WorldWideScience

Sample records for sand mold castings

  1. Relationship Between Casting Distortion, Mold Filling, and Interfacial Heat Transfer in Sand Molds

    Energy Technology Data Exchange (ETDEWEB)

    J. K. Parker; K. A. Woodbury; T. S. Piwonka; Y. Owusu

    1999-09-30

    This project sought to determine the relationship between casting dimensions and interfacial heat transfer in aluminum alloy sand castings. The program had four parts; measurement of interfacial heat transfer coefficients in resin bonded and green sand molds, the measurement of gap formation in these molds, the analysis of castings made in varying gatings, orientations and thicknesses, and the measurement of residual stresses in castings in the as-cast and gate removed condition. New values for interfacial heat transfer coefficients were measured, a novel method for gap formation was developed, and the variation of casting dimensions with casting method, gating, and casting orientation in the mold was documented.

  2. Optimization of Mold Yield in MultiCavity Sand Castings

    Science.gov (United States)

    Shinde, Vasudev D.; Joshi, Durgesh; Ravi, B.; Narasimhan, K.

    2013-06-01

    The productivity of ductile iron foundries engaging in mass production of castings for the automobile and other engineering sectors depends on the number of cavities per mold. A denser packing of cavities, however, results in slower heat transfer from adjacent cavities, leading to delayed solidification, possible shrinkage defects, and lower mechanical properties. In this article, we propose a methodology to optimize mold yield by selecting the correct combination of the mold box size and the number of cavities based on solidification time and mold temperature. Simulation studies were carried out by modeling solid and hollow cube castings with different values of cavity-wall gap and finding the minimum value of the gap beyond which there is no change in casting solidification time. Then double-cavity molds were modeled with different values of cavity-cavity gap, and simulated to find the minimum value of gap. The simulation results were verified by melting and pouring ductile iron in green sand molds instrumented with thermocouples, and recording the temperature in mold at predetermined locations. The proposed approach can be employed to generate a technological database of minimum gaps for various combinations of part geometry, metal and process, which will be very useful to optimize the mold cavity layouts.

  3. Study on Type C Coal Fly ash as an Additive to Molding Sand for Steel Casting

    Science.gov (United States)

    Palaniappan, Jayanthi

    2017-04-01

    Study of physio-chemical properties studies such as granulometric analysis, moisture, X ray fluorescence etc. were performed with Type C coal—combustion fly ash to investigate their potential as a distinct option for molding sand in foundry, thereby reducing the dependency on latter. Technological properties study such as compressive strength, tensile strength, permeability and compaction of various compositions of fly ash molding sand (10, 20 and 30 % fly ash substitute to chemically bonded sand) were performed and compared with silica molding sand. Steel casting production using this fly ash molding sand was done and the casting surface finish and typical casting parameters were assessed. It was noted that a good quality steel casting could be produced using type C fly ash molding sand, which effectively replaced 20 % of traditional molding sand and binders thereby providing greater financial profits to the foundry and an effective way of fly ash utilization (waste management).

  4. Effects of advanced oxidation on green sand properties via iron casting into green sand molds.

    Science.gov (United States)

    Wang, Yujue; Cannon, Fred S; Voigt, Robert C; Komarneni, Sridhar; Furness, J C

    2006-05-01

    The effects of advanced oxidation (AO) processing on the properties of green sand were studied via pouring cast iron into green sand molds. Upon cooling, the green sand molds were autopsied at various distances from the metal-sand interface. Autopsy green sand samples collected from a mold that incorporated AO water were characterized and compared to controlled samples collected from a similar autopsied mold made with conventional tap water (TAP). It was found that the AO processing removed a coating of coal pyrolysis products from the clay surface that typically accumulated on the clay surface. As a result, the AO-conditioned green sand retained 10-15% more active clay as measured bythe standard ultrasonic methylene blue titration than did the TAP-conditioned green sand. The AO processing also nearly doubled the generation of activated carbon from the normalized amount of coal composition of the green sand during the casting process. The AO-enhanced activated carbon generation and the AO-incurred clay surface cleaning provided the AO-conditioned green sand with higher normalized pore volume, and thus higher normalized m-xylene adsorption capacity, i.e., relative to before-metal-pouring conditions. Furthermore, mathematical analysis indicated that the AO-conditioned green sand better retained its important properties after pouring than did the TAP-conditioned green sand. Effectively, this meant after metal pouring, the AO-conditioned sample offered about the same net properties as the TAP-conditioned sample, even though the AO-conditioned sample contained less clay and coal before metal pouring. These results conformed to the full-scale foundry empirical finding that when AO is used, foundries need less makeup clay and coal addition through each casting cycle, and they release less air emissions.

  5. Investigating on casting mold (or core making with coated sand by the selected laser sintering

    Directory of Open Access Journals (Sweden)

    Zitian FAN

    2004-11-01

    Full Text Available Using a special coated sand as the material of the selected laser sintering (SLS, the authors test and nvestigate the strength change of the test samples in terms of different sintering parameters (scanning speed, laser power, sintering thickness, and so on. The characteristics of coate sand hardening by laser beam are analyzed. The sitered mold (or core for given casting is poured with molten metal.

  6. Improvements in Sand Mold/Core Technology: Effects on Casting Finish

    Energy Technology Data Exchange (ETDEWEB)

    Prof. John J. Lannutti; Prof. Carroll E. Mobley

    2005-08-30

    In this study, the development and impact of density gradients on metal castings were investigated using sand molds/cores from both industry and from in-house production. In spite of the size of the castings market, almost no quantitative information about density variation within the molds/cores themselves is available. In particular, a predictive understanding of how structure and binder content/chemistry/mixing contribute to the final surface finish of these products does not exist. In this program we attempted to bridge this gap by working directly with domestic companies in examining the issues of surface finish and thermal reclamation costs resulting from the use of sand molds/cores. We show that these can be substantially reduced by the development of an in-depth understanding of density variations that correlate to surface finish. Our experimental tools and our experience with them made us uniquely qualified to achieve technical progress.

  7. Evaluation of the microstructure, secondary dendrite arm spacing, and mechanical properties of Al-Si alloy castings made in sand and Fe-Cr slag molds

    Science.gov (United States)

    Narasimha Murthy, I.; Babu Rao, J.

    2017-07-01

    The microstructure and mechanical properties of as-cast A356 (Al-Si) alloy castings were investigated. A356 alloy was cast into three different molds composed of sand, ferrochrome (Fe-Cr) slag, and a mixture of sand and Fe-Cr. A sodium silicate-CO2 process was used to make the necessary molds. Cylindrical-shaped castings were prepared. Cast products with no porosity and a good surface finish were achieved in all of the molds. These castings were evaluated for their metallography, secondary dendrite arm spacing (SDAS), and mechanical properties, including hardness, compression, tensile, and impact properties. Furthermore, the tensile and impact samples were analyzed by fractography. The results show that faster heat transfer in the Fe-Cr slag molds than in either the silica sand or mixed molds led to lower SDAS values with a refined microstructure in the products cast in Fe-Cr slag molds. Consistent and enhanced mechanical properties were observed in the slag mold products than in the castings obtained from either sand or mixed molds. The fracture surface of the slag mold castings shows a dimple fracture morphology with a transgranular fracture nature. However, the fracture surfaces of the sand mold castings display brittle fracture. In conclusion, products cast in Fe-Cr slag molds exhibit an improved surface finish and enhanced mechanical properties compared to those of products cast in sand and mixed molds.

  8. Application of statistical methods for analyzing the relationship between casting distortion, mold filling, and interfacial heat transfer in sand molds

    Energy Technology Data Exchange (ETDEWEB)

    Y. A. Owusu

    1999-03-31

    This report presents a statistical method of evaluating geometric tolerances of casting products using point cloud data generated by coordinate measuring machine (CMM) process. The focus of this report is to present a statistical-based approach to evaluate the differences in dimensional and form variations or tolerances of casting products as affected by casting gating system, molding material, casting thickness, and casting orientation at the mold-metal interface. Form parameters such as flatness, parallelism, and other geometric profiles such as angularity, casting length, and height of casting products were obtained and analyzed from CMM point cloud data. In order to relate the dimensional and form errors to the factors under consideration such as flatness and parallelism, a factorial analysis of variance and statistical test means methods were performed to identify the factors that contributed to the casting distortion at the mold-metal interface.

  9. 无模精密砂型快速铸造技术研究进展%Progress of Rapid Technology without Mold in Precision Sand Casting

    Institute of Scientific and Technical Information of China (English)

    朱佩兰; 徐志锋; 余欢; 王振军

    2013-01-01

    无模精密砂型快速铸造技术具有制造周期短、成本低、砂型/砂芯一体化制造及制造任意形状复杂铸件等特点.采用该方法制备的砂型(芯)尺寸精度高、表面质量好,可实现复杂铸件的整体近净成形.特别适合于复杂铸件的单件、小批量生产及新产品的试制.综述了基于激光烧结、三维打印、数控加工原理的无模精密砂型快速铸造技术的工艺特点、适用范围,并指出了各自存在的问题及其发展前景.%With short manufacturing cycle, low manufacturing costs, sand mold and core integrated manufacturing and the development of any complex shaped castings, precision sand casting rapid technology without mold was used to fabricate sand molds or cores with high dimensional accuracy and good surface quality to realize near-net shape of the complex castings, especially suitable for the complex castings of single or small batch production as well as trial of new products. Precision sand casting rapid technology without mold based on laser sintering, 3D printing and CNC machining principles was reviewed, focusing on the characteristics of the process, the scope of application, and existing problems as well as development prospects.

  10. Thermal stress analysis method considering geometric effect of risers in sand mold casting process

    Institute of Scientific and Technical Information of China (English)

    S Y Kwak; HY Hwang; C Cho

    2014-01-01

    Solidification and fluid flow analysis using computer simulation is a current common practice. There is also a high demand for thermal stress analysis in the casting process because casting engineers want to control the defects related to thermal stresses, such as large deformation and crack generation during casting. The riser system is an essential part of preventing the shrinkage defects in the casting process, and it has a great influence on thermal phenomena. The analysis domain is dramatical y expanded by attaching the riser system to a casting product due to its large volume, and it makes FEM mesh generation difficult. However, it is difficult to study and solve the above proposed problem caused by riser system using traditional analysis methods which use single numerical method such as FEM or FDM. In this paper, some research information is presented on the effects of the riser system on thermal stress analysis using a FDM/FEM hybrid method in the casting process simulation. The results show the optimal conditions for stress analysis of the riser model in order to save computation time and memory resources.

  11. Diagnosis parameters of mold filling pattern for optimization of a casting system

    OpenAIRE

    2012-01-01

    For optimal design of a gating system, the setting of diagnosis parameters is very important. In this study, the permanent mold casting process was selected because most of the other casting processes have more complicated factors that influence the mold filling pattern compared to the permanent mold casting process, such as the surface roughness of mold, gas generation from the mold wash and binder of sand mold, and the gas permeability through a sand mold, etc. Two diagnosis parameters (fl...

  12. Study on the Mechanical Properties of Cast 6063 Al Alloy Using a Mixture of Aluminum Dross and Green Sand as Mold

    Science.gov (United States)

    Adeosun, S. O.; Sekunowo, O. I.; Balogun, S. A.; Obembe, O. O.

    2012-08-01

    The mechanical characteristics of 6063 aluminum alloy cast in a mixture of aluminum dross and silica sand as mold have been examined. The amount of dross in the green silica sand was varied in the range of 0-80% with bentonite as binder. In all, 40 samples were cast, and 8 of these were left in the as-cast condition for control while 32 were first homogenized at 470°C for 6 h and then rolled in a two-high mill at ambient temperature to 10% reduction in one pass. The rolled samples were solution heat treated at 515°C for 8 h followed by normalizing, annealing, and quench tempering, respectively. The samples were then simulated and tensile behavior coupled with the evaluation of microhardness and microstructures developed. The results obtained demonstrate significant improvement in mechanical properties from 50% to 80% dross in the mold. Tensile strength increased to 177 MPa and 15% elongation compared with conventional 6063-T5 aluminum alloy with 145 MPa tensile strength and 8% elongation. The improvement in mechanical properties by the quench-tempered samples can be attributed to the inducement of fine and coherent Mg2Si crystals within the matrix. Furthermore, the overall analysis of the proportion of dross to the size of cast show that about 64% of dross generated can be utilized as mold material.

  13. Shrinkage Behaviour of Spheroidal Graphite Cast Iron in Green and Dry Sand Molds for the Benchmarking of Solidification Simulation

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The effects of metallurgical and processing parameters on the formation of shrinkage cavities and porosities in spheroidal graphite cast iron have been studied, considering the parameters of carbon equivalent, inoculation, casting modulus, mold type (green or dry) and pouring temperature within specific ranges of these variables. Based on the orthogonal experiments, the metallurgical and processing parameters of the minimum casting shrinkage and the maximum casting shrinkage were obtained, and the effects of metallurgical and processing parameters on the formation of shrinkage cavities and porosities in spheroidal graphite cast iron castings were discussed. Finally,two regression equations relating these variables to the formation of shrinkage porosity were derived based upon the orthogonal experiments conducted.

  14. Casting Process Control of Permanent Mold with Sand Lining for Traction Sheave%曳引轮铁模覆砂铸造过程控制

    Institute of Scientific and Technical Information of China (English)

    王树成; 俞水铭; 章舟

    2012-01-01

    介绍了曳引轮铁模覆砂的生产工艺,在试生产过程中通过采取针对性措施,消除了铸件夹砂、夹渣、变形等缺陷,产品合格率大幅度提高。%The casting process of permanent mold with sand lining for traction sheave was presented. The casting defects, such as scab, slag inclusion and warping were eliminated by special measures in pilot production, and the products percent of pass were increased substantially.

  15. IMPROVEMENT OF EQUIPMENT FOR EFFECTIVE HARDENING SAND MIXTURE BY VACUUM MOLDING

    Directory of Open Access Journals (Sweden)

    V. S. Doroshenko

    2016-01-01

    Full Text Available The review deals with the design flask tooling and patterns for effective hardening sand mixture in the vacuum molding (V-Process, and molding on a one-off patterns (Lost Foam Casting. Sealing and evacuating sand mixture – two major factors influence the strength of the casting mold and casting quality, management practices which will enable to improve the casting process.

  16. Emission of BTEX and PAHs from molding sands with furan cold setting resins containing different contents of free furfuryl alcohol during production of cast iron

    Directory of Open Access Journals (Sweden)

    Mariusz Holtzer

    2015-11-01

    Full Text Available At present, furan resin is the largest selling no-bake system of moulding sands. The most commonly used furan no-bake binders (FNB are condensation products of furfuryl alcohol (FA urea, formaldehyde and phenol. They are generally cured by exposure to organic sulfonic acids. FNB provide excellent mold and core strength, cure rapidly and allow the sand to be reclaimed at fairly high yields, generally 75%-80%, especially in applications where due allowance is made for the need to keep total sulfur content below 0.1%. However, due to probable carcinogenic properties of furfuryl alcohol, the EU Directive limits the content of this substance (in a monomer form in resin to 25%. The classification of furfuryl alcohol and the resulting furan resin products has changed from "harmful" to "toxic" by inhalation? The aim of this study was to determine the effect of free furfuryl alcohol content in the resin on the emission of harmful substances from the BTEX (Benzene Toluene Ethylbenzene & Xylene and PAHs (polycyclic aromatic hydrocarbon group exposed to high temperature and how it affects the emissions allowance of reclaimed sand in the matrix. Three resins from a leading manufacturer were examined, which contain a free furfuryl alcohol content of 71%-72%, about 50% and < 25%, respectively. The hardener for each resin was 65% aqueous solution of paratoluenesulfonic acid. Tests were carried out in semi-industrial conditions where liquid cast-iron was poured into sample sand mold at 1,350 ìC. The matrix of the studied sands was reclaimed in the amount of 0, 50%, 100%, respectively. With the increase of free furfuryl alcohol content, the volume of evolved gases decreased. For all resins the main component from the BTEX group dominating in the emitted gases was benzene; however toluene also appeared in the amount of a few percentages. In contrast, ethylbenzene and xylenes occurred only in the gases emitted from resin-bonded sands with the largest furfuryl

  17. 覆砂铁型铸造工艺生产ADI摩擦斜楔%ADI Oblique Wedge Produced with Resin Sand Coated-Iron Mold Casting Process

    Institute of Scientific and Technical Information of China (English)

    王彬; 鲍玉龙; 王德军

    2013-01-01

    The casting method and heat treatment process adopted for using resin sand coated-iron mold to produce ADI oblique wedge of railway vehicles was introduced. By adopting semi -pressurized gating system and filter to skim slag, choosing rational melting charge mixture ratio and the cored-wire injection nodularizing process, using salt bath isothermal quenching process, the hi-strength , hi-hardness and hi-toughness ADI castings with bainite + residual austenite as matrix were finally obtained.%介绍了采用覆砂铁型铸造生产火车用摩擦斜楔ADI铸件的铸造工艺和热处理工艺.通过采用半封闭式浇注系统和过滤网挡渣;选用合理的炉料配比及喂丝球化处理工艺;采用盐浴等温淬火工艺,最终获得以贝氏体+残余奥氏体为基体的高强度、高硬度及高韧性的ADI铸件.

  18. Diagnosis parameters of mold filling pattern for optimization of a casting system

    Directory of Open Access Journals (Sweden)

    Jun-Ho Hong

    2012-11-01

    Full Text Available For optimal design of a gating system, the setting of diagnosis parameters is very important. In this study, the permanent mold casting process was selected because most of the other casting processes have more complicated factors that influence the mold filling pattern compared to the permanent mold casting process, such as the surface roughness of mold, gas generation from the mold wash and binder of sand mold, and the gas permeability through a sand mold, etc. Two diagnosis parameters (flow rate difference and arrival time difference of molten metal flow pattern in the numerical simulation are suggested for design of an optimum casting system with a permanent mold. The results show that the arrival time difference can be used as one important diagnosis parameter of the complexity of the runner system and its usefulness has been verified via making aluminum parts using permanent mold casting (Fig. 9.

  19. Gating of Permanent Molds for Aluminum Casting

    Energy Technology Data Exchange (ETDEWEB)

    David Schwam; John F. Wallace; Tom Engle; Qingming Chang

    2004-01-01

    This report summarizes a two-year project, DE-FC07-011D13983 that concerns the gating of aluminum castings in permanent molds. The main goal of the project is to improve the quality of aluminum castings produced in permanent molds. The approach taken was to determine how the vertical type gating systems used for permanent mold castings can be designed to fill the mold cavity with a minimum of damage to the quality of the resulting casting. It is evident that somewhat different systems are preferred for different shapes and sizes of aluminum castings. The main problems caused by improper gating are entrained aluminum oxide films and entrapped gas. The project highlights the characteristic features of gating systems used in permanent mold aluminum foundries and recommends gating procedures designed to avoid common defects. The study also provides direct evidence on the filling pattern and heat flow behavior in permanent mold castings. Equipment and procedure for real time X-Ray radiography of molten aluminum flow into permanent molds have been developed. Other studies have been conducted using water flow and behavior of liquid aluminum in sand mold using real time photography. This investigation utilizes graphite molds transparent to X-Rays making it possible to observe the flow pattern through a number of vertically oriented grating systems. These have included systems that are choked at the base of a rounded vertical sprue and vertical gating systems with a variety of different ingates into the bottom of a mold cavity. These systems have also been changed to include gating systems with vertical and horizontal gate configurations. Several conclusions can be derived from this study. A sprue-well, as designed in these experiments, does not eliminate the vena contracta. Because of the swirling at the sprue-base, the circulating metal begins to push the entering metal stream toward the open runner mitigating the intended effect of the sprue-well. Improved designs of

  20. Gating of Permanent Molds for ALuminum Casting

    Energy Technology Data Exchange (ETDEWEB)

    David Schwam; John F. Wallace; Tom Engle; Qingming Chang

    2004-03-30

    This report summarizes a two-year project, DE-FC07-01ID13983 that concerns the gating of aluminum castings in permanent molds. The main goal of the project is to improve the quality of aluminum castings produced in permanent molds. The approach taken was determine how the vertical type gating systems used for permanent mold castings can be designed to fill the mold cavity with a minimum of damage to the quality of the resulting casting. It is evident that somewhat different systems are preferred for different shapes and sizes of aluminum castings. The main problems caused by improper gating are entrained aluminum oxide films and entrapped gas. The project highlights the characteristic features of gating systems used in permanent mold aluminum foundries and recommends gating procedures designed to avoid common defects. The study also provides direct evidence on the filling pattern and heat flow behavior in permanent mold castings.

  1. Process of Automatic No Bake Resin Sand Molding & Core Making Production Line for Manufacturing Steel Castings%铸钢件树脂自硬砂造型、制芯自动线工艺

    Institute of Scientific and Technical Information of China (English)

    白文弟

    2001-01-01

    This paper introduces process analysis, equipment selection andlayout arrangement of the no bake resin sand molding & core making production line for manufacturing steel castings. This production line utilizes flask molding for manufacturing case shaped steel casting with thin wall. Quality of the steel casting meets the standards of Ministry of Railway,TB/T-2238 and TB/T-2239.%介绍了生产铸钢件的树脂自硬砂造型、制芯线的工艺分析,设备选择和平面布置;该线采用有箱造型工艺,生产箱形结构薄壁铸钢件,所产铸件品质达到了铁道部标准TB/T-2238和TB/T-2239。

  2. Grain Refinement of Permanent Mold Cast Copper Base Alloys

    Energy Technology Data Exchange (ETDEWEB)

    M.Sadayappan; J.P.Thomson; M.Elboujdaini; G.Ping Gu; M. Sahoo

    2005-04-01

    Grain refinement is a well established process for many cast and wrought alloys. The mechanical properties of various alloys could be enhanced by reducing the grain size. Refinement is also known to improve casting characteristics such as fluidity and hot tearing. Grain refinement of copper-base alloys is not widely used, especially in sand casting process. However, in permanent mold casting of copper alloys it is now common to use grain refinement to counteract the problem of severe hot tearing which also improves the pressure tightness of plumbing components. The mechanism of grain refinement in copper-base alloys is not well understood. The issues to be studied include the effect of minor alloy additions on the microstructure, their interaction with the grain refiner, effect of cooling rate, and loss of grain refinement (fading). In this investigation, efforts were made to explore and understand grain refinement of copper alloys, especially in permanent mold casting conditions.

  3. Measures to Eliminate Shrinkage+Blowhole of Nodular Iron Crankshaft Cast with Resin Sand-Coated Iron Mold%消除覆砂铁型铸造曲轴气缩孔的措施

    Institute of Scientific and Technical Information of China (English)

    张贤虎; 崔卫东; 史传岳

    2013-01-01

    The nodular iron two-cylinder crankshafts produced with former resin sand-coated iron mold designed according former casting method had been rejected due to the shrinkage+blowhole defect. By adopting following measures,the problem has been solved: (1 )enlarging the distance between two crankshafts cast in one mold to increase the cooling effect of the iron mold; (2) improving the design of internal hole of the connecting necks and relevant sand cores to reduce sand layer thickness of the cores and thereby to reduce the gas evolution of the cores and improve the cooling condition of the areas near to the internal cores; (3 )properly adjusting chemical composition and decreasing pouring temperature to reduce liquid contraction.%覆砂铁型铸造二缸球铁曲轴按原工艺生产曾因气缩孔缺陷引起报废,通过采取相应措施,该问题已得到解决:(1)加大铸型内两支曲轴的间距和增大铁型外形尺寸,增强铁型的冷却作用;(2)改进曲轴连杆轴颈内孔形状及其砂芯设计,减薄砂芯砂层厚度,减少砂芯发气量,并改善内孔部位的冷却条件;(3)适当调整化学成分和降低浇注温度,减少液态收缩.

  4. Improved Sand-Compaction Method for Lost-Foam Metal Casting

    Science.gov (United States)

    Bakhtiyarov, Sayavur I.; Overfelt, Ruel A.

    2008-01-01

    An improved method of filling a molding flask with sand and compacting the sand around a refractory-coated foam mold pattern has been developed for incorporation into the lost-foam metal-casting process. In comparison with the conventional method of sand filling and compaction, this method affords more nearly complete filling of the space around the refractory-coated foam mold pattern and more thorough compaction of the sand. In so doing, this method enables the sand to better support the refractory coat under metallostatic pressure during filling of the mold with molten metal.

  5. Characterization of Ni-Cr alloys using different casting techniques and molds.

    Science.gov (United States)

    Chen, Wen-Cheng; Teng, Fu-Yuan; Hung, Chun-Cheng

    2014-02-01

    This study differentiated the mechanical properties of nickel-chromium (Ni-Cr) alloys under various casting techniques (different casting molds and casting atmospheres). These techniques were sampled by a sand mold using a centrifugal machine in ambient air (group I) and electromagnetic induction in an automatic argon castimatic casting machine (group II). The specimen casting used a graphite mold by a castimatic casting machine (group III). The characteristics of the Ni-Cr alloys, yield and ultimate tensile strength, bending modulus, microhardness, diffraction phase, grindability, ability to spring back, as well as ground microstructure and pattern under different casting conditions were evaluated. The group III specimens exhibited the highest values in terms of strength, modulus, hardness, and grindability at a grind rate of 500 rpm. Moreover, group III alloys exhibited smaller grain sizes, higher ability to spring back, and greater ductility than those casted by sand investment (groups I and II). The main factor, "casting mold," significantly influenced all mechanical properties. The graphite mold casting of the Ni-Cr dental alloys in a controlled atmosphere argon casting system provided an excellent combination of high mechanical properties and good ability to spring back, and preserved the ductile properties for application in Ni-Cr porcelain-fused system. The results can offer recommendations to assist a prosthetic technician in selecting the appropriate casting techniques to obtain the desired alloy properties. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Characterization of Ni–Cr alloys using different casting techniques and molds

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Wen-Cheng, E-mail: wencchen@fcu.edu.tw [Advanced Medical Devices and Composites Laboratory, Department of Fiber and Composite Materials, College of Engineering, Feng Chia University, Taichung 40724, Taiwan (China); Teng, Fu-Yuan [Department of Dentistry, Kaohsiung Armed Forces General Hospital, Kaohsiung 802, Taiwan (China); School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan (China); Hung, Chun-Cheng [School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan (China); Department of Dentistry, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan (China)

    2014-02-01

    This study differentiated the mechanical properties of nickel–chromium (Ni–Cr) alloys under various casting techniques (different casting molds and casting atmospheres). These techniques were sampled by a sand mold using a centrifugal machine in ambient air (group I) and electromagnetic induction in an automatic argon castimatic casting machine (group II). The specimen casting used a graphite mold by a castimatic casting machine (group III). The characteristics of the Ni–Cr alloys, yield and ultimate tensile strength, bending modulus, microhardness, diffraction phase, grindability, ability to spring back, as well as ground microstructure and pattern under different casting conditions were evaluated. The group III specimens exhibited the highest values in terms of strength, modulus, hardness, and grindability at a grind rate of 500 rpm. Moreover, group III alloys exhibited smaller grain sizes, higher ability to spring back, and greater ductility than those casted by sand investment (groups I and II). The main factor, “casting mold,” significantly influenced all mechanical properties. The graphite mold casting of the Ni–Cr dental alloys in a controlled atmosphere argon casting system provided an excellent combination of high mechanical properties and good ability to spring back, and preserved the ductile properties for application in Ni–Cr porcelain-fused system. The results can offer recommendations to assist a prosthetic technician in selecting the appropriate casting techniques to obtain the desired alloy properties. - Highlights: • Properties of Ni–Cr alloys using various casting techniques are characterized. • Alloys cast by graphite mold exhibited higher recovery angle and more ductility. • Alloys cast by graphite mold exhibited higher strength and grinding rate. • Alloys in this study increase operative room to adjust the precision for prosthesis.

  7. Computer simulation for centrifugal mold filling of precision titanium castings

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    Computer simulation codes were developed based on a proposed mathematical model for centrifugal mold filling processes and previous computer software for 3D mold filling and solidification of castings (CASM-3D for Windows). Sample simulations were implemented for mold filling processes of precision titanium castings under gravity and different centrifugal casting techniques. The computation results show that the alloy melt has a much stronger mold filling ability for thin section castings under a centrifugal force field than that only under the gravity. A "return back" mold filling manner is showed to be a reasonable technique for centrifugal casting processes, especially for thin section precision castings.

  8. A Statistics-Based Cracking Criterion of Resin-Bonded Silica Sand for Casting Process Simulation

    Science.gov (United States)

    Wang, Huimin; Lu, Yan; Ripplinger, Keith; Detwiler, Duane; Luo, Alan A.

    2017-02-01

    Cracking of sand molds/cores can result in many casting defects such as veining. A robust cracking criterion is needed in casting process simulation for predicting/controlling such defects. A cracking probability map, relating to fracture stress and effective volume, was proposed for resin-bonded silica sand based on Weibull statistics. Three-point bending test results of sand samples were used to generate the cracking map and set up a safety line for cracking criterion. Tensile test results confirmed the accuracy of the safety line for cracking prediction. A laboratory casting experiment was designed and carried out to predict cracking of a cup mold during aluminum casting. The stress-strain behavior and the effective volume of the cup molds were calculated using a finite element analysis code ProCAST®. Furthermore, an energy dispersive spectroscopy fractographic examination of the sand samples confirmed the binder cracking in resin-bonded silica sand.

  9. Control on Quality of Molding Sand in Static Pressure Molding Line%静压造型线型砂质量控制

    Institute of Scientific and Technical Information of China (English)

    李锦荣; 令军科; 王新智

    2011-01-01

    High quantities of addition of core sands to molding sand for multiple products production in our molding line has resulted in deteriorative molding sand and batch defect of metal penetration. After adjusting the addition of sand and mix process, stable properties of molding sand have been obtained and quality problems with molding sand and metal penetration of casting defect effectively resolved.%我公司静压造型线因生产品种多,芯砂流入量大,导致型砂性能恶化,铸件出现批量粘砂;通过调整型砂配比及混制工艺,稳定了型砂性能,有效解决了型砂质量问题和铸件粘砂缺陷.

  10. Die Casting Mold Design for Aluminum Alloy Shell of Instrument

    Directory of Open Access Journals (Sweden)

    Li Yuanyuan

    2015-01-01

    Full Text Available This paper is about die casting mold design for aluminum alloy shell of instrument. Three-dimensional model of the casting and mold are designed by using Pro/Engineer and AutoCad which can analyze forming quality. Digital design and theoretical calculation can greatly shorten product development cycle and mold design cycle, improve the accuracy of product design and mold design, and reduce the cost of mold design.

  11. Molding Sand Quality Control in Green sand Molding%湿型砂造型中型砂质量的控制

    Institute of Scientific and Technical Information of China (English)

    赵洪仁; 马顺龙

    2011-01-01

    介绍了湿型砂各组分的作用,论述了型砂性能与其组分的关系,认为控制好有效膨润土量和有效添加剂量是控制型砂质量的关键,结合生产实例说明了型砂质量的控制要点;指出提高型砂质量控制水平、生产优质铸件和实现铸造生产循环用砂是铸造生产节能减排的根本方法之一.%The effects of various in gredients of the green molding sand were introduced. The relationship hetween properties of the molding sand and its ingredients was described. It was considered that correct controlling the active bentonite amount and its addition amount is the key measure to control the quality of molding sand. By showing practical example, the key points of molding sand quality control were explained. It was pointed out that elevafing the quality control level of molding sand to produce high quality castings and actualize sand cycling usage in foundry production is one of the radical methods to conduct energy saving and emission reducing in foundry production.

  12. Permanent Mold Casting of JIS-AC4C Aluminum Alloy Using a Low-Temperature Mold

    Science.gov (United States)

    Yamagata, Hiroshi; Nikawa, Makoto

    2011-01-01

    Permanent mold casting using mold temperatures below 200° C was conducted to obtain a high-strength, thin-walled casting. Al-7.36 mass% Si -0.18 Cu- 0.27Mg-0.34Fe alloy JIS-AC4C was cast using a bottom pouring cast plan. The product had a rectangular tube shape (70 mm W x 68 mm D x 180 mm H) with wall thicknesses of 1, 3 and 5 mm. The effect of heat insulation at the melt path was compared when using a sand runner insert and when using a steel runner insert as well as a powder mold release agent. Fine microstructures were observed in the casting. The smaller the thickness, the higher the hardness with smaller secondary dendrite arm spacing (SDAS). However, the hardness and the SDAS were unaffected by the mold temperature. It was proposed that the avoidance of the formation of primary α dendrite at the melt path generates a higher strength casting with adequate mold filling.

  13. Computer precision simulation for titanium casting centrifugal mold filling of prescision titanium castings

    Directory of Open Access Journals (Sweden)

    Daming XU

    2004-08-01

    Full Text Available Computer simulation codes were developed based on proposed mathematical model for centrifugal mold filling processes and previous computer software for 3D mold filling and solidification of castings. Sample simulations were implemented for mold filling processes of precision titanium castings under gravity and different centrifugal casting techniques. The computation results show that the alloy melt has a much stronger mold filling ability for thin section castings unde a centrifugal force field than that only under the gravity. A "return back" mold filling manner is showed to be a reasonable technique for centrifugal casting processes, especially for thin section prcision castings.

  14. Effect of Different Molding Materials on the Thin-Walled Compacted Graphite Iron Castings

    Science.gov (United States)

    Górny, Marcin; Dańko, Rafał; Lelito, Janusz; Kawalec, Magdalena; Sikora, Gabriela

    2016-10-01

    This article addresses the effects of six mold materials used for obtaining thin-walled compacted graphite iron castings with a wall thickness of 3 mm. During this research, the following materials were analyzed: fine silica sand, coarse silica sand, cerabeads, molohite and also insulated materials in the shape of microspheres, including low-density alumina/silica ceramic sand. Granulometric and SEM observations indicate that the sand matrix used in these studies differs in terms of size, homogeneity and shape. This study shows that molds made with insulating sands (microspheres) possess both: thermal conductivity and material mold ability to absorb heat, on average to be more than five times lower compared to those of silica sand. In addition to that, the resultant peak of heat transfer coefficient at the mold/metal interface for microspheres is more than four times lower in comparison with fine silica sand. This is accompanied by a significant decrease in the cooling rate of metal in the mold cavity which promotes the development of compacted graphite in thin-walled castings as well as ferrite fractions in their microstructure.

  15. Analysis of emissions collected from four types of iron casting molds.

    Science.gov (United States)

    Palmer, W G; James, R H; Moorman, W J

    1985-12-01

    The levels of polycyclic aromatic hydrocarbons (PAH) and related compounds, phenols and particulates were determined in emissions collected from iron casting molds composed of four different types of chemical binders: furan, urethane, green sand with sea coal and phenol-formaldehyde resins in shell molds. The shell sample, with 50% particulates, contained the most water-soluble material; green sand, 25% particulates; furan, 10% particulates; and urethane, less than 2% particulate material. The portion of the particulate fraction soluble in cyclohexane varies from 16 to 36% between mold types; emissions from urethane and furan molds contained the lowest quantities of cyclohexane-soluble components and of PAH and related compounds. Phenol, which was found in all four foundry samples, was present in the highest concentration in emissions from urethane molds. Shell mold emissions contained the highest levels of 2- and 4-nitrophenol.

  16. Virtual Mold Technique in Thermal Stress Analysis during Casting Process

    Institute of Scientific and Technical Information of China (English)

    Si-Young Kwak; Jae-Wook Baek; Jeong-Ho Nam; Jeong-Kil Choi

    2008-01-01

    It is important to analyse the casting product and the mold at the same time considering thermal contraction of the casting and thermal expansion of the mold. The analysis considering contact of the casting and the mold induces the precise prediction of stress distribution and the defect such as hot tearing. But it is difficult to generate FEM mesh for the interface of the casting and the mold. Moreover the mesh for the mold domain spends lots of computational time and memory for the analysis due to a number of meshes. Consequently we proposed the virtual mold technique which only uses mesh of the casting part for thermal stress analysis in casting process. The spring bar element in virtual mold technique is used to consider the contact of the casting and the mold. In general, a volume of the mold is much bigger than that of casting part, so the proposed technique decreases the number of mesh and saves the computational memory and time greatly. In this study, the proposed technique was verified by the comparison with the traditional contact technique on a specimen. And the proposed technique gave satisfactory results.

  17. Efeito da adição de componentes inorgânicos na resistência mecânica de moldes de areia para fundição Effect of addition of inorganic components on the mechanical strength of sand molds for casting

    Directory of Open Access Journals (Sweden)

    M. S. Cilla

    2012-03-01

    tratamentos térmicos foi comprovada por testes de resistência mecânica a compressão e análise de fotomicrografias das composições estudadas, conforme previsto nos respectivos diagramas de fases.The casting process faster, economical and conventional is to green sand molding, where the main ligand is a moist clay (bentonite. However, due to technological requirements, are also used as binders toxic furan resin, phenolic or urethane. New technologies have been developed for the recovery and blanketing the sands, but the resins currently available are limited by its chemical origin. After use these molds are discarded, and thus the toxic binders become an environmental problem. Thus, the replacement of these binders by organic compounds derived from renewable sources such as polyurethane resin derived from castor oil minimizes environmental impacts, leading the casting process towards sustainability, necessary because of the increasing stringency of environmental legislation. Because of the thermal behavior of vegetable polyurethane, which decompose in a more pronounced when exposed to high temperatures compared to traditional organic binders the addition of inorganic components is required as a facilitator of the link between the grains sand and consequent cohesion of the molds during stage of fusion. In this sense, the use of phase diagrams to predict the appearance of liquid phase by the addition of inorganic components to the mix sand / resin in sand molds for casting and its effect on mechanical strength at high temperatures of the mold serves as a theoretical tool in helping to determining the composition of the molds according to its thermal stress during melting. Initial tests of molding and mechanical strength at room temperature showed that the polyurethane resin derived from castor oil produces results comparable to those of commercial resins. Also the addition of inorganic components and its effect when subjected to heat treatment is tested for mechanical

  18. The Effect of Dewaxing and Burnout Temperature in Block Mold Process for Copper Alloy Casting

    Directory of Open Access Journals (Sweden)

    S.Z. Mohd Nor

    2015-10-01

    Full Text Available The main objective of this research is to investigate the effect of dewaxing and burnout temperature on the quality of copper alloy casting produced by a low cost block mold that has been developed. In the molding process, two types of silica sand which contains 97.9% silica (SiO2 and 97.2% silica have been used as a refractory material with POP served as a binder. Several mold formulations contained 15-40% plaster of paris (POP, 60-85% silica sand and 35% water had been developed and each formulation had been tested in the process of copper alloy casting. In the dewaxing process, the temperature of 170oC was found appropriate to be used as an initial mold heating temperature and complete wax burnout was effectively achieved with the temperature of 750oC for 5 hours. The insufficient burnout process has produced a defect casting with carbon residue, appeared as a black stain on the surface of the casting. Meanwhile, rapid initial heating had prevented the wax from flowing out smoothly thus, eroded the surface of the mold cavities. This has resulted in deteriorated cavity surface, hence a rough surface of the casting.

  19. Method and mold for casting thin metal objects

    Energy Technology Data Exchange (ETDEWEB)

    Pehrson, Brandon P; Moore, Alan F

    2014-04-29

    Provided herein are various embodiments of systems for casting thin metal plates and sheets. Typical embodiments include layers of mold cavities that are oriented vertically for casting the metal plates. In some embodiments, the mold cavities include a beveled edge such that the plates that are cast have a beveled edge. In some embodiments, the mold cavities are filled with a molten metal through an open horizontal edge of the cavity. In some embodiments, the mold cavities are filled through one or more vertical feed orifices. Further disclosed are methods for forming a thin cast metal plate or sheet where the thickness of the cast part is in a range from 0.005 inches to 0.2 inches, and the surface area of the cast part is in a range from 16 square inches to 144 square inches.

  20. Investigation of Heat Transfer at the Mold/Metal Interface in Permanent Mold Casting of Light Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Robert D. Pehlke; John T. Berry

    2005-12-16

    curve information, as well as temperature gradient history both in the solidifying metal and within the mold are invariably required to be validated. This validation depends upon the response of the sensor concerned, but also on its own effect upon the thermal environment. A joint university/industry team has completed an investigation of the invasive effects of thermocouples upon temperature history in permanent molds determining the degree of uncertainty associated with placement and indicating how the time-temperature history may be recovered. In addition to its relevance to the all important study of thermal contact of the casting with metallic molds, the observations also impact the determination of heat flux and interfacial heat transfer coefficients. In these respects the study represents the first of its kind that has tackled the problem in depth for permanent mold castings. An important ramification of this investigation has been the errors likely to be encountered in mold temperature measurement with thin section aluminum castings, especially with respect to the plans for thermocouple placement. A comparison between the degree of uncertainty experienced in sand molds compared with that found in permanent molds reveals that the associated problems have a lesser impact. These conclusions and the related recommendations have been disseminated to industry and the technical community through project reports and publications.

  1. Energy Saving Melting and Revert Reduction Technology (Energy-SMARRT): Light Metals Permanent Mold Casting

    Energy Technology Data Exchange (ETDEWEB)

    Fasoyinu, Yemi [CanmetMATERIALS

    2014-03-31

    Current vehicles use mostly ferrous components for structural applications. It is possible to reduce the weight of the vehicle by substituting these parts with those made from light metals such as aluminum and magnesium. Many alloys and manufacturing processes can be used to produce these light metal components and casting is known to be most economical. One of the high integrity casting processes is permanent mold casting which is the focus of this research report. Many aluminum alloy castings used in automotive applications are produced by the sand casting process. Also, aluminum-silicon (Al-Si) alloys are the most widely used alloy systems for automotive applications. It is possible that by using high strength aluminum alloys based on an aluminum-copper (Al-Cu) system and permanent mold casting, the performance of these components can be enhanced significantly. This will also help to further reduce the weight. However, many technological obstacles need to be overcome before using these alloys in automotive applications in an economical way. There is very limited information in the open literature on gravity and low-pressure permanent mold casting of high strength aluminum alloys. This report summarizes the results and issues encountered during the casting trials of high strength aluminum alloy 206.0 (Al-Cu alloy) and moderate strength alloy 535.0 (Al-Mg alloy). Five engineering components were cast by gravity tilt-pour or low pressure permanent mold casting processes at CanmetMATERIALS (CMAT) and two production foundries. The results of the casting trials show that high integrity engineering components can be produced successfully from both alloys if specific processing parameters are used. It was shown that a combination of melt processing and mold temperature is necessary for the elimination of hot tears in both alloys.

  2. Microwaves energy in curing process of water glass molding sands

    Directory of Open Access Journals (Sweden)

    Granat K.

    2007-01-01

    Full Text Available This work presents the results of investigation of microwave heating on hardening process of water glass molding sands. Essential influence of this heating process on basic properties such as: compression, bending and tensile strength as well as permeability and abrasion resistance has been found. It has been proved, that all investigated sorts of sodium water glass with a module between 2.0 and 3.3 can be used as a binder of molding sands in microwave curing process. It has been found during analysis of research results of sands with 2.5 % water glass addition that they are practically the same as in case of identical molding sands dried for 120 minutes at the temperature of 110°C, used for comparative purposes. Application of microwave curing of molding sands with water glass, however, guarantees reduction of hardening time (from 120 to 4 minutes as well as significant reduction of energy consumption. Attempts of two stage hardening of the investigated water glass molding sands have also been carried out, that is after an initial hardening during a classical CO2 process (identical sands have also been tested for comparison after CO2 blowing process and additional microwave heating. It has been found that application of this kind of treatment for curing sands with 2.5 % sodium water glass content and module from 2.0 up to 3.3 results in the improvement of properties in comparison to classical CO2 process.

  3. 散热片砂型铸造过程的数值模拟%Numerical Simulation of Sand Mold Casting Cooling Fin

    Institute of Scientific and Technical Information of China (English)

    王广太

    2013-01-01

    用真空负压方法生产铝合金散热片,根据奥赞公式计算散热片的阻流截面积,根据热节圆原理计算冒口尺寸.通过数值模拟,观察铸件充型、凝固过程,预测缺陷所在位置,进行工艺分析及改进.结果表明,通过升高静压头,加大冒口,将缺陷转移至冒口中,可有效地避免铸件中的缩孔、缩松.优化的最佳工艺参数:浇注时间为3 s,浇注温度为740℃时金属静压头高度为40 mm,9个直径为10 mm的冒口.此时充型平稳,无卷气与飞溅;由下至上顺序凝固,可以实现补缩,生产出结构完整的铸件.%Aluminum alloy cooling fin was produced by vacuum negative pressure technology, in which gating area of cooling fin was calculated by the Osann equation, and riser size was presented based on the hot spot circle. The numerical simulation was performed to visualize filling and solidification process to predict the potential position of casting defects, and process was optimized. The simulated results reveal that shrinkage porosity (hole) in the cooling fin can be eliminated effectively as a result of defects transferring into the riser by increasing height of static head and enlarging riser size. The optimized process parameters are as follows: pouring time of 3 s, pouring temperature of 740 ℃ , hydrostatic head height of 40mm and nine risers with Φ10 mm. With the optimized processing parameters, smooth filling with entrapment-gas free and splash free is conducted to realize the sequential solidification and feeding, producing successfully the qualified cooling fin.

  4. Modeling of Mold Filling and Solidification in Lost Foam Casting

    Institute of Scientific and Technical Information of China (English)

    Fengjun LI; Houfa SHEN; Baicheng LIU

    2003-01-01

    Based on the characteristics of the lost foam casting (LFC) and the artificial neural network technique, a mathematicalmodel for the simulation of the melt-pattern interface movement during the mold filling of LFC has been proposed andexperimentally verified. The simulation results are consistent with the experiments in both the shapes of melt frontand filling sequences. According to the calculated interface locations, the fluid flow and the temperature distributionsduring the mold filling and solidification processes were calculated, and the shrinkage defect of a lost foam ductileiron casting was predicted by considering the mold wall movement in LFC. The simulation method was applied tooptimize the casting design of lost foam ductile iron castings. It is shown that the model can be used for the defectsprediction and for casting design optimization in the practical LFC production.

  5. The casting of western sculpture during the XIXth century: sand casting versus lost wax casting

    NARCIS (Netherlands)

    Beentjes, T.P.C.

    2014-01-01

    This paper will discuss research into bronze casting techniques as practiced during the XIXth and early XXth century. Both natural sand casting (fonte au sable naturel) and lost wax casting (fonte à la cire perdue) were employed during this period and sometimes rivalled for commissions. Before the X

  6. Integrally cored ceramic investment casting mold fabricated by ceramic stereolithography

    Science.gov (United States)

    Bae, Chang-Jun

    Superalloy airfoils are produced by investment casting (IC), which uses ceramic cores and wax patterns with ceramic shell molds. Hollow cored superalloy airfoils in a gas turbine engine are an example of complex IC parts. The complex internal hollow cavities of the airfoil are designed to conduct cooling air through one or more passageways. These complex internal passageways have been fabricated by a lost wax process requiring several processing steps; core preparation, injection molding for wax pattern, and dipping process for ceramic shell molds. Several steps generate problems such as high cost and decreased accuracy of the ceramic mold. For example, costly tooling and production delay are required to produce mold dies for complex cores and wax patterns used in injection molding, resulting in a big obstacle for prototypes and smaller production runs. Rather than using separate cores, patterns, and shell molds, it would be advantageous to directly produce a mold that has the casting cavity and the ceramic core by one process. Ceramic stereolithography (CerSLA) can be used to directly fabricate the integrally cored ceramic casting mold (ICCM). CerSLA builds ceramic green objects from CAD files from many thin liquid layers of powder in monomer, which are solidified by polymerization with a UV laser, thereby "writing" the design for each slice. This dissertation addresses the integrally cored casting ceramic mold (ICCM), the ceramic core with a ceramic mold shell in a single patternless construction, fabricated by ceramic stereolithography (CerSLA). CerSLA is considered as an alternative method to replace lost wax processes, for small production runs or designs too complex for conventional cores and patterns. The main topic is the development of methods to successfully fabricate an ICCM by CerSLA from refractory silica, as well as related issues. The related issues are the segregation of coarse fused silica powders in a layer, the degree of segregation parameter to

  7. Thin Wall Iron Castings

    Energy Technology Data Exchange (ETDEWEB)

    J.F. Cuttino; D.M. Stefanescu; T.S. Piwonka

    2001-10-31

    Results of an investigation made to develop methods of making iron castings having wall thicknesses as small as 2.5 mm in green sand molds are presented. It was found that thin wall ductile and compacted graphite iron castings can be made and have properties consistent with heavier castings. Green sand molding variables that affect casting dimensions were also identified.

  8. Evaluation of nano ceramic coating on radiographic defects of thin-walled AL4-4 aluminum alloy sand casting

    Directory of Open Access Journals (Sweden)

    Mansour Borouni

    2016-10-01

    Full Text Available Internal defects are among the problems in gravity casting of aluminum parts. The main internal volumetric defects are gas and shrinkage defects which form during solidification of the melt and drastically reduce the quality of the produced parts. These defects adversely affect the mechanical properties of thin walled castings parts. In this study, ceramic nanoparticles coatings were applied on the sand mold and the effect of mold coatings on the reduction of defects were investigated. X-ray radiography was used to detect defects in sand molds with ceramic nanoparticles coatings. For comparison, this test was performed on molds with micro-ceramic and graffiti coatings and uncoated sand mold. The results showed that the maximum amount of gas and shrinkage defects was observed in casting parts from AL4-1 alloy in uncoated molds. On the other hand, the minimum defects were found in molds coated with ceramic nanoparticles. It seems that the reduced defects in casting parts in molds coated with ceramic nanoparticles may be due to high thermal and chemical stability and higher heat transfer rate of the coating. These results can facilitate the production of high quality aluminum alloys parts using nanotechnology.

  9. Design optimization of gating and feeding system through simulation technique for sand casting of wear plate

    Directory of Open Access Journals (Sweden)

    Sachin L. Nimbulkar

    2016-09-01

    Full Text Available Casting is a manufacturing process to make complex shapes of metal materials; during mass production, we may experience many defects, such as gas porosity, pin holes, blow holes, shrinkages and incomplete filling that may occur in sand casting. Porosity is one of the defects most frequently encountered in ductile iron casting. Porosity impacts cost by scrap loss and limits the use of cast parts in critical high strength applications. The amount of porosity is closely related to the parameter of sand casting process. The gating/riser system design plays a very important role for improving casting quality. Many researchers reported that 90% of the defects in casting are obtained only because of improper design of gating and feeding system. The main objectives were to study the existing design of gating and feeding system, to optimize the gating and feeding system using Auto-CAST X1 casting simulation software, to prepare the sand mold and cast the part, to compare the simulated result and experimental results, to reduce rejection rate and to enable the company to again start the production.

  10. Water modeling of mold powder entrapment in slab continuous casting mold

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The optimal parameters were determined by the water modeling of slab casting. It was found that there are mainly three types of mold powder entrapment in slab continuous casting, i.e., the entrapment caused by the shearing flow near the narrow face of mold, the entrapment caused by vortexes around the submerged entry nozzle (SEN), and the entrapment caused by the Ar bubbling.Both the velocity of the surface flow and the level fluctuation of the liquids are enlarged with increasing the casting speed, reducing the submersion depth of SEN, decreasing the downward angles of the nozzle outlets, and increasing the Ar flowrate, all of which increase the tendency of mold powder entrapment. Among the four above-mentioned factors, casting speed has the largest effect.

  11. Study on hardness and microstructural characteristics of sand cast Al–Si–Cu alloys

    Indian Academy of Sciences (India)

    Muzaffer Zeren; Erdem Karakulak

    2009-12-01

    In this study, the influence of Cu content on the hardness and microstructural characteristics of sand cast Al–Si–Cu alloys have been investigated. Al–Si alloys with 2% and 5% Cu have been utilized for this purpose. Solidification of Al–Si–Cu alloys have been realized by melting in a gas furnace with a crucible and casting in green sand molds at 690°C. The solution treatment has been performed at 500°C for 7 h and then specimens were quenched in water. The samples have been aged at 190°C for 15 h to observe the effect of aging on mechanical properties.

  12. Solidification process and infrared image characteristics of permanent mold castings

    Science.gov (United States)

    Viets, Roman; Breuer, Markus; Haferkamp, Heinz; Kruessel, Thomas; Niemeyer, Matthias

    1999-03-01

    Interdependence between the development of temperature gradients at the solid-liquid interface during solidification of metals and the formation of local defects demands for thermal investigation. In foundry practice thermocouples are used to control the die's overall cooling-rate, but fluctuations in product quality still occur. Capturing FIR- thermograms after opening the die visualizes the state, when most thermal throughput has already flattened the temperature gradients in the mold. Rapid dissipation of heat from liquid metal to the mold during solidification forces further approach of the process investigation by slowing down the heat flux or the use of transparent mold material. Aluminum gravity casting experiments under technical vacuum conditions lead to decelerated solidification by suppression of convection and image sequences containing explicit characteristics that could be assigned to local shrinkage of the casting. Hence relevant clusters are extracted and thermal profiles are drawn from image series, pointing out correlations between feeding performance from the sink heads and the appearance of local defects. Tracing thermal processes in vacuum casting can scarcely be transferred to image data in foundry practice, since only little analogies exist between atmospheric and vacuum casting. The diagnosis of the casting process requires detection of the still closed mold using a transparent silica- aerogel sheet as part of the die. Hereby thermograms of the initial heat input are recorded by adapting a NIR-camera in addition to the FIR-unit. Thus the entire thermal compensation at the joint face for each casting is visualized. This experimental set-up is used for image sequence analysis related to the intermediate casting phases of mold filling, body formation and solidification shrinkage.

  13. FORMATION OF WEAR-RESISTANT CHROMIUM CAST IRON CASTING INTO THE CHILL MOLD

    Directory of Open Access Journals (Sweden)

    E. I. Marukovich

    2013-01-01

    Full Text Available The analysis of thermal processes of formation of castings from wearproof chromic cast irons for replaceable details of centrifugal mills and crushers is carried out. Influence of protective and dividing coverings on intensity of heating of the chill mold is investigated.

  14. Thermomechanical Behavior in Continuous Bloom Casting with Different Mold Tapers

    Institute of Scientific and Technical Information of China (English)

    LUO Xin; CHEN Yong; SHEN Houfa

    2008-01-01

    A two-dimensional finite element model was used to analyze the thermal and mechanical behavior dunng solidification of the strand in a continuous bloom casting mold.The coupled heat transfer and defermation were analyzed to simulate the formation of the air gap between the mold and the strand.The model was used to investigate the influence of mold taper on the temperature and stress distributions in the strand.The results show that the air gap mainly forms around the strand corner,causing a hoRer and thinner solidifying shell in this region.The mold taper partially compensates for the strand shell shnnkage and reduces the infiuence of the air gap on the heat transfer.The mold taper compresses the shell and changes the stress state around the stmnd comer region.As the strand moves down into the mold,the mold constraint causes compressive stress beneath the comer surface.which reduces the hot tear that forms on the strand.

  15. Effect of heat treatment on corrosion behavior of low pressure sand cast Mg-10Gd-3Y-0.5Zr alloys

    OpenAIRE

    2016-01-01

    The corrosion behaviors of low-pressure sand cast Mg-10Gd-3Y-0.5Zr (wt.%) alloys in as-cast, solution treated (T4) and aged (T6) conditions were studied by means of immersion test and electrochemical measurements in 5wt.% NaCl solution saturated with Mg(OH)2. It was observed that the corrosion rate in the T4 condition was lower than that of the as-cast and T6 conditions by both sand casting and permanent mold casting with the same order of as-cast>T6>T4; while the corrosion resistance of the ...

  16. The thermal distortion of continuous-casting billet molds

    Science.gov (United States)

    Samarasekera, I. V.; Anderson, D. L.; Brimacombe, J. K.

    1982-03-01

    Preliminary mathematical analyses involving plate bending theory and two-dimensional elastic calculations have revealed that the dominant component contributing to the distortion of continuous-casting billet molds is thermal expansion in the transverse directions. A three-dimensional, elasto-plastic, finite-element analysis of the mold wall has then shown that localized yielding initiates in a region close to the meniscus. The plastic flow is a result of the high thermal stresses induced by the geometric restraint to bending coupled with the locally high temperatures. The resultant distortion profile of the mold down the centerline of a face exhibits a maximum outward bulge of 0.1 to 0.3 mm, which is bounded above by a region of negative taper (1˜2 pct/m) and below by a region of positive taper (˜0.4 pct/m). Measurements of mold wall movement in an operating billet caster using linear displacement transducers compare favorably with model predictions, except in the meniscus region. Case studies of several industrial billet molds have shown that lowering the meniscus level with respect to the location of constraints, or modifying the method of support of the mold tube within its housing so as to reduce the restraint to thermal expansion in the meniscus region, may minimize the extent of permanent distortion. Also, wall thickness can have a significant effect on thermal distortion. Increasing wall thickness results in an increase in both peak wall temperatures and thermal gradients. The former increases the local distortion while the latter causes higher thermal stress levels and possibly permanent distortion. Of the casting variables that can be manipulated to major advantage, cooling water flow rate is the most important. Increasing the water velocity reduces mold wall temperatures, as well as both the total and permanent distortion of the wall.

  17. 40 CFR Appendix - Alternative Organic HAP Emissions Limits for Open Molding, Centrifugal Casting, and SMC...

    Science.gov (United States)

    2010-07-01

    ... Limits for Open Molding, Centrifugal Casting, and SMC Manufacturing Operations Where the Standards Are..., Table 5 Alternative Organic HAP Emissions Limits for Open Molding, Centrifugal Casting, and SMC... casting—CR/HS 3,4 A vent system that moves heated air through the mold 27 lb/ton. 8. Centrifugal...

  18. Surface Graphite Degeneration in Ductile Iron Castings for Resin Molds

    Institute of Scientific and Technical Information of China (English)

    Iulian Riposan; Mihai Chisamera; Stelian Stan; Torbjorn Skaland

    2008-01-01

    The objective of this paper is to review the factors influencing the formation of degenerated graph-ite layers on the surfaces of ductile iron castings for chemical rosins-acid molding and coro-making systems and how to reduce this defect. In the rosin mold technique the sulphur in the P-toluol sulphonic acid (PTSA),usually used as the hardener, has been identified as one factor causing graphite degeneration at the metal-mold interface. Less than 0.15% S in the mold (or even less than 0.07% S) can reduce the surface layer depth. Oxygen may also have an effect, especially for sulphur containing systems with turbulent flows in the mold, water-bearing no-bake binder systems, Mg-Silica reactions, or dross formation conditions. Despite the lower level of nitrogen in the iron melt after magnesium treatment (less than 90 ppm), nitrogen bearing res-ins have a profound effect on the frequency and severity of surface pinholes, but a limited influence on sur-face graphite degeneration.

  19. Flow of Steel in Mold Region During Continuous Casting

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xing-guo; ZHANG Wen-xiao; JIN Jun-ze; J. W. Evans

    2007-01-01

    The particle image velocimetry (PIV) technique was used to study the fluid flow phenomena that occurred during continuous casting, using a water model with dimensions of 1 840 mm×280 mm. Two types of solidified shells, i.e., the smooth type and the coarse type, were used to characterize the dendrite in order to simulate different liquid-solid interfacial conditions. The influence of the nozzle angle and the immersion depth of nozzle, as well as the casting speed on the flow behavior was investigated quantitatively. The results were as follows: (1) There are two large recirculations above and below the fluid jet in the mold, respectively, under the smooth interface condition. However, in the case of the dendrite solidified shell, it was found that the flow velocity of the fluid decreased and more smaller vortices appeared in the upper region of the mold. (2) The angle and the immersion depth of nozzle are two important factors affecting the flow pattern, and they are also capable of bringing about the change in the flow direction. (3) The higher the casting speed, the higher are the jet stream and the impacting point on the narrow face. However, the high casting speed causes serious fluctuation of the meniscus, and correspondingly leads to various defects.

  20. Triple Plate Mold Final Report: Optimization of the Mold Design and Casting Parameters for a Thin U-10mo Fuel Casting

    Energy Technology Data Exchange (ETDEWEB)

    Aikin, Jr., Robert M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-01-04

    This work describes the experiments and modeling that have been performed to improve and try to optimize the simultaneous casting of three plates of U-10wt%Mo in a single coil vacuum induction melting (VIM) furnace. The plates of interest are 280 mm wide by 203 mm tall by 5 mm thick (11" x 8" x 0.2"). The initial mold design and processing parameters were supplied by Y-12. The mold and casting cavity were instrumented with a number of thermocouples, and the casting performed to determine the thermal history of the mold and casting. The resulting cast plates were radiographed and numerous defects identified. Metallography was performed to help identify the nature of the radiographically observed defects. This information was then used to validate a mold filling and solidification model of that casting. Based on the initial casting, good casting design practice, and process simulation of several design alternatives, a revised design was developed with the goal of minimizing casting defects such as porosity. The redesigned mold had a larger hot-top and had its long axis along the horizontal direction. These changes were to try to develop a strong thermal gradient conducive to good feeding and minimization of micro- and macroporosity in the cast plates. An instrumented casting was then performed with the revised mold design and a linear distributor. This design yielded cast plates with significantly less radiographically identified defects. Unfortunately, there was significant variation in plate weight and metal content in their hot-tops. Fluid flow simulations were then performed on this mold/distributor design. This helped identify the issue with this linear distributor design. Additional simulations were then performed on candidate distributor redesigns and a preferred distributor annular design was identified. This improved annular design was used to produce a third instrumented casting with favorable results. These refined designs and their radiographic

  1. Evaluation of Reclamability of Molding Sands with New Inorganic Binders

    Directory of Open Access Journals (Sweden)

    I. Izdebska-Szanda

    2012-04-01

    Full Text Available One of the purposes of the application of chemically modified inorganic binders is to improve knocking out properties and the related reclamability with previously used in foundry inorganic binder (water glass, which allowing the use of ecological binders for casting non- ferrous metals. Good knocking out properties of the sands is directly related to the waste sands reclamability, which is a necessary condition of effective waste management. Reclamation of moulding and core sands is a fundamental and effective way to manage waste on site at the foundry, in accordance with the Environmental Guidelines. Therefore, studies of reclamation of waste moulding and core sands with new types of inorganic binders (developed within the framework of the project were carried out. These studies allowed to determine the degree of recovery of useful, material, what the reclaimed sand is, and the degree of its use in the production process. The article presents these results of investigation. They are a part of broader research programme executed under the project POIG.01.01.02-00- 015/09 "Advanced materials and technologies".

