WorldWideScience

Sample records for sand layered aquifer

  1. Unconfined Groundwater Dispersion Model On Sand Layers In Coral Island

    OpenAIRE

    Sultan

    2016-01-01

    The research objective is to analyze the sand layer to determine the characteristics of the unconfined groundwater aquifer on coral island and found the dispersion model of unconfined groundwater in the sand layer in the coral island. The method used is direct research in the field, laboratory analysis and secondary data. Observations geological conditions, as well as the measurement and interpretation of geoelectrical potential groundwater models based on the value of the conductivity of gro...

  2. Plume persistence caused by back diffusion from thin clay layers in a sand aquifer following TCE source-zone hydraulic isolation.

    Science.gov (United States)

    Parker, Beth L; Chapman, Steven W; Guilbeault, Martin A

    2008-11-14

    This paper concludes that back diffusion from one or a few thin clayey beds in a sand aquifer can cause contaminant persistence above MCLs in a sand aquifer long after the source zone initially causing the plume is isolated or removed. This conclusion is based on an intensive case study of a TCE contaminated site in Florida, with the processes evaluated using numerical modeling. At this site, the TCE DNAPL zone formed decades ago, and was hydraulically isolated by means of an innovative system performing groundwater extraction, treatment and re-injection. Treated water is re-injected in a row of injection wells situated a short distance downgradient of the extraction wells, creating a clean-water displacement front to efficiently flush the downgradient plume. This scheme avoids the creation of stagnation zones typical of most groundwater pump-and-treat systems, thereby minimizing the time for aquifer flushing and therefore downgradient cleanup. The system began operation in August 2002 and although the performance monitoring shows substantial declines in concentrations, detectable levels of TCE and degradation products persist downgradient of the re-injection wells, long after the TCE should have disappeared based on calculations assuming a nearly homogenous sand aquifer. Three hypotheses were assessed for this plume persistence: 1) incomplete source-zone capture, 2) DNAPL occurrence downgradient of the re-injection wells, and 3) back diffusion from one or more thin clay beds in the aquifer. After careful consideration, the first two hypotheses were eliminated, leaving back diffusion as the only plausible hypothesis, supported by detailed measurements of VOC concentrations within and near the clay beds and also by numerical model simulations that closely represent the field site hydrogeologic conditions. The model was also used to simulate a more generalized, hypothetical situation where more thin clayey beds occur in a sand aquifer with an underlying aquitard

  3. Aquifer thermal-energy-storage modeling

    Science.gov (United States)

    Schaetzle, W. J.; Lecroy, J. E.

    1982-09-01

    A model aquifer was constructed to simulate the operation of a full size aquifer. Instrumentation to evaluate the water flow and thermal energy storage was installed in the system. Numerous runs injecting warm water into a preconditioned uniform aquifer were made. Energy recoveries were evaluated and agree with comparisons of other limited available data. The model aquifer is simulated in a swimming pool, 18 ft by 4 ft, which was filled with sand. Temperature probes were installed in the system. A 2 ft thick aquifer is confined by two layers of polyethylene. Both the aquifer and overburden are sand. Four well configurations are available. The system description and original tests, including energy recovery, are described.

  4. Numerical simulation of groundwater movement and managed aquifer recharge from Sand Hollow Reservoir, Hurricane Bench area, Washington County, Utah

    Science.gov (United States)

    Marston, Thomas M.; Heilweil, Victor M.

    2012-01-01

    cells were used in the northern and southern portions of the model where water-level data were limited. Vertically, the aquifer system was divided into 10 layers, which incorporated the Navajo Sandstone and Kayenta Formation. The model simulated recharge to the groundwater system as natural infiltration of precipitation and as infiltration of managed aquifer recharge from Sand Hollow Reservoir. Groundwater discharge was simulated as well withdrawals, shallow drains at the base of reservoir dams, and seepage to the Virgin River. During calibration, variables were adjusted within probable ranges to minimize differences among model-simulated and observed water levels, groundwater travel times, drain discharges, and monthly estimated reservoir recharge.

  5. Hydrogeochemical contrast between brown and grey sand aquifers in shallow depth of Bengal Basin: consequences for sustainable drinking water supply.

    Science.gov (United States)

    Biswas, Ashis; Nath, Bibhash; Bhattacharya, Prosun; Halder, Dipti; Kundu, Amit K; Mandal, Ujjal; Mukherjee, Abhijit; Chatterjee, Debashis; Mörth, Carl-Magnus; Jacks, Gunnar

    2012-08-01

    Delineation of safe aquifer(s) that can be targeted by cheap drilling technology for tubewell (TW) installation becomes highly imperative to ensure access to safe and sustainable drinking water sources for the arsenic (As) affected population in Bengal Basin. This study investigates the potentiality of brown sand aquifers (BSA) as a safe drinking water source by characterizing its hydrogeochemical contrast to grey sand aquifers (GSA) within shallow depth (water guidelines, which warrants rigorous assessment of attendant health risk for Mn prior to considering mass scale exploitation of the BSA for possible sustainable drinking water supply. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Hydrogeologic characteristics and water quality of a confined sand unit in the surficial aquifer system, Hunter Army Airfield, Chatham County, Georgia

    Science.gov (United States)

    Gonthier, Gerard

    2012-01-01

    An 80-foot-deep well (36Q397, U.S. Geological Survey site identification 320146081073701) was constructed at Hunter Army Airfield to assess the potential of using the surficial aquifer system as a water source to irrigate a ballfield complex. A 300-foot-deep test hole was drilled beneath the ballfield complex to characterize the lithology and water-bearing characteristics of sediments above the Upper Floridan aquifer. The test hole was then completed as well 36Q397 open to a 19-foot-thick shallow, confined sand unit contained within the surficial aquifer system. A single-well, 24-hour aquifer test was performed by pumping well 36Q397 at a rate of 50 gallons per minute during July 13-14, 2011, to characterize the hydrologic properties of the shallow, confined sand unit. Two pumping events prior to the aquifer test affected water levels. Drawdown during all three pumping events and residual drawdown during recovery periods were simulated using the Theis formula on multiple changes in discharge rate. Simulated drawdown and residual drawdown match well with measured drawdown and residual drawdown using values of horizontal hydraulic conductivity and specific storage, which are typical for a confined sand aquifer. Based on the hydrologic parameters used to match simulated drawdown and residual drawdown to measured drawdown and residual drawdown, the transmissivity of the sand was determined to be about 400 feet squared per day. The horizontal hydraulic conductivity of the sand was determined to be about 20 feet per day. Analysis of a water-quality sample indicated that the water is suitable for irrigation. Sample analysis indicated a calcium-carbonate type water having a total dissolved solids concentration of 39 milligrams per liter. Specific conductance and concentrations of all analyzed constituents were below those that would be a concern for irrigation, and were below primary and secondary water-quality criteria levels.

  7. Ground-water quality in agricultural areas, Anoka Sand Plain Aquifer, east-central Minnesota, 1984-90

    Science.gov (United States)

    Landon, M.K.; Delin, G.N.

    1995-01-01

    Ground-water quality in the Anoka Sand Plain aquifer was studied as part of the multiscale Management Systems Evaluation Area (MSEA) study by collecting water samples from shallow wells during August through November 1990. The sampling was conducted to: (1) aid in selection of the MSEA research area; (2) facilitate comparison of results at the MSEA research area to the regional scale; and (3) evaluate changes in ground-water quality in the Anoka Sand Plain aquifer since a previous study during 1984 through 1987. Samples were collected from 34 wells screened in the upper 6 meters of the surficial aquifer and located in cultivated agricultural areas. Water temperature, pH, specific conductance, and presence or absence of triazine herbicides were determined at all sites and samples from selected wells were analyzed for concentrations of dissolved oxygen, alkalinity, major cations and anions, nutrients, and selected herbicides and herbicide metabolites. The results of the study indicate that the water-quality of some shallow ground water in areas of predominantly agricultural land use has been affected by applications of nitrogen fertilizers and the herbicide atrazine.

  8. The Marlborough Deep Wairau Aquifer sustainability review 2008 : isotopic indicators

    International Nuclear Information System (INIS)

    Morgenstern, U.; van der Raaij, R.W.; Trompetter, V.; McBeth, K.

    2008-01-01

    The Deep Wairau Aquifer (DWA) consists of several relatively thin water bearing layers at depths generally greater than 150 m separated by thick confining layers and was therefore thought to be relatively isolated from surface hydrological processes, with little pumping induced effects on spring flows and shallow aquifers. However, because the DWA partially underlies fully allocated shallower Southern Valleys Aquifers it is critical to understand the dynamics (recharge, flow) of the DWA. Recent aquifer testing revealed that the DWA is hydraulically linked to the Southern Valley Benmorven Aquifer and that most wells penetrating the DWA are hydraulically linked. The aquifers of the Wairau Plain are formed by a series of glacial and alluvial outwash deposits laid down by the Wairau River. Bore logs indicate that the aquifer contains thin water-bearing layers within the mixed strata. These layers come under artesian pressure towards the east. The Wairau Gravels are overlain by a sequence of glacial outwash and fluvial gravels interspersed with marine deposits. Immediately above the Wairau Gravels lies the Speargrass Formation consisting of poorly sorted glacial outwash gravels, sand and clay deposits. This formation has greater permeability than the Wairau Gravels. Above the Speargrass Formation lie highly permeable postglacial fluvial gravels, sand and silt deposits from the Wairau and tributary rivers known as the Rapaura Formation. Towards the coast, the alluvial gravels are overlain by marine and estuarine deposits of sand, silt and clay known as the Dillons Point Formation. Chemistry and isotope samples were analysed over time from various DWA wells to obtain information on changes in source and age of water with continued abstraction. All DWA water samples are tritium-free indicating that there is no young water influx yet intercepted by any of the sampled wells. Radiocarbon repeat measurements indicate that the water source is changing towards older water with

  9. Hydro-geological properties of the Savian aquifer in the county Obrenovac

    Directory of Open Access Journals (Sweden)

    Stojadinović Dušan D.

    2005-01-01

    Full Text Available The paper presents a description of hydrogeological researches of alluvial layers of the Sava River in the area of the source "Vić Bare" near Obrenovac. This source supplies groundwater to that town. The depth of these layers amounts to 25 m. With regard to collecting capacity, the most significant are gravel-sand sediments of high filtration properties. Their average depth amounts to about 13 m with the underlying layer made of Pleistocene clays. Compact aquifer is formed within these sediments and it refills partly from the Sava River at places where river cuts its channel into the gravel-sand layer. The analysis of the groundwater regime in the riparian area points out that groundwater levels follow stages of the Sava River. Such an influence lessens with the distance. Established hydraulic connection between the river and the aquifer enables its permanent replenishment. On the other hand, due to certain pollutions this river flow might bring along, it represents a potential danger. Those pollutions could enter water-bearing layer of the aquifer as well as the exploitation well of the source. Such presumptions have been confirmed in the experiment of pollution transport carried out in the water-bearing layer. Unabsorbable chloride was used as a tracer whose movement velocity through exploitation well proved that there were real possibilities of intrusion of aggressive pollutants into the water-bearing layer and into the aquifer as well. Therefore, the protection of the source must be in the function of the protection of surface waters.

  10. Assessment of managed aquifer recharge at Sand Hollow Reservoir, Washington County, Utah, updated to conditions through 2014

    Science.gov (United States)

    Marston, Thomas M.; Heilweil, Victor M.

    2016-09-08

    Sand Hollow Reservoir in Washington County, Utah, was completed in March 2002 and is operated primarily for managed aquifer recharge by the Washington County Water Conservancy District. From 2002 through 2014, diversions of about 216,000 acre-feet from the Virgin River to Sand Hollow Reservoir have allowed the reservoir to remain nearly full since 2006. Groundwater levels in monitoring wells near the reservoir rose through 2006 and have fluctuated more recently because of variations in reservoir stage and nearby pumping from production wells. Between 2004 and 2014, about 29,000 acre-feet of groundwater was withdrawn by these wells for municipal supply. In addition, about 31,000 acre-feet of shallow seepage was captured by French drains adjacent to the North and West Dams and used for municipal supply, irrigation, or returned to the reservoir. From 2002 through 2014, about 127,000 acre-feet of water seeped beneath the reservoir to recharge the underlying Navajo Sandstone aquifer.Water quality continued to be monitored at various wells in Sand Hollow during 2013–14 to evaluate the timing and location of reservoir recharge as it moved through the aquifer. Changing geochemical conditions at monitoring wells WD 4 and WD 12 indicate rising groundwater levels and mobilization of vadose-zone salts, which could be a precursor to the arrival of reservoir recharge.

  11. Assessment of managed aquifer recharge from Sand Hollow Reservoir, Washington County, Utah, updated to conditions in 2010

    Science.gov (United States)

    Heilweil, Victor M.; Marston, Thomas M.

    2011-01-01

    Sand Hollow Reservoir in Washington County, Utah, was completed in March 2002 and is operated primarily for managed aquifer recharge by the Washington County Water Conservancy District. From 2002 through 2009, total surface-water diversions of about 154,000 acre-feet to Sand Hollow Reservoir have allowed it to remain nearly full since 2006. Groundwater levels in monitoring wells near the reservoir rose through 2006 and have fluctuated more recently because of variations in reservoir water-level altitude and nearby pumping from production wells. Between 2004 and 2009, a total of about 13,000 acre-feet of groundwater has been withdrawn by these wells for municipal supply. In addition, a total of about 14,000 acre-feet of shallow seepage was captured by French drains adjacent to the North and West Dams and used for municipal supply, irrigation, or returned to the reservoir.From 2002 through 2009, about 86,000 acre-feet of water seeped beneath the reservoir to recharge the underlying Navajo Sandstone aquifer. Water-quality sampling was conducted at various monitoring wells in Sand Hollow to evaluate the timing and location of reservoir recharge moving through the aquifer. Tracers of reservoir recharge include major and minor dissolved inorganic ions, tritium, dissolved organic carbon, chlorofluorocarbons, sulfur hexafluoride, and noble gases. By 2010, this recharge arrived at monitoring wells within about 1,000 feet of the reservoir.

  12. Case studies of groundwater- surface water interactions and scale relationships in small alluvial aquifers

    NARCIS (Netherlands)

    Love, Dave; de Hamer, Wouter; Owen, Richard J.S.; Booij, Martijn J.; Uhlenbrook, Stefan; Hoekstra, Arjen Ysbert; van der Zaag, Pieter

    2007-01-01

    An alluvial aquifer can be described as a groundwater system, generally unconfined, that is hosted in laterally discontinuous layers of gravel, sand, silt and clay, deposited by a river in a river channel, banks or flood plain. In semi-arid regions, streams that are associated with alluvial aquifers

  13. Application of surface-geophysical methods to investigations of sand and gravel aquifers in the glaciated Northeastern United States

    Science.gov (United States)

    Haeni, F.P.

    1995-01-01

    Combined use of seismic-refraction, direct-current resistivity, very-low-frequency terrain-resistivity, and inductive terrain-conductivity methods were demonstrated at sites in Connecticut, New York, and Maine. Although no single method can define both the hydrogeologic boundaries and general grain-size characteristics of sand and gravel aquifers, a combination of these methods can. Comparisons of measured electrical properties of aquifers with logs of test holes and wells indicate that, for a given conductivity of ground water, the bulk electrical resistivity of aquifers in the glaciated Northeast increases with grain size.

  14. contaminant migration in a sand aquifer near an inactive uranium tailings impoundment, Elliot Lake, Ontario

    International Nuclear Information System (INIS)

    Morin, K.A.; Cherry, J.A.

    1982-01-01

    An investigation of the movement of contaminated groundwater from inactive uranium tailings through a sand aquifer is being conducted at the Nordic Main tailings impoundment near Elliot Lake, Ontario. During 1979 and 1980, multilevel bundle-type piezometers were installed at several locations around the edge of the tailings impoundment. Chemical analysis of water samples from the bundle piezometers indicate that a major contaminant plume extends outward through a sand aquifer from the southeastern part of the Nordic Main impoundment dam. In the vincinity of the contaminant plume, the sand aquifer varies in thickness from about 9 to 15 m. The plume has two distinct segments, referred to as the inner core and the outer zone. The inner core, which has a pH of 4.3-5.0 and extends about 15 m from the foot of the tailings dam, contains several grams per litre of iron and sulfate, and tens of pCi/L of 226 Ra and 210 Pb. Water levels in piezometers within the inner core show that groundwater is moving horizontally, away from the tailings impoundment, with a velocity of up to several hundred metres per year. The outer zone, which extends a few hundred metres downgradient from the dam, is characterized by hundreds to thousands of milligrams per litre of iron and sulfate, less than 15pCi/L of 226 Ra, and a pH greater than 5.7. Comparison of 1979 and 1980 data shows that the front of the inner core is advancing a few metres per year, which is less than a few percent of the groundwater velocity. This retardation of movement of the inner core is caused by neutralization of the acidic water as a result of dissolution of calcium carbonate in the sand. With the rise in pH, precipitation of iron carbonate and possibly some iron hydroxide occurs and the contaminants of main concern such as 226 Ra, 210 Pb, and uranium are removed from solution by adsorption or coprecipitation

  15. Assessment of managed aquifer recharge at Sand Hollow Reservoir, Washington County, Utah, updated to conditions in 2012

    Science.gov (United States)

    Marston, Thomas M.; Heilweil, Victor M.

    2013-01-01

    Sand Hollow Reservoir in Washington County, Utah, was completed in March 2002 and is operated primarily for managed aquifer recharge by the Washington County Water Conservancy District. From 2002 through 2011, surface-water diversions of about 199,000 acre-feet to Sand Hollow Reservoir have allowed the reservoir to remain nearly full since 2006. Groundwater levels in monitoring wells near the reservoir rose through 2006 and have fluctuated more recently because of variations in reservoir altitude and nearby pumping from production wells. Between 2004 and 2011, a total of about 19,000 acre-feet of groundwater was withdrawn by these wells for municipal supply. In addition, a total of about 21,000 acre-feet of shallow seepage was captured by French drains adjacent to the North and West Dams and used for municipal supply, irrigation, or returned to the reservoir. From 2002 through 2011, about 106,000 acre-feet of water seeped beneath the reservoir to recharge the underlying Navajo Sandstone aquifer. Water quality was sampled at various monitoring wells in Sand Hollow to evaluate the timing and location of reservoir recharge as it moved through the aquifer. Tracers of reservoir recharge include major and minor dissolved inorganic ions, tritium, dissolved organic carbon, chlorofluorocarbons, sulfur hexafluoride, and noble gases. By 2012, this recharge arrived at four monitoring wells located within about 1,000 feet of the reservoir. Changing geochemical conditions at five other monitoring wells could indicate other processes, such as changing groundwater levels and mobilization of vadose-zone salts, rather than arrival of reservoir recharge.

  16. Sub-surface Biogeochemical Characteristics and Its Effect on Arsenic Cycling in the Holocene Gray Sand Aquifers of the Lower Bengal Basin

    Directory of Open Access Journals (Sweden)

    Devanita Ghosh

    2017-12-01

    Full Text Available High arsenic (As content in the fertile delta plains of West Bengal has been widely reported since the 1990s. The shallow gray sand aquifers (GSA deposited during the Holocene, are more commonly used as potable water sources, but they have high As levels. The release of As into groundwater is influenced by indigenous microbial communities metabolizing different organic carbon sources present in the GSA sediments. After pre-screening the groundwater for assessing their microbial phylogenetic diversity, two 50-m deep boreholes were drilled in the GSAs, and 19 sediment samples were recovered from each core. In each of these samples, grain-size distribution, sequential extraction, and quantification of trace metals and total extractable lipids were analyzed. The aquifer sediments consisted of medium to fine micaceous sand with clay lenses in between them; a thick clay layer occurred on top of both boreholes. Arsenic concentration in these sediments varied from 1.80 to 41.0 mg/kg and was mostly associated with the oxide and silicate-rich crystalline minerals. Arsenic showed a significant correlation with Fe in all fractions, suggesting the presence of Fe-(oxy-hydroxides bound As minerals. The diagnostic lipid biomarkers showed presence of compounds derived from higher plants (epicuticular waxes and microbial inputs. The biomarkers were abundant in clay and silt-rich layers. The samples indicated preferential preservation of n-alkanes over other functional compounds (e.g., alcohols and fatty acids, that are more reactive, and hence subject to further degradation. Sediments recovered from the borehole indicated the presence of Eustigmatophytes and vascular plant waxes that are mostly surface-derived. The sedimentary lipids also indicated the presence of complex petroleum-derived hydrocarbons. These compounds provide organic substrates, and support the preferential survival of specific microbial communities in these sediments.

  17. Flow Generated by a Partially Penetrating Well in a Leaky Two-Aquifer System with a Storative Semiconfining Layer

    Science.gov (United States)

    Sepulveda, N.; Rohrer, K.

    2008-05-01

    The permeability of the semiconfining layers of the highly productive Floridan Aquifer System may be large enough to invalidate the assumptions of the leaky aquifer theory. These layers are the intermediate confining and the middle semiconfining units. The analysis of aquifer-test data with analytical solutions of the ground-water flow equation developed with the approximation of a low hydraulic conductivity ratio between the semiconfining layer and the aquifer may lead to inaccurate hydraulic parameters. An analytical solution is presented here for the flow in a confined leaky aquifer, the overlying storative semiconfining layer, and the unconfined aquifer, generated by a partially penetrating well in a two-aquifer system, and allowing vertical and lateral flow components to occur in the semiconfining layer. The equations describing flow caused by a partially penetrating production well are solved analytically to provide a method to accurately determine the hydraulic parameters in the confined aquifer, semiconfining layer, and unconfined aquifer from aquifer-test data. Analysis of the drawdown data from an aquifer test performed in central Florida showed that the flow solution presented here for the semiconfining layer provides a better match and a more unique identification of the hydraulic parameters than an analytical solution that considers only vertical flow in the semiconfining layer.

  18. Casting Ductile Iron in Layer Moulds Made from Ecological Sands

    Directory of Open Access Journals (Sweden)

    M. Rączka

    2012-09-01

    Full Text Available The article contains the results of tests performed under the target project in Hardtop Foundry Charsznica.The objective of the tests and studies was to develop a technology of making high-quality ductile iron castings, combined witheffective means of environmental protection. The studies presented in this article related to castings weighing from 1 to 300 kg made from ductile iron of grades 400-15 and 500-7, using two-layer moulds, where the facing and core sand was the sand with an alkaline organic binder, while backing sand was the sand with an inorganic geopolymer binder.A simplified method of sand reclamation was applied with possible reuse of the reclaim as an addition to the backing sand. The castiron spheroidising treatment and inoculation were selected taking into account the specific conditions of Hardtop Foundry. A pilot batch of castings was made, testing the gating and feeding systems and using exothermic sleeves on risers. The study confirmed the validity of the adopted concept of making ductile iron castings in layer moulds, while maintaining the content of sand with an organic binder at a level of maximum 15%.

  19. Hydrogeologic assessment of shallow clastic and carbonate rock aquifers in Hendry and Collier counties, southwestern Florida

    Science.gov (United States)

    Brown, C. Erwin; Krulikas, R.K.; Brendle, D.L.

    1996-01-01

    Direct-current electrical resistivity data were collected from 109 vertical electrical sounding sites in Hendry and Collier Counties, southwestern Florida. Selected direct-current electrical resistivity surveys, together with available borehole geologic and geophysical data, were used to determine the approximate areal extent of the shallow clastic aquifers composed of thick sands and carbonate lithologies. Results indicated that a complex pattern of shallow sands, clays, and carbonate lithologies occur throughout the area. Buried channel sands were found as deep as 50 meters below land surface in some places. The channels contain unconsolidated fine- to medium-grained quartz sand interbedded with sandy limestone, shell fragments, and gray-green sandy clay. Both surface and borehole geophysical techniques with lithologic data were necessary to approximately locate and define layers that might behave as confining layers and to locate and define the extent of any buried sand aquifers. The borehole geophysical data were used to analyze the zones of higher resistivity. Direct-current electrical resistivity data indicated the approximate location of certain layer boundaries. The conjunctive use of natural gamma and short- and long-normal resistivity logs was helpful in determining lithologic effects. Geohydrologic sections were prepared to identify potential locations of buried channels and carbonates containing freshwater. Buried channel sands and carbonate rock sections were identified in the subsurface that potentially may contain freshwater supplies.

  20. Migration rates of volatile organic compounds in an unconsolidated sand and gravel aquifer system

    International Nuclear Information System (INIS)

    Naidu, J.R.; Paquette, D.E.; Porcelli, D.R.

    1993-01-01

    The movement of volatile organic compounds (VOCs) in an aquifer is dictated by its solubility, attenuation characteristics, recharge volume, and ground-water movement (velocity and direction). At Brookhaven National Laboratory, past handling and disposal practices at the Hazardous Waste Management Facility and current landfill have resulted in the release of VOCs and the radioisotope tritium to the underlying upper glacial aquifer which characterized by unconsolidated sands and gravel. The rate of VOC migration from these source areas was examined using the following parameters: (1) distribution of VOCs and tritium; (2) tritium/helium ratios, which provide an estimate of the age of the water, and hence the rate of ground-water movement; (3) ground-water flow velocities within the upper glacial aquifer utilizing conductivity, porosity, and gradient data. Preliminary results indicate that whereas the comparison of the calculated ground-water flow gradient to tritium/helium age determinations are fairly consistent, application to VOC movement is inconclusive, and will require additional monitoring which would also focus on the vertical component as well

  1. Ground penetrating radar water content mapping of golf course green sand layers

    Science.gov (United States)

    Information on the spatial distribution of water content across the sand layer component of a golf course green can be important to golf course superintendents for evaluating drainage effectiveness and scheduling irrigation. To estimate the bulk water content of the sand layer at point locations ac...

  2. Investigation of aquifer at Banyumeneng Site Mranggen District Demak Regency Central Java

    International Nuclear Information System (INIS)

    Lilik Subiantoro; Priyo Sularto; Slamet Sudarto

    2010-01-01

    Demak is one of regency are placed in Central Java which has a problem of fresh water availability. The insufficient of water have been recognized in some parts of the region. such as Banyumeneng in Mrangen district. The problem of fresh water in this area is caused by sea water trapped in sedimentary material during sedimentation process, so the trapped groundwater character is brine or brackish. One of the alternatives to overcome water problem is delineated of the prospect area for exploiting of groundwater. The ground investigation activity is to get information about the geology, hydrogeology and subsurface geophysical characteristics which are needed to identification of groundwater aquifer. To obtain those targets are topographic measurement in 1:5000 scales maps, geology and hydrogeology mapping, measurement of soil radioactivity and geo electrical resistivity are conducted. Based on observation, analysis, evaluation and discussion were identified the existence of potential confined aquifer that happened at the layer sand that is trapped in the impermeable layer of clay, with distribution direction East-West. Potency of aquifer with the best condition, there are placed on BYM-16 and BYM-05 with the physics characterized in Sand-1 in the resistivity 16 - 22 Ωm to depth 125 - 150 m and Sand-2 in the resistivity 11- 16 Ωm depth 25 - 30 m. (author)

  3. Testing water pollution in a two layer aquifer

    OpenAIRE

    García León, Manuel; Lin Ye, Jue

    2011-01-01

    Water bodies around urban areas may be polluted with chemical elements from urban or industrial activities. We study the case of underground water pollution. This is a serious problem, since under- ground water is high qualified drinkable water in a world where this natural resource is increasingly reduced. This study is focused on a two-layer aquifer. If the superficial layer is contaminated, the deeper layer could be spoiled as well. This contribution checks the equality of the mean or c...

  4. Hydrogeologic framework and hydrologic conditions of the Piney Point aquifer in Virginia

    Science.gov (United States)

    McFarland, E. Randolph

    2017-06-07

    Vertical Datum of 1929 (NGVD 29) by 2005. Withdrawals decreased to 5.01 Mgal/d by 2009 as withdrawals were shifted toward other sources, and by 2015 water levels had recovered to approximately 50 ft below NGVD 29.The mean estimated transmissivity of the Piney Point aquifer in York and James City Counties is 16,300 feet squared per day (ft2/d), but farther north it is only 925 ft2/d. The mean well specific capacity in York and James City Counties is 11.4 gallons per minute per foot (gal/min/ft). Farther north in Virginia, mean specific capacity is only 2.26 gal/min/ft, and in Maryland it is 0.99 gal/min/ft. The northward decrease in specific capacity probably reflects the northward decrease in transmissivity, which results from poor development of the solution-channeled limestone.An aquifer test in northern York County induced vertical leakage to the solution-channeled limestone from overlying silty sand and a change in response of the aquifer to pumping from a single layer to two layers. Transmissivity of the limestone of approximately 19,800 ft2/d was distinguished from the silty sand of approximately 2,500 ft2/d.Most of the water in the Piney Point aquifer is slightly alkaline with moderate concentrations primarily of sodium and bicarbonate that are slightly undersaturated with respect to calcite. Iron concentrations are generally less than 0.3 milligrams per liter (mg/L). Mixing of freshwater with seawater has elevated chloride concentrations to the southeast to as much as 7,120 mg/L.Information on the Piney Point aquifer can benefit water-resource management in siting production wells, predicting likely well yield, and anticipating water-level response to withdrawals. Models that vertically discretize individual geologic units can potentially be used to evaluate groundwater flow in greater detail by representing lateral flow and vertical leakage among the geologic units.Because groundwater withdrawals are made primarily from the limestone and sand of the Piney Point

  5. Investigation of ground water aquifer at Tlogorejo Site Karangawen District, Demak Regency, Central Java

    International Nuclear Information System (INIS)

    Lilik Subiantoro; Priyo Sularto; Slamet Sudarto

    2009-01-01

    Demak is one of regency are placed at north beach central Java. Some part of this area especially Tlogorejo site Karangawen have the problem of fresh water availability. Conditions of insufficient Standard Water have been recognized in some part of the region, those are Karangrowo area, Undaan District. The problem of clean water in this area is caused by sea water trapped in sedimentary material during sedimentation process, so the trapped ground water character is brine or brackish. One of the alternatives to overcome water problem is election or delineated of the prospect area for exploiting of ground water. Referring to those problems Pusbang Geologi Nuklir BATAN means to conduct investigation of ground water in some location which has problem of clean water. The ground investigation activity is to get information about the geology, hydrogeology and sub surface geophysical characteristic, which is needed to identification of ground water aquifer. To obtain those targets, conducted by topographic measurement in 1:5000 scale maps, measurement of soil radioactivity, geology and hydrogeology mapping, geo-electrical 2-D image measurement Base on observation, analysis, evaluation and discussion was identified the existence of potential confined aquifer that happened at the layer sand that is trapped in the in impermeable layer of clay, which is potential for confined aquifer. Potency of aquifer with the best condition from bad, there are placed on geophysical measurement is ''Sand Aquifer Layer-1'' are located at RB 1 (TLG-5), RB 2 (TLG-4) and RB 3 (TLG-22). Physical characterized of aquifer: resistivity 22-46 Ωm, the depth of surface water 110 to 146 meter. (author)

  6. Contamination Control of Freeze Shoe Coring System for Collection of Aquifer Sands

    Science.gov (United States)

    Homola, K.; van Geen, A.; Spivack, A. J.; Grzybowski, B.; Schlottenmier, D.

    2017-12-01

    We have developed and tested an original device, the freeze-shoe coring system, designed to recover undisturbed samples of water contained in sand-dominated aquifers. Aquifer sands are notoriously difficult to collect together with porewater from coincident depths, as high hydraulic permeability leads to water drainage and mixing during retrieval. Two existing corer designs were reconfigured to incorporate the freeze-shoe system; a Hydraulic Piston (HPC) and a Rotary (RC) Corer. Once deployed, liquid CO­2 contained in an interior tank is channeled to coils at the core head where it changes phase, rapidly cooling the deepest portion of the core. The resulting frozen core material impedes water loss during recovery. We conducted contamination tests to examine the integrity of cores retrieved during a March 2017 yard test deployment. Perfluorocarbon tracer (PFC) was added to the drill fluid and recovered cores were subsampled to capture the distribution of PFC throughout the core length and interior. Samples were collected from two HPC and one RC core and analyzed for PFC concentrations. The lowest porewater contamination, around 0.01% invasive fluid, occurs in the center of both HPC cores. The greatest contamination (up to 10%) occurs at the disturbed edges where core material contacts drill fluid. There was lower contamination in the core interior than top, bottom, and edges, as well as significantly lower contamination in HPC cores that those recovered with the RC. These results confirm that the freeze-shoe system, proposed for field test deployments in West Bengal, India, can successfully collect intact porewater and sediment material with minimal if any contamination from drill fluid.

  7. Method of Relating Grain Size Distribution to Hydraulic Conductivity in Dune Sands to Assist in Assessing Managed Aquifer Recharge Projects: Wadi Khulays Dune Field, Western Saudi Arabia

    KAUST Repository

    Lopez Valencia, Oliver Miguel; Jadoon, Khan; Missimer, Thomas

    2015-01-01

    Planning for use of a dune field aquifer for managed aquifer recharge (MAR) requires that hydraulic properties need to be estimated over a large geographic area. Saturated hydraulic conductivity of dune sands is commonly estimated from grain size

  8. Characterization of the groundwater aquifers at El Sadat City by joint inversion of VES and TEM data

    Directory of Open Access Journals (Sweden)

    Usama Massoud

    2014-12-01

    In this study, VES and TEM data were identically measured at 24 stations along 3 profiles trending NE–SW with the elongation of the study area. The measuring points were arranged in a grid-like pattern with both inter-station spacing and line–line distance of about 2 km. After performing the necessary processing steps, the VES and TEM data sets were inverted individually to multi-layer models, followed by a joint inversion of both data sets. Joint inversion process has succeeded to overcome the model-equivalence problem encountered in the inversion of individual data set. Then, the joint models were used for the construction of a number of cross sections and contour maps showing the lateral and vertical distribution of the geoelectrical parameters in the subsurface medium. Interpretation of the obtained results and correlation with the available geological and hydrogeological information revealed TWO aquifer systems in the area. The shallow Pleistocene aquifer consists of sand and gravel saturated with fresh water and exhibits large thickness exceeding 200 m. The deep Pliocene aquifer is composed of clay and sand and shows low resistivity values. The water-bearing layer of the Pleistocene aquifer and the upper surface of Pliocene aquifer are continuous and no structural features have cut this continuity through the investigated area.

  9. Innovative reactive layer to enhance soil aquifer treatment: successful installation in the Llobregat aquifer (Catalonia, ne Spain)

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez, M.; Gilbert, O.; Bernat, X.; Valhondo, C.; Kock-Schulmeyer, M.; Huerta-Fontela, M.; Colomer, M. V.

    2014-10-01

    The Life+ ENSAT project has demonstrated the effectiveness of a reactive organic layer on the improvement of recharge water quality in an aquifer recharge system. The vegetal compost layer was installed at the bottom of an existing infiltration pond in the Llobregat Lower Valley (Barcelona region) with the purpose of promoting biodegradation and improving the removal emerging micro-pollutants from Llobregat River water. A comprehensive monitoring of water quality including bulk chemistry, emerging micro-pollutants and priority substances indicated that hydro biochemical changes within the organic layer enhance denitrification processes and reduce the levels of gemfibrozil and carbamazepine TP. This effect is due to the release of dissolved organic carbon which promotes biodegradation processes at local scale in the unsaturated zones, without affecting the furthest piezometers. The reactive layer is still active more than 3 years after its installation. The economic assessment of this innovative reactive layer shows that it is a promising solution for the improvement of aquifer recharge with low quality waters, not only technically but also from the economic sustainability standpoint. (Author)

  10. Rare Earth Element Concentrations and Fractionation Patterns Along Groundwater Flow Paths in Two Different Aquifer Types (i.e., Sand vs. Carbonate)

    Science.gov (United States)

    Johannesson, K. H.; Tang, J.

    2003-12-01

    Groundwater samples were collected in two different types of aquifer (i.e., Carrizo Sand Aquifer, Texas and Upper Floridan carbonate Aquifer, west-central Florida) to study the concentrations, fractionation, and speciation of rare earth elements (REE) along groundwater flow paths in each aquifer. Major solutes and dissolved organic carbon (DOC) were also measured in these groundwaters. The Carrizo Sand aquifer was sampled in October 2002 and June 2003, whereas, to date, we have only sampled the Floridan once (i.e., June 2003). The data reveal no significant seasonal differences in major solute and REE concentrations for the Carrizo. In Carrizo sand aquifer, groundwaters from relatively shallow wells (i.e., less than 167 m) in the recharge zone are chiefly Ca-Na-HCO3-Cl type waters. With flow down-gradient the groundwaters shift composition to the Na-HCO3 waters. pH and alkalinity initially decrease with flow away from the recharge zone before increasing again down-gradient. DOC is generally low (0.65 mg/L) along the flow path. REE concentrations are highest in groundwaters from the recharge zone (Nd 40.5 pmol/kg), and decrease substantially with flow down-gradient reaching relatively low and stable values (Nd 4.1-8.6 pmol/kg) roughly 10 km from the recharge zone. Generally, Carrizo groundwaters exhibit HREE-enriched shale-normalized patterns. The HREE enrichments are especially strong for waters from the recharge zone [(Yb/Nd)SN =1.7-5.6], whereas down-gradient (deep) groundwaters have flatter patterns [(Yb/Nd)SN =0.7-2.5]. All groundwaters have slightly positive Eu anomalies (Eu/Eu* 0.09-0.14) and negative Ce anomalies (Ce/Ce* -0.85 - -0.07). In the Upper Floridan Aquifer, Ca, Mg, SO4, and Cl concentrations generally increase along groundwater flow path, whereas pH and alkalinity generally decrease. DOC is higher (0.64 - 2.29 mg/L) than in the Carrizo and initially increases along the flow path and then decreases down-gradient. LREE (Nd) concentrations generally

  11. Effectiveness of Protective Action of Coatings from Moisture Sorption into Surface Layer of Sand Moulds

    Directory of Open Access Journals (Sweden)

    Kaźnica N.

    2016-12-01

    Full Text Available The results of investigations of the sorption process of surface layers of sand moulds covered by zirconium and zirconium - graphite alcohol coatings are presented in the paper. Investigations comprised two kinds of sand grains (silica sand and reclaimed sand of moulding sand with furan resin. Tests were performed under conditions of a high relative air humidity 75 - 85% and a constant temperature within the range 28 – 33°C. To evaluate the effectiveness of coatings protective action from moisture penetration into surface layers of sand moulds gravimetric method of quantitavie moisture sorption and ultrasonic method were applied in measurements.

  12. Hydrology of aquifer systems in the Memphis area, Tennessee

    Science.gov (United States)

    Criner, James H.; Sun, P-C. P.; Nyman, Dale J.

    1964-01-01

    The Memphis area as described in .this report comprises about 1,300 square miles of the Mississippi embayment part of the Gulf Coastal Plain. The area is underlain by as much as 3,000 feet of sediments ranging in age from Cretaceous through Quaternary. In 1960, 150 mgd (million gallons per day) of water was pumped from the principal aquifers. Municipal pumpage accounted for almost half of this amount, and industrial pumpage a little more than half. About 90 percent of the water used in the area is derived from the '500-foot' sand, and most of the remainder is from the ?400-foot' sand; both sands are of Eocene age. A small amount of water for domestic use is pumped from the terrace deposits of Pliocene and Pleistocene age. Both the '500-foot' and the '1,400-foot' sands are artesian aquifers except in the southeastern part of the area; there the water level in wells in the '500-foot' sand is now below the overlying confining clay. Water levels in both aquifers have declined almost continuously since pumping began, but the rate of decline has increased rapidly since 1940. Water-level decline in the '1,400-foot' sand has been less pronounced since 1956. The cones of depression in both aquifers have expanded and deepened as a result of the annual increases in pumping, and an increase in hydraulic gradients has induced a greater flow of water into the area. Approximately 135 mgd entered the Memphis area through the '500-foot' sand aquifer in 1960, and, of this amount, 60 mgd originated as inflow from the east and about 75 mgd was derived from leakage from the terrace deposits, from the north, south, and west and from other sources. Of the water entering the '1,400-foot' sand, about 5 mgd was inflow from the east, and about half that amount was from each of the north, south, and west directions. The average rate of movement of water outside the area of heavy withdrawals is about 70 feet per year in the '500-foot' sand and about 40 feet per year in the '1,400-foot' sand

  13. Application of the top specified boundary layer (TSBL) approximation to initial characterization of an inland aquifer mineralization: 2. Seepage of saltwater through semi-confining layers

    Science.gov (United States)

    Rubin, H.; Buddemeier, R.W.

    1998-01-01

    This paper presents a generalized basic study that addresses practical needs for an understanding of the major mechanisms involved in the mineralization of groundwater in the Great Bend Prairie aquifer in south- central Kansas. This Quaternary alluvial aquifer and associated surface waters are subject to contamination by saltwater, which in some areas seeps from the deeper Permian bedrock formation into the overlying freshwater aquifer through semiconfining layers. A simplified conceptual model is adopted. It incorporates the freshwater aquifer whose bottom is comprised of a semiconfining layer through which a hydrologically minor but geochemically important saline water discharge seeps into the aquifer. A hierarchy of approximate approaches is considered to analyze the mineralization processes taking place in the aquifer. The recently developed top specified boundary layer (TSBL) approach is very convenient to use for the initial characterization of these processes, and is further adapted to characterization of head-driven seepage through semi-confining layers. TSBL calculations indicate that the seeping saline water may create two distinct new zones in the aquifer: (1) a completely saline zone (CSZ) adjacent to the semiconfining bottom of the aquifer, and (2) a transition zone (TZ) which develops between the CSZ and the freshwater zone. Some possible scenarios associated with the various mineralization patterns are analyzed and discussed.

  14. High resolution aquifer characterization using crosshole GPR full-waveform tomography

    Science.gov (United States)

    Gueting, N.; Vienken, T.; Klotzsche, A.; Van Der Kruk, J.; Vanderborght, J.; Caers, J.; Vereecken, H.; Englert, A.

    2016-12-01

    Limited knowledge about the spatial distribution of aquifer properties typically constrains our ability to predict subsurface flow and transport. Here, we investigate the value of using high resolution full-waveform inversion of cross-borehole ground penetrating radar (GPR) data for aquifer characterization. By stitching together GPR tomograms from multiple adjacent crosshole planes, we are able to image, with a decimeter scale resolution, the dielectric permittivity and electrical conductivity of an alluvial aquifer along cross-sections of 50 m length and 10 m depth. A logistic regression model is employed to predict the spatial distribution of lithological facies on the basis of the GPR results. Vertical profiles of porosity and hydraulic conductivity from direct-push, flowmeter and grain size data suggest that the GPR predicted facies classification is meaningful with regard to porosity and hydraulic conductivity, even though the distributions of individual facies show some overlap and the absolute hydraulic conductivities from the different methods (direct-push, flowmeter, grain size) differ up to approximately one order of magnitude. Comparison of the GPR predicted facies architecture with tracer test data suggests that the plume splitting observed in a tracer experiment was caused by a hydraulically low-conductive sand layer with a thickness of only a few decimeters. Because this sand layer is identified by GPR full-waveform inversion but not by conventional GPR ray-based inversion we conclude that the improvement in spatial resolution due to full-waveform inversion is crucial to detect small-scale aquifer structures that are highly relevant for solute transport.

  15. Anaerobic Transformation of Chlorinated Aliphatic Hydrocarbons in a Sand Aquifer Based on Spatial Chemical Distributions

    Science.gov (United States)

    Semprini, Lewis; Kitanidis, Peter K.; Kampbell, Don H.; Wilson, John T.

    1995-04-01

    We estimated the distribution of chlorinated aliphatic hydrocarbons (CAHs) from groundwater samples collected along three transects in a sand aquifer. Trichloroethylene (TCE) leaked and contaminated the aquifer probably more than a decade before we collected the measurements. The data show significant concentrations of TCE, cis-l,2-dichloroethylene (c-DCE), vinyl chloride (VC), and ethene. We attributed DCE, VC, and ethene to the reductive dehalogenation of TCE. The CAH concentrations varied significantly with depth and correlate with sulfate and methane concentrations. Anoxic aquifer conditions exist with methane present at relatively high concentrations at depth. High concentrations of TCE correspond with the absence of methane or low methane concentrations, whereas products of TCE dehalogenation are associated with higher methane concentrations and low sulfate concentrations. Indications are that the dechlorination of TCE and DCE to VC and ethene is associated with sulfate reduction and active methanogenesis. TCE dechlorination to DCE is likely occurring under the less reducing conditions of sulfate reduction, with further reductions to VC and ethene occurring under methanogenic conditions. We estimated that about 20% of TCE has dechlorinated to ethene. The analysis of the data enhanced our knowledge of natural in situ transformation and transport processes of CAHs.

  16. Gases Emission From Surface Layers of Sand Moulds and Cores Stored Under the Humid Air Conditions

    Directory of Open Access Journals (Sweden)

    Kaźnica N.

    2017-12-01

    Full Text Available A large number of defects of castings made in sand moulds is caused by gases. There are several sources of gases: gases emitted from moulds, cores or protective coatings during pouring and casting solidification; water in moulding sands; moisture adsorbed from surroundings due to atmospheric conditions changes. In investigations of gas volumetric emissions of moulding sands amounts of gases emitted from moulding sand were determined - up to now - in dependence of the applied binders, sand grains, protective coatings or alloys used for moulds pouring. The results of investigating gas volumetric emissions of thin-walled sand cores poured with liquid metal are presented in the hereby paper. They correspond to the surface layer in the mould work part, which is decisive for the surface quality of the obtained castings. In addition, cores were stored under conditions of a high air humidity, where due to large differences in humidity, the moisture - from surroundings - was adsorbed into the surface layer of the sand mould. Due to that, it was possible to asses the influence of the adsorbed moisture on the gas volumetric emission from moulds and cores surface layers by means of the new method of investigating the gas emission kinetics from thin moulding sand layers heated by liquid metal. The results of investigations of kinetics of the gas emission from moulding sands with furan and alkyd resins as well as with hydrated sodium silicate (water glass are presented. Kinetics of gases emissions from these kinds of moulding sands poured with Al-Si alloy were compared.

  17. Hydrogeologic and hydraulic characterization of aquifer and nonaquifer layers in a lateritic terrain (West Bengal, India)

    Science.gov (United States)

    Biswal, Sabinaya; Jha, Madan K.; Sharma, Shashi P.

    2018-02-01

    The hydrogeologic and hydraulic characteristics of a lateritic terrain in West Bengal, India, were investigated. Test drilling was conducted at ten sites and grain-size distribution curves (GSDCs) were prepared for 275 geologic samples. Performance evaluation of eight grain-size-analysis (GSA) methods was carried out to estimate the hydraulic conductivity (K) of subsurface formations. Finally, the GSA results were validated against pumping-test data. The GSDCs indicated that shallow aquifer layers are coarser than the deeper aquifer layers (uniformity coefficient 0.19-11.4). Stratigraphy analysis revealed that both shallow and deep aquifers of varying thickness exist at depths 9-40 and 40-79 m, respectively. The mean K estimates by the GSA methods are 3.62-292.86 m/day for shallow aquifer layers and 0.97-209.93 m/day for the deeper aquifer layers, suggesting significant aquifer heterogeneity. Pumping-test data indicated that the deeper aquifers are leaky confined with transmissivity 122.69-693.79 m2/day, storage coefficient 1.01 × 10-7-2.13 × 10-4 and leakance 2.01 × 10-7-34.56 × 10-2 day-1. Although the K values yielded by the GSA methods are generally larger than those obtained from the pumping tests, the Slichter, Harleman and US Bureau Reclamation (USBR) GSA methods yielded reasonable values at most of the sites (1-3 times higher than K estimates by the pumping-test method). In conclusion, more reliable aquifers exist at deeper depths that can be tapped for dependable water supply. GSA methods such as Slichter, Harleman and USBR can be used for the preliminary assessment of K in lateritic terrains in the absence of reliable field methods.

  18. Influence of geologic layering on heat transport and storage in an aquifer thermal energy storage system

    Science.gov (United States)

    Bridger, D. W.; Allen, D. M.

    2014-01-01

    A modeling study was carried out to evaluate the influence of aquifer heterogeneity, as represented by geologic layering, on heat transport and storage in an aquifer thermal energy storage (ATES) system in Agassiz, British Columbia, Canada. Two 3D heat transport models were developed and calibrated using the flow and heat transport code FEFLOW including: a "non-layered" model domain with homogeneous hydraulic and thermal properties; and, a "layered" model domain with variable hydraulic and thermal properties assigned to discrete geological units to represent aquifer heterogeneity. The base model (non-layered) shows limited sensitivity for the ranges of all thermal and hydraulic properties expected at the site; the model is most sensitive to vertical anisotropy and hydraulic gradient. Simulated and observed temperatures within the wells reflect a combination of screen placement and layering, with inconsistencies largely explained by the lateral continuity of high permeability layers represented in the model. Simulation of heat injection, storage and recovery show preferential transport along high permeability layers, resulting in longitudinal plume distortion, and overall higher short-term storage efficiencies.

  19. Numerical modelling of the erosion and deposition of sand inside a filter layer

    DEFF Research Database (Denmark)

    Jacobsen, Niels Gjøl; van Gent, Marcel R. A.; Fredsøe, Jørgen

    2017-01-01

    This paper treats the numerical modelling of the behaviour of a sand core covered by rocks and exposed to waves. The associated displacement of the rock is also studied. A design that allows for erosion and deposition of the sand core beneath a rock layer in a coastal structure requires an accurate...... prediction method to assure that the amount of erosion remains within acceptable limits. This work presents a numerical model that is capable of describing the erosion and deposition patterns inside of an open filter of rock on top of sand. The hydraulic loading is that of incident irregular waves...... and the open filters are surface piercing. Due to the few experimental data sets on sediment transport inside of rock layers, a sediment transport formulation has been proposed based on a matching between the numerical model and experimental data on the profile deformation inside an open filter. The rock layer...

  20. Uranium Isotopes as a Tracer of Groundwater Evolution in the Complexe Terminal Aquifer of Southern Tunisia

    Energy Technology Data Exchange (ETDEWEB)

    Hadj Ammar, F. [Laboratory of Radio-Analysis and Environment, National School of Engineering of Sfax, Sfax (Tunisia); Centre Europeen de Recherche et d' Enseignement de Geosciences de l' Environnement, Aix en Provence (France); Deschamps, P.; Hamelin, B. [Centre Europeen de Recherche et d' Enseignement de Geosciences de l' Environnement, Aix en Provence (France); Chkir, N.; Zouari, K. [Laboratory of Radio-Analysis and Environment, National School of Engineering of Sfax, Sfax (Tunisia)

    2013-07-15

    The Complexe Terminal (CT) aquifer system is the main water supply for remote areas of southern Tunisia. Its exploitation has resulted in significant draw-down of the water table. The CT aquifer is a multilayered aquifer lodged in Miocene sand deposits, Senonian limestones and Turonian carbonates. Little is known about the relationships and exchanges between the different layers. Here, uranium isotopic measurements carried out in groundwater samples from the CT aquifer are presented in order to constrain models for mixing of water masses, water-rock interaction and groundwater flow. Analyses were performed using a VG54 (TIMS) at the CEREGE. Results indicate a range in {sup 238}U concentration and {sup 234}U/{sup 238}U activity ratios of 1.5 to 8 ppb and 1.1 to 3.2 respectively. Together with major and trace analyses, uranium isotopic compositions provide important insights into the factors controlling the chemical evolution of groundwater and shows very distinct patterns between carbonate and sandstone layers. (author)

  1. Alkaline Plume in the Aptian Sand Aquifer in the Context of Low-Level Radioactive Waste Surface Disposal

    Science.gov (United States)

    Cochepin, B.; Munier, I.; MADE, B.

    2017-12-01

    The storage vaults for low and intermediate-level short-lived radioactive waste in the East of France are settled on the Aptian sand layer. In the context of the periodic examination by the nuclear regulators, it has been recommended to assess more precisely the chemical conditions for a potential release of radionuclides in the underlying water table. In particular, this study aims at assessing the eventuality of spreading an alkaline plume in the Aptian sand pore water by the chemical degradation of the vault cementitious materials. The numerical approach developed for this purpose is supported by both experimental characterizations of tracers in the water table and results from preliminary numerical studies on the hydrology of the site and the hydraulic evolution of the storage. The results from these specific simulations were simplified in the reactive transport model to focus on the mechanistic description of the chemical processes taking place in the waste and vaults and on their consequences on the underlying water table. During the operating period of the disposal, the reactive transport modelling shows that the low water saturation in the vaults material and in the vadose zone prevents the aquifer from a significant increase of the water pH under the cement-based vaults. These results are in reasonable agreement with the pH regularly measured in the underlying water table. After storage closure, during the few hundred years of the monitoring period and furthermore beyond, the reactive transport modelling shows a noticeable release of hydroxyls and alkali ions under the disposal vaults and their spread downstream the storage site leading to pH values above 10. It is noteworthy that the pH is not buffered in the Aptian sands because of their low amount in clayey minerals. This effect is now considered for pH-sensitive radionuclide solutes in safety assessment calculations by weighting correspondingly their retention parameters.

  2. Directional optical transmission through a sand layer: a preliminary laboratory experiment

    Science.gov (United States)

    Tian, Jia; Philpot, William D.

    2017-10-01

    Given the importance of penetration of light in the soil for seed germination, soil warming, and the photolytic degradation of pesticides, directional transmission of thin sand samples are studied in this paper under both dry and saturated conditions. The detector views upward through a glass-bottom sample holder, filled to 3 or 4 mm with a coarse, translucent, quartz sand sample. Transmission through the samples was measured as the illumination zenith angle moved from 0 to 70° in 5° intervals. In the most cases, transmission decreased monotonically, but slowly with increasing illumination angle at all wavelengths. A peak in transmission only appeared at 0° illumination for the low bulk density, dry sample at 3 mm depth. The 0° peak disappeared when the sample was wetted, when the bulk density increased, or when the depth of the sample increased, which indicates that the radiation transmitting through a sand layer can be diffused thoroughly with a millimeters-thin sand layer. For the saturated samples, water influences light transmission in contrasting ways in shorter and longer wavelength. Transmission increased in the VNIR when saturated relative to dry, while transmission decreased sharply after 1300 nm, with spectral absorption features characteristic of water absorption. In VNIR region, water absorption is low and the low relative index of refraction enhanced transmission through sand sample. In contrast, water absorption became dominant at longer wavelengths region leading to the strongly reduced transmission.

  3. Occurrence of Radium-224, Radium-226 and Radium-228 in Water from the Vincentown and Wenonah-Mount Laurel Aquifers, the Englishtown Aquifer System, and the Hornerstown and Red Bank Sands, Southwestern and South-Central New Jersey

    Science.gov (United States)

    dePaul, Vincent T.; Szabo, Zoltan

    2007-01-01

    This investigation is the first regionally focused study of the presence of natural radioactivity in water from the Vincentown and Wenonah-Mount Laurel aquifers, Englishtown aquifer system, and the Hornerstown and Red Bank Sands. Geologic materials composing the Vincentown and Wenonah-Mount Laurel aquifers and the Hornerstown and Red Bank Sands previously have been reported to contain radioactive (uranium-enriched) phosphatic strata, which is common in deposits from some moderate-depth coastal marine environments. The decay of uranium and thorium gives rise to natural radioactivity and numerous radioactive progeny, including isotopes of radium. Naturally occurring radioactive isotopes, especially those of radium, are of concern because radium is a known human carcinogen and ingestion (especially in water used for drinking) can present appreciable health risks. A regional network in southwestern and south-central New Jersey of 39 wells completed in the Vincentown and Wenonah-Mount Laurel aquifers, the Englishtown aquifer system, and the Hornerstown and Red Bank Sands was sampled for determination of gross alpha-particle activity; concentrations of radium radionuclides, major ions, and selected trace elements; and physical properties. Concentrations of radium-224, radium-226, and radium-228 were determined for water from 28 of the 39 wells, whereas gross alpha-particle activity was determined for all 39. The alpha spectroscopic technique was used to determine concentrations of radium-224, which ranged from less than 0.5 to 2.7 pCi/L with a median concentration of less than 0.5pCi/L, and of radium-226, which ranged from less than 0.5 to 3.2 pCi/L with a median concentration of less than 0.5 pCi/L. The beta-counting technique was used to determine concentrations of radium-228. The concentration of radium-228 ranged from less than 0.5 to 4.3 pCi/L with a median of less than 0.5. Radium-228, when quantifiable, had the greatest concentration of the three radium

  4. Assessment of managed aquifer recharge at Sand Hollow Reservoir, Washington County, Utah, updated to conditions through 2007

    Science.gov (United States)

    Heilweil, Victor M.; Ortiz, Gema; Susong, David D.

    2009-01-01

    Sand Hollow Reservoir in Washington County, Utah, was completed in March 2002 and is operated primarily as an aquifer storage and recovery project by the Washington County Water Conservancy District (WCWCD). Since its inception in 2002 through 2007, surface-water diversions of about 126,000 acre-feet to Sand Hollow Reservoir have resulted in a generally rising reservoir stage and surface area. Large volumes of runoff during spring 2005-06 allowed the WCWCD to fill the reservoir to a total storage capacity of more than 50,000 acre-feet, with a corresponding surface area of about 1,300 acres and reservoir stage of about 3,060 feet during 2006. During 2007, reservoir stage generally decreased to about 3,040 feet with a surface-water storage volume of about 30,000 acre-feet. Water temperature in the reservoir shows large seasonal variation and has ranged from about 3 to 30 deg C from 2003 through 2007. Except for anomalously high recharge rates during the first year when the vadose zone beneath the reservoir was becoming saturated, estimated ground-water recharge rates have ranged from 0.01 to 0.09 feet per day. Estimated recharge volumes have ranged from about 200 to 3,500 acre-feet per month from March 2002 through December 2007. Total ground-water recharge during the same period is estimated to have been about 69,000 acre-feet. Estimated evaporation rates have varied from 0.04 to 0.97 feet per month, resulting in evaporation losses of 20 to 1,200 acre-feet per month. Total evaporation from March 2002 through December 2007 is estimated to have been about 25,000 acre-feet. Results of water-quality sampling at monitoring wells indicate that by 2007, managed aquifer recharge had arrived at sites 37 and 36, located 60 and 160 feet from the reservoir, respectively. However, different peak arrival dates for specific conductance, chloride, chloride/bromide ratios, dissolved oxygen, and total dissolved-gas pressures at each monitoring well indicate the complicated nature of

  5. In situ radionuclide migration studies in a shallow sand aquifer. Part. 1. Part. 2: appendices

    International Nuclear Information System (INIS)

    Williams, G.M.; Alexander, L.S.; Hitchman, S.P.; Hooker, P.J.; Noy, D.J.; Ross, C.A.M.; Stuart, A.; West, J.M.

    1986-01-01

    As a result of a study of the geology of the British Nuclear Fuels premises at Drigg, Cumbria, the British Geological Survey identified a shallow glacial sand deposit approximately 1.5m thick, interbedded between two clay horizons. An array of boreholes has been constructed in this sand in order to study the migration of radionuclides introduced into the formation under controlled conditions of groundwater flow. Conservative tracers used in the field test include chloride (as NaCl) and iodine-131 (as NaI). Strontium-85 (as the chloride) has been used as a chemically reactive tracer in conjunction with 131 I. The principal research objectives of the programme are as follows: (1) To undertake laboratory batch sorption experiments using core material from the field site in order to choose those nuclides of radiological interest that would migrate sufficiently quickly for their behaviour to be studied in a field experiment within a reasonable time period. (2) To identify and quantify the mechanisms for nuclide/sediment interaction by determination of the geochemical distribution of 85 Sr in contaminated cores using a sequential leaching procedure. (3) To obtain appropriate data on the hydraulic characteristics of the sand formation in order to construct a mathematical model to describe groundwater flow and reactive mass transport. Part 2 of this report contains the following appendices: (1) Calculation of sorption parameters. (2) A low-cost manifold system for use with multi-level samplers. (3) Radioactivity curves for 131 I and 85 Sr. (4) Results of particle size analysis for sand aquifers

  6. Factors affecting the distribution of hydrocarbon contaminants and hydrogeochemical parameters in a shallow sand aquifer

    Science.gov (United States)

    Lee, Jin-Yong; Cheon, Jeong-Yong; Lee, Kang-Kun; Lee, Seok-Young; Lee, Min-Hyo

    2001-07-01

    The distributions of hydrocarbon contaminants and hydrogeochemical parameters were investigated in a shallow sand aquifer highly contaminated with petroleum hydrocarbons leaked from solvent storage tanks. For these purposes, a variety of field investigations and studies were performed, which included installation of over 100 groundwater monitoring wells and piezometers at various depths, soil logging and analyses during well and piezometer installation, chemical analysis of groundwater, pump tests, and slug tests. Continuous water level monitoring at three selected wells using automatic data-logger and manual measuring at other wells were also conducted. Based on analyses of the various investigations and tests, a number of factors were identified to explain the distribution of the hydrocarbon contaminants and hydrogeochemical parameters. These factors include indigenous biodegradation, hydrostratigraphy, preliminary pump-and-treat remedy, recharge by rainfall, and subsequent water level fluctuation. The permeable sandy layer, in which the mean water table elevation is maintained, provided a dominant pathway for contaminant transport. The preliminary pump-and-treat action accelerated the movement of the hydrocarbon contaminants and affected the redox evolution pattern. Seasonal recharge by rain, together with indigenous biodegradation, played an important role in the natural attenuation of the petroleum hydrocarbons via mixing/dilution and biodegradation. The water level fluctuations redistributed the hydrocarbon contaminants by partitioning them into the soil and groundwater. The identified factors are not independent but closely inter-correlated.

  7. Microbes Enhance Mobility of Arsenic in Pleistocene Aquifer Sand from Bangladesh

    Science.gov (United States)

    Dhar, Ratan K.; Zheng, Yan; Saltikov, Chad W.; Radloff, Kathleen A.; Mailloux, Brian; Ahmed, Kazi. M.; van Geen, Alexander

    2018-01-01

    Dissimilatory metal-reducing bacteria can mobilize As, but few studies have studied such processes in deeper orange-colored Pleistocene sands containing 1–2 mg kg−1 As that are associated with low-As groundwater in Bangladesh. To address this gap, anaerobic incubations were conducted in replicate over 90 days using natural orange sands initially containing 0.14 mg kg−1 of 1 M phosphate-extractable As (24 hr), >99% as As(V), and 0.8 g kg−1 of 1.2 M HCl-leachable Fe (1 hr at 80°C), 95% as Fe(III). The sediment was resuspended in artificial groundwater, with or without lactate as a labile carbon source, and inoculated with metal-reducing Shewanella sp. ANA-3. Within 23 days, dissolved As concentrations increased to 17 μg L−1 with lactate, 97% as As(III), and 2 μg L−1 without lactate. Phosphate-extractable As concentrations increased 4-fold to 0.6 mg kg−1 in the same incubations, even without the addition of lactate. Dissolved As levels in controls without Shewanella, both with and without lactate, instead remained <1 μg L−1. These observations indicate that metal-reducers such as Shewanella can trigger As release to groundwater by converting sedimentary As to a more mobilizable form without the addition of high levels of labile carbon. Such interactions need to be better understood to determine the vulnerability of low-As aquifers from which drinking water is increasingly drawn in Bangladesh. PMID:21405115

  8. Potential yields of wells in unconsolidated aquifers in upstate New York-- Adirondack sheet

    Science.gov (United States)

    Bugliosi, Edward F.; Trudell, Ruth A.; Casey, George D.

    1988-01-01

    This map shows the location and potential well yield from unconsolidated aquifers in the Adirondack region at a 1:250,000 scale. It also delineates segments of aquifers that are heavily used by community water systems and designated by the New York State Department of Environmental Conservation as ' Primary Water Supply ' aquifers and cites published reports that give detailed information on each area. Most aquifers were deposited in low-lying areas such as valleys or plains during deglaciation of the region. Thick, permeable, well-sorted sand and gravel deposits generally yield large quantities of water, greater than 100 gal/min. Thin sand, sand and gravel deposits, or thicker gravel units have a large content of silt and fine sand, yield moderate amounts of water, 10 to 100 gal/min. Wells dug in till and those drilled in bedrock commonly yield less than 10 gal/min. (USGS)

  9. Strategy for solving semi-analytically three-dimensional transient flow in a coupled N-layer aquifer system

    NARCIS (Netherlands)

    Veling, E.J.M.; Maas, C.

    2008-01-01

    Efficient strategies for solving semi-analytically the transient groundwater head in a coupled N-layer aquifer system phi(i)(r, z, t), i = 1, ..., N, with radial symmetry, with full z-dependency, and partially penetrating wells are presented. Aquitards are treated as aquifers with their own

  10. Geohydrology of the valley-fill aquifer in the Endicott-Johnson City area, Broome County, New York

    Science.gov (United States)

    Holecek, Thomas J.; Randall, A.D.; Belli, J.L.; Allen, R.V.

    1982-01-01

    This report is the tenth in a series of 11 map sets depicting geohydrologic conditions in selected aquifers in upstate New York. Geohydrologic data are compiled on five maps at 1:24,000 scale. Together, the maps provide a comprehensive overview of a major valley-fill aquifer in southwestern Broome County. The maps include surficial geology, geologic sections, aquifer thickness, water-infiltration potential of soil zone, potentiometric-surface altitude, and land use. The valley-fill deposits consist of alluvial silt and sand, glacial outwash (sand and gravel), ice-contact sand and gravel, till, and lacustrine silt and clay. The sand and gravel beds have relatively high permeabilities whereas the till, silt, and clay deposits have relatively low permeabilities. Water-table conditions are found in unconfined sand and gravel, whereas artesian conditions prevail within sand and gravel confined by silty deposits. Recharge occurs over the entire surface of the aquifer, due to permeable land-surface conditions, but is greatest along the margin of the valley, where runoff from the hillsides is concentrated, and near streams. The use of land overlying the aquifer is predominantly commercial and residential with lesser amounts of agricultural and industrial uses. (USGS)

  11. Geohydrology of the valley-fill aquifer in the South Fallsburgh-Woodbourne area, Sullivan County, New York

    Science.gov (United States)

    Anderson, H.R.; Dineen, R.J.; Stelz, W.G.; Belli, J.L.

    1982-01-01

    This report is the ninth in a series of map sets depicting geohydrologic conditions in selected aquifers in upstate New York. Geohydrologic data are compiled on six maps at 1:24,000 scale. Together the maps provide a comprehensive overview of a major valley-fill aquifer in southeastern Sullivan County. The maps include surficial geology, geologic sections, aquifer thickness, water-infiltration potential of soil zone, potentiometric surface elevations, well yields, and land use. The valley-fill deposits consist of alluvial silt and sand, glacial outwash (sand and gravel), ice-contact sand and gravel, till, and lacustrine silt and clay. The sand and gravel beds have relatively high permeabilities whereas the till, silt, and clay deposits have relatively low permeabilities. Water-table conditions prevail in unconfined sand and gravel whereas artesian conditions prevail within sand and gravel confined by silty deposits. The aquifer is recharged throughout, where the land surface is most permeable and is greatest along the margin of the valley, where runoff from the hillsides is concentrated. The use of land overlying the aquifer is predominantly commercial, agricultural, and residential with lesser industrial uses. (USGS)

  12. Integrated Assessment to Evaluate the Artificial Recharge in a Small Portion of the Aquifer of Puebla, Mexico

    Science.gov (United States)

    Arango-Galván, C.; Flores-Marquez, L. E.; Martínez-Serrano, R.

    2009-12-01

    New policies on the use of water resources in Mexico have led to implement some alternative measures to optimize water management. In particular, water regulation entities have recommended some tools to preserve and protect the groundwater supplies. One of these tools is the artificial recharge by injecting water directly into the aquifer. The main goal of this study is to assess if it is suitable to inject rainwater and surface water in a small portion of the aquifer of the city of Puebla, in central Mexico. Artificial aquifer recharging was evaluated using a numeric model, which simulated the physical properties of the system. The model setup was inferred from an integrated study taking into account hydraulic, geological and geophysical data. The geoelectrical model was computed using electric resistivity tomography (ERT) and time domain electromagnetic data (TDEM). The aquifer geological structure inferred from geophysics depicts the presence of a shallower layer composed of sand and clay deposits with low saturation and permeability. This layer contains silt lenses that can be controlling the persistence of small water bodies on surface. Some water surficial bodies seem to be isolated from the main aquifer system. The intermediate layer shows lower electrical resistivity and higher permeability. Underlying this horizon, it is a deeper layer that reaches 200 m depth, according to information obtained from borehole in the zone. This layer shows an electrical resistivity even lower than intermediate layer but low permeability, caused by the higher content of silts. Both of these layers are the shallower aquifer exploited in the area. Once the numeric model was built we proceeded to simulate scenarios that include the continued extraction and recharge of water in wells located in strategic areas of the study zone. The results suggest that the effect of infiltration is beneficial on aquifer recharge and reduces the cone of depression caused by the extraction

  13. Potential yields of wells in unconsolidated aquifers in upstate New York-- Niagara sheet

    Science.gov (United States)

    Miller, Todd S.

    1988-01-01

    This map depicts the locations and potential well yields of unconsolidated aquifers in western New York at a scale of 1:250 ,000. It also delineates segments of aquifers that are used for public water supplies and designated by the New York State Department of Environmental Conservation as ' Primary Water Supply Aquifers. ' The map also lists published reports that give detailed information on each area. Most aquifers were deposited in low areas, such as valleys and plains, during deglaciation of the region. Thick, permeable, well-sorted sand and gravel units yield large quantities of water - more than 100 gal/min - to properly constructed wells. Thin sand units and sand and gravel units and thicker gravel units that have a large content of silt and fine sand yield moderate amounts of water, 10 to 100 gal/min. Dug wells that tap till or lacustrine deposits yield less than 5 gal/min. Well yields from bedrock are not indicated. (USGS)

  14. Geohydrology of the valley-fill aquifer in the Jamestown area, Chautauqua County, New York

    Science.gov (United States)

    Anderson, H.R.; Stelz, W.G.; Belli, J.L.; Allen, R.V.

    1982-01-01

    This report is the sixth in a series of 11 map sets depicting geohydrologic conditions in selected aquifers in upstate New York. Geohydrologic data are compiled on six maps at 1:24,000 scale. Together, the maps provide a comprehensive overview of a major valley-fill aquifer in southeastern Chautauqua County. The maps include surficial geology, geologic sections, water-infiltration potential of soil zone, aquifer thickness, potentiometric-surface elevations and land use. The valley-fill deposits consist of alluvial silt and sand, glacial-outwash (sand and gravel), ice-contact sand and gravel, till, and lacustrine silt and clay. The sand and gravel beds have relatively high permeabilities whereas the till, silt and clay deposits have relatively low permeabilities. Water-table conditions prevail in u nconfined sand and gravel beds along the valley margin. Artesian conditions prevail in confined sand and gravel buried under silt and clay in the middle of the valley. Recharge occurs mainly along the margin of the valley, where the land surface is highly permeable and runoff from the hillsides is concentrated. The use of land overlying the aquifer is predominantly agricultural and residential with lesser amounts of commercial and industrial uses. (USGS)

  15. Sand and gravel mining: effects on ground water resources in Hancock county, Maine, USA

    Science.gov (United States)

    Peckenham, John M.; Thornton, Teresa; Whalen, Bill

    2009-01-01

    Based on this preliminary study, existing sand and gravel mining regulations (in Maine, USA) can be inferred to provide some protection to water resources. Sand and gravel deposits are important natural resources that have dual uses: mining for construction material and pumping for drinking water. How the mining of sand and gravel affects aquifers and change aquifer vulnerability to contamination is not well documented. Mining regulations vary greatly by state and local jurisdiction. This study test metrics to measure the effectiveness of mining regulations. The sand and gravel aquifer system studied is covered with former and active gravel pits to nearly 25% of its areal extent. Data from homeowner interviews and field measurements found scant evidence of changes in water quantity. Water quality analyses collected from springs, streams, ponds and wells indicate that the aquifer was vulnerable to contamination by chloride and nitrate. However, water quality changes can not be related directly to mining activities.

  16. Potential yields of wells in unconsolidated aquifers in upstate New York--Hudson-Mohawk sheet

    Science.gov (United States)

    Bugliosi, Edward F.; Trudell, Ruth A.; Casey, George D.

    1988-01-01

    This map shows the location and potential well yields of unconsolidated aquifers in the Hudson-Mohawk region at a scale of 1:250,000. It also delineates segments of aquifers that are heavily used by community water systems and designated by the New York State Department of Environmental Conservation as ' Primary Water Supply ' aquifers, and cites published reports that give detailed information on each area. Most aquifers were deposited in low-lying areas such as valleys or plains during deglaciations of the region. Thick, permeable, well-sorted sand and gravel deposits generally yield large quantities of water, greater than 100 gal/min. Thin sand, sand and gravel deposits, or thicker gravel units that have a large content of silt and fine sand, yield moderate amounts of water, 10 to 100 gal/min. Wells dug in till and those drilled in bedrock commonly yield less than 10 gal/min. (USGS)

  17. Potential yields of wells in unconsolidated aquifers in upstate New York--lower Hudson sheet

    Science.gov (United States)

    Bugliosi, Edward F.; Trudell, Ruth A.

    1988-01-01

    This map shows the location and potential well yields from unconsolidated aquifers in the lower-Hudson region at a 1:250 ,000 scale. It also delineates segments of aquifers that are heavily used by community water systems and designated by the New York State Department of Environmental Conservation as ' Primary water supply ' aquifers and cites published reports that give detailed information on each area. Most aquifers were deposited in low-lying areas such as valleys or plains during deglaciation of the region. Thick, permeable, well-sorted sand and gravel deposits generally yield large quantities of water, more than 100 gal/min. Thin sand, sand and gravel deposits, or thicker gravel units that have a large content of silt and fine sand, yield moderate amounts of water, 10 to 100 gal/min. Wells dug in till and those drilled in bedrock commonly yield less than 10 gal/min. (USGS)

  18. Arsenic levels in groundwater aquifer

    African Journals Online (AJOL)

    Miodrag Jelic

    resistance (ρ); dielectric constant (ε); magnetic permeability (η); electrochemical activity ..... comprises grey sands of different particle size distribution ..... groundwater: testing pollution mechanisms for sedimentary aquifers in. Bangladesh.

  19. High resolution aquifer characterization using crosshole GPR full-waveform tomography: Comparison with direct-push and tracer test data

    Science.gov (United States)

    Gueting, Nils; Vienken, Thomas; Klotzsche, Anja; van der Kruk, Jan; Vanderborght, Jan; Caers, Jef; Vereecken, Harry; Englert, Andreas

    2017-01-01

    Limited knowledge about the spatial distribution of aquifer properties typically constrains our ability to predict subsurface flow and transport. Here we investigate the value of using high resolution full-waveform inversion of cross-borehole ground penetrating radar (GPR) data for aquifer characterization. By stitching together GPR tomograms from multiple adjacent crosshole planes, we are able to image, with a decimeter scale resolution, the dielectric permittivity and electrical conductivity of an alluvial aquifer along cross sections of 50 m length and 10 m depth. A logistic regression model is employed to predict the spatial distribution of lithological facies on the basis of the GPR results. Vertical profiles of porosity and hydraulic conductivity from direct-push, flowmeter and grain size data suggest that the GPR predicted facies classification is meaningful with regard to porosity and hydraulic conductivity, even though the distributions of individual facies show some overlap and the absolute hydraulic conductivities from the different methods (direct-push, flowmeter, grain size) differ up to approximately one order of magnitude. Comparison of the GPR predicted facies architecture with tracer test data suggests that the plume splitting observed in a tracer experiment was caused by a hydraulically low-conductive sand layer with a thickness of only a few decimeters. Because this sand layer is identified by GPR full-waveform inversion but not by conventional GPR ray-based inversion we conclude that the improvement in spatial resolution due to full-waveform inversion is crucial to detect small-scale aquifer structures that are highly relevant for solute transport.

  20. Surfactant-enhanced aquifer remediation at the Portsmouth Gaseous Diffusion Plant

    International Nuclear Information System (INIS)

    Jackson, R.E.; Londergan, J.T.; Pickens, J.

    1995-01-01

    Many DOE facilities are situated in areas of sand and gravel which have become polluted with dense, non-aqueous phase liquids or DNAPLs, such as chlorinated solvents, from the various industrial operations at these facilities. The presence of such DNAPLs in sand and gravel aquifers is now recognized as the principal factor in the failure of standard ground-water remediation methods, i.e., open-quotes pump-and-treatclose quotes operations, to decontaminate such systems. The principal objective of this study is to demonstrate that multi-component DNAPLs can be readily solubilized in sand and gravel aquifers by dilute surfactant solutions

  1. Groundwater Discharges to Rivers in the Western Canadian Oil Sands Region

    Science.gov (United States)

    Ellis, J.; Jasechko, S.

    2016-12-01

    Groundwater discharges into rivers impacts the movement and fate of nutrients and contaminants in the environment. Understanding groundwater-surface water interactions is especially important in the western Canadian oil sands, where groundwater contamination risks are elevated and baseline water chemistry data is lacking, leading to substantial uncertainties about anthropogenic influences on local river quality. High salinity groundwater springs sourced from deep aquifers, comprised of Pleistocene-aged glacial meltwater, are known to discharge into many rivers in the oil sands. Understanding connections between deep aquifers and surficial waterways is important in order to determine natural inputs into these rivers and to assess the potential for injected wastewater or oil extraction fluids to enter surface waters. While these springs have been identified, their spatial distribution along rivers has not been fully characterized. Here we present river chemistry data collected along a number of major river corridors in the Canadian oil sands region. We show that saline groundwater springs vary spatially along the course of these rivers and tend to be concentrated where the rivers incise Devonian- or Cretaceous-aged aquifers along an evaporite dissolution front. Our results suggest that water sourced from Devonian aquifers may travel through bitumen-bearing Cretaceous units and discharge into local rivers, implying a strong groundwater-surface water connection in specialized locations. These findings indicate that oil sands process-affected waters that are injected at depth have the potential to move through these aquifers and reach the rivers at the surface at some time in the future. Groundwater-surface water interactions remain key to understanding the risks oil sands activities pose to aquatic ecosystems and downstream communities.

  2. Isotope studies on mechanisms of groundwater recharge to an alluvial aquifer in Gatton, Queensland, Australia

    International Nuclear Information System (INIS)

    Dharmasiri, J.K.; Morawska, L.

    1997-01-01

    Gatton is an important agricultural area for Queensland where about 40% of its vegetables needs are produced using groundwater as the main source. An alluvial Aquifer is located about 30m beneath the layers of alluvial sediments ranging from black soils of volcanic origin on top, layers of alluvial sands, clays and beds of sand and gravel. The leakage of creek flows has been considered to be the main source of recharge to this aquifer. A number of weirs have been built across the Lockyer and Laidley creeks to allow surface water to infiltrate through the beds when the creeks flow. Water levels in bores in a section located in the middle of the alluvial plain (Crowley Vale) have been declining for the last 20 years with little or no success in recharging from the creeks. Acute water shortages have been experienced in the Gatton area during the droughts of 1980-81, 1986-87 and 1994-97. Naturally occurring stable isotopes, 2 H, 18 0 and 13 C as well as radioisotopes 3 H and 14 C have been used to delineate sources of recharge and active recharge areas. Tritium tracing of soil moisture in the unsaturated soil was also used to determine direct infiltration rates

  3. The field migration tests of 237Np, 238Pu, 241Am and 90Sr in aerated loess, aquifer and engineering barrier materials

    International Nuclear Information System (INIS)

    Li Shushen; Wang Zhiming; Zhao Yingjie; Fan Zhiwen; Liu Chunli; An Yongfeng; Yang Yue'e; Wu Qinghua

    2003-01-01

    This paper introduces the field migration tests of 237 Np, 238 Pu, 241 Am and 90 Sr in aerated loess, aquifer and engineering barrier materials. The tests in the aerated loess and engineering barrier materials were carried out under both natural and artificial sprinkling (15 mm/d) conditions. The tests in aquifer were carried out in both assemblies packed with undisturbed aquifer media and a definite undisturbed area. The results indicate that after 3 years tests no significant migrations were seen for all nuclides in engineering barrier materials under two kinds of conditions and in aerated loess under natural conditions. For the aerated loess under artificial sprinkling conditions, 2.7 cm (center of mass) migration in the area directly below the sand tracer layer (named as area 1) and 13 cm (peak) migration in the area outside the area 1 for 90 Sr were observed; There was no migration for 237 Np, 238 Pu and 241 Am. It was discovered that the sand layer used as carrier of nuclide tracer has barrier effect on unsaturated water and an influence on nuclide migration. This has been demonstrated by the inter comparison experiment with both sand and loess as tracer carrier. In the tracer tests of undisturbed aquifer area there was no significant migration of 237 Np, 238 Pu, 241 Am and 90 Sr after 1023 days. In the assembly 8 there was no significant migration for 238 Pu and 241 Am and a small backward migration 0.95 cm for 237 Np and 4.7 cm migration (center of mass) for 90 Sr were observed. The tests also indicate that there is no significant difference of nuclide migration in ordinary and degraded cement

  4. Geohydrology of the valley-fill aquifer in the Ramapo and Mahwah rivers area, Rockland County, New York

    Science.gov (United States)

    Moore, Richard Bridge; Cadwell, D.H.; Stelz, W.G.; Belli, J.L.

