; Schlaepfer, Daniel R.; Burke, Ingrid C.; Laurenroth, William K.

    2016-01-01

    The potential influence of seed bank composition on range shifts of species due to climate change is unclear. Seed banks can provide a means of both species persistence in an area and local range expansion in the case of increasing habitat suitability, as may occur under future climate change. However, a mismatch between the seed bank and the established plant community may represent an obstacle to persistence and expansion. In big sagebrush (Artemisia tridentata) plant communities in Montana, USA, we compared the seed bank to the established plant community. There was less than a 20% similarity in the relative abundance of species between the established plant community and the seed bank. This difference was primarily driven by an overrepresentation of native annual forbs and an underrepresentation of big sagebrush in the seed bank compared to the established plant community. Even though we expect an increase in habitat suitability for big sagebrush under future climate conditions at our sites, the current mismatch between the plant community and the seed bank could impede big sagebrush range expansion into increasingly suitable habitat in the future.

  2. Evaluation of Turf-Grass and Prairie-Vegetated Rain Gardens in a Clay and Sand Soil, Madison, Wisconsin, Water Years 2004-08

    Science.gov (United States)

    Selbig, William R.; Balster, Nicholas

    2010-01-01

    The U.S. Geological Survey, in cooperation with a consortium of 19 cities, towns, and villages in Dane County, Wis., undertook a study to compare the capability of rain gardens with different vegetative species and soil types to infiltrate stormwater runoff from the roof of an adjacent structure. Two rain gardens, one planted with turf grass and the other with native prairie species, were constructed side-by-side in 2003 at two locations with different dominant soil types, either sand or clay. Each rain garden was sized to a ratio of approximately 5:1 contributing area to receiving area and to a depth of 0.5 foot. Each rain garden, regardless of vegetation or soil type, was capable of storing and infiltrating most of the runoff over the 5-year study period. Both rain gardens in sand, as well as the prairie rain garden in clay, retained and infiltrated 100 percent of all precipitation and snowmelt events during water years 2004-07. The turf rain garden in clay occasionally had runoff exceed its confining boundaries, but was still able to retain 96 percent of all precipitation and snowmelt events during the same time period. Precipitation intensity and number of antecedent dry days were important variables that influenced when the storage capacity of underlying soils would become saturated, which resulted in pooled water in the rain gardens. Because the rooftop area that drained runoff to each rain garden was approximately five times larger than the area of the rain garden itself, evapotranspiration was a small percentage of the annual water budget. For example, during water year 2005, the maximum evapotranspiration of total influent volume ranged from 21 percent for the turf rain garden in clay to 25 percent for the turf rain garden in sand, and the minimum ranged from 12 percent for the prairie rain garden in clay to 19 percent for the prairie rain garden in sand. Little to no runoff left each rain garden as effluent and a small percentage of runoff returned to the

  3. Multiscale sagebrush rangeland habitat modeling in southwest Wyoming

    Science.gov (United States)

    Homer, Collin G.; Aldridge, Cameron L.; Meyer, Debra K.; Coan, Michael J.; Bowen, Zachary H.

    2009-01-01

    Sagebrush-steppe ecosystems in North America have experienced dramatic elimination and degradation since European settlement. As a result, sagebrush-steppe dependent species have experienced drastic range contractions and population declines. Coordinated ecosystem-wide research, integrated with monitoring and management activities, would improve the ability to maintain existing sagebrush habitats. However, current data only identify resource availability locally, with rigorous spatial tools and models that accurately model and map sagebrush habitats over large areas still unavailable. Here we report on an effort to produce a rigorous large-area sagebrush-habitat classification and inventory with statistically validated products and estimates of precision in the State of Wyoming. This research employs a combination of significant new tools, including (1) modeling sagebrush rangeland as a series of independent continuous field components that can be combined and customized by any user at multiple spatial scales; (2) collecting ground-measured plot data on 2.4-meter imagery in the same season the satellite imagery is acquired; (3) effective modeling of ground-measured data on 2.4-meter imagery to maximize subsequent extrapolation; (4) acquiring multiple seasons (spring, summer, and fall) of an additional two spatial scales of imagery (30 meter and 56 meter) for optimal large-area modeling; (5) using regression tree classification technology that optimizes data mining of multiple image dates, ratios, and bands with ancillary data to extrapolate ground training data to coarser resolution sensors; and (6) employing rigorous accuracy assessment of model predictions to enable users to understand the inherent uncertainties. First-phase results modeled eight rangeland components (four primary targets and four secondary targets) as continuous field predictions. The primary targets included percent bare ground, percent herbaceousness, percent shrub, and percent litter. The

  4. Vegetation

    DEFF Research Database (Denmark)

    Epstein, H.E.; Walker, D.A.; Bhatt, U.S.

    2012-01-01

    increased 20-26%. • Increasing shrub growth and range extension throughout the Low Arctic are related to winter and early growing season temperature increases. Growth of other tundra plant types, including graminoids and forbs, is increasing, while growth of mosses and lichens is decreasing. • Increases...... in vegetation (including shrub tundra expansion) and thunderstorm activity, each a result of Arctic warming, have created conditions that favor a more active Arctic fire regime....

  5. Development and testing of an index of biotic integrity based on submersed and floating vegetation and its application to assess reclamation wetlands in Alberta's oil sands area, Canada.

    Science.gov (United States)

    Rooney, Rebecca C; Bayley, Suzanne E

    2012-01-01

    We developed and tested a plant-based index of biological integrity (IBI) and used it to evaluate the existing reclamation wetlands in Alberta's oil sands mining region. Reclamation plans call for >15,000 ha of wetlands to be constructed, but currently, only about 25 wetlands are of suitable age for evaluation. Reclamation wetlands are typically of the shallow open water type and range from fresh to sub-saline. Tailings-contaminated wetlands in particular may have problems with hydrocarbon- and salt-related toxicity. From 60 initial candidate metrics in the submersed aquatic and floating vegetation communities, we selected five to quantify biological integrity. The IBI included two diversity-based metrics: the species richness of floating vegetation and the percent of total richness contributed by Potamogeton spp. It also included three relative abundance-based metrics: that of Ceratophyllum demersum, of floating leafed species and of alkali-tolerant species. We evaluated the contribution of nonlinear metrics to IBI performance but concluded that the correlation between IBI scores and wetland condition was not improved. The method used to score metrics had an influence on the IBI sensitivity. We conclude that continuous scoring relative to the distribution of values found in reference sites was superior. This scoring approach provided good sensitivity and resolution and was grounded in reference condition theory. Based on these IBI scores, both tailings-contaminated and tailings-free reclamation wetlands have significantly lower average biological integrity than reference wetlands (ANOVA: F(2,59) = 34.7, p = 0.000000000107).

  6. Producing fractional rangeland component predictions in a sagebrush ecosystem, a Wyoming sensitivity analysis

    Science.gov (United States)

    Xian, George; Homer, Collin G.; Granneman, Brian; Meyer, Debra K.

    2012-01-01

    Remote sensing information has been widely used to monitor vegetation condition and variations in a variety of ecosystems, including shrublands. Careful application of remotely sensed imagery can provide additional spatially explicit, continuous, and extensive data on the composition and condition of shrubland ecosystems. Historically, the most widely available remote sensing information has been collected by Landsat, which has offered large spatial coverage and moderate spatial resolution data globally for nearly three decades. Such medium-resolution satellite remote sensing information can quantify the distribution and variation of terrestrial ecosystems. Landsat imagery has been frequently used with other high-resolution remote sensing data to classify sagebrush components and quantify their spatial distributions (Ramsey and others, 2004; Seefeldt and Booth, 2004; Stow and others, 2008; Underwood and others, 2007). Modeling algorithms have been developed to use field measurements and satellite remote sensing data to quantify the extent and evaluate the quality of shrub ecosystem components in large geographic areas (Homer and others, 2009). The percent cover of sagebrush ecosystem components, including bare-ground, herbaceous, litter, sagebrush, and shrub, have been quantified for entire western states (Homer and others, 2012). Furthermore, research has demonstrated the use of current measurements with historical archives of Landsat imagery to quantify the variations of these components for the last two decades (Xian and others, 2012). The modeling method used to quantify the extent and spatial distribution of sagebrush components over a large area also has required considerable amounts of training data to meet targeted accuracy requirements. These training data have maintained product accuracy by ensuring that they are derived from good quality field measurements collected during appropriate ecosystem phenology and subsequently maximized by extrapolation on

  7. Restoration of areas degraded by alluvial sand mining: use of soil microbiological activity and plant biomass growth to assess evolution of restored riparian vegetation.

    Science.gov (United States)

    Venson, Graziela R; Marenzi, Rosemeri C; Almeida, Tito César M; Deschamps-Schmidt, Alexandre; Testolin, Renan C; Rörig, Leonardo R; Radetski, Claudemir M

    2017-03-01

    River or alluvial sand mining is causing a variety of environmental problems in the Itajaí-açú river basin in Santa Catarina State (south of Brazil). When this type of commercial activity degrades areas around rivers, environmental restoration programs need to be executed. In this context, the aim of this study was to assess the evolution of a restored riparian forest based on data on the soil microbial activity and plant biomass growth. A reference site and three sites with soil degradation were studied over a 3-year period. Five campaigns were performed to determine the hydrolysis of the soil enzyme fluorescein diacetate (FDA), and the biomass productivity was determined at the end of the studied period. The variation in the enzyme activity for the different campaigns at each site was low, but this parameter did differ significantly according to the site. Well-managed sites showed the highest biomass productivity, and this, in turn, showed a strong positive correlation with soil enzyme activity. In conclusion, soil enzyme activity could form the basis for monitoring and the early prediction of the success of vegetal restoration programs, since responses at the higher level of biological organization take longer, inhibiting the assessment of the project within an acceptable time frame.

  8. The Influence of Woodland Encroachment on Runoff and Erosion in Sagebrush Steppe Systems, Great Basin, USA.

    Science.gov (United States)

    Pierson, F. B.; Kormos, P. R.; Williams, C. J.

    2007-12-01

    Pinyon and juniper woodlands have expanded 10 to 30% in the past 30 years and now occupy nearly 20 million hectares of sagebrush shrub steppe in the Great Basin Region and Colorado Plateau, USA. The conversion of sagebrush steppe to pinyon and juniper woodlands has been linked to changes in plant community structure and composition and respective increases in overland flow and erosion from these landscapes. The Sagebrush Steppe Treatment Evaluation Project (SageSTEP, www.sagestep.org) was implemented in 2005 as a 5 year interdisciplinary research study to evaluate restoration methodologies for sagebrush rangelands degraded by woodland and grassland encroachment over a six state area within the Great Basin. The hydrology component of SageSTEP focuses on the relationships between changes in vegetation and groundcover and runoff/erosion processes. In 2006, 140 small scale (0.5 m2) rainfall simulations were conducted at 2 locations within the Great Basin to determine whether critical thresholds exist in vegetation and ground cover that significantly influence infiltration, runoff, and erosion in pinyon and juniper woodlands. Simulation plots were distributed on interspaces (areas between shrub/tree canopies) and juniper, pinyon, and shrub coppices (areas underneath canopy). Water drop penetration times and litter depths were also collected for each plot to explore controls on soil hydrophobicity. Preliminary results suggest a positive correlation between litter depth and hydrophobicity, as soils under thick pinyon and juniper coppices are strongly water repellant and soils in interspaces and under shrub coppices are easily wettable. Interspace plots with varying amounts of grasses and forbs have the highest erosion and runoff rates due to higher percentages of bare ground and relatively low soil stability. Pinyon coppices have the least runoff and erosion due to very high litter depths and low bare ground cover, even though surface soils are hydrophobic. Juniper and

  9. Evaluating a seed enhancement technology (seed pillows) for sagebrush restoration efforts across a large elevation gradient

    Science.gov (United States)

    Big sagebrush (Artemisia tridentata Nutt.) restoration is needed across vast areas, especially after large wildfires, to restore important ecosystem services. Sagebrush restoration success is inconsistent with a high rate of seeding failures, particularly at lower elevations. Seed enhancement tech...

  10. [Greenhouse gases fluxes of biological soil crusts and soil ecosystem in the artificial sand-fixing vegetation region in Shapotou area].

    Science.gov (United States)

    Hu, Yi-Gang; Feng, Yu-Lan; Zhang, Zhi-Shan; Huang, Lei; Zhang, Peng; Xu, Bing-Xin

    2014-01-01

    Uncertainties still existed for evaluating greenhouse gases fluxes (GHGs), including carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) at the regional scale for desert ecosystem because available GHGs data about biological soil crusts (BSCs) was very scarce. In 2011 and 2012, soil ecosystem covered by various types of BSCs and BSCs at different succession stages in an artificial sand-fixing vegetation region established in various periods at southeast of the Shapotou area in Tengger Desert was selected to measure fluxes of CO2, CH4 and N2O using static chamber and gas chromatography. The results showed that curst type, recovery time and their interactions with sampling date significantly affected CO2 flux. Recovery time and interaction of crust type and sampling date significantly affected CH4 flux. Sampling date significantly affected the fluxes of CO2, CH4 and N2O. The mean annual flux of CO2 for moss crust (105.1 mg x m(-2) x h(-1)) was significantly higher than that of algae crust (37.7 mg x m(-2) x h(-1)) at the same succession stage. Annual mean CH4 and N2O consumption was 19.9 and 3.4 microg x m(-2) x h(-1), respectively. Mean annual consumption of CH4 and N2O for algae crust was slightly higher than that of moss crust, however, significant difference was not found. Ecosystem respiration (Re) of desert soil covered by BSCs increased with the recovery process of desert ecosystem, in contrast, consumption of CH4 and N2O decreased. Re of moss crust was more sensitive to temperature and moisture variation than algae crust and Re sensitivity of temperature and moisture gradually increased with the development and succession of BSCs. Both soil temperature and moisture were not the main factor to determine CH4 and N2O fluxes of BSCs-soil in desert ecosystem.

  11. Assessment of wetland/upland vegetation communities and evaluation of soil-plant contamination by polycyclic aromatic hydrocarbons and trace metals in regions near oil sands mining in Alberta.

    Science.gov (United States)

    Boutin, C; Carpenter, D J

    2017-01-15

    Oil sands mining in Alberta, Canada, has been steadily increasing over the last 50years. The extent to which the surrounding vegetation has been altered/contaminated by pollutants released during bitumen extraction has not been a focus of oil sands environmental monitoring efforts. The objectives of this study were to assess plant species richness and composition in wetlands and uplands in the vicinity of oil sands mining areas and to measure levels of contamination of trace metals and polycyclic aromatic hydrocarbons (PAHs) in soils and plants. Twenty-two sites were selected in three locations: near to (OS, n=7), West (n=7), and East (n=8) of oil sands mining operations. Aboveground plant species were inventoried and soil was collected for a seedbank study. Soils and plants were collected for analyses of 28 metals and 40 parent and alkylated PAHs. Plant species richness and composition differed significantly among locations. More species were found in the OS sites, many of them being non-native, than in East and West sites, which contained almost exclusively native perennials. PAH levels were significantly higher in OS sites, and were mostly comprised of alkylated PAHs. Patterns of PAH distribution indicated contamination from bitumen/petroleum in four sites; other combustion types may have affected five additional sites at different levels. Metals were also elevated in OS sites. Metal levels were significantly correlated with distance to upgrader facilities. Ratios of some metals in soil vs. above- and belowground plant parts were significantly higher in West and East than in OS sites, likely due in part to pH as soil was acidic at the East and West locations but alkaline at OS sites. This study showed that sites located near oil sands mining operations were contaminated with PAHs and metals, and that the vegetation composition at these sites greatly differed from less disturbed areas.

  12. Restoration handbook for sagebrush steppe ecosystems with emphasis on greater sage-grouse habitat—Part 3. Site level restoration decisions

    Science.gov (United States)

    Pyke, David A.; Chambers, Jeanne C.; Pellant, Mike; Miller, Richard F.; Beck, Jeffrey L.; Doescher, Paul S.; Roundy, Bruce A.; Schupp, Eugene W.; Knick, Steven T.; Brunson, Mark; McIver, James D.

    2017-02-14

    Sagebrush steppe ecosystems in the United States currently (2016) occur on only about one-half of their historical land area because of changes in land use, urban growth, and degradation of land, including invasions of non-native plants. The existence of many animal species depends on the existence of sagebrush steppe habitat. The greater sage-grouse (Centrocercus urophasianus) depends on large landscapes of intact habitat of sagebrush and perennial grasses for their existence. In addition, other sagebrush-obligate animals have similar requirements and restoration of landscapes for greater sage-grouse also will benefit these animals. Once sagebrush lands are degraded, they may require restoration actions to make those lands viable habitat for supporting sagebrush-obligate animals, livestock, and wild horses, and to provide ecosystem services for humans now and for future generations.When a decision is made on where restoration treatments should be applied, there are a number of site-specific decisions managers face before selecting the appropriate type of restoration. This site-level decision tool for restoration of sagebrush steppe ecosystems is organized in nine steps.Step 1 describes the process of defining site-level restoration objectives.Step 2 describes the ecological site characteristics of the restoration site. This covers soil chemistry and texture, soil moisture and temperature regimes, and the vegetation communities the site is capable of supporting.Step 3 compares the current vegetation to the plant communities associated with the site State and Transition models.Step 4 takes the manager through the process of current land uses and past disturbances that may influence restoration success.Step 5 is a brief discussion of how weather before and after treatments may impact restoration success.Step 6 addresses restoration treatment types and their potential positive and negative impacts on the ecosystem and on habitats, especially for greater sage

  13. Insights into transcriptomes of big and low sagebrush.

    Directory of Open Access Journals (Sweden)

    Mark D Huynh

    Full Text Available We report the sequencing and assembly of three transcriptomes from Big (Artemisia tridentata ssp. wyomingensis and A. tridentata ssp. tridentata and Low (A. arbuscula ssp. arbuscula sagebrush. The sequence reads are available in the Sequence Read Archive of NCBI. We demonstrate the utilities of these transcriptomes for gene discovery and phylogenomic analysis. An assembly of 61,883 transcripts followed by transcript identification by the program TRAPID revealed 16 transcripts directly related to terpene synthases, proteins critical to the production of multiple secondary metabolites in sagebrush. A putative terpene synthase was identified in two of our sagebrush samples. Using paralogs with synonymous mutations we reconstructed an evolutionary time line of ancient genome duplications. By applying a constant mutation rate to the data we estimate that these three ancient duplications occurred about 18, 34 and 60 million years ago. These transcriptomes offer a foundation for future studies of sagebrush, including inferences in chemical defense and the identification of species and subspecies of sagebrush for restoration and preservation of the threatened sage-grouse.

  14. Fontainebleau Sand

    DEFF Research Database (Denmark)

    Leth, Caspar Thrane

    2006-01-01

    The report is a summary of results from laboratory tests in the geotechncial research group on Fontainebleau sand.......The report is a summary of results from laboratory tests in the geotechncial research group on Fontainebleau sand....

  15. Contrasting effects of different mammalian herbivores on sagebrush plant communities.

    Directory of Open Access Journals (Sweden)

    Kari E Veblen

    Full Text Available Herbivory by both grazing and browsing ungulates shapes the structure and functioning of terrestrial ecosystems worldwide, and both types of herbivory have been implicated in major ecosystem state changes. Despite the ecological consequences of differences in diets and feeding habits among herbivores, studies that experimentally distinguish effects of grazing from spatially co-occurring, but temporally segregated browsing are extremely rare. Here we use a set of long-term exclosures in northern Utah, USA, to determine how domestic grazers vs. wild ungulate herbivores (including browsers and mixed feeders affect sagebrush-dominated plant communities that historically covered ~62 million ha in North America. We sampled plant community properties and found that after 22 years grazing and browsing elicited perceptible changes in overall plant community composition and distinct responses by individual plant species. In the woody layer of the plant community, release from winter and spring wild ungulate herbivory increased densities of larger Wyoming big sagebrush (Artemisia tridentata, ssp. wyomingensis at the expense of small sagebrush, while disturbance associated with either cattle or wild ungulate activity alone was sufficient to increase bare ground and reduce cover of biological soil crusts. The perennial bunchgrass, bottlebrush squirretail (Elymus elymoides, responded positively to release from summer cattle grazing, and in turn appeared to competitively suppress another more grazing tolerant perennial grass, Sandberg's blue grass (Poa secunda. Grazing by domestic cattle also was associated with increased non-native species biomass. Together, these results illustrate that ungulate herbivory has not caused sagebrush plant communities to undergo dramatic state shifts; however clear, herbivore-driven shifts are evident. In a dry, perennial-dominated system where plant community changes can occur very slowly, our results provide insights into

  16. PRE-FILTRATION IN BOULDER AND SLOW SAND FILTRATION WITH NON-WOVEN SYNTHETIC LAYERS AND GRANULATED VEGETAL COAL TO IMPROVE QUALITY IN WASTEWATER TREATED BY CONSTRUCTED WETLANDS

    OpenAIRE

    Paterniani, JES; da Silva, MJM; Ribeiro, TAP; Barbosa, M.

    2011-01-01

    The objective of this study was the comparison between two filtration systems, being one composed of a boulder pre-filter followed by a slow filter with sand as filtration media and a non-woven synthetic fabric in the upper part, and the other one composed of a boulder pre-filter followed by a slow filter with sand as filtration media and granular activated charcoal and a non-woven synthetic fabric in the upper part, for the purification of household effluents treated in cultivated beds, to b...

  17. Estimating sagebrush cover in semi-arid environments using Landsat Thematic Mapper data

    Science.gov (United States)

    Sivanpillai, Ramesh; Prager, Steven D.; Storey, Thomas O.

    2009-04-01

    Sagebrush ecosystems of the western US provide important habitat for several ungulate and vertebrate species. As a consequence of energy development, these ecosystems in Wyoming have been subjected to a variety of anthropogenic disturbances. Land managers require methodology that will allow them to consistently catalog sagebrush ecosystems and evaluate potential impact of proposed anthropogenic activities. This study addresses the utility of remotely sensed and ancillary geospatial data to estimate sagebrush cover using ordinal logistic regression. We demonstrate statistically significant prediction of ordinal sagebrush cover categories using spectral ( χ2 = 113; p < 0.0001) and transformed indices ( χ2 = 117; p < 0.0001). Both Landsat spectral bands ( c-value = 0.88) and transformed indices ( c-value = 0.89) can distinguish sites with closed, moderate and open cover sagebrush cover categories from no cover. The techniques described in this study can be used for estimating categories of sagebrush cover in arid ecosystems.

  18. Range-wide assessment of livestock grazing across the sagebrush biome

    Science.gov (United States)

    Veblen, Kari E.; Pyke, David A.; Aldridge, Cameron L.; Casazza, Michael L.; Assal, Timothy J.; Farinha, Melissa A.

    2011-01-01

    synthesize recommendations from federal and university rangeland science experts about how BLM might prioritize collection of different types of livestock grazing-related natural resource data. 4. Investigate whether range-wide datasets (Objective 1) could be used in conjunction with remotely sensed imagery to identify across broad scales (a) allotments potentially not meeting BLM Land Health Standards (LHS) and (b) allotments in which unmet standards might be attributable to livestock grazing. Objective 1: We identified four datasets that potentially could be used for analyses of livestock grazing effects on sagebrush ecosystems. First, we obtained the most current spatial data (typically up to 2007, 2008, or 2009) for all BLM allotments and compiled data into a coarse, topologically enforced dataset that delineated grazing allotment boundaries. Second, we obtained LHS evaluation data (as of 2007) for all allotments across all districts and regions; these data included date of most recent evaluation, BLM determinations of whether region-specific standards were met, and whether BLM deemed livestock to have contributed to any unmet standards. Third, we examined grazing records of three types: Actual Use (permittee-reported), Billed Use (BLM-reported), and Permitted Use (legally authorized). Finally, we explored the possibility of using existing Natural Resources Conservation Service (NRCS) Ecological Site Description (ESD) data to make up-to-date estimates of production and forage availability on BLM allotments. Objective 2: We investigated the availability of BLM livestock grazing-related monitoring data and the status of LHS across 310 randomly selected allotments in 13 BLM field offices. We found that, relative to other data types, the most commonly available monitoring data were Actual Use numbers (permittee-reported livestock numbers and season-of-use), followed by Photo Point, forage Utilization, and finally, Vegetation Trend measurement data. Data availability and

  19. Conservation of Sand Dune Vegetation in Coastal areas of the Valencian Region (Spain); Estado de conservacion de la vegetacion dunar en las costas de la comunidad Valenciana

    Energy Technology Data Exchange (ETDEWEB)

    Albertos, B.; San Miguel, E.; Draper, I.; Garilleti, R.; Lara, F.; Varela, J. M.

    2010-07-01

    The state of conservation of the coastal dune vegetation in Valencia region has been assessed within a survey of the vegetal communities present in these systems.The conservation status has been evaluated through a qualitative scale which integrates criteria such as dune extension, structure and diversity of the vegetal communities, level of ruderalization, presence of invasive species, and floristic rarity. Special attention has been paid to the usual aggressions to this type of ecosystem and the situation of the most aggressive invasive plants. (Author) 15 refs.

  20. Is fire exclusion in mountain big sagebrush communities prudent? Soil nutrient, plant diversity, and arthropod response to burning

    Science.gov (United States)

    Fire has largely been excluded from many mountain big sagebrush (Artemisia tridentata Nutt. ssp. vaseyana (Rydb.) Beetle) communities. Land and wildlife managers are especially reluctant to reintroduce fire in mountain big sagebrush plant communities, especially those communities without significan...

  1. Photochemical model evaluation of the ground-level ozone impacts on ambient air quality and vegetation health in the Alberta oil sands region: Using present and future emission scenarios

    Science.gov (United States)

    Vijayaraghavan, Krish; Cho, Sunny; Morris, Ralph; Spink, David; Jung, Jaegun; Pauls, Ron; Duffett, Katherine

    2016-09-01

    One of the potential environmental issues associated with oil sands development is increased ozone formation resulting from NOX and volatile organic compound emissions from bitumen extraction, processing and upgrading. To manage this issue in the Athabasca Oil Sands Region (AOSR) in northeast Alberta, a regional multi-stakeholder group, the Cumulative Environmental Management Association (CEMA), developed an Ozone Management Framework that includes a modelling based assessment component. In this paper, we describe how the Community Multi-scale Air Quality (CMAQ) model was applied to assess potential ground-level ozone formation and impacts on ambient air quality and vegetation health for three different ozone precursor cases in the AOSR. Statistical analysis methods were applied, and the CMAQ performance results met the U.S. EPA model performance goal at all sites. The modelled 4th highest daily maximum 8-h average ozone concentrations in the base and two future year scenarios did not exceed the Canada-wide standard of 65 ppb or the newer Canadian Ambient Air Quality Standards of 63 ppb in 2015 and 62 ppb in 2020. Modelled maximum 1-h ozone concentrations in the study were well below the Alberta Ambient Air Quality Objective of 82 ppb in all three cases. Several ozone vegetation exposure metrics were also evaluated to investigate the potential impact of ground-level ozone on vegetation. The chronic 3-months SUM60 exposure metric is within the CEMA baseline range (0-2000 ppb-hr) everywhere in the AOSR. The AOT40 ozone exposure metric predicted by CMAQ did not exceed the United Nations Economic Commission for Europe (UN/ECE) threshold of concern of 3000 ppb-hr in any of the cases but is just below the threshold in high-end future emissions scenario. In all three emission scenarios, the CMAQ predicted W126 ozone exposure metric is within the CEMA baseline threshold of 4000 ppb-hr. This study outlines the use of photochemical modelling of the impact of an industry (oil

  2. Deposition of sandstorms in a vegetation-covered sand dune in Ejin Oasis and its characteristics%额济纳绿洲沙尘暴沉积特征

    Institute of Scientific and Technical Information of China (English)

    温小浩; 李保生; 王为

    2006-01-01

    "Ejin Section" found in a typical vegetation-covered sand dune in Ejin Oasis was investigated. In this study, 263 samples were taken from the section for grain-size analysis, 25 for chemical analysis, 11 for 14C dating and 6 for scanning electron microscope (SEM). The results of the study indicate that 3 types of the sediments in the section can be identified, YS, LS and ST. YS, homogeneous yellow-brown dune sands, is equal to those of inland deserts, LS, loess-like sandy soils, is the same as the sandy loess in the middle Yellow River and modern falling dusts, and ST, sandy sediments interbeded with the deadwood and defoliation of Tamarix spp, represents the depositional process of the section interrupted by abrupt changes in climate. The Ejin Section has recorded the repeated dust-storms or sandstorms since 2500 yr BP and the peak periods of the dust-storms or sandstorms revealed by the section are consistent with the records of "dust rains" in historical literatures, indicating that the change of climate is a key factor to increase sandstorms or dust-storms, whereas, "artificial" factor may only be an accelerating one for desertification.

  3. Horizontal stratification of the sand fly fauna (Diptera: Psychodidae) in a transitional vegetation between caatinga and tropical rain forest, state of Bahia, Brazil.

    Science.gov (United States)

    Dias-Lima, Artur Gomes; Guedes, Maria Lenise Silva; Sherlock, Italo A

    2003-09-01

    A study about the horizontal stratification of the sand fly fauna in two distinct ecosystems, caatinga area, endemic for visceral leishmaniasis, and the tropical rain forest area, endemic for cutaneous leishmaniasis, was performed in the state of Bahia, Brazil. Lutzomyia longipalpis was predominant in the caatinga, and following it came the species L. capixaba and L. oswaldoi. In the tropical rain forest other species were found, such as L. intermedia, L. migonei, L. whitmani, L. yuilli, L.fischeri, L. damascenoi, L. evandroi, L. monticola, and L. lenti. It was found that the geographical limits of the vector species of visceral and cutaneous leishmaniasis are clearly defined by the biological and phytogeographic characteristics.

  4. A sampling and analytical approach to develop spatial distribution models for sagebrush-associated species: Chapter 4

    Science.gov (United States)

    Leu, Matthias; Hanser, Steven E.; Aldridge, Cameron L.; Nielsen, Scott E.; Cade, Brian S.; Knick, Steven T.; Hanser, Steven E.; Leu, Matthias; Knick, Steven T.; Aldridge, Cameron L.

    2011-01-01

    Understanding multi-scale floral and faunal responses to human land use is crucial for informing natural resource management and conservation planning. However, our knowledge on how land use influences sagebrush (Artemisia spp.) ecosystems is limited primarily to site-specific studies. To fill this void, studies across large regions are needed that address how species are distributed relative to type, extent, and intensity of land use. We present a study design for the Wyoming Basin Ecoregional Assessment (WBEA) to sample sagebrush-associated flora and fauna along a land cover-human land use gradient. To minimize field costs, we sampled various taxonomic groups simultaneously on transects (ungulates and lagomorphs), point counts (song birds), and area-searches of 7.29-ha survey blocks (pellet counts, burrow counts, reptile surveys, medium-sized mammals, ant mounds, rodent trapping, and vegetation sampling of native and exotic plants). We then present an exploratory approach to develop species occurrence and abundance models when a priori model building is not an option. Our study design has broad applications for large-scale evaluations of arid ecosystems.

  5. Restoration handbook for sagebrush steppe ecosystems with emphasis on greater sage-grouse habitat - Part 1

    Science.gov (United States)

    David A. Pyke; Jeanne C. Chambers; Mike Pellant; Steven T. Knick; Richard F. Miller; Jeffrey L. Beck; Paul S. Doescher; Eugene W. Schupp; Bruce A. Roundy; Mark Brunson; James D. McIver

    2015-01-01

    Sagebrush steppe ecosystems in the United States currently occur on only about one-half of their historical land area because of changes in land use, urban growth, and degradation of land, including invasions of non-native plants. The existence of many animal species depends on the existence of sagebrush steppe habitat. The greater sage-grouse (Centrocercus...

  6. 77 FR 11061 - Endangered and Threatened Wildlife and Plants; Proposed Endangered Status for the Dunes Sagebrush...

    Science.gov (United States)

    2012-02-24

    ... Fish and Wildlife Service 50 CFR Part 17 RIN 1018-AV97 Endangered and Threatened Wildlife and Plants; Proposed Endangered Status for the Dunes Sagebrush Lizard AGENCY: Fish and Wildlife Service, Interior..., 2010, proposed endangered status for the dunes sagebrush lizard (Sceloporus arenicolus) under...

  7. 76 FR 19304 - Endangered and Threatened Wildlife and Plants; Endangered Status for Dunes Sagebrush Lizard

    Science.gov (United States)

    2011-04-07

    ... Fish and Wildlife Service 50 CFR Part 17 RIN 1018-AV97 Endangered and Threatened Wildlife and Plants; Endangered Status for Dunes Sagebrush Lizard AGENCY: Fish and Wildlife Service, Interior. ACTION: Proposed... rule to list the dunes sagebrush lizard (Sceloporus arenicolus) under the Endangered Species Act...

  8. 76 FR 62087 - Draft Conservation Plan and Draft Environmental Assessment; Dunes Sagebrush Lizard, Texas

    Science.gov (United States)

    2011-10-06

    ... Lizard, Texas AGENCY: Fish and Wildlife Service, Interior. ACTION: Notice of availability; announcement... application includes the draft Texas Conservation Plan for the Dunes Sagebrush Lizard (TCP). The draft TCP... Service (Service) and the Applicant for the dunes sagebrush lizard (Sceloporus arenicolus) throughout...

  9. Greater sage-grouse as an umbrella species for sagebrush-associated vertebrates.

    Science.gov (United States)

    Mary M. Rowland; Michael J. Wisdom; Lowell Suring; Cara W. Meinke

    2006-01-01

    Widespread degradation of the sagebrush ecosystem in the western United States, including the invasion of cheatgrass, has prompted resource managers to consider a variety of approaches to restore and conserve habitats for sagebrush-associated species. One such approach involves the use of greater sage-grouse, a species of prominent conservation interest, as an umbrella...

  10. Insect community responses to climate and weather across elevation gradients in the Sagebrush Steppe, eastern Oregon

    Science.gov (United States)

    Pilliod, David S.; Rohde, Ashley T.

    2016-11-17

    Executive SummaryIn this study, the U.S. Geological Survey investigated the use of insects as bioindicators of climate change in sagebrush steppe shrublands and grasslands in the Upper Columbia Basin. The research was conducted in the Stinkingwater and Pueblo mountain ranges in eastern Oregon on lands administered by the Bureau of Land Management.We used a “space-for-time” sampling design that related insect communities to climate and weather along elevation gradients. We analyzed our insect dataset at three levels of organization: (1) whole-community, (2) feeding guilds (detritivores, herbivores, nectarivores, parasites, and predators), and (3) orders within nectarivores (i.e., pollinators). We captured 59,517 insects from 176 families and 10 orders at the Pueblo Mountains study area and 112,305 insects from 185 families and 11 orders at the Stinkingwater Mountains study area in 2012 and 2013. Of all the individuals captured at the Stinkingwater Mountains study area, 77,688 were from the family Cecidomyiidae (Diptera, gall gnats).We found that the composition of insect communities was associated with variability in long-term (30-yr) temperature and interannual fluctuations in temperature. We found that captures of certain fly, bee, moth, and butterfly pollinators were more strongly associated with some climate and vegetation variables than others. We found that timing of emergence, as measured by first detection of families, was associated with elevation. When analyzed by feeding guilds, we found that all guilds emerged later at high elevations except for detritivores, which emerged earlier at high elevations. The abundance of most taxa varied through time, mostly in response to temperature and precipitation. Of the pollinators, bees (particularly, Halictidae and Megachilidae) peaked in abundance in late June and early July, whereas butterflies and moths peaked in August. Flies peaked in abundance in July.Overall, our interpretation of these patterns is that

  11. Horizontal stratification of the sand fly fauna (Diptera: Psychodidae in a transitional vegetation between caatinga and tropical rain forest, state of Bahia, Brazil

    Directory of Open Access Journals (Sweden)

    Dias-Lima Artur Gomes

    2003-01-01

    Full Text Available A study about the horizontal stratification of the sand fly fauna in two distinct ecosystems, caatinga area, endemic for visceral leishmaniasis, and the tropical rain forest area, endemic for cutaneous leishmaniasis, was performed in the state of Bahia, Brazil. Lutzomyia longipalpis was predominant in the caatinga, and following it came the species L. capixaba and L. oswaldoi. In the tropical rain forest other species were found, such as L. intermedia, L. migonei, L. whitmani, L. yuilli, L.fischeri, L. damascenoi, L. evandroi, L. monticola, and L. lenti. It was found that the geographical limits of the vector species of visceral and cutaneous leishmaniasis are clearly defined by the biological and phytogeographic characteristics.

  12. 77 FR 75007 - Importation of Sand Pears From China

    Science.gov (United States)

    2012-12-19

    ... Health Inspection Service 7 CFR Part 319 RIN 0579-AD42 Importation of Sand Pears From China AGENCY... and vegetables regulations to allow the importation of sand pears (Pyrus pyrifolia) from China into the United States. As a condition of entry, sand pears from areas in China in which the Oriental...

  13. The influence of badland surfaces and erosion processes on vegetation cover

    Science.gov (United States)

    Hardenbicker, Ulrike; Matheis, Sarah

    2014-05-01

    To assess the links between badland geomorphology and vegetation cover, we used detailed mapping in the Avonlea badlands, 60 km southwest of Regina, Saskatchewan Canada. Three badlands surfaces are typical in the study area: a basal pediment surface, a mid-slope of bentonitic mudstone with typical popcorn surface, and an upper slope with mud-cemented sandstone. Badland development was triggered by rapid post Pleistocene incision of a meltwater channel in Upper Cretaceous marine and lagoonal sediments. After surveying and mapping of a test area, sediment samples were taken to analyze geophysical parameters. A detailed geomorphic map and vegetation map (1:1000) were compared and analyzed in order to determine the geomorphic environment for plant colonization. The shrink-swell capacity of the bentonitic bedrock, slaking potential and dispersivity are controlled by soil texture, clay mineralogy and chemistry, strongly influencing the timing and location of runoff and the relative significance of surface and subsurface erosional processes. The absence of shrink-swell cracking of the alluvial surfaces of the pediments indicates a low infiltration capacity and sheetflow. The compact lithology of the sandstone is responsible for its low permeability and high runoff coefficient. Slope drainage of steep sandstone slopes is routed through a deep corrasional pipe network. Silver sagebrush (Artemisia cana) is the only species growing on the popcorn surface of the mudrock, which is in large parts vegetation free. The basal pediment shows a distinct 2 m band surrounding the mudrock outcrop without vegetation as a result of high sedimentation rate due to slope wash. Otherwise the typical pioneer vegetation of this basal pediment are grasses. In the transition zone below the steep sandstone cliffs and above the gentle bentonitic mudrock surfaces patches of short-grass vegetation are found, marking slumped blocks with intact vegetation and soil cover. These patches are surrounded by

  14. U.S. Geological Survey sage-grouse and sagebrush ecosystem research annual report for 2017

    Science.gov (United States)

    Hanser, Steven E.

    2017-09-08

    The sagebrush (Artemisia spp.) ecosystem extends across a large portion of the Western United States, and the greater sage-grouse (Centrocercus urophasianus) is one of the iconic species of this ecosystem. Greater sage-grouse populations occur in 11 States and are dependent on relatively large expanses of sagebrush-dominated habitat. Sage-grouse populations have been experiencing long-term declines owing to multiple stressors, including interactions among fire, exotic plant invasions, and human land uses, which have resulted in significant loss, fragmentation, and degradation of landscapes once dominated by sagebrush. In addition to the sage-grouse, over 350 species of plants and animals are dependent on the sagebrush ecosystem.Increasing knowledge about how these species and the sagebrush ecosystem respond to these stressors and to management actions can inform and improve strategies to maintain existing areas of intact sagebrush and restore degraded landscapes. The U.S. Geological Survey (USGS) has a broad research program focused on providing the science needed to inform these strate-gies and to help land and resource managers at the Federal, State, Tribal, and local levels as they work towards sustainable sage-grouse populations and restored landscapes for the broad range of uses critical to stakeholders in the Western United States.USGS science has provided a foundation for major land and resource management decisions including those that precluded the need to list the greater sage-grouse under the Endangered Species Act. The USGS is continuing to build on that foundation to inform science-based decisions to help support local economies and the continued conservation, management, and restoration of the sagebrush ecosystem.This report contains descriptions of USGS sage-grouse and sagebrush ecosystem research projects that are ongoing or were active during 2017 and is organized into five thematic areas: Fire, Invasive Species, Restoration, Sagebrush and Sage

  15. Wildfire, climate, and invasive grass interactions negatively impact an indicator species by reshaping sagebrush ecosystems

    OpenAIRE

    2016-01-01

    The Great Basin of western North America is larger than 75% of countries worldwide and is comprised mostly of a “sagebrush sea” threatened by a novel disturbance cycle of wildfire and annual grass invasion. The greater sage-grouse is a sagebrush-obligate species whose populations generally track declines in sagebrush, and is highly influential in shaping state and national land-use policy. Using three decades of sage-grouse population count, wildfire, and climate data within a modeling framew...

  16. Outplanting Wyoming big sagebrush following wldfire: stock performance and economics

    Science.gov (United States)

    Dettweiler-Robinson, Eva; Bakker, Jonathan D.; Evans, James R.; Newsome, Heidi; Davies, G. Matt; Wirth, Troy A.; Pyke, David A.; Easterly, Richard T.; Salstrom, Debra; Dunwiddle, Peter W.

    2013-01-01

    Finding ecologically and economically effective ways to establish matrix species is often critical for restoration success. Wyoming big sagebrush (Artemisia tridentata subsp. wyomingensis) historically dominated large areas of western North America, but has been extirpated from many areas by large wildfires; its re-establishment in these areas often requires active management. We evaluated the performance (survival, health) and economic costs of container and bare-root stock based on operational plantings of more than 1.5 million seedlings across 2 200 ha, and compared our plantings with 30 other plantings in which sagebrush survival was tracked for up to 5 yr. Plantings occurred between 2001 and 2007, and included 12 combinations of stock type, planting amendment, and planting year.We monitored 10 500 plants for up to 8 yr after planting. Survival to Year 3 averaged 21% and was higher for container stock (30%) than bare-root stock (17%). Survival did not differ among container stock plantings, whereas survival of bare-root stock was sometimes enhanced by a hydrogel dip before planting, but not by

  17. Study on biomass crust preparation to restore vegetation in drifting sand regions in Minqin%生物质结皮制剂在民勤流动沙区恢复植被的作用

    Institute of Scientific and Technical Information of China (English)

    王瑞君; 陈正华; 王百田; 王宁; 何经纬

    2013-01-01

    A new kind of crust preparation, which was composed of biopolymer materials and mineral materials, could promote vegetation recovery of moving dunes in Minqin Country, Gansu Province. Minqin County is surrounded by the Tengger and Badain Jaran desert on the East, West and North sides. The average annual rainfall is 113 mm, while the evaporation is up to 2 646 mm, so Minqin Country belongs to the extremely arid continental climate zone. Area of desert and desertification land is up to 1.5× 107 hm2, which is 94.5%of the Minqin land area. The rest, only 5.5%, is the sole oasis area of Minqin Country. The length of the oasis edge is 408km. Minqin Country is a typical agricultural county in sandy areas. The experiment site was located at the frontier of a moving sand area. Crust preparation and seeds of Artemisia scoparia were used in this experiment. Crust preparation (applying for a patent) contained attapulgite, plaster, cellulose, lignin etc. First, the seeds was sown on the surface of a moving dune with a density of 1 000-2 000/m2. Second, the crust components were mixed with sand (crust preparations:sand (V/V)=3:1), and the mixture sprinkled evenly on the sand surface with a shovel. The thickness of the mixture was about 10 mm. Then water was sprayed onto the sand surface to form a crust. The dosage of water was about 2.5 L/m2. Finally, the test area was fenced to prevent access by human and animals. No more manual conservation was implemented later. The thickness of the crust was about 10mm, and its bearing strength was 1-2 kg/cm2 (varied according to the thickness of the crust) after two days. Controlled trials were set in the adjacent moving dune. All the materials and operations were the same, but without the crust preparation. The area of the control trials was approximately 2 200 m2. The project was carried out from August 8-10, 2009. About 10 days after construction, a large number of grass seeds germinated in the crust area, up to 1000/m2. Compared to the

  18. Protocols for sagebrush seed processing and seedling production at the Lucky Peak Nursery

    Science.gov (United States)

    Clark D. Fleege

    2010-01-01

    This paper presents the production protocols currently practiced at the USDA Forest Service Lucky Peak Nursery (Boise, ID) for seed processing and bareroot and container seedling production for three subspecies of big sagebrush (Artemisia tridentata).

  19. Biomass Experiment for Wyoming big sagebrush (Artemisia tridentata subsp. wyomingensis), Spring 2010

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The semi-arid sagebrush steppe ecosystem is one of the largest biomes in North America. The steppe provides critical habitat and forage for wildlife and is...

  20. Floristic Provinces of Sagebrush and Associated Shrub-steppe Habitats in Western North America

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Boundary for floristic regions used for the conservation assessment of Greater Sage-grouse and sagebrush habitat conducted by the Western Association of Fish and...

  1. Direct and indirect effects of petroleum production activities on the western fence lizard (Sceloporus occidentalis) as a surrogate for the dunes sagebrush lizard (Sceloporus arenicolus).

    Science.gov (United States)

    Weir, Scott M; Knox, Ami; Talent, Larry G; Anderson, Todd A; Salice, Christopher J

    2016-05-01

    The dunes sagebrush lizard (Sceloporus arenicolus) is a habitat specialist of conservation concern limited to shin oak sand dune systems of New Mexico and Texas (USA). Because much of the dunes sagebrush lizard's habitat occurs in areas of high oil and gas production, there may be direct and indirect effects of these activities. The congeneric Western fence lizard (Sceloporus occidentalis) was used as a surrogate species to determine direct effects of 2 contaminants associated with oil and gas drilling activities in the Permian Basin (NM and TX, USA): herbicide formulations (Krovar and Quest) and hydrogen sulfide gas (H2S). Lizards were exposed to 2 concentrations of H2 S (30 ppm or 90 ppm) and herbicide formulations (1× or 2× label application rate) representing high-end exposure scenarios. Sublethal behavioral endpoints were evaluated, including sprint speed and time to prey detection and capture. Neither H2S nor herbicide formulations caused significant behavioral effects compared to controls. To understand potential indirect effects of oil and gas drilling on the prey base, terrestrial invertebrate biomass and order diversity were quantified at impacted sites to compare with nonimpacted sites. A significant decrease in biomass was found at impacted sites, but no significant effects on diversity. The results suggest little risk from direct toxic effects, but the potential for indirect effects should be further explored.

  2. Modeling regeneration responses of big sagebrush (Artemisia tridentata) to abiotic conditions

    Science.gov (United States)

    Schlaepfer, Daniel R.; Lauenroth, William K.; Bradford, John B.

    2014-01-01

    Ecosystems dominated by big sagebrush, Artemisia tridentata Nuttall (Asteraceae), which are the most widespread ecosystems in semiarid western North America, have been affected by land use practices and invasive species. Loss of big sagebrush and the decline of associated species, such as greater sage-grouse, are a concern to land managers and conservationists. However, big sagebrush regeneration remains difficult to achieve by restoration and reclamation efforts and there is no regeneration simulation model available. We present here the first process-based, daily time-step, simulation model to predict yearly big sagebrush regeneration including relevant germination and seedling responses to abiotic factors. We estimated values, uncertainty, and importance of 27 model parameters using a total of 1435 site-years of observation. Our model explained 74% of variability of number of years with successful regeneration at 46 sites. It also achieved 60% overall accuracy predicting yearly regeneration success/failure. Our results identify specific future research needed to improve our understanding of big sagebrush regeneration, including data at the subspecies level and improved parameter estimates for start of seed dispersal, modified wet thermal-time model of germination, and soil water potential influences. We found that relationships between big sagebrush regeneration and climate conditions were site specific, varying across the distribution of big sagebrush. This indicates that statistical models based on climate are unsuitable for understanding range-wide regeneration patterns or for assessing the potential consequences of changing climate on sagebrush regeneration and underscores the value of this process-based model. We used our model to predict potential regeneration across the range of sagebrush ecosystems in the western United States, which confirmed that seedling survival is a limiting factor, whereas germination is not. Our results also suggested that modeled

  3. Evaluation of Cytotoxicity of Sagebrush Plain Extract on Human Breast Cancer MCF7 Cells

    Directory of Open Access Journals (Sweden)

    B Gordanian

    2013-07-01

    Full Text Available Abstract Background & aim: Several studies have reported anti-cancer properties of sagebrush plain. The aim of this study was to evaluate the cytotoxicity of the methanol extract of sagebrush plain on human breast cancer MCF7 cells. Methods: In the present experimental study, the toxic effects of methanol extracts of flowers, leaves, stems and roots of sagebrush plain from of Khorassan and Esfahan province were tested on human breast cancer cells MCF-7 and normal cells HEK293 . Plant samples were extracted by methanol and their toxic effects on normal and breast cancer cells at concentrations of 5.62, 125, 250 and 500 µg/ml was determined by MTT. Both breast cancer cells MCF-7 and normal HEK293 cells were cultured in RPMI-1640 medium and DMEM containing 10% fetal calf serums were cultured. Data were analyzed by one-way ANOVA. Results: The methanol extract of sagebrush showed toxicity on MCF7 cells. The extract of Khorasan showed higher toxicity than Esfahan province. IC50 of sagebrush plant for all parts of the plant were obtained more than 500 µg/ml, but the IC50 of sagebrush plant of Khorasan region in leaf and flower were 205 ± 1.3 and 213 ± 5.3µg respectively. The leaves and flowers in both cases had the highest cytotoxicity. Plant extracts in both regions did not show significant cytotoxicity on normal HEK293 cells. Conclusion: The extract of the sagebrush plain region of Khorasan region showed greater cytotoxicity than Esfahan. It seems that different environmental conditionshas considerable cytotoxicity. Keywords: Sagebrush Plain, MTT, Breast Cancer

  4. Range-wide assessment of livestock grazing across the sagebrush biome

    OpenAIRE

    Veblen, Kari E.; Pyke, D A; Aldridge, C. L.; Casazza, M. L.; ASSAL, T. J.; Farinha, M A

    2011-01-01

    Domestic livestock grazing occurs in virtually all sagebrush habitats and is a prominent disturbance factor. By affecting habitat condition and trend, grazing influences the resources required by, and thus, the distribution and abundance of sagebrush-obligate wildlife species (for example, sage-grouse Centrocercus spp.). Yet, the risks that livestock grazing may pose to these species and their habitats are not always clear. Although livestock grazing intensity and associated habitat condition...

  5. Invasive plants on disturbed Korean sand dunes

    Science.gov (United States)

    Kim, Kee Dae

    2005-01-01

    The sand dunes in coastal regions of South Korea are important ecosystems because of their small size, the rare species found in this habitat, and the beautiful landscapes they create. This study investigated the current vegetative status of sand dunes on three representative coasts of the Korean peninsula, and on the coasts of Cheju Island, and assessed the conditions caused by invasive plants. The relationships between the degree of invasion and 14 environmental variables were studied. Plots of sand dunes along line transects perpendicular to the coastal lines were established to estimate vegetative species coverage. TWINSPAN (Two-Way Indicator Species Analysis), CCA (Canonical Correspondence Analysis), and DCCA (Detrended Canonical Correspondence Analysis) were performed to classify communities on sand dunes and assess species composition variation. Carex kobomugi, Elymus mollis, and Vitex rotundifolia were found to be the dominant species plotted on the east, the west, and the peripheral coasts of Cheju Island, respectively. Vegetation on the south coast was totally extinct. The 19 communities, including representative C. kobomugi, C. kobomugi- Ixeris repens, C. kobomugi- Oenothera biennis, E. mollis, Lolium multiflorum- Calystegia soldanella, and V. rotundifolia- C. kobomugi, were all classified according to TWINSPAN. Oenothera biennis and L. multiflorum were exotics observed within these native communities. CCA showed that invasive native and exotic species distribution was segregated significantly, according to disturbance level, exotic species number, gravel, sand and silt contents, as well as vegetation size. It further revealed that human disturbance can strongly favor the settlement of invasive and exotic species. Restoration options to reduce exotic plants in the South Korean sand dune areas were found to be the introduction of native plant species from one sand dune into other sand dune areas, prohibition of building and the introduction of exotic

  6. Roles of spatially varying vegetation on surface fluxes within a small mountainous catchment

    Directory of Open Access Journals (Sweden)

    G. N. Flerchinger

    2010-01-01

    Full Text Available Understanding the role of ecosystems in modulating energy, water and carbon fluxes is critical to quantifying the variability in energy, carbon, and water balances across landscapes. This study compares and contrasts the seasonal surface fluxes of sensible heat, latent heat and carbon fluxes measured over different vegetation in a rangeland mountainous environment within the Reynolds Creek Experimental Watershed. Eddy covariance systems were used to measure surface fluxes over low sagebrush (Artemesia arbuscula, aspen (Populus tremuloides and the understory of grasses and forbs beneath the aspen canopy. Peak leaf area index of the sagebrush, aspen, and aspen understory was 0.77, 1.35, and 1.20, respectively. The sagebrush and aspen canopies were subject to similar meteorological forces, while the understory of the aspen was sheltered from the wind. Estimated cumulative evapotranspiratation from the sagebrush, aspen understory, and aspen trees were 399 mm, 205 mm and 318 mm. A simple water balance of the catchment indicated that of the 700 mm of areal average precipitation, 442 mm was lost to evapotranspiration, and 254 mm of streamflow was measured from the catchment; water balance closure for the catchment was within 7 mm. Fluxes of latent heat and carbon for all sites were minimal through the winter. Growing season fluxes of latent heat and carbon were consistently higher above the aspen canopy than from the other sites. While growing season carbon fluxes were very similar for the sagebrush and aspen understory, latent heat fluxes for the sagebrush were consistently higher. Higher evapotranspiration from the sagebrush was likely because it is more exposed to the wind. Sensible heat flux from the aspen tended to be slightly less than the sagebrush site during the growing season when the leaves were actively transpiring, but exceeded that from the sagebrush in May, September and October when the net radiation was offset by

  7. Sands styrke

    DEFF Research Database (Denmark)

    Jacobsen, H. Moust; Jørgensen, Mogens B.; Poulsen, H. Serup

    1975-01-01

    På grundlag af triaxialforsøg med D=7 og 20 cm og varierende højde på løse og faste lejringer af Blokhussand kan effekten af varierende højde-breddeforhold og spændingsniveau samt skalaeffekten bestemmes. Ved sammenligning med pladeforsøg med overfladelast op til 8 t/m2 kan den almindelige fremga...... fremgangsmåde ved bæreevneberegninger på sand undersøges....