  2. Measurement of casting parameters in ZnAlCu3 molds created by additive technology

    Directory of Open Access Journals (Sweden)

    S. Medić

    2016-10-01

    Full Text Available This paper examines the parameters of casting ZnAl4Cu3 alloy (volume, castability, density and occupancy of the mold in mold made additive technology. Molds made by additive technology are: cheaper in production of a small number of castings, geometrically more accurate and faster made. From obtained results of this paper it is clearly seen that printed mold must be protected with thermal coating because liquid adhesive of powder otherwise evaporates during casting and creates additional moisture in the mold, as it was noted.

  3. Temperature and Thermal Stress Distribution for Metal Mold in Squeeze Casting Process

    Institute of Scientific and Technical Information of China (English)

    K.H.Chang; G.C.Jang; C.H.Lee; S.H.Lee

    2008-01-01

    In the squeeze casting process, loaded high pressure (over approximately 100 MPa) and high temperature influence the thermo-mechanical behavior and performance of the used metal mold. Therefore, to safely maintain the metal molds, the thermo-mechanical characteristics (temperature and thermal stress) of metal mold in the squeeze casting must be investigated. In this paper, temperature and thermal stress distribution of steel mold in squeeze casting process were investigated by using a three-dimensional non-steady heat conduction analysis and a three-dimensional thermal elastic-plastic analysis considering temperature-dependent thermo- physical and mechanical properties of the steel mold.

  4. Thermo-Insulating Moulding Sand for thin Walled Castings

    Directory of Open Access Journals (Sweden)

    Cholewa M.

    2014-10-01

    Full Text Available In paper the selection of the composition and determination of main properties of novel moulding sand was described. The mail goal was to create moulding sand characterized by high thermal insulating properties in relations with low specific weight. This type of moulding sand will find application in thin walled castings with complex geometry, in particular for cores of the skeleton castings. In this work the results of the compressive strength, permeability and friability was presented. It was noted that aluminosilicate microspheres are suitable as moulding sand matrix. Influence of the polyglicol addition on quality and properties of the moulding sand was described. The use of the aluminosilicate microspheres allowed to obtain the moulding sand characterized by high insulation rate, low specific weight and good mechanical properties.

  5. Characteristics of shell thickness in a slab continuous casting mold

    Institute of Scientific and Technical Information of China (English)

    Di-feng Wu; Shu-sen Cheng; Zi-jian Cheng

    2009-01-01

    The key to reduce shell breakout in the continuous casting process is to control shell thickness in the mold.A numerical simulation on the turbulent flow and heat transfer coupled with solidification in the slab mold using the volume of fluid (VOF) model and the enthalpy-porosity scheme was conducted and the emphasis was put upon the flow effect on the shell thickness profiles in longitudinal and transverse directions.The results show that the jet acts a stronger impingement on the shell of narrow face,which causes a zero-increase of shell thickness in a certain range near the impingement point.The thinnest shell on the slab cross-section locates primarily in the center of the narrow face,and secondly near the comer of the wide face.Nozzle optimization can obviously increase the shell thickness and make it more uniform.

  6. EXPERIMENTAL RESEARCH AND NUMERICAL SIMULATION OF MOLD TEMPERATURE FIELD IN CONTINUOUS CASTING OF STEEL

    Institute of Scientific and Technical Information of China (English)

    X.S. Zheng; M.H. Sha; J.Z. Jin

    2006-01-01

    Mold is the heart of the continuous casting machine. Heat transfer and solidification in a watercooled mold are the most important factors during the continuous casting of steel. For studying the temperature distribution of a mold wall, a simulated apparatus of mold was designed and experiments were performed by it. The measured results indicated that the mold wall temperature approaches the temperature of cooling-water. An equivalent thermal-conductivity coefficient was proposed and deduced on the basis of the conclusion of the experiments. This coefficient was applied to solve the heat transfer between the melt and cooling water, and to characterize the heat transfer capacity of the mold. By this equivalent thermal-conductivity coefficient, it is very easy and convenient to numerically simulate the solidification process of continuous casting. And the calculation results are in agreement with the experiments. The effects of casting speed and water flow rate on the mold temperature field were also discussed.

  7. Development of Aerogel Molds for Metal Casting Using Lunar and Martian Regolith

    Science.gov (United States)

    2003-01-01

    series of aerogel plates suitable for thin plate metal casting and ingot metal castings. The influence of aerogels on thin wall metal castings was studied by placing aerogel plates into the cavities of thin sections of resin bonded sand molds. An 1 based commercial alloy ( 356) containing 7 percent Si was poured into these molds. Post-solidification studies provide evidence that aerogel inserts significantly reduce the cooling rate during solidification. The advantage of a lower rate using aerogel inserts was reflected in the reduction of casting defects such as shrinkage porosity. Quantitative results support the hypothesis that using aerogels as a mold material can offer definite advantages when used as casting thin sections. As a separate effort, silica aerogel with cylindrical cavities have been prepared and will be evaluated for casting commercial alloys.

  8. Casting Ductile Iron in Layer Moulds Made from Ecological Sands

    Directory of Open Access Journals (Sweden)

    M. Rączka

    2012-09-01

    Full Text Available The article contains the results of tests performed under the target project in Hardtop Foundry Charsznica.The objective of the tests and studies was to develop a technology of making high-quality ductile iron castings, combined witheffective means of environmental protection. The studies presented in this article related to castings weighing from 1 to 300 kg made from ductile iron of grades 400-15 and 500-7, using two-layer moulds, where the facing and core sand was the sand with an alkaline organic binder, while backing sand was the sand with an inorganic geopolymer binder.A simplified method of sand reclamation was applied with possible reuse of the reclaim as an addition to the backing sand. The castiron spheroidising treatment and inoculation were selected taking into account the specific conditions of Hardtop Foundry. A pilot batch of castings was made, testing the gating and feeding systems and using exothermic sleeves on risers. The study confirmed the validity of the adopted concept of making ductile iron castings in layer moulds, while maintaining the content of sand with an organic binder at a level of maximum 15%.

  9. Fluid Flow in Continuous Casting Mold with a Configured Nozzle

    Institute of Scientific and Technical Information of China (English)

    王镭; 沈厚发; 柳百成

    2004-01-01

    The influence of a configured nozzle on the turbulent fluid flow in a continuous casting mold was investigated using the simulation program Visual Cast, which used the finite difference method and the SIMPLER algorithm. CAD software was used to construct the complicated nozzle in the calculational region. The simulation accuracy was validated by comparison with the classic driven cavity flow problem. The simulation results agree well with water modeling experiments. The simulations show that the velocity distribution at the nozzle port is uneven and the jet faces downward more than the nozzle outlet. Simulations with a configured nozzle and the inlet velocity at the nozzle entrance give precise results and overcome the traditional difficulty in determining the nozzle outlet velocity.

  10. Mold Simulator Study of the Initial Solidification of Molten Steel in Continuous Casting Mold: Part II. Effects of Mold Oscillation and Mold Level Fluctuation

    Science.gov (United States)

    Zhang, Haihui; Wang, Wanlin

    2016-04-01

    The surface quality of the continuous casting strands is closely related to the initial solidification of liquid steel in the vicinity of the mold meniscus, and thus the clear understanding of the behavior of molten steel initial solidification would be of great importance for the control of the quality of final slab. With the development of the mold simulator techniques, the complex interrelationship between the solidified shell surface profile, heat flux, shell thickness, mold level fluctuation, and the infiltrated slag film was well illustrated in our previous study. As the second part, this article investigated the effect of the mold oscillation frequency, stroke, and mold level fluctuation on the initial solidification of the molten steel through the conduction of five different experiments. Results suggested that in the case of the stable mold level, the oscillation marks (OMs) exhibit equally spaced horizon depressions on the shell surface, where the heat flux at the meniscus area raises rapidly during negative strip time (NST) period and the presence of each OMs on the shell surface is corresponding to a peak value of the heat flux variation rate. Otherwise, the shell surface is poorly defined by the existence of wave-type defects, such as ripples or deep depressions, and the heat flux variation is irregular during NST period. The rising of the mold level leads to the longer-pitch and deeper OMs formation; conversely, the falling of mold level introduces shorter-pitch and shallower OMs. With the increase of the mold oscillation frequency, the average value of the low-frequency heat flux at the meniscus increases; however, it decreases when the mold oscillation stroke increases. Additionally, the variation amplitude of the high-frequency temperature and the high-frequency heat flux decreases with the increase of the oscillation frequency and the reduction of the oscillation stroke.

  11. Casting defects of Ti-6Al-4V alloy in vertical centrifugal casting processes with graphite molds

    Science.gov (United States)

    Jia, Limin; Xu, Daming; Li, Min; Guo, Jingjie; Fu, Hengzhi

    2012-02-01

    Numerical simulation and experimental investigation are utilized to analyze the casting defects of Ti-6Al-4V alloy formed under different vertical centrifugal casting conditions in graphite molds. Mold rotating rates of 0, 110 and 210 rpm are considered in experimental process. Results show that centrifugal forces have significant effects on the quantity of both macropores and microdefects (micropores, microcracks and inclusions). The relative amount of all macro- and micro-scopic casting defects decreases from 62.4 % to 24.8 % with the increasing of the centrifugal force, and the macropore quantity in stepped casting decreases exponentially with the increase of the gravitation coefficient. The relative proportions of both micropores and microcracks decrease with the mold-rotating rate increase, but the relative proportion of inclusions increases significantly. Besides this, the mold-filling sequence is proved to be an important factor in casting quality control.

  12. Investigation of the beryllia ceramics molding process by the hot casting method

    Science.gov (United States)

    Zhapbasbaev, U. K.; Ramazanova, G. I.; Sattinova, Z. K.

    2013-03-01

    Results of mathematical simulation of the ceramics molding process by the hot casting method are presented. The mathematical model describes the motion of beryllia liquid thermoplastic slurry in a form-building cavity subject to solidification. Velocity and temperature profiles providing homogeneous properties of the beryllia ceramics in the process of molding by the hot casting method are obtained.

  13. INVESTIGATION OF THE INFLUENCE OF MOLD ROTATIONAL SPEED ON THE CAST WALL THICKNESS IN THE ROTATIONAL MOLDING PROCESS

    Directory of Open Access Journals (Sweden)

    Tomasz Jachowicz

    2013-09-01

    Full Text Available This paper presents the rotational molding process. The general principles of this polymer processing technology have been described. The main applications have been introduced and leading advantages and typical disadvantages of rotational molding process have been discussed. Based on the conducted experimental tests, the influence of changing one selected technological parameter, which characterized rotational molding process, on selected geometrical features of the polymer cast has been determined. Rotational mold’s speed around axes was changed and a thickness of cast walls has been measured. Laboratory test stand, processing properties of polymer, also test program and experimental test methodology have been described.

  14. A Review of Mold Flux Development for the Casting of High-Al Steels

    Science.gov (United States)

    Wang, Wanlin; Lu, Boxun; Xiao, Dan

    2016-02-01

    Mold flux plays key roles during the continuous casting process of molten steel, which accounts for the quality of final slabs. With the development of advanced high strength steels (AHSS), certain amounts of Al have been added into steels that would introduce severe slag/metal interaction problems during process of continuous casting. The reaction is between Al and SiO2 that is the major component in the mold flux system. Intensive efforts have been conducted to optimize the mold flux and a CaO-Al2O3-based mold flux system has been proposed, which shows the potential to be applied for the casting process of AHSS. The latest developments for this new mold flux system were summarized with the aim to offer technical guidance for the design of new generation mold flux system for the casting of AHSS.

  15. Selection of Initial Mold-Metal Interface Heat Transfer Coefficient Values in Casting Simulations—a Sensitivity Analysis

    Science.gov (United States)

    Nayak, Ramesh K.; Sundarraj, Suresh

    2010-02-01

    Mold-metal interface heat transfer coefficient values need to be determined precisely to accurately predict thermal histories at different locations in automotive castings. Thermomechanical simulations were carried out for Al-Si alloy casting processes using a commercial code. The cooling curve results were validated with experimental data from the literature for a cylindrical-shaped casting. Our analysis indicates that the interface heat transfer coefficient (IHTC) initial value choice between chill-metal and the sand mold-metal interfaces has a marked effect on the cooling curves. In addition, after choosing an IHTC initial value, the solidification rates of the alloy near the chill-metal interfaces varied during subsequent cooling when the gap began to form. However, the gap formation, which results in an IHTC change from the initial value, does not affect the cooling curves within the vicinity of the sand-metal interface. Optimized initial IHTC values of 3000 and 7000 W m-2-K-1 were determined for a sand-metal interface and a chill (steel or copper)-metal interfaces, respectively. The initial IHTC had a significant effect on the prediction of secondary dendrite arm spacing (SDAS) (varying between approximately 15 microns and 70 microns) and ultimate tensile strength (UTS) (varying between approximately 250 MPa and 370 MPa) for initial IHTC values that were less than the optimized value of 7000 W m-2 K-1 for the chill-metal interfaces.

  16. 40 CFR 63.5810 - What are my options for meeting the standards for open molding and centrifugal casting operations...

    Science.gov (United States)

    2010-07-01

    ... standards for open molding and centrifugal casting operations at new and existing sources? 63.5810 Section... § 63.5810 What are my options for meeting the standards for open molding and centrifugal casting... (d) of this section to meet the standards for open molding or centrifugal casting operations in...

  17. The influence of microwave curing time and water glass kind on the properties of molding sands

    Directory of Open Access Journals (Sweden)

    K. Granat

    2007-12-01

    Full Text Available This work presents results of research on the influence of microwave heating time on the process of hardening of water glass molding sands. Essential influence of this drying process on basic properties such as: compression, bending and tensile strength as well as permeability and wear resistance, has been found. It has been proved, that all the investigated sorts of sodium water glass could be used as binding material of molding sands intended for curing with the microwave process heating. It has been found, while analyzing the results of property studies of microwave heated molding sands with 2.5% addition of water glass, that all available on the market kinds of this binding agent (including the most frequently used in foundry 145 and 149 kinds after microwave heating guarantee very good compression, bending and tensile strength as well as permeability and wear resistance. Moreover, it has been determined that the optimal curing time of molding sands containing various kinds of water glass is 240 seconds. After this time, all basic properties of molding sands are stable. The use of microwave curing of water glass molding sands results in a significant decrease of hardening process time, full stabilization of molding sands as well as much lower energy consumption.

  18. Effect of Carbon Properties on Melting Behavior of Mold Fluxes for Continuous Casting of Steels

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    During continuous casting of steel, the properties of mold fluxes strongly affect the casting performance,steel quality and environment of casting operation. The high temperature microscopy technique was used to investigate the melting behaviour of mold fluxes, and drip test method was used to determine their melting rate. The results showed that free carbon is a dominant factor in governing the melting behaviour of fluxes, and the melting rate is increased with increasing carbon reactivity and decreasing carbon content.

  19. Effect of superheat, mold, and casting materials on the metal/mold interfacial heat transfer during solidification in graphite-lined permanent molds

    Science.gov (United States)

    Prabhu, K. Narayan; Suresha, K. M.

    2004-10-01

    Heat transfer during the solidification of an Al-Cu-Si alloy (LM4) and commercial pure tin in single steel, graphite, and graphite-lined metallic (composite) molds was investigated. Experiments were carried out at three different superheats. In the case of composite molds, the effect of the thickness of the graphite lining and the outer wall on heat transfer was studied. Temperatures at known locations inside the mold and casting were used to solve the Fourier heat conduction equation inversely to yield the casting/mold interfacial heat flux transients. Increased melt superheats and higher thermal conductivity of the mold material led to an increase in the peak heat flux at the metal/mold interface. Factorial experiments indicated that the mold material had a significant effect on the peak heat flux at the 5% level of significance. The ratio of graphite lining to outer steel wall and superheat had a significant effect on the peak heat flux in significance range varying between 5 and 25%. A heat flux model was proposed to estimate the maximum heat flux transients at different superheat levels of 25 to 75 °C for any metal/mold combinations having a thermal diffusivity ratio (α R) varying between 0.25 and 6.96. The heat flow models could be used to estimate interfacial heat flux transients from the thermophysical properties of the mold and cast materials and the melt superheat. Metallographic analysis indicated finer microstructures for castings poured at increased melt superheats and cast in high-thermal diffusivity molds.

  20. Effect of Additives on Green Sand Molding Properties using Design of Experiments and Taguchi's Quality Loss Function - An Experimental Study

    Science.gov (United States)

    Desai, Bhagyashree; Mokashi, Pavani; Anand, R. L.; Burli, S. B.; Khandal, S. V.

    2016-09-01

    The experimental study aims to underseek the effect of various additives on the green sand molding properties as a particular combination of additives could yield desired sand properties. The input parameters (factors) selected were water and powder (Fly ash, Coconut shell and Tamarind) in three levels. Experiments were planned using design of experiments (DOE). On the basis of plans, experiments were conducted to understand the behavior of sand mould properties such as compression strength, shear strength, permeability number with various additives. From the experimental results it could be concluded that the factors have significant effect on the sand properties as P-value found to be less than 0.05 for all the cases studied. The optimization based on quality loss function was also performed. The study revealed that the quality loss associated with the tamarind powder was lesser compared to other additives selected for the study. The optimization based on quality loss function and the parametric analysis using ANOVA suggested that the tamarind powder of 8 gm per Kg of molding sand and moisture content of 7% yield better properties to obtain sound castings.

  1. ''Heat Transfer at the Mold-Metal Interface in Permanent Mold Casting of Aluminum Alloys'' Final Project Report

    Energy Technology Data Exchange (ETDEWEB)

    Professor R. D. Pehlke, Principal Investigator, Dr. John M. Cookson, Dr. Shouwei Hao, Dr. Prasad Krishna, Kevin T. Bilkey

    2001-12-14

    This project on heat transfer coefficients in metal permanent mold casting has been conducted in three areas. They are the theoretical study at the University of Michigan, the experimental investigation of squeeze casting at CMI-Tech Center (Now Hayes-Lemmerz Technical Center) and the experimental investigation of low pressure permanent mold casting at Amcast Automotive.

  2. The Lot Sizing and Scheduling of Sand Casting Operations

    NARCIS (Netherlands)

    Hans, Erwin; Velde, van de Steef

    2010-01-01

    We describe a real world case study that involves the monthly planning and scheduling of the sand-casting department in a metal foundry. The problem can be characterised as a single-level multi-item capacitated lot-sizing model with a variety of additional process-specific constraints. The main obje

  3. The Lot Sizing and Scheduling of Sand Casting Operations

    NARCIS (Netherlands)

    Hans, Elias W.; van de Velde, S.L.; van de Velde, Steef

    2011-01-01

    We describe a real world case study that involves the monthly planning and scheduling of the sand-casting department in a metal foundry. The problem can be characterised as a single-level multi-item capacitated lot-sizing model with a variety of additional process-specific constraints. The main

  4. Grain refinement of permanent mold cast copper base alloys. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Sadayappan, M.; Thomson, J. P.; Elboujdaini, M.; Gu, G. Ping; Sahoo, M.

    2004-04-29

    Grain refinement behavior of copper alloys cast in permanent molds was investigated. This is one of the least studied subjects in copper alloy castings. Grain refinement is not widely practiced for leaded copper alloys cast in sand molds. Aluminum bronzes and high strength yellow brasses, cast in sand and permanent molds, were usually fine grained due to the presence of more than 2% iron. Grain refinement of the most common permanent mold casting alloys, leaded yellow brass and its lead-free replacement EnviroBrass III, is not universally accepted due to the perceived problem of hard spots in finished castings and for the same reason these alloys contain very low amounts of iron. The yellow brasses and Cu-Si alloys are gaining popularity in North America due to their low lead content and amenability for permanent mold casting. These alloys are prone to hot tearing in permanent mold casting. Grain refinement is one of the solutions for reducing this problem. However, to use this technique it is necessary to understand the mechanism of grain refinement and other issues involved in the process. The following issues were studied during this three year project funded by the US Department of Energy and the copper casting industry: (1) Effect of alloying additions on the grain size of Cu-Zn alloys and their interaction with grain refiners; (2) Effect of two grain refining elements, boron and zirconium, on the grain size of four copper alloys, yellow brass, EnviroBrass II, silicon brass and silicon bronze and the duration of their effect (fading); (3) Prediction of grain refinement using cooling curve analysis and use of this method as an on-line quality control tool; (4) Hard spot formation in yellow brass and EnviroBrass due to grain refinement; (5) Corrosion resistance of the grain refined alloys; (6) Transfer the technology to permanent mold casting foundries; It was found that alloying elements such as tin and zinc do not change the grain size of Cu-Zn alloys

  5. Analysis of the origin of periodic oscillatory flow in the continuous casting mold

    Science.gov (United States)

    Lee, Jun-young; Kim, Yong-tae; Yi, Kyung-woo

    2015-03-01

    It is very important to understand flow patterns within the continuous casting mold because they have a significant impact on product quality. Water model experiment and particle image velocimetry were conducted to identify the fluid flow pattern in the steel slab continuous casting mold. The fluid flow pattern in the mold is not steady but instead an oscillatory flow with a specific oscillation frequencies. Many studies have been reported about oscillatory flow within the mold. However, these studies do not provide a clear explanation of physical origin of oscillatory flow. We identified the physical origins of various specific oscillation frequencies, and confirmed through experimentation and simulation that each frequency is related to the cross flow and injection stream oscillation. Moreover, the degree of oscillation at each frequency appears differently depending on the location within the mold, and is shown to have a effect near the mold wall. These results provide a better understanding of complex oscillatory flow patterns within the mold.

  6. Increasing the life of molds for casting copper and its alloys

    Science.gov (United States)

    Smirnov, A. N.; Spiridonov, D. V.

    2010-12-01

    The work of the molds intended for casting copper and copper alloys in semicontinuous casters for producing flat billets is considered. It is shown that, to increase the resistance of mold plates, the inner space of the mold should have a taper shape toward the casting direction and take into account the shrinkage of the linear dimensions of the ingot during its motion in the mold. The taper shape increases the intensity and uniformity of heat removal due to close contact between the ingot and the mold inner surface. Testing of new design molds under industrial conditions demonstrates that their resistance increases by a factor of 4.0-4.5. The taper effect of the mold plates is much more pronounced in their narrow faces.

  7. A study of interfacial heat transfer and process parameters in squeeze casting and low pressure permanent mold casting

    Science.gov (United States)

    Krishna, Prasad

    2001-08-01

    With the emerging demand for energy efficient and environment-friendly automobiles, cast aluminum alloys are increasingly being used in their manufacture. In this context, two permanent mold casting processes, namely, Squeeze Cast Permanent Mold and Low Pressure Permanent Mold (LPPM) have become very popular in the production of high integrity shape-cast aluminum components. However, many industries are yet to benefit from the full potential of these processes due to limited understanding of the effect of process parameters on casting quality and the necessary boundary conditions for computer modeling and simulation so as to minimize costly field trials. This dissertation attempts to address some of these concerns facing today's foundry industry. An experimental investigation of the Indirect Squeeze Casting Process was conducted by pouring molten Al-7Si-0.3Mg (A356) alloy into a specially designed and instrumented mold, mounted on a horizontal clamped-vertical shot squeeze caster (HVSC). Temperature measurements close to the metal/mold interface were made and compared with the results of the numerical simulation of heat flow during solidification and cooling of castings. The Heat Transfer Coefficient (HTC), a critical parameter essential for any solidification simulation, was estimated based on the simulation that gave the best fit to the experimental temperature data. During the solidification process, the HTC is relatively uniform over the entire casting and on reaching a critical solidification pressure, the HTC is close to 4500 W/m2 K. The work has also provided a correlation of Secondary Dendrite Arm Spacing (SDAS) with cooling rate for a modified A356 alloy. Low Pressure Permanent Mold Casting experiments were conducted by pouring a nearly identical aluminum alloy into an instrumented, coated mold mounted on a low pressure casting machine. The pressure levels, along with the time required to achieve complete filling, were microprocessor controlled in the

  8. Application of High-Temperature Mold Materials to Die Cast Copper Motor Rotor for Improved Efficiency

    Energy Technology Data Exchange (ETDEWEB)

    John G. Cowie; Edwin F. Brush, Jr.; Dale T. Peters; Stephen P. Midson; Darryl J. Van Son

    2003-05-01

    The objective of the study, Application of High-Temperature Mold Materials to Die Cast Copper Motor Rotor for Improved Efficiency, was to support the Copper Development Association (CDA) in its effort to design, fabricate and demonstrate mold technologies designed to withstand the copper motor rotor die casting environment for an economically acceptable life. The anticipated result from the compiled data and tests were to: (1) identify materials suitable for die casting copper, (2) fabricate motor rotor molds and (3) supply copper rotor motors for testing in actual compressor systems. Compressor manufacturers can apply the results to assess the technical and economical viability of copper rotor motors.

  9. Intelligent Machine Vision Based Modeling and Positioning System in Sand Casting Process

    Directory of Open Access Journals (Sweden)

    Shahid Ikramullah Butt

    2017-01-01

    Full Text Available Advanced vision solutions enable manufacturers in the technology sector to reconcile both competitive and regulatory concerns and address the need for immaculate fault detection and quality assurance. The modern manufacturing has completely shifted from the manual inspections to the machine assisted vision inspection methodology. Furthermore, the research outcomes in industrial automation have revolutionized the whole product development strategy. The purpose of this research paper is to introduce a new scheme of automation in the sand casting process by means of machine vision based technology for mold positioning. Automation has been achieved by developing a novel system in which casting molds of different sizes, having different pouring cup location and radius, position themselves in front of the induction furnace such that the center of pouring cup comes directly beneath the pouring point of furnace. The coordinates of the center of pouring cup are found by using computer vision algorithms. The output is then transferred to a microcontroller which controls the alignment mechanism on which the mold is placed at the optimum location.

  10. 3D scanning based mold correction for planar and cylindrical parts in aluminum die casting

    Directory of Open Access Journals (Sweden)

    Takashi Seno

    2015-04-01

    Full Text Available Aluminum die casting is an important manufacturing process for mechanical components. Die casting is known to be more accurate than other types of casting; however, post-machining is usually necessary to achieve the required accuracy. The goal of this investigation is to develop machining- free aluminum die casting. Improvement of the accuracy of planar and cylindrical parts is expected by correcting metal molds. In the proposed method, the shape of cast aluminum made with the initial metal molds is measured by 3D scanning. The 3D scan data includes information about deformations that occur during casting. Therefore, it is possible to estimate the deformation and correction amounts by comparing 3D scan data with product computer-aided design (CAD data. We corrected planar and cylindrical parts of the CAD data for the mold. In addition, we corrected the planar part of the metal mold using the corrected mold data. The effectiveness of the proposed method is demonstrated by evaluating the accuracy improvement of the cast aluminum made with the corrected mold.

  11. Evaluation of the mold-filling ability of alloy melt in squeeze casting

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The mold-filling ability of alloy melt in squeeze casting process was evaluated by means of the maximum length of Archimedes spiral line. A theoretical evaluating model to predict the maximum filling length was built based on the flowing theory of the incompressible viscous fluid. It was proved by experiments and calculations that the mold-filling pressure and velocity are prominent influencing factors on the mold-filling ability of alloy melt. The mold-filling ability increases with the increase of the mold-filling pressure and the decrease of the proper mold-filling velocity. Moreover, the pouring temperature relatively has less effect on the mold-filling ability under the experimental conditions. The maximum deviation of theoretical calculating values with experimental results is less than 15%. The model can quantitatively estimate the effect of every factor on the mold-filling ability.

  12. Research on the Forming Mechanism of Micro/Nano Features during the Cast Molding Pro cess

    Institute of Scientific and Technical Information of China (English)

    Xiangdong Ye; Yugang Duan; Yucheng Ding

    2011-01-01

    Cast molding process has provided a reliable, simple and cost-effective way to fabricate micro structures since decades ago. In order to obtain structures with fine, dense and deep nano-size features by cast molding, it is necessary to study the forming mechanism in the process. In this paper, based on major steps of cast molding, filling models of liquid are established and solved; and the forming mechanism of liquid is revealed. Moreover, the scale effect between the liquid and the cavity on the filling velocity of liquid is studied. It is also interesting to find out that the wettability of liquid on the cavity may be changed from wetting to dewetting depends on the pressure difference. Finally, we experimentally verify some of our modeling results on the flowing and filling state of the liquid during the cast molding process.

  13. Turbulent Fluid Flow and Heat Transfer Calculation in Mold Filling and Solidification Processes of Castings

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Based on the time-averaging equations and a modified engineering turbulence model, the mold filling and solidification processes of castings are approximately described. The algorithm for the control equations is briefly introduced, and some problems and improvement methods for the traditional method are also presented. Both calculation and tests proved that, comparing with the laminar fluid flow and heat transfer, the simulation results by using the turbulence model are closer to the real mold filling and solidification processes of castings.

  14. Properties of High Basicity Mold Fluxes for Peritectic Steel Slab Casting

    Institute of Scientific and Technical Information of China (English)

    LONG Xiao; HE Sheng-ping; XU Jian-fei; HUO Xu-ling; WANG Qian

    2012-01-01

    In high speed continuous casting of peritectic steel slabs, mold fluxes with high basicity are required for less surface defect product. However, the basicity of remaining liquid slag film tends to decrease in casting process because of the crystallization of 3CaO ·2SiO2 · CaF2. Thus, a way is put forward to improve mold fluxesr properties by raising the original basicity. In order to confirm the possibility of this method, the effect of rising original basicity on the properties of mold fluxes is discussed. Properties of high fluorine based mold fluxes with different basicities and contents of CaF2 , Na2 O, and MgO were measured, respectively. Then, properties of higher basicity mold fluxes were discussed and compared with traditional ones. The results show that increasing the basicity index can improve the melting and flow property of mold fluxes. With the increasing basicity, crystallization rate of mold fluxes increases obviously and crystallization temperature tends to decrease when the basicity exceeds 1.35. The method presen- ted before is proved as a potential way to resolve the contradiction between horizontal heat transfer controlling and solidified shell lubricating for peritectic steel slab casting. But further study on improving the flow property of liquid slag is needed. This work can be used to guide mold fluxes design for high speed continuous casting of peritectic steel slabs.

  15. 混配土替代煤粉的型砂工艺及在KW线上的生产实践%Molding-sand Process of Additrol instead of Coal Dust and Its Application in KW Molding Line

    Institute of Scientific and Technical Information of China (English)

    丁纯

    2012-01-01

    使用混配土(Additrol)替代煤粉的型砂工艺,结合KW静压造型线铸件生产对型砂性能的实际要求,对型砂配方(如新砂、膨润土的加入量)进行了调整,对型砂性能如紧实率、水分、含泥量等参数进行了调整和优化.经生产验证,该工艺可提高型砂的综合性能,降低造型废型率、铸件废品率,降低了生产成本.%Using additrol instead of coal dust in molding-sand technology, based on the sand parameters which are required by KW molding line, the sand ratio was adjusted, such as new sand, bentonite etc, and the sand parameters are optimized, such as CB, moisture, AFS clay. Production proven that the process can improve the integrated performance of the sand, reduce the scrap rate in molding and the scrap rate of casting, and reduce production costs.

  16. Mold Simulator Study on the Initial Solidification of Molten Steel Near the Corner of Continuous Casting Mold

    Science.gov (United States)

    Lyu, Peisheng; Wang, Wanlin; Zhang, Haihui

    2016-11-01

    Corner cracks are one of the most widespread surface defects of continuous casting slabs, and they are especially severe for peritectic steels and low-alloy steels. Therefore, a clear understanding of molten steel initial solidification around mold corner would be of great importance for the inhibition of corner cracks. This paper has been conducted with the aim to elucidate this understanding, by using a novel mold simulator equipped with a right-angle copper mold. The responding temperatures and heat fluxes across the mold hot-face and corner were firstly calculated through a 2D-inverse heat conduction program mathematical model, and the results suggested that the cooling ability and the fluctuation of heat fluxes around the mold corner are stronger than those for mold hot-face. With the help of power spectral density analysis and fast Fourier transformation, the four characteristic signals of heat fluxes were discussed in this paper. Next, the relation between the thickness of solidified shell and solidification time was fitted with the solidification square root law; as a result, the average solidification factor bar{K} for the hot-face shell is 2.32 mm/s1/2, and it is 2.77 mm/s1/2 for the shell near-corner. For the same oscillation marks (OMs), it appeared that the OMs positions on the shell corner are lower than those on the shell hot-face along the casting direction, because the stronger shrinkage of shell at the corner allows the overflowing steel to penetrate deeper into the larger gap between the shell corner and mold, which is demonstrated through the heat transfer analysis and metallographic examination. Finally, the interrelation between shell profile, mold oscillation, variation rate of heat flux, high-frequency heat flux and high-frequency temperature was discussed for above two cases, and the results suggested that meniscus conditions (heat transfer and melt flow) around the mold corner are more unsteady.

  17. Mold Simulator Study on the Initial Solidification of Molten Steel Near the Corner of Continuous Casting Mold

    Science.gov (United States)

    Lyu, Peisheng; Wang, Wanlin; Zhang, Haihui

    2017-02-01

    Corner cracks are one of the most widespread surface defects of continuous casting slabs, and they are especially severe for peritectic steels and low-alloy steels. Therefore, a clear understanding of molten steel initial solidification around mold corner would be of great importance for the inhibition of corner cracks. This paper has been conducted with the aim to elucidate this understanding, by using a novel mold simulator equipped with a right-angle copper mold. The responding temperatures and heat fluxes across the mold hot-face and corner were firstly calculated through a 2D-inverse heat conduction program mathematical model, and the results suggested that the cooling ability and the fluctuation of heat fluxes around the mold corner are stronger than those for mold hot-face. With the help of power spectral density analysis and fast Fourier transformation, the four characteristic signals of heat fluxes were discussed in this paper. Next, the relation between the thickness of solidified shell and solidification time was fitted with the solidification square root law; as a result, the average solidification factor bar{K} for the hot-face shell is 2.32 mm/s1/2, and it is 2.77 mm/s1/2 for the shell near-corner. For the same oscillation marks (OMs), it appeared that the OMs positions on the shell corner are lower than those on the shell hot-face along the casting direction, because the stronger shrinkage of shell at the corner allows the overflowing steel to penetrate deeper into the larger gap between the shell corner and mold, which is demonstrated through the heat transfer analysis and metallographic examination. Finally, the interrelation between shell profile, mold oscillation, variation rate of heat flux, high-frequency heat flux and high-frequency temperature was discussed for above two cases, and the results suggested that meniscus conditions (heat transfer and melt flow) around the mold corner are more unsteady.

  18. Application of microwave energy for curing of molding sands containing oil binders

    Directory of Open Access Journals (Sweden)

    M. Stachowicz

    2008-07-01

    Full Text Available This works presents the results of studies concerning possibility of application of microwave heating in the curing process of molding sands containing oil binders. Molding sands prepared with three kinds of binders, that is oils C, DL and Retanol, have been subject to experiments. The sands have been dried with two methods: in a microwave chamber of 750W power and, for comparison, with classical method at the temperature of 200°C for 120 minutes. Tensile and bending strength of the samples have been determined after cooling down. It has been found that microwave drying in the low-power device used for experiments is effective only in case of molding sand prepared with addition of DL binder. The temperature of heated, even up to 32 minutes in a microwave chamber, blocks prepared from the remaining two masses, was insufficient to initiate binding process. The undertaken attempts of binder modification and introduction of additives intensifying microwave heating process allowed for achievement of satisfactory results. It has been found that power of the heating device is the main factor determining efficiency of microwave curing of molding sands containing oil binders. An additional experiment has been conducted on a laboratory workstation allowing for microwave heating of small mass samples with a high output power of magnetron concentrated in a small substrate volume. It has been observed that microwave drying process of molding sands was of dynamic character over a short period of time, not exceeding 120 seconds, thus assuring efficient curing of the sands containing the used oil binders. Therefore, application of devices of properly high microwave output power allows for efficient drying of oil molding sands, while simultaneously assuring the possibility to reduce time and energy consumption necessary for production of foundry cores of proper functional characteristics.

  19. Optimization design of wide face water slots for medium-thick slab casting mold

    Directory of Open Access Journals (Sweden)

    Xue-lin Yin

    2016-09-01

    Full Text Available A three-dimensional finite-element model has been established to investigate the thermal behavior of the medium-thick slab copper casting mold with different cooling water slot designs. The mold wall temperatures measured using thermocouples buried in different positions of the mold with the original designed cooling system were analyzed to determine the corresponding heat flux profile. This profile was then used for simulation to predict the temperature distribution and the thermal stress distribution of the molds. The predicted temperatures during operation matched the plant measurements. The results showed that the maximum temperature, about 635 K in the wide hot surface, was found about 60 mm below the meniscus and 226 mm from the center of the mold. For the mold with the type I modified design, there was an insignificant decrease in temperature of about 5 K, and for the mold with the type II modified design, the maximum temperature was decreased by about 15 K and the temperature of the hot surface was distributed more uniformly along the length of the mold. The corresponding maximum thermal stress at the hot surface of the mold was reduced from 408 MPa to 386 MPa with the type II modified design. The results indicated that the modified design II is beneficial to the increase of mold life and the quality of casting slabs.

  20. STUDY ON NUMERICAL SIMULATION OF MOLD-FILLING AND SOLIDIFICATION PROCESSES OF SHAPED CASTING

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    The latest progress on the study of numerical simulation of mold-filling and solidification process of shaped casting is reviewed. In mold-filling process simulation of castings, the SOLA-VOF algorithmis is improved in efficient free surface treatment and turbulence consideration, and parallel computational techniques are implemented to accelerate the fluid flow calculation time as well. Methods for predication of shrinkage defects of steel castings and S.G. iron castings are developed based on the solidification simulation. In order to reduce the residual stress and deformation of castings, a combined FDM/FEM method is implemented for the modelling of stresses. Numerical models for the simulation of micro-structure and prediction of mechanical properties of S.G. iron are developed. The verifications and applications of the simulation software show that the models and techniques adopted in current research work are efficient and appropriate for the numerical simulation of shaped castings.

  1. The characterization of total and leachable metals in foundry molding sands.

    Science.gov (United States)

    Dungan, Robert S; Dees, Nikki H

    2009-01-01

    Waste molding sands from the foundry industry have been successfully used as a component in manufactured soils, but concern over metal contamination must be addressed before many states will consider this beneficial use. Since there is little data available on this topic, the purpose of this study was to characterize total and leachable metals from waste molding sands. A total elemental analysis for Ag, Al, As, B, Ba, Be, Cd, Co, Cr, Cu, Fe, Mg, Mn, Mo, Ni, Pb, Sb, V, and Zn was conducted on 36 clay-bonded and seven chemically bonded molding sands. Total metal concentrations in the molding sands were similar to those found in agricultural soils. The leaching of metals (i.e. Ag, As, Ba, Be, Cd, Cr, Cu, Ni, Pb, Sb, and Zn) was assessed via the toxicity characteristic leaching procedure (TCLP), synthetic precipitation leaching procedure (SPLP), and ASTM water leach test. Based on the TCLP data, none of the 43 molding sands would meet the Resource Conservation and Recovery Act (RCRA) characteristic for toxicity due to high Ag, As, Ba, Cd, Cr, and Pb. Compared to the TCLP results, the metal concentrations were generally lower in the SPLP and ASTM extracts, which is likely related to the buffering capacity of the extraction fluids.

  2. Effect of mold designs on molten metal behaviour in high-pressure die casting

    Science.gov (United States)

    Ibrahim, M. D.; Rahman, M. R. A.; Khan, A. A.; Mohamad, M. R.; Suffian, M. S. Z. M.; Yunos, Y. S.; Wong, L. K.; Mohtar, M. Z.

    2017-04-01

    This paper presents a research study conducted in a local automotive component manufacturer that produces aluminium alloy steering housing local and global markets. This study is to investigate the effect of design modification of mold in die casting as to improve the production rate. Design modification is carried out on the casting shot of the mold. Computer flow simulation was carried out to study the flow of molten metal in the mold with respect to the mold design modification. The design parameters of injection speed, die temperature and clamping force has been included in the study. The result of the simulation showed that modifications of casting shot give significant impact towards the molten flow behaviour in casting process. The capabilities and limitations of die casting process simulation to conduct defect analysis had been optimized. This research will enhance the efficiency of the mass production of the industry of die casting with the understanding of defect analysis, which lies on the modification of the mold design, a way early in its stages of production.

  3. Surface Crystallization in Mg-Based Bulk Metallic Glass during Copper Mold Casting

    Directory of Open Access Journals (Sweden)

    Xin Wang

    2014-01-01

    Full Text Available The localized crystallization of Mg54Cu28Ag7Y11 bulk metallic glass (BMG in the injection casting process using a copper mold was investigated. It has been found that several crystalline phases were formed close to the as-cast surface but did not exist in the internal part of the BMG plate. It is abnormal that the as-cast surface is partially crystallized with higher cooling rate than that of inside. Overheating of the melt and nucleation induced by the surface of copper mold play key roles in the abnormal crystallization. It is suggested that the function of copper mold to trigger heterogeneous nucleation cannot be totally ignored, although it provides the high cooling rate for the glass formation during casting.

  4. Material Properties of Various Cast Aluminum Alloys Made Using a Heated Mold Continuous Casting Technique with and without Ultrasonic Vibration

    Directory of Open Access Journals (Sweden)

    Mitsuhiro Okayasu

    2015-08-01

    Full Text Available This work was carried out to develop high-quality cast aluminum alloys using a new casting technology. For this purpose, commercial Al alloys were created by heated mold continuous casting (HMC with ultrasonic vibration (UV. With the HMC process, the grain size and the crystal orientation of the Al alloys were controlled, i.e., fine grains with a uniformly organized lattice formation. In addition, an attempt was made to modify the microstructural formation by cavitation. These microstructural characteristics made excellent mechanical properties. Using UV in the continuous casting process, more fine and spherical grains were slightly disordered, which was detected using electron backscattered diffraction. The mechanical properties of the UV HMC Al alloys were slightly higher than those for the related cast Al alloys without UV. Moreover, the severe vibration caused higher mechanical properties. The lattice and dislocation characteristics of the cast samples made with and without UV processes were analyzed systematically using electron backscattered diffraction.

  5. Improvement of Castability and Surface Quality of Continuously Cast TWIP Slabs by Molten Mold Flux Feeding Technology

    Science.gov (United States)

    Cho, Jung-Wook; Yoo, Shin; Park, Min-Seok; Park, Joong-Kil; Moon, Ki-Hyeon

    2016-10-01

    An innovative continuous casting process named POCAST (POSCO's advanced CASting Technology) was developed based on molten mold flux feeding technology to improve both the productivity and the surface quality of cast slabs. In this process, molten mold flux is fed into the casting mold to enhance the thermal insulation of the meniscus and, hence, the lubrication between the solidifying steel shell and the copper mold. Enhancement of both the castability and the surface quality of high-aluminum advanced high-strength steel (AHSS) slabs is one of the most important advantages when the new process has been applied into the commercial continuous casting process. A trial cast of TWIP steel has been carried out using a 10-ton scale pilot caster and 100-ton scale and 250-ton scale commercial casters. The amount of mold flux consumption was more than 0.2 kg/m2 in the new process, which is much larger than that in the conventional powder casting. Trial TWIP castings at both the pilot and the plant caster showed stable mold performances such as mold heat transfer. Also, cast slabs showed periodic/sound oscillation marks and little defects. The successful casting of TWIP steel has been attributed to the following characteristics of POCAST: dilution of the reactant by increasing the slag pool depth, enlargement of channel for slag film infiltration at meniscus by elimination of the slag bear, and decrease of apparent viscosity of the mold slag at meniscus by increasing the slag temperature.

  6. Improvement of Castability and Surface Quality of Continuously Cast TWIP Slabs by Molten Mold Flux Feeding Technology

    Science.gov (United States)

    Cho, Jung-Wook; Yoo, Shin; Park, Min-Seok; Park, Joong-Kil; Moon, Ki-Hyeon

    2017-02-01

    An innovative continuous casting process named POCAST (POSCO's advanced CASting Technology) was developed based on molten mold flux feeding technology to improve both the productivity and the surface quality of cast slabs. In this process, molten mold flux is fed into the casting mold to enhance the thermal insulation of the meniscus and, hence, the lubrication between the solidifying steel shell and the copper mold. Enhancement of both the castability and the surface quality of high-aluminum advanced high-strength steel (AHSS) slabs is one of the most important advantages when the new process has been applied into the commercial continuous casting process. A trial cast of TWIP steel has been carried out using a 10-ton scale pilot caster and 100-ton scale and 250-ton scale commercial casters. The amount of mold flux consumption was more than 0.2 kg/m2 in the new process, which is much larger than that in the conventional powder casting. Trial TWIP castings at both the pilot and the plant caster showed stable mold performances such as mold heat transfer. Also, cast slabs showed periodic/sound oscillation marks and little defects. The successful casting of TWIP steel has been attributed to the following characteristics of POCAST: dilution of the reactant by increasing the slag pool depth, enlargement of channel for slag film infiltration at meniscus by elimination of the slag bear, and decrease of apparent viscosity of the mold slag at meniscus by increasing the slag temperature.

  7. Interim Report on Mixing During the Casting of LEU-10Mo Plates in the Triple Plate Molds

    Energy Technology Data Exchange (ETDEWEB)

    Aikin, Jr., Robert M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-04-12

    LEU-10%Mo castings are commonly produced by down blending unalloyed HEU with a DU-12.7%Mo master-alloy. This work uses process modeling to provide insight into the mixing of the unalloyed uranium and U-Mo master alloy during melting and mold filling of a triple plate casting. Two different sets of situations are considered: (1) mixing during mold filling from a compositionally stratified crucible and (2) convective mixing of a compositionally stratified crucible during mold heating. The mold filling simulations are performed on the original Y-12 triple plate mold and the horizontal triple plate mold.

  8. Comparison of residual stresses in sand- and chill casting of ductile cast iron wind turbine main shafts

    DEFF Research Database (Denmark)

    Sonne, Mads Rostgaard; Frandsen, J. O.; Hattel, Jesper Henri

    2015-01-01

    In this work, simulations of pouring, solidification and cooling, and residual stress evolution of sand and chill cast wind turbine main shafts is performed. The models are made in the commercial software MAGMAsoft. As expected, the cooling rate of the sand casting is shown to be much lower than...... for the chill casting, resulting in a very course microstructure.From the simulations the nodule count is found to be 17 nodules per mm2 and 159 nodules permm2 for the sand and chill casting, respectively, in the critical region of the main bearing seat.This is verified from nodule counts performed on the real...... cast main shafts. Residual stressevaluations show an overall increase of the maximum principal stress field for the chill casting,which is expected. However, the stresses are found to be in compression on the surface of thechill cast main shaft, which is unforeseen....

  9. Study on Heat Hardening Mechanism of Starch Composite Binder for Sand Mold (Core) by IR Spectra

    Institute of Scientific and Technical Information of China (English)

    Xia ZHOU; Jinzong YANG; Qin GAO; Guohui QU

    2001-01-01

    The heat hardening mechanism of starch composite binder for sand mold (core) was studied by way of IR spectra. It is thought that the bonding strength of molding sand is mainly depended on the strength of the adhesive membrane itself. During heating the binder at certain temperature between 160~200℃ for one hour, a special composite structure is formed because of the interactions between different components, thus, it has higher low-temperature drying strength,better humidity resistance and higher high-temperature strength.

  10. Costs Models in Design and Manufacturing of Sand Casting Products

    CERN Document Server

    Perry, Nicolas; Bernard, Alain

    2010-01-01

    In the early phases of the product life cycle, the costs controls became a major decision tool in the competitiveness of the companies due to the world competition. After defining the problems related to this control difficulties, we will present an approach using a concept of cost entity related to the design and realization activities of the product. We will try to apply this approach to the fields of the sand casting foundry. This work will highlight the enterprise modelling difficulties (limits of a global cost modelling) and some specifics limitations of the tool used for this development. Finally we will discuss on the limits of a generic approach.

  11. Application of digital pattern-less molding technology to produce art casting

    Directory of Open Access Journals (Sweden)

    Chen Li1

    2014-11-01

    Full Text Available Compared with the conventional casting process, digital pattern-less casting technology has many advantages such as good machining accuracy, a short processing cycle, and low production cost. It is a new rapid manufacturing technology for castings, integrated with CAD/CAM, casting, CNC machining and many other advanced technologies. With this digital casting technology, no pattern is needed for making molds; it is precise, flexible, and green. Usually, art castings have complex structures and are made in small batches or even made in a single-piece, especially for large-sized art castings. So it has the shortcomings of high cost, low efficiency and long time for making a pattern to produce art castings with the conventional casting processes. However, the digital pattern-less casting technology can be applied to fabricate art castings, since it can greatly shorten the manufacturing cycle and lower the production cost, thus having a very good prospect. In this study, based on the digital pattern-less casting technology, a plaque casting with artistic Chinese characters (a Chinese poem was designed and manufactured, and the production process was demonstrated in detail.

  12. Study on Numerical Simulation of Mold Filling and HeatTransfer in Die Casting Process

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A 3-D mathematical model considering turbulence phenomena has been established basedon a computational fluid dynamics technique, so called 3-D SOLA-VOF (Solution Algorithm-Volume of Fluid), to simulate the fluid flow of mold filling process of die casting. In addition, the mathematical model for simulating the heat transfer in die casting process has also been established.The computation program has been developed by the authors with the finite difference method (FDM) recently. As verification, the mold filling process of a S-shaped die casting has been simulated and the simulation results coincide with that of the benchmark test. Finally, as a practical application, the gating design of a motorcycle component was modified by the mold filling simulation and the dies design of another motorcycle component was optimized by theheat transfer simulation. All the optimized designs were verified by the production practice.

  13. Effect of Mold Coating Materials and Thickness on Heat Transfer in Permanent Mold Casting of Aluminum Alloys

    Science.gov (United States)

    Hamasaiid, A.; Dargusch, M. S.; Davidson, C. J.; Tovar, S.; Loulou, T.; Rezaï-Aria, F.; Dour, G.

    2007-06-01

    In permanent mold casting or gravity die casting (GDC) of aluminum alloys, die coating at the casting-mold interface is the most important single factor controlling heat transfer and, hence, it has the greatest influence on the solidification rate and development of microstructure. This investigation studies the influence of coating thickness, coating composition, and alloy composition on the heat transfer at the casting-mold interface. Both graphite and TiO2-based coatings have been investigated. Two aluminum alloys have been investigated: Al-7Si-0.3Mg and Al-9Si-3Cu. Thermal histories throughout the die wall have been recorded by fine type-K thermocouples. From these measurements, die surface temperatures and heat flux density have been evaluated using an inverse method. Casting surface temperature was measured by infrared pyrometry, and the interfacial heat-transfer coefficient (HTC) has been determined using these combined pieces of information. While the alloy is liquid, the coating material has only a weak influence over heat flow and the thermal contact resistance seems to be governed more by coating porosity and thickness. The HTC decreases as the coating thickness increases. However, as solidification takes place and the HTC decreases, the HTC of graphite coating remains higher than that of ceramic coatings of similar thickness. After the formation of an air gap at the interface, the effect of coating material vanishes. The peak values of HTC and the heat flux density are larger for Al-7Si-0.3Mg than for Al-9Si-3Cu. Consequently, the apparent solidification time of Al-9Si-3Cu is larger than that of Al-7Si-0.3Mg and it increases with coating thickness.

  14. Novel Approach for Modeling of Nonuniform Slag Layers and Air Gap in Continuous Casting Mold

    Science.gov (United States)

    Wang, Xudong; Kong, Lingwei; Yao, Man; Zhang, Xiaobing

    2017-02-01

    Various kinds of surface defects on the continuous casting slab usually originate from nonuniform heat transfer and mechanical behavior, especially during the initial solidification inside the mold. In this article, a model-coupled inverse heat transfer problem incorporating the effect of slag layers and air gap is developed to study the nonuniform distribution of liquid slag, solid slag, and air gap layers. The model considers not only the formation and evolution of slag layers and air gap but also the temperatures in the mold copper as measured by thermocouples. The simulation results from the model and the measured temperatures from experiments are shown to be in good agreement with each other. At the casting speed of 0.65 m/min, the liquid slag film disappears and transforms into solid slag entirely at about 400 mm away from meniscus, and an air gap begins to form. Until the mold exit, the maximum thickness of the solid slag layer and air gap gradually increases to 1.34 and 0.056 mm, respectively. The results illustrate that the magnitude and nonuniform distribution of the slag layers and air gap along the cross direction, correlating with heat flux between the shell and mold, eventually determine the temperature profiles of the mold hot face and slab surface. The proposed model may provide a convenient approach for analyzing nonuniform heat transfer and mechanical behaviors between the mold and slab in the real casting process.

  15. LATTICE BGK MODEL SIMULATION OF ASYMMETRIC FLOW INSIDE A CONTINUOUS SLAB CASTING MOLD

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xiao-jun; SHEN Hou-fa

    2006-01-01

    The incompressible lattice Bhatnager-Gross-Krook (BGK) model of computational fluid dynamics, from which the unsteady incompressible Navier-Stokes equations can be exactly derived with the limit of small Mach number, was established in continuous casting mold. An asymmetric flow pattern in the two-dimensional central plane of continuous slab casting mold was simulated, and the flow pattern is not stationary but changes over frequently if the Reynolds number is larger than 3000 or so. The results are found to be in excellent agreement with previous experimental results.

  16. Simulation of the aluminum alloy A356 solidification cast in cylindrical permanent molds

    OpenAIRE

    2008-01-01

    A mathematical model based on the control volume method with fixed mesh was selected in order to simulate the solidification of cylindrical castings poured in permanent steel mold. The latent heat was incorporated using the effective specific heat. The application of the model allowed us to obtain the solidification front and the temperature fields at any time from the pouring. The mold was made of the SAE 1010 steel. Two mold temperatures were evaluated: 25°C and 300°C. The mathematical mode...

  17. Effect of heat treatment on corrosion behavior of low pressure sand cast Mg-10Gd-3Y-0.5Zr alloys

    Institute of Scientific and Technical Information of China (English)

    Qian-qian Wu; Guang-ling Wei; Guo-hua Wu; Wen-cai Liu; Tian-peng Xuan; Wen-jiang Ding

    2016-01-01

    The corrosion behaviors of low-pressure sand cast Mg-10Gd-3Y-0.5Zr (wt.%) aloys in as-cast, solution treated (T4) and aged (T6) conditions were studied by means of immersion test and electrochemical measurements in 5wt.% NaCl solution saturated with Mg(OH)2. It was observed that the corrosion rate in the T4 condition was lower than that of the as-cast and T6 conditions by both sand casting and permanent mold casting with the same order of as-cast>T6>T4; while the corrosion resistance of the permanent mold casting is superior to the sand casting. The morphologies of the corrosion products are similar porous structures consisting of tiny erect lfakes perpendicular to the corroded surface of the aloy, irrespective of the heat treatment conditions. Especialy, the corrosion iflm in T4 condition is more compact than that in the other two conditions. In addition, the severer corrosion happening to the as-cast condition is correlated with the galvanic corrosion between the matrix and the eutectic compounds; while improved corrosion resistance for the T4 and T6 conditions is ascribed to the dissolution of the secondary eutectic compounds. The measured corrosion current densities of Mg-10Gd-3Y-0.5Zr aloys in as-cast, T4, and T6 conditions are 36 μA·cm-2, 10 μA·cm-2, and 33 μA·cm-2, respectively. The proposed equivalent circuit [Rs(CPE1(Rt(RfCPE2))] by Zview software matches wel with the tested electrochemical impedance spectra (EIS) data.

  18. Effect of heat treatment on corrosion behavior of low pressure sand cast Mg-10Gd-3Y-0.5Zr alloys

    Directory of Open Access Journals (Sweden)

    Qian-qian Wu

    2016-07-01

    Full Text Available The corrosion behaviors of low-pressure sand cast Mg-10Gd-3Y-0.5Zr (wt.% alloys in as-cast, solution treated (T4 and aged (T6 conditions were studied by means of immersion test and electrochemical measurements in 5wt.% NaCl solution saturated with Mg(OH2. It was observed that the corrosion rate in the T4 condition was lower than that of the as-cast and T6 conditions by both sand casting and permanent mold casting with the same order of as-cast>T6>T4; while the corrosion resistance of the permanent mold casting is superior to the sand casting. The morphologies of the corrosion products are similar porous structures consisting of tiny erect flakes perpendicular to the corroded surface of the alloy, irrespective of the heat treatment conditions. Especially, the corrosion film in T4 condition is more compact than that in the other two conditions. In addition, the severer corrosion happening to the as-cast condition is correlated with the galvanic corrosion between the matrix and the eutectic compounds; while improved corrosion resistance for the T4 and T6 conditions is ascribed to the dissolution of the secondary eutectic compounds. The measured corrosion current densities of Mg-10Gd-3Y-0.5Zr alloys in as-cast, T4, and T6 conditions are 36 μA·cm-2, 10 μA·cm-2, and 33 μA·cm-2, respectively. The proposed equivalent circuit [Rs(CPE1(Rt(RfCPE2] by Zview software matches well with the tested electrochemical impedance spectra (EIS data.

  19. Traceability of Height Measurements on Green Sand Molds using Optical 3D Scanning

    DEFF Research Database (Denmark)

    Mohaghegh, Kamran; Yazdanbakhsh, S.A.; Tiedje, N. S.

    2016-01-01

    (CMM) which is traceable to the meter unit. Optical scanners are increasingly used for dimensional metrology without the risk of damaging the surface, but lack of international standards makes it difficult to establish traceability of their measurements and compare them to tactile instruments....... This paper presents a metrological approach for height measurement on green sand molds using an optical 3D scanner with fringe projection. A new sand sample was developed with a hard binder to withstand the contact force of a touch probe, while keeping optical cooperativeness similar to green sand...

  20. Full Mold Casting Process of 83 Tons Oversize Heterotypic Gray Iron Crossbeam Casting%83t异形特大灰铁横梁的实型铸造

    Institute of Scientific and Technical Information of China (English)

    刘建; 李增民; 王培华; 肖占德

    2012-01-01

    83 ton oversize heterotypic gray iron crossbeam was manufactured by full mold casting. Aiming at the structure characteristics of the crossbeam, pattern was made. Meanwhile, process parameters were presented. Sand and coating were taken into acount, and pitmoulding was performed. Finally, qualified crossbeam was produced sucesssfully.%介绍了对83 t异形特大灰铁横梁的实型铸造过程.针对横梁的结构特点,进行了模样制作.并对铸件的工艺参数进行了选取,合理选用了型砂和涂料,并用地坑造型,最终成功生产出合格的铸件.

  1. Mold Simulator Study of Heat Transfer Phenomenon During the Initial Solidification in Continuous Casting Mold

    Science.gov (United States)

    Zhang, Haihui; Wang, Wanlin

    2017-01-01

    In this paper, mold simulator trials were firstly carried out to study the phenomena of the initial shell solidification of molten steel and the heat transfer across the initial shell to the infiltrated mold/shell slag film and mold. Second, a one-dimensional inverse heat transfer problem for solidification (1DITPS) was built to determine the temperature distribution and the heat transfer behavior through the solidifying shell from the measured shell thickness. Third, the mold wall temperature field was recovered by a 2DIHCP mathematical model from the measured in-mold wall temperatures. Finally, coupled with the measured slag film thickness and the calculations of 1DITPS and 2DIHCP, the thermal resistance and the thickness of liquid slag film in the vicinity of the meniscus were evaluated. The experiment results show that: the total mold/shell thermal resistance, the mold/slag interfacial thermal resistance, the liquid film thermal resistance, and the solid film thermal resistance is 8.0 to 14.9 × 10-4, 2.7 to 4.8 × 10-4, 1.5 to 4.6 × 10-4, and 3.9 to 6.8 × 10-4 m2 K/W, respectively. The percentage of mold/slag interfacial thermal resistance, liquid film thermal resistance, and solid film thermal resistance over the total mold/shell thermal resistance is 27.5 to 34.4, 17.2 to 34.0, and 38.5 to 48.8 pct, respectively. The ratio of radiation heat flux is around 14.1 to 51.9 pct in the liquid slag film.

  2. Determination of the Heat Transfer Coefficient at the Metal-Mold Interface During Centrifugal Casting

    Science.gov (United States)

    Vacca, Santiago; Martorano, Marcelo A.; Heringer, Romulo; Boccalini, Mário

    2015-05-01

    The heat transfer coefficient at the metal-mold interface ( h MM) has been determined for the first time during the centrifugal casting of a Fe-C alloy tube using the inverse solution method. To apply this method, a centrifugal casting experiment was carried out to measure cooling curves within the tube wall under a mold rotation speed of 900 rpm, imposing a centrifugal force 106 times as large as the gravity force (106 G). As part of the solution method, a comprehensive heat transfer model of the centrifugal casting was also developed and coupled to an optimization algorithm. Finally, the evolution of h MM with time that gives the minimum squared error between measured and calculated cooling curves was obtained. The determined h MM is approximately 870 W m-2 K-1 immediately after melt pouring, decreasing to about 50 W m-2 K-1 when the average temperature of the tube is ~973 K (700 °C), after the end of solidification. Despite the existence of a centrifugal force that could enhance the metal-mold contact, these values are lower than those generally reported for static molds with or without an insulating coating at the mold inner surface. The implemented model shows that the heat loss by radiation is dominant over that by convection at the tube inner surface, causing the formation of a solidification front that meets another front coming from the outer surface of the tube.