    1982-01-01

    This report is the eighth in a series of 11 map sets depicting geohydrologic conditions in selected aquifers in upstate New York. Geohydrologic data are compiled on six maps at 1:24,000 scale. Together, the maps provide a comprehensive overview of a major valley-fill aquifer in southeastern Rockland County. The maps include surficial geology, geologic sections, water-infiltration potential of soil zone, aquifer thickness, water-table elevations, well yields, and land use. The valley-fill deposits consists of alluvial silt and sand, glacial outwash (sand and gravel), ice-contact sand and gravel, till, and lacustrine silt and clay. The sand and gravel beds have relatively high permeabilities, whereas the till, silt, and clay deposits have relatively low permeabilities. Water-table conditions prevail in unconfined sand and gravel along the Ramapo River valley and much of the Mahwah River valley. Artesian conditions prevail in confined sand and gravel buried under silt and clay and till in parts of the Mahway valley. The aquifer is recharged throughout, where the land surface is most permeable and is greatest along the margin of the valley, where runoff from the hillsides is concentrated. The use of land overlying the aquifer is predominantly commercial, agricultural and residential, with lesser industrial uses. (USGS)

  5. Geohydrology of the valley-fill aquifer in the Corning area, Steuben County, New York

    Science.gov (United States)

    Miller, Todd S.; Belli, J.L.; Allen, R.V.

    1982-01-01

    This report is the seventh in a series of 11 map sets depicting geohydrologic conditions in selected aquifers in upstate New York. Geohydrologic data are compiled on six maps at 1:24,000 scale. Together, the maps provide a comprehensive overview of a major valley-fill aquifer in southeastern Steuben County. The maps include surficial geology, geologic sections, water-infiltration potential of soil zone, aquifer thickness, potentiometric-surface elevations, and land use. The valley-fill deposits consist of alluvial silt, sand, and gravel, glacial-outwash (sand and gravel), till, and lacustrine silt and clay. The sand and gravel beds have relatively high permeabilities, whereas the till and silt deposits have relatively low permeabilities. Water-table conditions prevail in unconfined sand and gravel along the valley margin. Artesian conditions are found locally in sand and gravel confined under silt and clay in the middle of the valley. Recharge occurs nearly everywhere on the valley floor, but principally along the margin of the valley, where highly permeable land surface conditions exist, and runoff from the hillsides is concentrated. The use of land overlying the aquifer is a mixture of residential, commercial, agricultural, and industrial uses. (USGS)

  6. Characterization of the groundwater aquifers at El Sadat City by joint inversion of VES and TEM data

    Science.gov (United States)

    Massoud, Usama; Kenawy, Abeer A.; Ragab, El-Said A.; Abbas, Abbas M.; El-Kosery, Heba M.

    2014-12-01

    Vertical Electrical Sounding (VES) and Transient ElectroMagnetic (TEM) survey have been applied for characterizing the groundwater aquifers at El Sadat industrial area. El-Sadat city is one of the most important industrial cities in Egypt. It has been constructed more than three decades ago at about 80 km northwest of Cairo along the Cairo-Alexandria desert road. Groundwater is the main source of water supplies required for domestic, municipal and industrial activities in this area due to the lack of surface water sources. So, it is important to maintain this vital resource in order to sustain the development plans of this city. In this study, VES and TEM data were identically measured at 24 stations along 3 profiles trending NE-SW with the elongation of the study area. The measuring points were arranged in a grid-like pattern with both inter-station spacing and line-line distance of about 2 km. After performing the necessary processing steps, the VES and TEM data sets were inverted individually to multi-layer models, followed by a joint inversion of both data sets. Joint inversion process has succeeded to overcome the model-equivalence problem encountered in the inversion of individual data set. Then, the joint models were used for the construction of a number of cross sections and contour maps showing the lateral and vertical distribution of the geoelectrical parameters in the subsurface medium. Interpretation of the obtained results and correlation with the available geological and hydrogeological information revealed TWO aquifer systems in the area. The shallow Pleistocene aquifer consists of sand and gravel saturated with fresh water and exhibits large thickness exceeding 200 m. The deep Pliocene aquifer is composed of clay and sand and shows low resistivity values. The water-bearing layer of the Pleistocene aquifer and the upper surface of Pliocene aquifer are continuous and no structural features have cut this continuity through the investigated area.

  7. Investigation of ground water aquifer at Karangrowo Site, Undaan District, Kudus Sub Province Central Java

    International Nuclear Information System (INIS)

    Lilik Subiantoro; Priyo Sularto; Slamet Sudarto

    2009-01-01

    Kudus is one of sub province in central Java with have the fresh water availability problem Condition of insufficiency 'Standard Water has been recognized in some part of regional area, those are Karangrowo area, Undaan District The problem of clean water in this area is caused by sea water trapped in sedimentary material during sedimentation process; due the ground water trapped character is briny or brackish. One of the alternatives to overcome water problem is election or delineated of prospect area fur exploiting of ground water. Referring to that problem ''Pusbang Geologi Nuklir BATAN'' means to conduct investigation of ground water in some location problem of clean water. The ground investigation activity is to get information about the geology, geohydrology and sub surface geophysical characterize, which is needed to identification of ground water aquifer. To obtain that target, conducted by topographic measurement in 1:5000 scale maps, measurement of soil radioactivity, geology and hydrogeology mapping, geo electrical 2-D image measurement Base on the result of analyze, evaluation and discussion was identified the existence of potential aquifer that happened at layer of sand sedimentary, in form of lens trapped in impermeable layer of clay sediment The layer of aquifer pattern follows of Old River in North-South and East-West direction. Potency of aquifer with the best condition from bad, there are placed on geophysical measurement GF. A 4-14, AB 4-11 and B4. Physical characterized of aquifer, resistivity 9-19 Ωm with charge ability 13-53 milliseconds. (author)

  8. Insights from the salinity origins and interconnections of aquifers in a regional scale sedimentary aquifer system (Adour-Garonne district, SW France): Contributions of δ34S and δ18O from dissolved sulfates and the 87Sr/86Sr ratio

    International Nuclear Information System (INIS)

    Brenot, Agnès; Négrel, Philippe; Petelet-Giraud, Emmanuelle; Millot, Romain; Malcuit, Eline

    2015-01-01

    Highlights: • Regional sedimentary aquifer on the Aquitaine Basin (SW France). • Dealing with limited number of groundwater wells available. • Strong control of evaporite dissolution on groundwater dissolved elements. • Guidelines for decision-makers to manage water resources. - Abstract: The multi-layered Eocene aquifer is a regional scale sedimentary aquifer system occupying ∼120,000 km 2 within the Adour-Garonne district (France). Local authorities have recently identified the aquifer as being at risk from extensive irrigation abstractions, threatening the sustainability of this key resource. Because large water abstractions for human activities can significantly influence the natural functioning of such aquifer systems, e.g., with leakage between aquifer layers, which can lead to water quality degradation, the characterization of such large systems constitutes a key point to protect and prevent further deterioration of aquatic ecosystems. This study provides further insight on this large aquifer through a geochemical approach, which addresses the limited number of groundwater wells where sampling is possible. For that purpose, a geochemical analysis combining two isotope systems (δ 34 S SO4 , δ 18 O SO4 and 87 Sr/ 86 Sr) has been applied. The Eocene sedimentary aquifer system (detrital to carbonate deposits) is made up of four aquifer layers, Eocene Infra-Molassic sand, Early Eocene, Middle Eocene and Late Eocene, and has a mineralized area north of the Aquitaine Basin, where groundwater shows strong mineralization and anomalous levels of critical substances (SO 4 , F, etc.), increasing the difficulty of resource exploitation. The extreme heterogeneity of the geochemical composition of the groundwater between the aquifers and within a single aquifer is discussed in terms of the lithological control induced by the lateral variation of facies and interconnections between aquifer layers. Geochemical tools, especially the δ 34 S and δ 18 O from

  9. Analysis of Boundary Layer Meteorological Data Collected at the White Sands Missile Range

    National Research Council Canada - National Science Library

    O'Brien, Sean; Tofsted, David; Yarbrough, Jimmy; Elliott, D. S; Quintis, David

    2007-01-01

    ... Sands Missile Range (WSMR). Our primary motivation for collecting these measurements is to refine the accuracy of outer and inner scale effects models for optical, thermal, and absolute humidity turbulence for the desert boundary layer...

  10. Quantification of the specific yield in a two-layer hard-rock aquifer model

    Science.gov (United States)

    Durand, Véronique; Léonardi, Véronique; de Marsily, Ghislain; Lachassagne, Patrick

    2017-08-01

    Hard rock aquifers (HRA) have long been considered to be two-layer systems, with a mostly capacitive layer just below the surface, the saprolite layer, and a mainly transmissive layer underneath, the fractured layer. Although this hydrogeological conceptual model is widely accepted today within the scientific community, it is difficult to quantify the respective storage properties of each layer with an equivalent porous medium model. Based on an HRA field site, this paper attempts to quantify in a distinct manner the respective values of the specific yield (Sy) in the saprolite and the fractured layer, with the help of a deterministic hydrogeological model. The study site is the Plancoët migmatitic aquifer located in north-western Brittany, France, with piezometric data from 36 observation wells surveyed every two weeks for eight years. Whereas most of the piezometers (26) are located where the water table lies within the saprolite, thus representing the specific yield of the unconfined layer (Sy1), 10 of them are representative of the unconfined fractured layer (Sy2), due to their position where the saprolite is eroded or unsaturated. The two-layer model, based on field observations of the layer geometry, runs with the MODFLOW code. 81 values of the Sy1/Sy2 parameter sets were tested manually, as an inverse calibration was not able to calibrate these parameters. In order to calibrate the storage properties, a new quality-of-fit criterion called ;AdVar; was also developed, equal to the mean squared deviation of the seasonal piezometric amplitude variation. Contrary to the variance, AdVar is able to select the best values for the specific yield in each layer. It is demonstrated that the saprolite layer is about 2.5 times more capacitive than the fractured layer, with Sy1 = 10% (7% < Sy1 < 15%) against Sy2 = 2% (1% < Sy2 < 3%), in this particular example.

  11. Ground-Water Flow Direction, Water Quality, Recharge Sources, and Age, Great Sand Dunes National Monument, South-Central Colorado, 2000-2001

    Science.gov (United States)

    Rupert, Michael G.; Plummer, Niel

    2004-01-01

    Great Sand Dunes National Monument is located in south-central Colorado along the eastern edge of the San Luis Valley. The Great Sand Dunes National Monument contains the tallest sand dunes in North America; some rise up to750 feet. Important ecological features of the Great Sand Dunes National Monument are palustrine wetlands associated with interdunal ponds and depressions along the western edge of the dune field. The existence and natural maintenance of the dune field and the interdunal ponds are dependent on maintaining ground-water levels at historic elevations. To address these concerns, the U.S. Geological Survey conducted a study, in collaboration with the National Park Service, of ground-water flow direction, water quality, recharge sources, and age at the Great Sand Dunes National Monument. A shallow unconfined aquifer and a deeper confined aquifer are the two principal aquifers at the Great Sand Dunes National Monument. Ground water in the unconfined aquifer is recharged from Medano and Sand Creeks near the Sangre de Cristo Mountain front, flows underneath the main dune field, and discharges to Big and Little Spring Creeks. The percentage of calcium in ground water in the unconfined aquifer decreases and the percentage of sodium increases because of ionic exchange with clay minerals as the ground water flows underneath the dune field. It takes more than 60 years for the ground water to flow from Medano and Sand Creeks to Big and Little Spring Creeks. During this time, ground water in the upper part of the unconfined aquifer is recharged by numerous precipitation events. Evaporation of precipitation during recharge prior to reaching the water table causes enrichment in deuterium (2H) and oxygen-18 (18O) relative to waters that are not evaporated. This recharge from precipitation events causes the apparent ages determined using chlorofluorocarbons and tritium to become younger, because relatively young precipitation water is mixing with older waters

  12. The hydrogeochemical and isotopic investigations of the two-layered Shiraz aquifer in the northwest of Maharlou saline lake, south of Iran

    Science.gov (United States)

    Tajabadi, Mehdi; Zare, Mohammad; Chitsazan, Manouchehr

    2018-03-01

    Maharlou saline lake is the outlet of Shiraz closed basin in southern Iran, surrounded by several disconnected alluvial fresh water aquifers. These aquifers in the west and northwest of the lake are recharged by karstic anticlines such as Kaftarak in the north and Barmshour in the south. Here groundwater salinity varies along the depth so that better quality water is located below brackish or saline waters. The aim of this study is to investigate the reason for the salinity anomaly and the origin of the fresher groundwater in lower depth. Hence, the change in groundwater salinity along depth has been investigated by means of a set of geoelectrical, hydrogeological, hydrogeochemical, and environmental isotopes data. The interpretation of geoelectrical profiles and hydrogeological data indicates that the aquifer in the southeast of Shiraz plain is a two-layer aquifer separated by a fine-grained (silt and clay) layer with an approximate thickness of 40 m at the depth of about 100-120 m. Hydrgeochemistry showed that the shallow aquifer is recharged by Kaftarak karstic anticline and is affected by the saline lake water. The lake water fraction varies in different parts from zero for shallow aquifer close to the karstic anticlines to ∼70 percent in the margin of the lake. The deep aquifer is protected from the intrusion of saline lake water due to the presence of the above-mentioned confining layer with lake water fraction of zero. The stable isotopes signatures also indicate that the 'fresh' groundwater belonging to the deep aquifer is not subject to severe evaporation or mixing which is typical of the karstic water of the area. It is concluded that the characteristics of the deep aquifer are similar to those of the karstic carbonate aquifer. This karstic aquifer is most probably the Barmshour carbonated anticline buried under the shallow aquifer in the southern part. It may also be the extension of the Kaftarak anticline in the northern part.

  13. Aquifer recharging in South Carolina: radiocarbon in environmental hydrogeology

    International Nuclear Information System (INIS)

    Stone, P.A.; Knox, R.L.; Mathews, T.D.

    1985-01-01

    Radiocarbon activities of dissolved inorganic carbon (and tritium activities where infiltration rates are rapid and aquifers shallow) provide relatively unambiguous and inexpensive evidence for identification of significant recharge areas. Such evidence is for the actual occurrence of modern recharge in the aquifer and thus is less inferential than stratigraphic or potentiometric evidence. These underutilized isotopic techniques are neither arcane nor complex and have been more-or-less standardized by earlier researchers. In South Carolina, isotopic evidence has been used from both calcareous and siliceous sedimentary aquifers and fractured crystalline rock aquifers. The Tertiary limestone aquifer is shown not to be principally recharged in its subcrop area, unlike conditions assumed for many other sedimentary aquifers in southeastern United States, and instead receives considerable lateral recharge from interfingering updip Tertiary sand aquifers in the middle coastal plain. Induced recharging at Hilton Head Island is mixing ancient relict water and modern recharge water. Recharging to deeper portions of the Cretaceous Middendorf basal sand aquifer occurs at least as far coastward as the middle coastal plain, near sampling sites that stratigraphically appear to be confined. Pronounced mineralization of water in fractured rocks cannot be considered as evidence of ancient or relict ground water that is isolated from modern contaminants, some of these waters contain considerable radiocarbon and hydrogen-bomb tritium

  14. Numerical simulation of mud erosion rate in sand-mud alternate layer and comparison with experiment

    Science.gov (United States)

    Yoshida, T.; Yamaguchi, T.; Oyama, H.; Sato, T.

    2015-12-01

    For gas production from methane hydrates in sand-mud alternate layers, depressurization method is expected as feasible. After methane hydrate is dissociated, gas and water flow in pore space. There is a concern about the erosion of mud surface and it may result in flow blockage that disturbs the gas production. As a part of a Japanese National hydrate research program (MH21, funded by METI), we developed a numerical simulation of water-induced mud erosion in pore-scale sand-mud domains to model such mud erosion. The size of which is of the order of 100 micro meter. Water flow is simulated using a lattice Boltzmann method (LBM) and mud surface is treated as solid boundary with arbitrary shape, which changes with time. Periodic boundary condition is adopted at the domain boundaries, except for the surface of mud layers and the upper side. Shear stress acting on the mud surface is calculated using a momentum-exchange method. Mud layer is eroded when the shear stress exceeds a threshold coined a critical shear stress. In this study, we compared the simulated mud erosion rate with experimental data acquired from an experiment using artificial sand-mud core. As a result, the simulated erosion rate agrees well with that of the experiment.

  15. Experimental Measurement of Diffusive Extinction Depth and Soil Moisture Gradients in a Dune Sand Aquifer in Western Saudi Arabia: Assessment of Evaporation Loss for Design of an MAR System

    KAUST Repository

    Mughal, Iqra; Jadoon, Khan; Mai, Paul Martin; Al-Mashharawi, Samir; Missimer, Thomas

    2015-01-01

    A component of designing a managed aquifer recharge system in a dune aquifer is the control of diffusive evaporative loss of water which is governed by the physical properties of the sediments and the position of the water table. A critical water table position is the “extinction depth”, below which no further loss of water occurs via diffusion. Field experiments were conducted to measure the extinction depth of sediments taken from a typical dune field in the region. The soil grain size characteristics, laboratory porosity, and saturated hydraulic conductivity were measured. The sand is classified as well-sorted, very fine sand with a mean grain diameter of 0.15 mm. Soil moisture gradients and diffusion loss rates were measured using sensors in a non-weighing lysimeter that was placed below land surface. The sand was saturated carefully with water from the bottom to the top and was exposed to the natural climate for a period of about two months. The moisture gradient showed a gradual decline during measurement until extinction depth was reached at about 100 cm below surface after 56 days. Diurnal temperature changes were observed in the upper 75 cm of the column and were negligible at greater depth.

  16. Experimental Measurement of Diffusive Extinction Depth and Soil Moisture Gradients in a Dune Sand Aquifer in Western Saudi Arabia: Assessment of Evaporation Loss for Design of an MAR System

    KAUST Repository

    Mughal, Iqra

    2015-12-10

    A component of designing a managed aquifer recharge system in a dune aquifer is the control of diffusive evaporative loss of water which is governed by the physical properties of the sediments and the position of the water table. A critical water table position is the “extinction depth”, below which no further loss of water occurs via diffusion. Field experiments were conducted to measure the extinction depth of sediments taken from a typical dune field in the region. The soil grain size characteristics, laboratory porosity, and saturated hydraulic conductivity were measured. The sand is classified as well-sorted, very fine sand with a mean grain diameter of 0.15 mm. Soil moisture gradients and diffusion loss rates were measured using sensors in a non-weighing lysimeter that was placed below land surface. The sand was saturated carefully with water from the bottom to the top and was exposed to the natural climate for a period of about two months. The moisture gradient showed a gradual decline during measurement until extinction depth was reached at about 100 cm below surface after 56 days. Diurnal temperature changes were observed in the upper 75 cm of the column and were negligible at greater depth.

  17. Experimental Measurement of Diffusive Extinction Depth and Soil Moisture Gradients in a Dune Sand Aquifer in Western Saudi Arabia: Assessment of Evaporation Loss for Design of an MAR System

    Directory of Open Access Journals (Sweden)

    Iqra Mughal

    2015-12-01

    Full Text Available A component of designing a managed aquifer recharge system in a dune aquifer is the control of diffusive evaporative loss of water which is governed by the physical properties of the sediments and the position of the water table. A critical water table position is the “extinction depth”, below which no further loss of water occurs via diffusion. Field experiments were conducted to measure the extinction depth of sediments taken from a typical dune field in the region. The soil grain size characteristics, laboratory porosity, and saturated hydraulic conductivity were measured. The sand is classified as well-sorted, very fine sand with a mean grain diameter of 0.15 mm. Soil moisture gradients and diffusion loss rates were measured using sensors in a non-weighing lysimeter that was placed below land surface. The sand was saturated carefully with water from the bottom to the top and was exposed to the natural climate for a period of about two months. The moisture gradient showed a gradual decline during measurement until extinction depth was reached at about 100 cm below surface after 56 days. Diurnal temperature changes were observed in the upper 75 cm of the column and were negligible at greater depth.

  18. Isotope study on the Keuper sandstone aquifer with a leaky cover layer

    International Nuclear Information System (INIS)

    Geyh, M.A.; Backhaus, G.; Andres, G.; Rudolph, J.; Rath, H.K.

    1984-01-01

    Analyses of 14 C, 3 H, 39 Ar, delta 13 C and delta 18 O were performed on groundwater samples taken from the confined Keuper sandstone aquifer north of Nuremberg. The conventional 14 C data apparently contradict the hydrodynamic concept that the age of the deep groundwater flowing from east to west increases in the same direction. A two-dimensional dispersion model is used to convert the conventional 14 C groundwater ages to the regionally valid hydraulic conductivity coefficient of the leaky cover layer confining the aquifer. The basic assumption is that the deep groundwater has a water component which has percolated through the cover layer and which, on mixing, has changed the 14 C ages of the deep groundwater. Therefore, the ratio of the water from 'leaky' recharge to the water from the catchment area plays an important role. Values of delta 18 O and recharge temperatures derived from the noble-gas content of the deep water indicate mixing of Holocene and Pleistocene groundwaters and confirm the model. The considerable differences between the 39 Ar and 14 C groundwater ages may be plausibly explained by the hydrodynamic situation if 39 Ar production in the aquitard is assumed. (author)

  19. Adsorption and transport of cadmium and rhodamine WT in pumice sand columns

    International Nuclear Information System (INIS)

    Pang, L.; Close, M.; Greenfield, H.; Stanton, G.

    2004-01-01

    The transport and attenuation of cadmium (Cd) and rhodamine WT (RWT) in a pumice sand aquifer media was investigated using column experiments to study a scenario of point-source contamination. A pore-water velocity of 1.7-1.8 m/day, which is a typical field groundwater velocity in a pumice sand aquifer system, was applied to triplicate columns. A pulse of a solution containing Cd and RWT, together with the conservative tracer tritiated water ( 3 H 2 O) at pH = 7, was introduced into the columns. Experimental results showed that concentration breakthrough curves (BTCs) of 3 H 2 O were symmetrical and fitted well into an equilibrium model. In contrast, BTCs of Cd and RWT were asymmetrical with significant tailings and fitted well with a two-site adsorption/desorption model. The symmetric 3 H 2 O BTCs suggest that physical non-equilibrium was absent in the experimental system, therefore the asymmetrical BTCs of Cd and RWT were attributed to chemical non-equilibrium. Modelling results showed that, in comparison with 3 H 2 O, Cd was apparently retarded by 101-108 times in pumice sand aquifer media (apparent adsorption coefficient 7.33-9.24 ml/g) and underwent a mass loss of 20-30% that was probably because of precipitation of CdCO 3 . As CdCO 3 is extremely insoluble, Cd precipitation would be irreversible and therefore it would not contribute to the tailing of the Cd BTCs. The experimental results suggest that the adsorption and desorption of Cd in pumice sand aquifer media in hydrodynamic conditions was a kinetic process. Cd desorption rates were two orders-of-magnitude slower than its adsorption rates. This resulted in a prolonged mean residence time for Cd in pumice sand aquifer media, which was 10-12 days in the 18-cm-long columns under a flow velocity of 1.7-1.8 m/day. Since the mean residence time is only indicative for the arrival of the central of mass in a contaminant BTC, the time required for the total disappearance of Cd will be much longer than the mean

  20. Assessing the recharge of a coastal aquifer using physical observations, tritium, groundwater chemistry and modelling.

    Science.gov (United States)

    Santos, Isaac R; Zhang, Chenming; Maher, Damien T; Atkins, Marnie L; Holland, Rodney; Morgenstern, Uwe; Li, Ling

    2017-02-15

    Assessing recharge is critical to understanding groundwater and preventing pollution. Here, we investigate recharge in an Australian coastal aquifer using a combination of physical, modelling and geochemical techniques. We assess whether recharge may occur through a pervasive layer of floodplain muds that was initially hypothesized to be impermeable. At least 59% of the precipitation volume could be accounted for in the shallow aquifer using the water table fluctuation method during four significant recharge events. Precipitation events rates were estimated in the area underneath the floodplain clay layer rather than in the sandy area. A steady-state chloride method implied recharge rates of at least 200mm/year (>14% of annual precipitation). Tritium dating revealed long term net vertical recharge rates ranging from 27 to 114mm/year (average 58mm/year) which were interpreted as minimum net long term recharge. Borehole experiments revealed more permeable conditions and heterogeneous infiltration rates when the floodplain soils were dry. Wet conditions apparently expand floodplain clays, closing macropores and cracks that act as conduits for groundwater recharge. Modelled groundwater flow paths were consistent with tritium dating and provided independent evidence that the clay layer does not prevent local recharge. Overall, all lines of evidence demonstrated that the coastal floodplain muds do not prevent the infiltration of rainwater into the underlying sand aquifer, and that local recharge across the muds was widespread. Therefore, assuming fine-grained floodplain soils prevent recharge and protect underlying aquifers from pollution may not be reasonable. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Coastal groundwater salinization: Focus on the vertical variability in a multi-layered aquifer through a multi-isotope fingerprinting (Roussillon Basin, France)

    Energy Technology Data Exchange (ETDEWEB)

    Petelet-Giraud, Emmanuelle, E-mail: e.petelet@brgm.fr [BRGM, Avenue C. Guillemin, BP 36009, 45060 Orléans Cedex 02 (France); Négrel, Philippe [BRGM, Avenue C. Guillemin, BP 36009, 45060 Orléans Cedex 02 (France); Aunay, Bertrand [BRGM, Réunion Agency, 5, rue Sainte-Anne, CS 51016, 97404 Saint Denis Cedex (France); Ladouche, Bernard; Bailly-Comte, Vincent [BRGM Montpellier Agency, 1039, rue de Pinville, 34000 Montpellier (France); Guerrot, Catherine; Flehoc, Christine [BRGM, Avenue C. Guillemin, BP 36009, 45060 Orléans Cedex 02 (France); Pezard, Philippe; Lofi, Johanna [Géosciences Montpellier, UMR 5243, Université de Montpellier, cc069, Place Eugène Bataillon, 34095 Montpellier Cedex 05 (France); Dörfliger, Nathalie [BRGM, Avenue C. Guillemin, BP 36009, 45060 Orléans Cedex 02 (France)

    2016-10-01

    The Roussillon sedimentary Basin (South France) is a complex multi-layered aquifer, close to the Mediterranean Sea facing seasonally increases of water abstraction and salinization issues. We report geochemical and isotopic vertical variability in this aquifer using groundwater sampled with a Westbay System® at two coastal monitoring sites: Barcarès and Canet. The Westbay sampling allows pointing out and explaining the variation of water quality along vertical profiles, both in productive layers and in the less permeable ones where most of the chemical processes are susceptible to take place. The aquifer layers are not equally impacted by salinization, with electrical conductivity ranging from 460 to 43,000 μS·cm{sup −1}. The δ{sup 2}H–δ{sup 18}O signatures show mixing between seawater and freshwater components with long water residence time as evidenced by the lack of contribution from modern water using {sup 3}H, {sup 14}C and CFCs/SF6. S(SO{sub 4}) isotopes also evidence seawater contribution but some signatures can be related to oxidation of pyrite and/or organically bounded S. In the upper layers {sup 87}Sr/{sup 86}Sr ratios are close to that of seawater and then increase with depth, reflecting water–rock interaction with argillaceous formations while punctual low values reflect interaction with carbonate. Boron isotopes highlight secondary processes such as adsorption/desorption onto clays in addition to mixings. At the Barcarès site (120 m deep), the high salinity in some layers appear to be related neither to present day seawater intrusion, nor to Salses-Leucate lagoonwater intrusion. Groundwater chemical composition thus highlights binary mixing between fresh groundwater and inherited salty water together with cation exchange processes, water–rock interactions and, locally, sedimentary organic matter mineralisation probably enhanced by pyrite oxidation. Finally, combining the results of this study and those of Caballero and Ladouche (2015

  2. Hydrogeology and water quality of the Dublin and Midville aquifer systems at Waynesboro, Burke County, Georgia, 2011

    Science.gov (United States)

    Gonthier, Gerard

    2013-01-01

    The hydrogeology and water quality of the Dublin and Midville aquifer systems were characterized in the City of Waynesboro area in Burke County, Georgia, based on geophysical and drillers’ logs, flowmeter surveys, a 24-houraquifer test, and the collection and chemical analysis of water samples in a newly constructed well. At the test site, the Dublin aquifer system consists of interlayered sands and clays between depths of 396 and 691 feet, and the Midville aquifer system consists of a sandy clay layer overlying a sand and gravel layer between depths of 728 and 936 feet. The new well was constructed with three screened intervals in the Dublin aquifer system and four screened intervals in the Midville aquifer system. Wellbore-flowmeter testing at a pumping rate of 1,000 gallons per minute indicated that 52.2 percent of the total flow was from the shallower Dublin aquifer system with the remaining 47.8 percent from the deeper Midville aquifer system. The lower part of the lower Midville aquifer (900 to 930 feet deep), contributed only 0.1 percent of the total flow. Hydraulic properties of the two aquifer systems were estimated using data from two wellbore-flowmeter surveys and a 24-hour aquifer test. Estimated values of transmissivity for the Dublin and Midville aquifer systems were 2,000 and 1,000 feet squared per day, respectively. The upper and lower Dublin aquifers have a combined thickness of about 150 feet and the horizontal hydraulic conductivity of the Dublin aquifer system averages 10 feet per day. The upper Midville aquifer, lower Midville confining unit, and lower Midville aquifer have a combined thickness of about 210 feet, and the horizontal hydraulic conductivity of the Midville aquifer system averages 6 feet per day. Storage coefficient of the Dublin aquifer system, computed using the Theis method on water-level data from one observation well, was estimated to be 0.0003. With a thickness of about 150 feet, the specific storage of the Dublin aquifer

  3. Testing the usefulness of 222Rn to complement conventional hydrochemical data to trace groundwater provenance in complex multi-layered aquifers. Application to the Úbeda aquifer system (Jaén, SE Spain).

    Science.gov (United States)

    Ortega, L; Manzano, M; Rodríguez-Arévalo, J

    2017-12-01

    The Úbeda aquifer system is a multi-layered aquifer intensively exploited for irrigation. It covers 1100km 2 and consists of piled up sedimentary aquifer and aquitard layers from Triassic sandstones and clays at the bottom, to Jurassic carbonates (main exploited layer) in the middle, and Miocene sandstones and marls at the top. Flow network modification by intense exploitation and the existence of deep faults favour vertical mixing of waters from different layers and with distinct chemical composition. This induces quality loss and fosters risk of quantity restrictions. To support future groundwater abstraction management, a hydrogeochemical (major and some minor solutes) and isotopic ( 222 Rn) study was performed to identify the chemical signatures of the different layers and their mixing proportions in mixed samples. The study of 134 groundwater samples allowed a preliminary identification of hydrochemical signatures and mixtures, but the existence of reducing conditions in the most exploited sector prevents the utility of sulphate as a tracer of Triassic groundwater in the Jurassic boreholes. The potential of 222 Rn to establish isotopic signatures and to trace groundwater provenance in mixtures was tested. 222 Rn was measured in 48 samples from springs and boreholes in most aquifer layers. At first, clear correlations were observed between 222 Rn, Cl and SO 4 in groundwater. Afterwards, very good correlations were observed between 222 Rn and the chemical facies of the different layers established with End Member Mixing Analysis (EMMA). Using 222 Rn as part of the signatures, EMMA helped to identify end-member samples, and to quantify the mixing proportions of water from the Triassic and the Deep Miocene layers in groundwater pumped by deep agricultural wells screened in the Jurassic. The incorporation of 222 Rn to the study also allowed identifying the impact of irrigation returns through the association of moderate NO 3 , Cl, and Br contents with very low 222

  4. Bearing Capacity of Footings on Thin Layer of Sand on Soft Cohesive Soil

    DEFF Research Database (Denmark)

    Philipsen, J.; Sørensen, Carsten S.

    2004-01-01

    This paper contains the results of some numerical calculations performed with the aim to determine the bearing capacities of footings placed on a thin layer of sand underlain by soft cohesive soil. During the last 30-35 years different analytical and empirical calculation methods for this situation...... prepared model tests made in laboratories....

  5. Study on of Seepage Flow Velocity in Sand Layer Profile as Affected by Water Depth and Slope Gradience

    Science.gov (United States)

    Han, Z.; Chen, X.

    2017-12-01

    BACKGROUND: The subsurface water flow velocity is of great significance in understanding the hydrodynamic characteristics of soil seepage and the influence of interaction between seepage flow and surface runoff on the soil erosion and sediment transport process. OBJECTIVE: To propose a visualized method and equipment for determining the seepage flow velocity and measuring the actual flow velocity and Darcy velocity as well as the relationship between them.METHOD: A transparent organic glass tank is used as the test soil tank, the white river sand is used as the seepage test material and the fluorescent dye is used as the indicator for tracing water flow, so as to determine the thickness and velocity of water flow in a visualized way. Water is supplied at the same flow rate (0.84 L h-1) to the three parts with an interval of 1m at the bottom of the soil tank and the pore water velocity and the thickness of each water layer are determined under four gradient conditions. The Darcy velocity of each layer is calculated according to the water supply flow and the discharge section area. The effective discharge flow pore is estimated according to the moisture content and porosity and then the relationship between Darcy velocity and the measured velocity is calculated based on the water supply flow and the water layer thickness, and finally the correctness of the calculation results is verified. RESULTS: According to the velocity calculation results, Darcy velocity increases significantly with the increase of gradient; in the sand layer profile, the flow velocity of pore water at different depths increases with the increase of gradient; under the condition of the same gradient, the lower sand layer has the maximum flow velocity of pore water. The air-filled porosity of sand layer determines the proportional relationship between Darcy velocity and pore flow velocity. CONCLUSIONS: The actual flow velocity and Darcy velocity can be measured by a visualized method and the

  6. Geohydrology and water quality of the stratified-drift aquifers in Upper Buttermilk Creek and Danby Creek Valleys, Town of Danby, Tompkins County, New York

    Science.gov (United States)

    Miller, Todd S.

    2015-11-20

    In 2006, the U.S. Geological Survey, in cooperation with the Town of Danby and the Tompkins County Planning Department, began a study of the stratified-drift aquifers in the upper Buttermilk Creek and Danby Creek valleys in the Town of Danby, Tompkins County, New York. In the northern part of the north-draining upper Buttermilk Creek valley, there is only one sand and gravel aquifer, a confined basal unit that overlies bedrock. In the southern part of upper Buttermilk Creek valley, there are as many as four sand and gravel aquifers, two are unconfined and two are confined. In the south-draining Danby Creek valley, there is an unconfined aquifer consisting of outwash and kame sand and gravel (deposited by glacial meltwaters during the late Pleistocene Epoch) and alluvial silt, sand, and gravel (deposited by streams during the Holocene Epoch). In addition, throughout the study area, there are several small local unconfined aquifers where large tributaries deposited alluvial fans in the valley.

  7. Ground-water flow in the surficial aquifer system and potential movement of contaminants from selected waste-disposal sites at Cecil Field Naval Air Station, Jacksonville, Florida

    Science.gov (United States)

    Halford, K.J.

    1998-01-01

    As part of the Installation Restoration Program, Cecil Field Naval Air Station, Jacksonville, Florida, is considering remedialaction alternatives to control the possible movement of contaminants from sites that may discharge to the surface. This requires a quantifiable understanding of ground-water flow through the surficial aquifer system and how the system will respond to any future stresses. The geologic units of interest in the study area consist of sediments of Holocene to Miocene age that extend from land surface to the base of the Hawthorn Group. The hydrogeology within the study area was determined from gamma-ray and geologists? logs. Ground-water flow through the surficial aquifer system was simulated with a seven-layer, finite-difference model that extended vertically from the water table to the top of the Upper Floridan aquifer. Results from the calibrated model were based on a long-term recharge rate of 6 inches per year, which fell in the range of 4 to 10 inches per year, estimated using stream hydrograph separation methods. More than 80 percent of ground-water flow circulates within the surficial-sand aquifer, which indicates that most contaminant movement also can be expected to move through the surficial-sand aquifer alone. The surficial-sand aquifer is the uppermost unit of the surficial aquifer system. Particle-tracking results showed that the distances of most flow paths were 1,500 feet or less from a given site to its discharge point. For an assumed effective porosity of 20 percent, typical traveltimes are 40 years or less. At all of the sites investigated, particles released 10 feet below the water table had shorter traveltimes than those released 40 feet below the water table. Traveltimes from contaminated sites to their point of discharge ranged from 2 to 300 years. The contributing areas of the domestic supply wells are not very extensive. The shortest traveltimes for particles to reach the domestic supply wells from their respective

  8. Transient well flow in layered aquifer systems: the uniform well-face drawdown solution

    Science.gov (United States)

    Hemker, C. J.

    1999-11-01

    Previously a hybrid analytical-numerical solution for the general problem of computing transient well flow in vertically heterogeneous aquifers was proposed by the author. The radial component of flow was treated analytically, while the finite-difference technique was used for the vertical flow component only. In the present work the hybrid solution has been modified by replacing the previously assumed uniform well-face gradient (UWG) boundary condition in such a way that the drawdown remains uniform along the well screen. The resulting uniform well-face drawdown (UWD) solution also includes the effects of a finite diameter well, wellbore storage and a thin skin, while partial penetration and vertical heterogeneity are accommodated by the one-dimensional discretization. Solutions are proposed for well flow caused by constant, variable and slug discharges. The model was verified by comparing wellbore drawdowns and well-face flux distributions with published numerical solutions. Differences between UWG and UWD well flow will occur in all situations with vertical flow components near the well, which is demonstrated by considering: (1) partially penetrating wells in confined aquifers, (2) fully penetrating wells in unconfined aquifers with delayed response and (3) layered aquifers and leaky multiaquifer systems. The presented solution can be a powerful tool for solving many well-hydraulic problems, including well tests, flowmeter tests, slug tests and pumping tests. A computer program for the analysis of pumping tests, based on the hybrid analytical-numerical technique and UWG or UWD conditions, is available from the author.

  9. Laboratory-scale measurements of effective relative permeability for layered sands

    Energy Technology Data Exchange (ETDEWEB)

    Butts, M.G.; Korsgaard, S.

    1996-12-31

    Predictions of the impact of remediation or the extent of contamination resulting from spills of gasoline, solvents and other petroleum products, must often be made in complex geological environments. Such problems can be treated by introducing the concept of effective parameters that incorporate the effects of soil layering or other heterogeneities into a large-scale flow description. Studies that derive effective multiphase parameters are few, and approximations are required to treat the non-linear multiphase flow equations. The purpose of this study is to measure effective relative permeabilities for well-defined multi-layered soils at the laboratory scale. Relative permeabilities were determined for homogeneous and layered, unconsolidated sands using the method of Jones and Roszelle (1978). The experimental data show that endpoint relative permeabilities are important in defining the shape of the relative permeability curves, but these cannot be predicted by estimation methods base on capillary pressure data. The most significant feature of the measured effective relative permeability curves is that the entrapped (residual) oil saturation is significantly larger than the residual saturation of the individual layers. This observation agrees with previous theoretical predictions of large-scale entrapment Butts, 1993 and (1995). Enhanced entrapment in heterogeneous soils has several important implications for spill remediation, for example, the reduced efficiency of direct recovery. (au) 17 refs.

  10. Laboratory-scale measurements of effective relative permeability for layered sands

    International Nuclear Information System (INIS)

    Butts, M.G.; Korsgaard, S.

    1996-01-01

    Predictions of the impact of remediation or the extent of contamination resulting from spills of gasoline, solvents and other petroleum products, must often be made in complex geological environments. Such problems can be treated by introducing the concept of effective parameters that incorporate the effects of soil layering or other heterogeneities into a large-scale flow description. Studies that derive effective multiphase parameters are few, and approximations are required to treat the non-linear multiphase flow equations. The purpose of this study is to measure effective relative permeabilities for well-defined multi-layered soils at the laboratory scale. Relative permeabilities were determined for homogeneous and layered, unconsolidated sands using the method of Jones and Roszelle (1978). The experimental data show that endpoint relative permeabilities are important in defining the shape of the relative permeability curves, but these cannot be predicted by estimation methods base on capillary pressure data. The most significant feature of the measured effective relative permeability curves is that the entrapped (residual) oil saturation is significantly larger than the residual saturation of the individual layers. This observation agrees with previous theoretical predictions of large-scale entrapment Butts, 1993 and (1995). Enhanced entrapment in heterogeneous soils has several important implications for spill remediation, for example, the reduced efficiency of direct recovery. (au) 17 refs

  11. Sedimentology and composition of sands injected during the seismic crisis of May 2012 (Emilia, Italy): clues for source layer identification and liquefaction regime

    Science.gov (United States)

    Fontana, D.; Lugli, S.; Marchetti Dori, S.; Caputo, R.; Stefani, M.

    2015-07-01

    In May 2012 widespread sand blows formed along buried channels in the eastern sector of the Po Plain (Northern Italy) as a consequence of a series of seismic events with main shocks of Mw 6.1 and 5.9. At San Carlo (Ferrara) a trench dug a few week after the earthquakes exposed sand dikes cutting through an old Reno River channel-levee system that was diverted in the 18th century and was deposited starting from the 14th century (unit A). This sequence overlies a Holocene muddy floodplain deposits and contains scattered sandy channel deposits (unit B) and a Pleistocene channel sand unit (unit C). Sands with inverse and normal grading, concave layering and vertical lamination coexisting along the dikes suggest multiple rhythmic opening and closing of the fractures that were injected and filled by a slurry of sand during the compression pulses, and emptied during the extension phase. The pulse mechanism may have lasted for several minutes and formed well stratified sand volcanoes structures that formed at the top of the fractures. Sands from dikes and from the various units show well defined compositional fields from lithoarenitic to quartz-feldspar-rich compositions. Sands from the old Reno levee and channel fill (unit A) have abundant lithic fragments derived from the erosion of Apennine sedimentary carbonate and terrigenous successions. Composition of the sand filling the dikes show clear affinities with sand layers of the old Reno River channel (Unit A) and clearly differ from any sand from deeper Holocene and Pleistocene layers (Unit B and C), which are richer in quartz and feldspar and poorer in sedimentary lithic fragments. Sorting related to sediment flux variations did not apparently affect the sand composition across the sedimentary structures. Textural and compositional data indicate that the liquefaction processes originated from a relatively shallow source consisting of channel sands located within Unit A at 6.8.to 7.5 m depth.

  12. Aquifers

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — This map layer contains the shallowest principal aquifers of the conterminous United States, Hawaii, Puerto Rico, and the U.S. Virgin Islands, portrayed as polygons....

  13. Groundwater recharge estimates in the Athabasca and Cold Lake oil sands areas

    International Nuclear Information System (INIS)

    MacMillan, G.J.; Smith, A.D.

    2009-01-01

    Groundwater recharge estimates for the Cold Lake and Athabasca oil sands region were presented. New oil sands projects planned for the future will require approximately 150,000 m 3 per day of groundwater. Regulators and public agencies are now investigating the potential impacts of oil sands operations on both shallow groundwater and surface water in the region. Maximum yields from the aquifers are also being estimated. Measurements are currently being taken to determine transmissivity, hydraulic pressure, storage potential and leakage. Numerical models are currently used to determine saturated zone recharge estimates and water table fluctuations. Isotope tracers are also being used to determine where groundwater flow potential is vertical as well as to determine correction factors for hydrogeological and geochemical conditions at each site. Darcy's Law is used to determine heat flow in the groundwater aquifers. To date, the studies have demonstrated that drilling fluids have been recovered at groundwater sites. Wells are often installed near water supply and supply well networks. It was concluded that new water wells will need to be completed at various depths. Data were presented for aquifers and nest wells. refs., tabs., figs

  14. Model Dispersi Air Tanah Bebas Pada Lapisan Pasir Di Pulau Karang

    OpenAIRE

    Sultan, Sultan

    2016-01-01

    This study aims to: (1) analyze the characteristics of unconfined aquifer in sand layers in a coral island; (2) determine to what extent porosity, permeability, tides and rainfall intensity influence unconfined aquifer, and (3) develop a dispersion model of unconfined aquifer in sand layers in a coral island. The research used direct survey in the field, laboratory analysis and secondary data analysis. The results reveal that Satando island is a coral island of 40,837.48 metres2, comp...

  15. Water-level trends and potentiometric surfaces in the Nacatoch Aquifer in northeastern and southwestern Arkansas and in the Tokio Aquifer in southwestern Arkansas, 2014–15

    Science.gov (United States)

    Rodgers, Kirk D.

    2017-09-20

    The Nacatoch Sand in northeastern and southwestern Arkansas and the Tokio Formation in southwestern Arkansas are sources of groundwater for agricultural, domestic, industrial, and public use. Water-level altitudes measured in 51 wells completed in the Nacatoch Sand and 42 wells completed in the Tokio Formation during 2014 and 2015 were used to create potentiometric-surface maps of the two areas. Aquifers in the Nacatoch Sand and Tokio Formation are hereafter referred to as the Nacatoch aquifer and the Tokio aquifer, respectively.Potentiometric surfaces show that groundwater in the Nacatoch aquifer flows southeast toward the Mississippi River in northeastern Arkansas. Groundwater flow direction is towards the south and southeast in Hempstead, Little River, and Nevada Counties in southwestern Arkansas. An apparent cone of depression exists in southern Clark County and likely alters groundwater flow from a regional direction toward the depression.In southwestern Arkansas, potentiometric surfaces indicate that groundwater flow in the Tokio aquifer is towards the city of Hope. Northwest of Hope, an apparent cone of depression exists. In southwestern Pike, northwestern Nevada, and northeastern Hempstead Counties, an area of artesian flow (water levels are at or above land surface) exists.Water-level changes in wells were identified using two methods: (1) linear regression analysis of hydrographs from select wells with a minimum of 20 years of water-level data, and (2) a direct comparison between water-level measurements from 2008 and 2014–15 at each well. Of the six hydrographs analyzed in the Nacatoch aquifer, four indicated a decline in water levels. Compared to 2008 measurements, the largest rise in water levels was 35.14 feet (ft) in a well in Clark County, whereas the largest decline was 14.76 ft in a well in Nevada County, both located in southwestern Arkansas.Of the four hydrographs analyzed in the Tokio aquifer, one indicated a decline in water levels, while

  16. Geohydrologic units and water-level conditions in the Terrace alluvial aquifer and Paluxy Aquifer, May 1993 and February 1994, near Air Force Plant 4, Fort Worth area, Texas

    Science.gov (United States)

    Rivers, Glen A.; Baker, Ernest T.; Coplin, L.S.

    1996-01-01

    The terrace alluvial aquifer underlying Air Force Plant 4 and the adjacent Naval Air Station (formerly Carswell Air Force Base) in the Fort Worth area, Texas, is contaminated locally with organic and metal compounds. Residents south and west of Air Force Plant 4 and the Naval Air Station are concerned that contaminants might enter the underlying Paluxy aquifer, which provides water to the city of White Settlement, south of Air Force Plant 4, and to residents west of Air Force Plant 4. The U.S. Environmental Protection Agency has qualified Air Force Plant 4 for Superfund cleanup. The pertinent geologic units include -A~rom oldest to youngest the Glen Rose, Paluxy, and Walnut Formations, Goodland Limestone, and terrace alluvial deposits. Except for the Glen Rose Formation, all units crop out at or near Air Force Plant 4 and the Naval Air Station. The terrace alluvial deposits, which nearly everywhere form the land surface, range from 0 to about 60 feet thick. These deposits comprise a mostly unconsolidated mixture of gravel, sand, silt, and clay. Mudstone and sandstone of the Paluxy Formation crop out north, west, and southwest of Lake Worth and total between about 130 and about 175 feet thick. The terrace alluvial deposits and the Paluxy Formation comprise the terrace alluvial aquifer and the Paluxy aquifer, respectively. These aquifers are separated by the Goodland-Walnut confining unit, composed of the Goodland Limestone and (or) Walnut Formation. Below the Paluxy aquifer, the Glen Rose Formation forms the Glen Rose confining unit. Water-level measurements during May 1993 and February 1994 from wells in the terrace alluvial aquifer indicate that, regionally, ground water flows toward the east-southeast beneath Air Force Plant 4 and the Naval Air Station. Locally, water appears to flow outward from ground-water mounds maintained by the localized infiltration of precipitation and reportedly by leaking water pipes and sanitary and (or) storm sewer lines beneath the

  17. Simulation of the transfer of hydrocarbons in unconfined aquifer in tropical zone: the case of benzene

    Science.gov (United States)

    Agnès Kouamé, Amenan; Jaboyedoff, Michel; Derron, Marc-Henri; Kouamé, Kan Jean

    2016-04-01

    of two layers. The first layer is composed of clay sands and the second layer of coarse sands with the hydraulic conductivity respectively 1.10-5 and 5.10-4 m / s. The simulation of 400 mg / l of benzene for 50 years in transient state shows that the plume infiltrates down to 105 m, very closed to the saturated zone. References Bosca, C., (2002). Groundwater law and administration of sustainable development, Medit Mag, Science, Training & Technology 2, 13-17. Boubakar A. H. (2010). Aquifères superficiels et profonds et pollution urbaine en Afrique : Cas de la communauté urbaine de Niamey (Niger). Brassington R., (2007). Field hydrogeology. The geological field guide series. 264p. Foster S. S. D., (2001). The interdependence of groundwater and urbanisation in rapidly developing cities. Urban water 3(185-192). Gilli E., Mangan C and Mudry J. (2012). Hydrogéologie : Objets, méthodes, applications. 3 ème édition Dunod. 340p. Jourda J. P. (1987). Contribution à l'étude géologique et hydrogéologique de la région du Grand Abidjan (Côte d'Ivoire). Thèse de doctorat de 3ème cycle, Université scientifique, technique et médicale de Grenoble, 319 p. Kouamé K. J. (2007). Contribution à la Gestion Intégrée des Ressources en Eaux (GIRE) du District d'Abidjan (Sud de la Côte d'Ivoire) : Outils d'aide à la décision pour la prévention et la protection des eaux souterraines contre la pollution, Thèse de doctorat unique de l'Université de Cocody, 229p.

  18. Dry sand as a specialized layer to improve the acoustic insulation between rooms one above another

    Directory of Open Access Journals (Sweden)

    Díaz, C.

    2013-09-01

    Full Text Available This work presents and analyses the experimental field results of the sound insulation from airborne and impact noise of the horizontal separating elements commonly used in the past, in which a uniform layer of sand was placed on top of the floor construction to serve as a base for the ceramic tiling. The results of the acoustic measurements show that when there is an intermediate layer of sand in the horizontal separating element between rooms, the sound insulation is greater than would be obtained with other construction systems with equal mass per unit area, where the floor is joined rigidly to the floor construction. The effect on the sound insulation between the rooms produced by this layer of sand placed between the floor construction and the tiling is that of a cushioning layer, and demonstrates that this type of structure acts as a floating floor.En este trabajo se exponen y se analizan los resultados experimentales in situ del aislamiento acústico a ruido aéreo y a ruido de impactos de elementos de separación horizontales, habituales hace años, en los que sobre el forjado se coloca una capa uniforme de arena que sirve de asiento al suelo cerámico. Los resultados de las mediciones acústicas muestran que, cuando en el elemento de separación horizontal entre los recintos hay una capa intermedia de arena, el aislamiento acústico es mejor que el que se obtendría con otros sistemas constructivos de igual masa por unidad de superficie, con el suelo unido rígidamente al forjado. El efecto de la capa de arena colocada entre el forjado y el suelo, en el aislamiento acústico entre los recintos, es el de una capa amortiguadora, que hace que este tipo de suelo pueda considerarse como flotante.

  19. Aquifer Storage Recovery (ASR) of chlorinated municipal drinking water in a confined aquifer

    Science.gov (United States)

    Izbicki, John A.; Petersen, Christen E.; Glotzbach, Kenneth J.; Metzger, Loren F.; Christensen, Allen H.; Smith, Gregory A.; O'Leary, David R.; Fram, Miranda S.; Joseph, Trevor; Shannon, Heather

    2010-01-01

    About 1.02 x 106 m3 of chlorinated municipal drinking water was injected into a confined aquifer, 94-137 m below Roseville, California, between December 2005 and April 2006. The water was stored in the aquifer for 438 days, and 2.64 x 106 m3 of water were extracted between July 2007 and February 2008. On the basis of Cl data, 35% of the injected water was recovered and 65% of the injected water and associated disinfection by-products (DBPs) remained in the aquifer at the end of extraction. About 46.3 kg of total trihalomethanes (TTHM) entered the aquifer with the injected water and 37.6 kg of TTHM were extracted. As much as 44 kg of TTHMs remained in the aquifer at the end of extraction because of incomplete recovery of injected water and formation of THMs within the aquifer by reactions with freechlorine in the injected water. Well-bore velocity log data collected from the Aquifer Storage Recovery (ASR) well show as much as 60% of the injected water entered the aquifer through a 9 m thick, high-permeability layer within the confined aquifer near the top of the screened interval. Model simulations of ground-water flow near the ASR well indicate that (1) aquifer heterogeneity allowed injected water to move rapidly through the aquifer to nearby monitoring wells, (2) aquifer heterogeneity caused injected water to move further than expected assuming uniform aquifer properties, and (3) physical clogging of high-permeability layers is the probable cause for the observed change in the distribution of borehole flow. Aquifer heterogeneity also enhanced mixing of native anoxic ground water with oxic injected water, promoting removal of THMs primarily through sorption. A 3 to 4-fold reduction in TTHM concentrations was observed in the furthest monitoring well 427 m downgradient from the ASR well, and similar magnitude reductions were observed in depth-dependent water samples collected from the upper part of the screened interval in the ASR well near the end of the extraction

  20. Enhanced Column Filtration for Arsenic Removal from Water: Polymer-Templated Iron Oxide Nanoparticles Immobilized on Sand via Layer-by-Layer Deposition

    Science.gov (United States)

    Cheng, Calvin Chia-Hung

    Arsenic is ubiquitous in water sources around the world and is highly toxic. While precipitation and membrane filtration techniques are successfully implemented in developed cities, they are unsuitable for rural and low-resource settings lacking centralized facilities. This thesis presents the use of ultra-small iron oxide (Fe2O3) nanoparticles functionalized on sand granules for use as a house-hold scale adsorption filter. Water-stable alpha-Fe2O3 (hematite) nanoparticles (arsenic adsorption, with 147 +/- 2 mg As(III) per g Fe2O3 and 91 +/- 10 mg As(V) per g Fe2O3. The platform was also used to synthesize iron-based composites, including magnetite (Fe 3O4) and Fe-Cu oxide nanoparticles. For use as a column filter, Fe2O3-PAA nanoparticles were functionalized on sand granules using a layer-by-layer deposition method, with the nanoparticles embedded in the negative layer. The removal of As(III) by the Fe2O 3-PAA functionalized column was described by reversible 1st order kinetics where the forward and reverse rate constants were 0.31 hr -1 and 0.097 hr-1, respectively. Implemented as a passive water filter with 30 x 30 x 50 cm3 dimensions, the filter has an expected lifetime in the order of many years. By controlling the flow rate of the column depending on contamination levels, the filter effectively removes arsenic down to the safety limit of 0.01 mg/L. In a parallel project, the layer-by-layer deposition of Poly(diallydimethyl ammonium chloride) (PDDA) and poly(sodium 5-styrenesulfonate) (PSS) was exploited for a highly practical synthesis of discrete gradient surfaces. By independently controlling the concentration of NaCl in PDDA and PSS deposition solutions, a 2-dimensional matrix of surfaces was created in 96-well microtiter plates. Distinct non-monotonic dye adsorption patterns on the gradient surfaces was observed. Practical knowledge from this project was also used to enhance the nanoparticle surface functionalization described above. In all, a practical

  1. Cyclic settlement behavior of strip footings resting on reinforced layered sand slope

    Directory of Open Access Journals (Sweden)

    Mostafa A. El Sawwaf

    2012-10-01

    Full Text Available The paper presents a study of the behavior of model strip footings supported on a loose sandy slope and subjected to both monotonic and cyclic loads. The effects of the partial replacement of a compacted sand layer and the inclusion of geosynthetic reinforcement were investigated. Different combinations of the initial monotonic loads and the amplitude of cyclic loads were chosen to simulate structures in which loads change cyclically such as machine foundations. The affecting factors including the location of footing relative to the slope crest, the frequency of the cyclic load and the number of load cycles were studied. The cumulative cyclic settlement of the model footing supported on a loose sandy slope, un-reinforced and reinforced replaced sand deposits overlying the loose slope were obtained and compared. Test results indicate that the inclusion of soil reinforcement in the replaced sand not only significantly increases the stability of the sandy slope itself but also decreases much both the monotonic and cumulative cyclic settlements leading to an economic design of the footings. However, the efficiency of the sand–geogrid systems depends on the properties of the cyclic load and the location of the footing relative to the slope crest. Based on the test results, the variation of cumulative settlements with different parameters is presented and discussed.

  2. Application of the Aquifer Impact Model to support decisions at a CO 2 sequestration site: Modeling and Analysis: Application of the Aquifer Impact Model to support decisions at a CO 2

    Energy Technology Data Exchange (ETDEWEB)

    Bacon, Diana Holford [Pacific Northwest National Laboratory, Richland WA USA; Locke II, Randall A. [University of Illinois, Illinois State Geological Survey Champaign IL USA; Keating, Elizabeth [Los Alamos National Laboratory, Los Alamos NM USA; Carroll, Susan [Lawrence Livermore National Laboratory, Livermore CA USA; Iranmanesh, Abbas [University of Illinois, Illinois State Geological Survey Champaign IL USA; Mansoor, Kayyum [Lawrence Livermore National Laboratory, Livermore CA USA; Wimmer, Bracken [University of Illinois, Illinois State Geological Survey Champaign IL USA; Zheng, Liange [Lawrence Berkeley National Laboratory, Berkeley CA USA; Shao, Hongbo [University of Illinois, Illinois State Geological Survey Champaign IL USA; Greenberg, Sallie E. [University of Illinois, Illinois State Geological Survey Champaign IL USA

    2017-10-04

    The National Risk Assessment Partnership (NRAP) has developed a suite of tools to assess and manage risk at CO2 sequestration sites (1). The NRAP tool suite includes the Aquifer Impact Model (AIM), based on reduced order models developed using site-specific data from two aquifers (alluvium and carbonate). The models accept aquifer parameters as a range of variable inputs so they may have more broad applicability. Guidelines have been developed for determining the aquifer types for which the ROMs should be applicable. This paper considers the applicability of the aquifer models in AIM to predicting the impact of CO2 or Brine leakage were it to occur at the Illinois Basin Decatur Project (IBDP). Based on the results of the sensitivity analysis, the hydraulic parameters and leakage source term magnitude are more sensitive than clay fraction or cation exchange capacity. Sand permeability was the only hydraulic parameter measured at the IBDP site. More information on the other hydraulic parameters, such as sand fraction and sand/clay correlation lengths, could reduce uncertainty in risk estimates. Some non-adjustable parameters, such as the initial pH and TDS and the pH no-impact threshold, are significantly different for the ROM than for the observations at the IBDP site. The reduced order model could be made more useful to a wider range of sites if the initial conditions and no-impact threshold values were adjustable parameters.

  3. Production of Steel Casts in Two-Layer Moulds with Alkaline Binders Part 1. Backing sand with the alkaline inorganic binder RUDAL

    Directory of Open Access Journals (Sweden)

    M. Holtzer

    2011-04-01

    Full Text Available Steel casts in Z.N. POMET were produced in moulds made of the moulding sand Floster. This sand did not have good knocking outproperties, required a significant binder addition (4.5-5.0 parts by weight, and the casting surface quality gave rise to clients objections.Therefore a decision of implementing two-layer moulds, in which the facing sand would consist of the moulding sand with an alkalineorganic binder while the backing sand would be made of the moulding sand with an inorganic binder also of an alkaline character - wasundertaken. The fraction of this last binder in the moulding sand mass would be smaller than that of the binder used up to now (waterglass. The application of two moulding sands of the same chemical character (highly alkaline should facilitate the reclamation processand improve the obtained reclaimed material quality, due to which it would be possible to increase the reclaim fraction in the mouldingsand (up to now it was 50%. The results of the laboratory investigations of sands with the RUDAL binder are presented in the paper.

  4. Three-Dimensional Flow Generated by a Partially Penetrating Well in a Two-Aquifer System

    Science.gov (United States)

    Sepulveda, N.

    2007-12-01

    An analytical solution is presented for three-dimensional (3D) flow in a confined aquifer and the overlying storative semiconfining layer and unconfined aquifer. The equation describing flow caused by a partially penetrating production well is solved analytically to provide a method to accurately determine the hydraulic parameters in the confined aquifer, semiconfining layer, and unconfined aquifer from aquifer-test data. Previous solutions for a partially penetrating well did not account for 3D flow or storativity in the semiconfining unit. The 3D and two- dimensional (2D) flow solutions in the semiconfining layer are compared for various hydraulic conductivity ratios between the aquifer and the semiconfining layer. Analysis of the drawdown data from an aquifer test in central Florida showed that the 3D solution in the semiconfining layer provides a more unique identification of the hydraulic parameters than the 2D solution. The analytical solution could be used to analyze, with higher accuracy, the effect that pumping water from the lower aquifer in a two-aquifer system has on wetlands.

  5. Experimental study on the artificial recharge of semiconfined aquifers involved in deep excavation engineering

    Science.gov (United States)

    Zheng, G.; Cao, J. R.; Cheng, X. S.; Ha, D.; Wang, F. J.

    2018-02-01

    Artificial recharge measures have been adopted to control the drawdown of confined aquifers and the ground subsidence caused by dewatering during deep excavation in Tianjin, Shanghai and other regions in China. However, research on recharge theory is still limited. Additionally, confined aquifers consisting of silt and silty sand in Tianjin have lower hydraulic conductivities than those consisting of sand or gravel, and the feasibility and effectiveness of recharge methods in these semiconfined aquifers urgently require investigation. A series of single-well and multiwell pumping and recharge tests was conducted at a metro station excavation site in Tianjin. The test results showed that it was feasible to recharge silt and silty sand semiconfined aquifers, and, to a certain extent, the hydrogeological parameters obtained from the pumping tests could be used to predict the water level rise during single-well recharge. However, the predicted results underestimated the water level rise near the recharge well (within 7 m) by approximately 10-25%, likely because the permeability coefficient around the well was reduced during the recharge process. Pressured recharge significantly improved the efficiency of the recharge process. Maintaining the recharge and pumping rates at a nearly equal level effectively controlled the surrounding surface and building settlement. However, the surrounding surface subsidence tended to rapidly develop when recharge stopped. Therefore, the recharge process should continue and gradually stop after the pumping stops. The twin-well combined recharge technique can be used to control the head loss of an aquifer when one of the recharge wells requires pumping to solve the associated clogging problems.

  6. Monitoring CO2 gas-phase migration in a shallow sand aquifer using cross-borehole ground penetrating radar

    DEFF Research Database (Denmark)

    Lassen, Rune Nørbæk; Sonnenborg, T.O.; Jensen, Karsten Høgh

    2015-01-01

    and transversely to the groundwater flow direction. As the injection continued, the main flow direction of the gaseous CO2 shifted and CO2 gas pockets with a gas saturation of up to 0.3 formed below lower-permeable sand layers. CO2 gas was detected in a GPR-panel 5 m away from the injection point after 21 h...... of leakage from a CCS site, and that even small changes in the formation texture can create barriers for the CO2 migration....

  7. Generalized hydrogeologic framework and groundwater budget for a groundwater availability study for the glacial aquifer system of the United States

    Science.gov (United States)

    Reeves, Howard W.; Bayless, E. Randall; Dudley, Robert W.; Feinstein, Daniel T.; Fienen, Michael N.; Hoard, Christopher J.; Hodgkins, Glenn A.; Qi, Sharon L.; Roth, Jason L.; Trost, Jared J.

    2017-12-14

    The glacial aquifer system groundwater availability study seeks to quantify (1) the status of groundwater resources in the glacial aquifer system, (2) how these resources have changed over time, and (3) likely system response to future changes in anthropogenic and environmental conditions. The glacial aquifer system extends from Maine to Alaska, although the focus of this report is the part of the system in the conterminous United States east of the Rocky Mountains. The glacial sand and gravel principal aquifer is the largest source of public and self-supplied industrial supply for any principal aquifer and also is an important source for irrigation supply. Despite its importance for water supply, water levels in the glacial aquifer system are generally stable varying with climate and only locally from pumping. The hydrogeologic framework developed for this study includes the information from waterwell records and classification of material types from surficial geologic maps into likely aquifers dominated by sand and gravel deposits. Generalized groundwater budgets across the study area highlight the variation in recharge and discharge primarily driven by climate.

  8. Salt-water encroachment into aquifers of the Raritan Formation in the Sayreville Area, Middlesex County, New Jersey

    Science.gov (United States)

    Appel, Charles A.

    1962-01-01

    The principal sources of ground water in the Sayreville area are the Old Bridge Sand and Farrington Sand Members of the Raritan Formation of Late Cretaceous age. These aquifers yielded about 32.3 mgd (million gallons per day) for public and industrial water supplies in 1958; about 24.5 mgd was withdrawn from the Old Bridge Sand Member.

  9. Distribution of aquifers, liquid-waste impoundments, and municipal water-supply sources, Massachusetts

    Science.gov (United States)

    Delaney, David F.; Maevsky, Anthony

    1980-01-01

    Impoundments of liquid waste are potential sources of ground-water contamination in Massachusetts. The map report, at a scale of 1 inch equals 4 miles, shows the idstribution of aquifers and the locations of municipal water-supply sources and known liquid-waste impoundments. Ground water, an important source of municipal water supply, is produced from shallow sand and gravel aquifers that are generally unconfined, less than 200 feet thick, and yield less than 2,000 gallons per minute to individual wells. These aquifers commonly occupy lowlands and stream valleys and are most extensive in eastern Massachusetts. Surface impoundments of liquid waste are commonly located over these aquifers. These impoundments may leak and allow waste to infiltrate underlying aquifers and alter their water quality. (USGS)

  10. Production of Steel Casts in Two-Layer Moulds with Alkaline Binders Part 2. Facing sand with the alkaline organic binder REZOLIT

    Directory of Open Access Journals (Sweden)

    M. Holtzer

    2011-04-01

    Full Text Available This paper constitutes the second part of the article concerning the implementation of the two-layer mould technology for steel casts inZ.M. POMET. The results of the laboratory examinations of the backing sand with the inorganic binder RUDAL were presented in thefirst part of the paper. Whereas in the second part the results of the laboratory testing of the facing sand with the alkaline resin REZOLITare given. The technology of two-layer moulds was already implemented in Z.M. POMET within the target project. Examples of castingsmade in this technology are shown in the final part of this paper.

  11. Saltwater Intrusion Appraisal of Shallow Aquifer in Burutu Area of ...

    African Journals Online (AJOL)

    ADOWIE PERE

    is not caused by saltwater intrusion rather by iron which cannot be separately distinguished from groundwater by ... The sand and gravels forms the aquifer in the. Formation and are .... K.S; Soulios, G; Pliakas, F; Tsokas, G ( 2016). Seawater ...

  12. Oil sands tailings management project

    Energy Technology Data Exchange (ETDEWEB)

    Godwalt, C. [Alberta WaterSMART, Calgary, AB (Canada); Kotecha, P. [Suncor Energy Inc, Calgary, AB (Canada); Aumann, C. [Alberta Innovates - Technology Futures, Alberta Governement, AB (Canada)

    2010-11-15

    The Oil sands leadership initiative (OSLI) works with the Government of Alberta on the development of the oil sands industry, considering environmental, economical and social aspects. Water management was identified as one of most important areas to focus on. Alberta WaterSMART was requested to support the development and the management of projects resulting from the work done or underway in this field. The development of a regional water management solution stood out as the most interesting solution to obtain significant results. In the Athabasca Region, oil sands producers work independently on their water sourcing and disposal with particular attention to fresh water conservation and economics. The Athabasca River represents a source for mines and distant saline aquifers are the target of steam assisted gravity drainage (SAGD) operators. As part of a four-phase project aiming to study the environmental and economic footprint (EEF) benefit of alternatives for Athabasca oil sands production water supply and disposal, the purpose of the tailings water management project was to identify tailings treatment technologies that are ready to be implemented, and to design and evaluate solutions in order to improve regional oil sands production water sourcing and disposal. Alternatives were evaluated based on their total EEF, applying a lifecycle assessment methodology with a particular attention on the quantification of important performance indicators. 25 refs., 8 tabs., 40 figs.

  13. Oil sands tailings management project

    International Nuclear Information System (INIS)

    Godwalt, C.; Kotecha, P.; Aumann, C.

    2010-11-01

    The Oil sands leadership initiative (OSLI) works with the Government of Alberta on the development of the oil sands industry, considering environmental, economical and social aspects. Water management was identified as one of most important areas to focus on. Alberta WaterSMART was requested to support the development and the management of projects resulting from the work done or underway in this field. The development of a regional water management solution stood out as the most interesting solution to obtain significant results. In the Athabasca Region, oil sands producers work independently on their water sourcing and disposal with particular attention to fresh water conservation and economics. The Athabasca River represents a source for mines and distant saline aquifers are the target of steam assisted gravity drainage (SAGD) operators. As part of a four-phase project aiming to study the environmental and economic footprint (EEF) benefit of alternatives for Athabasca oil sands production water supply and disposal, the purpose of the tailings water management project was to identify tailings treatment technologies that are ready to be implemented, and to design and evaluate solutions in order to improve regional oil sands production water sourcing and disposal. Alternatives were evaluated based on their total EEF, applying a lifecycle assessment methodology with a particular attention on the quantification of important performance indicators. 25 refs., 8 tabs., 40 figs.

  14. Tritium profiles in Kalahari sands as a measure of rain water recharge

    International Nuclear Information System (INIS)

    Verhagen, B.T.; Smith, P.E.; McGeorge, I.; Dziembowski, Z.

    1978-01-01

    This paper attempts to relate recharge measurements in the Kalahari by tritium profiles in the unsaturated zone to isotopic, hydrochemical and hydrologic data from an underlying, semi-confined aquifer. Auger holes into the sand cover were drilled along a line of experimental deeper holes penetrating the saturated zone. A further line of auger holes was drilled into the dune sand cover of a control area. Variable moisture contents, apparently indepent of grain size distribution and indicating transients are observed in the different profiles. 3 H and 18 O measurements on the moisture contents allow for the identification of the 1962/63 bomb tritium rise and successive drier and wetter periods. Infiltration, or potential recharge as percentage of infiltration was found to be strongly dependent on the annual rainfall. The distribution of 14 C, 13 C, 3 H and chemistry in the shallower of two underlying aquifers leads to the consideration of three possible mechanisms of recharge. Arguments favouring vertical recharge are presented, which lead to possible extrapolations into the sand covered areas of the Kalahari in general. (orig.) [de

  15. Characteristics of Southern California coastal aquifer systems

    Science.gov (United States)

    Edwards, B.D.; Hanson, R.T.; Reichard, E.G.; Johnson, T.A.

    2009-01-01

    , litany of names for the various formations, lithofacies, and aquifer systems identified within these basins. Despite these nomenclatural problems, available data show that most basins contain similar sequences of deposits and share similar geologic histories dominated by glacio-eustatic sea-level fluctuations, and overprinted by syndepositional and postdepositional tectonic deformation. Impermeable, indurated mid-Tertiary units typically form the base of each siliciclastic groundwater basin. These units are overlain by stacked sequences of Pliocene to Holocene interbedded marine, paralic, fluvial, and alluvial sediment (weakly indurated, folded, and fractured) that commonly contain the historically named "80-foot sand," "200-foot sand," and "400-foot gravel" in the upper part of the section. An unconformity, cut during the latest Pleistocene lowstand (??18O stage 2; ca. 18 ka), forms a major sequence boundary that separates these units from the overlying Holocene fluvial sands and gravels. Unconfined aquifers occur in amalgamated coarse facies near the bounding mountains (forebay area). These units are inferred to become lithologically more complex toward the center of the basins and coast line, where interbedded permeable and low-permeability alluvial, fluvial, paralic, and marine facies contain confined aquifers (pressure area). Coastal bounding faults limit intrabasin and/or interbasin flow in parts of many basins. ?? 2009 Geological Society of America.

  16. The vertical structure of airflow turbulence characteristics within a boundary layer during wind blown sand transport over a beach

    Science.gov (United States)

    Lee, Z. S.; Baas, A. C.; Jackson, D.; Cooper, J. A.; Lynch, K.; Delgado-Fernandez, I.; Beyers, M.

    2010-12-01

    Recent studies have suggested the significant role of boundary layer turbulence and coherent flow structures on sand transport by wind over beaches and desert dunes. Widespread use of sonic anemometry and high-frequency sand transport sensors and traps have facilitated a move beyond the basic monitoring of shear velocities and bulk sediment transport to more detailed measurements at much higher spatio-temporal resolutions. In this paper we present results of a small-scale point-location field study of boundary layer turbulence and shear stresses conducted under obliquely onshore winds over a beach at Magilligan Strand, Northern Ireland. High-frequency (25 Hz) 3D wind vector measurements were collected at five different heights between 0.13 and 1.67 metres above the bed using sonic anemometry for durations of several hours, and the associated sand transport response was measured using an array of Safires. The wind data are used to investigate the vertical structure of Reynolds shear stresses and burst-sweep event characteristics, as well as a comparison with the standard logarithmic (law-of-the-wall) wind profile. The study explores the identification and selection of a characteristic event duration based on integral time-scales as well as spectral analysis, and includes an assessment of the issues involved with data rotations for yaw, pitch, and roll corrections relative to flow streamlines, and the subsequently derived turbulence parameters based on fluctuating vector components (u’, v’, w’). Results show how the contributions to shear stress and the average pitch of bursts and sweeps changes as a function of height above the bed, indicating the transformation of top-down turbulent eddies as they travel toward the surface. A comparison between the turbulence data and the synchronous sand transport events, meanwhile, reveals the potential effects of enhanced saltation layer roughness feedback on eddies close to the bed.

  17. Controlling geological and hydrogeological processes in an arsenic contaminated aquifer on the Red River flood plain, Vietnam

    International Nuclear Information System (INIS)

    Larsen, Flemming; Nhan Quy Pham; Nhan Duc Dang; Postma, Dieke; Jessen, Soren; Viet Hung Pham; Nguyen, Thao Bach; Trieu, Huy Duc; Luu Thi Tran; Hoan Nguyen; Chambon, Julie; Hoan Van Nguyen; Dang Hoang Ha; Nguyen Thi Hue; Mai Thanh Duc; Refsgaard, Jens Christian

    2008-01-01

    Geological and hydrogeological processes controlling recharge and the mobilization of As were investigated in a shallow Holocene aquifer on the Red River flood plain near Hanoi, Vietnam. The geology was investigated using surface resistivity methods, geophysical borehole logging, drilling of boreholes and installation of more than 200 piezometers. Recharge processes and surface-groundwater interaction were studied using (i) time-series of hydraulic head distribution in surface water and aquifers, (ii) the stable isotope composition of waters and (iii) numerical groundwater modeling. The Red River and two of its distributaries run through the field site and control the groundwater flow pattern. For most of the year, there is a regional groundwater flow towards the Red River. During the monsoon the Red River water stage rises up to 6 m and stalls the regional groundwater flow. The two distributaries recharge the aquifer from perched water tables in the dry season, whilst in the flooding period surface water enters the aquifer through highly permeable bank sediments. The result is a dynamic groundwater flow pattern with rapid fluctuations in the groundwater table. A transient numerical model of the groundwater flow yields an average recharge rate of 60-100 mm/a through the confining clay, and a total recharge of approximately 200 mm/a was estimated from 3 H/ 3 He dating of the shallow groundwater. Thus in the model area, recharge of surface water from the river distributaries and recharge through a confining clay is of the same magnitude, being on average around 100 mm/a. The thickness of the confining clay varies between 2 and 10 m, and affects the recharge rate and the transport of electron acceptors (O 2 , NO 3 - and SO 4 2- ) into the aquifer. Where the clay layer is thin, an up to 2 m thick oxic zone develops in the shallow aquifer. In the oxic zone the As concentration is less than 1 μg/L but increases in the reduced zone below to 550 μg/L. In the Holocene

  18. Inverse Porosity-Hydraulic Conductivity Relationship in Sand-and-Gravel Aquifers Determined From Analysis of Geophysical Well Logs: Implications for Transport Processes

    Science.gov (United States)

    Morin, R. H.

    2004-05-01

    It is intuitive to think of hydraulic conductivity K as varying directly and monotonically with porosity P in porous media. However, laboratory studies and field observations have documented a possible inverse relationship between these two parameters in unconsolidated deposits under certain grain-size distributions and packing arrangements. This was confirmed at two sites in sand-and-gravel aquifers on Cape Cod, Massachusetts, where sets of geophysical well logs were used to examine the interdependence of several aquifer properties. Along with K and P, the resistivity R and the natural-gamma activity G of the surrounding sediments were measured as a function of depth. Qualitative examination of field results from the first site was useful in locating a contaminant plume and inferred an inverse relation between K and P; this was substantiated by a rigorous multivariate analysis of log data collected from the second site where K and P were determined to respond in a bipolar manner among the four independent variables. Along with this result come some implications regarding our conceptual understanding of contaminant transport processes in the shallow subsurface. According to Darcy's law, the interstitial fluid velocity V is proportional to the ratio K/P and, consequently, a general inverse K-P relationship implies that values of V can extend over a much wider range than conventionally assumed. This situation introduces a pronounced flow stratification within these granular deposits that can result in large values of longitudinal dispersivity; faster velocities occur in already fast zones and slower velocities in already slow zones. An inverse K-P relationship presents a new perspective on the physical processes associated with groundwater flow and transport. Although the results of this study apply strictly to the Cape Cod aquifers, they may merit a re-evaluation of modeling approaches undertaken at other locations having similar geologic environments.

  19. The influence of topology on hydraulic conductivity in a sand-and-gravel aquifer

    Science.gov (United States)

    Morin, Roger H.; LeBlanc, Denis R.; Troutman, Brent M.

    2010-01-01

    A field experiment consisting of geophysical logging and tracer testing was conducted in a single well that penetrated a sand-and-gravel aquifer at the U.S. Geological Survey Toxic Substances Hydrology research site on Cape Cod, Massachusetts. Geophysical logs and flowmeter/pumping measurements were obtained to estimate vertical profiles of porosity ϕ, hydraulic conductivity K, temperature, and bulk electrical conductivity under background, freshwater conditions. Saline-tracer fluid was then injected into the well for 2 h and its radial migration into the surrounding deposits was monitored by recording an electromagnetic-induction log every 10 min. The field data are analyzed and interpreted primarily through the use of Archie's (1942) law to investigate the role of topological factors such as pore geometry and connectivity, and grain size and packing configuration in regulating fluid flow through these coarse-grained materials. The logs reveal no significant correlation between K and ϕ, and imply that groundwater models that link these two properties may not be useful at this site. Rather, it is the distribution and connectivity of the fluid phase as defined by formation factor F, cementation index m, and tortuosity α that primarily control the hydraulic conductivity. Results show that F correlates well with K, thereby indicating that induction logs provide qualitative information on the distribution of hydraulic conductivity. A comparison of α, which incorporates porosity data, with K produces only a slightly better correlation and further emphasizes the weak influence of the bulk value of ϕ on K.

  20. The in-situ decontamination of sand and gravel aquifers by chemically enhanced solubilization of multiple-compound DNAPLs with surfactant solutions. Phase 1: Laboratory and pilot field-scale testing. Phase 2: Solubilization test and partitioning interwell tracer tests. Final report

    International Nuclear Information System (INIS)

    1997-01-01

    Laboratory, numerical simulation, and field studies have been conducted to assess the potential use of micellar-surfactant solutions to solubilize chlorinated solvents contaminating sand and gravel aquifers. Ninety-nine surfactants were screened for their ability to solubilize trichloroethene (TCE), perchloroethylene (PCE), and carbon tetrachloride (CTET). The field test was conducted in the alluvial aquifer which is located 20 to 30 meters beneath a vapor degreasing operation at Paducah Gaseous Diffusion Plant. This aquifer has become contaminated with TCE due to leakage of perhaps 40,000 liters of TCE, which has generated a plume of dissolved TCE extending throughout an area of approximately 3 km 2 in the aquifer. Most of the TCE is believed to be present in the overlying lacustrine deposits and in the aquifer itself as a dense, non-aqueous phase liquid, or DNAPL. The objective of the field test was to assess the efficacy of the surfactant for in situ TCE solubilization. Although the test demonstrated that sorbitan monooleate was unsuitable as a solubilizer in this aquifer, the single-well test was demonstrated to be a viable method for the in situ testing of surfactants or cosolvents prior to proceeding to full-scale remediation

  1. Hydrogeology and water quality of sand and gravel aquifers in McHenry County, Illinois, 2009-14, and comparison to conditions in 1979

    Science.gov (United States)

    Gahala, Amy M.