  8. Canopy growth and density of Wyoming big sagebrush sown with cool-season perennial grasses

    Energy Technology Data Exchange (ETDEWEB)

    Hild, A.L.; Schuman, G.E.; Vicklund, L.E.; Williams, M.I. [University of Wyoming, Laramie, WY (United States). Dept. for Renewable Resources

    2006-07-15

    Post-mining revegetation efforts often require grass seeding and mulch applications to stabilize the soils at the same time as shrub seeding, creating intraspecific competition between seeded shrubs and grasses that is not well understood. In 1999, we initiated a study at the Belle Ayr Coal Mine near Gillette, Wyoming, to evaluate the influence of grass competition on establishment and growth of Wyoming big sagebrush. Combinations of three sagebrush seeding rates (1, 2, and 4 kg pls ha{sup -1}) and seven cool-season perennial grass mixture seeding rates (0, 2, 4, 6, 8, 10, and 14 kg pls ha{sup -1}) were seeded during winter 1998-1999. Shrub density and grass cover were assessed from 1999 to 2004. We monitored sagebrush canopy size in 2001, 2002, and 2004. All sagebrush seeding rates provided shrub densities (>=) 1 shrub m {sup -1} after six growing seasons. Grass production (>=) 75 g m{sup -2} was achieved by seeding grasses at 6 to 8 kg pls ha{sup -1}). Canopy growth of individual sagebrush plants was least in the heaviest grass seeding rate. Reduced grass seeding rates can aid in achieving Wyoming big sagebrush density standards and enhance shrub canopy growth.

  9. Modeling the Emission, Transport, and Dispersion of Post-wildfire Dust from Western Sagebrush Landscapes within a Regional Air Quality Framework

    Science.gov (United States)

    Chung, S. H.; Wagenbrenner, N. S.; Lamb, B. K.

    2014-12-01

    Millions of hectares are burned by wildfires each year in the western US. The resulting burn scars are extremely wind erodible surfaces with high loadings of easily entrained ash and soil. Previous work has demonstrated that wind erosion from these burn scars can release large amounts of dust and ash as particulate matter (PM) into the atmosphere, resulting in large impacts on downwind air quality and visibility. Sagebrush-dominated landscapes, where often essentially all vegetation is consumed by the fire, appear to be particularly vulnerable. Climate change predictions indicate more wildfire activity in the western US and, hence, more potential for wind erosion from burn scars. However, these PM sources are not yet accounted for in regional air quality models. Here we describe a modification to the AIRPACT regional air quality modeling framework for simulating the emission, transport and dispersion of PM from post-wildfire burn scars. We present results from a 2012 sagebrush fire in southeast Oregon as a case study. Modeled PM emission rates and downwind concentrations are compared against observations for two major dust events, one which resulted in exceedances of the PM10 National Ambient Air Quality Standard in Boise, Idaho the month after the fire and another which resulted in a significant dust on snow event and subsequent snowmelt in the Owyhee Mountains of southwest Idaho the following spring. Additionally, we present model estimates of annual emissions from all wildfires that occurred in sagebrush landscapes of the western US during the 2012 fire year as an estimate of annual post-fire PM loading potential.

  10. An experiment to restore coastal sand dunes at Miramar beach, Goa: An appraisal

    Digital Repository Service at National Institute of Oceanography (India)

    Mascarenhas, A.

    . Loss of vegetation is attributed to continuous trampling by humans, resulting in the creation of loose free sand that gets transported landwards. During windy days, large quantities of beach sand are blown from the beach and subsequently accumulate...

  11. Tar sand

    Energy Technology Data Exchange (ETDEWEB)

    McLendon, T.R.; Bartke, T.C.

    1990-01-01

    Research on tar sand is briefly discussed. The research program supported by the US Department of Energy (DOE) includes a variety of surface extraction schemes. The University of Utah has process development units (PDU) employing fluidized bed, hot, water-assisted, and fluidized-bed/heat-pipe, coupled combustor technology. Considerable process variable test data have been gathered on these systems: (1) a rotary kiln unit has been built recently; (2) solvent extraction processing is being examined; and (3) an advanced hydrogenation upgrading scheme (hydropyrolysis) has been developed. The University of Arkansas, in collaboration with Diversified Petroleum, Inc., has been working on a fatty acid, solvent extraction process. Oleic acid is the solvent/surfactant. Solvent is recovered by adjusting processing fluid concentrations to separate without expensive operations. Western Research Institute has a PDU-scale scheme called the Recycle Oil Pyrolysis and Extraction (ROPE) process, which combines solvent (hot recycle bitumen) and pyrolytic extraction. 14 refs., 19 figs.

  12. Wildfire, climate, and invasive grass interactions negatively impact an indicator species by reshaping sagebrush ecosystems

    Science.gov (United States)

    Coates, Peter S.; Ricca, Mark; Prochazka, Brian; Brooks, Matthew L.; Doherty, Kevin E.; Kroger, Travis; Blomberg, Erik J.; Hagen, Christian A.; Casazza, Michael L.

    2016-01-01

    Iconic sagebrush ecosystems of the American West are threatened by larger and more frequent wildfires that can kill sagebrush and facilitate invasion by annual grasses, creating a cycle that alters sagebrush ecosystem recovery post disturbance. Thwarting this accelerated grass–fire cycle is at the forefront of current national conservation efforts, yet its impacts on wildlife populations inhabiting these ecosystems have not been quantified rigorously. Within a Bayesian framework, we modeled 30 y of wildfire and climatic effects on population rates of change of a sagebrush-obligate species, the greater sage-grouse, across the Great Basin of western North America. Importantly, our modeling also accounted for variation in sagebrush recovery time post fire as determined by underlying soil properties that influence ecosystem resilience to disturbance and resistance to invasion. Our results demonstrate that the cumulative loss of sagebrush to direct and indirect effects of wildfire has contributed strongly to declining sage-grouse populations over the past 30 y at large spatial scales. Moreover, long-lasting effects from wildfire nullified pulses of sage-grouse population growth that typically follow years of higher precipitation. If wildfire trends continue unabated, model projections indicate sage-grouse populations will be reduced to 43% of their current numbers over the next three decades. Our results provide a timely example of how altered fire regimes are disrupting recovery of sagebrush ecosystems and leading to substantial declines of a widespread indicator species. Accordingly, we present scenario-based stochastic projections to inform conservation actions that may help offset the adverse effects of wildfire on sage-grouse and other wildlife populations.

  13. Quantifying spatiotemporal changes in a sagebrush ecosystem in relation to energy development.

    Energy Technology Data Exchange (ETDEWEB)

    Walston, L. J.; Cantwell, B. L.; Krummel, J. R.; Environmental Science Division

    2009-12-01

    Energy development has been occurring in the intermountain western United States for over a century, yet few studies have attempted to spatially quantify the impacts of this disturbance on native ecosystems. We used temporal remotely sensed data for the Pinedale Anticline Project Area (PAPA) in western Wyoming, a region that has experienced increased natural gas development within the past 10 yr, to quantify the spatiotemporal distribution of Wyoming big sagebrush Artemisia tridentata, natural gas development, and other landcover types. Our analyses included 5 Landsat Thematic Mapper (TM) images of the PAPA over a 22-yr period (1985-2006). We determined whether Wyoming big sagebrush spatiotemporal patterns were associated with natural gas development or other landcover types. We also developed a footprint model to determine the direct and indirect impacts of natural gas development on the distribution of Wyoming big sagebrush habitats. Over the 22-yr period, we observed an inverse relationship between the amount of Wyoming big sagebrush habitat and natural gas development. During this time, Wyoming big sagebrush habitat declined linearly at a rate of 0.2% yr-1 (4.5% total net loss), whereas natural gas development increased exponentially at a rate of 20% yr-1 (4800% total net increase). Our evaluation indicated that, by 2006, natural gas development directly impacted 2.7% (1750 ha) of original Wyoming big sagebrush habitat. Indirect impacts, quantified to account for degraded habitat quality, affected as much as 58.5% (assuming 1000-m buffers) of the original Wyoming big sagebrush habitat. Integrating assessments of the direct and indirect impacts will yield a better elucidation of the overall effects of disturbances on ecosystem function and quality.

  14. It's in the sand

    OpenAIRE

    Mitchell, Clive

    2016-01-01

    Sand is sand isn’t it? Sand gets everywhere but rather than a nuisance it is a valuable, high-purity raw material. Clive Mitchell, Industrial Minerals Specialist at the British Geological Survey (BGS), talks us through what sand is, what it can be used for and how to find it. His exploration of sand takes us from the deserts of Arabia to the damp sand pits of Mansfield!

  15. Land use and habitat conditions across the southwestern Wyoming sagebrush steppe: development impacts, management effectiveness and the distribution of invasive plants

    Science.gov (United States)

    Manier, Daniel J.; Aldridge, Cameron L.; Anderson, Patrick; Chong, Geneva; Homer, Collin G.; O'Donnell, Michael S.; Schell, Spencer

    2011-01-01

    sampling focused on the interaction between human infrastructure and weedy plant distributions in southwestern Wyoming, while also capturing spatial variability associated with growing conditions and management across the region. In a separate but linked study, we also sampled native and invasive composition of recent and historic habitat treatments. Here, we summarize findings of this ongoing work, highlighting patterns and relationships between vegetation (native and invasive), land cover, landform, and land-use patterns in the sagebrush steppe.

  16. Relative importance of abiotic, biotic, and disturbance drivers of plant community structure in the sagebrush steppe.

    Science.gov (United States)

    Mitchell, Rachel M; Bakker, Jonathan D; Vincent, John B; Davies, G Matt

    2017-04-01

    Abiotic conditions, biotic factors, and disturbances can act as filters that control community structure and composition. Understanding the relative importance of these drivers would allow us to understand and predict the causes and consequences of changes in community structure. We used long-term data (1989-2002) from the sagebrush steppe in the state of Washington, USA, to ask three questions: (1) What are the key drivers of community-level metrics of community structure? (2) Do community-level metrics and functional groups differ in magnitude or direction of response to drivers of community structure? (3) What is the relative importance of drivers of community structure? The vegetation in 2002 was expressed as seven response variables: three community-level metrics (species richness, total cover, compositional change from 1989 to 2002) and the relative abundances of four functional groups. We used a multi-model inference framework to identify a set of top models for each response metric beginning from a global model that included two abiotic drivers, six disturbances, a biotic driver (initial plant community), and interactions between the disturbance and biotic drivers. We also used a permutational relative variable importance metric to rank the influence of drivers. Moisture availability was the most important driver of species richness and of native forb cover. Fire was the most important driver of shrub cover and training area usage was important for compositional change, but disturbances, including grazing, were of secondary importance for most other variables. Biotic drivers, as represented by the initial plant communities, were the most important driver for total cover and for the relative covers of exotics and native grasses. Our results indicate that the relative importance of drivers is dependent on the choice of metric, and that drivers such as disturbance and initial plant community can interact. © 2016 by the Ecological Society of America.

  17. 75 FR 5758 - Bridger-Teton National Forest, Big Piney Ranger District, WY; Piney Creeks Vegetation Treatment

    Science.gov (United States)

    2010-02-04

    ... Treatment AGENCY: Forest Service, USDA. ACTION: Notice of intent to prepare an environmental impact... mailroorn_r4_bridger_teton@fs.fed.us and on the subject line put only ``Piney Creeks Vegetation Treatment.... Treat up to 8,000 acres of aspen stands and the surrounding sagebrush with mechanical treatments and...

  18. Is pile seeding Wyoming big sagebrush(Artemisia tridentata subsp. wyomingensis) an effective alternative to broadcast seeding?

    Science.gov (United States)

    Sagebrush plays an important role in the ecological functions of sagebrush steppe plant communities and is a necessary component of habitat for a variety of wildlife including sage-grouse. At lower elevations, increased fire frequency associated with exotic annual grass invasion has heightened the ...

  19. Restoration handbook for sagebrush steppe ecosystems with emphasis on greater sage-grouse habitat - Part 2: Landscape level restoration decisions

    Science.gov (United States)

    David A. Pyke; Steven T. Knick; Jeanne C. Chambers; Mike Pellant; Richard F. Miller; Jeffrey L. Beck; Paul S. Doescher; Eugene W. Schupp; Bruce A. Roundy; Mark Brunson; James D. McIver

    2015-01-01

    Sagebrush steppe ecosystems in the United States currently (2015) occur on only about one-half of their historical land area because of changes in land use, urban growth, and degradation of land, including invasions of non-native plants. The existence of many animal species depends on the existence of sagebrush steppe habitat. The greater sage-grouse (...

  20. Restoration handbook for sagebrush steppe ecosystems with emphasis on greater sage-grouse habitat - Part 3: Site level restoration decisions

    Science.gov (United States)

    David A. Pyke; Jeanne C. Chambers; Mike Pellant; Richard F. Miller; Jeffrey L. Beck; Paul S. Doescher; Bruce A. Roundy; Eugene W. Schupp; Steven T. Knick; Mark Brunson; James D. McIver

    2017-01-01

    Sagebrush steppe ecosystems in the United States currently (2016) occur on only about one-half of their historical land area because of changes in land use, urban growth, and degradation of land, including invasions of non-native plants. The existence of many animal species depends on the existence of sagebrush steppe habitat. The greater sage-grouse (Centrocercus...

  1. Real-Time Simulation of Aeolian Sand Movement and Sand Ripple Evolution: A Method Based on the Physics of Blown Sand

    Institute of Scientific and Technical Information of China (English)

    Ning Wang; Bao-Gang Hu

    2012-01-01

    Simulation and visualization of aeolian sand movement and sand ripple evolution are a challenging subject.In this paper,we propose a physically based modeling and simulating method that can be used to synthesize sandy terrain in various patterns.Our method is based on the mechanical behavior of individual sand grains,which are widely studied in the physics of blown sand.We accounted significant mechanisms of sand transportation into the sand model,such as saltation,successive saltation and collapsing,while simplified the vegetation model and wind field model to make the simulation feasible and affordable.We implemented the proposed method on the programming graphics processing unit (GPU) to get real-time simulation and rendering.Finally,we proved that our method can reflect many characteristics of sand ripple evolution through several demonstrations.We also gave several synthesized desert scenes made from the simulated height field to display its significance on application.

  2. Industrial sand and gravel

    Science.gov (United States)

    Dolley, T.P.

    2013-01-01

    Domestic production of industrial sand and gravel in 2012 was about 49.5 Mt (55 million st), increasing 13 percent compared with that of 2011. Some important end uses for industrial sand and gravel include abrasives, filtration, foundry, glassmaking, hydraulic fracturing sand (frac sand) and silicon metal applications.

  3. Eastern Scheldt Sand, Baskarp Sand No. 15

    DEFF Research Database (Denmark)

    Andersen, A. T; Madsen, E. B.; Schaarup-Jensen, A. L.

    The present data report contains data from 13 drained triaxial tests, performed on two different sand types in the Soil Mechanics Laboratory at Aalborg University in March, 1997. Two tests have been performed on Baskarp Sand No. 15, which has already ken extensively tested in the Soil Mechanics...... Laboratory. The remaining 11 triaxial tests have ben performed on Eastern Scheldt Sand, which is a material not yet investigated at the Soil Mechanics Laboratory. In the first pari of this data report, the characteristics of the two sand types in question will be presented. Next, a description...

  4. Fungal and bacterial contributions to nitrogen cycling in cheatgrass-invaded and uninvaded native sagebrush soils of the western USA

    Science.gov (United States)

    DeCrappeo, Nicole; DeLorenze, Elizabeth J.; Giguere, Andrew T; Pyke, David A.; Bottomley, Peter J.

    2017-01-01

    AimThere is interest in determining how cheatgrass (Bromus tectorum L.) modifies N cycling in sagebrush (Artemisia tridentata Nutt.) soils of the western USA.MethodsTo gain insight into the roles of fungi and bacteria in N cycling of cheatgrass-invaded and uninvaded sagebrush soils, the fungal protein synthesis inhibitor, cycloheximide (CHX), and the bacteriocidal compound, bronopol (BRO) were combined with a 15NH4+ isotope pool dilution approach.ResultsCHX reduced gross N mineralization to the same rate in both sagebrush and cheatgrass soils indicating a role for fungi in N mineralization in both soil types. In cheatgrass soils BRO completely inhibited gross N mineralization, whereas, in sagebrush soils a BRO-resistant gross N mineralization rate was detected that was slower than CHX sensitive gross N mineralization, suggesting that the microbial drivers of gross N mineralization were different in sagebrush and cheatgrass soils. Net N mineralization was stimulated to a higher rate in sagebrush than in cheatgrass soils by CHX, implying that a CHX inhibited N sink was larger in the former than the latter soils. Initial gross NH4+ consumption rates were reduced significantly by both CHX and BRO in both soil types, yet, consumption rates recovered significantly between 24 and 48 h in CHX-treated sagebrush soils. The recovery of NH4+ consumption in sagebrush soils corresponded with an increase in the rate of net nitrification.ConclusionsThese results suggest that cheatgrass invasion of sagebrush soils of the northern Great Basin reduces the capacity of the fungal N consumption sink, enhances the capacity of a CHX resistant N sink and alters the contributions of bacteria and fungi to gross N mineralization.

  5. Biogenic crust dynamics on sand dunes

    CERN Document Server

    Kinast, Shai; Yizhaq, Hezi; Ashkenazy, Yosef

    2012-01-01

    Sand dunes are often covered by vegetation and biogenic crusts. Despite their significant role in dune stabilization, biogenic crusts have rarely been considered in studies of dune dynamics. Using a simple model, we study the existence and stability ranges of different dune-cover states along gradients of rainfall and wind power. Two ranges of alternative stable states are identified: fixed crusted dunes and fixed vegetated dunes at low wind power, and fixed vegetated dunes and active dunes at high wind power. These results suggest a cross-over between two different forms of desertification.

  6. Calibration of remotely sensed, coarse resolution NDVI to CO2 fluxes in a sagebrush-steppe ecosystem

    Science.gov (United States)

    Wylie, B.K.; Johnson, D.A.; Laca, Emilio; Saliendra, Nicanor Z.; Gilmanov, T.G.; Reed, B.C.; Tieszen, L.L.; Worstell, B.B.

    2003-01-01

    The net ecosystem exchange (NEE) of carbon flux can be partitioned into gross primary productivity (GPP) and respiration (R). The contribution of remote sensing and modeling holds the potential to predict these components and map them spatially and temporally. This has obvious utility to quantify carbon sink and source relationships and to identify improved land management strategies for optimizing carbon sequestration. The objective of our study was to evaluate prediction of 14-day average daytime CO2 fluxes (Fday) and nighttime CO2 fluxes (Rn) using remote sensing and other data. Fday and Rn were measured with a Bowen ratio-energy balance (BREB) technique in a sagebrush (Artemisia spp.)-steppe ecosystem in northeast Idaho, USA, during 1996-1999. Micrometeorological variables aggregated across 14-day periods and time-integrated Advanced Very High Resolution Radiometer (AVHRR) Normalized Difference Vegetation Index (iNDVI) were determined during four growing seasons (1996-1999) and used to predict Fday and Rn. We found that iNDVI was a strong predictor of Fday (R2 = 0.79, n = 66, P Elsevier Science Inc. All rights reserved.

  7. 44 CFR 65.11 - Evaluation of sand dunes in mapping coastal flood hazard areas.

    Science.gov (United States)

    2010-10-01

    ... 44 Emergency Management and Assistance 1 2010-10-01 2010-10-01 false Evaluation of sand dunes in... Insurance Program IDENTIFICATION AND MAPPING OF SPECIAL HAZARD AREAS § 65.11 Evaluation of sand dunes in...-established with long-standing vegetative cover, such as the placement of sand materials in a...

  8. 75 FR 77801 - Endangered and Threatened Wildlife and Plants; Endangered Status for Dunes Sagebrush Lizard

    Science.gov (United States)

    2010-12-14

    ... and Snell 1997, p. 1; Laurencio et al. 2007, p. 1; Chan et al. 2007, p. 337). In Texas, dunes... New Mexico, Sias and Snell (1998, p. 3) reported a negative relationship between oil well density and... sagebrush lizards declined by 50 percent when there were 29 pads per section (Sias and Snell 1998, p. 3...

  9. Resilience and resistance of sagebrush ecosystems: Implications for state and transition models and management treatments

    Science.gov (United States)

    Jeanne C. Chambers; Richard F. Miller; David I. Board; David A. Pyke; Bruce A. Roundy; James B. Grace; Eugene W. Schupp; Robin J. Tausch

    2014-01-01

    In sagebrush ecosystems invasion of annual exotics and expansion of pinon (Pinus monophylla Torr. and Frem.) and juniper (Juniperus occidentalis Hook., J. osteosperma [Torr.] Little) are altering fire regimes and resulting in large-scale ecosystem transformations. Management treatments aim to increase resilience to disturbance and enhance resistance to invasive species...

  10. Sagebrush steppe recovery after fire varies by development phase of Juniperus occidentalis woodland

    Science.gov (United States)

    Pinus-Juniperus L. (Piñon- juniper) woodlands have expanded into Artemisia tridentata Beetle (big sagebrush) steppe of the western United States primarily as a result of reduced fire disturbances. Woodland control measures, including prescribed fire, have been increasingly employed to restore sagebr...

  11. Attempting to restore mountain big sagebrush (Artemisia tridentata ssp. vaseyana) four years after fire

    Science.gov (United States)

    Restoration of shrubs is increasingly needed throughout the world because of altered fire regimes, anthropogenic disturbance, and over-utilization. The native shrub mountain big sagebrush (Artemisia tridentata Nutt. ssp. vaseyana (Rydb.) Beetle) is a restoration priority in western North America be...

  12. Current Distribution of Sagebrush and Associated Vegetation in the Columbia Basin and Southwestern Regions

    Data.gov (United States)

    Oak Ridge National Laboratory — A new regional dataset was produced using decision tree classifier and other techniques to model landcover. Multi-season satellite imagery (Landsat ETM+, 1999-2003)...

  13. Identifying key climate and environmental factors affecting rates of post-fire big sagebrush (Artemisia tridentata) recovery in the northern Columbia Basin, USA

    Science.gov (United States)

    Shinneman, Douglas; McIlroy, Susan

    2016-01-01

    Sagebrush steppe of North America is considered highly imperilled, in part owing to increased fire frequency. Sagebrush ecosystems support numerous species, and it is important to understand those factors that affect rates of post-fire sagebrush recovery. We explored recovery of Wyoming big sagebrush (Artemisia tridentata ssp.wyomingensis) and basin big sagebrush (A. tridentata ssp. tridentata) communities following fire in the northern Columbia Basin (Washington, USA). We sampled plots across 16 fires that burned in big sagebrush communities from 5 to 28 years ago, and also sampled nearby unburned locations. Mixed-effects models demonstrated that density of large–mature big sagebrush plants and percentage cover of big sagebrush were higher with time since fire and in plots with more precipitation during the winter immediately following fire, but were lower when precipitation the next winter was higher than average, especially on soils with higher available water supply, and with greater post-fire mortality of mature big sagebrush plants. Bunchgrass cover 5 to 28 years after fire was predicted to be lower with higher cover of both shrubs and non-native herbaceous species, and only slightly higher with time. Post-fire recovery of big sagebrush in the northern Columbia Basin is a slow process that may require several decades on average, but faster recovery rates may occur under specific site and climate conditions.

  14. Challenges of establishing big sgebrush (Artemisia tridentata) in rangeland restoration: effects of herbicide, mowing, whole-community seeding, and sagebrush seed sources

    Science.gov (United States)

    Brabec, Martha M.; Germino, Matthew J.; Shinneman, Douglas J.; Pilliod, David S.; McIlroy, Susan K.; Arkle, Robert S.

    2015-01-01

    The loss of big sagebrush (Artemisia tridentata Nutt.) on sites disturbed by fire has motivated restoration seeding and planting efforts. However, the resulting sagebrush establishment is often lower than desired, especially in dry areas. Sagebrush establishment may be increased by addressing factors such as seed source and condition or management of the plant community. We assessed initial establishment of seeded sagebrush and four populations of small outplants (from different geographies, climates, and cytotypes) and small sagebrush outplants in an early seral community where mowing, herbicide, and seeding of other native plants had been experimentally applied. No emergence of seeded sagebrush was detected. Mowing the site before planting seedlings led to greater initial survival probabilities for sagebrush outplants, except where seeding also occurred, and these effects were related to corresponding changes in bare soil exposure. Initial survival probabilities were > 30% greater for the local population of big sagebrush relative to populations imported to the site from typical seed transfer distances of ~320–800 km. Overcoming the high first-year mortality of outplanted or seeded sagebrush is one of the most challenging aspects of postfire restoration and rehabilitation, and further evaluation of the impacts of herb treatments and sagebrush seed sources across different site types and years is needed.

  15. Influence green sand system by core sand additions

    OpenAIRE

    N. Špirutová; J. Beňo; V. Bednářová; J. Kříž; M. Kandrnál

    2012-01-01

    Today, about two thirds of iron alloys casting (especially for graphitizing alloys of iron) are produced into green sand systems with usually organically bonded cores. Separation of core sands from the green sand mixture is very difficult, after pouring. The core sand concentration increase due to circulation of green sand mixture in a closed circulation system. Furthermore in some foundries, core sands have been adding to green sand systems as a replacement for new sands. The goal of this co...

  16. Baskarp Sand No. 15

    DEFF Research Database (Denmark)

    Borup, Marianne; Hedegaard, Jette

    The Soil Mechanics Laboratory has started performing tests with a new sand, Baskarp No 15. Baskarp No 15 is a graded sand from Sweden. The shapes of the largest grains are round, while the small grains have sharp edges. The main part of of Baskarp No 15 is quarts, but it also contains feldspar...... and biotit. Mainly the sand will be used for tests concerning the development og the theory of building up pore pressure in sand, L. B. Ibsen 1993....

  17. Lund Sand No 0

    DEFF Research Database (Denmark)

    Ibsen, Lars Bo; Jakobsen, Finn Rosendal

    During the last 15 years the Geotechnical Engineering Group (GEG) at Aalborg University has performed triaxial tests with a sand called Lund No 0. Lund No 0 is a graded sand from a gravel pit near Horsens in Denmark. For the classification of the sand the following tests have been performed: Sieve...

  18. Fire severity, sagebrush types, and soil regimes within large wildfires in greater sage-grouse population areas, 1984-2013

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This table summarizes areas of burn severity, sagebrush biophysical types, and soil temperature/moisture regimes within large wildfires from 1984 to 2013 occuring...

  19. Root elongation rates for Wyoming big sagebrush (Artemisia tridentata subsp. wyomingensis) seedlings for Paired Rootbox Experiment, Spring 2010.

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The semi-arid sagebrush steppe ecosystem is one of the largest biomes in North America. The steppe provides critical habitat and forage for wildlife and is...

  20. Root elongation rates for Wyoming big sagebrush (Artemisia tridentata subsp. wyomingensis) seedlings for Large Rootbox Experiment, Spring 2010.

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The semi-arid sagebrush steppe ecosystem is one of the largest biomes in North America. The steppe provides critical habitat and forage for wildlife and is...

  1. Restoration handbook for sagebrush steppe ecosystems with emphasis on greater sage-grouse habitat—Part 2. Landscape level restoration decisions

    Science.gov (United States)

    Pyke, David A.; Knick, Steven T.; Chambers, Jeanne C.; Pellant, Mike; Miller, Richard F.; Beck, Jeffrey L.; Doescher, Paul S.; Schupp, Eugene W.; Roundy, Bruce A.; Brunson, Mark; McIver, James D.

    2015-12-07

    Sagebrush steppe ecosystems in the United States currently (2015) occur on only about one-half of their historical land area because of changes in land use, urban growth, and degradation of land, including invasions of non-native plants. The existence of many animal species depends on the existence of sagebrush steppe habitat. The greater sage-grouse (Centrocercus urophasianus) is a landscape-dependent bird that requires intact habitat and combinations of sagebrush and perennial grasses to exist. In addition, other sagebrush-obligate animals also have similar requirements and restoration of landscapes for greater sage-grouse also will benefit these animals. Once sagebrush lands are degraded, they may require restoration actions to make those lands viable habitat for supporting sagebrush-obligate animals.

  2. Sand Dunes Fixation in Baiji District, Iraq

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    This study was carried out at Sand Dunes Stabilization Researches Station in Baiji district (230 ln north of Baghdad, Iraq) to evaluate the effects of local soil conditioners manufactured from oil derivatives and plant residuals on sand dunes fixation as the first step for sand dunes stabilization. The results indicate that the fuel oil has the first place in improving wind erosion parameters in the study area, such as increasing mean weight diameter, dry aggregates percentage, the needed time for complete disaggregation by dry sieving, and decreasing the disaggregation rates. Bitumen emulsion occupies the second place, while the plant residuals occupies the third place and has slight effects on the studied parameters. Effects of conditioners on natural vegetation cover are negative in oil derivatives treatments,while positive in plants residuals treatments.

  3. USGS mineral-resource assessment of Sagebrush Focal Areas in the western United States

    Science.gov (United States)

    Frank, David G.; Frost, Thomas P.; Day, Warren C.; ,

    2016-10-04

    U.S. Geological Survey (USGS) scientists have completed an assessment of the mineral-resource potential of nearly 10 million acres of Federal and adjacent lands in Idaho, Montana, Nevada, Oregon, Utah, and Wyoming. The assessment of these lands, identified as Sagebrush Focal Areas, was done at the request of the Bureau of Land Management. The assessment results will be used in the decision-making process that the Department of the Interior is pursuing toward the protection of large areas of contiguous sagebrush habitat for the greater sage-grouse (Centrocercus urophasianus) in the Western United States. The detailed results of this ambitious study are published in the five volumes of USGS Scientific Investigations Report 2016–5089 and seven accompanying data releases.

  4. Influence green sand system by core sand additions

    Directory of Open Access Journals (Sweden)

    N. Špirutová

    2012-01-01

    Full Text Available Today, about two thirds of iron alloys casting (especially for graphitizing alloys of iron are produced into green sand systems with usually organically bonded cores. Separation of core sands from the green sand mixture is very difficult, after pouring. The core sand concentration increase due to circulation of green sand mixture in a closed circulation system. Furthermore in some foundries, core sands have been adding to green sand systems as a replacement for new sands. The goal of this contribution is: “How the green sand systems are influenced by core sands?”This effect is considered by determination of selected technological properties and degree of green sand system re-bonding. From the studies, which have been published yet, there is not consistent opinion on influence of core sand dilution on green sand system properties. In order to simulation of the effect of core sands on the technological properties of green sands, there were applied the most common used technologies of cores production, which are based on bonding with phenolic resin. Core sand concentration added to green sand system, was up to 50 %. Influence of core sand dilution on basic properties of green sand systems was determined by evaluation of basic industrial properties: moisture, green compression strength and splitting strength, wet tensile strength, mixture stability against staling and physical-chemistry properties (pH, conductivity, and loss of ignition. Ratio of active betonite by Methylene blue test was also determined.

  5. Restoration handbook for sagebrush steppe ecosystems with emphasis on greater sage-grouse habitat—Part 1. Concepts for understanding and applying restoration

    Science.gov (United States)

    Pyke, David A.; Chambers, Jeanne C.; Pellant, Mike; Knick, Steven T.; Miller, Richard F.; Beck, Jeffrey L.; Doescher, Paul S.; Schupp, Eugene W.; Roundy, Bruce A.; Brunson, Mark; McIver, James D.

    2015-10-26

    Sagebrush steppe ecosystems in the United States currently occur on only about one-half of their historical land area because of changes in land use, urban growth, and degradation of land, including invasions of non-native plants. The existence of many animal species depends on the existence of sagebrush steppe habitat. The greater sage-grouse (Centrocercus urophasianus) is a landscape-dependent bird that requires intact habitat and combinations of sagebrush and perennial grasses to exist. In addition, other sagebrush-obligate animals also have similar requirements and restoration of landscapes for greater sage-grouse also will benefit these animals. Once sagebrush lands are degraded, they may require restoration actions to make those lands viable habitat for supporting sagebrushobligate animals. This restoration handbook is the first in a three-part series on restoration of sagebrush ecosystems. In Part 1, we discuss concepts surrounding landscape and restoration ecology of sagebrush ecosystems and greater sage-grouse that habitat managers and restoration practitioners need to know to make informed decisions regarding where and how to restore specific areas. We will describe the plant dynamics of sagebrush steppe ecosystems and their responses to major disturbances, fire, and defoliation. We will introduce the concepts of ecosystem resilience to disturbances and resistance to invasions of annual grasses within sagebrush steppe. An introduction to soils and ecological site information will provide insights into the specific plants that can be restored in a location. Soil temperature and moisture regimes are described as a tool for determining resilience and resistance and the potential for various restoration actions. Greater sage-grouse are considered landscape birds that require large areas of intact sagebrush steppe; therefore, we describe concepts of landscape ecology that aid our decisions regarding habitat restoration. We provide a brief overview of

  6. Multi-scale remote sensing sagebrush characterization with regression trees over Wyoming, USA: Laying a foundation for monitoring

    Science.gov (United States)

    Homer, Collin G.; Aldridge, Cameron L.; Meyer, Debra K.; Schell, Spencer J.

    2012-02-01

    Sagebrush ecosystems in North America have experienced extensive degradation since European settlement. Further degradation continues from exotic invasive plants, altered fire frequency, intensive grazing practices, oil and gas development, and climate change - adding urgency to the need for ecosystem-wide understanding. Remote sensing is often identified as a key information source to facilitate ecosystem-wide characterization, monitoring, and analysis; however, approaches that characterize sagebrush with sufficient and accurate local detail across large enough areas to support this paradigm are unavailable. We describe the development of a new remote sensing sagebrush characterization approach for the state of Wyoming, U.S.A. This approach integrates 2.4 m QuickBird, 30 m Landsat TM, and 56 m AWiFS imagery into the characterization of four primary continuous field components including percent bare ground, percent herbaceous cover, percent litter, and percent shrub, and four secondary components including percent sagebrush ( Artemisia spp.), percent big sagebrush ( Artemisia tridentata), percent Wyoming sagebrush ( Artemisia tridentata Wyomingensis), and shrub height using a regression tree. According to an independent accuracy assessment, primary component root mean square error (RMSE) values ranged from 4.90 to 10.16 for 2.4 m QuickBird, 6.01 to 15.54 for 30 m Landsat, and 6.97 to 16.14 for 56 m AWiFS. Shrub and herbaceous components outperformed the current data standard called LANDFIRE, with a shrub RMSE value of 6.04 versus 12.64 and a herbaceous component RMSE value of 12.89 versus 14.63. This approach offers new advancements in sagebrush characterization from remote sensing and provides a foundation to quantitatively monitor these components into the future.

  7. Sands cykliske styrke

    DEFF Research Database (Denmark)

    Ibsen, Lars Bo

    1992-01-01

    Sands cykliske styrke kan beskrives ved Cyclic Liquefaction, Mobilisering, Stabilization og Instant Stabilization. I artiklen beskrives hvorfor Stabilization og Instant Stabilization ikke observeres, når sands udrænede styrke undersøges i triaxial celler, der anvender prøver med dobbelt prøvehøjde....

  8. Baskarp Sand No. 15

    DEFF Research Database (Denmark)

    Ibsen, Lars Bo; Bødker, Lars Bødker

    The Soil Mechanics Laboratory has started performing tests with a new sand, Baskarp No 15. Baskarp No 15 is a graded sand from Sweden. The shapes of the largest grains are round, while the small grains have sharp edges. The main part of of Baskarp No 15 is quarts, but it also contains feldspar...

  9. Response of bird community structure to habitat management in piñon-juniper woodland-sagebrush ecotones

    Science.gov (United States)

    Knick, Steven T.; Hanser, Steve; Grace, James B.; Hollenbeck, Jeff P.; Leu, Matthias

    2017-01-01

    Piñon (Pinus spp.) and juniper (Juniperus spp.) woodlands have been expanding their range across the intermountain western United States into landscapes dominated by sagebrush (Artemisia spp.) shrublands. Management actions using prescribed fire and mechanical cutting to reduce woodland cover and control expansion provided opportunities to understand how environmental structure and changes due to these treatments influence bird communities in piñon-juniper systems. We surveyed 43 species of birds and measured vegetation for 1–3 years prior to treatment and 6–7 years post-treatment at 13 locations across Oregon, California, Idaho, Nevada, and Utah. We used structural equation modeling to develop and statistically test our conceptual model that the current bird assembly at a site is structured primarily by the previous bird community with additional drivers from current and surrounding habitat conditions as well as external regional bird dynamics. Treatment reduced woodland cover by >5% at 80 of 378 survey sites. However, habitat change achieved by treatment was highly variable because actual disturbance differed widely in extent and intensity. Biological inertia in the bird community was the strongest single driver; 72% of the variation in the bird assemblage was explained by the community that existed seven years earlier. Greater net reduction in woodlands resulted in slight shifts in the bird community to one having ecotone or shrubland affinities. However, the overall influence of woodland changes from treatment were relatively small and were buffered by other extrinsic factors. Regional bird dynamics did not significantly influence the structure of local bird communities at our sites. Our results suggest that bird communities in piñon-juniper woodlands can be highly stable when management treatments are conducted in areas with more advanced woodland development and at the level of disturbance measured in our study.

  10. Transcriptome characterization and polymorphism detection between subspecies of big sagebrush (Artemisia tridentata

    Directory of Open Access Journals (Sweden)

    Cronn Richard C

    2011-07-01

    Full Text Available Abstract Background Big sagebrush (Artemisia tridentata is one of the most widely distributed and ecologically important shrub species in western North America. This species serves as a critical habitat and food resource for many animals and invertebrates. Habitat loss due to a combination of disturbances followed by establishment of invasive plant species is a serious threat to big sagebrush ecosystem sustainability. Lack of genomic data has limited our understanding of the evolutionary history and ecological adaptation in this species. Here, we report on the sequencing of expressed sequence tags (ESTs and detection of single nucleotide polymorphism (SNP and simple sequence repeat (SSR markers in subspecies of big sagebrush. Results cDNA of A. tridentata sspp. tridentata and vaseyana were normalized and sequenced using the 454 GS FLX Titanium pyrosequencing technology. Assembly of the reads resulted in 20,357 contig consensus sequences in ssp. tridentata and 20,250 contigs in ssp. vaseyana. A BLASTx search against the non-redundant (NR protein database using 29,541 consensus sequences obtained from a combined assembly resulted in 21,436 sequences with significant blast alignments (≤ 1e-15. A total of 20,952 SNPs and 119 polymorphic SSRs were detected between the two subspecies. SNPs were validated through various methods including sequence capture. Validation of SNPs in different individuals uncovered a high level of nucleotide variation in EST sequences. EST sequences of a third, tetraploid subspecies (ssp. wyomingensis obtained by Illumina sequencing were mapped to the consensus sequences of the combined 454 EST assembly. Approximately one-third of the SNPs between sspp. tridentata and vaseyana identified in the combined assembly were also polymorphic within the two geographically distant ssp. wyomingensis samples. Conclusion We have produced a large EST dataset for Artemisia tridentata, which contains a large sample of the big sagebrush

  11. Holocene beach buildup and coastal aeolian sand incursions off the Nile littoral cell

    Science.gov (United States)

    Roskin, Joel; Sivan, Dorit; Shtienberg, Gilad; Porat, Naomi; Bookman, Revital

    2017-04-01

    Israel's coastal plain is abundant with sand originating from the Nile littoral cell. The inland windblown loose sand has formed 3-6 km wide lobe-like sand and dune fields currently comprised of foredunes, linear and northeasterly facing transverse and parabolic dunes that are currently stabilized by vegetation. This study reviews the architecture and history of the these dune fields aiming to: (a) Date the timings of beach accretion, and sand and dune incursions. (b) Discriminate between natural and human-induced forcing factors of sand mobilization and stabilization in time and space. (c) Present a model of the dunescape development. (d) Assess scenarios of sand transport in the future charcaterized by intense human impact and climate change. Luminescence ages, radiocarbon dates and relative ages from previously published geological and archaeological reports, historical texts, together with new optically stimulated luminescence (OSL) ages and stratigraphic and sedimentological data are analyzed. The deposition, mobilizations and preservation of the sand bodies, initially induced by the decline in sea level rise at 6-4 ka, were later controlled by historic land-use intensity and modern land-use/negligence practices. At 6 ka, beach sand buildup rapidly started. Where aeolianite ridges bordered the coast, pulses of sand with biogenic carbonate grains unconformably draped the ridges and rapidly consolidated into a distinct sandy calcarenite unit. Further east, sand sheets and low dunes partly pedogenized following their incursion, but did not cement. The water retention capacities of the sand sheets enabled the establishment of a sand-stabilizing vegetation cover that probably became an attractive environment for fuel and grazing. The growing Hellenistic-Roman-Byzantine ( 2.4-1.3 ka) populations probably led to increased consumption and massive destruction of sand stabilizing vegetation, enabling sand erodibility and mobilization during winter storms. The sand

  12. W-519 Sagebrush Mitigation Project FY-2004 Final Review and Status

    Energy Technology Data Exchange (ETDEWEB)

    Durham, Robin E.; Sackschewsky, Michael R.

    2004-09-30

    This report summarizes activities conducted as mitigation for loss of sagebrush-steppe habitats due to Project W-519, the construction of the infrastructure for the Tank Waste Remediation System Vitrification Plant. The focus of this report is to provide a review and final status of mitigation actions performed through FY2004. Data collected since FY1999 have been included where appropriate. The Mitigation Action Plan (MAP) for Project W-519 prescribed three general actions to be performed as mitigation for the disturbance of approximately 40 ha (100 acres) of mature sagebrush-steppe habitat. These actions included: (1) transplanting approximately 130,000 sagebrush seedlings on the Fitzner-Eberhardt Arid Lands Ecology Reserve (ALE); (2) rectification of the new transmission line corridor via seeding with native grasses and sagebrush; and (3) research on native plant species with a goal of increasing species diversity in future mitigation or restoration actions. Nearly 130,000 Wyoming big sagebrush seedlings where planted on ALE during FY2000 and FY2001. About 39,000 of those seedlings were burned during the 24-Command Fire of June 2000. The surviving and subsequent replanting has resulted in about 91,000 seedlings that were planted across four general areas on ALE. A 50% survival rate at any monitoring period was defined as the performance standard in the MAP for this project. Data collected in 2004 indicate that of the over 5000 monitored plants, 51.1% are still alive, and of those the majority are thriving and blooming. These results support the potential for natural recruitment and the ultimate goal of wildlife habitat replacement. Thus, the basic performance standard for sagebrush survival within the habitat compensation planting has been met. Monitoring activities conducted in 2004 indicate considerable variation in seedling survival depending on the type of plant material, site conditions, and to a lesser extent, treatments performed at the time of planting

  13. The effects of psammophilous plants on sand dune dynamics

    CERN Document Server

    Bel, Golan

    2013-01-01

    Psammophilous plants are special plants that flourish in sand moving environments. There are two main mechanisms by which the wind affects these plants: (i) sand drift exposes roots and covers branches--the exposed roots turn into new plants and the covered branches turn into new roots; both mechanisms result in an enhanced growth rate of the psammophilous plant cover of the dunes; (ii) strong winds, often associated with sand movement, tear branches and seed them in nearby locations, resulting in new plants and an enhanced growth rate of the psammophilous plant cover of the dunes. Despite their important role in dune dynamics, to our knowledge, psammophilous plants have never been incorporated into mathematical models of sand dunes. Here, we attempt to model the effects of these plants on sand dune dynamics. We construct a set of three ordinary differential equations for the fractions of surface cover of regular vegetation, biogenic soil crust and psammophilous plants. The latter reach their optimal growth u...

  14. Uranium in big sagebrush from western U.S. and evidence of possible mineralization in the Owyhee mountains of Idaho

    Science.gov (United States)

    Erdman, J.A.; Harrach, G.H.

    1981-01-01

    Two regional studies of big sagebrush (Artemisia tridentata), a widely distributed and dominant shrub in the western United States, have shown its responsiveness to known uranium mineralization in the Monument Hill and Pumpkin Buttes districts of the southern Powder River Basin, Wyoming, and the Uravan mineral belt area in southeastern Utah and southwestern Colorado. Uranium concentrations in the ash of 154 stem-and-leaf samples of sagebrush are plotted on two maps, one representing the sampling design for the Powder River Basin study, and the other representing the sampling design for the Colorado Plateaus, the Basin and Range, and the Columbia Plateaus physiographic provinces of the West. Sites having high concentrations in sagebrush correspond not only to the above uranium districts, but also reveal an area along the northeast flanks of the Owyhee Mountains in Idaho that should be further explored for its possible uranium potential.

  15. Sand and Gravel Deposits

    Data.gov (United States)

    Vermont Center for Geographic Information — This dataset is a statewide polygon coverage of sand, gravel, and stone resources. This database includes the best data available from the VT Agency of Natural...

  16. Sand and Gravel Operations

    Data.gov (United States)

    Department of Homeland Security — This map layer includes sand and gravel operations in the United States. These data were obtained from information reported voluntarily to the USGS by the aggregate...

  17. Multi-scale remote sensing sagebrush characterization with regression trees over Wyoming, USA: laying a foundation for monitoring

    Science.gov (United States)

    Homer, Collin G.; Aldridge, Cameron L.; Meyer, Debra K.; Schell, Spencer J.

    2012-01-01

    agebrush ecosystems in North America have experienced extensive degradation since European settlement. Further degradation continues from exotic invasive plants, altered fire frequency, intensive grazing practices, oil and gas development, and climate change – adding urgency to the need for ecosystem-wide understanding. Remote sensing is often identified as a key information source to facilitate ecosystem-wide characterization, monitoring, and analysis; however, approaches that characterize sagebrush with sufficient and accurate local detail across large enough areas to support this paradigm are unavailable. We describe the development of a new remote sensing sagebrush characterization approach for the state of Wyoming, U.S.A. This approach integrates 2.4 m QuickBird, 30 m Landsat TM, and 56 m AWiFS imagery into the characterization of four primary continuous field components including percent bare ground, percent herbaceous cover, percent litter, and percent shrub, and four secondary components including percent sagebrush (Artemisia spp.), percent big sagebrush (Artemisia tridentata), percent Wyoming sagebrush (Artemisia tridentata Wyomingensis), and shrub height using a regression tree. According to an independent accuracy assessment, primary component root mean square error (RMSE) values ranged from 4.90 to 10.16 for 2.4 m QuickBird, 6.01 to 15.54 for 30 m Landsat, and 6.97 to 16.14 for 56 m AWiFS. Shrub and herbaceous components outperformed the current data standard called LANDFIRE, with a shrub RMSE value of 6.04 versus 12.64 and a herbaceous component RMSE value of 12.89 versus 14.63. This approach offers new advancements in sagebrush characterization from remote sensing and provides a foundation to quantitatively monitor these components into the future.

  18. Vestled - Hvide Sande

    DEFF Research Database (Denmark)

    Juel-Christiansen, Carsten; Hesselbjerg, Marianne; Schønherr, Torben

    2009-01-01

    Værket Vestled i Hvide Sande præsenteret i sammenhæng af 1000 nutidige landskabsarkitektoniske arbejder fra hele verden, hvor hvert værk vises på én side......Værket Vestled i Hvide Sande præsenteret i sammenhæng af 1000 nutidige landskabsarkitektoniske arbejder fra hele verden, hvor hvert værk vises på én side...

  19. MECHANICAL REGENERATION OF SAND WASTE

    Directory of Open Access Journals (Sweden)

    D. I. Gnir

    2005-01-01

    Full Text Available The experimental activation of the sand regenerator of the firm SINTO is carried out at ОАО “MZOO". It is shown that sand grains are cleared from films of binding agents, that allows to use the treated sand for preparation of agglutinant and core sands.

  20. Pinyon and juniper encroachment into sagebrush ecosystems impacts distribution and survival of greater sage-grouse

    Science.gov (United States)

    Coates, Peter S.; Prochazka, Brian; Ricca, Mark; Gustafson, K. Ben; Ziegler, Pilar T.; Casazza, Michael L.

    2017-01-01

    In sagebrush (Artemisia spp.) ecosystems, encroachment of pinyon (Pinus spp.) and juniper (Juniperus spp.; hereafter, “pinyon-juniper”) trees has increased dramatically since European settlement. Understanding the impacts of this encroachment on behavioral decisions, distributions, and population dynamics of greater sage-grouse (Centrocercus urophasianus) and other sagebrush obligate species could help benefit sagebrush ecosystem management actions. We employed a novel two-stage Bayesian model that linked avoidance across different levels of pinyon-juniper cover to sage-grouse survival. Our analysis relied on extensive telemetry data collected across 6 yr and seven subpopulations within the Bi-State Distinct Population Segment (DPS), on the border of Nevada and California. The first model stage indicated avoidance behavior for all canopy cover classes on average, but individual grouse exhibited a high degree of heterogeneity in avoidance behavior of the lowest cover class (e.g., scattered isolated trees). The second stage modeled survival as a function of estimated avoidance parameters and indicated increased survival rates for individuals that exhibited avoidance of the lowest cover class. A post hoc frailty analysis revealed the greatest increase in hazard (i.e., mortality risk) occurred in areas with scattered isolated trees consisting of relatively high primary plant productivity. Collectively, these results provide clear evidence that local sage-grouse distributions and demographic rates are influenced by pinyon-juniper, especially in habitats with higher primary productivity but relatively low and seemingly benign tree cover. Such areas may function as ecological traps that convey attractive resources but adversely affect population vital rates. To increase sage-grouse survival, our model predictions support reducing actual pinyon-juniper cover as low as 1.5%, which is lower than the published target of 4.0%. These results may represent effects of pinyon

  1. Strip plantings planted in Spring of 1938 : Sand Lake Migratory Waterfowl Refuge

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This document contains a record of vegetation planted on Sand Lake NWR in 1938. The date of the planting, the count of each species that was planted, and a survival...

  2. Ecologia do forrageio por Cyphomyrmex morschi Emery (Hymenoptera, Formicidae em vegetação de restinga no Sul do Brasil Foraging ecology of Cyphomyrmex morschi Emery (Hymenoptera, Formicidae in sand dune vegetation at Southern Brazil

    Directory of Open Access Journals (Sweden)

    Benedito Cortês Lopes

    2007-03-01

    Full Text Available Foram amostrados 400 ninhos de Cyphomyrmex morschi Emery, 1887 entre 1997 e 1998, nas dunas da praia da Joaquina, Florianópolis, SC, para a verificação do material transportado ao ninho. Estas formigas utilizam material de origem vegetal ou animal (fezes de lagartas de Lepidoptera ou partes de corpos de besouros ou formigas ou mesmo material não identificado que são introduzidos no ninho para o cultivo do fungo. Assim, do ponto de vista do papel ecológico desempenhado, pode-se considerar C. morschi como uma espécie detritófaga.A total of 400 nests of Cyphomyrmex morschi Emery, 1887 was evaluated between 1997 and 1998 at the dunes of the Joaquina Beach, Florianópolis, Santa Catarina, in order to verify the substrate brought back to the nests. These ants use vegetable or animal material (excrements of lepidopteran larvae or carcasses of beetles or ants or even not identified material that are used to culture the fungus. Thus, ecologically speaking, C. morschi can be considered a detritiphagous species.

  3. Demography and monitoring of Welsh's milkweed (Asclepias welshii) at Coral Pink Sand Dunes

    Science.gov (United States)

    Brent C. Palmer; L. Armstrong

    2001-01-01

    Results are presented of a 12-year monitoring program on the Coral Pink Sand Dunes and Sand Hills populations of the threatened Welsh's milkweed, Asclepias welshii N & P Holmgren. The species is an early sera1 member of the dune flora, colonizing blowouts and advancing with shifting dunes. When an area stabilizes and other vegetation encroaches, A. welshii is...