  3. DEVELOPMENT OF DIE-CASTING MOLDING PRODUCTION TECHNOLOGY

    Directory of Open Access Journals (Sweden)

    V. N. Kuzmich

    2012-01-01

    Full Text Available The main details of foundry equipment are developed. Analysis of the process of filling and hardening of casting “Transducer case” is carried out on the basis of methods of mathematic modeling of foundry processes.

  4. 铸造中的联合工艺%Combined Process of Investment Casting and Sand Casting

    Institute of Scientific and Technical Information of China (English)

    陈平; 杨忠耀; 张百堂

    2011-01-01

    采用水玻璃精铸生产销孔座系列产品遇到了烧砂问题(指在焙烧或浇注中模壳局部烧结并鼓胀导致铸件形成不规则的凹缺陷).由于水玻璃精铸中的涂料耐火度低,且涂料为层状、厚度大、易堆积而形成烧砂,但相同条件下水玻璃砂铸的铸件就不易出现烧砂.试验表明,在水玻璃精铸中局部采用水玻璃砂铸的联合工艺能十分有效地、经济地解决销孔座系列产品的烧砂问题.联合工艺经常是一种解决特殊铸件质量问题的有效方法.%The burn sand problem (Burn sand is a common defect in investment casting which means part of the shell mould gets sintered and deformed during the roasting or pouring) was found in investment casting of pinhole seat series products using sodium silicate sand. It is due to the low refractoriness and thick layer of the coating in the sodium silicate sand, which prones to accumulate, and then cause the burn sand easily. But under the same condition, burn sand does not occur in the sand casting process. The experiments show that combining sand casting process with the investment casting process in the production of pinhole seat series products can remove the burn sand defect effectively and economically. Generally, combined process is an effective method in the production of special castings.

  5. Foundry technology and its applications of ductile iron castings produced by water-cooled copper alloy mold

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    The high efficiency mechanized foundry technology of castings produced by using water-cooled copper alloy permanent mold has been systematically studied. Through the researching a Cu-Cr-Mg alloy with high conductivity and good combined mechanical properties used for making permanent mold was developed, and the basic design principles of the water-cooled permanent mold along with the control-range of relevant foundry processing parameters were also established.A cast production line equipped with water-cooled copper alloy mold was designed and fabricated for production of ductile iron automobile gear castings. This production line can consistently make automobile gear castings in QT500-15 and QT600-5 (Chinese Standard) grades of ductile iron with up to 95 % casting success rate.

  6. Control of Crystal Morphology for Mold Flux During High-Aluminum AHSS Continuous Casting Process

    Science.gov (United States)

    GUO, Jing; SEO, Myung-Duk; SHI, Cheng-Bin; CHO, Jung-Wook; KIM, Seon-Hyo

    2016-08-01

    In the present manuscript, the efforts to control the crystal morphology are carried out aiming at improving the lubrication of lime-alumina-based mold flux for casting advanced high-strength steel with high aluminum. Jackson α factors for crystals of melt crystallization in multi-component mold fluxes are established and reasonably evaluated by applying thermodynamic databases to understand the crystal morphology control both in lime-alumina-based and lime-silica-based mold fluxes. The results show that Jackson α factor and supercooling are the most critical factors to determine the crystal morphology in a mold flux. Crystals precipitating in mold fluxes appear with different morphologies due to their different Jackson α factors and are likely to be more faceted with higher Jackson α factor. In addition, there is a critical supercooling degree for crystal morphology dendritic transition. When the supercooling over the critical value, the crystals transform from faceted shape to dendritic ones in morphology as the kinetic roughening occurs. Typically, the critical supercooling degrees for cuspidine dendritic transition in the lime-silica-based mold fluxes are evaluated to be between 0.05 and 0.06. Finally, addition of a small amount of Li2O in the mold flux can increase the Jackson α factor and decrease the supercooling for cuspidine precipitation; thus, it is favorable to enhance a faceted cuspidine crystal.

  7. An innovative tester system for measuring mechanical property of foundry molding sand

    Directory of Open Access Journals (Sweden)

    Zuxi XIE

    2004-11-01

    Full Text Available A new intelligent tester system for measuring multiple mechanical properties of foundry molding sand is introduced and has been patented for the invention in China. The testing process can be simutaneosly controlled wth a build-in chip microcomputer communicating with a PC through a serial port. The testing system pplies dynamic testing technology. During the measurement for compression, relaxation, shearing and tensile processes of sand specimens, the corresponding characteristic curves and eight mechanical property parameters can be obtained in a short time, simply by consecutively testing on four sand specimens. The properties and parameters to be measurable by the tester include compressive strength, elastic modulus, plastic deformation threshold, springback potential, shear strength, shear deformation limit, toughness and tensile strength. These properties and parameters for sand specimens can be defined as the corresponding characteristic curves with precise physical meanings, carried out by the tester. Two of them, namely plastic deformation threshold and springback potential, as well as their testing methods, have been invented for the first time. The testing system applying advanced data measurement technology as well as performing excellent functions is an important breakthrough and creativity in foundry molding sand property testing field. The parameters acquired by the testing system are stable, accurate and reliable. The test data can be instantly diaplayed or printed out or stored in the PC. As evidence, many experimental data obtained by the tester practically from bth laboratory and foundry floor tests indicate that the testr system can be widely applied in foundry industry.

  8. Monitoring of solidification in the continuous casting mold by temperature sensors

    Science.gov (United States)

    Pyszko, René; Příhoda, Miroslav; Čarnogurská, Mária

    2016-06-01

    Defects of continuously cast strand, such as unevenness of shell thickness or cracks as well as unstable casting parameters result in changes of strand surface temperature which affect heat flux and temperature field in the mold wall. Methods based on the principle of measurement and mathematical processing of temperatures in the mold wall are used for the purposes of diagnostics of the shell formation process, prediction of surface and subsurface quality and breakout danger, adjustment of the casting axis or condition monitoring of the oscillating mechanism. Measured values of temperatures in the wall depend on the exact position of the sensor in the wall, especially in the normal direction to the mold working surface. Ensuring the accurate and constant distance between the sensor and the mold surface is technically demanding; therefore it is necessary to correct the measured temperatures mathematically. The article describes two methods for correcting the measured temperatures, based on physical and statistical principles that have been developed and used in a real diagnostics system. Practical applications of the methods for diagnostics of strand surface quality and breakout prediction are presented.

  9. Measurement of Heat Flux at Metal-Mold Interface during Casting Solidification

    Energy Technology Data Exchange (ETDEWEB)

    Sabau, Adrian S [ORNL

    2006-01-01

    All previous studies on interfacial heat transfer coefficient have been based on indirect methods for estimating the heat flux that employed either inverse heat transfer analysis procedures or instrumentation arrangements to measure temperatures and displacements near the metal-mold interface. In this paper, the heat transfer at the metal-mold interfaces is investigated using a sensor for the direct measurement of heat flux. The heat flux sensor (HFS) was rated for 700oC and had a time response of less than 10 ms. Casting experiments were conducted using graphite molds for aluminum alloy A356. Several casting experiments were performed using a graphite coating and a boron nitride coating. The measurement errors were estimated. The temperature of the mold surface was provided by the HFS while the temperature of the casting surface was measured using a thermocouple. Results for the heat transfer coefficients were obtained based on measured heat flux and temperatures. Four stages were clearly identified for the variation in time of the heat flux. Values of the heat transfer coefficient were in good agreement with data from previous studies.

  10. The drying kinetics of protective coatings used on sand molds

    Directory of Open Access Journals (Sweden)

    Ł. Jamrozowicz

    2015-01-01

    Full Text Available Investigation results of the drying rate of the selected protective coatings (water and alcohol are presented in the article. Coating drying rate was determined for the first and second layers. The coating was applied to moulding sand cores. The rate of drying coatings were tested for three coating apparent viscosities estimated by means of the Ford 4 mm cup. Drying rates of the protective coating were examined by using the gravimetric technique and ultrasonic technique. Measurements were carried out in a continuous way under controlled conditions: constant ambient temperature and air humidity. Research shows that the drying time of the second coating layer is longer by 20 – 30 % than the first layer.

  11. Application of heat pipe technology in permanent mold casting of nonferrous alloys

    Science.gov (United States)

    Elalem, Kaled

    The issue of mold cooling is one, which presents a foundry with a dilemma. On the one hand; the use of air for cooling is safe and practical, however, it is not very effective and high cost. On the other hand, water-cooling can be very effective but it raises serious concerns about safety, especially with a metal such as magnesium. An alternative option that is being developed at McGill University uses heat pipe technology to carry out the cooling. The experimental program consisted of designing a permanent mold to produce AZ91E magnesium alloy and A356 aluminum alloy castings with shrinkage defects. Heat pipes were then used to reduce these defects. The heat pipes used in this work are novel and are patent pending. They are referred to as McGill Heat Pipes. Computer modeling was used extensively in designing the mold and the heat pipes. Final designs for the mold and the heat pipes were chosen based on the modeling results. Laboratory tests of the heat pipe were performed before conducting the actual experimental plan. The laboratory testing results verified the excellent performance of the heat pipes as anticipated by the model. An industrial mold made of H13 tool steel was constructed to cast nonferrous alloys. The heat pipes were installed and initial testing and actual industrial trials were conducted. This is the first time where a McGill heat pipe was used in an industrial permanent mold casting process for nonferrous alloys. The effects of cooling using heat pipes on AZ91E and A356 were evaluated using computer modeling and experimental trials. Microstructural analyses were conducted to measure the secondary dendrite arm spacing, SDAS, and the grain size to evaluate the cooling effects on the castings. The modeling and the experimental results agreed quite well. The metallurgical differences between AZ91E and A356 were investigated using modeling and experimental results. Selected results from modeling, laboratory and industrial trials are presented. The

  12. Self-supported ceramic substrates with directional porosity by mold freeze casting

    DEFF Research Database (Denmark)

    Gurauskis, Jonas; Graves, Christopher R.; Moreno, R.

    2016-01-01

    Manufacture of thin-film ceramic substrates with high permeability and robustness is of high technological interest. In this work thin (green state thickness ∼500 μm) porous yttria-stabilized zirconia self-supported substrates were fabricated by pouring stable colloidal aqueous suspensions...... in a mold and applying directional freeze casting. Use of optimized suspension, cryoprotector additive and mold proved to deliver defect free ceramic films with high dimensional control. Microstructure analysis demonstrated the formation of desirable aligned porosity at macro-structural scale and resulted...

  13. Design Of A Sand Casting Method Using Patterns Made Of Sublime Materials For Casting Intricate Shapes.

    Directory of Open Access Journals (Sweden)

    Sameer Rafiq Shah

    2016-02-01

    Full Text Available In today’s world every product ranging from a safety pin to huge complex aircraft engines are all manufactured by various manufacturing techniques. It involves various processes like casting, forming, machining, welding etc. Complex machines have numerous parts and elements which may be asymmetric; irregular shaped and might have a different cross-sectional profile. Manufacturing these complex and intricate shaped components to required dimensional accuracy and good surface finish is a tough task and requires use of various processes like machining, bending etc. This induces some amount of residual stresses in the machine component, and thereby makes it more susceptible to catastrophic failure. To minimize these losses and produce irregular shaped components more efficiently, a unique sand casting process is explained in this paper which makes use of a pattern made of sublime material which when burnt, produces a hollow cavity where the molten metal is poured and the casting is performed. This method eliminates the use of additional finishing processes and gives a good surface finish to the final machine components.

  14. METHODS FOR STRENGTHENING OF ADHESION BONDS BETWEEN SURFACE OF USED MOLDING SAND AND ORGANIC BINDER WHILE OBTAINING ACTIVATED MINERAL POWDERS

    Directory of Open Access Journals (Sweden)

    Ya. N. Kovalev

    2016-01-01

    Full Text Available Value of adhesion bond between mineral surface of acid quartz materials and organic binder (bitumen has a great significance while forming structure of asphalt concrete strengthening. It has been established theoretically and experimentally that that the bond is insignificant and it causes premature destruction of structure for asphalt-binding substance and finally asphalt concrete. In this connection the relevant objective of the paper is a search for efficient methods for strengthening of adhesion bonds between the indicated structural components. A development for obtaining mineral powders from used molding sand activated by various hydrofobisation methods plays rather important role in that matter. The development of several methods for obtainment of activated mineral powders from used molding sand and also know-how pertaining to behavior of asphalt concrete formed on their basis have made it possible to create rational technologies which are applicable under operational conditions of the specified asphalt concrete plants in any region. The executed investigations on hydrofobisation of particles surface for the used molding sand with the help of sodium alkyl siliconates have established the basis for development of new efficient method for obtaining activated mineral powders from the used molding sand. The method presupposes treatment of the used molding sand in the process of mill flow in a ball drum while using sodium ethyl siliconate (0.3–0.7 % as compared with the mass of mineral raw material. Juvenile particle surface of fresh milled powder from the used molding sand has a maximum activity among the known filling compounds in relation to althin and this phenomenon can be explained by additional structure-forming impact of chemically active organic foundry binding agents which are contained in the used molding sand. That particular property allows to use widely powder from the used molding sand which contains uncured althin as a

  15. The effect of interface heat transfer on solidification, microstructure evolution, and mold wear in permanent mold casting of titanium-aluminum-vanadium

    Science.gov (United States)

    Kobryn, Pamela Astra

    Recently, a permanent mold casting approach for titanium alloys (Ti PMC) was developed. This process generated a lot of interest in the titanium casting industry due to its potential to decrease cost and improve mechanical properties. However, little research has been conducted in this area. Hence, the research described in this dissertation was performed to augment and complement prior work on Ti PMC. The current research dealt with the development of computer simulation capabilities for predicting characteristics of solidification, microstructure evolution, and mold wear for Ti PMC. It focused on the effect of interface heat transfer on ProCASTTM simulation results. A combination of physical and numerical experiments were used to determine interface heat transfer coefficients for Ti PMC, the sensitivity of FEM results to input parameters, and the validity of using the chosen modeling approach and input parameters to simulate various casting geometries. Laboratory and in-plant casting trials were conducted to obtain casting data. Thermocouple data were compared to simulation results to determine interface heat transfer coefficients for "shrink off" and "shrink on" geometries. Both a conventional thermocouple technique and a novel microstructure-based mold temperature signature analysis technique were used to determine mold temperatures for model validation. The validated models were used as a starting point for the application of two microstructure prediction techniques (solidification mapping and the parabolic grain growth law) and the study of mold wear causes and mechanisms. The importance of properly accounting for the casting-mold interface contact condition was stressed throughout. The results demonstrated the importance of considering the casting-mold interface geometry when selecting interface heat transfer coefficients for casting simulations, as the coefficient varied from an initial value of 2000 W/m2-K to less than 50 W/m2-K in the "shrink off" case

  16. Numerical simulation on inclusion transport in continuous casting mold

    Institute of Scientific and Technical Information of China (English)

    Lifeng Zhang; Brian G. Thomas

    2006-01-01

    Turbulent flow, the transport of inclusions and bubbles, and inclusion removal by fluid flow transport and by bubble flotation in the strand of the continuous slab caster are investigated using computational models, and validated through comparison with plant measurements of inclusions. Steady 3-D flow of steel in the liquid pool in the mold and upper strand is simulated with a finitedifference computational model using the standard k-ε turbulence model. Trajectories of inclusions and bubbles are calculated by integrating each local velocity, considering its drag and buoyancy forces. A "random walk" model is used to incorporate the effect of turbulent fluctuations on the particle motion. The attachment probability of inclusions on a bubble surface is investigated based on fundamental fluid flow simulations, incorporating the turbulent inclusion trajectory and sliding time of each individual inclusion along the bubble surface as a function of particle and bubble size. The change in inclusion distribution due to removal by bubble transport in the mold is calculated based on the computed attachment probability of inclusions on each bubble and the computed path length of the bubbles. The results indicate that 6%-10% inclusions are removed by fluid flow transport, 10% by bubble flotation, and 4% by entrapment to the submerged entry nozzle (SEN) walls. Smaller bubbles and larger inclusions have larger attachment probabilities. Smaller bubbles are more efficient for inclusion removal by bubble flotation, so long as they are not entrapped in the solidifying shell. A larger gas flow rate favors inclusion removal by bubble flotation. The optimum bubble size should be 2-4 mm.

  17. Mathematical Model of Fluid Flow and Solidification in Mold Region of Continuous Slab Casting

    Institute of Scientific and Technical Information of China (English)

    谭利坚; 沈厚发; 柳百成

    2003-01-01

    To simulate the phenomena in the mold region of continuous casting by coupling fluid flow and solidification, a three-dimensional mathematical model has been developedbased on the K-ε turbulence equations and the SIMPLER algorithm. A pseudo source term was introduced into the energy equation to account for the latent heat and kinetic energy. The fluid flow in the mushy zone was calculated by defining the fluid viscosity as a function of the solid fraction in the mushy zone. Fine meshes in the solid region improve convergence and reduce iteration time. Comparison of the fluid flow and temperature distribution with and without solidification shows that although the solid shell in the mold is thin, it still greatly affects the flow pattern. The numerical results obtained provide details of the fluid flow and solidification phenomena which can be used to optimize the nozzle structure and other process parameters in continuous casting.

  18. Numerical simulation for permanent mold centrifugal cast TiAl exhaust valve

    Institute of Scientific and Technical Information of China (English)

    SHENG Wen-bin; LI Dong

    2005-01-01

    The filling and solidification in centrifugal field, as well as the forming mechanism of off-center porosities were summarized, based on the mathematical model established for the centrifugal cast TiAl exhaust valves.The calculated results show that the centrifugal field results in the phenomenon that the flow in the valve cavity consists of forward flow and backward flow. The unsymmetrical initial temperature field causes continuous unsymmetrical variation in the following solidification, which makes the final solidified region depart from the cavity axis and then leads to the occurrence of off-center porosity. A series of optimized parameters, including the entrance velocity of 0.6 - 1.3 m/s, the rotation speed higher than 300 r/min, 80 mm or longer entrance length and 400 ℃ or higher preheated temperature of the mold, are suggested for the manufacture of permanent mold centrifugal cast TiAl exhaust valves.

  19. 气冲造型线回用旧覆膜砂的生产实践%Productive Practice of Reclaiming Returned Resin-Coated Sand on Air-Impact Molding Line

    Institute of Scientific and Technical Information of China (English)

    谭博文

    2012-01-01

    The productive practice of using returned phenol resin coated sand to prepare green molding sand was introduced including the sand treating flow and the essential control points in the aspects of raw materials choice, sand temperature control,sand mixing process and on-line inspection, and so on. It was pointed out by the end that adopting proper materials adding sequence,proper mixing time and,as well as,conducting on-line inspection were the important measures to guarantee stable quality of green molding sand and thereby to reduce the molding sand-relevant surface defects rate of castings.%对采用覆膜砂回用砂混制湿型粘土砂的生产实践进行了介绍,包括砂处理流程、原材料的选用、砂温控制、混制工艺及在线检测等方面的控制要点;指出:采用恰当的加料顺序和混碾时间,并进行在线检测是保证湿型粘土砂质量稳定,进而使与型砂相关的铸件表面缺陷率降低的重要措施.

  20. Finite Element Analysis of 3-D Electromagnetic Field in Bloom Continuous Casting Mold

    Institute of Scientific and Technical Information of China (English)

    LIU Xu-dong; YANG Xiao-dong; ZHU Miao-yong; CHEN Yong; YANG Su-bo

    2007-01-01

    Three-dimensional finite element model of electromagnetic stirrer was built to predict magnetic field in a bloom continuous casting mold for steel during operation. The effects of current intensity, current frequency, and mold copper plate thickness on the magnetic field distribution in the mold were investigated. The results show that the magnetic induction intensity increases linearly with the increase in current intensity and decreases with the increase in current frequency. Increasing current intensity and frequency is available in increasing the electromagnetic force. The Joule heat decreases gradually from surface to center of bloom, and a maximum Joule heat can be found on corner of bloom. The prediction of magnetic induction intensity is in good agreement with the measured values.

  1. Solidification Structure of Continuous Casting Large Round Billets under Mold Electromagnetic Stirring

    Institute of Scientific and Technical Information of China (English)

    Tao SUN; Feng YUE; Hua-jie WU; Chun GUO; Ying LI; Zhong-cun MA

    2016-01-01

    The solidification structure of a continuous casting large round billet was analyzed by a cellular-automaton-finite-element coupling model using the ProCAST software.The actual and simulated solidification structures were compared under mold electromagnetic stirring (MEMS)conditions (current of 300 A and frequency of 3 Hz).There-after,the solidification structures of the large round billet were investigated under different superheats,casting speeds,and secondary cooling intensities.Finally,the effect of the MEMS current on the solidification structures was obtained under fixed superheat,casting speed,secondary cooling intensity,and MEMS frequency.The model accurately simulated the actual solidification structures of any steel,regardless of its size and the parameters used in the continuous casting process.The ratio of the central equiaxed grain zone was found to increase with decreasing su-perheat,increasing casting speed,decreasing secondary cooling intensity,and increasing MEMS current.The grain size obviously decreased with decreasing superheat and increasing MEMS current but was less sensitive to the casting speed and secondary cooling intensity.

  2. Transient Asymmetric Flow and Bubble Transport Inside a Slab Continuous-Casting Mold

    Science.gov (United States)

    Liu, Zhongqiu; Li, Baokuan; Jiang, Maofa

    2014-04-01

    A one third scale water model experiment was conducted to observe the asymmetric flow and vortexing flow inside a slab continuous-casting mold. Dye-injection experiment was used to show the evolution of the transient flow pattern in the liquid pool without and with gas injection. The spread of the dye was not symmetric about the central plane. The flow pattern inside the mold was not stationary. The black sesames were injected into water to visualize the vortexing flow pattern on the top surface. The changes of shape and location of single vortex and two vortices with time had been observed during experiments. Plant ultrasonic testing (UT) of slabs was used to analyze the slab defects distribution, which indicated that the defects are intermittent and asymmetric. A mathematical model has been developed to analyze the time-dependent flow using the realistic geometries, which includes the submerged entry nozzle (SEN), actual mold, and part of the secondary cooling zone. The transient turbulent flow of molten steel inside the mold has been simulated using the large eddy simulation computational approach. Simulation results agree acceptably well with the water model experimentally observed and plant UT results. The oscillating motions of jet and the turbulence naturally promote the asymmetric flow even without the effects of slide gate nozzle or the existence of clogs inside the SEN. The periodic behavior of transient fluid flow in the mold is identified and characterized. The vortexing flow is resulted from asymmetric flow in the liquid pool. The vortices are located at the low-velocity side adjacent to the SEN, and the positions and sizes are different. Finally, the model is applied to investigate the influence of bubble size and casting speed on the time-dependent bubble distribution and removal fraction from the top surface inside the mold.

  3. Developing technological process of obtaining giality casts

    Directory of Open Access Journals (Sweden)

    A. Issagulov

    2014-10-01

    Full Text Available The article considers the process of manufacturing castings using sand-resin forms and alloying furnace. Were the optimal technological parameters of manufacturing shell molds for the manufacture of castings of heating equipment. Using the same upon receipt of castings by casting in shell molds furnace alloying and deoxidation of the metal will provide consumers with quality products and have a positive impact on the economy in general engineering.

  4. Analysis of total metals in waste molding and core sands from ferrous and non-ferrous foundries

    Science.gov (United States)

    Waste molding and core sands from the foundry industry have been successfully used around the world as byproducts in geotechnical and agricultural applications. Although waste foundry sands (WFSs) are generally not considered hazardous in nature, relevant data are not available in Argentina. This ...

  5. Relationship between casting distortion, mold filling, and interfacial heat transfer. Annual technical report, September 1997 - September 1998

    Energy Technology Data Exchange (ETDEWEB)

    Woodbury, K.A.; Parker, J.K.; Piwonka, T.S.; Owusu, Y.

    1998-10-22

    In the third year of this program, the final castings necessary to evaluate the effect of casting orientation and gating in silica sand lost foam were poured and measured using a CMM machine. Interfacial heat transfer and gap formation measurements continued. However, significant problems were encountered in making accurate measurements. No consistent evidence of gap formation was found in aluminum sand casting. Initial analysis yields heat transfer values below those previously reported in the literature. The program in continuing.

  6. THE INFLUENCE OF THE INGOT MOLD COOLING ON THE STRUCTURE OF SILUMINA CASTINGS AK15M3 AT VERTICAL CENTRIFUGAL CASTING

    Directory of Open Access Journals (Sweden)

    V. Yu. Stecenko

    2013-01-01

    Full Text Available Influence of ways of the mold cooling on structure of castings with diameter of 135 mm from AK15M3 silumin at vertical centrifugal casting is investigated. It is established that for production of castings with diameter 135 mm from AK15M3 silumin with high mechanical and tribotechnical properties it is necessary to apply a shaped mould with water-spray cooling at expense of cooler of 0,42 m3/h.

  7. Solidification in Soft-Contact Continuous Casting Mold with Alternating Electromagnetic Field

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    A three-dimensional coupled mathematical model for steel flow and solidification in a soft-contact EMC (Electro-Magnetic Casting) mold was developed. Non-staggered grid system with BFC (Body Fitted Coordinate) for the steel flow and solidification considering the complex geometry of the electromagnetic mold and the irregular meniscus shape of the melt were used. This mathematical model was applied to investigate the steel flow and solidification, and the effect of electromagnetic parameters on steel solidification in a 100 mm×100 mm square billet soft-contact mold. Numerical results showed that the electromagnetic induction heat mainly affects the distribution of steel temperature at upper part of EMC mold especially in the vicinity of meniscus. Consequently the steel temperature near the free surface is increased distinctly, and the hot-top condition is formed at the top of mold. It was clearly seen that the solidification start point shifts downward under the three-phase point by applying alternative electromagnetic field. As a result, the initial shell thickness gets thinner and the shell length shorter.

  8. Characterization of Coated Sand Cores from Two Different Binder Systems for Grey Iron Castings

    DEFF Research Database (Denmark)

    Nwaogu, Ugochukwu Chibuzoh; Tiedje, Niels Skat; Poulsen, Thomas

    Expansion defects on the surface of the castings include sand burn-in, metal penetration and/or veining, finning or scab. Veining or finning and metal penetration are of interest. These defects are associated with silica sand and result from the penetration of liquid metal into cracks formed during...

  9. Preparation and characterization of porous Si3N4 ceramics prepared by compression molding and slip casting methods

    Indian Academy of Sciences (India)

    Yu Fangli; Wang Huanrui; Bai Yu; Yang Jianfeng

    2010-10-01

    Porous silicon nitride (Si3N4) ceramics were fabricated by compression molding and slip casting methods using petroleum coke as pore forming agent, and Y2O3–Al2O3 as sintering additives. Microstructure, mechanical properties and gas permeability of porous Si3N4 ceramics were investigated. The mechanical properties and microstructure of porous Si3N4 ceramics prepared by compression molding were better than those which were prepared by slip casting method, whereas slip casting method is suitable for the preparation of porous Si3N4 ceramics with higher porosity and excellent gas permeability.

  10. Mold flux characterization for thin slab casting of steel

    Directory of Open Access Journals (Sweden)

    Cruz-Ramírez, A.

    2012-08-01

    Full Text Available The mineralogical constitution and the melting-solidification behavior of two commercial fluxes for thin slab casting of steel were determined. The characterization of the commercial fluxes as received show the presence of wollastonite (CaO. SiO2, a sodium carbonate (Na2CO3, calcite (CaCO3, fluorite (CaF2 and carbon as the main components by X ray powder diffraction (XRD and microscopic techniques. When fluxes were heated to 1573 K and further solidification, there was almost a whole transformation from the original compounds to cuspidine (3CaO - 2SiO2 - CaF2 and nepheline (Na2O - Al2O3 - 2SiO2 phases. The thermal gravimetrical analysis showed an important weight reduction in both fluxes due to the thermal decompositions of calcite and sodium carbonate. The characterization reveals that fluxes are produced by an agglomeration process.

    Se determinó la composición mineralógica y el comportamiento de fusión-solidificación de dos fundentes comerciales para la colada de planchón delgado de acero. La caracterización de los fundentes comerciales por difracción de rayos X (XRD y técnicas de microscopía muestra la presencia de wollastonita (CaO - SiO2, un carbonato de sodio (Na2CO3, calcita (CaCO3, fluorita (CaF2 y carbono como los principales componentes. Cuando los fundentes se calentaron a 1.573 K y después de la solidificación, hubo una transformación casi total de los compuestos originales a las fases cuspidina (3CaO - 2SiO2 - CaF2 y nefelina (Na2O - Al2O3 - 2SiO2. El análisis termogravimétrico muestra una importante reducción de peso en los fundentes debido a la descomposición térmica de la calcita y el carbonato de sodio. La caracterización indica que los fundentes son producidos por

  11. The Effect Of Mechanical Interactions Between The Casting And The Mold On The Conditions Of Heat Dissipation: A Numerical Model

    Directory of Open Access Journals (Sweden)

    Dyja R.

    2015-09-01

    Full Text Available We present a description of the effects of thermal interactions, which take into account formation of a shrinkage gap, that affect the level of stresses in a system castingmold. Calculations were carried out in our own computer program which is an implementation of the finite element method used to solve the equations describing a thermo-elastic-plastic model of material and the heat conduction, including solidification. In the computing algorithm we use our own criteria for mechanical interaction between the casting and mold domains. Our model of mechanical interactions between the casting and the mold allows efficient modeling of stresses occurring in the casting and an impact of development of the shrinkage gap on cooling course.

  12. Hygroscopicity -resistant mechanism of an α -starch based composite binder for dry sand molds and cores

    Directory of Open Access Journals (Sweden)

    Xia ZHOU

    2005-05-01

    Full Text Available Hygroscopicity-resistance of an α-starch based composite binder for dry sand molds (cores has been studied experimentally and theoretically. Focus is placed on the relationship between the hardening structure and humidity-resistance of the composite binder. The results show that the α-starch composite binder has good humidity-resistance due to its special complex structure. SEM observations illustrate that the composite binder consists of reticular matrix and a ball- or lump-shaped reinforcement phase, and the specific property of the binding membrane with heterogeneous structure is affected by humidity to a small extent. Based on the analyses on the interplays of different ingredients in the binder at hardening, the structure model and hygroscopicity-resistant mechanisms of the hardening composite binder were further proposed. Moreover, the reasons for good humidity-resistance of the composite binder bonded sand are well explained by the humidity-resistant mechanisms.

  13. Manufacturing of Thin-walled Al-Mg Food Machinery by Permanent Mold Gravity Casting%食品机械薄壁件铝镁合金重力铸造工艺

    Institute of Scientific and Technical Information of China (English)

    王明沧; 许正华

    2011-01-01

    Large thin-walled Al-Mg alloy housing for food machinery was usually produced by green sand casting or semi-permanent mold integrating with semi-green sand mold casting because of the easy occurrence of hot crack of Al-Mg alloy in permanent mold. A tilting gravity casting was presented to eliminate the problems in permanent mold casting. Considering mould design and adjusting the pouring parameters, large thin-walled Al-Mg alloy housing was produced successfully by permanent mold gravity casting. The practical production shows that the technology can be widely used to produce thin-walled parts or easily-hot crack alloy parts.%由于Al-Mg合金金属型铸造易产生热裂,在生产食品机械外壳大型薄壁铸件时,多以湿砂型或半金属型-半湿砂型方式生产.针对金属型工艺生产大型薄壁铸件比较困难的问题,提出一种倾转式重力铸造工艺,结合模具设计、浇注参数的调整,实现了全金属型大型Al-Mg台金薄壁铸件的生产.实践证明,本工艺可广泛应用于薄壁铸件或易产生热裂合金铸件的生产.

  14. Casting dimensional control and fatigue life prediction for permanent mold casting dies. Technical progress report, September 29, 1993-- September 30, 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-11-01

    First year efforts as part of a three year program to address metal casting dimensional control and fatigue life prediction for permanent mold casting dies are described. Procedures have been developed and implemented to collect dimensional variability data from production steel castings. The influence of process variation and casting geometry variables on dimensional tolerances have been investigated. Preliminary results have shown that these factors have a significant influence on dimensional variability, although this variability is considerably less than the variability indicated in current tolerance standards. Gage repeatability and reproducibility testing must precede dimensional studies to insure that measurement system errors are acceptably small. Also initial efforts leading to the development and validation of a CAD/CAE model to predict the thermal fatigue life of permanent molds for aluminum castings are described. An appropriate thermomechanical property database for metal, mold and coating materials has been constructed. A finite element model has been developed to simulate the mold temperature distribution during repeated casting cycles. Initial validation trials have indicated the validity of the temperature distribution model developed.

  15. Numerical simulation of mold-filling capability for a thin- walled aluminum die casting

    Science.gov (United States)

    Sun, L.; Subasic, E.; Jakumeit, J.

    2015-06-01

    Mold-filling capability is an important property of casting materials. Especially in thin-walled die casting, fast cooling of the melt by contact to the die makes complete filling difficult to ensure. Simulation is an important tool enabling investigation of filling problems, even before the die is manufactured. However, the prediction of misruns is challenging. Flow and solidification have to be computed as closely coupled. The effects of surface tension, the wetting angle and reduced melt flow due to solidification must be modeled with high precision. To meet these requirements, a finite-volume method using arbitrary polyhedral control volumes is used to solve flow and solidification as closely coupled. The Volume-of-Fluid approach is used to capture the phase separation between gas, melt and solid in connection with a High-Resolution Interface-Capturing scheme to obtain sharp interfaces between phases. To model the resistance of the dendrite network to the melt flow, an additional source term in the momentum equation was implemented. The Bolt test was performed for A356 alloys at a range of different casting temperatures. Numerical prediction of incomplete filling in the bottleneck regions agreed well with experimental findings using 3D camera scanning. The simulation enables derivation of the dependence of critical wall-thickness, i.e. the thickness which is fillable, on casting temperature and metallostatic pressure. This could prove useful in predicting filling problems ahead of casting.

  16. Simulation of fluid flow induced by opposing ac magnetic fields in a continuous casting mold

    Energy Technology Data Exchange (ETDEWEB)

    Chang, F.C.; Hull, J.R. [Argonne National Lab., IL (United States); Beitelman, L. [J. Mulcahy Enterprises, Whitby, ON (Canada)

    1995-07-01

    A numerical simulation was performed for a novel electromagnetic stirring system employing two rotating magnetic fields. The system controls stirring flow in the meniscus region of a continuous casting mold independently from the stirring induced within the remaining volume of the mold by a main electromagnetic stirrer (M-EMS). This control is achieved by applying to the meniscus region an auxiliary electromagnetic field whose direction of rotation is opposite to that of the main magnetic field produced by the M-EMS. The model computes values and spatial distributions of electromagnetic parameters and fluid flow in the stirred pools of mercury in cylindrical and square geometries. Also predicted are the relationships between electromagnetics and fluid flows pertinent to a dynamic equilibrium of the opposing stirring swirls in the meniscus region. Results of the numerical simulation compared well with measurements obtained from experiments with mercury pools.

  17. Evaluation of the Inertness of Investment Casting Molds Using Both Sessile Drop and Centrifugal Casting Methods

    Science.gov (United States)

    Cheng, Xu; Yuan, Chen; Green, Nick; Withey, Paul

    2013-02-01

    The investment casting process is an economic production method for engineering components in TiAl-based alloys and offers the benefits of a near net-shaped component with a good surface finish. An investigation was undertaken to develop three new face coat systems based on yttria, but with better sintering properties. These face coat systems were mainly based on an yttria-alumina-zirconia system (Y2O3-0.5 wt pct Al2O3-0.5 wt pct ZrO2), an yttria-fluoride system (Y2O3-0.15 wt pct YF3), and an yttria-boride system (Y2O3-0.15 wt pct B2O3). After sintering, the chemical inertness of the face coat was first tested and analyzed using a sessile drop test through the metal wetting behavioral change for each face coat surface. Then, the interactions between the shell and metal were studied by centrifugal investment casting TiAl bars. Although the sintering aids in yttria can decrease the chemical inertness of the face coat, the thickness of the interaction layer in the casting was less than 10 μm; therefore, these face coats still can be possible face coat materials for investment casting TiAl alloys.

  18. Modeling and verification of the nonlinear system of oscillation platform of continuous casting mold driven by servo motor

    Directory of Open Access Journals (Sweden)

    Le Liu

    2016-06-01

    Full Text Available The driving mode by servo motor is a new driving mode and can realize oscillations of continuous casting mold as expected. The oscillation system of continuous casting mold driven by servo motor is a complicated nonlinear system. Therefore, it is necessary to establish an accurate model for the system before performing simulation experiments. Based on the oscillation platform system of continuous casting mold driven by servo motor in the laboratory, the nonlinear models of servo motor speed system and mechanical transmission parts were respectively established and the viscous friction coefficient, moment of inertia, and load torque were identified. Then, the nonlinear mathematical model of the whole oscillation platform of continuous casting mold driven by servo motor was obtained. The comparison results between the simulated output curves of established model and the measured output curves of actual system under the same input signals indicated that the simulated curves were almost in accord with the measured curves. Therefore, the proposed model can reflect the capabilities of practical system and lay a good foundation for subsequent research on simulation experiments and accurate control of continuous casting mold oscillation driven by servo motor.

  19. Effects of Mold Temperature and Pouring Temperature on the Hot Tearing of Cast Al-Cu Alloys

    Science.gov (United States)

    Li, Shimin; Sadayappan, Kumar; Apelian, Diran

    2016-10-01

    The effects of mold temperature and pouring temperature on hot tearing formation and contraction behavior of a modified Al-Cu alloy 206 (M206) have been studied. The experiments were conducted using a newly developed Constrained Rod Mold, which simultaneously measures the contraction force/time/temperature during solidification for the restrained casting or linear contraction/time/temperature for a relaxed casting. Three mold temperatures [473 K, 573 K, and 643 K (200 °C, 300 °C, and 370 °C)] and three pouring temperatures [superheat of 50 K, 100 K, and 150 K (50 °C, 100 °C, and 150 °C)] were studied, and alloy A356 was used as reference for comparison. The results confirm that alloy A356 has high resistance to hot tearing. Hot tearing did not occur for the three mold temperatures evaluated, whereas alloy M206 exhibited significant hot tearing for the same casting and mold temperature conditions. Hot tearing severity and linear contraction in alloy 206 decreased significantly with increasing mold temperature. Increasing pouring temperature increases hot tearing in alloy M206, but the effect is not as significant as that of mold temperature. The results and underlying mechanism of these effects are discussed in correlation with the thermomechanical properties and microstructures.

  20. Hot-tearing of multicomponent Al-Cu alloys based on casting load measurements in a constrained permanent mold

    Energy Technology Data Exchange (ETDEWEB)

    Sabau, Adrian S [ORNL; Mirmiran, Seyed [Fiat Chrysler Automobiles North America; Glaspie, Christopher [Fiat Chrysler Automobiles North America; Li, Shimin [Worcester Polytechnic Institute (WPI), MA; Apelian, Diran [Worcester Polytechnic Institute (WPI), MA; Shyam, Amit [ORNL; Haynes, James A [ORNL; Rodriguez, Andres [Nemak, Garza Garcia, N.L., Mexico

    2017-01-01

    Hot-tearing is a major casting defect that is often difficult to characterize, especially for multicomponent Al alloys used for cylinder head castings. The susceptibility of multicomponent Al-Cu alloys to hot-tearing during permanent mold casting was investigated using a constrained permanent mold in which the load and displacement was measured. The experimental results for hot tearing susceptibility are compared with those obtained from a hot-tearing criterion based temperature range evaluated at fraction solids of 0.87 and 0.94. The Cu composition was varied from approximately 5 to 8 pct. (weight). Casting experiments were conducted without grain refining. The measured load during casting can be used to indicate the severity of hot tearing. However, when small hot-tears are present, the load variation cannot be used to detect and assess hot-tearing susceptibility.

  1. Intelligent design of investment casting mold based on a hybrid reasoning method

    Institute of Scientific and Technical Information of China (English)

    Jiang Ruisong; Zhang Dinghua; Wang Wenhu; Bu Kun

    2009-01-01

    A hybrid reasoning model was proposed in which CBR (case-based reasoning) was applied to the conceptual design and RBR (rule-based reasoning) was applied to the detailed design after research of the design process and domain knowledge of the acre-engine turbine blade investment casting mold design field. In the conceptual design stage, the representation and retrieval technologies were researched which improve the retrieval efficiency. Meanwhile, RBR was used to modify the retrieval result. The experimentation shows that the approach in this study can be used to obtain a more satisfactory design result.

  2. A Combined Experimental and Computational Approach for the Design of Mold Topography that Leads to Desired Ingot Surface and Microstructure in Aluminum Casting.

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Zabaras, N.J.; Samanta, D.; Tan, L.

    2005-10-30

    A design methodology will be developed with which casting mold surface topographies can be tuned to produce required surface features and micro-structural properties of Aluminum ingots. Both static and continuous casting processes will be examined with instrumented molds. Mold surface topographies, which consist of unidirectional and bi-directional groove textures, will be generated using contact and non-contact techniques to elicit a radiator-like effect at the mold-casting interface. The rate of heat extraction, the evolution of near-surface cast microstructure, and shell macro-morphology can be controlled once the proper balance between mold surface area extension and the degree of imperfect wetting at the instant solidification starts is determined. Once this control is achieved, it will be possible to minimize or even eliminate costly post-casting surface milling or scalping which is currently a major barrier to the development of new Aluminum casting processes.

  3. [Study on the mechanisms of hazardous air pollutant emissions from green sand casting].

    Science.gov (United States)

    Wang, Yu-Jue; Zhao, Qi; Zhang, Ying; Hong, Chao-Peng; Huang, Tian-You

    2010-10-01

    Analytic pyrolysis was conducted to simulate the heating conditions that green sand and bituminous coal would experience during metal casting process. The hazardous air pollutant (HAP) emissions from analytical pyrolysis were analyzed by GC-FID/MS. The major components of the HAP emissions included benzene, toluene, xylene (BTX), phenol, and naphthalene. These HAPs were generated from the pyrolysis of bituminous coal that was added as carbonaceous additives in the green sand. During TGA slow pyrolysis, HAPs were mainly generated at 350-700 degrees C. The yield of HAPs increased considerably when the coal was flash pyrolyzed. The HAP emissions from analytical pyrolysis exhibited some similarity in the compositions and distributions with those from actual casting processes. Compared with the conventional actual metal pouring emission tests, analytical pyrolysis techniques offered a fast and cost-effective way to establish the HAP emission inventories of green sand during metal casting.

  4. Designing a combined casting mold for manufacture of a gasoline centrifugal pump body using CAD/CAM-systems

    Science.gov (United States)

    Galin, N. E.; Ogol, I. I.; Chervach, Yu B.; Dammer, V. Kh; Ru, Jia Hong

    2017-02-01

    The present paper examines designing of a combined casting mold for manufacture of a gasoline centrifugal pump body. The paper offers technological solutions for obtaining high quality castings at the testing stage of the finished mold. The paper is intended for practical use and prepared by order of JSC ‘Tomsk Electrical Engineering Plant’ using software and equipment of the department ‘Technologies of Computer-Aided Machinery Manufacturing’ of the Tomsk Polytechnic University (TPU) under the economic contract within state import substitution program. In preparing the paper, CAD/CAM-systems KOMPAS-3D and PowerMILL were used. In 2015, the designed casting mold was introduced into the production process at JSC ‘Tomsk Electrical Engineering Plant’.

  5. The identification of pouring conditions of cast iron to sand moulds

    Directory of Open Access Journals (Sweden)

    B. Borowiecki

    2008-04-01

    Full Text Available The structure and properties of the castings in cast iron put on spheroidization depend especially on the pouring conditions. Decisive factor of local castings properties can be the flow ability of liquid metal in sand mould, which depends not only on chemical constitutions but also on temperature and velocity of pouring. The parameter, which take into consideration various factors is a substitute rheological parameter θ proposed in early author’s papers [1, 2]. The parameter determined in fluidity test can be used to calculation of thickness of rheological boundary layer metal in gating system channel and in casting. The identification a thermal properties of sand mould material has been require of investigation proposed in literature [3, 4]. In the article presented also the experimental of measurement results of metal levels in piezometers located on the horizontal cross gate.

  6. Characterization of Coated Sand Cores from Two Different Binder Systems for Grey Iron Castings

    DEFF Research Database (Denmark)

    Nwaogu, Ugochukwu Chibuzoh; Tiedje, Niels Skat; Poulsen, Thomas

    Expansion defects on the surface of the castings include sand burn-in, metal penetration and/or veining, finning or scab. Veining or finning and metal penetration are of interest. These defects are associated with silica sand and result from the penetration of liquid metal into cracks formed during...... differential expansion of the core during heating. The rapid expansion of silica sand up to 600 oC and especially at 573 oC, where the α – β phase transformation occurs, is the cause of stresses in the core system. These stresses cause crack formation and metal melt flows into these cracks causing finning...... or veining and metal penetration defects. The use of refractory coatings on cores is fundamental to obtaining acceptable casting surface quality and is used on resin bonded cores in production foundries. In this study new sol gel-coated sand cores made from coldbox and furan binder systems were investigated...

  7. Changes of gas pressure in sand mould during cast iron pouring

    Directory of Open Access Journals (Sweden)

    J. Mocek

    2011-10-01

    Full Text Available The paper presents a test method developed to measure changes of gas pressure in sand moulds during manufacture of iron castings. The pressure and temperature measurements were taken in the sand mould layers directly adjacent to the metal – mould interface. A test stand was described along with the measurement methodology. The sensors used allowed studying the fast-changing nature of the processes which give rise to the gas-originated casting defects. The study examined the influence of binders, clays and refining additives on the nature of the gas evolution process. The effect of the base sand type - quartz or olivine - on the nature of pressure changes was compared. The test stand design ensured the stability of technological parameters in the examined mould elements, and a repeatable process of making pilot castings. The main outcome was classification of sand mixtures in terms of pressure occurring during pouring of iron castings. The obtained results confirm the usefulness of the described method for testing gas pressure occurrence in a sand mould.

  8. Preparation of helicopter rotor counterbalance component by means of permanent-mold casting

    Institute of Scientific and Technical Information of China (English)

    LIU Zhao-jing; ZUO Feng; REN Shan-zhi; LI Feng-zhen

    2007-01-01

    Copper alloy was adopted to prepare helicopter rotor counterbalance component by means of permanent-mold casting. Process parameters were determined on the basis of theory calculation and computer numerical simulation. Through controlling mould temperature, pouring temperature and speed, the defects, such as gas cavity, shrinkage porosity, cold shut, can be effectively avoided. The results show that the best process parameters for smelting are as follows: pouring temperature is 1 100 ℃, pouring time is 14 s and opened mould time is 6 min. Mixture of 90% charcoal powder and 10% fluorite were selected as covering agent and 0.01% phosphorus copper acts as oxidizer. The density of rotor counterbalance component after casting in permanent-mold is 99.91% of its theory density. Mechanical properties are as follows: σb=315 MPa, σ0.2=143 MPa, δ=25%, HB=950. The mass deviation is between -5 g and +5 g, the curved surface distortion is less than 0.20 mm, and the largest tolerance of sectional thickness can be controlled between -0.10 mm and +0.10 mm.

  9. Characteristics of mold filling and entrainment of oxide film in low pressure casting of A356 alloy

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Shan-Guang; Cao, Fu-Yang; Zhao, Xin-Yi; Jia, Yan-Dong; Ning, Zhi-Liang; Sun, Jian-Fei, E-mail: jfsun_hit@263.net

    2015-02-25

    The effect of pressurizing speed of low pressure casting on mold filling and mechanical properties of A356 alloy was studied. The mold filling behavior was calculated by two phase flow model using VOF (Volume of Fluid) method. In order to evaluate the accuracy of simulated results, the real mold filling process observed by X-ray radiography was compared. The results show that during mold filling the gate velocity first increased dramatically, then kept unchanged under relatively low pressurizing speed, or increased slowly under relatively high pressurizing speed. High gate velocity causes melt falling back under gravity with high speed. The falling velocity and the resultant relative rotating vortex are the main causes of oxide film entrainment in low pressure casting. The mechanical properties of the as-cast A356 alloy were measured by four-point bend test. Weibull probability plots were used to assess the fracture mechanisms under different pressurizing speeds. The results obtained in this paper illuminate on designing suitable pressurizing speed for mold filling in low pressure casting.

  10. THE WEAR RESISTANCE INCREASE OF CHROMIUM CAST IRON

    Directory of Open Access Journals (Sweden)

    V. M. Ilyushenko

    2016-01-01

    Full Text Available The article presents the results of the tests on the wear resistance of chromium cast irons of different compositions obtained in sand forms. It has been shown that increase of the wear resistance and mechanical properties of the cast iron is possible to obtain using the casting in metal molds. A further increase in wear resistance of parts produced in metal molds is possible by changing the technological parameters of casting and alloying by titanium.

  11. AN INTRODUCTION TO RAPID CASTING: DEVELOPMENT AND INVESTIGATION OF PROCESS CHAINS FOR SAND CASTING OF FUNCTIONAL PROTOTYPES

    OpenAIRE

    Dimitrov, D.; Wijk, W.; Beer, N.

    2012-01-01

    ENGLISH ABSTRACT: This paper discusses the results obtained from studies on different Rapid Tooling process chains in order to improve the design and manufacture of foundry equipment that is used for sand casting of prototypes in final material. These prototypes are intended for functional and pre-production tests of vehicles. The Three Dimensional Printing process is used as core technology. Subsequently, while considering aspects such as time, cost, quality (accuracy and surface ro...

  12. Tool Steels in Die-Casting Utilization and Increased Mold Life

    Directory of Open Access Journals (Sweden)

    Sepanta Naimi

    2015-01-01

    Full Text Available In die-casting molds, heat-checking is the typical failure mechanism. Optimizing the parameters that decrease this failure venture should be considered when designing and heat treating steels. The quality of die steels and their treatment continue to improve. This research investigated properties of the traditional materials 1.2343 and 1.2344 and the new steels (Dievar and TOOLOX 44 when applied to the die-casting mold specimens, after different experimental cycles. Also microstructures of the mentioned materials were analyzed by scanning electron microscopy (SEM test. Chrome-molybdenum-silicon-vanadium steels have good hardening ability in oil and in air. Therefore, the hot-work steels have considerable toughness and plastic attributes through both regular and higher temperatures. So, it is a good traditional die-casting material. However, another special die steel, such as Dievar, is a particularly developed steel grade; its exclusivity profile is exceptional due to its chemical composition and the use of the latest production techniques. Dievar has good heat-checking and gross-cracking resistance as a result of both high toughness and good hot strength. An additional material, a new prehardened tool steel known as TOOLOX 44, exhibits control of the failure described above by optimizing the parameters of impact toughness that could reduce the heat-checking failures. A variety of heat treatment parameters exist for various reasons because the heat treatment operation is performed by a variety of companies. This issue of the diversity in heat treatments is resolved by TOOLOX 44; this steel is quenched and tempered in delivered state.

  13. JUSTIFICATION OF RATIONAL KINEMATIC CHARACTERISTICS OF MOLDING VIBRATING TABLE

    Directory of Open Access Journals (Sweden)

    P. G. Anofriev

    2016-12-01

    Full Text Available Purpose. One of the efficient ways to obtain castings of complex shape is lost foam casting (LFC in the evacuated molds (containers. Upgrading the quality of this casting method requires improvement of molding techniques. The molding process involves layer-by-layer vibratory compaction of sand in the containers. Most of the lines of LFC sections are equipped with vibrating tables with inertia oscillators driven by induction motors, operating at nominal speed. A promising way of improving the molding technique is the rational setting of the following parameters of vibrating table: vibration displacement, velocity and acceleration. These parameters are determined by the elastic-mass characteristics of the system «vibrating table – mold» and perturbing forces created by inertia oscillators. The aim of the study is to determine the rational range of setting the parameters of oscillators at which the qualitative layer-by-layer compaction of the molding sand in the mold takes place. Methodology. The efficiency criterion for setting characteristics of the vibrating table there were taken the values of averaged accelerations of 6.5 – 7.5 m/s2 corresponding to maximum compaction degree of dry molding sand and the range of acceleration values 9 – 9.5 m/s2 for giving the sand «pseudo-yielding». For the study it was developed a mathematical model of oscillations of the movable part of vibrating table with two types of casting containers for steady and transient operation modes. Findings. In the process of research of the mold oscillations it was calculated the natural frequencies of oscillations at different elastic-mass characteristics of the system using a mathematical model. It was constructed the frequency response of displacements and accelerations of the moving part of the table with container filled with molding sand layer-by-layer. Originality. The author proposes a method of determining the range of frequency setting of inertial

  14. Effect of Chromite-Silica Sands Characteristics on Performance of Ladle Filler Sands for Continuous Casting

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    Free opening rate is mainly determined by the performance of the ladle filler sand. High free opening rates of ladles are required in steel making to improve steel quality. Chromite ladle filler sands are one of the most widely used ladle filler sand. Several operative variables and materials characteristics affect the performance of the sands. Three sets of chromite ladle filler sands were selected and researches were focused on the sintering hehaviour and per- formance of the sands under operative conditions. The effect of particle size distribution on sintering, microstruc- ture, flowability, and permeability were presented. In all cases, the particle size varies from 0.1 to 1.5 mm corre- sponding to free flowing powders. One of the samples has higher permeability factor in comparison with others due to low particle size distribution. The other sample presents very good free opening due to its very good flowability and permeability factor.

  15. Improved Foundry Castings Utilizing CAD/CAM

    Science.gov (United States)

    1981-10-01

    designed to simulate the heat transfer behavior during freezing and the subsequent cooling of an arbitrarily shaped 3D casting solidify- ing in a sand...variety of complex 2D and 3D geometries may be simulated by these routines. It is important, however, to be aware of the assumptions made in the design...three-dimensional with a sand mold surrounding a steel casting. The simulation program is desing - ed to simulate any shape. The shape of test casting

  16. Ductile iron castings fabricated using metallic moulds; Fabricacion de piezas de fundicion con grafito esferoidal en molde metalico

    Energy Technology Data Exchange (ETDEWEB)

    Urrestarazu, A.; Sertucha, J.; Suarez, R.; Alvarez-Ilzarbe, I.

    2013-07-01

    The features and suitability of high requirements ductile iron castings production using metallic moulds have been studied in the present work. The structural and mechanical properties of the produced castings have been analysed and compared to the corresponding ones but fabricated using green sand moulds according to a conventional production process. The higher cooling rate in the metallic moulds is the main cause for the appearance of the detected structural changes in castings. The mechanical and microstructural properties obtained directly on castings are remarkable due to the higher nodule count among other factors. Finally, the benefits and inconveniences found in this kind of production methodology using metallic moulds are also discussed. (Author)

  17. Mensuration and simulation of mold filling process in semi-solid die-cast of aluminum alloy

    Institute of Scientific and Technical Information of China (English)

    YANG Yi-tao; WANG Jian-fu; ZHANG Heng-hua; SHAO Guang-jie

    2006-01-01

    To understand the flow trace of semi-solid slurry in mold cavity, some thermocouples were inserted in mold cavity, and the reaction timing of thermocouples showed the arrival of fluid. The filling time and rate were estimated by comparison between the experiment and calculation. The introduction of computer simulation technique based on ADSTEFAN was to predict injectionforming process and to prevent defects during trial manufacture of various parts. By comparing the formed appearance of parts in experiment and in simulation, and observing the relationship between internal defects inspected by X-ray or microscope and the flow field obtained in simulation, it was indicated that both have quite good agreement in simulation and experiment. Right predictions for cast defects resulted from mold filling can be carried out and proper direction was also proposed. The realization of numerical visualization for filling process during semi-solid die-cast process will play an important role in optimizing technology plan.

  18. Microstructure And Mechanical Properties Of An Al-Zn-Mg-Cu Alloy Produced By Gravity Casting Process

    OpenAIRE

    2015-01-01

    High-strength aluminum alloy are widely used for structural components in aerospace, transportation and racing car applications. The objective of this study is to enhance the strength of the Al-Zn-Mg-Cu alloy used for gravity casting process. All alloys cast into stepped-form sand mold (Sand-mold Casting; SC) and Y-block shaped metal mold(Permanent mold Casting; PC) C and then two –step aged at 398-423 K after solution treated at 743 K for 36 ks. The tensile strength and total elongation of t...

  19. Flow and thermal behavior of the top surface flux/powder layers in continuous casting molds

    Science.gov (United States)

    McDavid, R. M.; Thomas, B. G.

    1996-08-01

    Steady-state finite-element models have been formulated to investigate the coupled fluid flow and thermal behavior of the top-surface flux layers in continuous casting of steel slabs. The three-dimensional (3-D) FIDAP model includes the shear stresses imposed on the flux/steel interface by flow velocities calculated in the molten steel pool. It also includes different temperature-dependent powder properties for solidification and melting. Good agreement between the 3-D model and experimental measurements was obtained. The shear forces, imposed by the steel surface motion toward the submerged entry nozzle (SEN), create a large recirculation zone in the liquid flux pool. Its depth increases with increasing casting speed, increasing liquid flux conductivity, and decreasing flux viscosity. For typical conditions, this zone contains almost 4 kg of flux, which contributes to an average residence time of about 2 minutes. Additionally, because the shear forces produced by the narrowface consumption and the steel flow oppose each other, the flow in the liquid flux layer separates at a location centered 200 mm from the narrowface wall. This flow separation depletes the liquid flux pool at this location and may contribute to generically poor feeding of the mold-strand gap there. As a further consequence, a relatively cold spot develops at the wideface mold wall near the separation point. This nonuniformity in the temperature distribution may result in nonuniform heat removal, and possibly nonuniform initial shell growth in the meniscus region along the wideface off-corner region. In this way, potential steel quality problems may be linked to flow in the liquid flux pool.

  20. Optimization of a Permanent Step Mold Design for Mg Alloy Castings

    Science.gov (United States)

    Timelli, Giulio; Capuzzi, Stefano; Bonollo, Franco

    2015-02-01

    The design of a permanent Step mold for the evaluation of the mechanical properties of light alloys has been reviewed. An optimized Step die with a different runner and gating systems is proposed to minimize the amount of casting defects. Numerical simulations have been performed to study the filling and solidification behavior of an AM60B alloy to predict the turbulence of the melt and the microshrinkage formation. The results reveal how a correct design of the trap in the runners prevents the backwave of molten metal, which could eventually reverse out and enter the die cavity. The tapered runner in the optimized die configuration gently leads the molten metal to the ingate, avoiding turbulence and producing a balanced die cavity filling. The connection between the runner system and the die cavity by means of a fan ingate produces a laminar filling in contrast with a finger-type ingate. Solidification defects such as shrinkage-induced microporosity, numerically predicted through a dimensionless version of the Niyama criterion, are considerably reduced in the optimized permanent Step mold.

  1. Large Eddy Simulation of Transient Flow, Solidification, and Particle Transport Processes in Continuous-Casting Mold

    Science.gov (United States)

    Liu, Zhongqiu; Li, Linmin; Li, Baokuan; Jiang, Maofa

    2014-07-01

    The current study developed a coupled computational model to simulate the transient fluid flow, solidification, and particle transport processes in a slab continuous-casting mold. Transient flow of molten steel in the mold is calculated using the large eddy simulation. An enthalpy-porosity approach is used for the analysis of solidification processes. The transport of bubble and non-metallic inclusion inside the liquid pool is calculated using the Lagrangian approach based on the transient flow field. A criterion of particle entrapment in the solidified shell is developed using the user-defined functions of FLUENT software (ANSYS, Inc., Canonsburg, PA). The predicted results of this model are compared with the measurements of the ultrasonic testing of the rolled steel plates and the water model experiments. The transient asymmetrical flow pattern inside the liquid pool exhibits quite satisfactory agreement with the corresponding measurements. The predicted complex instantaneous velocity field is composed of various small recirculation zones and multiple vortices. The transport of particles inside the liquid pool and the entrapment of particles in the solidified shell are not symmetric. The Magnus force can reduce the entrapment ratio of particles in the solidified shell, especially for smaller particles, but the effect is not obvious. The Marangoni force can play an important role in controlling the motion of particles, which increases the entrapment ratio of particles in the solidified shell obviously.

  2. Transient Simulation of Mold Heat Transfer and Solidification Phenomena of Continuous Casting of Steel

    Science.gov (United States)

    El-Bealy, Mostafa Omar

    2016-10-01

    A comprehensive model of heat transfer and solidification phenomena has been developed including microstructure evolution and fluctuation macrosegregation in continuously cast steel slabs with an objective of evaluation of various mold cooling conditions. The study contains plant trials, metallographic examinations, and formulation of mathematical modeling. The plant trials involved sample collection from three slab casters in use at two different steel plants. The metallographic study combined measurements of dendrite arm spacings and macrosegregation analysis of collected samples. A one-dimensional mathematical model has been developed to characterize the thermal, solidification phases, microstructure evolution, interdendritic strain, and therefore, the macrosegregation distributions. Two cooling approaches were proposed in this study to evaluate the Newtonian heat transfer coefficient in various mold regions. The first approach is a direct estimation approach (DEA), whereas the second one is a coupled approach of the interfacial resistor model and direct estimation approach (CIR/DEA). The model predictions and standard analytical models as well as the previous measurements were compared to verify and to calibrate the model where good agreements were obtained. The comparison between the model predictions and the measurements of dendrite arm spacings and fluctuated carbon concentration profiles were performed to determine the model accuracy level with different cooling approaches. Good agreements were obtained by different accuracy levels with different cooling approaches. The model predictions of thermal parameters and isotherms were analyzed and discussed.

  3. Effect of a Magnetic Field on Turbulent Flow in Continuous Casting Mold

    Science.gov (United States)

    Singh, Ramnik; Vanka, Pratap; Thomas, Brian G.