    2017-10-26

    Baseline conditions for the sand and gravel aquifers (groundwater) in McHenry County, Illinois, were assessed using data from a countywide network of 44 monitoring wells collecting continuous water-level data from 2009–14. In 2010, water-quality data were collected from 41 of the monitoring wells, along with five additional monitoring wells available from the U.S. Geological Survey National Water Quality Assessment Program. Periodic water-quality data were collected from 2010–14 from selected monitoring wells. The continuous water-level data were used to identify the natural and anthropogenic factors that influenced the water levels at each well. The water-level responses to natural influences such as precipitation, seasonal and annual variations, barometric pressure, and geology, and to anthropogenic influences such as pumping were used to determine (1) likely hydrogeologic setting (degree of aquifer confinement and interconnections) that, in part, are related to lithostratigraphy; and (2) areas of recharge and discharge related to vertical flow directions. Water-level trends generally were determined from the 6 years of data collection (2009–14) to infer effects of weather variability (drought) on recharge.Precipitation adds an estimated 2.4 inches per year of recharge to the aquifer. Some of this recharge is subsequently discharged to streams and some is discharged to supply wells. A few areas in the eastern half of the county had higher average recharge rates, indicating a need for adequate protection of these recharge areas. Downward vertical flow gradients in upland areas indicate that recharge to the confined aquifer units occurs near upland areas. Upward vertical flow gradients in lowland areas indicate discharge at locations of surface water and groundwater interaction (wetlands, ponds, and streams).Monitoring wells were sampled for major and minor ions, metals, and nutrients and a subset of wells was sampled for trace elements, dissolved gases

  2. General characteristics of the aquifer system Joanicó (Montevideo, Uruguay)

    International Nuclear Information System (INIS)

    Gagliardi Urtasun, S.; Montaño, X.; Montaño Gutiérrez, M.; Lacués Parodi, X.

    2010-01-01

    The work area, comprising the towns of Joanicó, Sauce and N Progress , Canelones province, is a center of intensive agricultural development (viticulture, hortofruticultura, etc), where demand and exploitation of groundwater is common primarily for irrigation supply .The subsoil consists of sedimentary rocks and sediments belonging to the Freedom and Dolores ( Pleistocene), Fray Bentos (Upper Oligocene) (aquitards), Mercedes formations - Asencio (Upper Cretaceous) and Migues (Lower Cretaceous). Permeable levels in the Mercedes and Migues formations make up a significant potential aquifer system , which we call Joanicó Aquifer System. This aquifer is multilayer type and consists of fine to coarse sand and gravel and sand mixture , with the occasional presence of thin matrix. Semi confined and behaves as confined in most area; in the outcrop of the Merc edes training is free. The average transmissivity is approximately the 50m2/día; The average permeability of 5 to 10 m/day. The storage coefficient (confined area) is of the order 10-4 .In the most developed area of the aquifer is where Joanicó are obtained by constructing boreholes higher flows Canelones department: more than 25% of the wells drilled to extract higher flow 15 m3/h y extracted more than 40% flows over 10 m3/h. The production of many agricultural enterprises depends directly on the area irrigated with groundwater, so the deeper knowledge of the exploited resource is paramount

  3. Vertical gradients in water chemistry and age in the Northern High Plains Aquifer, Nebraska, 2003

    Science.gov (United States)

    McMahon, P.B.; Böhlke, J.K.; Carney, C.P.

    2007-01-01

    and clay-mineral precipitation; organic-carbon and pyrite oxidation; oxygen reduction and denitrification; and cation exchange. Mixing with surface water affected the chemistry of ground water in alluvial sediments of the Platte River Valley. Radiocarbon ages in the aquifer, adjusted for carbon mass transfers, ranged from 1,800 to 15,600 14C years before present. These results have important implications with respect to development of ground-water resources in the Sand Hills. Most of the water in the aquifer predates modern anthropogenic activity so excessive removal of water by pumping is not likely to be replenished by natural recharge in a meaningful timeframe. Vertical gradients in ground-water age were used to estimate long-term average recharge rates in the aquifer. In most areas, the recharge rates ranged from 0.02 to 0.05 foot per year. The recharge rate was 0.2 foot per year in one part of the aquifer characterized by large downward hydraulic gradients.Nitrite plus nitrate concentrations at the water table were 0.13 to 3.13 milligrams per liter as nitrogen, and concentrations substantially decreased with depth in the aquifer. Dissolved-gas and nitrogen-isotope data indicate that denitrification in the aquifer removed 0 to 97 percent (average = 50 percent) of the nitrate originally present in recharge. The average amount of nitrate removed by denitrification in the aquifer north of the Platte River (Sand Hills) was substantially greater than the amount removed south of the river (66 as opposed to 0 percent), and the extent of nitrate removal appears to be related to the presence of thick deposits of sediment on top of the Ogallala Group in the Sand Hills that contained electron donors, such as organic carbon and pyrite, to support denitrification.Apparent rates of dissolved-oxygen reduction and denitrification were estimated on the basis of decreases in dissolved-oxygen concentrations and increases in concentrations of excess nitrogen gas and ground-water ages

  4. MECHANISTIC STUDIES OF SURFACE CATALYZED H2O2 DECOMPOSITION AND CONTAMINANT DEGRADATION IN THE PRESENCE OF SAND. (R823402)

    Science.gov (United States)

    This study examined the mechanism and kinetics of surface catalyzed hydrogen peroxide decomposition and degradation of contaminants in the presence of sand collected from an aquifer and a riverbed. Batch experiments were conducted using variable sand concentrations (0.2 to 1.0&nb...

  5. The in-situ decontamination of sand and gravel aquifers by chemically enhanced solubilization of multiple-compound DNAPLs with surfactant solutions: Phase 1 -- Laboratory and pilot field-scale testing and Phase 2 -- Solubilization test and partitioning and interwell tracer tests. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-10-24

    Laboratory, numerical simulation, and field studies have been conducted to assess the potential use of micellar-surfactant solutions to solubilize chlorinated solvents contaminating sand and gravel aquifers. Ninety-nine surfactants were screened for their ability to solubilize trichloroethene (TCE), perchloroethylene (PCE), and carbon tetrachloride (CTET). The field test was conducted in the alluvial aquifer which is located 20 to 30 meters beneath a vapor degreasing operation at Paducah Gaseous Diffusion Plant. This aquifer has become contaminated with TCE due to leakage of perhaps 40,000 liters of TCE, which has generated a plume of dissolved TCE extending throughout an area of approximately 3 km{sup 2} in the aquifer. Most of the TCE is believed to be present in the overlying lacustrine deposits and in the aquifer itself as a dense, non-aqueous phase liquid, or DNAPL. The objective of the field test was to assess the efficacy of the surfactant for in situ TCE solubilization. Although the test demonstrated that sorbitan monooleate was unsuitable as a solubilizer in this aquifer, the single-well test was demonstrated to be a viable method for the in situ testing of surfactants or cosolvents prior to proceeding to full-scale remediation.

  6. a case study

    African Journals Online (AJOL)

    the aquifer thickness occasioned by the degree of saturation and/or sand to clay ratio to which geoelectrical resistivity method might have responded. ... models to the pumping test data, plays a very important role in predicting aquifer ... corresponding layer models or geoelectric parameters. (Figure 3). The parameters (layer ...

  7. Resistivity Study of Shallow Aquifers in theParts of Southern Ukanafun Local Government Area, Akwa Ibom State, Nigeria

    Directory of Open Access Journals (Sweden)

    N. J. George

    2010-01-01

    Full Text Available A resistivity study by vertical electrical sounding (VES employing the Schlumberger electrode configuration has been used to delineate shallow aquifers in some villages in Southern Ukanafun Local Government Area of Akwa Ibom State, Southern Nigeria. The information realized from the resistivity data and nearby logged boreholes show that the depths penetrated by currents were all sandy formations with various thicknesses. However, the main aquifers comprise within the maximum current penetration, very coarse – grained (gravelly sand and fine sand with resistivity in the ranges of 4680-30700 Ωm and 207-2530 Ωm and thickness in the ranges of 43-63 m and 18-40 m respectively. The aquifers with minor hydraulic gradient are separated by thin beds of clay according to lithology logs and these beds were masked in the sounding data due to the principle of suppression.

  8. Water-level altitudes 2011 and water-level changes in the Chicot, Evangeline, and Jasper aquifers and compaction 1973-2010 in the Chicot and Evangeline aquifers, Houston-Galveston region, Texas

    Science.gov (United States)

    Johnson, Michaela R.; Ramage, Jason K.; Kasmarek, Mark C.

    2011-01-01

    decline to an 80-foot rise (2006–11), from a 140-foot decline to a 100-foot rise (1990–2011), and from a 120-foot decline to a 200-foot rise (1977–2011). In 2011, water-level-altitude contours for the Evangeline aquifer ranged from 300 feet below datum in north-central Harris County to 200 feet above datum at the boundary of Waller, Montgomery, and Grimes Counties. Water-level-altitude changes in the Evangeline aquifer ranged from a 43-foot decline to a 73-foot rise (2010–11), from a 40-foot decline to a 160-foot rise (2006–11), from a 200-foot decline to a 240-foot rise (1990–2011), and from a 340-foot decline to a 260-foot rise (1977–2011). In 2011, water-level-altitude contours for the Jasper aquifer ranged from 200 feet below datum in south-central Montgomery County to 250 feet above datum in east-central Grimes County. Water-level-altitude changes in the Jasper aquifer ranged from a 45-foot decline to a 29-foot rise (2010–11), from a 90-foot decline to a 10-foot rise (2006–11), and from a 190-foot decline to no change (2000–11). Compaction of subsurface materials (mostly in the clay layers) composing the Chicot and Evangeline aquifers was recorded continuously at 13 borehole extensometers at 11 sites. For the period of record beginning in 1973, or later, and ending in December 2010, cumulative clay compaction data measured by 12 extensometers ranged from 0.100 foot at the Texas City–Moses Lake site to 3.544 foot at the Addicks site. The rate of compaction varies from site to site because of differences in groundwater withdrawals near each site and differences among sites in the clay-to-sand ratio in the subsurface materials. Therefore, it is not possible to extrapolate or infer a rate of clay compaction for an area based on the rate of compaction measured at a nearby extensometer.

  9. Water-level altitudes 2010 and water-level changes in the Chicot, Evangeline, and Jasper aquifers and compaction 1973-2009 in the Chicot and Evangeline aquifers, Houston-Galveston region, Texas

    Science.gov (United States)

    Kasmarek, Mark C.; Johnson, Michaela R.; Ramage, Jason K.

    2010-01-01

    -foot rise (2009-10), from a 25-foot decline to a 35-foot rise (2005-10), from a 40-foot decline to an 80-foot rise (1990-2010), and from a 140-foot decline to a 200-foot rise (1977-2010). In 2010, water-level-altitude contours for the Evangeline aquifer ranged from 300 feet below datum in north-central Harris County to 200 feet above datum at the boundary of Waller, Montgomery, and Grimes Counties. Water-level-altitude changes in the Evangeline aquifer ranged from a 58-foot decline to a 69-foot rise (2009-10), from an 80-foot decline to an 80-foot rise (2005-10), from a 200-foot decline to a 220-foot rise (1990-2010), and from a 320-foot decline to a 220-foot rise (1977-2010). In 2010, water-level-altitude contours for the Jasper aquifer ranged from 200 feet below datum in south-central Montgomery County to 250 feet above datum in eastern-central Grimes County. Water-level-altitude changes in the Jasper aquifer ranged from a 39-foot decline to a 39-foot rise (2009-10), from a 110-foot decline to no change (2005-10), and from a 180-foot decline to no change (2000-10). Compaction of subsurface materials (mostly in the clay layers) composing the Chicot and Evangeline aquifers was recorded continuously at 13 borehole extensometers at 11 sites. For the period of record beginning in 1973, or later, and ending in December 2009, cumulative clay compaction data measured by 12 extensometers ranged from 0.088 foot at the Texas City-Moses Lake site to 3.559 foot at the Addicks site. The rate of compaction varies from site to site because of differences in groundwater withdrawals near each site and differences among sites in the clay-to-sand ratio in the subsurface materials. Therefore, it is not possible to extrapolate or infer a rate of clay compaction for an area based on the rate of compaction measured at a nearby extensometer.

  10. Summary of Available Hydrogeologic Data for the Northeast Portion of the Alluvial Aquifer at Louisville, Kentucky

    National Research Council Canada - National Science Library

    Unthank, Michael D; Nelson, Jr., Hugh L

    2006-01-01

    The hydrogeologic characteristics of the unconsolidated glacial outwash sand and gravel deposits that compose the northeast portion of the alluvial aquifer at Louisville, Kentucky, indicate a prolific...

  11. Post-Remediation Evaluation of EVO Treatment: How Can We Improve Performance

    Science.gov (United States)

    2017-11-15

    QA/QC Quality Assurance/ Quality Control RAOs Remedial Action Objectives Resolutions Resolutions Consultants SA17 Study Area 17 viii SAP...upper 30 feet of the unconfined aquifer consists of fine sand with multiple discontinuous layers of silty sand , ranging from 1 to over 5 ft thick...Beneath the lower silty sand is a layer of fine to coarse grained sand that extends from 30 to 50 ft bgs. The confining unit of the Hawthorne Group

  12. Booming Sand Dunes

    Science.gov (United States)

    Vriend, Nathalie

    "Booming" sand dunes are able to produce low-frequency sound that resembles a pure note from a music instrument. The sound has a dominant audible frequency (70-105 Hz) and several higher harmonics and may be heard from far distances away. A natural or induced avalanche from a slip face of the booming dune triggers the emission that may last for several minutes. There are various references in travel literature to the phenomenon, but to date no scientific explanation covered all field observations. This thesis introduces a new physical model that describes the phenomenon of booming dunes. The waveguide model explains the selection of the booming frequency and the amplification of the sound in terms of constructive interference in a confined geometry. The frequency of the booming is a direct function of the dimensions and velocities in the waveguide. The higher harmonics are related to the higher modes of propagation in the waveguide. The experimental validation includes quantitative field research at the booming dunes of the Mojave Desert and Death Valley National Park. Microphone and geophone recordings of the acoustic and seismic emission show a variation of booming frequency in space and time. The analysis of the sensor data quantifies wave propagation characteristics such as speed, dispersion, and nonlinear effects and allows the distinction between the source mechanism of the booming and the booming itself. The migration of sand dunes results from a complicated interplay between dune building, wind regime, and precipitation. The morphological and morphodynamical characteristics of two field locations are analyzed with various geophysical techniques. Ground-penetrating radar images the subsurface structure of the dunes and reveal a natural, internal layering that is directly related to the history of dune migration. The seismic velocity increases abruptly with depth and gradually increases with downhill position due to compaction. Sand sampling shows local

  13. Understanding Kendal aquifer system: a baseline analysis for sustainable water management proposal

    Science.gov (United States)

    Lukman, A.; Aryanto, M. D.; Pramudito, A.; Andhika, A.; Irawan, D. E.

    2017-07-01

    North coast of Java has been grown as the center of economic activities and major connectivity hub for Sumatra and Bali. Sustainable water management must support such role. One of the basis is to understand the baseline of groundwater occurrences and potential. However the complex alluvium aquiver system has not been well-understood. A geoelectric measurements were performed to determine which rock layer has a good potential as groundwater aquifers in the northern coast of Kaliwungu Regency, Kendal District, Central Java province. Total of 10 vertical electrical sounding (VES) points has been performed, using a Schlumberger configuration with the current electrode spacing (AB/2) varies between 200 - 300 m and the potential difference electrode spacing (MN/2) varies between 0.5 to 20 m with depths target ranging between 150 - 200 m. Geoelectrical data processing is done using Ip2win software which generates resistivity value, thickness and depth of subsurface rock layers. Based on the correlation between resistivity value with regional geology, hydrogeology and local well data, we identify three aquifer layers. The first layer is silty clay with resistivity values vary between 0 - 10 ohm.m, then the second layer is tuffaceous claystone with resistivity value between 10 - 60 ohm.m. Both layers serve as impermeable layer. The third layer is sandy tuff with resistivity value between 60 - 100 ohm.m which serves as a confined aquifer layer located at 70 - 100 m below surface. Its thickness is vary between 70 to 110 m. The aquifer layer is a mixing of volcanic and alluvium sediment, which is a member of Damar Formation. The stratification of the aquifer system may change in short distance and depth. This natural setting prevent us to make a long continuous correlation between layers. Aquifer discharge is estimated between 5 - 71 L/s with the potential deep well locations lies in the west and southeast part of the study area. These hydrogeological settings should be used

  14. Geomorphic Controls on Aquifer Geometry in Northwestern India

    Science.gov (United States)

    van Dijk, W. M.; Densmore, A. L.; Sinha, R.; Gupta, S.; Mason, P. J.; Singh, A.; Joshi, S. K.; Nayak, N.; Kumar, M.; Shekhar, S.

    2014-12-01

    The Indo-Gangetic foreland basin suffers from one of the highest rates of groundwater extraction in the world, especially in the Indian states of Punjab, Haryana and Rajasthan. To understand the effects of this extraction on ground water levels, we must first understand the geometry and sedimentary architecture of the aquifer system, which in turn depend upon its geomorphic setting. We use satellite images and digital elevation models to map the geomorphology of the Sutlej and Yamuna river systems, while aquifer geometry is assessed using ~250 wells that extend to ~300 m depth in Punjab and Haryana. The Sutlej and Yamuna rivers have deposited large sedimentary fans at their outlets. Elongate downslope ridges on the fan surfaces form distributary networks that radiate from the Sutlej and Yamuna fan apices, and we interpret these ridges as paleochannel deposits associated with discrete fan lobes. Paleochannels picked out by soil moisture variations illustrate a complex late Quaternary history of channel avulsion and incision, probably associated with variations in monsoon intensity. Aquifer bodies on the Sutlej and Yamuna fans have a median thickness of 7 and 6 m, respectively, and follow a heavy-tailed distribution, probably because of stacked sand bodies. The percentage of aquifer material in individual lithologs decreases downstream, although the exponent on the thickness distribution remains the same, indicating that aquifer bodies decrease in number down fan but do not thin appreciably. Critically, the interfan area between the Sutlej and Yamuna fans has thinner aquifers and a lower proportion of aquifer material, despite its proximal location. Our data show that the Sutlej and Yamuna fan systems form the major aquifer systems in this area, and that their geomorphic setting therefore provides a first-order control on aquifer distribution and geometry. The large spatial heterogeneity of the system must be considered in any future aquifer management scheme.

  15. Hydrogeochemical processes affecting the migration of radionuclides in a fluvial sand aquifer at the Chalk River Nuclear Laboratories

    International Nuclear Information System (INIS)

    Jackson, R.E.; Inch, K.J.

    1980-01-01

    In the mid-1950's two experimental disposals of liquid radioactive waste containing about 700 curries of strontium-90 and cesium-137 were made into pits in sandy ground at one of the disposal areas at Chalk River Nuclear Laboratories. Since then, the wastes have migrated into two nearby aquifers and have chromatographically separated into strontium-90 and cesium-137 plumes moving at velocities less than that of the transporting groundwater. Analysis of radioactively contaminated aquifer sediments showed that most of the strontium-90 is exchangeably adsorbed, primarily to feldspars and layer silicates (mainly biotite); the rest is either specifically adsorbed to iron (III) and perhaps manganese (IV) oxhydroxides or fixed to unknown sinks. Less than one half of adsorbed cesium-137 is exchangeable with 0.5 m calcium chloride; the high levels of cesium-137 adsorption and fixation are probably due to its reaction with micaceous minerals. Complexation of strontium-90 and cesium-137 does not appear to be an important factor affecting their transport or adsorption. In studies of groundwater quality or pollution, dissolved oxygen and sulfide should be measured in addition to the redox potential since it allows independent assessment of the redox levels. The latter were found to affect the mobility of multivalent transition metals and nonmetals. (DN)

  16. Study on the Permeability Characteristics of Polyurethane Soil Stabilizer Reinforced Sand

    Directory of Open Access Journals (Sweden)

    Jin Liu

    2017-01-01

    Full Text Available A polymer material of polyurethane soil stabilizer (PSS is used to reinforce the sand. To understand the permeability characteristics of PSS reinforced sand, a series of reinforcement layer form test, single-hole permeability test, and porous permeability test of sand reinforced with PSS have been performed. Reinforcement mechanism is discussed with scanning electron microscope images. The results indicated that the permeability resistance of sand reinforced with polyurethane soil stabilizer is improved through the formation of reinforcement layer on the sand surface. The thickness and complete degree of the reinforcement layer increase with the increasing of curing time and PSS concentration. The water flow rate decreases with the increasing of curing time or PSS concentration. The permeability coefficient decreases with the increasing of curing time and PSS concentration and increases with the increasing of depth in specimen. PSS fills up the voids of sand and adsorbs on the surface of sand particle to reduce or block the flowing channels of water to improve the permeability resistance of sand. The results can be applied as the reference for chemical reinforcement sandy soil engineering, especially for surface protection of embankment, slope, and landfill.

  17. Numerical Study of Piping Limits for Suction Installation of Offshore Skirted Foundations an Anchors in Layered Sand

    DEFF Research Database (Denmark)

    Ibsen, Lars Bo; Thilsted, C. L.

    2010-01-01

    Skirted foundations and anchors have proved to be competitive solutions for various types of fixed offshore platforms, subsea systems and an attractive foundation alternative for offshore wind turbines. One main design challenge for skirted structures in sand is to penetrate the skirted deep enough...... to obtain the required capacity. In order to overcome the high penetration resistance in sand suction assisted penetration is needed. Suction installation may cause the formation of piping channels, which break down the hydraulic seal and prevent further installation. This paper presents a numerical study...... of failure limits during suction installation in respect to both homogenous and layered soil profile. A numerical flow analysis is performed to determine the hydraulic gradients developing in response to the suction applied, and the results are presented as simple closed form solutions useful for evaluation...

  18. Aquifer Testing And Rebound Study In Support Of The 100-H Deep Chromium Investigation

    International Nuclear Information System (INIS)

    Smoot, J.L.

    2010-01-01

    the extent and persistence of hexavalent chromium in the deeper zones. Use data collected to refine the current conceptual model for the 100-H Area unconfined aquifer and the RUM in this area. (5) Evaluate the concentration 'rebound' in the unconfined aquifer of hexavalent chromium and the contaminants of concern during shutdown of the extraction wells. Measure co-contaminants at the beginning, middle, and end of each pumping test. The RUM is generally considered an aquitard in the 100-HR-3 OU; however, several water-bearing sand layers are present that are confined within the RUM. The current hydrogeologic model for the 100-H Area aquifer system portrays the RUM as an aquitard layer that underlies the unconfined aquifer, which may contain permeable zones, stringers, or layers. These permeable zones may provide pathways for chromium to migrate deeper into the RUM under certain hydrogeologic conditions. One condition may be the discharge of large volumes of cooling water that occurred near the former H Reactor, which caused a mound of groundwater to form 4.9 to 10.1 m (16 to 33 ft) above the natural water table. The cooling water reportedly contained 1 to 2 mglL of hexavalent chromium for corrosion prevention. Three alternate hypotheses for the introduction of hexavalent chromium into the RUM are as follows: (1) Local groundwater with higher concentrations of hexavalent chromium originating from reactor operations at H Reactor was driven by high heads from groundwater mounding in the unconfined aquifer into the RUM via permeable pathways in the upper surface of the RUM. (2) Local groundwater with hexavalent chromium was introduced from the unconfined aquifer via well boreholes, either during drilling or as a result of poor well construction, allowing hydraulic communication between the unconfined aquifer and the RUM. (3) Hexavalent chromium migrated across the Hom area within the more permeable zones of the RUM. The three wells used for the aquifer pumping tests (199-H

  19. Sand and Gravel Operations

    Data.gov (United States)

    Department of Homeland Security — This map layer includes sand and gravel operations in the United States. These data were obtained from information reported voluntarily to the USGS by the aggregate...

  20. Closed-form analytical solutions incorporating pumping and tidal effects in various coastal aquifer systems

    Science.gov (United States)

    Wang, Chaoyue; Li, Hailong; Wan, Li; Wang, Xusheng; Jiang, Xiaowei

    2014-07-01

    Pumping wells are common in coastal aquifers affected by tides. Here we present analytical solutions of groundwater table or head variations during a constant rate pumping from a single, fully-penetrating well in coastal aquifer systems comprising an unconfined aquifer, a confined aquifer and semi-permeable layer between them. The unconfined aquifer terminates at the coastline (or river bank) and the other two layers extend under tidal water (sea or tidal river) for a certain distance L. Analytical solutions are derived for 11 reasonable combinations of different situations of the L-value (zero, finite, and infinite), of the middle layer's permeability (semi-permeable and impermeable), of the boundary condition at the aquifer's submarine terminal (Dirichlet describing direct connection with seawater and no-flow describing the existence of an impermeable capping), and of the tidal water body (sea and tidal river). Solutions are discussed with application examples in fitting field observations and parameter estimations.

  1. Groundwater flow model for the Little Plover River basin in Wisconsin’s Central Sands

    Science.gov (United States)

    Ken Bradbury,; Fienen, Michael N.; Kniffin, Maribeth; Jacob Krause,; Westenbroek, Stephen M.; Leaf, Andrew T.; Barlow, Paul M.

    2017-01-01

    explicitly includes all high-capacity wells in the model domain and simulates seasonal variations in recharge and well pumping. The model represents the Little Plover River, and other significant streams and drainage ditches in the model domain, as fully connected to the groundwater system, computes stream base flow resulting from groundwater discharge, and routes the flow along the stream channel. A separate soil-water-balance (SWB) model was used to develop groundwater recharge arrays as input for the groundwater flow model. The SWB model uses topography, soils, land use, and climatic data to estimate recharge as deep drainage from the soil zone. The SWB model explicitly includes recharge originating as irrigation water, and computes irrigation using techniques similar to those used by local irrigation operators. The groundwater flow model uses the U.S. Geological Survey’s MODFLOW modeling code which is freely available, widely accepted, and commonly used by the groundwater community. The groundwater flow model and the SWB model use identical high-resolution numerical grids having model cells 100 feet on a side, with physical properties assigned to each grid cell. This grid allows accurate geographic placement of wells, streams, and other model features. The 3-dimensional grid has three layers; layers 1 and 2 represent the sand and gravel aquifer and layer 3 represents the underlying sandstone. The distribution of material properties in the model (hydraulic conductivity, aquifer thickness, etc.) comes from previous published geologic studies of the region, updated by calibration to recent streamflow and groundwater level data. The SWB model operates on a daily time step. The groundwater flow model was calibrated to monthly stress periods with time steps ranging from 1 to 16 days. More detailed time discretization is possible. The groundwater model was calibrated to water-level and streamflow data collected during 2013 and 2014 by adjusting model parameters (primarily

  2. Buried aquifers in the Brooten-Belgrade and Lake Emily areas, west-central Minnesota--Factors related to developing water for irrigation

    Science.gov (United States)

    Wolf, R.J.

    1976-01-01

    Irrigation has given a substantial boost to the economy in the Brooten-Belgrade and Lake Emily areas of Minnesota. The surficial outwash aquifer is capable of yielding sufficient quantities of water for irrigation over half of its area; the remaining part may be supplied by deep aquifers. Buried glacial outwash and Cretaceous sand aquifers, as thick as 50 feet occur to depths of 300 feet. In places, the buried aquifers are sufficiently thick and permeable to yield large quantities of water to wells. The buried aquifers are probably narrow, elongate, truncated bodies enclosed by clay till. The Precambrian surface, ranging from 190 to 350 feet below the land surface, is the lower limit of the buried aquifers.

  3. Isotopic evidence for induced river recharge to the Dupi Tila aquifer in the Dhaka urban area, Bangladesh

    International Nuclear Information System (INIS)

    Darling, W.G.; Burgess, W.G.; Hasan, M.K.

    2002-01-01

    The population of the greater Dhaka metropolitan area is over 8 million and growing at a rate of six percent per year. Much of the water supply for the area is obtained from the underlying Dupi Tila sand aquifer. Intensive exploitation of the aquifer has led to a progressive decline in water levels beneath the parts of the city. The resulting cone of depression is thought likely to be causing the infiltration of surface water, largely from the polluted Buriganga waterway. The use of oxygen and hydrogen stable isotopes in unravelling the subsurface hydrology of the Dhaka area is hindered by the lack of data regarding 'baseline' conditions. Nevertheless it is clear from the evidence obtained from tubewells across the city that there is leakage from the Buriganga river extending several kilometres beneath parts of the urban area, possibly as far as the centre of the city. Carbon stable isotopes and major ion chemistry confirm this general picture; though appear to indicate that polluted river water has not penetrated quite so far towards the city centre. The Dupi Tila is regarded as a multi-layer aquifer on the basis of its hydrogeology and water quality variations with depth. Since there is little stable isotopic evidence for stratification, future investigations should include sensitive recent age indicators to investigate this, and the rates of groundwater movement in general. (author)

  4. In situ treatment of arsenic contaminated groundwater by aquifer iron coating: Experimental study

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Xianjun, E-mail: xjxie@cug.edu.cn [State Key Laboratory of Biogeology and Environmental Geology, School of Environmental Studies, China University of Geosciences, 430074 Wuhan (China); Wang, Yanxin, E-mail: yx.wang@cug.edu.cn [State Key Laboratory of Biogeology and Environmental Geology, School of Environmental Studies, China University of Geosciences, 430074 Wuhan (China); Pi, Kunfu [State Key Laboratory of Biogeology and Environmental Geology, School of Environmental Studies, China University of Geosciences, 430074 Wuhan (China); Liu, Chongxuan [State Key Laboratory of Biogeology and Environmental Geology, School of Environmental Studies, China University of Geosciences, 430074 Wuhan (China); Pacific Northwest National Laboratory, Richland, WA 99354 (United States); Li, Junxia; Liu, Yaqing; Wang, Zhiqiang; Duan, Mengyu [State Key Laboratory of Biogeology and Environmental Geology, School of Environmental Studies, China University of Geosciences, 430074 Wuhan (China)

    2015-09-15

    In situ arsenic removal from groundwater by an aquifer iron coating method has great potential to be a cost effective and simple groundwater remediation technology, especially in rural and remote areas where groundwater is used as the main water source for drinking. The in situ arsenic removal technology was first optimized by simulating arsenic removal in various quartz sand columns under anoxic conditions. The effectiveness was then evaluated in an actual high-arsenic groundwater environment. The arsenic removal mechanism by the coated iron oxide/hydroxide was investigated under different conditions using scanning electron microscopy (SEM)/X-ray absorption spectroscopy, electron probe microanalysis, and Fourier transformation infrared spectroscopy. Aquifer iron coating method was developed via a 4-step alternating injection of oxidant, iron salt and oxygen-free water. A continuous injection of 5.0 mmol/L FeSO{sub 4} and 2.5 mmol/L NaClO for 96 h can form a uniform goethite coating on the surface of quartz sand without causing clogging. At a flow rate of 7.2 mL/min of the injection reagents, arsenic (as Na{sub 2}HAsO{sub 4}) and tracer fluorescein sodium to pass through the iron-coated quartz sand column were approximately at 126 and 7 column pore volumes, respectively. The retardation factor of arsenic was 23.0, and the adsorption capacity was 0.11 mol As per mol Fe. In situ arsenic removal from groundwater in an aquifer was achieved by simultaneous injections of As(V) and Fe(II) reagents. Arsenic fixation resulted from a process of adsorption/co-precipitation with fine goethite particles by way of bidentate binuclear complexes. Therefore, the study results indicate that the high arsenic removal efficiency of the in situ aquifer iron coating technology likely resulted from the expanded specific surface area of the small goethite particles, which enhanced arsenic sorption capability and/or from co-precipitation of arsenic on the surface of goethite particles

  5. In situ treatment of arsenic contaminated groundwater by aquifer iron coating: Experimental study

    International Nuclear Information System (INIS)

    Xie, Xianjun; Wang, Yanxin; Pi, Kunfu; Liu, Chongxuan; Li, Junxia; Liu, Yaqing; Wang, Zhiqiang; Duan, Mengyu

    2015-01-01

    In situ arsenic removal from groundwater by an aquifer iron coating method has great potential to be a cost effective and simple groundwater remediation technology, especially in rural and remote areas where groundwater is used as the main water source for drinking. The in situ arsenic removal technology was first optimized by simulating arsenic removal in various quartz sand columns under anoxic conditions. The effectiveness was then evaluated in an actual high-arsenic groundwater environment. The arsenic removal mechanism by the coated iron oxide/hydroxide was investigated under different conditions using scanning electron microscopy (SEM)/X-ray absorption spectroscopy, electron probe microanalysis, and Fourier transformation infrared spectroscopy. Aquifer iron coating method was developed via a 4-step alternating injection of oxidant, iron salt and oxygen-free water. A continuous injection of 5.0 mmol/L FeSO 4 and 2.5 mmol/L NaClO for 96 h can form a uniform goethite coating on the surface of quartz sand without causing clogging. At a flow rate of 7.2 mL/min of the injection reagents, arsenic (as Na 2 HAsO 4 ) and tracer fluorescein sodium to pass through the iron-coated quartz sand column were approximately at 126 and 7 column pore volumes, respectively. The retardation factor of arsenic was 23.0, and the adsorption capacity was 0.11 mol As per mol Fe. In situ arsenic removal from groundwater in an aquifer was achieved by simultaneous injections of As(V) and Fe(II) reagents. Arsenic fixation resulted from a process of adsorption/co-precipitation with fine goethite particles by way of bidentate binuclear complexes. Therefore, the study results indicate that the high arsenic removal efficiency of the in situ aquifer iron coating technology likely resulted from the expanded specific surface area of the small goethite particles, which enhanced arsenic sorption capability and/or from co-precipitation of arsenic on the surface of goethite particles. - Highlights:

  6. Evaluation and Preliminary Design of a Stormwater Aquifer Storage and Recovery (ASR) System at the Wadi Khulays Dunefield in Saudi Arabia

    KAUST Repository

    Lopez Valencia, Oliver M.

    2013-04-01

    An important source of freshwater in arid lands is found in groundwater aquifers that are recharged after storm events. However, most of the precipitation is lost due to evaporation and only small fractions actually recharge the aquifers. The construction of dams along wadi channels enables the retention of stormwater, however the reservoirs are still subject to huge evaporative losses and contamination. In this study, the hydraulic properties of a dunefield in western Saudi Arabia are evaluated in order to determine the feasibility of designing a stormwater storage aquifer storage and recovery facility using the dune sands as a natural medium and design recommendations are addressed. The accurate estimation of hydraulic conductivity of unlithified sediments such as dune sands has become very important in the design of natural filtration projects, including aquifer recharge and recovery systems. Therefore, a comparison and selection of methods for the determination of the hydraulic conductivity from grain size distribution found in the literature was done. An improvement to these equations based on measurements on dune samples was obtained.

  7. Investigating geochemical aspects of managed aquifer recharge by column experiments with alternating desalinated water and groundwater.

    Science.gov (United States)

    Ronen-Eliraz, Gefen; Russak, Amos; Nitzan, Ido; Guttman, Joseph; Kurtzman, Daniel

    2017-01-01

    Managed aquifer recharge (MAR) events are occasionally carried out with surplus desalinated seawater that has been post-treated with CaCO 3 in infiltration ponds overlying the northern part of the Israeli Coastal Aquifer. This water's chemical characteristics differ from those of any other water recharged to the aquifer and of the natural groundwater. As the MAR events are short (hours to weeks), the sediment under the infiltration ponds will intermittently host desalinated and natural groundwater. As part of comprehensive research on the influence of those events, column experiments were designed to simulate the alternation of the two water types: post-treated desalinated seawater (PTDES) and natural groundwater (GW). Each experiment included three stages: (i) saturation with GW; (ii) inflow of PTDES; (iii) inflow of GW. Three runs were conducted, each with different sediments extracted from the field and representing a different layer below the infiltration pond: (i) sand (<1% CaCO 3 ), (ii) sand containing 7% CaCO 3 , and (iii) crushed calcareous sandstone (35% CaCO 3 ). The results from all columns showed enrichment of K + and Mg 2+ (up to 0.4meq/L for 20 pore volumes) when PTDES replaced GW, whereas an opposite trend of Ca 2+ depletion (up to 0.5meq/L) was observed only in the columns that contained a high percentage of CaCO 3 . When GW replaced PTDES, depletion of Mg 2+ and K + was noted. The results indicated that adsorption/desorption of cations are the main processes causing the observed enrichment/depletion. It was concluded that the high concentration of Ca 2+ (relative to the total concentration of cations) and the low concentration of Mg 2+ in the PTDES relative to natural GW are the factors controlling the main sediment-water interaction. The enrichment of PTDES with Mg 2+ may be viewed as an additional post-treatment. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Groundwater geochemistry of a Mio-Pliocene aquifer in the northeastern Algerian Sahara (Djamaa region)

    Science.gov (United States)

    Houari, Idir Menad; Nezli, Imed Eddine; Belksier, Mohamed Salah

    2018-05-01

    The groundwater resources in the Northern Sahara are represented by two superimposed major aquifer systems: the Intercalary Continental (CI) and the Terminal Complex (CT). The waters of these aquifers pose serious physical and chemical quality problems; they are highly mineralized and very hard. The present work aims to describe the water's geochemical evolution of sand groundwater (Mio-Pliocene) of the Terminal Complex in the area of Djamaa, by the research of the relationship between water's chemical composition and lithology of aquifer formations through. The results obtained show that the water's chemistry is essentially governed by the dissolution of evaporate formations, which gives to, waters an excessive mineralization expressed by high concentrations of sulfates, chlorides and sodium.

  9. Appraisal of the surficial aquifers in the Pomme de Terre and Chippewa River Valleys, western Minnesota

    Science.gov (United States)

    Soukup, W.G.; Gillies, D.C.; Myette, C.F.

    1984-01-01

    The surf icial sands in the Pomme de Terre and Chippewa River valleys in Grant, Pope, Stevens, and Swift Counties have been studied to determine the occurrence, availability, and quality of ground water in these aquifers.

  10. Conjunctive Management of Multi-Aquifer System for Saltwater Intrusion Mitigation

    Science.gov (United States)

    Tsai, F. T. C.; Pham, H. V.

    2015-12-01

    Due to excessive groundwater withdrawals, many water wells in Baton Rouge, Louisiana experience undesirable chloride concentration because of saltwater intrusion. The study goal is to develop a conjunctive management framework that takes advantage of the Baton Rouge multi-aquifer system to mitigate saltwater intrusion. The conjunctive management framework utilizes several hydraulic control techniques to mitigate saltwater encroachment. These hydraulic control approaches include pumping well relocation, freshwater injection, saltwater scavenging, and their combinations. Specific objectives of the study are: (1) constructing scientific geologic architectures of the "800-foot" sand, the "1,000-foot" sand, the "1,200-foot" sand, the "1,500-foot" sand, the "1,700-foot" sand, and the "2,000-foot" sand, (2) developing scientific saltwater intrusion models for these sands. (3) using connector wells to draw native groundwater from one sand and inject to another sand to create hydraulic barriers to halt saltwater intrusion, (4) using scavenger wells or well couples to impede saltwater intrusion progress and reduce chloride concentration in pumping wells, and (5) reducing cones of depression by relocating and dispersing pumping wells to different sands. The study utilizes optimization techniques and newest LSU high performance computing (HPC) facilities to derive solutions. The conjunctive management framework serves as a scientific tool to assist policy makers to solve the urgent saltwater encroachment issue in the Baton Rouge area. The research results will help water companies as well as industries in East Baton Rouge Parish and neighboring parishes by reducing their saltwater intrusion threats, which in turn would sustain Capital Area economic development.

  11. In situ treatment of arsenic contaminated groundwater by aquifer iron coating: Experimental study.

    Science.gov (United States)

    Xie, Xianjun; Wang, Yanxin; Pi, Kunfu; Liu, Chongxuan; Li, Junxia; Liu, Yaqing; Wang, Zhiqiang; Duan, Mengyu

    2015-09-15

    In situ arsenic removal from groundwater by an aquifer iron coating method has great potential to be a cost effective and simple groundwater remediation technology, especially in rural and remote areas where groundwater is used as the main water source for drinking. The in situ arsenic removal technology was first optimized by simulating arsenic removal in various quartz sand columns under anoxic conditions. The effectiveness was then evaluated in an actual high-arsenic groundwater environment. The arsenic removal mechanism by the coated iron oxide/hydroxide was investigated under different conditions using scanning electron microscopy (SEM)/X-ray absorption spectroscopy, electron probe microanalysis, and Fourier transformation infrared spectroscopy. Aquifer iron coating method was developed via a 4-step alternating injection of oxidant, iron salt and oxygen-free water. A continuous injection of 5.0 mmol/L FeSO4 and 2.5 mmol/L NaClO for 96 h can form a uniform goethite coating on the surface of quartz sand without causing clogging. At a flow rate of 7.2 mL/min of the injection reagents, arsenic (as Na2HAsO4) and tracer fluorescein sodium to pass through the iron-coated quartz sand column were approximately at 126 and 7 column pore volumes, respectively. The retardation factor of arsenic was 23.0, and the adsorption capacity was 0.11 mol As per mol Fe. In situ arsenic removal from groundwater in an aquifer was achieved by simultaneous injections of As(V) and Fe(II) reagents. Arsenic fixation resulted from a process of adsorption/co-precipitation with fine goethite particles by way of bidentate binuclear complexes. Therefore, the study results indicate that the high arsenic removal efficiency of the in situ aquifer iron coating technology likely resulted from the expanded specific surface area of the small goethite particles, which enhanced arsenic sorption capability and/or from co-precipitation of arsenic on the surface of goethite particles. Copyright © 2015

  12. Model test study of evaporation mechanism of sand under constant atmospheric condition

    OpenAIRE

    CUI, Yu Jun; DING, Wenqi; SONG, Weikang

    2014-01-01

    The evaporation mechanism of Fontainebleau sand using a large-scale model chamber is studied. First, the evaporation test on a layer of water above sand surface is performed under various atmospheric conditions, validating the performance of the chamber and the calculation method of actual evaporation rate by comparing the calculated and measured cumulative evaporations. Second,the evaporation test on sand without water layer is conducted under constant atmospheric condition. Both the evoluti...

  13. Pesticide and transformation product detections and age-dating relations from till and sand deposits

    Science.gov (United States)

    Warner, K.L.; Morrow, W.S.

    2007-01-01

    Pesticide and transformation product concentrations and frequencies in ground water from areas of similar crop and pesticide applications may vary substantially with differing lithologies. Pesticide analysis data for atrazine, metolachlor, alachlor, acetochlor, and cyanazine and their pesticide transformation products were collected at 69 monitoring wells in Illinois and northern Indiana to document occurrence of pesticides and their transformation products in two agricultural areas of differing lithologies, till, and sand. The till is primarily tile drained and has preferential fractured flow, whereas the sand primarily has surface water drainage and primary porosity flow. Transformation products represent most of the agricultural pesticides in ground water regardless of aquifer material - till or sand. Transformation products were detected more frequently than parent pesticides in both the till and sand, with metolachlor ethane sulfonic acid being most frequently detected. Estimated ground-water recharge dates for the sand were based on chlorofluorocarbon analyses. These age-dating data indicate that ground water recharged prior to 1990 is more likely to have a detection of a pesticide or pesticide transformation product. Detections were twice as frequent in ground water recharged prior to 1990 (82%) than in ground water recharged on or after 1990 (33%). The highest concentrations of atrazine, alachlor, metolachlor, and their transformation products, also were detected in samples from ground water recharged prior to 1990. These age/pesticide detection relations are opposite of what would normally be expected, and may be the result of preferential flow and/or ground-water mixing between aquifers and aquitards as evident by the detection of acetochlor transformation products in samples with estimated ground-water ages predating initial pesticide application. ?? 2007 American Water Resources Association.

  14. Geohydrology of the stratified-drift aquifer system in the lower Sixmile Creek and Willseyville Creek trough, Tompkins County, New York

    Science.gov (United States)

    Miller, Todd S.; Karig, Daniel E.

    2010-01-01

    In 2002, the U.S. Geological Survey, in cooperation with the Tompkins County Planning Department began a series of studies of the stratified-drift aquifers in Tompkins County to provide geohydrologic data for planners to develop a strategy to manage and protect their water resources. This aquifer study in lower Sixmile Creek and Willseyville Creek trough is the second in a series of aquifer studies in Tompkins County. The study area is within the northern area of the Appalachian Plateau and extends about 9 miles from the boundary between Tompkins County and Tioga County in the south to just south of the City of Ithaca in the north. In lower Sixmile Creek and Willseyville Creek trough, confined sand and gravel aquifers comprise the major water-bearing units while less extensive unconfined units form minor aquifers. About 600 people who live in lower Sixmile Creek and Willseyville Creek trough rely on groundwater from the stratified-drift aquifer system. In addition, water is used by non-permanent residents such as staff at commercial facilities. The estimated total groundwater withdrawn for domestic use is about 45,000 gallons per day (gal/d) or 0.07 cubic foot per second (ft3/s) based on an average water use of 75 gal/d per person for self-supplied water systems in New York. Scouring of bedrock in the preglacial lower Sixmile Creek and Willseyville Creek valleys by glaciers and subglacial meltwaters truncated hillside spurs, formed U-shaped, transverse valley profiles, smoothed valley walls, and deepened the valleys by as much as 300 feet (ft), forming a continuous trough. The unconsolidated deposits in the study area consist mostly of glacial drift, both unstratified drift (till) and stratified drift (laminated lake, deltaic, and glaciofluvial sediments), as well as some post-glacial stratified sediments (lake-bottom sediments that were deposited in reservoirs, peat and muck that were deposited in wetlands, and alluvium deposited by streams). Multiple advances and

  15. Laboratory evidence of MTBE biodegradation in Borden aquifer material

    Science.gov (United States)

    Schirmer, Mario; Butler, Barbara J.; Church, Clinton D.; Barker, James F.; Nadarajah, Nalina

    2003-02-01

    Mainly due to intrinsic biodegradation, monitored natural attenuation can be an effective and inexpensive remediation strategy at petroleum release sites. However, gasoline additives such as methyl tert-butyl ether (MTBE) can jeopardize this strategy because these compounds often degrade, if at all, at a slower rate than the collectively benzene, toluene, ethylbenzene and the xylene (BTEX) compounds. Investigation of whether a compound degrades under certain conditions, and at what rate, is therefore important to the assessment of the intrinsic remediation potential of aquifers. A natural gradient experiment with dissolved MTBE-containing gasoline in the shallow, aerobic sand aquifer at Canadian Forces Base (CFB) Borden (Ontario, Canada) from 1988 to 1996 suggested that biodegradation was the main cause of attenuation for MTBE within the aquifer. This laboratory study demonstrates biologically catalyzed MTBE degradation in Borden aquifer-like environments, and so supports the idea that attenuation due to biodegradation may have occurred in the natural gradient experiment. In an experiment with batch microcosms of aquifer material, three of the microcosms ultimately degraded MTBE to below detection, although this required more than 189 days (or >300 days in one case). Failure to detect the daughter product tert-butyl alcohol (TBA) in the field and the batch experiments could be because TBA was more readily degradable than MTBE under Borden conditions.

  16. In situ radionuclide migration studies in a shallow sand aquifer (Part 1)

    International Nuclear Information System (INIS)

    Williams, G.M.; Alexander, L.S.; Hitchman, S.P.; Hooker, P.J.; Noy, D.J.; Ross, C.A.M.; Stuart, A.; West, J.M.

    1985-07-01

    As a result of a study of the geology of the British Nuclear Fuels premises at Drigg, Cumbria, the British Geological Survey identified a shallow glacial sand deposit approximately 1.5m thick, interbedded between two clay horizons. An array of boreholes has been contructed in this sand in order to study the migration of radionuclides introduced into the formation under controlled conditions of groundwater flow. Conservative tracers used in the field test include chloride (as NaCl, detected using a specific ion electrode) and iodine-131 (as NaI, detected radiometrically using a NaI (T1) crystal). Strontium-85 (as the chloride) has been used as a chemically reactive tracer in conjuction with 131 I. The principal research objectives of the programme are as follows:- (1) to undertake laboratory batch sorption experiments using core material from the field site in order to choose those nuclides of radiological interest that would migrate sufficiently quickly for their behaviour to be studied in a field experiment within a reasonable time period. (2) to identify and quantify the mechanisms for nuclide/sediment interaction by determination of the geochemical distribution of 85 Sr in contaminated cores using a sequential leaching procedure. (3) to obtain appropriate data on the hydraulic characteristics of the sand formation in order to construct a mathematical model to describe groundwater flow and reactive mass transport. (author)

  17. Sand filter clogging by septic tank effluent.

    Science.gov (United States)

    Spychała, M; Błazejewski, R

    2003-01-01

    The aim of this study was to characterise conditions and factors affecting fine sand clogging by septic tank effluent on the basis of physical modelling. The physical model consisted of 12 sand columns dosed with sewage from one household (5 persons), preliminary treated in a septic tank. Hydraulic loadings of the sand filters were equal to 82 mm/d. The mean discharge from sand columns, measured as the effluent volume collected during 10 minutes, decreased significantly over the experiment period from 34 cm3/min in August 2000 to 20 cm3/min in August 2001 at the same temperature of about 20 degrees C. First the columns clogged almost completely after 480 days in December 2001, however six columns had remained unclogged till the end of the experiment (March 2002). The temperature had a significant impact on hydraulic conductivity. A vertical distribution of accumulated mass and biomass was investigated in partly clogged sand. Microscopic survey of the clogging layer showed a presence of live micro-organisms, residuals of dead micro-organisms, particularly pieces of small animal armour and many fibres. These particles accelerated the accumulation of solids in the upper clogging layer. The study indicated that temperature impact on the filter hydraulic conductivity was more significant for biological activity, than for sewage viscosity.

  18. LNAPL source zone delineation using soil gases in a heterogeneous silty-sand aquifer

    Science.gov (United States)

    Cohen, Grégory J. V.; Jousse, Florie; Luze, Nicolas; Höhener, Patrick; Atteia, Olivier

    2016-09-01

    Source delineation of hydrocarbon contaminated sites is of high importance for remediation work. However, traditional methods like soil core extraction and analysis or recent Membrane Interface Probe methods are time consuming and costly. Therefore, the development of an in situ method based on soil gas analysis can be interesting. This includes the direct measurement of volatile organic compounds (VOCs) in soil gas taken from gas probes using a PID (Photo Ionization Detector) and the analysis of other soil gases related to VOC degradation distribution (CH4, O2, CO2) or related to presence of Light Non-Aqueous Phase Liquid (LNAPL) as 222Rn. However, in widespread heterogeneous formations, delineation by gas measurements becomes more challenging. The objective of this study is twofold: (i) to analyse the potential of several in situ gas measurement techniques in comparison to soil coring for LNAPL source delineation at a heterogeneous contaminated site where the techniques might be limited by a low diffusion potential linked to the presence of fine sands and silts, and (ii) to analyse the effect of vertical sediment heterogeneities on the performance of these gas measurement methods. Thus, five types of gases were analysed: VOCs, their three related degradation products O2, CO2 and CH4 and 222Rn. Gas measurements were compared to independent LNAPL analysis by coring. This work was conducted at an old industrial site frequently contaminated by a Diesel-Fuel mixture located in a heterogeneous fine-grained aquifer. Results show that in such heterogeneous media migration of reactive gases like VOCs occurs only across small distances and the VOC concentrations sampled with gas probes are mainly related to local conditions rather than the presence of LNAPL below the gas probe. 222Rn is not well correlated with LNAPL because of sediment heterogeneity. Oxygen, CO2, and especially CH4, have larger lengths of diffusion and give the clearest picture for LNAPL presence at this

  19. Straddle-packer aquifer test analyses of the Snake River Plain aquifer at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Johnson, G.S.; Frederick, D.B.

    1997-01-01

    The State of Idaho INEL Oversight Program, with the University of Idaho, Idaho State University, Boise State University, and the Idaho Geologic Survey, used a straddle-packer system to investigate vertical variations in characteristics of the Snake River Plain aquifer at the Idaho National Engineering Laboratory in southeast Idaho. Sixteen single-well aquifer tests were conducted on.isolated intervals in three observation wells. Each of these wells has approximately 200 feet of open borehole below the water table, penetrating the E through G and I basalt flow groups and interbedded sediments of the Snake River Plain aquifer. The success of the aquifer tests was limited by the inability to induce measurable drawdown in several zones. Time-drawdown data from aquifer tests were matched to type curves for 8 of the 16 zones tested. A single aquifer test at the water table exhibited greater curvature than those at depth. The increased degree of curvature suggests an unconfined response and resulted in an estimate of specific yield of 0.03. Aquifer tests below the water table generally yielded time-drawdown graphs with a rapid initial response followed by constant drawdown throughout the duration of the tests; up to several hours in length. The rapid initial response implies that the aquifer responds as a confined system during brief pumping periods. The nearly constant drawdown suggests a secondary source of water, probably vertical flow from overlying and underlying aquifer layers. Three analytical models were applied for comparison to the conceptual model and to provide estimates of aquifer properties. This, Hantush-Jacob leaky aquifer, and the Moench double-porosity fractured rock models were fit to time-drawdown data. The leaky aquifer type curves of Hantush and Jacob generally provided the best match to observed drawdown. A specific capacity regression equation was also used to estimate hydraulic conductivity

  20. Ground-water levels in aquifers used for residential supply, Campton Township, Kane County, Illinois

    Science.gov (United States)

    Kay, Robert T.; Kraske, Kurt A.

    1996-01-01

    The U.S. Geological Survey, in cooperation with the Campton Township Board of Trustees, measured water levels in the aquifers used for residential supply in Campton Township, Kane County, Illinois. Aquifers used for residential supply are the shallow and deep aquifers in the glacial drift, composed of unconsolidated sand and gravels; the Alexandrian-Maquoketa aquifer, composed of dolomite and shale of the Alexandrian Series and the Maquoketa Group; the Galena-Platteville aquifer, composed of dolomite of the Platteville and Galena Groups; and the Ancell aquifer, composed of sandstones of the Glenwood Formation and the St. Peter Sanstone. Water-level altitudes in the shallow drift aquifers generally follow surface topography. Analysis of water-level data does not clearly indicate overutilization of these aquifers. Water-level altitudes in the deep drift aquifers decrease from west to east. Comparison of historical depth to water measurements with current (1995) measurements indicates large decreases in water levels in some areas. The deep drift aquifers may be overutilized at these locations. Water-level altitudes in the Alexandrian-Maquoketa aquifer generally decrease from west to east. The potentiometric surface of the aquifer follows the bedrock-surface topography in some locations. Localized low water-level altitudes and large decreases in water levels indicate the Alexandrian-Maquoketa aquifer is overutilized in several areas. Water-level altitudes in the wells finished in the Galena- Platteville aquifer vary by more than 300 feet. Large decreases in water levels in wells finished in the Galena-Platteville aquifer indicate the Galena-Platteville and Alexandrian-Maquoketa aquifers are overutilized in the northern part of the township. Water-level altitudes in the wells finished in the Ancell aquifer are also highly variable. There is no indication that the Ancell aquifer is overutilized.

  1. The comparison of properties and cost of material use of natural rubber and sand in manufacturing cement mortar for construction sub-base layer

    Science.gov (United States)

    Rahman, R.; Nemmang, M. S.; Hazurina, Nor; Shahidan, S.; Khairul Tajuddin Jemain, Raden; Abdullah, M. E.; Hassan, M. F.

    2017-11-01

    The main issue related to this research was to examine the feasibility of natural rubber SMR 20 in the manufacturing of cement mortar for sub-base layer construction. Subbase layers have certain functions that need to be fulfilled in order to assure strong and adequate permeability of pavement performance. In a pavement structure, sub-base is below the base and serves as the foundation for the overall pavement structure, transmitting traffic loads to the sub-grade and providing drainage. Based on this research, the natural rubber, SMR 20 was with the percentages of 0%, 5%, 10% and 15% to mix with sand in the manufacture of the cement mortar. This research describes some of the properties and cost of the materials for the natural rubber and sand in cement mortar manufacturing by laboratory testing. Effects of the natural rubber replacement on mechanical properties of mortar were investigated by laboratory testing such as compressive strength test and density. This study obtained the 5% of natural rubber replaced in sand can achieved the strength of normal mortar after 7 days and 28 days. The strength of cement mortar depends on the density of cement mortar. According to the cost of both materials, sand shows the lower cost in material for the cement mortar manufacturing than the uses of natural rubber. Thus, the convectional cement mortar which used sand need lower cost than the modified rubber cement mortar and the most economical to apply in industrial. As conclusion, the percentage of 5% natural rubber in the cement mortar would have the same with normal cement mortar in terms of the strength. However, in terms of the cost of the construction, it will increase higher than cost of normal cement mortar production. So that, this modified cement mortar is not economical for the road sub-base construction.

  2. Isotopes to Study the coastal aquifer plain, Cap Bon, Tunisia

    International Nuclear Information System (INIS)

    Ben Hamouda, M. F.; Zouari, Kamel; Tarhouni, J.; Gaye, C.B.; Oueslati, M.N.

    2005-01-01

    The study area is located in the northeastern part of Tunisia about 60 km south of the Tunis city. It is bounded by the Gulf of Haematite in the East, Djebel Sidi Aberahmane in the West, The town of Nabeul in the south and the area of the town Kelibia in the north. The landscape is a coastal plain slightly sloping (3%) towards the sea. The groundwater of the Oriental coast aquifer system occurs mainly at two levels, a shallow aquifer up to depths of about 50 m whose reservoir is consisted by sediments of the Plio quaternary and a deep aquifer between about 150 and 400 m located in the sand stone formations of Miocene of the anticline of Djebel Sidi Abderrahmene. The climate of the region is semi-arid to sub-humid and of Mediterranean type. There are no perennial rivers in this region; but intense storms occasionally cause surface runoff, which is discharged by the oueds. The study is related to a technical cooperation project with the International Atomic Energy Agency, Vienna, Austria, aimed at the use of isotope techniques to study the seawater intrusion into the coastal aquifers of Cap Bon in Tunisia. In this regard, a better understanding of the recharge and flow regime as well as the origin or salinity of the groundwater was required. To reach this goal, isotope and geochemical investigations were carried out. Water samples were taken from wells, boreholes from deep and shallow aquifer of the Oriental coastal aquifer located between Beni Khiar in the south and Kelibia in the north. The samples were analysed for their chemical and isotopic compositions (18O, 2H, 3H, 13C, 14C, 34S). In the following, the results of these analyses are presented and discussed in terms of the recharge and flow regime of the groundwater and the origin and evolution of its salinity. The results of geochemical and isotopic studies have shown that the groundwater is very eterogeneous and suggest the aquifer is replenished by recent water coming from direct infiltration from rain. At

  3. Anaerobic biodegradation of dissolved ethanol in a pilot-scale sand aquifer: Variability in plume (redox) biogeochemistry

    Science.gov (United States)

    McLeod, Heather C.; Roy, James W.; Slater, Gregory F.; Smith, James E.

    2018-01-01

    The use of ethanol in alternative fuels has led to contamination of groundwater with high concentrations of this easily biodegradable organic compound. Previous laboratory and field studies have shown vigorous biodegradation of ethanol plumes, with prevalence of reducing conditions and methanogenesis. The objective of this study was to further our understanding of the dynamic biogeochemistry processes, especially dissolved gas production, that may occur in developing and aging plume cores at sites with ethanol or other organic contamination of groundwater. The experiment performed involved highly-detailed spatial and temporal monitoring of ethanol biodegradation in a 2-dimensional (175 cm high × 525 cm long) sand aquifer tank for 330 days, with a vertical shift in plume position and increased nutrient inputs occurring at Day 100. Rapid onset of fermentation, denitrification, sulphate-reduction and iron(III)-reduction occurred following dissolved ethanol addition, with the eventual widespread development of methanogenesis. The detailed observations also demonstrate a redox zonation that supports the plume fringe concept, secondary reactions resulting from a changing/moving plume, and time lags for the various biodegradation processes. Additional highlights include: i) the highest dissolved H2 concentrations yet reported for groundwater, possibly linked to vigorous fermentation in the absence of common terminal electron-acceptors (i.e., dissolved oxygen, nitrate, and sulphate, and iron(III)-minerals) and methanogenesis; ii) evidence of phosphorus nutrient limitation, which stalled ethanol biodegradation and perhaps delayed the onset of methanogenesis; and iii) the occurrence of dissimilatory nitrate reduction to ammonium, which has not been reported for ethanol biodegradation to date.

  4. Hydraulic properties of the Midville Aquifer at the Savannah River Site, South Carolina

    International Nuclear Information System (INIS)

    Hodges, R.A.; Snipes, D.S.; Benson, S.M.; Daggett, J.S.; Temples, T.; Harrelson, L.

    1994-01-01

    Aquifer performance tests of the Midville Aquifer System were conducted at the Savannah River Site (SRS) in South Carolina. The stratigraphic section of interest consists of Late Cretaceous Coastal Plain sediments. Within the study area, the Midville Aquifer System is composed of sand aquifers separated by discontinuous clay lenses. The Midville is underlain by the Appleton Confining Unit which is separated from underlying Triassic sediments and Paleozoic crystallines by a regional unconformity. This unconformable surface has a dip of 10 m/km to the southeast. The Midville is overlain by the Allendale Confining Unit which separates the Midville from the Dublin Aquifer System. The tests were performed at B and P Areas within the SRS using production wells screened in the Midville Aquifer and monitor well clusters screened in the Midville, Dublin, and Gordon (Eocene) Aquifers. The B Area is located 13 km updip from P Area. The Midville is about 50 meters thick at B Area and 80 meters thick at P Area. The transmissivity of the Midville is 0.0095 m 2 /s at B Area and 0.017 m 2 /s at P Area. The storativity at both areas is about 10 -4 . Vertical leakance of the Midville is greater updip as the stratigraphic section thins. During the B Area test, pumping induced water level changes were detected in aquifers above the Midville. At P Area, no pumping induced water level changes were detected above the Midville Aquifer System

  5. Mapping Aquifer Systems with Airborne Electromagnetics in the Central Valley of California

    Science.gov (United States)

    Knight, R. J.; Smith, R.; Asch, T. H.; Abraham, J.; Cannia, J.; Fogg, G. E.; Viezzoli, A.

    2016-12-01

    The Central Valley of California is an important agricultural region struggling to meet the need for irrigation water. Recent periods of drought have significantly reduced the delivery of surface water, resulting in extensive pumping of groundwater. This has exacerbated an already serious problem in the Central Valley, where a number of areas have experienced declining water levels for several decades leading to ongoing concerns about depletion of aquifers and impacts on ecosystems, as well as subsidence of the ground surface. The overdraft has been so significant, that there are now approximately140 million acre-feet (MAF) of unused groundwater storage in the Central Valley, storage that could be used to complement the 42 MAF of surface storage. The alluvial sedimentary geology of the Central Valley is typically composed of more than 50 to 70 percent fine-grained deposits dominated by silt and clay beds. These fine grained deposits can block potential recharge, and are associated with the large amount of observed subsidence. Fortunately, the geologic processes that formed the region created networks of sand and gravel which provide both a supply of water and pathways for recharge from the surface to the aquifers. The challenge is to find these sand and gravel deposits and thus identify optimal locations for surface spreading techniques so that recharge could be dramatically increased, and re-pressurization of the confined aquifer networks could be accomplished. We have acquired 100 line kilometers of airborne electromagnetic data over an area in the San Joaquin Valley, imaging the subsurface hydrostratigraphy to a depth of 500 m with spatial resolution on the order of meters to tens of meters. Following inversion of the data to obtain resistivity models along the flight lines, we used lithology logs in the area to transform the models to images displaying the distribution of sand and gravel, clay, and mixed fine and coarse materials. The quality of the data and

  6. Simulated effects of groundwater withdrawals from the Kirkwood-Cohansey aquifer system and Piney Point aquifer, Maurice and Cohansey River Basins, Cumberland County and vicinity, New Jersey

    Science.gov (United States)

    Gordon, Alison D.; Buxton, Debra E.

    2018-05-10

    The U.S. Geological Survey, in cooperation with the New Jersey Department of Environmental Protection, conducted a study to simulate the effects of withdrawals from the Kirkwood-Cohansey aquifer system on streamflow and groundwater flow and from the Piney Point aquifer on water levels in the Cohansey and Maurice River Basins in Cumberland County and surrounding areas. The aquifer system consists of gravel, sand, silt, and clay sediments of the Cohansey Sand and Kirkwood Formation that dip and thicken to the southeast. The aquifer system is generally an unconfined aquifer, but semi-confined and confined conditions exist within the Cumberland County study area. The Kirkwood-Cohansey aquifer system is present throughout Cumberland County and is the principal source of groundwater for public, domestic, agricultural-irrigation, industrial, and commercial water uses. In 2008, reported groundwater withdrawals from the Kirkwood-Cohansey aquifer system in the study area totaled about 21,700 million gallons—about 36 percent for public supply; about 49 percent for agricultural irrigation; and about 15 percent for industrial, commercial, mining by sand and gravel companies, and non-agricultural irrigation uses. A transient numerical groundwater-flow model of the Kirkwood-Cohansey aquifer system was developed and calibrated by incorporating monthly recharge, base-flow estimates, water-level data, surface-water diversions and discharges, and groundwater withdrawals from 1998 to 2008.The groundwater-flow model was used to simulate five withdrawal scenarios to observe the effects of additional groundwater withdrawals on the Kirkwood-Cohansey aquifer system and streams. These scenarios include (1) average 1998 to 2008 monthly groundwater withdrawals (baseline scenario); (2) monthly full-allocation groundwater withdrawals, but agricultural-irrigation withdrawals were decreased for October through March; (3) monthly full-allocation groundwater withdrawals; (4) estimated monthly

  7. Onset of density-driven instabilities in fractured aquifers

    Science.gov (United States)

    Jafari Raad, Seyed Mostafa; Hassanzadeh, Hassan

    2018-04-01

    Linear stability analysis is conducted to study the onset of density-driven convection involved in solubility trapping of C O2 in fractured aquifers. The effect of physical properties of a fracture network on the stability of a diffusive boundary layer in a saturated fractured porous media is investigated using the dual porosity concept. Linear stability analysis results show that both fracture interporosity flow and fracture storativity play an important role in the stability behavior of the system. It is shown that a diffusive boundary layer under the gravity field in fractured porous media with lower fracture storativity and/or higher fracture interporosity flow coefficient is more stable. We present scaling relations for the onset of convective instability in fractured aquifers with single and variable matrix block size distribution. These findings improve our understanding of density-driven flow in fractured aquifers and are important in the estimation of potential storage capacity, risk assessment, and storage site characterization and screening.

  8. Testing alternative conceptual models of seawater intrusion in a coastal aquifer using computer simulation, southern California, USA

    Science.gov (United States)

    Nishikawa, Tracy

    1997-01-01

    Two alternative conceptual models of the physical processes controlling seawater intrusion in a coastal basin in California, USA, were tested to identify a likely principal pathway for seawater intrusion. The conceptual models were tested by using a two-dimensional, finite-element groundwater flow and transport model. This pathway was identified by the conceptual model that best replicated the historical data. The numerical model was applied in cross section to a submarine canyon that is a main avenue for seawater to enter the aquifer system underlying the study area. Both models are characterized by a heterogeneous, layered, water-bearing aquifer. However, the first model is characterized by flat-lying aquifer layers and by a high value of hydraulic conductivity in the basal aquifer layer, which is thought to be a principal conduit for seawater intrusion. The second model is characterized by offshore folding, which was modeled as a very nearshore outcrop, thereby providing a shorter path for seawater to intrude. General conclusions are that: 1) the aquifer system is best modeled as a flat, heterogeneous, layered system; 2) relatively thin basal layers with relatively high values of hydraulic conductivity are the principal pathways for seawater intrusion; and 3) continuous clay layers of low hydraulic conductivity play an important role in controlling the movement of seawater.

  9. Ground-water flow and quality in the Atlantic City 800-foot sand, New Jersey

    Science.gov (United States)

    McAuley, Steven D.; Barringer, Julia L.; Paulachok, Gary N.; Clark, Jeffrey S.; Zapecza, Otto S.

    2001-01-01

    The regional, confined Atlantic City 800-foot sand is the principal source of water supply for coastal communities of southern New Jersey. In response to extensive use of the aquifer--nearly 21 million gallons per day in 1986--water levels have declined to about 100 feet below sea level near Atlantic City and remain below sea level throughout the coastal areas of southern New Jersey, raising concerns about the potential for saltwater intrusion into well fields. Water levels in the Atlantic City 800-foot sand have declined in response to pumping from the aquifer since the 1890's. Water levels in the first wells drilled into the Atlantic City 800-foot sand were above land surface, and water flowed continuously from the wells. By 1986, water levels were below sea level throughout most of the coastal areas. Under current conditions, wells near the coast derive most of their supply from lateral flow contributed from the unconfined part of the aquifer northwest of the updip limit of the confining unit that overlies the Atlantic City 800- foot sand. Ground water also flows laterally from offshore areas and leaks vertically through the overlying and underlying confining units into the Atlantic City 800-foot sand. The decline in water levels upsets the historical equilibrium between freshwater and ancient saltwater in offshore parts of the aquifer and permits the lateral movement of saltwater toward pumping centers. The rate of movement is accelerated as the decline in water levels increases. The chloride concentration of aquifer water 5.3 miles offshore of Atlantic City was measured as 77 mg/L (milligrams per liter) in 1985 at a U.S. Geological Survey observation well. Salty water has also moved toward wells in Cape May County. The confined, regional nature of the Atlantic City 800-foot sand permits water levels in Cape May County to decline in response to pumping in Atlantic County and vice versa. Historically, chloride concentrations as great as 1 ,510 mg/L have been

  10. Monitoring a pilot CO2 injection experiment in a shallow aquifer using 3D cross-well electrical resistance tomography

    Science.gov (United States)

    Yang, X.; Lassen, R. N.; Looms, M. C.; Jensen, K. H.

    2014-12-01

    Three dimensional electrical resistance tomography (ERT) was used to monitor a pilot CO2 injection experiment at Vrøgum, Denmark. The purpose was to evaluate the effectiveness of the ERT method for monitoring the two opposing effects from gas-phase and dissolved CO2 in a shallow unconfined siliciclastic aquifer. Dissolved CO2 increases water electrical conductivity (EC) while gas phase CO2 reduce EC. We injected 45kg of CO2 into a shallow aquifer for 48 hours. ERT data were collected for 50 hours following CO2 injection. Four ERT monitoring boreholes were installed on a 5m by 5m square grid and each borehole had 24 electrodes at 0.5 m electrode spacing at depths from 1.5 m to 13 m. ERT data were inverted using a difference inversion algorithm for bulk EC. 3D ERT successfully detected the CO2 plume distribution and growth in the shallow aquifer. We found that the changes of bulk EC were dominantly positive following CO2 injection, indicating that the effect of dissolved CO2 overwhelmed that of gas phase CO2. The pre-injection baseline resistivity model clearly showed a three-layer structure of the site. The electrically more conductive glacial sand layer in the northeast region are likely more permeable than the overburden and underburden and CO2 plumes were actually confined in this layer. Temporal bulk EC increase from ERT agreed well with water EC and cross-borehole ground penetrating radar data. ERT monitoring offers a competitive advantage over water sampling and GPR methods because it provides 3D high-resolution temporal tomographic images of CO2 distribution and it can also be automated for unattended operation. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC. LLNL IM release#: LLNL-PROC-657944.

  11. Sensitivity Analysis of DRASTIC Model in Vulnerability Assessment of Shahrood Alluvial Aquifer

    Directory of Open Access Journals (Sweden)

    Shadi Abolhasan Almasi

    2017-07-01

    Full Text Available Groundwater vulnerability assessment is typically accomplished as a management tool to protect groundwater resources. In this research, the DRASTIC model which is an empirical one used for evaluating the potential of an aquifer for pollution was employed to evaluate the vulnerability of Shahrood alluvial aquifer. Moreover, the sensitivity of the model paramneters was assessed to identify the ones with greatest effect on vulnerability. The model layers including depth to groundwater table level, recharge, aquifer media, topography, impact of unsaturated zone, and hydraulic conductivity were prepared and classified in the ArcGIS software based on analyses of both the available data and the layer of surface soil texture using Aster satellite images. Once the vulnerability index was calculated, the sensitivity map of Shahroud aquifer vulnerability was analyzed using the two parameter removal and single parameter sensitivity methods. These were further verified by textural analysis of soil samples from different parts of the region. The layers with appropriate weights were overlaid and the DRASTIC index of the aquifer was estimated at 28 to 148. The highest vulnerability was detected in the northern margins and southwestern parts of the aquifer while other parts were characterized by medium to low vulnerability. The low nitrogen concentration observed in the farm areas and its rise to 45 mg/l in the northern stretches of the aquifer bear witness to the accuracy of the zoning rendered by the DRASTIC model. Based on the vulnerability map of Sharoud aquifer, it was found that 1.6% of the aquifer’s area has a very high vulnerability or potential for pollution followed by 10%, 28.8%, and 18.9% of the area were identified as having high, medium and low potentials for pollution, respecytively. The remaining (i.e., 40.5% was found to have no risk of pollution.

  12. Geologic and hydrogeologic frameworks of the Biscayne aquifer in central Miami-Dade County, Florida

    Science.gov (United States)

    Wacker, Michael A.; Cunningham, Kevin J.; Williams, John H.

    2014-01-01

    Evaluations of the lithostratigraphy, lithofacies, paleontology, ichnology, depositional environments, and cyclostratigraphy from 11 test coreholes were linked to geophysical interpretations, and to results of hydraulic slug tests of six test coreholes at the Snapper Creek Well Field (SCWF), to construct geologic and hydrogeologic frameworks for the study area in central Miami-Dade County, Florida. The resulting geologic and hydrogeologic frameworks are consistent with those recently described for the Biscayne aquifer in the nearby Lake Belt area in Miami-Dade County and link the Lake Belt area frameworks with those developed for the SCWF study area. The hydrogeologic framework is characterized by a triple-porosity pore system of (1) matrix porosity (mainly mesoporous interparticle porosity, moldic porosity, and mesoporous to megaporous separate vugs), which under dynamic conditions, produces limited flow; (2) megaporous, touching-vug porosity that commonly forms stratiform groundwater passageways; and (3) conduit porosity, including bedding-plane vugs, decimeter-scale diameter vertical solution pipes, and meter-scale cavernous vugs. The various pore types and associated permeabilities generally have a predictable vertical spatial distribution related to the cyclostratigraphy. The Biscayne aquifer within the study area can be described as two major flow units separated by a single middle semiconfining unit. The upper Biscayne aquifer flow unit is present mainly within the Miami Limestone at the top of the aquifer and has the greatest hydraulic conductivity values, with a mean of 8,200 feet per day. The middle semiconfining unit, mainly within the upper Fort Thompson Formation, comprises continuous to discontinuous zones with (1) matrix porosity; (2) leaky, low permeability layers that may have up to centimeter-scale vuggy porosity with higher vertical permeability than horizontal permeability; and (3) stratiform flow zones composed of fossil moldic porosity, burrow

  13. Conceptual and numerical models of the glacial aquifer system north of Aberdeen, South Dakota

    Science.gov (United States)

    Marini, Katrina A.; Hoogestraat, Galen K.; Aurand, Katherine R.; Putnam, Larry D.

    2012-01-01

    evapotranspiration, calculated in soil-water-balance analysis, ranged from 21.8 inches in WY 1983 to 27.0 inches in WY 1985, with a mean of 24.6 inches. Water use from the glacial aquifer system primarily was from the Elm aquifer for irrigation, municipal, and suburban water supplies, and the annual rate ranged from 1.0 to 2.4 cubic feet per second (ft3/s). The MODFLOW-2005 numerical model represented the Elm aquifer, the Middle James aquifer, and the Deep James aquifer with model layers 1-3 respectively separated by confining layers 1-2 respectively. Groundwater flow was simulated with 75 stress periods beginning October 1, 1974, and ending September 30, 2009. Model grid spacing was 200 by 200 ft and boundaries were represented by specified-head boundaries and no-flow boundaries. The model used parameter estimation that focused on minimizing the difference between 954 observed and simulated hydraulic heads for 135 wells. Calibrated mean horizontal hydraulic conductivity values for model layers 1-3 were 94, 41, and 30 ft/d respectively. Vertical hydraulic conductivity values for confining layers 1 and 2 were 0.0002 and 0.0003 ft/d, respectively. Calibrated specific yield for model layer 1was 0.1 and specific storage ranged from 0.0003 to 0.0005 per foot. Calibrated mean recharge rates ranged from 2.5 in/yr where glacial till thickness was less than 10 ft to 0.8 in/yr where glacial till thickness was greater than 30 ft. Calibrated mean annual evapotranspiration rate was 8.8 in/yr. Simulated net streamflow gain from model layer 1 was 3.1 ft3/s.

  14. Transient well flow in vertically heterogeneous aquifers

    Science.gov (United States)

    Hemker, C. J.

    1999-11-01

    A solution for the general problem of computing well flow in vertically heterogeneous aquifers is found by an integration of both analytical and numerical techniques. The radial component of flow is treated analytically; the drawdown is a continuous function of the distance to the well. The finite-difference technique is used for the vertical flow component only. The aquifer is discretized in the vertical dimension and the heterogeneous aquifer is considered to be a layered (stratified) formation with a finite number of homogeneous sublayers, where each sublayer may have different properties. The transient part of the differential equation is solved with Stehfest's algorithm, a numerical inversion technique of the Laplace transform. The well is of constant discharge and penetrates one or more of the sublayers. The effect of wellbore storage on early drawdown data is taken into account. In this way drawdowns are found for a finite number of sublayers as a continuous function of radial distance to the well and of time since the pumping started. The model is verified by comparing results with published analytical and numerical solutions for well flow in homogeneous and heterogeneous, confined and unconfined aquifers. Instantaneous and delayed drainage of water from above the water table are considered, combined with the effects of partially penetrating and finite-diameter wells. The model is applied to demonstrate that the transient effects of wellbore storage in unconfined aquifers are less pronounced than previous numerical experiments suggest. Other applications of the presented solution technique are given for partially penetrating wells in heterogeneous formations, including a demonstration of the effect of decreasing specific storage values with depth in an otherwise homogeneous aquifer. The presented solution can be a powerful tool for the analysis of drawdown from pumping tests, because hydraulic properties of layered heterogeneous aquifer systems with

  15. In situ heat treatment of a tar sands formation after drive process treatment

    Science.gov (United States)

    Vinegar, Harold J.; Stanecki, John

    2010-09-21

    A method for treating a tar sands formation includes providing a drive fluid to a hydrocarbon containing layer of the tar sands formation to mobilize at least some hydrocarbons in the layer. At least some first hydrocarbons from the layer are produced. Heat is provided to the layer from one or more heaters located in the formation. At least some second hydrocarbons are produced from the layer of the formation. The second hydrocarbons include at least some hydrocarbons that are upgraded compared to the first hydrocarbons produced by using the drive fluid.

  16. Carbon-14 measurements in aquifers with methane

    International Nuclear Information System (INIS)

    Barker, J.F.; Fritz, P.; Brown, R.M.

    1979-01-01

    A survey of various groundwater systems indicates that methane is a common trace constituent and occasionally a major carbon species in groundwaters. Thermocatalytic methane had delta 13 Csub(CH 4 )>-45 per mille and microbially produced or biogenic methane had delta 13 Csub(CH 4 ) 13 C values for the inorganic carbon. Thermocatalytic methane had no apparent effect on the inorganic carbon. Because methanogenesis seriously affects the carbon isotope geochemistry of groundwaters, the correction of raw 14 C ages of affected groundwaters must consider these effects. Conceptual models are developed which adjust the 14 C activity of the groundwater for the effects of methanogenesis and for the dilution of carbon present during infiltration by simple dissolution of rock carbonate. These preliminary models are applied to groundwaters from the Alliston sand aquifer where methanogenesis has affected most samples. In this system, methanogenic bacteria using organic matter present in the aquifer matrix as substrate have added inorganic carbon to the groundwater which has initiated further carbonate rock dissolution. These processes have diluted the inorganic carbon 14 C activity. The adjusted groundwater ages can be explained in terms of the complex hydrogeology of this aquifer, but also indicate that these conceptual models must be more rigorously tested to evaluate their appropriateness. (author)

  17. Method of Relating Grain Size Distribution to Hydraulic Conductivity in Dune Sands to Assist in Assessing Managed Aquifer Recharge Projects: Wadi Khulays Dune Field, Western Saudi Arabia

    Directory of Open Access Journals (Sweden)

    Oliver M. Lopez

    2015-11-01

    Full Text Available Planning for use of a dune field aquifer for managed aquifer recharge (MAR requires that hydraulic properties need to be estimated over a large geographic area. Saturated hydraulic conductivity of dune sands is commonly estimated from grain size distribution data by employing some type of empirical equation. Over 50 samples from the Wadi Khulays dune field in Western Saudi Arabia were collected and the grain size distribution, porosity, and hydraulic conductivity were measured. An evaluation of 20 existing empirical equations showed a generally high degree of error in the predicted compared to the measured hydraulic conductivity values of these samples. Statistical analyses comparing estimated versus measured hydraulic conductivity demonstrated that there is a significant relationship between hydraulic conductivity and mud percentage (and skewness. The modified Beyer equation, which showed a generally low prediction error, was modified by adding a second term fitting parameter related to the mud concentration based on 25 of the 50 samples analyzed. An inverse optimization process was conducted to quantify the fitting parameter and a new empirical equation was developed. This equation was tested against the remaining 25 samples analyzed and produced an estimated saturated hydraulic conductivity with the lowest error of any empirical equation. This methodology can be used for large dune field hydraulic conductivity estimation and reduce planning costs for MAR systems.