  4. Bituminous sands : tax issues

    Energy Technology Data Exchange (ETDEWEB)

    Patel, B. [PricewaterhouseCoopers LLP, Calgary, AB (Canada)

    2004-07-01

    This paper examined some of the tax issues associated with the production of bitumen or synthetic crude oil from oil sands. The oil sands deposits in Alberta are gaining more attention as the supplies of conventional oil in Canada decline. The oil sands reserves located in the Athabasca, Cold Lake and Peace River areas contain about 2.5 trillion barrels of highly viscous hydrocarbons called bitumen, of which nearly 315 billion barrels are recoverable with current technology. The extraction method varies for each geographic area, and even within zones and reservoirs. The two most common extraction methods are surface mining and in-situ extraction such as cyclic steam stimulation (CSS); low pressure steam flood; pressure cycle steam drive; steam assisted gravity drainage (SAGD); hot water flooding; and, fire flood. This paper also discussed the following general tax issues: bituminous sands definition; bituminous sands leases and Canadian development expense versus Canadian oil and gas property expense (COGPE); Canadian exploration expense (CEE) for surface mining versus in-situ methods; additional capital cost allowance; and, scientific research and experimental development (SR and ED). 15 refs.

  5. Geologic and paleoecologic studies of the Nebraska Sand Hills

    Science.gov (United States)

    Ahlbrandt, Thomas S.; Fryberger, S.G.; Hanley, John H.; Bradbury, J. Platt

    1980-01-01

    . Further, our measurements indicate that dunes in the western part of the Sand Hills did not develop in response to present-day effective wind regimes. The presence of 'transverse' and en echelon barchan dunes in the Sand Hills corresponds to a developmental sequence of barchan to linear dunes proposed by Tsoar (1978). Dune and interdune deposits of the Sand Hills are subfeldsarenites to feldsarenites. Sand grains are commonly coated with montmorillonitic clay, which may be the local source of the clay concentrated in the dissipation structures. Textures of sand samples taken from adjacent layers within a dune were as dissimilar as textures of samples taken from widely separated dunes. This common occurrence indicates that textural data must be used carefully and in combination with other data to recognize ancient rocks of eolian origin. Organic material derived from a variety of flora and fauna that inhabit the interdunes (chapters B and C) generated both oil and gas upon heating. Thus, interdune sediments may be an indigenous hydrocarbon source if buried in eolianites. The twofold stratigraphy of loess and correlative dune deposits in the Sand Hills proposed by Reed and Dreeszen (1965) could not be confirmed by the present study. Rather, available data indicate that the dunes represent a single formation as suggested by Lugn (1935). PART B: Three assemblages of nonmarine Mollusca from paleointerdune deposits in the Nebraska Sand Hills inhabited shallow, quiet, vegetated, subpermanent or temporary, freshwater interdune ponds and adjacent terrestrial habitats. Analysis of factors affecting the taxonomic composition, diversity, and abundance of species in living assemblages of mollusks support this interpretation. The mollusks have long biostratigraphic ranges and broad biogeographic distributions. They fail to establish precise age relations of the faunas othe

  6. Lund Sand No 0

    DEFF Research Database (Denmark)

    Ibsen, Lars Bo; Jakobsen, Finn Rosendal

    During the last 15 years the Geotechnical Engineering Group (GEG) at Aalborg University has performed triaxial tests with a sand called Lund No 0. Lund No 0 is a graded sand from a gravel pit near Horsens in Denmark. For the classification of the sand the following tests have been performed: Sieve...... test, Grain density, ds, Maximum, emax, and minimum, emin, void ratio. The strength parameters of Lund No 0 are detennined by some drained and undrained triaxial tests in the Danish Triaxial Cell. The Danish Triaxial Cell prescribes smooth pressure heads and specimens with equal height and diameter....... Four series with Id equal to 0.92, 0.87 0.76 and 0.55 have been performed....

  7. Bee floral guilds of sagebrush-steppe wildflowers: evaluating bee community benefits among available species to seed after fire

    Science.gov (United States)

    Healthy plant communities of the American sagebrush-steppe consist of mostly wind-pollinated shrubs and grasses interspersed with a diverse mix of mostly spring-blooming, herbaceous perennial wildflowers. Native, non-social bees are the common floral visitors, but their floral associations and abund...

  8. Fire effects on runoff generation and sediment yield from a coarse-textured sagebrush-dominated landscape

    Science.gov (United States)

    Post-fire increases in runoff and sediment yield from sagebrush rangelands are commonly attributed to fire-induced soil water repellency and/or reduction in canopy and ground cover. Recent research has demonstrated the strength of soil water repellency and its influence on runoff and sediment gener...

  9. Mechanical Mastication of Utah Juniper Encroaching Sagebrush Steppe Increases Inorganic Soil N

    Directory of Open Access Journals (Sweden)

    Kert R. Young

    2014-01-01

    Full Text Available Juniper (Juniperus spp. has encroached on millions of hectares of sagebrush (Artemisia spp. steppe. Juniper mechanical mastication increases cover of understory species but could increase resource availability and subsequently invasive plant species. We quantified the effects of juniper mastication on soil resource availability by comparing total C, total N, C : N ratio, Olsen extractable P, sulfate S, and pH using soil samples and inorganic N (NO3-+NH4+ using ion exchange membranes. We compared resource availability in paired masticated and untreated areas in three juniper-dominated sagebrush and bunchgrass ecosystems in the Utah portion of the Great Basin. Inorganic N was 4.7 times higher in masticated than in untreated areas across seasons (P<0.001. Within masticated areas, tree mounds of juniper leaf scales and twigs served as resource islands with 1.9 times higher inorganic N and total C, and 2.8 times higher total N than bare interspaces across seasons (P<0.01. Bare interspaces had 3.0–3.4 times higher inorganic N than interspaces covered with masticated trees during late-summer through winter (P<0.01. Soil fertility changes associated with mastication were not considered sufficient to favor establishment of annual over perennial grasses, and we expect both to increase in cover following juniper mastication.

  10. UK Frac Sand Resources

    OpenAIRE

    Mitchell, C J

    2015-01-01

    Although still just a glimmer in the gas man’s eye, the prospect of shale hydrocarbon (oil and gas) development in the UK has many companies thinking about the industrial minerals it will require. Chief amongst these is silica sand which is used as a ‘proppant’ in the hydraulic fracturing, or ‘fracking’, of shales to help release the gas. The UK has large resources of sand and sandstone, of which only a small proportion have the necessary technical properties that classify them as ‘silica san...

  11. Building with Sand

    Science.gov (United States)

    Ashbrook, Peggy

    2010-01-01

    Children playing in damp sand invariably try to make a tower or a tunnel. By providing experiences with a variety of materials, alone and together, teachers set up the conditions for children to learn through their senses and ensure that a class approaches a topic with a common set of experiences to build on. Learning about the properties of…

  12. Faraday, Jets, and Sand

    NARCIS (Netherlands)

    Sandtke, M.; van der Meer, Roger M.; Versluis, Andreas Michel; Lohse, Detlef

    2003-01-01

    When a 6-mm layer of fine sand with an average grain size of 40 µm is poured into a cylindrical container and shaken vertically, thin jets are seen to emerge from an airy cloud of grains, almost like protuberances from the corona of the sun. A quasi two-dimensional setup reveals the jet-formation

  13. Building with Sand

    Science.gov (United States)

    Ashbrook, Peggy

    2010-01-01

    Children playing in damp sand invariably try to make a tower or a tunnel. By providing experiences with a variety of materials, alone and together, teachers set up the conditions for children to learn through their senses and ensure that a class approaches a topic with a common set of experiences to build on. Learning about the properties of…

  14. Speleothems and Sand Castles

    Science.gov (United States)

    Hance, Trevor; Befus, Kevin

    2015-01-01

    The idea of building sand castles evokes images of lazy summer days at the beach, listening to waves crash, enjoying salty breezes, and just unplugging for a while to let our inner child explore the wonderful natural toys beneath our feet. The idea of exploring caves might evoke feelings and images of claustrophobia or pioneers and Native…

  15. Virksomhedens sande ansigt

    DEFF Research Database (Denmark)

    Lundholt, Marianne Wolff

    2017-01-01

    Er modhistorier en byrde eller en styrke i forandringsprocesser? Hvad stiller vi op, når adgangen til organisationens sande identitet går gennem medarbejdernes modhistorier? Når vi sammenholder denne erkendelse med vores viden om, at medarbejdere helt naturligt afholder sig fra at videregive disse...

  16. Sand (CSW4)

    CSIR Research Space (South Africa)

    Estuarine and Coastal Research Unit

    1982-12-01

    Full Text Available This report is one of a series on Cape Estuaries being published under the general title "The Estuaries of the Cape, Part 2". The report provides information on sand estuary: historical background, abiotic and biotic characteristics. It is pointed...

  17. Sand supply to beaches

    Science.gov (United States)

    Aagaard, Troels

    2017-04-01

    In most cases, beaches and dunes are built by sand that has been transported onshore from the shoreface. While this has been known for a long time, we are still not able to quantitatively predict onshore sediment transport and sand supply to beaches. Sediment transport processes operating during brief, high-energy stormy conditions - when beaches erode and sand moves offshore - are fairly well known and they can be modelled with a reasonable degree of confidence. However, the slower onshore sand transport leading to beach recovery under low-to-moderate energy conditions - and the reason why beaches and dunes exist in the first place - is not yet well understood. This severely limits our capability to understand and predict coastal behaviour on long time scales, for example in response to changing sea level or wave conditions. This paper will discuss issues and recent developments in sediment transport measurement and prediction on the lower and upper shoreface and into the swash zone. The focus will be on the integration and upscaling of small-scale deterministic process measurements into parametric models that may increase modelling capabilities of coastal behaviour on larger temporal and spatial scales.

  18. Erosion phenomena in sand moulds

    Directory of Open Access Journals (Sweden)

    A. Chojecki

    2008-03-01

    Full Text Available Authors studicd the erosion phcnorncna in sand moulds pured with cast iron. Thc study comprises an evaluation of erosionresistance of thc three sands: grccn sand. sand bondcd with inorganic or organic bindcr. It was concluded that thc most resistant is [heclassic green sand with thc addition of 5 B coal dust. Resistance of the sand with organic binder is generally weak and dcvnds onkind of used raisin. Spccinl nztcntion was paid to the sands with no organic bindcr watcr glass and phospha~c. It was Sound that thcirrcsistance depends on dehydratation conditions. When the mould is stored in law humidity of atmosphcrc the very strong crosion canbe expected. It rcsul ts hrn thc micro fractures in the bridges of binders, joining the grains of the sable. This phcnomcna facilitates thetearing away of fragments of sand [tom the surface

  19. On Pluvial Compaction of Sand

    DEFF Research Database (Denmark)

    Jacobsen, Moust

    At the Institute of Civil Engineering in Aalborg model tests on dry sand specimens have been carried out during the last five years. To reduce deviations in test results, the sand laying technique has been carefully studied, and the sand mass spreader constructed. Preliminary results have been...

  20. Intermontane eolian sand sheet development, Upper Tulum Valley, central-western Argentina

    Directory of Open Access Journals (Sweden)

    Patrick Francisco Fuhr Dal' Bó

    Full Text Available ABSTRACTThe intermontane Upper Tulum eolian sand sheet covers an area of ca. 125 km² at north of the San Juan Province, central-western Argentina. The sand sheet is currently an aggrading system where vegetation cover, surface cementation and periodic flooding withhold the development of dunes with slipfaces. The sand sheet surface is divided into three parts according to the distribution of sedimentary features, which reflects the variation in sediment budget, water table level and periodic flooding. The central sand sheet part is the main area of eolian deposition and is largely stabilized by vegetation. The sedimentary succession is 4 m thick and records the vertical interbedding of eolian and subaqueous deposits, which have been deposited for at least 3.6 ky with sedimentation rates of 86.1 cm/ky. The construction of the sand sheet is associated with deflation of the sand-graded debris sourced by San Juan alluvial fan, which is available mainly in drier fall-winter months where water table is lower and wind speeds are periodically above the threshold velocity for sand transport. The accumulation of sedimentary bodies occurs in a stabilized eolian system where vegetation cover, thin mud veneers and surface cementation are the main agents in promoting accumulation. The preservation of the sand sheet accumulations is enabled by the progressive creation of the accommodation space in a tectonically active basin and the continuous burial of geological bodies favored by high rates of sedimentation.

  1. Influences of the human footprint on sagebrush landscape patterns: Implications for sage-grouse conservation

    Science.gov (United States)

    Leu, Matthias; Hanser, Steven E.; Knick, Steven T.; Connelly, John W.

    2011-01-01

    Spatial patterns influence the processes that maintain Greater Sage-Grouse (Centrocercus urophasianus) populations and sagebrush (Artemisia spp.) landscapes on which they depend. We used connectivity analyses to: (1) delineate the dominant pattern of sagebrush landscapes; (2) identify regions of the current range-wide distribution of Greater Sage-Grouse important for conservation; (3) estimate distance thresholds that potentially isolate populations; and (4) understand how landscape pattern, environmental disturbance, or location within the spatial network influenced lek persistence during a population decline. Long-term viability of sagebrush, assessed from its dominance in relatively unfragmented landscapes, likely is greatest in south-central Oregon and northwest Nevada; the Owyhee region of southeast Oregon, southwest Idaho, and northern Nevada; southwest Wyoming; and south-central Wyoming. The most important leks (breeding locations) for maintaining connectivity, characterized by higher counts of sage-grouse and connections with other leks, were within the core regions of the sage-grouse range. Sage-grouse populations presently have the highest levels of connectivity in the Wyoming Basin and lowest in the Columbia Basin Sage-Grouse management zones (SMZs). Leks separated by distances 1318 km could be isolated due to decreased probability of dispersals from neighboring leks. The range-wide distribution of sage-grouse was clustered into 209 separate components (units in which leks were interconnected within but not among) when dispersal was limited to distances 18 km. The most important components for maintaining connectivity were distributed across the central and eastern regions of the range-wide distribution. Connectivity among sage-grouse populations was lost during population declines from 1965 1979 to 1998 2007, most dramatically in the Columbia Basin SMZ. Leks that persisted during this period were larger in size, were more highly connected, and had lower

  2. Sand hazards on tourist beaches.

    Science.gov (United States)

    Heggie, Travis W

    2013-01-01

    Visiting the beach is a popular tourist activity worldwide. Unfortunately, the beach environment is abundant with hazards and potential danger to the unsuspecting tourist. While the traditional focus of beach safety has been water safety oriented, there is growing concern about the risks posed by the sand environment on beaches. This study reports on the death and near death experience of eight tourists in the collapse of sand holes, sand dunes, and sand tunnels. Each incident occurred suddenly and the complete burial in sand directly contributed to the victims injury or death in each case report.

  3. PROCESSING OF MONAZITE SAND

    Science.gov (United States)

    Calkins, G.D.; Bohlmann, E.G.

    1957-12-01

    A process for the recovery of thorium, uranium, and rare earths from monazite sands is presented. The sands are first digested and dissolved in concentrated NaOH, and the solution is then diluted causing precipitation of uranium, thorium and rare earth hydroxides. The precipitate is collected and dissolved in HCl, and the pH of this solution is adjusted to about 6, precipitating the hydroxides of thorium and uranium but leaving the rare earths in solution. The rare earths are then separated from the solution by precipitation at a still higher pH. The thorium and uranium containing precipitate is redissolved in HNO/sub 3/ and the two elements are separated by extraction into tributyl phosphate and back extraction with a weakly acidic solution to remove the thorium.

  4. Moving sand dunes

    CERN Document Server

    Sparavigna, Amelia Carolina

    2011-01-01

    In several desert areas, the slow motion of sand dunes can be a challenge for modern human activities and a threat for the survival of ancient places or archaeological sites. However, several methods exist for surveying the dune fields and estimate their migration rate. Among these methods, the use of satellite images, in particular of those freely available on the World Wide Web, is a convenient resource for the planning of future human settlements and activities.

  5. Quantifying and predicting fuels and the effects of reduction treatments along successional and invasion gradients in sagebrush habitats

    Science.gov (United States)

    Shinneman, Douglas; Pilliod, David; Arkle, Robert; Glenn, Nancy F.

    2015-01-01

    Sagebrush shrubland ecosystems in the Great Basin are prime examples of how altered successional trajectories can create dynamic fuel conditions and, thus, increase uncertainty about fire risk and behavior. Although fire is a natural disturbance in sagebrush, post-fire environments are highly susceptible to conversion to an invasive grass-fire regime (often referred to as a “grass-fire cycle”). After fire, native shrub-steppe plants are often slow to regenerate, whereas nonnative annuals, especially cheatgrass (Bromus tectorum) and medusahead (Taeniatherum caput-medusae), can establish quickly and outcompete native species. Once fire-prone annuals become established, fire occurrences increase, further promoting dominance of nonnative species. The invasive grass-fire regime also alters nutrient and hydrologic cycles, pushing ecosystems beyond ecological thresholds toward steady-state, fire-prone, nonnative communities. These changes affect millions of hectares in the Great Basin and increase fire risk, decrease habitat quality and biodiversity, accelerate soil erosion, and degrade rangeland resources for livestock production. In many sagebrush landscapes, constantly changing plant communities and fuel conditions hinder attempts by land managers to predict and control fire behavior, restore native communities, and provide ecosystem services (e.g., forage production for livestock). We investigated successional and nonnative plant invasion states and associated fuel loads in degraded sagebrush habitat in a focal study area, the Morley Nelson Snake River Birds of Prey National Conservation Area (hereafter the NCA), in the Snake River Plain Ecoregion of southern Idaho. We expanded our inference by comparing our findings to similar data collected throughout seven major land resource areas (MLRAs) across the Great Basin (JFSP Project “Fire Rehabilitation Effectiveness: A Chronosequence Approach for the Great Basin” [09-S-02-1]). 4 We used a combination of field

  6. Region-wide ecological responses of arid Wyoming big sagebrush communities to fuel treatments

    Science.gov (United States)

    Pyke, David A.; Shaff, Scott E.; Lindgren, Andrew I.; Schupp, Eugene W.; Doescher, Paul S.; Chambers, Jeanne C.; Burnham, Jeffrey S.; Huso, Manuela M.

    2014-01-01

    If arid sagebrush ecosystems lack resilience to disturbances or resistance to annual invasives, then alternative successional states dominated by annual invasives, especially cheatgrass (Bromus tectorum L.), are likely after fuel treatments. We identified six Wyoming big sagebrush (Artemisia tridentata ssp. wyomingensis Beetle & Young) locations (152–381 mm precipitation) that we believed had sufficient resilience and resistance for recovery. We examined impacts of woody fuel reduction (fire, mowing, the herbicide tebuthiuron, and untreated controls, all with and without the herbicide imazapic) on short-term dominance of plant groups and on important land health parameters with the use of analysis of variance (ANOVA). Fire and mowing reduced woody biomass at least 85% for 3 yr, but herbaceous fuels were reduced only by fire (72%) and only in the first year. Herbaceous fuels produced at least 36% more biomass with mowing than untreated areas during posttreatment years. Imazapic only reduced herbaceous biomass after fires (34%). Tebuthiuron never affected herbaceous biomass. Perennial tall grass cover was reduced by 59% relative to untreated controls in the first year after fire, but it recovered by the second year. Cover of all remaining herbaceous groups was not changed by woody fuel treatments. Only imazapic reduced significantly herbaceous cover. Cheatgrass cover was reduced at least 63% with imazapic for 3 yr. Imazapic reduced annual forb cover by at least 45%, and unexpectedly, perennial grass cover by 49% (combination of tall grasses and Sandberg bluegrass [Poa secunda J. Presl.]). Fire reduced density of Sandberg bluegrass between 40% and 58%, decreased lichen and moss cover between 69% and 80%, and consequently increased bare ground between 21% and 34% and proportion of gaps among perennial plants > 2 m (at least 28% during the 3 yr). Fire, mowing, and imazapic may be effective in reducing fuels for 3 yr, but each has potentially undesirable consequences

  7. Mineral resources of the Sagebrush Focal Areas of Idaho, Montana, Nevada, Oregon, Utah, and Wyoming

    Science.gov (United States)

    Day, Warren C.; Frost, Thomas P.; Hammarstrom, Jane M.; Zientek, Michael L.

    2016-08-19

    Scientific Investigations Report 2016–5089 and accompanying data releases are the products of the U.S. Geological Survey (USGS) Sagebrush Mineral-Resource Assessment (SaMiRA). The assessment was done at the request of the Bureau of Land Management (BLM) to evaluate the mineral-resource potential of some 10 million acres of Federal and adjacent lands in Idaho, Montana, Nevada, Oregon, Utah, and Wyoming. The need for this assessment arose from the decision by the Secretary of the Interior to pursue the protection of large tracts of contiguous habitat for the greater sage-grouse (Centrocercus urophasianus) in the Western United States. One component of the Department of the Interior plan to protect the habitat areas includes withdrawing selected lands from future exploration and development of mineral and energy resources, including copper, gold, silver, rare earth elements, and other commodities used in the U.S. economy. The assessment evaluates the potential for locatable minerals such as gold, copper, and lithium and describes the nature and occurrence of leaseable and salable minerals for seven Sagebrush Focal Areas and additional lands in Nevada (“Nevada additions”) delineated by BLM. Supporting data are available in a series of USGS data releases describing mineral occurrences (the USGS Mineral Deposit Database or “USMIN”), oil and gas production and well status, previous mineral-resource assessments that covered parts of the areas studied, and a compilation of mineral-use cases based on data provided by BLM, as well as results of the locatable mineral-resource assessment in a geographic information system. The present assessment of mineral-resource potential will contribute to a better understanding of the economic and environmental trade-offs that would result from closing approximately 10 million acres of Federal lands to mineral entry.

  8. Booming Sand Dunes

    Science.gov (United States)

    Vriend, Nathalie

    "Booming" sand dunes are able to produce low-frequency sound that resembles a pure note from a music instrument. The sound has a dominant audible frequency (70-105 Hz) and several higher harmonics and may be heard from far distances away. A natural or induced avalanche from a slip face of the booming dune triggers the emission that may last for several minutes. There are various references in travel literature to the phenomenon, but to date no scientific explanation covered all field observations. This thesis introduces a new physical model that describes the phenomenon of booming dunes. The waveguide model explains the selection of the booming frequency and the amplification of the sound in terms of constructive interference in a confined geometry. The frequency of the booming is a direct function of the dimensions and velocities in the waveguide. The higher harmonics are related to the higher modes of propagation in the waveguide. The experimental validation includes quantitative field research at the booming dunes of the Mojave Desert and Death Valley National Park. Microphone and geophone recordings of the acoustic and seismic emission show a variation of booming frequency in space and time. The analysis of the sensor data quantifies wave propagation characteristics such as speed, dispersion, and nonlinear effects and allows the distinction between the source mechanism of the booming and the booming itself. The migration of sand dunes results from a complicated interplay between dune building, wind regime, and precipitation. The morphological and morphodynamical characteristics of two field locations are analyzed with various geophysical techniques. Ground-penetrating radar images the subsurface structure of the dunes and reveal a natural, internal layering that is directly related to the history of dune migration. The seismic velocity increases abruptly with depth and gradually increases with downhill position due to compaction. Sand sampling shows local

  9. Sand Fences in the Coastal Zone: Intended and Unintended Effects

    Science.gov (United States)

    Grafals-Soto, Rosana; Nordstrom, Karl

    2009-09-01

    Sand-trapping fences modify the character of the coastal landscape and change its spatial structure, image, and meaning. This paper examines the relationship between these changes and fence usage at the municipal level, where most decisions about fence deployment are made. Use of fences in 29 municipalities on the developed coast of New Jersey is examined over a 6-year period. Interviews with municipal officers indicate that wooden slat sand-trapping fences are used primarily to build dunes to provide protection against wave uprush and flooding, but they are also used to control pedestrian traffic and demarcate territory. These uses result in changes in landforms and habitats. An aerial video inventory of fences taken in 2002 indicates that 82% of the shoreline had fences and 72% had dunes. Single and double straight fence rows are the most commonly used. Fences are often built to accomplish a specific primary purpose, but they can cause many different and often unanticipated changes to the landscape. The effects of a sand fence change through time as the initial structure traps sand, creates a dune that is colonized by vegetation, and becomes integrated into the environment by increasing topographic variability and aesthetic and habitat value. Sand fences can be made more compatible with natural processes by not placing them in locations where sources of wind blown sand are restricted or in unnatural shore perpendicular orientations. Symbolic fences are less expensive, are easy to replace when damaged, are less visually intrusive, and can be used for controlling pedestrian access.

  10. Effects of Gunnison Sage-Grouse habitat treatment efforts on associated avifauna and vegetation structure

    Directory of Open Access Journals (Sweden)

    Paul M. Lukacs

    2015-12-01

    Full Text Available Conservation efforts over the last 20 years for the Gunnison Sage-Grouse (Centrocercus minimus have involved extensive habitat manipulations done predominantly to improve brood rearing habitat for the grouse. However, the effects of Gunnison Sage-Grouse habitat treatments on sympatric avifauna and responses of vegetation to manipulations are rarely measured, and if they are, it is immediately following treatment implementation. This study examined the concept of umbrella species management by retrospectively comparing density and occupancy of eight sagebrush associated songbird species and six measures of vegetation in treated and control sites. Our results suggested that songbird densities and occupancy changed for birds at the extreme ends of their association with sagebrush and varied with fine-scale habitat structure. We found Brewer's Sparrows (Spizella breweri decreased in density on treated sites and Vesper Sparrows (Pooecetes gramineus increased. Occupancy estimation revealed that Brewer's Sparrows and Green-tailed Towhees (Pipilo chlorurus occupied significantly fewer treated points whereas Vesper Sparrows occupied significantly more. Vegetation comparisons between treated and control areas found shrub cover to be 26% lower in treated sites. Lower shrub cover in treated areas may explain the differences in occupancy and densities of the species sampled based on known habitat needs. The fine-scale analysis showed a negative relationship to forb height and cover for the Sage Sparrow (Amphispiza belli indicating, from vegetation measures showing grass and forb cover during a good precipitation year covered significantly more area in the treatment than the control sites, that Sage Sparrows may also not respond favorably to Gunnison Sage-Grouse habitat treatments. While the concept of an umbrella species is appealing, evidence from this study suggests that conservation efforts aimed at the Gunnison Sage-Grouse may not be particularly

  11. Presettlement Vegetation

    Data.gov (United States)

    Minnesota Department of Natural Resources — Presettlement vegetation of Minnesota based on Marschner's original analysis of Public Land Survey notes and landscape patterns. Marschner compiled his results in...

  12. Sediment mathematical model for sand ridges and sand waves

    Institute of Scientific and Technical Information of China (English)

    LI Daming; WANG Xiao; WANG Xin; LI Yangyang

    2016-01-01

    A new theoretical model is formulated to describe internal movement mechanisms of the sand ridges and sand waves based on the momentum equation of a solid-liquid two-phase flow under a shear flow. Coupling this equation with two-dimensional shallow water equations and wave reflection-diffraction equation of mild slope, a two-dimensional coupling model is established and a validation is carried out by observed hydrogeology, tides, waves and sediment. The numerical results are compared with available observations. Satisfactory agreements are achieved. This coupling model is then applied to the Dongfang 1-1 Gas Field area to quantitatively predict the movement and evolution of submarine sand ridges and sand waves. As a result, it is found that the sand ridges and sand waves movement distance increases year by year, but the development trend is stable.

  13. Avaliação da recomposição da cobertura vegetal de dunas de rejeito de mineração, em Mataraca/PB Evaluation of tailing sand dunes restauration in mining area, in municipality of Mataraca, Paraíba State

    Directory of Open Access Journals (Sweden)

    Douglas Antônio de Carvalho

    1993-12-01

    Full Text Available Realizou-se o levantamento fitossociológieo da vegetação estabelecida sobre dunas de rejeito de mineração da Companhia Rutilo & Ilmenita do Brasil (RIB - na área de mineração do Guaju, no município de Mataraca, extremo norte do litoral do estado da Paraíba (6º29'S, 34º56'W, 10 a 75m de altitude, com o objetivo de subsidiar os trabalhos de recuperação ambiental, promovidos pela empresa. Foram registradas em 30 parcelas de 3 X 3m, a composição florística e a estrutura (cobertura, sociabilidade e altura da comunidade vegetal que se formou sobre a duna em dois setores diferentes: a área onde houve a deposição de uma camada de 20cm de solo de mata; b área onde houve o plantio de quatro espécies pioneiras após adubação orgânica nas covas. No primeiro caso, encontram-se 51 espécies pertencentes a 21 famílias botânicas e no segundo 44 espécies pertencentes a 17 famílias. Os valores de cobertura, tanto para parcelas como para espécies foram maiores no tratamento que recebeu solo de mata.A phytosociological survey of the vegetation established on tailing sand dunes was carried out in the area of the mining company Rutilo & Ilmenita do Brasil (RIB, municipality of Mataraca, northern coastland of the state of Paraiba, NE Brazil (6º29'S, 34º56'W, 10 to 75 m of altitude. The purpose was to provide basic information to the environmental restauration programs which have been implemented by the company. The floristic composition and the structure (percent cover, sociability and height of the plant community that grew on the dune were registered in 30 plots with 3 x 3m in two different sectors: a area where a pioneer plant community regenerated after the deposition of a 20 cm layer of forest topsoil; b area where four pioneer species were planted after localized organic fertilization. In the first sector, 51 plant species of 21 families were found whilst in the other sector the figures were 44 species and 17 families. The cover

  14. Compressive behavior of fine sand.

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Bradley E. (Air Force Research Laboratory, Eglin, FL); Kabir, Md. E. (Purdue University, West Lafayette, IN); Song, Bo; Chen, Wayne (Purdue University, West Lafayette, IN)

    2010-04-01

    The compressive mechanical response of fine sand is experimentally investigated. The strain rate, initial density, stress state, and moisture level are systematically varied. A Kolsky bar was modified to obtain uniaxial and triaxial compressive response at high strain rates. A controlled loading pulse allows the specimen to acquire stress equilibrium and constant strain-rates. The results show that the compressive response of the fine sand is not sensitive to strain rate under the loading conditions in this study, but significantly dependent on the moisture content, initial density and lateral confinement. Partially saturated sand is more compliant than dry sand. Similar trends were reported in the quasi-static regime for experiments conducted at comparable specimen conditions. The sand becomes stiffer as initial density and/or confinement pressure increases. The sand particle size become smaller after hydrostatic pressure and further smaller after dynamic axial loading.

  15. Sand dollar sites orogenesis

    Science.gov (United States)

    Amos, Dee

    2013-04-01

    The determinology of the humble sand dollars habitat changing from inception to the drastic evolution of the zone to that of present day. Into the cauldron along the southern Californian 'ring of fire' lithosphere are evidence of geosynclinals areas, metasedimentary rock formations and hydrothermal activity. The explanation begins with 'Theia' and the Moon's formation, battles with cometary impacts, glacial ages, epochs with evolutionary bottlenecks and plate tectonics. Fully illustrated the lecture includes localised diagrams and figures with actual subject photographic examples of plutonic, granitic, jade and peridodite. Finally, the origins of the materials used in the lecture are revealed for prosecution by future students and the enjoyment of interested parties in general.

  16. Sand Storms Trigger Alarm

    Institute of Scientific and Technical Information of China (English)

    LI LI

    2010-01-01

    @@ After an unusually humid winter with at least 10 snowfalls in Beijing, a severe andstorm blown by strong winds bringing with it thousands of tons of desert sand took many residents of the city by surprise.On the morning of March 20, Beijingers woke up to see clouds of yellow dust in the air and a sky that was an ominous orange in color.The loose soil and dust that had traveled htmdreds of miles from deserts in Mongolia and China's northwest blanketed Beijing's streets, covering parked vehicles, bikes, roofs and even plant life,as well as making its way into people's homes.

  17. Fortune Cookie Sand Dunes

    Science.gov (United States)

    2003-01-01

    MGS MOC Release No. MOC2-432, 25 July 2003This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a field of small barchan sand dunes in the north polar region near 71.7oN, 51.3oW. Some of them are shaped like fortune cookies. The message these dunes provide: winds blow through this region from the lower right toward the upper left. The steep slip face slopes of these dunes, which point toward the upper left, indicate the wind direction. The scene is illuminated by sunlight from the upper right. The image is 3 km (1.9 mi) wide.

  18. Landscape alterations influence differential habitat use of nesting buteos and ravens within sagebrush ecosystem: implications for transmission line development

    Science.gov (United States)

    Coates, Peter S.; Howe, Kristy B.; Casazza, Michael L.; Delehanty, David J.

    2014-01-01

    A goal in avian ecology is to understand factors that influence differences in nesting habitat and distribution among species, especially within changing landscapes. Over the past 2 decades, humans have altered sagebrush ecosystems as a result of expansion in energy production and transmission. Our primary study objective was to identify differences in the use of landscape characteristics and natural and anthropogenic features by nesting Common Ravens (Corvus corax) and 3 species of buteo (Swainson's Hawk [Buteo swainsoni], Red-tailed Hawk [B. jamaicensis], and Ferruginous Hawk [B. regalis]) within a sagebrush ecosystem in southeastern Idaho. During 2007–2009, we measured multiple environmental factors associated with 212 nest sites using data collected remotely and in the field. We then developed multinomial models to predict nesting probabilities by each species and predictive response curves based on model-averaged estimates. We found differences among species related to nesting substrate (natural vs. anthropogenic), agriculture, native grassland, and edge (interface of 2 cover types). Most important, ravens had a higher probability of nesting on anthropogenic features (0.80) than the other 3 species (Artemisia spp.), favoring increased numbers of nesting ravens and fewer nesting Ferruginous Hawks. Our results indicate that habitat alterations, fragmentation, and forthcoming disturbances anticipated with continued energy development in sagebrush steppe ecosystems can lead to predictable changes in raptor and raven communities.

  19. A family of sand automata

    CERN Document Server

    Faulkner, Nicholas

    2012-01-01

    We study some dynamical properties of a family of two-dimensional cellular automata: those that arise from an underlying one dimensional sand automaton whose local rule is obtained using a latin square. We identify a simple sand automaton G whose local rule is algebraic, and classify this automaton as having equicontinuity points, but not being equicontinuous. We also show it is not surjective. We generalise some of these results to a wider class of sand automata.

  20. Dilatometric Characterization of Foundry Sands

    Directory of Open Access Journals (Sweden)

    M. Břuska

    2012-04-01

    Full Text Available The goal of this contribution is summary of physical – chemistry properties of usually used foundry silica and no – silica sands in Czech foundries. With the help of dilatometry analysis theoretical assumptions of influence of grain shape and size on dilatation value of sands were confirmed. Determined was the possibility of dilatometry analysis employment for preparing special (hybrid sands with lower and/or more linear character of dilatation.

  1. OSL age and stratigraphy of the Strauss sand sheet in New Mexico, USA

    Science.gov (United States)

    Hall, Stephen A.; Goble, Ronald J.

    2015-07-01

    The Strauss sand sheet occurs in south-central New Mexico, USA, and northern Chihuahua, Mexico, covering an area of about 4740 km2. Its chronology is determined by 19 OSL ages. The sand sheet formed primarily during three phases of eolian deflation and deposition, each phase with a separate sand source and under different climatic and environmental circumstances. The first phase of eolian sedimentation occurred 45 to 15 ka with the deposition of unit 1. The sand source for the first phase was beach-related features along the eastern shoreline of pluvial Lake Palomas in Mexico. The glacial-age climate was cool, wet, and windy because of the southern path of the jet stream at that time. After 15 ka, with the onset of warmer conditions of the Bølling-Allerød, the shutting down of the Palomas sand source, and wet conditions of the Younger Dryas, the sand sheet stabilized with weak soil development in unit 1. By 11 ka, the climate shifted to Holocene drying conditions and the second phase of sand accumulation began, forming unit 2; the sand source was the local deflation of the previously deposited unit 1 sand. The sand sheet stabilized again by 1.9 ka with slightly wetter late Holocene climate; a weak soil formed in unit 2 sand. About A.D. 1500 and extending to about A.D. 1850 or later, an A horizon formed on the sand sheet, probably in response to a desert grassland vegetation during the period of wet climate of the Little Ice Age. In an anthropogenic third phase of eolian activity, after A.D. 1850, the vegetation was likely disturbed by overgrazing; and the unit 2 and A horizon (unit 3) sands were deflated, resulting in the deposition of a thin layer of massive eolian sand (unit 4) across the sand sheet. By about A.D. 1900 mesquite shrubs had increased in abundance; and deflated sand, largely from unit 2, began to accumulate around the shrubs, forming coppice dunes (unit 5). Mesquite coppice dunes continued to increase in number and volume during the twentieth

  2. Triaxial tests in Fontainebleau sand

    DEFF Research Database (Denmark)

    Latini, Chiara; Zania, Varvara

    2016-01-01

    The purpose of this internal report is to examine the influence of relative density on the strength and deformation characteristics of Fontainebleau sand. Compression triaxial tests were performed on saturated sand samples with different densities and initial confining pressure. Note that the tes......The purpose of this internal report is to examine the influence of relative density on the strength and deformation characteristics of Fontainebleau sand. Compression triaxial tests were performed on saturated sand samples with different densities and initial confining pressure. Note...... that the testing procedure and the data processing were carried out according to the specifications of ETCS-F1.97....

  3. Canonical Correlation Factors Causing the Formation of Accumulated Sand-belts along the Oasis Fringe in Hexi Corridor

    Institute of Scientific and Technical Information of China (English)

    Chang; Zhaofeng; Wang; Qiangqiang; Zhang; Jianhui; Tang; Jinnian; Zhu; Shujuan; Fan; Baoli; Zhang; Dabiao; Liu; Shizeng; Zhang; Guozhong; Li; Aide

    2014-01-01

    Accumulated sand-belts refer to those formed along the oasis fringe,especially at the upwind location,due to the accumulation of sand blocked by farmland windbreak. In the 60 years since the foundation of new China,a lot of trees have been planted for desertification combating in northwest and north China,thus,accumulated sand-belts were formed at the upwind location. The formation and the ecological effects of the accumulated sand-belts along the oasis fringe is a new scientific concern. To study the formation causes of these belts in Hexi corridor,21 samples were selected,and the height / width of the belts,as well as the vegetation,soil,soil moisture and climatic factors were investigated. This paper analyzed the correlation between the height / width of the belts and the vegetation,soil,soil moisture and climatic factors using the methods of variance analysis,correlation analysis and canonical correlation analysis. The results indicate that: the accumulated sand-belts take a trend of being high and wide in the east whereas low and narrow in the west,and most of the parts tend to be stable; the species on the belts are dominated by Tamarix austromongolica,the vegetation cover and the pure vegetation cover of different dominant species on the leeward slope of the accumulated sand-belts vary significantly. The canonical correlation analysis shows that: the height and width of accumulated sand-belt is the interaction of precipitation,distance to the sand source,leeward vegetation cover and annual average wind speed. Moreover,the height of accumulated sand-belts are negatively correlated to the soil moisture at the depth of 30- 50 cm,air humidity and leeward vegetation cover,and the width of the belts is also negatively correlated with the distance to the sand source. The ecological effects of the accumulated sand-belts are both positive( stopping sands from moving into farmland,protective role as an obstacle)and negative( when the belts decay and activate one day

  4. Using resilience and resistance concepts to manage threats to sagebrush ecosystems, Gunnison sage-grouse, and Greater sage-grouse in their eastern range: A strategic multi-scale approach

    Science.gov (United States)

    Jeanne C. Chambers; Jeffrey L. Beck; Steve Campbell; John Carlson; Thomas J. Christiansen; Karen J. Clause; Jonathan B. Dinkins; Kevin E. Doherty; Kathleen A. Griffin; Douglas W. Havlina; Kenneth F. Henke; Jacob D. Hennig; Laurie L. Kurth; Jeremy D. Maestas; Mary Manning; Kenneth E. Mayer; Brian A. Mealor; Clinton McCarthy; Marco A. Perea; David A. Pyke

    2016-01-01

    This report provides a strategic approach developed by a Western Association of Fish and Wildlife Agencies interagency working group for conservation of sagebrush ecosystems, Greater sage-grouse, and Gunnison sage-grouse. It uses information on (1) factors that influence sagebrush ecosystem resilience to disturbance and resistance to nonnative invasive annual grasses...

  5. Science framework for conservation and restoration of the sagebrush biome: Linking the Department of the Interior’s Integrated Rangeland Fire Management Strategy to long-term strategic conservation actions

    Science.gov (United States)

    J.C. Chambers; J.L. Beck; J.B. Bradford; J. Bybee; S. Campbell; J. Carlson; T.J. Christiansen; K.J. Clause; G. Collins; M.R. Crist; J.B. Dinkins; K.E. Doherty; F. Edwards; S. Espinosa; K.A. Griffin; P. Griffin; J.R. Haas; S.E. Hanser; D.W. Havlina; K.F. Henke; J.D. Hennig; L.A. Joyce; F.M. Kilkenny; S.M. Kulpa; L.L. Kurth; J.D. Maestas; M. Manning; K.E. Mayer; B.A. Mealor; C. McCarthy; M. Pellant; M.A. Perea; K.L. Prentice; D.A. Pyke; L.A. Wiechman; A. Wuenschel

    2017-01-01

    The Science Framework is intended to link the Department of the Interior’s Integrated Rangeland Fire Management Strategy with long-term strategic conservation actions in the sagebrush biome. The Science Framework provides a multiscale approach for prioritizing areas for management and determining effective management strategies within the sagebrush biome. The emphasis...

  6. Kuchler Vegetation

    Data.gov (United States)

    California Department of Resources — Digital version of potential natural plant communites as compiled and published on 'Map of the Natural Vegetation of California' by A. W. Kuchler, 1976. Source map...

  7. Wieslander Vegetation

    Data.gov (United States)

    California Department of Resources — Digital version of the 1945 California Vegetation Type Maps by A. E. Wieslander of the U.S. Forest Service. Source scale of maps are 1:100,000. These compiled maps...

  8. A sand wave simulation model

    NARCIS (Netherlands)

    Nemeth, A.A.; Hulscher, S.J.M.H.; Damme, van R.M.J.

    2003-01-01

    Sand waves form a prominent regular pattern in the offshore seabeds of sandy shallow seas. A two dimensional vertical (2DV) flow and morphological numerical model describing the behaviour of these sand waves has been developed. The model contains the 2DV shallow water equations, with a free water su

  9. Regeneration of dredged sand waves

    NARCIS (Netherlands)

    Hulscher, Suzanne J.M.H.; Knaapen, Michiel; Scholl, Olaf; Scholl, O.; Trenteseaux., A.; Garlan, T.

    2000-01-01

    Sand waves form a wavy pattern in the offshore sandy seabed. Since their crests reduce the navigability, it is important to know their evolution. A simple model is presented to estimate the recovery of sand wave amplitudes. This model is partially based on the similarity with sea ripples and

  10. Namibia : triaxial test on sand

    DEFF Research Database (Denmark)

    Steenfelt, Jørgen S.; Jacobsen, Kim P.

    In connection with a harbour project the friction angle of a fine sand is required. On Friday 13 March 1998 the Danish Geotechnical Institute (DGI) delivered app. 2.5 kg sand for testing at the Geotechnical Engineering Laboratory, Aalborg University. The present Data Report summarises the results...

  11. Sand swimming lizard: sandfish

    CERN Document Server

    Maladen, Ryan D; Kamor, Adam; Goldman, Daniel I

    2009-01-01

    We use high-speed x-ray imaging to reveal how a small (~10cm) desert dwelling lizard, the sandfish (Scincus scincus), swims within a granular medium [1]. On the surface, the lizard uses a standard diagonal gait, but once below the surface, the organism no longer uses limbs for propulsion. Instead it propagates a large amplitude single period sinusoidal traveling wave down its body and tail to propel itself at speeds up to ~1.5 body-length/sec. Motivated by these experiments we study a numerical model of the sandfish as it swims within a validated soft sphere Molecular Dynamics granular media simulation. We use this model as a tool to understand dynamics like flow fields and forces generated as the animal swims within the granular media. [1] Maladen, R.D. and Ding, Y. and Li, C. and Goldman, D.I., Undulatory Swimming in Sand: Subsurface Locomotion of the Sandfish Lizard, Science, 325, 314, 2009

  12. 2010 oil sands performance report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    With the depletion of traditional energy resources and the rising demand for energy, oil sands have become an important energy resource for meeting energy needs. Oil sands are a mixture of water, sand, clay and bitumen which is recovered either through open pit mining or in situ drilling techniques. The bitumen is then converted into syncrude or sold to refineries for the production of gasoline, diesel or other products. Shell has oil sands operations in Alberta and the aim of this report is to present its 2010 performance in terms of CO2, water, tailings, land, and reclamation and engagement. This document covers several of Shell's operations in the Muskeg River and Jackpine mines, Scotford upgrader, Peace River, Orion, Seal, Cliffdale and Chipmunk. It provides useful information on Shell's oil sands performance to governments, environmental groups, First Nations, local communities and the public.

  13. Sand harm in taklimakan Desert highway and sand control

    Institute of Scientific and Technical Information of China (English)

    HANZhiwen; WANGTao; SUNQingwei; DONGZhibao; WANGXunming

    2003-01-01

    Reputed as a wonderful achievement of the world’s highway construction history,the Taklimakan Desert highway is nor facing serious sand drift encroachment problems due to its 447-km-long passage of sand sea consisting of crescent dunes,barchan chains,compound transverse dune ridges and complex megadunes.To solve some technical problems in the protection of the highway from sang drift encroachment,desert experts have been conducting the theoretical and applied studies on sand movement laws;causes,severities and time-space differentiation of sand drift damages;and control ways including mechanical,chemical and biological measures.In this paper the authors give an overall summry on the research contents and recent progress in the control of sand drift damages in China and hold that the theoretical researc results and practices in the prevention of sand drift encroachment on the cross-desert highway represnt a breakthrough and has an cpoch-making significance.Since the construction of protective forest along the cross-desert highway requires large amount of ground water,what will be its environmental consequence and whether it can effectively halt sand drift encroachment on the highway forever are the questions to be studied urgently.

  14. AEROSOL FILTRATION USING QUARTZ SAND FILTER

    Directory of Open Access Journals (Sweden)

    Abbas H. Sulaymon

    2012-01-01

    Full Text Available The cement industry is the major source of cement dust which contains heavy metals like nickel, cobalt, lead, chromium, arsenic and hazardous substances like dioxins and furans. Exposure to these substances can cause health problems to human, animals and vegetation. A continuous pilot scale quartz sand filter was constructed and uses to study the effect of important design parameters (temperature, pre-loaded dust on the collector, diameter of the filter, bed depth, collector size and superficial velocity on its performance for cleaning of cement dust from air. Initial penetration and initial pressure drop (after 180s were measured and compared for different variables used in this study. The dirty bed was cleaned by means of reverse air flow when the pressure drop across the filter rises to 20 cmH2O. A macroscopic model describes the filter clogging was used to predict the effluent histories based on initial collection efficiency (η0exp which was determined from experimental data. A removal efficiency of more than 99% was obtained. The results show that 0.4% of cement dust still adheres on the quartz sand bed after 5 min of cleaning cycle. The presence of 0.4% of pre-load dust on the quartz sand filter enhanced the efficiency and low initial penetration, moderate initial pressure drop was obtained. At given Empty Bed Contact Time (EBCT, with different filter diameters 30 and 15 cm, a sharp decrease in initial penetration from 0.41-0.03 was obtained respectively. A nonlinear relationship between penetration and temperature was found. The initial penetration can be reduced by using smaller filter diameter, small collector size and collector with pre-load dust with 0.4%. The experiment that operates at a filter diameter of 15 cm and temperature of 25°C represent the minimum penetration among all the experiments.

  15. Climate drives adaptive genetic responses associated with survival in big sagebrush (Artemisia tridentata)

    Science.gov (United States)

    Chaney, Lindsay; Richardson, Bryce A.; Germino, Matthew J.

    2017-01-01

    A genecological approach was used to explore genetic variation for survival in Artemisia tridentata(big sagebrush). Artemisia tridentata is a widespread and foundational shrub species in western North America. This species has become extremely fragmented, to the detriment of dependent wildlife, and efforts to restore it are now a land management priority. Common-garden experiments were established at three sites with seedlings from 55 source-populations. Populations included each of the three predominant subspecies, and cytotype variations. Survival was monitored for 5 years to assess differences in survival between gardens and populations. We found evidence of adaptive genetic variation for survival. Survival within gardens differed by source-population and a substantial proportion of this variation was explained by seed climate of origin. Plants from areas with the coldest winters had the highest levels of survival, while populations from warmer and drier sites had the lowest levels of survival. Survival was lowest, 36%, in the garden that was prone to the lowest minimum temperatures. These results suggest the importance of climatic driven genetic differences and their effect on survival. Understanding how genetic variation is arrayed across the landscape, and its association with climate can greatly enhance the success of restoration and conservation.

  16. VEGETATION MAPPING IN WETLANDS

    Directory of Open Access Journals (Sweden)

    F. PEDROTTI

    2004-01-01

    Full Text Available The current work examines the main aspects of wetland vegetation mapping, which can be summarized as analysis of the ecological-vegetational (ecotone gradients; vegetation complexes; relationships between vegetation distribution and geomorphology; vegetation of the hydrographic basin lo which the wetland in question belongs; vegetation monitoring with help of four vegetation maps: phytosociological map of the real and potential vegetation, map of vegetation dynamical tendencies, map of vegetation series.

  17. Sand engine quells the coast's hunger for sand

    NARCIS (Netherlands)

    Van Dijk, T.

    2012-01-01

    An artificial peninsula at Ter Heijde is designed to feed the coast with sediment. Scientists are investigating whether this kind of sand engine could be the Netherlands’ answer to rising sea levels.

  18. Sand engine quells the coast's hunger for sand

    NARCIS (Netherlands)

    Van Dijk, T.

    2012-01-01

    An artificial peninsula at Ter Heijde is designed to feed the coast with sediment. Scientists are investigating whether this kind of sand engine could be the Netherlands’ answer to rising sea levels.

  19. Supplement Analysis for the Transmission System Vegetation Management Program FEIS (DOE/EIS-0285/SA-123 Malin-Hilltop

    Energy Technology Data Exchange (ETDEWEB)

    Walasavage, Frederick J. [Bonneville Power Administration (BPA), Portland, OR (United States)

    2003-02-20

    Vegetation Management on Malin-Hilltop (Structures 20/5-29/1). Trees are located under and adjacent to conductors. Should a fire occur, these trees are a hazard to the line and could cause serious damage to the conductors, resulting in significant problems for the transmission grid. BPA plans on controlling these trees by removal. In addition, sagebrush along access roads and within 30 feet of structures will be mowed for fire prevention purposes. Work will be completed between April 1, and June 1, 2003.

  20. Spectroscopic characterization of a Nigerian standard sand: Igbokoda sand

    CSIR Research Space (South Africa)

    Ojuri, OO

    2017-01-01

    Full Text Available the Middle Ordovician St. Peter Sandstone near Ottawa, Illinois, had been picked by the American Society for Testing and Materials (ASTM) as the reference sand to employ in testing cement and strength of concrete [9]. To the best of our knowledge... and magnetic resonance spectroscopic techniques due to its importance in cement, geotechnical/geo-environmental research in Nigeria. This should halt importation of standard silica sand for mortar and concrete testing...

  1. Saltation of Non-Spherical Sand Particles

    Science.gov (United States)

    Wang, Zhengshi; Ren, Shan; Huang, Ning

    2014-01-01

    Saltation is an important geological process and the primary source of atmospheric mineral dust aerosols. Unfortunately, no studies to date have been able to precisely reproduce the saltation process because of the simplified theoretical models used. For example, sand particles in most of the existing wind sand movement models are considered to be spherical, the effects of the sand shape on the structure of the wind sand flow are rarely studied, and the effect of mid-air collision is usually neglected. In fact, sand grains are rarely round in natural environments. In this paper, we first analyzed the drag coefficients, drag forces, and starting friction wind speeds of sand grains with different shapes in the saltation process, then established a sand saltation model that considers the coupling effect between wind and the sand grains, the effect of the mid-air collision of sand grains, and the effect of the sand grain shape. Based on this model, the saltation process and sand transport rate of non-spherical sand particles were simulated. The results show that the sand shape has a significant impact on the saltation process; for the same wind speed, the sand transport rates varied for different shapes of sand grains by as much as several-fold. Therefore, sand shape is one of the important factors affecting wind-sand movement. PMID:25170614

  2. Reclaimability of the spent sand mixture – sand with bentonite – sand with furfuryl resin

    Directory of Open Access Journals (Sweden)

    J. Dańko

    2011-04-01

    Full Text Available Introduction of new binding materials and new technologies of their hardening in casting moulds and cores production requires theapplication of reclamation methods adequate to their properties as well as special devices realizing tasks. The spent sands circulationsystem containing the same kind of moulding and core sands is optimal from the point of view of the expected reclamation results.However, in the face of a significant variability of applied technologies and related to them various reclamation methods, the need - of theobtained reclamation products assessment on the grounds of systematic criteria and uniform bases – arises, with a tendency of indicatingwhich criteria are the most important for the given sand system. The reclaimability results of the mixture of the spent moulding sand withGeko S bentonite and the spent core sand with the Kaltharz 404U resin hardened by acidic hardener 100 T3, are presented in the paper.Investigations were performed with regard to the estimation of an influence of core sands additions (10 –25% on the reclaimed materialquality. Dusts and clay content in the reclaim, its chemical reaction (pH and ignition loss were estimated. The verification of the reclaiminstrumental assessment was performed on the basis of the technological properties estimation of moulding sand with bentonite, where the reclaimed material was used as a matrix.

  3. Management recommendations: Sand Lake Complex

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This document is a review of land management practices at the Sand Lake National Wildlife Refuge, by a land use specialist. Recommendations, time frame and...

  4. General Vegetation

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — This file contains vector digital data for vegetation groupings in New Mexico at a 1:1,000,000 scale. The source software was ARC/INFO 5.0.1 and the conversion...