    2012-11-01

    Electromagnetic Braking (EMBr) fields are applied to control the turbulent mold flow for defect reduction in continuous steel casting. The effect of EMBr depends on the path of induced electric current which is modified by presence of the highly conducting solidifying shell. The mold geometry is complex involving flow in a high-aspect ratio closed channel with bifurcated jet impinging obliquely on the side walls. The extremely transient nature and the anisotropic behavior of turbulence under the EMBr field make numerical studies challenging. We use large eddy simulations to study effects of EMBr with electrically insulating and conducting boundary conditions. Magnetohydrodynamic equations are solved using a fractional step method with second order spatial and temporal accuracy. The electric potential method is used as magnetic Reynolds number is low for liquid metal flows. The solver was first validated with measurements from scaled GaInSn model and simulations were then performed to study real casters at industrial conditions. Time averaged and transient behaviors of the flow were studied by collecting distributions of mean velocities, turbulent fluctuations and vorticity. The simulations reveal that the electrical boundary conditions have a major effect on the flow structure. National Science Foundation Grant CMMI 11-30882.

  4. The Influence of Silica Module of the Soluble Sodium Silicate Hardened by Ester on the Residual Strenght of Molding Sand

    Directory of Open Access Journals (Sweden)

    Baliński A.

    2013-03-01

    Full Text Available Describes how to obtain a soluble sodium silicate with a density of 1.40 g/cm3, 1.45 g/cm3, 1.50 g/cm3, and silica module M = 2.1 obtained from the silica- sodium glass with module M = 3.3 and M = 2.1. Residual (final strength of molding samples made with these binders, were determined at temperatures corresponding to the characteristic temperatures of phase and temperature transitions of silica gel. Indicated the type of soluble sodium silicate capable of obtain the smallest value of the final strength of molding sand in the specified range of temperatures.

  5. The Influence of Silica Module of the Soluble Sodium Silicate Hardened by Ester on the Residual Strenght of Molding Sand

    Directory of Open Access Journals (Sweden)

    A. Baliński

    2013-01-01

    Full Text Available Describes how to obtain a soluble sodium silicate with a density of 1.40 g/cm3, 1.45 g/cm3, 1.50 g/cm3, and silica module M = 2.1obtained from the silica- sodium glass with module M = 3.3 and M = 2.1. Residual (final strength of molding samples made with thesebinders, were determined at temperatures corresponding to the characteristic temperatures of phase and temperature transitions of silica gel. Indicated the type of soluble sodium silicate capable of obtain the smallest value of the final strength of molding sand in the specified range of temperatures.

  6. Sand, die and investment cast parts via the SLS selective laser sintering process

    Science.gov (United States)

    van de Crommert, Simon; Seitz, Sandra; Esser, Klaus K.; McAlea, Kevin

    1997-09-01

    Complex three-dimensional parts can be manufactured directly from CAD data using rapid prototyping processes. SLS selective laser sintering is a rapid prototyping process developed at the University of Texas at Austin and commercialized by DTM Corporation. SLS parts are constructed layer by layer from powdered materials using laser energy to melt CAD specified cross sections. Polymer, metal, and ceramic powders are all potential candidate materials for this process. In this paper the fabrication of complex metal parts rapidly using the investment, die and sand casting technologies in conjunction with the selective laser sintering process are being explained and discussed. TrueForm and polycarbonate were used for investment casting, while RapidSteel metal mould inserts were used for the die casting trials. Two different SandForm materials, zircon and silica sand, are currently available for the direct production of sand moulds and cores. The flexible and versatile selective laser sintering process all these materials on one single sinterstation. Material can be changed fast and easily between two different builds.

  7. Clean ferrous casting technology research. Final technical report, September 29, 1993--December 31, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Piwonka, T.S. [ed.

    1996-01-01

    This report details results of a 30-month program to develop methods of making clean ferrous castings, i.e., castings free of inclusions and surface defects. The program was divided into 3 tasks: techniques for producing clean steel castings, electromagnetic removal of inclusions from ferrous melts, and study of causes of metal penetration in sand molds in cast iron.

  8. O on the Crystallization Behavior of Lime-Alumina-Based Mold Flux for Casting High-Al Steels

    Science.gov (United States)

    Lu, Boxun; Chen, Kun; Wang, Wanlin; Jiang, Binbin

    2014-08-01

    With the development of advanced high strength steel (AHSS), a large amount of aluminum was added into steels. The reaction between aluminum in the molten steel and silica based mold flux in the continuous-casting process would tend to cause a series of problems and influence the quality of slabs. To solve the above problems caused by the slag-steel reaction, nonreactive lime-alumina-based mold flux system has been proposed. In this article, the effect of Li2O and Na2O on the crystallization behavior of the lime-alumina-silica-based mold flux has been studied by using the single hot thermocouple technology (SHTT) and double hot thermocouple technology (DHTT). The results indicated that Li2O and Na2O in the above mold flux system play different roles as they behaved in traditional lime-silica based mold flux, which would tend to inhibit general mold flux crystallization by lowering the initial crystallization temperature and increasing incubation time, especially in the high-temperature region. However, when their content exceeds a critical value, the crystallization process of mold fluxes in low temperature zone would be greatly accelerated by the new phase formation of LiAlO2 and Na x Al y Si z O4 crystals, respectively. The crystalline phases precipitated in all samples during the experiments are discussed in the article.

  9. Prediction of Shrinkage Porosity Defect in Sand Casting Process of LM25

    Science.gov (United States)

    Rathod, Hardik; Dhulia, Jay K.; Maniar, Nirav P.

    2017-08-01

    In the present worldwide and aggressive environment, foundry commercial enterprises need to perform productively with least number of rejections and create casting parts in shortest lead time. It has become extremely difficult for foundry industries to meet demands of defects free casting and meet strict delivery schedules. The process of casting solidification is complex in nature. Prediction of shrinkage defect in metal casting is one of the critical concern in foundries and is one of the potential research areas in casting. Due to increasing pressure to improve quality and to reduce cost, it is very essential to upgrade the level of current methodology used in foundries. In the present research work, prediction methodology of shrinkage porosity defect in sand casting process of LM25 using experimentation and ANSYS is proposed. The objectives successfully achieved are prediction of shrinkage porosity distribution in Al-Si casting and determining effectiveness of investigated function for predicting shrinkage porosity by correlating results of simulating studies to those obtained experimentally. The real-time application of the research reflects from the fact that experimentation is performed on 9 different Y junctions at foundry industry and practical data obtained from experimentation are used for simulation.

  10. 球铁飞轮的铁型覆砂铸造生产及缺陷防止%Production of Ductile Iron Fly Wheel by Permanent Mold with Coated Sand and its Defects Elimination

    Institute of Scientific and Technical Information of China (English)

    张春明

    2012-01-01

    主要讲述了球铁飞轮的铁型覆砂铸造工艺的基本要求及生产过程控制,并对该生产工艺中可能出现的各种缺陷及其预防措施进行了总结.%The primary technological characteristics of permanent mold coated sand casting ductile iron fly wheel and its process control were described. Meanwhile, the defects possible encountered in production and countermeasures were presented.

  11. Mold

    Centers for Disease Control (CDC) Podcasts

    2011-05-02

    This podcast answers a listener's question about the risks associated with mold after a natural disaster or severe weather.  Created: 5/2/2011 by National Center for Environmental Health (NCEH).   Date Released: 5/2/2011.

  12. Determination of interface heat-transfer coefficients for permanent-mold casting of Ti-6Al-4V

    Science.gov (United States)

    Kobryn, P. A.; Semiatin, S. L.

    2001-08-01

    Interface heat-transfer coefficients ( h 0) for permanent-mold casting (PMC) of Ti-6Al-4V were established as a function of casting surface temperature using a calibration-curve technique. Because mold geometry has a strong effect on h 0, values were determined for both of the two limiting interface types, “shrink-off” and “shrink-on.” For this purpose, casting experiments with instrumented molds were performed for cylinder- and pipe-shaped castings. The measured temperature transients were used in conjunction with two-dimensional (2-D) axisymmetric finite-element method (FEM) simulations to determine h 0( T). For the shrink-off interface type, h 0 was found to decrease linearly from 2000 to 1500 W/m2 K between the liquidus and the solidus, from 1500 to 325 W/m2 K between the solidus and the gap-formation temperature, and at a rate of 0.3 W/m2 K/K thereafter. For the shrink-on interface type, h 0 was found to increase linearly from 2000 to 2500 W/m2 K between the liquidus and the solidus temperatures, from 2500 to 5000 W/m2 K between the solidus and the gap-formation temperature, and to remain constant thereafter. The shrink-on values were up to 100 times the shrink-off values, indicating the importance of accounting for the interface geometry in FEM simulations of this process. The FEM-predicted casting and mold temperatures were found to be insensitive to certain changes in the h 0 values and sensitive to others. A comparison to published h 0 values for PMC of aluminum alloys showed some similarities and some differences.

  13. Technology and mechanism of a new protein-based core sand for aluminum casting

    Institute of Scientific and Technical Information of China (English)

    石晶玉; 黄天佑; 石红玉; 何镇明

    2001-01-01

    The protein-based binding material is from natural products, which is nontoxic and recyclable. This kind of green binder is earnestly needed by aluminum casting products. The new protein-based core possesses higher strength and easier shakeout. Its tensile strength is close to that of common resin sands. The micro-mechanism of protein binder was investigated by using infrared spectrum, chemical element analysis, SEM and thermal lost-mass analysis.

  14. Effects of Moulding Sand Permeability and Pouring Temperatures on Properties of Cast 6061 Aluminium Alloy

    Directory of Open Access Journals (Sweden)

    Olawale Olarewaju Ajibola

    2015-01-01

    Full Text Available Effects of moulding sand permeabilities prepared from the combinations of four proportions of coarse and fine particle size mixtures and pouring temperatures varied from 700, 750, and 800 (±10°C were studied on the hardness, porosity, strength, and microstructure of cast aluminium pistons used in hydraulic brake master cylinder. Three sand moulds were prepared from each of the 80 : 20, 60 : 40, 40 : 60, and 20 : 80 ratios. The surfaces and microstructures of cast samples were examined using high resolution microscopic camera, metallurgical microscope with digital camera, and scanning electron microscope with EDX facilities. The best of the metallurgical properties were obtained from the combination of 80 : 20 coarse-fine sand ratio and 750 ± 10°C pouring temperature using as MgFeSi inoculant. An 8 : 25 ratio of coarse to fine grained eutectic aluminium alloy was obtained with enhanced metallographic properties. The cast alloy poured at 750 ± 1°C has a large number of fine grain formations assuming broom-resembling structures as shown in the 100 µm size SEM image.

  15. Comparison of different Methods to model Transient Turbulent Magnetohydrodynamic Flow in Continuous Casting Molds

    Science.gov (United States)

    Kratzsch, C.; Asad, A.; Schwarze, R.

    2016-07-01

    Modeling of the processes in the continuous casting mold engaged many scientists once the computer-technology was able to accomplish that task. Despite that, CFD modeling of the fluid flow is still challenging. The methods allow deeper and deeper inside views into transient flow processes. Mostly two kinds of methods are applied for this purpose. URANS simulations are used for a coarse overview of the transient behavior on scales determined by the big rollers inside the mold. Besides, LES were done to study the processes on smaller scales. Unfortunately, the effort to set up a LES is orders of magnitude higher in time and space compared to URANS. Often, the flow determining processes take place in small areas inside the flow domain. Hence, scale resolving methods (SRS) came up, which resolve the turbulence in some amount in these regions, whereas they go back to URANS in the regions of less importance. It becomes more complex when dealing with magnetic fields in terms of EMBr devices. The impact of electro magnetically forces changes the flow structure remarkably. Many important effects occur, e.g. MHD turbulence, which are attributable to processes on large turbulent scales. To understand the underlying phenomena in detail, SRS allows a good inside view by resolving these processes partially. This study compares two of these methods, namely the Scale Adaptive Simulation (SAS) and the Delayed Detached Eddy Simulation (DDES), with respect to rendition of the results known from experiments and URANS simulation. The results show, that the SAS as well as the DDES are able to deliver good results with higher mesh resolutions in important regions in the flow domain

  16. The Study on Permanent Mold Tilting Casting For Large Aluminum Alloy Conductor%大型铝合金导体金属型倾转铸造工艺研究

    Institute of Scientific and Technical Information of China (English)

    程俊明; 陆启为; 刘树声; 李赫

    2013-01-01

    The technology of tilting casting of permanent mold with resin-bonded sand cores to produce large aluminum alloy conductor with thick wall and local solid has been adopted, resulting in higher quality, performance and production efficiency with lower cost.%采用金属模树脂砂芯,重力倾转铸造工艺方法,生产型大壁厚、局部实心铝合金导体,质量高性能好,生产效率高、成本低。

  17. 湿型砂造型中型砂质量的控制%Quality Control of Mould Sand in Green Sand Molding Process

    Institute of Scientific and Technical Information of China (English)

    赵洪仁; 边庆月; 马顺龙

    2012-01-01

    介绍了湿型砂各组分的作用.论述了型砂性能与其组分的关系,并指出控制好有效膨润土量和有效添加剂量是控制型砂质量的关键,结合生产实例阐述了型砂质量的控制要点.指出提高型砂质量控制水平、生产优质铸件和实现铸造生产循环用砂是铸造生产节能减排的有效方法.%In this paper, the functions of every component in green sand were outlined and the relationship between properties of mould sand and its component was discussed. It is the key to control content of effective bentonite and additives for mould sand quality. The main points of mould sand quality control were showed by practical production case. Enhancing quality control level for mould sand, producing high quality casting and realizing recycling use of sand in foundry production are effective methods in realization of energy saving and emission reduction of foundry production.

  18. CASTING OF DETAILS OF WEAR-RESISTANT CHROME CAST IRONS FOR CHROMIC MILLS IN COMBINED MOLDS AND CHILLS

    Directory of Open Access Journals (Sweden)

    K. E. Baranovskij

    2009-01-01

    Full Text Available Relative wear resistance of chrome cast irons of eutectic composition is determined in laboratory and industry conditions. Complex alloyed eutectic cast iron with increased wear resistance and mechanical characteristics is developed.

  19. Numerical Investigation of Shell Formation in Thin Slab Casting of Funnel-Type Mold

    Science.gov (United States)

    Vakhrushev, A.; Wu, M.; Ludwig, A.; Tang, Y.; Hackl, G.; Nitzl, G.

    2014-06-01

    The key issue for modeling thin slab casting (TSC) process is to consider the evolution of the solid shell including fully solidified strand and partially solidified dendritic mushy zone, which strongly interacts with the turbulent flow and in the meantime is subject to continuous deformation due to the funnel-type mold. Here an enthalpy-based mixture solidification model that considers turbulent flow [Prescott and Incropera, ASME HTD, 1994, vol. 280, pp. 59-69] is employed and further enhanced by including the motion of the solidifying and deforming solid shell. The motion of the solid phase is calculated with an incompressible rigid viscoplastic model on the basis of an assumed moving boundary velocity condition. In the first part, a 2D benchmark is simulated to mimic the solidification and motion of the solid shell. The importance of numerical treatment of the advection of latent heat in the deforming solid shell (mushy zone) is specially addressed, and some interesting phenomena of interaction between the turbulent flow and the growing mushy zone are presented. In the second part, an example of 3D TSC is presented to demonstrate the model suitability. Finally, techniques for the improvement of calculation accuracy and computation efficiency as well as experimental evaluations are also discussed.

  20. Characterization of Microstructure of Permanent Mold Cast Zinc Alloy ZA27

    Institute of Scientific and Technical Information of China (English)

    CHEN Ti-jun; LI Yuan-dong; HAO Yuan

    2004-01-01

    The microstructure of permanent mold cast zinc alloy ZA27 was examined by SEM and TEM after natural aging for 18 months. It was found that the primary α' phase, peritectic and eutectic β phases all decomposed into the equilibrium well-formed α+η lamellae or irregular α+η structure through cellular reaction. The cell colonies nucleated on the interdendritic eutectic η layer and grew into the primary dendrites, thus first making the β phase in the dendrite edges decompose, and then the α' phase in the dendrite cores. The products from the α' phase appeared in regular lamellae rather than irregular particles. In addition, a fine, dense transitional phase α'm containing 27.8 mass% Al, with a fcc crystal structure and lattice parameter of about 0.4013nm, formed in α lamellae. Copper was preferentially concentrated in Zn-rich η phase and existed in the form of Cu-rich ε phase (CuZr4) particles, with hcp crystal structure and parameters a=0.274nm,c=0.429nm and c/a=1.567.

  1. [Application of analytical pyrolysis in air pollution control for green sand casting industry].

    Science.gov (United States)

    Wang, Yu-jue; Zhao, Qi; Chen, Ying; Wang, Cheng-wen

    2010-02-01

    Analytic pyrolysis was conducted to simulate the heating conditions that the raw materials of green sand would experience during metal casting process. The volatile organic compound (VOC) and hazardous air pollutant (HAP) emissions from analytical pyrolysis were analyzed by gas chromatograph-flame ionization detector/mass spectrometry (GC-FID/MS). The emissions from analytical pyrolysis exhibited some similarity in the compositions and distributions with those from actual casting processes. The major compositions of the emissions included benzene, toluene and phenol. The relative changes of emission levels that were observed in analytical pyrolysis of the various raw materials also showed similar trends with those observed in actual metal casting processes. The emission testing results of both analytic pyrolysis and pre-production foundry have shown that compared to the conventional phenolic urethane binder, the new non-naphthalene phenolic urethane binder diminished more than 50% of polycyclic aromatic hydrocarbon emissions, and the protein-based binder diminished more than 90% of HAP emissions. The similar trends in the two sets of tests offered promise that analytical pyrolysis techniques could be a fast and accurate way to establish the emission inventories, and to evaluate the relative emission levels of various raw materials of casting industry. The results of analytical pyrolysis could provide useful guides for the foundries to select and develop proper clean raw materials for the casting production.

  2. Thermal Stresses in a Cylinder Block Casting Due to Coupled Thermal and Mechanical Effects

    Institute of Scientific and Technical Information of China (English)

    XU Yan; KANG Jinwu; HUANG Tianyou; HU Yongyi

    2008-01-01

    Thermal stress in castings results from nonuniform cooling. The thermal stress and the deforma-tion can change the casting and mold contact conditions which then alter the heat transfer between the cast-ing and the mold. The contact element method was used to study the interaction between a sand mold and a casting. The contact status was then fed back to the heat transfer analysis between the sand mold and the casting to re-evaluate the heat transfer coefficient based on the gap size or pressure between surfaces. The thermal and mechanical phenomena are then coupled in two directions. The method was applied to analyze stress in a stress frame specimen casting and a cylinder block. The results are more accurate than without consideration of the contact effects on the heat transfer.

  3. Based on database and asp.net technologies, a web platform of scientific data in the casting forces on the mold-fi lling behavior of titanium melts in vertically rotating molds

    Directory of Open Access Journals (Sweden)

    Xu Daming

    2008-11-01

    Full Text Available The vertical centrifugal-casting technique is widely used in the manufacture of various irregularlyshaped castings of advanced structural alloys with thin walls, complex shapes and/or large sizes. These castings are used in the increasing applications in aero-space/aviation industries, human teeth/bone repairs with nearnet shaped components, etc. In a vertically rotating casting system, the mold-filling processes of alloy melts, coupled with solidifi cation-heat transfer, may be much more complicated, because they are driven simultaneously by gravity, centrifugal and Coriolis forces. In the present work, an N-S/VOF-equations-based model, solved using a SOLA-VOF algorithm, under a rotating coordinate system was applied to numerically investigate the impacts of centrifugal and Coriolis forces on metallic melt mold-fi lling processes in different vertical centrifugal-casting configurations with different mold-rotation rates using an authors’ computer-codes system. The computational results show that the Coriolis force may cause remarkable variations in the fl ow patterns in the casting-part-cavities of a large horizontal-section area and directly connected to the sprue via a short ingate in a vertical centrifugalcasting process. A “turn-back” mold-filling technique, which only takes advantage of the centrifugal force in a transient rotating melt system, has been confi rmed to be a rational centrifugal-casting process in order to achieve smooth and layer-by-layer casting-cavities-fi lling control. The simulated mold-fi lling processes of Ti-6Al-4V alloy melt, in a vertical centrifugal-casting system with horizontally-connected plate-casting cavities, show reasonable agreement with experimental results from the literature.

  4. INFLUENCE OF DIVIDING COVERINGS ON QUALITY OF CASTINGS AT MOLDING OF ALUMINUM ALLOYS UNDER PRESSURE

    Directory of Open Access Journals (Sweden)

    A. A. Pivovarchik

    2014-01-01

    Full Text Available The results of researches on influence of separating coverings on such properties of castings as corrosion resistance, roughness of cast surface, casting density are given in article.

  5. Large Eddy Simulation of Transient Flow and Inclusions Transport in Continuous Casting Mold under Different Electromagnetic Brakes

    Science.gov (United States)

    Liu, Zhongqiu; Li, Linmin; Li, Baokuan

    2016-08-01

    A mathematical model has been developed to analyze transient fluid flow and inclusions transport in a slab continuous casting mold, considering the effects of electromagnetic brake (EMBr) arrangement and magnetic field strength. Transient flow of molten steel in the mold is calculated by using the large eddy simulation. The electromagnetic force is incorporated into the Navier-Stokes equation. The transport of inclusion inside the mold is calculated using the Lagrangian approach based on the transient flow field. The predicted results of this model are compared with the measurements of the ultrasonic testing of the rolled steel plates and the water model experiments. The transient asymmetrical flow pattern and inclusion transport inside the mold exhibits satisfactory agreement with the corresponding measurements. With electromagnetic brake effect, the velocities around the braking region are significantly suppressed, and the recirculating flow in the lower part drops and tends to develop a plug-like flow. The EMBr arrangement has an insignificant effect on the overall removal fraction of inclusions, especially for larger inclusions. The inclusion removal rate for the flow-control mold (FCM arrangement) reduces instead compared with no EMBr, especially for smaller inclusions.

  6. A comparative study of Mg-Gd-Y-Zr alloy cast by metal mould and sand mould

    Directory of Open Access Journals (Sweden)

    Wang Qilong

    2010-02-01

    Full Text Available The differences of the microstructure and mechanical property between metal mould and sand mould cast Mg-10Gd-3Y-Zr alloy were investigated both under as-cast condition and after solution heat treatment. In the as-cast specimens, the microstructure is similar and composed of α-Mg solid solution and eutectic compound of α-Mg+ Mg24(Gd,Y5; whereas the grain size using metal mould and sand mould is 27 μm and 71 μm, respectively.The eutectic compound of metal mould cast alloy was completely dissolved after solution treated at 500℃ for 8 h, however it needs higher temperature (525 ℃ and longer time (12 h to achieve the absolute dissolving under sand mould condition. In contrast to metal mould, the peak time of sand mould alloy aged at 225 ℃ and 250 ℃ of was advanced by 4 h and 6 h, respectively. The precipitation reaction sequence in sand mould cast Mg-10Gd-3Y-Zr alloy during isothermal ageing at 250 ℃ follows S.S.S.S.→β″(D019→β′(cboc→β1(fcc→β(fcc, which is similar to that in the alloy cast using metal mould.

  7. ASSESSMENT OF SURFACE FINISH AND DIMENSIONAL ACCURACY OF TOOLS MANUFACTURED BY METAL CASTING IN RAPID PROTOTYPING SAND MOULDS

    Directory of Open Access Journals (Sweden)

    Nyembwe, K.

    2012-11-01

    Full Text Available In this paper, an initial assessment of the quality parameters of the surface finish and dimensional accuracy of tools made by metal casting in rapid prototyping (RP sand moulds is undertaken. A case study from a local tool room, dealing with the manufacturing of an aluminium die for the lost wax process, is employed. Modern techniques, including surface roughness analysis and three dimensional scanning, are used to determine and understand how each manufacturing step influences the final quality of the cast tool. The best surface finish obtained for the cast die had arithmetic average roughness (Ra and mean average roughness (Rz respectively equal to 3.23m and 11.38m. In terms of dimensional accuracy, 82% of cast-die points coincided with the Computer Aided Design (CAD data, which is within the typical tolerances of sand cast products. The investigation shows that mould coating contributes slightly to the improvement of the cast tool surface finish. The study also found that the additive manufacturing of the sand mould was the chief factor responsible for the loss of dimensional accuracy. These findings indicate that machining will always be required to improve the surface finish and the dimensional accuracy of cast tools in RP sand moulds.

  8. A Combined Experimental and Computational Approach for the Design of Mold Topography that Leads to Desired Ingot Surface and Microstructure in Aluminum Casting.

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Zabaras, N.; Tan, L.

    2005-07-12

    A thermomechanical study of the effects of mold topography on the solidification of Aluminum alloys at early times is provided. The various coupling mechanisms between the solid-shell and mold deformation and heat transfer at the mold/solid-shell interface during the early stages of Aluminum solidification on molds with uneven topographies are investigated. The air-gap nucleation time, the stress evolution and the solid-shell growth pattern are examined for different mold topographies to illustrate the potential control of Aluminum cast surface morphologies during the early stages of solidification using proper design of mold topographies. The unstable shell growth pattern in the early solidification stages results mainly from the unevenness of the heat flux between the solid-shell and the mold surface. This heat flux is determined by the size of the air-gaps formed between the solidifying shell and mold surface or from the value of the contact pressure. Simulation results show that a sinusoidal mold surface with a smaller wavelength leads to nucleation of air-gaps at earlier times. In addition, the unevenness in the solid-shell growth pattern decreases faster for a smaller wavelength. Such studies can be used to tune mold surfaces for the control of cast surface morphologies.

  9. Dehydration of moulding sand in simulated casting process examined with neutron radiography

    Energy Technology Data Exchange (ETDEWEB)

    Schillinger, B., E-mail: Burkhard.Schillinger@frm2.tum.de [Technische Universitaet Muenchen, FRM II and Faculty for Physics E21, Lichtenbergstr. 1, 85748 Garching (Germany); Calzada, E. [Technische Universitaet Muenchen, FRM II and Faculty for Physics E21, Lichtenbergstr. 1, 85748 Garching (Germany); Eulenkamp, C.; Jordan, G.; Schmahl, W.W. [Ludwig-Maximilians-Universitaet Muenchen, Department fuer Geo- und Umweltwissenschaften, Sektion Kristallographie, Theresienstr. 41, 80333 Muenchen (Germany)

    2011-09-21

    Natural bentonites are an important material in the casting industry. Smectites as the main component of bentonites plasticize and stabilise sand moulds. Pore water as well as interlayer water within the smectites are lost as a function of time, location and temperature. Although rehydration of the smectites should be a reversible process, the industrially dehydrated smectites lose their capability to reabsorb water. This limits the number of possible process cycles of the mould material. A full understanding of the dehydration process would help to optimise the amount of fresh material to be added and thus save resources. A simulated metal casting was investigated with neutron radiography at the ANTARES neutron imaging facility of the FRM II reactor of Technische Universitaet Muenchen, Germany.

  10. Dehydration of moulding sand in simulated casting process examined with neutron radiography

    Science.gov (United States)

    Schillinger, B.; Calzada, E.; Eulenkamp, C.; Jordan, G.; Schmahl, W. W.

    2011-09-01

    Natural bentonites are an important material in the casting industry. Smectites as the main component of bentonites plasticize and stabilise sand moulds. Pore water as well as interlayer water within the smectites are lost as a function of time, location and temperature. Although rehydration of the smectites should be a reversible process, the industrially dehydrated smectites lose their capability to reabsorb water. This limits the number of possible process cycles of the mould material. A full understanding of the dehydration process would help to optimise the amount of fresh material to be added and thus save resources. A simulated metal casting was investigated with neutron radiography at the ANTARES neutron imaging facility of the FRM II reactor of Technische Universität München, Germany.

  11. Rapid prototyping of a complex model for the manufacture of plaster molds for slip casting ceramic

    Directory of Open Access Journals (Sweden)

    D. P. C. Velazco

    2014-12-01

    Full Text Available Computer assisted designing (CAD is well known for several decades and employed for ceramic manufacturing almost since the beginning, but usually employed in the first part of the projectual ideation processes, neither in the prototyping nor in the manufacturing stages. The rapid prototyping machines, also known as 3D printers, have the capacity to produce in a few hours real pieces using plastic materials of high resistance, with great precision and similarity with respect to the original, based on unprecedented digital models produced by means of modeling with specific design software or from the digitalization of existing parts using the so-called 3D scanners. The main objective of the work is to develop the methodology used in the entire process of building a part in ceramics from the interrelationship between traditional techniques and new technologies for the manufacture of prototypes. And to take advantage of the benefits that allow us this new reproduction technology. The experience was based on the generation of a complex piece, in digital format, which served as the model. A regular 15 cm icosahedron presented features complex enough not to advise the production of the model by means of the traditional techniques of ceramics (manual or mechanical. From this digital model, a plaster mold was made in the traditional way in order to slip cast clay based slurries, freely dried in air and fired and glazed in the traditional way. This experience has shown the working hypothesis and opens up the possibility of new lines of work to academic and technological levels that will be explored in the near future. This technology provides a wide range of options to address the formal aspect of a part to be performed for the field of design, architecture, industrial design, the traditional pottery, ceramic art, etc., which allow you to amplify the formal possibilities, save time and therefore costs when drafting the necessary and appropriate matrixes

  12. Influence of molding sand on the number of grains graphite and on the rate of thin ferrite in pieces in a nodular iron ferritic matrix

    Directory of Open Access Journals (Sweden)

    B. Khatemi

    2010-07-01

    Full Text Available The nodular cast irons are characterized by high mechanical properties compared to cast iron with lamellar graphite or vermiculargraphite. The ductile iron has already been the subject of many studies especially since the literature is rich on them, and sources of information are different. The fact is that the mechanical properties of nodular cast iron (FGS depend on the number of graphitegrains, their roundness, the solidification rate and nature of the matrix [3]. Many studies of nodular cast irons showed that the morespherical particles of graphite, the higher the mechanical properties are high. In gray cast irons, the graphite spheroids have anticrackingand give the ductile iron ductility. Note in this connection that the higher the number of graphite grains, the higher theductile iron has better mechanical properties. In cast iron, the nature of the matrix is depending on several parameters including thecooling rate of molten metal, the thickness, shape and dimensions of parts. The faster cooling is slow over rate of ferrite is important[3, 4]. In this paper, we tested three types of sand casting: sand –based sodium silicate, furan resin and green sand on samplesspherical graphite cast iron of different thickness. The objective in this article is to determine the number of grains of graphite andferrite for each type of sand casting under the same experimental conditions including the cooling rate and chemical composition ofthe liquid metal.

  13. A New Direct-Pour In-Mold (DPI) Technology for Producing Ductile and Compacted Graphite Iron Castings.

    Energy Technology Data Exchange (ETDEWEB)

    Jason Hitchings; Jay R. Hitchings

    2007-07-20

    A new "Direct Pour In-Mold" (DPI) Magnesium treatment technology has been developed that can produce both Nodular and Compacted Graphite iron. The DPI technology converts the standard horizontal runner system into a vertical one, by placing a Magnesium Ferrosilicon treatment alloy and molten metal filter into a specially designed container. The DPI container is easily placed into either vertically or horizontally parted molds, and then a base metal can be poured directly into it. The metal is treated and filtered as it passes through, and then proceeds directly into a runner or casting cavity. Various sizes of containers provide all of the necessary components required to deliver a range of weights of treated and filtered metal at accurate and consistent flow rates. The DPI containers provide energy savings over competing techniques, increased mold yields, very high Magnesium recovery, zero Magnesium fume, and no post inoculation is required. By treating the metal just prior to it entering a casting cavity many other benefits and advantages are also realized.

  14. 铸造合型用封箱条的研制%Research of Sealing Strip Used for Cast Mold

    Institute of Scientific and Technical Information of China (English)

    刘新杰; 张东梅; 张冰冰; 曹晨

    2012-01-01

    通过对粘结剂、耐火粉料、纤维物及生产工艺的筛选及研究,研制出一种铸造合型用封箱条.实际使用表明,所研制的产品适用于铸型合型时分型面的粘合密封,起到阻止铁液从合型面的缝隙中流出的作用,避免铸件飞边或是造成安全隐患.产品具有高粘性、高耐火度、良好可塑性及存放稳定性,且无污染,具有其他同类产品无可比拟的优点,能满足实际生产的要求.%Studying binder,fire-resistant powder,fibers and production technology, a kind of sealing strip for cast mold was developed. According to the factual application results, this product is suitable for sealing of dividing plane when casting mold combined, preventing outflow of molten iron from the gap of combining plane, avoiding the edge fin of castings. It has remarkable characteristics such as high viscosity, high refractoriness, good plasticity and stability, non-pollution. Compared with other sealing strip, the product has an unparalleled advantage and distinct characteristics, can meet the requirement of practical production.

  15. The Research for the Manufacturing Matrix Casting by the Process of Resin Sand%应用树脂砂工艺制造模具类铸件的工艺探讨

    Institute of Scientific and Technical Information of China (English)

    任书伟; 孟维东; 姚爱民

    2013-01-01

    T his paper dissertates the process monitoring of manufacturing the hot -galvanized mould by the molding process of resin sand from crude sand choice ,blend -in of additive ,brush casting mould ,stoving , and pouring system configuration and so on ,expatiates the control methods of each unit factors influencing quality in the non-processing side of casting molding process ,w hich provides the references for the manu-facturing of matrix casting .%通过应用树脂砂造型工艺生产热镀锌模具过程控制的论述,从原砂选取、添加剂配入、铸型刷涂及烘干、浇注系统设置等工序环节,阐述了非加工作业面铸件造型过程中影响质量各单元因素的控制方法,为模具类铸件生产提供借鉴。

  16. New sol–gel refractory coatings on chemically-bonded sand cores for foundry applications to improve casting surface quality

    DEFF Research Database (Denmark)

    Nwaogu, Ugochukwu Chibuzoh; Poulsen, T.; Stage, R.K.

    2011-01-01

    Foundry refractory coatings protect bonded sand cores and moulds from producing defective castings during the casting process by providing a barrier between the core and the liquid metal. In this study, new sol–gel refractory coating on phenolic urethane cold box (PUCB) core was examined....... The coating density, viscosity, moisture content and wet and dry weight of the coating were evaluated on cores that had been coated at three different dip-coating times. The coating coverage, surface appearance and depth of penetration into the cores were examined with a Stereomicroscope. Gray iron castings...... were produced with sol-gel coated and uncoated cores and the results were related to the coating properties. The casting results were also compared with castings made with cores coated with commercial alcohol-based and water-based foundry coatings. The analyses show that castings produced with sol...

  17. Influence of submerged entry nozzle clogging on the behavior of molten steel in continuously cast slab molds

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    The influence of submerged entry nozzle clogging on the behavior of molten steel in continuously cast slab molds was studied using commercial code CFX4.3. The results indicate that clogging at the top part of the nozzle port not only increases the velocity of molten steel, but also enhances the wall shear stress, F number and heat flux. This clogging has the greatest effect on the behavior of molten steel. However, clogging at the top 1/3 of the nozzle only increases the velocity of molten steel and has little influence. Clogging at the bottom of the nozzle almost has no influence.

  18. Heat transfer at the mold-metal interface in permanent mold casting of aluminum alloys project. Annual project status report for the period October 1, 1997 to September 30, 1998

    Energy Technology Data Exchange (ETDEWEB)

    Pehlke, R.D.; Hao, S.W.

    1998-09-30

    In the first year of this three-year project, substantial progress has been achieved. This project on heat transfer coefficients in metal permanent mold casting is being conducted in three areas. They are the theoretical study at the University of Michigan, the experimental investigations of squeeze casting and semi-solid casting at CMI-Tech Center, and the experimental investigation of low pressure permanent mold casting at Amcast Automotive. U-M did an initial geometry which was defined for ProCAST to solve, and then a geometry half the size was defined and solved using the same boundary conditions. A conceptual mold geometry was examined and is represented as an axisymmetric element.Furthermore, the influences of the localized heat transfer coefficients on the casting process were carefully studied. The HTC Evaluator has been proposed and initially developed by the U-M team. The Reference and the Database Modules of the HTC Evaluator have been developed, and extensively tested. A series of technical barriers have been cited and potential solutions have been surveyed. At the CMI-Tech Center, the Kistler direct cavity pressure measurement system has been purchased and tested. The calibrations has been evaluated. The probe is capable of sensing a light finger pressure. The experimental mold has been designed and modified. The experimental mold has been designed and modified. The first experiment is scheduled for October 14, 1998. The geometry of the experimental hockey-puck casting has been given to the U-M team for numerical analysis.

  19. Graphite nodules in fatigue-tested cast iron characterized in 2D and 3D

    DEFF Research Database (Denmark)

    Mukherjee, Krishnendu; Fæster, Søren; Hansen, Niels

    2017-01-01

    Thick-walled ductile iron casts have been studied by applying (i) cooling rate calculations by FVM, (ii) microstructural characterization by 2D SEM and 3D X-ray tomography techniques and (iii) fatigue testing of samples drawn from components cast in sand molds and metal molds. An analysis has shown...... correlations between cooling rate, structure and fatigue strengths demonstrating the benefit of 3D structural characterization to identify possible causes of premature fatigue failure of ductile cast iron....

  20. Microstructural characterisation related to hot tearing of Al-Cu sand mould castings

    Directory of Open Access Journals (Sweden)

    Mattia Merlin

    2010-10-01

    Full Text Available In this paper, the hot tearing behaviour in Al-(4.86%Cu sand mould castings was preliminary investigated by means of microstructural examination and image analysis. A dog-bone pattern was employed for the realisation of the castings and three Al-Cu alloys with different Cu and Si contents were used. The effects of the alloy composition and of different pouring temperatures on the hot tearing behaviour of the castings were evaluated. The quantity of the eutectic phase available during solidification is considered a very important parameter for the crack healing phenomenon, in fact the eutectic liquid flows into the hot tear areas and covers parts of the cracks. The hot tear paths and surfaces were observed by means of optical and scanning electron microscopes, which showed that the fracture surfaces were dominated by bridged grain boundaries and the presence of a liquid film, in particular at higher copper concentrations. Several samples were also drawn from the zones characterised by the maximum cross-section variation and the micrographs from the optical microscope were statistically analysed by means of commercially available image analysis software. The quantitative microstructural parameters of percentage, mean area and distribution of the eutectic phase were evaluated and correlated to the capacity of the eutectic liquid to heal open fractures caused by hot tearing for the examined alloys.

  1. State of the Art Treatment of Non-Ferrous Castings 3-in-1 Heat Treatment Systems Combine Foundry Processes

    Institute of Scientific and Technical Information of China (English)

    Volker R. Knobloch

    2004-01-01

    The interior of a high-pressure die-casting is of an unsatisfactory quality. Engine blocks made with this die casting process show lower specific engine performance. Pressure die-casting can hardly be heat treated for obvious reasons.PSM (Precision Sand Molds) process uses sand and organic binder to generate a mold and even allows the manufacturing of complex diesel engine blocks in aluminum alloys. Combined technologies are available for semi-permanent mold castings with cores and castings made in Precision Sand Molds with organic binders. Castings are placed into the special heat treatment furnace immediately after pouring without the operations in stand alone machinery. This patented Sand Lion(R) 3-in-1 technology processes hot castings and carries out three (3) foundry processes simultaneously in one (1) automated machine: 1) De-coring and sand removal; 2) Thermal sand reclamation; 3) Solution heat treatment of castings. The combination of several main casting processes is reflected in significant reductions of energy consumption, of production costs, and improving the quality of the castings. Audits in foundries using the 3-in-1 process showed an average reduction in production costs of more than 30%.

  2. Rapid tooling for functional prototyping of metal mold processes: Literature review on cast tooling

    Energy Technology Data Exchange (ETDEWEB)

    Baldwin, M.D. [Sandia National Labs., Albuquerque, NM (United States); Hochanadel, P.W. [Colorado School of Mines, Golden, CO (United States). Dept. of Metallurgical and Materials Engineering

    1995-11-01

    This report is a literature review on cast tooling with the general focus on AISI H13 tool steel. The review includes processing of both wrought and cast H13 steel along with the accompanying microstructures. Also included is the incorporation of new rapid prototyping technologies, such as Stereolithography and Selective Laser Sintering, into the investment casting of tool steel. The limiting property of using wrought or cast tool steel for die casting is heat checking. Heat checking is addressed in terms of testing procedures, theories regarding the mechanism, and microstructural aspects related to the cracking.

  3. Effect of Al2O3 on the Crystallization of Mold Flux for Casting High Al Steel

    Science.gov (United States)

    Zhou, Lejun; Wang, Wanlin; Zhou, Kechao

    2015-06-01

    In order to lower the weight of automotive bodies for better fuel-efficiency and occupant safety, the demand for high Al-containing advanced high strength steel, such as transformation-induced plasticity and twinning-induced plasticity steel, is increasing. However, high aluminum content in steels would tend to significantly affect the properties of mold flux during the continuous casting process. In this paper, a kinetic study of the effect of Al2O3 content on the crystallization behavior of mold flux was conducted by using the single hot thermocouple technique and the Johnson-Mehl-Avrami model combined with the Arrhenius Equation. The results suggested that Al2O3 behaves as an amphoteric oxide in the crystallization process of mold flux. The precipitated phases of mold flux change from cuspidine (Ca4Si2O7F2) into nepheline (NaAlSiO4) and CaF2, and then into gehlenite (Ca2Al2SiO7) with the increase of Al2O3 content. The kinetics study of the isothermal crystallization process indicated that the effective crystallization rate ( k) and Avrami exponent ( n) also first increased and then decreased with the increase of Al2O3 content. The values for the crystallization activation energy of mold flux with different Al2O3 contents were E R0.8A7 = 150.76 ± 17.89 kJ/mol, E R0.8A20 = 136.43 ± 6.48 kJ/mol, E R0.8A30 = 108.63 ± 12.25 kJ/mol and E R0.8A40 = 116.15 ± 8.17 kJ/mol.

  4. [Flow of molten metal in denture base in horizontal centrifugal casting procedure. (Part 2) Flow, inflow volume and casting time of molten metal passing through several sprues into model denture plate mold (author's transl)].

    Science.gov (United States)

    Okamura, H

    1978-10-01

    Two types of spruing methods were used in the casting of the denture type model pattern (thickness, 0.43 mm). Flow of molten metal in the mold was filmed by the improved system of Part 1. When three sprues were attached to the pattern vertically, molten metal passed through each sprue gate flowed being affected by the direction of gravity and revolution of casting machine, and gathered at the lower part of the mold. Next molten metal filled the mold from the lower part to the upper part. In this spruing type, molten metal turned its direction of flow several times. At the middle stage of casting, the inflow volume per unit time (inflow rate), v (mm3/10-2)s)was evaluated as v = 12.36 + 5.16A-0.16 A2 (A: total cross-sectional areas of sprues). The inflow rate increased with increase of the area of the sprues, but it saturated. When the main sprue and the subsprues were attached at the posterior border, the molten metal filled the mold from the lower part to the upper part quietly. In this spruing type, the casting mold was set facing its sprue gates downwards. The inflow rate at the middle stage of casting was evaluated as v = 21.05 + 1.79 C (C: the cross-sectional area of the main sprue). The inflow rate increased linearly with increase of the area of the main sprue.

  5. AN INTRODUCTION TO RAPID CASTING: DEVELOPMENT AND INVESTIGATION OF PROCESS CHAINS FOR SAND CASTING OF FUNCTIONAL PROTOTYPES

    Directory of Open Access Journals (Sweden)

    D. Dimitrov

    2012-01-01

    Full Text Available

    ENGLISH ABSTRACT: This paper discusses the results obtained from studies on different Rapid Tooling process chains in order to improve the design and manufacture of foundry equipment that is used for sand casting of prototypes in final material. These prototypes are intended for functional and pre-production tests of vehicles. The Three Dimensional Printing process is used as core technology. Subsequently, while considering aspects such as time, cost, quality (accuracy and surface roughness, and tool life, a framework is presented for the evaluation and selection of the most suitable process chain in accordance with specific requirements. This research builds on an in-depth characterisation of the accuracy and repeatability of a 3D printing process.

    AFRIKAANSE OPSOMMING: Hierdie artikel bespreek die resultate wat verkry is tydens studies op verskillende Snel-Gereedskapvervaardigingproseskettings wat ondersoek is teneinde die ontwerp en vervaardiging van sandgietgereedskap, om prototipes in finale materiaal te vervaardig, te verbeter. Die prototipes is bestem vir gebruik in funksionele- en voorproduksietoetse van voertuie. Die sogenaamde Driedimensionele Drukproses (3DP is as kerntegnologie aangewend. Gevolglik, na oorweging van aspekte soos tyd, koste, kwaliteit (akkuraatheid en oppervlakafwerking, en gereedskapleeftyd, is ’n raamwerk ontwikkel vir die evaluering en seleksie van die mees geskikte prosesketting met inagname van spesifieke vereistes. Hierdie navorsing bou op ’n diepgaande karakterisering van die akkuraatheids- en herhaalbaarheidsvermoë van ’n 3D drukproses.

  6. Study of the effect of solidification on graphite flakes microstructure and mechanical properties of an ASTM a-48 gray cast iron using steel molds

    OpenAIRE

    Ganwarich Pluphrach

    2010-01-01

    The analysis of heat conduction is a widely used technique for control of metallurgical process and solidified eutecticalloy investigation. The objectives of this research are studies about the effect of solidification on graphite flakes microstructureand mechanical properties of an ASTM A-48 gray cast iron using SKD 11 tool steel, S45C medium carbon steel andSS400 hot-rolled steel molds. These three steel molds are important for heat conduction and different from other works. Thisanalysis in...

  7. THREE-DIMENSIONAL CHARACTERISTICS AND HOMOGENIZATION OF ELECTROMAGNETIC FIELD IN SOFT-CONTACT CONTINUOUS CASTING MOLD

    Institute of Scientific and Technical Information of China (English)

    A.Y. Deng; G.L. Jia; J.C. He

    2001-01-01

    The three-dimensional electromagnetic characteristics and non-uniform distribution of electromagnetic field in soft-contact mold have been analyzed by numerical simulation. The results show that the maximum electromagnetic flux density is found in front of slit; the electromagnetic flux density becomes large as coil current and slit number increase. In a certain frequency range, the electromagnetic flux density increases with increasing frequency; and the frequency range is different with changing of azimuthal position along inner wall of mold. The uniformity of electromagnetic field is effected mainly by frequency and mold structure parameters. Increasing slit number and adjusting slit arrangement position can improve the electromagnetic flux density and the uniformity of electromagnetic field. For a soft-contact mold with 16 slits, when frequency is 20kHz, the optimal slit arrangement parameter is a: b = 1: 2.c=0.

  8. 铝合金低压铸造试棒模具的研究%A Study on the Mold of Low-Pressure Casting of Aluminum Alloy Test Bar

    Institute of Scientific and Technical Information of China (English)

    程俊明; 陆启为; 李立善; 李赫

    2014-01-01

    遵循低压铸造原理,按照GB1173-1995《铸造铝合金》国家标准中试棒尺寸设计制造砂型、金属模低压铸造试棒模具,在采用低压铸造工艺方法生产铸件的同时,用低压铸造试棒模浇注试棒,确保试棒等效证明低压铸造铝合金铸件性能。%Following the principle of low pressure casting and the test bar’s size of the national standard of GB1173-1995“Cast Aluminum Alloy”to design and manufacture the sand and permanent test bar mold, which is using the technology of low pressure to produce castings and test bar, tomake sure the test bar is the valid proof of properties of Al alloy by low pressure casting.

  9. Copper Alloy Mold process for Production Irons Casting in Japan%日本铜合金金属型生产铸铁件状况

    Institute of Scientific and Technical Information of China (English)

    刘子安; 齐笑冰; 唐骥; 申泽骥

    2001-01-01

    The technique of permanent mold casting for producing iron castings has been applied in advanced countries, the copper alloy mold processes for producing the iron castings are rapidly developing in Japan. The characteristics of copper alloy Mold process and its effect on the properties of ductile iron and gray iron castings are presented in this paper. The situation of production of iron castings by using copper alloy mold processes in Japan is also presented.%铸铁件金属型铸造技术已在工业发达国家得到应用,铜合金金属型生产铸铁件在日本得到很快发展。本文介绍了铜合金金属型的特点及其对所生产的球墨铸铁件、灰铸铁件性能的影响;比较详细地介绍了日本铜合金金属型生产铸铁件的状况。

  10. Microstructure, microstructural stability and mechanical properties of sand-cast Mg–4Al–4RE alloy

    Energy Technology Data Exchange (ETDEWEB)

    Rzychoń, Tomasz, E-mail: tomasz.rzychon@polsl.pl [Silesian University of Technology, Faculty of Materials Science and Metallurgy, Krasińskiego 8, 40 019 Katowice (Poland); Kiełbus, Andrzej [Silesian University of Technology, Faculty of Materials Science and Metallurgy, Krasińskiego 8, 40 019 Katowice (Poland); Lityńska-Dobrzyńska, Lidia [Polish Academy of Sciences, Institute of Metallurgy and Materials Science, 25 Reymonta Street, 30-059 Kraków (Poland)

    2013-09-15

    This paper presents a methodology for assessing the phase composition and the results of structural stability tests of the sand-cast Mg–4Al–4RE alloy after annealing it at 175 and 250 °C for 3000 h. The microstructure was analyzed with optical, scanning electron, and transmission electron microscopy. The phase composition was determined with X-ray diffraction. The structure of the Mg–4Al–4RE (AE44) alloy is composed of large grains of α-Mg solid solution, needle-shaped precipitates of the Al{sub 11}RE{sub 3}phase, polyhedral precipitates of the Al{sub 2}RE phase and Al{sub 10}RE{sub 2}Mn{sub 7} phase. After annealing at 175 °C for 3000 h, no changes in the alloy structure are observed, whereas after annealing at 250 °C the precipitates of the Al{sub 11}RE{sub 3} phase are found to be in the initial stages of spheroidization. The coarse-grained structure and unfavorable morphology of the intermetallic phases in the sand-cast AE44 alloy, which are caused by low solidification rates, result in low creep resistance up to 200 °C and low mechanical properties at ambient temperature and at 175 °C. - Highlights: • Complement the knowledge about the microstructure of Mg-Al-RE alloys. • Clarify the mechanism of formation of Mg17Al12 phase above 180 °C. • Applying a chemical dissolution of the α-Mg in order to phase identification. • Applying a statistical test to assess the spheroidization of precipitates. • Quantitative description of microstructure of Mg-Al-RE alloys.

  11. Mold-casted non-degradable, islet macro-encapsulating hydrogel devices for restoration of normoglycemia in diabetic mice.

    Science.gov (United States)

    Rios, Peter Daniel; Zhang, Xiaomin; Luo, Xunrong; Shea, Lonnie D

    2016-11-01

    Islet transplantation is a potential cure for diabetic patients, however this procedure is not widely adopted due to the high rate of graft failure. Islet encapsulation within hydrogels is employed to provide a three-dimensional microenvironment conducive to survival of transplanted islets to extend graft function. Herein, we present a novel macroencapsulation device, composed of PEG hydrogel, that combines encapsulation with lithography techniques to generate polydimethylsiloxane (PDMS) molds. PEG solutions are mixed with islets, which are then cast into PDMS molds for subsequent crosslinking. The molds can also be employed to provide complex architectures, such as microchannels that may allow vascular ingrowth through pre-defined regions of the hydrogel. PDMS molds allowed for the formation of stable gels with encapsulation of islets, and in complex architectures. Hydrogel devices with a thickness of 600 μm containing 500 islets promoted normoglycemia within 12 days following transplantation into the epididymal fat pad, which was sustained over the two-month period of study until removal of the device. The inclusion of microchannels, which had a similar minimum distance between islets and the hydrogel surface, similarly promoted normoglycemia. A glucose challenge test indicated hydrogel devices achieved normoglycemia 90 min post-dextrose injections, similar to control mice with native pancreata. Histochemical staining revealed that transplanted islets, identified as insulin positive, were viable and isolated from host tissue at 8 weeks post-transplantation, yet devices with microchannels had tissue and vascular ingrowth within the channels. Taken together, these results demonstrate a system for creating non-degradable hydrogels with complex geometries for encapsulating islets capable of restoring normoglycemia, which may expand islet transplantation as a treatment option for diabetic patients. Biotechnol. Bioeng. 2016;113: 2485-2495. © 2016 Wiley

  12. Die Casting Mold Design of the Thin-walled Aluminum Case by Computational Solidification Simulation

    Institute of Scientific and Technical Information of China (English)

    Young-Chan Kim; Chang-Seog Kang; Jae-Ik Cho; Chang-Yeol Jeong; Se-Weon Choi; Sung-Kil Hong

    2008-01-01

    Recently, demand for the lightweight alloy in electric/electronic housings has been greatly increased. However, among the lightweight alloys, aluminum alloy thin-walled die casting is problematic because it is quite difficult to achieve sufficient fluidity and feedability to fill the thin cavity as the wall thickness becomes less than 1 mm. Therefore, in this study, thin-walled die casting of aluminum (Al-Si-Cu alloy: ALDC 12) in size of notebook computer housing and thickness of 0.8 mm was investigated by solidification simulation (MAGMA soft) and actual casting experiment (Buhler Evolution B 53D). Three different types of gating design, finger, tangential and split type with 6 vertical runners, were simulated and the results showed that sound thin-walled die casting was possible with tangential and split type gating design because those gates allowed aluminum melt to flow into the thin cavity uniformly and split type gating system was preferable gating design comparing to tangential type gating system at the point of view of soundness of casting and distortion generated after solidification. Also, the solidification simulation agreed well with the actual die-casting and the casting showed no casting defects and distortion.

  13. Effect of modifying process on mechanical properties of EN AC-43300 silumin cast into sand moulds

    Directory of Open Access Journals (Sweden)

    J. Pezda

    2009-07-01

    Full Text Available Significance of alloy modification in course of casting process is the most explicitly visible on example of Al-Si alloys. Broad application of these alloys in foundry industry has become possible after invention of a method which changes solidification form of Al-Si eutectic mixture. Such primarily thick, acicular shape of silicon crystals becomes changed into fine and compact structure due to introduction of a small quantity of modifier to liquid alloy. The paper presents an attempt of assessment of melting and modification with strontium effects on mechanical properties of EN AC-43300 alloy cast into sand moulds. Obtained results concern selection of optimal quantity of strontium additive in aspect of obtained mechanical properties (Rm, A5, KCV, HB. Effect of strontium additive on change of mechanical properties of the investigated alloy was presented in graphical form. Further investigations shall be connected with determination of an effect of strontium additive on mechanical properties of the alloy after solution heat treatment and ageing treatment.

  14. Spray-formed tooling for injection molding and die casting applications

    Energy Technology Data Exchange (ETDEWEB)

    K. M. McHugh; B. R. Wickham

    2000-06-26

    Rapid Solidification Process (RSP) Tooling{trademark} is a spray forming technology tailored for producing molds and dies. The approach combines rapid solidification processing and net-shape materials processing in a single step. The ability of the sprayed deposit to capture features of the tool pattern eliminates costly machining operations in conventional mold making and reduces turnaround time. Moreover, rapid solidification suppresses carbide precipitation and growth, allowing many ferritic tool steels to be artificially aged, an alternative to conventional heat treatment that offers unique benefits. Material properties and microstructure transformation during heat treatment of spray-formed H13 tool steel are described.

  15. Spray-formed Tooling for Injection Molding and Die Casting Applications

    Energy Technology Data Exchange (ETDEWEB)

    Mc Hugh, Kevin Matthew

    2000-06-01

    Rapid Solidification Process (RSP) ToolingTM is a spray forming technology tailored for producing molds and dies. The approach combines rapid solidification processing and net-shape materials processing in a single step. The ability of the sprayed deposit to capture features of the tool pattern eliminates costly machining operations in conventional mold making and reduces turnaround time. Moreover, rapid solidification suppresses carbide precipitation and growth, allowing many ferritic tool steels to be artificially aged, an alternative to conventional heat treatment that offers unique benefits. Material properties and microstructure transformation during heat treatment of spray-formed H13 tool steel are described.

  16. Study on the Fluid Flow in a Semi-Open-Stream-Poured Beam Blank Continuous Casting Mold with Submerged Refractory Funnels by Multiphase Modeling

    Directory of Open Access Journals (Sweden)

    Leilei Zhang

    2016-05-01

    Full Text Available The flow transport of a 420 × 320 × 90 mm beam blank continuous casting mold that used open-stream pouring combined with submerged refractory funnels was studied. By considering the dynamic similarity, geometric similarity, and air entrapment quantity similarity, a full-size water model was established. Meanwhile, the 3D mathematical models that included three phases were applied. Through the combination of the water model and the mathematical model, the distribution and morphology of the phases in the mold were investigated. The results indicate that bubbles existed in the molten steel due to entrapment and the flow pattern was different from that of the full protection-poured mold. Furthermore, the effects of funnel immersion depth and funnel diameter on the bubbles’ impact depth, funnel’s inside wall shear stress, and overall area of the air/steel interface were discussed. The results provide useful information for the industrial continuous casting process.

  17. Solidification simulation and process optimization of carrier with iron mould coated sand casting%铁型覆砂铸造行星架的凝固模拟及工艺优化

    Institute of Scientific and Technical Information of China (English)

    马益诚; 黄列群; 潘东杰; 沈永华; 应浩

    2013-01-01

    针对普通砂型铸造生产行星架铸件时,铸造缺陷多、产品合格率低的问题,采用铁型覆砂铸造方法生产行星架铸件.对铸件的热节、缩孔和缩松进行了凝固模拟分析,对铸造工艺进行了优化;应用凝固模拟技术来指导铸造工艺设计,缩短了工艺设计周期,降低了模具返修率.生产应用结果表明,应用铁型覆砂铸造工艺生产的行星架铸件表面光洁、尺寸准确、内部组织致密,没有缩孔、缩松缺陷;可以实现无冒口铸造,降低了生产成本,具有显著的经济效益和竞争优势.%Aiming at the problems of much casting defects,low rate of qualified products,existed in casting the plant carrier by ordinary sand,iron-coated sand casting method was used for the production of carrier castings.The solidification simulation analysis with hot section,shrinkage carity,shrinkage porosity was carried,optimization of the casting process was realized.The solidification simulation technology was applied to guide the casting process design,and the design cycle process was shortened,the mold repair rate was reduced.Production practice results show that,by the iron-type coated sand casting method,the casting surface of planet carrier is smooth,its size is accurate,internal organization is dense,it doesn't have shrinkage carty,shrinkage porosity defects.It can realize the non-riser casting,reduce production costs,and it has significant economic benefits and competitive advantage.

  18. An improved mathematical model to simulate mold filling process in high pressure die casting using CLSVOF method and CSF model

    Directory of Open Access Journals (Sweden)

    Cheng Bi

    2015-05-01

    Full Text Available A 3D mathematical model was proposed to simulate the mold filling process in high-pressure die casting (HPDC to improve accuracy considering the surface tension. Piecewise liner interface calculation (PLIC and volume of fluid (VOF methods were used to construct the pattern of the liquid interface. A coupled level-set and VOF method (CLSVOF was proposed to capture the interface pattern and obtain its normal vector. A continuum surface force (CSF model was used to consider the surface tension. Two water analogy experiments were carried out using the proposed model. Simulation and experimental results were analyzed and compared; and the effects of surface tension were also discussed. The simulation results agreed well with the experiments and the simulation accuracy was an improvement on interface geometries, liquid flows, and gas entrapments.

  19. Comparison of two methods to study the gas-liquid flows in a continuous slab casting mold

    Science.gov (United States)

    Luo, Zhiguo; Liu, Chonglin; Zhang, Tao; Sun, Junjie; Zou, Zongshu; Shen, Yansong

    2013-06-01

    An Eulerian-Lagrangian computational model for simulations of gas-liquid flows in a continuous casting mold is developed. The flow of the fluid phase is solved in an Eulerian frame of reference together with the motion of every individually injected gas bubble, solved in its own Lagrangian frame of reference. It is assumed that the gas bubbles remain spherical and their shape variations are neglected. In order to consider the bidirectional interactions between the bubbles and the melt flow two different methods (the one-way coupling and the two-way coupling) are studied and compared. The simulations show that the two-way coupling is essential to get realistic results.

  20. Fillability of Thin-Wall Steel Castings

    Energy Technology Data Exchange (ETDEWEB)

    Robert C. Voigt; Joseph Bertoletti; Andrew Kaley; Sandi Ricotta; Travis Sunday

    2002-07-30

    The use of steel components is being challenged by lighter nonferrous or cast iron components. The development of techniques for enhancing and ensuring the filability of thin-wall mold cavities is most critical for thinner wall cast steel production. The purpose of this research was to develop thin-wall casting techniques that can be used to reliably produce thin-wall castings from traditional gravity poured sand casting processes. The focus of the research was to enhance the filling behavior to prevent misrunds. Experiments were conducted to investigate the influence of various foundry variables on the filling of thin section steel castings. These variables include casting design, heat transfer, gating design, and metal fluidity. Wall thickness and pouring temperature have the greatest effect on casting fill. As wall thickness increases the volume to surface area of the casting increases, which increases the solidification time, allowing the metal to flow further in thicker sect ions. Pouring time is another significant variable affecting casting fill. Increases or decreases of 20% in the pouring time were found to have a significant effect on the filling of thin-wall production castings. Gating variables, including venting, pouring head height, and mold tilting also significantly affected thin-wall casting fill. Filters offer less turbulent, steadier flow, which is appropriate for thicker castings, but they do not enhance thin-wall casting fill.