  18. Method of Relating Grain Size Distribution to Hydraulic Conductivity in Dune Sands to Assist in Assessing Managed Aquifer Recharge Projects: Wadi Khulays Dune Field, Western Saudi Arabia

    KAUST Repository

    Lopez Valencia, Oliver Miguel

    2015-11-12

    Planning for use of a dune field aquifer for managed aquifer recharge (MAR) requires that hydraulic properties need to be estimated over a large geographic area. Saturated hydraulic conductivity of dune sands is commonly estimated from grain size distribution data by employing some type of empirical equation. Over 50 samples from the Wadi Khulays dune field in Western Saudi Arabia were collected and the grain size distribution, porosity, and hydraulic conductivity were measured. An evaluation of 20 existing empirical equations showed a generally high degree of error in the predicted compared to the measured hydraulic conductivity values of these samples. Statistical analyses comparing estimated versus measured hydraulic conductivity demonstrated that there is a significant relationship between hydraulic conductivity and mud percentage (and skewness). The modified Beyer equation, which showed a generally low prediction error, was modified by adding a second term fitting parameter related to the mud concentration based on 25 of the 50 samples analyzed. An inverse optimization process was conducted to quantify the fitting parameter and a new empirical equation was developed. This equation was tested against the remaining 25 samples analyzed and produced an estimated saturated hydraulic conductivity with the lowest error of any empirical equation. This methodology can be used for large dune field hydraulic conductivity estimation and reduce planning costs for MAR systems.

  19. Transient well flow in leaky multiple-aquifer systems

    Science.gov (United States)

    Hemker, C. J.

    1985-10-01

    A previously developed eigenvalue analysis approach to groundwater flow in leaky multiple aquifers is used to derive exact solutions for transient well flow problems in leaky and confined systems comprising any number of aquifers. Equations are presented for the drawdown distribution in systems of infinite extent, caused by wells penetrating one or more of the aquifers completely and discharging each layer at a constant rate. Since the solution obtained may be regarded as a combined analytical-numerical technique, a type of one-dimensional modelling can be applied to find approximate solutions for several complicating conditions. Numerical evaluations are presented as time-drawdown curves and include effects of storage in the aquitard, unconfined conditions, partially penetrating wells and stratified aquifers. The outcome of calculations for relatively simple systems compares very well with published corresponding results. The proposed multilayer solution can be a valuable tool in aquifer test evaluation, as it provides the analytical expression required to enable the application of existing computer methods to the determination of aquifer characteristics.

  20. Sources of high-chloride water and managed aquifer recharge in an alluvial aquifer in California, USA

    Science.gov (United States)

    O'Leary, David R.; Izbicki, John A.; Metzger, Loren F.

    2015-11-01

    As a result of pumping in excess of recharge, water levels in alluvial aquifers within the Eastern San Joaquin Groundwater Subbasin, 130 km east of San Francisco (California, USA), declined below sea level in the early 1950s and have remained so to the present. Chloride concentrations in some wells increased during that time and exceeded the US Environmental Protection Agency's secondary maximum contaminant level of 250 mg/L, resulting in removal of some wells from service. Sources of high-chloride water include irrigation return in 16 % of sampled wells and water from delta sediments and deeper groundwater in 50 % of sampled wells. Chloride concentrations resulting from irrigation return commonly did not exceed 100 mg/L, although nitrate concentrations were as high as 25 mg/L as nitrogen. Chloride concentrations ranged from less than 100-2,050 mg/L in wells affected by water from delta sediments and deeper groundwater. Sequential electromagnetic logs show movement of high-chloride water from delta sediments to pumping wells through permeable interconnected aquifer layers. δD and δ18O data show most groundwater originated as recharge along the front of the Sierra Nevada, but tritium and carbon-14 data suggest recharge rates in this area are low and have decreased over recent geologic time. Managed aquifer recharge at two sites show differences in water-level responses to recharge and in the physical movement of recharged water with depth related to subsurface geology. Well-bore flow logs also show rapid movement of water from recharge sites through permeable interconnected aquifer layers to pumping wells.

  1. Sources of high-chloride water and managed aquifer recharge in an alluvial aquifer in California, USA

    Science.gov (United States)

    O'Leary, David; Izbicki, John A.; Metzger, Loren F.

    2015-01-01

    As a result of pumping in excess of recharge, water levels in alluvial aquifers within the Eastern San Joaquin Groundwater Subbasin, 130 km east of San Francisco (California, USA), declined below sea level in the early 1950s and have remained so to the present. Chloride concentrations in some wells increased during that time and exceeded the US Environmental Protection Agency’s secondary maximum contaminant level of 250 mg/L, resulting in removal of some wells from service. Sources of high-chloride water include irrigation return in 16 % of sampled wells and water from delta sediments and deeper groundwater in 50 % of sampled wells. Chloride concentrations resulting from irrigation return commonly did not exceed 100 mg/L, although nitrate concentrations were as high as 25 mg/L as nitrogen. Chloride concentrations ranged from less than 100–2,050 mg/L in wells affected by water from delta sediments and deeper groundwater. Sequential electromagnetic logs show movement of high-chloride water from delta sediments to pumping wells through permeable interconnected aquifer layers. δD and δ18O data show most groundwater originated as recharge along the front of the Sierra Nevada, but tritium and carbon-14 data suggest recharge rates in this area are low and have decreased over recent geologic time. Managed aquifer recharge at two sites show differences in water-level responses to recharge and in the physical movement of recharged water with depth related to subsurface geology. Well-bore flow logs also show rapid movement of water from recharge sites through permeable interconnected aquifer layers to pumping wells.

  2. Mecoprop (MCPP) removal in full-scale rapid sand filters at a groundwater-based waterworks

    DEFF Research Database (Denmark)

    Hedegaard, Mathilde Jørgensen; Arvin, Erik; Corfitzen, Charlotte B.

    2014-01-01

    and secondary rapid sand filters. Water quality parameters were measured throughout the waterworks, and they behaved as designed for. MCPP was removed in secondary rapid sand filters — removal was the greatest in the sand filters in the filter line with the highest contact time (63min). In these secondary sand...... in the full-scale system. Therefore, microcosms were set up with filter sand, water and 14C-labelled MCPP at an initial concentration of 0.2μg/L. After 24h, 79–86% of the initial concentration of MCPP was removed. Sorption removed 11–15%, while the remaining part was removed by microbial processes, leading...... to a complete mineralisation of 13–18%. Microbial removal in the filter sand was similar at different depths of the rapid sand filter, while the amount of MCPP which adsorbed to the filter sand after 48h decreased with depth from 21% of the initial MCPP in the top layer to 7% in the bottom layer...

  3. Visualization of residual organic liquid trapped in aquifers

    International Nuclear Information System (INIS)

    Conrad, S.H.; Wilson, J.L.; Mason, W.R.; Peplinski, W.J.

    1992-01-01

    Organic liquids that are essentially immiscible with water migrate through the subsurface under the influence of capillary, viscous, and buoyancy forces. These liquids originate from the improper disposal of hazardous wastes, and the spills and leaks of petroleum hydrocarbons and solvents. The flow visualization experiments described in this study examined the migration of organic liquids through the saturated zone of aquifers, with a primary focus on the behavior of the residual organic liquid saturation, referring to that portion of the organic liquid that is trapped by capillary forces. Etched glass micromodels were used to visually observe dynamic multiphase displacement processes in pore networks. The resulting fluid distributions were photographed. Pore and blob casts were produced by a technique in which an organic liquid was solidified in place within a sand column at the conclusion of a displacement. The columns were sectioned and examined under optical and scanning electron microscopes. Photomicrographs of these sections show the morphology of the organic phase and its location within the sand matrix. The photographs from both experimental techniques reveal that in the saturated zone large amounts of residual organic liquid are trapped as isolated blobs of microscopic size. The size, shape, and spatial distribution of these blobs of residual organic liquid affect the dissolution of organic liquid into the water phase and the biotransformation of organic components. These processes are of concern for the prediction of pollution migration and the design of aquifer remediation schemes

  4. Investigation of aquifer-system compaction in the Hueco basin, El Paso, Texas, USA

    Science.gov (United States)

    Heywood, Charles

    1995-01-01

    The Pleistocene geologic history of the Rio Grande valley in the Hueco basin included a cycle of sediment erosion and re-aggradation, resulting in unconformable stratification of sediment of contrasting compressibility and stress history. Since the 1950s large groundwater withdrawals have resulted in significant water-level declines and associated land subsidence. Knowledge of the magnitude and variation of specific storage is needed for developing predictive models of subsidence and groundwater flow simulations. Analyses of piezometric and extensometric data in the form of stress-strain diagrams from a 16 month period yield in situ measurements of aquifer-system compressibility across two discrete aquifer intervals. The linear elastic behaviour of the deeper interval indicates over-consolidation of basin deposits, probably resulting from deeper burial depth before the middle Pleistocene. By contrast, the shallow aquifer system displays an inelastic component, suggesting pre-consolidation stress not significantly greater than current effective stress levels for a sequence of late Pleistocene clay. Harmonic analyses of the piezometric response to earth tides in two water-level piezometers provide an independent estimate of specific storage of aquifer sands.

  5. Hydrogeology in the area of a freshwater lens in the Floridan aquifer system, northeast Seminole County, Florida

    Science.gov (United States)

    Phelps, G.G.; Rohrer, K.P.

    1987-01-01

    Northeast Seminole County, Florida, contains an isolated recharge area of the Floridan aquifer system that forms a freshwater lens completely surrounded by saline water. The freshwater lens covers an area of about 22 sq mi surrounding the town of Geneva, and generally is enclosed by the 25 ft land surface altitude contour. Thickness of the lens is about 350 ft in the center of the recharge area. The geohydrologic units in descending order consist of the post-Miocene sand and shell of the surficial aquifer; Miocene clay, sand, clay, and shell that form a leaky confining bed; and permeable Eocene limestones of the Floridan aquifer system. The freshwater lens is the result of local rainfall flushing ancient seawater from the Floridan aquifer system. Sufficient quantities of water for domestic and small public supply systems are available from the Floridan aquifer system in the Geneva area. The limiting factor for water supply in the area is the chemical quality of the water. Chloride concentrations range from recharge area to about 5,100 mg/L near the St. Johns River southeast of Geneva. Constituents analyzed included sulfate (range 1 to 800 mg/L), hardness (range 89 to 2,076 mg/L), and iron (range 34 to 6,600 mg/L). Because the freshwater lens results entirely from local recharge, the long-term sustained freshwater yield of the aquifer in the Geneva area depends on the local recharge rate. In 1982, recharge was about 13 inches (13.8 million gal/day). Average recharge for 1941 through 1970 was estimated to be about 11 inches (11.3 million gal/day). Freshwater that recharges the aquifer in the Geneva area is either pumped out or flows north and northeast to discharge near or in the St. Johns River. Average annual outflow from the lens is about 10 in/yr. No measurable change in the size or location of the freshwater lens has occurred since studies in the early 1950's. (Lantz-PTT)

  6. Hydrogeological and quantitative groundwater assessment of the Basaltic Aquifer, Northern Harrat Rahat, Saudi Arabia

    International Nuclear Information System (INIS)

    Al-Shaibani, A.; Abokhodair, Abdulwahab A.; Lloyd, J.W.; Al-Ahmari, A.

    2007-01-01

    The Northern Harrat Rahat consists of 300m basalt lavas covering some 2000 km2 to the south-east of Al-Madinah in western Saudi Arabia. Like many basalt sequences, the Rahat basalts form an important aquifer and groundwater resource. The aquifer has a saturated thickness of up to 60m and made up of the weathered upper part of underlying basement, pre-basalt sands and gravels and the fractured basalts. Since 1992, groundwater has been abstracted from the aquifer as part of the Al-Madinah water supply. To assess the potential of the aquifer an assessment has been made based on pumping tests of 70 wells. The hydraulic parameters have been shown to be highly variable typical of the fractured domain. The aquifer contains good-quality water in storage, but receives limited recharge. Groundwater temperature anomalies indicate remnant volcanic activity locally. A numerical groundwater model has been constructed, which has been calibrated using limited groundwater head measurements, but with good abstraction records. Prediction of groundwater heads and the examination of several abstraction scenarios indicate that the aquifer can continue to support part of the Al-Madinah demand for the next several years, if certain well distributions are adopted. The predictions also show that the aquifer can only support the total demand of the city for a few days as a contingency resource. (author)

  7. Unconsolidated Aquifers in Tompkins County, New York

    Science.gov (United States)

    Miller, Todd S.

    2000-01-01

    Unconsolidated aquifers consisting of saturated sand and gravel are capable of supplying large quantities of good-quality water to wells in Tompkins County, but little published geohydrologic inform ation on such aquifers is available. In 1986, the U.S.Geological Survey (USGS) began collecting geohydrologic information and well data to construct an aquifer map showing the extent of unconsolidated aquifers in Tompkins county. Data sources included (1) water-well drillers. logs; (2) highway and other construction test-boring logs; (3) well data gathered by the Tompkins County Department of Health, (4) test-well logs from geohydrologic consultants that conducted projects for site-specific studies, and (5) well data that had been collected during past investigations by the USGS and entered into the National Water Information System (NWIS) database. In 1999, the USGS, in cooperation with the Tompkins County Department of Planning, compiled these data to construct this map. More than 600 well records were entered into the NWIS database in 1999 to supplement the 350 well records already in the database; this provided a total of 950 well records. The data were digitized and imported into a geographic information system (GIS) coverage so that well locations could be plotted on a map, and well data could be tabulated in a digital data base through ARC/INFO software. Data on the surficial geology were used with geohydrologic data from well records and previous studies to delineate the extent of aquifers on this map. This map depicts (1) the extent of unconsolidated aquifers in Tompkins County, and (2) locations of wells whose records were entered into the USGS NWIS database and made into a GIS digital coverage. The hydrologic information presented here is generalized and is not intended for detailed site evaluations. Precise locations of geohydrologic-unit boundaries, and a description of the hydrologic conditions within the units, would require additional detailed, site

  8. Determination of hydrogeological conditions in large unconfined aquifer: A case study in central Drava plain (NE Slovenia)

    Science.gov (United States)

    Keršmanc, Teja; Brenčič, Mihael

    2016-04-01

    In several countries, many unregulated landfills exits which releasing harmful contaminations to the underlying aquifer. The Kidričevo industrial complex is located in southeastern part of Drava plain in NW Slovenia. In the past during the production of alumina and aluminum approximately 11.2 million tons of wastes were deposit directly on the ground on two landfills covering an area of 61 hectares. Hydrogeological studies were intended to better characterized conditions bellow the landfill. Geological and hydrogeological conditions of Quaternary unconfined aquifer were analyzed with lithological characterization of well logs and cutting debris and XRF diffraction of silty sediments on 9 boreholes. Hydrogeological conditions: hydraulic permeability aquifer was determined with hydraulic tests and laboratory grain size analyses where empirical USBR and Hazen methods were applied. Dynamics of groundwater was determined by groundwater contour maps and groundwater level fluctuations. The impact of landfill was among chemical analyses of groundwater characterised by electrical conductivity measurements and XRF spectrometry of sand sediments. The heterogeneous Quaternary aquifer composed mainly of gravel and sand, is between 38 m and 47.5 m thick. Average hydraulic permeability of aquifer is within the decade 10-3 m/s. Average hydraulic permeability estimated on grain size curves is 6.29*10-3 m/s, and for the pumping tests is 4.0*10-3 m/s. General direction of groundwater flow is from west to east. During high water status the groundwater flow slightly changes flow direction to the southwest and when pumping station in Kidričevo (NW of landfill) is active groundwater flows to northeast. Landfills have significant impact on groundwater quality.

  9. Performance of sand and shredded rubber tire mixture as a natural base isolator for earthquake protection

    Science.gov (United States)

    Bandyopadhyay, Srijit; Sengupta, Aniruddha; Reddy, G. R.

    2015-12-01

    The performance of a well-designed layer of sand, and composites like layer of sand mixed with shredded rubber tire (RSM) as low cost base isolators, is studied in shake table tests in the laboratory. The building foundation is modeled by a 200 mm by 200 mm and 40 mm thick rigid plexi-glass block. The block is placed in the middle of a 1m by 1m tank filled with sand. The selected base isolator is placed between the block and the sand foundation. Accelerometers are placed on top of the footing and foundation sand layer. The displacement of the footing is also measured by LVDT. The whole setup is mounted on a shake table and subjected to sinusoidal motions with varying amplitude and frequency. Sand is found to be effective only at very high amplitude (> 0.65 g) of motions. The performance of a composite consisting of sand and 50% shredded rubber tire placed under the footing is found to be most promising as a low-cost effective base isolator.

  10. Effect of an offshore sinkhole perforation in a coastal confined aquifer on submarine groundwater discharge

    Science.gov (United States)

    Fratesi, S.E.; Leonard, V.; Sanford, W.E.

    2007-01-01

    In order to explore submarine groundwater discharge in the vicinity of karst features that penetrate the confining layer of an offshore, partially confined aquifer, we constructed a three-dimensional groundwater model using the SUTRA (Saturated-Unsaturated TRAnsport) variable-density groundwater flow model. We ran a parameter sensitivity analysis, testing the effects of recharge rates, permeabilities of the aquifer and confining layer, and thickness of the confining layer. In all simulations, less than 20% of the freshwater recharge for the entire model exits through the sinkhole. Recirculated seawater usually accounts for 10-30% of the total outflow from the model. Often, the sinkhole lies seaward of the transition zone and acts as a recharge feature for recirculating seawater. The permeability ratio between aquifer and confining layer influences the configuration of the freshwater wedge the most; as confining layer permeability decreases, the wedge lengthens and the fraction of total discharge exiting through the sinkhole increases. Copyright ?? 2007 IAHS Press.

  11. Hydrogeology and water quality of glacial-drift aquifers in the Bemidji-Bagley area, Beltrami, Clearwater, Cass, and Hubbard counties, Minnesota

    Science.gov (United States)

    Stark, J.R.; Busch, J.P.; Deters, M.H.

    1991-01-01

    Unconfined and the upper confined aquifers in glacial drift are the primary sources of water in a 1,600 square-mile area including parts of Beltrami, Cass, Clearwater, and Hubbard Counties, Minnesota. The unconfineddrift aquifer consists of coarse sand and gravel in the center of the study area. The total area underlain by the unconfined-drift aquifer is approximately 550 square miles. The unconfined aquifer ranges in thickness from 0 to 130 feet, and is greater than 20 feet thick over an area of 280 square miles. On the basis of scant data, the transmissivity of the unconfined aquifer ranges from less than 70 feet squared per day in the south and west to greater than 8,900 feet squared per day in an area west of Bemidji. Well yields from 10 to 300 gallons per minute are possible in some areas. The unconfined and upper confined-drift aquifers are separated by a fine-grained confining unit of till or lake deposits.

  12. Hydrogeology, water quality, and microbial assessment of a coastal alluvial aquifer in western Saudi Arabia: potential use of coastal wadi aquifers for desalination water supplies [Hydrogéologie, qualité de l’eau et évaluation microbienne d’un aquifère côtier alluvial dans l’Ouest de l’Arabie Saoudite: utilisation potentielle des aquifères côtiers des oueds pour l’alimentation en eau après désalinisation] [Hidrogeologia, qualidade da água e avaliação microbiológica de um aquífero costeiro no oeste da Arábia Saudita: uso potencial de aquíferos de wadi costeiros para dessalinização de águas destinadas a abastecimento] [Hidrogeología, calidad de agua y evaluación microbiana de un acuífero costero aluvial en Arabia Saudita occidental: uso potencial de acuíferos costeros uadis para la desalinización de los abastecimientos de agua

    KAUST Repository

    Missimer, Thomas M.; Hoppe-Jones, Christiane; Jadoon, Khan; Li, Dong; Almashharawi, Samir

    2014-01-01

    into two sand-and-gravel aquifers at the coast, each with high productivity (transmissivity = 42,000 m2/day). This aquifer system becomes confined near the coast and contains hypersaline water. The hydrogeology of Wadi Wasimi shows that two

  13. Water-quality data for aquifers, streams, and lakes in the vicinity of Keechi, Mount Sylvan, Oakwood, and Palestine salt domes, northeast Texas salt-dome basin

    International Nuclear Information System (INIS)

    Carr, J.E.; Halasz, S.J.; Liscum, F.

    1980-11-01

    This report contains water-quality data for aquifers, streams, and lakes in the vicinity of Keechi, Mount Sylvan, Oakwood, and Palestine Salt Domes in the northeast Texas salt-dome basin. Water-quality data were compiled for aquifers in the Wilcox Group, the Carrizo Sand, and the Queen City Sand. The data include analyses for dissolved solids, pH, temperature, hardness, calcium, magnesium, sodium, bicarbonate, chloride, and sulfate. Water-quality and streamflow data were obtained from 63 surface-water sites in the vicinity of the domes. These data include water discharge, specific conductance, pH, water temperature, and dissolved oxygen. Samples were collected at selected sites for analysis of principal and selected minor dissolved constituents

  14. Filtration and transport of Bacillus subtilis spores and the F-RNA phage MS2 in a coarse alluvial gravel aquifer: implications in the estimation of setback distances.

    Science.gov (United States)

    Pang, Liping; Close, Murray; Goltz, Mark; Noonan, Mike; Sinton, Lester

    2005-04-01

    Filtration of Bacillus subtilis spores and the F-RNA phage MS2 (MS2) on a field scale in a coarse alluvial gravel aquifer was evaluated from the authors' previously published data. An advection-dispersion model that is coupled with first-order attachment kinetics was used in this study to interpret microbial concentration vs. time breakthrough curves (BTC) at sampling wells. Based on attachment rates (katt) that were determined by applying the model to the breakthrough data, filter factors (f) were calculated and compared with f values estimated from the slopes of log (cmax/co) vs. distance plots. These two independent approaches resulted in nearly identical filter factors, suggesting that both approaches are useful in determining reductions in microbial concentrations over transport distance. Applying the graphic approach to analyse spatial data, we have also estimated the f values for different aquifers using information provided by some other published field studies. The results show that values of f, in units of log (cmax/co) m(-1), are consistently in the order of 10(-2) for clean coarse gravel aquifers, 10(-3) for contaminated coarse gravel aquifers, and generally 10(-1) for sandy fine gravel aquifers and river and coastal sand aquifers. For each aquifer category, the f values for bacteriophages and bacteria are in the same order-of-magnitude. The f values estimated in this study indicate that for every one-log reduction in microbial concentration in groundwater, it requires a few tens of meters of travel in clean coarse gravel aquifers, but a few hundreds of meters in contaminated coarse gravel aquifers. In contrast, a one-log reduction generally only requires a few meters of travel in sandy fine gravel aquifers and sand aquifers. Considering the highest concentration in human effluent is in the order of 10(4) pfu/l for enteroviruses and 10(6) cfu/100 ml for faecal coliform bacteria, a 7-log reduction in microbial concentration would comply with the drinking

  15. Time scales of DNAPL migration in sandy aquifers examined via numerical simulation

    Energy Technology Data Exchange (ETDEWEB)

    Gerhard, J.I.; Pang, T.; Kueper, B.H. [University of Edinburgh, Edinburgh (United Kingdom). Inst. of Infrastructure & Environmental

    2007-03-15

    The time required for dense nonaqueous phase liquid (DNAPL) to cease migrating following release to the subsurface is a valuable component of a site conceptual model. This study uses numerical simulation to investigate the migration of six different DNAPLs in sandy aquifers. The most influential parameters governing migration cessation time are the density and viscosity of the DNAPL and the mean hydraulic conductivity of the aquifer. Releases of between 1 and 40 drums of chlorinated solvent DNAPLs, characterized by relatively high density and low viscosity, require on the order of months to a few years to cease migrating in a heterogeneous medium sand aquifer having an average hydraulic conductivity of 7.4 x 10{sup -3} cm/s. In contrast to this, the release of 20 drums of coal tar {rho}{sub D} = 1061 kg/m{sup 3}, {mu}{sub D} = 0.161 Pa(.)s) requires more than 100 years to cease migrating in the same aquifer. Altering the mean hydraulic conductivity of the aquifer results in a proportional change in cessation times. Parameters that exhibit relatively little influence on migration time scales are the DNAPL-water interfacial tension, release volume, source capillary pressure, mean aquifer porosity, and ambient ground water hydraulic gradient. This study also demonstrates that low-density DNAPLs (e.g., coal tar) give rise to greater amounts of lateral spreading and greater amounts of pooling on capillary barriers than high-density DNAPLs such as trichloroethylene or tetrachloroethylene.

  16. Prediction of Liquefaction Potential of Dredge Fill Sand by DCP and Dynamic Probing

    International Nuclear Information System (INIS)

    Alam, Md. Jahangir; Azad, Abul Kalam; Rahman, Ziaur

    2008-01-01

    From many research it is proved that liquefaction potential of sand is function of mainly relative density and confining pressure. During routine site investigations, high-quality sampling and laboratory testing of sands are not feasible because of inevitable sample disturbance effects and budgetary constraints. On the other hand quality control of sand fill can be done by determining in situ density of sand in layer by layer which is expensive and time consuming. In this paper TRL DCP (Transportation Research Laboratory Dynamic Cone Penetration) and DPL (Dynamic Probing Light) are calibrated to predict the relative density of sand deposit. For this purpose sand of known relative density is prepared in a calibration chamber which is a mild steel cylinder with diameter 0.5 m and height 1.0 m. Relative density of sand is varied by controlling height of fall and diameter of hole of sand discharge bowl. After filling, every time DPL and DCP tests are performed and for every blow the penetration of cone is recorded. N10 is then calculated from penetration records. Thus a database is compiled where N10 and relative densities are known. A correlation is made between N 10 and relative density for two types of sand. A good correlation of N 10 and relative density is found

  17. Detections of MTBE in surficial and bedrock aquifers in New England

    International Nuclear Information System (INIS)

    Grady, S.J.

    1995-01-01

    The gasoline additive methyl tert-butyl ether (MTBE) was detected in 24% of water samples collected from surficial and bedrock aquifers in areas of New England. MTBE was the most frequently detected volatile organic compound among the 60 volatile chemicals analyzed and was present in 33 of 133 wells sampled from July 1993 through September 1995. The median MTBE concentration measured in ground-water samples was 0.45 microgram per liter and concentrations ranged from 0.2 to 5.8 microgram per liter. The network of wells sampled for MTBE consisted of 103 monitoring wells screened in surficial sand-and-gravel aquifers and 30 domestic-supply wells in fractured crystalline bedrock aquifers. Seventy-seven percent of all MTBE detections were from 26 shallow monitoring wells screened in surficial aquifers. MTBE was detected in42% of monitoring wells in urban areas. In agricultural areas, MTBE was detected i 8% (2 of 24) of wells and was not detected in undeveloped areas. Sixty-two percent of the MTBE detections in surficial aquifers were from wells within 0.25 mile of gasoline stations or underground gasoline storage tanks; all but one of these wells were in Connecticut and Massachusetts, where reformulated gasoline is used. MTBE was detected in 23% of deep domestic-supply wells that tapped fractured bedrock aquifers. MTBE was detected in bedrock wells only in Connecticut and Massachusetts; land use near the wells was suburban to rural, and none of the sampled bedrock wells were within 0.25 mile of a gasoline station

  18. Heterogeneity-enhanced gas phase formation in shallow aquifers during leakage of CO2-saturated water from geologic sequestration sites

    DEFF Research Database (Denmark)

    Plampin, Michael R.; Lassen, Rune Nørbæk; Sakaki, Toshihiro

    2014-01-01

    sands. Soil moisture sensors were utilized to observe the formation of gas phase near the porous media interfaces. Results indicate that the conditions under which heterogeneity controls gas phase evolution can be successfully predicted through analysis of simple parameters, including the dissolved CO2......, it is important to understand the physical processes that CO2 will undergo as it moves through naturally heterogeneous porous media formations. Previous studies have shown that heterogeneity can enhance the evolution of gas phase CO2 in some cases, but the conditions under which this occurs have not yet been...... quantitatively defined, nor tested through laboratory experiments. This study quantitatively investigates the effects of geologic heterogeneity on the process of gas phase CO2 evolution in shallow aquifers through an extensive set of experiments conducted in a column that was packed with layers of various test...

  19. Evidence for Upward Flow of Saline Water from Depth into the Mississippi River Valley Alluvial Aquifer in Southeastern Arkansas

    Science.gov (United States)

    Larsen, D.; Paul, J.

    2017-12-01

    Groundwater salinization is occurring in the Mississippi River Valley Alluvial (MRVA) aquifer in southeastern Arkansas (SE AR). Water samples from the MRVA aquifer in Chicot and Desha counties have yielded elevated Cl-concentrations with some as high as 1,639 mg/L. Considering that the MRVA aquifer is the principle source of irrigation water for the agricultural economy of SE AR, salinization needs to be addressed to ensure the sustainability of crop, groundwater, and soil resources in the area. The origin of elevated salinity in MRVA aquifer was investigated using spatial and factor analysis of historical water quality data, and sampling and tracer analysis of groundwater from irrigation, municipal, and flowing industrial wells in SE AR. Spatial analysis of Cl- data in relation to soil type, geomorphic features and sand-blow density indicate that the Cl- anomalies are more closely related to the sand-blow density than soil data, suggesting an underlying tectonic control for the distribution of salinity. Factor analysis of historical geochemical data from the MRVA and underlying Sparta aquifer shows dilute and saline groups, with saline groups weighted positively with Cl- or Na+ and Cl-. Tracer data suggest a component of evaporatively evolved crustal water of pre-modern age has mixed with younger, fresher meteoric sources in SE AR to create the saline conditions in the MRVA aquifer. Stable hydrogen and oxygen values of waters sampled from the Tertiary Sparta and MRVA aquifers deviate from the global and local meteoric water lines along an evaporative trend (slope=4.4) and mixing line with Eocene Wilcox Group groundwaters. Ca2+ and Cl- contents vary with Br- along mixing trends between dilute MRVA water and Jurassic Smackover Formation pore fluids in southern AR. Increasing Cl- content with C-14 age in MRVA aquifer groundwater suggests that the older waters are more saline. Helium isotope ratios decrease with He gas content for more saline water, consistent with

  20. Simulation of groundwater flow in the Edwards-Trinity and related aquifers in the Pecos County region, Texas

    Science.gov (United States)

    Clark, Brian R.; Bumgarner, Johnathan R.; Houston, Natalie A.; Foster, Adam L.

    2014-01-01

    The Edwards-Trinity aquifer is a vital groundwater resource for agricultural, industrial, and public supply uses in the Pecos County region of western Texas. The U.S. Geological Survey completed a comprehensive, integrated analysis of available hydrogeologic data to develop a numerical groundwater-flow model of the Edwards-Trinity and related aquifers in the study area in parts of Brewster, Jeff Davis, Pecos, and Reeves Counties. The active model area covers about 3,400 square miles of the Pecos County region of Texas west of the Pecos River, and its boundaries were defined to include the saturated areas of the Edwards-Trinity aquifer. The model is a five-layer representation of the Pecos Valley, Edwards-Trinity, Dockum, and Rustler aquifers. The Pecos Valley aquifer is referred to as the alluvial layer, and the Edwards-Trinity aquifer is divided into layers representing the Edwards part of the Edwards-Trinity aquifer and the Trinity part of the Edwards-Trinity aquifer, respectively. The calibration period of the simulation extends from 1940 to 2010. Simulated hydraulic heads generally were in good agreement with observed values; 1,684 out of 2,860 (59 percent) of the simulated values were within 25 feet of the observed value. The average root mean square error value of hydraulic head for the Edwards-Trinity aquifer was 34.2 feet, which was approximately 4 percent of the average total observed change in groundwater-level altitude (groundwater level). Simulated spring flow representing Comanche Springs exhibits a pattern similar to observed spring flow. Independent geochemical modeling corroborates results of simulated groundwater flow that indicates groundwater in the Edwards-Trinity aquifer in the Leon-Belding and Fort Stockton areas is a mixture of recharge from the Barilla and Davis Mountains and groundwater that has upwelled from the Rustler aquifer.

  1. Geological study for identifying potential aquifer zone in Pakes and Bandung Villages, Konang District, Bangkalan Region

    International Nuclear Information System (INIS)

    I Gde Sukadana

    2010-01-01

    Konang District has a problem on fresh water supply particularly in dry season. Two villages in the district, namely Pakes and Konang, are densely populated areas having agriculture activities, so available of sufficient fresh water is necessary. A fresh water source that can be developed in this area is deep groundwater source from potential aquifers. A geological study has been conducted to identify potential aquifer based on lithological aspect and geological structure. According to the regional stratigraphy. the study area consists of Tawun Formation and Ngrayong Formation. They compose of carbonaceous clay stone (the oldest rock unit), carbonaceous clay stone with sandy limestone intercalations, sandy limestone interbed with carbonaceous clay stone, tuff sandstone with clay stone intercalations, and reef limestone (the youngest) respectively. Strike and dip positions of the rocks layers are N110°E/22° - N150°E/26°, located on the south anticline axis with wavy plan to gentle slope of hilly morphology. Among the rock unit, only sandy limestone has fine sand with sub angular in shape and open pack. Qualitatively. this rock has good porosity and permeability and is enables to save and to flow subsurface water. Thus. the sandy limestone is considered as a potential zone for fresh water resources. Whereas, carbonaceous clay stone with clay grain size has low porosity and permeability, so it is potential as a cap rock. (author)

  2. Lithology identification of aquifers from geophysical well logs and fuzzy logic analysis: Shui-Lin Area, Taiwan

    Science.gov (United States)

    Hsieh, Bieng-Zih; Lewis, Charles; Lin, Zsay-Shing

    2005-04-01

    The purpose of this study is to construct a fuzzy lithology system from well logs to identify formation lithology of a groundwater aquifer system in order to better apply conventional well logging interpretation in hydro-geologic studies because well log responses of aquifers are sometimes different from those of conventional oil and gas reservoirs. The input variables for this system are the gamma-ray log reading, the separation between the spherically focused resistivity and the deep very-enhanced resistivity curves, and the borehole compensated sonic log reading. The output variable is groundwater formation lithology. All linguistic variables are based on five linguistic terms with a trapezoidal membership function. In this study, 50 data sets are clustered into 40 training sets and 10 testing sets for constructing the fuzzy lithology system and validating the ability of system prediction, respectively. The rule-based database containing 12 fuzzy lithology rules is developed from the training data sets, and the rule strength is weighted. A Madani inference system and the bisector of area defuzzification method are used for fuzzy inference and defuzzification. The success of training performance and the prediction ability were both 90%, with the calculated correlation of training and testing equal to 0.925 and 0.928, respectively. Well logs and core data from a clastic aquifer (depths 100-198 m) in the Shui-Lin area of west-central Taiwan are used for testing the system's construction. Comparison of results from core analysis, well logging and the fuzzy lithology system indicates that even though the well logging method can easily define a permeable sand formation, distinguishing between silts and sands and determining grain size variation in sands is more subjective. These shortcomings can be improved by a fuzzy lithology system that is able to yield more objective decisions than some conventional methods of log interpretation.

  3. Groundwater monitoring program plan and conceptual site model for the Al-Tuwaitha Nuclear Research Center in Iraq.

    Energy Technology Data Exchange (ETDEWEB)

    Copland, John Robin; Cochran, John Russell

    2013-07-01

    The Radiation Protection Center of the Iraqi Ministry of Environment is developing a groundwater monitoring program (GMP) for the Al-Tuwaitha Nuclear Research Center located near Baghdad, Iraq. The Al-Tuwaitha Nuclear Research Center was established in about 1960 and is currently being cleaned-up and decommissioned by Iraqs Ministry of Science and Technology. This Groundwater Monitoring Program Plan (GMPP) and Conceptual Site Model (CSM) support the Radiation Protection Center by providing: A CSM describing the hydrogeologic regime and contaminant issues, recommendations for future groundwater characterization activities, and descriptions of the organizational elements of a groundwater monitoring program. The Conceptual Site Model identifies a number of potential sources of groundwater contamination at Al-Tuwaitha. The model also identifies two water-bearing zones (a shallow groundwater zone and a regional aquifer). The depth to the shallow groundwater zone varies from approximately 7 to 10 meters (m) across the facility. The shallow groundwater zone is composed of a layer of silty sand and fine sand that does not extend laterally across the entire facility. An approximately 4-m thick layer of clay underlies the shallow groundwater zone. The depth to the regional aquifer varies from approximately 14 to 17 m across the facility. The regional aquifer is composed of interfingering layers of silty sand, fine-grained sand, and medium-grained sand. Based on the limited analyses described in this report, there is no severe contamination of the groundwater at Al-Tuwaitha with radioactive constituents. However, significant data gaps exist and this plan recommends the installation of additional groundwater monitoring wells and conducting additional types of radiological and chemical analyses.

  4. Electrical resistivity tomography determines the spatial distribution of clay layer thickness and aquifer vulnerability, Kandal Province, Cambodia

    Science.gov (United States)

    Uhlemann, Sebastian; Kuras, Oliver; Richards, Laura A.; Naden, Emma; Polya, David A.

    2017-10-01

    Despite being rich in water resources, many areas of South East Asia face difficulties in securing clean water supply. This is particularly problematic in regions with a rapidly growing population. In this study, the spatial variability of the thickness of a clay layer, controlling surface - groundwater interactions that affect aquifer vulnerability, was investigated using electrical resistivity tomography (ERT). Data were acquired along two transects, showing significant differences in the imaged resistivities. Borehole samples were analyzed regarding particle density and composition, and linked to their resistivity. The obtained relationships were used to translate the field electrical resistivities into lithologies. Those revealed considerable variations in the thickness of the clay layer, ranging from 0 m up to 25 m. Geochemical data, highlighting zones of increased ingress of surface water into the groundwater, confirmed areas of discontinuities in the clay layer, which act as preferential flow paths. The results may guide urban planning of the Phnom Penh city expansion, in order to supply the growing population with safe water. The presented approach of using geophysics to estimate groundwater availability, accessibility, and vulnerability is not only applicable to Kandal Province, Cambodia, but also to many other areas of fast urbanization in South East Asia and beyond.

  5. Impact of increasing freight loads on rail substructure from fracking sand transportation.

    Science.gov (United States)

    2014-03-01

    In this report the effect of surface infiltration of frac sand and heavy axle loads (HALs) were studied for their impact on the ballast layer. : Different combinations of ballast and fracking sand were constructed to observe long term trends of defor...

  6. Cost and Performance Report of Electrical Resistance Heating (ERH) for Source Treatment. Addendum

    Science.gov (United States)

    2008-09-29

    remains and thin sandy layers. Patuxent Multiple-Layer Aquifer Sand, gray and yellow, with interbedded clay, kaolinized feldspar, pyrite and lignite...treatment. However, the post-treatment CVOC mass is likely to be even more sporadically dispersed than the pre-treatment CVOC mass, leading to similar (or

  7. Development of A Mississippi River Alluvial Aquifer Groundwater Model

    Science.gov (United States)

    Karakullukcu, R. E.; Tsai, F. T. C.; Bhatta, D.; Paudel, K.; Kao, S. C.

    2017-12-01

    The Mississippi River Alluvial Aquifer (MRAA) underlies the Mississippi River Valley of the northeastern Louisiana, extending from the north border of Louisiana and Arkansas to south central of Louisiana. The MRAA has direct contact with the Mississippi River. However, the interaction between the Mississippi River and the alluvial aquifer is largely unknown. The MRAA is the second most used groundwater source in Louisiana's aquifers with about 390 million gallons per day, which is about 25% of all groundwater withdrawals in Louisiana. MRAA is the major water source to agriculture in the northeastern Louisiana. The groundwater withdrawals from the MRAA increases annually for irrigation. High groundwater pumping has caused significant groundwater level decline and elevated salinity in the aquifer. Therefore, dealing with agricultural irrigation is the primary purpose for managing the MRAA. The main objective of this study is to develop a groundwater model as a tool for the MRAA groundwater management. To do so, a hydrostratigraphy model of the MRAA was constructed by using nearly 8,000 drillers' logs and electric logs collected from Louisiana Department of Natural Resources. The hydrostratigraphy model clearly shows that the Mississippi River cuts into the alluvial aquifer. A grid generation technique was developed to convert the hydrostratigraphy model into a MODFLOW model with 12 layers. A GIS-based method was used to estimate groundwater withdrawals for irrigation wells based on the crop location and acreage from the USDACropScape - Cropland Data Layer. Results from the Variable Infiltration Capacity (VIC) model were used to determine potential recharge. NHDPlusV2 data was used to determine water level for major streams for the MODFLOW River Package. The groundwater model was calibrated using groundwater data between 2004 and 2015 to estimate aquifer hydraulic conductivity, specific yield, specific storage, river conductance, and surficial recharge.

  8. Effects of highway-deicer application on ground-water quality in a part of the Calumet Aquifer, northwestern Indiana

    Science.gov (United States)

    Watson, Lee R.; Bayless, E. Randall; Buszka, Paul M.; Wilson, John T.

    2002-01-01

    The effects of highway-deicer application on ground-water quality were studied at a site in northwestern Indiana using a variety of geochemical indicators. Site characteristics such as high snowfall rates; large quantities of applied deicers; presence of a high-traffic highway; a homogeneous, permeable, and unconfined aquifer; a shallow water table; a known ground-water-flow direction; and minimal potential for other sources of chloride and sodium to complicate source interpretation were used to select a study area where ground water was likely to be affected by deicer application. Forty-three monitoring wells were installed in an unconfined sand aquifer (the Calumet aquifer) near Beverly Shores in northwestern Indiana. Wells were installed along two transects that approximately paralleled groundwater flow in the Calumet aquifer and crossed US?12. US?12 is a highway that receives Indiana?s highest level of maintenance to maintain safe driving conditions. Ground-water quality and water-level data were collected from the monitoring wells, and precipitation and salt-application data were compiled from 1994 through 1997. The water-quality data indicated that chloride was the most easily traced indicator of highway deicers in ground water. Concentration ratios of chloride to iodide and chloride to bromide and Stiff diagrams of major element concentrations indicated that the principal source of chloride and sodium in ground water from the uppermost one-third to one-half of the Calumet relative electromagnetic conductivity defined a distinct plume of deicer-affected water in the uppermost 8 feet of aquifer at about 9 feet horizontally from the paved roadway edge and a zone of higher conductivity than background in the lower one-third of the aquifer. Chloride and sodium in the deep parts of the aquifer originated from natural sources. Chloride and sodium from highway deicers were present in the aquifer throughout the year. The highest concentrations of chloride and sodium

  9. Regeneration of a confined aquifer after redevelopment and decommission of artesian wells, example from Grafendorf aquifer (Styria, Austria)

    Science.gov (United States)

    Mehmedovski, Nudzejma; Winkler, Gerfried

    2016-04-01

    Water is essential for life and it is therefore necessary to protect drinking water sustainably. Compared to shallow groundwater, deeper groundwater is especially important due to its characteristic tendency to remain extensively unaffected by environmental impacts. Thus, the uncontrolled waste of this valuable resource has to be avoided. A lot of artesian wells have been established in Grafendorf bei Hartberg (Styria, Austria). Almost all wells were not state-of-the art. As a result the different aquifer horizons began to intermix. Additionally some of the artesian wells had a permanent free overflow and the water was not even used. Consequently, since 1950, where the mean discharge of 37 wells was 0,334 l/s per well, the discharge has decreased to 0,090 l/s until 2013, which means a decline of about 75 %. As a reaction to these declines a decommissioning campaign was conducted where 69 artesian wells have been closed by injecting a cement-bentonite suspension (ratio 3:1). The Grafendorf aquifer is situated in the Styrian Basin and consists of 5 separated artesian horizons in Neogene sediments. These artesian horizons range from 42 m (1st horizon) to 176 m (5th horizon) and mostly consist of sand, partly of fine/medium/coarse gravel and partially with minor clay content. In order to analyse the reaction of the Grafendorf aquifer to these redevelopments, 5 monitoring wells could be used for the analysis. Some monitoring wells include different aquifer horizons and hydraulically short cut them. Thus, in this work the analysis focus on the general trend of the whole aquifer system neglecting the individual interactions between the different aquifers. In a first investigation step the hydraulic properties of the aquifer system has been determined using pumping tests which were analysed with different analytical solutions with the software AQTESOLV. Overall the pumping test solutions hardly differ in the transmissivity and hydraulic conductivity. On the contrary the

  10. Influence green sand system by core sand additions

    Directory of Open Access Journals (Sweden)

    N. Špirutová

    2012-01-01

    Full Text Available Today, about two thirds of iron alloys casting (especially for graphitizing alloys of iron are produced into green sand systems with usually organically bonded cores. Separation of core sands from the green sand mixture is very difficult, after pouring. The core sand concentration increase due to circulation of green sand mixture in a closed circulation system. Furthermore in some foundries, core sands have been adding to green sand systems as a replacement for new sands. The goal of this contribution is: “How the green sand systems are influenced by core sands?”This effect is considered by determination of selected technological properties and degree of green sand system re-bonding. From the studies, which have been published yet, there is not consistent opinion on influence of core sand dilution on green sand system properties. In order to simulation of the effect of core sands on the technological properties of green sands, there were applied the most common used technologies of cores production, which are based on bonding with phenolic resin. Core sand concentration added to green sand system, was up to 50 %. Influence of core sand dilution on basic properties of green sand systems was determined by evaluation of basic industrial properties: moisture, green compression strength and splitting strength, wet tensile strength, mixture stability against staling and physical-chemistry properties (pH, conductivity, and loss of ignition. Ratio of active betonite by Methylene blue test was also determined.

  11. Ground-water availability from surficial aquifers in the Red River of the North Basin, Minnesota

    Science.gov (United States)

    Reppe, Thomas H.C.

    2005-01-01

    Population growth and commercial and industrial development in the Red River of the North Basin in Minnesota, North Dakota, and South Dakota have prompted the Bureau of Reclamation, U.S. Department of the Interior, to evaluate sources of water to sustain this growth. Nine surficial-glacial (surficial) aquifers (Buffalo, Middle River, Two Rivers, Beach Ridges, Pelican River, Otter Tail, Wadena, Pineland Sands, and Bemidji-Bagley) within the Minnesota part of the basin were identified and evaluated for their ground-water resources. Information was compiled and summarized from published studies to evaluate the availability of ground water. Published information reviewed for each of the aquifers included location and extent, physical characteristics, hydraulic properties, ground-water and surface-water interactions, estimates of water budgets (sources of recharge and discharge) and aquifer storage, theoretical well yields and actual ground-water pumping data, recent (2003) ground-water use data, and baseline ground-water-quality data.

  12. Effect of dissolved oxygen manipulation on diffusive emissions from NAPL-impacted low permeability soil layers.

    Science.gov (United States)

    Clifton, Lisa M; Dahlen, Paul R; Johnson, Paul C

    2014-05-06

    Aquifer physical model experiments were performed to investigate if diffusive emissions from nonaqueous phase liquid (NAPL)-impacted low-permeability layers into groundwater moving through adjacent NAPL-free high-permeability layers can be reduced by creating an aerobic biotreatment zone at the interface between the two, and if over time that leads to reduced emissions after treatment ceases. Experiments were performed in two 1.2-m long × 1.2-m high × 5.4 cm wide stainless steel tanks; each with a high-permeability sand layer overlying a low-permeability crushed granite layer containing a NAPL mixture of indane and benzene. Each tank was water-saturated with horizontal flow primarily through the sand layer. The influent water was initially deoxygenated and the emissions and concentration distributions were allowed to reach near-steady conditions. The influent dissolved oxygen (DO) level was increased stepwise to 6.5-8.5 mg/L and 17-20 mg/L, and then decreased back to deoxygenated conditions. Each condition was maintained for at least 45 days. Relative to the near-steady benzene emission at the initial deoxygenated condition, the emission was reduced by about 70% when the DO was 6.5-8.5 mg/L, 90% when the DO was 17-20 mg/L, and ultimately 60% when returning to low DO conditions. While the reductions were substantial during treatment, longer-term reductions after 120 d of elevated DO treatment, relative to an untreated condition predicted by theory, were low: 29% and 6% in Tank 1 and Tank 2, respectively. Results show a 1-2 month lag between the end of DO delivery and rebound to the final near-steady emissions level. This observation has implications for post-treatment performance monitoring sampling at field sites.

  13. Influence of Clay Content, Mineralogy and Fabric On Radar Frequency Response of Aquifer Materials

    Science.gov (United States)

    West, L. J.; Handley, K.

    High frequency electromagnetic methods such as ground penetrating radar (GPR) and time domain reflectometry (TDR) are widely employed to measure water saturation in the vadose zone and water filled porosity in the saturated zone. However, previous work has shown that radar frequency dielectric properties are strongly influenced by clay as well as by water content. They have also shown that that the dielectric response of clay minerals is strongly frequency dependent, and that even a small proportion of clay such as that present in many sandstone aquifers can have a large effect at typi- cal GPR frequencies (around 100MHz). Hence accurate water content/porosity deter- mination requires clay type and content to be taken into account. Reported here are dielectric measurements on clay-sand mixtures, aimed at investigating the influence of clay mineralogy, particle shape, and the geometrical arrangement of the mixture constituents on GPR and TDR response. Dielectric permittivity (at 50-1000MHz) was measured for mixtures of Ottawa Sand and various clay minerals or clay size quartz rock flour, using a specially constructed dielectric cell. Both homogeneous and layered mixtures were tested. The influence of pore water salinity, clay type, and particle arrangement on the dielectric response is interpreted in terms of dielectric dispersion mechanisms. The appropriateness of var- ious dielectric mixing rules such as the Complex Refractive Index Method (CRIM) for determination of water content or porosity from field GPR and TDR data are dis- cussed.

  14. Evaluate of head loss, sediment value and copper removal in sand media (rapid sand filter

    Directory of Open Access Journals (Sweden)

    Daneshi Navab

    2014-06-01

    Full Text Available Along with the technology development and increasing consumption of water resources, we are experiencing low qualities in the mentioned resources. Copper brings about serious environment al pollution, threatening human health and ecosystem. This metal found variously in water resources and industrial activities. Therefore, it needs to treat the water resources from these excessive amounts. Different methods have used for this reason but the most used method during recent years has been the absorption by economic absorbers such as sand. Rapid sand filters usually used in water and wastewater treatment plants for water clarification. In this research, a single layer gravity rapid sand filter has used to reduce different concentrations of copper. sediment value and head loss arising in filter media is simulated by using combination of Carman-Kozeny, Rose and Gregory models in different discharges of rapid sand filter. Results have shown that with increasing in discharge and decreasing in input copper concentration, arriving time to given head loss, is increasing. In addition, results demonstrated that with increasing in copper concentration in influent, removal efficiency is decreasing somewhat. Results of this research can applied in an appropriate design of rapid sand filter to copper removal, a prediction of rapid sand filter ability to copper removal and an estimation of arising head loss during filter work thus evaluating of time interval backwash. DOI: http://dx.doi.org/10.3126/ije.v3i2.10641 International Journal of the Environment Vol.3(2 2014: 276-286

  15. Estimation of hydraulic parameters from an unconfined aquifer test conducted in a glacial outwash deposit, Cape Cod, Massachusetts

    Science.gov (United States)

    Moench, Allen F.; Garabedian, Stephen P.; LeBlanc, Denis R.

    2001-01-01

    An aquifer test conducted in a sand and gravel, glacial outwash deposit on Cape Cod, Massachusetts was analyzed by means of a model for flow to a partially penetrating well in a homogeneous, anisotropic unconfined aquifer. The model is designed to account for all significant mechanisms expected to influence drawdown in observation piezometers and in the pumped well. In addition to the usual fluid-flow and storage processes, additional processes include effects of storage in the pumped well, storage in observation piezometers, effects of skin at the pumped-well screen, and effects of drainage from the zone above the water table.

  16. Hydrogeological impact of fault zones on a fractured carbonate aquifer, Semmering (Austria)

    Science.gov (United States)

    Mayaud, Cyril; Winkler, Gerfried; Reichl, Peter

    2015-04-01

    Fault zones are the result of tectonic processes and are geometrical features frequently encountered in carbonate aquifer systems. They can hamper the fluid migration (hydrogeological barriers), propagate the movement of fluid (draining conduits) or be a combination of both processes. Numerical modelling of fractured carbonate aquifer systems is strongly bound on the knowledge of a profound conceptual model including geological and tectonic settings such as fault zones. In further consequence, numerical models can be used to evaluate the conceptual model and its introduced approximations. The study was conducted in a fractured carbonate aquifer built up by permomesozoic dolo/limestones of the Semmering-Wechsel complex in the Eastern Alps (Austria). The aquifer has an assumed thickness of about 200 m and dips to the north. It is covered by a thin quartzite layer and a very low permeable layer of quartz-phyllite having a thickness of up to several hundred meters. The carbonate layer crops out only in the southern part of the investigation area, where it receives autogenic recharge. The geological complexity affects some uncertainties related to the extent of the model area, which was determined to be about 15 km². Three vertical fault zones cross the area approximately in a N-S direction. The test site includes an infrastructural pilot tunnel gallery of 4.3 km length with two pumping stations, respectively active since August 1997 and June 1998. The total pumping rate is about 90 l/s and the drawdown data were analysed analytically, providing a hydraulic conductivity of about 5E-05 m/s for the carbonate layer. About 120 m drawdown between the initial situation and situation with pumping is reported by piezometers. This led to the drying up of one spring located at the southern border of the carbonates. A continuum approach using MODFLOW-2005 was applied to reproduce numerically the observed aquifer behaviour and investigate the impact of the three fault zones. First

  17. Numerical analysis of the hydrogeologic controls in a layered coastal aquifer system, Oahu, Hawaii, USA

    Science.gov (United States)

    Oki, Delwyn S.; Souza, William R.; Bolke, Edward L.; Bauer, Glenn R.

    The coastal aquifer system of southern Oahu, Hawaii, USA, consists of highly permeable volcanic aquifers overlain by weathered volcanic rocks and interbedded marine and terrestrial sediments of both high and low permeability. The weathered volcanic rocks and sediments are collectively known as caprock, because they impede the free discharge of groundwater from the underlying volcanic aquifers. A cross-sectional groundwater flow and transport model was used to evaluate the hydrogeologic controls on the regional flow system in southwestern Oahu. Controls considered were: (a) overall caprock hydraulic conductivity; and (b) stratigraphic variations of hydraulic conductivity in the caprock. Within the caprock, variations in hydraulic conductivity, caused by stratigraphy or discontinuities of the stratigraphic units, are a major control on the direction of groundwater flow and the distribution of water levels and salinity. Results of cross-sectional modeling confirm the general groundwater flow pattern that would be expected in a layered coastal system. Groundwater flow is: (a) predominantly upward in the low-permeability sedimentary units; and (b) predominantly horizontal in the high-permeability sedimentary units. Résumé Le système aquifère littoral du sud d'Oahu (Hawaii, États-Unis) est constitué par des aquifères de terrains volcaniques très perméables, recouverts par des roches volcaniques altérées, et interstratifiés avec des sédiments marins et continentaux de perméabilité aussi bien forte que faible. Les roches volcaniques altérées et les sédiments sont globalement considérés comme une couverture, parce qu'ils s'opposent à l'écoulement de l'eau souterraine provenant des aquifères volcaniques sous-jacents. Les contrôles hydrogéologiques sur le système aquifère régional du sud-ouest d'Oahu ont étéévaluées au moyen d'un modèle d'écoulement et de transport sur une section transversale. Ces contrôles prennent en compte la conductivit

  18. Hydrogeology and groundwater evaluation of a shallow coastal aquifer, southern Akwa Ibom State (Nigeria)

    Science.gov (United States)

    Edet, Aniekan

    2017-09-01

    The rapid expansion of economic activities in coastal parts of Nigeria has triggered an uncoordinated development of groundwater leading to stress on the resource. Hence a study was conducted to assess the hydrogeological characteristics of the shallow coastal aquifer of southern Akwa Ibom State, Nigeria. Emphasis was on the hydraulic characteristics, quality with respect to domestic and irrigation purposes and influence of seawater. The study result revealed that the aquifer consist of intercalations of clayey sand and sand. The aquifer is characterized by high hydraulic conductivity and transmissivity values. The groundwater flow direction is southwards with higher groundwater depletion in the dry season. Groundwater samples from hand dug wells and boreholes were evaluated based on World Health Organization standard and some indices, respectively, for drinking and irrigation uses. The groundwaters are fit for drinking and domestic uses. However, more than 70 % of the pH values are not within the allowable limits of between 6.5 and 9.2 for drinking and domestic use. Therefore, it is recommended that neutralizing filter containing calcite or ground limestone should be applied to raise the pH of the groundwater. Of the 10 parameters used to assess the water for irrigation use, only sodium adsorption ratio (SAR), magnesium hazard (MH) and magnesium ratio indicated the excellent quality of these waters. Na+-K+-HCO3 - constitute the dominant water type. Total dissolved solids and ratios of Na+/Cl-, Mg2+/Cl-, and Ca2+/SO4 2- and saltwater mixing index (SMI) suggest some level of seawater intrusion in the area.

  19. Hydrodynamic framework of Saharan Triassic aquifers in South Tunisia and Algeria

    Science.gov (United States)

    Dhia, H. Ben; Chiarelli, A.

    The main characteristics of the lower Triassic in the Saharan part of Tunisia are presented. This first study of the aquifer is made possible because of data available from numerous petroleum wells that exist in the region. The results show that the reservoir is of importance for either geothermal energy recovering or human water needs; especially since its salinity lies in the range 2 g/l to 60 g/l. Along the Tunisian-Llibyan frontier, because of its pressure and salinity (<3 g/l), the aquifer can be used for regional needs. The study also shows that the salinity gradient (SE-NW) increases orthogonally to the runoff direction (SW-NE). This phenomenon was unexpected and it is necessary to consider the aquifer in its regional North African framework and to include its Algerian part to understand it; when the salinity and potentiometric maps include both countries, a regional pattern is evident. Furthermore, a correspondence is noted between the salinity variations and the percentage of detritic elements in the reservoir. Salinity increases toward the NW, while the detritic elements decrease in that direction. Zones with salt content lower than 5 g/l seem to be related to good reservoirs and shales, that are rich in sands, and carbonates. The aquifer water supply is primarily linked to gravity flow and secondarily to compaction flow.

  20. Hydrogeology of the Ramapo River-Woodbury Creek valley-fill aquifer system and adjacent areas in eastern Orange County, New York

    Science.gov (United States)

    Heisig, Paul M.

    2015-01-01

    The hydrogeology of the valley-fill aquifer system and surrounding watershed areas was investigated within a 23-mile long, fault-controlled valley in eastern Orange County, New York. Glacial deposits form a divide within the valley that is drained to the north by Woodbury Creek and is drained to the south by the Ramapo River. Surficial geology, extent and saturated thickness of sand and gravel aquifers, extent of confining units, bedrock-surface elevation beneath valleys, major lineaments, and the locations of wells for which records are available were delineated on an interactive map.

  1. Radionuclide transport in the Neogene aquifer system located in the environment of the Boom clay

    International Nuclear Information System (INIS)

    Gedeon, M.; Marivoet, J.; Vandersteen, K.

    2012-01-01

    boundaries are imposed from the resulting heads in the catchment-scale Neogene aquifer model. In this way, a regional flow pattern is modelled in the Miocene aquifer. A constant radionuclide source flux is defined at the bottom of the model, coinciding with the top of the Boom Clay. A square source of 1x1 km is assumed, corresponding to a hypothetical repository footprint at the reference Mol site. The radionuclide decay is neglected, since only long-lived radionuclides are expected to leach out of the Boom Clay, whereas the steady-state in the Neogene aquifer occurs within 20 000 years. In a reference simulation, only the advection-dispersion including diffusion are assumed. Including the latter process is inevitable to simulate the transport in the lowest parts of the Neogene aquifer system (Berchem and Voort Formations), where the combination of the low hydraulic gradient associated with the catchment divide and a relatively low hydraulic conductivity result in very low groundwater velocities and related low Peclet numbers. The transport modelling results provide the spatial spreading of the steady-state radionuclide concentrations in the Neogene aquifer. Three types of biosphere entry points are assumed, the rivers, the well and the soil. In the used conservative approach (neither decay, nor sorption is assumed), the entire radionuclide flux enters the rivers at steady-state. The model then identifies the influenced river sections. In case of the well, the concentration distribution in the Diest sands is evaluated. The well is then assumed to be located at the most adverse location. The soil recipient corresponds to wet pastures located close to the Kleine Nete river, characterized by shallow groundwater levels and an upwards contaminant flux. The maximum concentration in the top-most layer (non-river modelling cells) is then taken forward as representative of the concentrations in the soil. The sensitivity of the used conceptual model and parameters on the estimated

  2. Seismic velocities to characterize the soil-aquifer continuum on the Orgeval experimental basin (France)

    Science.gov (United States)

    Pasquet, S.; Ludovic, B.; Dhemaied, A.; Flipo, N.; Guérin, R.; Mouhri, A.; Faycal, R.; Vitale, Q.

    2013-12-01

    Among geophysical methods applied to hydrogeology, seismic prospecting is frequently confined to the characterization of aquifers geometry. The combined study of pressure- (P) and shear- (SH) wave velocities (respectively Vp and Vs) can however provide information about the aquifer parameters, as it is commonly done for most fluids in hydrocarbon exploration. This approach has recently been proposed in sandy aquifers with the estimation of Vp/Vs ratio. In order to address such issues in more complex aquifer systems (e.g. unconsolidated, heterogeneous or low-permeability media) we carried out P- and SH-wave seismic surveys on the Orgeval experimental basin (70 km east from Paris, France). This basin drains a multi-layer aquifer system monitored by a network of piezometers. The upper part of the aquifer system is characterized by tabular layers well delineated all over the basin thanks to Electrical Resistivity Tomography (ERT), Time Domain ElectroMagnetic (TDEM) soundings and wells. But the lateral variability of the intrinsic properties in each layer raises questions regarding the hydrodynamics of the upper aquifer and the validity of interpolations between piezometers. A simple interpretation of P- and SH-wave first arrivals for tabular models provides 1D velocity structures in very good agreement with the stratification anticipated from ERT and nearby geological logs. Vp/Vs ratios show a strong contrast at a depth consistent with the observed water table level, reinforcing the assumption of a free upper aquifer in the area. Similar experiments have to be conducted under different hydrological conditions to validate these observations. Anticipating the need to propose lateral applications of the method, we additionally performed tomographic inversions of the recorded data to retrieve 2D Vp and Vs models. If interpreted independently, both models fail to depict the stratification of the medium and the water table level cannot be straightforwardly identified

  3. Surface geoeletric sounding for the determination of aquifer ...

    African Journals Online (AJOL)

    The top soil whose resistivity range from 211-438 ohm-m has an average thickness of 1.7m. This is underlain by a second layer whose resistivity vary between 59 and 203 ohm-m and a thickness that vary from 6.5 to 11.2m. This layer is composed of sand which is probably clayey in profile 1. The third layer is a clayey sandy ...

  4. Layered granule chute flow near the angle of repose

    International Nuclear Information System (INIS)

    Pitts, J.H.; Walton, O.R.

    1985-01-01

    A natural, two-layered gravity flow of sand can be obtained on chutes inclined at angles slightly above the angle of repose of the sand. The top-surface layer is free-flowing, is thin, and moves rapidly at supercritical velocity. The velocity depends mainly on the character of the sand and the chute inclination angle. The bottom layer is thick and moves more slowly, with the flow controlled by adjustable weirs at the chute exit. The velocity profile in the thick bottom layer is curved; as much as an order of magnitude higher velocity occurs in the upper portion of the layer than occurs along the bottom wall of the chute. This study has applications to the cascade inertial fusion concept

  5. The Maryland Coastal Plain Aquifer Information System: A GIS-based tool for assessing groundwater resources

    Science.gov (United States)

    Andreasen, David C.; Nardi, Mark R.; Staley, Andrew W.; Achmad, Grufron; Grace, John W.

    2016-01-01

    Groundwater is the source of drinking water for ∼1.4 million people in the Coastal Plain Province of Maryland (USA). In addition, groundwater is essential for commercial, industrial, and agricultural uses. Approximately 0.757 × 109 L d–1 (200 million gallons/d) were withdrawn in 2010. As a result of decades of withdrawals from the coastal plain confined aquifers, groundwater levels have declined by as much as 70 m (230 ft) from estimated prepumping levels. Other issues posing challenges to long-term groundwater sustainability include degraded water quality from both man-made and natural sources, reduced stream base flow, land subsidence, and changing recharge patterns (drought) caused by climate change. In Maryland, groundwater supply is managed primarily by the Maryland Department of the Environment, which seeks to balance reasonable use of the resource with long-term sustainability. The chief goal of groundwater management in Maryland is to ensure safe and adequate supplies for all current and future users through the implementation of appropriate usage, planning, and conservation policies. To assist in that effort, the geographic information system (GIS)–based Maryland Coastal Plain Aquifer Information System was developed as a tool to help water managers access and visualize groundwater data for use in the evaluation of groundwater allocation and use permits. The system, contained within an ESRI ArcMap desktop environment, includes both interpreted and basic data for 16 aquifers and 14 confining units. Data map layers include aquifer and ­confining unit layer surfaces, aquifer extents, borehole information, hydraulic properties, time-series groundwater-level data, well records, and geophysical and lithologic logs. The aquifer and confining unit layer surfaces were generated specifically for the GIS system. The system also contains select groundwater-quality data and map layers that quantify groundwater and surface-water withdrawals. The aquifer

  6. Use of geophysical logs to estimate the quality of ground water and the permeability of aquifers

    Science.gov (United States)

    Hudson, J.D.

    1996-01-01

    The relation of formation factor to resistivity of formation water and intergranular permeability has often been investigated, and the general consensus is that this relation is closest when established in a clean-sand aquifer in which water quality does not vary substantially. When these restrictions are applied, the following standard equation is a useful tool in estimating the resistance of the formation water: F = Ro/Rw, where F is the formation factor, which is a function of the effective porosity; Ro is the resistivity of a formation that is 100 percent saturated with interstitial water; and Rw is the resistivity of the water in the saturated zone. However, arenaceous aquifers can have electrical resistivities that are not directly related to resistivity of water or porosity. Surface conductivity and ion exchange are significant factors when the sediments are clay bearing. The solid constituents are a major component of the parameters needed to solve the equation for formation-water resistivity and estimates of aquifer permeability. A correction process needs to be applied to adjust the variables, Ro and F, to the equivalent of clean sand. This report presents an empirical method of using the neutron log and the electrical-resistivity values from long- and short-normal resistivity logs to correct for fine-grained material and the subsequent effects of low impedance to electrical flow that are not related to the resistance of formation water.

  7. Optimization of Design of Aquifer Storage and Recovery System (ASTR) for Enhanced Infiltration Rate with Reduced Cost at the Coastal Aquifers of South-Western Bangladesh

    Science.gov (United States)

    Nawrin, N.; Ahmed, K. M.; Rahman, M. M.

    2016-12-01

    Increasing salinity of natural drinking water sources has been reported as one of the many problems that affect low-income countries. Safe potable water sources in coastal Bangladesh have become contaminated by varying degrees of salinity due to saltwater intrusion, cyclone and storm surges and increased shrimp and crab farming along the coastal areas. This crisis is also exacerbated owing to climate change. The problem of salinity can have serious implications to public health. Here Managed Aquifer Recharge (MAR) has been ascertained as a better solution to overcome the fresh water shortage in the coastal belt of Bangladesh in terms of groundwater quality improvement and supply fresh water even during the dry period. 19 MAR systems have been built and tested in the area for providing community water supply by way of creating freshwater buffer zone in the brackish aquifers through artificial recharge of pond or rooftop rainwater. These existing ASTR schemes consist of sand filtration tank with 4 to 6 large diameter infiltration wells filled with sorted gravel. These larger diameter recharge wells make the construction and maintenance expensive and little difficult for the rural communities. Therefore, modification of design is required for enhancing infiltration rates with reduced costs. As the design of the existing MAR system have confronted some problems, the details of design, construction and performance have been studied from previous investigations and a new modified ASTR scheme has been demonstrated to amplify the infiltration rate along with monitoring scheme. Smaller 4 inch diameter empty recharge wells and PVC screen have been used in the newly developed design. Daily infiltration rate has been increased to 8 to 10 m3/d compared to 4 to 6 m3/d in the old design. Three layered sand filtration tank has been prepared by modification of an abandoned PSF. Time needed for lowering EC to acceptable limits has been found to be significantly lower than the pre

  8. Hydrogeology of Two Areas of the Tug Hill Glacial-Drift Aquifer, Oswego County, New York

    Science.gov (United States)

    Miller, Todd S.; Bugliosi, Edward F.; Hetcher-Aguila, Kari K.; Eckhardt, David A.

    2007-01-01

    Two water-production systems, one for the Village of Pulaski and the other for the Villages of Sandy Creek and Lacona in Oswego County, New York, withdraw water from the Tug Hill glacial-drift aquifer, a regional sand and gravel aquifer along the western flank of the Tug Hill Plateau, and provide the sole source of water for these villages. As a result of concerns about contamination of the aquifer, two studies were conducted during 2001 to 2004, one for each water-production system, to refine the understanding of ground-water flow surrounding these water-production systems. Also, these studies were conducted to determine the cause of the discrepancy between ground-water ages estimated from previously constructed numerical ground-water-flow models for the Pulaski and Sandy Creek/Lacona well fields and the apparent ground-water ages determined using concentrations of tritium and chlorofluorocarbons. The Village of Pulaski withdrew 650,000 gallons per day in 2000 from four shallow, large-diameter, dug wells finished in glaciolacustrine deposits consisting of sand with some gravelly lenses 3 miles east of the village. Four 2-inch diameter test wells were installed upgradient from each production well, hydraulic heads were measured, and water samples collected and analyzed for physical properties, inorganic constituents, nutrients, bacteria, tritium, dissolved gases, and chlorofluorocarbons. Recharge to the Tug Hill glacial-drift aquifer is from precipitation directly over the aquifer and from upland sources in the eastern part of the recharge area, including (1) unchannelized runoff from till and bedrock hills east of the aquifer, (2) seepage to the aquifer from streams that drain the Tug Hill Plateau, (3) ground-water inflow from the till and bedrock on the adjoining Tug Hill Plateau. Water-quality data collected from four piezometers near the production wells in November 2003 indicated that the water is a calcium-bicarbonate type with iron concentrations that

  9. Test work of sand compaction pile method on coal ash soil foundation. Sekitanbai jiban ni okeru sand compaction pile koho no shiken seko

    Energy Technology Data Exchange (ETDEWEB)

    Goto, K.; Maeda, S.; Shibata, T. (The Kansai Electric Power Co. Inc., Osaka (Japan))

    1992-01-25

    As an electric power supply source after the 1990 {prime}s, Nos. 5 and 6 units are additionally being constructed by Kansai Electric Power in its Himeji Power Station No.1 which is an exclusively LNG burning power station. The additional construction site of those units is of soil foundation reclaimed with coal ash which was used residual product in the existing No.1 through No.4 units. As a result of soil foundation survey, the coal ash layer and sand layer were known to be of material to be possibly liquidized at the time of earthquake. As measures against the liquidization, application was basically made of a sand compaction pile (SCP) method which is economical and abundant in record. However, that method was so short of record in the coal ash layer that its evaluation was difficult in soil reforming effect. Therefore, its applicability was evaluated by a work test on the site, which resulted in a confirmation that the coal ash as well as the sand can be sufficiently reformed by the SCP method. Started in September, 1991, the additional construction of Nos. 5 and 6 units in Himeji Power Station No.1 uses a 1.5m pitch SCP method to reform the soil foundation. 3 refs., 10 figs., 1 tab.

  10. 14C measurements in aquifers with methane

    International Nuclear Information System (INIS)

    Barker, J.F.; Fritz, P.; Brown, R.M.

    1978-01-01

    A survey of various groundwater systems indicates that methane is a common trace constituent and occasionally a major carbon species in groundwaters. Thermocatalytic methane had delta 13 CCH 4 > -45% 0 and microbially-produced or biogenic methane had delta 13 CCH 4 0 . Groundwaters containing significant biogenic methane had abnormally heavy delta 13 C values for the inorganic carbon. Thermocatalytic methane had no apparent effect on the inorganic carbon. Because methanogenesis seriously affects the carbon isotope geochemistry of groundwaters, the correction of raw 14 C ages of affected groundwaters must consider these effects. Conceptual models are developed which adjust the 14 C activity of the groundwater for the effects of methanogenesis and for the dilution of carbon present during infiltration by simple dissolution of rock carbonate. These preliminary models are applied to groundwaters from the Alliston sand aquifer where methanogenesis has affected most samples. In this system, methanogenic bacteria using organic matter present in the aquifer matrix as substrate, have added inorganic carbon to the groundwater which has initiated further carbonate rock dissolution. These processes have diluted the inorganic carbon 14 C activity. (orig.) [de

  11. CO2/Brine transport into shallow aquifers along fault zones.

    Science.gov (United States)

    Keating, Elizabeth H; Newell, Dennis L; Viswanathan, Hari; Carey, J W; Zyvoloski, G; Pawar, Rajesh

    2013-01-02

    Unintended release of CO(2) from carbon sequestration reservoirs poses a well-recognized risk to groundwater quality. Research has largely focused on in situ CO(2)-induced pH depression and subsequent trace metal mobilization. In this paper we focus on a second mechanism: upward intrusion of displaced brine or brackish-water into a shallow aquifer as a result of CO(2) injection. Studies of two natural analog sites provide insights into physical and chemical mechanisms controlling both brackish water and CO(2) intrusion into shallow aquifers along fault zones. At the Chimayó, New Mexico site, shallow groundwater near the fault is enriched in CO(2) and, in some places, salinity is significantly elevated. In contrast, at the Springerville, Arizona site CO(2) is leaking upward through brine aquifers but does not appear to be increasing salinity in the shallow aquifer. Using multiphase transport simulations we show conditions under which significant CO(2) can be transported through deep brine aquifers into shallow layers. Only a subset of these conditions favor entrainment of salinity into the shallow aquifer: high aspect-ratio leakage pathways and viscous coupling between the fluid phases. Recognition of the conditions under which salinity is favored to be cotransported with CO(2) into shallow aquifers will be important in environmental risk assessments.

  12. Numerical Evaluation of Size Effect on the Stress-Strain Behaviour of Geotextile-Reinforced Sand

    DEFF Research Database (Denmark)

    Hosseinpour, I.; Mirmoradi, S.H.; Barari, Amin

    2010-01-01

    This paper studies the effect of sample size on the stress-strain behavior and strength characteristics of geotextile reinforced sand using the finite element numerical analysis. The effect of sample size was investigated by studying the effects of varying the number of geotextile layers, the con......This paper studies the effect of sample size on the stress-strain behavior and strength characteristics of geotextile reinforced sand using the finite element numerical analysis. The effect of sample size was investigated by studying the effects of varying the number of geotextile layers...... on the mechanical behavior of reinforced sand decreases with an increase in the sample size....

  13. The effects of the 2004 tsunami on a coastal aquifer in Sri Lanka

    DEFF Research Database (Denmark)

    Vithanage, Meththika Suharshini; Engesgaard, Peter Knudegaard; Villholth, Karen G.

    2012-01-01

    ) of the groundwater were carried out monthly from October 2005 to August 2007. The aquifer system and tsunami saltwater intrusion were modeled using the variable-density flow and solute transport code HST3D to understand the tsunami plume behavior and estimate the aquifer recovery time. EC values reduced as a result...... on groundwater in coastal areas. Field investigations on the east coast of Sri Lanka were carried out along a transect located perpendicular to the coastline on a 2.4 km wide sand stretch bounded by the sea and a lagoon. Measurements of groundwater table elevation and electrical conductivity (EC...... of the monsoonal rainfall following the tsunami with a decline in reduction rate during the dry season. The upper part of the saturated zone (down to 2.5 m) returned to freshwater conditions (EC

  14. Fate of triclocarban during soil aquifer treatment: Soil column studies

    KAUST Repository

    Essandoh, H. M K

    2010-04-01

    There are current concerns about the presence of persistent chemicals in recharge water used in soil aquifer treatment systems. Triclocarban (TCC) has been reported as a persistent, high production volume chemical with the potential to bioaccumulate in the environment. It is also known to have adverse effects such as toxicity and suspected endocrine disruption. This study was carried out to study the fate of TCC in soil aquifer treatment (SAT) through laboratory simulations in a soil column. The system performance was evaluated with regards to TCC influent concentration, sand (column) depth, and residence time. Results obtained confirmed the ability of SAT to reduce TCC concentrations in wastewater. Sorption and biodegradation were responsible for TCC removal, the latter mechanism however being unsustainable. The removal efficiency was found to be dependent on concentration and decreased over time and increased with column depth. Within the duration of the experimental run, TCC negatively impacted on treatment performance through a reduction in COD removals observed in the column. © IWA Publishing 2010.

  15. Laboratory-scale column study for remediation of TCE-contaminated aquifers using three-section controlled-release potassium permanganate barriers.

    Science.gov (United States)

    Yuan, Baoling; Li, Fei; Chen, Yanmei; Fu, Ming-Lai

    2013-05-01

    A laboratory-scale study with a sand column was designed to simulate trichloroethylene (TCE) pollution in the aquifer environment with three-section controlled-release potassium permanganate (CRP) barriers. The main objective of this study was to evaluate the feasibility of CRP barriers in remediation of TCE in aquifers in a long-term and controlled manner. CRP particles with a 1:3 molar ratio of KMnO4 to stearic acid showed the best controlled-release properties in pure water, and the theoretical release time was 138.5 days. The results of TCE removal in the test column indicated that complete removal efficiency of TCE in a sand column by three-section CRP barriers could be reached within 15 days. The molar ratio of KMnO4 to TCE in the three-section CRP barriers was 16:1, which was much lower than 82:1 as required when KMnO4 solution is used directly to achieve complete destruction of TCE. This result revealed that the efficiency of CRP for remediation of TCE was highly improved after encapsulation.

  16. Evaluating two infiltration gallery designs for managed aquifer recharge using secondary treated wastewater.

    Science.gov (United States)

    Bekele, Elise; Toze, Simon; Patterson, Bradley; Fegg, Wolfgang; Shackleton, Mark; Higginson, Simon

    2013-03-15

    As managed aquifer recharge (MAR) becomes increasingly considered for augmenting water-sensitive urban areas, fundamental knowledge of the achievable scale, longevity and maintenance requirements of different options will become paramount. This paper reports on a 39 month pilot scale MAR scheme that infiltrated secondary treated wastewater through unsaturated sand into a limestone and sand aquifer. Two types of infiltration gallery were constructed to compare their hydraulic performance, one using crushed, graded gravel, the other using an engineered leach drain system (Atlantis Leach System(®)). Both galleries received 25 kL of nutrient-rich, secondary treated wastewater per day. The Atlantis gallery successfully infiltrated 17 ML of treated wastewater over three years. The slotted distribution pipe in the gravel gallery became clogged with plant roots after operating for one year. The infiltration capacity of the gravel gallery could not be restored despite high pressure cleaning, thus it was replaced with an Atlantis system. Reduction in the infiltration capacity of the Atlantis system was only observed when inflow was increased by about 3 fold for two months. The performance of the Atlantis system suggests it is superior to the gravel gallery, requiring less maintenance within at least the time frame of this study. The results from a bromide tracer test revealed a minimum transport time of 3.7 days for the recharged water to reach the water table below 9 m of sand and limestone. This set a limit on the time available for attenuation by natural treatment within the unsaturated zone before it recharged groundwater. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  17. Estimating the Spatial Extent of Unsaturated Zones in Heterogeneous River-Aquifer Systems

    Science.gov (United States)

    Schilling, Oliver S.; Irvine, Dylan J.; Hendricks Franssen, Harrie-Jan; Brunner, Philip

    2017-12-01

    The presence of unsaturated zones at the river-aquifer interface has large implications on numerous hydraulic and chemical processes. However, the hydrological and geological controls that influence the development of unsaturated zones have so far only been analyzed with simplified conceptualizations of flow processes, or homogeneous conceptualizations of the hydraulic conductivity in either the aquifer or the riverbed. We systematically investigated the influence of heterogeneous structures in both the riverbed and the aquifer on the development of unsaturated zones. A stochastic 1-D criterion that takes both riverbed and aquifer heterogeneity into account was developed using a Monte Carlo sampling technique. The approach allows the reliable estimation of the upper bound of the spatial extent of unsaturated areas underneath a riverbed. Through systematic numerical modeling experiments, we furthermore show that horizontal capillary forces can reduce the spatial extent of unsaturated zones under clogged areas. This analysis shows how the spatial structure of clogging layers and aquifers influence the propensity for unsaturated zones to develop: In riverbeds where clogged areas are made up of many small, spatially disconnected patches with a diameter in the order of 1 m, unsaturated areas are less likely to develop compared to riverbeds where large clogged areas exist adjacent to unclogged areas. A combination of the stochastic 1-D criterion with an analysis of the spatial structure of the clogging layers and the potential for resaturation can help develop an appropriate conceptual model and inform the choice of a suitable numerical simulator for river-aquifer systems.