  5. Analysis of the environmental control technology for tar sand development

    Energy Technology Data Exchange (ETDEWEB)

    de Nevers, N.; Glenne, B.; Bryner, C.

    1979-06-01

    The environmental technology for control of air pollution, water pollution, and for the disposal, stabilization, and vegetation of the waste tar sand were thoroughly investigated. Although some difficulties may be encountered in any of these undertakings, it seems clear that the air and water pollution problems can be solved to meet any applicable standard. Currently there are two large-scale plants producing liquid fuels from tar sands in Alberta, Canada which use similar technology involving surface mining, hot water extraction, and surface disposal of waste sand. These projects all meet the Canadian environmental control regulations in force at the time they began. The largest US deposits of tar sands are much smaller than the Canadian; 95 percent are located in the state of Utah. Their economics do not appear as attractive as the Canadian deposits. The environmental control costs are not large enough to make an otherwise economic project uneconomic. The most serious environmental conflict likely to occur over the recovery of liquid fuels from the US deposits of tar sands is that caused by the proximity of the deposits to national parks, national monuments, and a national recreation area in Utah. These areas have very stringent air pollution requirements; and even if the air pollution control requirements can be met, there may still be adequate opposition to large-scale mining ventures in these areas to prevent their commercial exploitation. Another environmental constraint may be water rights availability.Essentially all of the water running in the Colorado river basin is now legally allocated. Barring new interpretations of the legality of water rights purchase, Utah tar sands developments should be able to obtain water by purchasing existing irrigation water rights.

  6. Experimental Measurement of Diffusive Extinction Depth and Soil Moisture Gradients in Southwestern Saudi Arabian Dune Sand

    KAUST Repository

    Mughal, Iqra

    2013-05-01

    In arid lands, a major contribution to water loss is by soil water evaporation. Desert sand dunes in arid regions are devoid of runoff and have high rates of infiltration. Rainwater is commonly stored within them because of the low permeability soils in the underlying desert pavement. In such cases, moisture is confined in the sand dune below a depth, termed as the “extinction depth”, where it is protected from evaporation during long dry periods. Moreover, desert sand dunes have sparse vegetation, which results in low transpiration losses from the stored water. The water accumulated below the extinction depth of the sand dunes can be utilized for various purposes such as in irrigation to support desert agriculture. In this study, field experiments were conducted in Western Saudi Arabia to monitor the soil moisture gradients and determine the diffusive extinction depth of dune sand. The dune sand was saturated with water and was exposed to natural conditions (evaporation and precipitation). The decline of the water level in the sand column was continuously recorded using transducers and sensors installed at different depths monitored the temporal variation of temperature and moisture content within the sand. The hydrological simulator HYDRUS-1D was used to construct the vertical profiles of soil water content and temperature and the results obtained from HYDRUS-1D were compared to the gradients monitored by the sensors.

  7. Aeolian nutrient fluxes following wildfire in sagebrush steppe: implications for soil carbon storage

    Science.gov (United States)

    Hasselquist, N. J.; Germino, M. J.; Sankey, J. B.; Ingram, L. J.; Glenn, N. F.

    2011-12-01

    Pulses of aeolian transport following fire can profoundly affect the biogeochemical cycling of nutrients in semi-arid and arid ecosystems. Our objective was to determine horizontal nutrient fluxes occurring in the saltation zone during an episodic pulse of aeolian transport that occurred following a wildfire in a semi-arid sagebrush steppe ecosystem in southern Idaho, USA. We also examined how temporal trends in nutrient fluxes were affected by changes in particle sizes of eroded mass as well as nutrient concentrations associated with different particle size classes. In the burned area, total carbon (C) and nitrogen (N) fluxes were as high as 235 g C m-1 d-1 and 19 g N m-1 d-1 during the first few months following fire, whereas C and N fluxes were negligible in an adjacent unburned area throughout the study. Temporal variation in C and N fluxes following fire was largely attributable to the redistribution of saltation-sized particles. Total N and organic C concentrations in the soil surface were significantly lower in the burned relative to the unburned area one year after fire. Our results show how an episodic pulse of aeolian transport following fire can affect the spatial distribution of soil C and N, which, in turn, can have important implications for soil C storage. These findings demonstrate how an ecological disturbance can exacerbate a geomorphic process and highlight the need for further research to better understand the role aeolian transport plays in the biogeochemical cycling of C and N in recently burned landscapes.

  8. Geology and mineral resources of the North-Central Montana Sagebrush Focal Area: Chapter D in Mineral resources of the Sagebrush Focal Areas of Idaho, Montana, Nevada, Oregon, Utah, and Wyoming

    Science.gov (United States)

    Mauk, Jeffrey L.; Zientek, Michael L.; Hearn, B. Carter; Parks, Heather L.; Jenkins, M. Christopher; Anderson, Eric D.; Benson, Mary Ellen; Bleiwas, Donald I.; DeAngelo, Jacob; Denning, Paul D.; Dicken, Connie L.; Drake, Ronald M.; Fernette, Gregory L.; Folger, Helen W.; Giles, Stuart A.; Glen, Jonathan M. G.; Granitto, Matthew; Haacke, Jon E.; Horton, John D.; Kelley, Karen D.; Ober, Joyce A.; Rockwell, Barnaby W.; San Juan, Carma A.; Sangine, Elizabeth S.; Schweitzer, Peter N.; Shaffer, Brian N.; Smith, Steven M.; Williams, Colin F.; Yager, Douglas B.

    2016-10-04

    SummaryThe U.S. Department of the Interior has proposed to withdraw approximately 10 million acres of Federal lands from mineral entry (subject to valid existing rights) from 12 million acres of lands defined as Sagebrush Focal Areas (SFAs) in Idaho, Montana, Nevada, Oregon, Utah, and Wyoming (for further discussion on the lands involved see Scientific Investigations Report 2016–5089–A). The purpose of the proposed action is to protect the greater sage-grouse (Centrocercus urophasianus) and its habitat from potential adverse effects of locatable mineral exploration and mining. The U.S. Geological Survey Sagebrush Mineral-Resource Assessment (SaMiRA) project was initiated in November 2015 and supported by the Bureau of Land Management to (1) assess locatable mineral-resource potential and (2) to describe leasable and salable mineral resources for the seven SFAs and Nevada additions.This chapter summarizes the current status of locatable, leasable, and salable mineral commodities and assesses the potential of locatable minerals in the North-Central Montana SFA. The proposed withdrawal area that is evaluated in this report is located in north-central Montana, and includes parts of Fergus, Petroleum, Phillips, and Valley Counties.

  9. Geology and mineral resources of the North-Central Idaho Sagebrush Focal Area: Chapter C in Mineral resources of the Sagebrush Focal Areas of Idaho, Montana, Nevada, Oregon, Utah, and Wyoming

    Science.gov (United States)

    Lund, Karen; Zürcher, Lukas; Hofstra, Albert H.; Van Gosen, Bradley S.; Benson, Mary Ellen; Box, Stephen E.; Anderson, Eric D.; Bleiwas, Donald I.; DeAngelo, Jacob; Drake, Ronald M.; Fernette, Gregory L.; Giles, Stuart A.; Glen, Jonathan M. G.; Haacke, Jon E.; Horton, John D.; John, David A.; Robinson,, Gilpin R.; Rockwell, Barnaby W.; San Juan, Carma A.; Shaffer, Brian N.; Smith, Steven M.; Williams, Colin F.

    2016-10-04

    SummaryThe U.S. Department of the Interior has proposed to withdraw approximately 10 million acres of Federal lands from mineral entry (subject to valid existing rights) from 12 million acres of lands defined as Sagebrush Focal Areas (SFAs) in Idaho, Montana, Nevada, Oregon, Utah, and Wyoming (for further discussion on the lands involved see Scientific Investigations Report 2016–5089–A). The purpose of the proposed action is to protect the greater sage-grouse (Centrocercus urophasianus) and its habitat from potential adverse effects of locatable mineral exploration and mining. The U.S. Geological Survey Sagebrush Mineral-Resource Assessment (SaMiRA) project was initiated in November 2015 and supported by the Bureau of Land Management to (1) assess locatable mineral-resource potential and (2) to describe leasable and salable mineral resources for the seven SFAs and Nevada additions.This chapter summarizes the current status of locatable, leasable, and salable mineral commodities and assesses the potential of locatable minerals in the North-Central Idaho SFA, which extends from east-central to south-central Idaho. The geologically complex area is composed of many different rock units that locally contain potential mineral resources.

  10. Geology and mineral resources of the North-Central Idaho Sagebrush Focal Area: Chapter C in Mineral resources of the Sagebrush Focal Areas of Idaho, Montana, Nevada, Oregon, Utah, and Wyoming

    Science.gov (United States)

    Lund, Karen; Zürcher, Lukas; Hofstra, Albert H.; Van Gosen, Bradley S.; Benson, Mary Ellen; Box, Stephen E.; Anderson, Eric D.; Bleiwas, Donald I.; DeAngelo, Jacob; Drake, Ronald M.; Fernette, Gregory L.; Giles, Stuart A.; Glen, Jonathan M. G.; Haacke, Jon E.; Horton, John D.; John, David A.; Robinson,, Gilpin R.; Rockwell, Barnaby W.; San Juan, Carma A.; Shaffer, Brian N.; Smith, Steven M.; Williams, Colin F.

    2016-10-04

    This report is temporarily unavailableSummaryThe U.S. Department of the Interior has proposed to withdraw approximately 10 million acres of Federal lands from mineral entry (subject to valid existing rights) from 12 million acres of lands defined as Sagebrush Focal Areas (SFAs) in Idaho, Montana, Nevada, Oregon, Utah, and Wyoming (for further discussion on the lands involved see Scientific Investigations Report 2016–5089–A). The purpose of the proposed action is to protect the greater sage-grouse (Centrocercus urophasianus) and its habitat from potential adverse effects of locatable mineral exploration and mining. The U.S. Geological Survey Sagebrush Mineral-Resource Assessment (SaMiRA) project was initiated in November 2015 and supported by the Bureau of Land Management to (1) assess locatable mineral-resource potential and (2) to describe leasable and salable mineral resources for the seven SFAs and Nevada additions.This chapter summarizes the current status of locatable, leasable, and salable mineral commodities and assesses the potential of locatable minerals in the North-Central Idaho SFA, which extends from east-central to south-central Idaho. The geologically complex area is composed of many different rock units that locally contain potential mineral resources.

  11. Effects of sand burial on dune plants:a review

    Institute of Scientific and Technical Information of China (English)

    Hao Qu; HaLin Zhao; RuiLian Zhou

    2014-01-01

    Burial of different growth stages of plants (e.g., adult plants, seedlings and seeds) is frequent in dune ecosystems. The soil micro-environment, which differs from surface conditions, influences the survival and growth of dune plants. To sum up knowledge about the survival mechanisms of plants under sand burial and to promote practical rehabilitation of dune vegetation, we reviewed relevant published literature and concluded that:(1) Focus in recent years has been on impacts of sand burial on seed germination and seedling emergence. Generally, shallow burial increased seed germination and seed-ling emergence, but deeper burial was negative. Buried at the same depth, large seeds showed higher germination and seedling emergence rates, attributed to larger energy reserves. (2) Survival, growth and reproduction rates of dune plants show plasticity in response to sand burial. Long-term deep burial is fatal because it creates a physical barrier which overcomes the vertical growth of plants, reduces photosynthetic leaf area, and limits oxygen availability to roots. Modest burial, on the other hand, is advantageous for growth and reproduction of many dune plants, due to protection from ex-cessive temperature and drought. (3) There are few reports concerning effects of sand burial on plant physiology, but a limited number of studies indicate that partial burial increases water use efficiency, chlorophyll content, transpiration rate and net photosynthetic rates. The antioxidant protective enzyme system and osmolyte balance were reported to be involved in the mechanisms of dune plant resistance to burial.

  12. Vegetated dune morphodynamics during recent stabilization of the Mu Us dune field, north-central China

    Science.gov (United States)

    Xu, Zhiwei; Mason, Joseph A.; Lu, Huayu

    2015-01-01

    The response of dune fields to changing environmental conditions can be better understood by investigating how changing vegetation cover affects dune morphodynamics. Significant increases in vegetation and widespread dune stabilization over the years 2000-2012 are evident in high-resolution satellite imagery of the Mu Us dune field in north-central China, possibly a lagged response to changing wind strength and temperature since the 1970s. These trends provide an opportunity to study how dune morphology changes with increasing vegetation stabilization. Vegetation expansion occurs mainly by expansion of pre-existing patches in interdunes. As vegetation spreads from interdunes onto surrounding dunes, it modifies their shapes in competition with wind-driven sand movement, primarily in three ways: 1) vegetation anchoring horns of barchans transforms them to parabolic dunes; 2) vegetation colonizes stoss faces of barchan and transverse dunes, resulting in lower dune height and an elongated stoss face, with shortening of barchan horns; and 3) on transverse dunes, the lee face is fixed by plants that survive sand burial. Along each of these pathways of stabilization, dune morphology tends to change from more barchanoid to more parabolic forms, but that transformation is not always completed before full stabilization. Artificial stabilization leads to an extreme case of "frozen" barchans or transverse dunes with original shapes preserved by rapid establishment of vegetation. Observations in the Mu Us dune field emphasize the point that vegetation growth and aeolian sand transport not only respond to external factors such as climate but also interact with each other. For example, some barchans lose sand mass during vegetation fixation, and actually migrate faster as they become smaller, and vegetation growth on a barchan's lower stoss face may alter sand transport over the dune in a way that favors more rapid stabilization. Conceptual models were generalized for the

  13. componente vegetal

    Directory of Open Access Journals (Sweden)

    Fabio Moscovich

    2005-01-01

    Full Text Available In order to determine environmental impact, indicators based on vegetation characteristics that would generate the forestry monoculture with the adjacent native forest, 32 sample unit were installed in an area of LIPSIA private enterprise, Esperanza Department, Misiones with those characteristics. The plots of 100 m2 were distributed systematically every 25 meters. The vegetation was divided in stratum: superior (DBH ≥ 10 cm, middle (1,6 cm ≤ DBH > 10 cm and inferior (DBH< cm. There were installed 10 plots in a logged native forest, 10 plots in a 18 years old Pinus elliottii Engelm. with approximately 400 trees/ha., 6 plots in a 10 – 25 years old Araucaria angustifolia (Bertd. Kuntze limiting area with approximately 900 trees/ha., and 6 plots located in this plantation. In the studied area were identified 150 vegetation species. In the inferior stratum there were found differences as function of various floristic diversity indexes. In all the cases the native forest showed larger diversity than plantations, followed by Pinus elliottii, Araucaria plantation and Araucaria limiting area. All the studied forest fitted to a logarithmical series of species distributions, that would indicate the incidence of a environmental factor in this distribution.

  14. Consequences of pre-inoculation with native arbuscular mycorrhizae on root colonization and survival of Artemisia tridentata ssp. wyomingensis (Wyoming big sagebrush) seedlings after transplanting

    Science.gov (United States)

    Bill Eugene Davidson

    2015-01-01

    Inoculation of seedlings with arbuscular mycorrhizal fungi (AMF) is a common practice aimed at improving seedling establishment. The success of this practice largely depends on the ability of the inoculum to multiply and colonize the growing root system after transplanting. These events were investigated in Artemisia tridentata ssp. wyomingensis (Wyoming big sagebrush...

  15. Prescribed fire effects on runoff, erosion, and soil water repellency on steeply-sloped sagebrush rangeland over a five year period

    Science.gov (United States)

    Fire is an inherent component of sagebrush steppe rangelands in western North America and can dramatically affect runoff and erosion processes. Post-fire flooding and erosion events pose substantial threats to proximal resources, property, and human life. Yet, prescribed fire can serve as a tool to ...

  16. Disturbance of the inclined inserting-type sand fence to wind-sand flow fields and its sand control characteristics

    Science.gov (United States)

    Cheng, Jian-jun; Lei, Jia-qiang; Li, Sheng-yu; Wang, Hai-feng

    2016-06-01

    The inclined inserting-type sand fence is a novel sand retaining wall adopted along the Lanxin High-Speed Railway II in Xinjiang for controlling and blocking sand movement. To verify the effectiveness of the new fence structure for sand prevention, a wind tunnel test was used for flow field test simulation of the sand fence. The results indicate that the inclined inserting-type sand fence was able to deflect the flow of the sand and was able to easily form an upward slant acceleration zone on the leeward side of the sand fence. As shown by the percentage change in sand collection rates on the windward side and the leeward side of the sand fence, the sand flux per unit area at 4 m height in the slant upward direction increased on the leeward side of the inclined inserting-type sand fence. By comparing the flow fields, this site is an acceleration zone, which also reaffirms the correspondence of wind-sand flow fields with the spatial distribution characteristic of the wind-carried sand motion. The field sand collection data indicates that under the effects of the inclined inserting-type sand fence, the sandy air currents passing in front and behind the sand fence not only changed in quality, but the grain composition and particle size also significantly changed, suggesting that the inclined inserting-type sand fence has a sorting and filtering effect on the sandy air currents that passed through. The fence retained coarse particulates on the windward side and fine particulates within the shade of the wind on the leeward side.

  17. Locatable mineral assessment tracts for the U.S. Geological Survey Sagebrush Mineral-Resource Assessment Project

    Science.gov (United States)

    San Juan, Carma A.; Horton, John D.; Parks, Heather L.; Mihalasky, Mark J.; Anderson, Eric D.; Benson, Mary Ellen; Box, Stephen E.; Cossette, Pamela M.; Denning, Paul D.; Giles, Stuart A.; Hall, Susan M.; Hayes, Timothy S.; Hearn, Carter B.; Hofstra, Albert H.; John, David A.; Ludington, Stephen; Lund, Karen; Mauk, Jeffrey L.; Robinson, Jr., Gilpin R.; Rockwell, Barnaby W.; Rytuba, James J.; Smith, Steven M.; Stillings, Lisa; Van Gosen, Bradley S.; Vikre, Peter G.; Wallis, John C.; Wilson, Anna B.; Zientek, Michael L.; Zurcher, Lukas

    2016-01-01

    The polygon (vector) feature class represents locatable mineral resource assessment tracts (tracts of land) associated with the Department of the Interior (DOI) Sagebrush Focal Areas (SFAs) in Montana, Wyoming and Utah, central Idaho, and the Oregon-Nevada-Idaho border area. The mineral-resources tracts are geographic areas that were assessed by the USGS and were determined to be geologically favorable for a deposit type of interest to a depth of 1 kilometer. Qualitative assessment methods outlined by the Bureau of Land Management (BLM) were used to develop tract boundaries and to assign a level of mineral-resource potential and certainty to each tract. The general process included (1) identifying possible mineral deposit types for locatable commodities specified by BLM for each focal area, (2) outlining those areas that potentially contained mineral deposits based on geology, mineral occurrences, geophysics, soil and stream-sediment geochemistry, alteration mineral assemblages inferred from satellite imagery, BLM claims and permit data, mineral-exploration activity, and existing mineral-resource assessment data, and (3) evaluating the level of mineral-resource potential and level of certainty associated with the outlined areas using BLM assessment categories. A full description of the assessment is provided in the accompanying report (Day and others, 2016).SFAs, identified by agencies of the DOI, are high-quality sagebrush habitat areas supporting high densities of breeding greater sage-grouse (Centrocercus urophasianus). SFAs are within priority habitat areas or areas where land-use measures are intended to minimize or avoid habitat disturbance. Seven SFAs are within the USGS Sagebrush Mineral-Resource Assessment Project study area. They include the Bear River Watershed, North-Central Idaho, North-Central Montana, Southeastern Oregon and North-Central Nevada, Sheldon-Hart Mountain National Wildlife Refuge Complex, Southern Idaho and Northern Nevada, and

  18. Optimal array of sand fences.

    Science.gov (United States)

    Lima, Izael A; Araújo, Ascânio D; Parteli, Eric J R; Andrade, José S; Herrmann, Hans J

    2017-03-24

    Sand fences are widely applied to prevent soil erosion by wind in areas affected by desertification. Sand fences also provide a way to reduce the emission rate of dust particles, which is triggered mainly by the impacts of wind-blown sand grains onto the soil and affects the Earth's climate. Many different types of fence have been designed and their effects on the sediment transport dynamics studied since many years. However, the search for the optimal array of fences has remained largely an empirical task. In order to achieve maximal soil protection using the minimal amount of fence material, a quantitative understanding of the flow profile over the relief encompassing the area to be protected including all employed fences is required. Here we use Computational Fluid Dynamics to calculate the average turbulent airflow through an array of fences as a function of the porosity, spacing and height of the fences. Specifically, we investigate the factors controlling the fraction of soil area over which the basal average wind shear velocity drops below the threshold for sand transport when the fences are applied. We introduce a cost function, given by the amount of material necessary to construct the fences. We find that, for typical sand-moving wind velocities, the optimal fence height (which minimizes this cost function) is around 50 cm, while using fences of height around 1.25 m leads to maximal cost.

  19. On the sand surface stability in the southern part of Gurbantünggüt Desert

    Institute of Scientific and Technical Information of China (English)

    WANG Xueqin; WANG Tao; JIANG Jin; ZHAO Congju

    2005-01-01

    Longitudinal dunes are the most widespread dune types in the world sand seas but comprehensive study on the sand surface stability is scarce. The southern part of Gurbantünggüt Desert is mainly covered by longitudinal dune in which fixed and semi-fixed dunes occupy over 80% of the total area. Systematic analysis on the climatic conditions, the soil moisture and vegetation distributions, and the sand surface activities showed that the fixed and semi-fixed dunes are in a comprehensive low-energy wind environment. Snow cover and frozen soil provide a good protection to the ground surface in winter. The temporal distribution of precipitation and corresponding variation of temperature create a favorable condition for the desert plants growth, especially for the ephemeral plants. The occurrence of effective winds for sand moving in April to June coincides with the stage of relatively wet sand surface and good vegetation cover, which effectively keep the sand surface stable at the interdune and the plinth of the dunes. Activity sand surface appears only at the crest and the upper part of the sand dunes.

  20. Geology and mineral resources of the Southwestern and South-Central Wyoming Sagebrush Focal Area, Wyoming, and the Bear River Watershed Sagebrush Focal Area, Wyoming and Utah: Chapter E in Mineral resources of the Sagebrush Focal Areas of Idaho, Montana, Nevada, Oregon, Utah, and Wyoming

    Science.gov (United States)

    Wilson, Anna B.; Hayes, Timothy S.; Benson, Mary Ellen; Yager, Douglas B.; Anderson, Eric D.; Bleiwas, Donald I.; DeAngelo, Jacob; Dicken, Connie L.; Drake, Ronald M.; Fernette, Gregory L.; Giles, Stuart A.; Glen, Jonathan M. G.; Haacke, Jon E.; Horton, John D.; Parks, Heather L.; Rockwell, Barnaby W.; Williams, Colin F.

    2016-10-04

    SummaryThe U.S. Department of the Interior has proposed to withdraw approximately 10 million acres of Federal lands from mineral entry (subject to valid existing rights) from 12 million acres of lands defined as Sagebrush Focal Areas (SFAs) in Idaho, Montana, Nevada, Oregon, Utah, and Wyoming (for further discussion on the lands involved see Scientific Investigations Report 2016–5089–A). The purpose of the proposed action is to protect the greater sage-grouse (Centrocercus urophasianus) and its habitat from potential adverse effects of locatable mineral exploration and mining. The U.S. Geological Survey Sagebrush Mineral-Resource Assessment (SaMiRA) project was initiated in November 2015 and supported by the Bureau of Land Management to (1) assess locatable mineral-resource potential and (2) to describe leasable and salable mineral resources for the seven SFAs and Nevada additions.This chapter summarizes the current status of locatable, leasable, and salable mineral commodities and assesses the potential of locatable minerals in the Southwestern and South-Central Wyoming and Bear River Watershed, Wyoming and Utah, SFAs.

  1. Effect of compost on erodibility of loamy sand under simulated rainfall

    DEFF Research Database (Denmark)

    Arthur, Emmanuel; Cornelis, W.M.; Vermang, J.

    2011-01-01

    Three types of composts [vegetable, fruit and yard waste compost (VFYW), garden waste compost (GW), and spent mushroom compost (SM)] were applied at a rate of 30 m3 ha−1 for 10 years to loamy sand, to determine its effect on the aggregate stability and susceptibility to water erosion. Aggregate...

  2. Invasiveness of Campylopus introflexus in drift sands depends on nitrogen deposition and soil organic matter

    NARCIS (Netherlands)

    Sparrius, L.B.; Kooijman, A.M.

    2011-01-01

    Question: Does the neophyte moss Campylopus introflexus invade more often in drift sand pioneer vegetations under high nitrogen (N) deposition? Location: Fourteen inland dune reserves in The Netherlands over a gradient of atmospheric N deposition. Methods: A transect study, dispersal experiment and

  3. SPECIES DYNAMICS AND NUTRIENT ACCUMULATION DURING EARLY PRIMARY SUCCESSION IN COASTAL SAND DUNES

    NARCIS (Netherlands)

    OLFF, H; VANTOOREN, BF; Tooren, B.F. van

    1993-01-01

    1 The present study reports on a primary succession series which started on bare soil on the Dutch island of Schiermonnikoog after the building of a sand dike. Vegetational changes were studied for 18 years by means of permanent transects along a topographic gradient from a moist plain to dry dunes.

  4. Sands at Gusev Crater, Mars

    Science.gov (United States)

    Cabrol, Nathalie A.; Herkenhoff, Kenneth E.; Knoll, Andrew H.; Farmer, Jack D.; Arvidson, Raymond E.; Grin, E.A.; Li, Ron; Fenton, Lori; Cohen, B.; Bell, J.F.; Yingst, R. Aileen

    2014-01-01

    Processes, environments, and the energy associated with the transport and deposition of sand at Gusev Crater are characterized at the microscopic scale through the comparison of statistical moments for particle size and shape distributions. Bivariate and factor analyses define distinct textural groups at 51 sites along the traverse completed by the Spirit rover as it crossed the plains and went into the Columbia Hills. Fine-to-medium sand is ubiquitous in ripples and wind drifts. Most distributions show excess fine material, consistent with a predominance of wind erosion over the last 3.8 billion years. Negative skewness at West Valley is explained by the removal of fine sand during active erosion, or alternatively, by excess accumulation of coarse sand from a local source. The coarse to very coarse sand particles of ripple armors in the basaltic plains have a unique combination of size and shape. Their distribution display significant changes in their statistical moments within the ~400 m that separate the Columbia Memorial Station from Bonneville Crater. Results are consistent with aeolian and/or impact deposition, while the elongated and rounded shape of the grains forming the ripples, as well as their direction of origin, could point to Ma'adim Vallis as a possible source. For smaller particles on the traverse, our findings confirm that aeolian processes have dominated over impact and other processes to produce sands with the observed size and shape patterns across a spectrum of geologic (e.g., ripples and plains soils) and aerographic settings (e.g., wind shadows).

  5. Effects of sand burial on survival and growth of Artemisia halodendron and its physiological response

    Institute of Scientific and Technical Information of China (English)

    HaLin Zhao; Hao Qu; RuiLian Zhou; JianYing Yun; Jin Li

    2015-01-01

    There is a great deal of literature on the effects of sand burial upon the survival and growth of desert plants, but the physiological adaption mechanisms of desert plants to sand burial have as yet rarely been studied. Artemisia halodendron is widely distributed in the semi-arid deserts of China and is a dominant species in semi-moving dune vegetation. The growth and physiological properties of A. halodendron seedlings under different sand burial depths were studied in 2010 and 2011 in the Horqin Sand Land, Inner Mongolia, to better understand the ability and physiological mechanism by which desert plants withstand sand burial. The results showed that A. halodendron as a prammophyte species had a stronger ability to withstand sand burial compared to non-prammophytes, with some plants still surviving even if buried to a depth reaching 225% of seedling height. Although seedling growth was inhibited significantly once the depth of sand burial reached 50%of the seedling height, seedling survival did not decrease significantly until the burial depth exceeded 100%of the seedling height. Sand burial did not result in significant water stress or MDA (Malondialdehyde) accumulation in the seedlings, but membrane permeability increased significantly when the burial depth exceeded 100%of the seedling height. After being subjected to sand burial stress, POD (Peroxidase) activity and proline content increased significantly, but SOD (Superoxide Dismutase) and POD activities and soluble sugar content did not. The primary mechanism resulting in in-creased mortality and growth inhibition were that cell membranes were damaged and photosynthetic area decreased when subjected to the severe stress of sand burial, while proline and POD played key roles in osmotic adjustment and protecting cell membranes from damage, respectively.

  6. Identification of Forest Vegetation Using Vegetation Indices

    Institute of Scientific and Technical Information of China (English)

    Yuan Jinguo; Wang Wei

    2004-01-01

    Spectral feature of forest vegetation with remote sensing techniques is the research topic all over the world, because forest plays an important role in human beings' living environment. Research on vegetation classification with vegetation index is still very little recently. This paper proposes a method of identifying forest types based on vegetation indices,because the contrast of absorbing red waveband with reflecting near-infrared waveband strongly for different vegetation types is recognized as the theoretic basis of vegetation analysis with remote sensing. Vegetation index is highly related to leaf area index, absorbed photosynthetically active radiation and vegetation cover. Vegetation index reflects photosynthesis intensity of plants and manifests different forest types. According to reflectance data of forest canopy and soil line equation NIR=1.506R+0.0076 in Jingyuetan, Changchun of China, many vegetation indices are calculated and analyzed. The result shows that the relationships between vegetation indices and forest types are that perpendicular vegetation index (PVI) identifies broadleaf forest and coniferous forest the most easily;the next is transformed soil-adjusted vegetation index(TSVI) and modified soil-adjusted vegetation index(MSVI), but their calculation is complex. Ratio vegetation index (RVT) values of different coniferous forest vary obviously, so RVI can classify conifers.Therefore, the combination of PVI and RVI is evaluated to classify different vegetation types.

  7. Vegetation Map and Vegetation Monographs of China

    Institute of Scientific and Technical Information of China (English)

    GUO Ke

    2010-01-01

    @@ Vegetation Map of China As the most significant component of an ecosystem,vegetation plays the most important role in maintaining biodiversity and providing the necessary resources for human beings.A vegetation map shows the major vegetation types of a region and their geographic distribution patterns.

  8. Establishing native grasses in a big sagebrush-dominated site: an intermediate restoration step

    Science.gov (United States)

    Huber-Sannwald, Elisabeth; Pyke, David A.

    2005-01-01

    Many semiarid rangelands in the Great Basin, U.S.A., are shifting dominance to woody species as a consequence of land degradation including intense livestock grazing and fire suppression. Whereas past rehabilitation efforts in Big sagebrush (Artemisia tridentata) steppes removed the shrub and added introduced forage grasses to successfully shift communities from shrublands to grasslands, current consensus is that native species should be included in restoration projects and that retention of some woody plants is desirable. We examined the potential for interseeding grasses into dense shrub communities as a precursor to thinning shrubs and releasing grasses from shrub interference. We compared seedling establishment of the native grass, Bluebunch wheatgrass (Pseudoroegneria spicata), with that of the Eurasia grass, Crested wheatgrass (Agropyron desertorum), in dense Ar. tridentata stands. Shrubs may play an important role as nurse plants for seedling establishment (reduced solar radiation, 'island of fertility' effect) but result in highly contrasting light environments and root interference for seedlings. In experimental plots, we examined effects of Ar. tridentata shade levels (0, 40, 70, and 90% reduction of solar radiation) and initial root exclusion (present/absent) on the establishment and growth of P. spicata and Ag. desertorum seedlings. With this design we evaluated the interference effects of Ar. tridentata on the two grasses and identified the most beneficial microsites for grass restoration in Ar. tridentataa??dominated communities. We predicted seedling survival and growth to be greater under moderate shade (40% reduction) and limited root competition than under no or strong shade conditions (0 and 90%) and unrestricted root interactions. Fifty to 85% of the P. spicata and Ag. desertorum seedlings survived the dry summer months of 1995 and 1996 and the intervening winter. Neither shading nor root exclusion from Ar. tridentata affected final seedling

  9. Using resistance and resilience concepts to reduce impacts of annual grasses and altered fire regimes on the sagebrush ecosystem and sage-grouse- A strategic multi-scale approach

    Science.gov (United States)

    Chambers, Jeanne C.; Pyke, David A.; Maestas, Jeremy D.; Boyd, Chad S.; Campbell, Steve; Espinosa, Shawn; Havlina, Doug; Mayer, Kenneth F.; Wuenschel, Amarina

    2014-01-01

    This Report provides a strategic approach for conservation of sagebrush ecosystems and Greater Sage- Grouse (sage-grouse) that focuses specifically on habitat threats caused by invasive annual grasses and altered fire regimes. It uses information on factors that influence (1) sagebrush ecosystem resilience to disturbance and resistance to invasive annual grasses and (2) distribution, relative abundance, and persistence of sage-grouse populations to develop management strategies at both landscape and site scales. A sage-grouse habitat matrix links relative resilience and resistance of sagebrush ecosystems with sage-grouse habitat requirements for landscape cover of sagebrush to help decision makers assess risks and determine appropriate management strategies at landscape scales. Focal areas for management are assessed by overlaying matrix components with sage-grouse Priority Areas for Conservation (PACs), breeding bird densities, and specific habitat threats. Decision tools are discussed for determining the suitability of focal areas for treatment and the most appropriate management treatments.

  10. DPTM simulation of aeolian sand ripple

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Aeolian sand ripple and its time evolution are simulated by the discrete particle tracing method (DPTM) presented in this paper. The difference between this method and the current methods is that the former can consider the three main factors relevant to the formation of natural aeolian sand ripples,which are the wind-blown sand flux above the sand bed formed by lots of sand particles with different di-ameters,the particle-bed collision and after it the rebound and ejection of sand particles in the sand bed,the saltation of high-speed sand particles and the creep of low-speed sand particles,respectively. The simulated aeolian sand ripple is close to the natural sand ripple not only in basic shape and characteristic,particle size segregation and stratigraphy,but also in formation stages. In addition,three important speeds can be obtained by this method,which are the propagation speed of the saturated aeolian sand ripple and the critical frictional wind speeds of emergence and disappearance of sand ripple.

  11. DPTM simulation of aeolian sand ripple

    Institute of Scientific and Technical Information of China (English)

    ZHENG XiaoJing; BO TianLi; XIE Li

    2008-01-01

    Aeolian sand ripple and its time evolution are simulated by the discrete particle tracing method (DPTM) presented in this paper.The difference between this method and the current methods is that the former can consider the three main factors relevant to the formation of natural aeolian sand ripples, which are the wind-blown sand flux above the sand bed formed by lots of sand particles with different di-ameters, the particle-bed collision and after it the rebound and ejection of sand particles in the sand bed, the saltation of high-speed sand particles and the creep of low-speed sand particles, respectively.The simulated aeolian sand ripple is close to the natural sand ripple not only in basic shape and characteristic, particle size segregation and stratigraphy, but also in formation stages.In addition, three important speeds can be obtained by this method, which are the propagation speed of the saturated aeolian sand ripple and the critical frictional wind speeds of emergence and disappearance of sand ripple.

  12. Distribution of phlebotomine sand flies (Diptera: Psychodidae) in a primary forest-crop interface, Salta, Argentina.

    Science.gov (United States)

    Quintana, M G; Salomón, O D; De Grosso, M S Lizarralde

    2010-11-01

    Disordered urbanization and deforestation are the main activities proposed as causal factors of re-emergence of American cutaneous leishmaniasis caused by Leishmania braziliensis. The purpose of this work was to investigate, in the hyperendemic area of Argentina, the distribution of Phlebotomine sand flies at the modified primary vegetation-crop interface, as one of the potential sites where the effects of changing landscape on sand fly populations may be manifested. Twenty samplings were made between June 2004 and August 2005. The traps to catch sand flies were set on two consecutive nights every month (except in 5 mo, where it became every 15 d). The relationship between sand fly abundance and meteorological and landscape variables was analyzed using non-metric multidimensional scaling and Kendall's correlation coefficients. Lutzomyia neivai (Pinto) was the most abundant species, followed by Lutzomyia migonei (França), Lutzomyia cortelezzii (Brèthes), Lutzomyia shannoni (Dyar), and Lutzomyia punctigeniculata (Floch and Abonnenc). Traps located close to modified areas collected the greatest numbers of sand flies, whereas traps located in the least modified area (adjacent to the primary vegetation) collected the fewest. There was a strong negative correlation between the abundance of sand flies and precipitation. This study shows that even small modifications in the landscape led to an increase in sand fly abundance, mainly Lu. neivai, a Leishmania braziliensis vector. This underscores the need for recommendations about the risk of American cutaneous leishmaniasis before any environmental intervention is done in an endemic area, as well as for the monitoring of sand fly population dynamics at the site of intervention, before, during, and after the process.

  13. Intermittent fasting modulation of the diabetic syndrome in sand rats. II. In vivo investigations.

    Science.gov (United States)

    Belkacemi, Louiza; Selselet-Attou, Ghalem; Louchami, Karim; Sener, Abdullah; Malaisse, Willy J

    2010-11-01

    This study deals with the effects of daily intermittent fasting for 15 h upon the development of diabetes in sand rats exposed to a hypercaloric diet. The same pattern of daily intermittent fasting was imposed on sand rats maintained on a purely vegetal diet (control animals). Over the last 30 days of the present experiments, non-fasting animals gained weight, whilst intermittently fasting sand rats lost weight. In this respect, there was no significant difference between control animals and either diabetic or non-diabetic sand rats exposed to the hypercaloric diet. The postprandial glycemia remained fairly stable in the control animals. During a 3-week transition period from a purely vegetal to a hypercaloric diet, the post-prandial glycemia increased by 5.95 ± 1.26 mM (n=6) in diabetic sand rats, as distinct from an increase of only 0.45 ± 0.56 mM (n=6) in the non-diabetic animals. During the intermittent fasting period, the postprandial glycemia decreased significantly in the diabetic animals, but not so in the non-diabetic sand rats. Before the switch in food intake, the peak glycemia at the 30th min of an intraperitoneal glucose tolerance test was already higher in the diabetic than non-diabetic rats. In both the non-diabetic and diabetic sand rats, intermittent fasting prevented the progressive deterioration of glucose tolerance otherwise observed in non-fasting animals. These findings reveal that, at least in sand rats, intermittent daily fasting prevents the progressive deterioration of glucose tolerance otherwise taking place when these animals are exposed to a hypercaloric diet.

  14. Dry reusing and wet reclaiming of used sodium silicate sand

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Based on the characteristics of used sodium silicate sand and the different use requirements for recycled sand, "dry reusing and wet reclaiming of used sodium silicate sand" is considered as the most suitable technique for the used sand. When the recycled sand is used as support sand, the used sand is only reused by dry process including breaking, screening, dust-removal, etc., and it is not necessary that the used sand is reclaimed with strongly rubbing and scraping method, but when the recycled sand is used as facing sand (or single sand), the used sand must be reclaimed by wet method for higher removal rate of the residual binders. The characteristics and the properties of the dry reused sand are compared with the wet reclaimed sand after combining the different use requirements of support sand and facing sand (or single sand), and above the most adaptive scheme has also been validated.

  15. Science framework for conservation and restoration of the sagebrush biome: Linking the Department of the Interior’s Integrated Rangeland Fire Management Strategy to long-term strategic conservation actions, Part 1. Science basis and applications

    Science.gov (United States)

    Chambers, Jeanne C.; Beck, Jeffrey L.; Bradford, John B.; Bybee, Jared; Campbell, Steve; Carlson, John; Christiansen, Thomas J; Clause, Karen J.; Collins, Gail; Crist, Michele R.; Dinkins, Jonathan B.; Doherty, Kevin E; Edwards, Fred; Espinosa, Shawn; Griffin, Kathleen A.; Griffin, Paul; Haas, Jessica R.; Hanser, Steve; Havlina, Douglas W.; Henke, Kenneth F.; Hennig, Jacob D.; Joyce, Linda A; Kilkenny, Francis F.; Kulpa, Sarah M; Kurth, Laurie L; Maestas, Jeremy D; Manning, Mary; Mayer, Kenneth E.; Mealor, Brian A.; McCarthy, Clinton; Pellant, Mike; Perea, Marco A.; Prentice, Karen L.; Pyke, David A.; Wiechman , Lief A.; Wuenschel, Amarina

    2017-01-01

    The Science Framework is intended to link the Department of the Interior’s Integrated Rangeland Fire Management Strategy with long-term strategic conservation actions in the sagebrush biome. The Science Framework provides a multiscale approach for prioritizing areas for management and determining effective management strategies within the sagebrush biome. The emphasis is on sagebrush (Artemisia spp.) ecosystems and Greater sage-grouse (Centrocercus urophasianus). The approach provided in the Science Framework links sagebrush ecosystem resilience to disturbance and resistance to nonnative, invasive plant species to species habitat information based on the distribution and abundance of focal species. A geospatial process is presented that overlays information on ecosystem resilience and resistance, species habitats, and predominant threats and that can be used at the mid-scale to prioritize areas for management. A resilience and resistance habitat matrix is provided that can help decisionmakers evaluate risks and determine appropriate management strategies. Prioritized areas and management strategies can be refined by managers and stakeholders at the local scale based on higher resolution data and local knowledge. Decision tools are discussed for determining appropriate management actions for areas that are prioritized for management. Geospatial data, maps, and models are provided through the U.S. Geological Survey (USGS) ScienceBase and Bureau of Land Management (BLM) Landscape Approach Data Portal. The Science Framework is intended to be adaptive and will be updated as additional data become available on other values and species at risk. It is anticipated that the Science Framework will be widely used to: (1) inform emerging strategies to conserve sagebrush ecosystems, sagebrush dependent species, and human uses of the sagebrush system, and (2) assist managers in prioritizing and planning on-the-ground restoration and mitigation actions across the sagebrush biome.

  16. Sand and Water Table Play

    Science.gov (United States)

    Wallace, Ann H.; White, Mary J.; Stone, Ryan

    2010-01-01

    The authors observed preschoolers engaged at the sand and water table to determine if math could be found within their play. Wanting to understand how children interact with provided materials and what kinds of math ideas they explore during these interactions, the authors offer practical examples of how such play can promote mathematical…

  17. Sand and Water Table Play

    Science.gov (United States)

    Wallace, Ann H.; White, Mary J.; Stone, Ryan

    2010-01-01

    The authors observed preschoolers engaged at the sand and water table to determine if math could be found within their play. Wanting to understand how children interact with provided materials and what kinds of math ideas they explore during these interactions, the authors offer practical examples of how such play can promote mathematical…

  18. Impact on sand and water

    NARCIS (Netherlands)

    Bergmann, R.P.H.M.

    2007-01-01

    In this thesis we investigate the impact of a body on sand and water. When a body impacts a free surface in the inertial regime the series of events is the following: On impact material is blown away in all directions and an impact cavity forms. Due to the hydrostatic pressure from the sides the cav

  19. Silo model tests with sand

    DEFF Research Database (Denmark)

    Munch-Andersen, Jørgen

    Tests have been carried out in a large silo model with Leighton Buzzard Sand. Normal pressures and shear stresses have been measured during tests carried out with inlet and outlet geometry. The filling method is a very important parameter for the strength of the mass and thereby the pressures...

  20. experimental studies of sand production from unconsolidated ...

    African Journals Online (AJOL)

    ES Obe

    Production of sand during oil and gas exploration causes severe operational prob- ... duction such as risk of well failure, erosion of pipelines and surface facilities, sand separa- tion and disposal ... ment, theoretical and numerical analysis have.

  1. UK silica sand resources for fracking

    OpenAIRE

    Mitchell, Clive

    2013-01-01

    UK silica sand resources for fracking Clive Mitchell, Industrial Minerals Specialist, British Geological Survey, Keyworth, Nottingham, NG12 5GG Email: Silica sand is high purity quartz sand that is mainly used for glass production, as foundry sand, in horticulture, leisure and other industrial uses. One specialist use is as a ‘proppant’ to enhance oil and gas recovery. This presentation will focus on this application, particularly for shale gas recovery where it is mo...

  2. Treating tar sands formations with karsted zones

    Energy Technology Data Exchange (ETDEWEB)

    Vinegar, Harold J. (Bellaire, TX); Karanikas, John Michael (Houston, TX)

    2010-03-09

    Methods for treating a tar sands formation are described herein. The tar sands formation may have one or more karsted zones. Methods may include providing heat from one or more heaters to one or more karsted zones of the tar sands formation to mobilize fluids in the formation. At least some of the mobilized fluids may be produced from the formation.

  3. The Karakum and Kyzylkum sand seas dynamics; mapping and palaeoclimatic interpretations

    Science.gov (United States)

    Maman, Shimrit; Blumberg, Dan G.; Tsoar, Haim; Porat, Naomi

    2015-04-01

    Sand seas are large basins in deserts that are mantled by wind-swept sand and that exhibit varying degrees of vegetation cover. Wilson (1973) was the first to globally map and classify sand seas. Beyond Wilson's maps, however, little research has been published regarding the Karakum and Kyzylkum sand seas of Central Asia. Wilson's maps delineate active ergs from inactive ergs based solely on precipitation. His assumption of annual average rainfall as a factor determining mobility vs. stability of sand seas is too simplistic and does not take into consideration other factors such as biogenic soil crusts and wind power, both of which are known to have major effects on the dynamics of sand dunes. Literature related to mapping and classifying the Central Asian ergs by remote sensing or sand sea classification state (stable/active) is lacking. Moreover, the palaeoclimatic significance of dunes in Central Asia is difficult to assess, as there has been few studies of dune stratigraphy and numerical ages are lacking. Optically stimulated luminescence (OSL) is a firm optical dating method that is used to determine the elapsed time since quartz grains were last exposed to sunlight, thus, their burial. Yet, absolute ages indicating mobilization and stabilization of these sands, are still inadequately known and are here under discussion. The broad concern of this research was to determine the dynamics of the Central Asian sand seas and study the palaeoclimatic changes that brought to their stabilization. As there are no reliable maps or aeolian discussion of these sands, establishment of a digital data base was initially conducted, focusing on identifying and mapping these sand seas. The vast area and inaccessibility make traditional mapping methods virtually impossible. A variety of space-borne imagery both optical and radar, with varying spectral and spatial resolutions was used. These images provided the basis for mapping sand distribution, dune forms, and vegetation cover

  4. Natural and human controls of the Holocene evolution of the beach, aeolian sand and dunes of Caesarea (Israel)

    Science.gov (United States)

    Roskin, J.; Sivan, D.; Shtienberg, G.; Roskin, E.; Porat, N.; Bookman, R.

    2015-12-01

    The study focuses on the Holocene appearance, chronology and drivers of beach sand deposition and inland aeolian sand transport around the Roman-Byzantine ruins of Caesarea, Israel. Beach sand, sand sheets, nebkha, linear and transverse dunes as well as parabolic and transverse interdunes along two transects were sampled in the current study down to their substrate. Sixteen new optically stimulated luminescence ages cluster at ∼5.9-3.3 ka, ∼1.2-1.1 ka (800-900 AD) and ∼190-120 years ago (1825-1895 AD) indicating times of middle and late Holocene sand sheet depositions and historical dune stabilization. The first age cluster indicates that beach sand accumulated when rates of global sea level rise declined around 6-5 ka. Until ∼4 ka sand sheets encroached up to 2.5 km inland. Historical and archaeological evidence points to sand mobilization since the first century AD. Sand sheets dating to 1.2-1.1 ka, coevally found throughout the dunefield represent sand stabilization due to vegetation reestablishment attributed to gradual and fluctuating decline in human activity from the middle Early Islamic period until the 10th century. Historical and chronological evidence of the existence of transverse and coppice dunes from the 19th century suggest that dunes only formed in the last few centuries. The study illustrates the initial role of natural processes, in this case decline in global sea level rise and the primary and later role of fluctuating human activity upon coastal sand mobility. The study distinguishes between sand sheets and dunes and portrays them as sensors of environmental changes.

  5. Sand Waves. Report 1. Sand Wave Shoaling in Navigation Channels

    Science.gov (United States)

    1992-09-01

    heights range from 0.8 m in the Minas Basin, Bay of Fundy (Dalrymple 1984) to 6.0 m in the Bahia Blanca Estuary, Argentina (Aliotta and Perillo 1987...26 PART IV: SITE-SPECIFIC SAND WAVE SHOALING PROBLEMS .. ........ 30 Columbia River Navigation Channel ........ ............... .. 30 Panama ...problem location discussed in this report is at St. Andrew Bay near Panama City, Florida. A relatively short section of the jettied inlet channel requires

  6. Data resources for range-wide assessment of livestock grazing across the sagebrush biome

    Science.gov (United States)

    Assal, T.J.; Veblen, K.E.; Farinha, M.A.; Aldridge, C.L.; Casazza, M.L.; Pyke, D.A.

    2012-01-01

    The data contained in this series were compiled, modified, and analyzed for the U.S. Geological Survey (USGS) report "Range-Wide Assessment of Livestock Grazing Across the Sagebrush Biome." This report can be accessed through the USGS Publications Warehouse (online linkage: http://pubs.usgs.gov/of/2011/1263/). The dataset contains spatial and tabular data related to Bureau of Land Management (BLM) Grazing Allotments. We reviewed the BLM national grazing allotment spatial dataset available from the GeoCommunicator National Integrated Land System (NILS) website in 2007 (http://www.geocommunicator.gov). We identified several limitations in those data and learned that some BLM State and/or field offices had updated their spatial data to rectify these limitations, but maintained the data outside of NILS. We contacted appropriate BLM offices (State or field, 25 in all) to obtain the most recent data, assessed the data, established a data development protocol, and compiled data into a topologically enforced dataset throughout the area of interest for this project (that is, the pre-settlement distribution of Greater Sage-Grouse in the Western United States). The final database includes three spatial datasets: Allotments (BLM Grazing Allotments), OUT_Polygons (nonallotment polygons used to ensure topology), and Duplicate_Polygon_Allotments. See Appendix 1 of the aforementioned report for complete methods. The tabular data presented here consists of information synthesized by the Land Health Standard (LHS) analysis (Appendix 2), and data obtained from the BLM Rangeland Administration System (http://www.blm.gov/ras/). In 2008, available LHS data for all allotments in all regions were compiled by BLM in response to a Freedom of Information Act (FOIA) request made by a private organization. The BLM provided us with a copy of these data. These data provided three major types of information that were of interest: (1) date(s) (if any) of the most recent LHS evaluation for each

  7. METHOD OF PROCESSING MONAZITE SAND

    Science.gov (United States)

    Welt, M.A.; Smutz, M.

    1958-08-26

    A process is described for recovering thorium, uranium, and rare earth values from monazite sand. The monazite sand is first digested with sulfuric acid and the resulting "monazite sulfate" solution is adjusted to a pH of between 0.4 and 3.0, and oxalate anions are added causing precipitation of the thorium and the rare earths as the oxalates. The oxalate precipitate is separated from the uranium containing supernatant solution, and is dried and calcined to the oxides. The thorium and rare earth oxides are then dissolved in nitric acid and the solution is contacted with tribntyl phosphate whereby an organic extract phase containing the cerium and thorium values is obtained, together with an aqueous raffinate containing the other rare earth values. The organic phase is then separated from the aqueous raffinate and the cerium and thorium are back extracted with an aqueous medium.

  8. Remote sensing-based vegetation indices for monitoring vegetation change in the semi-arid region of Sudan

    Science.gov (United States)

    R. A., Majdaldin; Osunmadewa, B. A.; Csaplovics, E.; Aralova, D.

    2016-10-01

    Land degradation, a phenomenon referring to (drought) in arid, semi-arid and dry sub-humid regions as a result of climatic variations and anthropogenic activities most especially in the semi-arid lands of Sudan, where vast majority of the rural population depend solely on agriculture and pasture for their daily livelihood, the ecological pattern had been greatly influenced thereby leading to loss of vegetation cover coupled with climatic variability and replacement of the natural tree composition with invasive mesquite species. The principal aim of this study is to quantitatively examine the vigour of vegetation in Sudan through different vegetation indices. The assessment was done based on indicators such as soil adjusted vegetation index (SAVI). Cloud free multi-spectral remotely sensed data from LANDSAT imagery for the dry season periods of 1984 and 2009 were used in this study. Results of this study shows conversion of vegetation to other land use type. In general, an increase in area covered by vegetation was observed from the NDVI results of 2009 which is a contrast of that of 1984. The results of the vegetation indices for NDVI in 1984 (vegetated area) showed that about 21% was covered by vegetation while 49% of the area were covered with vegetation in 2009. Similar increase in vegetated area were observed from the result of SAVI. The decrease in vegetation observed in 1984 is as a result of extensive drought period which affects vegetation productivity thereby accelerating expansion of bare surfaces and sand accumulation. Although, increase in vegetated area were observed from the result of this study, this increase has a negative impact as the natural vegetation are degraded due to human induced activities which gradually led to the replacement of the natural vegetation with invasive tree species. The results of the study shows that NDVI perform better than by SAVI.

  9. Audubon vegetation monitoring

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This document is the summary and the analysis of vegetative data for the Audubon Refuge from NPWRC. The data included measurements of vegetation density, vegetation...

  10. Characterization of sand lenses embedded in tills

    DEFF Research Database (Denmark)

    Kessler, Timo Christian; Klint, K.E.S.; Nilsson, B.