  1. Modeling of Quasi-Four-Phase Flow in Continuous Casting Mold Using Hybrid Eulerian and Lagrangian Approach

    Science.gov (United States)

    Liu, Zhongqiu; Sun, Zhenbang; Li, Baokuan

    2016-12-01

    Lagrangian tracking model combined with Eulerian multi-phase model is employed to predict the time-dependent argon-steel-slag-air quasi-four-phase flow inside a slab continuous casting mold. The Eulerian approach is used for the description of three phases (molten steel, liquid slag, and air at the top of liquid slag layer). The dispersed argon bubble injected from the SEN is treated in the Lagrangian way. The complex interfacial momentum transfers between various phases are considered. Validation is supported by the measurement data of cold model experiments and industrial practice. Close agreements were achieved for the gas volume fraction, liquid flow pattern, level fluctuation, and exposed slag eye phenomena. Many known phenomena and new predictions were successfully reproduced using this model. The vortex slag entrapment phenomenon at the slag-steel interface was obtained using this model, some small slag drops are sucked deep into the liquid pool of molten steel. Varying gas flow rates have a large effect on the steel flow pattern in the upper recirculation zone. Three typical flow patterns inside the mold with different argon gas flow rates have been obtained: double roll, three roll, and single roll. Effects of argon gas flow rate, casting speed, and slag layer thickness on the exposed slag eye and level fluctuation at the slag-steel interface were studied. A dimensionless value of H ave/h was proposed to describe the time-averaged level fluctuation of slag-steel interface. The exposed slag eye near the SEN would be formed when the value of H ave/h is larger than 0.4.

  2. Application of Hydrogen Technologies for Increasing the Operating Characteristic of Stem of Hip Implant Made of Titanium Alloy, Procured By Mold Castings

    Directory of Open Access Journals (Sweden)

    Skvortsova SV

    2016-11-01

    Full Text Available This work deals with the possibility of using the thermo hydrogen technology in the process of manufacturing the stem of hip implant made of titanium alloy, procured by mold castings. The influence of modes of thermo hydrogen processing on the transformation of the cast structure and mechanical properties of mold castings is analyzed in this work. It is shown that the use of thermo hydrogen processing ensures good physical and chemical contact and lets substantially increase the adhesion strength of Osseo integrating porous coating made of unalloyed titanium with titanium alloy VT6 (Ti-6-4 surface of the stem of hip implant. It identifies the elements of the processing technology of the implant elements, allowing to obtain products correspond to the international standard is identified in the work.

  3. STUDY OF MICROSTRUCTURE, HARDNESS AND WEAR PROPERTIES OF SAND CAST Cu-4Ni-6Sn BRONZE ALLOY

    Directory of Open Access Journals (Sweden)

    S. ILANGOVAN

    2015-04-01

    Full Text Available An alloy of Cu-4Ni-6Sn was cast in the sand moulds. The cast rods were homogenized, solution heat treated and aged for different periods of time. The specimens were prepared from the rods to study the microstructure, microhardness and wear properties. It was found that the aging process increases the hardness of the alloy significantly. It was due to the change in the microstructure of the alloy. Further, spinodal decomposition and the ordering reaction take place during the aging treatment. Specific wear rate was found to decrease with the hardness of the alloy. Coefficient of friction remains constant and is not affected by the aging process.

  4. Meniscus Behavior in Electromagnetic Soft-Contact Continuous Casting Round Billet Mold

    Institute of Scientific and Technical Information of China (English)

    DENG An-yuan; WANG En-gang; HE Ji-cheng

    2006-01-01

    Using molten Pb-Sn-Bi alloy, the meniscus shape under high frequency magnetic field of φ100 mm round billet caster was investigated. The effect of some parameters on meniscus shape was studied. The results show that for a mold with 12 segments, the meniscus shape is relatively stable. With increasing power input, the meniscus height increases with intensification of fluctuation. For the given caster, the reasonable power input is about 70 kW. The coil should be near to the top of mold and/or the initial meniscus should be near to the center of the coil. The lower the frequency, the higher is the meniscus height. With increasing frequency, the free surface is more flattened and meniscus becomes more stable. In practice, the power input should be increased simultaneously with frequency. The optimal frequency is about 20 kHz.

  5. 立式离心铸造顶头模具设计及充型凝固模拟%Design of Vertical Centrifugal Casting Mold of Piercing Plug and It's Numerical Simulation of Mold-filling and Solidification Processes

    Institute of Scientific and Technical Information of China (English)

    章小峰; 凌兵; 黄贞益; 王萍

    2012-01-01

    Based on the shape of φ136 mm piercing plug, a vertical centrifugal casting mold of plug was designed. The process of mold filling and process of solidification were simulated by numerical simulation.The centrifugal casting process is centrifugal revolution 300 r/min ,casting temperature 1530℃ .casting velocity 0.25m/s. The simulation results show that the whole process of mold filling is stable and fast. The whole cavity is finished filling within 10.7 s.The temperature field of solidification accords with the sequence solidification principles. The casting is solidified within 1237 s. The solid fraction also proves that the solidification process of the casting is reasonable.%根据φ136mm的穿孔顶头外形,设计一种立式离心铸造顶头的模具.通过数值模拟软件模拟其充型过程及凝固过程,离心铸造工艺参数为离心转数300 r/min、浇注温度1530℃和充型速度0.25 m/s.模拟结果表明:铸件的充型过程基本平稳、快速,大概10.7s充型完毕;凝固过程中铸件温度场分布符合顺序凝固的要求,需1237s完全凝固.另外,固相分数也证实了铸件凝固过程是合理的.

  6. An Allosteric Receptor by Simultaneous "Casting" and "Molding" in a Dynamic Combinatorial Library

    NARCIS (Netherlands)

    Li, Jianwei; Nowak, Piotr; Otto, Sijbren

    2015-01-01

    Allosteric synthetic receptors are difficult to access by design. Herein we report a dynamic combinatorial strategy towards such systems based on the simultaneous use of two different templates. Through a process of simultaneous casting (the assembly of a library member around a template) and moldin

  7. Characterisation of Q and T steel pole shoes manufactured by sand casting; Charakterisierung mit Sandguss hergestellter Polschuhe aus verguetetem Stahl

    Energy Technology Data Exchange (ETDEWEB)

    Asensio-Lozano, J.; Alvarez-Antolin, J.F. [Oviedo Univ. (Spain). Dept. of Materials Science and Metallurgical Engineering; Panta-Mesones, J.T. [National Univ. of Trujillo, La Libertad (Peru). Faculty of Mines, Metallurgy and Materials; Vander-Voort, G.F. [Buehler Ltd., Lake Bluff, IL (United States)

    2008-04-15

    This paper presents a study of the microstructural and mechanical characterization of the GS 35 CrMoV 10 4 alloy employed in the manufacture of sand-cast pole shoes for 4-pole synchronous electric power generators working at a frequency of 60 Hz. In addition, the most appropriate treatment for ensuring compliance with the technical specifications defined in DIN Standard No. 1.7755 has been designed. (orig.)

  8. The use of fluidized sand bed as an innovative technique for heat treating aluminum based castings

    Science.gov (United States)

    Ragab, Khaled

    The current study was carried out to arrive at a better understanding of the influences of the fluidized sand bed heat treatment on the tensile properties and quality indices of A356.2 and B319.2 casting alloys. For the purposes of validating the use of fluidized sand bed furnaces in industrial applications for heat treatment of 356 and 319 castings, the tensile properties and the quality indices of these alloys were correlated with the most common metallurgical parameters, such as strontium modification, grain refining, solutionizing time, aging parameters and quenching media. Traditional heat treatment technology, employing circulating air convection furnaces, was used to establish a relevant comparison with fluidized sand beds for the heat treatment of the alloys investigated, employing T6 continuous aging cycles or multi-temperature aging cycles. Quality charts were used to predict and/or select the best heat treatment conditions and techniques to be applied in industry in order to obtain the optimum properties required for particular engineering applications. The results revealed that the strength values achieved in T6-tempered 319 and 356 alloys are more responsive to fluidized bed (FB) heat treatment than to conventional convection furnace (CF) treatment for solution treatment times of up to 8 hours. Beyond this solution time, no noticeable difference in properties is observed with the two techniques. A significant increase in strength is observed in the FB heat-treated samples after short aging times of 0.5 and 1 hour, the trend continuing up to 5 hours. The 319 alloys show signs of overaging after 8 hours of aging using a conventional furnace, whereas with a fluidized bed, overaging occurs after 12 hours. Analysis of the tensile properties in terms of quality index charts showed that both modified and non-modified 319 and 356 alloys display the same, or better, quality, after only a 2-hr treatment in an FB compared to 10 hours when using a CF. The quality

  9. [Flow of molten metal in denture base in horizontal centrifugal casting procedure. (Part 1) Flow, inflow volume and casting time of molten metal passing through single aprue into disk type mold (author's transl)].

    Science.gov (United States)

    Okamura, H

    1976-01-01

    A pyrex glass plate was fitted at the bottom of casting ring, and disk type wax pattern (thickness. 0.43 mm) was put on the plate. Five types of sprueing were applied. Pure tin was casted using holizontal centrifugal casting machine. Flow of molten metal was filmed by the motor drive camera with the method of stroboscope. The results were summarized as follows. 1) When the sprue was attached at the center of the disk type mold vertically, moten metal flowed like a concentric circle at the early stage of casting. It was affected gradually by the direction of gravity and revolution, and it filled the mold from the lower part to the upper part. 2) When the sprue gate was attached to the side edge of the mold, and the sprue gate was placed to the forward and backward direction against the revolution direction, molten metal filled from lower part to the upper part. 3) When the sprue gate was placed against upper edge, molten metal flow was affected by the direction of gravity and revolution. When the sprue gate was placed against lower edge, molten metal filled quietry from the lower part to the upper part. 4) Inflow volume per unit time (inflow rate) was small at the early stage of casting. Inflow rate increased and became constant at the next stage. At the latter stage it became small again. 5) Inflow rate increased with the increase of area of sprue. 6) The time which was necessary to fill the volume of 1 cm (about 80% of the mold volume) became short with the increase of area of sprue. It was also influenced by the type of sprueing.

  10. CAE模拟分析在水龙头手柄压铸模设计中的应用%Application of CAE Simulation Analysis to the Design of Die Casting Mold for Faucet Handle

    Institute of Scientific and Technical Information of China (English)

    陈怀民

    2012-01-01

    针对传统压铸模具浇注系统设计采用试错法存在的缺陷,本文通过水龙头手柄压铸模设计,提出利用ProCAST铸造模拟分析功能,先确定内浇道合理位置,再进行浇注系统详细设计及模具设计,避免浇注系统对铸件成形过程不利影响,提高铸件质量,缩短模具制造周期.可为类似铸件浇注系统及压铸模具设计提供参考.%Aimed at the existing defects of traditional die casting mold gating system design by trial-and-error method, first the reasonable location of the ingate was determined and then the gating system and mold were designed in detail through designing the faucet handle die-casting mold, utilizing ProCAST casting simulation analysis capabilities, which avoid the adverse effects of the gating system for casting formation process, improve casting quality, and reduce mold manufacturing period. It can provide a reference for similar casting gating system and die casting mold design.

  11. Process Parameters of Manufacturing Single Crystal Copper by Heated Mold Continuous Casting

    Institute of Scientific and Technical Information of China (English)

    XU Guangji; DING Zongfu; DING Yutian; KOU Shengzhong; LIU Guanglin; LI Wei

    2005-01-01

    The effect of process parameters on the surface quality of single crystal copper ingot was studied through experiment with a self-designed horizontal heated mould continuous casting apparatus, and the mechanism was analyzed. The results show that the process parameters affect the surface quality of pure copper ingot by affecting the position of the liquid-solid interface in the mould. The position of the liquid-solid interface in the mould must be controlled carefully in an appropriate range determined through experiments in order to gain a single crystal copper ingot with a high surface quality.

  12. Evolution of the gas atmosphere during filing the sand moulds with iron alloys

    Directory of Open Access Journals (Sweden)

    J. Mocek

    2009-10-01

    Full Text Available Evolution of atmosphere of the mould cavity when pouring the cast iron has been analyzed. It was find that in dry sand mold the cavity is filled by air throughout the casting time. In green sand the air is removed by the water vapor the hydrogen or carbon oxides formed in contact with the liquid metal. The theoretical results have been confirmed experimentally.

  13. Studi Eksperimen Pengaruh Jenis Saluran pada Aluminium Sand Casting terhadap Porositas Produk Toroidal Piston

    Directory of Open Access Journals (Sweden)

    Rizal Mahendra Pratama

    2012-09-01

    Full Text Available Komponen mesin yang menggunakan aluminium sebagai bahan utama produksi semakin banyak digunakan. Hal ini dikarenakan alumunium lebih ringan namun memiliki kekuatan yang relatif tinggi daripada jenis material lain. Proses pengecoran alumunium dengan cetakan pasir harus dilakukan dengan teliti untuk memperoleh produk cor yang berkualitas baik. Namun, beberapa kali dijumpai adanya cacat pada hasil coran, salah satunya adalah porositas. Salah satu cara untuk mencegah porositas adalah dengan penggunaan sistem saluran yang tepat. Oleh karena itu, diperlukan adanya suatu penelitian untuk mencari pengaruh variasi sistem saluran yang tepat pada aluminium sand casting terhadap porositas hasil coran. Dalam penelitian ini dilakukan proses pengecoran pasir untuk membuat toroidal piston. Pola berbentuk toroidal piston, sistem saluran, rangka cetak dan rangka inti terbuat dari kayu dilakukan pada langkah pertama. Langkah kedua menyiapkan pasir cetak dengan komposisi pasir silika (bekas daur ulang 50% + pasir baru 50%, bentonit 7.5% (aktif, dan air 3.5%. Langkah ketiga adalah perakitan cetakan dengan menyusun pola dan sistem saluran ke dalam rangka cetak yang ditimbun dengan pasir cetak hingga dihasilkan rongga cetak. Sistem saluran yang digunakan akan divariasikan menjadi Top Gating System, Parting Line Gating System, dan Bottom Gating System. Setelah cetakan selasai dibuat, langkah keempat adalah proses pengeringan cetakan selama dua minggu. Langkah kelima adalah proses peleburan logam, penuangan logam, kemudian proses pembekuan dilakukan pada temperatur ruangan selama 24 jam, dilanjutkan pembongkaran cetakan. Langkah keenam adalah proses inspeksi terhadap porositas secara kualitatif dan kuantitatif. Pengukuran porositas kuantitatif dengan cara menghitung perbandingan volume porositas terhadap volume total spesimen, dan pengukuran porositas kualitatif dengan mengambil foto porositas di bagian surface dan sub-surface. Dari penelitian ini didapatkan bahwa hasil

  14. The Development of CaO-SiO2-B2O3-based Fluorine-Free Mold Flux for a Continuous Casting Process

    Science.gov (United States)

    Zhou, Lejun; Wang, Wanlin

    2016-09-01

    Designing and developing high-performance fluorine-free (F-free) mold flux has become a hot topic in steel continuous casting processes, with concerns of environment protection and energy saving. In conventional commercial mold flux, fluorine plays important roles on the properties as it works as a fluxing agent; however, it tends to cause serious environmental and health problems. In this paper, a new F-free mold flux based on the CaO-SiO2-B2O3 slag system has been introduced through summarizing previous works. The melting temperature range of F-free mold flux decreases with the addition of Na2O/Li2O and B2O3; the viscosity and heat flux decrease with the increase of basicity and Na2O/Li2O, as well as the decrease of B2O3 contents. Also, the crystallization temperatures of F-free mold fluxes increase with the increase of basicity and Na2O/Li2O content. The analyses of EDS and XRD show that Ca11Si4B2O22 and Ca14Mg2(SiO4)8 are the two main precipitated crystalline phases in F-free mold fluxes, and that the Ca11Si4B2O22 is a common and stable crystalline phase in the designed F-free mold fluxes system that shows the potential to replace Ca4Si2O7F2 in conventional flourine-containing mold fluxes.

  15. In-Situ Real Time Monitoring and Control of Mold Making and Filling Processes: Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Mohamed Abdelrahman; Kenneth Currie

    2010-12-22

    This project presents a model for addressing several objectives envisioned by the metal casting industries through the integration of research and educational components. It provides an innovative approach to introduce technologies for real time characterization of sand molds, lost foam patterns and monitoring of the mold filling process. The technology developed will enable better control over the casting process. It is expected to reduce scrap and variance in the casting quality. A strong educational component is integrated into the research plan to utilize increased awareness of the industry professional, the potential benefits of the developed technology, and the potential benefits of cross cutting technologies.

  16. 精密铸造型壳缺陷分析%Origination of Defects in Investment Casting Mold Shell

    Institute of Scientific and Technical Information of China (English)

    鲁蕊; 包玉秋; 张大伟; 秦磊

    2012-01-01

    分析了精密铸造型壳的两种缺陷——“浆片”夹杂物、“型壳面层脱落”形成的原因.浆片夹杂物是因为蜡模之间配合处或浇注系统与蜡模之间存在缝隙形成的.型壳面层脱落是因为热膨胀导致结合面的结合不紧或组树不当造成的.这两种缺陷通过改变蜡模结构、组树方式、改变浇注方式等措施避免.%Origination of slurry-plate inclusion and surface-layer exfoliation in investment casting mold shell was analyzed. Slurry-plate inclusion is closely related to the gap existed in the matching face, and surface-layer exfoliation is attributed to the un-fastened bonding of matching face resulted from the thermal expansion. Two defects can be eliminated by altering wax pattern structure, assembling ways and pouring ways.

  17. Numerical Simulation of Steady State Conduction Heat Transfer During the Solidification of Aluminum Casting in Green Sand Mould

    Directory of Open Access Journals (Sweden)

    Victor ANJO

    2012-08-01

    Full Text Available The solidification of molten metal during the casting process involves heat transfer from the molten metal to the mould, then to the atmosphere. The mechanical properties and grain size of metals are determined by the heat transfer process during solidification. The aim of this study is to numerically stimulate the steady conduction heat transfer during the solidification of aluminum in green sand mould using finite difference analysis 2D. The properties of materials used are industrial AI 50/60 AFS green sand mould, pure aluminum and MATLAB 7.0.1. for the numerical simulation. The method includes; the finite difference analysis of the heat conduction equation in steady (Laplace’s and transient states and using MATLAB to numerically stimulate the thermal flow and cooling curve. The results obtained are: the steady state thermal flow in 2D and transient state cooling curve of casting. The results obtain were consider relevant in the control of the grain size and mechanical properties of the casting.

  18. Aluminum Alloy Inlet Manifold of Micro-car in Metal Mold Casting%铝合金进气歧管铸件的金属型铸造

    Institute of Scientific and Technical Information of China (English)

    王重厚

    2001-01-01

    A new casting technology for inlet manifold in tilt casting machine for gravity die casting was described. In order to producte qualified inlet manifold casting, top gating system with lip riser and shell core made of precoated sand is used. The gas hole, shrinkage cavity and crack were eliminated through up-grading technology.%介绍了在可倾式金属型浇注机上制造进气歧管的铸造新工艺。为了获得合格的进气歧管铸件,采用压边顶铸浇注系统和覆膜砂壳芯制作工艺。并且改进工艺,以消除气孔、收缩和裂纹。

  19. COMPUTER RESEARCH OF INFLUENCE OF THERMAL CONDUCTIVITY CHANGE OF THE VACUUM-FILM MOLD OF ON CHARACTERISTICS OF THE CASTING PRODUCTION TECHNOLOGY

    Directory of Open Access Journals (Sweden)

    A. N. Chichko

    2013-01-01

    Full Text Available The influence of changes in the thermal conductivity of vacuum-film mold at production of cast iron castings «body» was studied. Three variants of the gating system with different thermal conductivity l, 0,6 l and 0,4 l are considered. The dependencies of speed change and its projections on the time of filling in the allocated form points were established. Statistical distributions of temperatures in the casting for various moments of times are calculated. The technique of the formalization of statistical distributions characterizing the quantification of different groups of grid elements on the average temperature of the object was offered.

  20. Study on Permanent Mold Casting Process for Wheel Shaft%某车轮轴金属型铸造工艺的实验研究

    Institute of Scientific and Technical Information of China (English)

    王狂飞; 王有超; 历长云; 米国发

    2012-01-01

    Through permanent mold casting, the casting process for a wheel shaft was studied. As ingate affectinng the casting shrinkage in the original process, a hot crack of casting appeared. The hot crack defect was eliminated by using the riser improved process. Using the self-made metal coating, qualified castings were trial-produced. A reasonable and practical casting technology is provided.%利用金属型铸造,研究了某车轮轴铸造工艺.发现原工艺中内浇道影响到铸件的收缩,出现了热裂等铸造缺陷.采用浇冒口改进工艺,侧面开出气孔,消除了热裂缺陷.采用自制的金属型涂料,成功试制出合格铸件,获得实用有效的车轮轴金属型铸造工艺.

  1. Effects of Pouring Temperature on Interfacial Reaction between Ti-47.5Al-2.5V-1Cr Alloy and Mold during Centrifugal Casting

    Institute of Scientific and Technical Information of China (English)

    SUI Yanwei; FENG Kun; CHENG Cheng; CHEN Xiao; QI Jiqiu; HE Yezeng; MENG Qingkun; WEI Fuxiang; SUN Zhi

    2016-01-01

    Pouring temperature and time are the most important influencing factors on interfacial reaction during the centrifugal casting. When cast at high temperatures, the crucible becomes brittle and prone to cracking, and shows a low stability. In this paper, we studied the centrifugal casting of Ti-47.5-Al-2.5V-1Cr alloy, and explored the effects of pouring temperature on the interfacial reaction. Castings at 1 600, 1 650, and 1 700℃ were obtained by controlling the other parameters constant in the experiments. The microstructure, elemental distribution, thickness of the reaction layer and phase composition of the castings at the interface were studied. The results show that the thickness at the interfacial reaction layer is increased by raising the pouring temperature. The elements in the mold and the matrix were double-diffused and reacted at the interface during the casting process, and formed solid solutions with the precipitation of many new phases such as Al2O3 and TiO2. The roughness of interface structure and layer thickness of reaction increase with the rise of temperature, and the interfacial reaction is more intense. There is a minimum layer thickness of the reaction layer that is 80μm when the temperature is 1 600℃.

  2. Application of Self-hardening Sand to Lost-wax Casting%自硬砂在消失模铸造中的应用

    Institute of Scientific and Technical Information of China (English)

    邓清锐

    2016-01-01

    介绍了自硬砂制作浇口杯、预填自硬砂和制作异形铸件的支撑砂胎在消失模铸造中的应用并解决了铸件质量问题的实例。对比了CO2水玻璃砂和呋喃树脂砂在应用中的优缺点。在消失模铸造中,可根据铸造工艺、生产成本和取材难度等合理的选择自硬砂。%Applications of runner bush made of a self-hardening sand, prepacking self-hardening sand and supporting close-over used in making shaped castings to lost-wax casting, as well as an improvement on casting quality, were introduced. Merits and demerits of CO2 water glass sand in the use were compared with those of furan resin bonded sand. In the lost-wax casting, different self-hardening sands may be selected on the basis of casting process, production cost and difficulty degree of gaining the materials.

  3. Microstructure and mechanical properties of cast Mg-15Al-xNd alloy by permanent mold

    Directory of Open Access Journals (Sweden)

    Zhou Kangkang

    2013-09-01

    Full Text Available To improve the comprehensive mechanical properties of Mg-15Al magnesium alloy, different amounts (from 0 to 4.0wt.% of Nd were added to the alloy and six Mg-15Al-xNd alloys were prepared by metal mould casting. The effect of Nd content on microstructure of the alloys was investigated by means of OM, SEM, EDS, TEM, and XRD. The tensile properties were tested at room temperature (RT and high temperature (473 K. The results indicate that the primary α-Mg dendrite is significantly refined with the addition of Nd. The best refinement is reached at 1.0wt.% Nd content and the average dendrite arm spacing decreases from 80-100 μm (without Nd addition to ~20 μm. A further increase in Nd content leads to the coarsening of the primary α-Mg dendrite. The addition of Nd improves the tensile properties of Mg-15Al both at RT and 473 K. The Mg-15Al alloy containing 1.0wt.% Nd exhibits the best tensile properties. Compared with the alloy without Nd, the yield and ultimate tensile strength of the Mg-15Al-1.0Nd alloy at RT increase from 132.3 to 148.6 MPa and 152.3 to 189.6 MPa, increase by 12.3% and 24.5%, respectively; and the elongation at RT increases from 0.05 % to 1.24%. The yield and tensile strength of the alloy at 473 K increase from 97.9 to 115.3 MPa and 121.6 to 140.1 MPa, increase by 15.2% and 20%, respectively. Further increment of Nd content to 1.5wt.% degrades the tensile properties, which is ascribed to grain coarsening and growth of the Al-Nd phase.

  4. Production of Steel Casts in Two-Layer Moulds with Alkaline Binders Part 1. Backing sand with the alkaline inorganic binder RUDAL

    Directory of Open Access Journals (Sweden)

    M. Holtzer

    2011-04-01

    Full Text Available Steel casts in Z.N. POMET were produced in moulds made of the moulding sand Floster. This sand did not have good knocking outproperties, required a significant binder addition (4.5-5.0 parts by weight, and the casting surface quality gave rise to clients objections.Therefore a decision of implementing two-layer moulds, in which the facing sand would consist of the moulding sand with an alkalineorganic binder while the backing sand would be made of the moulding sand with an inorganic binder also of an alkaline character - wasundertaken. The fraction of this last binder in the moulding sand mass would be smaller than that of the binder used up to now (waterglass. The application of two moulding sands of the same chemical character (highly alkaline should facilitate the reclamation processand improve the obtained reclaimed material quality, due to which it would be possible to increase the reclaim fraction in the mouldingsand (up to now it was 50%. The results of the laboratory investigations of sands with the RUDAL binder are presented in the paper.

  5. Solidification and casting

    CERN Document Server

    Cantor, Brian

    2002-01-01

    INDUSTRIAL PERSPECTIVEDirect chillcasting of aluminium alloysContinuous casting of aluminium alloysContinuous casting of steelsCastings in the automotive industryCast aluminium-silicon piston alloysMODELLING AND SIMULATIONModelling direct chill castingMold filling simulation of die castingThe ten casting rulesGrain selection in single crystal superalloy castingsDefects in aluminium shape castingPattern formation during solidificationPeritectic solidificationSTRUCTURE AND DEFECTSHetergeneous nucleation in aluminium alloysCo

  6. Improvement in Mechanical Properties of A356 Tensile Test Bars Cast in a Permanent Mold by Application of a Knife Ingate

    Science.gov (United States)

    Wang, Yaou; Schwam, David; Neff, David V.; Chen, Chai-Jung; Zhu, Xuejun

    2012-03-01

    As a standard test-bar permanent mold, the "Stahl" Mold has been widely used in foundries to assess the properties of cast alloys. However, inferior mechanical properties are often obtained with this mold due to shrinkage-induced microporosity in the gage section. In order to improve the mechanical properties, a design modification comprising a thin knife ingate between the feeder and test-bar cavity was evaluated in this work. The new design was studied by computer-aided simulation. Simulations predicted that the knife ingate improved the metal feeding capability and reduced the shrinkage microporosity at the gage section from 3 to 1 pct. Experimental verification work has been undertaken with aluminum alloy A356, and the results were analyzed by a statistics theory-based factorial analysis method. The new design resulted in main effects with ultimate tensile strength (UTS) improvement of 20 MPa (relative 12 pct) and elongation increment of 2 pct (relative 45 pct) for the as-cast test bars.

  7. Emission of organic compounds from mould and core binders used for casting iron, aluminium and bronze in sand moulds.

    Science.gov (United States)

    Tiedje, Niels; Crepaz, Rudolf; Eggert, Torben; Bey, Niki

    2010-12-01

    Emissions from mould and core sand binders commonly used in the foundry industry have been investigated. Degradation of three different types of binders was investigated: Furfuryl alcohol (FA), phenolic urethane (PU) and resol-CO2 (RC). In each group of binders, at least two different binder compositions were tested. A test method that provides uniform test conditions is described. The method can be used as a general test method to analyse off gases from binders. Moulds, containing a standard size casting, were produced and the amount and type of organic compounds, resulting from thermal degradation of binders, was monitored when cast iron, bronze and aluminium was poured in the moulds. Binder degradation was measured by collecting off gases in a specially designed ventilation hood at a constant flow rate. Samples were taken from the ventilation system and analysed for hydrocarbons and CO content. It is shown how off-gases vary with time after pouring and shake out. Also the composition of off-gases is analysed and shown. It is further shown how the composition of off-gasses varies between different types of binders and with varying composition of the binders as well as function of the thermal load on the moulding sand.

  8. Non-standard tests for process control in chemically bonded sands

    Directory of Open Access Journals (Sweden)

    S. Ramrattan

    2016-01-01

    Full Text Available Chemically bonded sand cores and molds are more commonly referred to as precision sand systems in the high production automotive powertrain sector. Their behavior in contact with molten metal can lead to casting defects. Consequently, the interaction is of great interest and an important part of metal casting technology. The American Foundry Society (AFS sand testing is based on physical, mechanical, thermal and chemical properties of the sand system. Foundry engineers have long known that certain AFS sand tests provide limited information regarding control of molding and casting quality. The inadequacy is due to the fact that sand casting processes are inherently thermo-mechanical, thermo-chemical and thermo-physical. Non-standard foundry sand testing has proven useful for laboratory measurement of these characteristics in foundry sand using a disc-shaped specimen. Similarly, the equivalent disc-shaped specimens are used for casting trials. In order to accomplish near-net-shape casting with minimal defects, it is necessary to understand both the properties of the sand system, as well as the interface of molten metal when different binders, additives and/or refractory coatings are used. The methodology for the following non-standard chemically bonded sand tests is described: (1 disc transverse; (2 impact; (3 modified permeability; (4 abrasion; (5 thermal distortion; (6 quick loss on ignition. The data related to the non-standard sand tests were analyzed and interpreted. The test results indicate that there is relatively lower test-to-test variability with the disc-shaped specimens. The non-standard tests were able to discriminate between the chemically bonded polyurethane cold box sand specimens. Further studies should be conducted on various other sand and binder systems as well as on different specimen thicknesses.

  9. Non-standard tests for process control in chemically bonded sands

    Directory of Open Access Journals (Sweden)

    S. Ramrattan

    2016-01-01

    Full Text Available Chemically bonded sand cores and molds are more commonly referred to as precision sand systems in the high production automotive powertrain sector. Their behavior in contact with molten metal can lead to casting defects. Consequently, the interaction is of great interest and an important part of metal casting technology. The American Foundry Society (AFS sand testing is based on physical, mechanical, thermal and chemical properties of the sand system. Foundry engineers have long known that certain AFS sand tests provide limited information regarding control of molding and casting quality. The inadequacy is due to the fact that sand casting processes are inherently thermo-mechanical, thermo-chemical and thermo-physical. Non-standard foundry sand testing has proven useful for laboratory measurement of these characteristics in foundry sand using a disc-shaped specimen. Similarly, the equivalent disc-shaped specimens are used for casting trials. In order to accomplish near-net-shape casting with minimal defects, it is necessary to understand both the properties of the sand system, as well as the interface of molten metal when different binders, additives and/or refractory coatings are used. The methodology for the following non-standard chemically bonded sand tests is described: (1 disc transverse; (2 impact; (3 modified permeability; (4 abrasion; (5 thermal distortion; (6 quick loss on ignition. The data related to the non-standard sand tests were analyzed and interpreted. The test results indicate that there is relatively lower test-to-test variability with the disc-shaped specimens. The non-standard tests were able to discriminate between the chemically bonded polyurethane cold box sand specimens. Further studies should be conducted on various other sand and binder systems as well as on different specimen thicknesses.

  10. Transient Two-Phase Flow in Slide-Gate Nozzle and Mold of Continuous Steel Slab Casting with and without Double-Ruler Electro-Magnetic Braking

    Science.gov (United States)

    Cho, Seong-Mook; Thomas, Brian G.; Kim, Seon-Hyo

    2016-10-01

    Transient mold flow could produce undesirable surface instabilities and slag entrainments, leading to the formation of defects during continuous slab casting of steel. In this work, two Large Eddy Simulations coupled with Discrete Phase Model are run, with and without MagnetoHydroDynamic model, to gain new insights into the surface variations of molten steel-argon gas flow with anisotropic turbulence in the slide-gate nozzle and the mold, with and without double-ruler Electro-Magnetic Braking (EMBr). The model calculations are validated with plant measurements, and applied to investigate the flow variations related to the slide gate on nozzle swirl, jet wobbling, and surface flow variations by quantifying the variations of velocity, horizontal angle, and vertical angle of the transient flow. Transient flow in the slide-gate nozzle bottom is almost always swirling, alternating chaotically between clockwise and counter-clockwise rotation. The clockwise swirl, caused by stronger flow down the same side of the nozzle as the open area near the Outside Radius side of the slide-gate middle plate, produces faster jet flow and higher velocity flow across the top surface of the mold. Counter-clockwise swirl produces slower jet and surface flow, but with more variations. The double-ruler EMBr decreases the asymmetry and duration of velocity variations during nozzle swirl flipping, resulting in less flow variations in the jet and across the surface in the mold.

  11. Clean Metal Casting

    Energy Technology Data Exchange (ETDEWEB)

    Makhlouf M. Makhlouf; Diran Apelian

    2002-02-05

    The objective of this project is to develop a technology for clean metal processing that is capable of consistently providing a metal cleanliness level that is fit for a given application. The program has five tasks: Development of melt cleanliness assessment technology, development of melt contamination avoidance technology, development of high temperature phase separation technology, establishment of a correlation between the level of melt cleanliness and as cast mechanical properties, and transfer of technology to the industrial sector. Within the context of the first task, WPI has developed a standardized Reduced Pressure Test that has been endorsed by AFS as a recommended practice. In addition, within the context of task1, WPI has developed a melt cleanliness sensor based on the principles of electromagnetic separation. An industrial partner is commercializing the sensor. Within the context of the second task, WPI has developed environmentally friendly fluxes that do not contain fluorine. Within the context of the third task, WPI modeled the process of rotary degassing and verified the model predictions with experimental data. This model may be used to optimize the performance of industrial rotary degassers. Within the context of the fourth task, WPI has correlated the level of melt cleanliness at various foundries, including a sand casting foundry, a permanent mold casting foundry, and a die casting foundry, to the casting process and the resultant mechanical properties. This is useful in tailoring the melt cleansing operations at foundries to the particular casting process and the desired properties of cast components.

  12. Manufacturing of thin walled near net shape iron castings

    DEFF Research Database (Denmark)

    Larsen, Per Leif

    2003-01-01

    The demand for near net shape thin walled iron castings is growing. This has several reasons, the main one is the need for lowering the fuel consumption of cars; the easiest way to do that is to lower the weight of the cars. The best way to do this was for a period of time believed...... to be substituting iron casings with aluminum castings. Substituting iron castings with aluminum castings is not as easy as first believed, and hence the substitution is very slow. This combined with the lack of fully exploiting the potential in iron castings, makes research in iron castings interesting. The 60.......000.000 cars produced world wide each year consumes enormous amounts of cast parts ! The aim of the project is to develop the green sand molding method on DISAMATIC to be able to deal with the new demands for thin walled near net shape castings in iron....

  13. The Structure and Properties of Inductively Coupled Plasma Assisted Magnetron Sputtered Nanocrystalline NbN Coatings in Corrosion Protective Die Casting Molds.

    Science.gov (United States)

    Chun, Sung-Yong

    2016-02-01

    Niobium nitride coatings for the surface modified die casting molds with various ICP powers have been prepared using ICP assisted magnetron sputtering. The applied ICP power was varied from 0 to 200 W. The deposited coatings were characterized post-deposition using X-ray diffractometry (XRD) and atomic force microscopy (AFM). Single NbN phased coatings with nano-grain sized (hardness of each coating were evaluated from potentiostat and nanoindentator. Superior corrosion protective coatings in excess of 13.9 GPa were deposited with assistance of ICP plasma during sputtering.

  14. Determination of application possibilities of microwave heating in the curing process of water glass molding sands with fluid esters. Part 1

    Directory of Open Access Journals (Sweden)

    K. Granat

    2009-01-01

    Full Text Available This article presents results of the experimental trial of combination of the chemical method of water glass molding sands’ curing, used in foundry industry, with an innovative microwave heating. The research objective was to indicate at new areas of microwave energy application. The sands prepared, according to recommendations for curing technology, with the use of ethylene glycol diacetate, have been subject to microwave influence. The attempt at determination of microwave influence on qualitative changes of the binding bridges created during the curing process concerned such parameters as: bending and tensile strength, permeability as well as wear resistance. Moreover,we also determined the influence of microwave curing on the phenomena accompanying the process as well as bond stability (storage time of the prepared molding and core sands. It has been found, basing on the result analysis, that the innovative microwave heating might constitute a very good supplementation of the ester curing method. The advantages of the combined chemical and microwave gelation process include, among others, improvement of the described resistance and technological parameters as well as significant decrease of preparation time of foundry moulds and cores. The subject discussed in this article will be continued in its second part.

  15. A comparison between the dimensions of positive transtibial residual limb molds prepared by air pressure casting and weight-bearing casting methods

    Science.gov (United States)

    Hajiaghaei, Behnam; Ebrahimi, Ismail; Kamyab, Mojtaba; Saeedi, Hassan; Jalali, Maryam

    2016-01-01

    Background: Creating a socket with proper fit is an important factor to ensure the comfort and control of prosthetic devices. Several techniques are commonly used to cast transtibial stumps but their effect on stump shape deformation is not well understood. This study compares the dimensions, circumferences and volumes of the positive casts and also the socket comfort between two casting methods. Our hypothesis was that the casts prepared by air pressure method have less volume and are more comfortable than those prepared by weight bearing method. Methods: Fifteen transtibial unilateral amputees participated in the study. Two weight bearing and air pressure casting methods were utilized for their residual limbs. The diameters and circumferences of various areas of the residual limbs and positive casts were compared. The volumes of two types of casts were measured by a volumeter and compared. Visual Analogue Scale (VAS) was used to measure the sockets fit comfort. Results: Circumferences at 10 and 15 cm below the patella on the casts were significantly smaller in air pressure casting method compared to the weight bearing method (p=0.00 and 0.01 respectively). The volume of the cast in air pressure method was lower than that of the weight bearing method (p=0.006). The amputees found the fit of the sockets prepared by air pressure method more comfortable than the weight bearing sockets (p=0.015). Conclusion: The air pressure casting reduced the circumferences of the distal portion of residual limbs which has more soft tissue and because of its snug fit it provided more comfort for amputees, according to the VAS measurements. PMID:27390711

  16. 新型酯硬化水玻璃砂在铁路车辆铸钢件生产中的应用%Application of New Ester-Cured Sodium Silicate Sand on Production of Railway Vehicle Steel Castings

    Institute of Scientific and Technical Information of China (English)

    于忠宪

    2011-01-01

    Molding and coremaking production lines using new ester-bonded sodium silicate sand were presented in this paper, as well as the molding materials and the ingredient and properties of the mold or core sand. The main factors influencing the properties of the new ester-cured sodium silicate sand were analyzed. The economic benefit of the sodium silicate sand was compared with no-bake furan resin sand.%介绍了新型酯硬化水玻璃砂造型制芯生产线以及所用原材料、型芯砂配方和工艺性能,分析了影响酯硬化水玻璃砂性能的因素,并且对新型水玻璃酯硬化自硬砂和呋喃树脂自硬砂进行了经济效益对比分析.

  17. A Physical Model to Study the Effects of Nozzle Design on Dense Two-Phase Flows in a Slab Mold Casting Ultra-Low Carbon Steels

    Science.gov (United States)

    Salazar-Campoy, María M.; Morales, R. D.; Nájera-Bastida, A.; Cedillo-Hernández, Valentín; Delgado-Pureco, J. C.

    2017-01-01

    Momentum transfer of argon-steel flows in a slab mold were studied through an air-water physical model and particle image velocimetry measurements under the effects of nozzle design (nozzles with square ports S, square ports with bottom design U and circular ports C) and gas flow rate. The ratio of drag momentum of the gas phase over the liquid phase defines the conditions for coupled (existence of momentum transfer between the phases) and channeled flows (defined as those conditions where there is not further momentum transfer between both phases). When the ratio of superficial velocities of the gas phase over the liquid phase in the nozzle bore is less than 0.14, the flow pattern in the mold is dependent on the nozzle design and flow rate of gas (2 to 10 L/minute). Above this magnitude, the flow pattern becomes uncoupled and independent from the nozzle design and from the flow rate of gas. The ratios of drag velocities of the gas phase on the liquid phase and their superficial velocities in the nozzle bore are strongly dependent on the volume fraction of the gas phase. Nozzle U delivers the smallest sizes of bubbles and the smaller amount of bubble swarms per unit time impacting on the narrow face of the mold. It is, therefore, the most recommendable to cast ultra-low carbon steels. Practical implications derived from these results are written down in the text.

  18. 硬型铸造Ti-Al合金的组织与拉伸性能%Microstructures and Tensile Properties of Ti-Al Based Alloys by Permanent Mold Casting

    Institute of Scientific and Technical Information of China (English)

    李胜; 骆晨; 朱春雷; 张继

    2011-01-01

    试验研究了石墨和铸钢两种硬型铸造Ti-Al合金板片状试样的缺陷、层片间距和室温拉伸性能,并与用陶瓷型壳铸造的Ti-Al合金进行对比.结果表明,采用硬型铸造Ti-Al合金在比较高的冷却速度下凝固的板片状试样无宏观和微观裂纹;与陶瓷型壳铸造的组织相比,硬型铸造Ti-Al合金的板片状试样铸态组织平均层片间距大幅度减小,其中石墨型铸造的减小了近一半;由于硬型铸造Ti-Al合金的板片状试样的层片间距的减小使得其室温拉伸强度有较大幅度的提高,其中石墨型铸造板片试样的层片问距减小了0.35 μm,屈服强度提高了40 MPa.%The properties the casting plate were studied in this paper, such as, the casting defect, lamellar spacing and room temperature tensile properties of Ti-AI based plate by graphite mold and cast-steel mold, and were compared with the Ti-AI based plate by ceramics mold. The experimental results show that there was no macro and micro crack in these permanent mold casting plates at the higher cooling rate during the solidification; the lamellar spacing of permanent mold casting plate was greatly reduced, compared with that of ceramics mold casting plate, and the lamellar spacing of the graphite mold casting plate was reduced approximately one half; the lamellar spacing was decreased so that the tensile properties clearly increased, for example, the lamellar spacing of the graphite mold casting plate was reduced 0.35 \\im, but the yield strength was increased 40 Mpa.

  19. 国内外钛合金精密铸造型壳材料的发展概况%Development of Shell Mold Materials for Ti Alloy Investment Casting in Domestic and Foreign Countries

    Institute of Scientific and Technical Information of China (English)

    王新英; 谢成木

    2001-01-01

    The development and application status of rammed graphite mold, refractory metal powder,face coated mold shell and oxide face coated ceramic mold shell for cast Ti alloy in domestic and foreign countries were introduced. The technological gap between home and abroad was compared. The suggestion on developing new and non-pollution molding materials for mold shell was proposed.%介绍了国内外铸造钛合金用石墨型、难熔金属面层及氧化物陶瓷型面层型壳材料的发展与应用状况,比较了国内外在这一领域的技术差距,提出应开发、研究新型的无污染制壳材料。

  20. Influence of Forced Convection on the Solidification of Metal in Cast-Iron and Ceramic Ingot Molds

    Science.gov (United States)

    Kalashnikova, O. A.; Dremov, V. V.

    2016-09-01

    A nonstationary problem of solidification of an ingot in molds with walls of varying thermal conductivity has been solved by the variational method with account taken of forced convection in the liquid phase of the metal. A formula for the temperature distribution in the liquid phase and the dependence of the time of advance of the solidification front on its coordinates have been obtained. Numerical calculations of the time of solidification of the ingot in castiron and ceramic molds have been done at different convection rates.

  1. Briefing Construction Technologies and Application of CBM Internal Mold Cast-in-Situ Concrete Hollow Floor%浅谈CBM内模现浇混凝土空心楼盖施工技术及应用

    Institute of Scientific and Technical Information of China (English)

    李新革

    2015-01-01

    文章结合工程实例,介绍CBM内模现浇混凝土空心楼盖的构造、施工方法及应用效果,提出现浇混凝土空心楼盖中内模抗浮装置及其施工方法,可有效解决因内模带动楼板钢筋上浮而影响结构质量安全的难题。%Combining engineering cases, this paper introduces structure, construction method and application results of CBM internal mold cast-in-situ concrete hollow floor, proposes internal mold anti-floating devices in cast-in-situ concrete hollow floor and its construction method that can effectively solve the problem that internal mold drives lfoor bars to rise so as to inlfuence the structure quality.

  2. Fluxes design for continuous casting mold of slab low carbon steels; Diseno de polvos de molde para colada continua de slabs de aceros bajo carbono

    Energy Technology Data Exchange (ETDEWEB)

    Cruz-Ramirez, A.; Chavez-Alcala, J. F.; Romero-Serrano, J. A.

    2004-07-01

    Commercial fluxes were characterized by laboratory tests, and their original properties were changed with additions of chemical reagents in order to establish criteria and design strategies to produce new fluxes. The characterization of the commercial fluxes reveals that they are produced by simple mechanical blend of minerals, using feldspars and clays as base materials, containing SiO{sub 2} Al{sub 2}O{sub 3}, Na{sub 2}O and in less quantity K{sub 2}O, Fe{sub 2}O{sub 3} and MnO; limestone as the main source of CaO, fluorspar (CaF{sub 2}) used to control the viscosity and graphite as carbon source. Melting-solidification tests revealed melting and fluidity temperatures and the existence of abundant mineralogical phases formed during the flux solidification. some important mineralogical compounds are the nepheline (NaAlSiO{sub 4}) and cus pidine (Ca{sub 4}Si{sub 2}O{sub 7}F{sub 2}): these species have a direct influence on the heat transfer phenomena from strand to mold and therefore on the phase transformations and the shrinkage of the steel. (Author) 8 refs.

  3. Study on the behaviour of fluxes to steel continuous casting mold; Estudio del comportamiento de los fundentes para molde de colada continua de acero

    Energy Technology Data Exchange (ETDEWEB)

    Chavez, J.F.; Celaya, Arturo; Morales, Rodolfo D. [Instituto Politecnico Nacional, Mexico City (Mexico). Dept. de Ingenieria Metalurgica; Barron, Miguel A. [Universidad Nacional Autonoma de Mexico, Azcapotzalco (Mexico)

    1996-12-31

    A mathematical heat transfer model has been developed, which calculates both the field flow and the temperature profile through the flux thickness between the mold and the strand. The physical condition of the flux in each point is calculated as a function of the physical properties of the powder, the powder film thickness and the oscillation conditions. The model consists of two heat transfer submodels, one for the old and the other one for the steel strand. The dynamic of both system are used as boundary conditions for solving the heat transfer and the Navier-Stokes equations. The calculated dynamic behavior is mostly influenced by the flux properties. The thermophysical and rheological properties of the most employed fluxes by mexican steel plants were considered for carrying out the simulations. Some of these properties were determined by using standard experimental techniques. I has been found a possible non linear velocity profile, which were not prior reported, depending on the flux properties and the operation conditions. This effect has some influence on the shear stress acting on the strand surface due to the presence of the flux. (author) 14 refs., 10 figs., 2 tabs.

  4. Numerical Simulation of Heat Transfer and Deformation of Initial Shell in Soft Contact Continuous Casting Mold Under High Frequency Electromagnetic Field

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Heat transfer and deformation of initial solidification shell in soft contact continuous casting moldunder high frequency electromagnetic field were analyzed using numerical simulation method; the relative electromagnetic parameters were obtained from the previous studies. Owing to the induction heating of a high frequency electromagnetic field (20 kHz), the thickness of initial solidification shell decreases, and the temperature of strand surface and slit copper mold increases when compared with the case without the electromagnetic filed. The viscosity of flux decreases because of the induction heating of the high frequency electromagnetic field, and the dimension of the flux channel increases with electromagnetic pressure; thus, the deformation behavior of initial solidification shell was different before and after the action of high frequency electromagnetic field. Furthermore, the abatement mechanism of oscillation marks under high frequency electromagnetic field was explained.

  5. 分面成形法金属型铸造Pb-4Sb合金%Permanent Mold Casting Pb-4Sb Alloy

    Institute of Scientific and Technical Information of China (English)

    李吉祥; 阎志明; 罗大伟; 曹志强; 李廷举

    2009-01-01

    Pb-4Sb alloy components with low hardnesswere produced by permanent mold casting to cancelmachinery working. Designing idea of separating faceshaping in mould design was presented, meanwhile,the preparation process of master alloy in process ofmetal melting was cancelled. The finished componentswith machinery working free were successfully pro-duced.%介绍了在机械加工能力受限制条件下,以较为简易的金属型铸造终成形硬度较小的Pb-4Sb合金铸件.在模具设计方面,提出了分面成形的设计思路;在金属的熔炼上,省去了制取中间合金的过程,成功生产出了不需要机械加工的终成形铸件.

  6. Effect of the Solution Annealing and Chemical Passivation Followed by Aging on the Corrosion of Shell Mold Cast CF8 Stainless Steel

    Science.gov (United States)

    Kim, Kuk-Jin; Ju, Heongkyu; Moon, Young-Dae; Hong, Jun Ho; Pak, Sung Joon

    2016-10-01

    The effects of solution annealing and passivation of shell mold cast CF8 stainless steels on Elbow pipe fittings with 2-month room temperature aging have been studied using a corrosion technique. The resistance of corrosion increased with 2-month room temperature aging combined with solid solution annealing and chemical passivation. The mode of corrosion was deeply related to the δ-ferrite content, permeability, and passivation. The corrosion probability decreased as both the δ-ferrite content and the permeability decreased. Therefore, it is considered that δ-ferrite content and passive film of Cr2O3 play an important role in corrosion resistance of CF8 Elbow pipe fittings due to the long-term aging with solid solution annealing and chemical passivation. This result shows that the corrosion resistance of CF8 fittings can be enhanced by the solid solution annealing and chemical passivation. Decreased ferrite phases and permeability improve IGC resistance in CF8 steel.

  7. Research on the Ti-48Al-2Cr-2Nb Automobile Exhaust Valve Formed in Permanent Mold during Centrifugal Casting Process

    Institute of Scientific and Technical Information of China (English)

    Wenbin SHENG; Dong LI; Rui YANG; Yuyin LIU; Jingjie GUO; Jun JIA

    2001-01-01

    Ti-48Al-2Cr-2Nb automobile exhaust valves were formed with permanent mold centrifugal cast method and their surface layer structure, microstructure, elements distribution and mechanical properties were analyzed by SEM, XRD and EMPA etc. Furthermore, the HIPped valves were tested on 483Q diesel engine. Results showed that the element distribution of TiAl based alloy exhaust valves was uniform and their microstructure was refined. The typical mechanical properties of HlPped exhaust valves were σb=670 MPa, σ0.2=527.5 MPa and δ=3%. Engine test showed that the valves had excellent airtightness and wear resistance properties and satisfied the requirements of engine successfully.

  8. Casting materials

    Energy Technology Data Exchange (ETDEWEB)

    Chaudhry, Anil R. (Xenia, OH); Dzugan, Robert (Cincinnati, OH); Harrington, Richard M. (Cincinnati, OH); Neece, Faurice D. (Lyndurst, OH); Singh, Nipendra P. (Pepper Pike, OH)

    2011-06-14

    A foam material comprises a liquid polymer and a liquid isocyanate which is mixed to make a solution that is poured, injected or otherwise deposited into a corresponding mold. A reaction from the mixture of the liquid polymer and liquid isocyanate inside the mold forms a thermally collapsible foam structure having a shape that corresponds to the inside surface configuration of the mold and a skin that is continuous and unbroken. Once the reaction is complete, the foam pattern is removed from the mold and may be used as a pattern in any number of conventional casting processes.

  9. Numerical simulation of temperature and strength distributions of mold(core) on heating

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    By using Visual C+ +, a model with post-processing was carried out to simulate the temperature and strength distributions of the mold(core). The results are shown in 256-color graphic mode. With this model, the temperature and strength distributions of the mold(core) both in case of heating process for core in the furnace and solidification process for a thin-wall aluminum alloy casting in the mold(core) are numerically simulated. The results show that the temperature and strength distributions of the mold(core) were uneven because the thermal conductivity of the resin sand was much small. This study laid a basis for the optimum design of the mold(core) properties.

  10. Numerical simulation of the interface molten metal air in the shot sleeve chambre and mold cavity of a die casting machine

    Science.gov (United States)

    Korti, Abdel Illah Nabil; Abboudi, Said

    2011-11-01

    The objective of this study relates to the numerical simulation of the free surface during the two-dimensional flow and solidification of aluminum in the horizontal cylinder and mold cavity of the high pressure die casting HPDC machine with cold chamber. The flow is governed by the Navier-Stokes equations (the mass and the momentum conservations) and solved in the two phase's liquid aluminum and air. The tracking of the free surface is ensured by the VOF method. The equivalent specific heat method is used to solve the phase change heat transfer problem in the solidification process. Considering the displacement of the plunger, the geometry of the problem is variable and the numerical resolution uses a dynamic grid. The study examines the influence of the plunger speed on the evolution of the interface aluminum liquid-air profile, the mass of air imprisoned and the stream function contours versus time. Filling of a mold is an essential part of HPDC process and affects significantly the heat transfer and solidification of the melt. For this reason, accurate prediction of the temperature field in the system can be achieved only by including simulation of filling in the analysis.

  11. Cracking Analysis of 60 t Vermicular Graphite Cast Iron Ingot Mold%60t蠕墨铸铁钢锭模开裂原因分析

    Institute of Scientific and Technical Information of China (English)

    史向阳; 刘铁山; 孙胜伟; 宋亚虎; 赵学谦

    2014-01-01

    The 60 t vermicular graphite cast iron ingot mold produced by our company has arisen cracking during the pouring process .The cracking causes are analyzed by macroscopic test , chemical components analysis , macro-frac-ture analysis , scanning electron microscope analysis and metallographic examination .The results show that the cracking of ingot mold is caused by graphite floating , poor graphite morphology and low creep ratio .%我公司生产的60 t蠕墨铸铁钢锭模在浇注过程中发生开裂。采用低倍检验、化学成分分析、宏观断口分析、扫描电镜分析、金相检验等方法对开裂原因进行了分析。结果表明:钢锭模开裂的主要原因是石墨漂浮、石墨形态较差以及蠕化率较低。

  12. Materials for Advanced Ultrasupercritical Steam Turbines Task 4: Cast Superalloy Development

    Energy Technology Data Exchange (ETDEWEB)

    Thangirala, Mani

    2015-09-30

    demonstrated the importance of proper heat treat cycles for Homogenization, and Solutionizing parameters selection and implementation. 3) Step blocks casting of Nimonic 263: Carried out casting solidification simulation analysis, NDT inspection methods evaluation, detailed test matrix for Chemical, Tensile, LCF, stress rupture, CVN impact, hardness and J1C Fracture toughness section sensitivity data and were reported. 4) Centrifugal Casting of Haynes 282, weighing 1400 lbs. with hybrid mold (half Graphite and half Chromite sand) mold assembly was cast using compressor casing production tooling. This test provided Mold cooling rates influence on centrifugally cast microstructure and mechanical properties. Graphite mold section out performs sand mold across all temperatures for 0.2% YS; %Elongation, %RA, UTS at 1400°F. Both Stress-LMP and conditional Fracture toughness plots data were in the scatter band of the wrought alloy. 5) Fundamental Studies on Cooling rates and SDAS test program. Evaluated the influence of 6 mold materials Silica, Chromite, Alumina, Silica with Indirect Chills, Zircon and Graphite on casting solidification cooling rates. Actual Casting cooling rates through Liquidus to Solidus phase transition were measured with 3 different locations based thermocouples placed in each mold. Compared with solidification simulation cooling rates and measurement of SDAS, microstructure features were reported. The test results provided engineered casting potential methods, applicable for heavy section Haynes 282 castings for optimal properties, with foundry process methods and tools. 6) Large casting of Haynes 282 Drawings and Engineering FEM models and supplemental requirements with applicable specifications were provided to suppliers for the steam turbine proto type feature valve casing casting. Molding, melting and casting pouring completed per approved Manufacturing Process Plan during 2014 Q4. The partial valve casing was successfully cast after casting methods were

  13. The ancient Chinese casting techniques

    OpenAIRE

    2011-01-01

    In the course of Chinese civilization, which lasted more than 5,000 years, casting production has made a huge contribution. In this paper, some representative metal castings were presented. According to their forming techniques, they can be grouped into stone mould casting, clay mould casting, ablation casting, lost wax casting, stack casting, permanent mould casting, sand casting, etc. According to their materials, they can be categorized into tin bronze, bimetallic bronze, malleable cast ir...

  14. Surface 3D Micro Free Forms: Multifunctional Microstructured Mesoporous α-Alumina by in Situ Slip Casting Using Excimer Laser Ablated Polycarbonate Molds.

    Science.gov (United States)

    Rowthu, Sriharitha; Böhlen, Karl; Bowen, Paul; Hoffmann, Patrik

    2015-11-11

    Ceramic surface microstructuring is a rapidly growing field with a variety of applications in tribology, wetting, biology, and so on. However, there are limitations to large-area microstructuring and fabrication of three-dimensional (3D) micro free forms. Here, we present a route to obtain intricate surface structures through in situ slip casting using polydimethylsiloxane (PDMS) negative molds which are replicated from excimer laser ablated polycarbonate (PC) master molds. PC sheets are ablated with a nanosecond KrF (λ = 248 nm) excimer laser mask projection system to obtain micron-scale 3D surface features over a large area of up to 3 m(2). Complex surface structures that include 3D free forms such as 3D topography of Switzerland, shallow structures such as diffractive optical elements (60 nm step) and conical micropillars have been obtained. The samples are defect-free produced with thicknesses of up to 10 mm and 120 mm diameter. The drying process of the slip cast alumina slurry takes place as a one-dimensional process, through surface evaporation and water permeation through the PDMS membrane. This allows homogeneous one-dimensional shrinkage during the drying process, independent of the sample's lateral dimensions. A linear mass diffusion model has been proposed to predict and explain the drying process of these ceramic colloidal suspensions. The calculated drying time is linearly proportional to the height of the slurry and the thickness of the negatively structured PDMS and is validated by the experimental results. An experimentally observed optimum Sylgard PDMS thickness range of ∼400 μm to 1 mm has achieved the best quality microstructured green compacts. Further, the model predicts that the drying time is independent of the microstructured areas and was validated using experimental observations carried out with microstructured areas of 300 mm(2), 1200 mm(2), and 120 cm(2). Therefore, in principle, the structures can be further replicated in areas up

  15. Physico-chemical properties of quartz from industrial manufacturing and its cytotoxic effects on alveolar macrophages: The case of green sand mould casting for iron production.

    Science.gov (United States)

    Di Benedetto, Francesco; Gazzano, Elena; Tomatis, Maura; Turci, Francesco; Pardi, Luca A; Bronco, Simona; Fornaciai, Gabriele; Innocenti, Massimo; Montegrossi, Giordano; Muniz Miranda, Maurizio; Zoleo, Alfonso; Capacci, Fabio; Fubini, Bice; Ghigo, Dario; Romanelli, Maurizio

    2016-07-15

    Industrial processing of materials containing quartz induces physico-chemical modifications that contribute to the variability of quartz hazard in different plants. Here, modifications affecting a quartz-rich sand during cast iron production, have been investigated. Composition, morphology, presence of radicals associated to quartz and reactivity in free radical generation were studied on a raw sand and on a dust recovered after mould dismantling. Additionally, cytotoxicity of the processed dust and ROS and NO generation were evaluated on MH-S macrophages. Particle morphology and size were marginally affected by casting processing, which caused only a slight increase of the amount of respirable fraction. The raw sand was able to catalyze OH and CO2(-) generation in cell-free test, even if in a lesser extent than the reference quartz (Min-U-Sil), and shows hAl radicals, conventionally found in any quartz-bearing raw materials. Enrichment in iron and extensive coverage with amorphous carbon were observed during processing. They likely contributed, respectively, to increasing the ability of processed dust to release CO2- and to suppressing OH generation respect to the raw sand. Carbon coverage and repeated thermal treatments during industrial processing also caused annealing of radiogenic hAl defects. Finally, no cellular responses were observed with the respirable fraction of the processed powder.

  16. High coercivity microcrystalline Nd-rich Nd-Fe-Co-Al-B bulk magnets prepared by direct copper mold casting

    Science.gov (United States)

    Zhao, L. Z.; Hong, Y.; Fang, X. G.; Qiu, Z. G.; Zhong, X. C.; Gao, X. S.; Liu, Z. W.

    2016-06-01

    High coercivity Nd25Fe40Co20Al15-xBx (x=7-15) hard magnets were prepared by a simple process of injection casting. Different from many previous investigations on nanocomposite compositions, the magnets in this work contain hard magnetic Nd2(FeCoAl)14B, Nd-rich, and Nd1+ε(FeCo)4B4 phases. The magnetic properties, phase evolution, and microstructure of the as-cast and annealed magnets were investigated. As the boron content increased from 7 to 11 at%, the intrinsic coercivity Hcj of the as-cast magnet increased from 816 to 1140 kA/m. The magnets annealed at 750 °C have shown more regular and smaller grains than the as-cast alloys, especially for the x=11 alloy. The high intrinsic coercivities for the annealed alloys with x=8~11 result from the presence of small-sized grains in the microstructure. The highest Hcj of 1427 kA/m was obtained for the heat treated alloy with x=10. This work provides an alternative approach for preparing fully dense Nd-rich bulk hard magnets with relatively good properties.

  17. Mechanism of Coated Sand Mold(Core) Hardened by Selective Laser Sintering%选择性激光烧结覆膜砂铸型(芯)的固化机理

    Institute of Scientific and Technical Information of China (English)

    樊自田; 黄乃瑜

    2001-01-01

    分析了激光束扫描烧结的物理模型和覆膜砂受热固化的特点,研究了选择性激光烧结(SLS)覆膜砂铸型(芯)的成型条件、固化机理,以及SLS覆膜砂铸型(芯)的固化特点.介绍了用SLS法快速成形覆膜砂铸型、浇注铸件的工艺过程和实例.%The forming conditions, hardened mechanism and characteristics of coated sand mold (core)by selective laser sintering(SLS)are investigated through analyzing the physical mold and the hardened property of coated sand by SLS are also introduced.