  18. Survey of geomorphological and hydrogeological data for mapping groundwater vulnerability of the Guarani Aquifer in Portão and Estância Velha/RS using the DRASTIC method

    Directory of Open Access Journals (Sweden)

    Osmar G. Wöhl Coelho

    2010-12-01

    Full Text Available The vulnerability mapping of groundwater contamination has been widely developed and included in municipal plans to guide environmental management policies and it is recommended in CONAMA 396 Resolution (Brasil, 2008. Portão and Estância Velha, RS regions present potencial risk of contamination due to industrial activities. The Guarani Aquifer System (SAG in the study area is composed by the Pirambóia and Botucatu Formations. Both formations are formed by sandstones and they are partially confined by the basalts of the Serra Geral Aquifer. The method DRASTIC was chosen to build the vulnerability map. The shallow water table and the sedimentary lithology are indicative factors of intermediate to high vulnerability. The soils were divided in domains according to their texture. The first domain of claysoil has an impermeable behavior. The infiltration tests and thick layers of clay confirm a low hydraulic conductivity of this pedological unit, providing a natural protection of the aquifer. However, in the study area, the second claysoil domain is dominant and has more diffuse sand in the profile. The restricted presence of expansive clay minerals increases the vulnerability. Occupancy of areas of high vulnerability is directly related to the contamination of the aquifer. The efficiency of the map is related to the interdependence of parameters involving hydrogeological and geomorphological aspects. Thus, it has been observed a high degree of vulnerability to groundwater contamination in 25% of the area, an intermediate vulnerability in 72.4%, and a low degree in only 2.6% of the area.

  19. Estimation of Stresses in a Dry Sand Layer Tested on Shaking Table

    Science.gov (United States)

    Sawicki, Andrzej; Kulczykowski, Marek; Jankowski, Robert

    2012-12-01

    Theoretical analysis of shaking table experiments, simulating earthquake response of a dry sand layer, is presented. The aim of such experiments is to study seismic-induced compaction of soil and resulting settlements. In order to determine the soil compaction, the cyclic stresses and strains should be calculated first. These stresses are caused by the cyclic horizontal acceleration at the base of soil layer, so it is important to determine the stress field as function of the base acceleration. It is particularly important for a proper interpretation of shaking table tests, where the base acceleration is controlled but the stresses are hard to measure, and they can only be deduced. Preliminary experiments have shown that small accelerations do not lead to essential settlements, whilst large accelerations cause some phenomena typical for limit states, including a visible appearance of slip lines. All these problems should be well understood for rational planning of experiments. The analysis of these problems is presented in this paper. First, some heuristic considerations about the dynamics of experimental system are presented. Then, the analysis of boundary conditions, expressed as resultants of respective stresses is shown. A particular form of boundary conditions has been chosen, which satisfies the macroscopic boundary conditions and the equilibrium equations. Then, some considerations are presented in order to obtain statically admissible stress field, which does not exceed the Coulomb-Mohr yield conditions. Such an approach leads to determination of the limit base accelerations, which do not cause the plastic state in soil. It was shown that larger accelerations lead to increase of the lateral stresses, and the respective method, which may replace complex plasticity analyses, is proposed. It is shown that it is the lateral stress coefficient K0 that controls the statically admissible stress field during the shaking table experiments.

  20. Creating fluid injectivity in tar sands formations

    Science.gov (United States)

    Stegemeier, George Leo; Beer, Gary Lee; Zhang, Etuan

    2010-06-08

    Methods for treating a tar sands formation are described herein. Methods for treating a tar sands may include heating a portion of a hydrocarbon layer in the formation from one or more heaters located in the portion. The heat may be controlled to increase the permeability of at least part of the portion to create an injection zone in the portion with an average permeability sufficient to allow injection of a fluid through the injection zone. A drive fluid and/or an oxidizing fluid may be provided into the injection zone. At least some hydrocarbons are produced from the portion.

  1. DNAPL migration in a coastal plain aquifer

    International Nuclear Information System (INIS)

    DiGuiseppi, W.H.; Jung, A.D.

    1995-01-01

    Soil and ground water at the Dover Gas Light Superfund Site, a former manufactured gas plant (1859 to 1948), are contaminated with polynuclear aromatic hydrocarbons and volatile organic compounds. Contaminants of concern include light aromatics, such as benzene, toluene, ethylbenzene, and xylenes (BTEX), and heavy aromatics, including naphthalene, acenaphthylene, phenanthrene, and benzo(a)pyrene. Although ground-water contaminant levels are elevated near the site, only naphthalene and acenaphthylene are present within an order of magnitude of their solubility limits, indicating the possibility of dense non-aqueous phase liquids (DNAPL) in the subsurface. The unconfined Columbia Aquifer, which is characterized by interfingering and discontinuous sand, silt, and clay Coastal Plain deposits, overlies a clay aquitard at a depth of 60 feet. The ground water beneath the intermediate clay horizon exhibited little or no contamination, even immediately downgradient from the site. The relationship between the more permeable granular sand horizons and the less permeable interfingering clay zones controls the migration of both the aqueous-phase contamination and the DNAPL. A detailed horizontal and vertical characterization of the subsurface stratigraphy was critical to the accurate interpretation of the extent and magnitude of contamination and the identification and delineation of DNAPL zones

  2. Potential building sand deposits in Songkhla province area

    Directory of Open Access Journals (Sweden)

    Kooptarnond, K.

    2002-10-01

    Full Text Available An investigation of potential building sand deposits in Songkhla province area subdivided them into four regions according to their accumulation in various alluvial plains, meanders throughout alluvial deposits and residual soils. Four selected deposits, were Rattaphum-Khuan Niang, U-Taphao river, Na Mom, and Chana-Thepha regions. Information obtained from these deposits revealed a good correlation between the geomorphological features as interpreted from aerial photographs and those identified from vertical electrical resistivity sounding results. Sand samples were analysed for their physical and chemical properties. Petrographic studies were also undertaken to characterize the composition types, texture and shapes. An overview of the sand properties was used them to be within the acceptable limits for building sand. However, relatively high organic impurities and soundness were found in sand from Khuan Niang and Na Mom deposits. The result indicated a potential reconnaissance mineral resource of about 46 square kilometres.A reserve evaluation for natural building sand was carried out by using Geographic Information System (GIS. Maps of the various parameters considered were constructed in digital database format with the aid of Arc/Info and ArcView software. Overlay mapping and buffer zone modules were performed to evaluate inferred resources of building sand. The key parameters of analysis included the distance from transportation, distance from streams, lithology and thickness of sand layers. The remaining inferred sand total was of about 386 million cubic metres or about 1,021 million metric tons was therefore estimated, of which 60 percent lies in the Rattaphum-Khuan Niang region and 40 percent in the other regions.

  3. The Sources of Moisture in the Sand Dunes – The Example of the Western Sahara Dune Field

    Directory of Open Access Journals (Sweden)

    Żmudzka Elwira

    2014-09-01

    Full Text Available Climatic and meteorological conditions may limit the aeolian transport within barchans. An explanation of that issue was the main goal of the investigation held in Western Sahara dune fields located around Tarfaya and Laâyoune. Particular attention was paid to the factors causing the moisture content rising of the sand dune surface layer, which could influence the wind threshold shear velocity in the aeolian transport. The wetted surface layer of sand, when receiving moisture from precipitation or suspensions, reduces the aeolian transport, even in case of wind velocity above 4-5 m s-1. Fog and dew condensation does not affect the moisture of deeper sand layers, what occurs after rainfall.

  4. Effective Laboratory Method of Chromite Content Estimation in Reclaimed Sands

    Directory of Open Access Journals (Sweden)

    Ignaszak Z.

    2016-09-01

    Full Text Available The paper presents an original method of measuring the actual chromite content in the circulating moulding sand of foundry. This type of material is applied for production of moulds. This is the case of foundry which most frequently perform heavy casting in which for the construction of chemical hardening mould is used, both the quartz sand and chromite sand. After the dry reclamation of used moulding sand, both types of sands are mixed in various ratios resulting that in reclaimed sand silos, the layers of varying content of chromite in mixture are observed. For chromite recuperation from the circulating moulding sand there are applied the appropriate installations equipped with separate elements generating locally strong magnetic field. The knowledge of the current ratio of chromite and quartz sand allows to optimize the settings of installation and control of the separation efficiency. The arduous and time-consuming method of determining the content of chromite using bromoform liquid requires operational powers and precautions during using this toxic liquid. It was developed and tested the new, uncomplicated gravimetric laboratory method using powerful permanent magnets (neodymium. The method is used in the production conditions of casting for current inspection of chromite quantity in used sand in reclamation plant.

  5. Ground-water flow directions and estimation of aquifer hydraulic properties in the lower Great Miami River Buried Valley aquifer system, Hamilton Area, Ohio

    Science.gov (United States)

    Sheets, Rodney A.; Bossenbroek, Karen E.

    2005-01-01

    . Although the part of the lower Great Miami River Buried Valley Aquifer System where the Hamilton North Well Field is located is semiconfined, unconfined, or locally confined and not directly connected to the Great Miami River, the discontinuity of the clay/till layers beneath the river indicates that other, deeper parts of the aquifer system may be directly connected to the Great Miami River.

  6. HYDROGEOLOGY AND CONCEPTUAL MODEL OF THE KARSTIC COASTAL AQUIFER IN NORTHERN YUCATAN STATE, MEXICO

    Directory of Open Access Journals (Sweden)

    Miguel J Villasuso-Pino

    2011-04-01

    Full Text Available The coastal zone of northern Yucatan Peninsula (YP is mainly constituted by Tertiary limestones, covered by Pleistocen limestones, where there exist swamps and estuary systems, locally called “rías”, with mouths connecting them to the sea and hence being a way for an important amount of groundwater to discharge, like in Ría Lagartos and Celestún. These limestones have karstic layers located at depths from 8 to 16 meters below terrain surface.  It is in these layers where groundwater mainly flows toward coast, passing below the sand dune and discharging in the sea in the form of submarine springs which in many cases manifest themselves on the marine surface depending on the hydraulic or piezometric fresh water head. The width of the superficial limestone within this coastal fringe, called “caliche”, varies from 5 to 10 kilometers in the study zone (Chuburna-Progreso-Chicxulub.  Its permeability is extremely low, so it constitutes a confining layer that impedes superficial waters to percolate toward groundwater.  The hydraulic head of the groundwater below this confining layer is over the mean sea level and also over the swamp water level, coastal lagoons and estuaries. There are two important hydrological phenomena that occur in this coastal fringe: 1 There is no recharge to the aquifer (groundwater due to limestone rock outcrops is impermeable or semipermeable; and 2 groundwater pressure is not lost, nor saline interfase is rised if the superficial layer is broken.  The groundwater pollution vulnerability within this coastal fringe is less than that for the superficial saline waters of swamps and estuaries, because of caliche’s low intrinsic permeability that impedes percolation.

  7. Analysis of Tide and Offshore Storm-Induced Water Table Fluctuations for Structural Characterization of a Coastal Island Aquifer

    Science.gov (United States)

    Trglavcnik, Victoria; Morrow, Dean; Weber, Kela P.; Li, Ling; Robinson, Clare E.

    2018-04-01

    Analysis of water table fluctuations can provide important insight into the hydraulic properties and structure of a coastal aquifer system including the connectivity between the aquifer and ocean. This study presents an improved approach for characterizing a permeable heterogeneous coastal aquifer system through analysis of the propagation of the tidal signal, as well as offshore storm pulse signals through a coastal aquifer. Offshore storms produce high wave activity, but are not necessarily linked to significant onshore precipitation. In this study, we focused on offshore storm events during which no onshore precipitation occurred. Extensive groundwater level data collected on a sand barrier island (Sable Island, NS, Canada) show nonuniform discontinuous propagation of the tide and offshore storm pulse signals through the aquifer with isolated inland areas showing enhanced response to both oceanic forcing signals. Propagation analysis suggests that isolated inland water table fluctuations may be caused by localized leakage from a confined aquifer that is connected to the ocean offshore but within the wave setup zone. Two-dimensional groundwater flow simulations were conducted to test the leaky confined-unconfined aquifer conceptualization and to identify the effect of key parameters on tidal signal propagation in leaky confined-unconfined coastal aquifers. This study illustrates that analysis of offshore storm signal propagation, in addition to tidal signal propagation, provides a valuable and low resource approach for large-scale characterization of permeable heterogeneous coastal aquifers. Such an approach is needed for the effective management of coastal environments where water resources are threatened by human activities and the changing climate.

  8. Alluvial aquifers in the Mzingwane catchment: Their distribution, properties, current usage and potential expansion

    Science.gov (United States)

    Moyce, William; Mangeya, Pride; Owen, Richard; Love, David

    The Mzingwane River is a sand filled channel, with extensive alluvial aquifers distributed along its banks and bed in the lower catchment. LandSat TM imagery was used to identify alluvial deposits for potential groundwater resources for irrigation development. On the false colour composite band 3, band 4 and band 5 (FCC 345) the alluvial deposits stand out as white and dense actively growing vegetation stands out as green making it possible to mark out the lateral extent of the saturated alluvial plain deposits using the riverine fringe and vegetation . The alluvial aquifers form ribbon shaped aquifers extending along the channel and reaching over 20 km in length in some localities and are enhanced at lithological boundaries. These alluvial aquifers extend laterally outside the active channel, and individual alluvial aquifers have been measured with area ranging from 45 ha to 723 ha in the channels and 75 ha to 2196 ha on the plains. The alluvial aquifers are more pronounced in the Lower Mzingwane, where the slopes are gentler and allow for more sediment accumulation. Estimated water resources potential ranges between 175,000 m 3 and 5,430,000 m 3 in the channels and between 80,000 m 3 and 6,920,000 m 3 in the plains. Such a water resource potential can support irrigation ranging from 18 ha to 543 ha for channels alluvial aquifers and 8 ha to 692 ha for plain alluvial aquifers. Currently, some of these aquifers are being used to provide water for domestic use, livestock watering and dip tanks, commercial irrigation and market gardening. The water quality of the aquifers in general is fairly good due to regular recharge and flushing out of the aquifers by annual river flows and floodwater. Water salinity was found to increase significantly in the end of the dry season, and this effect was more pronounced in water abstracted from wells on the alluvial plains. During drought years, recharge is expected to be less and if the drought is extended water levels in the

  9. Field and numerical descriptions of fracture geometries and terminations in chalk containing chert layers and inclusions; implications for groundwater flow in Danish chalk aquifers

    Science.gov (United States)

    Seyum, S.

    2017-12-01

    This study is a description of the fracture distribution in laterally discontinuous chalk and chert layers, with an investigation on how fracture lengths and apertures vary as a function of applied stresses, material properties, and interface properties. Natural fractures intersect laterally extensive, discontinuous, chalk-chert material interfaces in 62 million-year old to 72 million-year old Chalk Group formations exposed at Stevns Klint, Denmark. Approximately one-third of Denmark's fresh water use is from chalk and limestone regional aquifers of the Chalk Group formations, where rock permeability is dominantly a function of open fracture connectivities. Fractured, centimeter- to decimeter-thick chert layers and inclusions (101 GPa elastic stiffness) are interlayered with fractured, meter-thick chalk layers (100 GPa elastic stiffness). Fractures are observed to terminate against and cross chalk-chert interfaces, affecting the vertical flow of water and pollutants between aquifers. The discontinuous and variably thin nature of chert layers at Stevns Klint effectively merges adjacent fracture-confining layers of chalk along discrete position intervals, resulting in lateral variability of fracture spacing. Finite element numerical models are designed to describe fracture interactions with stiff, chert inclusions of various shapes, thicknesses, widths, orientations, and interface friction and fracture toughness values. The models are two-dimensional with isotropic, continuous material in plane strain and uniformly applied remote principal stresses. These characteristics are chosen based on interpretations of the petrophysics of chalk and chert, the burial history of the rock, and the scale of investigation near fracture tips relative to grain sizes. The result are value ranges for relative stiffness contrasts, applied stresses, and material interface conditions that would cause fractures to cross, terminate at, or form along chalk-chert interfaces, with emphasis on

  10. Air Sparging Versus Gas Saturated Water Injection for Remediation of Volatile LNAPL in the Borden Aquifer

    Science.gov (United States)

    Barker, J.; Nelson, L.; Doughty, C.; Thomson, N.; Lambert, J.

    2009-05-01

    In the shallow, rather homogeneous, unconfined Borden sand aquifer, field trials of air sparging (Tomlinson et al., 2003) and pulsed air sparging (Lambert et al., 2009) have been conducted, the latter to remediate a residual gasoline source emplaced below the water table. As well, a supersaturated (with CO2) water injection (SWI) technology, using the inVentures inFusion system, has been trialed in two phases: 1. in the uncontaminated sand aquifer to evaluate the radius of influence, extent of lateral gas movement and gas saturation below the water table, and 2. in a sheet pile cell in the Borden aquifer to evaluate the recovery of volatile hydrocarbon components (pentane and hexane) of an LNAPL emplaced below the water table (Nelson et al., 2008). The SWI injects water supersaturated with CO2. The supersaturated injected water moves laterally away from the sparge point, releasing CO2 over a wider area than does gas sparging from a single well screen. This presentation compares these two techniques in terms of their potential for remediating volatile NAPL components occurring below the water table in a rather homogeneous sand aquifer. Air sparging created a significantly greater air saturation in the vicinity of the sparge well than did the CO2 system (60 percent versus 16 percent) in the uncontaminated Borden aquifer. However, SWI pushed water, still supersaturated with CO2, up to about 2.5 m from the injection well. This would seem to provide a considerable advantage over air sparging from a point, in that gas bubbles are generated at a much larger radius from the point of injection with SWI and so should involve additional gas pathways through a residual NAPL. Overall, air sparging created a greater area of influence, defined by measurable air saturation in the aquifer, but air sparging also injected about 12 times more gas than was injected in the SWI trials. The pulsed air sparging at Borden (Lambert et al.) removed about 20 percent (4.6 kg) of gasoline

  11. Lithological and hydrological influences on ground-water composition in a heterogeneous carbonate-clay aquifer system

    Science.gov (United States)

    Kauffman, S.J.; Herman, J.S.; Jones, B.F.

    1998-01-01

    The influence of clay units on ground-water composition was investigated in a heterogeneous carbonate aquifer system of Miocene age in southwest Florida, known as the Intermediate aquifer system. Regionally, the ground water is recharged inland, flows laterally and to greater depths in the aquifer systems, and is discharged vertically upward at the saltwater interface along the coast. A depth profile of water composition was obtained by sampling ground water from discrete intervals within the permeable carbonate units during coring and by squeezing pore water from a core of the less-permeable clay layers. A normative salt analysis of solute compositions in the water indicated a marine origin for both types of water and an evolutionary pathway for the clay water that involves clay diagenesis. The chemical composition of the ground water in the carbonate bedrock is significantly different from that of the pore water in the clay layers. Dissolution of clays and opaline silica results in high silica concentrations relative to water in other parts of the Intermediate aquifer system. Water enriched in chloride relative to the overlying and underlying ground water recharges the aquifer inland where the confining clay layer is absent, and it dissolves carbonate and silicate minerals and reacts with clays along its flow path, eventually reaching this coastal site and resulting in the high chloride and silica concentrations observed in the middle part of the Intermediate aquifer system. Reaction-path modeling suggests that the recharging surficial water mixes with sulfate-rich water upwelling from the Upper Floridan aquifer, and carbonate mineral dissolution and precipitation, weathering and exchange reactions, clay mineral diagenesis, clay and silica dissolution, organic carbon oxidation, and iron and sulfate reduction result in the observed water compositions.A study was conducted to clarify the influence of clay units on ground-water composition in a heterogeneous

  12. The Tunisian Jurassic aquifer in the North African Sahara aquifer system: information derived from two-dimensional seismic reflection and well logs

    Science.gov (United States)

    Ben Lasmar, Rafika; Guellala, Rihab; Garrach, Mohamed; Mahroug, Ali; Sarsar Naouali, Benen; Inoubli, Mohamed Hédi

    2017-12-01

    Southern Tunisia is an arid area where socio-economic activities are dependent on groundwater resources. The presented study aims to better characterize the Jurassic aquifer based on geological and geophysical data, with a view to develop a rational exploitation program. Well logs are used to precisely determine the position and composition of the known Jurassic aquifer layers and to identify others able to produce good quality water. The logs show that limestones, sandstones and dolomites of the Krachoua, Techout and Foum Tataouine formations are the main Jurassic aquifers. Sixty-eight seismic-reflection sections are integrated within this study. The interpolation between the interpreted sections leads to the construction of isochronous isopach maps and geoseismic sections, and their analysis finds that compressive and extensive tectonic deformations have influenced the Jurassic aquifer geometry. The Hercynian orogeny phase manifestation is remarkable in that there are several stratigraphic gaps in the Jurassic sequence. The E-W, NW-SE, and NNW-SSE accidents, reactivated in normal faults since the Permian to Lower Cretaceous epochs, have generated the structures found in the Jurassic series, such as subsided and raised blocks. Their syn-sedimentary activity has controlled the thickness and facies of these series. The Cretaceous, Tortonian and Post-Villafranchian compressions are responsible for the Jurassic-deposits folding in some localities. The highlighted tectonic and sedimentary events have an important impact on the Jurassic aquifer function by favoring the Jurassic aquifer interconnections and their connections with the Triassic and Cretaceous permeable series.

  13. Delineating The Subsurface Structures Using Electrical Resistivity Sounding In Some Part Of Willeton Perth Western Australia

    Directory of Open Access Journals (Sweden)

    Okan Evans Onojasun

    2015-08-01

    Full Text Available Abstract Geophysical survey using electrical resistivity methods has been carried out within the industrial area of Willeton Perth Western Australia with the view to delineate the geoelectric characteristics of the basement complex and evaluate the groundwater potential in the area. Vertical electrical sounding with ABEM SAS 3000 Terrameter and Schlumberger electrode configuration were employed for data acquisition. Apparent resistivity values obtained from the field measurements were plotted against half current electrodes spacing on a log-log graph while a model was suggested to fit the resistivity distribution presented in the sounding. The results from the modelling were finally iterated to the lowest Root Mean Square RMS percentage error using computer software A 7 point filter derived by Guptasarma to calculate a forward model. Analysis of the results showed that the study area has fairly homogenous subsurface stratification with four distinct subsurface layers above the depth of 37m. The four subsurface layers comprises top soil mainly of unconsolidated and sand containing organic matter unsaturated sand layer with consolidated and highly resistive water saturated sand layer with highly water saturated soil and the sub-stratum layer consisting of clay material. The aquifer performance is best at about 32m hence it is suggested that boreholes for sustainable water supply in this area should be drilled to about 32 m to hit prolific aquifer.

  14. The in-situ decontamination of sand and gravel aquifers by chemically enhanced solubilization of multiple-component DNAPLS with surfactant solutions. Topical report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-01-01

    Laboratory, numerical simulation, and field studies have been conducted to assess the potential use of micellar-surfactant solutions to solubilize chlorinated solvents contaminating sand and gravel aquifers. Laboratory studies were conducted at the State University of New York at Buffalo (SUNY) while numerical simulation and field work were undertaken by INTERA Inc. in collaboration with Martin Marietta Energy Systems Inc. at the Paducah Gaseous Diffusion Plant (PGDP) in Kentucky. Ninety-nine surfactants were screened for their ability to solubilize trichloroethene (TCE), perchloroethylene (PCE), and carbon tetrachloride (CTET). Ten of these were capable of solubilizing TCE to concentrations greater than 15,000 mg/L, compared to its aqueous solubility of 1,100 mg/L. Four surfactants were identified as good solubilizers of all three chlorinated solvents. Of these, a secondary alcohol ethoxylate was the first choice for in situ testing because of its excellent solubilizing ability and its low propensity to sorb. However, this surfactant did not meet the Commonwealth of Kentucky`s acceptance criteria. Consequently, it was decided to use a surfactant approved for use by the Food and Drug Administration as a food-grade additive. As a 1% micellar-surfactant solution, this sorbitan monooleate has a solubilization capacity of 16,000 mg TCE/L, but has a higher propensity to sorb to clays than has the alcohol ethoxylate.

  15. Steam and air co-injection in removing residual TCE in unsaturated layered sandy porous media.

    Science.gov (United States)

    Peng, Sheng; Wang, Ning; Chen, Jiajun

    2013-10-01

    Steam and air co-injection is a promising technique for volatile and semi-volatile organic contaminant remediation in heterogeneous porous media. In this study, removal of trichloroethene (TCE) with steam-air co-injection was investigated through a series of 2D sandbox experiments with different layered sand structures, and through numerical simulations. The results show that a layered structure with coarse sand, in which steam and air convection are relatively rapid, resulted in a higher removal rate and a larger removal ratio than those observed in an experiment using finer sand; however, the difference was not significant, and the removal ratios from three experiments ranged from 85% to 94%. Slight downward movement of TCE was observed for Experiment 1 (TCE initially in a fine sand zone encased in a coarse sand), while no such movement was observed for Experiment 2 (TCE initially in two fine sand layers encased in a coarse sand) or 3 (TCE initially in a silty sand zone encased in a coarse sand). Simulations show accumulation of TCE at the interface of the layered sands, which indicates a capillary barrier effect in restraining the downward movement of TCE. This effect is illustrated further by a numerical experiment with homogeneous coarse sand, in which continuous downward TCE movement to the bottom of the sandbox was simulated. Another numerical experiment with higher water saturation was also conducted. The results illustrate a complicated influence of water saturation on TCE removal in a layered sand structure. Published by Elsevier B.V.

  16. Trajectories of saltating sand particles behind a porous fence

    Science.gov (United States)

    Zhang, Ning; Lee, Sang Joon; Chen, Ting-Guo

    2015-01-01

    Trajectories of aeolian sand particles behind a porous wind fence embedded in a simulated atmospheric boundary layer were visualized experimentally, to investigate the shelter effect of the fence on sand saltation. Two sand samples, one collected from a beach (d = 250 μm) and the other from a desert (d = 100 μm), were tested in comparison with the previous studies of a 'no-fence' case. A wind fence (ε = 38.5%) was installed on a flat sand bed filled with each sand sample. A high-speed photography technique and the particle tracking velocimetry (PTV) method were employed to reconstruct the trajectories of particles saltating behind the fence. The collision processes of these sand particles were analyzed, momentum and kinetic energy transfer between saltating particles and ground surface were also investigated. In the wake region, probability density distributions of the impact velocities agree well with the pattern of no-fence case, and can be explained by a log-normal law. The horizontal component of impact velocity for the beach sand is decreased by about 54%, and about 76% for the desert sand. Vertical restitution coefficients of bouncing particles are smaller than 1.0 due to the presence of the wind fence. The saltating particles lose a large proportion of their energy during the collision process. These results illustrate that the porous wind fence effectively abates the further evolution of saltating sand particles.

  17. Sand, salt and water in the Stampriet Basin, Namibia: Calculating ...

    African Journals Online (AJOL)

    exposures on Bysteek Farm that there is a shallow Kalahari bed unit (perhaps 20 m to 30 ... ~30 m deep, again suggesting that the Kalahari beds (uncon- fined aquifer layer, Table 1) ..... moisture (< 1.7%). Neither chloride nor moisture features.

  18. Hydraulic and Groundwater Chemical Parameters of the Aquifer in Malakasari, Bandung

    Directory of Open Access Journals (Sweden)

    Ahnaf Jemi S.

    2018-01-01

    Full Text Available In order to reveal the physical condition of the aquifer, the pumping test using Cooper-Jacob (1946 principle has conducted at well SM5. The observation data of the test then processed to generate various value of hydraulic properties i.e. 3.241x10-4 cm2/sec for transmissivity (T, 8.103x10-6 cm/sec for conductivity (K, 0.05055 for storativity (S, and 3.852x10-3 ft-1 for specific storage (Ss. These data show that the aquifer composed of unconsolidated sedimentary rocks ranged from coarse sand to silt. In addition, also performed the feasibility test of groundwater by using Multimeter which produces chemical parameter data. The chemical parameter of eight well samples have average values of 6.62, 766.25 μs/cm and 376.25 mg/L for pH, electric conductivity (EC, and total dissolved solid (TDS respectively, while physical observation shows no turbidity and odor.

  19. Software packages for simulating groundwater flow and the spreading of soluble and insoluble admixtures in aquifers

    International Nuclear Information System (INIS)

    Roshal, A.A.; Klein, I.S.; Svishchov, A.M.

    1993-01-01

    Software programs are described designed for solving hydrogeological and environmental problems related to the analysis and prediction of groundwater flow and the spreading of solutes and insolubles in the saturated zones. The software package GWFS (Ground Water Flow Simulation) allows for simulating steady-state and unsteady-state flow in confined, unconfined, and confined-unconfined multi-layer and quasi-3D isotropic and anisotropic aquifer systems. Considered are intra-layer sources and sinks, infiltration, inter-layer leakages, the interrelationships with surface reservoirs and streams, interrelationships with the drains, aquifer discharge to surface sources. The MTS (Mass Transport Simulation) package is designed for solving solute transport problems. Taken into account is convective transport, hydrodynamic dispersion and diffusion, linear equilibrium sorption. The method of characteristics is being implemented here using the ''particles-in-cells'' scheme in which the transport is modeled with the help of tracers. The software package OWFS (Oil-Water Flow Simulation) is designed for the simulation of hydrocarbon (oil-water) migration in aquifers

  20. Iron in the Middle Devonian aquifer system and its removal at Võru County water treatment plants, Estonia

    Directory of Open Access Journals (Sweden)

    Mariina Hiiob

    2012-08-01

    Full Text Available Groundwater abstracted from the Middle Devonian aquifer system is the main source of drinking water in South Estonia. High iron and manganese concentrations in groundwater are the greatest problems in this region. The total iron concentrations up to 16 mg L–1 are mainly caused by a high Fe2+ content in water, pointing to the dominance of reducing conditions in the aquifer system. A pilot study was carried out to estimate the effectiveness of 20 groundwater purification plants with eight different water treatment systems (aeration combined with Manganese Greensand, Birm, Nevtraco, Hydrolit-Mn, Magno-Dol and quartz sand filters in Võru County. The results demonstrate that in most cases the systems with pre-aeration effectively purify groundwater from iron, but only 13 out of 20 water treatment plants achieved a reduction of iron concentration to the level fixed in drinking water requirements (0.2 mg L–1. Manganese content decreased below the maximum allowed concentration in only 25% of systems and in cases where the filter media was Birm or quartz sand and pre-oxidation was applied. The study showed that the high level of iron purification does not guarantee effective removal of manganese.

  1. Discourse characteristics of ore-bearing aquifer of Chaidenghao in Husiliang area

    International Nuclear Information System (INIS)

    Zhou Bowen

    2012-01-01

    Call Sri Lanka article focuses primarily on wood board beam region trench features lots of ore-bearing aquifer, located in the ore-bearing aquifer under Zhiluo lower sub-section; A brief introduction to the work area's geology and stratigraphic structure, and a brief description of the main ore purpose of the lower layer Zhiluo under sub-section lithology; Shows aquifer top, bottom and described its characteristics, the two formed a 'watertight-water-impermeable' good hydrogeological structure of the ancient interlayer oxidation zone formation to create a favorable space. Based on the above description and analysis of the location of uranium mineralization in good condition, have a good vision of the mineralization. (author)

  2. Changing the scale of hydrogeophysical aquifer heterogeneity characterization

    Science.gov (United States)

    Paradis, Daniel; Tremblay, Laurie; Ruggeri, Paolo; Brunet, Patrick; Fabien-Ouellet, Gabriel; Gloaguen, Erwan; Holliger, Klaus; Irving, James; Molson, John; Lefebvre, Rene

    2015-04-01

    Contaminant remediation and management require the quantitative predictive capabilities of groundwater flow and mass transport numerical models. Such models have to encompass source zones and receptors, and thus typically cover several square kilometers. To predict the path and fate of contaminant plumes, these models have to represent the heterogeneous distribution of hydraulic conductivity (K). However, hydrogeophysics has generally been used to image relatively restricted areas of the subsurface (small fractions of km2), so there is a need for approaches defining heterogeneity at larger scales and providing data to constrain conceptual and numerical models of aquifer systems. This communication describes a workflow defining aquifer heterogeneity that was applied over a 12 km2 sub-watershed surrounding a decommissioned landfill emitting landfill leachate. The aquifer is a shallow, 10 to 20 m thick, highly heterogeneous and anisotropic assemblage of littoral sand and silt. Field work involved the acquisition of a broad range of data: geological, hydraulic, geophysical, and geochemical. The emphasis was put on high resolution and continuous hydrogeophysical data, the use of direct-push fully-screened wells and the acquisition of targeted high-resolution hydraulic data covering the range of observed aquifer materials. The main methods were: 1) surface geophysics (ground-penetrating radar and electrical resistivity); 2) direct-push operations with a geotechnical drilling rig (cone penetration tests with soil moisture resistivity CPT/SMR; full-screen well installation); and 3) borehole operations, including high-resolution hydraulic tests and geochemical sampling. New methods were developed to acquire high vertical resolution hydraulic data in direct-push wells, including both vertical and horizontal K (Kv and Kh). Various data integration approaches were used to represent aquifer properties in 1D, 2D and 3D. Using relevant vector machines (RVM), the mechanical and

  3. Carbonate aquifers

    Science.gov (United States)

    Cunningham, Kevin J.; Sukop, Michael; Curran, H. Allen

    2012-01-01

    Only limited hydrogeological research has been conducted using ichnology in carbonate aquifer characterization. Regardless, important applications of ichnology to carbonate aquifer characterization include its use to distinguish and delineate depositional cycles, correlate mappable biogenically altered surfaces, identify zones of preferential groundwater flow and paleogroundwater flow, and better understand the origin of ichnofabric-related karst features. Three case studies, which include Pleistocene carbonate rocks of the Biscayne aquifer in southern Florida and Cretaceous carbonate strata of the Edwards–Trinity aquifer system in central Texas, demonstrate that (1) there can be a strong relation between ichnofabrics and groundwater flow in carbonate aquifers and (2) ichnology can offer a useful methodology for carbonate aquifer characterization. In these examples, zones of extremely permeable, ichnofabric-related macroporosity are mappable stratiform geobodies and as such can be represented in groundwater flow and transport simulations.

  4. Analysis of three geopressured geothermal aquifer-natural gas fields; Duson Hollywood and Church Point, Louisiana

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, L.A.; Boardman, C.R.

    1981-05-01

    The available well logs, production records and geological structure maps were analyzed for the Hollywood, Duson, and Church Point, Louisiana oil and gas field to determine the areal extent of the sealed geopressured blocks and to identify which aquifer sands within the blocks are connected to commercial production of hydrocarbons. The analysis showed that over the depth intervals of the geopressured zones shown on the logs essentially all of the sands of any substantial thickness had gas production from them somewhere or other in the fault block. It is therefore expected that the sands which are fully brine saturated in many of the wells are the water drive portion of the producing gas/oil somewhere else within the fault block. In this study only one deep sand was identified, in the Hollywood field, which was not connected to a producing horizon somewhere else in the field. Estimates of the reservoir parameters were made and a hypothetical production calculation showed the probable production to be less than 10,000 b/d. The required gas price to profitably produce this gas is well above the current market price.

  5. Evaluating the Impacts of Grassland Conversions to Experimental Forest on Groundwater Recharge in the Nebraska Sand Hills

    Science.gov (United States)

    Adane, Zablon A.

    The Nebraska Sand Hills grasslands provide the greatest groundwater recharge rates in the High Plains Aquifer. However, the grasslands and their ecological services have become vulnerable to land use change and degradation. This study used a series of field data to investigate the effects of grassland conversions to forest on recharge rates in a century-old experimental forest in the Sand Hills. The results show that the impact of grassland conversion on recharge was dependent on the species and plantation density. Estimated recharge rates beneath the dense plantations represent reductions of 86-94% relative to the native grassland. Results of 1H Nuclear Magnetic Resonance spectral analysis suggested that the surface soil organic carbon beneath pine plantations also contain up to 3 times the ratio of hydrophobic components than the native grasslands and may alter the soil hydraulic properties. This investigation further uncovered a previously overlooked feedback between the effect of soil organic carbon chemical shift generated by the ponderosa pine needle litter decomposition; namely that the alteration may have a link to reduced groundwater recharge rates. Thus, a global optimizer algorithm was used to estimate the effective soil hydraulic parameters from monthly soil moisture contents and recharge rates were then estimated through HYDRUS 1-D numerical modeling for grassland and pine forest soils. The impact of grassland conversion to pine was an overall reduction of groundwater recharge by nearly 100%. These outcomes highlight the significance of the grasslands for recharge, in the Sand Hills and the sustainability of the High Plains Aquifer.

  6. Aerial Transient Electromagnetic Surveys of Alluvial Aquifers in Rural Watersheds of Arizona

    Science.gov (United States)

    Pool, D. R.; Callegary, J. B.; Groom, R. W.

    2006-12-01

    Development in rural areas of Arizona has led the State of Arizona (Arizona Department of Water Resources), in cooperation with the Arizona Water Science Center of the U.S. Geological Survey, to sponsor investigations of the hydrogeologic framework of several alluvial-basin aquifers. An efficient method for mapping the aquifer extent and lithology was needed due to sparse subsurface information. Aerial Transient Electro-Magnetic (ATEM) methods were selected because they can be used to quickly survey large areas and with a great depth of investigation. Both helicopter and fixed-wing ATEM methods are available. A fixed-wing method (GEOTEM) was selected because of the potential for a depth of investigation of 300 m or more and because previous surveys indicated the method is useful in alluvial basins in southeastern Arizona. About 2,900 km of data along flight lines were surveyed across five alluvial basins, including the Middle San Pedro and Willcox Basins in southeastern Arizona, and Detrital, Hualapai, and Sacramento Basins in northwestern Arizona. Data initially were analyzed by the contractor (FUGRO Airborne Surveys) to produce conductivity-depth-transforms, which approximate the general subsurface electrical-property distribution along profiles. Physically based two-dimensional physical models of the profile data were then developed by PetRos- Eikon by using EMIGMA software. Hydrologically important lithologies can have different electrical properties. Several types of crystalline and sedimentary rocks generally are poor aquifers that have low porosity and high electrical resistivity. Good alluvial aquifers of sand and gravel generally have an intermediate electrical resistivity. Poor aquifer materials, such as silt and clay, and areas of poor quality water have low electrical resistivity values. Several types of control data were available to constrain the models including drill logs, electrical logs, water levels , and water quality information from wells; and

  7. Modeling of CO2 storage in aquifers

    International Nuclear Information System (INIS)

    Savioli, Gabriela B; Santos, Juan E

    2011-01-01

    Storage of CO 2 in geological formations is a means of mitigating the greenhouse effect. Saline aquifers are a good alternative as storage sites due to their large volume and their common occurrence in nature. The first commercial CO 2 injection project is that of the Sleipner field in the Utsira Sand aquifer (North Sea). Nevertheless, very little was known about the effectiveness of CO 2 sequestration over very long periods of time. In this way, numerical modeling of CO 2 injection and seismic monitoring is an important tool to understand the behavior of CO 2 after injection and to make long term predictions in order to prevent CO 2 leaks from the storage into the atmosphere. The description of CO 2 injection into subsurface formations requires an accurate fluid-flow model. To simulate the simultaneous flow of brine and CO 2 we apply the Black-Oil formulation for two phase flow in porous media, which uses the PVT data as a simplified thermodynamic model. Seismic monitoring is modeled using Biot's equations of motion describing wave propagation in fluid-saturated poroviscoelastic solids. Numerical examples of CO 2 injection and time-lapse seismics using data of the Utsira formation show the capability of this methodology to monitor the migration and dispersal of CO 2 after injection.

  8. Detection of Potential Shallow Aquifer Using Electrical Resistivity Imaging (ERI) at UTHM Campus, Johor Malaysia

    Science.gov (United States)

    Izzaty Riwayat, Akhtar; Nazri, Mohd Ariff Ahmad; Hazreek Zainal Abidin, Mohd

    2018-04-01

    In recent years, Electrical Resistivity Imaging (ERI) has become part of important method in preliminary stage as to gain more information in indicate the hidden water in underground layers. The problem faces by engineers is to determine the exact location of groundwater zone in subsurface layers. ERI seen as the most suitable tools in exploration of groundwater as this method have been applied in geotechnical and geo-environment investigation. This study was conducted using resistivity at UTHM campus to interpret the potential shallow aquifer and potential location for borehole as observation well. A Schlumberger array was setup during data acquisition as this array is capable in imaging deeper profile data and suitable for areas with homogeneous layer. The raw data was processed using RES2DINV software for 2D subsurface image. The result obtained indicate that the thickness of shallow aquifer for both spread line varies between 7.5 m to 15 m. The analysis of rest raw data using IP showed that the chargeability parameter is equal to 0 which strongly indicated the presence of groundwater aquifer in the study area.

  9. Natural and EDTA-complexed lanthanides used as a geochemical probe for aquifers: a case study of Orleans valley's alluvial and karstic aquifers

    International Nuclear Information System (INIS)

    Le Borgne, F.; Treuil, M.; Joron, J.L.; Lepiller, M.

    2005-01-01

    The transit of chemical elements within the different parts of Orleans valley's aquifer is studied by two complementary methods. Those methods rely on the fractionation of lanthanides (Ln) during their migration in natural waters. The first method consists in studying natural lanthanides patterns within the watershed, at its entries and exits. second one lies on multi-tracer experiments with Ln-EDTA complexes. This work is completed through an observation network consisting of 52 piezometers set on a sand and gravel quarry, and the natural entries and exits of the aquifer. Orleans valley's aquifer, which is made of an alluvial watershed lying on a karstic aquifer, is mainly fed by Loire river via a large karstic network. At the entries of the aquifer (Loire river at Jargeau), the Ln concentrations in the dissolved fraction ( heavy Ln. On the other hand, the filtration of alluvial groundwater with high colloids content induces no significant Ln fractionation when the solution contains no strong chelating agent. Hence, the transit of natural and artificial Ln in Orleans valley aquifer can be explained by two complementary processes. (I) Decanting/filtering or, on the opposite, stirring of colloids. Those processes induce no important Ln fractionation. (2) Exchanges of Ln between solute complexes, colloids and sediments due to the presence of strong chelating agents. Those exchanges fractionate the Ln in the order of their stability constants. Considering the natural Ln fractionation that occurs in the Loire river and in the studied aquifer, the carbonates, the stability constants of which follow the order light Ln < heavy Ln, are the best candidates as natural strong chelating agents. From the hydrodynamic point of view, both tracer experiments and natural Ln concentrations show that the transfer of elements within the alluvial watershed is pulsed by the Loire river movements. During an ascent phase, the elements migrate away from and perpendicularly to the karstic

  10. Creating and maintaining a gas cap in tar sands formations

    Science.gov (United States)

    Vinegar, Harold J.; Karanikas, John Michael; Dinkoruk, Deniz Sumnu; Wellington, Scott Lee

    2010-03-16

    Methods for treating a tar sands formation are disclosed herein. Methods for treating a tar sands formation may include providing heat to at least part of a hydrocarbon layer in the formation from one or more heaters located in the formation. Pressure may be allowed to increase in an upper portion of the formation to provide a gas cap in the upper portion. At least some hydrocarbons are produced from a lower portion of the formation.

  11. Distribution of polychlorinated biphenyls in the Housatonic River and adjacent aquifer, Massachusetts

    Science.gov (United States)

    Gay, Frederick B.; Frimpter, Michael H.

    1985-01-01

    Polychlorinated biphenyls (PCB's) are sorbed to the fine-grained stream-bottom sediments along the Housatonic River from Pittsfield, Massachusetts, southward to the Massachusetts-Connecticut boundary. The highest PCB concentrations, up to 140,000 micrograms per kilogram, were found in samples of bottom material from a reach of the river between Pittsfield and Woods Pond Dam in Lee, Massachusetts. Sediments in Woods Pond have been estimated to contain about 11,000 pounds of PCB's. Approximately 490 pounds per year of PCB's have also been estimated to move past the Housatonic River gaging station at Great Barrington. The distribution of hydraulic heads, water temperatures, and concentrations of dissolved oxygen, ammonia, nitrate, iron, and manganese in ground water shows that industrial water-supply wells in a sand and gravel aquifer adjacent to a stretch of the river called Woods Pond have been inducing ground-water recharge through the PCB-contaminated bottom sediments of the pond since late 1956. These data indicate that, at one location along the shore of the pond, the upper 40 feet of the aquifer contains water derived from induced infiltration. However, this induced recharge has not moved PCB's from the bottom sediments into a vertical section of the aquifer located 5 feet downgradient from the edge of Woods Pond. Samples taken at selected intervals in this section showed that no PCB's sorbed to the aquifer material or dissolved in the ground water within the detection limits of the chemical analyses.

  12. Anoxic nitrate reduction coupled with iron oxidation and attenuation of dissolved arsenic and phosphate in a sand and gravel aquifer

    Science.gov (United States)

    Smith, Richard L.; Kent, Douglas B.; Repert, Deborah A.; Böhlke, J.K.

    2017-01-01

    Nitrate has become an increasingly abundant potential electron acceptor for Fe(II) oxidation in groundwater, but this redox couple has not been well characterized within aquifer settings. To investigate this reaction and some of its implications for redox-sensitive groundwater contaminants, we conducted an in situ field study in a wastewater-contaminated aquifer on Cape Cod. Long-term (15 year) geochemical monitoring within the contaminant plume indicated interacting zones with variable nitrate-, Fe(II)-, phosphate-, As(V)-, and As(III)-containing groundwater. Nitrate and phosphate were derived predominantly from wastewater disposal, whereas Fe(II), As(III), and As(V) were mobilized from the aquifer sediments. Multiple natural gradient, anoxic tracer tests were conducted in which nitrate and bromide were injected into nitrate-free, Fe(II)-containing groundwater. Prior to injection, aqueous Fe(II) concentrations were approximately 175 μM, but sorbed Fe(II) accounted for greater than 90% of the total reactive Fe(II) in the aquifer. Nitrate reduction was stimulated within 1 m of transport for 100 μM and 1000 μM nitrate additions, initially producing stoichiometric quantities of nitrous oxide (>300 μM N). In subsequent injections at the same site, nitrate was reduced even more rapidly and produced less nitrous oxide, especially over longer transport distances. Fe(II) and nitrate concentrations decreased together and were accompanied by Fe(III) oxyhydroxide precipitation and decreases in dissolved phosphate, As(III), and As(V) concentrations. Nitrate N and O isotope fractionation effects during nitrate reduction were approximately equal (ε15N/ε18O = 1.11) and were similar to those reported for laboratory studies of biological nitrate reduction, including denitrification, but unlike some reported effects on nitrate by denitrification in aquifers. All constituents affected by the in situ tracer experiments returned to pre-injection levels after several

  13. Development and implementation of a Bayesian-based aquifer vulnerability assessment in Florida

    Science.gov (United States)

    Arthur, J.D.; Wood, H.A.R.; Baker, A.E.; Cichon, J.R.; Raines, G.L.

    2007-01-01

    The Florida Aquifer Vulnerability Assessment (FAVA) was designed to provide a tool for environmental, regulatory, resource management, and planning professionals to facilitate protection of groundwater resources from surface sources of contamination. The FAVA project implements weights-of-evidence (WofE), a data-driven, Bayesian-probabilistic model to generate a series of maps reflecting relative aquifer vulnerability of Florida's principal aquifer systems. The vulnerability assessment process, from project design to map implementation is described herein in reference to the Floridan aquifer system (FAS). The WofE model calculates weighted relationships between hydrogeologic data layers that influence aquifer vulnerability and ambient groundwater parameters in wells that reflect relative degrees of vulnerability. Statewide model input data layers (evidential themes) include soil hydraulic conductivity, density of karst features, thickness of aquifer confinement, and hydraulic head difference between the FAS and the watertable. Wells with median dissolved nitrogen concentrations exceeding statistically established thresholds serve as training points in the WofE model. The resulting vulnerability map (response theme) reflects classified posterior probabilities based on spatial relationships between the evidential themes and training points. The response theme is subjected to extensive sensitivity and validation testing. Among the model validation techniques is calculation of a response theme based on a different water-quality indicator of relative recharge or vulnerability: dissolved oxygen. Successful implementation of the FAVA maps was facilitated by the overall project design, which included a needs assessment and iterative technical advisory committee input and review. Ongoing programs to protect Florida's springsheds have led to development of larger-scale WofE-based vulnerability assessments. Additional applications of the maps include land-use planning

  14. Environmental Impacts of Sand Exploitation. Analysis of Sand Market

    Directory of Open Access Journals (Sweden)

    Marius Dan Gavriletea

    2017-06-01

    Full Text Available Sand is an indispensable natural resource for any society. Despite society’s increasing dependence on sand, there are major challenges that this industry needs to deal with: limited sand resources, illegal mining, and environmental impact of sand mining. The purpose of this paper is twofold: to present an overview of the sand market, highlighting the main trends and actors for production, export and import, and to review the main environmental impacts associated with sand exploitation process. Based on these findings, we recommend different measures to be followed to reduce negative impacts. Sand mining should be done in a way that limits environmental damage during exploitation and restores the land after mining operations are completed.

  15. Hydrochemistry and isotope geochemistry as management tools for groundwater resources in multilayer aquifers: A study case from the Po plain (Lomellina, South-Western Lombardy, Italy)

    Energy Technology Data Exchange (ETDEWEB)

    Pilla, G; Sacchi, E; Ciancetti, G; Braga, G [Dipartimento di Scienze della Terra, Universita di Pavia, Pavia (Italy); Zuppi, G M [Dipartimento di Scienze Ambientali, Universita Ca' Foscari di Venezia, Venice (Italy)

    2003-07-01

    Full text: The Po plain, located in Northern Italy, hosts a multi-layer alluvial aquifer of Quaternary age constituted by sands interbedded with clays. The plain supports most of the agricultural and industrial activities of Northern Italy, which are associated with groundwater pollution in the shallower portions of the aquifer. The increasing demand of water for industrial and domestic use has led to the exploitation of deeper layers of the aquifer, without a rational management of the resource. Only in the last decade, the government agencies have started a global evaluation of the quality standards of pumped groundwater, urged by the increasing need for clean water for domestic use. The task is particularly difficult because of missing or approximate well logs and the presence of multi-filter wells tapping in different aquifers. In this case the chemical and isotopic characterisation of groundwaters is the only reliable tool to reconstruct the geometry, the interconnections and the characteristics of the aquifers. This study, promoted by the local agency for groundwater management and protection (Amministrazione Provinciale di Pavia, settore tutela e valorizzazione ambientale - U.O.C. Acqua) focused on a limited portion of the Po plain, the Lomellina region, of approximately 900 km{sup 2}. The region is bound to the South by the Po river, to the East and West by the Sesia and the Ticino rivers respectively, and to the North by the administrative boundary. The study aimed at the hydrogeological, hydrochemical and isotopic characterisation of the aquifers, allowing to serve as basis for the correct management of the groundwater resource. A preliminary reconstruction of the hydrogeological asset of the Lomellina plain was performed through the analysis of the stratigraphic data from 102 municipal wells. On this basis, a shallow phreatic aquifer, reaching depths of about 50-60 m from the surface, and two groups of aquifers containing confined groundwater, were

  16. Water-level altitudes 2013 and water-level changes in the Chicot, Evangeline, and Jasper aquifers and compaction 1973--2012 in the Chicot and Evangeline aquifers, Houston-Galveston region, Texas

    Science.gov (United States)

    Kasmarek, Mark C.; Johnson, Michaela R.; Ramage, Jason K.

    2013-01-01

    Most of the subsidence in the Houston-Galveston region, Texas, has occurred as a direct result of groundwater withdrawals for municipal supply, commercial and industrial use, and irrigation that depressured and dewatered the Chicot and Evangeline aquifers, thereby causing compaction mostly in the clay and silt layers of the aquifer sediments. This report, prepared by the U.S. Geological Survey in cooperation with the Harris-Galveston Subsidence District, City of Houston, Fort Bend Subsidence District, Lone Star Groundwater Conservation District, and Brazoria County Groundwater Conservation District, is one in an annual series of reports depicting water-level altitudes and water-level changes in the Chicot, Evangeline, and Jasper aquifers and measured compaction of subsurface sediments in the Chicot and Evangeline aquifers in the Houston-Galveston region. The report contains maps depicting approximate water-level altitudes for 2013 (represented by measurements made during December 2012-February 2013) for the Chicot, Evangeline, and Jasper aquifers; maps depicting 1-year (2012-13) water-level changes for each aquifer; maps depicting 5-year (2008--13) water-level changes for each aquifer; maps depicting long-term (1990-2013 and 1977-2013) water-level changes for the Chicot and Evangeline aquifers; a map depicting long-term (2000-13) water-level changes for the Jasper aquifer; a map depicting locations of borehole-extensometer sites; and graphs depicting measured compaction of subsurface sediments at the extensometers during 1973-2012. Tables listing the data used to construct each water-level map for each aquifer and the compaction graphs are included.

  17. Numerical modeling of solute transport in a sand tank physical model under varying hydraulic gradient and hydrological stresses

    Science.gov (United States)

    Atlabachew, Abunu; Shu, Longcang; Wu, Peipeng; Zhang, Yongjie; Xu, Yang

    2018-03-01

    This laboratory study improves the understanding of the impacts of horizontal hydraulic gradient, artificial recharge, and groundwater pumping on solute transport through aquifers. Nine experiments and numerical simulations were carried out using a sand tank. The variable-density groundwater flow and sodium chloride transport were simulated using the three-dimensional numerical model SEAWAT. Numerical modelling results successfully reproduced heads and concentrations observed in the sand tank. A higher horizontal hydraulic gradient enhanced the migration of sodium chloride, particularly in the groundwater flow direction. The application of constant artificial recharge increased the spread of the sodium chloride plume in both the longitudinal and lateral directions. In addition, groundwater pumping accelerated spreading of the sodium chloride plume towards the pumping well. Both higher hydraulic gradient and pumping rate generated oval-shaped plumes in the horizontal plane. However, the artificial recharge process produced stretched plumes. These effects of artificial recharge and groundwater pumping were greater under higher hydraulic gradient. The concentration breakthrough curves indicated that emerging solutions never attained the concentration of the originally injected solution. This is probably because of sorption of sodium chloride onto the silica sand and/or the exchange of sodium chloride between the mobile and immobile liquid domains. The fingering and protruding plume shapes in the numerical models constitute instability zones produced by buoyancy-driven flow. Overall, the results have substantiated the influences of hydraulic gradient, boundary condition, artificial recharge, pumping rate and density differences on solute transport through a homogeneous unconfined aquifer. The implications of these findings are important for managing liquid wastes.

  18. Simultaneous attenuation of pharmaceuticals, organic matter, and nutrients in wastewater effluent through managed aquifer recharge: Batch and column studies.

    Science.gov (United States)

    Im, Huncheol; Yeo, Inseol; Maeng, Sung Kyu; Park, Chul Hwi; Choi, Heechul

    2016-01-01

    Batch and column experiments were conducted to evaluate the removal of organic matter, nutrients, and pharmaceuticals and to identify the removal mechanisms of the target contaminants. The sands used in the experiments were obtained from the Youngsan River located in South Korea. Neutral and cationic pharmaceuticals (iopromide, estrone, and trimethoprim) were removed with efficiencies greater than 80% from different sand media during experiments, due to the effect of sorption between sand and pharmaceuticals. However, the anionic pharmaceuticals (sulfamethoxazole, ketoprofen, ibuprofen, and diclofenac) were more effectively removed by natural sand, compared to baked sand. These observations were mainly attributed to biodegradation under natural conditions of surface organic matter and ATP concentrations. The removal of organic matter and nitrogen was also found to increase under biotic conditions. Therefore, it is indicated that biodegradation plays an important role and act as major mechanisms for the removal of organic matter, nutrients, and selected pharmaceuticals during sand passage and the managed aquifer recharge, which is an effective treatment method for removing target contaminants. However, the low removal efficiencies of pharmaceuticals (e.g., carbamazepine and sulfamethoxazole) require additional processes (e.g., AOPs, NF and RO membrane), a long residence time, and long travel distance for increasing the removal efficiencies. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Heterogeneous carbonaceous matter in sedimentary rock lithocomponents causes significant trichloroethylene (TCE) sorption in a low organic carbon content aquifer/aquitard system.

    Science.gov (United States)

    Choung, Sungwook; Zimmerman, Lisa R; Allen-King, Richelle M; Ligouis, Bertrand; Feenstra, Stanley

    2014-10-15

    This study evaluated the effects of heterogeneous thermally altered carbonaceous matter (CM) on trichloroethylene (TCE) sorption for a low fraction organic carbon content (foc) alluvial sedimentary aquifer and aquitard system (foc=0.046-0.105%). The equilibrium TCE sorption isotherms were highly nonlinear with Freundlich exponents of 0.46-0.58. Kerogen+black carbon was the dominant CM fraction extracted from the sediments and accounted for >60% and 99% of the total in the sands and silt, respectively. Organic petrological examination determined that the kerogen included abundant amorphous organic matter (bituminite), likely of marine origin. The dark calcareous siltstone exhibited the greatest TCE sorption among aquifer lithocomponents and accounted for most sorption in the aquifer. The results suggest that the source of the thermally altered CM, which causes nonlinear sorption, was derived from parent Paleozoic marine carbonate rocks that outcrop throughout much of New York State. A synthetic aquifer-aquitard unit system (10% aquitard) was used to illustrate the effect of the observed nonlinear sorption on mass storage potential at equilibrium. The calculation showed that >80% of TCE mass contained in the aquifer was sorbed on the aquifer sediment at aqueous concentration TCE groundwater plume in the aquifer studied. It is implied that sorption may similarly contribute to TCE persistence in other glacial alluvial aquifers with similar geologic characteristics, i.e., comprised of sedimentary rock lithocomponents that contain thermally altered CM. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. The University of Minnesota aquifer thermal energy storage (ATES) field test facility -- system description, aquifer characterization, and results of short-term test cycles

    Energy Technology Data Exchange (ETDEWEB)

    Walton, M.; Hoyer, M.C.; Eisenreich, S.J.; Holm, N.L.; Holm, T.R.; Kanivetsky, R.; Jirsa, M.A.; Lee, H.C.; Lauer, J.L.; Miller, R.T.; Norton, J.L.; Runke, H. (Minnesota Geological Survey, St. Paul, MN (United States))

    1991-06-01

    Phase 1 of the Aquifer Thermal Energy Storage (ATES) Project at the University of Minnesota was to test the feasibility, and model, the ATES concept at temperatures above 100{degrees}C using a confined aquifer for the storage and recovery of hot water. Phase 1 included design, construction, and operation of a 5-MW thermal input/output field test facility (FTF) for four short-term ATES cycles (8 days each of heat injection, storage, and heat recover). Phase 1 was conducted from May 1980 to December 1983. This report describes the FTF, the Franconia-Ironton-Galesville (FIG) aquifer used for the test, and the four short-term ATES cycles. Heat recovery; operational experience; and thermal, chemical, hydrologic, and geologic effects are all included. The FTF consists of monitoring wells and the source and storage well doublet completed in the FIG aquifer with heat exchangers and a fixed-bed precipitator between the wells of the doublet. The FIG aquifer is highly layered and a really anisotropic. The upper Franconia and Ironton-Galesville parts of the aquifer, those parts screened, have hydraulic conductivities of {approximately}0.6 and {approximately}1.0 m/d, respectively. Primary ions in the ambient ground water are calcium and magnesium bicarbonate. Ambient temperature FIG ground water is saturated with respect to calcium/magnesium bicarbonate. Heating the ground water caused most of the dissolved calcium to precipitate out as calcium carbonate in the heat exchanger and precipitator. Silica, calcium, and magnesium were significantly higher in recovered water than in injected water, suggesting dissolution of some constituents of the aquifer during the cycles. Further work on the ground water chemistry is required to understand water-rock interactions.

  1. Intrinsic vulnerability assessment of the aquifer in the Rižana spring chatcment by method SINTACS

    Directory of Open Access Journals (Sweden)

    2002-12-01

    Full Text Available In this paper is presented intrinsic vulnerability assessment of the aquifer in the Rižana spring chatcment by the method SINTACS. It is parametric method that takes into consideration seven parameters (depth to ground water, effective infiltration action, unsaturatedzone attenuation capacity, soil/overburden attenuation capacity, hydrogeological characteristics of the aquifer, hydraulic conductivity range of aquifer, hydrologic role of the topographic slope. Parameters are presented in grid information layers that wereelaborated on the basis of interpretation and GIS processing of geological, hydrogeological,speleological, topographical, meteorological and pedological data. According to the parametersimportance for vulnerability assessment, a multiplier (importance weight was assigned to each parameter. Final map of vulnerability is a result of overlaying (summing of weighted information layers (parameters and shows the catchment area of the Rižanaspring subdivided into six vulnerability classes.

  2. Water-level altitudes 2017 and water-level changes in the Chicot, Evangeline, and Jasper Aquifers and compaction 1973–2016 in the Chicot and Evangeline Aquifers, Houston-Galveston region, Texas

    Science.gov (United States)

    Kasmarek, Mark C.; Ramage, Jason K.

    2017-08-16

    .Water-level-altitude contours for the Jasper aquifer in 2017 ranged from 200 ft below datum in three isolated areas of south-central Montgomery County (the westernmost of these areas extended slightly into north-central Harris County) to 250 ft above datum in extreme northwestern Montgomery County, northeastern Grimes County, and southwestern Walker County. The 2000–17 water-level-change contours for the Jasper aquifer depict water-level declines in a broad area throughout most of Montgomery County and in parts of Waller, Grimes, and Harris Counties, with the largest decline (220 ft) in an isolated area in south-central Montgomery County.Compaction of subsurface sediments (mostly in the fine-grained silt and clay layers) in the Chicot and Evangeline aquifers was recorded continuously by using 13 extensometers at 11 sites that were either activated or installed between 1973 and 1980. During the period of record beginning in 1973 (or later depending on activation or installation date) and ending in late November or December 2016, measured cumulative compaction at the 13 extensometers ranged from 0.096 ft at the Texas City-Moses Lake extensometer to 3.700 ft at the Addicks extensometer. From January through late November or December 2016, the Addicks, Lake Houston, Southwest, and Northeast extensometers recorded net decreases in land-surface elevation, but the Baytown C–1 (shallow), Baytown C–2 (deep), Clear Lake (shallow), Clear Lake (deep), East End, Johnson Space Center, Pasadena, Seabrook, and Texas City-Moses Lake extensometers recorded net increases in land-surface elevation.The rate of compaction varies from site to site because of differences in rates of groundwater withdrawal in the areas adjacent to each extensometer site; differences among sites in the ratios of sand, silt, and clay and their corresponding compressibilities; and previously established preconsolidation heads. It is not appropriate, therefore, to extrapolate or infer a rate of compaction for an adjacent area on the

  3. Septic systems as sources of organic wastewater compounds in domestic drinking water wells in a shallow sand and gravel aquifer.

    Science.gov (United States)

    Schaider, Laurel A; Ackerman, Janet M; Rudel, Ruthann A

    2016-03-15

    Domestic drinking water wells serve 44 million people in the US and are common globally. They are often located in areas served by onsite wastewater treatment systems, including septic systems, which can be sources of biological and chemical pollutants to groundwater. In this study we tested 20 domestic drinking water wells in a sand and gravel aquifer on Cape Cod, Massachusetts, USA, for 117 organic wastewater compounds (OWCs) and for inorganic markers of septic system impact. We detected 27 OWCs, including 12 pharmaceuticals, five per- and polyfluoroalkyl substances (PFASs), four organophosphate flame retardants, and an artificial sweetener (acesulfame). Maximum concentrations of several PFASs and pharmaceuticals were relatively high compared to public drinking water supplies in the US. The number of detected OWCs and total concentrations of pharmaceuticals and of PFASs were positively correlated with nitrate, boron, and acesulfame and negatively correlated with well depth. These wells were all located in areas served exclusively by onsite wastewater treatment systems, which are likely the main source of the OWCs in these wells, although landfill leachate may also be a source. Our results suggest that current regulations to protect domestic wells from pathogens in septic system discharges do not prevent OWCs from reaching domestic wells, and that nitrate, a commonly measured drinking water contaminant, is a useful screening tool for OWCs in domestic wells. Nitrate concentrations of 1mg/L NO3-N, which are tenfold higher than local background and tenfold lower than the US federal drinking water standard, were associated with wastewater impacts from OWCs in this study. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  4. Water-level altitudes 2016 and water-level changes in the Chicot, Evangeline, and Jasper aquifers and compaction 1973–2015 in the Chicot and Evangeline aquifers, Houston-Galveston region, Texas

    Science.gov (United States)

    Kasmarek, Mark C.; Ramage, Jason K.; Johnson, Michaela R.

    2016-10-07

    Most of the land-surface subsidence in the Houston-Galveston region, Texas, has occurred as a direct result of groundwater withdrawals for municipal supply, commercial and industrial use, and irrigation that depressured and dewatered the Chicot and Evangeline aquifers, thereby causing compaction of the aquifer sediments, mostly in the fine-grained silt and clay layers. This report, prepared by the U.S. Geological Survey in cooperation with the Harris-Galveston Subsidence District, City of Houston, Fort Bend Subsidence District, Lone Star Groundwater Conservation District, and Brazoria County Groundwater Conservation District, is one in an annual series of reports depicting water-level altitudes and water-level changes in the Chicot, Evangeline, and Jasper aquifers and measured cumulative compaction of subsurface sediments in the Chicot and Evangeline aquifers in the Houston-Galveston region. The report contains regional-scale maps depicting approximate 2016 water-level altitudes (represented by measurements made during December 2015–March 2016) for the Chicot, Evangeline, and Jasper aquifers; maps depicting 1-year (2015–16) water-level changes for each aquifer; maps depicting approximate contoured 5-year (2011–16) water-level changes for each aquifer; maps depicting approximate contoured long-term (1990–2016 and 1977–2016) water-level changes for the Chicot and Evangeline aquifers; a map depicting approximate contoured long-term (2000–16) water-level changes for the Jasper aquifer; a map depicting locations of borehole-extensometer sites; and graphs depicting measured long-term cumulative compaction of subsurface sediments at the extensometers during 1973–2015. Tables listing the water-level data used to construct each water-level map for each aquifer and the measured long-term cumulative compaction data for each extensometer site are included. Graphs depicting water-level measurement data also are included; these graphs can be used to approximate

  5. Vertical small scale variations of sorption and mineralization of three herbicides in subsurface limestone and sandy aquifer

    DEFF Research Database (Denmark)

    Janniche, Gry Sander; Mouvet, C.; Albrechtsen, Hans-Jørgen

    2011-01-01

    , France. From two intact core drills, four heterogenic limestone sections were collected from 4.50-26.40 m below surface (mbs) and divided into 12 sub-samples of 8-25 cm length, and one sandy aquifer section from 19.20-19.53 m depth divided into 7 sub-samples of 4-5 cm length. In the sandy aquifer section...... showed that a 30 cm active layer with the measured sorption and mineralization values hardly impacted the fate of the investigated herbicides, whereas a total thickness of layers of 1 m would substantially increase natural attenuation....

  6. Hydrogeology in Clay Tills

    DEFF Research Database (Denmark)

    Kessler, Timo Christian; Klint, Knud Erik; Nilsson, Bertel

    2012-01-01

    function of such layers. They potentially facilitate vertical migration and horizontal spreading of pesticides, chlorinated solvents and other pollutants into deeper aquifers. This paper presents methods how to analyse and describe the spatial distribution of sand lenses in tills and what impact they may...

  7. Hydrogeology and water quality of the stratified-drift aquifer in the Pony Hollow Creek Valley, Tompkins County, New York

    Science.gov (United States)

    Bugliosi, Edward F.; Miller, Todd S.; Reynolds, Richard J.

    2014-01-01

    The lithology, areal extent, and the water-table configuration in stratified-drift aquifers in the northern part of the Pony Hollow Creek valley in the Town of Newfield, New York, were mapped as part of an ongoing aquifer mapping program in Tompkins County. Surficial geologic and soil maps, well and test-boring records, light detection and ranging (lidar) data, water-level measurements, and passive-seismic surveys were used to map the aquifer geometry, construct geologic sections, and determine the depth to bedrock at selected locations throughout the valley. Additionally, water-quality samples were collected from selected streams and wells to characterize the quality of surface and groundwater in the study area. Sedimentary bedrock underlies the study area and is overlain by unstratified drift (till), stratified drift (glaciolacustrine and glaciofluvial deposits), and recent post glacial alluvium. The major type of unconsolidated, water-yielding material in the study area is stratified drift, which consists of glaciofluvial sand and gravel, and is present in sufficient amounts in most places to form an extensive unconfined aquifer throughout the study area, which is the source of water for most residents, farms, and businesses in the valleys. A map of the water table in the unconfined aquifer was constructed by using (1) measurements made between the mid-1960s through 2010, (2) control on the altitudes of perennial streams at 10-foot contour intervals from lidar data collected by Tompkins County, and (3) water surfaces of ponds and wetlands that are hydraulically connected to the unconfined aquifer. Water-table contours indicate that the direction of groundwater flow within the stratified-drift aquifer is predominantly from the valley walls toward the streams and ponds in the central part of the valley where groundwater then flows southwestward (down valley) toward the confluence with the Cayuta Creek valley. Locally, the direction of groundwater flow is radially

  8. Mapping the base of sand dunes using a new design of land-streamer for static correction applications

    KAUST Repository

    Almalki, H.

    2012-05-16

    The complex near-surface structure is a major problem in land seismic data. This is more critical when data acquisition takes place over sand dune surfaces, where the base of the sand acts as a trap for energy and, depending on its shape, can considerably distort conventionally acquired seismic data. Estimating the base of the sand dune surface can help model the sand dune and reduce its harmful influence on conventional seismic data. Among the current methods to do so are drilling upholes and using conventional seismic data to apply static correction. Both methods have costs and limitations. For upholes, the cost factor and their inability to provide a continuous model is well realized. Meanwhile, conventional seismic data lack the resolution necessary to obtain accurate modeling of the sand basement. We developed a method to estimate the sand base from land-streamer seismic acquisition that is developed and geared to sand surfaces. Seismic data acquisition took place over a sand surface in the Al-Thumamah area, where an uphole is located, using the developed land-streamer and conventional spiked geophone systems. Land-streamer acquisition not only provides a more efficient data acquisition system than the conventional spiked geophone approach, but also in our case, the land-streamer provided better quality data with a broader frequency bandwidth. Such data enabled us to do accurate near-surface velocity estimation that resulted in velocities that are very close to those measured using uphole methods. This fact is demonstrated on multiple lines acquired near upholes, and agreement between the seismic velocities and the upholes is high. The stacked depth seismic section shows three layers. The interface between the first and second layers is located at 7 m depth, while the interface between second and third layers is located at 68 m depth, which agrees with the uphole result. 2012 The Author(s).

  9. Revised shallow and deep water-level and storage-volume changes in the Equus Beds Aquifer near Wichita, Kansas, predevelopment to 1993

    Science.gov (United States)

    Hansen, Cristi V.; Lanning-Rush, Jennifer L.; Ziegler, Andrew C.

    2013-01-01

    credits from the Equus Beds aquifer by the city of Wichita. The 1993 water levels correspond to the lowest recorded levels and largest storage declines since 1940. Revised and new water-level maps of shallow and deep layers were developed to better represent the general condition of the aquifer. Only static water levels were used to better represent the general condition of the aquifer and comply with Wichita’s ASR permits. To ensure adequate data density, the January 1993 period was expanded to October 1992 through February 1993. Static 1993 water levels from the deep aquifer layer of the Equus Beds aquifer possibly could be used as the lower baseline for regulatory purposes. Previously, maps of water-level changes used to estimate the storage-volume changes included a combination of static (unaffected by pumping or nearby pumping) and stressed (affected by pumping or nearby pumping) water levels from wells. Some of these wells were open to the shallow aquifer layer and some were open to the deep aquifer layer of the Equus Beds aquifer. In this report, only static water levels in the shallow aquifer layer were used to determine storage-volume changes. The effects on average water-level and storage-volume change from the use of mixed, stressed water levels and a specific yield of 0.20 were compared to the use of static water levels in the shallow aquifer and a specific yield of 0.15. This comparison indicates that the change in specific yield causes storage-volume changes to decrease about 25 percent, whereas the use of static water levels in the shallow aquifer layer causes an increase of less than 4 percent. Use of a specific yield of 0.15 will result in substantial decreases in the amount of storage-volume change compared to those reported previously that were calculated using a specific yield of 0.20. Based on these revised water-level maps and computations, the overall decline and change in storage from predevelopment to 1993 represented a loss in storage of about

  10. Spatial variability of hydraulic conductivity of an unconfined sandy aquifer determined by a mini slug test

    DEFF Research Database (Denmark)

    Bjerg, Poul Løgstrup; Hinsby, Klaus; Christensen, Thomas Højlund

    1992-01-01

    The spatial variability of the hydraulic conductivity in a sandy aquifer has been determined by a mini slug test method. The hydraulic conductivity (K) of the aquifer has a geometric mean of 5.05 × 10−4 m s−1, and an overall variance of 1n K equal to 0.37 which corresponds quite well to the results...... obtained by two large scale tracer experiments performed in the aquifer. A geological model of the aquifer based on 31 sediment cores, proposed three hydrogeological layers in the aquifer concurrent with the vertical variations observed with respect to hydraulic conductivity. The horizontal correlation......, to be in the range of 0.3–0.5 m compared with a value of 0.42 m obtained in one of the tracer tests performed....

  11. Chemical and microbiological monitoring of a sole-source aquifer intended for artificial recharge, Nassau County, New York

    Science.gov (United States)

    Katz, Brian G.; Mallard, Gail E.

    1980-01-01

    In late 1980, approximately 4 million gallons per day of highly treated wastewater will be used to recharge the groundwater reservoir in central Nassau County through a system of 10 recharge basins and 5 shallow injection wells. To evaluate the impact of large-scale recharge with reclaimed water on groundwater quality, the U.S. Geological Survey has collected hydrologic and water-quality data from a 1-square-mile area around the recharge site to provide a basis for future comparison. Extensive chemical and microbiological analyses are being made on samples from 48 wells screened in the upper glacial (water-table) aquifer and the upper part of the underlying Magothy (public-supply) aquifer. Preliminary results indicate that water from the upper glacial aquifer contains significant concentrations of nitrate and low-molecular-weight chlorinated hydrocarbons and detectable concentrations of organochlorine insecticides and polychlorinated biphenyls. At present, no fecal contamination is evident in either aquifer in the area studied. In the few samples containing fecal indicator bacteria, the numbers were low. Nonpoint sources provide significant loads of organic and inorganic compounds; major sources include cesspool and septic-tank effluent, cesspool and septic-tank cleaners and other over-the-counter domestic organic solvents, fertilizers, insecticides for termite and other pest control, and stormwater runoff to recharge basins. The water-table aquifer is composed mainly of stratified, well-sorted sand and gravel and, as a result, is highly permeable. In the 1-square-mile area studied, some contaminants seem to have traveled 200 feet downward to the bottom of the water-table aquifer and into the upper part of the public-supply aquifer. (USGS)

  12. Sand Waves in Environmental Flows: Insights gained by LES

    Science.gov (United States)

    Sotiropoulos, Fotis

    2014-11-01

    In fluvial and coastal environments, sediment transport processes induced by near-bed coherent structures in the turbulent boundary layer developing over a mobile sediment bed result in the formation of dynamically rich sand waves, or bed forms, which grow and migrate continuously. Bed form migration alters streambed roughness and provides the primary mechanism for transporting large amounts of sediment through riverine systems impacting the morphology, streambank stability, and ecology of waterways. I will present recent computational advances, which have enabled coupled, hydro-morphodynamic large-eddy simulation (LES) of turbulent flow in mobile-bed open channels. Numerical simulations: 1) elucidate the role of near-bed sweeps in the turbulent boundary layer as the mechanism for initiating the instability of the initially flat sand bed; 2) show how near-bed processes give rise to aperiodic eruptions of suspended sediment at the free surface; and 3) clarify the mechanism via which sand waves migrate. Furthermore, in agreement with recent experimental observations, the computed spectra of the resolved velocity fluctuations above the bed exhibit a distinct spectral gap whose width increases with distance from the bed. The spectral gap delineates the spectrum of turbulence from that of slowly evolving coherent structures associated with sand wave migration. The talk will also present computational results demonstrating the feasibility of carrying out coupled, hydro-morphodynamic LES of large dunes migrating in meandering streams and rivers with embedded hydraulic structures and discuss future challenges and opportunities. This work was supported by NSF Grants EAR-0120914 and EAR-0738726, and National Cooperative Highway Research Program Grant NCHRP-HR 24-33.

  13. Principal aquifers can contribute radium to sources of drinking water under certain geochemical conditions

    Science.gov (United States)

    Szabo, Zoltan; Fischer, Jeffrey M.; Hancock, Tracy Connell

    2012-01-01

    What are the most important factors affecting dissolved radium concentrations in principal aquifers used for drinking water in the United States? Study results reveal where radium was detected and how rock type and chemical processes control radium occurrence. Knowledge of the geochemical conditions may help water-resource managers anticipate where radium may be elevated in groundwater and minimize exposure to radium, which contributes to cancer risk. Summary of Major Findings: * Concentrations of radium in principal aquifers used for drinking water throughout the United States generally were below 5 picocuries per liter (pCi/L), the U.S. Environmental Protection Agency (USEPA) maximum contaminant level (MCL) for combined radium - radium-226 (Ra-226) plus radium-228 (Ra-228) - in public water supplies. About 3 percent of sampled wells had combined radium concentrations greater than the MCL. * Elevated concentrations of combined radium were more common in groundwater in the eastern and central United States than in other regions of the Nation. About 98 percent of the wells that contained combined radium at concentrations greater than the MCL were east of the High Plains. * The highest concentrations of combined radium were in the Mid-Continent and Ozark Plateau Cambro-Ordovician aquifer system and the Northern Atlantic Coastal Plain aquifer system. More than 20 percent of sampled wells in these aquifers had combined radium concentrations that were greater than or equal to the MCL. * Concentrations of Ra-226 correlated with those of Ra-228. Radium-226 and Ra-228 occur most frequently together in unconsolidated sand aquifers, and their presence is strongly linked to groundwater chemistry. * Three common geochemical factors are associated with the highest radium concentrations in groundwater: (1) oxygen-poor water, (2) acidic conditions (low pH), and (3) high concentrations of dissolved solids.

  14. Numerical Simulation of Borehole Flow in Deep Monitor Wells, Pearl Harbor Aquifer, Oahu, Hawaii

    Science.gov (United States)

    Rotzoll, K.; Oki, D. S.; El-Kadi, A. I.

    2010-12-01

    Salinity profiles collected from uncased deep monitor wells are commonly used to monitor freshwater-lens thickness in coastal aquifers. However, vertical flow in these wells can cause the measured salinity to differ from salinity in the adjacent aquifer. Substantial borehole flow has been observed in uncased wells in the Pearl Harbor aquifer, Oahu, Hawaii. A numerical modeling approach, incorporating aquifer hydraulic characteristics and recharge rates representative of the Pearl Harbor aquifer, was used to evaluate the effects of borehole flow on measured salinity profiles from deep monitor wells. Borehole flow caused by vertical hydraulic gradients associated with the natural regional groundwater-flow system and local groundwater withdrawals was simulated. Model results were used to estimate differences between vertical salinity profiles in deep monitor wells and the adjacent aquifer in areas of downward, horizontal, and upward flow within the regional flow system—for cases with and without nearby pumped wells. Aquifer heterogeneity, represented in the model as layers of contrasting permeability, was incorporated in model scenarios. Results from this study provide insight into the magnitude of the differences between vertical salinity profiles from deep monitor wells and the salinity distributions in the aquifers. These insights are relevant and are critically needed for management and predictive modeling purposes.

  15. Modeling groundwater flow to elliptical lakes and through multi-aquifer elliptical inhomogeneities

    Science.gov (United States)

    Bakker, Mark

    2004-05-01

    Two new analytic element solutions are presented for steady flow problems with elliptical boundaries. The first solution concerns groundwater flow to shallow elliptical lakes with leaky lake beds in a single-aquifer. The second solution concerns groundwater flow through elliptical cylinder inhomogeneities in a multi-aquifer system. Both the transmissivity of each aquifer and the resistance of each leaky layer may differ between the inside and the outside of an inhomogeneity. The elliptical inhomogeneity may be bounded on top by a shallow elliptical lake with a leaky lake bed. Analytic element solutions are obtained for both problems through separation of variables of the Laplace and modified-Helmholtz differential equations in elliptical coordinates. The resulting equations for the discharge potential consist of infinite sums of products of exponentials, trigonometric functions, and modified-Mathieu functions. The series are truncated but still fulfill the differential equation exactly; boundary conditions are met approximately, but up to machine accuracy provided enough terms are used. The head and flow may be computed analytically at any point in the aquifer. Examples are given of uniform flow through an elliptical lake, a well pumping near two elliptical lakes, and uniform flow through three elliptical inhomogeneities in a multi-aquifer system. Mathieu functions may be applied in a similar fashion to solve other groundwater flow problems in semi-confined aquifers and leaky aquifer systems with elliptical internal or external boundaries.

  16. Water-level altitudes 2014 and water-level changes in the Chicot, Evangeline, and Jasper aquifers and compaction 1973-2013 in the Chicot and Evangeline aquifers, Houston-Galveston region, Texas

    Science.gov (United States)

    Kasmarek, Mark C.; Johnson, Michaela R.; Ramage, Jason K.