    2012-01-01

    of the various types of sand lenses is discussed, primarily in relation to the depositional and glaciotectonic processes they underwent. Detailed characterization of sand lenses facilitates such interpretations. Finally, the observations are linked to a more general overview of the distribution of sand lenses......Tills dominate large parts of the superficial sediments on the Northern hemisphere. These glacial diamictons are extremely heterogeneous and riddled with fractures and lenses of sand or gravel. The frequency and geometry of sand lenses within tills are strongly linked to glaciodynamic processes...... occurring in various glacial environments. This study specifically focuses on the appearance and spatial distribution of sand lenses in tills. It introduces a methodology on how to measure and characterize sand lenses in the field with regard to size, shape and degree of deformation. A set of geometric...

  11. A compact topology for sand automata

    CERN Document Server

    Dennunzio, Alberto; Masson, Benoît

    2008-01-01

    In this paper, we exhibit a strong relation between the sand automata configuration space and the cellular automata configuration space. This relation induces a compact topology for sand automata, and a new context in which sand automata are homeomorphic to cellular automata acting on a specific subshift. We show that the existing topological results for sand automata, including the Hedlund-like representation theorem, still hold. In this context, we give a characterization of the cellular automata which are sand automata, and study some dynamical behaviors such as equicontinuity. Furthermore, we deal with the nilpotency. We show that the classical definition is not meaningful for sand automata. Then, we introduce a suitable new notion of nilpotency for sand automata. Finally, we prove that this simple dynamical behavior is undecidable.

  12. Rheological Characterization of Green Sand Flow

    DEFF Research Database (Denmark)

    Jabbaribehnam, Mirmasoud; Spangenberg, Jon; Hovad, Emil

    2016-01-01

    The main aim of this paper is to characterize experimentally the flow behaviour of the green sand that is used for casting of sand moulds. After the sand casting process is performed, the sand moulds are used for metal castings. The rheological properties of the green sand is important to quantify...... module for characterizing granular materials. The new module enables viscosity measurements of the green sand as function of the shear rate at different flow rates, i.e. 0, 2, 4, 6, 8, 10, 12 and 15 L/min. The results show generally that the viscosity decreases with both the shear- and flow rate....... In addition, the measurements show that the green sand flow follows a shear-thinning behaviour even after the full fluidization point....

  13. Silo model tests with sand

    DEFF Research Database (Denmark)

    Munch-Andersen, Jørgen

    Tests have been carried out in a large silo model with Leighton Buzzard Sand. Normal pressures and shear stresses have been measured during tests carried out with inlet and outlet geometry. The filling method is a very important parameter for the strength of the mass and thereby the pressures...... as well as the flow pattern during discharge of the silo. During discharge a mixed flow pattern has been identified...

  14. Formation of Craters in Sand

    Directory of Open Access Journals (Sweden)

    Vanissra Boonyaleepun

    2007-06-01

    Full Text Available The diameter of craters formed by spheres of varying mass dropped into sand at low speed was studied. The relationship between the diameter of the crater formed and the kinetic energy of the projectile at impact was found to be of the same general form as that for planetary meteor craters. The relationship is shown to be a power law with exponent 0.17.

  15. Formation of Craters in Sand

    Directory of Open Access Journals (Sweden)

    Vanissra Boonyaleepun

    2007-06-01

    Full Text Available The diameter of craters formed by spheres of varying mass dropped into sand at low speed was studied. The relationship between the diameter of the crater formed and the kinetic energy of the projectile at impact was found to be of the same general form as that for planetary meteor craters. The relationship is shown to be a power law with exponent 0.17

  16. Thermal Properties of oil sand

    Science.gov (United States)

    LEE, Y.; Lee, H.; Kwon, Y.; Kim, J.

    2013-12-01

    Thermal recovery methods such as Cyclic Steam Injection or Steam Assisted Gravity Drainage (SAGD) are the effective methods for producing heavy oil or bitumen. In any thermal recovery methods, thermal properties (e.g., thermal conductivity, thermal diffusivity, and volumetric heat capacity) are closely related to the formation and expansion of steam chamber within a reservoir, which is key factors to control efficiency of thermal recovery. However, thermal properties of heavy oil or bitumen have not been well-studied despite their importance in thermal recovery methods. We measured thermal conductivity, thermal diffusivity, and volumetric heat capacity of 43 oil sand samples from Athabasca, Canada, using a transient thermal property measurement instrument. Thermal conductivity of 43 oil sand samples varies from 0.74 W/mK to 1.57 W/mK with the mean thermal conductivity of 1.09 W/mK. The mean thermal diffusivity is 5.7×10-7 m2/s with the minimum value of 4.2×10-7 m2/s and the maximum value of 8.0×10-7 m2/s. Volumetric heat capacity varies from 1.5×106 J/m3K to 2.11×106 J/m3K with the mean volumetric heat capacity of 1.91×106 J/m3K. In addition, physical and chemical properties (e.g., bitumen content, electric resistivity, porosity, gamma ray and so on) of oil sand samples have been measured by geophysical logging and in the laboratory. We are now proceeding to investigate the relationship between thermal properties and physical/chemical properties of oil sand.

  17. [Estimation of sparse vegetation coverage in arid region based on hyperspectral mixed pixel decomposition].

    Science.gov (United States)

    Li, Xiao-Song; Gao, Zhi-Hai; Li, Zeng-Yuan; Bai, Li-Na; Wang, Beng-Yu

    2010-01-01

    Based on Hyperion hyperspectral image data, the image-derived shifting sand, false-Gobi spectra, and field-measured sparse vegetation spectra were taken as endmembers, and the sparse vegetation coverage (linear spectral mixture model (LSMM) and non-constrained LSMM, respectively. The results showed that the sparse vegetation fraction based on fully constrained LSMM described the actual sparse vegetation distribution. The differences between sparse vegetation fraction and field-measured vegetation coverage were less than 5% for all samples, and the RMSE was 3.0681. However, the sparse vegetation fraction based on non-constrained LSMM was lower than the field-measured vegetation coverage obviously, and the correlation between them was poor, with a low R2 of 0.5855. Compared with McGwire's corresponding research, the sparse vegetation coverage estimation in this study was more accurate and reliable, having expansive prospect for application in the future.

  18. Water repellency of clay, sand and organic soils in Finland

    Directory of Open Access Journals (Sweden)

    K. RASA

    2008-12-01

    Full Text Available Water repellency (WR delays soil wetting process, increases preferential flow and may give rise to surface runoff and consequent erosion. WR is commonly recognized in the soils of warm and temperate climates. To explore the occurrence of WR in soils in Finland, soil R index was studied on 12 sites of different soil types. The effects of soil management practice, vegetation age, soil moisture and drying temperature on WR were studied by a mini-infiltrometer with samples from depths of 0-5 and 5-10 cm. All studied sites exhibited WR (R index >1.95 at the time of sampling. WR increased as follows: sand (R = 1.8-5.0 < clay (R = 2.4-10.3 < organic (R = 7.9-undefined. At clay and sand, WR was generally higher at the soil surface and at the older sites (14 yr., where organic matter is accumulated. Below 41 vol. % water content these mineral soils were water repellent whereas organic soil exhibited WR even at saturation. These results show that soil WR also reduces water infiltration at the prevalent field moisture regime in the soils of boreal climate. The ageing of vegetation increases WR and on the other hand, cultivation reduces or hinders the development of WR.;

  19. Climate and soil texture influence patterns of forb species richness and composition in big sagebrush plant communities across their spatial extent in the western US

    Science.gov (United States)

    Pennington, Victoria E.; Palmquist, Kyle A.; Bradford, John B.; Lauenroth, William K.

    2017-01-01

    Article for outlet: Plant Ecology. Abstract: Big sagebrush (Artemisia tridentata Nutt.) plant communities are widespread non-forested drylands in western North American and similar to all shrub steppe ecosystems world-wide are composed of a shrub overstory layer and a forb and graminoid understory layer. Forbs account for the majority of plant species diversity in big sagebrush plant communities and are important for ecosystem function. Few studies have explored the geographic patterns of forb species richness and composition and their relationships with environmental variables in these communities. Our objectives were to examine the small and large-scale spatial patterns in forb species richness and composition and the influence of environmental variables. We sampled forb species richness and composition along transects at 15 field sites in Colorado, Idaho, Montana, Nevada, Oregon, Utah, and Wyoming, built species-area relationships to quantify differences in forb species richness at sites, and used Principal Components Analysis and nonmetric multidimensional scaling to identify relationships among environmental variables and forb species richness and composition. We found that species richness was most strongly correlated with soil texture, while species composition was most related to climate. The combination of climate and soil texture influences water availability, with important consequences for forb species richness and composition, which suggests climate-change induced modification of soil water availability may have important implications for plant species diversity in the future. Our paper is the first to our knowledge to examine forb biodiversity patterns in big sagebrush ecosystems in relation to environmental factors across the big sagebrush region.

  20. Data Report: Meteorological and Evapotranspiration Data from Sagebrush and Pinyon Pine/Juniper Communities at Pahute Mesa, Nevada National Security Site, 2011-2012

    Energy Technology Data Exchange (ETDEWEB)

    Jasoni, Richard L [DRI; Larsen, Jessica D [DRI; Lyles, Brad F. [DRI; Healey, John M [DRI; Cooper, Clay A [DRI; Hershey, Ronald L [DRI; Lefebre, Karen J [DRI

    2013-04-01

    Pahute Mesa is a groundwater recharge area at the Nevada National Security Site. Because underground nuclear testing was conducted at Pahute Mesa, groundwater recharge may transport radionuclides from underground test sites downward to the water table; the amount of groundwater recharge is also an important component of contaminant transport models. To estimate the amount of groundwater recharge at Pahute Mesa, an INFIL3.0 recharge-runoff model is being developed. Two eddy covariance (EC) stations were installed on Pahute Mesa to estimate evapotranspiration (ET) to support the groundwater recharge modeling project. This data report describes the methods that were used to estimate ET and collect meteorological data. Evapotranspiration was estimated for two predominant plant communities on Pahute Mesa; one site was located in a sagebrush plant community, the other site in a pinyon pine/juniper community. Annual ET was estimated to be 310±13.9 mm for the sagebrush site and 347±15.9 mm for the pinyon pine/juniper site (March 26, 2011 to March 26, 2012). Annual precipitation measured with unheated tipping bucket rain gauges was 179 mm at the sagebrush site and 159 mm at the pinyon pine/juniper site. Annual precipitation measured with bulk precipitation gauges was 222 mm at the sagebrush site and 227 mm at the pinyon pine/juniper site (March 21, 2011 to March 28, 2012). A comparison of tipping bucket versus bulk precipitation data showed that total precipitation measured by the tipping bucket rain gauges was 17 to 20 percent lower than the bulk precipitation gauges. These differences were most likely the result of the unheated tipping bucket precipitation gauges not measuring frozen precipitation as accurately as the bulk precipitation gauges. In this one-year study, ET exceeded precipitation at both study sites because estimates of ET included precipitation that fell during the winter of 2010-2011 prior to EC instrumentation and the precipitation gauges started

  1. Lake Bathymetric Aquatic Vegetation

    Data.gov (United States)

    Minnesota Department of Natural Resources — Aquatic vegetation represented as polygon features, coded with vegetation type (emergent, submergent, etc.) and field survey date. Polygons were digitized from...

  2. Evaluation of Durability Parameters of Concrete with Manufacture Sand and River Sand

    Science.gov (United States)

    Sangoju, Bhaskar; Ramesh, G.; Bharatkumar, B. H.; Ramanjaneyulu, K.

    2017-06-01

    Most of the states in our country have banned sand quarrying from the river beds, causing a scarcity of natural river sand for the construction sector. Manufacture sand (M-sand) is one of the alternate solutions to replace the river sand (R-sand) in concrete. The main aim of the present study is to evaluate the durability parameters of concrete with M-sand when compared to that of concrete with R-sand. Corrosion of reinforcement is one of the main deteriorating mechanisms of reinforced concrete due to the ingress of chloride ions or carbon-di-oxide. For comparative evaluation of durability parameters, accelerated tests such as Rapid Chloride Permeability Test, Rapid Chloride Migration Test and accelerated carbonation test were carried out on specimens of R-sand and M-sand. All tests were carried out after 90 days of casting. Test results reveal that the durability parameters of the concrete with M-sand in chloride induced environment is relatively better than that of concrete with R-sand and hence is recommended to use M-sand as a replacement to R-sand.

  3. Sand deposit-detecting method and its application in model test of sand flow

    Institute of Scientific and Technical Information of China (English)

    黎伟; 房营光; 莫海鸿; 谷任国; 陈俊生

    2013-01-01

    Against the background of the sand-flow foundation treatment engineering of Guangzhou Zhoutouzui variable cross-section immersed tunnel, a kind of sand deposit-detecting method was devised on the basis of full-scale model test of sand-flow method. The real-time data of sand-deposit height and radius were obtained by the self-developed sand-deposit detectors. The test results show that the detecting method is simple and has high precision. In the use of sand-flow method, the sand-carrying capability of fluid is limited, and sand particles are all transported to the sand-deposit periphery through crater, gap and chutes after the sand deposit formed. The diffusion range of the particles outside the sand-deposit does not exceed 2.0 m. Severe sorting of sand particles is not observed because of the unique oblique-layered depositing process. The temporal and spatial distributions of gap and chutes directly affect the sand-deposit expansion, and the expansion trend of the average sand-deposit radius accords with quadratic time-history curve.

  4. Genotype, soil type, and locale effects on reciprocal transplant vigor, endophyte growth, and microbial functional diversity of a narrow sagebrush hybrid zone in Salt Creek Canyon, Utah

    Science.gov (United States)

    Miglia, K.J.; McArthur, E.D.; Redman, R.S.; Rodriguez, R.J.; Zak, J.C.; Freeman, D.C.

    2007-01-01

    When addressing the nature of ecological adaptation and environmental factors limiting population ranges and contributing to speciation, it is important to consider not only the plant's genotype and its response to the environment, but also any close interactions that it has with other organisms, specifically, symbiotic microorganisms. To investigate this, soils and seedlings were reciprocally transplanted into common gardens of the big sagebrush hybrid zone in Salt Creek Canyon, Utah, to determine location and edaphic effects on the fitness of parental and hybrid plants. Endophytic symbionts and functional microbial diversity of indigenous and transplanted soils and sagebrush plants were also examined. Strong selection occurred against the parental genotypes in the middle hybrid zone garden in middle hybrid zone soil; F1 hybrids had the highest fitness under these conditions. Neither of the parental genotypes had superior fitness in their indigenous soils and habitats; rather F1 hybrids with the nonindigenous maternal parent were superiorly fit. Significant garden-by-soil type interactions indicate adaptation of both plant and soil microorganisms to their indigenous soils and habitats, most notably in the middle hybrid zone garden in middle hybrid zone soil. Contrasting performances of F1 hybrids suggest asymmetrical gene flow with mountain, rather than basin, big sagebrush acting as the maternal parent. We showed that the microbial community impacted the performance of parental and hybrid plants in different soils, likely limiting the ranges of the different genotypes.

  5. Susceptibility and antibody response of Vesper Sparrows (Pooecetes gramineus) to West Nile virus: A potential amplification host in sagebrush-grassland habitat

    Science.gov (United States)

    Hofmeister, Erik K.; Dusek, Robert J.; Fassbinder-Orth, Carol; Owen, Benjamin; Franson, J. Christian

    2016-01-01

    West Nile virus (WNV) spread to the US western plains states in 2003, when a significant mortality event attributed to WNV occurred in Greater Sage-grouse ( Centrocercus urophasianus ). The role of avian species inhabiting sagebrush in the amplification of WNV in arid and semiarid regions of the North America is unknown. We conducted an experimental WNV challenge study in Vesper Sparrows ( Pooecetes gramineus ), a species common to sagebrush and grassland habitats found throughout much of North America. We found Vesper Sparrows to be moderately susceptible to WNV, developing viremia considered sufficient to transmit WNV to feeding mosquitoes, but the majority of birds were capable of surviving infection and developing a humoral immune response to the WNV nonstructural 1 and envelope proteins. Despite clearance of viremia, after 6 mo, WNV was detected molecularly in three birds and cultured from one bird. Surviving Vesper Sparrows were resistant to reinfection 6 mo after the initial challenge. Vesper sparrows could play a role in the amplification of WNV in sagebrush habitat and other areas of their range, but rapid clearance of WNV may limit their importance as competent amplification hosts of WNV.

  6. Mineral weathering experiments to explore the effects of vegetation shifts in high mountain region (Wind River Range, Wyoming, USA)

    Science.gov (United States)

    Mavris, Christian; Furrer, Gerhard; Dahms, Dennis; Anderson, Suzanne P.; Blum, Alex; Goetze, Jens; Wells, Aaron; Egli, Markus

    2015-04-01

    Climate change influences the evolution of soil and landscape. With changing climate, both flora and fauna must adapt to new conditions. It is unknown in many respects to what extent soils will react to warming and vegetation change. The aim of this study was to identify possible consequences for soils in a dry-alpine region with respect to weathering of primary minerals and leaching of elements under expected warming climate conditions due to shifts in vegetation. To achieve this, a field empirical approach was used in combination with laboratory weathering experiments simulating several scenarios. Study sites located in Sinks Canyon and in Stough Basin of the Wind River Range, Wyoming, USA, encompass ecotones that consist of tundra, forest, or sagebrush (from moist to dry, with increasing temperature, respectively). All soils are developed on granitoid moraines. The mineralogy of the soils along the altitudinal sequence was analysed using cathodoluminescence and X-ray diffraction, and revealed clear mineral transformations: biotite and plagioclase were both weathered to smectite while plagioclase also weathered to kaolinite. Cooler, wetter, altitude-dependent conditions seemed to promote weathering of these primary minerals. To test the impact of soil solutions from different ecotones on mineral weathering, aqueous extracts from topsoils (A horizons) were reacted with subsoils (B horizons) in batch experiments. Aqueous extracts of topsoil samples were generated for all three ecotones, and these solutions were characterized. For the batch experiments, the topsoil extracts were reacted for 1800 hours with the subsoil samples of the same ecotone, or with the subsoil samples from higher altitude ecotones. Solutions collected periodically during the experiments were measured using ICP-OES and ion chromatography. Dissolved Ca, Mg and K were mainly controlled by the chemical weathering of oligoclase, K-feldspar and biotite. With increasing altitude (and consequently

  7. Effects of Sand Dune Stabilization on the Spatial Pattern of Artemisia ordosica Population in Mu Us Desert, Northwest China.

    Science.gov (United States)

    Zhang, Jiachen; Zhang, Yuqing; Fan, Dongqing; Qin, Shugao; Jia, Xin; Wu, Bin; Chen, Dong; Gao, Hao; Zhu, Linfeng

    2015-01-01

    Vegetation patterns are strongly influenced by sand mobility in desert ecosystems. However, little is known about the spatial patterns of Artemisia ordosica, a dominant shrub in the Mu Us desert of Northwest China, in relation to sand fixation. The aim of this study was to investigate and contrast the effects of sand dune stabilization on the population and spatial distribution of this desert shrub. Spatial autocorrelation, semi-variance analysis, and point-pattern analysis were used jointly in this study to investigate the spatial patterns of A. ordosica populations on dunes in Yanchi County of Ningxia, China. The results showed that the spatial autocorrelation and spatial heterogeneity declined gradually, and the distance between the clustered individuals shortened following sand dune fixation. Seedlings were more aggregated than adults in all stage of dune stabilization, and both were more aggregated on shifting sand dunes separately. Spatial associations of the seedlings with the adults were mostly positive at distances of 0-5 m in shifting sand dunes, and the spatial association changed from positive to neutral in semi-fixed sand dunes. The seedlings were spaced in an almost random pattern around the adults, and their distances from the adults did not seem to affect their locations in semi-fixed sand dunes. Furthermore, spatial associations of the seedlings with the adults were negative in the fixed sand dune. These findings demonstrate that sand stabilization is an important factor affecting the spatial patterns of A. ordosica populations in the Mu Us desert. These findings suggest that, strong association between individuals may be the mechanism to explain the spatial pattern formation at preliminary stage of dune fixation. Sand dune stabilization can change the spatial pattern of shrub population by weakening the spatial association between native shrub individuals, which may affect the development direction of desert shrubs.

  8. Control of Sand Flies with Attractive Toxic Sugar Baits (ATSB) and Potential Impact on Non-Target Organisms in Morocco

    Science.gov (United States)

    2015-02-08

    Quails eta/. Parasites & Vectors (2015) 8:87 DOI10.1186/s13071 015 0671 2 RESEARCH Open Access Control of sand flies with attractive toxic sugar...bearing countless ripe fruits) environments and three with "sugar poor" (green vegetation only suitable for plant tissue feeding) environments were...environments and three with ???sugar poor??? (green vegetation only suitable for plant tissue feeding) environments were selected to evaluate ATSB

  9. Transition of vegetation states positively affects harvester ants in the Great Basin, United States

    Science.gov (United States)

    Holbrook, Joseph D.; Pilliod, David; Arkle, Robert; Rachlow, Janet L.; Vierling, Kerri T.; Wiest, Michelle M.

    2016-01-01

    Invasions by non-native plants can alter ecosystems such that new ecological states are reached, but less is known about how these transitions influence animal populations. Sagebrush (Artemisia tridentata) ecosystems are experiencing state changes because of fire and invasion by exotic annual grasses. Our goal was to study the effects of these state changes on the Owyhee and western harvester ants (Pogonomyrmex salinusOlsen and P. occidentalis Cresson, respectively). We sampled 358 1-ha plots across the northern Great Basin, which captured unburned and burned conditions across 1 −≥31 years postfire. Our results indicated an immediate and consistent change in vegetation states from shrubland to grassland between 1 and 31 years postfire. Harvester ant occupancy was unrelated to time since fire, whereas we observed a positive effect of fire on nest density. Similarly, we discovered that fire and invasion by exotic annuals were weak predictors of harvester ant occupancy but strong predictors of nest density. Occupancy of harvester ants was more likely in areas with finer-textured soils, low precipitation, abundant native forbs, and low shrub cover. Nest density was higher in arid locations that recently burned and exhibited abundant exotic annual and perennial (exotic and native) grasses. Finally, we discovered that burned areas that received postfire restoration had minimal influence on harvester ant occupancy or nest density compared with burned and untreated areas. These results suggest that fire-induced state changes from native shrublands to grasslands dominated by non-native grasses have a positive effect on density of harvester ants (but not occupancy), and that postfire restoration does not appear to positively or negatively affect harvester ants. Although wildfire and invasion by exotic annual grasses may negatively affect other species, harvester ants may indeed be one of the few winners among a myriad of losers linked to vegetation state changes within

  10. SAND

    DEFF Research Database (Denmark)

    Thorsen, Grete

    Der er udført et konsolideringsforsøg med bakkesand fra Lunds grusgrav, Lund no. O. forsøget er udført i samme konsolideringsapparat, som er anvendt til måling af deformationsegenskaberne af mange forskellige danske jordarter. Forsøgsresultaterne er søgt tolket som ved forsøg med andre jordarter....

  11. Restoring and rehabilitating sagebrush habitats In Knick, S.T., Connelly, J.W., eds., Greater Sage-Grouse: Ecology and Conservation of a Landscape Species and Its Habitats

    Science.gov (United States)

    Pyke, David A.; Knick, S.T.; Connelly, J.W.

    2011-01-01

    Less than half of the original habitat of the Greater Sage-Grouse (Centrocercus uropha-sianus) currently exists. Some has been perma-nently lost to farms and urban areas, but the remaining varies in condition from high quality to no longer adequate. Restoration of sagebrush (Artemisia spp.) grassland ecosystems may be pos-sible for resilient lands. However, Greater Sage-Grouse require a wide variety of habitats over large areas to complete their life cycle. Effective restoration will require a regional approach for prioritizing and identifying appropriate options across the landscape. A landscape triage method is recommended for prioritizing lands for restora-tion. Spatial models can indicate where to protect and connect intact quality habitat with other simi-lar habitat via restoration. The ecological site con-cept of land classification is recommended for characterizing potential habitat across the region along with their accompanying state and transi-tion models of plant community dynamics. These models assist in identifying if passive, manage-ment-based or active, vegetation manipulation?based restoration might accomplish the goals of improved Greater Sage-Grouse habitat. A series of guidelines help formulate questions that manag-ers might consider when developing restoration plans: (1) site prioritization through a landscape triage; (2) soil verification and the implications of soil features on plant establishment success; (3) a comparison of the existing plant community to the potential for the site using ecological site descriptions; (4) a determination of the current successional status of the site using state and transition models to aid in predicting if passive or active restoration is necessary; and (5) implemen-tation of post-treatment monitoring to evaluate restoration effectiveness and post-treatment man-agement implications to restoration success.

  12. 2008 Weather and Aeolian Sand-Transport Data from the Colorado River Corridor, Grand Canyon, Arizona

    Science.gov (United States)

    Draut, Amy E.; Sondossi, Hoda A.; Hazel, Joseph E.; Andrews, Timothy; Fairley, Helen C.; Brown, Christopher R.; Vanaman, Karen M.

    2009-01-01

    This report presents measurements of weather parameters and aeolian (windblown) sand transport made in 2008 near selected archaeological sites in the Colorado River corridor through Grand Canyon, Ariz. The quantitative methods and data discussed here form a basis for monitoring ecosystem processes that affect archeological-site stability. Combined with forthcoming work to evaluate landscape evolution at nearby archaeological sites, these data can be used to document the relationship between physical processes, including weather and aeolian sand transport, and their effects on the physical integrity of archaeological sites. Data collected in 2008 reveal event- and seasonal-scale variations in rainfall, wind, temperature, humidity, and barometric pressure. Broad seasonal changes in aeolian sediment flux are also apparent at most study sites. The continuation of monitoring that began in 2007, and installation of equipment at several new sites in early 2008, allowed evaluation of the effects of the March 2008 high-flow experiment (HFE) on aeolian sand transport. At two of the nine sites studied, spring and summer winds reworked 2008 HFE sandbars to form new aeolian dunes, at which sand moved inland toward larger, well-established dune fields. At the other seven study sites, neither dune formation nor enhanced sand transport after the HFE were observed. At several of those sites, dominant wind directions in spring 2008 were not oriented such that much HFE sand would have moved inland; at other sites, lack of increased inland sand flux is attributable to lack of sandbar enlargement near the study sites or to inhibition of sand movement by vegetation or local topography.

  13. Biological soil crust formation under artificial vegetation effect and its properties in the Mugetan sandy land, northeastern Qinghai-Tibet Plateau

    Science.gov (United States)

    Li, Y. F.; Li, Z. W.; Jia, Y. H.; Zhang, K.

    2016-08-01

    Mugetan sandy land is an inland desertification area of about 2,065 km2 in the northeastern Qinghai-Tibet Plateau. In the ecological restoration region of the Mugetan sandy land, different crusts have formed under the action of vegetation in three types of sandy soil (i.e. semi-fixed sand dune, fixed sand dune and ancient fixed aeolian sandy soil). The surface sand particle distribution, mineral component and vegetation composition of moving sand dunes and three types of sandy soil were studied in 2010-2014 to analyze the biological crust formation properties in the Mugetan sandy land and the effects of artificial vegetation. Results from this study revealed that artificial vegetation increases the clay content and encourages the development of biological curst. The fine particles (i.e. clay and humus) of the surface layer of the sand dunes increased more than 15% ten years after the artificial vegetation planting, and further increased up to 20% after one hundred years. The interaction of clay, humus, and other fine particles formed the soil aggregate structure. Meanwhile, under the vegetation effect from the microbes, algae, and moss, the sand particles stuck together and a biological crust formed. The interconnection of the partial crusts caused the sand dunes to gradually be fixed as a whole. Maintaining the integrity of the biological crust plays a vital role in fixing the sand under the crust. The precipitation and temperature conditions in the Mugetan sandy land could satisfy the demand of biological crust formation and development. If rational vegetation measures are adopted in the region with moving sand dunes, the lichen-moss-algae biological curst will form after ten years, but it still takes more time for the sand dunes to reach the nutrient enrichment state. If the biological curst is partly broken due to human activities, reasonable closure and restoration measures can shorten the restoration time of the biological crust.

  14. Ecosystem evaluation of post sand mining land in Cimalaka, Sumedang

    Directory of Open Access Journals (Sweden)

    A.R.F. Sholihah

    2014-01-01

    Full Text Available This research was conducted to evaluate ecosystem function of post-sand mining land in northern side of Layapan, Cimalaka, Sumedang, West Java (S 6o 47’ 33.68” and E 107o 58’18.73”, 744 m above sea level. Microclimate and soil characteristics measurements were carried out to describe the physical and chemical characteristics of the land. Vegetation analysis was conducted with plotting method. Ecosystem Function Analysis, including Landscape Function Analysis (LFA has been used to analyze the function of landscape. The results showed that average light intensity, air temperature and humidity were 15.2x103 ± 7.3x103 lux, 29.1±1.02oC and 69.7±7.5%. High light intensity made the air temperature rouse higher than normal, which is between 17.1oC to 22oC. As for the soil, soil organic content was 4-11%, porosity 4.65-24.43%, macronutrient content was low and C/N ratio was high. The results showed that LFA value for land stability was 33.24%, water infiltration 37.2%, nutrient cycle rate 15.28%. Those numbers showed that land condition was poor. From the LFA data, it was also known that vegetations had the highest contribution for all LFA parameters. From vegetation analysis, herbs species were 67 while bushes only 9, which at least 40 species were invasive alien species. Species with highest Important Value (IV from herb was Cajanus scarabaeoides and from bush was Mimosa pigra. Both of them are members of Fabaceae. It was concluded that the soil of this post sand mining land was highly nutrient poor; critical and couldn’t perform the regulation, habitat and biomass production function of ecosystem.

  15. Liquefaction of Sand under Low Confining Pressure

    Institute of Scientific and Technical Information of China (English)

    YANG Shaoli; Rolf Sandven; Lars Grande

    2003-01-01

    Undrained behaviour of sand under low cell pressure was studied in static and cyclic triaxial tests. It was found that very loose sand liquefies under static loading with the relative density being a key parameter for the undrained behaviour of sand. In cyclic triaxial tests, pore water pressures built up during the cyclic loading and exceeded the confining cell pressure. This process was accompanied by a large sudden increase in axial deformation. The necessary number of cycles to obtain liquefaction was related to the confining cell pressure, the amplitude of cyclic loading and the relative density of sand.In addition, the patterns of pore water pressure response are different from those of sand samples with different relative densities. The test results are very useful for expounding scour mechanism around coastal structures since they relate to the low stress behaviour of the sand.

  16. Creep Behavior of Frozen Sand.

    Science.gov (United States)

    1981-06-01

    temperature and stress range. There was a 2strong stress dependance to S (r =0.95) for saturated Manchester Fine Sand which does not agree with RPT. The...Curves at High Stress 161 Ratio D/Du = 0.505 for Frozen HF’S at w=10% IV-20 Minimum Strain Rate Dependance on Stress 162 Ratio for Frozen MFS IV-21 Minimum...Strain Rate Dependance on Relative 163 Density for Frozen MFS IV-22 Temperature Stage Test on Frozen Saturated 164 MFS under a Load of D=9.24MPa Fig

  17. Recent advances in waterglass sand technologies

    Institute of Scientific and Technical Information of China (English)

    ZHU Chun-xi

    2007-01-01

    This paper reports some new understandings and advances in waterglass sand technologies. The multiple chemical modification process can increase the binding strength of the waterglass sand by up to 50%-70%.Therefore, the additions of the modified waterglass can be decreased to 3.0%-4.0% for CO2 process and to 2.0%-2.5% for organic ester hardening process, and greatly improve the collapsibility and reclaimability of the sand. Based on the new understandings and experimental results reported in this paper, several original ideas, such as nano modification, have been proposed to promote advances of waterglass sand technologies,

  18. PROSPECTS FIXATION DRIFT SANDS PHYSICOCHEMICAL METHOD

    Directory of Open Access Journals (Sweden)

    Maujuda MUZAFFAROVA

    2016-09-01

    Full Text Available This article is based on the theoretical foundations of secure mobile sand being considered for reducing the negative impact of one of the manifestations of exogenous plains on such an important natural-technical system as a railroad. It suggests practical measures to build a system of design protection against sand drifts. The article also suggests ways to conserve resources and rational use of machinery and performers as well as the consolidation of mobile sand wet with water soluble waste of local production of waste dextrin. Consolidation is exposed on dry and wet sand.

  19. Innovative developments in sand reclamation technologies

    Directory of Open Access Journals (Sweden)

    R. Dañko

    2011-04-01

    Full Text Available Proper sand management and efficient sand reclamation system are two main factors influencing economical and ecological side of modern foundry plant. It is well known fact that the production of 1 metric ton of casting from ferrous alloys generates circa 1 metric ton of waste [1], which due to containing certain amounts of harmful and dangerous compounds should undergo a reclamation – at least of the main component, which means a silica sand grains. The paper present problems of scientific and development research concerning the innovative reclamation technologies of used foundry sands such as: mechanical-cryogenic reclamation and innovative thermal reclamation.

  20. Global Sea Level Stabilization-Sand Dune Fixation: A Solar-powered Sahara Seawater Textile Pipeline

    CERN Document Server

    Badescu, Viorel; Bolonkin, Alexander A

    2007-01-01

    Could anthropogenic saturation with pumped seawater of the porous ground of active sand dune fields in major deserts (e.g., the westernmost Sahara) cause a beneficial reduction of global sea level? Seawater extraction from the ocean, and its deposition on deserted sand dune fields in Mauritania and elsewhere via a Solar-powered Seawater Textile Pipeline (SSTP) can thwart the postulated future global sea level. Thus, Macro-engineering offers an additional cure for anticipated coastal change, driven by global sea level rise, that could supplement, or substitute for (1) stabilizing the shoreline with costly defensive public works (armoring macroprojects) and (2) permanent retreat from the existing shoreline (real and capital property abandonment). We propose Macro-engineering use tactical technologies that sculpt and vegetate barren near-coast sand dune fields with seawater, seawater that would otherwise, as commonly postulated, enlarge Earth seascape area! Our Macro-engineering speculation blends eremology with...

  1. Evaluating greater sage-grouse seasonal space use relative to leks: Implications for surface use designations in sagebrush ecosystems

    Science.gov (United States)

    Casazza, Michael L.; Coates, Peter S.

    2013-01-01

    The development of anthropogenic structures, especially those related to energy resources, in sagebrush ecosystems is an important concern among developers, conservationists, and land managers in relation to greater sage-grouse (Centrocercus urophasianus; hereafter, sage-grouse) populations. Sage-grouse are dependent on sagebrush ecosystems to meet their seasonal life-phase requirements, and research indicates that anthropogenic structures can adversely affect sage-grouse populations. Land management agencies have attempted to reduce the negative effects of anthropogenic development by assigning surface use (SU) designations, such as no surface occupancy, to areas around leks (breeding grounds). However, rationale for the size of these areas is often challenged. To help inform this issue, we used a spatial analysis of sage-grouse utilization distributions (UDs) to quantify seasonal (spring, summer and fall, winter) sage-grouse space use in relation to leks. We sampled UDs from 193 sage-grouse (11,878 telemetry locations) across 4 subpopulations within the Bi-State Distinct Population Segment (DPS, bordering California and Nevada) during 2003–2009. We quantified the volume of each UD (vUD) within a range of areas that varied in size and were centered on leks, up to a distance of 30 km from leks. We also quantified the percentage of nests within those areas. We then estimated the diminishing gains of vUD as area increased and produced continuous response curves that allow for flexibility in land management decisions. We found nearly 90% of the total vUD (all seasons combined) was contained within 5 km of leks, and we identified variation in vUD for a given distance related to season and migratory status. Five kilometers also represented the 95th percentile of the distribution of nesting distances. Because diminishing gains of vUD was not substantial until distances exceeded 8 km, managers should consider the theoretical optimal distances for SU designation

  2. Predicting foundation bunchgrass species abundances: Model-assisted decision-making in protected-area sagebrush steppe

    Science.gov (United States)

    Rodhouse, Thomas J.; Irvine, Kathryn M.; Sheley, Roger L.; Smith, Brenda S.; Hoh, Shirley; Esposito, Daniel M.; Mata-Gonzalez, Ricardo

    2014-01-01

    Foundation species are structurally dominant members of ecological communities that can stabilize ecological processes and influence resilience to disturbance and resistance to invasion. Being common, they are often overlooked for conservation but are increasingly threatened from land use change, biological invasions, and over-exploitation. The pattern of foundation species abundances over space and time may be used to guide decision-making, particularly in protected areas for which they are iconic. We used ordinal logistic regression to identify the important environmental influences on the abundance patterns of bluebunch wheatgrass (Pseudoroegneria spicata), Thurber's needlegrass (Achnatherum thurberianum), and Sandberg bluegrass (Poa secunda) in protected-area sagebrush steppe. We then predicted bunchgrass abundances along gradients of topography, disturbance, and invasive annual grass abundance. We used model predictions to prioritize the landscape for implementation of a management and restoration decision-support tool. Models were fit to categorical estimates of grass cover obtained from an extensive ground-based monitoring dataset. We found that remnant stands of abundant wheatgrass and bluegrass were associated with steep north-facing slopes in higher and more remote portions of the landscape outside of recently burned areas where invasive annual grasses were less abundant. These areas represented only 25% of the landscape and were prioritized for protection efforts. Needlegrass was associated with south-facing slopes, but in low abundance and in association with invasive cheatgrass (Bromus tectorum). Abundances of all three species were strongly negatively correlated with occurrence of another invasive annual grass, medusahead (Taeniatherum caput-medusae). The rarity of priority bunchgrass stands underscored the extent of degradation and the need for prioritization. We found no evidence that insularity reduced invasibility; annual grass invasion represents

  3. Sand Failure Mechanism and Sanding Parameters in Niger Delta Oil Reservoirs

    OpenAIRE

    Sunday Isehunwa,; Andrew Farotade

    2010-01-01

    Sand production is a major issue during oil and gas production from unconsolidated reservoirs. In predicting the onset of sand production, it is important to accurately determine the failure mechanism and the contributing parameters. The aim of this study was to determine sand failure mechanism in the Niger-Delta, identify themajor contributing parameters and evaluate their effects on sanding.Completion and production data from 78 strings completed on 22 reservoirs in a Niger Delta oil Field ...

  4. Recent seasonal variations in arid landscape cover and aeolian sand mobility, Navajo Nation, southwestern U.S.

    Science.gov (United States)

    Draut, Amy E.; Redsteer, Margaret Hiza; Amoroso, Lee; Giosan, Liviu; Fuller, Dorian Q.; Nicoll, Kathleen; Flad, Rowan K.; Clift, Peter D.

    2013-01-01

    The socioeconomic impacts of climate change pose problems not only in devel- oping countries but also to residents of arid lands in the United States among marginalized societies with limited economic means. In the Navajo Nation, warming temperatures and recent drought have increased aeolian sediment mobility such that large, migrating sand dunes affect grazing lands, housing, and road access. Dust derived from this region also affects albedo and longevity of the Rocky Mountains snowpack, located downwind. We present initial results from a study that monitors sand transport and vegetation within a 0.2 km2 site in the Navajo lands, measuring the effects of drought on landscape stability since 2009. Sand mobility decreased substantially as 1 year with near-normal monsoon rainfall (2010) somewhat abated a decade-long drought, temporarily doubling vegetation cover. Vegetation that grew during 2010, with adequate rain, died off rapidly during dry conditions in 2011. Short-term increases in rainfall that promote annual, but not perennial, plant growth will not improve landscape stability in the long term. Climate projections suggest that a warmer, drier climate and potentially enhanced sediment supply from ephem- eral washes will further increase aeolian sand transport and dune activity, worsening the present challenges to people living in this region. Connections among climate, vegetation, and aeolian sediment erodibility in this region are highly relevant to other areas of the world with similar environmental problems.

  5. Morphological characteristics and sand volumes of different coastal dune types in Essaouira Province, Atlantic Morocco

    Science.gov (United States)

    Flor-Blanco, Germán; Flor, Germán; Lharti, Saadia; Pando, Luis

    2013-04-01

    Altogether three coastal dune fields, one located north and two south of the city of Essaouira, Atlantic Morocco, have been investigated to establish the distribution and overall sand volumes of various dune types. The purpose of the study was to characterize and classify the aeolian landforms of the coastal dune belt, to estimate their sand volumes and to assess the effectiveness of coastal dune stabilization measures. The northern dune field is 9 km long and lined by a wide artificial foredune complex fixed by vegetation, fences and branches forming a rectangular grid. Active and ephemeral aklé dunes border the inner backshore, while some intrusive dunes have crossed the foredune belt and are migrating farther inland. The total sand volume of the northern dune belt amounts 13,910,255 m3. The central coastal sector comprises a much smaller dune field located just south of the city. It is only 1.2 km long and, with the exception of intrusive dunes, shows all other dune types. The overall sand volume of the central dune field amounts to about 172,463 m3. The southern dune field is characterized by a narrower foredune belt and overall lower dunes that, in addition, become progressively smaller towards the south. In this sector, embryonic dunes (coppice, shadow dunes), tongue-like and tabular dunes, and sand sheets intrude from the beach, the profile of which has a stepped appearance controlled by irregular outcrops of old aeolianite and beach rock. The total volume of the southern dune field amounts 1,446,389 m3. For the whole study area, i.e. for all three dune fields combined, a sand volume of about 15,529,389 m3 has been estimated. The sand of the dune fields is derived from coastal erosion and especially the Tensift River, which enters the sea at Souira Qedima some 70 km north of Essaouira. After entering the sea, the sand is transported southwards by littoral drift driven by the mainly north-westerly swell climate and the Trade Winds blowing from the NNE. This

  6. Relationship between sand-dust weather and water dynamics of desert areas in the middle reaches of Heihe River

    Institute of Scientific and Technical Information of China (English)

    Yun Niu; XianDe Liu; Xin Li; YanQiang Wei; Hu Zhang; XiaoYan Li

    2016-01-01

    Sand-dust weather has become an international social-environmental issue of common concern, and constitutes a serious threat to human lives and economic development. In order to explore the responses of natural desert sand and dust to the dynamics of water in desertification, we extracted long-term monitoring data related to precipitation, soil water, groundwater, and sand-dust weather. These data originated from the test stations for desertification control in desert areas of the middle reaches of the Heihe River. We used an algorithm of characteristic parameters, correlations, and multiple regression analysis to establish a regression model for the duration of sand-dust weather. The response char-acteristics of the natural desert sand and dust and changes of the water inter-annual and annual variance were also examined. Our results showed: (1) From 2006 to 2014 the frequency, duration, and volatility trends of sand-dust weather obviously increased, but the change amplitudes of precipitation, soil water, and groundwater level grew smaller. (2) In the vegetative growth seasons from March to November, the annual variance rates of the soil moisture content in each of four studied layers of soil samples were similar, and the changes in the frequency and duration of sand-dust weather were similar. (3) Our new regression equation for the duration of sand-dust weather passed the R test, F test, and t test. By this regression model we could predict the duration of sand-dust weather with an accuracy of 42.9%. This study can thus provide technological support and reference data for water resource management and re-search regarding sand-dust weather mechanisms.

  7. Study of Black Sand Particles from Sand Dunes in Badr, Saudi Arabia Using Electron Microscopy

    Directory of Open Access Journals (Sweden)

    Haider Abbas Khwaja

    2015-08-01

    Full Text Available Particulate air pollution is a health concern. This study determines the microscopic make-up of different varieties of sand particles collected at a sand dune site in Badr, Saudi Arabia in 2012. Three categories of sand were studied: black sand, white sand, and volcanic sand. The study used multiple high resolution electron microscopies to study the morphologies, emission source types, size, and elemental composition of the particles, and to evaluate the presence of surface “coatings or contaminants” deposited or transported by the black sand particles. White sand was comprised of natural coarse particles linked to wind-blown releases from crustal surfaces, weathering of igneous/metamorphic rock sources, and volcanic activities. Black sand particles exhibited different morphologies and microstructures (surface roughness compared with the white sand and volcanic sand. Morphological Scanning Electron Microscopy (SEM and Laser Scanning Microscopy (LSM analyses revealed that the black sand contained fine and ultrafine particles (50 to 500 nm ranges and was strongly magnetic, indicating the mineral magnetite or elemental iron. Aqueous extracts of black sands were acidic (pH = 5.0. Fe, C, O, Ti, Si, V, and S dominated the composition of black sand. Results suggest that carbon and other contaminant fine particles were produced by fossil-fuel combustion and industrial emissions in heavily industrialized areas of Haifa and Yanbu, and transported as cloud condensation nuclei to Douf Mountain. The suite of techniques used in this study has yielded an in-depth characterization of sand particles. Such information will be needed in future environmental, toxicological, epidemiological, and source apportionment studies.

  8. Effects of converting sagebrush cover to grass on the hydrology of small watersheds at Boco Mountain, Colorado

    Science.gov (United States)

    Lusby, Gregg C.

    1979-01-01

    Changes in runoff and sediment yield caused by changing sagebrush cover to grass cover were studied at four small watersheds in western Colorado during a 9-year period, from 1965 to 1978. Measurements of runoff and sediment yield from the four watersheds were made for 8 years, at which time two watersheds were plowed and seeded to beardless bluebunch wheatgrass. The same measurements were then continued for an additional 6 years. Measurements indicated that conversion to grass caused a reduction in runoff from summer rainstorms of about 75 percent. Runoff from spring snowmelt increased about 12 percent, and annual runoff from treated watersheds decreased about 20 percent when compared to control watersheds. Sediment yield from the seeded watersheds was reduced by about 80 percent; most of this reduction is related to the decrease in runoff from summer rainstorms. The size of barren interspaces between plants was reduced on the converted water- sheds to about 30 percent of those on the untreated watersheds. Linear regression analysis indicates that a reduction of 38 percent in the amount of bare soil resulting from planting grass would result in a decrease of 73 percent in sediment concentration.

  9. Using resilience and resistance concepts to manage persistent threats to sagebrush ecosystems and greater sage-grouse

    Science.gov (United States)

    Chambers, Jeanne C.; Maestas, Jeremy D.; Pyke, David A.; Boyd, Chad S.; Pellant, Mike; Wuenschel, Amarina

    2017-01-01

    Conservation of imperiled species often demands addressing a complex suite of threats that undermine species viability. Regulatory approaches, such as the US Endangered Species Act (1973), tend to focus on anthropogenic threats through adoption of policies and regulatory mechanisms. However, persistent ecosystem-based threats, such as invasive species and altered disturbance regimes, remain critical issues for most at-risk species considered to be conservation-reliant. We describe an approach for addressing persistent ecosystem threats to at-risk species based on ecological resilience and resistance concepts that is currently being used to conserve greater sage-grouse (Centrocercus urophasianus)and sagebrush ecosystems. The approach links biophysical indicators of ecosystem resilience and resistance with species-specific population and habitat requisites in a risk-based framework to identify priority areas for management and guide allocation of resources to manage persistent ecosystem-based threats. US federal land management and natural resource agencies have adopted this framework as a foundation for prioritizing sage-grouse conservation resources and determining effective restoration and management strategies. Because threats and strategies to address them cross-cut program areas, an integrated approach that includes wildland fire operations, postfire rehabilitation, fuels management, and habitat restoration is being used. We believe this approach is applicable to species conservation in other largely intact ecosystems with persistent, ecosystem-based threats.

  10. Pattern formation - Instabilities in sand ripples

    DEFF Research Database (Denmark)

    Hansen, J. L.; v. Hecke, M.; Haaning, A.

    2001-01-01

    Sand ripples are seen below shallow wavy water and are formed whenever water oscillates over a bed of sand. Here we analyse the instabilities that can upset this perfect patterning when the ripples are subjected to large changes in driving amplitude or frequency, causing them to deform both...

  11. Pilot Project Sand Groynes Delfland Coast

    NARCIS (Netherlands)

    Hoekstra, R.; Walstra, D.J.R.; Swinkels, C.S.

    2012-01-01

    In October and November 2009 a pilot project has been executed at the Delfland Coast in the Netherlands, constructing three small sandy headlands called Sand Groynes. Sand Groynes are nourished from the shore in seaward direction and anticipated to redistribute in the alongshore due to the impact of

  12. Silica sand resources in the Netherlands

    NARCIS (Netherlands)

    Meulen, M.J. van der; Westerhoff, W.E.; Menkovic, A.; Gruijters, S.H.L.L.; Dubelaar, C.W.; Maljers, D.

    2009-01-01

    Silica sand, (almost) pure quartz sand, is a valuable and scarce mineral resource within the shallow Dutch subsurface. High-grade deposits are exploited in the southeastemmost part of the country, as raw material for the glass, ceramic, chemical and other process industries. Dutch land-use policy re

  13. Pilot Project Sand Groynes Delfland Coast

    NARCIS (Netherlands)

    Hoekstra, R.; Walstra, D.J.R.; Swinkels, C.S.

    2012-01-01

    In October and November 2009 a pilot project has been executed at the Delfland Coast in the Netherlands, constructing three small sandy headlands called Sand Groynes. Sand Groynes are nourished from the shore in seaward direction and anticipated to redistribute in the alongshore due to the impact of

  14. Understanding Colombian Amazonian white sand forests

    NARCIS (Netherlands)

    Peñuela-Mora, M.C.

    2014-01-01

    Although progress has been made in studies on white sand forests in the Amazon, there is still a considerable gap in our knowledge of the unique species composition of white sand forests and their structure and dynamics, especially in Western Amazon. This thesis aims to fill this gap by addressing t

  15. Sand transportation and reverse patterns over leeward face of sand dune

    Science.gov (United States)

    Jiang, Hong; Dun, Hongchao; Tong, Ding; Huang, Ning

    2017-04-01

    Sand saltation has complex interactions with turbulent flow and dune form. Most models of wind-blown sand consider ideal circumstances such as steady wind velocity and a flat surface, and the bulk of data on wind flow and sand transport over an individual dune has focused mostly on the influence of dune shape or inter-dune space on the wind flow, neglecting the effect of morphology on sand saltation, particularly airflow and sand transportation over the leeward slope. Wind flow structures over the leeward slope of sand dunes have a fundamental influence on the organization of sand dunes. In order to understand sand dune dynamics, lee face airflow and sediment transportation should be paid more attention. Previous field observations could not measure turbulent flow structure well because of the limited observation points and the influence of experiment structure on wind field. In addition, the reverse sand particles over leeward face could not be collected by sand trap in field. Numerous field observations could not measure turbulent flow structure because of the limited observation points and the influence of experimental structures on the wind field. In addition, the reverse transport of sand particles over leeward face could not be collected by sand traps in field. Therefore, this paper aims to investigate the turbulent flow structure and sand transport pattern over the leeward slope. A numerical model of sand saltation over slope terrain is constructed, which also considers the coupling effects between air flow and sand particles. The large eddy simulation method is used to model turbulent flow. Sand transport is simulated by tracking the trajectory of each sand particle. The results show that terrain significantly alters the turbulent air flow structure and wind-blown sand movement, especially over the leeward slope. Here, mass flux increases initially and then decreases with height in the reversed flow region in the direction of wind flow, and the mass flux

  16. Choosing an optimum sand control method

    Directory of Open Access Journals (Sweden)

    Ehsan Khamehchi

    2015-06-01

    Full Text Available Formation sand control is always one of the main concerns of production engineers. There are some different methods to prevent sand production. Choosing a method for preventing formation sand production depends on different reservoir parameters and politic and economic conditions. Sometimes, economic and politic conditions are more effective to choose an optimum than reservoir parameters. Often, simultaneous investigation of politic and economic conditions with reservoir parameters has different results with what is expected. So, choosing the best sand control method is the result of thorough study. Global oil price, duration of sand control project and costs of necessary equipment for each method as economic and politic conditions and well productivity index as reservoir parameter are the main parameters studied in this paper.

  17. Regional aeolian dynamics and sand mixing in the Gran Desierto: Evidence from Landsat thematic mapper images

    Science.gov (United States)

    Blount, Grady; Smith, Milton O.; Adams, John B.; Greeley, Ronald; Christensen, Phillip R.

    1990-09-01

    Spatial variations in sand composition were mapped on a regional scale in a terrestrial sand sea, the Gran Desierto of Sonora, Mexico. Mesoscale mapping on a satellite image base allowed quantitative interpretation of the dynamic development of sand sheets and dunes. The results were used to interpret the Quaternary geologic history of the tectonically active region at the mouth of the Colorado River. Landsat thematic mapper multispectral images were used to predict the abundance of different mineralogies of sand grains in a mixed aeolian terrain. A spectral mixing model separated the effects of vegetation and topographically induced shading and shadow from the effects produced by different mineral and rock types. Compositions determined remotely agreed well with samples from selected areas within the spectral limitations of the thematic mapper. A simple discrimination capability for active versus inactive sand surfaces is demonstrated based upon differences in the percentage of low-albedo accessory grains occurring on dormant aeolian surfaces. A technique for discriminating between low-albedo materials and macroscopic shade is implemented by combining thermal images with the results of the spectral mixing model. The image analysis revealed important compositional variations over large areas that were not readily apparent in the field.

  18. Groundwater Flow and Salt Transport at a Sand Tailings Dam: Field Observations and Modelling Results.

    Science.gov (United States)

    Price, A. C.; Mendoza, C. A.