  18. Influence of Properties of Foundry Raw Sand on Quality of Cylinder Block and Head Castings%铸造用砂的性能对缸体和缸盖铸件质量的影响

    Institute of Scientific and Technical Information of China (English)

    刘鸿勋

    2013-01-01

    介绍了我国风积砂、海砂、湖砂和河砂四大砂系的资源和生产状况,分析了擦洗砂和焙烧砂各主要参数对缸体、缸盖铸件质量的影响情况和常用特种砂在提高铸件质量方面的作用,强调了生产缸体、缸盖铸件时用砂的选择与组合原则.%An introduction was made to the present resource and production situation of four Chinese main sand series including eolian sand,sea sand, lake sand and river sand. The influences of the main parameters of scrubbed sand and baked sand on quality of cylinder block and head castings and the effect of commonly used special sand in casting quality improvement were analyzed, as well as the selection and combination principle of raw sand used for cylinder block and head castings production was stressed.

  19. Computer Simulation on Low Pressure Plaster Mold Casting Process for ZL205A Alloy%铸铝ZL205A石膏型低压铸造工艺计算机模拟

    Institute of Scientific and Technical Information of China (English)

    王狂飞; 周志杰; 王有超; 历长云

    2011-01-01

    利用View Cast软件对某低压石膏型ZL205A铸件铸造过程进行了计算机模拟,获得了铸件充型、凝固过程温度随时间变化的分布图,并对可能产生缩孔、缩松缺陷的位置进行了预测.模拟结果显示,低压铸造充型过程中降温不明显,而熔液流经大截面时产生速度降;凝固过程中,熔体自顶向下形成逐层递增的温度梯度,利于熔体补缩.模拟结果与实际生产情况吻合较好.%The low pressure plaster mold casting process for ZL205A alloy was simulated by View Cast software, and the relationship between cast temperature and time were obtained in casting solidification and filling, and the location of the shrinkage defects were also forecasted. The results show that the temperature of liquid metal invisibly drops during mold filling, and the melt filling rate decreases with the increase of cross-section with the ingate, and increasing temperature gradient of melt from up to down can contribute to the shrinkage elimination of casting during solidifying. The simulations reasonably agree well with production results.

  20. Solidification Structure and Macrosegregation of Billet Continuous Casting Process with Dual Electromagnetic Stirrings in Mold and Final Stage of Solidification: A Numerical Study

    Science.gov (United States)

    Jiang, D.; Zhu, M.

    2016-08-01

    Coupling macroscale heat transfer and fluid flow with microscale grain nucleation and crystal growth, a mixed columnar-equiaxed solidification model was established to study the SWRT82B steel solidification structure and macrosegregation in 160 mm × 160 mm billet continuous casting with dual electromagnetic stirrings in mold and final stage of solidification (M-EMS and F-EMS). In the model, the phases of liquid, columnar, and equiaxed were treated separately and the initial growing equiaxed phase, which could move freely with liquid, was regarded as slurry. To obtain the equiaxed grains nucleation and columnar front evolution, the unit tracking method and the columnar front tracking model were built. The model was validated by magnetic induction intensity of stirrer, billet surface temperature, and carbon segregation. The equiaxed phase evolution and the solute transport with effect of fluid flow and grains transport were described in this article. The results show that the equiaxed phase ratio will not increase obviously with higher current intensity of M-EMS, while the negative segregation near the strand surface becomes more serious. The negative segregation zone near the billet center and the center positive segregation come into being with the effect of equiaxed grains sedimentation and liquid thermosolutal flow. It is also found that the liquid solute transport in the F-EMS zone becomes the main factor with higher current intensity rather than the solidification rate, and therefore, the final billet center segregation decreases first and then turns to rise with the current intensity. The optimal current intensities of M-EMS and F-EMS proposed for SWRT82B billet continuous casting are 200 and 400 A, respectively.

  1. Solidification Structure and Macrosegregation of Billet Continuous Casting Process with Dual Electromagnetic Stirrings in Mold and Final Stage of Solidification: A Numerical Study

    Science.gov (United States)

    Jiang, D.; Zhu, M.

    2016-12-01

    Coupling macroscale heat transfer and fluid flow with microscale grain nucleation and crystal growth, a mixed columnar-equiaxed solidification model was established to study the SWRT82B steel solidification structure and macrosegregation in 160 mm × 160 mm billet continuous casting with dual electromagnetic stirrings in mold and final stage of solidification (M-EMS and F-EMS). In the model, the phases of liquid, columnar, and equiaxed were treated separately and the initial growing equiaxed phase, which could move freely with liquid, was regarded as slurry. To obtain the equiaxed grains nucleation and columnar front evolution, the unit tracking method and the columnar front tracking model were built. The model was validated by magnetic induction intensity of stirrer, billet surface temperature, and carbon segregation. The equiaxed phase evolution and the solute transport with effect of fluid flow and grains transport were described in this article. The results show that the equiaxed phase ratio will not increase obviously with higher current intensity of M-EMS, while the negative segregation near the strand surface becomes more serious. The negative segregation zone near the billet center and the center positive segregation come into being with the effect of equiaxed grains sedimentation and liquid thermosolutal flow. It is also found that the liquid solute transport in the F-EMS zone becomes the main factor with higher current intensity rather than the solidification rate, and therefore, the final billet center segregation decreases first and then turns to rise with the current intensity. The optimal current intensities of M-EMS and F-EMS proposed for SWRT82B billet continuous casting are 200 and 400 A, respectively.

  2. Casting of Hearth Plates from High-chromium Steel

    Directory of Open Access Journals (Sweden)

    Drotlew A.

    2014-12-01

    Full Text Available The paper presents the results of studies on the development of manufacturing technologies to cast hearth plates operating in chamber furnaces for heat treatment. Castings made from the heat-resistant G-X40CrNiSi27-4 steel were poured in hand-made green sand molds. The following operations were performed: computer simulation to predict the distribution of internal defects in castings produced by the above mentioned technology with risers bare and coated with exothermic and insulating sleeves, analysis of each variant of the technology, and manufacture of experimental castings. As a result of the conducted studies and analysis it was found that the use of risers with exothermic sleeves does not affect to a significant degree the quality of the produced castings of hearth plates, but it significantly improves the metal yield.

  3. Influence green sand system by core sand additions

    OpenAIRE

    N. Špirutová; J. Beňo; V. Bednářová; J. Kříž; M. Kandrnál

    2012-01-01

    Today, about two thirds of iron alloys casting (especially for graphitizing alloys of iron) are produced into green sand systems with usually organically bonded cores. Separation of core sands from the green sand mixture is very difficult, after pouring. The core sand concentration increase due to circulation of green sand mixture in a closed circulation system. Furthermore in some foundries, core sands have been adding to green sand systems as a replacement for new sands. The goal of this co...

  4. 水平分型大型金属型模具设计及其应用%Design and Application of Large Permanent Casting Mold with Horizontal Parting

    Institute of Scientific and Technical Information of China (English)

    张耀; 梁建忠; 师文琴; 侯建兵; 原建明; 袁际章

    2013-01-01

    介绍了大型复杂铝合金箱体铸件采用水平分型的模具结构设计及铸造工艺的设计,侧重于直浇道正斜度浇注反斜度出型,冒口反斜度出型正斜度补缩的设计,以及通过在普通重力浇注机上增加反压装置的设计,实现了普通浇注机在无顶出油缸情况下完成铸件的出型和顶出.%The structure design and casting process of the large permanent casting mold with the horizontal parting for large and complex Al-alloy housing castings were introduced,focus on the process design with the positive draft angle sprue and the mold open with negative angle,as well as the process design of the mold open with negative draft angle dead head and the feeding with positive angle,by equipping the ordinary gravity filler with counterpressure device to assure that the ordinary filler fulfills the open and ejection without hydrocylinder.

  5. A Comparative Study on Permanent Mold Cast and Powder Thixoforming 6061 Aluminum Alloy and Sicp/6061Al Composite: Microstructures and Mechanical Properties

    Directory of Open Access Journals (Sweden)

    Xuezheng Zhang

    2016-05-01

    Full Text Available Microstructural and mechanical characterization of 10 vol% SiC particles (SiCp reinforced 6061 Al-based composite fabricated by powder thixoforming (PTF was investigated in comparison with the PTF and permanent mold cast (PMC 6061 monolithic alloys. The results reveal that the microstructure of the PMC alloy consists of coarse and equiaxed α dendrites and interdendritic net-like eutectic phases. However, the microstructure of the PTF composite, similar to that of the PTF alloy, consists of near-spheroidal primary particles and intergranular secondarily solidified structures except SiCp, which are distributed in the secondarily solidified structures. The eutectics amount in the PTF materials is distinctly lower than that in the PMC alloy, and the microstructures of the former materials are quite compact while that of the latter alloy is porous. Therefore, the PTF alloy shows better tensile properties than the PMC alloy. Owing to the existence of the SiC reinforcing particles, the PTF composite attains an ultimate tensile strength and yield strength of 230 MPa and 128 MPa, representing an enhancement of 27.8% and 29.3% than those (180 MPa and 99 MPa of the PTF alloy. A modified model based on three strengthening mechanisms was proposed to calculate the yield strength of the PTF composite. The obtained theoretical results were quite consistent with the experimental data.

  6. A Comparative Study on Permanent Mold Cast and Powder Thixoforming 6061 Aluminum Alloy and Sicp/6061Al Composite: Microstructures and Mechanical Properties.

    Science.gov (United States)

    Zhang, Xuezheng; Chen, Tijun; Qin, He; Wang, Chong

    2016-05-24

    Microstructural and mechanical characterization of 10 vol% SiC particles (SiCp) reinforced 6061 Al-based composite fabricated by powder thixoforming (PTF) was investigated in comparison with the PTF and permanent mold cast (PMC) 6061 monolithic alloys. The results reveal that the microstructure of the PMC alloy consists of coarse and equiaxed α dendrites and interdendritic net-like eutectic phases. However, the microstructure of the PTF composite, similar to that of the PTF alloy, consists of near-spheroidal primary particles and intergranular secondarily solidified structures except SiCp, which are distributed in the secondarily solidified structures. The eutectics amount in the PTF materials is distinctly lower than that in the PMC alloy, and the microstructures of the former materials are quite compact while that of the latter alloy is porous. Therefore, the PTF alloy shows better tensile properties than the PMC alloy. Owing to the existence of the SiC reinforcing particles, the PTF composite attains an ultimate tensile strength and yield strength of 230 MPa and 128 MPa, representing an enhancement of 27.8% and 29.3% than those (180 MPa and 99 MPa) of the PTF alloy. A modified model based on three strengthening mechanisms was proposed to calculate the yield strength of the PTF composite. The obtained theoretical results were quite consistent with the experimental data.

  7. Analysis on the Deflection Angle of Columnar Dendrites of Continuous Casting Steel Billets Under the Influence of Mold Electromagnetic Stirring

    Science.gov (United States)

    Wang, Xincheng; Wang, Shengqian; Zhang, Lifeng; Sridhar, Seetharaman; Conejo, Alberto; Liu, Xuefeng

    2016-11-01

    In the current study, the deflection angle of columnar dendrites on the cross section of steel billets under mold electromagnetic stirring (M-EMS) was observed. A mathematical model was developed to define the effect of M-EMS on fluid flow and then to analyze the relationship between flow velocities and deflection angle. The model was validated using experimental data that was measured with a Tesla meter on magnetic intensity. By coupling the numerical results with the experimental data, it was possible to define a relationship between the velocities of the fluid with the deflection angle of high-carbon steel. The deflection angle of high-carbon steel reached maximum values from 18 to 23 deg for a velocity from 0.35 to 0.40 m/s. The deflection angles of low-carbon steel under different EM parameters were discussed. The deflection angle of low-carbon steel was increased as the magnetic intensity, EM force, and velocity of molten steel increased.

  8. Optimization design of a gating system for sand casting aluminium A356 using a Taguchi method and multi-objective culture-based QPSO algorithm

    Directory of Open Access Journals (Sweden)

    Wen-Jong Chen

    2016-04-01

    Full Text Available This article combined Taguchi method and analysis of variance with the culture-based quantum-behaved particle swarm optimization to determine the optimal models of gating system for aluminium (Al A356 sand casting part. First, the Taguchi method and analysis of variance were, respectively, applied to establish an L27(38 orthogonal array and determine significant process parameters, including riser diameter, pouring temperature, pouring speed, riser position and gating diameter. Subsequently, a response surface methodology was used to construct a second-order regression model, including filling time, solidification time and oxide ratio. Finally, the culture-based quantum-behaved particle swarm optimization was used to determine the multi-objective Pareto optimal solutions and identify corresponding process conditions. The results showed that the proposed method, compared with initial casting model, enabled reducing the filling time, solidification time and oxide ratio by 68.14%, 50.56% and 20.20%, respectively. A confirmation experiment was verified to be able to effectively reduce the defect of casting and improve the casting quality.

  9. Vacuum-sealed casting process under pressure

    Institute of Scientific and Technical Information of China (English)

    LI Chen-xi; GUO Tai-ming; WU Chun-jing; WANG Hong

    2006-01-01

    A new casting method, the vacuum-sealed mold casting under pressure, has been developed, and thin wall iron castings with high precision and smooth surface have been produced successfully with this casting method. The experimental results show that the liquid iron has a very excellent filling ability because a high negative pressure is formed in the mold cavity during filling process. The vacuum-sealed mold under pressure has very high compressive strength greater than 650 kPa, which is 3-4 times as high as that of the molds produced by high-pressure molding process or vacuum-sealed molding process.

  10. Analysis of filling process of Ti6Al4V alloy melt poured in permanent mold during centrifugal casting process

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Ti6Al4V hip joint was foundered and the filling process of the melt poured in permanent mould during the centrifugal casting process was analyzed and the mathematical model of the filling process was established. Furthermore, the mathematical model was validated with a wax-model experiment. Calculating results show that the centrifugal field has an important influence on the filling process and the melt fills the mould with variational cross-sectional area and inclined angle. The cross-sectional area is in inverse proportion to the filling speed and its decreasing speed becomes fast with increasing rotating speed. The tangential value of the melt cross-sectional free-surface inclined angle is in direct proportion to the filling speed and the inclined angle increases with the filling length. Change curves of the cross-sectional inclined angle and area were obtained by the wax-model experiment when the rotating speeds were 60, 90 and 120  r/min respectively, which shows that the mathematical model is consistent with the experimental results.

  11. Cast Aluminum Alloy for High Temperature Applications

    Science.gov (United States)

    Lee, Jonathan A.

    2003-01-01

    Originally developed by NASA as high performance piston alloys to meet U.S. automotive legislation requiring low exhaust emission, the novel NASA alloys now offer dramatic increase in tensile strength for many other applications at elevated temperatures from 450 F (232 C) to about 750 F (400 C). It is an ideal low cost material for cast automotive components such as pistons, cylinder heads, cylinder liners, connecting rods, turbo chargers, impellers, actuators, brake calipers and rotors. It can be very economically produced from conventional permanent mold, sand casting or investment casting, with silicon content ranging from 6% to 18%. At high silicon levels, the alloy exhibits excellent dimensional stability, surface hardness and wear resistant properties.

  12. WEAR-RESISTANCE OF CHROMIC CAST IRONS OF EUTECTIC COMPOSITION

    Directory of Open Access Journals (Sweden)

    K. E. Baranovskij

    2009-01-01

    Full Text Available Casting of wear-resistant chrome cast irons in combined molds and iron chills is studied. Application of these ways of casting results in blending of carbides and increasing of hardness of castings.

  13. Effect of Vibrational Modes on Sand Pressure and Pattern Deformation in the EPC Process

    Institute of Scientific and Technical Information of China (English)

    A.Ikenaga; G.S.Cho; K.H.Choe; K.W.Lee

    2004-01-01

    During the EPC (expendable pattern casting) process, one of the essential requirements is to prevent pattern distortion during sand filling and compaction. A new method which vibrates the system in a two-dimensional circular mode has been applied to the EPC process. The molding properties of unbonded sand obtained by this new vibration mode are investigated and compared with those in the one-dimensional vertical mode. For adequate compaction of sand, the circular vibration mode is more effective than the vertical mode. Sand became more fluidized by the circular vibration and the particle pressure coefficient was close to unity. The particle pressure coefficient, which is defined as the ratio of horizontal to vertical sand pressure, is responsible for the effectiveness of sand filling.

  14. Measurement of elastic modulus and evaluation of viscoelasticity of foundry green sand

    Directory of Open Access Journals (Sweden)

    Qingchun XIANG

    2004-08-01

    Full Text Available Elastic modulus is an important physical parameter of molding sand; it is closely connected with molding sand's properties. Based on theories of rheology and molding sand microdeformation, elastic modulus of molding sand was measured and investigated using the intelligent molding sand multi-property tester developed by ourselves. The measuring principle was introduced. Effects of bentonite percentage and compactibility of the molding sand were experimentally studied. Furthermore, the essential viscoelastic nature of green sand was analyzed. It is considered that viscoelastic deformation of molding sand consists mainly of that of Kelvin Body of clay membrane, and elastic modulus of molding sand depends mainly on that of Kelvin Body which is the elastic component of clay membrane between sands. Elastic modulus can be adopted as one of the property parameters, and can be employed to evaluate viscoelastic properties of molding sand.

  15. Measurement of elastic modulus and evaluation of viscoelasticity of foundry green sand

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    Elastic modulus is an important physical parameter of molding sand; it is closely connected with molding sand's properties. Based on theories of rheology and molding sand microdeformation, elastic modulus of molding sand was measured and investigated using the intelligent molding sand multi-property tester developed by ourselves. The measuring principle was introduced. Effects of bentonite percentage and compactibility of the molding sand were experimentally studied. Furthermore, the essential viscoelastic nature of green sand was analyzed. It is considered that viscoelastic deformation of molding sand consists mainly of that of Kelvin Body of clay membrane, and elastic modulus of molding sand depends mainly on that of Kelvin Body which is the elastic component of clay membrane between sands. Elastic modulus can be adopted as one of the property parameters, and can be employed to evaluate the viscoelastic properties of molding sand.

  16. Reuse of waste foundry sand through interaction with sodium silicate binder; Reutilizacao da areia descartada da fundicao, a partir da sua interacao com agente ligante silicato de sodio

    Energy Technology Data Exchange (ETDEWEB)

    Souza, J.C.; Chinelatto, A.S.A.; Chinelatto, A.L., E-mail: josi3souza@gmail.com [Universidade Estadual de Ponta Grossa (UEPG), PR (Brazil); Oliveira, I.L. [Universidade Tecnologica Federal do Parana (UTFPR), Ponta Grossa, PR (Brazil)

    2012-07-01

    Green sand molds are used in metal casting process. However, after heating, activated bentonite present in green sand lose the binding properties, and part of the foundry sand has to be discarded from the process. The ABNT NBR 15.984/2011 establishes the management of waste foundry sand (WFS) avoiding disposal in landfills. The objective of this work was to investigate the possibility of reusing the WFS from the study of their interaction with sodium silicate binder. Studies with silica sand and new green sand was performed to compare the results obtained with the WFS. The characterizations of the samples were performed by measures the compressive strength, X-ray diffraction, optical microscopy and scanning electron microscopy. The results showed that there is interaction of the sodium silicate with the WFS as well as with the silica sand and green sand. (author)

  17. CENTRIFUGAL CASTING MACHINE

    Science.gov (United States)

    Shuck, A.B.

    1958-04-01

    A device is described that is specifically designed to cast uraniumn fuel rods in a vacuunn, in order to obtain flawless, nonoxidized castings which subsequently require a maximum of machining or wastage of the expensive processed material. A chamber surrounded with heating elements is connected to the molds, and the entire apparatus is housed in an airtight container. A charge of uranium is placed in the chamber, heated, then is allowed to flow into the molds While being rotated. Water circulating through passages in the molds chills the casting to form a fine grained fuel rod in nearly finished form.

  18. Mold Materials For Permanent Molding of Aluminum Alloys

    Energy Technology Data Exchange (ETDEWEB)

    John F Wallace; David Schwam; Wen Hong dxs11@po.cwru.edu

    2001-09-14

    A test that involves immersion of the potential mod materials for permanent molds has been developed that provides a thermal cycle that is similar to the experienced during casting of aluminum in permanent molds. This test has been employed to determine the relative thermal fatigue resistance of several different types of mold materials. Four commercial mold coatings have been evaluated for their insulating ability, wear resistance and roughness. The results indicate that composition and structure of the mold materials have considerable effect on their thermal fatigue cracking behavior. Irons with a gray iron structure are the most prone to thermal fatigue cracking followed by compacted graphite irons with the least thermal fatigue cracking of the cast irons experienced by ductile iron. The composition of these various irons affects their behavior.

  19. Emission of organic compounds from mould and core binders used for casting iron, aluminium and bronze in sand moulds

    DEFF Research Database (Denmark)

    Tiedje, Niels Skat; Crepaz, Rudolf; Eggert, Torben;

    2010-01-01

    of binders was monitored when cast iron, bronze and aluminium was poured in the moulds. Binder degradation was measured by collecting off gasses in a specially designed ventilation hood at a constant flow rate. Samples were taken from the ventilation system and analysed for hydrocarbons and CO content...... compositions were tested. A test method that provides uniform test conditions is described. The method can be used as general test method to analyse off gasses from binders. Moulds containing a standard size casting were produced and the amount and type of organic compounds resulting from thermal degradation...

  20. PRODUCTION OF CAST DIE INSERTS FOR HOT STRAINING

    Directory of Open Access Journals (Sweden)

    L. R. Dudetskaja

    2009-01-01

    Full Text Available The paper discusses distinctive design features of casting molds and technological aspects of producing cast inserts from 5ХНМЛ pressed steel. The designs of long-life metal shell molds are described. They ensure saving of molding material, increase of accepted material and improvement of quality of castings.

  1. 用于连铸结晶器的热电偶非标设计、安装和检测%Non-Standard Design,Installation and Testing of Thermocouple for Continuous Casting Mold

    Institute of Scientific and Technical Information of China (English)

    李同彬; 康新

    2014-01-01

    为了准确、可靠、持久、经济地获得连铸结晶器铜板的温度分布,把热传导理论计算和实际经验值相结合,优化设计热电偶在连铸结晶器铜板上的位置;针对连铸结晶器的现场恶劣环境,提出热电偶的各个部件及其制作必须达到的指标要求及相应的非标设计;依据结晶器热电偶阵列安装调试的经验,总结出结晶器铜板上热电偶阵列的安装调试和维护检测等工艺技术方法。较好地解决了连铸结晶器温度检测系统现场热电偶容易损坏、维护难、成本高、实用性差等工程技术问题。研究不仅对连铸设备的改进和维护具有很好的参考价值,而且在宝钢、河北钢铁和土耳其等国内外企业取代铠装热电偶中获得成功应用。%In order to obtain accurately,reliably,durably and economically the temperature distribution in a continuous casting mold,the location of thermocouples in a continuous casting mold was optimized based on heat conduction theory and practical experience data. Aiming at the harsh environment under which a continuous casting mold usually works,the technical indexes for every part of the thermocouple and its fabrication is proposed,together with the non-standard design of thermocouple. Based on the experiences of installation and debugging of thermocouple array in mold,the corresponding technology methods of installation, debugging, maintenance and detection for thermocouple array in copper mold were proposed. The engineering technology problems of easy to damage,difficult to maintain,high cost,and poor practicability of thermocouple array in temperature measuring system of continuous casting mold were solved efficiently in this paper. The present results were not only good references for the improvement and maintain of continuous casting devices but also had gained success application in domestic and international enterprises such as Baosteel,Hebei steel and Turkey steel

  2. Mold Allergy

    Science.gov (United States)

    ... Ask the Allergist Health Professionals Partners Media Donate Allergies Mold Allergy What Is a Mold Allergy? If you have an allergy that occurs over ... basement. What Are the Symptoms of a Mold Allergy? The symptoms of mold allergy are very similar ...

  3. 凸轮轴铁型覆砂铸造自动化生产线的设计%Design of Automatic Production Line of Iron-type Coated Sand for Camshaft Castings

    Institute of Scientific and Technical Information of China (English)

    朱焕立; 刘许亮

    2014-01-01

    根据凸轮轴的工艺和生产特点,成功设计出凸轮轴铁型覆砂铸造自动化生产线,提高了凸轮轴的生产效率,同时实现高产能、低排放,并为铁型覆砂铸造技术的推广应用奠定了基础.%According to the production process characteristics and the structure characteristics of the camshaft,an automated production line of iron-type coated sand casting process for camshaft castings was successfully designed to improve the efficiency of production camshaft with high productivity and low emissions,which lay the foundation for the popularization and application of iron-type coated sand casting process.

  4. Microstructure And Mechanical Properties Of An Al-Zn-Mg-Cu Alloy Produced By Gravity Casting Process

    Directory of Open Access Journals (Sweden)

    Saikawa S.

    2015-06-01

    Full Text Available High-strength aluminum alloy are widely used for structural components in aerospace, transportation and racing car applications. The objective of this study is to enhance the strength of the Al-Zn-Mg-Cu alloy used for gravity casting process. All alloys cast into stepped-form sand mold (Sand-mold Casting; SC and Y-block shaped metal mold(Permanent mold Casting; PC C and then two –step aged at 398-423 K after solution treated at 743 K for 36 ks. The tensile strength and total elongation of the two-step aged SC alloys were 353-387 MPa and about 0.4% respectively. This low tensile properties of the SC alloys might be caused by remaining of undissolved crystallized phase such as Al2CuM, MgZn2 and Al-Fe-Cu system compounds. However, good tensile properties were obtained from PC alloys, tensile strength and 0.2% proof stress and elongation were 503-537 MPa, 474-519 MPa and 1.3-3.3%.

  5. Technological and ecological studies of moulding sands with new inorganic binders for casting of non-ferrous metal alloys

    Directory of Open Access Journals (Sweden)

    I. Izdebska-Szanda

    2011-01-01

    Full Text Available The article presents the results of studies which form a part of broader research programme executed under the project POIG.01.01.02-00-015/09 "Advanced materials and technologies".In a concise manner, the results of studies on the effect of chemical modification of inorganic binders on the technological properties ofmoulding sands containing these binders were presented.Special attention was paid to the effect of modification of inorganic binders on their thermal destruction behaviour in the range of pouringtemperatures of the non-ferrous metals and their alloys.Also the results of comparative studies of the thermal emission of toxic gases and odours from moulding sands with new inorganic andorganic binders were discussed.

  6. Application of Numerical Simulation Technique to Casting Process of Valve Block

    Institute of Scientific and Technical Information of China (English)

    MI Guo-fa; LIU Xiang-yu; WANG Kuang-fei; FU Heng-zhi

    2009-01-01

    The numerical simulation technique was applied to the casting process of a valve-type part. The mold-filling and solidification stages of the casting were numerically analyzed. The filling behavior, solidification sequence,and thermal stress distribution were reproduced and the possible defects, such as cold shut and shrinkage, were predicted. Based on the simulation result, the double-gating system was replaced by a single-gating system. Meanwhile,the chills were used to regulate the solidification sequence of casting. To eliminate the cracks in the casting, the sand core was converted into a canulate one. By modifying the original process, the defects were eliminated and the casting with good quality was obtained.

  7. Materials for Advanced Ultrasupercritical Steam Turbines Task 4: Cast Superalloy Development

    Energy Technology Data Exchange (ETDEWEB)

    Thangirala, Mani

    2015-09-30

    demonstrated the importance of proper heat treat cycles for Homogenization, and Solutionizing parameters selection and implementation. 3) Step blocks casting of Nimonic 263: Carried out casting solidification simulation analysis, NDT inspection methods evaluation, detailed test matrix for Chemical, Tensile, LCF, stress rupture, CVN impact, hardness and J1C Fracture toughness section sensitivity data and were reported. 4) Centrifugal Casting of Haynes 282, weighing 1400 lbs. with hybrid mold (half Graphite and half Chromite sand) mold assembly was cast using compressor casing production tooling. This test provided Mold cooling rates influence on centrifugally cast microstructure and mechanical properties. Graphite mold section out performs sand mold across all temperatures for 0.2% YS; %Elongation, %RA, UTS at 1400°F. Both Stress-LMP and conditional Fracture toughness plots data were in the scatter band of the wrought alloy. 5) Fundamental Studies on Cooling rates and SDAS test program. Evaluated the influence of 6 mold materials Silica, Chromite, Alumina, Silica with Indirect Chills, Zircon and Graphite on casting solidification cooling rates. Actual Casting cooling rates through Liquidus to Solidus phase transition were measured with 3 different locations based thermocouples placed in each mold. Compared with solidification simulation cooling rates and measurement of SDAS, microstructure features were reported. The test results provided engineered casting potential methods, applicable for heavy section Haynes 282 castings for optimal properties, with foundry process methods and tools. 6) Large casting of Haynes 282 Drawings and Engineering FEM models and supplemental requirements with applicable specifications were provided to suppliers for the steam turbine proto type feature valve casing casting. Molding, melting and casting pouring completed per approved Manufacturing Process Plan during 2014 Q4. The partial valve casing was successfully cast after casting methods were

  8. Investigation of gating parameter, temperature and density effects on mold filling in the lost foam casting (LFC process by direct observation method

    Directory of Open Access Journals (Sweden)

    A. Sharifi

    2013-03-01

    Full Text Available Mold filling sequence of A356 aluminum alloy was investigated with the aid of direct observation method (photography method. The results show that increase of the foam density causes decrease of the filling rate and increase of the filling time. Foam density has more pronounced effect on mold filling rate rather than pouring temperature. Gating design also affects the profile of molten metal advancement in the mold. The results show that the higher filling rate was obtained with G2 gating than with other gating system. Regarding the mold filling pattern, G3 gating system has more effective contact interface than G2 gating system and has lower filling time. Filling time in G4 gating and G1 gating system are nearly the same.

  9. In-situ surface hardening of cast iron by surface layer metallurgy

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, Sebastian F., E-mail: s.fischer@gi.rwth-aachen.de [Foundry Institute, RWTH Aachen University, Intzestraße 5, 52072 Aachen (Germany); Muschna, Stefan, E-mail: smuschna@yahoo.de [Foundry Institute, RWTH Aachen University, Intzestraße 5, 52072 Aachen (Germany); Bührig-Polaczek, Andreas, E-mail: sekretariat@gi.rwth-aachen.de [Foundry Institute, RWTH Aachen University, Intzestraße 5, 52072 Aachen (Germany); Bünck, Matthias, E-mail: m.buenck@access-techcenter.de [Access e.V., Intzestraße 5, 52072 Aachen (Germany)

    2014-10-06

    Abrasive wear is a serious problem in many cast iron castings used in industry. To minimize failure and repair of these components, different strategies exist to improve their surface microhardness thus enhancing their wear resistance. However, most of these methods lead to very brittle and/or expensive castings. In the current work a new method for surface hardening is presented which utilizes surface layer metallurgy to generate in-situ a boron-enriched white cast iron surface layer with a high microhardness on a gray cast iron casting. To do this, sand molds are coated with a ferroboron suspension and cast with a cast iron melt. After solidification, a 100–900 µm thick layer of boron-enriched ledeburite is formed on the surface of the casting which produces an increase in the average microhardness from 284 HV{sub 0.1}±52 HV{sub 0.1} to 505 HV{sub 0.1}±87 HV{sub 0.1}. Analyses of the samples' core reveal a typical cast iron microstructure which leads to the conclusion that the coating mainly affects the castings' surface. By varying the grain size of the ferroboron powder in the coatings, it is shown that a powder size ≤100 µm is most suitable to create a boron-enriched ledeburite surface layer possessing high hardness values.

  10. Computation of Electromagnetic Field in a Novel Mold with Combination of Alternative and Static Electromagnetic Fields for Continuous Casting%电磁连铸复合式结晶器内电磁场的数值模拟

    Institute of Scientific and Technical Information of China (English)

    钱忠东; 李本文; 赫冀成; 贾光霖

    2001-01-01

    通过简化条件下的理论推导和实验测试分别对交变磁场和静磁场计算方法进行了验证,在此基础上对电磁连铸复合式结晶器内的磁场进行计算,并分析了有无结晶器条件下两种磁场的相互影响分析结果表明,该项技术是可行的%The electromagnetic fields in a novel mold with hybrid electromagnetic fields with combination of alternative and static electromagnetic fields for continuous casting were simulated numerically. The finite difference time domain(FDTD) method was used to simulate the alternative electromagnetic field and the finite difference method was used to simulate the static electromagnetic field. Experiments were performed to validate the verification of the finite difference analysis for static electromagnetic field and the computational results are proved in excellent agreement with the experimental results. The FDTD method for alternative electromagnetic field was validated by analytical solutions of a simplified one-dimensional physical model. The reasonable mutual positions for the two electromagnetic fields with and without mold were obtained based on the analysis of numerical simulation. The novel mold with hybrid electromagnetic fields is proved acceptable in the practice.

  11. 连铸结晶器铜板电沉积Ni-Co-Mo技术的研究%The Research on Technology of Electrodeposition of Ni-Co-Mo Alloy for Continuous Casting Mold

    Institute of Scientific and Technical Information of China (English)

    吕春雷; 侯峰岩; 谭兴海; 王庆新; 郁祖湛

    2012-01-01

    The continuous casting mold is very important part in continuous casting process. The continuous casting mold needs great wear resistance and great corrosion resistance for it is eroded under molten steel in a long time. The influence of content of sodium molybdate and current density on the content of coating, the hardness of coating, the structure of coating, the current efficiency of hath and corrosion resistance is studied. The mechanism of electrodepositing Ni-Co-Mo alloy is studied through polarization curves and cyclic voltammeter curves after the process is confirmed. The morphology and composition of coating is tested by SEM and EDX. The wear resistance of coating is studied by wear testing machine.%结晶器是钢材连铸技术过程中非常重要的组成部件.结晶器铜板长时间经受钢水冲刷,必须具有很高的耐摩擦磨损、耐腐蚀性能.现研究了钼酸钠含量、电流密度对结晶器铜板电沉积Ni-Co-Mo合金的影响,并对镀层的成分、硬度、耐腐蚀性能进行了测试.在确定镀液成分后通过极化曲线和循环伏安法测试研究了电沉积Ni-Co-Mo合金的机理.用SEM、EDX方法研究了镀层形貌、成分.利用磨损试验机研究了镀层的耐磨损性能.

  12. Application of orthogonal experimental design and Tikhonov regularization method for the identification of parameters in the casting solidification process

    Institute of Scientific and Technical Information of China (English)

    Dashan SUI; Zhenshan CUI

    2009-01-01

    The inverse heat conduction method is one of methods to identify the casting simu-lation parameters. A new inverse method was presented according to the Tikhonov regularization theory. One appropriate regularized functional was established, and the functional was solved by the sensitivity coefficient and Newton-Raphson iteration method. Moreover, the orthogonal experimental design was used to estimate the ap-propriate initial value and variation domain of each variable to decrease the number of iteration and improve the identification accuracy and efficiency. It illustrated a detailed case of AI SiTMg sand mold casting and the temperature measurement ex- periment was done. The physical properties of sand mold and the interfacial heat transfer coefficient were identified at the meantime. The results indicated that the new regularization method was efficient in overcoming the ill-posedness of the inverse heat conduction problem and improving the stability and accuracy of the solutions.

  13. Recent Development of Iron Casting Production Techniques%铸铁生产技术新拓展

    Institute of Scientific and Technical Information of China (English)

    章舟; 徐永明; 邓宏运

    2011-01-01

    Synthesis cast iron, ductile iron, ADI ductile iron and CGI have different requirement on raw materials and melting process. Resin sand, EPS system, V process and permanent mold with sand have their own techniques. With carefully and alternate thinking, based on different requirements, the casting type and molding process can be extended and transferred.%合成铸铁、球墨铸铁、ADI球铁及蠕墨铸铁对炉料和熔炼工艺要求各不相同;树脂砂、消失模(实型铸造)、V法及金属型覆砂等造型工艺各有特点。只要改变思路,掌握工艺特点,可以进行品种转换及拓展。

  14. Application of Ester Cured Alkaline Phenolic Resin Self-Curing Sand to Pump Castings%酯硬化碱性酚醛树脂自硬砂在泵类铸件上的应用

    Institute of Scientific and Technical Information of China (English)

    刘军; 邹英杰; 张启良

    2012-01-01

    The advantages of ester cured alkaline phenolic resin self-hardening sand in production of cast steel were presented. Several self-hardening sand technologies were compared, and the main technological problem of domestic alkaline phenolic resin self-hardening sand was pointed out. The production process of alkaline phenolic resin self-hardening sand was discussed. The application of ester cured alkaline phenolic resin self-hardening sand to production of carbon steel water pump and stainless steel castings was presented, and some production experience was summarized.%介绍了酯硬化碱性酚醛树脂自硬砂生产铸钢件的优势,对常用的自硬砂工艺进行了对比,指出国内碱酚醛树脂自硬砂存在的主要技术问题.论述了酯硬化碱性酚醛树脂自硬砂的生产工艺.详细介绍了酯硬化碱性酚醛树脂自硬砂在生产水泵碳钢、不锈钢类铸件上的应用情况,以及生产中总结出的一些经验.对应用酯硬化碱性酚醛树脂自硬砂的铸造企业提供一些借鉴.

  15. Engineered Cooling Process for High Strength Ductile Iron Castings

    Science.gov (United States)

    Lekakh, Simon N.; Mikhailov, Anthony; Kramer, Joseph

    Professor Stefanescu contributed fundamentally to the science of solidification and microstructural evolutions in ductile irons. In this article, the possibility of development of high strength ductile iron by applying an engineered cooling process after casting early shake out from the sand mold was explored. The structures in industrial ductile iron were experimentally simulated using a computer controlled heating/cooling device. CFD modeling was used for process simulation and an experimental bench scale system was developed. The process concept was experimentally verified by producing cast plates with 25 mm wall thickness. The tensile strength was increased from 550 MPa to 1000 MPa in as-cast condition without the need for alloying and heat treatment. The possible practical applications were discussed.

  16. Technetium, Iodine, and Chromium Adsorption/Desorption Kd Values for Vadose Zone Pore Water, ILAW Glass, and Cast Stone Leachates Contacting an IDF Sand Sequence

    Energy Technology Data Exchange (ETDEWEB)

    Last, George V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Snyder, Michelle M.V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Um, Wooyong [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Stephenson, John R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Leavy, Ian I. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Strickland, Christopher E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Bacon, Diana H. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Qafoku, Nikolla [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Serne, R. Jeffrey [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-11-01

    Performance and risk assessments of immobilized low-activity waste (ILAW) at the Integrated Disposal Facility (IDF) have shown that risks to groundwater are quite sensitive to adsorption-desorption interactions occurring in the near- and far-field environment. These interactions between the underlying sediments and the contaminants present in the leachates that descend from the buried glass, secondary waste grouts, and potentially Cast Stone low-activity waste packages have been represented in these assessments using the contaminant distribution coefficient (Kd) construct. Some contaminants (99Tc, 129I, and Cr) present in significant quantities in these wastes have low Kd values and tend to drive risk to public health and the environment. Relatively small changes in the Kd value can cause relatively large changes in the retardation factor. Thus, even relatively small uncertainty in the Kd value can result in a relatively large uncertainty in the risk determined through performance assessment modeling. The purpose of this study is to further reduce the uncertainty in Kd values for 99Tc, iodine (iodide and iodate), and Cr (chromate; CrO42-) by conducting systematic adsorption-desorption experiments using actual sand-dominated Hanford formation sediments from beneath the IDF and solutions that closely mimic Hanford vadose zone pore water and leachates from Cast Stone and ILAW glass waste forms. Twenty-four batch and 21 flow-through column experiments were conducted, yielding 261 Kd measurements for these key contaminants, and contributing to our understanding for predicting transport from wastes disposed to the IDF. While the batch Kd methodology is not well-suited for measuring Kd values for non-sorbing species (as noted by the U.S. Environmental Protection Agency), the batch Kd results presented here are not wholly inconsistent with the column Kd results, and could be used for sensitivity purposes. Results from the column experiments are consistent with the best

  17. Construction and analysis of dynamic solidification curves for non-equilibrium solidification process in lost-foam casting hypo-eutectic gray cast iron

    Directory of Open Access Journals (Sweden)

    Ming-guo Xie

    2017-05-01

    Full Text Available Most lost-foam casting processes involve non-equilibrium solidification dominated by kinetic factors, while construction of a common dynamic solidification curve is based on pure thermodynamics, not applicable for analyses and research of non-equilibrium macro-solidification processes, and the construction mode can not be applied to non-equilibrium solidification process. In this study, the construction of the dynamic solidification curve (DSC for the non-equilibrium macro-solidification process included: a modified method to determine the start temperature of primary austenite precipitation (TAL and the start temperature of eutectic solidification (TES; double curves method to determine the temperature of the dendrite coherency point of primary austenite (TAC and the temperature of eutectic cells collision point (TEC; the “technical solidus” method to determine the end temperature of eutectic reaction (TEN. For this purpose, a comparative testing of the non-equilibrium solidification temperature fields in lost-foam casting and green sand mold casting hypoeutectic gray iron was carried out. The thermal analysis results were used to construct the DSCs of both these casting methods under non-equilibrium solidification conditions. The results show that the transformation rate of non-equilibrium solidification in hypoeutectic gray cast iron is greater than that of equilibrium solidification. The eutectic solidification region presents a typical mushy solidification mode. The results also indicate that the primary austenite precipitation zone of lost-foam casting is slightly larger than that of green sand casting. At the same time, the solid fraction (fs of the dendrite coherency points in lost-foam casting is greater than that in the green sand casting. Therefore, from these two points, lost-foam casting is more preferable for reduction of shrinkage and mechanical burnt-in sand tendency of the hypoeutectic gray cast iron. Due to the fact that

  18. Dominância coronariana em corações humanos em moldes por corrosão Coronary dominance patterns in the human heart investigated by corrosion casting

    Directory of Open Access Journals (Sweden)

    Décio Cavalet Soares Abuchaim

    2009-12-01

    Full Text Available OBJETIVO: Esse trabalho tem como objetivo analisar os padrões de dominância circulatória de corações humanos, o número de ramos que a artéria coronária direita fornece ao ventrículo esquerdo, o número de ramos que a artéria coronária esquerda fornece ao direito e a presença de anastomoses intercoronarianas, com sua localização e frequência. MÉTODOS: Foram produzidos 25 moldes de corações submetidos à instilação de acrílico colorido e posterior corrosão com ácido clorídrico, no Laboratório de Cirurgia Experimental da FURB. Peças com lesões e cicatrizes não foram usadas. RESULTADOS: Os corações pertenciam a indivíduos de ambos os sexos, sendo 17 (68% de indivíduos do sexo masculino, com idade média de 40,2 anos (15 a 70 anos. A dominância direita ocorreu em 18 (72% peças, com 1, 2, 3 e 4 ramos em 2, 14, 2 e 1 moldes, respectivamente; a dominância esquerda foi observada em 5 (20% casos, com 1 ramo em 4 moldes e 2 em 1 molde; e a dominância balanceada foi verificada em 2 (8% moldes. Houve diferença significativa entre a dominância direita e esquerda (α > 5%, direita e balanceada (α > 5% e sem significância entre esquerda e balanceada (α OBJECTIVES: The aim of this work was to analyze the dominance patterns of the circulation of the human heart, the number of branches from the right coronary artery to the left ventricle, the number of branches from the left coronary artery to the right ventricle and the frequency and location of intercoronary anastomoses. METHODS: Casts were made of 25 hearts by the injection of colored acrylic resin and subsequent corrosion using hydrochloric acid at the experimental surgery laboratory of Furb. Specimens with lesions or scars were discarded. RESULTS: The hearts, from both men (17 - 68% and women (8 - 32%, had a mean age of 40.2 (15 to 70 years-old. Right dominance occurred in 18 (72% subjects, with 1, 2, 3 and 4 branches leading to the left ventricle in 2, 14, 2 and 2

  19. Theoretical Analysis of the Solidification of Aluminum Alloy Billet in Air-Slip DC Mold

    Institute of Scientific and Technical Information of China (English)

    于赟; 马乃恒; 许振明; 李建国

    2004-01-01

    Based on the heat transfer analysis of Air-Slip DC mold, a numerical model was presented to study the quantitative relationships between critical solidification layer and casting rate, pouring temperature and mold cooling ability etc. The analytical results show that the Air-Slip mold heat transfer condition plays important roles on choices of a casting rate and the pouring temperature, and that the product of billet diameter and casting rate is a certain constant under a certain condition of the mold.

  20. RESEARCH OF GAS-FORMING ABILITY OF THE MATERIALS USED AT DEVELOPMENT OF DIVIDING COVERINGS FOR THE MOLDS OF CASTING OF ALUMINUM ALLOYS UNDER PRESSURE

    Directory of Open Access Journals (Sweden)

    A. M. Mihaltsov

    2012-01-01

    Full Text Available The methods of carrying out of experiments by determination of gas creating ability of different materials which are of interest from the point of view of molding of aluminum alloys under pressure are given and described, and the results of research are presented as well.

  1. Effect of Technological Parameters on the Quality and Dimensional Accuracy of Castings Manufactured by Patternless Process Technology

    Directory of Open Access Journals (Sweden)

    Krivoš E.

    2014-10-01

    Full Text Available Submitted article deals with the effect of selected technological parameters on the quality and dimensional accuracy of prototype castings made by Patternless process technology. During experiments were used two types of molding compounds (foamed gypsum and compound based on silica sand and resin. Experiments were focused on optimization of cutting parameters in terms of efficiency, accuracy and possibilities to minimize tool wear. Article deals also with the dimensional and shape accuracy of the castings made by Z-Cast technology. The main aim of the research is to optimize Patternless process technology to such an extent, that achieved dimensional and shape accuracy will be comparable to castings made by the Z-Cast technology.

  2. Manufacturing Methods for Process Effects on Aluminum Casting Allowables

    Science.gov (United States)

    1985-03-01

    aluminum alloy A356 ingots were melted in a silicon Scarbide crucible and held at 1350F. Flux was added, and the oxides were Sskim~med off the...1REFERENCES 1. Lemon, R.C., and Hunsicker, H.Y., "New Aluminum Permanent Mold Casting Alloys C355 and A356 ," Aluminum Company of America, May 1956. 2... A356 ," Aluminum Company of America, May 1956. Lipson, S., "Effect of Section Thickness on the Tensile Properties of Thin- Section Aluminum Alloy Sand

  3. Energy-Saving Melting and Revert Reduction Technology (E-SMARRT): Lost Foam Thin Wall - Feasibility of Producing Lost Foam Castings in Aluminum and Magnesium Based Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Fasoyinu, Yemi [CanmetMATERIALS; Griffin, John A. [University of Alabama - Birmingham

    2014-03-31

    With the increased emphasis on vehicle weight reduction, production of near-net shape components by lost foam casting will make significant inroad into the next-generation of engineering component designs. The lost foam casting process is a cost effective method for producing complex castings using an expandable polystyrene pattern and un-bonded sand. The use of un-bonded molding media in the lost foam process will impose less constraint on the solidifying casting, making hot tearing less prevalent. This is especially true in Al-Mg and Al-Cu alloy systems that are prone to hot tearing when poured in rigid molds partially due to their long freezing range. Some of the unique advantages of using the lost foam casting process are closer dimensional tolerance, higher casting yield, and the elimination of sand cores and binders. Most of the aluminum alloys poured using the lost foam process are based on the Al-Si system. Very limited research work has been performed with Al-Mg and Al-Cu type alloys. With the increased emphasis on vehicle weight reduction, and given the high-strength-to-weight-ratio of magnesium, significant weight savings can be achieved by casting thin-wall (≤ 3 mm) engineering components from both aluminum- and magnesium-base alloys.

  4. Low-cycle Fatigue Behavior of Permanent-mold Cast Al-Si-Cu-Er Alloy%金属型铸造Al-Si-Cu-Er合金的低周疲劳行为

    Institute of Scientific and Technical Information of China (English)

    吴伟; 王爽; 吕伟; 车欣

    2011-01-01

    通过在不同外加总应变幅下进行应变控制的室温低周疲劳试验,探讨了金属型铸造A1-Si-Cu-Er合金的疲劳变形和断裂行为.结果表明,在低周疲劳加载下,金属型铸造Al-Si-Cu-Er合金表现为循环应变硬化、循环稳定;金属型铸造Al-Si-Cu-Er合金的弹性应变幅、塑性应变幅与疲劳断裂时的载荷反向周次之间的关系可分别用Basquin和Coffin-Manson公式描述;金属型铸造Al-Si-Cu-Er合金在低周疲劳加载条件下,裂纹均以穿晶方式萌生于试样表面,并以穿晶方式扩展.%The fatigue deformation and fracture behavior of permanent-mold cast Al-Si-Cu-Er alloy were investigated by low-cycle fatigue test at room temperature under different total strain amplitudes. The results show that permanent-mold cast Al-Si-Cu-Er alloy exhibits cyclic strain hardening and stable cyclic stress response during fatigue deformation, which mainly depend on the imposed total strain. The relation between elastic strain amplitude, plastic strain amplitude and reversals to failure can be described by Coffin-Manson and Basquin equations,respectiveiy. In addition, the fatigue cracks initiate at the free surface of fatigue specimens and propagate in a transgranular mode under low-cycle fatigue.

  5. Scientific paper zircon-based coating for the applications in Lost Foam casting process

    Directory of Open Access Journals (Sweden)

    Prstić Aurel

    2012-01-01

    Full Text Available In this work, a possibility to develop a new zircon-based refractory coating for casting applications was investigated. Optimization of the coating composition with controlled rheological properties was attained by application of different coating components, particularly by application of a new suspension agent and by alteration of coating production procedure. Zircon powder with particle size of 25x10-6 m was used as filler. The zircon sample was investigated by means of the following methods: X-ray diffraction analysis, diffraction thermal analysis and polarized microscope. The shape and grain size were analyzed by means of the PC program package OZARIA 2.5. It was shown that application of this type of water-alcohol-based coating had a positive influence on surface quality, structural and mechanical properties of the castings of cast iron obtained by pouring into sand molds by means of the expandable patterns method (Lost Foam casting process.

  6. Emprego de uma lama com caráter refratário para o processo de fundição odontológica Use of a refractory slurry characteristic in mold casting

    Directory of Open Access Journals (Sweden)

    Heitor PANZERI

    1998-07-01

    Full Text Available A utilização de novos materiais, especialmente aqueles metálicos, tem sido uma constante na odontologia. Graças às necessidades da indústria no desenvolvimento de produtos cada vez com maior resistência, principalmente à corrosão, a prótese tem-se beneficiado com um número elevado de ligas metálicas excelentes. Para atender a necessidade de conformar as ligas em restaurações ou aparelhos próprios à nossa profissão, devem ser desenvolvidos refratários para estas ligas. Este é o caso da proposta de usar uma lama refratária como molde para confecção da fundição. A lama proposta, além de servir aos propósitos, tem-se mostrado capaz de oferecer melhor acabamento da liga.The use of new materials, particularly metal alloys, has been a constant trend in Dentistry. The industrial need to develop products with greater resistance to corrosion has benefited prosthodontics with a large number of excellent metallic alloys. In order to adapt such alloys to dental restorations or devices, refractory materials ought to be developed. That is the aim of using slurry as a mold in the casting process, which also makes it possible to obtain surfaces with improved finish.

  7. The Possibility of Using Ca-bentonite for Green Molding Sand%湿型砂使用钙基膨润土的可能性

    Institute of Scientific and Technical Information of China (English)

    于震宗

    2012-01-01

    总结归纳了钠化膨润土的优缺点;综述了型砂抗夹砂性能试验情况,认为钠化处理膨润土确实能提高型砂的抗夹砂性,型砂加糊精、淀粉、重油和优质煤粉都能够提高抗夹砂性;为简化旧砂再生过程,建议用优质钙基膨润土替代钠化膨润土.%The advantages and disadvantages of sodium-ionized bentonite were summarized. The test situation of the anti-scabbing property of moulding sand was described. It was considered that the sodium-treated bentonite could surely improve the anti -scabbing property of moulding sand; and adding dextrin, starch, heavy oil and high quality coal dust also could improve anti-scabbing property. In order to simplify the reclamation process of the returned sand, it was suggested to use high quality calcium base bentonite as the substitute for the sodium-ionized bentonite.

  8. Analysis of Failure and Solving Measures of Grinding Ball in the Permanent Mold Casting%金属型铸造磨球失圆失效的分析与解决措施

    Institute of Scientific and Technical Information of China (English)

    史正兴; 王志熙; 刘彦民; 杨永福; 秦俊敏

    2013-01-01

    Out-of-round is one of the failure types of grinding ball in the metal mold casting besides of abrasion and fragmentation failure,which has two types of the shape of steamed bread and pear.Microstructure defects,appearance defects during casting and grinding during working process are responsible for the failure.Through refining molten iron,changing geometric shape of grinding ball and standard specification of polishing,the out-of-round defects of the grinding ball can be eliminated.%失圆是金属型铸造磨球除研磨失效、破碎失效外的另一种失效形式,常表现为两种形状:馒头状和鸭梨状.失圆主要原因包括铸造组织缺陷、外形缺陷和后期修磨等,可以通过铁水精炼、改变磨球几何外形和规范修磨工艺等措施解决.

  9. A TWO-PHASE FLOW MODEL FOR SIMULATING AIR ENTRAPMENT DURING MOLD FILLING OF HIGH PRESSURE DIE CASTING PROCESS%应用两相流模型模拟压铸充型过程的卷气现象

    Institute of Scientific and Technical Information of China (English)

    李帅君; 熊守美; Mei Li; John Allison

    2009-01-01

    通过对压铸充型过程中卷气缺陷形成机理的分析,认为型腔中空气的流动以及与金属液之间的相互作用是形成卷气现象的主要原因.为了考虑型腔中空气的流动,采用了一种不可压缩两相流数学模型来模拟压铸充型过程的卷气现象.通过计算流体力学中的两个基准算例,较为全面地验证了该模型的准确性和可靠性.在此基础上,设计了专门针对压铸充型过程的高速水模拟实验,通过对可视化实验结果与两相流模拟结果的比较,证实二者吻合较好,说明了该模型能够较好地模拟液体的充填行为和卷入其中的气泡.%The most common defect found in high pressure die casting (HPDC) process is the gas porosity which significantly affects the mechanical properties of the final components. The generation of gas porosity is known mainly due to the air entrapment in the liquid metal during the mold filling stage. Knowing the trapped-air location and amount could allow for a more accurate and objective analysis of casting quality. In the past few decades, extensive efforts have been made to develop simulation codes of casting flow. Most of these codes solve the velocity, pressure and fluid fraction only in the liquid phase with the assumption that the effect of air in the die cavity is negligible. As a matter of fact, the air in the die cavity has significant influence on the filling pattern of the molten metal and the gas porosity distribution of the die casts. Recently, following the development of computational fluid dynamics (CFD), two-phase flow models have drawn continuous attention in the numerical simulation of casting processes, but there are still few models and further studies are needed. In this study, the mechanism of the formation of air entrapment defects in the HPDC process was discussed and it turned out that the air flow in the die cavity as well as the interaction between air and liquid metal resulted in the final air

  10. Influence green sand system by core sand additions

    Directory of Open Access Journals (Sweden)

    N. Špirutová

    2012-01-01

    Full Text Available Today, about two thirds of iron alloys casting (especially for graphitizing alloys of iron are produced into green sand systems with usually organically bonded cores. Separation of core sands from the green sand mixture is very difficult, after pouring. The core sand concentration increase due to circulation of green sand mixture in a closed circulation system. Furthermore in some foundries, core sands have been adding to green sand systems as a replacement for new sands. The goal of this contribution is: “How the green sand systems are influenced by core sands?”This effect is considered by determination of selected technological properties and degree of green sand system re-bonding. From the studies, which have been published yet, there is not consistent opinion on influence of core sand dilution on green sand system properties. In order to simulation of the effect of core sands on the technological properties of green sands, there were applied the most common used technologies of cores production, which are based on bonding with phenolic resin. Core sand concentration added to green sand system, was up to 50 %. Influence of core sand dilution on basic properties of green sand systems was determined by evaluation of basic industrial properties: moisture, green compression strength and splitting strength, wet tensile strength, mixture stability against staling and physical-chemistry properties (pH, conductivity, and loss of ignition. Ratio of active betonite by Methylene blue test was also determined.

  11. Sinterability of Zirconia Top Coat of Investment Mold for Ti Alloy

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    In this paper, zirconia is used as top mold material for Ti investment casting. Top mold samples are made by proper mold building technology. The effect of different sintering temperature on chemical composition, microstructure and residual bending strength of the top mold sample is studied. The volume and homogeneity of the air holes in the top mold are determined by sintering temperature, and finally determined the residual bending strength of the mold sample was determined.

  12. Development and application of titanium alloy casting technology in China

    Institute of Scientific and Technical Information of China (English)

    NAN Hai; XIE Cheng-mu; ZHAO Jia-qi

    2005-01-01

    The development and research of titanium cast alloy and its casting technology, especially its application inaeronautical industry in China are presented. The technology of molding, melting and casting of titanium alloy, casting quality control are introduced. The existing problems and development trend in titanium alloy casting technology are also discussed.

  13. Performance Steel Castings

    Science.gov (United States)

    2012-09-30

    alloys , foundry, muzzle brake, supply center, tooling, sources Notice Distribution Statement A Format Information Report created in Microsoft Word...Development of Sand Properties 103 Advanced Modeling Dataset.. 105 High Strength Low Alloy (HSLA) Steels 107 Steel Casting and Engineering Support...University, University of Northern Iowa, Non- Ferrous Founders’ Society, QuesTek, buyCASTINGS.com, Spokane Industries, Nova Precision Casting, Waukesha

  14. Green-sand casting process improvement of high silicon molybdenum ductile iron connector%高硅钼球铁连接件的潮模砂铸造工艺改进

    Institute of Scientific and Technical Information of China (English)

    赵黎甲

    2016-01-01

    分析了铸件产生缩松、砂孔等铸造缺陷的原因,通过结合生产实际的经验,制定了该类零件铸造工艺的优化改进措施。实施证明,铸件的缩松、砂孔缺陷得到消除,提高了该类铸件的合格率和出品率,降低了生产成本,有极高的经济效益,并可广泛使用。%Analysis are conducted on the root causes of casting defects such as shrinkage porosity and sand inclusion and measures are worked out to improve and optimize the casting process for the part based on the actual production experience. Through implementation it proves that defects of shrinkage porosity and sand inclusion are eliminated and conformity and yield rate of the castings have been improved, and cost has been reduced as well. The method has been approved to have high economic beneift and can be widely used.

  15. Allergies, asthma, and molds

    Science.gov (United States)

    Reactive airway - mold; Bronchial asthma - mold; Triggers - mold; Allergic rhinitis - pollen ... Things that make allergies or asthma worse are called triggers. Mold is a common trigger. When your asthma or allergies become worse due to mold, you are ...

  16. Inner surface roughness of complete cast crowns made by centrifugal casting machines.

    Science.gov (United States)

    Ogura, H; Raptis, C N; Asgar, K

    1981-05-01

    Six variables that could affect the surface roughness of a casting were investigated. The variables were (1) type of alloy, (2) mold temperature, (3) metal casting temperature, (4) casting machine, (5) sandblasting, and (6) location of each section. It was determined that the training portion of a complete cast crown had rougher surfaces than the leading portion. Higher mold and casting temperatures produced rougher castings, and this effect was more pronounced in the case of the base metal alloy. Sandblasting reduced the roughness, but produced scratched surfaces. Sandblasting had a more pronounced affect on the surface roughness of the base metal alloy cast either at a higher mold temperature or metal casting temperature. The morphology and the roughness profile of the original cast surface differed considerably with the type of alloy used.

  17. Method for casting thin metal objects

    Energy Technology Data Exchange (ETDEWEB)

    Pehrson, Brandon P; Moore, Alan F

    2015-04-14

    Provided herein are various embodiments of systems for casting thin metal plates and sheets. Typical embodiments include layers of mold cavities that are oriented vertically for casting the metal plates. In some embodiments, the mold cavities include a beveled edge such that the plates that are cast have a beveled edge. In some embodiments, the mold cavities are filled with a molten metal through an open horizontal edge of the cavity. In some embodiments, the mold cavities are filled through one or more vertical feed orifices. Further disclosed are methods for forming a thin cast metal plate or sheet where the thickness of the cast part is in a range from 0.005 inches to 0.2 inches, and the surface area of the cast part is in a range from 16 square inches to 144 square inches.

  18. Microstructure and mechanical properties of as-cast ferritic spheroidal cast iron for heavy section; Microestructura y propiedades mecanicas de una fundicion esferoidal ferritca en bruto de colada para su uso en piezas de grandes dimensiones

    Energy Technology Data Exchange (ETDEWEB)

    Suarez-Sanabria, A.; Fernandez-Carrasquilla, J.

    2006-07-01

    In order to carry out a study of the effect of the cooling rate, the composition and the microstructure upon the mechanical properties of a cast iron with nodular graphite and ferrite matrix for heavy sections, one cube with an edge of 300 nm was manufactured through casting in sand molds. This cube contains, as it is habitual, silicon and magnesium which proceed from the inoculation (ferrosilicon) and from the nodulizant (Fe-Si.Mg). The effects of the size, shape and distribution of the graphite nodules and of the microstructure of the matrix upon the mechanical resistance, impact behaviour and fracture toughness of this cast iron are investigated in two zones of the cube which have been casted with a different cooling rate: the thermal centre and the surface. The chemical compositions and the techniques used to perform the mechanical tests and the metallographic analysis are supplied. (Author)

  19. Compound cast product and method for producing a compound cast product

    Science.gov (United States)

    Meyer, Thomas N.; Viswanathan, Srinath

    2002-09-17

    A compound cast product is formed in a casting mold (14) having a mold cavity (16) sized and shaped to form the cast product. A plurality of injectors (24) is supported from a bottom side (26) of the casting mold (14). The injectors (24) are in fluid communication with the mold cavity (16) through the bottom side (26) of the casting mold (14). A molten material holder furnace (12) is located beneath the casting mold (14). The holder furnace (12) defines molten material receiving chambers (36) configured to separately contain supplies of two different molten materials (37, 38). The holder furnace (12) is positioned such that the injectors (24) extend downward into the receiving chamber (36). The receiving chamber (36) is separated into at least two different flow circuits (51, 52). A first molten material (37) is received in a first flow circuit (51), and a second molten material (38) is received into a second flow circuit (52). The first and second molten materials (37, 38) are injected into the mold cavity (16) by the injectors (24) acting against the force of gravity. The injectors (24) are positioned such that the first and second molten materials (37, 38) are injected into different areas of the mold cavity (16). The molten materials (37, 38) are allowed to solidify and the resulting compound cast product is removed from the mold cavity (16).