    2014-01-01

    Most of the land-surface subsidence in the Houston-Galveston region, Texas, has occurred as a direct result of groundwater withdrawals for municipal supply, commercial and industrial use, and irrigation that depressured and dewatered the Chicot and Evangeline aquifers, thereby causing compaction of the aquifer sediments, mostly in the fine-grained clay and silt layers. This report, prepared by the U.S. Geological Survey in cooperation with the Harris-Galveston Subsidence District, City of Houston, Fort Bend Subsidence District, Lone Star Groundwater Conservation District, and Brazoria County Groundwater Conservation District, is one in an annual series of reports depicting water-level altitudes and water-level changes in the Chicot, Evangeline, and Jasper aquifers and measured compaction of subsurface sediments in the Chicot and Evangeline aquifers in the Houston-Galveston region. The report contains maps depicting approximate 2014 water-level altitudes (represented by measurements made during December 2013–March 2014) for the Chicot, Evangeline, and Jasper aquifers; maps depicting 1-year (2013–14) water-level changes for each aquifer; maps depicting contoured 5-year (2009–14) water-level changes for each aquifer; maps depicting contoured long-term (1990–2014 and 1977–2014) water-level changes for the Chicot and Evangeline aquifers; a map depicting contoured long-term (2000–14) water-level changes for the Jasper aquifer; a map depicting locations of borehole-extensometer sites; and graphs depicting measured cumulative compaction of subsurface sediments at the borehole extensometers during 1973–2013. Tables listing the data used to construct each water-level map for each aquifer and the compaction graphs are included.

  17. Water-level altitudes 2012 and water-level changes in the Chicot, Evangeline, and Jasper aquifers and compaction 1973-2011 in the Chicot and Evangeline aquifers, Houston-Galveston region, Texas

    Science.gov (United States)

    Kasmarek, Mark C.; Johnson, Michaela R.; Ramage, Jason K.

    2012-01-01

    Most of the subsidence in the Houston–Galveston region, Texas, has occurred as a direct result of groundwater withdrawals for municipal supply, commercial and industrial use, and irrigation that depressured and dewatered the Chicot and Evangeline aquifers and caused compaction of the clay layers of the aquifer sediments. This report—prepared by the U.S. Geological Survey in cooperation with the Harris– Galveston Subsidence District, City of Houston, Fort Bend Subsidence District, Lone Star Groundwater Conservation District, and Brazoria County Groundwater Conservation District—is one in an annual series of reports depicting water-level altitudes and water-level changes in the Chicot, Evangeline, and Jasper aquifers and compaction in the Chicot and Evangeline aquifers in the Houston–Galveston region. The report contains maps showing approximate water-level altitudes for 2012 (calculated from measurements of water levels in wells made during December 2011–February 2012) for the Chicot, Evangeline, and Jasper aquifers; maps showing 1-year (2011–12) water-level-altitude changes for each aquifer; maps showing 5-year (2007–12) water-levelaltitude changes for each aquifer; maps showing long-term (1990–2012 and 1977–2012) water-level-altitude changes for the Chicot and Evangeline aquifers; a map showing long-term (2000–12) water-level-altitude change for the Jasper aquifer; a map showing locations of borehole extensometer sites; and graphs showing measured compaction of subsurface sediments at the extensometers from 1973 (or later) through 2011. Tables listing the data that were used to construct each water-level map for each aquifer and the cumulative compaction graphs are included.

  18. Rheology of oil sands slurries

    Energy Technology Data Exchange (ETDEWEB)

    Chow, R.; Zhou, J. [Alberta Research Council, Edmonton, AB (Canada). Mineral Oil Sands Unit; Wallace, D. [Dean Wallace Consulting Inc., Beaumont, AB (Canada)

    2006-07-01

    This study focused on integrating rheology and colloid science to improve recovery of bitumen in surface mined oil sands. Factors that influence recovery, such as conditions of particle interaction, solids concentration and shear rate, were reviewed. In an effort to understand the rheological behaviour of clay-in-water suspensions, an elaborate procedure was developed to separate an inter-bedded clay layer from a site at Albian Sands Energy Inc. The variables were water chemistry, solids concentration, and shear rate. The research study was conducted at the Alberta Research Council with the support of the CONRAD Extraction Group. A controlled stress rheometer was used to provide the quantitative evaluations of the clay slurry properties. The research results indicate that the viscoelastic properties of the slurry are highly influenced by the shear history of the slurry, solids content, calcium concentration, and sample aging. Shear thinning behaviour was observed in all slurry samples, but the slurry viscosity increased with test time for a given shear rate. In order to classify the slurries, a method was developed to distinguish the gel strength. The slurries were then classified into 3 distinct patterns, including no gel, weak gel and strong gel. The evolution of the experimental protocols were described along with the current stability maps that correlate the domains of the gel strength according to the solids concentration, calcium ion content, and shear rate. It was concluded that the rheological properties of oil sands slurries influence bitumen recovery in commercial surface-mined oil sands operations. tabs., figs.

  19. Groundwater movement, recharge, and perchlorate occurrence in a faulted alluvial aquifer in California (USA)

    Science.gov (United States)

    Izbicki, John A.; Teague, Nicholas F.; Hatzinger, Paul B.; Böhlke, John Karl; Sturchio, Neil C.

    2015-01-01

    Perchlorate from military, industrial, and legacy agricultural sources is present within an alluvial aquifer in the Rialto-Colton groundwater subbasin, 80 km east of Los Angeles, California (USA). The area is extensively faulted, with water-level differences exceeding 60 m across parts of the Rialto-Colton Fault separating the Rialto-Colton and Chino groundwater subbasins. Coupled well-bore flow and depth-dependent water-quality data show decreases in well yield and changes in water chemistry and isotopic composition, reflecting changing aquifer properties and groundwater recharge sources with depth. Perchlorate movement through some wells under unpumped conditions from shallower to deeper layers underlying mapped plumes was as high as 13 kg/year. Water-level maps suggest potential groundwater movement across the Rialto-Colton Fault through an overlying perched aquifer. Upward flow through a well in the Chino subbasin near the Rialto-Colton Fault suggests potential groundwater movement across the fault through permeable layers within partly consolidated deposits at depth. Although potentially important locally, movement of groundwater from the Rialto-Colton subbasin has not resulted in widespread occurrence of perchlorate within the Chino subbasin. Nitrate and perchlorate concentrations at the water table, associated with legacy agricultural fertilizer use, may be underestimated by data from long-screened wells that mix water from different depths within the aquifer.

  20. Groundwater-level analysis of selected wells in the Hoosic River Valley near Hoosick Falls, New York, for aquifer framework and properties

    Science.gov (United States)

    Williams, John H.; Heisig, Paul M.

    2018-03-05

    The U.S. Geological Survey, in cooperation with the New York State Department of Environmental Conservation, analyzed groundwater levels, drilling record logs, and field water-quality data from selected wells, and the surficial geology in the Hoosic River valley south of the village of Hoosick Falls, New York, to provide information about the framework and properties of a confined aquifer. The aquifer, which consists of ice-contact sand and gravel overlain by lacustrine clay and silt, was evaluated by the New York State Department of Environmental Conservation as part of their investigation of alternate water supplies for the village whose wellfield has been affected by perfluorooctanoic acid. Wells inventoried in the study area were classified as confined, water table, or transitional between the two aquifer conditions. Groundwater levels in three confined-aquifer wells and a transitional-aquifer well responded to pumping of a test production well finished in the confined aquifer. Groundwater levels in a water-table well showed no detectable water-level change in response to test-well pumping. Analysis of drawdown and recovery data from the three confined-aquifer wells and a transitional-aquifer well through the application of the Theis type-curve method provided estimates of aquifer properties. Representation of a constant-head boundary in the analysis where an unnamed pond and fluvial-terrace deposits abut the valley wall resulted in satisfactory matches of the Theis type curves with the observed water-level responses. Aquifer transmissivity estimates ranged from 1,160 to 1,370 feet squared per day. Aquifer storativity estimates ranged from 5.2×10–5 to 1.1×10–3 and were consistent with the inferred degree of confinement and distance from the represented recharge boundary.

  1. Continuity and productivity analysis of three geopressured geothermal aquifer-natural gas fields: Duson, Hollywood and Church Point, Louisiana

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, L.A.; Boardman, C.R.; Bebout, D.G.; Bachman, A.L. (eds.)

    1981-01-01

    The available well logs, production records and geological structure maps were analyzed for the Hollywood, Duson, and Church Point, Louisiana oil and gas fields to determine the areal extent of the sealed geopressured blocks and to identify which aquifer sands within the blocks are connected to commercial production of hydrocarbons. Studies such as these are needed for the Department of Energy program to identify geopressured brine reservoirs that are not connected to commercial productions. The analysis showed that over the depth intervals at the geopressured zones shown on the logs essentially all of the sands of any substantial thickness had gas production from them somewhere or other in the fault block. It is therefore expected that the sands which are fully brine saturated in many of the wells are the water drive portion of the producing gas/oil somewhere else within the fault block. In this study only one deep sand was identified, in the Hollywood field, which was apparently not connected to a producing horizon somewhere else in the field. Estimates of the reservoir parameters were made for this sand and a hypothetical production calculation showed the probable production to be less than 10,000 b/d. The required gas price to profitably produce this gas is well above the current market price.

  2. Mechanical Parameters of Rubber-Sand Mixtures for Numerical Analysis of a Road Embankment

    Science.gov (United States)

    Kowalska, Magdalena; Chmielewski, Maciej

    2017-10-01

    Waste production is one of the greatest problems of the modern world. It is inevitably related to the increase of industrialization. One of the most difficult, and growing in amounts, waste is scrap tyres. The most common method of utilization of end-of-life tyres by their incineration raises much concern in terms of air pollution. More sustainable seems to reuse the tyre derived products - rubber in particular - in civil engineering, where the interesting properties of this material may be effectively utilized. This paper presents results of direct shear strength tests on sand-rubber mixtures, which were next applied to a numerical FEM (finite element method) model of a road embankment built on soft ground. The laboratory tests, conducted for two types of scrap tyre rubber granulates (0.5 - 2 mm and 1 - 5 mm in size) mixed with medium fluvial sand in various proportions (5, 10, 30 and 50% by weight), proved that the unit weight of the mixtures is distinctly smaller that the unit weight of sand alone and at 50% rubber content it drops by half. The internal angle of friction stays almost unchanged for the mixtures with up to 10% of rubber (33 - 37°), but decreases by about 10° when the rubber content increases to 50%. In most of the cases analysed, the cohesion intercept is higher in case of sand-rubber mixtures when compared to sand alone. The numerical model simulated a 4.5 m high embankment with a 3 m thick layer made of sand-rubber mixtures, containing 0%, 10% or 30% of the waste product, founded on a weak subsoil (with a 3 m layer of organic soil). The results showed that stability factor of the structure built with the layer containing 30% of the coarser rubber granulate has increased from 1.60 - for sand only, to 2.15. The embankment was also able to carry load increased from 32 kPa to 45.5 kPa and its base showed much smaller settlement. The results prove that the use of tyre derived aggregates in embankment construction is not only an effective way of

  3. Investigation of the Present Recharge Rate and Recharge Origins in the Disi Sandstone Aquifer in Southern Jordan

    International Nuclear Information System (INIS)

    Kilani, S.F.

    2003-01-01

    This study presents a thorough investigation of recharge origins of the strategic Disi sandstone aquifer in southern Jordan. This aquifer is of substantial potential and huge extension most of which lies in Saudi Arabia. Disi groundwater infiltrated in the ground thousands of years ago and is not currently being replenished, therefore crucial management for this resource is very important. This aquifer is foreseen to provide 100 MCM/a of high quality drinking water to the Capital Amman in addition to the current use of about 60 MCM/a for agricultural activities in the area and to meet the water demand in the port of Aqaba. Origins and amount of recharge to groundwater is one critical aspect in resource management. A study to estimate recharge rate was conducted in the Quaternary sediments and sandstone's of Al Quwayra in southern Jordan where the average rainfall is less than 70 mm per year. Environmental chloride, deuterium and nitrate in the sand profiles in the vadose zone were the study tools. The study showed that recharge if present is a result of severe infrequent storm events and that the aquifer does not receive significant direct recharge from rain. The pollutant profiles in the unsaturated zone might give chronology of the recharge history

  4. Spatial correlation length of normalized cone data in sand

    DEFF Research Database (Denmark)

    Firouzianbandpey, Sarah; Griffiths, D. V.; Ibsen, Lars Bo

    2014-01-01

    The main topic of this study is to assess the anisotropic spatial correlation lengths of a sand layer deposit based on cone penetration testing with pore pressure measurement (CPTu) data. Spatial correlation length can be an important factor in reliability analysis of geotechnical systems, yet it...

  5. Transient well flow in layered aquifer systems: the uniform well-face drawdown solution.

    NARCIS (Netherlands)

    Hemker, C.J.

    1999-01-01

    Previously a hybrid analytical-numerical solution for the general problem of computing transient well flow in vertically heterogeneous aquifers was proposed by the author. The radial component of flow was treated analytically, while the finite-difference technique was used for the vertical flow

  6. Application of a numerical model in the interpretation of a leaky aquifer test

    International Nuclear Information System (INIS)

    Schroth, B.; Narasimhan, T.N.

    1997-01-01

    The potential use of numerical models in aquifer analysis is by no means a new concept; yet relatively few engineers and scientists are taking advantage of this powerful tool that is more convenient to use now than ever before. In this technical note the authors present an example of using a numerical model in an integrated analysis of data from a three-layer leaky aquifer system involving well-bore storage, skin effects, variable discharge, and observation wells in the pumped aquifer and in an unpumped aquifer. The modeling detail may differ for other cases. The intent is to show that interpretation can be achieved with reduced bias by reducing assumptions in regard to system geometry, flow rate, and other details. A multiwell aquifer test was carried out at a site on the western part of the Lawrence Livermore National Laboratory (LLNL), located about 60 kilometers east of San Francisco. The test was conducted to hydraulically characterize one part of the site and thus help develop remediation strategies to alleviate the ground-water contamination

  7. Evidence of co-metabolic bentazone transformation by methanotrophic enrichment from a groundwater-fed rapid sand filter

    DEFF Research Database (Denmark)

    Hedegaard, Mathilde Jørgensen; Deliniere, Hélène; Prasse, Carsten

    2018-01-01

    from 58 to 158, well within the range for methanotrophic co-metabolic degradation of trace contaminants calculated from the literature, with normalized substrate preferences varying from 3 to 400. High-resolution mass spectrometry revealed formation of the transformation products (TPs) 6-OH, 8-OH......The herbicide bentazone is recalcitrant in aquifers and is therefore frequently detected in wells used for drinking water production. However, bentazone degradation has been observed in filter sand from a rapid sand filter at a waterworks with methane-rich groundwater. Here, the association between...... and bentazone at concentrations below 2 mg/L showed methanotrophic co-metabolic bentazone transformation: The culture removed 53% of the bentazone in 21 days in presence of 5 mg/L of methane, while only 31% was removed in absence of methane. Addition of acetylene inhibited methane oxidation and stopped...

  8. Sand transportation and reverse patterns over leeward face of sand dune

    Science.gov (United States)

    Jiang, Hong; Dun, Hongchao; Tong, Ding; Huang, Ning

    2017-04-01

    Sand saltation has complex interactions with turbulent flow and dune form. Most models of wind-blown sand consider ideal circumstances such as steady wind velocity and a flat surface, and the bulk of data on wind flow and sand transport over an individual dune has focused mostly on the influence of dune shape or inter-dune space on the wind flow, neglecting the effect of morphology on sand saltation, particularly airflow and sand transportation over the leeward slope. Wind flow structures over the leeward slope of sand dunes have a fundamental influence on the organization of sand dunes. In order to understand sand dune dynamics, lee face airflow and sediment transportation should be paid more attention. Previous field observations could not measure turbulent flow structure well because of the limited observation points and the influence of experiment structure on wind field. In addition, the reverse sand particles over leeward face could not be collected by sand trap in field. Numerous field observations could not measure turbulent flow structure because of the limited observation points and the influence of experimental structures on the wind field. In addition, the reverse transport of sand particles over leeward face could not be collected by sand traps in field. Therefore, this paper aims to investigate the turbulent flow structure and sand transport pattern over the leeward slope. A numerical model of sand saltation over slope terrain is constructed, which also considers the coupling effects between air flow and sand particles. The large eddy simulation method is used to model turbulent flow. Sand transport is simulated by tracking the trajectory of each sand particle. The results show that terrain significantly alters the turbulent air flow structure and wind-blown sand movement, especially over the leeward slope. Here, mass flux increases initially and then decreases with height in the reversed flow region in the direction of wind flow, and the mass flux

  9. Karst Aquifer Recharge: A Case History of over Simplification from the Uley South Basin, South Australia

    Directory of Open Access Journals (Sweden)

    Nara Somaratne

    2015-02-01

    Full Text Available The article “Karst aquifer recharge: Comments on ‘Characteristics of Point Recharge in Karst Aquifers’, by Adrian D. Werner, 2014, Water 6, doi:10.3390/w6123727” provides misrepresentation in some parts of Somaratne [1]. The description of Uley South Quaternary Limestone (QL as unconsolidated or poorly consolidated aeolianite sediments with the presence of well-mixed groundwater in Uley South [2] appears unsubstantiated. Examination of 98 lithological descriptions with corresponding drillers’ logs show only two wells containing bands of unconsolidated sediments. In Uley South basin, about 70% of salinity profiles obtained by electrical conductivity (EC logging from monitoring wells show stratification. The central and north central areas of the basin receive leakage from the Tertiary Sand (TS aquifer thereby influencing QL groundwater characteristics, such as chemistry, age and isotope composition. The presence of conduit pathways is evident in salinity profiles taken away from TS water affected areas. Pumping tests derived aquifer parameters show strong heterogeneity, a typical characteristic of karst aquifers. Uley South QL aquifer recharge is derived from three sources; diffuse recharge, point recharge from sinkholes and continuous leakage of TS water. This limits application of recharge estimation methods, such as the conventional chloride mass balance (CMB as the basic premise of the CMB is violated. The conventional CMB is not suitable for accounting chloride mass balance in groundwater systems displaying extreme range of chloride concentrations and complex mixing [3]. Over simplification of karst aquifer systems to suit application of the conventional CMB or 1-D unsaturated modelling as described in Werner [2], is not suitable use of these recharge estimation methods.

  10. Characterization of aquifer heterogeneity in a complex fluvial hydrogeologic system to evaluate migration in ground water

    International Nuclear Information System (INIS)

    Baker, F.G.; Pavlik, H.F.

    1990-01-01

    The hydrogeology and extent of ground water contamination were characterized at a site in northern California. Wood preserving compounds, primarily pentachlorophenol (PCP) and creosote, have been detected in the soil and ground water. A plume of dissolved PCP up to 1.5 miles long has been identified south of the plant. The aquifer consists of a complex multizonal system of permeable gravels and sands composed of units from four geologic formations deposited by the ancestral Feather River. Fluvial channel gravels form the principal aquifer zones and contain overbank clay and silt deposits which locally form clay lenses or more continuous aquitards. The geometric mean horizontal hydraulic conductivities for channel gravels range between 120 to 530 feet/day. Mean vertical aquitard hydraulic conductivity is 0.07 feet/day. Ground water flow is generally southward with a velocity ranging from 470 to 1000 feet/year. The spatial distribution of dissolved PCP in the aquifer documents the interactions between major permeable zones. Hydrostratigraphic evidence pointing to the separation of aquifer zones is supported by the major ion chemistry of ground water. The sodium and calcium-magnesium bicarbonate-rich water present in the upper aquifer zones is significantly different in chemical composition from the predominantly sodium chloride-rich water present in the deeper permeable zone. This indicates that hydrodynamic separation exists between the upper and lower zones of the aquifer, limiting the vertical movement of the PCP plume. A numerical ground water model, based on this conceptual hydrogeologic model, was developed to evaluate groundwater transport pathways and for use in the design of a ground water extraction and treatment system. (9 refs., 7 figs., tab.)

  11. Stratification of nitrification activity in rapid sand filters for drinking water treatment

    DEFF Research Database (Denmark)

    Tatari, Karolina; Smets, Barth F.; Musovic, Sanin

    2013-01-01

    Rapid sand filters used in groundwater treatment remove ammonium, iron and manganese from the water. Ammonium is removed biologically by nitrifying microorganisms attached on the sand surface. Nitrification kinetics and activity is strongly affected by filter design and operation, which are the key...... and maximum nitrification capacity are derived and used to quantify nitrification activity. Nitrification activity was concentrated at the top 10 cm of filter depth, and maximum nitrification capacity was 7 g NH4+-N/ m3 sand/h compared with 0.8-0.4 g NH4+-N/ m3 sand/h in the middle and bottom layers. A water...... of this study is to investigate nitrification activity in a rapid sand filter, with focus on its homogeneity and how it relates to filter performance. Two groundwater treatment plants in Denmark were selected for the experimental investigations. Plant 1 operates a single line of pre and after filters and has...

  12. Characterising aquifer treatment for pathogens in managed aquifer recharge.

    Science.gov (United States)

    Page, D; Dillon, P; Toze, S; Sidhu, J P S

    2010-01-01

    In this study the value of subsurface treatment of urban stormwater during Aquifer Storage Transfer Recovery (ASTR) is characterised using quantitative microbial risk assessment (QMRA) methodology. The ASTR project utilizes a multi-barrier treatment train to treat urban stormwater but to date the role of the aquifer has not been quantified. In this study it was estimated that the aquifer barrier provided 1.4, 2.6, >6.0 log(10) removals for rotavirus, Cryptosporidium and Campylobacter respectively based on pathogen diffusion chamber results. The aquifer treatment barrier was found to vary in importance vis-à-vis the pre-treatment via a constructed wetland and potential post-treatment options of UV-disinfection and chlorination for the reference pathogens. The risk assessment demonstrated that the human health risk associated with potable reuse of stormwater can be mitigated (disability adjusted life years, DALYs aquifer is integrated with suitable post treatment options into a treatment train to attenuate pathogens and protect human health.

  13. Changes of gas pressure in sand mould during cast iron pouring

    Directory of Open Access Journals (Sweden)

    J. Mocek

    2011-10-01

    Full Text Available The paper presents a test method developed to measure changes of gas pressure in sand moulds during manufacture of iron castings. The pressure and temperature measurements were taken in the sand mould layers directly adjacent to the metal – mould interface. A test stand was described along with the measurement methodology. The sensors used allowed studying the fast-changing nature of the processes which give rise to the gas-originated casting defects. The study examined the influence of binders, clays and refining additives on the nature of the gas evolution process. The effect of the base sand type - quartz or olivine - on the nature of pressure changes was compared. The test stand design ensured the stability of technological parameters in the examined mould elements, and a repeatable process of making pilot castings. The main outcome was classification of sand mixtures in terms of pressure occurring during pouring of iron castings. The obtained results confirm the usefulness of the described method for testing gas pressure occurrence in a sand mould.

  14. Field Investigation of Stream-Aquifer Interactions: A Case Study in Coastal California

    Science.gov (United States)

    Pritchard-Peterson, D.; Malama, B.

    2017-12-01

    We report here results of a detailed investigation of the dynamic interaction between a stream and an alluvial aquifer at Swanton Pacific Ranch in the Scotts Creek watershed, Santa Cruz County, California. The aquifer is an important source of groundwater for cropland irrigation and for aquatic ecosystem support. Low summer base flows in Scotts Creek are a source of serious concern for land managers, fisheries biologists, and regulatory agencies due to the presence of federally protected steelhead trout and coho salmon. An understanding of the interaction between the stream and pumped aquifer will allow for assessment of the impacts of groundwater extraction on stream flows and is essential to establishing minimum flow requirements. This will aid in the development of sustainable riparian groundwater pumping practices that meet agricultural and ecological needs. Results of extensive direct-push sampling of the subsurface, laboratory falling-head permeameter tests and particle size analysis of aquifer sediments, multi-day pumping tests, long-term passive monitoring of aquifer hydraulic heads and stream stage and discharge, and electrical resistivity interrogation of the subsurface are reported here. Findings indicate that the permeable subsurface formation tapped by irrigation wells is a leaky semi-confined aquifer, overlain by a thin low permeability layer of silt and clay above which lies Scotts Creek. These results are particularly useful to land managers responsible for groundwater abstraction from wells that tap into the aquifer. Additionally, an index of stream-aquifer connectivity is proposed that would allow land managers to conveniently modify groundwater abstraction practices, minimizing concerns of stream depletion.

  15. Water-level altitudes 2015 and water-level changes in the Chicot, Evangeline, and Jasper aquifers and compaction 1973-2014 in the Chicot and Evangeline aquifers, Houston-Galveston region, Texas

    Science.gov (United States)

    Kasmarek, Mark C.; Ramage, Jason K.; Houston, Natalie A.; Johnson, Michaela R.; Schmidt, Tiffany S.

    2015-01-01

    Most of the land-surface subsidence in the Houston-Galveston region, Texas, has occurred as a direct result of groundwater withdrawals for municipal supply, commercial and industrial use, and irrigation that depressured and dewatered the Chicot and Evangeline aquifers, thereby causing compaction of the aquifer sediments, mostly in the fine-grained silt and clay layers. This report, prepared by the U.S. Geological Survey in cooperation with the Harris-Galveston Subsidence District, City of Houston, Fort Bend Subsidence District, Lone Star Groundwater Conservation District, and Brazoria County Groundwater Conservation District, is one in an annual series of reports depicting water-level altitudes and water-level changes in the Chicot, Evangeline, and Jasper aquifers and measured cumulative compaction of subsurface sediments in the Chicot and Evangeline aquifers in the Houston-Galveston region. The report contains regional-scale maps depicting approximate 2015 water-level altitudes (represented by measurements made during December 2014–March 2015) for the Chicot, Evangeline, and Jasper aquifers; maps depicting 1-year (2014–15) water-level changes for each aquifer; maps depicting approximate contoured 5-year (2010–15) water-level changes for each aquifer; maps depicting approximate contoured long-term (1990–2015 and 1977–2015) water-level changes for the Chicot and Evangeline aquifers; a map depicting approximate contoured long-term (2000–15) water-level changes for the Jasper aquifer; a map depicting locations of borehole-extensometer sites; and graphs depicting measured cumulative compaction of subsurface sediments at the borehole extensometers during 1973–2014. Three tables listing the water-level data used to construct each water-level map for each aquifer and a table listing the measured cumulative compaction data for each extensometer site and graphs are included.

  16. Field-Derived Hydraulic Properties for Perched-Water Aquifer Wells 299-E33-350 and 299-E33-351, Hanford Site B-Complex Area

    Energy Technology Data Exchange (ETDEWEB)

    Newcomer, Darrell R.

    2014-07-01

    During February and March 2014, Pacific Northwest National Laboratory conducted hydraulic (slug) tests at 200-DV-1 Operable Unit wells 299-E33-350 (C8914) and 299-E33-351 (C8915) as part of B-Complex Area Perched-Water characterization activities at the Hanford Site 200-East Area. During the construction/completion phase of each well, two overlapping depth intervals were tested within the unconfined perched-water aquifer contained in the silty-sand subunit of the Cold Creek Unit. The purpose of the slug-test characterization was to provide estimates of transmissivity and hydraulic conductivity for the perched-water aquifer at these selected well locations.

  17. Alluvial Aquifer

    Data.gov (United States)

    Kansas Data Access and Support Center — This coverage shows the extents of the alluvial aquifers in Kansas. The alluvial aquifers consist of unconsolidated Quaternary alluvium and contiguous terrace...

  18. Drivers of drift sand dynamics; a reconstruction for the Wekeromse Zand, the Netherlands

    Science.gov (United States)

    Hendriks, Chantal; Sonneveld, Marthijn; Wallinga, Jakob

    2013-04-01

    Inland active drift sand landscapes are regarded as unique ecosystems of great historical and geomorphological value. Recent studies have highlighted the role of multiple factors in the initiation and stabilization of drift sand landscapes. To unravel the importance of different forcings (e.g. agricultural practices, climate) and their interplay, insight in the chronology of drift sand dynamics is essential. In this study, we aimed to reconstruct the dynamics of the drift sand landscape of the Wekeromse Zand (central Netherlands) and to develop a conceptual model to understand the processes involved. The Wekeromse Zand study area (370 ha) is located on the border of a central push moraine and is characterised by open active drift sands (14 ha) and vegetated hills and valleys. The surroundings are dominated by modern agricultural practices, and remnants from ancient iron age Celtic Field systems showing that the area has been in agricultural use since at least the Iron Age. For the study area we: i) analysed historical maps going back to the early 19th century, ii) performed a field survey to map the palaeolandscape (before drift sand activation) and iii) employed optically stimulated luminescence (OSL) dating of drift sand deposits on 11 samples from two locations to determine the timing of drift sand deposition. Analysis of the available topographic maps showed no substantial aeolean activity of the area outside its morphological boundaries. OSL dating revealed that two drift sand layers were deposited between 1373 and 1462 AD and between 1680 and 1780 AD. A layer with a higher organic matter content was found at one of the sites. This suggests that the Wekeromse Zand has known three relatively stable periods: i) a period between the start of the Holocene to the Late Medieval Period, ii) in between the Medieval climatic optimum and the climatic Maunder minimum, and iii) current situation. Despite the fact that agricultural activities occurred in this area from the

  19. The fate of H2O2 during managed aquifer recharge: A residual from advanced oxidation processes for drinking water production.

    Science.gov (United States)

    Wang, F; van Halem, D; van der Hoek, J P

    2016-04-01

    The fate of H2O2 residual from advanced oxidation process (AOP) preceding managed aquifer recharge (MAR) is of concern because H2O2 could lead to undesired effects on organisms in the MAR aquatic and soil ecosystem. The objective of this study was to distinguish between factors affecting H2O2 decomposition in MAR systems, simulated in batch reactors with synthetic MAR water and slow sand filter sand. The results showed that pure sand and soil organic matter had no considerable effect on H2O2 decomposition, whereas naturally occurring inorganic substances on the surface of sand grains and microbial biomass are the two main factors accelerating H2O2 decomposition in MAR systems. Additionally, the results showed that the H2O2 decompositions with different initial concentrations fitted first-order kinetics in 2-6 h in a mixture of slow sand filter sand (as a substitute for sand from a MAR system) and synthetic MAR water with high bacterial population. An estimation indicated that low concentrations of H2O2 (<3 mg/L) could decompose to the provisional standard of 0.25 mg/L in the first centimeters of MAR systems with the influent water containing high microbial biomass 38 ng ATP/mL. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. [Carbon sequestration in soil particle-sized fractions during reversion of desertification at Mu Us Sand land.

    Science.gov (United States)

    Ma, Jian Ye; Tong, Xiao Gang; Li, Zhan Bin; Fu, Guang Jun; Li, Jiao; Hasier

    2016-11-18

    The aim of this study was to investigate the effects of carbon sequestration in soil particle-sized fractions during reversion of desertification at Mu Us Sand Land, soil samples were collected from quicksand land, semifixed sand and fixed sand lands that were established by the shrub for 20-55 year-old and the arbor for 20-50 year-old at sand control region of Yulin in Northern Shaanxi Province. The dynamics and sequestration rate of soil organic carbon (SOC) associated with sand, silt and clay were measured by physical fractionation method. The results indicated that, compared with quicksand area, the carbon content in total SOC and all soil particle-sized fractions at bothsand-fixing sand forest lands showed a significant increasing trend, and the maximum carbon content was observed in the top layer of soils. From quicksand to fixed sand land with 55-year-old shrub and 50-year-old arbor, the annual sequestration rate of carbon stock in 0-5 cm soil depth was same in silt by 0.05 Mg·hm -2 ·a -1 . The increase rate of carbon sequestration in sand was 0.05 and 0.08 Mg·hm -2 ·a -1 , and in clay was 0.02 and 0.03 Mg·hm -2 ·a -1 at shrubs and arbors land, respectively. The increase rate of carbon sequestration in 0-20 cm soil layer for all the soil particles was averagely 2.1 times as that of 0-5 cm. At the annual increase rate of carbon, the stock of carbon in sand, silt and clay at the two fixed sand lands were increased by 6.7, 18.1 and 4.4 times after 50-55 year-old reversion of quicksand land to fixed sand. In addition, the average percentages that contributed to accumulation of total SOC by different particles in 0-20 cm soil were in the order of silt carbon (39.7%)≈sand carbon (34.6%) > clay carbon (25.6%). Generally, the soil particle-sized fractions had great carbon sequestration potential during reversion of desertification in Mu Us Sand Land, and the slit and sand were the main fractions for carbon sequestration at both fixed sand lands.

  1. Varying Inundation Regimes Differentially Affect Natural and Sand-Amended Marsh Sediments.

    Directory of Open Access Journals (Sweden)

    C Wigand

    Full Text Available Climate change is altering sea level rise rates and precipitation patterns worldwide. Coastal wetlands are vulnerable to these changes. System responses to stressors are important for resource managers and environmental stewards to understand in order to best manage them. Thin layer sand or sediment application to drowning and eroding marshes is one approach to build elevation and resilience. The above- and below-ground structure, soil carbon dioxide emissions, and pore water constituents in vegetated natural marsh sediments and sand-amended sediments were examined at varying inundation regimes between mean sea level and mean high water (0.82 m NAVD88 to 1.49 m NAVD88 in a field experiment at Laws Point, part of the Plum Island Sound Estuary (MA. Significantly lower salinities, pH, sulfides, phosphates, and ammonium were measured in the sand-amended sediments than in the natural sediments. In natural sediments there was a pattern of increasing salinity with increasing elevation while in the sand-amended sediments the trend was reversed, showing decreasing salinity with increasing elevation. Sulfide concentrations generally increased from low to high inundation with highest concentrations at the highest inundation (i.e., at the lowest elevations. High pore water phosphate concentrations were measured at low elevations in the natural sediments, but the sand-amended treatments had mostly low concentrations of phosphate and no consistent pattern with elevation. At the end of the experiment the lowest elevations generally had the highest measures of pore water ammonium. Soil carbon dioxide emissions were greatest in the sand-amended mesocosms and at higher elevations. Differences in coarse root and rhizome abundances and volumes among the sediment treatments were detected with CT imaging, but by 20 weeks the natural and sand-amended treatments showed similar total belowground biomass at the intermediate and high elevations. Although differences in

  2. Resistivity method contribution in determining of fault zone and hydro-geophysical characteristics of carbonate aquifer, eastern desert, Egypt

    Science.gov (United States)

    Ammar, A. I.; Kamal, K. A.

    2018-03-01

    Determination of fault zone and hydro-geophysical characteristics of the fractured aquifers are complicated, because their fractures are controlled by different factors. Therefore, 60 VESs were carried out as well as 17 productive wells for determining the locations of the fault zones and the characteristics of the carbonate aquifer at the eastern desert, Egypt. The general curve type of the recorded rock units was QKH. These curves were used in delineating the zones of faults according to the application of the new assumptions. The main aquifer was included at end of the K-curve type and front of the H-curve type. The subsurface layers classified into seven different geoelectric layers. The fractured shaly limestone and fractured limestone layers were the main aquifer and their resistivity changed from low to medium (11-93 Ω m). The hydro-geophysical properties of this aquifer such as the areas of very high, high, and intermediate fracture densities of high groundwater accumulations, salinity, shale content, porosity distribution, and recharging and flowing of groundwater were determined. The statistical analysis appeared that depending of aquifer resistivity on the water salinities (T.D.S.) and water resistivities add to the fracture density and shale content. The T.D.S. increasing were controlled by Na+, Cl-, Ca2+, Mg2+, and then (SO4)2-, respectively. The porosity was calculated and its average value was 19%. The hydrochemical analysis of groundwater appeared that its type was brackish and the arrangements of cation concentrations were Na+ > Ca2+ > Mg2+ > K+ and anion concentrations were Cl- > (SO4)2- > HCO3 - > CO3 -. The groundwater was characterized by sodium-bicarbonate and sodium-sulfate genetic water types and meteoric in origin. Hence, it can use the DC-resistivity method in delineating the fault zone and determining the hydro-geophysical characteristics of the fractured aquifer with taking into account the quality of measurements and interpretation.

  3. Core drilling provides information about Santa Fe Group aquifer system beneath Albuquerque's West Mesa

    Science.gov (United States)

    Allen, B.D.; Connell, S.D.; Hawley, J.W.; Stone, B.D.

    1998-01-01

    Core samples from the upper ???1500 ft of the Santa Fe Group in the Albuquerque West Mesa area provide a first-hand look at the sediments and at subsurface stratigraphic relationships in this important part of the basin-fill aquifer system. Two major hydrostratigraphic subunits consisting of a lower coarse-grained, sandy interval and an overlying fine-grained, interbedded silty sand and clay interval lie beneath the water table at the 98th St core hole. Borehole electrical conductivity measurements reproduce major textural changes observed in the recovered cores and support subsurface correlations of hydrostratigraphic units in the Santa Fe Group aquifer system based on geophysical logs. Comparison of electrical logs from the core hole and from nearby city wells reveals laterally consistent lithostratigraphic patterns over much of the metropolitan area west of the Rio Grande that may be used to delineate structural and related stratigraphic features that have a direct bearing on the availability of ground water.

  4. Geochemical detection of carbon dioxide in dilute aquifers

    Directory of Open Access Journals (Sweden)

    Aines Roger

    2009-03-01

    Full Text Available Abstract Background Carbon storage in deep saline reservoirs has the potential to lower the amount of CO2 emitted to the atmosphere and to mitigate global warming. Leakage back to the atmosphere through abandoned wells and along faults would reduce the efficiency of carbon storage, possibly leading to health and ecological hazards at the ground surface, and possibly impacting water quality of near-surface dilute aquifers. We use static equilibrium and reactive transport simulations to test the hypothesis that perturbations in water chemistry associated with a CO2 gas leak into dilute groundwater are important measures for the potential release of CO2 to the atmosphere. Simulation parameters are constrained by groundwater chemistry, flow, and lithology from the High Plains aquifer. The High Plains aquifer is used to represent a typical sedimentary aquifer overlying a deep CO2 storage reservoir. Specifically, we address the relationships between CO2 flux, groundwater flow, detection time and distance. The CO2 flux ranges from 103 to 2 × 106 t/yr (0.63 to 1250 t/m2/yr to assess chemical perturbations resulting from relatively small leaks that may compromise long-term storage, water quality, and surface ecology, and larger leaks characteristic of short-term well failure. Results For the scenarios we studied, our simulations show pH and carbonate chemistry are good indicators for leakage of stored CO2 into an overlying aquifer because elevated CO2 yields a more acid pH than the ambient groundwater. CO2 leakage into a dilute groundwater creates a slightly acid plume that can be detected at some distance from the leak source due to groundwater flow and CO2 buoyancy. pH breakthrough curves demonstrate that CO2 leaks can be easily detected for CO2 flux ≥ 104 t/yr within a 15-month time period at a monitoring well screened within a permeable layer 500 m downstream from the vertical gas trace. At lower flux rates, the CO2 dissolves in the aqueous phase

  5. Geochemical detection of carbon dioxide in dilute aquifers.

    Science.gov (United States)

    Carroll, Susan; Hao, Yue; Aines, Roger

    2009-03-26

    Carbon storage in deep saline reservoirs has the potential to lower the amount of CO2 emitted to the atmosphere and to mitigate global warming. Leakage back to the atmosphere through abandoned wells and along faults would reduce the efficiency of carbon storage, possibly leading to health and ecological hazards at the ground surface, and possibly impacting water quality of near-surface dilute aquifers. We use static equilibrium and reactive transport simulations to test the hypothesis that perturbations in water chemistry associated with a CO2 gas leak into dilute groundwater are important measures for the potential release of CO2 to the atmosphere. Simulation parameters are constrained by groundwater chemistry, flow, and lithology from the High Plains aquifer. The High Plains aquifer is used to represent a typical sedimentary aquifer overlying a deep CO2 storage reservoir. Specifically, we address the relationships between CO2 flux, groundwater flow, detection time and distance. The CO2 flux ranges from 10(3) to 2 x 10(6) t/yr (0.63 to 1250 t/m2/yr) to assess chemical perturbations resulting from relatively small leaks that may compromise long-term storage, water quality, and surface ecology, and larger leaks characteristic of short-term well failure. For the scenarios we studied, our simulations show pH and carbonate chemistry are good indicators for leakage of stored CO2 into an overlying aquifer because elevated CO2 yields a more acid pH than the ambient groundwater. CO2 leakage into a dilute groundwater creates a slightly acid plume that can be detected at some distance from the leak source due to groundwater flow and CO2 buoyancy. pH breakthrough curves demonstrate that CO2 leaks can be easily detected for CO2 flux >or= 10(4) t/yr within a 15-month time period at a monitoring well screened within a permeable layer 500 m downstream from the vertical gas trace. At lower flux rates, the CO2 dissolves in the aqueous phase in the lower most permeable unit and does

  6. Aquifer test at well SMW-1 near Moenkopi, Arizona

    Science.gov (United States)

    Carruth, Rob; Bills, Donald J.

    2012-01-01

    The Hopi villages of Lower Moencopi and Upper Moenkopi are on the Hopi Indian Reservation south of Tuba City in northern Arizona. These adjacent Hopi villages, located west and north of the confluence of Pasture Canyon Wash and Moenkopi Wash, are dependent on groundwater withdrawals from three wells that penetrate the N aquifer and from two springs that discharge from the N aquifer. The N aquifer is the principal aquifer in this region of northern Arizona and is composed of thick beds of sandstone between less permeable layers of siltstone and mudstone. The fine-grained character of the N aquifer inhibits rapid movement of water and large yields to wells; however, the aquifer is moderately productive at yields generally less than 25 gallons per minute in the study area. In recent years, the water level has declined in the three public-supply wells and the flow from the springs has decreased, causing concern that the current water supply will not be able to accommodate peak demand and allow for residential and economic growth. In addition to the challenge imposed by declining groundwater levels, the water-supply wells and springs are located about 2 miles downgradient from the Tuba City Landfill site where studies are ongoing to determine if uranium and other metals in groundwater beneath the landfill are higher than regional concentrations in the N aquifer. In August 2008, the U.S. Geological Survey, in cooperation with the Hopi Tribe, conducted an aquifer test on well SMW-1, designed to help the Hopi Tribe determine the potential yield and water quality of the N aquifer south of Moenkopi Wash as a possible source of additional water supply. Well SMW-1 was drilled south of Moenkopi Wash to a depth of 760 feet below land surface before being backfilled and cased to about 300 feet. The well penetrates, in descending order, the Navajo Sandstone and the Kayenta Formation, both units of the N aquifer. The pre-test water level in the well was 99.15 feet below land

  7. Inherent mineralization of 2,6-dichlorobenzamide (BAM) in unsaturated zone and aquifers - Effect of initial concentrations and adaptation

    Energy Technology Data Exchange (ETDEWEB)

    Janniche, Gry Sander, E-mail: gsja@env.dtu.dk [DTU Environment, Technical University of Denmark, Building 113, DK-2800 Kgs. Lyngby (Denmark); Clausen, Liselotte; Albrechtsen, Hans-Jorgen [DTU Environment, Technical University of Denmark, Building 113, DK-2800 Kgs. Lyngby (Denmark)

    2011-10-15

    The dichlobenil metabolite BAM (2,6-dichlorobenzamide) is frequently detected in aquifers e.g. in Denmark despite the mother compound dichlobenil was banned here since 1997. BAM mineralization was investigated at environmentally relevant concentrations in sediment samples. Undisturbed sediment cores with known dichlobenil application were collected from topsoil to 8.5 m below surface resulting in 57 samples hereof 4 aquifer samples. Mineralization was only substantial (>10%) in the uppermost meter of the unsaturated zone. Microbial adaptation, observed as faster mineralization in pre-exposed than in pristine sediments from the same location, was only evident in sandy sediment where dichlobenil was still present, but not in clayey sediments. Higher initial concentrations (1-5000 {mu}g/kg) did not stimulate mineralization in pristine clayey or sandy sediments, or in pre-exposed sand. However, in pre-exposed clay mineralization was stimulated at high concentrations. Furthermore BAM was for the first time mineralized in aerobic aquifer sediments from different BAM-contaminated groundwater locations. - Highlights: > BAM mineralized in BAM-contaminated aerobic aquifer sediments. > In subsurface, fastest BAM mineralization in pre-exposed sandy sediments. > Increased mineralization (adaptation) only observed in contaminated sandy sediment. > In pristine sediments mineralization ratio increased with decreasing concentrations. - BAM mineralization in subsurface and groundwater was demonstrated.

  8. Aquifer Thermal Energy Storage as an ecosystem service for Brussels, Belgium: investigating iron (hydr)oxide precipitation with reactive transport modeling

    Science.gov (United States)

    Anibas, Christian; Possemiers, Mathias; Huysmans, Marijke

    2016-04-01

    In an evolving energy system it is important that urbanized areas contribute to their own energy demands. To reduce greenhouse gas emissions sustainable energy systems with a high efficiency are required, e.g. using urban aquifers as an ecosystem service. Here the potential of seasonal aquifer thermal energy storage and recovery (ATES) for the Brussels-Capital Region, Belgium is investigated. An important shallow geologic formation in the Brussels Capital Region is the Brussels Sand formation, a 20-60 m thick phreatic aquifer. The Brussels Sand Formation is known for its potential for ATES systems, but also for its varying redox and hydraulic conditions. Important limiting factors for ATES systems in the Brussels Sand Formation therefore are the hydraulic conductivity and the geochemical composition of the groundwater. Near the redox boundary iron hydroxide precipitation can negatively influence ATES well performance due to clogging. The interactions between physical processes (e.g. particle transport and clogging in the wider proximity of the ATES well) and chemical processes (e.g. influence of the operation temperatures on precipitation processes) during ATES operation are complex but not well understood. Therefore we constructed numerical groundwater flow models in MODFLOW to estimate maximum pumping and injection rates of different hydraulic conditions and competing water uses in the Brussels Sand Formation. In further steps the thermal potential for ATES was quantified using MT3DMS and the reactive transport model PHT3D was applied to assess the effects of operating ATES systems near the redox boundary. Results show that initial mixing plays an important role in the development of iron(hydr)oxide precipitation around the ATES wells, with the highest concentrations around the cold wells. This behavior is enhanced by the temperature effect; temperature differences of ΔT≈10°C already influence the iron (hydr)oxide concentration. The initial injection into the

  9. Three-dimensional geologic model of the Arbuckle-Simpson aquifer, south-central Oklahoma

    Science.gov (United States)

    Faith, Jason R.; Blome, Charles D.; Pantea, Michael P.; Puckette, James O.; Halihan, Todd; Osborn, Noel; Christenson, Scott; Pack, Skip

    2010-01-01

    The Arbuckle-Simpson aquifer of south-central Oklahoma encompasses more than 850 square kilometers and is the principal water resource for south-central Oklahoma. Rock units comprising the aquifer are characterized by limestone, dolomite, and sandstones assigned to two lower Paleozoic units: the Arbuckle and Simpson Groups. Also considered to be part of the aquifer is the underlying Cambrian-age Timbered Hills Group that contains limestone and sandstone. The highly faulted and fractured nature of the Arbuckle-Simpson units and the variable thickness (600 to 2,750 meters) increases the complexity in determining the subsurface geologic framework of this aquifer. A three-dimensional EarthVision (Trademark) geologic framework model was constructed to quantify the geometric relationships of the rock units of the Arbuckle-Simpson aquifer in the Hunton anticline area. This 3-D EarthVision (Trademark) geologic framework model incorporates 54 faults and four modeled units: basement, Arbuckle-Timbered Hills Group, Simpson Group, and post-Simpson. Primary data used to define the model's 54 faults and four modeled surfaces were obtained from geophysical logs, cores, and cuttings from 126 water and petroleum wells. The 3-D framework model both depicts the volumetric extent of the aquifer and provides the stratigraphic layer thickness and elevation data used to construct a MODFLOW version 2000 regional groundwater-flow model.

  10. Transparent, Ultrahigh-Gas-Barrier Films with a Brick-Mortar-Sand Structure.

    Science.gov (United States)

    Dou, Yibo; Pan, Ting; Xu, Simin; Yan, Hong; Han, Jingbin; Wei, Min; Evans, David G; Duan, Xue

    2015-08-10

    Transparent and flexible gas-barrier materials have shown broad applications in electronics, food, and pharmaceutical preservation. Herein, we report ultrahigh-gas-barrier films with a brick-mortar-sand structure fabricated by layer-by-layer (LBL) assembly of XAl-layered double hydroxide (LDH, X=Mg, Ni, Zn, Co) nanoplatelets and polyacrylic acid (PAA) followed by CO2 infilling, denoted as (XAl-LDH/PAA)n-CO2. The near-perfectly parallel orientation of the LDH "brick" creates a long diffusion length to hinder the transmission of gas molecules in the PAA "mortar". Most significantly, both the experimental studies and theoretical simulations reveal that the chemically adsorbed CO2 acts like "sand" to fill the free volume at the organic-inorganic interface, which further depresses the diffusion of permeating gas. The strategy presented here provides a new insight into the perception of barrier mechanism, and the (XAl-LDH/PAA)n-CO2 film is among the best gas barrier films ever reported. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Screening for suitable areas for Aquifer Thermal Energy Storage within the Brussels Capital Region, Belgium using coupled groundwater flow and heat transport modelling tools

    Science.gov (United States)

    Anibas, Christian; Kukral, Janik; Touhidul Mustafa, Syed Md; Huysmans, Marijke

    2017-04-01

    Urban areas have a great potential for shallow geothermal systems. Their energy demand is high, but currently they have only a limited potential to cover their own energy demand. The transition towards a low-carbon energy regime offers alternative sources of energy an increasing potential. Urban areas however pose special challenges for the successful exploitation of shallow geothermal energy. High building densities limit the available space for drillings and underground investigations. Urban heat island effects and underground structures influence the thermal field, groundwater pollution and competing water uses limit the available subsurface. To tackle these challenges in the Brussels Capital Region, Belgium two projects 'BruGeo' and the recently finished 'Prospective Research of Brussels project 2015-PRFB-228' address the investigation in urban geothermal systems. They aim to identify the key factors of the underground with respect to Aquifer Thermal Energy Storage (ATES) installations like thermal properties, aquifer thicknesses, groundwater flow velocities and their heterogeneity. Combined numerical groundwater and heat transport models are applied for the assessment of both open and closed loop shallow geothermal systems. The Brussels Capital Region comprises of the Belgian Capital, the City of Brussels and 18 other municipalities covering 161 km2 with almost 1.2 million inhabitants. Beside the high population density the Brussels Capital Region has a pronounced topography and a relative complex geology. This is both a challenge and an opportunity for the exploitation of shallow geothermal energy. The most important shallow hydrogeological formation in the Brussels-Capital Region are the Brussels Sands with the Brussels Sands Aquifer. Scenarios where developed using criteria for the hydrogeological feasibility of ATES installations such as saturated aquifer thickness, groundwater flow velocity and the groundwater head below surface. The Brussels Sands

  12. Late Pleistocene shallow water sand transported to the slope at IODP Sites U1484 and U1485 off the north coast of Papua New Guinea: how, when and why?

    Science.gov (United States)

    Mountain, G. S.; Browning, J. V.; Bova, S. C.

    2017-12-01

    IODP Exp 363 drilled two sites on a gently seaward-dipping terrace 18 and 21 km north of Papua New Guinea, enabling the study of mechanisms that bring shallow water sediment to the deep sea. We expect past changes in sea level and precipitation / fluvial run-off dominated this record, but additional processes may have been important. We examined Hole U1484B (1031 m water depth; 223 m drilled; 99.8% recovered) and detected 339 sharp-based sand layers 0.5 cm or more thick. In contrast to the background hemipelagic nanno-bearing silty clay, sand layers are graded or massive turbidites containing detrital grains, shallow-water benthic foraminifera, shell fragments and/or wood. δ18O values of Globigerinoides ruber tied to the isotopic curve of Lisiecki and Raymo (2004) show the densest concentration of sand layers in the last 310 ka occurred during the cooling trend of MIS stage 6. Stage 2 contains significantly fewer discrete sand beds, even during the coldest part of the LGM. Other times of glacial intensification show a similarly modest correlation to peak sand deposition. Sand layers strongly correlate with high values of magnetic susceptibility (MS) measured on unsplit cores, and when mapped to the MIS time scale, MS increases match times of ice growth / falling sea level more consistently than does the density of sand layers. We attribute this to reworking of discrete sand layers by bioturbation, indicating the need for caution tying the absence of sharp-based sands to times of transgression or low precipitation / fluvial run-off. Packages of especially thick and closely-spaced sharp-based sands match seismic reflections at Site U1484. Tracing these reflections throughout the grid of hi-res MCS site survey profiles reveals the areal distribution and transport path of sand as well as a direct tie to similar sharp-based sands in the more distal Hole U1485A (1145 m water depth; 301 m drilled; 103.8% recovered.) The distribution of sands through time might be

  13. PROSPECTS FOR APPLICATION OF COMPLEX-MODIFIED SAND ASPHALT CONCRETE IN ROAD CONSTRUCTION

    Directory of Open Access Journals (Sweden)

    D. Yu. Alexandrov

    2017-01-01

    Full Text Available The paper considers a possibility to use sand asphalt concrete as a material for protection of asphalt concrete and cement concrete road pavements against affection of external destructive factors. Advantages and disadvantages of sand asphalt concrete road pavements have been determined in the paper. The paper provides recommendations on improvement of sand asphalt concrete properties and contains an analysis of possible variants for usage of complex-modified sand asphalt concrete in the road construction. It has been noted that according to its potentially possible physical and mechanical properties activated quartz sand being micro-reinforced by dispersive industrial wastes is considered as an efficient component for creation of constructive layers in road asphalt concrete pavements. The paper reveals only specific aspects of the efficient application of quartz sand in road asphalt concrete. The subject of the paper loоks rather interesting for regions where there are no rock deposits for obtaining broken-stone ballast but there is rather significant spreading of local quarts sand. Its successful application is connected with the necessity to develop special equipment for physical and chemical activation of sand grain surface that permits strongly to increase an adhesive strength in the area of phase separation within the “bitumen–SiO2” system. The considered problem is a topical one and its solution will make it possible to local sand in a maximum way and partially to exclude application of broken stone in road construction.

  14. Transport and fate of engineered silver nanoparticles in aquifer media

    Science.gov (United States)

    Adrian, Y.; Schneidewind, U.; Azzam, R.

    2016-12-01

    Engineered silver nanoparticles (AgNPs) are used in various consumer and medical products due to their antimicrobial properties. Their transport behavior in the environment is still under investigation. Previous studies have been focusing on the transport of AgNPs in test systems with pure quartz sand or top soil materials, but studies investigating aquifer material are rare. However, the protection of groundwater resources is an important part in the protection of human health and the assurance of future economic activities. Therefore, expert knowledge regarding the transport, behavior and fate of engineered nanoparticles as potential contaminants in aquifers is essential. The transport and retention behavior of two commercially available engineered AgNPs (one stabilized with a polymere and one with a surfactant) in natural silicate-dominated aquifer material was investigated in saturated laboratory columns. For the experiments a mean grain size diameter of 0.7 mm was chosen with varying silt and clay contents to investigate their effect on the transport behavior of the AgNPs. Typical flow velocities were chosen to represent natural conditions. Particle concentration in the effluent was measured using ICP-MS and the finite element code HYDRUS-1D was used to model the transport and retention processes. The size of the silver nanoparticles in the effluent was analyzed using Flow Field-Flow Fractionation. The obtained results show that silt and clay contents as well as the stabilization of the AgNPs control the transport and retention of AgNPs. Increasing breakthrough was observed with decreasing clay and silt content.

  15. Apports des analyses chimiques et isotopiques à la connaissance du fonctionnement des aquifères plio-quaternaire et turonien de la zone synclinale d'Essaouira, Maroc occidentalGeochemistry of Plio-Quaternary and Turonian aquifers in the Essaouira Basin, western Moroco

    Science.gov (United States)

    Mennani, A.; Blavoux, B.; Bahir, M.; Bellion, Y.; Jalal, M.; Daniel, M.

    2001-05-01

    The Essaouira synclinal zone is one of the Moroccan semi-arid zones with annual rainfalls not exceeding 300 mm yr -1 and very high potential evapo-transpiration of about 920 mm yr -1. This syncline with a Senonian axial zone is bordered by two diapiric structures of Triassic deposits: the Tidzi Diapir that outcrops in the east and south, and the hidden Essaouira diapir in the west, which was found by geophysics. This syncline contains two main superimposed aquifers. (i) The Plio-Quaternary aquifer consists of sands, sandstone and conglomerates and provides the main part of the water supply. This free-water table flows out towards the northwest and its surface is affected by significant piezometric variations. (ii) The calcareous dolomitic Turonian is a confined aquifer under the Senonian marls in the and in direct contact with the Plio-Quaternary. For a few years, the drinking water supply to the town of Essaouira has come from deep drillings. These two aquifers were sampled in June 1995 and in Januray 1996 after exceptional rainfalls. All waters have the same geochemical profile. The interpretation of the total dissolved solids and chloride content of Plio-Quaternary aquifers makes it possible to specify their origins. It emphasises, in particular, the source from the Ksob Wadi in the northeast and the role of the hidden Essaouira diapir. Nitrate levels were raised excessively, increasing at the same time as chloride concentrations during the rains of the winter of 1996, and underline the wells vulnerability to pastoral and domestic activities. The interpretation of O- and H-isotopes distinguishes two contrasting Plio-Quaternary and Turonian aquifers with an Atlantic origin for the rain recharge. A specific campaign was varried out in November 1996 to date water from the Turonian aquifer by 14C. Two boreholes draw water of several thousands years old.

  16. Reclaimability of the spent sand mixture – sand with bentonite – sand with furfuryl resin

    Directory of Open Access Journals (Sweden)

    J. Dańko

    2011-04-01

    Full Text Available Introduction of new binding materials and new technologies of their hardening in casting moulds and cores production requires theapplication of reclamation methods adequate to their properties as well as special devices realizing tasks. The spent sands circulationsystem containing the same kind of moulding and core sands is optimal from the point of view of the expected reclamation results.However, in the face of a significant variability of applied technologies and related to them various reclamation methods, the need - of theobtained reclamation products assessment on the grounds of systematic criteria and uniform bases – arises, with a tendency of indicatingwhich criteria are the most important for the given sand system. The reclaimability results of the mixture of the spent moulding sand withGeko S bentonite and the spent core sand with the Kaltharz 404U resin hardened by acidic hardener 100 T3, are presented in the paper.Investigations were performed with regard to the estimation of an influence of core sands additions (10 –25% on the reclaimed materialquality. Dusts and clay content in the reclaim, its chemical reaction (pH and ignition loss were estimated. The verification of the reclaiminstrumental assessment was performed on the basis of the technological properties estimation of moulding sand with bentonite, where the reclaimed material was used as a matrix.

  17. Preparation of tracing source layer in simulation test of nuclide migration

    International Nuclear Information System (INIS)

    Zhao Yingjie; Ni Shiwei; Li Weijuan; Yamamoto, T.; Tanaka, T.; Komiya, T.

    1993-01-01

    In cooperative research between CIRP and JAERI on safety assessment for shallow land disposal of low level radioactive waste, a laboratory simulation test of nuclide migration was carried out, in which the undisturbed loess soil column sampled from CIRP' s field test site was used as testing material, three nuclides, Sr-85, Cs-137 and Co-60 were used as tracers. Special experiment on tracing method was carried out, which included measuring pH value of quartz sand in HCl solution, determining the eligible water content of quartz sand as tracer carrier, measuring distribution uniformity of nuclides in the tracing quartz sand, determining elution rate of nuclides from the tracing quartz sand and detecting activity uniformity of tracing source layer. The experiment results showed that the tracing source layer, in which fine quartz sand was used as tracer carrier, satisfied expected requirement. (1 fig.)

  18. Sediment volume in the north polar sand seas of Mars

    International Nuclear Information System (INIS)

    Lancaster, N.; Greeley, R.

    1990-01-01

    Data from studies of the cross-sectional area of terrestrial transverse dunes have been combined with maps of dune morphometry derived from Viking orbiter images to generate new estimates of sediment thickness and dune sediment volume in the north polar sand seas of Mars. A relationship between dune spacing and equivalent sediment thickness (EST) was developed from field data on Namibian and North American dunes and was applied to data on dune spacing and dune cover measured on Viking orbiter images to generate maps of dune sediment thickness for Martian north polar sand seas. There are four major sand seas in the north polar region of Mars, covering an area of 6.8 x 10 5 km 2 . Equivalent sediment thickness ranges between 0.5 and 6.1 m with a mean of 1.8 m. The sand seas contain a total of 1158 km 3 of dune sediment, which may have been derived by erosion of polar layered deposits and concentrated in its present location by winds that change direction seasonally

  19. Red and blue colouration of thermoluminescence from natural quartz sands

    Energy Technology Data Exchange (ETDEWEB)

    Hashimoto, T; Hayashi, Y; Koyanagi, A; Yokosaka, K; Kimura, K

    1986-01-01

    Quartz extracts, from a pegmatite rock, volcanic ashes and beach sands, were exposed to X-rays or gamma-rays upto 8.8kGy. The irradiated sands were observed through a thermoluminescence colour image technique (abbreviated to TLCI by the authors) using highly sensitive colour photographic system. The quartz sands from volcanic ash layers, containing ..beta..-quartz (mineralized at high temperature), always indicate a red TLCI, whereas the quartz rocks from pegmatite origin and granite strata, containing ..cap alpha..-quartz (mineralized at low temperature), gave a typical blue TLCI, being consistent with the well known quartz TL colour. Quartz fractions from the beach sands showed a mixture of both red and blue TLCI, probably reflecting the respective mixtures of ..beta..-(in their origin) and ..cap alpha..-quartz fractions along the riverside area. The search using X-ray diffractometry and instrumental neutron activation analysis proved that the cause of distinctly different colourations was attributable to the impurity atoms: light rare earth elements (Eu and/or Sm) bringing on red TLCI, while structural defects yielding the blue TLCI).

  20. Water productivity analysis of sand dams irrigation farming in northern Ethiopia

    Directory of Open Access Journals (Sweden)

    Lorenzo Villani

    2018-06-01

    Full Text Available Water scarcity in drylands is the main problem that has to be tackled by farmers and practitioners that work in these areas. Climate change and increased and wealthier population are expected to put additional stress on the water resource. A large number of studies is calling to focus efforts to enhance water productivity (WP, and one of the most promising option is represented by water harvesting, the collection and storage of runoff water to be used for beneficially uses. Among the available technologies, sand dams are experiencing a renovated interest because of their relative simplicity and their potential. This research aims to deepen the knowledge about WP of water harvesting systems studying a sand dam irrigation system in Tigray, north Ethiopia, where farmers are getting used to this new technology. The research was carried out in the period March-April 2017, when farmers use sand dams water to irrigate off-season maize. We analysed a representative plot irrigated through a shallow well drilled in the sand dam aquifer, in terms of yield, Crop Water Productivity (CWP, Crop Water Productivity based on Evapotranspiration (CWP(ET and Economic Water Productivity (EWP, through field data analysis and a validated Aquacrop model. CWP(ET was found to be low (1.12 kg of grain per m3 of evapotranspired water, due by both inefficient water application and low soil fertility. Aquacrop model results showed that changing the irrigation schedule can increase CWP(ET up to 1.35 kg/m3 and EWP up to 3.94 birr/m3, but yield gap is mainly due to the low soil fertility. Interventions on soil fertility can raise yields from the original 3.3 up to 8.5 kg/ha, and thus CWP(ET and EWP up to 2.94 kg/m3 and 9.54 birr/m3 respectively. To enhance the effect of sand dams in northern Ethiopia, a set of measures, including conservation agriculture, is then proposed.

  1. Comparison of aquifer characteristics derived from local and regional aquifer tests.

    Science.gov (United States)

    Randolph, R.B.; Krause, R.E.; Maslia, M.L.

    1985-01-01

    A comparison of the aquifer parameter values obtained through the analysis of a local and a regional aquifer test involving the same area in southeast Georgia is made in order to evaluate the validity of extrapolating local aquifer-test results for use in large-scale flow simulations. Time-drawdown and time-recovery data were analyzed by using both graphical and least-squares fitting of the data to the Theis curve. Additionally, directional transmissivity, transmissivity tensor, and angle of anisotropy were computed for both tests. -from Authors Georgia drawdown transmissivity regional aquifer tests

  2. Geothermal characterization of the coastal aquifer near Ravenna (Italy

    Directory of Open Access Journals (Sweden)

    M. Antonellini

    2012-12-01

    Full Text Available The coastal aquifer near Ravenna (Italy contains a large volume of groundwater (2,5x109 m3 whose quality has been compromised by sea-water intrusion. Today, the phreatic groundwater is mostly brackish with some lenses of freshwater floating on top of more saline water. This water, although impossible to use as drink-water or for irrigation, is still important to guarantee the health of wetland habitats and especially of the roman historical and coastal pine forests of Ravenna. With the objective of defining the flow pattern within the aquifer and the exchange between surface and ground water, we characterized the temperature distribution in the shallow subsurface by means of a dense network of piezometers. At the same time we had the opportunity to characterize the phreatic aquifer from the geothermal point of view, so that it could eventually be considered for use as a “low enthalpy” heat source. Heat pumps are able to extract heat during the winter and dissipate it during the summer. The temperature of the groundwater in the top layer of the aquifer (surficial zone is sensitive to the changes in atmospheric temperature throughout the year whereas the temperature of the deeper groundwater follows the geothermal gradient (geothermal zone. One of the scopes of the project is to discover at what depth is located the geothermal zone, so that the aquifer has a constant temperature throughout the year. A constant temperature is needed for storage of heat at low enthalpy. The thickness of the surficial zone and the temperature at the top of the geothermal zone are essentially related to land use, distance from the sea, sediment type, and amount of interaction between surface and groundwater. A knowledge of these factors allows to better exploit the geothermal potential of the aquifer when choosing the optimal placement of the heat pumps.

  3. Physical parameters of groundwater as indicators of pollution in industrial areas of Taxila, Wah and Hasanabdal

    International Nuclear Information System (INIS)

    Khan, M.S.; Zaheer-ud-Dln-Qureshi

    2004-01-01

    The Wah area historically famous for having sweet aquifer system is greatly effected due to environmental activities, such as industrialization and poor sewage system in the recent past. Thirty water samples have been collected from dug wells penetrating to shallow two layers in a multi layered aquifer system. The shallow aquifer is located at a depth of 45-85 feet and composed of very fine grained sand to silt in two layers separated by silty clay. To assess the contamination problems, physical parameters of groundwater such as temperature, color, turbidity, odour and taste have been estimated fifty percent of the dug wells have been found as contaminated and not fit for human consumption according 10 WHO standards. High values of electrical conductance determined in fifty percent of wells show trends of chemical contamination and their probable sources near by these wells against the general recharge pattern prevailing in the area can be located. (author)

  4. Regional modelling of the confined aquifers below the Boom clay in NE-Belgium

    International Nuclear Information System (INIS)

    Vandersteen, K.; Gedeon, M.; Marivoet, J.; Wouters, L.

    2012-01-01

    , implying a variable thickness of the clay layers in these formations. In the Ledo-Paniselian-Brusselian aquifer, three hydraulic conductivity zones were included corresponding to the various stratigraphic members. Modifications were also made in the model parameterization, such as a detailed incorporation of the Boom Clay hydraulic parameters and the depth dependency of the specific storage. The DAP-model was successfully calibrated using an automated calibration algorithm. The model is able to reproduce satisfactorily the general trends in the observed groundwater level data. The most sensitive parameters of the model are the pumping amount, the hydraulic conductivity of the Ledo- Paniselian-Brusselian aquifer and the vertical hydraulic conductivity of the clay layers in the Oligocene aquifer and the Bartoon aquitard system. The outcome of the sensitivity analysis confirms the results of the piezometric data analysis

  5. Aquifer sensitivity to pesticide leaching: Testing a soils and hydrogeologic index method

    Science.gov (United States)

    Mehnert, E.; Keefer, D.A.; Dey, W.S.; Wehrmann, H.A.; Wilson, S.D.; Ray, C.

    2005-01-01

    For years, researchers have sought index and other methods to predict aquifer sensitivity and vulnerability to nonpoint pesticide contamination. In 1995, an index method and map were developed to define aquifer sensitivity to pesticide leaching based on a combination of soil and hydrogeologic factors. The soil factor incorporated three soil properties: hydraulic conductivity, amount of organic matter within individual soil layers, and drainage class. These properties were obtained from a digital soil association map. The hydrogeologic factor was depth to uppermost aquifer material. To test this index method, a shallow ground water monitoring well network was designed, installed, and sampled in Illinois. The monitoring wells had a median depth of 7.6 m and were located adjacent to corn and soybean fields where the only known sources of pesticides were those used in normal agricultural production. From September 1998 through February 2001, 159 monitoring wells were sampled for 14 pesticides but no pesticide metabolites. Samples were collected and analyzed to assess the distribution of pesticide occurrence across three units of aquifer sensitivity. Pesticides were detected in 18% of all samples and nearly uniformly from samples from the three units of aquifer sensitivity. The new index method did not predict pesticide occurrence because occurrence was not dependent on the combined soil and hydrogeologic factors. However, pesticide occurrence was dependent on the tested hydrogeologic factor and was three times higher in areas where the depth to the uppermost aquifer was <6 m than in areas where the depth to the uppermost aquifer was 6 to <15 m. Copyright ?? 2005 National Ground Water Association.

  6. Hydrogeology and water quality of the Nanticoke Creek stratified-drift aquifer, near Endicott, New York

    Science.gov (United States)

    Kreitinger, Elizabeth A.; Kappel, William M.

    2014-01-01

    The Village of Endicott, New York, is seeking an alternate source of public drinking water with the potential to supplement their current supply, which requires treatment due to legacy contamination. The southerly-draining Nanticoke Creek valley, located north of the village, was identified as a potential water source and the local stratified-drift (valley fill) aquifer was investigated to determine its hydrogeologic and water-quality characteristics. Nanticoke Creek and its aquifer extend from the hamlet of Glen Aubrey, N.Y., to the village of Endicott, a distance of about 15 miles, where it joins the Susquehanna River and its aquifer. The glacial sediments that comprise the stratified-drift aquifer vary in thickness and are generally underlain by glacial till over Devonian-aged shale and siltstone. Groundwater is more plentiful in the northern part of the aquifer where sand and gravel deposits are generally more permeable than in the southern part of the aquifer where less-permeable unconsolidated deposits are found. Generally there is enough groundwater to supply most homeowner wells and in some cases, supply small public-water systems such as schools, mobile-home parks, and small commercial/industrial facilities. The aquifer is recharged by precipitation, runoff, and tributary streams. Most tributary streams flowing across alluvial deposits lose water to the aquifer as they flow off of their bedrock-lined channels and into the more permeable alluvial deposits at the edges of the valley. The quality of both surface water and groundwater is generally good. Some water wells do have water-quality issues related to natural constituents (manganese and iron) and several homeowners noted either the smell and (or) taste of hydrogen sulfide in their drinking water. Dissolved methane concentrations from five drinking-water wells were well below the potentially explosive value of 28 milligrams per liter. Samples from surface and groundwater met nearly all State and Federal

  7. Hydrogeologic characterization of a fractured granitic rock aquifer, Raymond, California

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, Andrew J.B. [Univ. of California, Berkeley, CA (United States)

    1993-10-01

    The hydrogeologic properties of a shallow, fractured granitic rock aquifer in the foothills of the Sierra Nevada, California were investigated via the analysis of borehole geophysical logs and pumping tests. The drawdowns produced during these tests are not indicative of any simple conceptual aquifer model, and borehole logs show that the granite is intensely fractured. These observations are suggestive of a complex fracture-flow geometry which is extremely difficult to decipher. However, through the measurement of orientations of individual subsurface fractures from acoustic televiewer logs, and correlation between particular fractures and electrical resistivity and thermal-pulse flowmeter logs, it was found that the aquifer is, in general, comprised of two subhorizontal and nearly parallel zones of unloading fractures. Downhole flowmeter measurements taken in several wells provide further evidence for the inferred dual-layer structure of the aquifer, as well as yield quantitative measures of the contribution of flow from each zone. Analysis of drawdowns in pumped wells reveals that there are zones of relatively high transmissivity immediately around them. It was found that these properties, as well as a nearby zone of lower transmissivity, can account for their observed drawdowns. A numerical model was constructed to test whether these major heterogeneities could also account for the drawdowns in observation wells. This stepwise analysis of both the geophysical and hydrological data resulted in the formulation of a conceptual model of the aquifer which is consistent with observations, and which can account for its behavior when subjected to pumping.

  8. Hydrology of the Claiborne aquifer and interconnection with the Upper Floridan aquifer in southwest Georgia

    Science.gov (United States)

    Gordon, Debbie W.; Gonthier, Gerard

    2017-04-24

    The U.S. Geological Survey conducted a study, in cooperation with the Georgia Environmental Protection Division, to define the hydrologic properties of the Claiborne aquifer and evaluate its connection with the Upper Floridan aquifer in southwest Georgia. The effort involved collecting and compiling hydrologic data from the aquifer in subarea 4 of southwestern Georgia. Data collected for this study include borehole geophysical logs in 7 wells, and two 72-hour aquifer tests to determine aquifer properties.The top of the Claiborne aquifer extends from an altitude of about 200 feet above the North American Vertical Datum of 1988 (NAVD 88) in Terrell County to 402 feet below NAVD 88 in Decatur County, Georgia. The base of the aquifer extends from an altitude of about 60 feet above NAVD 88 in eastern Sumter County to about 750 feet below NAVD 88 in Decatur County. Aquifer thickness ranges from about 70 feet in eastern Early County to 400 feet in Decatur County.The transmissivity of the Claiborne aquifer, determined from two 72-hour aquifer tests, was estimated to be 1,500 and 700 feet squared per day in Mitchell and Early Counties, respectively. The storage coefficient was estimated to be 0.0006 and 0.0004 for the same sites, respectively. Aquifer test data from Mitchell County indicate a small amount of leakage occurred during the test. Groundwater-flow models suggest that the source of the leakage was the underlying Clayton aquifer, which produced about 2.5 feet of drawdown in response to pumping in the Claiborne aquifer. The vertical hydraulic conductivity of the confining unit between the Claiborne and Clayton aquifers was simulated to be about 0.02 foot per day.Results from the 72-hour aquifer tests run for this study indicated no interconnection between the Claiborne and overlying Upper Floridan aquifers at the two test sites. Additional data are needed to monitor the effects that increased withdrawals from the Claiborne aquifer may have on future water resources.

  9. Selected parameters of moulding sands for designing quality control systems

    Directory of Open Access Journals (Sweden)

    J. Jakubski

    2010-07-01

    Full Text Available One of the modern methods of production optimisation are artificial neural networks. Neural networks owe their popularity to the fact thatthey are convenient tools, which can be utilised in a wide scope of problems. They are capable of reflecting complex functions. Especiallytheir non-linearity should be emphasised. They are gaining wider and wider application in the foundry industry, among others, to controlmelting processes in cupolas and arc furnaces, designing castings and supply systems, control of moulding sands treatments, prediction ofproperties of cast alloys as well as selecting die casting.An attempt of the application neural networks to the quality control of moulding sands with bentonite is presented in the paper. This isa method of assessing the suitability of moulding sands by finding correlations in between individual parameters, by means of artificialneural network systems. The presented investigations were performed with the application of the Statistica 8.0 program.The investigations were aimed at the selection of the proper kind of a neural network for prediction a sand moistness on the bases ofcertain moulding sand properties such as: permeability, compactibility and friability. These parameters – determined as sand moistness functions - were introduced as initial parameters.Application of the Statistica program allowed for an automatic selection of the most suitable network for the reflection of dependencies and interactions existing among the proposed parameters. The best results were obtained for unidirectional multi-layer perception network (MLP. The neural network sensitivity to individual moulding sand parameters was determined, which allowed to reject not important parameters when constructing the network.

  10. Evaluation of Confining Layer Integrity Beneath the South District Wastewater Treatment Plant, Miami-Dade Water and Sewer Department, Dade County, Florida

    Energy Technology Data Exchange (ETDEWEB)

    Starr, Robert Charles; Green, Timothy Scott; Hull, Laurence Charles

    2001-02-01

    A review has been performed of existing information that describes geology, hydrogeology, and geochemistry at the South District Wastewater Treatment Plant, which is operated by the Miami-Dade Water and Sewer Department, in Dade County, Florida. Treated sanitary wastewater is injected into a saline aquifer beneath the plant. Detection of contaminants commonly associated with treated sanitary wastewater in the freshwater aquifer that overlies the saline aquifer has indicated a need for a reevaluation of the ability of the confining layer above the saline aquifer to prevent fluid migration into the overlying freshwater aquifer. Review of the available data shows that the geologic data set is not sufficient to demonstrate that a competent confining layer is present between the saline and freshwater aquifers. The hydrogeologic data also do not indicate that a competent confining layer is present. The geochemical data show that the freshwater aquifer is contaminated with treated wastewater, and the spatial patterns of contamination are consistent with upward migration through localized conduits through the Middle Confining Unit, such as leaking wells or natural features. Recommendations for collection and interpretation of additional site characterization data are provided.

  11. Intermediate-Scale Experimental Study to Improve Fundamental Understanding of Attenuation Capacity for Leaking CO2 in Heterogeneous Shallow Aquifers

    Science.gov (United States)

    Plampin, Michael R.; Porter, Mark L.; Pawar, Rajesh J.; Illangasekare, Tissa H.

    2017-12-01

    To assess the risks of Geologic Carbon Sequestration (GCS), it is crucial to understand the fundamental physicochemical processes that may occur if and when stored CO2 leaks upward from a deep storage reservoir into the shallow subsurface. Intermediate-scale experiments allow for improved understanding of the multiphase evolution processes that control CO2 migration behavior in the subsurface, because the boundary conditions, initial conditions, and porous media parameters can be better controlled and monitored in the laboratory than in field settings. For this study, a large experimental test bed was designed to mimic a cross section of a shallow aquifer with layered geologic heterogeneity. As water with aqueous CO2 was injected into the system to mimic a CO2-charged water leakage scenario, the spatiotemporal evolution of the multiphase CO2 plume was monitored. Similar experiments were performed with two different sand combinations to assess the relative effects of different types of geologic facies transitions on the CO2 evolution processes. Significant CO2 attenuation was observed in both scenarios, but by fundamentally different mechanisms. When the porous media layers had very different permeabilities, attenuation was caused by local accumulation (structural trapping) and slow redissolution of gas phase CO2. When the permeability difference between the layers was relatively small, on the other hand, gas phase continually evolved over widespread areas near the leading edge of the aqueous plume, which also attenuated CO2 migration. This improved process understanding will aid in the development of models that could be used for effective risk assessment and monitoring programs for GCS projects.

  12. Eastern Scheldt Sand, Baskarp Sand No. 15

    DEFF Research Database (Denmark)

    Andersen, A. T; Madsen, E. B.; Schaarup-Jensen, A. L.

    The present data report contains data from 13 drained triaxial tests, performed on two different sand types in the Soil Mechanics Laboratory at Aalborg University in March, 1997. Two tests have been performed on Baskarp Sand No. 15, which has already ken extensively tested in the Soil Mechanics...... Laboratory. The remaining 11 triaxial tests have ben performed on Eastern Scheldt Sand, which is a material not yet investigated at the Soil Mechanics Laboratory. In the first pari of this data report, the characteristics of the two sand types in question will be presented. Next, a description...... will described. In this connection, the procedure for preparation of the soil specimens will be presented, and the actual performance of the tests will be briefly outlined. Finally, the procedure for processing of the measurements from the laboratory in order to obtain usable data will be described. The final...

  13. An evaluation of aquifer intercommunication between the unconfined and Rattlesnake Ridge aquifers on the Hanford Site

    International Nuclear Information System (INIS)

    Jensen, E.J.

    1987-10-01

    During 1986, Pacific Northwest Laboratory conducted a study of a portion of the Rattlesnake Ridge aquifer (confined aquifer) that lies beneath the B Pond - Gable Mountain Pond area of the Hanford Site. The purpose was to determine the extent of intercommunication between the unconfined aquifer and the uppermost regionally extensive confined aquifer, referred to as the Rattlesnake Ridge aquifer. Hydraulic head data and chemical data were collected from the ground water in the study area during December 1986. The hydraulic head data were used to determine the effects caused by water discharged to the ground from B Pond on both the water table of the unconfined aquifer and the potentiometric surface of the confined aquifer. The chemical data were collected to determine the extent of chemical constituents migrating from the unconfined aquifer to the confined aquifer. Analysis of chemical constituents in the Rattlesnake Ridge aquifer demonstrated that communication between the unconfined and confined aquifers had occurred. However, the levels of contaminants found in the Rattlesnake Ridge aquifer during this study were below the DOE Derived Concentration Guides

  14. How to Recharge a Confined Aquifer: An Exploration of Geologic Controls on Groundwater Storage.

    Science.gov (United States)

    Maples, S.; Fogg, G. E.; Maxwell, R. M.; Liu, Y.