    2004-05-01

    Large volumes of sand tailings are produced during the extraction of bitumen from the oil sands of Northeastern Alberta. The long-term groundwater response and subsequent movement of water and solutes within the large permeable sand tailings storage areas is uncertain. At the Southwest Sand Storage (SWSS) Facility, located at Syncrude's Mildred Lake operations near Ft. McMurray, there is concern that salts from the tailings water may discharge to newly placed reclamation material that covers the sand tailings. This saline discharge water could destroy the reclamation soil structure and negatively impact vegetation. The steady-state groundwater flow and transient movement of salts at the local (bench and slope) and intermediate (pile) scales in the SWSS are investigated. Water levels, seepage and groundwater quality (including TDS) have been measured for over a year along two transects of piezometers installed in the SWSS. The field data have been used to complete traditional hydrogeological interpretations of the site, and to develop a conceptual model of flow and transport. The local and intermediate flow systems and salt transport in the dam are being evaluated with numerical models. The models will allow possible future hydrogeological behaviour of the structure to be tested. Preliminary results show differences in flow systems and salinity distribution that depend on the deposition of the SWSS. This research will facilitate better long-term environmental management of this and similar sites.

  19. Altitude of the top of the Sparta Sand and Memphis Sand in three areas of Arkansas

    Science.gov (United States)

    Pugh, Aaron L.; Westerfield, Paul W.; Gonthier, Gerard; Poynter, David T.

    1998-01-01

    The Sparta Sand and Memphis Sand form the second most productive aquifer in Arkansas. The Sparta Sand and Memphis Sand range in thick- ness from 0 to 900 feet, consisting of fine- to medium-grained sands interbedded with layers of silt, clay, shale, and minor amounts of lignite. Within the three areas of interest, the top surface of the Sparta Sand and Memphis Sand dips regionally east and southeast towards the axis of the Mississippi Embayment syncline and Desha Basin. Local variations in the top surface may be attributed to a combination of continued development of structural features, differential compaction, localized faulting, and erosion of the surface prior to subsequent inundation and deposition of younger sediments.

  20. Sand Failure Mechanism and Sanding Parameters in Niger Delta Oil Reservoirs

    Directory of Open Access Journals (Sweden)

    Sunday Isehunwa,

    2010-05-01

    Full Text Available Sand production is a major issue during oil and gas production from unconsolidated reservoirs. In predicting the onset of sand production, it is important to accurately determine the failure mechanism and the contributing parameters. The aim of this study was to determine sand failure mechanism in the Niger-Delta, identify themajor contributing parameters and evaluate their effects on sanding.Completion and production data from 78 strings completed on 22 reservoirs in a Niger Delta oil Field were evaluated. Sand failure mechanisms and contributing parameters were identified and compared with published profiles. The results showed that cohesive stress is the predominant sand failure mechanism. Water cut, bean size and gas oil ratio (GOR impact sand production in the Niger Delta.

  1. The Weird Vegetable Price

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    The Chinese Government faces the task of stabilizing vegetable prices to avoid steep increases and dips Fluctuations of vegetable prices in China have recently caused near panic in the domestic market.Purchase prices for farm produce are decreasing dramatically

  2. Procedures for Sampling Vegetation

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This report outlines vegetation sampling procedures used on various refuges in Region 3. The importance of sampling the response of marsh vegetation to management...

  3. Total Vegetation 2002

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — These are polygons that contain vegetated pixels in the May, 2002 imagery from aerial overflight of the Grand Canyon. Vegetation was mapped between stage elevations...

  4. Global sand trade is paving the way for a tragedy of the sand commons

    Science.gov (United States)

    Torres, A.; Brandt, J.; Lear, K.; Liu, J.

    2016-12-01

    In the first 40 years of the 21st century, planet Earth is highly likely to experience more urban land expansion than in all of history, an increase in transportation infrastructure by more than a third, and a great variety of land reclamation projects. While scientists are beginning to quantify the deep imprint of human infrastructure on biodiversity at large scales, its off-site impacts and linkages to sand mining and trade have been largely ignored. Sand is the most widely used building material in the world. With an ever-increasing demand for this resource, sand is being extracted at rates that far exceed its replenishment, and is becoming increasingly scarce. This has already led to conflicts around the world and will likely lead to a "tragedy of the sand commons" if sustainable sand mining and trade cannot be achieved. We investigate the environmental and socioeconomic interactions over large distances (telecouplings) of infrastructure development and sand mining and trade across diverse systems through transdisciplinary research and the recently proposed telecoupling framework. Our research is generating a thorough understanding of the telecouplings driven by an increasing demand for sand. In particular, we address three main research questions: 1) Where are the conflicts related to sand mining occurring?; 2) What are the major "sending" and "receiving" systems of sand?; and 3) What are the main components (e.g. causes, effects, agents, etc.) of telecoupled systems involving sand mining and trade? Our results highlight the role of global sand trade as a driver of environmental degradation that threatens the integrity of natural systems and their capacity to deliver key ecosystem services. In addition, infrastructure development and sand mining and trade have important implications for other sustainability challenges such as over-fishing and global warming. This knowledge will help to identify opportunities and tools to better promote a more sustainable use

  5. Pegadas de mamíferos em parcelas de areia em fragmentos de vegetação da bacia do ribeirão Anhumas, Campinas, São Paulo. Mammal tracks in sand plots in vegetation fragments of the Anhumas creek basin, Campinas, São Paulo.

    Directory of Open Access Journals (Sweden)

    Maria Carolina Brunini SIVIERO;

    2011-06-01

    Full Text Available A urbanização agrava a perda e a fragmentação do habitat e representa uma ameaça à diversidade biológica. As espécies de mamíferos e sua abundância foram determinadas em três fragmentos de mata da bacia do ribeirão Anhumas: riacho da UNICAMP, Mata Santa Genebra e Parque Ecológico Hermógenes F. Leitão Filho, em Campinas, SP. Foram montadas dez parcelas de areia para registrar pegadas de mamíferos distanciadas 250 metros entre si nos dois primeiros locais e sete parcelas no Parque, limitadas pelo perímetro de um açude. De agosto de 2005 a agosto de 2006 foram realizadas quatro amostragens trimestrais de pegadas em cada local, iscando e examinando as parcelas por quatro dias. Foram registradas 15 espécies. O cachorro-do-mato (Cerdocyon thous, o cachorro-doméstico (Canis familiaris, o pequeno felídeo, o tatu (Dasypus novemcinctus e o gambá (Didelphis albiventris foram os mais abundantes. As cercas/alambrados ao redor dos fragmentos não impediram a entrada dos animais domésticos. A abundância do cachorro-doméstico e do gambá evidencia os efeitos prejudiciais da fragmentação e da urbanização na conservação da fauna em ambiente urbano.Urbanization increases the loss and fragmentation of habitat and represents a threat to biological diversity. Mammal species and their abundance were determined in three forest fragments of the Anhumas river basin: UNICAMP, Mata Santa Genebra Forest Reserve and Hermógenes F. Leitão Filho Ecological Park, Campinas, SP. Ten sand plots to register mammal tracks were constructed 250 meters apart in the first two places and seven and seven plots in the park, bounded by the perimeter of a pond. From August 2005 to August 2006 we conducted four quarterly track samplings in each location by baiting and examining the sand plots over four days. Fifteen mammal species were recorded. The crabeating fox (Cerdocyon thous, domestic dog (Canis familiaris, small felid, nine-bandedarmadillo (Dasypus

  6. Habitat analysis of North American sand flies near veterans returning from leishmania-endemic war zones

    Directory of Open Access Journals (Sweden)

    Keep Lisa

    2008-12-01

    Full Text Available Abstract Background Nearly 1300 cases of leishmaniasis have been identified in American military personnel deployed to Iraq and Afghanistan. The symptoms of this disease can range from a mild, self-limiting cutaneous infection to a deadly visceral infection and are not prevented by chemoprophylaxis or immunization. Effective treatments, however, are available. The disease-causing parasite is spread through the bite of the female sand fly. Although the disease occurs in both the Old World and the New World, the parasite species differ between the hemispheres. The large number of cases in military veterans has caused some concern that Old World, temperate-adapted parasite species could be introduced into the native sand fly populations of American military facilities where veterans of the current conflicts return following their deployments. This paper reports part of a larger study to analyze the risk of such an accidental importation. Four potential habitats on two large Army facilities in the Southeast United States were surveyed to determine relative sand fly density. The National Land Cover Map was used to provide sand fly density prediction maps by habitat. Results Sand fly density was significantly higher in deciduous forest and even higher at the interface between forest and open grassland. The evergreen forest and agricultural fields supported very low densities. On Fort Campbell, KY, the percentage of land covered by suitable habitat was very high. A sand fly density prediction map identified large tracts of land where infected individuals would be at higher risk of exposure to sand fly bites, resulting in an increased risk of introducing the parasite to a native insect population. On Fort Bragg, NC, however, commercial farming of long leaf pine reduced the percentage of the land covered in vegetation suitable for the support of sand flies. The risk of introducing an exotic Leishmania spp. on Fort Bragg, therefore, is considered to be

  7. Vegetation responses to natural regulation of elk in Rocky Mountain National Park

    Science.gov (United States)

    Zeigenfuss, Linda C.; Singer, Francis J.; Bowden, David

    1999-01-01

    Little experimental information is available on the relationship between herbivory by native ungulates and vegetation in relatively undisturbed environments. A quasi-experimental situation exists in Rocky Mountain National Park, where elk (Cervus elaphus) populations have increased about 3-fold since 1968, following their release from artificial controls within the park boundaries. We reviewed data collected on vegetation transects established and monitored over the 25-year period from 1968 through 1992. Data were subjected to rigorous statistical analysis to detect trends following the release of elk from artificial controls. Increases in elk habitat use and decreases in deer habitat use were observed on all transects over the 25-year period. Significant increases in moss and lichen cover occurred in three offour vegetation types. Percent cover of bare ground, forbs (particularly Selaginella densa), and Carex spp. increased on grassland transects. Increases in timothy (Phleum pratense) were observed on meadow transects. Graminoid and litter cover increased on sagebrush transects, and shrub and litter cover increased on bitterbrush transects.

  8. Dutch Vegetation Database (LVD)

    NARCIS (Netherlands)

    Hennekens, S.M.

    2011-01-01

    The Dutch Vegetation Database (LVD) hosts information on all plant communities in the Netherlands. This substantial archive consists of over 600.000 recent and historic vegetation descriptions. The data provide information on more than 85 years of vegetation recording in various habitats covering te

  9. Seasonality in vegetation biometrics and its effects on sediment characteristics and meiofauna in Baltic seagrass meadows

    Science.gov (United States)

    Jankowska, Emilia; Włodarska-Kowalczuk, Maria; Kotwicki, Lech; Balazy, Piotr; Kuliński, Karol

    2014-02-01

    Seagrass meadows can act as ecosystem engineers, i.e., organisms that modify the availability of resources to other organisms. However, their possible positive impacts depend on the characteristics of the vegetation, and these can vary strongly seasonally. This study assesses seasonal variability in macrophyte taxonomic composition and seagrass biometrics in the temperate Baltic Sea eelgrass meadows. We hypothesize that the anticipated strong seasonality in vegetation cover induces parallel seasonal changes in seagrass engineering effects as indicated by changes in sediment characteristics and meiozoobenthic abundance, composition and diversity. Macrophytes, sediments, and fauna were sampled at two locations in the Puck Bay from vegetated bottoms and bare sands five times in one year. Zostera marina vegetation occurred throughout the year and showed strong seasonality with the highest values of shoot density, leaf length, and biomass in July (202.3 ± 30.0 95% CI shoots m-2) and the lowest in March (55.4 ± 15.0 shoots m-2). POC was significantly higher in vegetated sands, and these effects were evident throughout the study period regardless of variability in macrophyte vegetation. The density and diversity of meiofauna did not differ between the seagrass beds and bare sands even in summer months when vegetation was best developed. The lack of an effect of the seagrass meadows on the meiofauna can be explained by the relatively low shoot density and biomass of the studied seagrass meadows and/or higher macrobenthic predation on the vegetated bottom compared to bare sands. However, both the canopies of macrophytes and the effects of the vegetation on benthic systems could increase substantially over the course of the gradual, natural restoration of the seagrass meadows.

  10. Adsorption of dyes on Sahara desert sand.

    Science.gov (United States)

    Varlikli, Canan; Bekiari, Vlasoula; Kus, Mahmut; Boduroglu, Numan; Oner, Ilker; Lianos, Panagiotis; Lyberatos, Gerasimos; Icli, Siddik

    2009-10-15

    Sahara desert sand (SaDeS) was employed as a mineral sorbent for retaining organic dyes from aqueous solutions. Natural sand has demonstrated a strong affinity for organic dyes but significantly lost its adsorption capacity when it was washed with water. Therefore, characterization of both natural and water washed sand was performed by XRD, BET, SEM and FTIR techniques. It was found that water-soluble kyanite, which is detected in natural sand, is the dominant factor affecting adsorbance of cationic dyes. The sand adsorbs over 75% of cationic dyes but less than 21% for anionic ones. Among the dyes studied, Methylene Blue (MB) demonstrated the strongest affinity for Sahara desert sand (Q(e)=11.98 mg/g, for initial dye solution concentration 3.5 x 10(-5)mol/L). The effects of initial dye concentration, the amount of the adsorbent, the temperature and the pH of the solution on adsorption capacity were tested by using Methylene Blue as model dye. Pseudo-first-order, pseudo-second-order and intraparticle diffusion models were applied. It was concluded that adsorption of Methylene Blue on Sahara desert sand followed pseudo-second order kinetics. Gibbs free energy, enthalpy change and entropy change were calculated and found -6411 J/mol, -30360 J/mol and -76.58 J/mol K, respectively. These values indicate that the adsorption is an exothermic process and has a spontaneous nature at low temperatures.

  11. Critical state of sand matrix soils.

    Science.gov (United States)

    Marto, Aminaton; Tan, Choy Soon; Makhtar, Ahmad Mahir; Kung Leong, Tiong

    2014-01-01

    The Critical State Soil Mechanic (CSSM) is a globally recognised framework while the critical states for sand and clay are both well established. Nevertheless, the development of the critical state of sand matrix soils is lacking. This paper discusses the development of critical state lines and corresponding critical state parameters for the investigated material, sand matrix soils using sand-kaolin mixtures. The output of this paper can be used as an interpretation framework for the research on liquefaction susceptibility of sand matrix soils in the future. The strain controlled triaxial test apparatus was used to provide the monotonic loading onto the reconstituted soil specimens. All tested soils were subjected to isotropic consolidation and sheared under undrained condition until critical state was ascertain. Based on the results of 32 test specimens, the critical state lines for eight different sand matrix soils were developed together with the corresponding values of critical state parameters, M, λ, and Γ. The range of the value of M, λ, and Γ is 0.803-0.998, 0.144-0.248, and 1.727-2.279, respectively. These values are comparable to the critical state parameters of river sand and kaolin clay. However, the relationship between fines percentages and these critical state parameters is too scattered to be correlated.

  12. Sand Flies and Their Control Methods.

    Science.gov (United States)

    Çetin, Hüseyin; Özbel, Yusuf

    2017-06-01

    The main aim of managing arthropod vectors that carry the disease agents is interrupting the infection cycle. Therefore, the management of the disease implies that all precautions related to all elements (i.e., human, arthropod vector, and reservoir) in the infection cycle need to be taken. There are important points that need to be considered while dealing with sand flies (Diptera: Psychodidae: Phlebotominae), which in many regions worldwide, particularly in tropical and subtropical areas, are vectors of diseases such as leishmaniasis and sand fly fever and are the arthropods of the infection cycle. Because the larval control of the sand flies is very difficult and almost impossible, the management is mainly conducted for the adults. The most effective strategy for reducing both sand fly fever and leishmaniasis is managing sand flies, particularly in areas where humans are located. In this review, the morphology, biology, and taxonomy of sand flies; the integrated fighting and management methods such as insecticide-impregnated bed nets and use of curtains, zooprophylaxis, indoor and outdoor residual applications, larvicides, repellents, and insecticide-impregnated dog collars; and data regarding many issues such as insecticide resistance in sand flies have been emphasized on in the review.

  13. Critical State of Sand Matrix Soils

    Directory of Open Access Journals (Sweden)

    Aminaton Marto

    2014-01-01

    Full Text Available The Critical State Soil Mechanic (CSSM is a globally recognised framework while the critical states for sand and clay are both well established. Nevertheless, the development of the critical state of sand matrix soils is lacking. This paper discusses the development of critical state lines and corresponding critical state parameters for the investigated material, sand matrix soils using sand-kaolin mixtures. The output of this paper can be used as an interpretation framework for the research on liquefaction susceptibility of sand matrix soils in the future. The strain controlled triaxial test apparatus was used to provide the monotonic loading onto the reconstituted soil specimens. All tested soils were subjected to isotropic consolidation and sheared under undrained condition until critical state was ascertain. Based on the results of 32 test specimens, the critical state lines for eight different sand matrix soils were developed together with the corresponding values of critical state parameters, M, λ, and Γ. The range of the value of M, λ, and Γ is 0.803–0.998, 0.144–0.248, and 1.727–2.279, respectively. These values are comparable to the critical state parameters of river sand and kaolin clay. However, the relationship between fines percentages and these critical state parameters is too scattered to be correlated.

  14. Formation mechanism of cracks in saturated sand

    Institute of Scientific and Technical Information of China (English)

    Xiaobing Lu; Zhemin Zheng; Yongren Wu

    2006-01-01

    The formation mechanism of "water film" (or crack) in saturated sand is analyzed theoretically and numerically.The theoretical analysis shows that there will be no stable "water film" in the saturated sand if the strength of the skeleton is zero and no positions are choked.It is shown by numerical simulation that stable water films initiate and grow if the choking state keeps unchanged once the fluid velocities decrease to zero in the liquefied sand column.The developments of "water film" based on the model presented in this paper are compared with experimental results.

  15. Lund Sand No 0:part 2

    OpenAIRE

    Ibsen, Lars Bo; Jakobsen, Finn Rosendal

    1996-01-01

    During the last 15 years the Geotechnical Engineering Group (GEG) at Aalborg University has performed triaxial tests with a sand called Lund No 0. Lund No 0 is a graded sand from a gravel pit near Horsens in Denmark. For the classification of the sand the following tests have been performed: Sieve test, Grain density, ds, Maximum, emax, and minimum, emin, void ratio. The strength parameters of Lund No 0 are detennined by some drained and undrained triaxial tests in the Danish Triaxial Cell. T...

  16. Lund Sand No 0:part 1

    OpenAIRE

    Ibsen, Lars Bo; Jakobsen, Finn Rosendal

    1996-01-01

    During the last 15 years the Geotechnical Engineering Group (GEG) at Aalborg University has performed triaxial tests with a sand called Lund No 0. Lund No 0 is a graded sand from a gravel pit near Horsens in Denmark. For the classification of the sand the following tests have been performed: Sieve test, Grain density, ds, Maximum, emax, and minimum, emin, void ratio. The strength parameters of Lund No 0 are detennined by some drained and undrained triaxial tests in the Danish Triaxial Cell. T...

  17. Biodegradable materials as foundry moulding sands binders

    Directory of Open Access Journals (Sweden)

    K. Major - Gabryś

    2015-07-01

    Full Text Available The aim of this article is to show the possibility of using biodegradable materials as part of the composition of foundry moulding and core sand binders. Research shows that moulding sands with biodegradable materials selected as binders are not only less toxic but are also better suited to mechanical reclamation than moulding sands with phenol-furfuryl resin. The use of biodegradable materials as additives to typical synthetic resins can result in their decreased toxicity and improved ability to reclamation as well as in accelerated biodegradation of binding material leftovers of mechanical reclamation.

  18. Optically stimulated luminescence dating of aeolian sand in the otindag dune field and holocene climate change

    Science.gov (United States)

    Zhou, Y.L.; Lu, H.Y.; Mason, J.; Miao, X.D.; Swinehart, J.; Goble, R.

    2008-01-01

    The dune system in Otindag sand field of northern China is sensitive to climate change, where effective moisture and related vegetation cover play a controlling role for dune activity and stability. Therefore, aeolian deposits may be an archive of past environmental changes, possibly at the millennial scale, but previous studies on this topic have rarely been reported. In this study, thirty-five optically stimulated luminescence (OSL) ages of ten representative sand-paleosol profiles in Otindag sand field are obtained, and these ages provide a relatively complete and well-dated chronology for wet and dry variations in Holocene. The results indicate that widespread dune mobilization occurred from 9.9 to 8.2 ka, suggesting a dry early Holocene climate. The dunes were mainly stabilized between 8.0 and 2.7 ka, implying a relatively wet climate, although there were short-term penetrations of dune activity during this wet period. After ???2.3 ka, the region became dry again, as inferred from widespread dune activity. The "8.2 ka" cold event and the Little Ice Age climatic deterioration are detected on the basis of the dune records and OSL ages. During the Medieval Warm Period and the Sui-Tang Warm Period (570-770 AD), climate in Otindag sand field was relatively humid and the vegetation was denser, and the sand dunes were stabilized again. These aeolian records may indicate climate changes at millennial time scale during Holocene, and these climatic changes may be the teleconnection to the climate changes elsewhere in the world. ?? Science in China Press and Springer-Verlag GmbH 2008.

  19. Optically stimulated luminescence dating of aeolian sand in the Otindag dune field and Holocene climate change

    Institute of Scientific and Technical Information of China (English)

    Joseph; MASON; James; SWINEHART; Ronald; GOBLE

    2008-01-01

    The dune system in Otindag sand field of northern China is sensitive to climate change, where effective moisture and related vegetation cover play a controlling role for dune activity and stability. Therefore, aeolian deposits may be an archive of past environmental changes, possibly at the millennial scale, but previous studies on this topic have rarely been reported. In this study, thirty-five optically stimulated luminescence (OSL) ages of ten representative sand-paleosol profiles in Otindag sand field are ob-tained, and these ages provide a relatively complete and well-dated chronology for wet and dry varia-tions in Holocene. The results indicate that widespread dune mobilization occurred from 9.9 to 8.2 ka, suggesting a dry early Holocene climate. The dunes were mainly stabilized between 8.0 and 2.7 ka, implying a relatively wet climate, although there were short-term penetrations of dune activity during this wet period. After ~2.3 ka, the region became dry again, as inferred from widespread dune activity. The "8.2 ka" cold event and the Little Ice Age climatic deterioration are detected on the basis of the dune records and OSL ages. During the Medieval Warm Period and the Sui-Tang Warm Period (570-770 AD), climate in Otindag sand field was relatively humid and the vegetation was denser, and the sand dunes were stabilized again. These aeolian records may indicate climate changes at millennial time scale during Holocene, and these climatic changes may be the teleconnection to the climate changes elsewhere in the world.

  20. Optically stimulated luminescence dating of aeolian sand in the Otindag dune field and Holocene climate change

    Institute of Scientific and Technical Information of China (English)

    ZHOU YaLi; LU HuaYu; Joseph MASON; MIAO XiaoDong; James SWINEHART; Ronald GOBLE

    2008-01-01

    The dune system in Otindag sand field of northern China is sensitive to climate change, where effective moisture and related vegetation cover play a controlling role for dune activity and stability. Therefore, aeolian deposits may be an archive of past environmental changes, possibly at the millennial scale, but previous studies on this topic have rarely been reported. In this study, thirty-five optically stimulated luminescence (OSL) ages of ten representative sand-paleosol profiles in Otindag sand field are ob-tained, and these ages provide a relatively complete and well-dated chronology for wet and dry varia-tions in Holocene. The results indicate that widespread dune mobilization occurred from 9.9 to 8.2 ka, suggesting a dry early Holocene climate. The dunes were mainly stabilized between 8.0 and 2.7 ka, implying a relatively wet climate, although there were short-term penetrations of dune activity during this wet period. After ~2.3 ka, the region became dry again, as inferred from widespread dune activity. The "8.2 ka" cold event and the Little Ice Age climatic deterioration are detected on the basis of the dune records and OSL ages. During the Medieval Warm Period and the Sui-Tang Warm Period (570-770 AD), climate in Otindag sand field was relatively humid and the vegetation was denser, and the sand dunes were stabilized again. These aeolian records may indicate climate changes at millennial time scale during Holocene, and these climatic changes may be the teleconnection to the climate changes elsewhere in the world.

  1. Watching Faults Grow in Sand

    Science.gov (United States)

    Cooke, M. L.

    2015-12-01

    Accretionary sandbox experiments provide a rich environment for investigating the processes of fault development. These experiments engage students because 1) they enable direct observation of fault growth, which is impossible in the crust (type 1 physical model), 2) they are not only representational but can also be manipulated (type 2 physical model), 3) they can be used to test hypotheses (type 3 physical model) and 4) they resemble experiments performed by structural geology researchers around the world. The structural geology courses at UMass Amherst utilize a series of accretionary sandboxes experiments where students first watch a video of an experiment and then perform a group experiment. The experiments motivate discussions of what conditions they would change and what outcomes they would expect from these changes; hypothesis development. These discussions inevitably lead to calculations of the scaling relationships between model and crustal fault growth and provide insight into the crustal processes represented within the dry sand. Sketching of the experiments has been shown to be a very effective assessment method as the students reveal which features they are analyzing. Another approach used at UMass is to set up a forensic experiment. The experiment is set up with spatially varying basal friction before the meeting and students must figure out what the basal conditions are through the experiment. This experiment leads to discussions of equilibrium and force balance within the accretionary wedge. Displacement fields can be captured throughout the experiment using inexpensive digital image correlation techniques to foster quantitative analysis of the experiments.

  2. Effect of Chromite-Silica Sands Characteristics on Performance of Ladle Filler Sands for Continuous Casting

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    Free opening rate is mainly determined by the performance of the ladle filler sand. High free opening rates of ladles are required in steel making to improve steel quality. Chromite ladle filler sands are one of the most widely used ladle filler sand. Several operative variables and materials characteristics affect the performance of the sands. Three sets of chromite ladle filler sands were selected and researches were focused on the sintering hehaviour and per- formance of the sands under operative conditions. The effect of particle size distribution on sintering, microstruc- ture, flowability, and permeability were presented. In all cases, the particle size varies from 0.1 to 1.5 mm corre- sponding to free flowing powders. One of the samples has higher permeability factor in comparison with others due to low particle size distribution. The other sample presents very good free opening due to its very good flowability and permeability factor.

  3. Spatial patterns of vegetation biomass and soil organic carbon acquired from airborne lidar and hyperspectral imagery at Reynolds Creek Critical Zone Observatory

    Science.gov (United States)

    Will, R. M.; Li, A.; Glenn, N. F.; Benner, S. G.; Spaete, L.; Ilangakoon, N. T.

    2015-12-01

    Soil organic carbon distribution and the factors influencing this distribution are important for understanding carbon stores, vegetation dynamics, and the overall carbon cycle. Linking soil organic carbon (SOC) with aboveground vegetation biomass may provide a method to better understand SOC distribution in semiarid ecosystems. The Reynolds Creek Critical Zone Observatory (RC CZO) in Idaho, USA, is approximately 240 square kilometers and is situated in the semiarid Great Basin of the sagebrush-steppe ecosystem. Full waveform airborne lidar data and Next-Generation Airborne Visible/Infrared Imaging Spectrometer (AVIRIS-ng) collected in 2014 across the RC CZO are used to map vegetation biomass and SOC and then explore the relationships between them. Vegetation biomass is estimated by identifying vegetation species, and quantifying distribution and structure with lidar and integrating the field-measured biomass. Spectral data from AVIRIS-ng are used to differentiate non-photosynthetic vegetation (NPV) and soil, which are commonly confused in semiarid ecosystems. The information from lidar and AVIRIS-ng are then used to predict SOC by partial least squares regression (PLSR). An uncertainty analysis is provided, demonstrating the applicability of these approaches to improving our understanding of the distribution and patterns of SOC across the landscape.

  4. Bioaugmentation of flow-through sand filters

    DEFF Research Database (Denmark)

    Samuelsen, Elin Djurhuus

    Global applications of pesticides in agricultural production have led to the detection of trace amounts of pesticides in groundwater resources in levels exceeding the EU threshold limit for drinking water of 0.1 µg L-1. Pesticide-polluted groundwater may be remediated by inoculating waterworks sand...... for degradation performances in flow-through sand columns, with the aim of identifying a suitable inoculant strain for future environmental applications. Another aim was to identify a suitable genetic marker to monitor phenoxy acid degradation in strain Sphingobium sp. PM2. We were not able to link motility...... and biofilm formation to the strains´ ability to adhere to sand. Nevertheless, a correlation was found between cell surface hydrophobicity and adhesion and overall degradation performances in flow-through sand columns. We identified S phingobium sp. PM2 as a promising inoculant strain, displaying efficient...

  5. Petrophysical Analysis of Oil Sand in Athabasca

    Science.gov (United States)

    cheong, S.; Lee, H.

    2013-12-01

    Oil sands are the major unconventional energy sources which have great reserves in Alberta, Canada. Recovery techniques such as CSS (Cyclic Steam Stimulation) and SAGD (Steam Assisted Gravity Drainage) enabled to develop deeper bitumen about several hundred meter depth. Before applying CSS and SAGD, reservoir heterogeneity of mud barriers or shale breccias should be clarified to establish injection and production wells successfully. We conducted the integrated petro-physical analysis for oil sands deposits in Athabasca by correlating well logs with seismic data. From 33 well logs and 3D seismic, we have made P-wave impedance by recursive inversion. Target formations of our analysis were the top of Wabiskaw member. Using inverted impedance and multi-attributes, porosity volume was derived at a target depth. Porosity of time slice 375 ms ranged 20 ~ 40 % stretching porous sand body from NE to SW direction. Characteristics of porosity distribution may be useful to design optimum oil sands recovery in Athabasca.

  6. Carbon cycle: New pathways in the sand

    Science.gov (United States)

    Rao, Alexandra

    2017-01-01

    Organic carbon decomposition in anoxic marine sediments was thought to be dominated by bacteria, but experimental data and microbial culture studies now show that microalgae buried in coastal sands may also play an important role in carbon turnover.

  7. Vegetation response to southern California drought during the Medieval Climate Anomaly and early Little Ice Age (AD 800–1600)

    Science.gov (United States)

    Heusser, Linda E.; Hendy, Ingrid L.; Barron, John A.

    2015-01-01

    High-resolution studies of pollen in laminated sediments deposited in Santa Barbara Basin (SBB) core SPR0901-02KC reflect decadal-scale fluctuations in precipitation spanning the interval from AD 800–1600. From AD 800–1090 during the Medieval Climate Anomaly (MCA) SBB sediments were dominated by xeric vegetation types (drought-resistant coastal sagebrush and chaparral) implying reduced precipitation in the southern California region. Drought-adapted vegetation abruptly decreased at AD 1090 and was rapidly replaced by mesic oak (Quercus) woodlands associated with an increased pollen flux into the basin. After a mesic interval lasting ∼100 years, pollen flux and the relative abundance of Quercus pollen dropped abruptly at AD 1200 when the rapid rise of chaparral suggests a significant drought similar to that of the MCA (∼AD 800–1090). This brief resurgence of drought-adapted vegetation between AD 1200–1270 marked the end of the MCA droughts. A gradual increase in mesic vegetation followed, characterizing cool hydroclimates of the Little Ice Age (LIA) in coastal southern California.

  8. CRADE OF SAND AND DUST STORM WEATHER

    Institute of Scientific and Technical Information of China (English)

    Niu Ruoyun; Tian Cuiying; Bi Baogui; Yang Keming; Wang Youheng; Tuo Ya; Ding Haifang; Zhang Tairen

    2011-01-01

    Background Sand and dust storm,as one of the main disastrous weathers that affect northern China,not only affect the people health and normal life,but cause the short-term climatic changes due to the direct and indirect radiation of the earth-atmosphere system through the dust floating in the sky.The sand end dust weather and its potential harm on the national economy,ecological environment,social activities and other aspects have aroused worldwide concern.

  9. Laboratory evaluation of selected tar sand asphalts

    Energy Technology Data Exchange (ETDEWEB)

    Button, J.W.; Epps, J.A.; Gallaway, B.M.

    1980-12-01

    Three tar sand asphalts of similar grades prepared from one syncrude by three different refining methods were characterized by tests commonly used to specify paving asphalts together with certain special tests. Asphalt-aggregate mixtures were prepared using these asphalts and tested in the laboratory to determine strength stiffness stability, tensile properties, temperature effects and water susceptibility. Comparison of the tar sand asphalt properties to conventional petroleum asphalt properties reveal no striking differences.

  10. Response to Oil Sands Products Assessment

    Science.gov (United States)

    2015-09-01

    Tailings ponds are an operating facility common to all types of surface mining. For oil sands, tailings consisting of water , sand, clay, and residual ...oil, are pumped to these basins—or ponds— where settling occurs and water is recycled for reuse in the process. When the ponds are no longer required...of crude oil transported by tank vessel in Washington waters . In a 2013 Bloomburg Business news article , Dan Murtaugh states, “The dock probably

  11. Treating tar sands formations with dolomite

    Energy Technology Data Exchange (ETDEWEB)

    Vinegar, Harold J.; Karanikas, John Michael

    2010-06-08

    Methods for treating a tar sands formation are described herein. The tar sands formation may include dolomite and hydrocarbons. Methods may include providing heat at less than the decomposition temperature of dolomite from one or more heaters to at least a portion of the formation. At least some of the hydrocarbon fluids are mobilized in the formation. At least some of the hydrocarbon fluids may be produced from the formation.

  12. Pragmatics of reclaimed sand quality assessment recovered nowadays from various used sand systems

    Directory of Open Access Journals (Sweden)

    J. Dańko

    2010-04-01

    Full Text Available The assessment of the reclamation degree of used sands is not a simple, clearly defined issue. The great variety of technologies ofmoulding and core sands, based on the organic and inorganic binders does not allow the use of a single, universal index assessing thedegree of reclamation. The article presents the problems of research relating to selection of proper criteria for assessing the degree ofreclamation process of used moulding and core sands deriving from different technologies. The most often applied in practice types ofused sands and the most adequate in practice methods of assessing the degrees of their reclamation were characterized.

  13. Sand Dune Encroachment and Desertification Processes of the Rigboland Sand Sea, Central Iran.

    Science.gov (United States)

    Ahmady-Birgani, Hesam; McQueen, Kenneth G; Moeinaddini, Mazaher; Naseri, Hamidreza

    2017-05-08

    Early studies on sand dune movement and desertification in Iran have not always been convincingly demonstrated because of problems with the field-based measurements. In some areas where various land uses have been engulfed by aeolian sand dunes, desertification is clear, but in other less settled areas, it may not be so obvious. The objective of this study is to demonstrate encroachments of the Rigboland sand sea, central Iran, in its different directions and variable magnitude rates. Determining the rate and direction of the sand sea movements is critical for specifying which lands should be prioritized and quickly protected. The study has trialed a change detection technique which uses a Cross-Tabulation module to compare two available LandsatTM images over the Rigboland sand sea. This indicates that within a ten-year span (from 1988 to 1998) more than 200 ha/yr were added to the Rigboland sand sea, from the alluvial fan landforms in the eastern upstream, outer margins of the Rigboland sand sea. Coupled with GIS techniques, this type of analysis of the remote sensing (RS) images provides an effective tool for the monitoring and prognostication of sand dune movement and sand sea change.

  14. Analysis of sand particles' lift-off and incident velocities in wind-blown sand flux

    Institute of Scientific and Technical Information of China (English)

    Tian-Li Bo; Xiao-Jing Zheng; Shao-Zhen Duan; Yi-Rui Liang

    2013-01-01

    In the research of windblown sand movement,the lift-off and incident velocities of saltating sand particles play a significant role in bridging the spatial and temporal scales from single sand particle's motion to windblown sand flux.In this paper,we achieved wind tunnel measurements of the movement of sand particles near sand bed through improving the wind tunnel experimental scheme of paticle image velocimetry (PIV) and data processing method.And then the influence of observation height on the probability distributions of lift-off and incident velocities of sand particles was analyzed.The results demonstrate that the observation height has no obvious influence on the distribution pattern of the lift-off and incident velocities of sand particles,i.e.,the probability distribution of horizontal and vertical velocities of lift-off and incident sand particles follow a Gaussian distribution and a negative exponential distribution,respectively.However,it influences the center of the Gaussian distribution,the decay constant and the amplitude of the negative exponential distribution.

  15. BETA DIVERSITY AND COMMUNITY DIFFERENTIATION IN DRY PERENNIAL SAND GRASSLANDS

    Directory of Open Access Journals (Sweden)

    E. KOVACS-LANG

    2011-01-01

    Full Text Available The spatial variability of species composition was studied in perennial sand grasslands in Hungary at multiple scales. Three sites were compared along an aridity gradient. Existing differences in climate along this ca. 200 km gradient correspond to regional climate changes predicted for the next 20-30 years. Six stands of Festucetum vaginatae grasslands were selected at each site within 400 x 1200 m areas for representing the coarse-scale within-site heterogeneity. Fine-scale compositional heterogeneity of vegetation within stands was sampled by recording the presence of species along 52 m long circular belt transects of 1040 units of 5 cm x 5 cm contiguous microquadrats. This sampling design enabled us to study the patterns of species combinations at a wide range of scales. The highest variability of plant species combinations appeared at very fine scales, between 10 cm and 25 cm. Differences in beta diversity along the gradient were scale-dependent. We found a decreasing trend of beta diversity with increasing aridity at fine scale, and on the contrary, an increasing trend at landscape scale. We conclude that the major trend of the vegetation differentiation due to aridity is the decrease of compositional variability at fine-scale accompanied by a coarse-scale diversification.

  16. Recent Sand Avalanching on Rabe Crater Dunes

    Science.gov (United States)

    2000-01-01

    Dark streaks on the steep, down-wind slopes of sand dunes in Rabe Crater are seen at several locations in this Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image. These streaks indicate relatively recent (i.e., in the past few years or less) movement of sand down these slopes.Sand dunes move forward by the combined action of wind that drives sand up the shallow slope on the windward side of the dune (in this case, the slopes that face toward the lower right) and the avalanching of this sand down the steeper, lee-side slope. The steep slope is also known as the slip face. The dark streaks indicated by arrows are evidence for sand avalanches that occurred within a few months or years of the time when the picture was taken in March 1999. Other streaks which are seen criss-crossing the dunes may be the result of passing dust devils. This image is illuminated from the upper left and located in Rabe Crater of the Hellespontus-Noachis region near 44.2oS, 325.6oW.

  17. Discrete particle simulation of mixed sand transport

    Institute of Scientific and Technical Information of China (English)

    Fengjun Xiao; Liejin Guo; Debiao Li; Yueshe Wang

    2012-01-01

    An Eulerian/Lagrangian numerical simulation is performed on mixed sand transport.Volume averaged Navier-Stokes equations are solved to calculate gas motion,and particle motion is calculated using Newton's equation,involving a hard sphere model to describe particle-to-particle and particle-to-wall collisions.The influence of wall characteristics,size distribution of sand particles and boundary layer depth on vertical distribution of sand mass flux and particle mean horizontal velocity is analyzed,suggesting that all these three factors affect sand transport at different levels.In all cases,for small size groups,sand mass flux first increases with height and then decreases while for large size groups,it decreases exponentially with height and for middle size groups the behavior is in-between.The mean horizontal velocity for all size groups well fits experimental data,that is,increasing logarithmically with height in the middle height region.Wall characteristics greatly affects particle to wall collision and makes the flat bed similar to a Gobi surface and the rough bed similar to a sandy surface.Particle size distribution largely affects the sand mass flux and the highest heights they can reach especially for larger particles.

  18. Predicting the occurrence of sand banks in the North Sea

    NARCIS (Netherlands)

    Veen, van der Henriët H.; Hulscher, Suzanne J.M.H.

    2009-01-01

    Sand banks have a wavelength between 1 and 10 km, and they are up to several tens of meters high. Also, sand banks may have an impact on large-scale human activities that take place in the North Sea like sand mining, shipping, offshore wind farms, etc. Therefore, it is important to know where sand b

  19. Layers, Landslides, and Sand Dunes

    Science.gov (United States)

    2003-01-01

    [figure removed for brevity, see original site] Released 27 October 2003This image shows the northern rim of one of the Valles Marineris canyons. Careful inspection shows many interesting features here. Note that the spurs and gullies in the canyon wall disappear some distance below the top of the canyon wall, indicating the presence of some smooth material here that weathers differently from the underlying rocks. On the floor of the canyon, there are remains from a landslide that came hurtling down the canyon wall between two spurs. Riding over the topography of the canyon floor are many large sand dunes, migrating generally from the lower right to upper left.Image information: VIS instrument. Latitude -14.1, Longitude 306.7 East (53.3 West). 19 meter/pixel resolution.Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time. NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  20. Development of the Gran Desierto sand sea, northwestern Mexico

    Science.gov (United States)

    Blount, Grady; Lancaster, Nicholas

    1990-08-01

    Three major eolian sand populations can be recognized in the Gran Desierto sand sea of northwestern Mexico by using spectral data from the Landsat thematic mapper in conjunction with textural and mineralogical studies of surface sands. Each sand population has distinct textural, mineralogic, and spectral properties that can be related to sand-dune morphology and position with reference to source areas and transport paths of the sands. The oldest eolian sediment in the sand sea was derived from the early to middle Pleistocene Colorado River that flowed through the area of the western Gran Desierto. Subsequent inputs of eolian sands came from the area of the present Colorado River valley and the coast south of the sand sea. The spatial and temporal pattern of eolian deposition in the region has been controlled by Quaternary tectonic and climatic changes, resulting in the episodic input and deposition of sand.

  1. Effects of advanced oxidation on green sand properties via iron casting into green sand molds.

    Science.gov (United States)

    Wang, Yujue; Cannon, Fred S; Voigt, Robert C; Komarneni, Sridhar; Furness, J C

    2006-05-01

    The effects of advanced oxidation (AO) processing on the properties of green sand were studied via pouring cast iron into green sand molds. Upon cooling, the green sand molds were autopsied at various distances from the metal-sand interface. Autopsy green sand samples collected from a mold that incorporated AO water were characterized and compared to controlled samples collected from a similar autopsied mold made with conventional tap water (TAP). It was found that the AO processing removed a coating of coal pyrolysis products from the clay surface that typically accumulated on the clay surface. As a result, the AO-conditioned green sand retained 10-15% more active clay as measured bythe standard ultrasonic methylene blue titration than did the TAP-conditioned green sand. The AO processing also nearly doubled the generation of activated carbon from the normalized amount of coal composition of the green sand during the casting process. The AO-enhanced activated carbon generation and the AO-incurred clay surface cleaning provided the AO-conditioned green sand with higher normalized pore volume, and thus higher normalized m-xylene adsorption capacity, i.e., relative to before-metal-pouring conditions. Furthermore, mathematical analysis indicated that the AO-conditioned green sand better retained its important properties after pouring than did the TAP-conditioned green sand. Effectively, this meant after metal pouring, the AO-conditioned sample offered about the same net properties as the TAP-conditioned sample, even though the AO-conditioned sample contained less clay and coal before metal pouring. These results conformed to the full-scale foundry empirical finding that when AO is used, foundries need less makeup clay and coal addition through each casting cycle, and they release less air emissions.

  2. Contribution of laser altimetry images to the geomorphology of the Late Holocene inland drift sands of the European Sand Belt

    NARCIS (Netherlands)

    Jungerius, P.D.; Riksen, M.J.P.M.

    2010-01-01

    The paper explores the possibilities of applying the analysis of laser altimetry images to Dutch drift sands. All along the European Sand Belt, which stretches from Great Britain to the Ural Mountains, Late Glacial cover sands, river dunes and other ice-age deposits were reactivated as drift sand du

  3. Contribution of laser altimetry images to the geomorphology of the Late Holocene inland drift sands of the European Sand Belt

    NARCIS (Netherlands)

    Jungerius, P.D.; Riksen, M.J.P.M.

    2010-01-01

    The paper explores the possibilities of applying the analysis of laser altimetry images to Dutch drift sands. All along the European Sand Belt, which stretches from Great Britain to the Ural Mountains, Late Glacial cover sands, river dunes and other ice–age deposits were reactivated as drift sand du

  4. Contribution of laser altimetry images to the geomorphology of the Late Holocene inland drift sands of the European Sand Belt

    NARCIS (Netherlands)

    Jungerius, P.D.; Riksen, M.J.P.M.

    2010-01-01

    The paper explores the possibilities of applying the analysis of laser altimetry images to Dutch drift sands. All along the European Sand Belt, which stretches from Great Britain to the Ural Mountains, Late Glacial cover sands, river dunes and other ice–age deposits were reactivated as drift sand

  5. Technology Drives Vegetable Industry

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    @@ Arobot for vegetable planting is able to examine growing conditions, detect disease of the vegetables and pick up the ripe ones through identifying the color; a tomato tree is able to produce up to 3,000kgs of tomatoes; sweet potatoes are growing in the air; fish and vegeta-bles are living together harmoniously...Viewing these, you may doubt that you were in a fancy world.Actually, you are here at the 12th China (Shouguang) International Vegetable Sci-tech Fair.

  6. Sand-fixing effects of Caragana microphylla shrub in Horqin sandy land, North China

    Institute of Scientific and Technical Information of China (English)

    Shanfeng HE; Lanlan QIU; Deming JIANG; Lamusa A; Zhimin LIU; Yongming LUO

    2008-01-01

    In the semi-arid Horqin sandy land of north China,Caragana microphylla, a leguminous shrub, is the dominant plant species and is widely used in vegetation reestablishment programs to stabilize shifting sand. The sand-fixing effects of 6- and 11-year-old C. Microphylla plantations were studied. The results showed that: 1) the wind velocity and sand transport rate in the plantation were less than those in dunes;2) the air temperature in the plantation was lower than those in dunes. Relative humidity was higher and the soil temperature was lower, which benefits plant growth; 3) the physical and chemical characteristics of soil were improved to some extent over age. The porosity and percentage of tiny sand (diameter 0.05-0.1 mm) and clay particle (diameter<0.05 mm) increased,bulk density in surface soil decreased, and saturated water-holding capacity improved. Organic C, total N, available N and available K content increased gradually, and soil fertility was enhanced.

  7. Bacterial Rhizosphere Biodiversity from Several Pioneer Desert Sand Plants Near Jizan, Saudi Arabia

    KAUST Repository

    Osman, Jorge R.

    2016-04-08

    Life in arid regions and, in particular, hot deserts is often limited due to their harsh environmental conditions, such as large temperature fluctuations and low amounts of water. These extreme environments can influence the microbial community present on the surface sands and any rhizosphere members surrounding desert plant roots. The Jizan desert area, located in Saudi Arabia, supports particular vegetation that grows in the large sandy flat terrain. We examined five different samples, four from the rhizosphere of pioneer plants plus a surface sand sample, and used pyrosequencing of PCR-amplified V1-V3 regions of 16S rDNA genes from total extracted DNA to reveal and compare the bacterial population diversity of the samples. The results showed a total of 3,530 OTUs in the five samples, calculated using ≥ 97% sequence similarity levels. The Chao1 estimation of the bacterial diversity fluctuated from 637 to 2,026 OTUs for a given sample. The most abundant members found in the samples belong to the Bacteroidetes, Firmicutes and Proteobacteria phyla. This work shows that the Jizan desert area of Saudi Arabia can contain a diverse bacterial community on the sand and surrounding the roots of pioneer desert plants. It also shows that desert sand microbiomes can vary depending on conditions, with broad implications for sandstone monument bacterial communities

  8. Phlebotomine sand flies (Diptera: Psychodidae) transmitting visceral leishmaniasis and their geographical distribution in China: a review.

    Science.gov (United States)

    Guan, Li-Ren; Zhou, Zheng-Bin; Jin, Chang-Fa; Fu, Qing; Chai, Jun-Jie

    2016-02-23

    After the existence of phlebotomine sand flies was first reported in China in 1910, the distribution of different species and their role in the transmission of visceral leishmaniasis (VL) have been extensively studied. Up until 2008, four species have been verified as vectors of VL, namely, Phlebotomus chinensis (Ph. sichuanensis), Ph. longiductus (Ph. chinensis longiductus), Ph. wui (Ph. major wui), and Ph. alexandri. The sand fly species vary greatly depending on the natural environments in the different geographic areas where they are endemic. Ph. chinensis is euryecious and adaptable to different ecologies, and is thus distributed widely in the plain, mountainous, and Loess Plateau regions north of the Yangtze River. Ph. longiductus is mainly distributed in ancient oasis areas south of Mt. Tianshan in the Xinjiang Uygur autonomous region. Ph. wui is the predominant species in deserts with Populus diversifolia and Tamarix vegetation in Xinjiang and the western part of the Inner Mongolia autonomous region. Finally, Ph. alexandri is steroecious and found only in stony desert areas, such as at the foot of the mountains in Xinjiang and the western Hexi Corridor, in Gansu province. This review summarized the relationship between the geographic distribution pattern of the four sand fly species and their geographical landscape in order to foster research on disease distribution and sand fly control planning. Furthermore, some problems that remained to be solved about vectors of VL in China were discussed.

  9. Analysis of beachgrass ecomorphodynamics and foredune morphology along US Pacific Northwest coastal sand dunes using a Bayesian network

    Science.gov (United States)

    Biel, R.; Hacker, S.; Ruggiero, P.

    2016-12-01

    Coastal dunes provide valuable infrastructure for mitigating flooding and erosion hazard exposure by dissipating wave energy. Although vegetation is essential for foredune establishment and growth by facilitating sand deposition and stabilization, few have examined how plant distribution and abundance relates to foredune morphology in the field. The US Pacific Northwest coastal dune system presents an excellent case study for examining ecomorphodynamic processes on sand dunes. It exhibits a diverse array of geomorphological conditions, including a range of dissipative to reflective beaches and highly varied foredune morphology. Ecologically, the region contains two invasive, dune-building beachgrasses of the same genus (Ammophila arenaria and A. breviligulata). To explore how geomorphological and ecological drivers alter foredune morphology, we used a Bayesian network to assess the role of nearshore bathymetry, sand supply (measured as shoreline change rate), and beachgrass species identity and density in determining foredune morphology. At a finer scale, we also examined whether beachgrass density and species identity altered sand accretion between 2012 and 2014 at multiple points across the foredune using a mixed model. Our Bayesian network analysis indicates that nearshore slope, shoreline change rate, beach width, and beachgrass density directly or indirectly affect foredune width, slope, and height. However, we observed no relationships between species identity and foredune morphology. When examining the finer-scale relationship between beachgrass density and sand accretion at points along the foredune, we found that sand accretion was correlated with beachgrass stem density in 2012, new stem growth between 2012 and 2014, beach width, and elevation. Moreover, A. arenaria accreted more sand than A. breviligulata on the foredune face, suggesting that subtle differences in beachgrass morphology or growth patterns may produce differing accretion patterns across

  10. Quantifying vegetation and geomorphic patterns within nebkha dune fields using terrestrial laser scanning

    Science.gov (United States)

    Nield, Joanna; Gillies, John; Nickling, William

    2014-05-01

    Vegetation and sand in semi-arid and coastal sediment starved environments typically interact and form nebkha dunes. We examine the typical dune and vegetation patterns that form with varying amounts of sediment availability and nebkha maturity at Jornada in the Chihuahuan Desert, New Mexico, USA using terrestrial laser scanning (TLS) to separate the plant and sand elements. Manual and automated TLS shrub height extractions compare well at all sites (p=0.48-0.94) enabling the quantification of both solid and plant roughness element components. We find that there is a switch in orientation of the dune elements with respect to dominant wind direction from perpendicular to parallel as the landscape develops from an incipient to mature configuration and mesquite-nebkha streets are enhanced. As the nebkha dunes develop the surface coverage of bare sand increases and dune surfaces exceed the size of their companion shrubs. Roughness density also increases at the mature dune site. Over a three year period up to 20cm of erosion was measured on the upwind faces of the mature nebkha dunes, in agreement with the dominant annual wind direction. However, deposition patterns were more diffuse and influenced by the vegetation patterns. TLS is a useful tool for examining complex sand-vegetation interactions and dune field development.

  11. Assessment of coastal vegetation degradation in False bay, South Africa, using WV-2 imagery

    CSIR Research Space (South Africa)

    Lück-Vogel, Melanie

    2017-05-01

    Full Text Available Vegetation of the coast around the world fulfils an important role. It acts as a buffer against the impacts from the oceans such as waves and wind and protects the coastal hinterland from wind-blown sand and coastal erosion. However, due...

  12. Bright sand/dark dust: The identification of active sand surfaces on the Earth and Mars

    Science.gov (United States)

    Blount, H. G., II; Greeley, R.; Christensen, P. R.; Arvidson, R.

    1987-05-01

    Field studies and analysis of LANDSAT Thematic Mapper data in the Gran Desierto, Mexico may shed light on a technique to distinguish active from inactive (relict) sand surfaces. Active sand bodies in the study area are consistently brighter (by an average of 20%) at visual and near infrared wavelengths and darker at thermal infrared wavelengths than compositionally similar inactive sands. The reasons for the albedo difference between active and inactive sands are reviewed and the mixing model of Johnson et al. is examined for tracing the provenance of sands based on albedo and spectral variations. Portions of the wavelengths covered by the Mars Orbiter correspond to the Thematic Mapper data. The identification of active sands on Earth, with a priori knowledge of bulk composition and grain size distribution, may allow the remote mapping of active sand surfaces on Mars. In conjuction with thermal infrared remote sensing for composition, it may also provide a method for the remote determination of grain size distributions within sand/silt mixtures.

  13. Simulating and understanding sand wave variation: A case study of the Golden Gate sand waves

    Science.gov (United States)

    Sterlini, F.; Hulscher, S.J.M.H.; Hanes, D.M.