  20. The ancient Chinese casting techniques

    Directory of Open Access Journals (Sweden)

    Tan Derui

    2011-02-01

    Full Text Available In the course of Chinese civilization, which lasted more than 5,000 years, casting production has made a huge contribution. In this paper, some representative metal castings were presented. According to their forming techniques, they can be grouped into stone mould casting, clay mould casting, ablation casting, lost wax casting, stack casting, permanent mould casting, sand casting, etc. According to their materials, they can be categorized into tin bronze, bimetallic bronze, malleable cast iron, ductile cast iron, brass, cupronickel alloy (Packtong, etc. According to their surface decorative techniques they can be devided into gem inlay, gilding, gold and silver inlay, copper inlay, engraved decoration, surface tin-enrichment, mother-of-pearl inlay, burnished works with gold or silver inlay, surface coloring and cloisonné enamel, etc.

  1. Análise da segmentação venosa hepática através de moldes de resina Hepatic venous segmentation analysis by resin cast

    Directory of Open Access Journals (Sweden)

    Fernando César Diógenes Filho

    2003-04-01

    Full Text Available OBJETIVO: Aferir a independência da segmentação da drenagem venosa hepática, bem como a relação entre seus segmentos. MÉTODO: Foram utilizados trinta fígados humanos, analisados cuidadosamente para exclusão de possíveis rompimentos extra e intra-parenquimatosos. Foi injetada uma resina sintética (Resapol T-208 nas veias hepáticas direita, média e esquerda isoladamente, com diferentes cores, para identificação dos segmentos, utilizando-se a técnica de injeção-corrosão. Após a obtenção dos moldes, foi realizada a pesagem e a planimetria destes, em conjunto e separadamente. RESULTADOS: Foi observado que todos os moldes hepáticos apresentaram independência entre seus segmentos e que o segmento direito foi o maior (p=0,005. Ao correlacionar o peso do fígado com a proporção entre os segmentos, obteve-se um coeficiente de correlação de 0,023. CONCLUSÕES: Os segmentos das veias hepáticas são independentes entre si, ocorrendo preponderância do segmento venoso direito sobre os demais e o aumento do peso do fígado sem patologia corresponde a um aumento proporcional entre os seus segmentos.OBJECTIVE: To establish the independence of segmentation of the hepatic venous drainage and the relationship among its segments. METHODS: Thirty livers were carefully analyzed in order to exclude any intraparenchymatous injury. A synthetic resin (Resapol T-208 was injected into each one of the hepatic veins (right, middle and left, in different colors, to identify each segment, using the injection-corrosion technique. In each liver the obtained casts were weighed and submitted to planimetry, separately and altogether. RESULTS: The fact that all the livers' casts have independent segments was noticed, and the right segment was the largest one (p=0,005. A coefficient of 0,023 was obtained correlating the weight of the liver with the proportion of its segments. CONCLUSIONS: Hepatic venous segments are independent and the right venous segment

  2. Modeling of solidification of MMC composites during gravity casting process

    Directory of Open Access Journals (Sweden)

    R. Zagórski

    2013-04-01

    Full Text Available The paper deals with computer simulation of gravity casting of the metal matrix composites reinforced with ceramics (MMC into sand mold. The subject of our interest is aluminum matrix composite (AlMMC reinforced with ceramic particles i.e. silicon carbide SiC and glass carbon Cg. The created model describes the process taking into account solidification and its influence on the distribution of reinforcement particles. The computer calculation has been carried out in 2D system with the use of Navier-Stokes equations using ANSYS FLUENT 13. The Volume of Fluid approach (VOF and enthalpy method have been used to model the air-fluid free surface (and also volume fraction of particular continuous phases and the solidification of the cast, respectively.

  3. High integrity automotive castings

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, D. [Eck Industries Inc., St. Manitowoc, WI (United States)

    2007-07-01

    This paper described the High Integrity Magnesium Automotive Casting (HI-MAC) program, which was developed to ensure the widespread adoption of magnesium in structural castings. The program will encourage the use of low pressure permanent molds, squeeze casting, and electromagnetic pumping of magnesium into dies. The HI-MAC program is currently investigating new heat treatment methods, and is in the process of creating improved fluid flow and solidification modelling to produce high volume automotive components. In order to address key technology barriers, the program has been divided into 8 tasks: (1) squeeze casting process development; (2) low pressure casting technology; (3) thermal treatment; (4) microstructure control; (5) computer modelling and properties; (6) controlled molten metal transfer and filling; (7) emerging casting technologies; and (8) technology transfer throughout the automotive value chain. Technical challenges were outlined for each of the tasks. 1 ref., 3 tabs., 5 figs.

  4. Improving Metal Casting Process

    Science.gov (United States)

    1998-01-01

    Don Sirois, an Auburn University research associate, and Bruce Strom, a mechanical engineering Co-Op Student, are evaluating the dimensional characteristics of an aluminum automobile engine casting. More accurate metal casting processes may reduce the weight of some cast metal products used in automobiles, such as engines. Research in low gravity has taken an important first step toward making metal products used in homes, automobiles, and aircraft less expensive, safer, and more durable. Auburn University and industry are partnering with NASA to develop one of the first accurate computer model predictions of molten metals and molding materials used in a manufacturing process called casting. Ford Motor Company's casting plant in Cleveland, Ohio is using NASA-sponsored computer modeling information to improve the casting process of automobile and light-truck engine blocks.

  5. Theory of batchwise centrifugal casting

    NARCIS (Netherlands)

    Biesheuvel, P. Maarten; Nijmeijer, Arian; Verweij, Henk

    1998-01-01

    In batchwise centrifugal casting a cylindrical mold is filled with suspension and rotated rapidly around its axis. This results in the movement of the particulate phase toward the cylinder wall and the formation of a tubular cast. Theory is presented for particle transport in the suspension phase an

  6. Glovebox Advanced Casting System Casting Optimization

    Energy Technology Data Exchange (ETDEWEB)

    Fielding, Randall Sidney [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-03-01

    Casting optimization in the GACS included three broad areas; casting of U-10Zr pins, incorporation of an integral FCCI barrier, and development of a permanent crucible coating. U-10Zr casting was improved over last year’s results by modifying the crucible design to minimize contact with the colder mold. Through these modifications casting of a three pin batch was successful. Incorporation of an integral FCCI barrier also was optimized through furnace chamber pressure changes during the casting cycle to reduce gas pressures in the mold cavities which led to three full length pins being cast which incorporated FCCI barriers of three different thicknesses. Permanent crucible coatings were tested against a base case; 1500°C for 10 minutes in a U-20Pu-10Zr molten alloy. None of the candidate coating materials showed evidence of failure upon initial visual examination. In all areas of work a large amount of characterization will be needed to fully determine the effects of the optimization activities. The characterization activities and future work will occur next year.

  7. Commercialization of NASA's High Strength Cast Aluminum Alloy for High Temperature Applications

    Science.gov (United States)

    Lee, Jonathan A.

    2003-01-01

    In this paper, the commercialization of a new high strength cast aluminum alloy, invented by NASA-Marshall Space Flight Center, for high temperature applications will be presented. Originally developed to meet U.S. automotive legislation requiring low- exhaust emission, the novel NASA aluminum alloy offers dramatic improvement in tensile and fatigue strengths at elevated temperatures (450 F-750 F), which can lead to reducing part weight and cost as well as improving performance for automotive engine applications. It is an ideal low cost material for cast components such as pistons, cylinder heads, cylinder liners, connecting rods, turbo chargers, impellers, actuators, brake calipers and rotors. NASA alloy also offers greater wear resistance, dimensional stability, and lower thermal expansion compared to conventional aluminum alloys, and the new alloy can be produced economically from sand, permanent mold and investment casting. Since 2001, this technology was licensed to several companies for automotive and marine internal combustion engines applications.

  8. Friction Stir Processing of Cast Superalloys Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR effort examines the feasibility of an innovative fabrication technology incorporating sand casting and friction stir processing (FSP) for producing...

  9. Identification of interfacial heat transfer between molten metal and green sand by inverse heat conduction method

    Science.gov (United States)

    Ke, Quanpeng

    Heat flux and heat transfer coefficients at the interfaces of castings and molds are important parameters in the mold design and computer simulations of the solidification process in foundry operations. A better understanding of the heat flux and heat transfer coefficient between the solidifying casting and its mold can promote model design and improve the accuracy of computer simulation. The main purpose of the present dissertation involves the estimation of the heat flux and heat transfer coefficient at the interface of the molten metal and green sand. Since the inverse heat conduction method requires temperature measurement data to deduce the missing surface information, it is suitable for the present research. However, heat transfer inside green sand is complicated by the migration of water vapor and zonal temperature distribution results. This makes the solution of the inverse heat conduction problem more challenging. In this dissertation, Galerkin's method of Weighted Residual together with the front tracking technique is used in the development of a forward solver. Beck's future time step method incorporated with the Gaussian iterative minimization method is used as the inverse solver. The mathematical descriptions of the sensitivity coefficient for both the direct heat flux and direct heat transfer coefficient estimation are derived. The variations of the sensitivity coefficients with time are revealed. From the analysis of sensitivity coefficients, the concept of blank time period is proposed. This blank time period makes the inverse problem much more difficult. A total energy balance criterion is used to combat this. Numerical experiments confirmed the accuracy and robustness of both the direct heat flux estimation algorithm and the direct heat transfer coefficient estimation algorithm. Finally, some pouring experiments are carried out. The inverse algorithms are applied to the estimation of the heat flux and heat transfer coefficient at the interface of

  10. 40 CFR Table 3 to Subpart Wwww of... - Organic HAP Emissions Limits for Existing Open Molding Sources, New Open Molding Sources Emitting...

    Science.gov (United States)

    2010-07-01

    ... Existing Centrifugal Casting and Continuous Lamination/Casting Sources that Emit Less Than 100 TPY of HAP 3... Existing Centrifugal Casting and Continuous Lamination/Casting Sources that Emit Less Than 100 TPY of HAP... lb/ton. 522 lb/ton. 7. centrifugal casting—CR/HS a. resin application with the mold closed, and...

  11. Simulation of Distortion and Residual Stress Development During Heat Treatment of Steel Castings

    Energy Technology Data Exchange (ETDEWEB)

    Beckermann, Christoph; Carlson, Kent

    2011-07-22

    of the Navy-C ring (a classical test shape for heat treatment experiments) for several carbon and low alloy steels in order to generate data necessary to validate the code. The predicted distortions were in reasonable agreement with the experimentally measured values. However, the final distortions in the castings were small, making it difficult to determine how accurate the predictions truly are. It is recommended that further validation of the software be performed with the aid of additional experiments with large production steel castings that experience significant heat treatment distortions. It is apparent from this research that the mechanical properties of the bonded sand used for cores and sand molds are key in producing accurate stress simulation results. Because of this, experiments were performed to determine the temperature-dependent elastic modulus of a resin-bonded sand commonly utilized in the steel casting industry. The elastic modulus was seen to vary significantly with heating and cooling rates. Also, the retained room temperature elastic modulus after heating was seen to degrade significantly when the sand was heated above 125°C. The elastic modulus curves developed in this work can readily be utilized in casting simulation software. Additional experiments with higher heating rates are recommended to determine the behavior of the elastic modulus in the sand close to the mold-metal interface. The commercial heat treatment residual stress and distortion code, once fully validated, is expected to result in an estimated energy savings of 2.15 trillion BTU's/year. Along with these energy savings, reduction of scrap and improvement in casting yield will result in a reduction of the environmental emissions associated with the melting and pouring of the metal which will be saved as a result of this technology.

  12. Technological parameters of die casting and quality of casting from EN AC46500 alloy

    OpenAIRE

    2016-01-01

    Die casting represents the highest technological level of metal mold casting. This technology enables production of almost all final products without necessity of further processing. The important aspect of efficiency and production is a proper casting parameters setting. In the submitted paper following die casting parameters are analyzed: plunger pressing speed and pressure. The studied parameters most significantly affect a qualitative of castings from EN AC46500 alloy and they influence t...

  13. Molds in the Environment

    Science.gov (United States)

    ... on Facebook Tweet Share Compartir Molds in the Environment What are molds? What are some of the ... molds found? Molds are found in virtually every environment and can be detected, both indoors and outdoors, ...

  14. Mold Testing or Sampling

    Science.gov (United States)

    In most cases, if visible mold growth is present, sampling is unnecessary. Since no EPA or other federal limits have been set for mold or mold spores, sampling cannot be used to check a building's compliance with federal mold standards.

  15. Forming Mechanism of Gaseous Defect in Ti-48A1-2Cr-2Nb Exhaust Valves Formed with Permanent Mold Centrifugal Casting Method

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A method combining theoretical analysis with experiment is adopted and the flowing process of Ti-48AI-2Cr-2Nb alloy melt poured in a permanent mould during the centrifugal casting process has been analyzed. A mathematical model of the filling process is established and the forming mechanism of internal gaseous defect is summarized. The results of calculation show that the melt fills the mould with varying cross-section area and inclined angle. The filling speed of the cross-section is a function of filling time. The cross-section area is directly proportional to the filling speed and the inclined angle is inversely proportional to the filling speed at a given rotating speed of the platform. Both of them changes more obvious near the mould entrance.The gaseous defect can be formed in several ways and the centrifugal field has an important influence on the formation of the defect. In addition, the filling process in centrifugal field has been verified by wax experiments and the theoretical analysis are consistent with experimental results.

  16. Discussion on compact mechanism of air-stream and synchro-formed clamp plate impact molding

    Directory of Open Access Journals (Sweden)

    Zhenling WANG

    2004-11-01

    Full Text Available Applying the air impact molding method to mold the complicated pattern with wider opening surface and deeper concave, there always exist vaulted phenomenon and lower compactibility of sand mold over the entrance and the concave regions. Using the air-stream and synchro-formed clamp plate impact molding, however, this problem will be preferably solved. In this paper, the compact mechanism of the new molding method and the effect of some configuration factors, such as the area flowed by compressed air and the highness of the protruding block displacement around the diffluent clamp plate, on the compactibility of sand mold were discussed.

  17. Energy Saving Melting and Revert Reduction (E-SMARRT): Precision Casting of Steel

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Von L. Richards

    2011-09-30

    This project addresses improvements in metal casting processes by reducing scrap and reducing the cost of production, due to scrap reduction from investment casting and yield improvement offered by lost foam casting as compared to no-bake or green sand molding. The objectives for the investment casting portion of the subtask are to improve knowledge of fracture toughness of mold shells and the sources of strength limiting flaws and to understand the effects of wax reclamation procedures on wax properties. Applying 'clean steel' approaches to pouring technology and cleanliness in investment casting of steel are anticipated to improve incoming materials inspection procedures as they affect the microstructure and toughness of the shell. This project focused on two areas of study in the production of steel castings to reduce scrap and save energy: (1) Reducing the amount of shell cracking in investment cast steel production; (2) Investigate the potential of lost foam steel casting The basic findings regarding investment casting shell cracking were: (1) In the case of post pouring cracking, this could be related to phase changes in silica upon cooling and could be delayed by pouring arrangement strategies that maintained the shell surface at temperature for longer time. Employing this delay resulted in less adherent oxidation of castings since the casting was cooler at the time o fair exposure. (2) A model for heat transfer through water saturated shell materials under steam pressure was developed. (3) Initial modeling result of autoclave de-waxing indicated the higher pressure and temperature in the autoclave would impose a steeper temperature gradient on the wax pattern, causing some melt flow prior to bulk expansion and decreasing the stress on the green shell. Basic findings regarding lost foam casting of steel at atmospheric pressure: (1) EPS foam generally decomposes by the collapse mode in steel casting. (2) There is an accumulation of carbon pick-up at

  18. Numerical simulation of the flow field in a wide slab continuous casting mold%宽板坯连铸结晶器流场的数值模拟

    Institute of Scientific and Technical Information of China (English)

    姜平国; 赖朝斌

    2016-01-01

    针对某钢厂150 mm×1503 mm宽板坯连铸结晶器生产中出现的表面波动及卷渣情况,利用FLUENT软件对其进行了三维稳态数学计算.计算以流体表面流速为主要衡量指标,研究了出水口的倾斜角度、倒角形状对该水口作用下结晶器内流场的影响.计算结果表明,原型结晶器浸入式水口作用下,流场内的表面流速大,射流冲击深度小,液面波动大,卷渣严重.改变出水口的倾斜角度,结晶器内表面流速依旧较大,依然有较严重的卷渣现象发生.改用方案3出水口倒角形状改为相切后,表面流速由原型最大的0.6 m/s减小到0.2 m/s,冲击深度增加,流场改善,卷渣问题得到解决.%The surface fluctuation and slag entrapment involved in the wide slab continuous casting mold of 150 mmí1503 mm in a steel plant was caculated by FLUENT software. Surface velocity was set as the main measure to study about port angle and guide an-gular shape of the nozzle influence on flow field. The calculation results show that under the condition of original nozzle, the surface velocity was large, but the impact depth was small and the fluctuation was severe. Entrapment of slag was serious. After changed the angle of the outlet, the mold surface velocity remained large and severe entrapment of slag. When scheme 3 ( outlet lead angle changed shape to tangent) was applied, surface velocity reduced from 0. 6 m/s to 0. 2 m/s, impact depth improved, flow field character became better, and problem of slag entrapment was resolved.

  19. Cast irons

    CERN Document Server

    1996-01-01

    Cast iron offers the design engineer a low-cost, high-strength material that can be easily melted and poured into a wide variety of useful, and sometimes complex, shapes. This latest handbook from ASM covers the entire spectrum of one of the most widely used and versatile of all engineered materials. The reader will find the basic, but vital, information on metallurgy, solidification characteristics, and properties. Extensive reviews are presented on the low-alloy gray, ductile, compacted graphite, and malleable irons. New and expanded material has been added covering high-alloy white irons used for abrasion resistance and high-alloy graphitic irons for heat and corrosion resistance. Also discussed are melting furnaces and foundry practices such as melting, inoculation, alloying, pouring, gating and rising, and molding. Heat treating practices including stress relieving, annealing, normalizing, hardening and tempering, autempering (of ductile irons), and surface-hardening treatments are covered, too. ASM Spec...

  20. Characteristics and influence factors of mold filling process in permanent mold with a slot gating system

    Institute of Scientific and Technical Information of China (English)

    Chang Qingming; Chen Xia; Chen Changjun; Bao Siqian; David Schwam

    2009-01-01

    The main problems caused by improper gating are entrained aluminum oxide films and entrapped gas. In this study, the slot gating system is employed to improve mold filling behavior and therefore, to improve the quality of aluminum castings produced in permanent molds. An equipment as well as operation procedures for real-time X-ray radiography of molten aluminum flowing into permanent molds have been developed. Graphite molds transparent to X-rays are utilized which make it possible to observe the flow pattern through a number of vertically oriented gating systems. The investigation discovers that there are many influencing factors on the mold filling process. This paper focuses its research on some of the factors, such as the dimensions of the vertical riser and slot thickness, as well as roughness of the coating layer. The results indicate that molten metal can smoothly fill into casting cavity with a proper slot gating system. A bigger vertical riser, proper slot thickness and rougher coating can provide not only a better mold filling pattern, but also hot melt into the top of the cavity. A proper temperature gradient is obtainable, higher at the bottom and lower at the top of the casting cavity, which is in favor of feeding during casting solidification.

  1. Erosion phenomena in sand moulds

    Directory of Open Access Journals (Sweden)

    A. Chojecki

    2008-03-01

    Full Text Available Authors studicd the erosion phcnorncna in sand moulds pured with cast iron. Thc study comprises an evaluation of erosionresistance of thc three sands: grccn sand. sand bondcd with inorganic or organic bindcr. It was concluded that thc most resistant is [heclassic green sand with thc addition of 5 B coal dust. Resistance of the sand with organic binder is generally weak and dcvnds onkind of used raisin. Spccinl nztcntion was paid to the sands with no organic bindcr watcr glass and phospha~c. It was Sound that thcirrcsistance depends on dehydratation conditions. When the mould is stored in law humidity of atmosphcrc the very strong crosion canbe expected. It rcsul ts hrn thc micro fractures in the bridges of binders, joining the grains of the sable. This phcnomcna facilitates thetearing away of fragments of sand [tom the surface

  2. Sand Faced Permanent Molding Casting Technique of Thin-wall Cast Alloy Iron Internal Combustion Engine Cylinder Liner%内燃机薄壁合金铸铁缸套金属型覆砂铸造工艺

    Institute of Scientific and Technical Information of China (English)

    谈坚行

    2002-01-01

    论述中、小型内燃机薄壁合金铸铁缸套金属型覆砂铸造的工作原理、工艺特点和生产工艺流程;根据缸套铸件-覆砂层-金属型系统热交换传热准则理论,在初步试验基础上提出了确定该工艺生产缸套铸件必须控制的主要工艺参数:缸套铸件壁厚、覆砂层厚度、金属型壁厚.

  3. 气冲造型转移涂料用铸型脱膜剂的研究%Investigation on the Lubricant of Casting Mold Used in Green Sand Transfer Coating under Impact Pressure Casting Condition

    Institute of Scientific and Technical Information of China (English)

    孟力凯

    2003-01-01

    在气冲造型条件下对粘土砂转移涂料的脱模剂进行了研究.研究表明,在实验模板加热条件下,以甲基硅油为主的液态复合脱模剂有较好的脱模效果;在模板不加热的情况下,复合型塑性薄膜脱模剂有较好的脱模效果.

  4. 金属型离心铸造Ti-48%Al-2%Cr-2%Nb合金汽车排气阀的研制%Research on Ti-48%Al-2%Cr-2%Nb Automobile Exhaust Valve Cast by Centrifugal Casting Process in Permanent Mold

    Institute of Scientific and Technical Information of China (English)

    盛文斌; 李东; 杨锐; 郭景杰; 刘羽寅; 苏彦庆; 贾均

    2001-01-01

    In this paper, Ti-48Al-2Cr-2Nb automobile exhaust valve was castby the centrifugal casting method in permanent mold and its surface layer structure, microstructure, element distribution , mechanical properties etc were analyzed by SEM, XRD and EMPA . Furthermore, the valves treated by HIP were tested on 483Q diesel engine platform. Results showed that the distribution of alloying elements in Ti-Al based alloy for exhaust valve was uniform and its microstructure was refined to a certain extent. The mechanical properties of exhaust valve cast by centrifugal permanent mold then treated by HIP were that the σb = 670MPa, σ0.2 =527.5MPa and δ=3%. Result of the engine platform test showed that the valve had excellent air-tightness and wear-resistant properties, so could successfully satisfy requirements of the engine.%本文利用离心铸造的方法,在金属型中浇铸了Ti-48%Al-2%Cr-2%Nb合金汽车排气阀,通过SEM、XRD和EMPA等分析手段,对排气阀坯件的表面层结构、组织形态、成分分布和力学性能等特征进行了检测,并将热等静压(HIP)处理后的排气阀安装到483Q型柴油发动机上进行了台架试验。结果表明,金属型离心浇铸Ti-Al基合金排气阀,在保证阀体成分均匀性的同时,可在一定程度上细化铸件的显微组织。HIP处理后排气阀的平均力学性能为:σb=670MPa,σ0.2=527.5MPa和δ=3%。进一步的台架测试结果表明,排气阀在测试过程中表现出了优异的密封性和耐磨性,完全满足发动机的性能要求。

  5. Prevention of Sand Washing, Pattern Material Inclusion and Coating Inclusion in Lost Form Castings%消失模铸造中冲砂及其模料和涂料夹杂的预防

    Institute of Scientific and Technical Information of China (English)

    弓玉; 吴永刚

    2012-01-01

    分析了消失模铸造中铸件冲砂及其模料和涂料夹杂缺陷产生的原因和特点,结合生产实践,提出了改进措施:采用专制的铸件白模用材料制作浇注系统;整体组建模型簇;应用室温强度足够的消失模铸造涂料;确保浇注前浇口杯没有浮砂、尘土和杂物;合理地选择浇注系统静压头、浇注温度、负压度、干砂粒度等工艺参数.通过这些措施,有效地预防或减少了冲砂、模料和涂料夹杂缺陷的产生.%The reasons causing sand washing, lost foam pattern materials inclusion and coating inclusion of lost foam castings and the defects characteristics were analyzed, and, combined with the production practice , the improvement measures were proposed as follows:adopting special lost foam materials to make the gating system pattern; assembling the patterns cluster as a whole;using coating which has sufficient room temperature strength for the loss foam pattern;ensuring no scattered sand,no dust and no other impurities in the pouring basin before pouring; properly choosing the process parameters such as the static pressure head of the gating system, pouring temperature, vacuum degree,and granularity of dry sand etc. By above measures, the sand washing, pattern materials inclusion and coating inclusion defects have been effectively prevented or reduced.

  6. Investigating of the Knocking Out Properties of Moulding Sands with New Inorganic Binders Used for Castings of Non-ferrous Metal Alloys in Comparison with the Previously Used

    Directory of Open Access Journals (Sweden)

    I. Izdebska-Szanda

    2012-12-01

    Full Text Available The article presents the results of investigations, which make a fragment of the broad-scale studies carried out as a part of the projectPOIG.01.01.02-00-015/09 “Advanced materials and technologies”.One of the objectives of the introduction of new inorganic binders is to provide a good knocking out properties of moulding sands, whilemaintaining an appropriate level of strength properties.Therefore, a logical continuation of the previous studies were carried out the tests knocking out properties of moulding sands with newinorganic binders, including making moulds, pouring them by the chosen of non-ferrous metal alloys, knoking-out, and determining theknocking out work.The results of the study were related to the research results obtained by applying the moulding sand performed by existing technology.

  7. Rheological Characterization of Green Sand Flow

    DEFF Research Database (Denmark)

    Jabbaribehnam, Mirmasoud; Spangenberg, Jon; Hovad, Emil

    2016-01-01

    The main aim of this paper is to characterize experimentally the flow behaviour of the green sand that is used for casting of sand moulds. After the sand casting process is performed, the sand moulds are used for metal castings. The rheological properties of the green sand is important to quantify...... module for characterizing granular materials. The new module enables viscosity measurements of the green sand as function of the shear rate at different flow rates, i.e. 0, 2, 4, 6, 8, 10, 12 and 15 L/min. The results show generally that the viscosity decreases with both the shear- and flow rate....... In addition, the measurements show that the green sand flow follows a shear-thinning behaviour even after the full fluidization point....

  8. Experimental Observation and Analytical Modeling of Melting and Solidification during Aluminum Alloy Repair by Turbulence Flow Casting

    Directory of Open Access Journals (Sweden)

    Muki Satya Permana

    2015-10-01

    Full Text Available This paper presents an overview on the state of the art of applicable casting technology for applications in the field of repairing aluminum alloy components. Repair process on the Al alloy sample using similar metal has been carried out to investigate the micro-structural effect. Joining occurs as a result of convection heat transfer of molten flow into the sand mold which melts the existing base metal inside the mold and subsequent solidification. The analytical model has been developed to describe aluminum alloy component repair by turbulence flow casting. The model is designed based on heat transfer principle that can handle the phenomena of heat flow. The experimental result and analytical model analyses pointed out that joint quality are greatly affected by parameters of preheating temperature and duration of molten metal flow in the mold. To obtain a desired metallurgical sound at the joint, the optimum temperature and time were adjusted in order to obtain a similarity of microstructure between filler and base metal. This model is aimed to predict the use of the process parameter ranges in order to have the optimum parameters when it is applied to the experiment. The fixed parameters are flow rate, sand ratio, and pouring temperature. The process parameters are preheating temperature and pouring time. It is concluded that analytical modeling has good agreement with the experimental result.

  9. Determination of Bulk Dimensional Variation in Castings

    Energy Technology Data Exchange (ETDEWEB)

    Dr. James F. Cuttino Dr. Edward P. Morse

    2005-04-14

    The purpose of this work is to improve the efficiency of green sand foundries so that they may continue to compete as the most cost-effective method of fabrication while meeting tightening constraints on near-net shape manufacturing. In order to achieve this objective, the study is divided into two major components. The first component concentrated on identifying which processes control surface finish on the castings and which provide potential reductions in variations. The second component identified metrological methods that effectively discern between the geometry of bulk material versus surface finish in order to more accurately determine the quality of a part. The research resulted in the determination of an empirical relationship relating pouring parameters to dimensional variation, with an R2 value of greater than 0.79. A significant difference in variations obtained from vertical vs. horizontal molding machines was also noticed. When analyzed separately, however, the resulting empirical relationships for horizontal and vertical machines had reduced R2 values, probably due to the reduced data sets. Significant parameters when considering vertical and horizontal molding machines together included surface roughness, pattern type, iron type, pouring rate, copper content, amount of Western Bentonite, and permeability.

  10. Preparation of Sand Cores for Automotive Steering Pump Shell Castings%汽车转向泵壳体铸造砂芯的制备

    Institute of Scientific and Technical Information of China (English)

    高桥金

    2013-01-01

    对汽车转向泵铸造砂芯的生产方法和加工工序进行了分析.讨论了铸造砂芯的结构特点、砂芯设计、砂芯的生产工序等.经过生产对比找出砂芯生产过程中出现的问题.对大批量生产助力转向泵壳体铸造砂芯、降低残次品生产率提供参考依据.%The methods of manufacturing and processing sand cores for steering pump shell in automobiles were studied,and the structural characteristics,design and production process of the sand cores were discussed.The problems in the production of the sand cores were found out.It provided a reference basis for mass production of the sand cores for steering pump shell and reduce defects.

  11. 3D Stochastic Modeling of Grain Structure for Aluminum Alloy Casting

    Institute of Scientific and Technical Information of China (English)

    Qingyan XU; Weiming FENG; Baicheng LIU

    2003-01-01

    A 3D stochastic modeling was carried out to simulate the dendritic grains during solidification of aluminum alloys,including time-dependent calculations for temperature field, solute redistribution in liquid, curvature of the dendritictip, and growth anisotropy. The nucleation process was treated by continuous nucleation. A 3D simplified grainshape model was established to represent the equiaxed dendritic grain. Based on the Cellular Automaton method,a grain growth model was proposed to capture the neighbor cells of the nucleated cell. During growing, each graincontinues to capture the nearest neighbor cells to form the final shape. When a neighbor cell was captured by othergrains, the grain growth along this direction would be stopped. Three-dimensional calculations were performed tosimulate the evolution of dendritic grain. In order to verify the modeling results, the predictions were compared withthe observation on samples cast in the sand mold and the metal mold.

  12. Effect of cast steel production metallurgy on the emergence of casting defects

    Directory of Open Access Journals (Sweden)

    L. Čamek

    2016-10-01

    Full Text Available The paper documents metallurgical possibilities of high alloy cast steel production in open induction medium frequency furnaces and an electric arc furnace in a gravity die casting foundry. The observation was focused on the emergence of gas defects in steel castings. The content of gases achieved during the metallurgical processes was evaluated for every unit of the production equipment and the casting ladle before casting into disposable sand moulds. The sand mould area was considered to be constant. The aim was to evaluate the current metallurgical possibilities of affecting the content of gases in high alloy cast steel in the current technical conditions of the foundry.

  13. Fabricación de piezas de fundición con grafito esferoidal en molde metálico

    Directory of Open Access Journals (Sweden)

    Urrestarazu, A.

    2013-10-01

    Full Text Available The features and suitability of high requirements ductile iron castings production using metallic moulds have been studied in the present work. The structural and mechanical properties of the produced castings have been analysed and compared to the corresponding ones but fabricated using green sand moulds according to a conventional production process. The higher cooling rate in the metallic moulds is the main cause for the appearance of the detected structural changes in castings. The mechanical and microstructural properties obtained directly on castings are remarkable due to the higher nodule count among other factors. Finally, the benefits and inconveniences found in this kind of production methodology using metallic moulds are also discussed.En este trabajo se estudia el empleo de moldes metálicos o permanentes para la fabricación de piezas de fundición esferoidal con elevados requerimientos funcionales y se analizan sus propiedades, comparándolas con piezas obtenidas utilizando moldes de arena de sílice, de acuerdo con las metodologías más habituales para este tipo de procesos. La elevada velocidad de solidificación y el posterior enfriamiento rápido de la austenita formada en estado sólido se erigen como los principales factores diferenciadores que originan las modificaciones estructurales detectadas en las piezas. Las propiedades físicas, mecánicas y microestructurales obtenidas directamente sobre pieza son destacables debido, entre otros aspectos, al gran número de esferoides grafíticos obtenidos en las piezas. Se discuten también las ventajas e inconvenientes encontrados en esta metodología de producción que emplea moldes fabricados con una aleación metálica específica.

  14. Effect of heat treatment on the microstructures and mechanical properties of the sand-cast Mg–2.7Nd–0.6Zn–0.5Zr alloy

    Directory of Open Access Journals (Sweden)

    D. Wu

    2014-03-01

    Full Text Available The tensile testing bars of the Mg–2.7Nd–0.6Zn–0.5Zr (wt.% alloy were prepared by sand casting. The effect of solution temperature and aging time on the microstructures and mechanical properties were investigated. The as-cast alloy was composed of α magnesium matrix and Mg12Nd eutectic compounds. After solution treatment at 500 °C for 18 h, the volume fraction of eutectic compounds decreased from ∼7.8% to ∼2.3%, and some small Zr-containing particles were observed to precipitate at grain interiors. As the solution temperature increased to 525 °C for 14 h, most of the eutectic compounds dissolved into the matrix. Peak-aged at 200 °C for 12 h, fine β″ particles was the dominant strengthening phase. The yield strength, ultimate tensile strength and elongation in the peak-aged condition were 191 MPa, 258 MPa and 4.2%, respectively. Moreover, the Mg–2.7Nd–0.6Zn–0.5Zr alloys under different heat treatment conditions exhibited different tensile fracture modes.

  15. The Thermal Distortion of a Funnel Mold

    Science.gov (United States)

    Hibbeler, Lance C.; Thomas, Brian G.; Schimmel, Ronald C.; Abbel, Gert

    2012-10-01

    This article investigates the thermal distortion of a funnel mold for continuous casting of thin slabs and explores the implications on taper and solidification of the steel shell. The three-dimensional mold temperatures are calculated using shell-mold heat flux and cooling water profiles that were calibrated with plant measurements. The thermal stresses and distorted shape of the mold are calculated with a detailed finite-element model of a symmetric fourth of the entire mold and waterbox assembly, and they are validated with plant thermocouple data and measurements of the wear of the narrow-face copper mold plates. The narrow-face mold distorts into the typical parabolic arc, and the wide face distorts into a "W" shape owing to the large variation in bolt stiffnesses. The thermal expansion of the wide face works against the applied narrow-face taper and funnel effects, so the effect of thermal distortion must be considered to accurately predict the ideal mold taper.

  16. Journal of EEA, Vol. 30, 2013 SAND SINTERING PROBLEM ON ...

    African Journals Online (AJOL)

    dell

    SAND SINTERING PROBLEM ON BRONZE CASTINGS. Asmamaw Tegegne* ... required to improve the quality of casting with regard to .... property in service and certain amount of zinc for .... a result of which huge finance is required. As seen.

  17. 铸造铝合金冷硬树脂砂工艺研究%Study on Cold Resin Sand Casting Process of Aluminum Alloy

    Institute of Scientific and Technical Information of China (English)

    程先军

    2015-01-01

    T he raw materials selection of the cold resin sand ,curing characteristics and influ‐ence factors are experimented and studied .The study results show that cold resin sand cast‐ing process is cost‐effective ,quickly efficient ,economic‐effective ,and with high practical value .%对冷硬树脂砂原材料的选择、固化特性及影响因素开展了实验及研究,结果表明,冷硬树脂砂造型工艺是一项投资少、见效快、经济效益显著、实用价值高的新型实用型铸造工艺。

  18. Agile Manufacturing Development of Castings

    Science.gov (United States)

    2007-11-02

    responsible for con- verting the available 2D CATIA casting design into a 3D Pro/Engineering geometric model of the casting, for use by Clinkenbeard...changes to the draw- ings. MWM. As the part designer, MWM reviewed and evalu- ated proposed changes to the design. MWM also updated the CATIA ...creation of solid models of the cores and molds, using IGES translations of the CATIA files secured from MWM through GE Transportation Sys- tems. Due

  19. Effects of centrifugal and Coriolis forces on the mold-filling behavior of titanium melts in vertically rotating molds

    Institute of Scientific and Technical Information of China (English)

    Xu Daming; Jia Limin; Fu Hengzhi

    2008-01-01

    The vertical centrifugal-casting technique is widely used in the manufacture of various irregularly-shaped castings of advanced structural alloys with thin walls, complex shapes and/or large sizes. These castings are used in the increasing applications in aero-space/aviation industries, human teeth/bone repairs with near-net shaped components, etc. In a vertically rotating casting system, the mold-filling processes of alloy melts, coupled with solidification-heat transfer, may be much more complicated, because they are driven simultaneously by gravity, centrifugal and Codolis forces. In the present work, an N-S/VOF-equations-based model, solved using a SOLA-VOF algorithm, under a rotating coordinate system was applied to numerically investigate the impacts of centrifugal and Coriolis forces on metallic melt mold-filling processes in different vertical centrifugal-casting configurations with different mold-rotation rates using an authors' computer-codes system. The computational results show that the Coriolis force may cause remarkable variations in the flow patterns in the casting-part-cavities of a large horizontal-section area and directly connected to the sprue via a short ingate in a vertical centrifugal-casting process. A "turn-back" mold-filling technique, which only takes advantage of the centrifugal force in a transient rotating melt system, has been confirmed to be a rational centrifugal-casting process in order to achieve smooth and layer-by-layer casting-cavities-filling control. The simulated mold-filling processes of Ti-6Al-4V alloy melt, in a vertical centrifugal-casting system with horizontally-connected plate-casting cavities, show reasonable agreement with experimental results from the literature.

  20. Fabrication of bulk metallic glasses by centrifugal casting method

    OpenAIRE

    R. Nowosielski; R. Babilas

    2007-01-01

    Purpose: The aim of the present work is characterization of the centrifugal casting method, apparatus andproduced amorphous materials, which are also known as bulk metallic glassesDesign/methodology/approach: The studied centrifugal casting system consists of two main parts: castingapparatus and injection system of molten alloy. The described centrifugal casting method was presented bypreparing a casting apparatus “CentriCast – 5”. The apparatus includes a cylindrical copper mold, which isrot...

  1. Energy Saving Melting and Revert Reduction Technology (Energy-SMARRT): Clean Steel Casting Production

    Energy Technology Data Exchange (ETDEWEB)

    Kuyucak, Selcuk [CanmetMATERIALS; Li, Delin [CanmetMATERIALS

    2013-12-31

    Inclusions in steel castings can cause rework, scrap, poor machining, and reduced casting performance, which can obviously result in excess energy consumption. Significant progress in understanding inclusion source, formation and control has been made. Inclusions can be defined as non-metallic materials such as refractory, sand, slag, or coatings, embedded in a metallic matrix. This research project has focused on the mold filling aspects to examine the effects of pouring methods and gating designs on the steel casting cleanliness through water modeling, computer modeling, and melting/casting experiments. Early in the research project, comprehensive studies of bottom-pouring water modeling and low-alloy steel casting experiments were completed. The extent of air entrainment in bottom-poured large castings was demonstrated by water modeling. Current gating systems are designed to prevent air aspiration. However, air entrainment is equally harmful and no prevention measures are in current practice. In this study, new basin designs included a basin dam, submerged nozzle, and nozzle extension. The entrained air and inclusions from the gating system were significantly reduced using the new basin method. Near the end of the project, there has been close collaboration with Wescast Industries Inc., a company manufacturing automotive exhaust components. Both computer modeling using Magma software and melting/casting experiments on thin wall turbo-housing stainless steel castings were completed in this short period of time. Six gating designs were created, including the current gating on the pattern, non-pressurized, partially pressurized, naturally pressurized, naturally pressurized without filter, and radial choke gating without filter, for Magma modeling. The melt filling velocity and temperature were determined from the modeling. Based on the simulation results, three gating designs were chosen for further melting and casting experiments on the same casting pattern using

  2. Development of vacuum die-casting process

    Institute of Scientific and Technical Information of China (English)

    Masashi Uchida

    2009-01-01

    The vacuum die-casting process, started 25 years ago in Japan, has been widely applied. This technology contributes very much to improvement of castings quality. The main factor causing the defects of die castings is the trapped air in the mold cavity, while the key technology of vacuum die-casting process is to avoid the trapped air effectively by evacuating the cavity before casting. At the same time, due to the shot speed and the casting pressure reduced in half, the service life of the die is prolonged and the productivity is enhanced, as well. Vacuum die-casting process is of great significance in improving the die castings quality and making up the shortcomings of super-high-speed shot casting.

  3. Effect of Rotational Speeds on the Cast Tube During Vertical Centrifugal Casting Process on Appearance, Microstructure, and Hardness Behavior for Al-2Si Alloy

    Science.gov (United States)

    Shailesh Rao, A.; Tattimani, Mahantesh S.; Rao, Shrikantha S.

    2015-04-01

    The flow of molten metal plays a crucial role in determining casting quality. During rotation of the mold, melt flow around its inner circumference determines the final configurations and properties of the cast tube. In this paper, Al-2Si alloy is cast in the vertical mold at the various rotational speeds of the mold. The uniform cylinder tube is formed at a rotational speed of 1000 rpm, while before and beyond this speed, irregular-shaped cast tube is formed. Finally, fine structured grain size with high hardness value is found in uniform cast tube compared with others.

  4. Microstructure and elevated-temperature tensile properties of differential pressure sand cast Mg-4Y-3Nd-0.5Zr alloy

    Directory of Open Access Journals (Sweden)

    Hong-hui Liu

    2016-01-01

    Full Text Available The microstructures of an Mg-4Y-3Nd-0.5Zr alloy by differential pressure casting were investigated using scanning electron microscopy (SEM and transmission electron microscopy (TEM, and its tensile deformation behavior was measured using a Gleeble1500D themo-simulation machine in the temperature range of 200 to 400 °C at initial strain rates of 5×10-4 to 10-1 s-1. Results show that the as-cast microstructure consists of primary α-Mg phase and bone-shaped Mg5RE eutectic phase distributed along the grain boundary. The eutectic phase is dissolved into the matrix after solution treatment and subsequently precipitates during peak aging. Tensile deformation tests show that the strain rate has little effect on stress under 300 °C. Tensile stress decreases with an increase in temperature and the higher strain rate leads to an increase in stress above 300 °C. The fracture mechanism exhibits a mixed quasi-cleavage fracture at 200 °C, while the fracture above 300 °C is a ductile fracture. The dimples are melted at 400 °C with the lowest strain rate of 10-4 s-1.

  5. Characteristics and infl uence factors of mold fi lling process in permanent mold with a slot gating system

    OpenAIRE

    2009-01-01

    The main problems caused by improper gating are entrained aluminum oxide fi lms and entrapped gas. In this study, the slot gating system is employed to improve mold fi lling behavior and therefore, to improve the quality of aluminum castings produced in permanent molds. An equipment as well as operation procedures for real-time X-ray radiography of molten aluminum fl owing into permanent molds have been developed. Graphite molds transparent to X-rays are utilized which make it possible to obs...

  6. Advanced precision expendable pattern casting technology. 1994 Summary report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-05-01

    Casting technology is described. The following areas are reported on: precision pattern production; pattern coating; sand fill and compaction; pattern gating; mechanical properties; and technology transfer efforts.

  7. Maritime Cast Shop Integrated Improvement Plan

    Science.gov (United States)

    2010-08-20

    as well as the risers, sprues and runners that are cut off as scrap from the cast component. The post cast component clean up process should...include several steps  Revert from all sources, risers, sprues, runners and pigged material, must be weighed  The revert must be marked with alloy and...heat all surfaces of the mold to 250F. The higher interior temperature is advantageous in pouring castings with thin sections such as impeller blades

  8. APPLICATION OF EXOTHERMIC PLUGS AT PRODUCTION OF STEEL CASTING IS THE WAY TO ECONOMY

    Directory of Open Access Journals (Sweden)

    V. M. Gatsuro

    2008-01-01

    Full Text Available It is shown that application of exothermic plugs allows to decrease steel intensity of casting mold, labor intensiveness for trim, expenses for melting of 1 ton of good casting, material expenses for burden materials.

  9. Characterization of hydrocarbon emissions from green sand foundry core binders by analytical pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Yujue Wang; Fred S. Cannon; Magda Salama; Jeff Goudzwaard; James C. Furness [Pennsylvania State University, University Park, PA (United States). Department of Civil and Environmental Engineering

    2007-11-15

    Analytical pyrolysis was conducted to compare the hydrocarbon and greenhouse gas emissions of three foundry sand binders: (a) conventional phenolic urethane resin, (b) biodiesel phenolic urethane resin, and (c) collagen-based binder. These binders are used in the metal casting industry to create internal cavities within castings. Green sand contains silica sand, clay, carbonaceous additives (eg bituminous coal) and water. The core samples were flash pyrolyzed in a Curie-point pyrolyzer at 920{sup o}C with a heating rate of about 3000{sup o}C/sec. This simulated some key features of the fast heating conditions that the core binders would experience at the metal-core interface when molten metal is poured into green sand molds. The core samples were also pyrolyzed in a thermogravimetric analyzer (TGA) from ambient temperature to 1000{sup o}C with a heating rate of 30{sup o}C/min, and this simulated key features of the slow heating conditions that the core binders would experience at distances that are further away from the metal-core interface during casting cooling. Hydrocarbon emissions from flash pyrolysis were analyzed with a gas chromatography-flame ionization detector, while hydrocarbon and greenhouse gas emissions from TGA pyrolysis were monitored with mass spectrometry. The prominent hazardous air pollutant emissions during pyrolysis of the three binders were phenol, cresols, benzene, and toluene for the conventional phenolic urethane resin and biodiesel resin, and benzene and toluene for the collagen-based binder. Bench-scale analytical pyrolysis techniques could be a useful screening tool for the foundries to compare the relative emissions of alternative core binders and to choose proper materials in order to comply with air-emission regulations. 20 refs., 4 figs., 1 tab.

  10. Investigations of Protective Coatings for Castings of High-manganese Cast Steels

    Directory of Open Access Journals (Sweden)

    M. Holtzer

    2013-01-01

    Full Text Available When cast steel castings are made in moulding sands on matrices of high-silica sand, which has a low fire resistance the problem of theso-called chemical penetration is distinctly visible. Whereas this effect appears to a small degree only when moulding sand matrices are of chromite, zircon or olivine sands. Therefore in case of making castings of high-manganese cast steel (e.g. Hadfield steel sands not containing free silica should be applied (e.g. olivine sand or in case of a high-silica matrix protective coatings for moulds and cores should be used. Two protective coatings, magnesite alcoholic (marked as coating 1 and coating 2 originated from different producers and intended for moulds for castings of the Hadfield steel, were selected for investigations. Examinations of the basic properties were performed for these coatings: viscosity, thermal analysis, sedimentation properties, wear resistance. In order to estimate the effectiveness of protective coatings the experimental castings were prepared. When applying coating 1, the surface quality of the casting was worse and traces of interaction between the casting material (cast steel and the coating were seen. When protective coating 2 was used none interactions were seen and the surface quality was better.

  11. Development of High-Performance Cast Crankshafts. Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, Mark E [General Motors, Detroit, MI (United States)

    2017-03-31

    simulations with existing materials models to optimize crankshaft cost and performance. Prototype crankshafts of the final design were to be produced and validated using laboratory bench testing and on-engine durability testing. ICME process simulation tools were used to investigate a broad range of processing concepts. These concepts included casting orientation, various mold and core materials, and various filling and feeding strategies. Each crankshaft was first simulated without gating and risers, which is termed natural solidification. The natural solidification results were used as a baseline for strategy development of each concept. Casting process simulations and ICME tools were proven to be reasonable predictors of real world results. Potential alloys were developed that could meet the project material property goals with appropriate normalization and temper treatments. For the alloys considered, post-normalization temper treatments proved to be necessary to achieve the desired yield strengths and elongations and appropriate heat treatments were designed using ICME tools. The experimental data of all the alloys were analyzed in combination with ICME tools to establish chemistry-process-structure relations. Several GM small gas engine (SGE) crankshafts were successfully cast in sand molds using two different sprue, runner, gate, riser, chill designs. These crankshafts were cast in two different steel alloys developed during the project, but casting finishing (e.g. riser removal) remains a cost challenge. A long list of future work was left unfinished when this project was unexpectedly terminated.

  12. Characteristics and infl uence factors of mold fi lling process in permanent mold with a slot gating system

    Directory of Open Access Journals (Sweden)

    Chen Changjun

    2009-11-01

    Full Text Available The main problems caused by improper gating are entrained aluminum oxide fi lms and entrapped gas. In this study, the slot gating system is employed to improve mold fi lling behavior and therefore, to improve the quality of aluminum castings produced in permanent molds. An equipment as well as operation procedures for real-time X-ray radiography of molten aluminum fl owing into permanent molds have been developed. Graphite molds transparent to X-rays are utilized which make it possible to observe the fl ow pattern through a number of vertically oriented gating systems. The investigation discovers that there are many infl uencing factors on the mold fi lling process. This paper focuses its research on some of the factors, such as the dimensions of the vertical riser and slot thickness, as well as roughness of the coating layer. The results indicate that molten metal can smoothly fi ll into casting cavity with a proper slot gating system. A bigger vertical riser, proper slot thickness and rougher coating can provide not only a better mold fi lling pattern, but also hot melt into the top of the cavity. A proper temperature gradient is obtainable, higher at the bottom and lower at the top of the casting cavity, which is in favor of feeding during casting solidifi cation.

  13. EXPERIMENTAL MEASUREMENT OF MAGNETIC FIELD IN A NOVEL FLOW CONTROL OF MOLD

    Institute of Scientific and Technical Information of China (English)

    G.J. Xu; D.H. Li; J.C. He

    2002-01-01

    In order to know the distribution of magnetic field in a novel flow control of mold(NFC Mold) and to provide the experimental data for the electromagnetic structuredesign and the analysis of flow control in continuous casting mold, the magnetic fieldin a NFC Mold were measured by Tesla meter of Model CT-3. The method of vectorsynthesis was adopted in the measurement of magnetic fields. The results showed thatthe magnetic field in the NFC Mold was composed of two main magnetic areas thatwere symmetrical. Although there was leaking magnetic flux between the lower surfaceof the upper pole and the upper surface of the lower pole on the sides, it was restrainedby the main magnetic fields effectively. Therefore the NFC Mold was more preferablysatisfied to be used in controlling the molten steel flow in continuous casting mold.

  14. Fontainebleau Sand

    DEFF Research Database (Denmark)

    Leth, Caspar Thrane

    2006-01-01

    The report is a summary of results from laboratory tests in the geotechncial research group on Fontainebleau sand.......The report is a summary of results from laboratory tests in the geotechncial research group on Fontainebleau sand....

  15. Micro precision casting based on investment casting for micro structures with high aspect ratio

    Institute of Scientific and Technical Information of China (English)

    YANG Chuang; LI Bang-sheng; REN Ming-xing; FU Heng-zhi

    2009-01-01

    Microcasting is one of the significant technologies for the production of metallic micro parts with high aspect ratio (ratio of flow length to diameter). A micro precision casting technology based on investment casting using centrifugal method was investigated. The micro parts of Zn-4%Al alloy with an aspect ratio up to 200 was produced at the centrifugal speed of 1 500 r/min and the mold temperature of 270 ℃. The investigations on the relationship between flow length and rotational speed were carried out. For microcasting, the flow length is not only dependent on the centrifugal speed under the constant centrifugal radius, but also on the preheating temperature of mold. The flow length increases as the rotational speed and the mold temperature increase, and is much higher at a mold temperature of 270 ℃ than at other mold temperatures.

  16. Technological parameters of die casting and quality of casting from EN AC46500 alloy

    Directory of Open Access Journals (Sweden)

    Š. Gašpár

    2016-07-01

    Full Text Available Die casting represents the highest technological level of metal mold casting. This technology enables production of almost all final products without necessity of further processing. The important aspect of efficiency and production is a proper casting parameters setting. In the submitted paper following die casting parameters are analyzed: plunger pressing speed and pressure. The studied parameters most significantly affect a qualitative of castings from EN AC46500 alloy and they influence the most a gained porosity level as well as basic mechanical properties represented by permanent deformations.

  17. Friction Stir Processing of Cast Superalloys Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR Phase I effort examines the feasibility of an innovative fabrication technology incorporating sand casting and friction stir processing (FSP) for producing...

  18. 轮盘铁型覆砂铸造成型凝固过程的模拟分析%Numerical Analysis on Solidification Process of Turntable in Sand-Faced Iron Mould

    Institute of Scientific and Technical Information of China (English)

    陈霞; 温彤

    2011-01-01

    铁型覆砂铸造是在金属型内腔覆上一薄层型砂而形成铸型的一种铸造工艺,兼具有金属型和壳型铸造的特点.对轮盘的铁型覆砂铸造成形过程进行了数值模拟,获取了铸造填充过程的基本参数.对铸造过程可能产生的缺陷进行了分析,预测了铸件的缩孔、缩松等.相关结论在实际生产中得到了很好的印证.%Sand-faced iron moulding casting is a casting method that the metal mould is covered with a layer of resin sand in the mould cavity has the characters of permanent mold casting and shell mould casting. The solidification process of turntable in sand-faced iron mould was numerically studied, and the basic parameters of the process were obtained. The potential defects, including shrinkage and porosity, were also analyzed. The responding conclusion was verified in practice.

  19. A silicon sheet casting experiment. [for solar cell water production

    Science.gov (United States)

    Bickler, D. B.; Sanchez, L. E.; Sampson, W. J.

    1980-01-01

    The casting of silicon blanks for solar cells directly without slicing is an exciting concept. An experiment was performed to investigate the feasibility of developing a machine that casts wafers directly. A Czochralski furnace was modified to accept a graphite ingot-simulating fixture. Silicon was melted in the middle of the ingot simulator in a boron nitride mold. Sample castings showed reasonable crystal size. Solar cells were made from the cast blanks. The performance is reported.

  20. Melting and casting of FeAl-based cast alloy

    Energy Technology Data Exchange (ETDEWEB)

    Sikka, V.K. [Oak Ridge National Lab., TN (United States); Wilkening, D. [Columbia Falls Aluminum Co., Columbia Falls, MT (United States); Liebetrau, J.; Mackey, B. [AFFCO, L.L.C., Anaconda, MT (United States)

    1998-11-01

    The FeAl-based intermetallic alloys are of great interest because of their low density, low raw material cost, and excellent resistance to high-temperature oxidation, sulfidation, carburization, and molten salts. The applications based on these unique properties of FeAl require methods to melt and cast these alloys into complex-shaped castings and centrifugal cast tubes. This paper addresses the melting-related issues and the effect of chemistry on the microstructure and hardness of castings. It is concluded that the use of the Exo-Melt{trademark} process for melting and the proper selection of the aluminum melt stock can result in porosity-free castings. The FeAl alloys can be melted and cast from the virgin and revert stock. A large variation in carbon content of the alloys is possible before the precipitation of graphite flakes occurs. Titanium is a very potent addition to refine the grain size of castings. A range of complex sand castings and two different sizes of centrifugal cast tubes of the alloy have already been cast.

  1. Melting and casting of FeAl-based cast alloy

    Energy Technology Data Exchange (ETDEWEB)

    Sikka, V.K. [Oak Ridge National Lab., TN (United States). Metals and Ceramics Div.; Wilkening, D. [Columbia Falls Aluminum Co., 2000 Aluminum Dr., Columbia Falls, MT 59912 (United States); Liebetrau, J.; Mackey, B. [AFFCO, L.L.C., P.O. Box 1071, Anaconda, MT 59711 (United States)

    1998-12-31

    The FeAl-based intermetallic alloys are of great interest because of their low density, low raw material cost, and excellent resistance to high-temperature oxidation, sulfidation, carburization, and molten salts. The applications based on these unique properties of FeAl require methods to melt and cast these alloys into complex-shaped castings and centrifugal cast tubes. This paper addresses the melting-related issues and the effect of chemistry on the microstructure and hardness of castings. It is concluded that the use of the Exo-Melt{sup TM} process for melting and the proper selection of the aluminum melt stock can result in porosity-free castings. The FeAl alloys can be melted and cast from the virgin and revert stock. A large variation in carbon content of the alloys is possible before the precipitation of graphite flakes occurs. Titanium is a very potent addition to refine the grain size of castings. A range of complex sand castings and two different sizes of centrifugal cast tubes of the alloy have already been cast. (orig.) 18 refs.

  2. Floods and Mold Growth

    Science.gov (United States)

    Mold growth may be a problem after flooding. Excess moisture in the home is cause for concern about indoor air quality primarily because it provides breeding conditions for pests, molds and other microorganisms.

  3. Research on Mold Electro Magnetic Stirring of Round Billet Continuous Casting Machine and Its Practice%圆坯连铸机结晶器电磁搅拌的研究与实践

    Institute of Scientific and Technical Information of China (English)

    郭李波; 马忠存

    2015-01-01

    对圆坯连铸机结晶器内磁感应强度分布特征和结晶器电磁搅拌对GCr15钢碳偏析的影响进行了研究.研究表明:结晶器的磁感应强度随电流的增强而增大直至趋于平稳,随搅拌频率的增大而降低;结晶器内磁感应强度轴向最大位置在距结晶器上口900mm位置,向两侧陡降;径向分布不均匀,由搅拌器内表面向中心逐渐减小;高频率经结晶器铜管后衰减更大.当M-EMS参数在(450A/3.0Hz),改善了铸坯的C偏析,获得良好的工艺效果.%The magnetic flux density of mold electromagnetic stirrer (M-EMS) for round billet and the influence of M-EMS on carbon segregation for steel of GCr15 was researched. The result showed that magnetic flux density increas?es as the current increases, and decreases as the frequency increases; maximum magnetic flux density along axis of mold appears at 900mm away from the upper, and then fall dramatically in both sides; magnetic flux density unevenly distributes along radius of mold,gradually decreases from the inner surface to the center;high frequency passed through mold, attenuates more. The carbon segregation was improved and good effect achieved when the electric cur?rent was 450A and the frequency was 3.0Hz of mold electromagnetic stirrer.

  4. Development of low-temperature high-strength integral steel castings for offshore construction by casting process engineering

    OpenAIRE

    Lim Sang-Sub; Mun Jae-Chul; Kim Tae-Won; Kang Chung-Gil

    2014-01-01

    In casting steels for offshore construction, manufacturing integral casted structures to prevent fatigue cracks in the stress raisers is superior to using welded structures. Here, mold design and casting analysis were conducted for integral casting steel. The laminar flow of molten metal was analyzed and distributions of hot spots and porosities were studied. A prototype was subsequently produced, and air vents were designed to improve the surface defects caused by the release of gas. A radio...

  5. Numerical simulation of low pressure die-casting aluminum wheel

    Institute of Scientific and Technical Information of China (English)

    Mi Guofa; Liu Xiangyu; Wang Kuangfei; Fu Hengzhi

    2009-01-01

    The FDM numerical simulation software, ViewCast system, was employed to simulate the low pressure die casting (LPDC) of an aluminum wheel. By analyzing the mold-filling and solidification stage of the LPDC process, the distribution of liquid fraction, temperature field and solidification pattern of castings were studied. The potential shrinkage defects were predicted to be formed at the rim/spoke junctions, which is in consistence with the X-ray detection result. The distribution pattern of the defects has also been studied. A solution towards reducing such defects has been presented. The cooling capacity of the mold was improved by installing water pipes both in the side mold and the top mold. Analysis on the shrinkage defects under forced cooling mode proved that adding the cooling system in the mold is an effective method for reduction of shrinkage defects.

  6. Bleach Neutralizes Mold Allergens

    Science.gov (United States)

    Science Teacher, 2005

    2005-01-01

    Researchers at National Jewish Medical and Research Center have demonstrated that dilute bleach not only kills common household mold, but may also neutralize the mold allergens that cause most mold-related health complaints. The study, published in the Journal of Allergy and Clinical Immunology, is the first to test the effect on allergic…

  7. Metallic Fuel Casting Development and Parameter Optimization Simulations

    Energy Technology Data Exchange (ETDEWEB)

    R.S. Fielding; J. Crapps; C. Unal; J.R. Kennedy

    2013-03-01

    One of the advantages of metallic fuel is the abilility to cast the fuel slugs to near net shape with little additional processing. However, the high aspect ratio of the fuel is not ideal for casting. EBR-II fuel was cast using counter gravity injection casting (CGIC) but, concerns have been raised concerning the feasibility of this process for americium bearing alloys. The Fuel Cycle Research and Development program has begun developing gravity casting techniques suitable for fuel production. Compared to CGIC gravity casting does not require a large heel that then is recycled, does not require application of a vacuum during melting, and is conducive to re-usable molds. Development has included fabrication of two separate benchscale, approximately 300 grams, systems. To shorten development time computer simulations have been used to ensure mold and crucible designs are feasible and to identify which fluid properties most affect casting behavior and therefore require more characterization.