    2017-12-01

    Decreased snowpack storage and groundwater overdraft in California has increased interest in managed aquifer recharge (MAR) of excess winter runoff to the Central Valley aquifer system, which has unused storage capacity that far exceeds the state's surface reservoirs. Recharge to the productive, confined aquifer system remains a challenge due to the presence of nearly-ubiquitous, multiple silt and clay confining units that limit recharge pathways. However, previous studies have identified interconnected networks of sand and gravel deposits that bypass the confining units and accommodate rapid, high-volume recharge to the confined aquifer system in select locations. We use the variably-saturated, fully-integrated groundwater/surface-water flow code, ParFlow, in combination with a high-resolution, transition probability Markov-chain geostatistical model of the subsurface geologic heterogeneity of the east side of the Sacramento Valley, CA, to characterize recharge potential across a landscape that includes these geologic features. Multiple 180-day MAR simulations show that recharge potential is highly dependent on subsurface geologic structure, with a several order-of-magnitude range of recharge rates and volumes across the landscape. Where there are recharge pathways to the productive confined-aquifer system, pressure propagation in the confined system is widespread and rapid, with multi-kilometer lateral pressure propagation. Although widespread pressure propagation occurs in the confined system, only a small fraction of recharge volume is accommodated there. Instead, the majority of recharge occurs by filling unsaturated pore spaces. Where they outcrop at land surface, high-K recharge pathways fill rapidly, accommodating the majority of recharge during early time. However, these features become saturated quickly, and somewhat counterintuitively, the low-K silt and clay facies accommodate the majority of recharge volume during most of the simulation. These findings

  15. Diagnosis of the Ghiss Nekor aquifer in order to elaborate the aquifer contract

    Science.gov (United States)

    Baite, Wissal; Boukdir, A.; Zitouni, A.; Dahbi, S. D.; Mesmoudi, H.; Elissami, A.; Sabri, E.; Ikhmerdi, H.

    2018-05-01

    The Ghiss-Nekor aquifer, located in the north-east of the action area of the ABHL, plays a strategic role in the drinkable water supply of the city of Al Hoceima and of the neighboring urban areas. It also participates in the irrigation of PMH. However, this aquifer has problems such as over-exploitation and pollution. In the face of these problems, the only Solution is the establishment of a new mode of governance, which privileges the participation, the involvement and the responsibility of the actors concerned in a negotiated contractual framework, namely the aquifer contract. The purpose of this study is to diagnose the current state of the Ghiss Nekor aquifer, the hydrogeological characterization of the aquifer, the use of the waters of the aquifer, the Problem identification and the introduction of the aquifer contract, which aims at the participatory and sustainable management of underground water resources in the Ghiss- Nekor plain, to ensure sustainable development.

  16. Simulated effects of Lower Floridan aquifer pumping on the Upper Floridan aquifer at Rincon, Effingham County, Georgia

    Science.gov (United States)

    Cherry, Gregory S.; Clarke, John S.

    2015-01-01

    Steady-state simulations using a revised regional groundwater-flow model based on MODFLOW were run to assess the potential long-term effects on the Upper Floridan aquifer (UFA) of pumping the Lower Floridan aquifer (LFA) at well (36S048) near the City of Rincon in coastal Georgia near Savannah. Simulated pumping of well 36S048 at a rate of 1,000 gallons per minute (gal/min; or 1.44 million gallons per day [Mgal/d]) indicated a maximum drawdown of about 6.8 feet (ft) in the UFA directly above the pumped well and at least 1 ft of drawdown within a nearly 400-square-mile area (scenario A). Induced vertical leakage from the UFA provided about 99 percent of the water to the pumped well. Simulated pumping of well 36S048 indicated increased downward leakage in all layers above the LFA, decreased upward leakage in all layers above the LFA, increased inflow to and decreased outflow from lateral specified-head boundaries in the UFA and LFA, and an increase in the volume of induced inflow from the general-head boundary representing outcrop units. Water budgets for scenario A indicated that changes in inflows and outflows through general-head boundaries would compose about 72 percent of the simulated pumpage from well 36S048, with the remaining 28 percent of the pumped water derived from flow across lateral specified-head boundaries.

  17. Sample descriptions and geophysical logs for cored well BP-3-USGS, Great Sand Dunes National Park and Preserve, Alamosa County, Colorado

    Science.gov (United States)

    Grauch, V.J.S.; Skipp, Gary L.; Thomas, Jonathan V.; Davis, Joshua K.; Benson, Mary Ellen

    2015-01-01

    The BP-3-USGS well was drilled at the southwestern corner of Great Sand Dunes National Park in the San Luis Valley, south-central Colorado, 68 feet (ft, 20.7 meters [m]) southwest of the National Park Service’s boundary-piezometer (BP) well 3. BP-3-USGS is located at latitude 37°43ʹ18.06ʺN. and longitude 105°43ʹ39.30ʺW., at an elevation of 7,549 ft (2,301 m). The well was drilled through poorly consolidated sediments to a depth of 326 ft (99.4 m) in September 2009. Water began flowing from the well after penetrating a clay-rich layer that was first intercepted at a depth of 119 ft (36.3 m). The base of this layer, at an elevation of 7,415 ft (2,260 m) above sea level, likely marks the top of a regional confined aquifer recognized throughout much of the San Luis Valley. Approximately 69 ft (21 m) of core was recovered (about 21 percent), almost exclusively from clay-rich zones. Coarser grained fractions were collected from mud extruded from the core barrel or captured from upwelling drilling fluids. Natural gamma-ray, full waveform sonic, density, neutron, resistivity, spontaneous potential, and induction logs were acquired. The well is now plugged and abandoned.

  18. SandBlaster: Reversing the Apple Sandbox

    OpenAIRE

    Deaconescu, Răzvan; Deshotels, Luke; Bucicoiu, Mihai; Enck, William; Davi, Lucas; Sadeghi, Ahmad-Reza

    2016-01-01

    In order to limit the damage of malware on Mac OS X and iOS, Apple uses sandboxing, a kernel-level security layer that provides tight constraints for system calls. Particularly used for Apple iOS, sandboxing prevents apps from executing potentially dangerous actions, by defining rules in a sandbox profile. Investigating Apple's built-in sandbox profiles is difficult as they are compiled and stored in binary format. We present SandBlaster, a software bundle that is able to reverse/decompile Ap...

  19. Fate of parabens and 4-hydroxybenzoic acid in aquifer materials columns during step experiments with fresh and sea waters

    Science.gov (United States)

    López-Ortiz, C. M.; Boluda-Botella, N.; Prats-Rico, D.; Sentana-Gadea, I.

    2018-02-01

    Coastal areas submitted to seawater intrusion and with discharges from urban and industrial wastewaters, municipal landfill leachates, rivers, recreational waters and other sources are sensitive to be polluted with parabens. Understanding the fate of these compounds in environmental studies, it requires previously the knowledge of the reactive processes in controlled conditions. In this research, laboratory columns experiments were carried out with a group of parabens (methyl-, ethyl-, propyl- and butylparaben) and their main degradation compound (4-hydroxybenzoic acid) to study mainly the dynamic sorption processes in different aquifer materials (100% sand and heterogeneous: 81% sand, 9% silt and 10% clay) and with fresh and sea waters, the end members of seawater intrusions. To the column hydrodynamic characterization, tracer assays with increase and decrease of salinity were performed, to obtain the mean residence time of each column and other transport parameters which allow us to compare parabens' sorption in different conditions. The results of the adsorption and desorption of parabens in the sand column demonstrated be fast and simultaneous, with a short delay and without influence of the water salinity. Very different results were found in the column experiments with heterogeneous material, where the presence of clay and organic matter increase the time of adsorption/desorption as the length of the alkyl chain paraben increased, according with their hydrophobicity. It should be noted that despite the quick desorption of the major quantities of parabens, the elution of their trace concentrations was very slow (for the seawater, the buthylparaben required a dimensionless time of 800). Planning the restoration of a coastal aquifer with freshwater, and in the conditions of the studied sand column experiment, it will need a dimensionless time of 160. However, it is necessary to take into account that the studied parabens and 4-hydroxybenzoic acid are

  20. Aquifer Sampling Tube Completion Report: 100 Area and Hanford Townsite Shorelines

    International Nuclear Information System (INIS)

    Peterson, R.E.; Borghese, J.V.; Erb, D.B.

    1998-02-01

    Groundwater contamination is known or suspected along the Hanford Site shoreline of the Columbia River adjacent to the retired reactor areas. Along the shoreline away from the reactor areas, where contamination is presumed to be absent, monitoring sites are frequently widely spaced or unavailable to confirm the presumption. Previous characterizations of contamination near the river have relied on data from a limited number of near-river wells, contaminant plume migration predictions, and river bank seepage sampling to anticipate shoreline conditions. In recent years, new methods have been developed to obtain groundwater samples from the aquifer near the groundwater/river water interface. These methods include using (1) divers to obtain samples of pore water from riverbed sediment and (2) sampling tubes that are driven into the aquifer at the shoreline. The latter method also permits sampling the aquifer at multiple depths, which helps to determine the thickness of the potentially contaminated groundwater layer that discharges into the river

  1. The gravel sand transition in a disturbed catchment

    Science.gov (United States)

    Knighton, A. David

    1999-03-01

    More than 40 million cubic metres of mining waste were supplied to the Ringarooma River between 1875 and 1984, leading to successive phases of aggradation and degradation. The natural bed material is gravel but, given the volume of introduced load and the fact that much of the input was less than 5 mm in diameter, the size composition of the bed changed from gravel to sand during the phase of downstream progressive aggradation. A very sharp gravel-sand transition developed in which median grain size decreased from over 30 mm to under 3 mm in less than 500 m. With upstream supplies of mining debris becoming depleted first, degradation followed the same downstream progressive pattern as aggradation, causing the transition to migrate downstream. By 1984, the river could be regarded as a series of zones, each characterized by a particular bed condition: a natural cobble-gravel bed, unaffected by mining inputs (0-32 km); pre-disturbance bed re-exposed by degradation over 35-40 years (32-53 km); sandy substrate with a gravel armour produced by differential transport during degradation (53-65 km); sand dominated but with developing surface patches of coarser material (65-75 km); sandy bed reflecting the size composition of the original mining input (75-118 km). Although the gravel-sand transition itself is sharp, the transitional zone is lengthy (53-75 km). As degradation continues, the gravel-sand transition is expected to progress downstream but it has remained in a stable position for 12 years. Indeed, two major floods during the period released large quantities of sand from the sub-armour layer and newly-formed banks of mine tailings, causing fining both above and below the transition. Surface grain size is an adjustable component in the transitional zone as the river strives to recover from a major anthropogenic disturbance.

  2. Enhanced mobility of non aqueous phase liquid (NAPL) during drying of wet sand

    Science.gov (United States)

    Govindarajan, Dhivakar; Deshpande, Abhijit P.; Raghunathan, Ravikrishna

    2018-02-01

    Enhanced upward mobility of a non aqueous phase liquid (NAPL) present in wet sand during natural drying, and in the absence of any external pressure gradients, is reported for the first time. This mobility was significantly higher than that expected from capillary rise. Experiments were performed in a glass column with a small layer of NAPL-saturated sand trapped between two layers of water-saturated sand. Drying of the wet sand was induced by flow of air across the top surface of the wet sand. The upward movement of the NAPL, in the direction of water transport, commenced when the drying effect reached the location of the NAPL and continued as long as there was significant water evaporation in the vicinity of NAPL, indicating a clear correlation between the NAPL rise and water evaporation. The magnitude and the rate of NAPL rise was measured at different water evaporation rates, different initial locations of the NAPL, different grain size of the sand and the type of NAPL (on the basis of different NAPL-glass contact angle, viscosity and density). A positive correlation was observed between average rate of NAPL rise and the water evaporation while a negative correlation was obtained between the average NAPL rise rate and the NAPL properties of contact angle, viscosity and density. There was no significant correlation of average NAPL rise rate with variation of sand grain size between 0.1 to 0.5 mm. Based on these observations and on previous studies reported in the literature, two possible mechanisms are hypothesized -a) the effect of the spreading coefficient resulting in the wetting of NAPL on the water films created and b) a moving water film due to evaporation that "drags" the NAPL upwards. The NAPL rise reported in this paper has implications in fate and transport of chemicals in NAPL contaminated porous media such as soils and exposed dredged sediment material, which are subjected to varying water saturation levels due to drying and rewetting.

  3. Geohydrology and Water Quality of the Valley-Fill Aquifer System in the Upper Sixmile Creek and West Branch Owego Creek Valleys in the Town of Caroline, Tompkins County, New York

    Science.gov (United States)

    Miller, Todd S.

    2009-01-01

    In 2002, the U.S. Geological Survey, in cooperation with the Town of Caroline and Tompkins County Planning Department, began a study of the valley-fill aquifer system in upper Sixmile Creek and headwaters of West Branch Owego Creek valleys in the Town of Caroline, NY. The purpose of the study is to provide geohydrologic data to county and town planners as they develop a strategy to manage and protect their water resources. The first aquifer reach investigated in this series is in the Town of Caroline and includes the upper Sixmile Creek valley and part of West Branch Owego Creek valley. The portions of the valley-fill aquifer system that are comprised of saturated coarse-grained sediments including medium to coarse sand and sandy gravel form the major aquifers. Confined sand and gravel units form the major aquifers in the western and central portions of the upper Sixmile Creek valley, and an unconfined sand and gravel unit forms the major aquifer in the eastern portion of the upper Sixmile Creek valley and in the headwaters of the West Branch Owego Creek valley. The valley-fill deposits are thinnest near the edges of the valley where they pinch out along the till-mantled bedrock valley walls. The thickness of the valley fill in the deepest part of the valley, at the western end of the study area, is about 100 feet (ft); the thickness is greater than 165 ft on top of the Valley Heads Moraine in the central part of the valley. An estimated 750 people live over and rely on groundwater from the valley-fill aquifers in upper Sixmile Creek and West Branch Owego Creek valleys. Most groundwater withdrawn from the valley-fill aquifers is pumped from wells with open-ended 6-inch diameter casings; the remaining withdrawals are from shallow dug wells or cisterns that collect groundwater that discharges to springs (especially in the Brooktondale area). The valley-fill aquifers are the sources of water for about 200 households, several apartment complexes, two mobile home parks

  4. Estimated rates of groundwater recharge to the Chicot, Evangeline and Jasper aquifers by using environmental tracers in Montgomery and adjacent counties, Texas, 2008 and 2011

    Science.gov (United States)

    Oden, Timothy D.; Truini, Margot

    2013-01-01

    Montgomery County is in the northern part of the Houston, Texas, metropolitan area, the fourth most populous metropolitan area in the United States. As populations have increased since the 1980s, groundwater has become an important resource for public-water supply and industry in the rapidly growing area of Montgomery County. Groundwater availability from the Gulf Coast aquifer system is a primary concern for water managers and community planners in Montgomery County and requires a better understanding of the rate of recharge to the system. The Gulf Coast aquifer system in Montgomery County consists of the Chicot, Evangeline, and Jasper aquifers, the Burkeville confining unit, and underlying Catahoula confining system. The individual sand and clay sequences of the aquifers composing the Gulf Coast aquifer system are not laterally or vertically continuous on a regional scale; however, on a local scale, individual sand and clay lenses can extend over several miles. The U.S. Geological Survey, in cooperation with the Lone Star Groundwater Conservation District, collected groundwater-quality samples from selected wells within or near Montgomery County in 2008 and analyzed these samples for concentrations of chlorofluorocarbons (CFCs), sulfur hexafluoride (SF6), tritium (3H), helium-3/tritium (3He/3H), helium-4 (4He), and dissolved gases (DG) that include argon, carbon dioxide, methane, nitrogen and oxygen. Groundwater ages, or apparent age, representing residence times since time of recharge, were determined by using the assumption of a piston-flow transport model. Most of the environmental tracer data indicated the groundwater was recharged prior to the 1950s, limiting the usefulness of CFCs, SF6, and 3H concentrations as tracers. In many cases, no tracer was usable at a well for the purpose of estimating an apparent age. Wells not usable for estimating an apparent age were resampled in 2011 and analyzed for concentrations of major ions and carbon-14 (14C). At six of

  5. Function of a deltaic silt deposit as a repository and long-term source of sulfate and related weathering products in a glaciofluvial aquifer derived from organic-rich shale (North Dakota, USA)

    Science.gov (United States)

    Schuh, W. M.; Bottrell, S. H.

    2014-05-01

    A shallow unconfined glaciofluvial aquifer in North Dakota (USA) has largest groundwater sulfate concentrations near the bottom boundary. A deltaic silt layer underlying the aquifer, at >16 m, is the modern proximate sulfate source for the aquifer. The original sulfate source was pyrite in the organic-rich shale component of the aquifer and silt grain matrix. An oxidizing event occurred during which grain-matrix pyrite sulfur was oxidized to sulfate. Thereafter the silt served as a "conserving" layer, slowly feeding sulfate into the lower part of the aquifer and the underlying till. A method was developed for estimating the approximate initial sulfate concentration in the source layer and the redistribution time since the oxidizing event, using a semi-generic convection-dispersion model. The convection-dispersion model and a model for the evolution of modern sulfate δ 34S in silt-layer pore water from the initial grain-matrix pyrite δ 34S, both estimated that the oxidizing event occurred several thousand years ago, and was likely related to the dry conditions of the Hypsithermal Interval. The silt layer also serves as an arsenic source. Results indicate that deltaic silts derived from organic-rich shale parent materials in a glacial environment can provide long-term sources for sulfate and arsenic and possibly other related oxidative weathering products.

  6. Heterogeneous Nitrification in a Full Scale Rapid Sand Filter Treating Groundwater

    DEFF Research Database (Denmark)

    Lopato, Laure; Röttgers, Nina; Binning, Philip John

    2013-01-01

    Experiments were conducted to determine ammonium removal kinetics in an operating biologically active sand filter at a waterworks treating anaerobic groundwater. The ammonium load varied between 0.7 and 3 g N/h/m2 (concentration ranged from 0.23 to 0.78 mg N/l) and the inlet water flux varied...... nitrification rate constant was closely related to the water pore velocity which implies that the rate is strongly determined by the resistance to mass transport in the diffusion boundary layer around the sand grains. Read More: http://ascelibrary.org/doi/abs/10.1061/%28ASCE%29EE.1943-7870.0000653...

  7. EPA Region 1 Sole Source Aquifers

    Science.gov (United States)

    This coverage contains boundaries of EPA-approved sole source aquifers. Sole source aquifers are defined as an aquifer designated as the sole or principal source of drinking water for a given aquifer service area; that is, an aquifer which is needed to supply 50% or more of the drinking water for the area and for which there are no reasonable alternative sources should the aquifer become contaminated.The aquifers were defined by a EPA hydrogeologist. Aquifer boundaries were then drafted by EPA onto 1:24000 USGS quadrangles. For the coastal sole source aquifers the shoreline as it appeared on the quadrangle was used as a boundary. Delineated boundaries were then digitized into ARC/INFO.

  8. Sorption of activation products on London clay and Dungeness aquifer gravel

    International Nuclear Information System (INIS)

    Baston, G.M.N.; Berry, J.A.; Littleboy, A.K.; Pilkington, N.J.

    1992-01-01

    The sortpion of a series of activation-product radionuclides onto London clay and Dungeness aquifer gravel from the nuclear reactor sites at Bradwell and Dungeness, has been examined. Batch sorption and through-diffusion experiments with clay determined chlorine as the chloride ion to be effectively non-sorbing; calcium to be weakly sorbing, whereas cobalt, nickel, niobium and samarium were moderately to strongly sorbing and silver was strongly sorbing. Distribution ratios (R D values) for Nb, Sm and Ag were found to have a strong dependence on the liquid-solid separation technique employed. The presence of high concentrations of calcium hydroxide led to lower values of R D for radioactive Ca but higher R D values for Sm and Ag. The sorption of Ni showed no apparent dependence on groundwater composition at low levels of dissolved organic carbon (DOC). The values of R D for Co decreased as the DOC content was increased by addition of humic materials. Batch sorption studies with aquifer gravel demonstrated that Ca is weakly sorbing whereas Nb, Ag and Eu are moderately to strongly sorbing. R D values for Ca and for Ag under neutral pH conditions show little sensitivity to the liquid/solid separation technique used. However, R D values for Nb and Eu under neutral pH conditions and for Ag in alkaline solution (pH = 11 - 12) show a marked effect. The aquifer gravel was found to be highly inhomogeneous unlike the clay and sorption was greatest on samples with a high proportion of sand, reflecting the clay mineral content. (orig.)

  9. Hydrological connectivity of perched aquifers and regional aquifers in semi-arid environments: a case study from Namibia

    Science.gov (United States)

    Hamutoko, J. T.; Wanke, H.

    2017-12-01

    Integrated isotopic and hydrological tracers along with standard hydrological data are used to understand complex dry land hydrological processes on different spatial and temporal scales. The objective of this study is to analyse the relationship between the perched aquifers and the regional aquifer using hydrochemical data and isotopic composition in the Cuvelai-Etosha Basin in Namibia. This relation between the aquifers will aid in understanding groundwater recharge processes and flow dynamics. Perched aquifers are discontinuous shallow aquifers with water level ranging from 0 to 30 meters below ground level. The regional aquifer occurs in semi-consolidated sandstone at depths between about 60 and 160 meters below ground level. Water samples were collected from both aquifers in 10 villages and were analysed for major ions and stable isotopes. The results show overlapping hydrochemistry and isotopic compositions of both aquifers in 8 villages which suggest the possibility of perched aquifer water infiltrating into the regional aquifer. In two villages the hydrochemistry and isotopic composition of the aquifers are totally different and this suggests that there is no interaction between this aquifers. Areas where perched aquifers are connected to regional aquifers maybe recharge zones. These finding have important implications for groundwater resource management.

  10. Migration behavior and sorption mechanisms of radionuclides in sedimentary sand stones

    International Nuclear Information System (INIS)

    Tanaka, Tadao; Kamiyama, Hideo; Sriyotha, K.

    1993-05-01

    The influence of crushed particle size and weathering of sedimentary rock on migration behavior and sorption mechanisms of 60 Co, 85 Sr and 137 Cs has been investigated by using the fresh sand stones (classified into two particle size ranges of 1 ∼ 3 mm and 2 , KCl, NH 2 OH-HCl, K-oxalate and H 2 O 2 solutions were carried out, to elucidate their dominated sorption mechanisms. Distribution coefficient values of the all three radionuclides, Kds, for the sand stone of 1 ∼ 3 mm was smaller than that of 85 Sr, and the same irreversible sorptions as the selective sorption of Co onto manganese oxides and fixation of Cs by the layer silicate for 60 Co and 137 Cs, respectively. Larger sorbability of the weathered sand stone was explained to be related to an increase of amounts of the effective sorption site, such as cation exchangeable site, calcite, smectite and manganese oxides, which was possibly caused from metamorphism induced by weathering the fresh sand stone. (author)

  11. Suitability of a South African silica sand for three-dimensional printing of foundry moulds and cores

    Directory of Open Access Journals (Sweden)

    Nyembwe, Kasongo

    2016-11-01

    Full Text Available Applications of three-dimensional printing (3DP to metal casting include, among other things, the direct manufacturing of foundry moulds and cores in refractory materials such as silica sand. The main properties of silica sand that are essentially related to the traditional moulding and core-making processes are: size distribution, clay content, pH, acid demand, and refractoriness. The silica sand used for 3DP must also be appropriately selected for the layer-based manufacturing process involved in 3DP. Properties such as grain size distribution, grain surface morphology, angularity, flowability, and recoating abilities have a particular importance when determining sand suitability. Because of these extra requirements, only a limited range of available foundry silica sands can be used for 3DP processes. The latter situation explains the scarcity and high cost of suitable silica sands, thus contributing to the relatively high operational costs of the 3DP processes for the production of sand moulds and cores. This research paper investigates the suitability of a locally-available silica sand for use in a Voxeljet VX1000 3DP machine. The local silica sand was assessed and compared with an imported silica sand recommended by the manufacturer of 3DP equipment in terms of foundry characteristics and recoating behaviour. The study shows that, despite the differences between the characteristics of the two silica sands, the local sand could be considered a suitable alternative to imported sand for rapid sand casting applications.

  12. Hydrogeological Investigations of the Quaternary Aquifeer in the Northern Part of El-Sharkia Governorate, Egypt

    International Nuclear Information System (INIS)

    El-Sayed, S.A.; Ezz El Din, M.R.; Deyab, M.E.

    2011-01-01

    The hydraulic characteristics of surficial soils and materials of the Quaternary aquifer in the northern part of El-Sharkia Governorate were investigated. The surficial soil zone represents an aquitard for the aquifer and mainly composed of fine textured materials having vertical hydraulic conductivity ranged from 1.4 x10 -6 cm/sec to 2.15x10 -2 cm/sec. The semi-confined Quaternary aquifer is formed of sand and gravel with occasional clay lenses. The groundwater levels ranged from 9 m (MSL) to 5 m (MSL). The major trend of groundwater flow was from south to north and northwest directions. Another minor flow trend was observed to be from southwest to northeast direction. The aquifer is essentially recharged from Ismaillia Canal. The hydraulic gradient through the flow path was 1.9 x10 -4 , averagely. The hydraulic conductivity values differ vertically and laterally indicating the heterogeneity and anisotropy of the aquifer materials. They ranged from 40.1 to 222 m/day with an average value of about 95.8 m/day. The chemical compositions of groundwater and surface water bodies (canals and drains) were investigated. The chemistry of all water bodies was characterized by a basic nature (ph =7.2-7.9) and showed different salinities values and various hydrochemical facies. The average salinities values were 318.1 mg/l for canal water, 1013.4 mg/l for groundwater and 1260 mg/l for drain water. Canal water was fresh while groundwater and drain were fresh to brackish. The reasons causing the changes in salinity and hydrochemical facies were investigated using the relationships among water dissolved constituents and trends of ionic ratios. Subsurface flow, infiltration, evaporation, ion exchange, leaching, and dissolution were the hydrochemical processes leading to the groundwater modification. The suitability of groundwater and surface water for different uses are discussed and evaluated according to the international standards.

  13. Submarine sand ridges and sand waves in the eastern part of the China Sea

    Science.gov (United States)

    Wu, Ziyin; Li, Shoujun; Shang, Jihong; Zhou, Jieqiong; Zhao, Dineng; Liang, Yuyang

    2016-04-01

    Integrated with multi-beam and single-beam echo sounding data, as well as historical bathymetric data, submarine bathymetric maps of the eastern part of the China Sea, including the Bohai Sea, Huanghai Sea, and East China Sea, are constructed to systematically study submarine sand ridges and sand waves in the eastern part of the China Sea, combined with high-resolution seismic, sub-bottom profile and borehole data. Submarine sand ridges are extraordinarily developed in the eastern part of the China Sea, and 7 sand ridge areas can be divided from north to south, that is, the Laotieshan Channel sand ridge area in the Bohai Sea, the Korea Bay sand ridge area in the southern Huanghai Sea, the sand ridge area in the eastern Huanghai islands and the Huanghai Troughs, the Jianggang sand ridge area in the western Huanghai Sea, the sand ridge area in the East China Sea shelf, and the sand ridge and sand wave area in the Taiwan Strait and Taiwan Banks. The distribution area of the sand ridges and sand waves covers more than 450,000 km2, wherein ~10,000 km2 in the Bohai Bay, ~200,000 km2 in the Huanghai Sea, ~200,000 km2 in the East China Sea shelf, and ~40,000 km2 in the Taiwan Strait and Taiwan Banks, respectively. The great mass of sand ridges are distributed within water depth of 5-160 m, with a total length of over 160 km and a main width of 5-10 km. The inner structure of the sand ridges presents features of high-angle inclined beddings, with main lithology of sands, sand-mud alternations partly visible, and a small number of mud cores. Dating results indicate that the sand ridges in the eastern part of the China Sea are mainly developed in the Holocene. Sea-level variation dominates the sand ridge evolution in the eastern part of the China Sea since the LGM, and the sand ridges developed in the area of < 60m water depth are appeared in bad activity, meanwhile sand ridges with good activity are still developed in large scale.

  14. Stormwater infiltration and surface runoff pollution reduction performance of permeable pavement layers.

    Science.gov (United States)

    Niu, Zhi-Guang; Lv, Zhi-Wei; Zhang, Ying; Cui, Zhen-Zhen

    2016-02-01

    In this paper, the laboratory-scale permeable pavement layers, including a surface permeable brick layer, coarse sand bedding layers (thicknesses = 2, 3.5, and 5 cm), and single-graded gravel sub-base layers (thicknesses = 15, 20, 25, and 30 cm), were built to evaluate stormwater infiltration and surface runoff pollution reduction performance. And, the infiltration rate (I) and concentrations of suspended solids (SS), total phosphorus (TP), chemical oxygen demand (COD), ammonia nitrogen, and total nitrogen (TN) were measured under the simulated rainfall intensity of 72.4 mm/h over duration of 60 min. The results indicate that the thickness factor primarily influences the infiltration rate and pollutant removal rate. The highest steady infiltration rate was for surface brick layer 51.0 mm/h, for 5-cm sand bedding layer 32.3 mm/h, and for 30-cm gravel sub-base layer 42.3 mm/h, respectively. The SS average removal rate was relative higher (79.8 ∼ 98.6 %) for all layers due to the interception and filtration. The average removal rates of TP and COD were for surface layer 71.2 and 24.1 %, for 5-cm bedding layer 54.8 and 9.0 %, and for 20-cm sub-base layer 72.2 and 26.1 %. Ammonia nitrogen and TN cannot steadily be removed by layers according to the experiment results. The optimal thickness of bedding sands was 5 cm, and that of sub-base gravels was 20 ∼ 30 cm.

  15. Adsorption of Dyes Using Different Types of Sand: A Review

    African Journals Online (AJOL)

    NICO

    properties (porosity, surface area). The pore size ... Sand materials used as adsorbents for dyes treatment. 124. 4. .... production of foods, where it is used primarily as a flow agent in powdered ..... degree of boundary layer control is indicated and also that the ... parameters such as change in standard free energy (aG°),.

  16. Field study of macrodispersion in a heterogeneous aquifer. I

    International Nuclear Information System (INIS)

    Boggs, J.M.; Young, S.C.; Waldrop, W.R.; Gelhar, L.W.; Adams, E.E.; Rehfeldt, K.R.

    1990-01-01

    A large-scale natural gradient tracer experiment has been conducted at a field site located at Columbus Air Force Base in northeastern Mississippi. The alluvial aquifer at the test site is composed of lenticular deposits of sand, gravel, silt and clay, and is quite heterogeneous with respect to its hydraulic properties. Ten cubic meters of a solution containing bromide and three organic tracers (pentafluorobenzoic acid, o-trifluoromethylbenzoic acid, and 2,6-difluorobenzoic acid) were injected into the aquifer at a uniform rate over a period of two days. The tracer plume was subsequently monitored in three dimensions over a 20-month period using a network of 258 multilevel sampling wells. The tracer concentration distribution of the plume at the conclusion of the experiment was highly asymmetric in the longitudinal direction. The peak tracer concentration was located only 7 m from the injection point, while the advancing side of the plume extended downgradient a distance of more than 260 m. The extreme skewness of the plume was caused by large scale spatial variations in the mean groundwater velocity along the plume travel path produced by the approximate two order-of-magnitude increase in the mean hydraulic conductivity between the near-field and far-field regions of the experimental site. The tracer mass balance during the experiment showed a declining trend between sampling events with approximately 50 percent of the injected tracer mass unaccounted for at the end of the experiment. Laboratory column experiments indicated that approximately 20 percent of the tracer mass was adsorbed to the aquifer matrix. The remaining 30 percent of the missing tracer mass was attributed to incomplete sampling coverage of the plume, particularly on the advancing side, and to a sampling bias produced by the multilevel samplers. (Author) (17 refs., 3 tabs., 11 figs.)

  17. Effective range of chlorine transport in an aquifer during disinfection of wells: From laboratory experiments to field application

    Science.gov (United States)

    Paufler, S.; Grischek, T.; Adomat, Y.; Herlitzius, J.; Hiller, K.; Metelica, Y.

    2018-04-01

    Microbiological contamination usually leads to erratic operation of drinking water wells and disinfection is required after disasters and sometimes to restore proper well performance for aquifer storage and recovery (ASR) and subsurface iron removal (SIR) wells. This study focused on estimating the fate of chlorine around an infiltration well and improving the knowledge about processes that control the physical extent of the disinfected/affected radius. Closed bottle batch tests revealed low chlorine consumption rates for filter gravel and sand (0.005 mg/g/d) and higher rates for clay (0.030 mg/g/d) as well as natural aquifer material (0.054 mg/g/d). Smaller grain sizes disinfection ability at grain sizes >1 mm, but results in more effective disinfection for very fine material disinfection zone at the example well seems to extend to maximum 3.5 m into the aquifer. Excessive chlorine dosage of >10 mg/l would not further extend the disinfected radius. A preferable way to increase the range of chlorine application is to increase the total infiltrated volume and time. Three approaches are proposed for adapting lab results to actual infiltration wells, that are in principle applicable to any other site.

  18. A Black Hills-Madison Aquifer origin for Dakota Aquifer groundwater in northeastern Nebraska.

    Science.gov (United States)

    Stotler, Randy; Harvey, F Edwin; Gosselin, David C

    2010-01-01

    Previous studies of the Dakota Aquifer in South Dakota attributed elevated groundwater sulfate concentrations to Madison Aquifer recharge in the Black Hills with subsequent chemical evolution prior to upward migration into the Dakota Aquifer. This study examines the plausibility of a Madison Aquifer origin for groundwater in northeastern Nebraska. Dakota Aquifer water samples were collected for major ion chemistry and isotopic analysis ((18)O, (2)H, (3)H, (14)C, (13)C, (34)S, (18)O-SO(4), (87)Sr, (37)Cl). Results show that groundwater beneath the eastern, unconfined portion of the study area is distinctly different from groundwater sampled beneath the western, confined portion. In the east, groundwater is calcium-bicarbonate type, with delta(18)O values (-9.6 per thousand to -12.4 per thousand) similar to local, modern precipitation (-7.4 per thousand to -10 per thousand), and tritium values reflecting modern recharge. In the west, groundwater is calcium-sulfate type, having depleted delta(18)O values (-16 per thousand to -18 per thousand) relative to local, modern precipitation, and (14)C ages 32,000 to more than 47,000 years before present. Sulfate, delta(18)O, delta(2)H, delta(34)S, and delta(18)O-SO(4) concentrations are similar to those found in Madison Aquifer groundwater in South Dakota. Thus, it is proposed that Madison Aquifer source water is also present within the Dakota Aquifer beneath northeastern Nebraska. A simple Darcy equation estimate of groundwater velocities and travel times using reported physical parameters from the Madison and Dakota Aquifers suggests such a migration is plausible. However, discrepancies between (14)C and Darcy age estimates indicate that (14)C ages may not accurately reflect aquifer residence time, due to mixtures of varying aged water.

  19. Origin and availability of organic matter leading to arsenic mobilisation in aquifers of the Red River Delta, Vietnam

    International Nuclear Information System (INIS)

    Eiche, Elisabeth; Berg, Michael; Hönig, Sarah-Madeleine; Neumann, Thomas; Lan, Vi Mai; Pham, Thi Kim Trang; Pham, Hung Viet

    2017-01-01

    Groundwater arsenic (As) concentrations in the Red River Delta (Vietnam) are often patchy and related to the microbially induced reduction of Fe oxy-hydroxides. In this study, we explored the influence of the origin, composition and availability of natural organic matter on the hydrochemical variability in the aquifers of Van Phuc. Carbon isotope signatures (δ"1"3C_o_r_g) and C/N ratios were assessed in combination with lithology, geochemistry, hydrochemistry, hydrology and the distribution of specific biomarkers. The elationship of C/N ratios and δ"1"3C_o_r_g distinguished four groups of sediment types that differ in their organic carbon sources. This includes organic carbon originating predominantly from vascular C_3 plants (C/N: 15.4–21.0, δ"1"3C_o_r_g: −28.6 to −26.7‰), C_4 plants (C/N: 10.6; δ"1"3C_o_r_g: −14.8‰), freshwater derived particulate organic carbon (C/N: ≤8; δ"1"3C_o_r_g:≤−24‰) as well as mixtures incorporating both sources. At the high As sites, we found particulate organic carbon (POC) being 1–2‰ less depleted in δ"1"3C_o_r_g than at low As sites. More importantly, however, our assessment shows that, the availability of organic matter has to be considered decisive with regard to groundwater As contamination. Fine-grained clayey sediments overlaying sands generally protect organic matter from substantial degradation and its leaching into an adjacent aquifer. However, at the sites that are high in dissolved As in Van Phuc, sediment layers rich in organic matter are hydraulically connected to the underlying aquifer. Here, soluble organic matter seeping into the aquifer can induce and/or enhance reducing conditions, thereby mobilising As from Fe oxy-hydroxides. Our study shows that both the clay content as well as the origin of organic matter are largely controlled by the depositional environment of the sediments. - Highlights: • Particulate organic carbon (POC) from C_3/C_4 plants and freshwater is a main source of

  20. Estimating Groundwater Mounding in Sloping Aquifers for Managed Aquifer Recharge.

    Science.gov (United States)

    Zlotnik, Vitaly A; Kacimov, Anvar; Al-Maktoumi, Ali

    2017-11-01

    Design of managed aquifer recharge (MAR) for augmentation of groundwater resources often lacks detailed data, and simple diagnostic tools for evaluation of the water table in a broad range of parameters are needed. In many large-scale MAR projects, the effect of a regional aquifer base dip cannot be ignored due to the scale of recharge sources (e.g., wadis, streams, reservoirs). However, Hantush's (1967) solution for a horizontal aquifer base is commonly used. To address sloping aquifers, a new closed-form analytical solution for water table mound accounts for the geometry and orientation of recharge sources at the land surface with respect to the aquifer base dip. The solution, based on the Dupiuit-Forchheimer approximation, Green's function method, and coordinate transformations is convenient for computing. This solution reveals important MAR traits in variance with Hantush's solution: mounding is limited in time and space; elevation of the mound is strongly affected by the dip angle; and the peak of the mound moves over time. These findings have important practical implications for assessment of various MAR scenarios, including waterlogging potential and determining proper rates of recharge. Computations are illustrated for several characteristic MAR settings. © 2017, National Ground Water Association.

  1. Construction and calibration of a groundwater-flow model to assess groundwater availability in the uppermost principal aquifer systems of the Williston Basin, United States and Canada

    Science.gov (United States)

    Davis, Kyle W.; Long, Andrew J.

    2018-05-31

    The U.S. Geological Survey developed a groundwater-flow model for the uppermost principal aquifer systems in the Williston Basin in parts of Montana, North Dakota, and South Dakota in the United States and parts of Manitoba and Saskatchewan in Canada as part of a detailed assessment of the groundwater availability in the area. The assessment was done because of the potential for increased demands and stresses on groundwater associated with large-scale energy development in the area. As part of this assessment, a three-dimensional groundwater-flow model was developed as a tool that can be used to simulate how the groundwater-flow system responds to changes in hydrologic stresses at a regional scale.The three-dimensional groundwater-flow model was developed using the U.S. Geological Survey’s numerical finite-difference groundwater model with the Newton-Rhapson solver, MODFLOW–NWT, to represent the glacial, lower Tertiary, and Upper Cretaceous aquifer systems for steady-state (mean) hydrological conditions for 1981‒2005 and for transient (temporally varying) conditions using a combination of a steady-state period for pre-1960 and transient periods for 1961‒2005. The numerical model framework was constructed based on existing and interpreted hydrogeologic and geospatial data and consisted of eight layers. Two layers were used to represent the glacial aquifer system in the model; layer 1 represented the upper one-half and layer 2 represented the lower one-half of the glacial aquifer system. Three layers were used to represent the lower Tertiary aquifer system in the model; layer 3 represented the upper Fort Union aquifer, layer 4 represented the middle Fort Union hydrogeologic unit, and layer 5 represented the lower Fort Union aquifer. Three layers were used to represent the Upper Cretaceous aquifer system in the model; layer 6 represented the upper Hell Creek hydrogeologic unit, layer 7 represented the lower Hell Creek aquifer, and layer 8 represented the Fox

  2. Trench infiltration for managed aquifer recharge to permeable bedrock

    Science.gov (United States)

    Heilweil, V.M.; Watt, D.E.

    2011-01-01

    Managed aquifer recharge to permeable bedrock is increasingly being utilized to enhance resources and maintain sustainable groundwater development practices. One such target is the Navajo Sandstone, an extensive regional aquifer located throughout the Colorado Plateau of the western United States. Spreading-basin and bank-filtration projects along the sandstone outcrop's western edge in southwestern Utah have recently been implemented to meet growth-related water demands. This paper reports on a new cost-effective surface-infiltration technique utilizing trenches for enhancing managed aquifer recharge to permeable bedrock. A 48-day infiltration trench experiment on outcropping Navajo Sandstone was conducted to evaluate this alternative surface-spreading artificial recharge method. Final infiltration rates through the bottom of the trench were about 0.5 m/day. These infiltration rates were an order of magnitude higher than rates from a previous surface-spreading experiment at the same site. The higher rates were likely caused by a combination of factors including the removal of lower permeability soil and surficial caliche deposits, access to open vertical sandstone fractures, a reduction in physical clogging associated with silt and biofilm layers, minimizing viscosity effects by maintaining isothermal conditions, minimizing chemical clogging caused by carbonate mineral precipitation associated with algal photosynthesis, and diminished gas clogging associated with trapped air and biogenic gases. This pilot study illustrates the viability of trench infiltration for enhancing surface spreading of managed aquifer recharge to permeable bedrock. ?? 2010.

  3. Hydrogeology, water quality, and microbial assessment of a coastal alluvial aquifer in western Saudi Arabia: potential use of coastal wadi aquifers for desalination water supplies [Hydrogéologie, qualité de l’eau et évaluation microbienne d’un aquifère côtier alluvial dans l’Ouest de l’Arabie Saoudite: utilisation potentielle des aquifères côtiers des oueds pour l’alimentation en eau après désalinisation] [Hidrogeologia, qualidade da água e avaliação microbiológica de um aquífero costeiro no oeste da Arábia Saudita: uso potencial de aquíferos de wadi costeiros para dessalinização de águas destinadas a abastecimento] [Hidrogeología, calidad de agua y evaluación microbiana de un acuífero costero aluvial en Arabia Saudita occidental: uso potencial de acuíferos costeros uadis para la desalinización de los abastecimientos de agua

    KAUST Repository

    Missimer, Thomas M.

    2014-07-20

    Wadi alluvial aquifers located along coastal areas of the Middle East have been assumed to be suitable sources of feed water for seawater reverse osmosis facilities based on high productivity, connectedness to the sea for recharge, and the occurrence of seawater with chemistry similar to that in the adjacent Red Sea. An investigation of the intersection of Wadi Wasimi with the Red Sea in western Saudi Arabia has revealed that the associated predominantly unconfined alluvial aquifer divides into two sand-and-gravel aquifers at the coast, each with high productivity (transmissivity = 42,000 m2/day). This aquifer system becomes confined near the coast and contains hypersaline water. The hydrogeology of Wadi Wasimi shows that two of the assumptions are incorrect in that the aquifer is not well connected to the sea because of confinement by very low hydraulic conductivity terrigenous and marine muds and the aquifer contains hypersaline water as a result of a hydraulic connection to a coastal sabkha. A supplemental study shows that the aquifer system contains a diverse microbial community composed of predominantly of Proteobacteria with accompanying high percentages of Gammaproteobacteria, Alphaproteobacteria and Deltaproteobacteria.

  4. Occurrence of gas hydrate in Oligocene Frio sand: Alaminos Canyon Block 818: Northern Gulf of Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Boswell, R.D.; Shelander, D.; Lee, M.; Latham, T.; Collett, T.; Guerin, G.; Moridis, G.; Reagan, M.; Goldberg, D.

    2009-07-15

    A unique set of high-quality downhole shallow subsurface well log data combined with industry standard 3D seismic data from the Alaminos Canyon area has enabled the first detailed description of a concentrated gas hydrate accumulation within sand in the Gulf of Mexico. The gas hydrate occurs within very fine grained, immature volcaniclastic sands of the Oligocene Frio sand. Analysis of well data acquired from the Alaminos Canyon Block 818 No.1 ('Tigershark') well shows a total gas hydrate occurrence 13 m thick, with inferred gas hydrate saturation as high as 80% of sediment pore space. Average porosity in the reservoir is estimated from log data at approximately 42%. Permeability in the absence of gas hydrates, as revealed from the analysis of core samples retrieved from the well, ranges from 600 to 1500 millidarcies. The 3-D seismic data reveals a strong reflector consistent with significant increase in acoustic velocities that correlates with the top of the gas-hydrate-bearing sand. This reflector extends across an area of approximately 0.8 km{sup 2} and delineates the minimal probable extent of the gas hydrate accumulation. The base of the inferred gas-hydrate zone also correlates well with a very strong seismic reflector that indicates transition into units of significantly reduced acoustic velocity. Seismic inversion analyses indicate uniformly high gas-hydrate saturations throughout the region where the Frio sand exists within the gas hydrate stability zone. Numerical modeling of the potential production of natural gas from the interpreted accumulation indicates serious challenges for depressurization-based production in settings with strong potential pressure support from extensive underlying aquifers.

  5. Septic systems as sources of organic wastewater compounds in domestic drinking water wells in a shallow sand and gravel aquifer

    Energy Technology Data Exchange (ETDEWEB)

    Schaider, Laurel A., E-mail: schaider@silentspring.org; Ackerman, Janet M.; Rudel, Ruthann A.

    2016-03-15

    Domestic drinking water wells serve 44 million people in the US and are common globally. They are often located in areas served by onsite wastewater treatment systems, including septic systems, which can be sources of biological and chemical pollutants to groundwater. In this study we tested 20 domestic drinking water wells in a sand and gravel aquifer on Cape Cod, Massachusetts, USA, for 117 organic wastewater compounds (OWCs) and for inorganic markers of septic system impact. We detected 27 OWCs, including 12 pharmaceuticals, five per- and polyfluoroalkyl substances (PFASs), four organophosphate flame retardants, and an artificial sweetener (acesulfame). Maximum concentrations of several PFASs and pharmaceuticals were relatively high compared to public drinking water supplies in the US. The number of detected OWCs and total concentrations of pharmaceuticals and of PFASs were positively correlated with nitrate, boron, and acesulfame and negatively correlated with well depth. These wells were all located in areas served exclusively by onsite wastewater treatment systems, which are likely the main source of the OWCs in these wells, although landfill leachate may also be a source. Our results suggest that current regulations to protect domestic wells from pathogens in septic system discharges do not prevent OWCs from reaching domestic wells, and that nitrate, a commonly measured drinking water contaminant, is a useful screening tool for OWCs in domestic wells. Nitrate concentrations of 1 mg/L NO{sub 3}-N, which are tenfold higher than local background and tenfold lower than the US federal drinking water standard, were associated with wastewater impacts from OWCs in this study. - Highlights: • We tested 20 domestic drinking water wells for 117 organic wastewater compounds. • PFASs, pharmaceuticals, and an artificial sweetener were most frequently detected. • Nitrate, boron, and well depth were all correlated with PFASs and pharmaceuticals. • Acesulfame

  6. Septic systems as sources of organic wastewater compounds in domestic drinking water wells in a shallow sand and gravel aquifer

    International Nuclear Information System (INIS)

    Schaider, Laurel A.; Ackerman, Janet M.; Rudel, Ruthann A.

    2016-01-01

    Domestic drinking water wells serve 44 million people in the US and are common globally. They are often located in areas served by onsite wastewater treatment systems, including septic systems, which can be sources of biological and chemical pollutants to groundwater. In this study we tested 20 domestic drinking water wells in a sand and gravel aquifer on Cape Cod, Massachusetts, USA, for 117 organic wastewater compounds (OWCs) and for inorganic markers of septic system impact. We detected 27 OWCs, including 12 pharmaceuticals, five per- and polyfluoroalkyl substances (PFASs), four organophosphate flame retardants, and an artificial sweetener (acesulfame). Maximum concentrations of several PFASs and pharmaceuticals were relatively high compared to public drinking water supplies in the US. The number of detected OWCs and total concentrations of pharmaceuticals and of PFASs were positively correlated with nitrate, boron, and acesulfame and negatively correlated with well depth. These wells were all located in areas served exclusively by onsite wastewater treatment systems, which are likely the main source of the OWCs in these wells, although landfill leachate may also be a source. Our results suggest that current regulations to protect domestic wells from pathogens in septic system discharges do not prevent OWCs from reaching domestic wells, and that nitrate, a commonly measured drinking water contaminant, is a useful screening tool for OWCs in domestic wells. Nitrate concentrations of 1 mg/L NO_3-N, which are tenfold higher than local background and tenfold lower than the US federal drinking water standard, were associated with wastewater impacts from OWCs in this study. - Highlights: • We tested 20 domestic drinking water wells for 117 organic wastewater compounds. • PFASs, pharmaceuticals, and an artificial sweetener were most frequently detected. • Nitrate, boron, and well depth were all correlated with PFASs and pharmaceuticals. • Acesulfame (artificial

  7. Estimation of hydraulic properties and development of a layered conceptual model for the Snake River plain aquifer at the Idaho National Engineering Laboratory, Idaho

    International Nuclear Information System (INIS)

    Frederick, D.B.; Johnson, G.S.

    1996-02-01

    The Idaho INEL Oversight Program, in association with the University of Idaho, Idaho Geological Survey, Boise State University, and Idaho State University, developed a research program to determine the hydraulic properties of the Snake River Plain aquifer and characterize the vertical distribution of contaminants. A straddle-packer was deployed in four observation wells near the Idaho Chemical Processing Plant at the Idaho National Engineering Laboratory. Pressure transducers mounted in the straddle-packer assembly were used to monitor the response of the Snake River Plain aquifer to pumping at the ICPP production wells, located 2600 to 4200 feet from the observation wells. The time-drawdown data from these tests were used to evaluate various conceptual models of the aquifer. Aquifer properties were estimated by matching time-drawdown data to type curves for partially penetrating wells in an unconfined aquifer. This approach assumes a homogeneous and isotropic aquifer. The hydraulic properties of the aquifer obtained from the type curve analyses were: (1) Storativity = 3 x 10 -5 , (2) Specific Yield = 0.01, (3) Transmissivity = 740 ft 2 /min, (4) Anisotropy (Kv:Kh)= 1:360

  8. Application of Fe-Cu/Biochar System for Chlorobenzene Remediation of Groundwater in Inhomogeneous Aquifers

    Directory of Open Access Journals (Sweden)

    Xu Zhang

    2017-12-01

    Full Text Available Chlorobenzene (CB, as a typical Volatile Organic Contaminants (VOC, is toxic, highly persistent and easily migrates in water, posing a significant risk to human health and subsurface ecosystems. Therefore, exploring effective approaches to remediate groundwater contaminated by CB is essential. As an enhanced micro-electrolysis system for CB-contaminated groundwater remediation, this study attempted to couple the iron-copper bimetal with biochar. Two series of columns using sands with different grain diameters were used, consisting of iron, copper and biochar fillings as the permeable reactive barriers (PRBs, to simulate the remediation of CB-contaminated groundwater in homogeneous and heterogeneous aquifers. Regardless of the presence of homogeneous or heterogeneous porous media, the CB concentrations in the effluent from the PRB columns were significantly lower than the natural sandy columns, suggesting that the iron and copper powders coupled with biochar particles could have a significant removal effect compared to the natural sand porous media in the first columns. CB was transported relatively quickly in the heterogeneous porous media, likely due to the fact that the contaminant residence time is proportional to the infiltration velocities in the different types of porous media. The average effluent CB concentrations from the heterogeneous porous media were lower than those from homogeneous porous media. The heterogeneity retarded the vertical infiltration of CB, leading to its extended lateral distribution. During the treatment process, benzene and phenol were observed as the products of CB degradation. The ultimate CB removal efficiency was 61.4% and 68.1%, demonstrating that the simulated PRB system with the mixture of iron, copper and biochar was effective at removing CB from homogeneous and heterogeneous aquifers.

  9. Integration of the White Sands Complex into a Wide Area Network

    Science.gov (United States)

    Boucher, Phillip Larry; Horan, Sheila, B.

    1996-01-01

    The NASA White Sands Complex (WSC) satellite communications facility consists of two main ground stations, an auxiliary ground station, a technical support facility, and a power plant building located on White Sands Missile Range. When constructed, terrestrial communication access to these facilities was limited to copper telephone circuits. There was no local or wide area communications network capability. This project incorporated a baseband local area network (LAN) topology at WSC and connected it to NASA's wide area network using the Program Support Communications Network-Internet (PSCN-I). A campus-style LAN is configured in conformance with the International Standards Organization (ISO) Open Systems Interconnect (ISO) model. Ethernet provides the physical and data link layers. Transmission Control Protocol and Internet Protocol (TCP/IP) are used for the network and transport layers. The session, presentation, and application layers employ commercial software packages. Copper-based Ethernet collision domains are constructed in each of the primary facilities and these are interconnected by routers over optical fiber links. The network and each of its collision domains are shown to meet IEEE technical configuration guidelines. The optical fiber links are analyzed for the optical power budget and bandwidth allocation and are found to provide sufficient margin for this application. Personal computers and work stations attached to the LAN communicate with and apply a wide variety of local and remote administrative software tools. The Internet connection provides wide area network (WAN) electronic access to other NASA centers and the world wide web (WWW). The WSC network reduces and simplifies the administrative workload while providing enhanced and advanced inter-communications capabilities among White Sands Complex departments and with other NASA centers.

  10. Combined use of thermal methods and seepage meters to efficiently locate, quantify, and monitor focused groundwater discharge to a sand-bed stream

    Science.gov (United States)

    Rosenberry, Donald O.; Briggs, Martin A.; Delin, Geoffrey N.; Hare, Danielle K.

    2016-01-01

    Quantifying flow of groundwater through streambeds often is difficult due to the complexity of aquifer-scale heterogeneity combined with local-scale hyporheic exchange. We used fiber-optic distributed temperature sensing (FO-DTS), seepage meters, and vertical temperature profiling to locate, quantify, and monitor areas of focused groundwater discharge in a geomorphically simple sand-bed stream. This combined approach allowed us to rapidly focus efforts at locations where prodigious amounts of groundwater discharged to the Quashnet River on Cape Cod, Massachusetts, northeastern USA. FO-DTS detected numerous anomalously cold reaches one to several m long that persisted over two summers. Seepage meters positioned upstream, within, and downstream of 7 anomalously cold reaches indicated that rapid groundwater discharge occurred precisely where the bed was cold; median upward seepage was nearly 5 times faster than seepage measured in streambed areas not identified as cold. Vertical temperature profilers deployed next to 8 seepage meters provided diurnal-signal-based seepage estimates that compared remarkably well with seepage-meter values. Regression slope and R2 values both were near 1 for seepage ranging from 0.05 to 3.0 m d−1. Temperature-based seepage model accuracy was improved with thermal diffusivity determined locally from diurnal signals. Similar calculations provided values for streambed sediment scour and deposition at subdaily resolution. Seepage was strongly heterogeneous even along a sand-bed river that flows over a relatively uniform sand and fine-gravel aquifer. FO-DTS was an efficient method for detecting areas of rapid groundwater discharge, even in a strongly gaining river, that can then be quantified over time with inexpensive streambed thermal methods.

  11. Interactions between deep bedrock aquifers and surface water in function of recharge and topography: a numerical study

    Science.gov (United States)

    Goderniaux, P.; Davy, P.; Le Borgne, T.; Bresciani, E.; Jimenez-Martinez, J.

    2011-12-01

    In crystalline rock regions, such as Brittany (France), important reserves of groundwater into deep fractured aquifers are increasingly used and provide high quality water compared to shallow aquifers which can be subject to agricultural contamination. However, recharge processes of these deep aquifers and interactions with surface water are not yet fully understood. In some areas, intensive pumping is carried out without guarantee of the resource quantity and quality. Understanding these processes is crucial for sustainable management of the resource. In this study, we study how deep groundwater fluxes, pathways, ages, and river-aquifer interactions vary according to recharge. We assume that water flowing from the ground surface is distributed between shallow more permeable layers and deep layers. This repartition mostly depends on recharge rates. With high recharge, groundwater levels are high and subsurface streamlines are relatively short between recharge areas and existing draining rivers, which constitutes a very dense network. Therefore, most of the groundwater fluxes occur through the more permeable shallow layers. With low recharge, groundwater levels are lower, and river and shallow permeable levels are partly disconnected from each other. This induces a general increase of the groundwater streamlines length from the recharge areas to more sporadic discharge areas, and more fluxes occur through the deep layers. Recharge conditions and river-aquifer interactions have changed over the last thousands of years, due to change in precipitation, temperatures, existence of permafrost, etc. They have strongly influenced deep groundwater fluxes and can explain current groundwater age and flux distribution. To study these interactions, a regional-scale finite difference flow model was implemented. The model covers an area of 1400 km 2 , a depth of 1 km, and the topography is characteristic of Brittany. As rivers are mainly fed by groundwater drainage, seepages faces

  12. Fontainebleau Sand

    DEFF Research Database (Denmark)

    Leth, Caspar Thrane

    2006-01-01

    The report is a summary of results from laboratory tests in the geotechncial research group on Fontainebleau sand.......The report is a summary of results from laboratory tests in the geotechncial research group on Fontainebleau sand....

  13. Remediation of arsenic-contaminated groundwater using media-injected permeable reactive barriers with a modified montmorillonite: sand tank studies.

    Science.gov (United States)

    Luo, Ximing; Liu, Haifei; Huang, Guoxin; Li, Ye; Zhao, Yan; Li, Xu

    2016-01-01

    A modified montmorillonite (MMT) was prepared using an acid activation-sodium activation-iron oxide coating method to improve the adsorption capacities of natural MMTs. For MMT, its interlamellar distance increased from 12.29 to 13.36 Å, and goethite (α-FeOOH) was intercalated into its clay layers. Two novel media-injected permeable reactive barrier (MI-PRB) configurations were proposed for removing arsenic from groundwater. Sand tank experiments were conducted to investigate the performance of the two MI-PRBs: Tank A was filled with quartz sand. Tank B was packed with quartz sand and zero-valent iron (ZVI) in series, and the MMT slurry was respectively injected into them to form reactive zones. The results showed that for tank A, total arsenic (TA) removal of 98.57% was attained within the first 60 mm and subsequently descended slowly to 88.84% at the outlet. For tank B, a similar spatial variation trend was observed in the quartz sand layer, and subsequently, TA removal increased to ≥99.80% in the ZVI layer. TA removal by MMT mainly depended on both surface adsorption and electrostatic adhesion. TA removal by ZVI mainly relied on coagulation/precipitation and adsorption during the iron corrosion. The two MI-PRBs are feasible alternatives for in situ remediation of groundwater with elevated As levels.

  14. Heterogeneity-enhanced gas phase formation in shallow aquifers during leakage of CO2-saturated water from geologic sequestration sites

    Science.gov (United States)

    Plampin, Michael R.; Lassen, Rune N.; Sakaki, Toshihiro; Porter, Mark L.; Pawar, Rajesh J.; Jensen, Karsten H.; Illangasekare, Tissa H.

    2014-12-01

    A primary concern for geologic carbon storage is the potential for leakage of stored carbon dioxide (CO2) into the shallow subsurface where it could degrade the quality of groundwater and surface water. In order to predict and mitigate the potentially negative impacts of CO2 leakage, it is important to understand the physical processes that CO2 will undergo as it moves through naturally heterogeneous porous media formations. Previous studies have shown that heterogeneity can enhance the evolution of gas phase CO2 in some cases, but the conditions under which this occurs have not yet been quantitatively defined, nor tested through laboratory experiments. This study quantitatively investigates the effects of geologic heterogeneity on the process of gas phase CO2 evolution in shallow aquifers through an extensive set of experiments conducted in a column that was packed with layers of various test sands. Soil moisture sensors were utilized to observe the formation of gas phase near the porous media interfaces. Results indicate that the conditions under which heterogeneity controls gas phase evolution can be successfully predicted through analysis of simple parameters, including the dissolved CO2 concentration in the flowing water, the distance between the heterogeneity and the leakage location, and some fundamental properties of the porous media. Results also show that interfaces where a less permeable material overlies a more permeable material affect gas phase evolution more significantly than interfaces with the opposite layering.

  15. Development of a Severe Sand-dust Storm Model and its Application to Northwest China

    International Nuclear Information System (INIS)

    Zhang Xiaoling; Cheng, Linsheng; Chung, Yong-Seung

    2003-01-01

    A very strong sand-dust storm occurred on 5 May, 1993 in Northwest China. In order to give a detailed description of the evolution of a mesoscale system along with the heavy sand-dust storm, a complex model including improved physical processes and a radiation parameterization scheme was developed based on a simulation model. The improved model introduced a sand-dust transport equation as well as a lifting transport model, sand-dust aerosols and radiation parameterization scheme.Using this model, the super sand-dust storm case on 5 May was simulated. Results indicated that the coupled mesoscale model successfully simulated the mesoscale vortex, its strong upward movement and the warm core structure of PBL. The generation and development of these structures were consistent with that of the sand-dust storm and dry squall-line (which was different with normal squall-line). Simulated sand-dust concentration and its radiative effect corresponded with observation data. The radiative effect of sand-dust aerosols caused the air to heat on the top of aerosol layer with a heating rate amounting to 2 K hr -1 . As a result, solar radiation flux that reached the surface, net radiation flux and surface temperature all suddenly went down. The temperature gradient across the cold front became obviously larger. Therefore, enhancing the development of the mesoscale system. The simulation generally reflected features during the squall-line passage of this strong sand-dust storm

  16. Iodine speciation and diffusion in a sand-groundwater system

    International Nuclear Information System (INIS)

    Higgo, J.J.W.; Haigh, D.G.; Allen, M.R.; Williams, G.M.; Warwick, P.

    1991-01-01

    This study lies within the Mirage II research programme (migration of radionuclides in the geosphere) set up by the Commission of the European Communities and supported by the UK Department of the Environment. The work forms part of the project entilled In situ determination of the effects of organics on the mobility of radionuclides in controlled conditions of groundwater flow which is being carried out by the British Geological Survey at Drigg in Cumbria, on land owned by British Nuclear Fuel plc. The study involves the detailed geochemical and hydrogeological characterization of a confined aquifer of glacial sand, the laboratory scale investigation of radionuclide sorption processes and how these are affected by the presence of natural and anthropogenic organic compounds. Ultimately the results of field hydraulic testing and laboratory studies of radionuclide sorption will be used to predict the outcome of a field tracer experiment using conservative and reactive radionuclide species

  17. Field trials of aquifer protection in longwall mining of shallow coal seams in China

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, D.S.; Fan, G.W.; Liu, Y.D.; Ma, L.Q. [State Key Laboratory of Coal Resource & Mine Safety, Xuzhou (China)

    2010-09-15

    The large-scale mining of shallow coal seams has a significant impact on the overlying aquifers and surface ecological environment. To protect the aquifers and maximize the coal resource recovery, field trials were undertaken during the operation of the LW32201 in Bulianta coal mine, Shendong, China. With a severely weathered rock (SWR) layer and two key strata (KS) in the overlying strata, aquifer protection in longwall mining (APLM) relies mainly on the rapid advance. In some localized zones, special measures should be taken to achieve the APLM, including lowering mining height, backfill and slurry injection. To further understand the mechanism and applicable conditions of the APLM and validate the effectiveness of the APLM, variation of the water table in the aquifer was observed as the longwall face passed through the zone. This paper also discusses the mechanism and basic requirements of the APLM and the relationship between the fall of the water table and the surface subsidence. The results of the field trials indicated that APLM in shallow coal seams could be successful under suitable conditions.

  18. Soil mixing of stratified contaminated sands.

    Science.gov (United States)

    Al-Tabba, A; Ayotamuno, M J; Martin, R J

    2000-02-01

    Validation of soil mixing for the treatment of contaminated ground is needed in a wide range of site conditions to widen the application of the technology and to understand the mechanisms involved. Since very limited work has been carried out in heterogeneous ground conditions, this paper investigates the effectiveness of soil mixing in stratified sands using laboratory-scale augers. This enabled a low cost investigation of factors such as grout type and form, auger design, installation procedure, mixing mode, curing period, thickness of soil layers and natural moisture content on the unconfined compressive strength, leachability and leachate pH of the soil-grout mixes. The results showed that the auger design plays a very important part in the mixing process in heterogeneous sands. The variability of the properties measured in the stratified soils and the measurable variations caused by the various factors considered, highlighted the importance of duplicating appropriate in situ conditions, the usefulness of laboratory-scale modelling of in situ conditions and the importance of modelling soil and contaminant heterogeneities at the treatability study stage.

  19. Evaluation of potential gas clogging associated with managed aquifer recharge from a spreading basin, southwestern Utah, U.S.A.

    Science.gov (United States)

    Heilweil, Victor M.; Marston, Thomas

    2013-01-01

    Sand Hollow Reservoir in southwestern Utah, USA, is operated for both surface-water storage and managed aquifer recharge via infiltration from surface basin spreading to the underlying Navajo Sandstone. The total volume of estimated recharge from 2002 through 2011 was 131 Mm3., resulting in groundwater levels rising as much as 40 m. Hydraulic and hydrochemical data from the reservoir and various monitoring wells in Sand Hollow were used to evaluate the timing and location or reservoir recharge moving through the aquifer, along either potential clogging from trapped gases in pore throats, siltation, or algal mats. Several hyrdochemical tracers indicated this recharge had arrived at four monitoring wells located within about 300 m of the reservoir by 2012. At these wells, peak total dissolved-gas pressures exceeded two atmospheres (>1,500 mm mercury) and dissolved oxygen approached three times atmospherically equilibrated concentrations (>25 mg/L). these field parameters indicate that large amounts of gas trapped in pore spaces beneath the water table have dissolved. Lesser but notable increases in these dissolved-gas parameters (without increases in other indicators such as chloride-to-bromide ratios) at monitoring wells farther away (>300 m) indicate moderate amounts of in-situ sir entrapment and dissolution caused by the rise in regional groundwater levels. This is confirmed by hydrochemical difference between these sites and wells closer to the reservoir where recharge had already arrived. As the reservoir was being filled by 2002, managed aquifer recharge rates were initially very high (1.5 x 10-4 cm/s) with the vadose zone becoming saturated beneath and surrounding the reservoir. These rates declined to less than 3.5 x 10-6 cm/s during 2008. The 2002-08 decrease was likely associated with a declining regional hydraulic gradient and clogging. Increasing recharge rates during mid-2009 through 2010 may have been partly caused by dissolution of air bubbles

  20. Aquifer test to determine hydraulic properties of the Elm aquifer near Aberdeen, South Dakota

    Science.gov (United States)

    Schaap, Bryan D.

    2000-01-01

    The Elm aquifer, which consists of sandy and gravelly glacial-outwash deposits, is present in several counties in northeastern South Dakota. An aquifer test was conducted northeast of Aberdeen during the fall of 1999 to determine the hydraulic properties of the Elm aquifer in that area. An improved understanding of the properties of the aquifer will be useful in the possible development of the aquifer as a water resource. Historical water-level data indicate that the saturated thickness of the Elm aquifer can change considerably over time. From September 1977 through November 1985, water levels at three wells completed in the Elm aquifer near the aquifer test site varied by 5.1 ft, 9.50 ft, and 11.1 ft. From June 1982 through October 1999, water levels at five wells completed in the Elm aquifer near the aquifer test site varied by 8.7 ft, 11.4 ft, 13.2 ft, 13.8 ft, and 19.7 ft. The water levels during the fall of 1999 were among the highest on record, so the aquifer test was affected by portions of the aquifer being saturated that might not be saturated during drier times. The aquifer test was conducted using five existing wells that had been installed prior to this study. Well A, the pumped well, has an operating irrigation pump and is centrally located among the wells. Wells B, C, D, and E are about 70 ft, 1,390 ft, 2,200 ft, and 3,100 ft, respectively, in different directions from Well A. Using vented pressure transducers and programmable data loggers, water-level data were collected at the five wells prior to, during, and after the pumping, which started on November 19, 1999, and continued a little over 72 hours. Based on available drilling logs, the Elm aquifer near the test area was assumed to be unconfined. The Neuman (1974) method theoretical response curves that most closely match the observed water-level changes at Wells A and B were calculated using software (AQTESOLV for Windows Version 2.13-Professional) developed by Glenn M. Duffield of Hydro

  1. Hydrogeology and water quality of the Floridan aquifer system and effect of Lower Floridan aquifer withdrawals on the Upper Floridan aquifer at Barbour Pointe Community, Chatham County, Georgia, 2013

    Science.gov (United States)

    Gonthier, Gerard; Clarke, John S.

    2016-06-02

    Two test wells were completed at the Barbour Pointe community in western Chatham County, near Savannah, Georgia, in 2013 to investigate the potential of using the Lower Floridan aquifer as a source of municipal water supply. One well was completed in the Lower Floridan aquifer at a depth of 1,080 feet (ft) below land surface; the other well was completed in the Upper Floridan aquifer at a depth of 440 ft below land surface. At the Barbour Pointe test site, the U.S. Geological Survey completed electromagnetic (EM) flowmeter surveys, collected and analyzed water samples from discrete depths, and completed a 72-hour aquifer test of the Floridan aquifer system withdrawing from the Lower Floridan aquifer.Based on drill cuttings, geophysical logs, and borehole EM flowmeter surveys collected at the Barbour Pointe test site, the Upper Floridan aquifer extends 369 to 567 ft below land surface, the middle semiconfining unit, separating the two aquifers, extends 567 to 714 ft below land surface, and the Lower Floridan aquifer extends 714 to 1,056 ft below land surface.A borehole EM flowmeter survey indicates that the Upper Floridan and Lower Floridan aquifers each contain four water-bearing zones. The EM flowmeter logs of the test hole open to the entire Floridan aquifer system indicated that the Upper Floridan aquifer contributed 91 percent of the total flow rate of 1,000 gallons per minute; the Lower Floridan aquifer contributed about 8 percent. Based on the transmissivity of the middle semiconfining unit and the Floridan aquifer system, the middle semiconfining unit probably contributed on the order of 1 percent of the total flow.Hydraulic properties of the Upper Floridan and Lower Floridan aquifers were estimated based on results of the EM flowmeter survey and a 72-hour aquifer test completed in Lower Floridan aquifer well 36Q398. The EM flowmeter data were analyzed using an AnalyzeHOLE-generated model to simulate upward borehole flow and determine the transmissivity of

  2. Sorption of activation products on London clay and Dungeness aquifer gravel

    Energy Technology Data Exchange (ETDEWEB)

    Baston, G.M.N.; Berry, J.A.; Littleboy, A.K.; Pilkington, N.J. (AEA Decommissioning and Radwaste, Harwell Lab. (United Kingdom))

    1992-01-01

    The sortpion of a series of activation-product radionuclides onto London clay and Dungeness aquifer gravel from the nuclear reactor sites at Bradwell and Dungeness, has been examined. Batch sorption and through-diffusion experiments with clay determined chlorine as the chloride ion to be effectively non-sorbing; calcium to be weakly sorbing, whereas cobalt, nickel, niobium and samarium were moderately to strongly sorbing and silver was strongly sorbing. Distribution ratios (R[sub D] values) for Nb, Sm and Ag were found to have a strong dependence on the liquid-solid separation technique employed. The presence of high concentrations of calcium hydroxide led to lower values of R[sub D] for radioactive Ca but higher R[sub D] values for Sm and Ag. The sorption of Ni showed no apparent dependence on groundwater composition at low levels of dissolved organic carbon (DOC). The values of R[sub D] for Co decreased as the DOC content was increased by addition of humic materials. Batch sorption studies with aquifer gravel demonstrated that Ca is weakly sorbing whereas Nb, Ag and Eu are moderately to strongly sorbing. R[sub D] values for Ca and for Ag under neutral pH conditions show little sensitivity to the liquid/solid separation technique used. However, R[sub D] values for Nb and Eu under neutral pH conditions and for Ag in alkaline solution (pH = 11 - 12) show a marked effect. The aquifer gravel was found to be highly inhomogeneous unlike the clay and sorption was greatest on samples with a high proportion of sand, reflecting the clay mineral content. (orig.).

  3. Application of the top specified boundary layer (TSBL) approximation to initial characterization of an inland aquifer mineralization 1. Direct contact between fresh and saltwater

    Science.gov (United States)

    Rubin, H.; Buddemeier, R.W.

    1998-01-01

    This paper presents a basic study in generalized terms that originates from two needs: (1) to understand the major mechanisms involved in the mineralization of groundwater of the Great Bend Prairie aquifer of Kansas by saltwater originating from a deeper Permian bedrock formation, and (2) to develop simple, robust tools that can readily be used for local assessment and management activities in the salt-affected region. A simplified basic conceptual model is adopted, incorporating two horizontal layers of porous medium which come into contact at a specific location within the model domain. The top layer is saturated with freshwater, and the bottom layer is saturated with saltwater. The paper considers various stages of approximation which can be useful for simplified simulation of the build-up of the transition zone (TZ) between the freshwater and the saltwater. The hierarchy of approximate approaches leads to the development of the top specified boundary layer (TSBL) method, which is the major tool used in this study for initial characterization of the development of the TZ. It is shown that the thickness of the TZ is mainly determined by the characteristic dispersivity. The build-up of the TZ is completed after a time period equal to the time needed to advect a fluid particle along the whole extent of the TZ. Potential applications and the effects of natural recharge and pumpage on salinity transport in the domain are discussed and evaluated in the context of demonstrating the practicality of the TSBL approach.

  4. Study of Black Sand Particles from Sand Dunes in Badr, Saudi Arabia Using Electron Microscopy

    Directory of Open Access Journals (Sweden)

    Haider Abbas Khwaja

    2015-08-01

    Full Text Available Particulate air pollution is a health concern. This study determines the microscopic make-up of different varieties of sand particles collected at a sand dune site in Badr, Saudi Arabia in 2012. Three categories of sand were studied: black sand, white sand, and volcanic sand. The study used multiple high resolution electron microscopies to study the morphologies, emission source types, size, and elemental composition of the particles, and to evaluate the presence of surface “coatings or contaminants” deposited or transported by the black sand particles. White sand was comprised of natural coarse particles linked to wind-blown releases from crustal surfaces, weathering of igneous/metamorphic rock sources, and volcanic activities. Black sand particles exhibited different morphologies and microstructures (surface roughness compared with the white sand and volcanic sand. Morphological Scanning Electron Microscopy (SEM and Laser Scanning Microscopy (LSM analyses revealed that the black sand contained fine and ultrafine particles (50 to 500 nm ranges and was strongly magnetic, indicating the mineral magnetite or elemental iron. Aqueous extracts of black sands were acidic (pH = 5.0. Fe, C, O, Ti, Si, V, and S dominated the composition of black sand. Results suggest that carbon and other contaminant fine particles were produced by fossil-fuel combustion and industrial emissions in heavily industrialized areas of Haifa and Yanbu, and transported as cloud condensation nuclei to Douf Mountain. The suite of techniques used in this study has yielded an in-depth characterization of sand particles. Such information will be needed in future environmental, toxicological, epidemiological, and source apportionment studies.

  5. Variable exchange between a stream and an aquifer in the Rio Grande Project Area

    Science.gov (United States)

    Sheng, Z.; Abudu, S.; Michelsen, A.; King, P.

    2016-12-01

    Both surface water and groundwater in the Rio Grande Project area in southern New Mexico and Far West Texas have been stressed by natural conditions such as droughts and human activities, including urban development and agricultural irrigation. In some area pumping stress in the aquifer becomes so great that it depletes the river flow especially during the irrigation season, typically from March through October. Therefore understanding such relationship between surface water and groundwater becomes more important in regional water resources planning and management. In this area, stream flows are highly regulated by the upstream reservoirs during the irrigation season and greatly influenced by return flows during non-irrigation season. During a drought additional groundwater pumping to supplement surface water shortage further complicates the surface water and groundwater interaction. In this paper the authors will use observation data and results of numerical models (MODFLOW) to characterize and quantify hydrological exchange fluxes between groundwater in the aquifers and surface water as well as impacts of groundwater pumping. The interaction shows a very interesting seasonal variation (irrigation vs. non-irrigation) as well as impact of a drought. Groundwater has been pumped for both municipal supplies and agricultural irrigation, which has imposed stresses toward both stream flows and aquifer storage. The results clearly show that historic groundwater pumping has caused some reaches of the river change from gaining stream to losing stream. Beyond the exchange between surface water and groundwater in the shallow aquifer, groundwater pumping in a deep aquifer could also enhance the exchanges between different aquifers through leaky confining layers. In the earlier history of pumping, pumping from the shallow aquifer is compensated by simple depletion of surface water, while deep aquifer tends to use the aquifer storage. With continued pumping, the cumulative

  6. Sequestration of carbon in saline aquifers - mathematical and numerical analysis

    Energy Technology Data Exchange (ETDEWEB)

    Nordbotten, Jan Martin

    2004-01-01

    The work in this thesis focuses equally on two main topics. The set of these subjects deals with development of criteria for monotonicity of control volume methods. These methods are important and frequently used for solving the pressure equation arising in porous media flow. First we consider homogeneous parallelogram grids, and subsequently general logical Cartesian grids in heterogeneous media. This subject is concluded by the development of a new class of Multi Point Flux Approximation methods, motivated by the monotonicity results obtained. The second topic of this thesis is the development of analytical and semi- analytical solutions to the problem of leakage through abandoned wells. More specially, we look at a set of aquifers, separated by impermeable layers (aquicludes), where injection of water or CO{sub 2} takes place in some or all the aquifers. The aquifers and aquicludes are frequently penetrated by abandoned wells from oil exploration, and our problem consists of finding solutions to flow and leakage through these wells. The goal is to obtain expressions for leakage rates that may be evaluated quickly enough such that Monte Carlo realizations over statistical distributions of properties for abandoned wells can be performed. (author)

  7. Drawer compacted sand filter: a new and innovative method for on-site grey water treatment.

    Science.gov (United States)

    Assayed, Almoayied; Chenoweth, Jonathan; Pedley, Steven

    2014-01-01

    In this paper, results ofa new sand filter design were presented. The drawer compacted sand filter (DCSF) is a modified design for a sand filter in which the sand layer is broken down into several layers, each of which is 10 cm high and placed in a movable drawer separated by a 10 cm space. A lab-scale DCSF was designed and operated for 330 days fed by synthetic grey water. The response of drawer sand filters to variable hydraulic and organic loading rates (HLR and OLR) in terms of biological oxygen demand (BODs), chemical oxygen demand (COD), total suspended solids (TSS), pH, electrical conductivity and Escherichia coli reductions were evaluated. The HLR was studied by increasing from 72 to 142 L m(-2) day(-1) and OLR was studied by increasing it from 23 to 30 g BOD5 m(-2) day(-1) while keeping the HLR constant at 142 L m(-2) day(-1). Each loading regime was applied for 110 days. Results showed that DCSF was able to remove >90% of organic matter and total suspended solids for all doses. No significant difference was noticed in terms of overall filter efficiency between different loads for all parameters. Significant reduction in BOD5 and COD (P water was drained through the third drawer in all tested loads. The paper concludes that DCSF would be appropriate for use in dense urban areas as its footprint is small and is appropriate for a wide range of users because of its convenience and low maintenance requirements.

  8. Heat tracer test in an alluvial aquifer: Field experiment and inverse modelling

    Science.gov (United States)

    Klepikova, Maria; Wildemeersch, Samuel; Hermans, Thomas; Jamin, Pierre; Orban, Philippe; Nguyen, Frédéric; Brouyère, Serge; Dassargues, Alain

    2016-09-01

    Using heat as an active tracer for aquifer characterization is a topic of increasing interest. In this study, we investigate the potential of using heat tracer tests for characterization of a shallow alluvial aquifer. A thermal tracer test was conducted in the alluvial aquifer of the Meuse River, Belgium. The tracing experiment consisted in simultaneously injecting heated water and a dye tracer in an injection well and monitoring the evolution of groundwater temperature and tracer concentration in the pumping well and in measurement intervals. To get insights in the 3D characteristics of the heat transport mechanisms, temperature data from a large number of observation wells closely spaced along three transects were used. Temperature breakthrough curves in observation wells are contrasted with what would be expected in an ideal layered aquifer. They reveal strongly unequal lateral and vertical components of the transport mechanisms. The observed complex behavior of the heat plume is explained by the groundwater flow gradient on the site and heterogeneities in the hydraulic conductivity field. Moreover, due to high injection temperatures during the field experiment a temperature-induced fluid density effect on heat transport occurred. By using a flow and heat transport numerical model with variable density coupled with a pilot point approach for inversion of the hydraulic conductivity field, the main preferential flow paths were delineated. The successful application of a field heat tracer test at this site suggests that heat tracer tests is a promising approach to image hydraulic conductivity field. This methodology could be applied in aquifer thermal energy storage (ATES) projects for assessing future efficiency that is strongly linked to the hydraulic conductivity variability in the considered aquifer.

  9. Guarani aquifer hydrogeological synthesis of the Guarani aquifer system. Edicion bilingue

    International Nuclear Information System (INIS)

    2009-01-01

    This work represents the synthesis of current knowledge of the Guarani Aquifer System, based on technical products made by different companies and consultants who participated in the framework of the Project for Environmental Protection and Sustainable Development of the Guarani Aquifer.