    2009-01-01

    In this paper we present a detailed comparison between measured features of the Golden Gate sand wave field and the results of a nonlinear sand wave model. Because the Golden Gate sand waves exhibit large variation in their characteristics and in their environmental physics, this area gives us the opportunity to study sand wave variation between locations, within one well-measured, large area. The nonlinear model used in this paper is presently the only tool that provides information on the nonlinear evolution of large-amplitude sand waves. The model is used to increase our understanding of the coupling between the variability in environmental conditions and the sand wave characteristics. Results show that the model is able to describe the variation in the Golden Gate sand waves well when both the local oscillating tidal current and the residual current are taken into account. Current and water depth seem to be the most important factors influencing sand wave characteristics. The simulation results give further confidence in the underlying model hypothesis and assumptions. Copyright 2009 by the American Geophysical Union.

  14. MORPHOMETRIC CHARACTERIZATION OF THE SAND FRACTION IN A SAND GRAIN IMAGE CAPTURE SYSTEM1

    Directory of Open Access Journals (Sweden)

    Lucimar Arruda Viana

    Full Text Available ABSTRACT Morphology studies assume significant importance in analysis of phenomena of granular systems packaging, in particular with a view to the use of the technique of soil stabilization named particle size correction in forest roads. In this context, this study aimed to develop and operationalize a Sand Grain Image Capture System and, hereby, determine the morphological indices of the sand fractions of two sandy soils called João Pinheiro (JP and Cachoeira da Prata (CP. Soil samples, air-dried, were sieved (2.0 mm nominal mesh size for removal of gravels. The materials that passed through the sieve were subjected to dispersion, washing in 0.053 mm nominal mesh size sieve, removal of organic matter and iron oxides to obtain the clean sand fractions. Subsequently, each soil sample was sieved for separation into twelve classes, between the diameters of 0.149 mm and 1.190 mm, using a Rotap shaker. Next, tests were carried out to characterize the morphometric attributes of the twelve classes of sand fractions of the soils studied. For validation of the performance of the Sand Grain Image Capture System, the results were compared to those obtained using a standard procedure for image analysis. The analysis of the results led to the following conclusions: (i the sand fraction of the JP soil presented higher values for the morphometric indices roundness, elongation and compactness compared to sand fraction of the CP soil; and (ii the Sand Grain Image Capture System worked properly, with practicality.

  15. Probability of rebound and eject of sand particles in wind-blown sand movement

    Institute of Scientific and Technical Information of China (English)

    Li Xie; Xiaojing Zheng

    2007-01-01

    When incident particles impact into a sand bed in wind-blown sand movement, rebound of the incident particles and eject of the sand particles by the incident particles affect directly the development of wind sand flux. In order to obtain rebound and eject lift-off probability of the sand particles, we apply the particle-bed stochastic collision model presented in our pervious works to derive analytic solutions of velocities of the incident and impacted particles in the postcollision bed. In order to describe randomness inherent in the real particle-bed collision, we take the incident angle, theimpact position and the direction of resultant action of sand particles in sand bed on the impacted sand particle as random variables, and calculate the rebound and eject velocities,angles and coefficients (ratio of rebound and eject velocity to incident velocity). Numerical results are found in accordance with current experimental results. The rebound and eject lift-off probabilities versus the incident and creeping velocities are predicted.

  16. Pretreatment of turkey fat-containing wastewater in coarse sand and gravel/coarse sand bioreactors.

    Science.gov (United States)

    Gaur, Rashmi Singh; Cai, Ling; Tuovinen, Olli H; Mancl, Karen M

    2010-02-01

    Fat, oil and grease in wastewater can be difficult to treat because of their slow decomposition. Traditional pretreatment facilities to remove fat, oil and grease from wastewater are increasingly costly. The hypothesis in this study was that pretreatment of animal fat-containing wastewater in sand and sand/gravel filters facilitates the conversion of slowly degradable organic matter measured as the difference between chemical oxygen demand (COD) and 5-day biochemical oxygen demand (BOD(5)) for subsequent biological treatment. The pretreatment was evaluated using simulated turkey-processing wastewater and coarse sand and sand/gravel filters at a constant hydraulic loading rate of 132L/m(2)/day. Two types of fixed media reactors were employed: (i) one set with a varying depth of coarse sand, and (ii) the second was similar but with an additional pea gravel cap. The results indicated that the relative removal of COD was slightly improved in the sand bioreactors with a pea gravel cap irrespective of the depth of coarse sand, but partial conversion to BOD(5) was not consistently demonstrated. Pea gravel may act as a sieve to entrap organic matter including fat globules from the wastewater. Multiple dosing at the same daily loading rate slightly improved the treatment efficiency of the sand bioreactors. The ratios of influent-COD/effluent-COD were always greater than 1.0 following a change in the dosing frequency after a rest period, suggesting that organic matter, specifically fat globules in this case, was retained by the column matrix.

  17. Balkan Vegetation Database

    NARCIS (Netherlands)

    Vassilev, Kiril; Pedashenko, Hristo; Alexandrova, Alexandra; Tashev, Alexandar; Ganeva, Anna; Gavrilova, Anna; Gradevska, Asya; Assenov, Assen; Vitkova, Antonina; Grigorov, Borislav; Gussev, Chavdar; Filipova, Eva; Aneva, Ina; Knollová, Ilona; Nikolov, Ivaylo; Georgiev, Georgi; Gogushev, Georgi; Tinchev, Georgi; Pachedjieva, Kalina; Koev, Koycho; Lyubenova, Mariyana; Dimitrov, Marius; Apostolova-Stoyanova, Nadezhda; Velev, Nikolay; Zhelev, Petar; Glogov, Plamen; Natcheva, Rayna; Tzonev, Rossen; Boch, Steffen; Hennekens, Stephan M.; Georgiev, Stoyan; Stoyanov, Stoyan; Karakiev, Todor; Kalníková, Veronika; Shivarov, Veselin; Russakova, Veska; Vulchev, Vladimir

    2016-01-01

    The Balkan Vegetation Database (BVD; GIVD ID: EU-00-019; http://www.givd.info/ID/EU-00- 019) is a regional database that consists of phytosociological relevés from different vegetation types from six countries on the Balkan Peninsula (Albania, Bosnia and Herzegovina, Bulgaria, Kosovo, Montenegro

  18. Balkan Vegetation Database

    NARCIS (Netherlands)

    Vassilev, Kiril; Pedashenko, Hristo; Alexandrova, Alexandra; Tashev, Alexandar; Ganeva, Anna; Gavrilova, Anna; Gradevska, Asya; Assenov, Assen; Vitkova, Antonina; Grigorov, Borislav; Gussev, Chavdar; Filipova, Eva; Aneva, Ina; Knollová, Ilona; Nikolov, Ivaylo; Georgiev, Georgi; Gogushev, Georgi; Tinchev, Georgi; Pachedjieva, Kalina; Koev, Koycho; Lyubenova, Mariyana; Dimitrov, Marius; Apostolova-Stoyanova, Nadezhda; Velev, Nikolay; Zhelev, Petar; Glogov, Plamen; Natcheva, Rayna; Tzonev, Rossen; Boch, Steffen; Hennekens, Stephan M.; Georgiev, Stoyan; Stoyanov, Stoyan; Karakiev, Todor; Kalníková, Veronika; Shivarov, Veselin; Russakova, Veska; Vulchev, Vladimir

    2016-01-01

    The Balkan Vegetation Database (BVD; GIVD ID: EU-00-019; http://www.givd.info/ID/EU-00- 019) is a regional database that consists of phytosociological relevés from different vegetation types from six countries on the Balkan Peninsula (Albania, Bosnia and Herzegovina, Bulgaria, Kosovo, Montenegro

  19. Soil and vegetation surveillance

    Energy Technology Data Exchange (ETDEWEB)

    Antonio, E.J.

    1995-06-01

    Soil sampling and analysis evaluates long-term contamination trends and monitors environmental radionuclide inventories. This section of the 1994 Hanford Site Environmental Report summarizes the soil and vegetation surveillance programs which were conducted during 1994. Vegetation surveillance is conducted offsite to monitor atmospheric deposition of radioactive materials in areas not under cultivation and onsite at locations adjacent to potential sources of radioactivity.

  20. Capturing phosphates with iron enhanced sand filtration.

    Science.gov (United States)

    Erickson, Andrew J; Gulliver, John S; Weiss, Peter T

    2012-06-01

    Most treatment practices for urban runoff capture pollutants such as phosphorus by either settling or filtration while dissolved phosphorus, typically as phosphates, is untreated. Dissolved phosphorus, however, represents an average 45% of total phosphorus in stormwater runoff and can be more than 95%. In this study, a new stormwater treatment technology to capture phosphate, called the Minnesota Filter, is introduced. The filter comprises iron filings mixed with sand and is tested for phosphate removal from synthetic stormwater. Results indicate that sand mixed with 5% iron filings captures an average of 88% phosphate for at least 200 m of treated depth, which is significantly greater than a sand filter without iron filings. Neither incorporation of iron filings into a sand filter nor capture of phosphates onto iron filings in column experiments had a significant effect on the hydraulic conductivity of the filter at mixtures of 5% or less iron by weight. Field applications with up to 10.7% iron were operated over 1 year without detrimental effects upon hydraulic conductivity. A model is applied and fit to column studies to predict the field performance of iron-enhanced sand filters. The model predictions are verified through the predicted performance of the filters in removing phosphates in field applications. Practical applications of the technology, both existing and proposed, are presented so stormwater managers can begin implementation.

  1. Cleaning oil sands drilling waste in Alberta

    Energy Technology Data Exchange (ETDEWEB)

    Mikic, N.; Nilsen, C.; Markabi, M. [Mi SWACO, Calgary, AB (Canada)

    2008-07-01

    The waste generated from steam assisted gravity drainage (SAGD) wells is brought to the surface and separated by shale shakers. The waste can include drilling fluids and sand contaminated with bitumen. This paper described a new technology developed to treat waste using the addition of hot water and various mixing and separation technologies to reduce the viscosity of the bitumen and separate it from the sand. The bitumen-contaminated drill cuttings were mixed with hot water to form a slurry that was then separated through the G-force created by a hydrocyclone. A secondary separation was then conducted in an elutriation column to remove residual contaminants from the sand. The flow rate of the process was controlled by the fine solids composition of the cuttings, the temperature of the cleaning process, and the performance of the individual components. Laboratory tests conducted to tests the method showed that the sand particles produced using the method were clean enough to be safely disposed in the environment. A pilot study will be conducted to test the sand cleaning technology at a commercial scale. 6 refs., 3 figs.

  2. Mitigating in situ oil sands carbon costs

    Energy Technology Data Exchange (ETDEWEB)

    Theriault, D.J.; Peterson, J. [Laricina Energy Ltd., Calgary, AB (Canada); Heinrichs, H. [Canadian Chemical Technology Inc., Calgary, AB (Canada)

    2008-10-15

    Carbon capture and sequestration is a complex problem with a variety of dimensions that need to be considered. The political, social, and regulatory pressures are forcing carbon costs on the oil sands industry in an effort to reduce the carbon footprint of oil sands operations. This paper reviewed the political, social, and regulatory pressures and obligations for the in-situ oil sands industry. It presented the views and insights of Laricina Energy on the carbon challenge. It also described the initiatives that Laricina Energy is taking to manage these imperatives and outlined the challenges the industry is facing. The purpose of the paper was to encourage dialogue and collaboration by the oil sands industry. The paper also described the dimensions of the carbon problem and how the industry can contribute to a solution. Last, the paper reviewed the parameters of carbon dioxide or greenhouse gas containment and storage issues. It was concluded that the regulatory and policy requirements need to be clarified so that industry understands the new business landscape as well as the requirements that influence the economics of in-situ oil sands development. 7 refs., 7 figs.

  3. Survey of darkling beetles in desert steppe vegetation after a decade

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, L.E.; Rickard, W.H.

    1975-11-17

    A survey of darkling beetles inhabiting big sagebrush and greasewood communities was conducted in 1963 and again in 1973. Two species, Philolithus densicollis and Stenomorpha puncticollis, dominated the catch during both study periods. This comparison showed that the abundance of both Philolithus and Stenomorpha has declined drastically during the last decade. Philolithus now clearly dominates the sagebrush community while Stenomorpha dominates the greasewood community.

  4. SIR-A radar images of sand dunes and volcanic fields

    Science.gov (United States)

    Blom, R.; Elachi, C.; Evans, D.

    1982-01-01

    Shuttle Imaging Radar (SIR-A) synthetic aperture radar images of sand dunes and volcanic fields are presented and preliminary interpretation provided. The SIR-A images are compared with Seasat images where available. Unvegetated sand dunes are recorded as black areas on SIR-A images due to the specular reflection away from the sensor at the SIR-A incidence angle. Even a very small amount of vegetation provides some backscatter, however. Interdune areas frequently contain rough lag gravels which outline the dunes. Lava flows are typically very rough surfaces which are bright areas on radar images. Cinder cones are smooth and therefore black on the image unless they have a blocky crater rim at the SIR-A incidence angle. Ash dunes and ash fields are smooth and imaged as dark areas.

  5. Land Sensitivity Analysis of Degradation using MEDALUS model: Case Study of Deliblato Sands, Serbia

    Directory of Open Access Journals (Sweden)

    Kadović Ratko

    2016-12-01

    Full Text Available This paper studies the assessment of sensitivity to land degradation of Deliblato sands (the northern part of Serbia, as a special nature reserve. Sandy soils of Deliblato sands are highly sensitive to degradation (given their fragility, while the system of land use is regulated according to the law, consisting of three zones under protection. Based on the MEDALUS approach and the characteristics of the study area, four main factors were considered for evaluation: soil, climate, vegetation and management. Several indicators affecting the quality of each factor were identified. Each indicator was quantified according to its quality and given a weighting of between 1.0 and 2.0. ArcGIS 9 was utilized to analyze and prepare the layers of quality maps, using the geometric mean to integrate the individual indicator map. In turn, the geometric mean of all four quality indices was used to generate sensitivity of land degradation status map. Results showed that 56.26% of the area is classified as critical; 43.18% as fragile; 0.55% as potentially affected and 0.01% as not affected by degradation. The values of vegetation quality index, expressed as coverage, diversity of vegetation functions and management policy during the protection regime are clearly represented through correlation coefficient (0.87 and 0.47.

  6. A flora melitófila de uma área de dunas com vegetação de caatinga, Estado da Bahia, Nordeste do Brasil The bee flora of caatinga vegetation on sand dunes in Bahia State, Northeastern Brazil

    Directory of Open Access Journals (Sweden)

    Ana Tereza Araújo Rodarte

    2008-06-01

    manutenção das abelhas solitárias, de pequeno porte, incapazes de competir eficientemente com abelhas eussociais com alta capacidade de comunicação e exploração dos recursos mais abundantes como Apis mellifera. Os resultados indicaram que não apenas a composição florística, mas a estratificação e a forte sazonalidade da floração foram determinantes da composição e do padrão local de uso de recursos pelas abelhas em caatinga.The plant species in an area of caatinga vegetation (10º47'37'S and 42º49'25'W were surveyed to identify flower morphology, available floral resources, flowering characteristics, and visiting bee species. Collections were made for four consecutive days in February, April, June, August, and December/2000. The area was surveyed between 06:00 and 17:00 h by following two parallel transects (450 m × 100 m and 550 m × 100 m, 50 m apart (total of 10 hectares. The 42 plant identified (55% of the local flora were visited by a total of 2924 bees belonging to 41 species. The plant families Caesalpiniaceae and Malpighiaceae were the most frequently visited. The plant species most often visited by 35 species of bees (78% of the total number of bees surveyed were: Byrsonima blanchetiana Miq., Copaifera coriacea Mart., Senna macranthera, Peltogyne pauciflora Benth., Senna gardneri (Benth. H.S. Irwin & Barneby, Serjania comata, Mouriri pusa (Gardner, Jatropha mutabilis (Pohl. Baill., Maytenus rigida Mart. and Turnera calyptrocarpa Urb. (24% of the total bee flora. These plant species were responsible for 95% of total flower production during the study period. Generally, the basic floral morphology of these species consisted of small, white to pink, zygomorphic flowers displayed in inflorescences, monoclinous, with longitudinal anthers dehiscence; this morphology was very similar to that of the flora, suited to generalist pollinators. The predominance of generalist interactions reflects the local abundance of stingless bees (Meliponinae and Apis

  7. Permeability Tests on Eastern Scheldt Sand

    DEFF Research Database (Denmark)

    Jakobsen, Kim Parsberg

    The flow through porous media plays an important role in various engineering disciplines, as for example in ground water hydrology and soil mechanics. In the present study the permeability is determined for a fine, saturated sand. As the flow through a porous media strongly depends on the charact......The flow through porous media plays an important role in various engineering disciplines, as for example in ground water hydrology and soil mechanics. In the present study the permeability is determined for a fine, saturated sand. As the flow through a porous media strongly depends...... on the characteristics of the soil matrix, the permeability is determined for different void ratios. All tests are performed on reconstituted specimens of Eastern Scheldt Sand. The permeability is determined by use of a falling head apparatus. Finally the test results are briefly summarised and a relationship between...... void ratio and permeability is established....

  8. Thermoluminescent dosimetric properties of Descalvado sand

    Energy Technology Data Exchange (ETDEWEB)

    Teixeira, M.I.; Caldas, L.V.E

    2006-07-01

    Sand samples proceeding from Descalvado, Sao Paulo, were studied with regard to their dosimetric properties using the thermoluminescence technique (TL) for high doses. These sand samples present steady physical and chemical characteristics to the end items, and they are used in the glass industry and for casting. The TL curves of the samples were obtained after an irradiation at the Gamma-Cell system ({sup 60} Co), of IPEN. The glow curves present two peaks at 80 C and 220 C approximately. Calibration curves were obtained for doses between 50 Gy and 5 kGy. The results indicate that the sand samples can be used for high-doses dosimetry in several areas of applications of ionizing radiation. (Author)

  9. Development tendencies of moulding and core sands

    Directory of Open Access Journals (Sweden)

    Stanislaw M. Dobosz1

    2011-11-01

    Full Text Available Further development of the technology for making moulding and core sands will be strictly limited by tough requirements due to protection of the natural environment. These tendencies are becoming more and more tense, so that we will reach a point when even processes, that from technological point of view fulfill high requirements of the foundry industry, must be replaced by more ecologically-friendly solutions. Hence, technologies using synthetic resins as binding materials will be limited. This paper presents some predictable development tendencies of moulding and core sands. The increasing role of inorganic substances will be noticed, including silicate binders with significantly improved properties, such as improved knock-out property or higher reclamation strength. Other interesting solutions might also be moulding sands bonded by geo-polymers and phosphate binders or salts and also binders based on degradable biopolymers. These tendencies and the usefulness of these binders are put forward in this paper.

  10. Planet-wide sand motion on mars

    Science.gov (United States)

    Bridges, N.T.; Bourke, M.C.; Geissler, P.E.; Banks, M.E.; Colon, C.; Diniega, S.; Golombek, M.P.; Hansen, C.J.; Mattson, S.; McEwen, A.S.; Mellon, M.T.; Stantzos, N.; Thomson, B.J.

    2012-01-01

    Prior to Mars Reconnaissance Orbiter data, images of Mars showed no direct evidence for dune and ripple motion. This was consistent with climate models and lander measurements indicating that winds of sufficient intensity to mobilize sand were rare in the low-density atmosphere. We show that many sand ripples and dunes across Mars exhibit movement of as much as a few meters per year, demonstrating that Martian sand migrates under current conditions in diverse areas of the planet. Most motion is probably driven by wind gusts that are not resolved in global circulation models. A past climate with a thicker atmosphere is only required to move large ripples that contain coarse grains. ?? 2012 Geological Society of America.

  11. Assessing climate refugia from a terrestrial vegetation vulnerability assessment for 29 types in California.

    Science.gov (United States)

    Thorne, J. H.; Bjorkman, J.; Boynton, R.; Stewart, J.; Holguin, A.; Schwartz, M.; Albright, W.

    2015-12-01

    We assessed the climate vulnerability of 29 terrestrial macrogroup vegetation types in the National Vegetation Classification Scheme covering 99% of California. Using a 2015 landcover map, we defined current and future climate exposure of each type by assessing conditions at all known locations. This approach identifies both areas of expected high stress and of climate refugia. Species distribution models of the vegetation types proved to over-predict the extent of occupied lands, compared to their mapped extents. Trait based components of the vulnerability assessment were far less influential on level of vulnerability than climate projection. Various cutoffs can be selected to describe refugia. Here we classed refugia as the 20% of climate conditions most frequently occupied by a type. Under CNRM CM5 RCP 4.5, of 70,143 km2 that are the most climate-insulated locations, 46,420 km2 move to higher levels of climate exposure. At the other extreme of climate projections tested, MIROC ESM RCP 8.5, 59,137 km2 are lost. Four macrogroups lose their refugia under CNRM 4.5: Pacific Northwest Conifer Forests, Mountain Riparian Scrub and Wet Meadow, Salt Marsh, and Great Basin Upland Scrub. Under MIROC 8.5 and additional 8 macrogroups lose the most commonly experienced climate: Subalpine Aspen Forests & Pine Woodlands, Non-Native Forest and Woodlands, North Coast Deciduous Scrub and Terrace Prairie, Coastal Dune and Bluff Scrub, Freshwater Marsh, Wet Mountain Meadow, Big Sagebrush Scrub, and Alpine Vegetation. These results raise interesting questions regarding the definition of refugia. We review the results and ask how appropriate they are for different ecosystem types.

  12. Undrained Cyclic Behaviour of Dense Frederikshavn Sand

    DEFF Research Database (Denmark)

    Nielsen, Søren Kjær; Ibsen, Lars Bo; Sørensen, Kris Wessel

    2013-01-01

    A modified contour diagram is created for the Frederikshavn Sand in the undrained case for a relative density of ID = 80 %. It can be used to estimate the number of cycles to failure for a given combination of pore pressure, average and cyclic load ratio. The diagram is based on a series of undra......A modified contour diagram is created for the Frederikshavn Sand in the undrained case for a relative density of ID = 80 %. It can be used to estimate the number of cycles to failure for a given combination of pore pressure, average and cyclic load ratio. The diagram is based on a series...

  13. Sand control systems used in completing wells

    Directory of Open Access Journals (Sweden)

    Gabriel Wittenberger

    2005-12-01

    Full Text Available Expandable Tubular Technology is transforming the face of well completion and construction. This technology provides: a substantially higher hydrocarbon production rates from the reservoir, a reduced well drilling and construction costs, new possibilities for previously unreachable or uneconomic reservoirs, and step a change towards the single diameter well. ESS (Expandable Sand Screen has an unrivalled performance worldwide for delivering a reliable sand control in a wide range of applications. Well costs typically cut by over 20 %, and the productivity increases up to 70 %.

  14. On the Size Distribution of Sand

    DEFF Research Database (Denmark)

    Sørensen, Michael

    2016-01-01

    -distribution, by taking into account that individual grains do not have the same travel time from the source to the deposit. The travel time is assumed to be random so that the wear on the individual grains vary randomly. The model provides an interpretation of the parameters of the NIG-distribution, and relates the mean......A model is presented of the development of the size distribution of sand while it is transported from a source to a deposit. The model provides a possible explanation of the log-hyperbolic shape that is frequently found in unimodal grain size distributions in natural sand deposits, as pointed out...

  15. George Sand [Reseña

    OpenAIRE

    Jack, Belinda; Thomas, Florence

    2002-01-01

    Belinda Jack nos cuenta en ese libro la vida de George Sand (de su verdadero nombre Aurora Dupin), esa mujer libertaria del siglo XIX, lo años de su nacimiento, su infancia, su adolescencia y su vida adulta. Una vida tan llena tanto por sus luchas interiores -Sand es una mujer que desde su adolescencia tratará de romper los fatalismos ligados a la condición de mujer del siglo XIX, un siglo profundamente familista y maternalista- como por su inmensa obra literaria que cuenta más de cincuenta n...

  16. Investigation of Sand-Cement Grouts

    Science.gov (United States)

    1960-09-01

    the sianAS. Ho-4, VVers thia 𔃽pacification ,Jlowi -inI r.ver,4 e ofl 3 :*- cen~t to be retain(v,- on1 the NO,. 1E6 sieve. 3y * :.Oviiq- (1),, sc...325 material as does the traprock or silica sand. This j J: i3 -robably the reason for the difference in the quantity of sand founud pmrnable. The three...deficient in material assing th.e ±,e h DOsieve, Ath the addition of percentages of fŕ. ash was test-ilwped. in the other to-ts in this phase, tne

  17. TURBULENT COHERENT STRUCTURES IN CHANNELS WITH SAND WAVES

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Sand wave bed is one of the typical shape of complicated boundaries in hydraulics and river dynamics, and sand wave motion is the main form of the bed load motion in-rivers, thence the study of turbulent structures over sand waves is of importance both in theory and practice. In this paper turbulent coherent structures over single-and multi-sand waves were studied experimentally, the formulae for the separation length and vortex shedding period of the turbulent flow over single-sand wave were suggested, and the characteristics of turbulent coherent structures over multi-sand waves were also given.

  18. Threshold for sand mobility on Mars calibrated from seasonal variations of sand flux

    Science.gov (United States)

    Ayoub, F.; Avouac, J.-P.; Newman, C. E.; Richardson, M. I.; Lucas, A.; Leprince, S.; Bridges, N. T.

    2014-09-01

    Coupling between surface winds and saltation is a fundamental factor governing geological activity and climate on Mars. Saltation of sand is crucial for both erosion of the surface and dust lifting into the atmosphere. Wind tunnel experiments along with measurements from surface meteorology stations and modelling of wind speeds suggest that winds should only rarely move sand on Mars. However, evidence for currently active dune migration has recently accumulated. Crucially, the frequency of sand-moving events and the implied threshold wind stresses for saltation have remained unknown. Here we present detailed measurements of Nili Patera dune field based on High Resolution Imaging Science Experiment images, demonstrating that sand motion occurs daily throughout much of the year and that the resulting sand flux is strongly seasonal. Analysis of the seasonal sand flux variation suggests an effective threshold for sand motion for application to large-scale model wind fields (1-100 km scale) of τs=0.01±0.0015 N m-2.

  19. MouldingSandDB – a modern database storing moulding sands properties research results

    Directory of Open Access Journals (Sweden)

    J. Jakubski

    2011-01-01

    Full Text Available The complexity of foundry processes requires the use of modern, advanced IT tools for optimization, storage and analysis of t echnicaldata. Properties of moulding and core sands that are collected in research laboratories, manufacturers, and finally in the foundries, are not in use later on. It seems important to create a database that will allow to use the results stored, along with the possibility of searching according to set criteria, adjusted to casting practice. This paper presents part of the database named „MouldingSandDB”, which allows to collect and search data for synthetic moulding sands.

  20. Wind tunnel experiments of air flow patterns over nabkhas modeled after those from the Hotan River basin,Xinjiang,China(Ⅱ):vegetated

    Institute of Scientific and Technical Information of China (English)

    Zhizhong LI; Rong MA; ShengLi WU; Janis DALE; Lin GE; Mudan HE; Xiaofeng WANG; Jianhui JIN; Jinwei LIU; Wanjuan LI

    2008-01-01

    This paper examines the results of wind tunnel experiments on models of nabkha,based on those studied in the Hotan River basin.Semi-spherical and conical models of nabkhas were constructed at a ratio of 40:1 in light of the on-site observation.Artificial vegetation of simulated Tamarix spp.was put on top of each model.Parameters of the shape,including height,width,and diameter of vegetated semi-spherical and conical nabkha.were measured in the Hotan River basin.Wind tunnel experiments on the semi-spherical and conical nabkha used clean air devoid of additional sediments at five different wind speeds (6-14 m/s)to study the influence of vegetation on airflow patterns.Results of the experiments indicate that vegetation at the top of the nabkhas enhances the surface roughness of the sand mounds,retards airflow over the sand mounds,reduces airflow energy,eliminates erosional pits occurring on the top surface of non-vegetated sand mounds and enhances the range of influence of the vortex that forms on the leeward slope.Vegetation changes the airflow pattern upwind and downwind of the sand mound and reduces the transport of sand away from the nabkha.This entrapment of sediment by the vegetation plays an important role in sustaining the nabkha landscape of the study area.The existence of vegetation makes fine materials in wind-sand flow to possibly deposit,and promotes nabkha formation.The imitative flow patterns Of different morphological nabkhas have also been verified by on-site observation in the river basin.

  1. Simulation of aeolian sand saltation with rotational motion

    Science.gov (United States)

    Huang, Ning; Wang, Cong; Pan, Xiying

    2010-11-01

    In this work, we propose a theoretical model based on the distribution functions of initial liftoff velocity and angular velocity of sand grains to describe a sand saltation process in which both wind field-sand grain coupling and the Magnus force experienced by saltating sand grains have been incorporated. The computation results showed that the Magnus force had significant effects on sand grain saltation. In particular, when the Magnus force was incorporated, the calculated sand transport fluxes and sand transport rate per unit width were closer to the experimental value than when this force was excluded. The sand transport flux is enhanced because the Magnus force owing to particle rotation causes the particles to have higher and longer trajectories, so the particles can get more speed and energy from the wind, which leads to a larger sand transport flux. In addition, it was found that when taking the Magnus force into account, the probability density of the impact velocity and angular velocity of saltating sand grains followed an exponential distribution and a unimodal asymmetric distribution, respectively. Moreover, the sand energy flux increased with the height above the sand surface until the energy flux reached its maximum and then decreased. Furthermore, the energy flux near the ground surface decreased as the grain diameter increased, but beyond a specific height the energy flux increased with the grain diameter. Finally, for the same sand grain diameter, the energy flux increased with the friction velocity.

  2. Diversity of phlebotomine sand flies (Diptera: Psychodidae) in Ibitipoca State Park, Minas Gerais, Brazil.

    Science.gov (United States)

    Carvalho, Gustavo Mayr de Lima; De Vasconcelos, Fernanda Bernardes; Da Silva, Daniela Gonçalves; Botelho, Helbert Antônio; Filho, José Dilermando Andrade

    2011-07-01

    Leishmaniasis is a complex of zoonotic diseases that are endemic to many Brazilian states. They are transmitted to the vertebrates by the bite of the hematophagous female sand fly (Diptera: Psychodidae) vectors. Despite the increasing occurrence of visceral and cutaneous leishmaniasis cases in large urban centers, their transmission continues to occur primarily in a wild environment and may be associated with professional activities, ecotourism activities, or both. This study investigates the ecological parameters of the sand flies present in Ibitipoca State Park, Minas Gerais, Brazil. During 2009, systematic collections of sand flies were made monthly using HP light traps installed at five sites, including three natural settings (a cave, riparian vegetation, and a rain forest), the tourist and researchers' accommodations, and a surrounding domestic livestock area. In total, 161 sand flies (seven species) were collected, the most abundant, particularly in the surrounding domestic livestock area, being Lutzomyia (Psychodopygus) lloydi (Antunes, 1937). Furthermore, a previously unidentified Lutzomyia (Sciopemyia) sp. was prevalent in the cave environment. There are no existing records of the occurrence of leishmaniasis in Ibitipoca State Park; however, the some species of the subgenus Psychodopygus are known vectors of Leishmania spp in Brazil. Hence, the presence of a species of this genus in areas surrounding the park may represent a risk to ecotourism and the local inhabitants. Our study shows the importance of regular monitoring of the various areas used by humans to determine the distribution and spread of sand fly vectors for preventive management to forestall potential risk to health and consequent effect on ecotourists.

  3. Niche shifts and energetic condition of songbirds in response to phenology of food-resource availability in a high-elevation sagebrush ecosystem

    Science.gov (United States)

    Cutting, Kyle A.; Anderson, Michelle L.; Beever, Erik; Schroff, Sean; Korb, Nathan; Klaphake, Eric; McWilliams, Scott R.

    2016-01-01

    Seasonal fluctuations in food availability can affect diets of consumers, which in turn may influence the physiological state of individuals and shape intra- and inter-specific patterns of resource use. High-elevation ecosystems often exhibit a pronounced seasonal “pulse” in productivity, although few studies document how resource use and energetic condition by avian consumers change in relation to food-resource availability in these ecosystems. We tested the hypothesis that seasonal increases (pulses) in food resources in high-elevation sagebrush ecosystems result in 2 changes after the pulse, relative to the before-pulse period: (1) reduced diet breadth of, and overlap between, 2 sympatric sparrow species; and (2) enhanced energetic condition in both species. We tracked breeding-season diets using stable isotopes and energetic condition using plasma metabolites of Brewer's Sparrows (Spizella breweri), Vesper Sparrows (Pooecetes gramineus), and their food resources during 2011, and of only Brewer's Sparrows and their food resources during 2013. We quantify diet breadth and overlap between both species, along with coincident physiological consequences of temporal changes in resource use. After invertebrate biomass increased following periods of rainfall in 2011, dietary breadth decreased by 35% in Brewer's Sparrows and by 48% in Vesper Sparrows, while dietary overlap decreased by 88%. Energetic condition of both species increased when dietary overlap was lower and diet breadth decreased, after the rapid rise of food-resource availability. However, energetic condition of Brewer's Sparrows remained constant in 2013, a year with low precipitation and lack of a strong pulse in food resources, even though the species' dietary breadth again decreased that year. Our results indicate that diet breadth and overlap in these sparrow species inhabiting sagebrush ecosystems generally varied as predicted in relation to intra- and interannual changes in food resources, and

  4. Vegetation survey of Sengwa

    Directory of Open Access Journals (Sweden)

    G. C. Craig

    1983-12-01

    Full Text Available The approach and initial results of a vegetation survey of the Sengwa Wildlife Area are outlined. The objectives were to produce a vegetation classification and map sufficiently detailed to serve as a base for the management of the natural vegetation. The methods adopted consist of (a stratification of the area into homogeneous units using 1:10 000 colour aerial photographs; (b plotless random sampling of each stratum by recording cover abundance on the Braun-Blaunquet scale for all woody species; and (c analysis of the data by indicator species analysis using the computer programme 'Twinspan’. The classification produced is successful in achieving recognizable vegetation types which tie in well with known environmental features.

  5. Description of vegetation types

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This document provides descriptions of five vegetation types found in Iowa- oak savannah, mature hardwoods, floodplain woods, scrub woods, and riparian woods. Oak...

  6. Total Vegetation 1992

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The coverage contains 1992 vegetation polygons representing GCES monitoring sites. These data were developed by Dr. G. Waring Northern AZ. University for use in the...

  7. Total Vegetation 1973

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The coverage contains 1973 vegetation polygons representing GCES monitoring sites. These data were developed as study by Dr. G. Waring Northern AZ. University of...

  8. Total Vegetation 1965

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The coverage contains 1965 vegetation polygons representing GCES monitoring sites. These data were developed as study by Dr. G. Waring Northern AZ. University of...

  9. Total Vegetation 1984

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The coverage contains 1984 vegetation polygons representing GCES monitoring sites. These data were developed as study by Dr. G. Waring Northern AZ. University of...

  10. The impact of raindrops on sand

    NARCIS (Netherlands)

    de Jong, Rianne

    2017-01-01

    When a raindrop hits a sand bed, it leaves behind a small crater with a mixture of liquid and grains located at the center. This event is frequently observed in nature, but when absent, sprinklers may artificially produce these impacting drops to facilitate irrigation. Also in industry, the interact

  11. Cumulative environmental management and the oil sands

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    In response to concerns regarding the cumulative environmental impacts of oil sands development within the Athabasca oil sands deposit, the government of Alberta established a Regional Sustainable Development Strategy (RSDS) to balance development with environmental protection. The environmental issues identified through the RSDS were addressed by the Cumulative Environmental Management Association (CEMA). CEMA's boundary is the Wood Buffalo region of northeastern Alberta. It identifies existing and future environmental effects in the region and proposes recommendations to regulatory bodies for reducing environmental impacts associated with oil sands development. This presentation outlined some of the 55 stakeholder representatives of CEMA, including Alberta government departments associated with resource development, oil sand developers within the region, and Aboriginal communities and First Nations. These stakeholders provide input on sector priorities and agree on environmental thresholds. Established working groups also address technical and scientific research issues identified in the RSDS such as sustainable ecosystems; surface waters; trace metals and air contaminants; nitrogen oxides and sulphur dioxides; and land reclamation. To date, CEMA has submitted more than 50 reports and has made 4 major environmental recommendations for trace metal management, ecosystem management tools, a framework for acid deposition management, and a landscape design checklist. tabs., figs.

  12. LEARNING ABOUT THE OCEANS FROM SAND

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    As a young geophysicist in the 1980s, Rob Holman attended a conference in San Francisco that included a field trip to a beach. Dr Holman, who grew up inland, stared at the ocean, assessing the strengths of the waves. But when he looked around, everyone else was studying the sand.

  13. Displacement pile installation effects in sand

    NARCIS (Netherlands)

    Beijer-Lundberg, A.

    2015-01-01

    Installation effects govern the post-installation behaviour of displacement piles in sand. These effects are currently not completely understood. Suitable experimental techniques to model these installation effects include field, laboratory and experimental models. In the current thesis a small-scal

  14. Cyclic Triaxial Loading of Cohesionless Silty Sand

    DEFF Research Database (Denmark)

    Sabaliauskas, Tomas; Ibsen, Lars Bo

    2015-01-01

    To engineer efficient structures offshore, we need to extend our knowledge of soil response. Cyclic loading and high water pressure encountered offshore greatly influence cohesionless soil performance. Silty sand from Frederikshavn wind turbine farm was tested using single diameter height samples...

  15. Galveston Island, Texas, Sand Management Strategies

    Science.gov (United States)

    2016-07-01

    68 Figure 28. Jetty segment used for computation of aeolian sand transport. Background photograph 22 May 2012...113 Figure 68 . Total shoreline change after 50 years for 500,000 yd3 placed every 2 years in different locations...The berm at Ft. Myers, FL, was constructed with dredged material from Matanzas Pass. The dredged material contained greater than 10% fines, which

  16. Building Whales in Sand and Mind.

    Science.gov (United States)

    Warner, Carolyn

    1980-01-01

    Describes two-week summer workshops on evolution, adaptation, and behavior of whales, conducted for children by Cold Spring Harbor Whaling Museum (New York), and culminating in creation of life-size sand sculptures of whales. Provides selected list of periodicals, teaching materials, identification guides, records, and societies devoted to whales…

  17. Sand transport, erosion and granular electrification

    DEFF Research Database (Denmark)

    Merrison, J.P.

    2012-01-01

    The transport of granular materials by wind has a major impact on our environment through sand/soil erosion and the generation and transport of atmospheric dust aerosols. Terrestrially the transport of dust involves billions of tons of material every year, influencing the global climate and impac......The transport of granular materials by wind has a major impact on our environment through sand/soil erosion and the generation and transport of atmospheric dust aerosols. Terrestrially the transport of dust involves billions of tons of material every year, influencing the global climate...... can affect grain transport through the generation of intense electric fields and processes of electrostatic assembly. Importantly the transport of sand is characterized by saltation, which is known to be an active process for erosion and therefore a source for dust and sand formation. Using novel...... erosion simulation techniques the link between grain transport rates and erosion rates has been quantified. Furthermore this can be linked to production rates for dust and has been associated with chemical and mineral alteration through a process of mechanical activation of fractured surfaces. This work...

  18. Sand Waves along the Dutch Coast

    NARCIS (Netherlands)

    Verhagen, H.J.

    1989-01-01

    Sand waves, defined as longshore wave-like movements of the shoreline, measured in a horizontal plane, are described along several stretches of the shoreline of The Netherlands. They have a celerity in the order of 50-200 m/yr, a period of 50- 150 years and an amplitude of 30- 500 m. They are found

  19. Building Whales in Sand and Mind.

    Science.gov (United States)

    Warner, Carolyn

    1980-01-01

    Describes two-week summer workshops on evolution, adaptation, and behavior of whales, conducted for children by Cold Spring Harbor Whaling Museum (New York), and culminating in creation of life-size sand sculptures of whales. Provides selected list of periodicals, teaching materials, identification guides, records, and societies devoted to whales…

  20. Sand and Stone%沙与石

    Institute of Scientific and Technical Information of China (English)

    黄川; 孙静

    2006-01-01

    @@ Astory tells that two friends were walking through the desert. During some point of the journey they had an argument, and one friend slapped the other one in the face1. The one who got slapped was hurt, but without saying anything, he wrote in the sand: "TODAY MY BEST FRIEND SLAPPED ME IN THE FACE."

  1. Authentication of vegetable oils.

    OpenAIRE

    Cunha, S.C.; Amaral, J S; Oliveira, M.B.P.P.

    2011-01-01

    Authenticity of vegetable oils continues to be a challenge and the target of many studies. Consumers expectancy on healthier products that conform to the labelled information, and the vast amount of legislation a bout the correct characterisation and classification of vegetable oils have boosted a number of scientific works on this subject. Analytical t echniques to face this challenge are, at least, as manifold as ar e the ways of adulteration, ranging fro...

  2. Field investigation of surface sand and dust movement over different sandy grasslands in the Otindag Sandy Land, China

    Science.gov (United States)

    Liu, Shulin; Wang, Tao; Chen, Guangting; Guo, Jian; Xue, Xian; Ma, Shaoxiu

    2008-01-01

    The characteristics of sand and dust movement over different sandy grasslands in China’s Otindag Sandy Land were explored based on field observations and laboratory analyses. Threshold wind speeds (the speed required to initiate sand movement) at a height of 2 m above the ground were estimated in the field for different surface types. Threshold wind speed above shifting dunes in the study area is about 4.6 m s-1 at this height. This value was smaller than values observed above other surfaces, resulting in a greater risk of blowing sand above these dunes. Differences in sand transport rates (STR) as a function of the severity of desertification resulted primarily from differences in surface vegetation cover and secondarily from the soil’s grain-size distribution. STR increased exponentially with increasing near-bed wind velocity. Under the same wind conditions, STR increased with increasing severity of desertification: from 0.08 g cm-2 min-1 above semi-fixed dunes to 8 g cm-2 min-1 above semi-shifting dunes and 25 g cm-2 min-1 above shifting dunes. Vegetation’s affect on STR was clearly large. Different components of sand and dust were trapped over different lands: mostly sand grains but little dust were trapped above shifting dunes, but much dust was collected over semi-shifting and semi-fixed dunes. Human disturbance is likely to produce dust even from fixed dunes as a result of trampling by animals and vehicle travel. In addition, spring rainfall decreased the risk of sand and dust movement by accelerating germination of plants and the formation of a soil crust.

  3. Dark grains of sand: a geological storytelling

    Science.gov (United States)

    Gallo Maresca, Magda

    2017-04-01

    In the secondary Italian school the Earth science learning begins at first year, in synergy with other natural science subjects such as Astronomy, Chemistry and Biology. Italian teachers have to focus on the landscape geomorphological aspects and often Earth processes are difficult to display since they are related to certain phenomena happened during the past and often far from the involved country. In order to better understand the environment surrounding us, very simple and poor materials, like sands, allow the teachers to create attractive lab experiences. According to the IBSE (Inquiry Based Science Education) approach, a learning unit has been implemented starting from a walking along the light carbonate beaches of the Adriatic sea: a smart look to the sands ("engage step"), stroke the students fantasy pushing them to explore some strange black grains on the sands. Dirty sands? Or rock landscape, soil degradation and Ofanto river and coastal processes (erosion, transportation and deposition)? This was the teaching challenge. Due to the youngest age, a third level, guided inquiry, was adopted so the teacher is the "guide of inquiry" encouraging the students using the research question ("Why is the sand dark?", "Do all sands look the same?", "Where does it come from?") and driving the students around their investigation plans ("How can I measure grain size?"). A procedure to answer the above questions and validate the results and explanations has been implemented to allow the students to be proactive in their study. During the learning activities will be the students to ask for field trip to elaborate their new knowledge, verify and visualize the speculated processes. The teaching skills allow to address several geosciences domains such as mineralogy, petrology, regional geology and geodynamics as well as other scientific disciplines such as mathematics (more specifically statistics), forensic science and even life sciences (the presence of bioclasts might

  4. Assessing environmental impacts of inland sand mining in parts of ...

    African Journals Online (AJOL)

    Assessing environmental impacts of inland sand mining in parts of Ogun State, Nigeria. ... Sand is a valuable resource for construction and other purposes, however ... Natural resources particularly, land, water quality and quantity, air quality, ...

  5. Fiber-reinforced sand strength and dilation characteristics

    Directory of Open Access Journals (Sweden)

    Hesham M. Eldesouky

    2016-06-01

    Full Text Available Randomly distributed fiber reinforcement is used to provide an isotropic increase in the sand shear strength. The previous studies were not consistent regarding the fibers effect on the volumetric change behavior of fiber-reinforced sand. In this paper, direct shear tests are conducted on 108 specimens to investigate the effects of the fibers content, relative density, normal stress and moisture content on the shear strength and volumetric change behaviors of fiber-reinforced sand. The study investigates also the possibility of using dry fiber-reinforced sand as an alternative to heavily compacted unreinforced moist sand. The results indicate that the fibers inclusion increases the shear strength and dilation of sand. Moisture suppresses the fibers effect on the peak and post-peak shear strengths, and dilation. Dry loose fiber-reinforced sand achieves the same shear strength of heavily compacted unreinforced moist sand, yet at more than double the horizontal displacement.

  6. Gating Technology for Vertically Parted Green Sand Moulds

    DEFF Research Database (Denmark)

    Larsen, Per

    Gating technology for vertically parted green sand moulds. Literature study of different ways of designing gating systems.......Gating technology for vertically parted green sand moulds. Literature study of different ways of designing gating systems....

  7. Treatment of vegetable oils

    Energy Technology Data Exchange (ETDEWEB)

    Bessler, T.R.

    1986-05-13

    A process is described for preparing an injectable vegetable oil selected from the group consisting of soybean oil and sunflower oil and mixtures thereof which comprise: (a) first treating the vegetable oil at a temperature of 80/sup 0/C to about 130/sup 0/C with an acid clay; (b) deodorizing the vegetable oil with steam at a temperature of 220/sup 0/C to about 280/sup 0/C and applying a vacuum to remove volatilized components; (c) treating the deodorized vegetable oil, at a temperature of from about 10/sup 0/C to about 60/sup 0/C, with an acid clay to reduce the content of a member selected from the group consisting of diglycerides, tocopherol components, and trilinolenin and mixtures thereof, wherein the acid clay is added in a weight ratio to the deoderized vegetable oil of from about 1:99 to about 1:1; and (d) thereafter conducting a particulate filtration to remove a substantial portion of the acid clay from the vegetable oil, wherein the filtration is accomplished with filters having a pore size of from about 0.1 to 0.45 microns, thereby obtaining the injectable oil.

  8. Expandable sand screens: from novel concept to proven sand control technique

    Energy Technology Data Exchange (ETDEWEB)

    Metcalfe, Paul; Jones, Colin; Ballard, Tracey; Beare, Steve; Hillis, Dave [Weatherford International Inc., Houston, TX (United States)

    2004-07-01

    Expandable Sand Screens (ESS) have proved a viable alternative to gravel packing for sand control. With over 300 installations worldwide, analysis of their use has confirmed that ESS offers excellent production performance and sand control reliability in Open hole. This paper presents details of a global survey on ESS performance that gives accurate information on production performance, sand exclusion reliability and cost effectiveness in Open hole and cased hole application scenarios. This paper also discusses the role and effect of compliant expansion in observed productivity performance and skin values. The rock mechanical, reservoir characterization and metallurgical requirements of ESS systems are also investigated. Finally, the latest advances of the technology for use within the reservoir are explained. This paper demonstrates how the combination of ESS and Expandable Zonal Isolation devices can offer cased hole functionality (in terms of zonal isolation) in combination with Open hole levels of production performance (from the ESS). (author)

  9. Water management in the oil sands industry

    Energy Technology Data Exchange (ETDEWEB)

    Pauls, R. [Syncrude Canada Ltd., Fort McMurray, AB (Canada)

    2004-07-01

    Water management issues at Alberta's 4 oil sand deposits were discussed. The 4 deposits include the Peace River, Athabasca, Wabasca and Cold Lake deposits, with the Athabasca deposit being the largest and the only surface-mineable deposit. Large quantities of water are needed to extract bitumen from oil sands. This paper addressed water volume withdrawal from the Athabasca River, the primary source of water for the surface-mining oil sands industry. It also addressed Muskeg River watershed integrity, quality of water withdrawn from reclaimed landscapes, groundwater contamination, and ecological viability of end-pit lakes. Currently, half of Syncrude's oil sand is transported from mine to extraction plant by conveyor belts. The other half is pipelined as a warm water slurry. By 2005, all transport will be by pipeline. The oil sand is mixed with hot water, steam and surfactants to condition it for extraction. Seventy-nine per cent of the water used by Syncrude is recycled water and the remainder comes from the Athabasca River. Syncrude diverts 2.5 to 3 barrels of water from the Athabasca River for every barrel of oil produced. This paper discussed the in-stream flow needs of the Athabasca River based on protection of aquatic ecosystems. Flow needs are addressed by the Cumulative Effects Management Association (CEMA). The paper states that the proportion of annual flow withdrawn from the Athabasca River is too low to have a significant impact on aquatic systems, but the main concern lies in water use during low flow periods, typically during the winter months. Developers will likely come under pressure to develop off-site reservoirs to store water for use during these low-flow periods. tabs., figs.

  10. Imaging of Acoustic Waves in Sand

    Energy Technology Data Exchange (ETDEWEB)

    Deason, Vance Albert; Telschow, Kenneth Louis; Watson, Scott Marshall

    2003-08-01

    There is considerable interest in detecting objects such as landmines shallowly buried in loose earth or sand. Various techniques involving microwave, acoustic, thermal and magnetic sensors have been used to detect such objects. Acoustic and microwave sensors have shown promise, especially if used together. In most cases, the sensor package is scanned over an area to eventually build up an image or map of anomalies. We are proposing an alternate, acoustic method that directly provides an image of acoustic waves in sand or soil, and their interaction with buried objects. The INEEL Laser Ultrasonic Camera utilizes dynamic holography within photorefractive recording materials. This permits one to image and demodulate acoustic waves on surfaces in real time, without scanning. A video image is produced where intensity is directly and linearly proportional to surface motion. Both specular and diffusely reflecting surfaces can be accomodated and surface motion as small as 0.1 nm can be quantitatively detected. This system was used to directly image acoustic surface waves in sand as well as in solid objects. Waves as frequencies of 16 kHz were generated using modified acoustic speakers. These waves were directed through sand toward partially buried objects. The sand container was not on a vibration isolation table, but sat on the lab floor. Interaction of wavefronts with buried objects showed reflection, diffraction and interference effects that could provide clues to location and characteristics of buried objects. Although results are preliminary, success in this effort suggests that this method could be applied to detection of buried landmines or other near-surface items such as pipes and tanks.

  11. Incipient Motion of Sand and Oil Agglomerates

    Science.gov (United States)

    Nelson, T. R.; Dalyander, S.; Jenkins, R. L., III; Penko, A.; Long, J.; Frank, D. P.; Braithwaite, E. F., III; Calantoni, J.

    2016-12-01

    Weathered oil mixed with sediment in the surf zone in the northern Gulf of Mexico after the 2010 Deepwater Horizon oil spill, forming large mats of sand and oil. Wave action fragmented the mats into sand and oil agglomerates (SOAs) with diameters of about 1 to 10 cm. These SOAs were transported by waves and currents along the Gulf Coast, and have been observed on beaches for years following the spill. SOAs are composed of 70%-95% sand by mass, with an approximate density of 2107 kg/m³. To measure the incipient motion of SOAs, experiments using artificial SOAs were conducted in the Small-Oscillatory Flow Tunnel at the U.S. Naval Research Laboratory under a range of hydrodynamic forcing. Spherical and ellipsoidal SOAs ranging in size from 0.5 to 10 cm were deployed on a fixed flat bed, a fixed rippled bed, and a movable sand bed. In the case of the movable sand bed, SOAs were placed both proud and partially buried. Motion was tracked with high-definition video and with inertial measurement units embedded in some of the SOAs. Shear stress and horizontal pressure gradients, estimated from velocity measurements made with a Nortek Vectrino Profiler, were compared with observed mobility to assess formulations for incipient motion. For SOAs smaller than 1 cm in diameter, incipient motion of spherical and ellipsoidal SOAs was consistent with predicted critical stress values. The measured shear stress at incipient motion of larger, spherical SOAs was lower than predicted, indicating an increased dependence on the horizontal pressure gradient. In contrast, the measured shear stress required to move ellipsoidal SOAs was higher than predicted, even compared to values modified for larger particles in mixed-grain riverine environments. The laboratory observations will be used to improve the prediction of incipient motion, transport, and seafloor interaction of SOAs.

  12. Woody and grassy vegetation development in different landscape elements of the Curonian spit

    Directory of Open Access Journals (Sweden)

    Algimantas Mečislovas Olšausaks

    2009-12-01

    Full Text Available The species of woody and grassy establish on seashore sands and wastes. These plants are adapted for less favorable existence conditions some of them growing in littoral habitats of excessive moisture and salinity. Other tolerates infertile and dry sand. The purpose of the study have been analyzed the dispersion vegetation in different relief elements of the coastal protective dune look for a relation between woody and grassy plant species to foresee the tendencies of further seashore landscape development. It has been established that in locations with intensive flow of visitors a net of trodden paths is formed where the plants cover is disappearing very fast as there are suitable conditions for the springtime and autumn winds to erode the coastal protective dune of the seashore of the Curonian spit. The trodden path in a couple of years turn into 2 – 3 m. vides sand drifting corridors, but the lies of the holiday makers become there 4 – 5 m. wide pit and hollow. After these formations have interconnected they shape deflations of different size. The drifting sand carried by the prevailing western direction winds swamp the beyond coastal dune plains and the outskirts of the forest and sandy meadows. The statistical analysis of projection cover of plant shows that during the last 27 years (from 1982 the conditions for vegetation survival on the Curonian spit seashore sand dunes are gradually deteriorating.