  8. Inference of optimal speed for sound centrifugal casting of Al-12Si alloys

    Science.gov (United States)

    Agari, Shailesh Rao; Mukunda, P. G.; Rao, Shrikantha S.; Sudhakar, K. G.

    2011-05-01

    True centrifugal casting is a standard casting technique for the manufacture of hollow, intricate and sound castings without the use of cores. The molten metal or alloy poured into the rotating mold forms a hollow casting as the centrifugal forces lift the liquid along the mold inner surface. When a mold is rotated at low and very high speeds defects are found in the final castings. Obtaining the critical speed for sound castings should not be a matter of guess or based on experience. The defects in the casting are mainly due to the behavior of the molten metal during the teeming and solidification process. Motion of molten metal at various speeds and its effect during casting are addressed in this paper. Eutectic Al-12Si alloy is taken as an experiment fluid and its performance during various rotational speeds is discussed.

  9. Increasing the reliability and quality of important cast products made of chemically active metals and alloys

    Science.gov (United States)

    Varfolomeev, M. S.; Moiseev, V. S.; Shcherbakova, G. I.

    2017-01-01

    A technology is developed to produce highly thermoresistant ceramic monoxide corundum molds using investment casting and an aluminum-organic binder. This technology is a promising trend in creating ceramic molds for precision complex-shape casting of important ingots made of high-alloy steels, high-temperature and titanium alloys, and refractory metals. The use of the casting molds that have a high thermal and chemical resistance to chemically active metals and alloys under high-temperature casting minimizes the physicochemical interaction and substantially decreases the depth of the hard-to-remove metal oxide layer on important products, which increases their service properties.

  10. Optimization of the investment casting process

    Directory of Open Access Journals (Sweden)

    M. Martinez-Hernandez

    2012-04-01

    Full Text Available Rapid prototyping is an important technique for manufacturing. This work refers to the manufacture of hollow patterns made of polymeric materials by rapid prototyping technologies for its use in the preparation of ceramic molds in the investment casting process. This work is focused on the development of a process for manufacturing patterns different from those that currently exist due to its hollow interior design, allowing its direct use in the fabrication of ceramic molds; avoiding cracking and fracture during the investment casting process, which is an important process for the foundry industry.

  11. Numerical Simulation and Water Analog of Mold Filling Processes

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    This paper demonstrates the potential of a computer code, developed by the authors, in shaping gating systems by modeling the fluid flow phenomena through a complex gating system during mold filling. A plate casting with dimension 200 mm×200 mm×50 mm was chosen as the verifying problem. Water analog studies were carried out on this casting. The comparison indicates that computer simulation could be a powerful tool in shaping gating systems.

  12. 覆砂铁型铸造生产球铁法兰主轴%Main Bearing with Flange Produced by Permanent Die Coated with Sand

    Institute of Scientific and Technical Information of China (English)

    董琪; 顾厚军; 史传岳; 钟晓斌

    2014-01-01

    把原粘土砂湿型生产法兰主轴铸件的工艺改为覆砂铁型工艺,解决了内部缩松等一系列缺陷问题。与原工艺相比,实现了覆砂铁型工艺的“多、快、好、省”。%Problems as defects of inner shrinkage etc in castings of main bearing with flange have been solved when the former technology of clay green sand molding has had been changed to technology of permanent die coated with sand of which the advantages have been much output, quicker, better and cost saved.

  13. Molding of strength testing samples using modern PDCPD material for purpose of automotive industry

    Science.gov (United States)

    Grabowski, L.; Baier, A.; Sobek, M.

    2017-08-01

    The casting of metal materials is widely known but the molding of composite polymer materials is not well-known method still. The initial choice of method for producing composite bodies was the method of casting of PDCPD material. For purpose of performing casting of polymer composite material, a special mold was made. Firstly, the 3D printed, using PLA material, mold was used. After several attempts of casting PDCPD many problems were encountered. The second step was to use mold milled from a firm and dense isocyanate foam. After several attempts research shown that this solution is more resistant to high-temperature peak, but this material is too fragile to use it several times. This solution also prevents mold from using external heating, which can be necessary for performing correct molding process. The last process was to use the aluminum mold, which is dedicated to PDCPD polymer composite, because of low adhesiveness. This solution leads to perform correct PDCPD polymer composite material injection. After performing casting operation every PDCPD testing samples were tested. These results were compared together. The result of performed work was to archive correct properties of injection of composite material. Research and results were described in detail in this paper.

  14. Numerical simulation of centrifugal casting of pipes

    Science.gov (United States)

    Kaschnitz, E.

    2012-07-01

    A numerical simulation model for the horizontal centrifugal pipe casting process was developed with the commercial simulation package Flow3D. It considers - additionally to mass, energy and momentum conservation equations and free surface tracking - the fast radial and slower horizontal movement of the mold. The iron inflow is not steady state but time dependent. Of special importance is the friction between the liquid and the mold in connection with the viscosity and turbulence of the iron. Experiments with the mold at controlled revolution speeds were carried out using a high-speed camera. From these experiments friction coefficients for the description of the interaction between mold and melt were obtained. With the simulation model, the influence of typical process parameters (e.g. melts inflow, mold movement, melt temperature, cooling media) on the wall thickness of the pipes can be studied. The comparison to results of pipes from production shows a good agreement between simulation and reality.

  15. Improving Cooling Rate During Solidification by Eliminating the Metal-Mold Interfacial Gap

    Science.gov (United States)

    Zeng, Long; Zhang, Wei; Ji, Yanliang; Huang, Yujin; Li, Jianguo

    2015-07-01

    A new solidification process called non-interfacial-gap permanent-mold casting (NIGPMC) is proposed to improve the cooling rate by eliminating the metal-mold interfacial gap. High-Cr steel ingots were prepared by this process and conventional permanent-mold casing (CPMC) separately. Comparing with CPMC, the primary dendrite arm spacing obtained by NIGPMC is greatly refined. It is demonstrated that the NIGPMC is a promising pathway to refine the microstructure of the large ingot.

  16. Characteristics of cast and welded aluminium nodes

    Energy Technology Data Exchange (ETDEWEB)

    Oedegaard, J.; Polanco, M.; Syvertsen, F.; Sund, H. [SINTEF, Trondheim (Norway). Materials Technology

    2000-07-01

    It has been demonstrated that sand cast aluminium nodes can be produced with properties that gives competitive energy absorption capacity compared with welded aluminium nodes. Sand cast nodes could be mass-produced to a low cost and with properties that should be competitive to the properties of fusion welded nodes. This may open for simpler and more cost-effective joint alternatives when production of aluminium space-frames and subassemblies are in focus. Cast nodes joined to extruded members by adhesive bonding could be one example. (orig.)

  17. Pressure rig for repetitive casting

    Science.gov (United States)

    Vasquez, Peter (Inventor); Hutto, William R. (Inventor); Philips, Albert R. (Inventor)

    1989-01-01

    The invention is a pressure rig for repetitive casting of metal. The pressure rig performs like a piston for feeding molten metal into a mold. Pressure is applied to an expandable rubber diaphragm which expands like a balloon to force the metal into the mold. A ceramic cavity which holds molten metal is lined with blanket-type insulating material, necessitating only a relining for subsequent use and eliminating the lengthy cavity preparation inherent in previous rigs. In addition, the expandable rubber diaphragm is protected by the insulating material thereby decreasing its vulnerability to heat damage. As a result of the improved design the life expectancy of the pressure rig contemplated by the present invention is more than doubled. Moreover, the improved heat protection has allowed the casting of brass and other alloys with higher melting temperatures than possible in the conventional pressure rigs.

  18. Simulation study on three casting processes for a marine propeller hub body

    Directory of Open Access Journals (Sweden)

    Wang Tongmin

    2013-11-01

    Full Text Available The mold filling and solidification process of a marine propeller hub were simulated using ProCAST? Three casting processes ?gravity casting, centrifugal casting and low pressure casting ?were compared in order to get the best process. The heat transfer coefficient of the casting/mold interface was determined using a reverse method. The simulated results of velocity, temperature and shrinkage porosity distribution were discussed in detail for the three casting processes. A smooth filling was found in all three casting processes, especially the low pressure casting exhibiting a better filling performance than the other two, but the solidification processes were different. The casting did not experience the sequential solidification, and the feeding paths were blocked, leading to shrinkage porosity defects in the riser and the bottom of the casting in gravity casting and in the upper zone of the casting in low pressure casting. While, the sequential solidification was well controlled in the solidification process of centrifugal casting, and majority of the shrinkage porosity defects can only be observed in the riser. It could be concluded that the centrifugal casting process is the most suitable casting process for the production of propeller hub body. The casting experiments verified the simulation results, and a defect-free propeller hub was obtained by centrifugal casting with a rotational speed of 150 r.in-1.

  19. Innovative developments in sand reclamation technologies

    Directory of Open Access Journals (Sweden)

    R. Dañko

    2011-04-01

    Full Text Available Proper sand management and efficient sand reclamation system are two main factors influencing economical and ecological side of modern foundry plant. It is well known fact that the production of 1 metric ton of casting from ferrous alloys generates circa 1 metric ton of waste [1], which due to containing certain amounts of harmful and dangerous compounds should undergo a reclamation – at least of the main component, which means a silica sand grains. The paper present problems of scientific and development research concerning the innovative reclamation technologies of used foundry sands such as: mechanical-cryogenic reclamation and innovative thermal reclamation.

  20. Combination Of Investment And Centrifugal Casting

    Science.gov (United States)

    Creeger, Gordon A.

    1994-01-01

    Modifications, including incorporation of centrifugal casting, made in investment-casting process reducing scrap rate. Used to make first- and second-stage high-pressure-fuel-turbopump nozzles, containing vanes with thin trailing edges and other thin sections. Investment mold spun for short time while being filled, and stopped before solidification occurs. Centrifugal force drives molten metal into thin trailing edges, ensuring they are filled. With improved filling, preheat and pour temperatures reduced and solidification hastened so less hot tearing.

  1. Rapid Cycle Casting of Steel

    Science.gov (United States)

    1981-07-01

    such as macrosegregation, hot tears, and blowholes are also difficult to control. Rheocasting l on the other hand, is a recent development which...viscosity. Advantages of the rheocasting process are: * Reduced attack of die or mold because of the reduced tempera- ture (by 1000 C for steel) and...4W W ’ V6W 4 1.2 THE SD PROCESS Many metals, including steel, can be cast at still lower tempera- soliifiction(2) tures than rheocasting by

  2. 40 CFR Table 1 to Subpart Wwww of... - Equations To Calculate Organic HAP Emissions Factors for Specific Open Molding and Centrifugal...

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 12 2010-07-01 2010-07-01 true Equations To Calculate Organic HAP Emissions Factors for Specific Open Molding and Centrifugal Casting Process Streams 1 Table 1 to Subpart... Specific Open Molding and Centrifugal Casting Process Streams ER25AU05.020 ER25AU05.021...

  3. Metallic Reinforcement of Direct Squeeze Die Casting Aluminum Alloys for Improved Strength and Fracture Resistance

    Energy Technology Data Exchange (ETDEWEB)

    D. Schwam: J.F. Wallace: Y. Zhu: J.W. Ki

    2004-10-01

    The utilization of aluminum die casting as enclosures where internal equipment is rotating inside of the casting and could fracture requires a strong housing to restrain the fractured parts. A typical example would be a supercharger. In case of a failure, unless adequately contained, fractured parts could injure people operating the equipment. A number of potential reinforcement materials were investigated. The initial work was conducted in sand molds to create experimental conditions that promote prolonged contact of the reinforcing material with molten aluminum. Bonding of Aluminum bronze, Cast iron, and Ni-resist inserts with various electroplated coatings and surface treatments were analyzed. Also toughening of A354 aluminum cast alloy by steel and stainless steel wire mesh with various conditions was analyzed. A practical approach to reinforcement of die cast aluminum components is to use a reinforcing steel preform. Such performs can be fabricated from steel wire mesh or perforated metal sheet by stamping or deep drawing. A hemispherical, dome shaped casting was selected in this investigation. A deep drawing die was used to fabricate the reinforcing performs. The tendency of aluminum cast enclosures to fracture could be significantly reduced by installing a wire mesh of austenitic stainless steel or a punched austenitic stainless steel sheet within the casting. The use of reinforcements made of austenitic stainless steel wire mesh or punched austenitic stainless steel sheet provided marked improvement in reducing the fragmentation of the casting. The best strengthening was obtained with austenitic stainless steel wire and with a punched stainless steel sheet without annealing this material. Somewhat lower results were obtained with the annealed punched stainless steel sheet. When the annealed 1020 steel wire mesh was used, the results were only slightly improved because of the lower mechanical properties of this unalloyed steel. The lowest results were

  4. Evaluation of Durability Parameters of Concrete with Manufacture Sand and River Sand

    Science.gov (United States)

    Sangoju, Bhaskar; Ramesh, G.; Bharatkumar, B. H.; Ramanjaneyulu, K.

    2017-06-01

    Most of the states in our country have banned sand quarrying from the river beds, causing a scarcity of natural river sand for the construction sector. Manufacture sand (M-sand) is one of the alternate solutions to replace the river sand (R-sand) in concrete. The main aim of the present study is to evaluate the durability parameters of concrete with M-sand when compared to that of concrete with R-sand. Corrosion of reinforcement is one of the main deteriorating mechanisms of reinforced concrete due to the ingress of chloride ions or carbon-di-oxide. For comparative evaluation of durability parameters, accelerated tests such as Rapid Chloride Permeability Test, Rapid Chloride Migration Test and accelerated carbonation test were carried out on specimens of R-sand and M-sand. All tests were carried out after 90 days of casting. Test results reveal that the durability parameters of the concrete with M-sand in chloride induced environment is relatively better than that of concrete with R-sand and hence is recommended to use M-sand as a replacement to R-sand.

  5. Flow Dynamics of green sand in the DISAMATIC moulding process using Discrete element method (DEM)

    DEFF Research Database (Denmark)

    Hovad, Emil; Larsen, P.; Walther, Jens Honore

    2015-01-01

    The DISAMATIC casting process production of sand moulds is simulated with DEM (discrete element method). The main purpose is to simulate the dynamics of the flow of green sand, during the production of the sand mould with DEM. The sand shot is simulated, which is the first stage of the DISAMATIC...

  6. Thermal Properties of Foundry Mould Made of Used Green Sand

    Directory of Open Access Journals (Sweden)

    Krajewski P.K.

    2016-03-01

    Full Text Available The paper presents results of measuring heat diffusivity and thermal conductivity coefficients of used green foundry sand in temperature range ambient − 600 °C. During the experiments a technical purity Cu plate was cast into the green-sand moulds. Basing on measurements of the mould temperature field during the solidification of the casting, the temperature relationships of the measured properties were evaluated. It was confirmed that the obtained relationships are complex and that water vaporization strongly influences thermal conductivity of the moulding sand in the first period of the mould heating by the poured and solidified casting.

  7. High Temperature Thermal Properties of Bentonite Foundry Sand

    Directory of Open Access Journals (Sweden)

    Krajewski P.K.

    2015-06-01

    Full Text Available The paper presents results of measuring thermal conductivity and heat capacity of bentonite foundry sand in temperature range ambient - 900­­°C. During the experiments a technical purity Cu plate was cast into the green-sand moulds. Basing on measurements of the mould temperature field during the solidification of the casting, the temperature relationships of the measured properties were evaluated. It was confirmed that water vaporization strongly influences thermal conductivity of the moulding sand in the first period of the mould heating by the poured casting.

  8. Defects Analysis and Its Elimination in Flywheel during Sand-Coated Iron Molding%飞轮金属型覆砂铸造工艺的缺陷分析及消除

    Institute of Scientific and Technical Information of China (English)

    吴诗仁; 温彤; 方刚; 樊照钟

    2011-01-01

    The sand-coated iron mould process of grey iron flywheel was simulated by the software to understand the shrinkage porosity (hole) in the flywheel. Through numerical simulation, effects of iron mould thickness and pouring temperatures on temperature field were analyzed, and responding counter-measures were presented. Through decreasing thickness of sand-coated on partial concave edge and adding chills, shrinkage porosity (hole) in grey iron flywheel was effectively eliminated.%针对飞轮铸件生产中出现的缩松、缩孔等缺陷,对其金属型覆砂铸造成形过程进行了数值模拟.根据模拟结果,分析了金属型厚度和浇注温度等因素对凝固过程温度场的影响,并提出了相应的改进措施.发现减薄飞轮凸缘局部的覆砂层厚度以及增加冷铁,对消除缩松、缩孔缺陷的效果最好.

  9. 铁型覆砂铸造工艺凝固模拟及应用%Casting Solidification Simulation of Sand Faced Permanent Iron Molding Technology and its Application

    Institute of Scientific and Technical Information of China (English)

    潘东杰

    2000-01-01

    研究了三维有限元法在铸件凝固模拟中不稳定导热问题的数值解析方法及相关处理技术,研究了铁型覆砂铸造工艺的传热机理,开发了适用于铁型覆砂铸造工艺的铸件凝固分析系统,并给出了该系统的应用实例.该系统的应用,将有助于铁型覆砂铸造工艺从经验走向科学.

  10. 金属型全覆砂铸造磨球生产线工艺设计%Design of Permanent Mold Coated Sand Casting Process for Grinding Ball Production Line

    Institute of Scientific and Technical Information of China (English)

    范淇元

    2013-01-01

    以金属型全覆砂磨球铸造工艺为研究对象,分析了等温淬火球墨铸铁生产流程及设备,设计了基于自动化技术的磨球生产过程.结果表明,所设计的工艺提高了磨球质量和出品率,降低了铸造时间和成本.

  11. Application of Semi-permanent Sand Mold in Large Slag Pan Casting%半永久砂型在大型渣盆铸件上的应用

    Institute of Scientific and Technical Information of China (English)

    任庆存; 刘洪军

    2006-01-01

    @@ 半永久砂型是区别于一次性砂型的一种特殊的砂型,这种砂型可以多次浇注多次使用,大大提高砂型的利用率,显著提高生产效率,缩短生产周期,降低劳动强度.我们车间在实践中不断摸索,在单重12 t的大型渣盆上成功应用,取得了显著的经济效益.

  12. The Analysis of Ductile Iron Degeneration ofYC6108 ZQ Crankshaft in Sand-permanent Mold Casting%YC6108 ZQ铁型覆砂曲轴产生灰化的原因及解决办法

    Institute of Scientific and Technical Information of China (English)

    胡兵; 马永明

    2008-01-01

    对YC6108 ZQ曲轴灰化原因进行了分析,通过采用铁型覆砂铸造工艺和工艺过程的控制等几方面的结合,明显提高曲轴整体质量水平,按此工艺生产,基本解决了灰化问题.

  13. 铁型覆砂铸造生产的等温淬火球墨铸铁坯件%Application of Sand-Lined Metal Mold to Production of Austempered Ductile Iron Castings

    Institute of Scientific and Technical Information of China (English)

    沈永华

    2008-01-01

    稳定、高质量的球墨铸铁件是生产等温淬火球墨铸铁(ADI)件的基础.利用铁型覆砂铸造在球铁件生产中的优势,稳定生产高质量的球铁件是可行的.列举了部分ADI曲轴、齿轮、斜楔等球铁坯件采用铁型覆砂铸造,取得了较好效果.

  14. Influences of Casting Pressure Conditions on the Quality and Properties of a Magnesium Cylinder Head Cover Die Casting

    Institute of Scientific and Technical Information of China (English)

    Wenhui LIU; Yangai LIU; Shoumei XIONG; Baicheng LIU; Y. Matsumoto; M. Murakami

    2005-01-01

    Casting pressure conditions have great influences on the casting defects, such as gas porosity, shrinkage porosity and gas holes. A Mg cylinder head cover die casting was used to experimentally study the influences of casting pressure,the loading time and the piston position of pressure intensification on the variation of pressure and the quality of casting. The results show that casting pressure, the loading time and the piston position of pressure intensification have great influences on the pressure variations in the mold, the quality and performance of casting. The external quality, the density and the tensile strength of casting were improved with the increase of casting pressure and the piston position of pressure intensification and the decrease of the loading time of pressure intensification.

  15. Casting behavior of titanium alloys in a centrifugal casting machine.

    Science.gov (United States)

    Watanabe, K; Miyakawa, O; Takada, Y; Okuno, O; Okabe, T

    2003-05-01

    Since dental casting requires replication of complex shapes with great accuracy, this study examined how well some commercial titanium alloys and experimental titanium-copper alloys filled a mold cavity. The metals examined were three types of commercial dental titanium [commercially pure titanium (hereinafter noted as CP-Ti), Ti-6Al-4V (T64) and Ti-6Al-7Nb (T67)], and experimental titanium-copper alloys [3%, 5% and 10% Cu (mass %)]. The volume percentage filling the cavity was evaluated in castings prepared in a very thin perforated sheet pattern and cast in a centrifugal casting machine. The flow behavior of the molten metal was also examined using a so-called "tracer element technique." The amounts of CP-Ti and all the Ti-Cu alloys filling the cavity were similar; less T64 and T67 filled the cavity. However, the Ti-Cu alloys failed to reach the end of the cavities due to a lower fluidity compared to the other metals. A mold prepared with specially designed perforated sheets was effective at differentiating the flow behavior of the metals tested. The present technique also revealed that the more viscous Ti-Cu alloys with a wide freezing range failed to sequentially flow to the end of the cavity.

  16. Reclaimability of the spent sand mixture – sand with bentonite – sand with furfuryl resin

    Directory of Open Access Journals (Sweden)

    J. Dańko

    2011-04-01

    Full Text Available Introduction of new binding materials and new technologies of their hardening in casting moulds and cores production requires theapplication of reclamation methods adequate to their properties as well as special devices realizing tasks. The spent sands circulationsystem containing the same kind of moulding and core sands is optimal from the point of view of the expected reclamation results.However, in the face of a significant variability of applied technologies and related to them various reclamation methods, the need - of theobtained reclamation products assessment on the grounds of systematic criteria and uniform bases – arises, with a tendency of indicatingwhich criteria are the most important for the given sand system. The reclaimability results of the mixture of the spent moulding sand withGeko S bentonite and the spent core sand with the Kaltharz 404U resin hardened by acidic hardener 100 T3, are presented in the paper.Investigations were performed with regard to the estimation of an influence of core sands additions (10 –25% on the reclaimed materialquality. Dusts and clay content in the reclaim, its chemical reaction (pH and ignition loss were estimated. The verification of the reclaiminstrumental assessment was performed on the basis of the technological properties estimation of moulding sand with bentonite, where the reclaimed material was used as a matrix.

  17. Phenolic Molding Compounds

    Science.gov (United States)

    Koizumi, Koji; Charles, Ted; de Keyser, Hendrik

    Phenolic Molding Compounds continue to exhibit well balanced properties such as heat resistance, chemical resistance, dimensional stability, and creep resistance. They are widely applied in electrical, appliance, small engine, commutator, and automotive applications. As the focus of the automotive industry is weight reduction for greater fuel efficiency, phenolic molding compounds become appealing alternatives to metals. Current market volumes and trends, formulation components and its impact on properties, and a review of common manufacturing methods are presented. Molding processes as well as unique advanced techniques such as high temperature molding, live sprue, and injection/compression technique provide additional benefits in improving the performance characterisitics of phenolic molding compounds. Of special interest are descriptions of some of the latest innovations in automotive components, such as the phenolic intake manifold and valve block for dual clutch transmissions. The chapter also characterizes the most recent developments in new materials, including long glass phenolic molding compounds and carbon fiber reinforced phenolic molding compounds exhibiting a 10-20-fold increase in Charpy impact strength when compared to short fiber filled materials. The role of fatigue testing and fatigue fracture behavior presents some insight into long-term reliability and durability of glass-filled phenolic molding compounds. A section on new technology outlines the important factors to consider in modeling phenolic parts by finite element analysis and flow simulation.

  18. Mold design with simulation for chalcogenide glass precision molding

    Science.gov (United States)

    Zhang, Yunlong; Wang, Zhibin; Li, Junqi; Zhang, Feng; Su, Ying; Wang, Zhongqiang

    2016-10-01

    Compare with the manufacturing of the traditional infrared material, such as signal crystal germanium, zinc sulfide, zinc selenide etc, chalcogenide infrared glass is suitable for precision molding for the low soften temperature to have large mass industry production. So the researches of precision glass molding are necessary, especially for the fast development of infrared product. The mold design is one of the key technologies of precision glass molding. In this paper, the mold processing of a sample chalcogenide glass from the technical drawing, mold design, molding to the lens are introduced. From the result of the precision molding, the technology of finite element simulation is a useful way to guiding the mold design. The molded lens by using mold process fit the design requirement.

  19. Silicon micro-mold

    Science.gov (United States)

    Morales, Alfredo M.

    2006-10-24

    The present invention describes a method for rapidly fabricating a robust 3-dimensional silicon-mold for use in preparing complex metal micro-components. The process begins by depositing a conductive metal layer onto one surface of a silicon wafer. A thin photoresist and a standard lithographic mask are then used to transfer a trace image pattern onto the opposite surface of the wafer by exposing and developing the resist. The exposed portion of the silicon substrate is anisotropically etched through the wafer thickness down to conductive metal layer to provide an etched pattern consisting of a series of rectilinear channels and recesses in the silicon which serve as the silicon micro-mold. Microcomponents are prepared with this mold by first filling the mold channels and recesses with a metal deposit, typically by electroplating, and then removing the silicon micro-mold by chemical etching.

  20. Application of Mold Electromagnetic Stirring in Billet Continuous Casting Machine%结晶器电磁搅拌装置在方坯连铸机的应用

    Institute of Scientific and Technical Information of China (English)

    于本庆

    2012-01-01

    The electromagnetic stirring system is introduced, including the characteristics of the system, working principle and characteristics of inverter power supply cabinet, application and good results in the 8-strand billet continuous casting machine at the steelmaking plant.%介绍了电磁搅拌器的组成特点、逆变电源柜的工作原理特性及其在北营炼钢厂8机8流方坯连铸机应用取得的成效。

  1. Glass molding process with mold lubrication

    Science.gov (United States)

    Davey, Richard G.

    1978-06-27

    Improvements are provided in glass forming processes of the type wherein hot metal blank molds are employed by using the complementary action of a solid film lubricant layer, of graphite dispersed in a cured thermoset organopolysiloxane, along with an overspray of a lubricating oil.

  2. STUDY ON MACRO AND MICRO MODELING ON SOLIDIFICATION PROCESS OF SHAPED CASTING

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Facing the market economy and global challenge the development of manufacturing industry especially casting industry is critical to the national economy. To reform the traditional casting industry by using computer technology is one of the hottest research frontiers studied by many researchers and engineers. Computer simulation of solidification process of shaped casting can assure the quality of casting, optimize the casting technology, shorten the lead time and therefore decrease the developing and manufacturing cost. Recently, numerical simulation of mold-filling and solidification processes of shaped casting and prediction of microstructure and property as well are extensively studied and put into application in many casting plants with many successful simulation cases.

  3. 柴油机气缸体的消失模铸造工艺%Lost Foam Casting Process for Diesel Engine Cylinder Block

    Institute of Scientific and Technical Information of China (English)

    王新节

    2011-01-01

    介绍了用消失模铸造工艺生产直列四缸柴油发动机气缸体的工艺过程.包括泡沫模样的制作、模具的设计、泡沫模样的组装、型砂的选择及造型、浇注系统的设计等几个方面.与传统的普通砂型铸造相比,其铸件单体重量减轻约10%,铸件重量精度达到MT7级,铸件尺寸精度达到CT8级.%The lost foam casting process for the cylinder block of inline four-cylinder diesel engine was presented, including the manufacture of foam patterns, design of dies, assembling of the patterns, selection of molding sand, design of gating system, and so on. Compared with the conventional sand casting, the weight of a single casting was reduced by 10%. Its weight accuracy reached MT7, and the dimension accuracy reached CT8.

  4. Casting Technology Development for SFR Metallic Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Lee, C.T.; Oh, S.J.; Ryu, H.J.; Kim, K.H.; Lee, Y.S.; Kim, S.K.; Woo, Y.M.; Ko, Y.M.; Lee, C.B. [KAERI, 150 Deokjin-dong, Yuseong, Daejeon, 305-353 (Korea, Republic of)

    2009-06-15

    Fabrication technology of metallic fuel for sodium fast reactor (SFR) is being developed in Korea as a national mid- and long-term nuclear R and D program from 2007. The metallic fuel for SFR should be remotely fabricated under a radiation shielded environment such as a glove box or hot cell, because it contains long-lived minor actinides such as Np, Am and Cm. In order to design a reliable remote fabrication system, various casting techniques have been studied by using U-Zr and U-Zr-RE alloys as surrogate fuel material. Rare earth elements such as Ce or Nd were used as a surrogate for minor actinide elements or solid solution fission products. Macro-scale soundness, microstructures and compositional homogeneity of metallic fuel samples fabricated by vacuum-assisted injection casting, vacuum-assisted gravity casting, centrifugal atomization and continuous casting were compared. Although sound slugs of U-Zr metallic fuel of 4{approx}6 mm in diameter could be fabricated by vacuum-assisted injection casting or vacuum-assisted gravity casting, it was necessary to consider that vaporization of Am and volume of radioactive wastes such as crucibles and molds should be minimized. Effects of casting parameters on the volatile loss, and effects of coatings on the chemical reaction between metallic fuel and molds are discussed. Some methods to reduce the volatile Am loss and waste molds and crucibles will be proposed. Short rods of U-Zr or U-Zr-Ce fuel will be fabricated by the vacuum-assisted gravity casting technique for an irradiation test in the HANARO research reactor from 2010. (authors)

  5. Characterization of Bimetallic Castings with an Austenitic Working Surface Layer and an Unalloyed Cast Steel Base

    Science.gov (United States)

    Wróbel, Tomasz

    2014-05-01

    The paper presents the technology of bimetallic castings based on the founding method of layer coating directly in the cast process of the so-called method of mold cavity preparation. The prepared castings consist of two fundamental parts, i.e., the base and the working surface layer. The base part of the bimetallic casting is typical foundry material, i.e., unalloyed cast steel, whereas the working layer is a plate of austenitic alloy steel sort X2CrNi 18-9. The quality of the joint between the base part and the working layer was evaluated on the basis of ultrasonic non-destructive testing and structure examinations containing metallographic macro- and microscopic studies with the use of a light microscope (LOM) with microhardness measurements and a scanning electron microscope (SEM) with microanalysis of the chemical composition (energy dispersive spectroscopy—EDS). On the basis of the obtained results it was confirmed that the decisive phenomena needed to create a permanent joint between the two components of the bimetallic casting are carbon and heat transport in the direction from the high-carbon and hot base material which was poured into the mold in the form of liquid metal to the low-carbon and cold material of the working layer which was placed in the mold cavity in the form of a monolithic insert.

  6. Effect of heat treatment on the microstructure, tensile properties, and fracture behavior of permanent mold Al-10 wt pct Si-0.6 wt pct Mg/SiC/10p composite castings

    Science.gov (United States)

    Samuel, F. H.; Samuel, A. M.

    1994-10-01

    The present study was undertaken to investigate the effect of solution treatment (in the temperature range 520 °C to 550 °C) and artificial aging (in the temperature range 140 °C to 180 °C) on the variation in the microstructure, tensile properties, and fracture mechanisms of Al-10 wt pct Si-0.6 wt pct Mg/SiC/10p composite castings. In the as-cast condition, the SiC particles are observed to act as nucleation sites for the eutectic Si particles. Increasing the solution temperature results in faster homogenization of the microstructure. Effect of solution temperature on tensile properties is evident only during the first 4 hours, after which hardly any difference is observed on increasing the solution temperature from 520 °C to 550 °C. The tensile properties vary significantly with aging time and temperature, with typical yield strength (YS), ultimate tensile strength (UTS), and percent elongation (EL) values of ˜300 MPa, ˜330 MPa, and ˜1.4 pct in the underaged condition, ˜330 MPa, ˜360 MPa, and ˜0.65 pct in the peakaged condition, and ˜323 MPa, ˜330 MPa, and ˜0.8 pct in the overaged condition. Prolonged solution treatment at 550 °C for 24 hours results in a slight improvement in the ductility of the aged test bars. The fracture surfaces exhibit a dimple morphology and cleavage of the SiC particles, the extent of SiC cracking increasing with increasing tensile strength and reaching a maximum in the overaged condition. Microvoids act as nucleation sites for the formation of secondary cracks that promote severe cracking of the SiC particles. A detailed discussion of the fracture mechanism is given.

  7. Modelado del sistema de enfriamiento primario en máquinas de colada de acero con cristalizador curvo//Modelling of continuos casting steel during first cooling system with curve mold

    Directory of Open Access Journals (Sweden)

    Yusdel Díaz‐Hernández

    2014-01-01

    Full Text Available En el proceso de enfriamiento primario durante la colada continua de aceros sucede una serie de transformaciones físicas que inciden directamente en la calidad final del producto. Los modelos matemáticos que explican este fenómeno no pueden ser tratados indistintamente para una instalación u otra debido a las disímiles variables implicadas en el proceso. En esta investigación se obtuvo un modelo físico- estadístico mediante regresiones múltiples sucesivas para el caudal necesario de agua en máquinas de colada continua de aceros con cristalizador curvo. Para el modelado se tuvo en cuenta las variables de operación del enfriamiento en cristalizadores curvos así como la validación estadística encondiciones de explotación en tiempo real. El modelo obtenido permitió estimar el comportamiento de las variables de control del proceso con suficiente precisión.Palabras claves: enfriamiento, solidificación, colada continua, modelado, aceración.______________________________________________________________________________AbstractIn the process of primary cooling in the continuous casting of Steel there are physical transformations that affect directly the quality of the final product. The mathematical models that explain this phenomenon cannot be applied to different installations because the variables involved in the process are different. Inthis research, a physical-statistical model was obtained through multiple and successive regression for the flow of water which is necessary in this complex process. For the modeling the variables of operations in the cured cooling systems were taken into account as well as the statistical validation in conditions ofexploitation in real time. The model permitted to predict the behavior of the variables with sufficient precision.Key words: cooling, solidifications, continuous casting, modeling, steelmaking.

  8. Caste System

    OpenAIRE

    Hoff, Karla

    2016-01-01

    In standard economics, individuals are rational actors and economic forces undermine institutions that impose large inefficiencies. The persistence of the caste system is evidence of the need for psychologically more realistic models of decision-making in economics. The caste system divides South Asian society into hereditary groups whose lowest ranks are represented as innately polluted. ...

  9. Energy Saving Melting andRevert Reduction Technology (E0SMARRT): Predicting Pattern Tooling and Casting Dimension for Investment Casting

    Energy Technology Data Exchange (ETDEWEB)

    Nick Cannell; Dr. Mark Samonds; Adi Sholapurwalla; Sam Scott

    2008-11-21

    The investment casting process is an expendable mold process where wax patterns of the part and rigging are molded, assembled, shelled and melted to produce a ceramic mold matching the shape of the component to be cast. Investment casting is an important manufacturing method for critical parts because of the ability to maintain dimensional shape and tolerances. However, these tolerances can be easily exceeded if the molding components do not maintain their individual shapes well. In the investment casting process there are several opportunities for the final casting shape to not maintain the intended size and shape, such as shrinkage of the wax in the injection tool, the modification of the shape during shell heating, and with the thermal shrink and distortion in the casting process. Studies have been completed to look at the casting and shell distortions through the process in earlier phases of this project. Dr. Adrian Sabau at Oak Ridge National Labs performed characterizations and validations of 17-4 PH stainless steel in primarily fused silica shell systems with good agreement between analysis results and experimental data. Further tasks provided material property measurements of wax and methodology for employing a viscoelastic definition of wax materials into software. The final set of tasks involved the implementation of the findings into the commercial casting analysis software ProCAST, owned and maintained by ESI Group. This included: o the transfer of the wax material property data from its raw form into separate temperature-dependent thermophysical and mechanical property datasets o adding this wax material property data into an easily viewable and modifiable user interface within the pre-processing application of the ProCAST suite, namely PreCAST o and validating the data and viscoelastic wax model with respect to experimental results

  10. Mold Image Library

    Science.gov (United States)

    The image library contains mold-related images in seven categories. There are also animated images that you can choose to view and download. These photos may be used for presentations and educational purposes without contacting EPA.

  11. DESIGN AND FABRICATION OF A CENTRIFUGAL CASTING MACHINE

    Directory of Open Access Journals (Sweden)

    Adedipe Oyewole

    2011-12-01

    Full Text Available The design and fabrication of a centrifugal casting machine was successfully carried out. The operation of the machine was based on the principle of centrifugal force. Suitable design theory, analysis and calculation were adopted carried out in the course of the work. The mold is bolted to the base plate which can rotate at moderatespeeds thereby forcing the molten metal against the inner walls of the mold. This machine could be used to cast small engineering components. The centrifugal force on the machine was determined to be 3207.3N, while the required power on the machine was 854.7W. A test was carried out on the fabricated centrifugal casting machine with aluminum alloy and the machine was able to cast 6kg of aluminum alloy and the casting was successful.

  12. Tundish Technology for Casting Clean Steel: A Review

    Science.gov (United States)

    Sahai, Yogeshwar

    2016-08-01

    With increasing demand of high-quality clean steel, cleanliness is of paramount importance in steel production and casting. Tundish plays an important role in controlling the continuously cast steel quality as it links a batch vessel, ladle, to a continuous casting mold. Tundish is also the last vessel in which metal flows before solidifying in mold. For controlling the quality of steel, flow and temperature control of the melt are critical, and these are presented in this paper. Use of proper flux, design of flow control devices, and gas injection in tundish become important factors in casting clean steel. Recycling of hot tundish, centrifugal flow tundish, H-shaped tundish, etc. are some of the developments which were implemented to cast clean steel and these are discussed.

  13. Prediction of ALLOY SHRINKAGE FACTORS FOR THE INVESTMENT CASTING PROCESS

    Energy Technology Data Exchange (ETDEWEB)

    Sabau, Adrian S [ORNL

    2006-01-01

    This study deals with the experimental measurements and numerical predictions of alloy shrinkage factors (SFs) related to the investment casting process. The dimensions of the A356 aluminum alloy casting were determined from the numerical simulation results of solidification, heat transfer, fluid dynamics, and deformation phenomena. The investment casting process was carried out using wax patterns of unfilled wax and shell molds that were made of fused silica with a zircon prime coat. The dimensions of the die tooling, wax pattern, and casting were measured, in order to determine the actual tooling allowances. Several numerical simulations were carried out, to assess the level of accuracy for the casting shrinkage. The solid fraction threshold, at which the transition from the fluid dynamics to the solid dynamics occurs, was found to be important in predicting shrinkage factors (SFs). It was found that accurate predictions were obtained for all measued dimensions when the shell mold was considered a deformable material.

  14. Technologies for Use in the Formation of a Differentiated Structure in Iron Billets Used in Glass Molds

    Science.gov (United States)

    Leushin, I. O.; Chistyakov, D. G.

    2016-09-01

    Causes for the failure of pig iron press molds that are parts of a glass mold are described. Criteria for differentiating the structure of pig iron are established. Ways of obtaining a differentiated structure of a casting product are outlined. A heat treatment regime for the billets is determined.

  15. Transferability of glass lens molding

    Science.gov (United States)

    Katsuki, Masahide

    2006-02-01

    Sphere lenses have been used for long time. But it is well known that sphere lenses theoretically have spherical aberration, coma and so on. And, aspheric lenses attract attention recently. Plastic lenses are molded easily with injection machines, and are relatively low cost. They are suitable for mass production. On the other hand, glass lenses have several excellent features such as high refractive index, heat resistance and so on. Many aspheric glass lenses came to be used for the latest digital camera and mobile phone camera module. It is very difficult to produce aspheric glass lenses by conventional process of curve generating and polishing. For the solution of this problem, Glass Molding Machine was developed and is spreading through the market. High precision mold is necessary to mold glass lenses with Glass Molding Machine. The mold core is ground or turned by high precision NC aspheric generator. To obtain higher transferability of the mold core, the function of the molding machine and the conditions of molding are very important. But because of high molding temperature, there are factors of thermal expansion and contraction of the mold and glass material. And it is hard to avoid the factors. In this session, I introduce following items. [1] Technology of glass molding and the machine is introduced. [2] The transferability of glass molding is analyzed with some data of glass lenses molded. [3] Compensation of molding shape error is discussed with examples.

  16. Best practices for making high integrity lightweight metal castings- molten metal composition and cleanliness control

    Institute of Scientific and Technical Information of China (English)

    Qigui Wang

    2014-01-01

    To make high integrity lightweight metal castings, best practices are required in various stages of casting and heat treatment processes, including liquid metal composition and quality control, casting and gating/riser system design, and process optimization. This paper presents best practices for liquid metal processing and quality assurance of molten metal in both melting and mold ifling. Best practices for other aspects of lightweight metal casting wil be published separately.

  17. Study on Antigravity Mold Filling by Conservative Scalar Method

    Institute of Scientific and Technical Information of China (English)

    李日; 王友序; 杨根仓; 毛协民

    2003-01-01

    By SIMPLE method and Van-Leer scheme, a program on numerical simulation for 3D mold filling has been developed. The fluid flow field of gas and liquid is calculated in couples by a single phase N-S equation using SIMPLE method, and free surface control equation is handied by Van-Leer scheme. Then it is verified by an anti-gravity mold filling of thin wall plate. In order to demonstrate its ability to simulate 3D casting, an anti-gravity mould filling of a cube is computed by the program.

  18. Numerical Simulation and Cold Modeling experiments on Centrifugal Casting

    Science.gov (United States)

    Keerthiprasad, Kestur Sadashivaiah; Murali, Mysore Seetharam; Mukunda, Pudukottah Gopaliengar; Majumdar, Sekhar

    2011-02-01

    In a centrifugal casting process, the fluid flow eventually determines the quality and characteristics of the final product. It is difficult to study the fluid behavior here because of the opaque nature of melt and mold. In the current investigation, numerical simulations of the flow field and visualization experiments on cold models have been carried out for a centrifugal casting system using horizontal molds and fluids of different viscosities to study the effect of different process variables on the flow pattern. The effects of the thickness of the cylindrical fluid annulus formed inside the mold and the effects of fluid viscosity, diameter, and rotational speed of the mold on the hollow fluid cylinder formation process have been investigated. The numerical simulation results are compared with corresponding data obtained from the cold modeling experiments. The influence of rotational speed in a real-life centrifugal casting system has also been studied using an aluminum-silicon alloy. Cylinders of different thicknesses are cast at different rotational speeds, and the flow patterns observed visually in the actual castings are found to be similar to those recorded in the corresponding cold modeling experiments. Reasonable agreement is observed between the results of numerical simulation and the results of cold modeling experiments with different fluids. The visualization study on the hollow cylinders produced in an actual centrifugal casting process also confirm the conclusions arrived at from the cold modeling experiments and numerical simulation in a qualitative sense.

  19. Precision Casting via Advanced Simulation and Manufacturing

    Science.gov (United States)

    1997-01-01

    A two-year program was conducted to develop and commercially implement selected casting manufacturing technologies to enable significant reductions in the costs of castings, increase the complexity and dimensional accuracy of castings, and reduce the development times for delivery of high quality castings. The industry-led R&D project was cost shared with NASA's Aerospace Industry Technology Program (AITP). The Rocketdyne Division of Boeing North American, Inc. served as the team lead with participation from Lockheed Martin, Ford Motor Company, Howmet Corporation, PCC Airfoils, General Electric, UES, Inc., University of Alabama, Auburn University, Robinson, Inc., Aracor, and NASA-LeRC. The technical effort was organized into four distinct tasks. The accomplishments reported herein. Task 1.0 developed advanced simulation technology for core molding. Ford headed up this task. On this program, a specialized core machine was designed and built. Task 2.0 focused on intelligent process control for precision core molding. Howmet led this effort. The primary focus of these experimental efforts was to characterize the process parameters that have a strong impact on dimensional control issues of injection molded cores during their fabrication. Task 3.0 developed and applied rapid prototyping to produce near net shape castings. Rocketdyne was responsible for this task. CAD files were generated using reverse engineering, rapid prototype patterns were fabricated using SLS and SLA, and castings produced and evaluated. Task 4.0 was aimed at developing technology transfer. Rocketdyne coordinated this task. Casting related technology, explored and evaluated in the first three tasks of this program, was implemented into manufacturing processes.

  20. Dynamic of taking out molding parts at injection molding

    Directory of Open Access Journals (Sweden)

    E. Ragan

    2012-10-01

    Full Text Available Most plastic parts used in automobile production are manufactured by injection molding. Their quality depends also on taking out molding and on the manipulators for it. Task of this contribution is to theoretically describe a transport of molding at taking out after injection molding in relation on its regulation. The following quantities are derived at it: the transition characteristic of the taking out system, the blocking diagram of taking out molding regulation, the amplitude and phase characteristic and the transition characteristic of action quantity at taking out molding regulation.

  1. CO2硬化水玻璃旧砂的湿法再生探索%Conditions of Wet Reclamation for Used Sodium Silicate Sand Hardened by CO2

    Institute of Scientific and Technical Information of China (English)

    陈锐; 卢鑫; 谭捷; 谭远友

    2014-01-01

    现代铸造业发展的一个重要目标是绿色铸造。水玻璃砂是最有可能实现绿色制造的型砂,水玻璃旧砂的再生回用是其关键。本文探讨了不同转速、时间、温度条件下湿法再生 CO2硬化水玻璃旧砂的效果。结果表明:适宜的参数为转速800 r/min,时间10 min,温度80℃,用水量1砄1,再生砂残留碱约为3%。%Green casting was an important goal in the development of modern foundry industry.Sodium silicate sand ( SSS) was most likely molding sand achieve green manufacturing of green sand , and SSS regeneration recycling was the key of the green manufacturing.SSS regeneration CO 2 hardening affecting in different speed , time and temperature was discussed.The results showed that optimum reactions according to the volume of acid consumed were rotate speed of 800 r/min, water consumption of 500 mL: 500 g sodium silicate sand , reaction temperature of 80 ℃ and reaction time was 10 min.Residual alkali reclaimed in the sand was about 3%.

  2. Predicting Pattern Tooling and Casting Dimensions for Investment Casting - Phase II

    Energy Technology Data Exchange (ETDEWEB)

    Sabau, Adrian S [ORNL

    2005-09-01

    The investment casting process allows the production of complex-shape parts and close dimensional tolerances. One of the most important phases in the investment casting process is the design of the pattern die. Pattern dies are used to create wax patterns by injecting wax into dies. The wax patterns are used to create a ceramic shell by the application of a series of ceramic coatings, and the alloy is cast into the dewaxed shell mold (Fig. 1.1). However, the complexity of shape and the close dimensional tolerances required in the final casting make it difficult to determine tooling dimensions. The final linear dimension of the casting depends on the cumulative effects of the linear expansions or contractions in each step of the investment casting process (Fig. 1.2). In most cases, the mold geometry or cores restrict the shrinkage of the pattern or the cast part, and the final casting dimensions may be affected by time-dependent processes such as viscoelastic deformation of the wax, and viscoplastic creep and plastic deformations of the shell and alloy. The pattern die is often reworked several times to produce castings whose dimensions are within acceptable tolerances. To date, investment casting technology has been based on hands-on training and experience. Technical literature is limited to experimental, phenomenological studies aimed at obtaining empirical correlations for quick and easy application in industry. The goal of this project was to predict casting dimensions for investment castings in order to meet blueprint nominal during the first casting run. Several interactions have to be considered in a coupled manner to determine the shrinkage factors: these are the die-wax, wax-shell, and shell-alloy interactions (as illustrated in Fig. 1.3). In this work, the deformations of the die-wax and shell-alloy systems were considered in a coupled manner, while the coupled deformation of the wax-shell system was not considered. Future work is needed in order to

  3. The characterization of trace metals and organics in spent foundry sands over a one-year period

    Science.gov (United States)

    Millions of tons of spent sand, used to create metalcasting molds, are generated by the foundry industry each year in the United States. Not surprisingly, spent foundry sands (SFSs) are an excellent substitute for virgin sands that are currently used in manufactured soils and geotechnical applicati...

  4. Research on Sand Mould Casting Process for an Aero-engine Oil Distributing Sleeve%某航空发动机分油套筒砂型铸造工艺研究

    Institute of Scientific and Technical Information of China (English)

    黄艳松; 余继华; 冯保东

    2014-01-01

    In order to resolve the problem of metallurgical quality defects which are existed in the engine oil distributing sleeve casting,combined casting structure with performance features of magnesium alloy,analyzed the reasons of quality de-fects.The paper made a plan of measures including adding sprue filter,collocating reasonably with induced cold iron colora-tion,adopting sloping casting and establishing enlarged feed size based on the original casting system,casting system and process files has been completed and trial manufacturing validation has been organized.The results showed that quality de-fects of casting had been removed and products percent of pass had been increased largely.%针对某航空发动机分油套筒铸件(下述简称铸件)存在冶金质量缺陷的问题,结合铸件结构和镁合金性能特点,分析了其质量缺陷的成因。立足于原有浇注系统,制定了增加浇道过滤网、合理搭配激冷冷铁、采用倾斜浇注及增加冒口尺寸等改进措施,对浇注系统和工艺资料进行了完善,并进行了试验验证。结果表明,铸件内部质量缺陷已消除,产品合格率大幅提高。

  5. Hair casts

    Directory of Open Access Journals (Sweden)

    Sweta S Parmar

    2014-01-01

    Full Text Available Hair casts or pseudonits are circumferential concretions,which cover the hair shaft in such a way that, it could be easily removed. They are thin, cylindrical, and elongated in length. We present an unusual case of an 8-year-old girl presenting with hair casts. Occurrence of these is unusual, and they may have varied associations. This patient was suffering from developmental delay. It is commonly misdiagnosed as and very important to differentiate from pediculosis capitis.

  6. The influence of sanding system on wetting of Paulownia siebold et zucc.

    Directory of Open Access Journals (Sweden)

    Jaić Milan

    2010-01-01

    Full Text Available This paper presents the research of influence of wood surface preparation on the wetting ability of polyurethane coatings, by the method of contact angle. The samples were made of two species of Paulownia (Paulownia elongata and Paulownia fortunei. All the samples were processed by planing (molding. After molding, the samples were arranged in groups and sanded. In relation with wood grain direction, each group had a particular system of sanding, based on the numbering of sanding paper, program of displacement of sanding papers with different numbering and the direction of sanding. The quality of wood surface after sanding was expressed by the values of roughness parameters in the system 'M': Ra, Rz, Rv, Rp and Rt. The contact angle was measured using transparent polyurethane (PU coating and distilled water. The influence of the system of sanding on the values of contact angle was analyzed by roughness parameter Ra.

  7. Influencia de las condiciones de moldeo y las características de los moldes sobre la formación de defectos de contracción en piezas de fundición

    Directory of Open Access Journals (Sweden)

    Sertucha, J.

    2007-06-01

    Full Text Available Shrinkage defects appearance in cast iron has traditionally been related to the solidification processes of the metal and the feeding ability among the different sections of castings. Recent studies have demonstrated that sand moulds properties and their thermal behaviour after pouring step have an important influence on these defects formation too. The influence of the moulding process parameters and the mould characteristics on the contraction defects is analysed in this work using test casting designed specifically for this purpose. Additionally the most important parameters are determined in order to control the manufacturing process and minimise the shrinkage appearance in the castings.

    Tradicionalmente, la aparición de rechupes en las piezas fabricadas con fundiciones grafíticas se ha relacionado con los procesos de solidificación del material metálico y la capacidad de alimentación entre las diferentes secciones que conforman las piezas. Los estudios más recientes indican que la formación de estos defectos también depende, en gran medida, de las características de los moldes de arena y especialmente de su comportamiento durante la etapa de solidificación-enfriamiento del metal contenido en su interior. En este trabajo se analiza la influencia que muestran los parámetros vinculados a los procesos de moldeo y las propias características de los moldes sobre los defectos de contracción presentes en piezas diseñadas para tal efecto. Por otra parte, se determinan cuáles son los parámetros más relevantes a la hora de controlar los procesos de fabricación y minimizar la presencia de rechupes en las piezas.

  8. Engineering design of centrifugal casting machine

    Science.gov (United States)

    Kusnowo, Roni; Gunara, Sophiadi

    2017-06-01

    Centrifugal casting is a metal casting process in which metal liquid is poured into a rotating mold at a specific temperature. Given round will generate a centrifugal force that will affect the outcome of the casting. Casting method is suitable in the manufacture of the casting cylinder to obtain better results. This research was performed to design a prototype machine by using the concept of centrifugal casting. The design method was a step-by-step systematic approach in the process of thinking to achieve the desired goal of realizing the idea and build bridges between idea and the product. Design process was commenced by the conceptual design phase and followed by the embodiment design stage and detailed design stage. With an engineering design process based on the method developed by G. E. Dieter, draft prototype of centrifugal casting machine with dimension of 550×450×400 mm, ¼ HP motor power, pulley and belt mechanism, diameter of 120-150mm, simultaneously with the characteristics of simple casting product, easy manufacture and maintenance, and relatively inexpensive, was generated.

  9. Design of Resin-Bonded Sand Production Line of Annual Output Twenty Thousand Ton Castings%年产2万吨铸件树脂砂生产线的设计

    Institute of Scientific and Technical Information of China (English)

    屠曹富; 徐忠民; 周剑东; 陈红雷; 黄彩玲

    2011-01-01

    Consisting of vibrating knock-out, vibrating conveyor, vibrating breaking,two steps magnetic sorting,boiling cooling bed,pneumatic recovery,wind selector,sand temperature adjustor,machine operation system, water cooling system, sand mixing system electric and control system, this furan bonded sand production line has been introduced with its design and some systems as knock-out,sand reclamation and dust remove.%该呋喃树脂砂生产线由振动落砂机、振动输送机、振动破碎机、两级磁选设备、沸腾冷却床、气力再生机、风选器、砂温调节器及机运系统、水冷系统、混砂系统、除尘系统、电气控制系统等部分组成.本文对该线的设计以及落砂、砂再生、除尘等系统作了介绍.

  10. Estimation of solidification time during casting by use of a heat transfer model.

    Science.gov (United States)

    Okazaki, M; Takahashi, J; Kimura, H; Ida, K

    1982-10-01

    Time-dependent temperature profiles in dental casting molds were analyzed by an unsteady heat conduction model. The thermal conductivity and initial temperature of the mold greatly affected the heat transfer in the mold. The thermal conductivities of gypsum- and phosphate-bonded investments at high temperatures were accurately measured by means of the hot wire method. From the data obtained, the solidification times of Ag, Ag alloy, and Co-Cr alloy were calculated and compared with the experimental results.

  11. Face Coat Materials Through Sessile Drop and Investment Casting Methods

    Science.gov (United States)

    Cheng, Xu; Yuan, Chen; Blackburn, Stuart; Withey, Paul A.

    2014-06-01

    Investment casting is uniquely suited to the manufacture of Ti alloys for the production of near net-shape components, reducing material waste, and machining costs. Because of the high reactivity of titanium and its based alloy, the molds which are used in the investment casting process require high chemical inertness, which results in them being very costly and non-recyclable. In order to reduce the cost of these molds, traditionally using yttria as the face coat, two alternative molds are developed in this study with face coat materials of Y2O3-Al2O3 and Y2O3-Al2O3-ZrO2. The slurry properties and chemical inertness of the face coats were evaluated for viscosity, thermal expansion, friability, and phase development. The chemical inertness of these two molds were determined using both the sessile drop test and investment casting to identify the levels of interaction with a Ti-45Al-2Mn-2Nb-0.2B alloy. The results illustrated that the molds using Y2O3-Al2O3 and Y2O3-Al2O3-ZrO2 as the face coats both showed excellent sintering properties and chemical inertness when compared to the yttria face coat. They can consequently be used as two alternative face coats for the investment casting of TiAl alloys.

  12. Mold Filling Behavior of Melts with Different Viscosity under Centrifugal Force Field

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Recently proposed mathematical model for mold filling processes under centrifugal force field conditions and the computer codes were first tested through the sample simulation of gravity mold filling process for a benchmark plate-casting, which were compared with quoted experimental observations. The model and the developed computer program were then applied to the numerical simulation of centrifugal field mold filling processes for a thin-section casting with a titanium alloy melt of assumed viscosity of 1.2 and 12.0 mm2/s, respectively. The computation result comparison shows that the flow behaviors of the filling melts are basically similar to each other although the less viscous melt tends to fill into the thin section casting cavity faster.

  13. Meer bekend over Black Mold

    NARCIS (Netherlands)

    Duyvesteijn, R.G.E.; Kohrman, E.

    2008-01-01

    In de vollegrondsrozenteelt zorgde Black Mold in 2007 voor een groot aantal mislukte oculaties. In 2008 waren er aanzienlijk minder problemen. Uit onderzoek is meer bekend over de oorzaak en bestrijding van Black Mold.

  14. Meer bekend over Black Mold

    NARCIS (Netherlands)

    Duyvesteijn, R.G.E.; Kohrman, E.

    2008-01-01

    In de vollegrondsrozenteelt zorgde Black Mold in 2007 voor een groot aantal mislukte oculaties. In 2008 waren er aanzienlijk minder problemen. Uit onderzoek is meer bekend over de oorzaak en bestrijding van Black Mold.

  15. 基于光固法的变矩器导轮快速铸造%The torque converter's impeller rapid casting based on stereolithography

    Institute of Scientific and Technical Information of China (English)

    石光林; 朱林; 温全明

    2012-01-01

    The high costs and long lead-time associated with the fabrication of casting mold render conventional investment casting uneconomical for new product development, single part or small quantity production. In this paper, the torque converter impeller's function sample, which is used for the torque converter test, can be obtained by the craft combined stereolithography with fired mold casting. The basic craft process is that: first, impeller SLA prototype can be manufactured by the rapid prototyping equipment, then comes the process of moistening slurry, drench sand and roasting type to make the shell, in the end, impeller's function sample can be obtained after smelting casting. By this method, mould's cost can be saved and the new product's construction cycle can be cut.%传统的铸造因铸型制备过程复杂、生产周期长、成本高,不适合单件、小批量生产和新产品试制,研究利用光固法与熔模铸造相结合的工艺制造变矩器导轮功能样件,用于变矩器性能试验.首先利用快速成型设备制作导轮的SLA原型,随后对原型进行沾浆、淋砂、焙烧制成型壳,再经熔炼浇注后得到导轮功能样件.利用此方法,可以实现导轮的快速铸造,从而节约模具费用,缩短新产品开发周期.

  16. SYSTEMATIC AND DYNAMIC PROPER-TIES OF CASTING HOT SPOT

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The variation of casting hot spot with proceeding of solidification and components of casting-mold system is studied by the technique of numerical simulation of solidification.The result shows that the thickest part of casting is not exactly the last part of solidification in the casting, while the last part of solidification is not exactly casting hot spot at the early stage of solidification.The location, size, shape and number of casting hot spot change with geomitric, physical and technological factors of the casting-mold system such as thickness of the casting secondary wall and with the passage of time in the course of the solidification.The former is known as the systematic property of hot spot and the latter, dynamic property.Only when the properties of hot spot are grasped completely and accurately, can it be fed more effectively.By doing so, not only sound castings can be obtained, but also riser efficiency can be improved.

  17. Bioreactor-free tissue engineering: directed tissue assembly by centrifugal casting.

    Science.gov (United States)

    Mironov, Vladimir; Kasyanov, Vladimir; Markwald, Roger R; Prestwich, Glenn D

    2008-02-01

    Casting is a process by which a material is introduced into a mold while it is liquid, allowed to solidify in a predefined shape inside the mold, and then removed to give a fabricated object, part or casing. Centrifugal casting could be defined as a process of molding using centrifugal forces. Although the centrifugal casting technology has a long history in metal manufacturing and in the plastics industry, only recently has this technology attracted the attention of tissue engineers. Initially, centrifugation was used to optimize cell seeding on a solid scaffold. More recently, centrifugal casting has been used to create tubular scaffolds and both tubular and flat multilayered, living tissue constructs. These newer applications were enabled by a new class of biocompatible in situ crosslinkable hydrogels that mimic the extracellular matrix. Herein the authors summarize the state of the art of centrifugal casting technology in tissue engineering, they outline associated technological challenges, and they discuss the potential future for clinical applications.

  18. Preparation of open-cell metal foams by investment cast

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Metal foams are a new kind of materials with low densities and novel physical, mechanical, thermal, electrical and acoustic properties. They can be divided into closed and open cell structures. In this paper the open cell structures,called sponges, were treated. A new technique to manufacture sponges by plaster investment casting was described.Experimental results show that it is essential to make a sound plaster mould by casting plaster slurry into the polyurethane foams and infiltrate the open channels of the baked plaster mold by molten metal. The optimal processes include plaster slurry preparation, plaster mold baking, and molten metal infiltration. The sponge sample with porosity of 97% is presented.

  19. Preparation of open-cell metal foams by investment cast

    Directory of Open Access Journals (Sweden)

    Lucai WANG

    2005-02-01

    Full Text Available Metal foams are a new kind of materials with low densities and novel physical, mechanical, thermal, electrical and acoustic properties. They can be divided into closed and open cell structures. In this paper the open cell structures, called sponges, were treated. A new technique to manufacture sponges by plaster investment casting was described. Experimental results show that it is essential to make a sound plaster mould by casting plaster slurry into the polyurethane foams and infiltrate the open channels of the baked plaster mold by molten metal. The optimal processes include plaster slurry preparation, plaster mold baking, and molten metal infiltration. The sponge sample with porosity of 97% is presented.

  20. End moldings for cable dielectrics

    Energy Technology Data Exchange (ETDEWEB)

    Roose, L.D.

    1993-12-31

    End moldings for high-voltage cables are described wherein the dielectric insulator of the cable is heated and molded to conform to a desired shape. As a consequence, high quality substantially bubble- free cable connectors suitable for mating to premanufactured fittings are made. Disclosed are a method for making the cable connectors either in the field or in a factory, molds suitable for use with the method, and the molded cable connectors, themselves.