  13. Optical and radiocarbon ages of stacked paleosols and dune sands in the Nebraska Sand Hills, USA

    Science.gov (United States)

    Goble, R. J.; Mason, Joseph A.; Loope, David B.; Swinehart, James B.

    2004-05-01

    Optical ages for eolian sands from the Nebraska Sand Hills indicate periods of extensive eolian activity at ca 115±25, 840±70, 2300±240, and 3560±340 a. Activity was also noted at single sampling locations at ca 6180±370, 8430±510 and 13110±800 a. Many of these ages are similar to those noted by earlier authors. Optical ages from samples collected within paleosols indicate shorter and possibly less extensive periods of eolian activity at approximately 1220±150, 1590±110, and possibly 1950±150 a, during which the paleosol sands accumulated. What was originally interpreted as a single 1.2 m thick paleosol is shown by optical dating to consist of three or more welded soils developed within eolian sands with optical ages of ca 3800±240, 2740±240, 1560±110, and possibly 1930±140 a, each of which match eolian pulses recognized elsewhere. Scatter in some optical ages is attributable to intersection of sand-filled rodent burrows extending in outcrop 1.5 m below the contact between paleosol and overlying topset beds. A 5310±360 a optical age for one probable intersected burrow provides evidence for upward or lateral transport of older sands.

  14. Evaluate of head loss, sediment value and copper removal in sand media (rapid sand filter

    Directory of Open Access Journals (Sweden)

    Daneshi Navab

    2014-06-01

    Full Text Available Along with the technology development and increasing consumption of water resources, we are experiencing low qualities in the mentioned resources. Copper brings about serious environment al pollution, threatening human health and ecosystem. This metal found variously in water resources and industrial activities. Therefore, it needs to treat the water resources from these excessive amounts. Different methods have used for this reason but the most used method during recent years has been the absorption by economic absorbers such as sand. Rapid sand filters usually used in water and wastewater treatment plants for water clarification. In this research, a single layer gravity rapid sand filter has used to reduce different concentrations of copper. sediment value and head loss arising in filter media is simulated by using combination of Carman-Kozeny, Rose and Gregory models in different discharges of rapid sand filter. Results have shown that with increasing in discharge and decreasing in input copper concentration, arriving time to given head loss, is increasing. In addition, results demonstrated that with increasing in copper concentration in influent, removal efficiency is decreasing somewhat. Results of this research can applied in an appropriate design of rapid sand filter to copper removal, a prediction of rapid sand filter ability to copper removal and an estimation of arising head loss during filter work thus evaluating of time interval backwash. DOI: http://dx.doi.org/10.3126/ije.v3i2.10641 International Journal of the Environment Vol.3(2 2014: 276-286

  15. Yield of a Choctawhatchee Sand Pine Plantation at Age 28

    Science.gov (United States)

    Russell M. Burns; R.H. Brendemuehl

    1969-01-01

    A little-known tree, Choctawhatchee sand pine (Pinus clausa [Chapm.] Vasey), seems well adapted to the infertile, droughty soils common to the sandhills of Florida which now produce little value. Published yield data based on plantation-grown Choctawhatchee sand pine are not available. One 28-year-old plantation of this race of sand pine, growing...

  16. Fresh groundwater resources in a large sand replenishment

    NARCIS (Netherlands)

    Huizer, Sebastian; Oude Essink, G.H.P.; Bierkens, Marc

    2016-01-01

    The anticipation of sea-level rise and increases in extreme weather conditions has led to the initiation of an innovative coastal management project called the Sand Engine. In this pilot project a large volume of sand (21.5 million m3) – also called sand replenishment or nourishment – was placed on

  17. Design and management of conventional fluidized-sand biofilters

    Science.gov (United States)

    Fluidized sand biofilters (FSBs) are relatively compact, efficient, and cost-competitive biofilters, especially in recirculating systems that require maintaining consistently low levels of ammonia and nitrite. Filter sand is low cost (often $70-200/m3 of sand delivered) and has a high specific surf...

  18. Mineral processing of heavy mineral sands from Malawi and Malaysia

    OpenAIRE

    Mitchell, C J

    1992-01-01

    Processing of heavy mineral sands involves many techniques including gravity, magnetic and electrostatic separation. As part of a laboratory programme to develop effective mineral processing techniques, two mineral sands from Malawi and Malaysia were processed using the standard techniques, with emphasis placed on the Carpco electrostatic separator. These sands were initially characterised mineralogically by scanning electron microscopy (SEM), electron microprobe analysis (EPMA...

  19. Shifts in leaf N:P stoichiometry during rehabilitation in highly alkaline bauxite processing residue sand.

    Science.gov (United States)

    Goloran, Johnvie B; Chen, Chengrong; Phillips, Ian R; Elser, James J

    2015-10-07

    Large quantities of sodic and alkaline bauxite residue are produced globally as a by-product from alumina refineries. Ecological stoichiometry of key elements [nitrogen (N) and phosphorus (P)] plays a critical role in establishing vegetation cover in bauxite residue sand (BRS). Here we examined how changes in soil chemical properties over time in rehabilitated sodic and alkaline BRS affected leaf N to P stoichiometry of native species used for rehabilitation. Both Ca and soil pH influenced the shifts in leaf N:P ratios of the study species as supported by consistently significant positive relationships (P stoichiometry can effectively provide a meaningful assessment on understanding nutrient limitation and productivity of native species used for vegetating highly sodic and alkaline BRS, and is a crucial indicator for assessing ecological rehabilitation performance.

  20. Effects of feral free-roaming horses on semi-arid rangeland ecosystems: an example from the sagebrush steppe

    Science.gov (United States)

    Feral horses (Equus caballus) are viewed as a symbol of freedom and power; however, they are also a largely unmanaged, non-native grazer in North America, South America, and Australia. Information on their influence on vegetation and soil characteristics in semi-arid rangelands has been limited by ...

  1. Development of freeze dried vegetables

    Science.gov (United States)

    Larson, R. W.

    1970-01-01

    The development of freeze dried vegetables to be used in the Apollo food system is discussed. After the initial selection and screening of vegetables, several types of freeze dried vegetables were prepared in small batches. From these small batches, two vegetables were judged satisfactory for further testing and evaluation. These vegetables, mashed potatoes and asparagus, were subjected to storage at 100 deg plus or minus 5 F. for two weeks and then taste tested. The vegetables were also tested to determine if they complied with the microbiological requirements for Apollo food. The space food prototype production guide for the vegetables is submitted.

  2. The Rheology of Acoustically Fluidized Sand

    Science.gov (United States)

    Conrad, J. W.; Melosh, J.

    2013-12-01

    The collapse of large craters and the formation of central peaks and peak rings is well modeled by numerical computer codes that incorporate the acoustic fluidization mechanism to temporarily allow the fluid-like flow of rock debris immediately after crater excavation. Furthermore, long runout landslides require a similar mechanism to explain their almost frictionless movement, which is probably also a consequence of their granular composition coupled with internal vibrations. Many different investigators have now confirmed the ability of vibrations to fluidize granular materials. Yet it still remains to fully describe the rheology of vibrated sand as a function of stress, frequency and amplitude of the vibrations in the sand itself. We constructed a rotational viscometer to quantitatively investigate the relation between the stress and strain rate in a horizontal bed of strongly vibrated sand. In addition to the macroscopic stain rate, the amplitude and frequency of the vibrations produced by a pair of pneumatic vibrators were also measured with the aid of miniaturized piezoelectric accelerometers (B&K 4393) whose output was recorded on a digital storage oscilloscope. The initial gathering of the experimental data was difficult due to granular memory, but by having the sand compacted vibrationally for 8 minutes before each run the scatter of data was reduced and we were able to obtain consistent results. Nevertheless, our major source of uncertainty was variations in strain rate from run to run. We find that vibrated sand flows like a highly non-Newtonian fluid, in which the shear strain rate is proportional to stress to a power much greater than one, where the precise power depends on the amplitude and frequency of the applied vibrations. Rapid flow occurs at stresses less than half of the static yield stress (that is, the yield stress when no vibration is applied) when strong vibrations are present. For a Newtonian fluid, such as water, the relation between

  3. Contributions of different land cover types in Otindag Sandy Land and Bashang area of Hebei Province to the material source of sand stormy weather in Beijing

    Institute of Scientific and Technical Information of China (English)

    LIU Hongyan; TIAN Yuhong; DING Deng

    2003-01-01

    Different land cover types in Otindag Sandy Land and Bashang area of Hebei Province are linked to a material source of sand stormy weather in Beijing based on results of field vegetation and soil survey and laboratory works. Results of grain size analysis show that dust release potential in per unit area of moving sandy land is small, while lowland meadow and meadow steppe in stony hillshave high potential of releasing dusts in per unit area during sand stormy weather occurrence. Further considering the effects of vegetation, it is inferred that the moving sandy land served as a material source of past dust storm and the possibility of dust release in per unit area is low in current time. Typical steppe in stony hills is undergoing desertification and its dust release possibility in per unit area is high. Farmland has strong potential of release dusts when they are ploughed in spring, but a large amount of therophytes grow and thus prevent dusts from release when cultivation was terminated. Potentials of dust release in per unit area in fixed sand dunes, stony mountain meadow steppe and lowland meadow are low due to high cover of perennials. Sand dune reactivation and desiccation of lakes and lowlands under estimated future climatic change will makethem serve as a future material source of sand stormy weather.

  4. Responses of Hedysarum Laeve,a guerrilla clonal semi-shrub in the Mu Us Sandland,to local sand burial

    Institute of Scientific and Technical Information of China (English)

    LIU Fengbong; YE Xuehua; YU Feihai; DONG Ming

    2007-01-01

    In arid and semi-arid inland deserts,one of the environmental stresses for plants is recurrent sand burial,which can influence the physical and biotic microenvironments of the plants and soil.Previous studies have shown that different levels of sand burial have different effects on plants.Slight sand burial could increase the height increment,leaf biomass and the number of new ramets of the plants while heavy sand burial could impair the growth of the plants and even decrease their chances of survival.In other words,below a certain threshold level of burial,the growth of plants is stimulated probably because of multiple factors.However,as the level of burial increases,the positive response starts to decline until it becomes a negative value.Arid and semi-arid inland deserts are frequently colonized and stabilized by many rhizomatous clonal plants.Clonal physiological integration often helps clonal plants buffer local environmental stress encountered by ramets.A rhizomatous clonal semishrub,Hedysarum laeve (H.laeve),is the dominant plant species and important for vegetation restoration in the Mu Us sandland.To investigate whether clonal integration can increase the threshold of sand burial and help rhizomatous H.laeve tolerate heavy sand burial,we conducted a field experiment.The results showed that slight sand burial could accelerate ramet growth and enhance leaf biomass,stem biomass and shoot biomass,while heavy sand burial reducesed the biomass of the plant and impairs survival and growth of the ramets.Clonal integration increased the threshold of sand burial.Under heavy sand burial,ramets connected to other ramets not buried in sand were more in terms of height increment,stem biomass,leaf biomass and shoot biomass compared to the ramets encountering sand burial but disconnected from other ramets.It suggested that clonal physiological integration could help H.laeve ramets tolerate relatively heavy sand burial.We also discussed that clonal integration plays a role

  5. Using resilience and resistance concepts to manage threats to sagebrush ecosystems, Gunnison sage-grouse, and Greater sage-grouse in their eastern range: A strategic multi-scale approach

    Science.gov (United States)

    Chambers, Jeanne C.; Beck, Jeffrey L.; Campbell, Steve; Carlson, John; Christiansen, Thomas J.; Clause, Karen J.; Dinkins, Jonathan B.; Doherty, Kevin E.; Griffin, Kathleen A.; Havlina, Douglas W.; Mayer, Kenneth F.; Hennig, Jacob D.; Kurth, Laurie L.; Maestas, Jeremy D.; Manning, Mary; Mealor, Brian A.; McCarthy, Clinton; Perea, Marco A.; Pyke, David A.

    2016-01-01

    This report provides a strategic approach developed by a Western Association of Fish and Wildlife Agencies interagency working group for conservation of sagebrush ecosystems, Greater sage-grouse, and Gunnison sage-grouse. It uses information on (1) factors that influence sagebrush ecosystem resilience to disturbance and resistance to nonnative invasive annual grasses and (2) distribution and relative abundance of sage-grouse populations to address persistent ecosystem threats, such as invasive annual grasses and wildfire, and land use and development threats, such as oil and gas development and cropland conversion, to develop effective management strategies. A sage-grouse habitat matrix links relative resilience and resistance of sagebrush ecosystems with modeled sage-grouse breeding habitat probabilities to help decisionmakers assess risks and determine appropriate management strategies at both landscape and site scales. Areas for targeted management are assessed by overlaying matrix components with Greater sage-grouse Priority Areas for Conservation and Gunnison sage-grouse critical habitat and linkages, breeding bird concentration areas, and specific habitat threats. Decision tools are discussed for determining the suitability of target areas for management and the most appropriate management actions. A similar approach was developed for the Great Basin that was incorporated into the Federal land use plan amendments and served as the basis of a Bureau of Land Management Fire and Invasives Assessment Tool, which was used to prioritize sage-grouse habitat for targeted management activities.

  6. Science framework for the conservation and restoration strategy of DOI secretarial order 3336: Utilizing resilience and resistance concepts to assess threats to sagebrush ecosystems and greater sage-grouse, prioritize conservation and restoration actions, and inform management strategies

    Science.gov (United States)

    Chambers, Jeanne C.; Campbell, Steve; Carlson, John; Beck, Jeffrey L.; Clause, Karen J.; Dinkins, Jonathan B.; Doherty, Kevin E.; Espinosa, Shawn; Griffin, Kathleen A.; Christiansen, Thomas J.; Crist, Michele R.; Hanser, Steve; Havlina, Douglas W.; Henke, Kenneth F.; Hennig, Jacob D.; Kurth, Laurie L.; Maestas, Jeremy D.; Mayer, Kenneth E.; Manning, Mary; Mealor, Brian A.; McCarthy, Clinton; Pellant, Mike; Prentice, Karen L.; Perea, Marco A.; Pyke, David A.; Wiechman , Lief A.; Wuenschel, Amarina

    2016-01-01

    The Science Framework for the Conservation and Restoration Strategy of the Department of the Interior, Secretarial Order 3336 (SO 3336), Rangeland Fire Prevention, Management and Restoration, provides a strategic, multiscale approach for prioritizing areas for management and determining effective management strategies across the sagebrush biome. The emphasis of this version is on sagebrush ecosystems and greater sage-grouse. The Science Framework uses a six step process in which sagebrush ecosystem resilience to disturbance and resistance to nonnative, invasive annual grasses is linked to species habitat information based on the distribution and abundance of focal species. The predominant ecosystem and anthropogenic threats are assessed, and a habitat matrix is developed that helps decision makers evaluate risks and determine appropriate management strategies at regional and local scales. Areas are prioritized for management action using a geospatial approach that overlays resilience and resistance, species habitat information, and predominant threats. Decision tools are discussed for determining the suitability of priority areas for management and the most appropriate management actions at regional to local scales. The Science Framework and geospatial crosscut are intended to complement the mitigation strategies associated with the Greater Sage-Grouse Land Use Plan amendments for the Department of the Interior Bureaus, such as the Bureau of Land Management, and the U.S. Forest Service.

  7. Plant phenolics and absorption features in vegetation reflectance spectra near 1.66 μm

    Science.gov (United States)

    Kokaly, Raymond F.; Skidmore, Andrew K.

    2015-12-01

    Past laboratory and field studies have quantified phenolic substances in vegetative matter from reflectance measurements for understanding plant response to herbivores and insect predation. Past remote sensing studies on phenolics have evaluated crop quality and vegetation patterns caused by bedrock geology and associated variations in soil geochemistry. We examined spectra of pure phenolic compounds, common plant biochemical constituents, dry leaves, fresh leaves, and plant canopies for direct evidence of absorption features attributable to plant phenolics. Using spectral feature analysis with continuum removal, we observed that a narrow feature at 1.66 μm is persistent in spectra of manzanita, sumac, red maple, sugar maple, tea, and other species. This feature was consistent with absorption caused by aromatic Csbnd H bonds in the chemical structure of phenolic compounds and non-hydroxylated aromatics. Because of overlapping absorption by water, the feature was weaker in fresh leaf and canopy spectra compared to dry leaf measurements. Simple linear regressions of feature depth and feature area with polyphenol concentration in tea resulted in high correlations and low errors (% phenol by dry weight) at the dry leaf (r2 = 0.95, RMSE = 1.0%, n = 56), fresh leaf (r2 = 0.79, RMSE = 2.1%, n = 56), and canopy (r2 = 0.78, RMSE = 1.0%, n = 13) levels of measurement. Spectra of leaves, needles, and canopies of big sagebrush and evergreens exhibited a weak absorption feature centered near 1.63 μm, short ward of the phenolic compounds, possibly consistent with terpenes. This study demonstrates that subtle variation in vegetation spectra in the shortwave infrared can directly indicate biochemical constituents and be used to quantify them. Phenolics are of lesser abundance compared to the major plant constituents but, nonetheless, have important plant functions and ecological significance. Additional research is needed to advance our understanding of the spectral influences

  8. Using Large-Scale Roughness Elements to Control Sand and Dust Flux at the Keeler Dunes, Keeler, CA

    Science.gov (United States)

    Gillies, John; McCarley-Holder, Grace

    2014-05-01

    Controlling dust emission from areas that subsequently degrade air quality and threaten human and animal health and reduce the quality of life for people residing in proximity to such sources is necessary, but also challenging. Recent research has indicated that arrays of large roughness elements (height >0.3 m) can be used effectively to modulate sand transport and the associated dust emissions. Prediction of the rate of sand flux reduction as a function of downwind distance upon entering an array of roughness elements, and the equilibrium flux reduction in the interior of the array is possible using the known geometric properties of the roughness elements, their number, and published relationships. Air quality in the town of Keeler, CA (36 deg 29' 17.92" N, 117 deg 52' 24.62" W) is degraded by levels of particulate matter elements composed of solid elements and managed vegetation to meet sand and dust flux reduction criteria. This project has two major goals: 1) to demonstrate that solid roughness elements placed on areas of the Keeler Dunes immediately arrest sand movement to specified levels (target of 85% reduction), and 2) to assess whether native plant species, planted in the sheltered area of the solid roughness elements can effectively thrive and subsequently replace the solid roughness to achieve the desired sand flux reduction control efficiency. This poster describes the results related mostly to objective one, as considerable time has to pass before sufficient data will be obtained to evaluate the success of the planted and managed vegetation to achieve a control level provided by the solid element roughness array.

  9. Locomotory transition from water to sand and its effects on undulatory kinematics in sand lances (Ammodytidae).

    Science.gov (United States)

    Gidmark, Nicholas J; Strother, James A; Horton, Jaquan M; Summers, Adam P; Brainerd, Elizabeth L

    2011-02-15

    Sand lances, fishes in the genus Ammodytes, exhibit a peculiar burrowing behavior in which they appear to swim rapidly into the substrate. They use posteriorly propagated undulations of the body to move in both water, a Newtonian fluid, and in sand, a non-Newtonian, granular substrate. In typical aquatic limbless locomotion, undulations of the body push against water, which flows because it is incapable of supporting the static stresses exerted by the animal, thus the undulations move in world space (slipping wave locomotion). In typical terrestrial limbless locomotion, these undulations push against substrate irregularities and move relatively little in world space (non-slipping wave locomotion). We used standard and X-ray video to determine the roles of slipping wave and non-slipping wave locomotion during burrowing in sand lances. We find that sand lances in water use slipping wave locomotion, similar to most aquatic undulators, but switch to non-slipping waves once they burrow. We identify a progression of three stages in the burrowing process: first, aquatic undulations similar to typical anguilliform locomotion (but without head yaw) push the head into the sand; second, more pronounced undulations of the aquatic portion of the body push most of the animal below ground; third, the remaining above-ground portion of the body ceases undulation and the subterranean portion takes over, transitioning to non-slipping wave locomotion. We find no evidence that sand lances use their body motions to fluidize the sand. Instead, as soon as enough of the body is underground, they undergo a kinematic shift and locomote like terrestrial limbless vertebrates.

  10. Observation (Geomorphology) of the largest mega sand of central Iran Desert, Lut, Using Remote sensing data

    Science.gov (United States)

    Abdollhai, A.; Yamani, M.

    2009-04-01

    It is believed that the Lut desert features, in elevation and volume, are unique (even in the world) in central Iran. These huge morphological features will be an excellent Sedimentary Archive in quaternary explaining the climate condition and distribution of desert surface features on the earth, meanwhile the attention less has gone on the Aeolian features in the area of interest because it is hard to access. This papers aims to present these unique features by remote sensing data. Remote sensing data including, Irs Aster, Srtm and Arial photograph data were used to measure the dune migration and other aspects of desert environment. Sand dune morphology encompasses almost all typical desert features including single, linear, pyramid, star sand and others. compressing remote sensing data between 1955 and 2000 approves the single Barkhan is being migrated at the rate of 22.65 M per year and accelerate at the last period between 2000 and 2008. A large part of scarce vegetation represents active and rapid migration creating huge morphological features. Linear dune elevation reaches more than 430 M and shows the highest elevation of dune activity on Earth. To evaluate surface temperature Aster 08 production were used. The surface temperature on the sand is probably the highest temperature received by solar energy around 84 Celsius degrees resulting High thermal cell in central Iran. This causes to create huge morphological features in central Iran reaching more than 400 m high due to repetition and reactivation under closed circumstance system.

  11. Xylocopa bees in tropical coastal sand dunes: use of resources and their floral syndromes.

    Science.gov (United States)

    Figueiredo, N; Gimenes, M; de Miranda, M D; Oliveira-Rebouças, P

    2013-06-01

    Large bees such as species from Xylocopa Latreille are usually associated with pollination in tropical sand dune areas, which frequently present shrubby herbaceous vegetation adapted to conditions of high salinity, high solar radiation and strong winds. We report on the diversity of Xylocopa and the plants they visited to collect nectar and pollen, focusing on the floral syndromes they present in these plants and on the breadth of the trophic niche in a tropical sand dune fragment over the year. The field work was carried out monthly in Baixio (Bahia, Brazil; Northern Coast Environmental Protection Area) from April 2008 to March 2009, over two consecutive days, from 06:30 AM to 05:00 PM. The medium-large body sized Xylocopa (Neoxylocopa) cearensis Ducke and Xylocopa (Schonnherria) subcyanea Pérez were noticeable for their frequency, constancy on the flowers and sharing of plant species. Xylocopa spp. visited plants with flowers of different shapes, colors, inflorescence arrangement and syndromes. However, their resource collections were mainly concentrated on Cuphea brachiata, Waltheria cinerascens, Croton sellowii and Chamaecrista ramosa, which may be considered key species for Xylocopa spp. maintenance in coastal sand dune and restinga environments in Northeast Brazil.

  12. InSAR Monitoring of Surface Deformation in Alberta's Oil Sands

    Science.gov (United States)

    Pearse, J.; Singhroy, V.; Li, J.; Samsonov, S. V.; Shipman, T.; Froese, C. R.

    2013-05-01

    Alberta's oil sands are among the world's largest deposits of crude oil, and more than 80% of it is too deep to mine, so unconventional in-situ methods are used for extraction. Most in situ extraction techniques, such as Steam-Assisted Gravity Drainage (SAGD), use steam injection to reduce the viscosity of the bitumen, allowing it to flow into wells to be pumped to the surface. As part of the oil sands safety and environmental monitoring program, the energy regulator uses satellite radar to monitor surface deformation associated with in-situ oil extraction. The dense vegetation and sparse infrastructure in the boreal forest of northern Alberta make InSAR monitoring a challenge; however, we have found that surface heave associated with steam injection can be detected using traditional differential InSAR. Infrastructure and installed corner reflectors also allow us to use persistent scatterer methods to obtain time histories of deformation at individual sites. We have collected and processed several tracks of RADARSAT-2 data over a broad area of the oil sands, and have detected surface deformation signals of approximately 2-3 cm per year, with time series that correlate strongly with monthly SAGD steam injection volumes.

  13. Sand and clay mineralogy of sal forest soils of the Doon Siwalik Himalayas

    Indian Academy of Sciences (India)

    Mukesh; R K Manhas; A K Tripathi; A K Raina; M K Gupta; S K Kamboj

    2011-02-01

    The peteromineralogical characterization of the soil was carried out for the 12 soil profiles exposed in the Shorea robusta dominated forests of the Siwalik forest division, Dehradun. The quartz was observed as the dominating light mineral fraction (64–80%) in all the profiles studied. Biotite, hornblende, zircon, tourmaline, rutile and opaques comprising of iron minerals constituted the heavy mineral fraction (20%). The mineralogy of both the sand and clay fractions revealed a mixed mineralogy. The clay minerals in the order of their dominance were vermiculite, illite, kaolinite and mixed layer minerals. The presence of vermiculite and illite in appreciable quantities indicates that these were synthesized from the K-rich soil solution, as orthoclase and micas were present in significant quantities in the sand minerals. The mineral suites identified in the study shows that the geological, climatological and topographical factors of the region collectively played a dominant role in their formation and transformation. After critical appraisal of the results, it may be deduced that the mineralogical composition, physicochemical properties and total elemental analysis of the soils do not show any deficiency of the bases and other plant nutrients in general. The inherent fertility of the soil is good as indicated by the sand and clay mineralogy of the soil and the biotite and feldspar together with the mica is an important source of nutrients for the vegetation in the soils of the Doon valley.

  14. Longshore sediment transport at Golden Sands (Bulgaria

    Directory of Open Access Journals (Sweden)

    Hristo Nikolov

    2006-09-01

    Full Text Available The paper presents the results of studies on the qualitative and quantitative features of the littoral drift at Golden Sands (Bulgaria, carried out jointly by Polish and Bulgarian researchers. The mathematical modelling of physical coastal processes took wave transformation (wave diffraction and refraction; the effects of shoaling and wave breaking and longshore sediment transport into account. The computations were carried out for the mean statistical annual wave climate, determined on the basis of IO BAS wave data, simulated using the WAM method from long-term Black Sea wind data. The results of sediment transport computations clearly show that its direction off the Golden Sands shore is from north to south.

  15. Post-liquefaction reconsolidation of sand.

    Science.gov (United States)

    Adamidis, O; Madabhushi, G S P

    2016-02-01

    Loosely packed sand that is saturated with water can liquefy during an earthquake, potentially causing significant damage. Once the shaking is over, the excess pore water pressures that developed during the earthquake gradually dissipate, while the surface of the soil settles, in a process called post-liquefaction reconsolidation. When examining reconsolidation, the soil is typically divided in liquefied and solidified parts, which are modelled separately. The aim of this paper is to show that this fragmentation is not necessary. By assuming that the hydraulic conductivity and the one-dimensional stiffness of liquefied sand have real, positive values, the equation of consolidation can be numerically solved throughout a reconsolidating layer. Predictions made in this manner show good agreement with geotechnical centrifuge experiments. It is shown that the variation of one-dimensional stiffness with effective stress and void ratio is the most crucial parameter in accurately capturing reconsolidation.

  16. Three dimensional fabric evolution of sheared sand

    Energy Technology Data Exchange (ETDEWEB)

    Hasan, Alsidqi; Alshibli, Khalid (UWA)

    2012-10-24

    Granular particles undergo translation and rolling when they are sheared. This paper presents a three-dimensional (3D) experimental assessment of fabric evolution of sheared sand at the particle level. F-75 Ottawa sand specimen was tested under an axisymmetric triaxial loading condition. It measured 9.5 mm in diameter and 20 mm in height. The quantitative evaluation was conducted by analyzing 3D high-resolution x-ray synchrotron micro-tomography images of the specimen at eight axial strain levels. The analyses included visualization of particle translation and rotation, and quantification of fabric orientation as shearing continued. Representative individual particles were successfully tracked and visualized to assess the mode of interaction between them. This paper discusses fabric evolution and compares the evolution of particles within and outside the shear band as shearing continues. Changes in particle orientation distributions are presented using fabric histograms and fabric tensor.

  17. Rational approach to anisotropy of sand

    Science.gov (United States)

    Wu, Wei

    1998-11-01

    The paper presents a constitutive model for the three-dimensional deformation-strength behaviour of inherently anisotropic sand. Based on non-linear tensorial functions, the model is developed without recourse to the concepts in plasticity theory such as yield surface and plastic potential. Benefited from the fact that no decomposition of strain into elastic and plastic parts is assumed, a unified treatment of anisotropic behaviour of deformation and strength is achieved. Anisotropy is characterized by a vector normal to the bedding plane. The extension of the constitutive model is furnished by incorporating the vector under consideration of the principle of objectivity and the condition of material symmetry. Distinct features of the model are its elegant formulation and its simple structure involving few material parameters. Model performance and comparison with experiments show that the model is capable of capturing the salient behaviour of anisotropic sand.

  18. Bioaugmentation of flow-through sand filters

    DEFF Research Database (Denmark)

    Samuelsen, Elin Djurhuus

    Global applications of pesticides in agricultural production have led to the detection of trace amounts of pesticides in groundwater resources in levels exceeding the EU threshold limit for drinking water of 0.1 µg L-1. Pesticide-polluted groundwater may be remediated by inoculating waterworks sand...... filters with specific degrading bacteria. However, degradation efficiency is often hampered by poor adhesion and a lack of sustained catabolic activity of the introduced bacteria. The overall objective of this thesis was to investigate the significance of selected bacterial surface properties...... coincided with efficient mineralisation/degradation, and proposed the tfdC gene as a suitable marker for monitoring phenoxy acid degradation in strain PM2. Furthermore, when testing strain PM2s degradation performance in flow-through sand columns, we found that strain PM2 was able to sustain induced...

  19. Analysis of Wind-blown Sand Movement over Transverse Dunes

    Science.gov (United States)

    Jiang, Hong; Huang, Ning; Zhu, Yuanjian

    2014-12-01

    Wind-blown sand movement often occurs in a very complicated desert environment where sand dunes and ripples are the basic forms. However, most current studies on the theoretic and numerical models of wind-blown sand movement only consider ideal conditions such as steady wind velocity, flat sand surface, etc. In fact, the windward slope gradient plays a great role in the lift-off and sand particle saltation. In this paper, we propose a numerical model for the coupling effect between wind flow and saltating sand particles to simulate wind-blown sand movement over the slope surface and use the SIMPLE algorithm to calculate wind flow and simulate sands transport by tracking sand particle trajectories. We furthermore compare the result of numerical simulation with wind tunnel experiments. These results prove that sand particles have obvious effect on wind flow, especially that over the leeward slope. This study is a preliminary study on windblown sand movement in a complex terrain, and is of significance in the control of dust storms and land desertification.

  20. Field Measurements of Influence of Sand Transport Rate on Structure of Wind-sand Flow over Coastal Transverse Ridge

    Institute of Scientific and Technical Information of China (English)

    DONG Yuxiang; S L NAMIKAS; P A HESP; MA Jun

    2008-01-01

    The structure of wind-sand flow under different total sand transport rates was measured with field vertical anemometer and sand trap on the crest of typical coastal transverse ridge in Changli Gold Coast of Hebei Province,which is one of the most typical coastal aeolian distribution regions in China and famous for the tall and typical coastal transverse ridges.The measurement results show that,on the conditions of approximate wind velocities and same surface materials and environments,some changes happen to the structure of wind-sand flow with the increase of total sand transport rate on the crest of coastal transverse ridge.First,the sand transport rates of layers at different heights in the wind-sand flow increase,with the maximum increase at the height layer of 4-8cm.Second,the ratios of sand transport rates of layers at different heights to total sand transport rate decrease at the low height layer (0-4cm),but increase at the high height layer (4-60cm).Third,the distribution of the sand transport rate in the wind-sand flow can be expressed by an exponential function at the height layer of 0-40cm,but it changes fi'om power function model to exponential function model in the whole height layer (0-60cm) and changes into polynomial function model at the height layer of 40-60cm with the increase of total sand transport rate.Those changes have a close relationship with the limit of sand grain size of wind flow transporting and composition of sand grain size in the wind-sand flow.

  1. Study of the anti-sand sucker rod pump

    Science.gov (United States)

    Wei, Hangxin; Lv, Bingxin; Xi, Wenkui; Yi, Peng

    2017-06-01

    In order to solve the problem of sand stuck in the sucker rod pump, an anti-sand sucker rod pump is designed. The anti-sand sucker rod pump includes the conventional sucker rod pump and the swirl flow device. The sand particles can be separated from the oil in the swirl flow device, so the plunger of the sucker rod pump cannot be stuck. The motion equation of the sand particles in oil is deduced. The virtual model of the swirl flow device is built in GAMBIT software. And simulation of solid-liquid two phase flow is simulated in software FLUENT. The simulation results show that the swirl flow device can realize the sand particles separation from the oil completely. So the pump can have the effect of anti-sands.

  2. Strength and sintering effects at ejection of explosively driven sand

    Science.gov (United States)

    Resnyansky, A. D.; Weckert, S. A.

    2014-05-01

    A description of the response of sand to extreme loads is very important for the evaluation of the sand ejecta impact effects on various targets. Sand is a complex material to simulate because of its porosity where the inter-phase equilibrium is hard to achieve under transient shock wave loading. A previously developed two-phase model with strength has been implemented in CTH and applied to sand. The shock response of the sand, including the Hugoniot abnormality known from the literature for highly porous silica, is adequately described with the material model. The sand unloading effects appearing as the ejecta are observed in the present work using dynamic flash X-ray of an aluminium target plate loaded by limestone sand ejecta from the detonation of a buried high explosive charge. The CTH modelling results compared with the flash X-ray images have demonstrated good agreement, particularly, in the description of momentum transfer to the target.

  3. A transport-rate model of wind-blown sand

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Sand transport by wind plays an important role in environmental problems.Formulating the sand-transport rate model has been of continuing significance,because the majority of the existing models relate sand-transport rate to the wind-shear velocity.However,the wind-shear velocity readapted to blown sand is difficult to determine from the measured wind profiles when sand movement occurs,especially at high wind velocity.Detailed wind tunnel tests were carried out to reformulate the sand-transport rate model,followed by attempts to relate sand-transport rate to parameters of wind velocity,threshold shear-velocity,and grain size.Finally,we validated the model based on the data from field observations.

  4. Athabasca oil sands development : lessening the footprint

    Energy Technology Data Exchange (ETDEWEB)

    Dyer, R. [Alberta Environment, AB (Canada)

    2005-07-01

    This presentation provided an overview of the oil sands development footprint from the perspectives of industry, environmental associations and regulatory agencies. A map of regional oil sands developments was presented along with details of land disturbance to date. Industry strategies for lessening the impact of land disturbance include compact space-efficient mining operations; good planning; and effective, progressive reclamation. A closure and reclamation model was presented, along with key reclamation challenges such as overburden. Issues concerning tailings sands were examined. Details of Syncrude's closure vision were presented, including details of the Mildred Lake site. Details of the Fort McMurray Environmental Association were presented as well as various regional multi-stakeholder initiatives. A background of Syncrude and Suncor operations was presented as well as development projection forecasts. Impacts to the Boreal region were examined. Details of land reclamation by Syncrude were provided, as well as a chart of cumulative disturbances. It was noted that recent applications have indicated numerous reclamation uncertainties, including long-term performance of landforms and the feasibility of developing trafficable tailings landforms. It was suggested that the ecosystem dynamics of the Boreal are poorly understood. Exacerbating factors include the degraded state of soils; viability of end pit lakes; and climate change. It was suggested that operators are proposing to deal with landscape and technology uncertainty using adaptive management strategies. Government responses to the oil sand development footprint include the encouragement of more research into tailings technologies, end pit lake viability and reclamation; and the identification of regional landscape ecological thresholds by the Cumulative Environmental Management Association (CEMA). It was concluded that uncertainty needs to be addressed via a variety of policy and management options

  5. Pullout capacity of batter pile in sand.

    Science.gov (United States)

    Nazir, Ashraf; Nasr, Ahmed

    2013-03-01

    Many offshore structures are subjected to overturning moments due to wind load, wave pressure, and ship impacts. Also most of retaining walls are subjected to horizontal forces and bending moments, these forces are due to earth pressure. For foundations in such structures, usually a combination of vertical and batter piles is used. Little information is available in the literature about estimating the capacity of piles under uplift. In cases where these supporting piles are not vertical, the behavior under axial pullout is not well established. In order to delineate the significant variables affecting the ultimate uplift shaft resistance of batter pile in dry sand, a testing program comprising 62 pullout tests was conducted. The tests are conducted on model steel pile installed in loose, medium, and dense sand to an embedded depth ratio, L/d, vary from 7.5 to 30 and with various batter angles of 0°, 10°, 20°, and 30°. Results indicate that the pullout capacity of a batter pile constructed in dense and/or medium density sand increases with the increase of batter angle attains maximum value and then decreases, the maximum value of Pα occurs at batter angle approximately equal to 20°, and it is about 21-31% more than the vertical pile capacity, while the pullout capacity for batter pile that constructed in loose sand decreases with the increase of pile inclination. The results also indicated that the circular pile is more resistant to pullout forces than the square and rectangular pile shape. The rough model piles tested is experienced 18-75% increase in capacity compared with the smooth model piles. The suggested relations for the pullout capacity of batter pile regarding the vertical pile capacity are well predicted.

  6. Kirsten Sand. Arkitekt for sin tid

    Directory of Open Access Journals (Sweden)

    Elisabeth Seip

    2015-12-01

    Full Text Available Towards the end of World War II the retreating Germans burnt down nearly all buildings and other constructions in the counties of Finnmark and the northern parts of Troms in North Norway. The population evacuated but many returned as soon as possible, only to find themselves homeless. At this very demanding point Kirsten Sand decided to travel north, and do whatever she could as an architect to help. The pre-war housing situation was generally difficult. Low building standards and lack of money forced families in the cities to live under bad conditions. Kirsten Sand studied these conditions and took part in the efforts to better the situation. This knowledge provided a good starting point for the work she undertook after the war, in particular her profound understanding of the situation of women, their working conditions and positions in the household and society. Houses designed by Sand and her helpmates are simple but adequate, taking into account these women’s point of view. Ingebjørg Hage has thrown light on the work of Kirsten Sand in Finnmark and Troms in several ways. This article aims at describing Sand’s background as an architect before she left Oslo to travel north. It describes how housing and housing policy since long had been central to architects, especially so within the group she belonged to. In pre-war Oslo she had been engaged in planning and designing hospitals. During a period as inspector for the health authorities she learned a lot about the living conditions of people in general. After establishing her own architect’s office she mostly designed family houses, and during the war she engaged in research that further deepened her knowledge in the field. Thus she was particularly well equipped for the demanding tasks she undertook in the summer of 1945.

  7. Pullout capacity of batter pile in sand

    Directory of Open Access Journals (Sweden)

    Ashraf Nazir

    2013-03-01

    Full Text Available Many offshore structures are subjected to overturning moments due to wind load, wave pressure, and ship impacts. Also most of retaining walls are subjected to horizontal forces and bending moments, these forces are due to earth pressure. For foundations in such structures, usually a combination of vertical and batter piles is used. Little information is available in the literature about estimating the capacity of piles under uplift. In cases where these supporting piles are not vertical, the behavior under axial pullout is not well established. In order to delineate the significant variables affecting the ultimate uplift shaft resistance of batter pile in dry sand, a testing program comprising 62 pullout tests was conducted. The tests are conducted on model steel pile installed in loose, medium, and dense sand to an embedded depth ratio, L/d, vary from 7.5 to 30 and with various batter angles of 0°, 10°, 20°, and 30°. Results indicate that the pullout capacity of a batter pile constructed in dense and/or medium density sand increases with the increase of batter angle attains maximum value and then decreases, the maximum value of Pα occurs at batter angle approximately equal to 20°, and it is about 21–31% more than the vertical pile capacity, while the pullout capacity for batter pile that constructed in loose sand decreases with the increase of pile inclination. The results also indicated that the circular pile is more resistant to pullout forces than the square and rectangular pile shape. The rough model piles tested is experienced 18–75% increase in capacity compared with the smooth model piles. The suggested relations for the pullout capacity of batter pile regarding the vertical pile capacity are well predicted.

  8. Solvent extraction of Southern US tar sands

    Energy Technology Data Exchange (ETDEWEB)

    Penney, W.R.

    1990-01-01

    The Department of Chemical Engineering at the University of Arkansas, in association with Diversified Petroleum Recovery, Inc. (DPR) of Little Rock, Arkansas, has been developing a solvent extraction process for the recovery of bitumen from tar sands for the past five years. The unique feature of the process is that the bitumen is recovered from the solvent by contacting with a co-solvent, which causes the bitumen to precipitate. The overall purpose of this project is to study both the technical and economic feasibility of applying this technology for recovery of bitumen from tar sands by (1) investigating the socioeconmic factors which affect (a) plant siting and (b) the market value of recovered bitumen; (2) operating a process demonstration unit at the rate of 1 lb/hr recovered bitumen while producing clean sand and recyclable solvents; and (3) determine the economic conditions which will make a bitumen recovery project economical. DPR has analyzed the historical trends of domestic production, consumption, discoveries and reserves of crude oil. They have started an investigation of the volatility in the price of crude oil and of gasoline prices and of the differential between gasoline and crude oil. DPR continues to analyze the geographical movement and demand for asphalt products. Utah does not appear economically attractive as a site for a bitumen from tar sands asphalt plant. Oklahoma sites are now being studied. This report also contains the quarterly progress report from a University of Nevada study to determine bitumen composition, oxygen uptake rates, and viscosities of Alabama and Utah bitumens. Both reports have been indexed separately for inclusion on the data base.

  9. Solvent extraction of Southern US tar sands

    Energy Technology Data Exchange (ETDEWEB)

    Penney, W.R.

    1990-01-01

    The Department of Chemical Engineering at the University of Arkansas, in association with Diversified Petroleum Recovery, Inc. (DPR) of Little Rock, Arkansas, has been developing a solvent extraction process for the recovery of bitumen from tar sands for the past five years. The unique feature of the process is that the bitumen is recovered from the solvent by contacting with a co-solvent, which causes the bitumen to precipitate. The overall purpose of this project is to study both the technical and economic feasibility of applying this technology for recovery of bitumen from tar sands by (1) investigating the socioeconmic factors which affect (a) plant siting and (b) the market value of recovered bitumen; (2) operating a process demonstration unit at the rate of 1 lb/hr recovered bitumen while producing clean sand and recyclable solvents; and (3) determine the economic conditions which will make a bitumen recovery project economical. DPR has analyzed the historical trends of domestic production, consumption, discoveries and reserves of crude oil. They have started an investigation of the volatility in the price of crude oil and of gasoline prices and of the differential between gasoline and crude oil. DPR continues to analyze the geographical movement and demand for asphalt products. Utah does not appear economically attractive as a site for a bitumen from tar sands asphalt plant. Oklahoma sites are now being studied. This report also contains the quarterly progress report from a University of Nevada study to determine bitumen composition, oxygen uptake rates, and viscosities of Alabama and Utah bitumens. Both reports have been indexed separately for inclusion on the data base.

  10. Guide to preparing SAND reports. Revised

    Energy Technology Data Exchange (ETDEWEB)

    Locke, T.K. [ed.

    1996-04-01

    This guide contains basic information needed to produce a SAND report. Its guidelines reflect DOE regulation and Sandia policy. The guide includes basic writing instructions in an annotated sample report; guidance for organization, format, and layout of reports produced by line organizations; and information about conference papers, journal articles, and brochures. The appendixes contain sections on Sandia`s preferred usage, equations, references, copyrights and permissions, and publishing terms.

  11. Sorption of Arsenite onto Mackinawite Coated Sand

    Science.gov (United States)

    Gallegos, T. J.; Hayes, K. F.; Abriola, L. M.

    2004-05-01

    Arsenic contamination of groundwater is a widespread problem affecting aquifers in the United States as well as abroad. Recent strengthening of the US EPA MCL for arsenic has prompted the need for technology capable of removing both arsenite and arsenate from solution. Arsenite, the more toxic form of arsenic, is more difficult to remove from anoxic zones in the subsurface. Studies by others have demonstrated the affinity of some types of iron sulfides for arsenite, such as troilite, pyrite, amorphous iron sulfide and mackinawite. However, these studies have not provided a comprehensive investigation of the macroscopic behavior of arsenite in the presence of crystalline mackinawite in a form that can be readily applied to real-world treatment technologies. This study examines the behavior of arsenite in the presence of mackinawite coated sand. PH edge results demonstrate that arsenite sorption onto mackinawite coated sand increases with increasing pH, reaching maximum removal at pH 10. Arsenite removal, albeit slight, occurring below pH 5 is independent of pH indicative of a different removal mechanism. Isotherm studies show that at low concentrations, removal is Langmuirian in nature. Arsenite sorption abruptly converts to linear behavior at high concentrations, possibly attributed to the saturation of the monolayer. Ionic strength effects were assessed by comparing pH edge data developed for three different concentrations of NaCl background electrolyte solution. Increases in ionic strength enhance the removal of arsenite from solution, suggesting possible inner-sphere surface complexation removal mechanisms. Information gathered in this study can be used to further develop surface complexation models to describe and predict reactivity of arsenite in the presence of mackinawite coated sands in anoxic regions. Mackinawite coated sands investigated here may provide a feasible reactive medium for implementation in above-ground sorption reactors or subsurface

  12. PHYSICAL MODELING OF ODOMETRIC COMPRESSION OF SAND

    Directory of Open Access Journals (Sweden)

    Lyashenko P. A.

    2016-10-01

    Full Text Available The odometric compression of sand with constant rate of loading (CRL or constant rate of deformation (CRD and continuous registration of the corresponding reaction allows to identify the effect of stepwise changes of deformation (at the CRL and the power reaction (at the CRD. Physical modeling of compression on the sandy model showed the same effect. The physical model was made of fine sand with marks, mimicking large inclusions. Compression of the soil at the CRD was uneven, stepwise, and the strain rate of the upper boundary of the sandy model changed cyclically. Maximum amplitudes of cycles passed through a maximum. Inside of the sand model, the uneven strain resulted in the mutual displacement of the adjacent parts located at the same depth. The growth of external pressure, the marks showed an increase or decrease in displacement and even move opposite to the direction of movement (settlement the upper boundary of the model ‒ "floating" of marks. Marks, at different depths, got at the same time different movements, including mutually contradictory. The mark settlements sudden growth when the sufficiently large pressure. These increments in settlements remained until the end of loading decreasing with depth. They were a confirmation of the hypothesis about the total destruction of the soil sample at a pressure of "structural strength". The hypothesis of the "floating" reason based on the obvious assumption that the marks are moved together with the surrounding sand. The explanation of the effect of "floating" is supported by the fact that the value of "floating" the more, the greater the depth

  13. Sand Ripple Dynamics on the Inner Shelf

    Science.gov (United States)

    2006-01-01

    Sand Ripple Dynamics on the Inner Shelf Donald N. Slinn Department of Civil and Coastal Engineering, University of Florida Gainesville, FL 32611...Florida,Department of Civil and Coastal Engineering,Gainesville,FL,32611-6590 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING/MONITORING AGENCY...2002. 452: p. 1-24. Acrivos, A., Shear-Induced Particle Diffusion in Concentrated Suspensions of Noncolloidal Particles. Journal of Rheology , 1995

  14. Drawing a Line in the Sand

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    An Inner Mongolian woman takes on the desert and converts extensive arid regions into arable land by Ni Yanshuo CONVERTING vast tracks of desert into arable land is no easy task, even using the most advanced technology.Yet a woman who hails from north China’s Inner Mongolia Autonomous Region met this challenge head on.Using the helping hands of other determined women,she has made remarkable progress in pushing back the sands of time.

  15. Drained Triaxial Tests on Eastern Scheldt Sand

    DEFF Research Database (Denmark)

    Praastrup, U.; Jakobsen, Kim Parsberg

    In the process of understanding and developing models for geomaterials, the stress-strain behaviour is commonly studied by performing triaxial tests. In the present study static triaxial tests have been performed to gain knowledge of the stress-strain behaviour of frictional materials during...... monotonic loading. The tests reported herein are all drained tests, starting from different initial states of stress and following various stress paths. AIl the tests are performed on reconstituted medium dense specimens of Eastern Scheldt Sand....

  16. Waste foundry sand: Environmental implication and characterization

    Directory of Open Access Journals (Sweden)

    Gabriela Penkaitis

    2012-12-01

    Full Text Available This paper presents the results of analyses using Scanning Electron Microscopy in field samples of waste foundry sand, as well as the results of granulometric, chemical and groundwater analyses. Field data allowed to characterize waste foundry sand and showed that there are elevated concentrations of metals in the groundwater (iron, manganese, boron and selenium, in addition to other potentially toxic elements (chromium, copper, cobalt, nickel, zinc, aluminum, iron, manganese, which are present in the waste and are considered not hazardous by current standards. Even if these elements are not considered hazardous, their concentrations above the permissible limit compromise the environmental quality of the site, posing risks to the local population, since they work in agriculture and use groundwater. Two different types of waste foundry sands were identified using granulometric analyses. Electron microscopy showed features related to morphological, chemical and mineralogical characteristics of grains that make up the waste. Quartz was the dominant mineral. Waste foundry sand is composed of two types of grains: a rounded grain with almost no incrustations formed during alloy production, and a second type of grain, which is not rounded, has incrustations, and always has several metals derived from alloys and associated with these incrustations. Chemical elements detected in groundwater with concentrations above the limits established by the regulatory bodies were found in wells located in the landfill area. Most of these elements show higher concentrations downstream, some of them with concentrations above the regulatory limit, and others show an increase in concentration upstream, indicating that the landfill may be impacting the local environment.

  17. American Las Vegas Sands Corp. Visiting Beijing

    Institute of Scientific and Technical Information of China (English)

    Li Yinghong; Liu Jinliang

    2006-01-01

    @@ On August 29, Wan Jifei, Chairman of CCPIT, meets the visiting delegation led by Sheldon G. Adelson,Chairman of the Board and principal owner of Las Vegas Sands Corp. in CCPIT. Zhao Zhenge, Vice Director of International Connection Department of CCPIT, Luo Guoxiong from Beijing China Exhibition Investment Company, Xu Jingyi, Assistant Director of American and Oceanian Affairs Division of CCPIT, also attended the meeting.

  18. Oil sands mining water use and management

    Energy Technology Data Exchange (ETDEWEB)

    Bender, M.; Long, D.; Fitch, M. [Golder Associates Ltd., Calgary, AB (Canada)

    2010-07-01

    There are currently 4 bitumen mining operations operating along the Athabasca River in northern Alberta. This paper presented details of the water licences, historical water use, present water use, and future plans for water management in relation to oil sands mining operations. The study was based on work currently conducted for the Oil Sands Developers Group (OSDG) and Canadian Association of Petroleum Producers (CAPP), as well as on mine site water balance analyses for proposed mines in the region. Typical mine site water balances were discussed, and water use rates for the mining operations were reviewed. The new Athabasca River water management framework may require that mines provide additional water storage or delayed reclamation of mine areas in order to offset water losses during winter low-flow periods. New regulations may also reduce the requirement for make-up water. The study also noted that release criteria are still being developed for on-site water within closed-loop mine operations. The oil sands industry will need to balance various factors related to water use in the future. 5 refs., 3 figs.

  19. DYNAMIC EFFECTIVE SHEAR STRENGTH OF SATURATED SAND

    Institute of Scientific and Technical Information of China (English)

    邵生俊; 谢定义

    2002-01-01

    The dynamic effective shear strength of saturated sand under cyclic loading is discussed in this paper. The discussion includes the transient time dependency behaviors based on the analysis of the results obtained in conventional cyclic triaxial tests and cyclic torsional shear triaxial tests. It has been found that the dynamic effective shear strength is composed of effective frictional resistance and viscous resistance, which are characterized by the strain rate dependent feature of strength magnitude, the coupling of consolidation stress with cyclic stress and the dependency of time needed to make the soil strength suffciently mobilized, and can also be expressed by the extended Mohr-Coulomb's law. The two strength parameters of the dynamic effective internal frictional angle φd and the dynamic viscosity coefficient η are determined. The former is unvaried for different number of cyclic loading, dynamic stress form and consolidation stress ratio. And the later is unvaried for the different dynamic shear strain rate γt developed during the sand liquefaction, but increases with the increase of initial density of sand. The generalization of dynamic effective stress strength criterion in the 3-dimensional effective stress space is studied in detail for the purpose of its practical use.

  20. Collaborative production management for oil sands operations

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, Andrew [Matrikon (Canada)

    2011-07-01

    This paper gives an overview of the collaborative production management of oil sands operations. Some characteristics of oil sands operations include oil treatment, hydro treating, diluent addition, logistics, and environmental impact assessments. Some of the business challenges include regulatory uncertainty, a fluid workforce and a technology still in the process of being developed. Improvement is only possible when process is assessed and measured; hence, production data management is very important. Production data measurements encompass such areas as planning, documentation and transactions. Regulatory data reporting is represented using a flow chart. The concepts of business application architecture and functional reference modeling are also explained. Benchmarking plays a vital role, some aspects of which would be technology, automation and integration. Certain advantages of timely assessment are increased production, equity, and goodwill as well as reduction in costs, risk, and capital requirements. The relevance and importance of collaboration, awareness of web technology and aggregate information are also explained. From the study, it can be concluded that the key to overall improvement in the oil sands industry will be improved production management.