  10. Characterizing a complex aquifer system using geophysics, hydrodynamics and geochemistry: A new distribution of Miocene aquifers in the Zéramdine and Mahdia-Jébéniana blocks (east-central Tunisia)

    Science.gov (United States)

    Lachaal, Fethi; Bédir, Mourad; Tarhouni, Jamila; Gacha, Ayadi Ben; Leduc, Christian

    2011-06-01

    The Zéramdine and Mahdia-Jébéniana blocks are located in the Sahel region in east-central Tunisia. Active tectonics have divided the region into numerous sub-units, as result of multiple phases of distension and compression. The Miocene fluvio-deltaic sediment sandy layers have aquiferous capacities but their hydraulic properties are still unknown, due to the lack of investigation wells. This study proposes a new description of the regional hydrogeology of Miocene deposits. Seismic-reflection and wireline logging of petroleum and water wells were used to understand the structure and the geometry of the Miocene reservoirs. The groundwater flow and its relationship to the sedimentary and tectonic context were then identified by studying piezometry and hydrochemistry. Two Miocene deep aquifer systems were identified: (1) Zéramdine-Béni Hassen to the north and (2) Jébéniana-Ksour Essef to the south. These aquifers are separated by the Mahdia graben. Other major tectonic structures, such as the Zéramdine fault corridor, the Moknine graben, and the El-Jem half-graben represent lateral boundaries for these aquifers. Other deeper sandy and clayey-sandy reservoirs were also identified in the area. Their repartition, thickness and depth vary from one block to other. Hydrodynamics of the deep aquifers seems to be controlled by geological structures. Two independent compartments were identified: in the northern block groundwater flows from West to East and from Northwest to Southeast, while in the southern block it flows from Northwest to Southeast. Geochemical facies are of two types: Na-Ca-Cl-SO 4 for the Zéramdine-Béni Hassen deep aquifer and Na-Cl for the Jébéniana-Ksour Essef deep aquifer. The hydrodynamic and geochemical results confirm the sharing of the Miocene sediments into two aquifers.

  11. Monitoring Aquifer Depletion from Space: Case Studies from the Saharan and Arabian Aquifers

    Science.gov (United States)

    Ahmed, M.; Sultan, M.; Wahr, J. M.; Yan, E.

    2013-12-01

    Access to potable fresh water resources is a human right and a basic requirement for economic development in any society. In arid and semi-arid areas, the characterization and understanding of the geologic and hydrologic settings of, and the controlling factors affecting, these resources is gaining increasing importance due to the challenges posed by increasing population. In these areas, there is immense natural fossil fresh water resources stored in large extensive aquifers, the transboundary aquifers. Yet, natural phenomena (e.g., rainfall patterns and climate change) together with human-related factors (e.g., population growth, unsustainable over-exploitation, and pollution) are threatening the sustainability of these resources. In this study, we are developing and applying an integrated cost-effective approach to investigate the nature (i.e., natural and anthropogenic) and the controlling factors affecting the hydrologic settings of the Saharan (i.e., Nubian Sandstone Aquifer System [NSAS], Northwest Sahara Aquifer System [NWSA]) and Arabian (i.e., Arabian Peninsula Aquifer System [APAS]) aquifer systems. Analysis of the Gravity Recovery and Climate Experiment (GRACE)-derived Terrestrial Water Storage (TWS) inter-annual trends over the NSAS and the APAS revealed two areas of significant TWS depletions; the first correlated with the Dakhla Aquifer System (DAS) in the NSAS and second with the Saq Aquifer System (SAS) in the APAS. Annual depletion rates were estimated at 1.3 × 0.66 × 109 m3/yr and 6.95 × 0.68 × 109 m3/yr for DAS and SAS, respectively. Findings include (1) excessive groundwater extraction, not climatic changes, is responsible for the observed TWS depletions ;(2) the DAS could be consumed in 350 years if extraction rates continue to double every 50 years and the APAS available reserves could be consumed within 60-140 years at present extraction (7.08 × 109 m3/yr) and depletion rates; and (3) observed depletions over DAS and SAS and their

  12. Heating tar sands formations to visbreaking temperatures

    Science.gov (United States)

    Karanikas, John Michael [Houston, TX; Colmenares, Tulio Rafael [Houston, TX; Zhang, Etuan [Houston, TX; Marino, Marian [Houston, TX; Roes, Augustinus Wilhelmus Maria [Houston, TX; Ryan, Robert Charles [Houston, TX; Beer, Gary Lee [Houston, TX; Dombrowski, Robert James [Houston, TX; Jaiswal, Namit [Houston, TX

    2009-12-22

    Methods for treating a tar sands formation are described herein. Methods may include heating at least a section of a hydrocarbon layer in the formation from a plurality of heaters located in the formation. The heat may be controlled so that at least a majority of the section reaches an average temperature of between 200.degree. C. and 240.degree. C., which results in visbreaking of at least some hydrocarbons in the section. At least some visbroken hydrocarbon fluids may be produced from the formation.

  13. Investigating Potential Artesian Aquifers in Rod-Kohi Area of DI Khan, NWFP using GIS and Geo-Processing Techniques

    Directory of Open Access Journals (Sweden)

    Arshad Ashraf

    2012-07-01

    Full Text Available The artesian aquifers provide economical and sustainable source of groundwater for irrigation and domestic use. GIS (Geographic Information System was used for development and integration of spatial databases, analysis and visualization of spatial data in two- and three-dimensional views. The aquifer system of Daraban Rod-Kohi area of DI Khan was analyzed to identify potential artesian aquifers using geological sections of the observation wells representing detail of subsurface lithology and strata encountered. According to an estimate, about 1,700 million m3 of extractable volume of groundwater exists in this part of rod-kohi area. Different profile sections were drawn to analyze the subsurface condition of the study area using Rockworks GIS-based software. The geo-processing technique of horizontal litho-blending was utilized for lithological modeling. Based on stratigraphic information of the area, three distinct aquifers were identified down to a depth of about 200 meters among which two are semi-confined to confined having prospects of artesian water. The 2D and 3D analysis show that characteristics of the confined aquifers vary spatially with the subsurface lithology and structural setup of the area. The depth range of confined layer-1 is found between 118 and 133 meters while of confined layer-2 between 182 and 195 meters. The output data indicated a close agreement with the observed data of the artesian wells. The study results can provide base for detail investigation of artesian resource and selection of potential sites for installation of artesian wells in the target area.

  14. Active binder content as a factor of the control system of the moulding sand quality

    Directory of Open Access Journals (Sweden)

    J. Jakubski

    2011-01-01

    Full Text Available One of the modern methods of the production optimisation are artificial neural networks. Neural networks are gaining broader and broaderapplication in the foundry industry, among others for controlling melting processes in cupolas and in arc furnaces, for designing castingsand supply systems, for controlling moulding sand processing, for predicting properties of cast alloys or selecting parameters of pressurecastings. An attempt to apply neural networks for controlling the quality of bentonite moulding sands is presented in this paper. This is theassessment method of sands suitability by means of detecting correlations between their individual parameters. The presentedinvestigations were obtained by using the Statistica 9.0 program. The presented investigations were aimed at the selection of the neuralnetwork able to predict the active bentonite content in the moulding sand on the basis of this sand properties such as: permeability,compactibility and the compressive strength. An application of the Statistica program allowed to select automatically the type of networkproper for the representation of dependencies occurring in between the proposed moulding sand parameters. The most advantageousconditions were obtained for the uni-directional multi-layer perception (MLP network. Knowledge of the neural network sensitivity to individual moulding sand parameters, allowed to eliminate not essential ones.

  15. EX8000 ramps up preparation phase in Horizon oil sands project

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2006-07-15

    This article presented details of Hitachi's EX8000 hydraulic shovel, a key piece of equipment that will be used throughout the extensive mine preparation phase of the Horizon oil sands project. Within 2 years, the project expects to produce over 200,000 barrels of oil per day. However, more than 400 million cubic metres of soil will need to be moved before production can begin. In order to remain on schedule, overburden must be removed in massive volumes. With a 52.3 cubic yard bucket, the Hitachi EX8000 has the capacity to feed a dozen 320 metric tonne haul trucks as well as several smaller 282 metric tonne trucks, and can fill each truck in 4 passes. Material is now being moved by to an area in which dikes are being constructed to house water generated in the refining process. Stockpiling, relocation and reclamation phases will follow as the project progresses. In order to reach the oil, as much as 75 feet of overburden must be removed, including layers of sandstone, limestone, trap rock and other materials. Once the overburden has been removed, oil sand layers are also often intermixed with other materials. The EX8000 can separate the tramp material from the oil sands, improving the overall efficiency of the operation. The Alberta-based North American Construction Group, who have a 10-year contract with Canadian Natural Resources Ltd. for the Horizon project, owns more than 100 Hitachi units in various sizes and has already purchased another EX8000 which is slated for delivery in the Fall of 2006. It was concluded that the company has purchased hundreds of new trucks to handle added volumes of materials being moved as the oil sands industry gains momentum. 3 figs.

  16. Hydrochemistry of the Mahomet Bedrock Valley Aquifer, East-Central Illinois: indicators of recharge and ground-water flow

    Science.gov (United States)

    Panno, S.V.; Hackley, Keith C.; Cartwright, K.; Liu, Chao-Li

    1994-01-01

    A conceptual model of the ground-water flow and recharge to the Mahomet Bedrock Valley Aquifer (MVA), east-central Illinois, was developed using major ion chemistry and isotope geochemistry. The MVA is a 'basal' fill in the east-west trending buried bedrock valley composed of clean, permeable sand and gravel to thicknesses of up to 61 m. It is covered by a thick sequence of glacial till containing thinner bodies of interbedded sand and gravel. Ground water from the MVA was found to be characterized by clearly defined geochemical regions with three distinct ground-water types. A fourth ground-water type was found at the confluence of the MVA and the Mackinaw Bedrock Valley Aquifer (MAK) to the west. Ground water in the Onarga Valley, a northeastern tributary of the MVA, is of two types, a mixed cation-SO42- type and a mixed cation-HCO3- type. The ground water is enriched in Na+, Ca2+, Mg2+, and SO42- which appears to be the result of an upward hydraulic gradient and interaction of deeper ground water with oxidized pyritic coals and shale. We suggest that recharge to the Onarga Valley and overlying aquifers is 100% from bedrock (leakage) and lateral flow from the MVA to the south. The central MVA (south of the Onarga Valley) is composed of relatively dilute ground water of a mixed cation-HCO3- type, with low total dissolved solids, and very low concentrations of Cl- and SO42-. Stratigraphic relationships of overlying aquifers and ground-water chemistry of these and the MVA suggest recharge to this region of the MVA (predominantly in Champaign County) is relatively rapid and primarily from the surface. Midway along the westerly flow path of the MVA (western MVA), ground water is a mixed cation-HCO3- type with relatively high Cl-, where Cl- increases abruptly by one to ??? two orders of magnitude. Data suggest that the increase in Cl- is the result of leakage of saline ground water from bedrock into the MVA. Mass-balance calculations indicate that approximately 9.5% of

  17. New generation expandable sand screens

    OpenAIRE

    Syltøy, Christer

    2014-01-01

    Master's thesis in Petroleum engineering This thesis aims to give a general insight into sand control and various sorts of sand control measures and applications of sand control tools. Special focus will be given to expandable sand screens – a technology which came about in the late 1990’s through the use of flexible, expandable tubulars as base pipe in sand screens. More specifically Darcy’s Hydraulic Endurance Screens, a compliant sand screen system using hydraulic activation, and the fu...

  18. Saltation of non-spherical sand particles.

    Directory of Open Access Journals (Sweden)

    Zhengshi Wang

    Full Text Available Saltation is an important geological process and the primary source of atmospheric mineral dust aerosols. Unfortunately, no studies to date have been able to precisely reproduce the saltation process because of the simplified theoretical models used. For example, sand particles in most of the existing wind sand movement models are considered to be spherical, the effects of the sand shape on the structure of the wind sand flow are rarely studied, and the effect of mid-air collision is usually neglected. In fact, sand grains are rarely round in natural environments. In this paper, we first analyzed the drag coefficients, drag forces, and starting friction wind speeds of sand grains with different shapes in the saltation process, then established a sand saltation model that considers the coupling effect between wind and the sand grains, the effect of the mid-air collision of sand grains, and the effect of the sand grain shape. Based on this model, the saltation process and sand transport rate of non-spherical sand particles were simulated. The results show that the sand shape has a significant impact on the saltation process; for the same wind speed, the sand transport rates varied for different shapes of sand grains by as much as several-fold. Therefore, sand shape is one of the important factors affecting wind-sand movement.

  19. Oil-sands giants leaving smaller environmental footprints

    International Nuclear Information System (INIS)

    Stonehouse, D.

    1999-01-01

    Suncor Energy and Syncrude Canada are both investing billions of dollars to increase production at their mining facilities near Fort McMurray, Alberta. The two oil-sand giants will be spending a good portion of their investment (almost $1 billion) to improve their environmental performance. Both companies are focusing on reducing their energy use to cut production costs and to reduce carbon dioxide (CO 2 ) emissions. Currently, oil-sand mining accounts for the largest industrial use of electricity in Alberta. This produces tremendous amounts of greenhouse gases such as CO 2 which has been linked to global warming. By year 2006, all of Syncrude's processing equipment will be replaced by energy-efficient equipment. Shovel/truck/hydrotransport will replace the dragline/bucket-wheel/conveyor system used in the past. New technology designed to improve bitumen recovery and increase upgrading processing yields is also expected to decrease emissions by 5 million tonnes per year. Syncrude will also construct a $60 million gas turbine generator for its Aurora project. Sulphur dioxide (SO 2 ) emissions which cause acid rain, are also on the decline at both Syncrude and Suncor. Suncor will reduce its energy use through the construction of a $315 million cogeneration plant which will generate 220 MV of electricity for its operations, along with waste heat that will be used to separate the heavy oil from the sand. The cogeneration plant will be 45 per cent more efficient that current operations. Both companies have planted millions of trees and shrubs to reclaim nearly 3,000 hectares of land. The tailings from oil-sand mining are currently being captured in settling basins. Both companies have long range plans for dealing with tailings. The first is called water capping which involves layering fresh water over tailing deposits to create a lake. The second is called composite tails, which involves mixing the tailings with gypsum and sand to make them settle faster

  20. Recharge and Aquifer Response: Manukan Island’s Aquifer, Sabah, Malaysia

    Directory of Open Access Journals (Sweden)

    Sarva Mangala Praveena

    2010-01-01

    Full Text Available Manukan Island is a small island located in North-West of Sabah, Malaysia was used as a case study area for numerical modeling of an aquifer response to recharge and pumping rates. The results in this study present the variations of recharge into the aquifer under the prediction simulations. The recharge rate increases the water level as indicated by hydraulic heads. This shows that it can alter groundwater of Manukan Island which has been suffering from an overexploration in its unconfined the aquifer. The increase in recharge rate (from 600 mm/year to 750 mm/year increases the water level indicated by hydraulic heads. A reduction in pumping rate (from 0.072 m3/day to 0.058 m3/day not only increases the amount of water levels in aquifer but also reduces the supply hence a deficit in supply. The increase in hydraulic heads depends on the percentage reduction of pumping and recharges rates. The well water has 1978.3 mg/L chloride with current pumping (0.072 m3/day and recharge rates (600 mm/year. However, with an increased of recharge rate and current pumping rate it has decreased about 1.13%. In addition, reduction in pumping rate made the chloride concentration decreased about 2.8%. In general, a reduction in pumping with an increase in recharge rate leads to a decreased in chloride concentrations within the vicinity of cone of depression. Next, to further develop the numerical model, the model should focus on climate change variables such as consequences of climate change are increase in air temperature, increase in sea surface temperature, and more extreme weather conditions. These parameters are considered critical parameters for climate change impact modeling in aquifers. The behavior of the aquifer and its sustainable pumping rate can be done by applying a computer modeling component.

  1. Estimation of sand dune thickness using a vertical velocity profile

    International Nuclear Information System (INIS)

    Al-Shuhail, Abdullatif A.

    2004-01-01

    Previous field and mathematical studies have shown that sand dunes may have vertical velocity profiles (i.e. continuous increase of velocity with depth). Therefore, computing the dunes thickness using conventional seismic refraction methods that assume a vertically homogeneous layer will likely produce some errors. The purpose of this study is to quantify the effect of the vertical velocity profile in a sand dune on the process of thickness estimation using seismic refraction data. First, the time distance (T-X) data of the direct wave in the dune is calculated using a vertical velocity profile, V (z), derived from Hertz-Mindlin contact theory. Then the thickness is estimated from the calculated T-X data, intercept time and velocity of the refractor at the dune's base assuming a constant velocity in the dune. The error in the estimated thickness due to the constant-velocity assumption increases with increasing thickness and decreasing porosity of the dune. For sand dunes with porosities greater than 0.2 and thickness less than 200 meter, the error is less than 15%. (author)

  2. Hydrochemical and isotopic study of the Botucatu aquifer ground waters in Sao Paulo State

    International Nuclear Information System (INIS)

    Silva, R.B.G. da.

    1983-01-01

    The process controlling chemical composition of ground water,its origin and apparent age as well as, the natural flow rate of the water in Botucatu aquifer in state of Sao Paulo, Brazil, have been investigated using hydrochemical and environmental isotopic ( 18 O, 2 H, 13 C, 14 C) Technics. The main recharge process is assumed to be the infiltration of rain water in the aquifer outcrop area. The progressive confining conditions with the increasing depth of the top of the aquifer layer makes the ground water temperature slowly greater. The recent magnesium and sodium bicarbonated waters changes first to sodium bicarbonated and then to sodium chloride-sulfated waters which are oldest found out in the research area(around 30.000 years ago). The mean Darcy permeability estimated on basis of 14 C and hydraulic gradient data is 2.6x10 -5 m/s. 9 maps (author) [pt

  3. A General Solution for Groundwater Flow in Estuarine Leaky Aquifer System with Considering Aquifer Anisotropy

    Science.gov (United States)

    Chen, Po-Chia; Chuang, Mo-Hsiung; Tan, Yih-Chi

    2014-05-01

    In recent years the urban and industrial developments near the coastal area are rapid and therefore the associated population grows dramatically. More and more water demand for human activities, agriculture irrigation, and aquaculture relies on heavy pumping in coastal area. The decline of groundwater table may result in the problems of seawater intrusion and/or land subsidence. Since the 1950s, numerous studies focused on the effect of tidal fluctuation on the groundwater flow in the coastal area. Many studies concentrated on the developments of one-dimensional (1D) and two-dimensional (2D) analytical solutions describing the tide-induced head fluctuations. For example, Jacob (1950) derived an analytical solution of 1D groundwater flow in a confined aquifer with a boundary condition subject to sinusoidal oscillation. Jiao and Tang (1999) derived a 1D analytical solution of a leaky confined aquifer by considered a constant groundwater head in the overlying unconfined aquifer. Jeng et al. (2002) studied the tidal propagation in a coupled unconfined and confined costal aquifer system. Sun (1997) presented a 2D solution for groundwater response to tidal loading in an estuary. Tang and Jiao (2001) derived a 2D analytical solution in a leaky confined aquifer system near open tidal water. This study aims at developing a general analytical solution describing the head fluctuations in a 2D estuarine aquifer system consisted of an unconfined aquifer, a confined aquifer, and an aquitard between them. Both the confined and unconfined aquifers are considered to be anisotropic. The predicted head fluctuations from this solution will compare with the simulation results from the MODFLOW program. In addition, the solutions mentioned above will be shown to be special cases of the present solution. Some hypothetical cases regarding the head fluctuation in costal aquifers will be made to investigate the dynamic effects of water table fluctuation, hydrogeological conditions, and

  4. Monitoring and ming bio-physical parameters for hypoxia hazard in a coastal sand pit

    DEFF Research Database (Denmark)

    Mariani, Patrizio; Benassai, Guido; Grieco, Luisa

    2018-01-01

    Management of coastal areas requires monitoring and modeling of the anthropogenic drivers and the bio-physical processes affecting water quality. To assess the range of hydrographic conditions controlling oxygen distribution in the bottom layers of sand pits, a multi-year oceanographic survey has...... of the sand pits is associated with higher temperatures and wind speed lower than 5 m/s, which is not infrequent during the summer season. However, the number of consecutive days of oxygen depletion can be considered lower than the danger threshold level assumed in the literature....

  5. Nutrient Removal during Stormwater Aquifer Storage and Recovery in an Anoxic Carbonate Aquifer.

    Science.gov (United States)

    Vanderzalm, Joanne L; Page, Declan W; Dillon, Peter J; Barry, Karen E; Gonzalez, Dennis

    2018-03-01

    Stormwater harvesting coupled to managed aquifer recharge (MAR) provides a means to use the often wasted stormwater resource while also providing protection of the natural and built environment. Aquifers can act as a treatment barrier within a multiple-barrier approach to harvest and use urban stormwater. However, it remains challenging to assess the treatment performance of a MAR scheme due to the heterogeneity of aquifers and MAR operations, which in turn influences water treatment processes. This study uses a probabilistic method to evaluate aquifer treatment performance based on the removal of total organic C (TOC), N, and P during MAR with urban stormwater in an anoxic carbonate aquifer. Total organic C, N, and P are represented as stochastic variables and described by probability density functions (PDFs) for the "injectant" and "recovery"; these injectant and recovery PDFs are used to derive a theoretical MAR removal efficiency PDF. Four long-term MAR sites targeting one of two tertiary carbonate aquifers (T1 and T2) were used to describe the nutrient removal efficiencies. Removal of TOC and total N (TN) was dominated by redox processes, with median removal of TOC between 50 and 60% at all sites and TN from 40 to 50% at three sites with no change at the fourth. Total P removal due to filtration and sorption accounted for median removal of 29 to 53%. Thus, the statistical method was able to characterize the capacity of the anoxic carbonate aquifer treatment barrier for nutrient removal, which highlights that aquifers can be an effective long-term natural treatment option for management of water quality, as well as storage of urban stormwater. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  6. Origin and distribution of saline groundwaters in the upper Miocene aquifer system, coastal Rhodope area, northeastern Greece

    Science.gov (United States)

    Petalas, C. P.; Diamantis, I. B.

    1999-06-01

    This paper describes the origins and distribution of saline groundwaters in the coastal area of Rhodope, Greece. The aquifer system includes two aquifers within coarse-grained alluvial sediments in the coastal part of the study area. Two major water-quality groups occur in the study area, namely Ca2+-rich saline groundwater and Ca2+-poor, almost fresh groundwater. The main process controlling the groundwater chemistry is the exchange of calcium and sodium between the aquifer matrix and intruding seawater. The natural salt water in the study area is probably residual water that infiltrated the aquifer system during repeated marine transgressions in late Pleistocene time. Seawater intrusion into the coastal aquifer system occurs as a result of overpumping in two seawater wedges separated vertically by a low-permeability layer. The rate of intrusion averages 0.8 m/d and is less than expected due to a decline of the aquifer's permeability at the interface with the seawater. The application of several hydrochemical techniques (Piper and Durov diagrams; Na+/Cl-, Ca2+/Cl-, Mg2+/Cl-, and Br-/Cl- molar ratios; Ca2+/Mg2+ weight ratio; and chloride concentrations), combined with field observations, may lead to a better explanation of the origin of the saline groundwater.

  7. Transport of microbial tracers in clean and organically contaminated silica sand in laboratory columns compared with their transport in the field

    International Nuclear Information System (INIS)

    Weaver, Louise; Sinton, Lester W.; Pang, Liping; Dann, Rod; Close, Murray

    2013-01-01

    Waste disposal on land and the consequent transport of bacterial and viral pathogens in soils and aquifers are of major concern worldwide. Pathogen transport can be enhanced in the presence of organic matter due to occupation of attachment sites in the aquifer materials thus preventing pathogen attachment leading to their faster transport for longer distances. Laboratory column studies were carried out to investigate the effect of organic matter, in the form of dissolved organic carbon (DOC), on the transport of Escherichia coli and MS2 phage in saturated clean silica sand. Transport rates of these microbial tracers were also studied in a contaminated field site. Laboratory column studies showed that low concentrations (0.17 mg L −1 ) of DOC had little effect on E. coli J6-2 removal and slightly reduced the attachment of MS2 phage. After progressive conditioning of the column with DOC (1.7 mg L −1 and 17 mg L −1 ), neither E. coli J6-2 nor MS2 phage showed any attachment and recovery rates increased dramatically (up to 100%). The results suggest that DOC can affect the transport rates of microbial contaminants. For E. coli J6-2 the predominant effect appeared to be an increase in the secondary energy minimum leading to an increase in E. coli attachment initially. However, after 17 mg L −1 DOC conditioning of the silica sand no attachment of E. coli was observed as the DOC took up attachment sites in the porous media. MS2 phage appeared to be affected predominantly by out-competition of binding sites in the clean silica sand and a steady reduction in attachment was observed as the DOC conditioning increased. Field study showed a high removal of both E. coli and MS2 phage, although E. coli was removed at a lower rate than MS2 phage. In the field it is likely that a combination of effects are seen as the aquifer material will be heterogeneous in its surface nanoscale properties, demonstrated by the differing removal of E. coli and MS2 phage compared to the

  8. Transport of microbial tracers in clean and organically contaminated silica sand in laboratory columns compared with their transport in the field

    Energy Technology Data Exchange (ETDEWEB)

    Weaver, Louise, E-mail: louise.weaver@esr.cri.nz; Sinton, Lester W.; Pang, Liping; Dann, Rod; Close, Murray

    2013-01-15

    Waste disposal on land and the consequent transport of bacterial and viral pathogens in soils and aquifers are of major concern worldwide. Pathogen transport can be enhanced in the presence of organic matter due to occupation of attachment sites in the aquifer materials thus preventing pathogen attachment leading to their faster transport for longer distances. Laboratory column studies were carried out to investigate the effect of organic matter, in the form of dissolved organic carbon (DOC), on the transport of Escherichia coli and MS2 phage in saturated clean silica sand. Transport rates of these microbial tracers were also studied in a contaminated field site. Laboratory column studies showed that low concentrations (0.17 mg L{sup −1}) of DOC had little effect on E. coli J6-2 removal and slightly reduced the attachment of MS2 phage. After progressive conditioning of the column with DOC (1.7 mg L{sup −1} and 17 mg L{sup −1}), neither E. coli J6-2 nor MS2 phage showed any attachment and recovery rates increased dramatically (up to 100%). The results suggest that DOC can affect the transport rates of microbial contaminants. For E. coli J6-2 the predominant effect appeared to be an increase in the secondary energy minimum leading to an increase in E. coli attachment initially. However, after 17 mg L{sup −1} DOC conditioning of the silica sand no attachment of E. coli was observed as the DOC took up attachment sites in the porous media. MS2 phage appeared to be affected predominantly by out-competition of binding sites in the clean silica sand and a steady reduction in attachment was observed as the DOC conditioning increased. Field study showed a high removal of both E. coli and MS2 phage, although E. coli was removed at a lower rate than MS2 phage. In the field it is likely that a combination of effects are seen as the aquifer material will be heterogeneous in its surface nanoscale properties, demonstrated by the differing removal of E. coli and MS2 phage

  9. The usefulness of multi-well aquifer tests in heterogeneous aquifers

    International Nuclear Information System (INIS)

    Young, S.C.; Benton, D.J.; Herweijer, J.C.; Sims, P.

    1990-01-01

    Three large-scale (100 m) and seven small-scale (3-7 m) multi-well aquifer tests were conducted in a heterogeneous aquifer to determine the transmissivity distribution across a one-hectare test site. Two of the large-scale tests had constant but different rates of discharge; the remaining large-scale test had a discharge that was pulsed at regulated intervals. The small-scale tests were conducted at two well clusters 20 m apart. The program WELTEST was written to analyze the data. By using the methods of non-linear least squares regression analysis and Broyden's method to solve for non-linear extrema, WELTEST automatically determines the best values of transmissivity and the storage coefficient. The test results show that order of magnitude differences in the calculated transmissivities at a well location can be realized by varying the discharge rate at the pumping well, the duration of the aquifer test, and/or the location of the pumping well. The calculated storage coefficients for the tests cover a five-order magnitude range. The data show a definite trend for the storage coefficient to increase with the distance between the pumping and the observation wells. This trend is shown to be related to the orientation of high hydraulic conductivity zones between the pumping and the observation wells. A comparison among single-well aquifer tests, geological investigations and multi-well aquifer tests indicate that the multi-well tests are poorly suited for characterizing a transmissivity field. (Author) (11 refs., 14 figs.)

  10. Study of the leakage between two aquifers in Hermosillo, Mexico, using environmental isotopes

    International Nuclear Information System (INIS)

    Payne, B.R.; Quijano, L.; Latorre, D.C.

    1980-01-01

    The Coast of Hermosillo is located in the Gulf of California, Mexico. It is a Quaternary alluvial plain of continental origin. Underlying these deposits is a layer of blue clay about 100m thick which imposes confinement to a deep aquifer in basaltic and pyroclastic rocks. Oxygen-18 and deuterium data support the occurrence of an upwardsleakage. The amount of the leakage was evaluated, on the basis of 14 C data, to a maximum of 20% of the water pumped by the irrigation wells in the upper aquifer. The stable isotope data also support the occurrence of sea-water intrusion by preferential channels in the south and in the area of Kino Bay. (author)

  11. Groundwaters of Florence (Italy): Trace element distribution and vulnerability of the aquifers

    Energy Technology Data Exchange (ETDEWEB)

    Bencini, A.; Ercolanelli, R.; Sbaragli, A. [Univ. of Florence (Italy)] [and others

    1993-11-01

    Geochemical and hydrogeological research has been carried out in Florence, to evaluate conductivity and main chemistry of groundwaters, the pattern of some possible pollutant chemical species (Fe, Mn, Cr, Cu, Pb, Zn, NO{sub 2}, NO{sub 3}), and the vulnerability of the aquifers. The plain is made up of Plio-Quaternary alluvial and lacustrine sediments for a maximum thickness of 600 m. Silts and clays, sometimes with lenses of sandy gravels, are dominant, while considerable deposits of sands, pebbles, and gravels occur along the course of the Arno river and its tributary streams, and represent the most important aquifer of the plain. Most waters show conductivity values around 1000-1200 {mu}S, and almost all of them have an alkaline-earth-bicarbonate chemical character. In western areas higher salt content of the groundwaters is evident. Heavy metal and NO{sub 2}, NO{sub 3} analyses point out that no important pollution phenomena affect the groundwaters; all mean values are below the maximum admissible concentration (MAC) for drinkable waters. Some anomalies of NO{sub 2}, NO{sub 3}, Fe, Mn, and Zn are present. The most plausible causes can be recognized in losses of the sewage system; use of nitrate compounds in agriculture; oxidation of well pipes. All the observations of Cr, Cu, and Pb are below the MAC; the median values of <3, 3.9, and 1.1 {mu}g/l, respectively, could be considered reference concentrations for groundwaters in calcareous lithotypes, under undisturbed natural conditions. Finally, a map of vulnerability shows that the areas near the Arno river are highly vulnerable, for the minimum thickness (or lacking) of sediments covering the aquifer. On the other hand, in the case of pollution, several factors not considered could significantly increase the self-purification capacity of the aquifer, such asdilution of groundwaters, bacteria oxidation of nitrogenous species, and sorption capacity of clay minerals and organic matter. 31 refs., 6 figs., 5 tabs.

  12. Sequential Subterranean Transport of Excavated Sand and Foraged Seeds in Nests of the Harvester Ant, Pogonomyrmex badius.

    Directory of Open Access Journals (Sweden)

    Walter R Tschinkel

    Full Text Available During their approximately annual nest relocations, Florida harvester ants (Pogonomyrmex badius excavate large and architecturally-distinct subterranean nests. Aspects of this process were studied by planting a harvester ant colony in the field in a soil column composed of layers of 12 different colors of sand. Quantifying the colors of excavated sand dumped on the surface by the ants revealed the progress of nest deepening to 2 m and enlargement to 8 L in volume. Most of the excavation was completed within about 2 weeks, but the nest was doubled in volume after a winter lull. After 7 months, we excavated the nest and mapped its structure, revealing colored sand deposited in non-host colored layers, especially in the upper 30 to 40 cm of the nest. In all, about 2.5% of the excavated sediment was deposited below ground, a fact of importance to sediment dating by optically-stimulated luminescence (OSL. Upward transport of excavated sand is carried out in stages, probably by different groups of ants, through deposition, re-transport, incorporation into the nest walls and floors and remobilization from these. This results in considerable mixing of sand from different depths, as indicated in the multiple sand colors even within single sand pellets brought to the surface. Just as sand is transported upward by stages, incoming seeds are transported downward to seed chambers. Foragers collect seeds and deposit them only in the topmost nest chambers from which a separate group of workers rapidly transports them downward in increments detectable as a "wave" of seeds that eventually ends in the seed chambers, 20 to 80 cm below the surface. The upward and downward transport is an example of task-partitioning in a series-parallel organization of work carried out by a highly redundant work force in which each worker usually completes only part of a multi-step process.

  13. Groundwater monitoring for remedial investigation in the Oriskany-Whitestown Sand Plain, Oneida County, New York

    International Nuclear Information System (INIS)

    Kewer, R.P.; Birckhead, E.F.

    1992-01-01

    The 50-acre Whitestown Landfill is listed by NYSDEC as a Class 2 inactive hazardous waste disposal site. During Remedial Investigations, a 23-well groundwater monitoring system was installed, exploring Wisconsin age glaciofluvial deposits of the Oriskany-Whitestown sand plain. These were described in the late 19th century as deltaic sediments deposited in a proglacial lake. However, no recent studies and only limited subsurface data were available, prompting a two-phase installation program. The landfill is located above steep bluffs 70 feet above the Mohawk River and Oriskany Creek valleys. Beneath the landfill, Phase I identified a gradational sequence of coarse to fine deltaic sediments with glacial till. This sequence was partly eroded and overlain by alluvium and colluvium in the valleys. The landfill was constructed on surficial deposits of coarse fluviodeltaic gravel. These were underlain by deltaic deposits grading from sand to silt with depth, the lower silts comprising the uppermost aquifer. The silts made identification of the water table difficult during drilling and caused problems in meeting a stringent development criterion for turbidity. Phase I found that the saturated zone, up to 50 feet thick, is perched on glaciolacustrine clays and, locally, tills, which were the lower boundary of the system investigated. Partly influenced by the clays, groundwater and contaminant movement was to the adjoining valley, causing off-site impacts in the shallow alluvial/colluvial aquifer. Therefore, Phase 11 focused on characterizing flow and groundwater quality in the discharge area, particularly with respect to an adjacent residence and wetlands. Contamination was found to extend northward only as far as the Old Erie Canal, which parallels the base of the bluff. Only limited off-site involvement was documented which will be monitored in the post-closure period using the installed well system

  14. Study of Dronino Iron Meteorite Weathering in Clay Sand Using Mössbauer Spectroscopy

    Directory of Open Access Journals (Sweden)

    Grigoriy A. Yakovlev

    2016-06-01

    Full Text Available Weathering products of two fragments of Dronino iron ungrouped meteorite found in the wet and drier clay sand were studied using X-ray diffraction and Mössbauer spectroscopy with a high velocity resolution. The products of metal oxidation in the internal and external surface layers were different for both fragments. The weathering products in fragment found in the wet clay sand contain magnetite (Fe3O4, maghemite (γ-Fe2O3, goethite (α-FeOOH and probably ferrihydrite (5Fe2O3∙9H2O while those in fragment found in drier clay sand contained ferric hydrous oxides (FeOOH and siderite (FeCO3 mainly. Concretions found near the first fragment contain ferric hydrous oxides (FeOOH mainly. This work is licensed under a Creative Commons Attribution 4.0 International License.

  15. Groundwater vulnerability assessment in karstic aquifers using COP method.

    Science.gov (United States)

    Bagherzadeh, Somayeh; Kalantari, Nasrollah; Nobandegani, Amir Fadaei; Derakhshan, Zahra; Conti, Gea Oliveri; Ferrante, Margherita; Malekahmadi, Roya

    2018-05-02

    Access to safe and reliable drinking water is amongst the important indicators of development in each society, and water scarcity is one of the challenges and limitations affecting development at national and regional levels and social life and economic activity areas. Generally, there are two types of drinking water sources: the first type is surface waters, including lakes, rivers, and streams and the second type is groundwaters existing in aquifers. Amongst aquifers, karst aquifers play an important role in supplying water sources of the world. Therefore, protecting these aquifers from pollution sources is of paramount importance. COP method is amongst the methods to investigate the intrinsic vulnerability of this type of aquifers, so that areas susceptible to contamination can be determined before being contaminated and these sources can be protected. In the present study, COP method was employed in order to spot the regions that are prone to contamination in the region. This method uses the properties of overlying geological layers above the water table (O factor), the concentration of flow (C factor), and precipitation (P factor) over the aquifer, as the parameters to assess the intrinsic vulnerability of groundwater resources. In this regard, geographical information system (GIS) and remote sensing (RS) were utilized to prepare the mentioned factors and the intrinsic vulnerability map was obtained. The results of COP method indicated that the northwest and the west of the region are highly and very vulnerable. This study indicated that regions with low vulnerability were observed in eastern areas, which accounted for 15.6% of the area. Moderate vulnerability was 40% and related to the northeast and southeast of the area. High vulnerability was 38.2% and related to western and southwestern regions. Very high vulnerability was 6.2% and related to the northwest of the area. By means of the analysis of sensitivity of the model, it was determined that the focus

  16. Integrating Spatial Multi Criteria Decision Making (SMCDM) with Geographic Information Systems (GIS) for delineation of the most suitable areas for aquifer storage and recovery (ASR)

    Science.gov (United States)

    Ahani Amineh, Zainab Banoo; Hashemian, Seyyed Jamal Al-Din; Magholi, Alireza

    2017-08-01

    Hamoon-Jazmoorian plain is located in southeast of Iran. Overexploitation of groundwater in this plain has led to water level decline and caused serious problems such as land subsidence, aquifer destruction and water quality degradation. The increasing population and agricultural development along with drought and climate change, have further increased the pressure on water resources in this region over the last years. In order to overcome such crisis, introduction of surface water into an aquifer at particular locations can be a suitable solution. A wide variety of methods have been developed to recharge groundwater, one of which is aquifer storage and recovery (ASR). One of the fundamental principles of making such systems is delineation of suitable areas based on scientific and natural facts in order to achieve relevant objectives. To that end, the Multi Criteria Decision Making (MCDM) in conjunction with the Geographic Information Systems (GIS) was applied in this study. More specifically, nine main parameters including depth of runoff as the considered source of water, morphology of the earth surface features such as geology, geomorphology, land use and land cover, drainage and aquifer characteristics along with quality of water in the aquifer were considered as the main layers in GIS. The runoff water available for artificial recharge in the basin was estimated through Soil Conservation Service (SCS) curve number method. The weighted curve number for each watershed was derived through spatial intersection of land use and hydrological soil group layers. Other thematic layers were extracted from satellite images, topographical map, and other collateral data sources, then weighed according to their influence in locating process. The Analytical Hierarchy Process (AHP) method was then used to calculate weights of individual parameters. The normalized weighted layers were then overlaid to build up the recharge potential map. The results revealed that 34% of the

  17. Hydrogeochemical and mineralogical effects of sustained CO2 contamination in a shallow sandy aquifer: A field-scale controlled release experiment

    DEFF Research Database (Denmark)

    Cahill, Aaron Graham; Marker, Pernille Aabye; Jakobsen, Rasmus

    2014-01-01

    A shallow aquifer CO2 contamination experiment was performed to investigate evolution of water chemistry and sediment alteration following leakage from geological storage by physically simulating a leak from a hypothetical storage site. In a carbonate-free aquifer, in western Denmark, a total...... of 1600 kg of gas phase CO2 was injected at 5 and 10 m depth over 72 days through four inclined injection wells into aeolian and glacial sands. Water chemistry was monitored for pH, EC, and dissolved element evolution through an extensive network of multilevel sampling points over 305 days. Sediment cores...... were taken pre and postinjection and analyzed to search for effects on mineralogy and sediment properties. Results showed the simulated leak to evolve in two distinct phases; an advective elevated ion pulse followed by increasing persistent acidification. Spatial and temporal differences in evolution...

  18. Liquefaction resistance of calcareous sands

    International Nuclear Information System (INIS)

    Sandoval Vallejo, Eimar

    2012-01-01

    Calcareous sands are unique in terms of their origin, mineralogy, shape, fragility and intra particle porosity. This article presents results from an experimental program carried out to study the liquefaction resistance of a calcareous sand retrieved from Cabo Rojo at Puerto Rico. The experimental program included mineralogical characterization, index properties, and undrained cyclic triaxial tests on isotropically consolidated reconstituted samples. Due to the large variation in the calcareous sand properties, results are compared with previous researches carried out on other calcareous sands around the world. Results showed a wide range in the liquefaction resistance of the studied calcareous sands. Cabo Rojo sand experienced greater liquefaction resistance than most of the calcareous sands used for comparison. Important differences in the excess pore pressure generation characteristics were also found.

  19. Characterizing flow pathways in a sandstone aquifer: Tectonic vs sedimentary heterogeneities

    Science.gov (United States)

    Medici, G.; West, L. J.; Mountney, N. P.

    2016-11-01

    Sandstone aquifers are commonly assumed to represent porous media characterized by a permeable matrix. However, such aquifers may be heavy fractured when rock properties and timing of deformation favour brittle failure and crack opening. In many aquifer types, fractures associated with faults, bedding planes and stratabound joints represent preferential pathways for fluids and contaminants. In this paper, well test and outcrop-scale studies reveal how strongly lithified siliciclastic rocks may be entirely dominated by fracture flow at shallow depths (≤ 180 m), similar to limestone and crystalline aquifers. However, sedimentary heterogeneities can primarily control fluid flow where fracture apertures are reduced by overburden pressures or mineral infills at greater depths. The Triassic St Bees Sandstone Formation (UK) of the East Irish Sea Basin represents an optimum example for study of the influence of both sedimentary and tectonic aquifer heterogeneities in a strongly lithified sandstone aquifer-type. This fluvial sedimentary succession accumulated in rapidly subsiding basins, which typically favours preservation of complete depositional cycles including fine grained layers (mudstone and silty sandstone) interbedded in sandstone fluvial channels. Additionally, vertical joints in the St Bees Sandstone Formation form a pervasive stratabound system whereby joints terminate at bedding discontinuities. Additionally, normal faults are present through the succession showing particular development of open-fractures. Here, the shallow aquifer (depth ≤ 180 m) was characterized using hydro-geophysics. Fluid temperature, conductivity and flow-velocity logs record inflows and outflows from normal faults, as well as from pervasive bed-parallel fractures. Quantitative flow logging analyses in boreholes that cut fault planes indicate that zones of fault-related open fractures characterize 50% of water flow. The remaining flow component is dominated by bed-parallel fractures

  20. Study of penetration behavior of PCB-DNAPL in a sand layer by a column experiment.

    Science.gov (United States)

    Okuda, Nobuyasu; Shimizu, Takaaki; Muratani, Masaru; Terada, Akihiko; Hosomi, Masaaki

    2014-11-01

    To better understand the infiltration performances of high concentration PCB oils (KC-300 and KC-1000 polychlorinated biphenyl (PCB) mixtures), representative dense non-aqueous phase liquid (DNAPL), under both saturated and unsaturated conditions, we conducted experiments on a sand column filled with Toyoura Standard Sand. When PCB oil with the volume comparable to the total porosity in the column was supplied, the residual PCB concentrations under PCB-water conditions were 4.9×10(4)mgkg(-1) in KC-300 and 3.9×10(4)mgkg(-1) in KC-1000. Under PCB-air conditions, residual PCB concentrations were 6.0×10(4)mgkg(-1) and 2.4×10(5)mgkg(-1) in the upper and lower parts for KC-300 and 3.6×10(4)mgkg(-1) and 1.5×10(5)mgkg(-1) in those for KC-1000, respectively, while the rest of the PCBs were infiltrated. On the other hand, when a small amount of PCB oil with the volume far smaller than the total porosity in the column was supplied, the original PCBs were not transported via water permeation. However, lower-chlorinated PCB congeners-e.g., di- or tri-chlorinated biphenyls-preferentially dissolved and were infiltrated from the bottom of the column. These propensities on PCB oil infiltration can be explained in conjunction with the degree of PCB saturation in the sand column. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Study of aquifer's characteristic at BPLP-BATAN, Cipanas, West Java

    International Nuclear Information System (INIS)

    I Gde Sukadana; Adi Gunawan Muhammad

    2009-01-01

    Farms Observational Land Agricultural (BPLP) BATAN lies at Palasari's Village, Cipanas's district, Cianjur's regency, West Java. The currently used water resources, come from shallow well that groundwater's quality adverse, brownish rust colored, so indecent being utilized as source of fresh water. Drilling activity of groundwater exploration is objected in order to obtain aquifer's characteristics which cover lithology, porosity of lithology, ground water condition that interpreted from well cutting, bores-hole geophysical data, pumping test data and water quality on the aquifer. These Regions constitute geologically volcanic rock, varied of volcanic breccia with grain size of sand to boulder. Potential aquifers at these regions are conglomeratic sandstone, breccias, and sandstone. The result of drilling activity shows that its lithology are yield of soil (depth 0-6 m), breccia (36-38 m), middle-rough sandstone (depth 38-40 m), breccia (40-52 m), sandy breccia (depth 52-97 m) and inter spaced tuff with middle-rough sandstone (depth 97-125 m). As a result, therefore, the well has been constructed with straight PVC pipe 6'', on depth of 0-40 m made by grouting cements, screen is assembled on depth of 60-82 m and 90-110 m. Result of pumping test that well's with maximum debit 17,25 L/sec, and optimum debit 13,2 L/sec. Static water level on 11 m depth. Current assembled pump is 5 L/sec on the 86 m depth. Result of groundwater quality test in laboratory shows that the water has good quality with fresh water quality standard, which mean that the water is suitable to be consumed. (author)

  2. Assessing the Impact of Recycled Water Quality and Clogging on Infiltration Rates at A Pioneering Soil Aquifer Treatment (SAT Site in Alice Springs, Northern Territory (NT, Australia

    Directory of Open Access Journals (Sweden)

    Karen E. Barry

    2017-03-01

    Full Text Available Infiltration techniques for managed aquifer recharge (MAR, such as soil aquifer treatment (SAT can facilitate low-cost water recycling and supplement groundwater resources. However there are still challenges in sustaining adequate infiltration rates in the presence of lower permeability sediments, especially when wastewater containing suspended solids and nutrients is used to recharge the aquifer. To gain a better insight into reductions in infiltration rates during MAR, a field investigation was carried out via soil aquifer treatment (SAT using recharge basins located within a mixture of fine and coarse grained riverine deposits in Alice Springs, Northern Territory, Australia. A total of 2.6 Mm3 was delivered via five SAT basins over six years; this evaluation focused on three years of operation (2011–2014, recharging 1.5 Mm3 treated wastewater via an expanded recharge area of approximately 38,400 m2. Average infiltration rates per basin varied from 0.1 to 1 m/day due to heterogeneous soil characteristics and variability in recharge water quality. A treatment upgrade to include sand filtration and UV disinfection (in 2013 prior to recharge improved the average infiltration rate per basin by 40% to 100%.

  3. Aquifers in the Sokoto basin, northwestern Nigeria, with a description of the general hydrogeology of the region

    Science.gov (United States)

    Anderson, H.R.; Ogilbee, William

    1973-01-01

    The Sokoto Basin of northwestern Nigeria lies in the sub-Saharan Sudan belt of west Africa in a zone of savannah-type vegetation. Rainfall, averaging about 30 inches annually in much of the basin, occurs chiefly in a wet season which lasts from May to October. A prolonged dry season extending from October to April is dominated by dusty harmattan winds from the northeast. April and May are the hottest months, when temperatures occasionally reach 105?F. Flow in streams of the Sokoto Basin is mostly overland runoff. Only in a few reaches, fed by ground-water discharge from the sedimentary rocks, are streams perennial. In the River Zamfara basin, ground-water discharge contributes almost 1 inch of the average 3.33 inches of total annual runoff. In the vicinity of Sokoto, the River Rima flows throughout the year sustained by spring discharge from perched ground water in limestone of the Kalambaina Formation. On the crystalline terrane where most of the streams rise, total annual runoff may exceed 5 inches, very little of which is ground-water discharge. The sedimentary rocks of the basin range in age from Cretaceous to Tertiary and are composed mostly of interbedded sand, clay, and some limestone; the beds dip gently toward the northwest. Alluvium of Quaternary age underlies the lowlands of the River Sokoto (now Sokoto) and its principal tributaries. These rocks contain three important artesian aquifers, in addition to regional unconfined ground-water bodies in all the principal outcron areas, and a perched water body in the outcrop of the Kalambaina Formation. Artesian aquifers occur at depth in the Gundumi Formation, the Rima Group, and the Gwandu Formation and are separated from one another by clay beds in the lower part of the Rima Group and the Dange Formation. In outcrop, clay in the Dange Formation also supports the perched water of the Kalambaina Formation. The Gundumi Formation, resting on the basement complex, is composed of varicolored clay, sand, and gravel

  4. Consequences and mitigation of saltwater intrusion induced by short-circuiting during aquifer storage and recovery in a coastal subsurface

    Science.gov (United States)

    Gerardus Zuurbier, Koen; Stuyfzand, Pieter Jan

    2017-02-01

    Coastal aquifers and the deeper subsurface are increasingly exploited. The accompanying perforation of the subsurface for those purposes has increased the risk of short-circuiting of originally separated aquifers. This study shows how this short-circuiting negatively impacts the freshwater recovery efficiency (RE) during aquifer storage and recovery (ASR) in coastal aquifers. ASR was applied in a shallow saltwater aquifer overlying a deeper, confined saltwater aquifer, which was targeted for seasonal aquifer thermal energy storage (ATES). Although both aquifers were considered properly separated (i.e., a continuous clay layer prevented rapid groundwater flow between both aquifers), intrusion of deeper saltwater into the shallower aquifer quickly terminated the freshwater recovery. The presumable pathway was a nearby ATES borehole. This finding was supported by field measurements, hydrochemical analyses, and variable-density solute transport modeling (SEAWAT version 4; Langevin et al., 2007). The potentially rapid short-circuiting during storage and recovery can reduce the RE of ASR to null. When limited mixing with ambient groundwater is allowed, a linear RE decrease by short-circuiting with increasing distance from the ASR well within the radius of the injected ASR bubble was observed. Interception of deep short-circuiting water can mitigate the observed RE decrease, although complete compensation of the RE decrease will generally be unattainable. Brackish water upconing from the underlying aquitard towards the shallow recovery wells of the ASR system with multiple partially penetrating wells (MPPW-ASR) was observed. This leakage may lead to a lower recovery efficiency than based on current ASR performance estimations.

  5. Accounting for pore water pressure and confined aquifers in assessing the stability of slopes: a Limit Equilibrium analysis carried out through the Minimum Lithostatic Deviation method

    Science.gov (United States)

    Ausilia Paparo, Maria; Tinti, Stefano

    2015-04-01

    The model we introduce is an implementation of the Minimum Lithostatic Deviation (MLD) method, developed by Tinti and Manucci (Tinti and Manucci 2006; 2008), that makes use of the limit equilibrium (LE) theory to estimate the stability of a slope. The main purpose here is to analyse the role of a confined aquifer on the value of the Safety Factor (F), the parameter that in the LE is used to determine if a slope is stable or unstable. The classical LE methods treat unconfined aquifers by including the water pore pressure in the Mohr-Coulomb failure formula: since the water decreases the friction shear strength, the soil above the sliding surface turns out to be more prone to instability. In case of a confined aquifer, however, due to a presence of impermeable layers, the water is not free to flow into the matrix of the overlying soil. We consider here the assumption of a permeable soil sliding over an impermeable layer, which is an occurrence that is found in several known landslide cases (e.g. Person, 2008; Strout and Tjeltja, 2008; Morgan et al., 2010 for offshore slides; and Palladino and Peck, 1972; Miller and Sias, 1998; Jiao et al. 2005; Paparo et al., 2013 for slopes in proximity of artificial or natural water basins) where clay beds form the potential sliding surface: the water, confined below, pushes along these layers and acts on the sliding body as an external bottom load. We modify the MLD method equations in order to take into account the load due to a confined aquifer and apply the new model to the Vajont case, where many have hypothesised the contribution of a confined aquifer to the failure. Our calculations show that the rain load i) infiltrating directly into the soil body and ii) penetrating into the confined aquifer below the clay layers, in addition with the lowering of the reservoir level, were key factors of destabilization of the Mt Toc flank and caused the disastrous landslide.

  6. Responses of plant available water and forest productivity to variably layered coarse textured soils

    Science.gov (United States)

    Huang, Mingbin; Barbour, Lee; Elshorbagy, Amin; Si, Bing; Zettl, Julie

    2010-05-01

    Reforestation is a primary end use for reconstructed soils following oil sands mining in northern Alberta, Canada. Limited soil water conditions strongly restrict plant growth. Previous research has shown that layering of sandy soils can produce enhanced water availability for plant growth; however, the effect of gradation on these enhancements is not well defined. The objective of this study was to evaluate the effect of soil texture (gradation and layering) on plant available water and consequently on forest productivity for reclaimed coarse textured soils. A previously validated system dynamics (SD) model of soil moisture dynamics was coupled with ecophysiological and biogeochemical processes model, Biome-BGC-SD, to simulate forest dynamics for different soil profiles. These profiles included contrasting 50 cm textural layers of finer sand overlying coarser sand in which the sand layers had either a well graded or uniform soil texture. These profiles were compared to uniform profiles of the same sands. Three tree species of jack pine (Pinus banksiana Lamb.), white spruce (Picea glauce Voss.), and trembling aspen (Populus tremuloides Michx.) were simulated using a 50 year climatic data base from northern Alberta. Available water holding capacity (AWHC) was used to identify soil moisture regime, and leaf area index (LAI) and net primary production (NPP) were used as indices of forest productivity. Published physiological parameters were used in the Biome-BGC-SD model. Relative productivity was assessed by comparing model predictions to the measured above-ground biomass dynamics for the three tree species, and was then used to study the responses of forest leaf area index and potential productivity to AWHC on different soil profiles. Simulated results indicated soil layering could significantly increase AWHC in the 1-m profile for coarse textured soils. This enhanced AWHC could result in an increase in forest LAI and NPP. The increased extent varied with soil

  7. Salt content impact on the unsaturated property of bentonite-sand buffer backfilling materials

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Ming [Key Laboratory of Mechanics on Disaster and Environment in Western China, Lanzhou University, Lanzhou 730000 (China); Zhang Huyuan, E-mail: p1314lvp@yahoo.com.cn [Key Laboratory of Mechanics on Disaster and Environment in Western China, Lanzhou University, Lanzhou 730000 (China); Jia Lingyan; Cui Suli [Key Laboratory of Mechanics on Disaster and Environment in Western China, Lanzhou University, Lanzhou 730000 (China)

    2012-09-15

    Highlights: Black-Right-Pointing-Pointer SWCC and infiltration process of bentonite-sand mixtures is researched. Black-Right-Pointing-Pointer The k{sub u} of bentonite-sand mixtures was evaluated as the buffer backfilling materials. Black-Right-Pointing-Pointer Salt content impacting on the unsaturated property of bentonite-sand materials is small. - Abstract: Bentonite mixed with sand is often considered as possible engineered barrier in deep high-level radioactive waste disposal in China. In the present work, the vapor transfer technique and water infiltration apparatus were used to measure the soil water characteristic curve (SWCC) and unsaturated hydraulic conductivity (k{sub u}) of bentonite-sand mixtures (B/S) effected by salt content. Results show, the water-holding capacity and k{sub u} increase slightly with the concentration of Na{sup +} in pore liquid increasing from 0 g/L to 12 g/L, similar with the solution concentration of Beishan groundwater in China. Salt content in the laboratory produced only one order of magnitude increase in k{sub u}, which is the 'safe' value. The different pore liquid concentrations used in this study led to small differences in thickness of diffuse double layer of bentonite in mixtures, this might explain why some differences have been found in final values of k{sub u}.

  8. Aquifer thermal energy stores in Germany

    International Nuclear Information System (INIS)

    Kabus, F.; Seibt, P.; Poppei, J.

    2000-01-01

    This paper describes the state of essential demonstration projects of heat and cold storage in aquifers in Germany. Into the energy supply system of the buildings of the German Parliament in Berlin, there are integrated both a deep brine-bearing aquifer for the seasonal storage of waste heat from power and heat cogeneration and a shallow-freshwater bearing aquifer for cold storage. In Neubrandenburg, a geothermal heating plant which uses a 1.200 m deep aquifer is being retrofitted into an aquifer heat storage system which can be charged with the waste heat from a gas and steam cogeneration plant. The first centralised solar heating plant including an aquifer thermal energy store in Germany was constructed in Rostock. Solar collectors with a total area of 1000m 2 serve for the heating of a complex of buildings with 108 flats. A shallow freshwater-bearing aquifer is used for thermal energy storage. (Authors)

  9. Developing an interactive Tool for evaluating sand nourishment strategies along the Holland coast in perspective of benthos, fish nursery and dune quality

    NARCIS (Netherlands)

    Baptist, M.J.; Wolfshaar, van de K.E.; Huisman, B.J.A.; Groot, de A.V.; Boer, de W.; Ye, Q.

    2012-01-01

    Sand nourishments can affect the coastal ecosystem in various ways. Direct effects are the burial of benthic species under a layer of sand. In the direct vicinity, suffocation of benthos can occur due to the settling of a plume of suspended sediment particles. A plume of fine particles may also

  10. A geochemical approach to determine sources and movement of saline groundwater in a coastal aquifer.

    Science.gov (United States)

    Anders, Robert; Mendez, Gregory O; Futa, Kiyoto; Danskin, Wesley R

    2014-01-01

    Geochemical evaluation of the sources and movement of saline groundwater in coastal aquifers can aid in the initial mapping of the subsurface when geological information is unavailable. Chloride concentrations of groundwater in a coastal aquifer near San Diego, California, range from about 57 to 39,400 mg/L. On the basis of relative proportions of major-ions, the chemical composition is classified as Na-Ca-Cl-SO4, Na-Cl, or Na-Ca-Cl type water. δ(2)H and δ(18)O values range from -47.7‰ to -12.8‰ and from -7.0‰ to -1.2‰, respectively. The isotopically depleted groundwater occurs in the deeper part of the coastal aquifer, and the isotopically enriched groundwater occurs in zones of sea water intrusion. (87)Sr/(86)Sr ratios range from about 0.7050 to 0.7090, and differ between shallower and deeper flow paths in the coastal aquifer. (3)H and (14)C analyses indicate that most of the groundwater was recharged many thousands of years ago. The analysis of multiple chemical and isotopic tracers indicates that the sources and movement of saline groundwater in the San Diego coastal aquifer are dominated by: (1) recharge of local precipitation in relatively shallow parts of the flow system; (2) regional flow of recharge of higher-elevation precipitation along deep flow paths that freshen a previously saline aquifer; and (3) intrusion of sea water that entered the aquifer primarily during premodern times. Two northwest-to-southeast trending sections show the spatial distribution of the different geochemical groups and suggest the subsurface in the coastal aquifer can be separated into two predominant hydrostratigraphic layers. © 2013, National Ground Water Association.

  11. Mapping of coastal aquifer vulnerable zone in the south west coast of Kanyakumari, South India, using GIS-based DRASTIC model.

    Science.gov (United States)

    Kaliraj, S; Chandrasekar, N; Peter, T Simon; Selvakumar, S; Magesh, N S

    2015-01-01

    The south west coast of Kanyakumari district in Tamil Nadu, India, is significantly affected by seawater intrusion and diffusion of pollutants into the aquifers due to unregulated beach placer mining and other anthropogenic activities. The present study investigates the vulnerability of the coastal aquifers using Geographic Information System (GIS)-based DRASTIC model. The seven DRASTIC parameters have been analyzed using the statistical equation of this model to demarcate the vulnerable zones for aquifer contamination. The vulnerability index map is prepared from the weighted spatial parameters, and an accounting of total index value ranged from 85 to 213. Based on the categorization of vulnerability classes, the high vulnerable zones are found near the beach placer mining areas between Manavalakurichi and Kodimanal coastal stretches. The aquifers associated with settlements and agricultural lands in the middle-eastern part have experienced high vulnerability due to contaminated water bodies. Similarly, the coastal areas of Thengapattinam and Manakudi estuary and around the South Tamaraikulam have also been falling under high vulnerability condition due to backwater and saltpan. In general, the nearshore region except the placer mining zone and the backwater has a moderately vulnerable condition, and the vulnerability index values range from 149 to180. Significantly, the northern and northeastern uplands and some parts of deposition zones in the middle-south coast have been identified as low to no vulnerable conditions. They are structurally controlled by various geological features such as charnockite, garnet biotite gneiss and granites, and sand dunes, respectively. The aquifer vulnerability assessment has been cross-verified by geochemical indicators such as total dissolved solids (TDS), Cl(-), HCO₃(-), and Cl(-)/HCO₃(-) ratio. The high ranges of TDS (1,842--3,736 mg/l) and Cl(-) (1,412--2,112 mg/l) values are well correlated with the observed high

  12. MECHANICAL REGENERATION OF SAND WASTE

    Directory of Open Access Journals (Sweden)

    D. I. Gnir

    2005-01-01

    Full Text Available The experimental activation of the sand regenerator of the firm SINTO is carried out at ОАО “MZOO". It is shown that sand grains are cleared from films of binding agents, that allows to use the treated sand for preparation of agglutinant and core sands.

  13. EPA Region 1 Sole Source Aquifers

    Data.gov (United States)

    U.S. Environmental Protection Agency — This coverage contains boundaries of EPA-approved sole source aquifers. Sole source aquifers are defined as an aquifer designated as the sole or principal source of...

  14. Transport of micropollutants in a riverbank filtration system

    Science.gov (United States)

    van Driezum, Inge; Oudega, Thomas; Reiner, Philipp; Zessner, Matthias; Farnleitner, Andreas; Blaschke, Paul

    2014-05-01

    Groundwater locations at alluvial backwaters are essential for public water supply. Riverbank filtration (RBF) systems are widely used as a means of obtaining public water supplies. Riverbank filtration is an effective way to remove micropollutants from the receiving surface water. The efficiency of the RBF system strongly depends on the residence time of the water in the aquifer and on the soil properties (Ray, 2011). In order to understand all bio- and geochemical processes within the hyporheic zone (e.g. the region were mixing of surface water and groundwater occurs), exchange rates and flow patterns need to be quantified. The main study area covers the porous groundwater aquifer study site (PGWA) - an urban floodplain extending on the left bank of the River Danube downstream of the City of Vienna. It is one of the main groundwater bodies in Austria. Groundwater quality in the PGWA is influenced by a combination of anthropogenic activities, industry, wastewater treatment plants, heavy precipitation events and floodings. The upper layer of the DPA is impermeable, preventing pollution originating from the surface. The upper layer consists of silt. The underlying confined aquifer consists of sand and gravel layers. Hydraulic conductivities range from 5 x 10-2 m/s up to 5 x 10-5 m/s. Underneath the aquifer are alternating sand an clay/silt layers. Samples are taken from two transects in the DPA. These transects consist of four piezometers in the first few meters of the groundwater aquifer. Several other piezometers are placed downstream from the river-groundwater interface. The behaviour of the micropollutants in the hyporheic zone can therefore be studied intensively. The transport behaviour of several micropollutants is modeled using carbamazepine (CBZ) and acesulfame (ACE) as natural tracers. Furthermore, temperature and electrical conductivity data was used for modeling. The micropollutants are measured using an in house developed online SPE-HPLC-MS/MS method

  15. Physical properties of sand parts produced using a Voxeljet VX1000 three-dimensional printer

    Directory of Open Access Journals (Sweden)

    Nyembwe, Kasongo

    2016-11-01

    Full Text Available Successful case studies of metal casting applications using sand moulds and cores produced by additive manufacturing (AM processes have been widely reported in the literature. The layered- based manufacturing process has revolutionised traditional sand moulding methods. This is essentially due to the numerous advantages of AM, including the reduction of design lead time and the ability to manufacture objects with complex geometry in a rapid turnaround time. Locally-available AM processes that are capable of producing sand moulds and cores include laser sintering (LS and three-dimensional printing (3DP, with the latter AM process growing in dominance over the former. However, a better understanding of the properties of parts produced by AM processes is required in order for the processes to be fully adopted by the foundry industry. Crucial characteristics of 3DP sand parts related to strength, dimensional accuracy, and hardness are not well- known in terms of their magnitude and in comparison with conventionally-moulded sand parts. In this investigation, the physical properties of test specimens produced under standard manufacturing conditions, using a Voxeljet VX1000 machine, were assessed for bend and tensile strength, hardness, friability, and surface finish. The physical properties of the 3DP test specimens were then compared with the properties of laboratory hand- rammed test specimens. The results of the investigation suggest that the properties of AM-fabricated sand parts are inferior to sand parts produced by conventional moulding processes.

  16. Development and Modelling of a High-Resolution Aquifer Analog in the Guarani Aquifer (Brazil)

    OpenAIRE

    Höyng, Dominik

    2014-01-01

    A comprehensive and detailed knowledge about the spatial distribution of physical and chemical properties in heterogeneous porous aquifers plays a decisive role for a realistic representation of governing parameters in mathematical models. Models allow the simulation, prediction and reproduction of subsurface flow and transport characteristics. This work explains the identification, characterization and effects of small-scale aquifer heterogeneities in the Guarani Aquifer System (GAS) in S...

  17. Geological and geophysical evaluation of the Ajana area’s groundwater potential, southwestern Nigeria

    Directory of Open Access Journals (Sweden)

    O.M Ajibade

    2011-06-01

    Full Text Available Acombined geological and geophysical evaluation was madeof the groundwater potential of the Ajana, RemoNorth area in south-western Nigeria; the geology and other structural features of the rocks there strongly influenced and correlated the aquifers' storability and transmissivity. Geological mapping revealed that the area was made up of granite, quartzite and varieties of gneiss, some of which have good secondary porosity and permeability. Ten vertical electric soundings (VES stations were established using a Schlumberger electrode array. Five geoelectric layers consisting of topsoil, sand,
    clayey-sandy, fractured / weathered basement and fresh bedrock were delineated. The aquifer layers were the 38.3m thick 283 ?m resistivity sand/sandy clay and 55 - 518 ?m resistivity fractured/weathered basement. Other geoelectric parameters used in evaluating the area's hydrogeological potential included curve type, anisotropy coefficient and reflection coefficient - The QH curve type was predominant in the area. The anisotropy Coefficients suggested VES stations having high groundwater potential ranging from 1.4 - 1.56; while the reflection coefficients for the area ranged from 0.21 - 0.99. The overall results showed that VES stations 8, 9 and 10 could be possible groundwater sources having high expected yield.

  18. Contribution of Isotopic Tools to the Numerical Simulation of the Mar del Plata Coastal Aquifer, Argentina

    Energy Technology Data Exchange (ETDEWEB)

    Bocanegra, E.; Martinez, D. E. [Instituto de Geologia de Costas y del Cuaternario, UNMDP (Argentina); Pool, M.; Carrera, J. [Instituto de Diagnostico Ambiental y Estudios del Agua, CSIC (Spain)

    2013-07-15

    Over-exploitation in the coastal aquifer in Mar del Plata, Argentina, led to a seawater intrusion process affecting groundwater by salinization. The aim of this paper is to show the contribution of isotopic techniques to generate the numerical flow and transport model of the Mar del Plata aquifer. On the basis of the hydrogeological conceptual model, a numerical model was constructed. It consists of a multilayer aquifer in the urban area with 2 layers separated by an aquitard and a monolayer aquifer in the rest of the basin. The isotopic difference recorded in groundwaters allow the identification of the origin of the recharge and the confirmation of the presence of the hydrogeological environments incorporated in the numerical model. Flow simulation reflects the evolution of piezometric heads. Chloride transport simulation represents the salinization process due to seawater intrusion and the subsequent backward movement of the interface due to the abandonment of salinized wells. The results of numerical simulation confirm the conceptual model and reproduce the impact of the adopted management strategies. (author)

  19. The influence of fish ponds and salinization on groundwater quality in the multi-layer coastal aquifer system in Israel

    Science.gov (United States)

    Tal, A.; Weinstein, Y.; Yechieli, Y.; Borisover, M.

    2017-08-01

    This study focuses on the impact of surface reservoirs (fish ponds) on a multi aquifer coastal system, and the relation between the aquifer and the sea. The study was conducted in an Israeli Mediterranean coastal aquifer, which includes a sandy phreatic unit and two confined calcareous sandstone units. The geological description is based on 52 wells, from which 33 samples were collected for stable isotope analysis and 25 samples for organic and inorganic parameters. Hydraulic head and chemical measurements suggest that there is an hydraulic connection between the fish ponds above the aquifer and the phreatic unit, whereas the connection with the confined units is very limited. The phreatic unit is characterized by a low concentration of oxygen and high concentrations of ammonium and phosphate, while the confined units are characterized by higher oxygen and much lower ammonium and phosphate concentrations. Organic matter fluorescence was found to be a tool to distinguish the contribution of the pond waters, whereby a pond water signature (characterized by proteinaceous (tryptophan-like) and typical humic-matter fluorescence) was found in the phreatic aquifer. The phreatic unit is also isotopically enriched, similar to pond waters, with δ18O of -1‰ and δD of -4.6‰, indicating enhanced evaporation of the pond water before infiltration, whereas there is a depleted isotopic composition in the confined units (δ18O = -4.3‰, δD = -20.4‰), which are also OM-poor. The Phreeqc model was used for quantitative calculation of the effect of pond losses on the different units. The Dissolved Inorganic Nitrogen (DIN) in the upper unit increases downstream from the ponds toward the sea, probably due to organic matter degradation, suggesting contribution of DIN from shallow groundwater flow to the sea. 87Sr/86Sr and Mg/Ca in the brackish and saline groundwater of the lower confined units increase toward seawater value, suggesting that the salinization process in the region

  20. Crushed rock sand – An economical and ecological alternative to natural sand to optimize concrete mix

    Directory of Open Access Journals (Sweden)

    Sanjay Mundra

    2016-09-01

    Full Text Available The study investigates the use of crushed rock sand as viable alternative to Natural River sand that is being conventionally used as fine aggregate in cement concrete. Various mix designs were developed for different grades of concrete based on IS, ACI and British codes using Natural River sand and crushed rock sand. In each case, the cube compressive strength test, and beam flexure tests were conducted. The results of the study show that, the strength properties of concrete using crushed rock sand are nearly similar to the conventional concrete. The study has shown that crushed stone sand can be used as economic and readily available alternative to river sand and can therefore help to arrest the detrimental effects on the environment caused due to excessive mining of river sand.

  1. A Comprehensive evaluation of groundwater vulnerability to saltwater up-coning and sea water intrusion in a coastal aquifer (case study: Ghaemshahr-juybar aquifer)

    Science.gov (United States)

    Motevalli, Alireza; Moradi, Hamid Reza; Javadi, Saman

    2018-02-01

    Aquifer salinization has recently increased significantly due to human activity and has caused irreparable environmental and economic effects. In this research, a new method is proposed for modeling the vulnerability to salinity for the Ghaemshahr-juybar aquifer. Specifically, the GALDIT (Sea water intrusion) and TAWLBIC (Saltwater up-coning) indices were combined to produce a map of vulnerability (Comprehensive Salinity Index or CSI) to seawater intrusion of a region near the coast and saltwater up-coning away from the coast, respectively. Single parameter and removal layer sensitivity analysis were performed in order to identify the sensitive parameters and achieve optimal weights (through the single-parameter method) of contributing factors in all three methods. The three optimized methods produced were GALDIT-Opt, TAWLBIC-Opt and CSI-Opt. To assess the accuracy of the original maps and optimal ones, the Pearson correlation was used. Results indicated that the Pearson correlation of the optimized GALDIT, TAWLBIC and CSI model was better than GALDIT, TAWLBIC and CSI. The results show that the increase in correlation between EC (Electrical Conductivity), TDS (Total Dissolved Solids) and SAR (Sodium Adsorption Ratio) from the GALDIT model to the CSI-Opt model from values of 0.64, 0.56 and 0.68 has improved to values of 0.81, 0.88 and 0.91, respectively. The highest concentration of EC, with a value of 7050 μs/cm, is sampled in the areas of the east and northwest of the Ghaemshahr-juybar aquifer, which are classified in the CSI-Opt model as high and very high vulnerability levels. The highest concentration of TDS and SAR has been found in the east, northwest and northeast of the Ghaemshahr-juybar aquifer with a value of 4724 ppm for TDS and 14 mg/l for SAR that have been modeled in the CSI-Opt index as highly vulnerable areas. Eventually, CSI mapping can be used as an efficient tool in prioritizing in terms of the vulnerability to aquifer salinity, carrying out

  2. Comparison between the measurements of Radon Gas Concentrations and γ-ray intensities in Exploring the Black Sands at El-Burullus Beach

    International Nuclear Information System (INIS)

    Abdel-Razek, Y.A; Bakhit, A.F

    2009-01-01

    Ten well-located monitoring stations along El-Burullus beach were chosen to measure radon gas concentrations in the beach sands below surface, and γ-ray intensities at 10 cm above the surface. These stations were chosen to represent apparent concentrations of the black sands. Sand samples were collected from the different stations and analyzed to study the relation between the concentrations of the heavy minerals and the measured radon concentrations or the measured γ-ray intensities at these stations. It was found that radon gas concentrations measured at 6:00 Pm were about 2.82 times those measured at 1 :00 Pm due to diurnal variation of temperature. Measurements of radon gas concentrations inside the beach sands are found to be more reliable in qualitative exploration of black sands than the measurements of γ-ray intensities above the shore sands due to the random arrangement of the layers of these sands below surface

  3. Investigating river–aquifer relations using water temperature in an anthropized environment (Motril-Salobreña aquifer)

    DEFF Research Database (Denmark)

    Duque, Carlos; Calvache, Marie; Engesgaard, Peter Knudegaard

    2010-01-01

    Heat was applied as a tracer for determining river–aquifer relations in the Motril-Salobreña aquifer (S Spain). The aquifer has typically been recharged by River Guadalfeo infiltration, nevertheless from 2005 a dam was constructed changing the traditional dynamic river flow and recharge events...

  4. Review of Aquifer Storage and Recovery Performance in the Upper Floridan Aquifer in Southern Florida

    Science.gov (United States)

    Reese, Ronald S.

    2006-01-01

    Introduction: Interest and activity in aquifer storage and recovery (ASR) in southern Florida has increased greatly during the past 10 to 15 years. ASR wells have been drilled to the carbonate Floridan aquifer system at 30 sites in southern Florida, mostly by local municipalities or counties located in coastal areas. The primary storage zone at these sites is contained within the brackish to saline Upper Floridan aquifer of the Floridan aquifer system. The strategy for use of ASR in southern Florida is to store excess freshwater available during the wet season in an aquifer and recover it during the dry season when needed for supplemental water supply. Each ASR cycle is defined by three periods: recharge, storage, and recovery. This fact sheet summarizes some of the findings of a second phase retrospective assessment of existing ASR facilities and sites.

  5. Rheological Characterization of Green Sand Flow

    DEFF Research Database (Denmark)

    Jabbaribehnam, Mirmasoud; Spangenberg, Jon; Hovad, Emil

    2016-01-01

    The main aim of this paper is to characterize experimentally the flow behaviour of the green sand that is used for casting of sand moulds. After the sand casting process is performed, the sand moulds are used for metal castings. The rheological properties of the green sand is important to quantif...

  6. Sediment distribution and hydrologic conditions of the Potomac aquifer in Virginia and parts of Maryland and North Carolina

    Science.gov (United States)

    McFarland, Randolph E.

    2013-01-01

    Sediments of the heavily used Potomac aquifer broadly contrast across major structural features of the Atlantic Coastal Plain Physiographic Province in eastern Virginia and adjacent parts of Maryland and North Carolina. Thicknesses and relative dominance of the highly interbedded fluvial sediments vary regionally. Vertical intervals in boreholes of coarse-grained sediment commonly targeted for completion of water-supply wells are thickest and most widespread across the central and southern parts of the Virginia Coastal Plain. Designated as the Norfolk arch depositional subarea, the entire sediment thickness here functions hydraulically as a single interconnected aquifer. By contrast, coarse-grained sediment intervals are thinner and less widespread across the northern part of the Virginia Coastal Plain and into southern Maryland, designated as the Salisbury embayment depositional subarea. Fine-grained intervals that are generally avoided for completion of water-supply wells are increasingly thick and widespread northward. Fine-grained intervals collectively as thick as several hundred feet comprise two continuous confining units that hydraulically separate three vertically spaced subaquifers. The subaquifers are continuous northward but merge southward into the single undivided Potomac aquifer. Lastly, far southeastern Virginia and northeastern North Carolina are designated as the Albemarle embayment depositional subarea, where both coarse- and fine-grained intervals are of only moderate thickness. The entire sediment thickness functions hydraulically as a single interconnected aquifer. A substantial hydrologic separation from overlying aquifers is imposed by the upper Cenomanian confining unit. Potomac aquifer sediments were deposited by a fluvial depositional complex spanning the Virginia Coastal Plain approximately 100 to 145 million years ago. Westward, persistently uplifted granite and gneiss source rocks sustained a supply of coarse-grained sand and gravel

  7. [Effect of humic acids on migration and transformation of NH4(+) -N in saturated aquifer].

    Science.gov (United States)

    Meng, Qing-Jun; Zhang, Yan; Feng, Qi-Yan; Zhang, Shuang-Sheng

    2011-11-01

    Isothermal adsorption experiment was used to study the adsorbing process of NH4(+) -N in quartz sands under the conditions with and without humic acid; the Langmuir and Freundlich equations were used to fit the absorption result and the maximum adsorption capacity of NH4(+) -N by quarts sands was calculated. Through the soil column experiments, the concentration of NH4(+) -N, NO3(-) -N and NO2(-) -N in effluent water in the tested soil column was investigated, and the effect of humic acid on migration and transformation of NH4(+) -N in saturated aquifer was analyzed, and Pseudo-second-order Kinetics Equation and Two-step Adsorption Kinetics Rate Equation were applied to fit the kinetic processes. The results showed that both Langmuir and Freundlich models can well describe the isothermal adsorption process of NH4(+) -N on the surface of quartz sands, which means that NH4(+) -N adsorbed by the quartz sand was mainly in the form of monolayer adsorption. The humic acid could increase the adsorption capacity of NH4(+) -N on quartz sand, and the saturated adsorption capacity was 0.354 mg x g(-1) under the condition with humic acid and 0.205 mg x g(-1) with the absence of humic acid. The experiment indicated that humic acid increased the adsorption capacity of NH4(+) -N on the surface of quartz sand by increasing adsorption space in the initial stage. After saturation, humic acid influenced the migration and transformation of NH4(+) -N to NO3(-) -N and NO2(-) -N probably through providing carbon source and energy for microorganisms such as nitrifying bacteria and then resulting in lower NH4(+) -N concentration in effluent water. Both Pseudo-second-order Kinetics Equation and Two-step Adsorption Kinetics Rate Equations can well describe the process of NH4(+) -N adsorption kinetics on quartz sand (R2 = 0.997 7 and R2 = 0.998 1 with humic acid; R2 = 0.992 3 and R2 = 0.994 4 without humic acid), indicating that this process was chemical adsorption. By comparing the

  8. Characterization of recharge processes in shallow and deeper aquifers using isotopic signatures and geochemical behavior of groundwater in an arsenic-enriched part of the Ganga Plain

    International Nuclear Information System (INIS)

    Saha, Dipankar; Sinha, U.K.; Dwivedi, S.N.

    2011-01-01

    Research highlights: → Sub-regional scale aquifers delineated in arsenic-enriched belt in the Ganga Plain. Isotopic fingerprint of the groundwater, from arsenic-enriched and arsenic-safe aquifers established for the first time in the Ganga Plain. → Recharge processes and the water provenances of vertically separated Quaternary aquifers have been established. → Mean residence time of groundwater in the deeper aquifers has been worked out using C-14 isotope. → Water from the deeper aquifer has been correlated with the paleoclimatic model of the Middle Ganga Plain (Mid-Ganga Basin) for 6-2 ka. - Abstract: Arsenic concentrations in groundwater extracted from shallow aquifers in some areas of the Ganga Plain in the states of Bihar and Uttar Pradesh, exceed 50 μg L -1 and locally reach levels in the 400 μg L -1 range. The study covered 535 km 2 of active flood plain of the River Ganga, in Bihar where a two-tier aquifer system has been delineated in a multi-cyclic sequence of Quaternary sand, clay, sandy clay and silty clay all ≤∼250 m below ground surface. The research used isotopic signatures (δ 18 O, δ 2 Η, 3 H, 14 C) and major chemical constituents (HCO 3 - ,SO 4 2- ,NO 3 - ,Cl - ,Ca 2+ ,Mg 2+ ,Na + ,K + ,As total ) of groundwater to understand the recharge processes and groundwater circulation in the aquifers. Values of δ 18 O and δ 2 Η combined with 3 H data indicate that the recharge to the As-enriched top 40 m of the deposits is modern ( -1 ) is hydrologically isolated from the upper aquifer and is characterized by lower 14 C concentration and lower (more negative) δ 18 O values. Groundwater in the lower aquifer is ∼3 ka old, occurs under semi-confined to confined conditions, with hydrostatic head at 1.10 m above the head of the upper aquifer during the pre-monsoon. The recharge areas of the lower aquifer lies in Pleistocene deposits in basin margin areas with the exposed Vindhyan System, at about 55 km south of the area.

  9. Comparison of the sand liquefaction estimated based on codes and practical earthquake damage phenomena

    Science.gov (United States)

    Fang, Yi; Huang, Yahong

    2017-12-01

    Conducting sand liquefaction estimated based on codes is the important content of the geotechnical design. However, the result, sometimes, fails to conform to the practical earthquake damages. Based on the damage of Tangshan earthquake and engineering geological conditions, three typical sites are chosen. Moreover, the sand liquefaction probability was evaluated on the three sites by using the method in the Code for Seismic Design of Buildings and the results were compared with the sand liquefaction phenomenon in the earthquake. The result shows that the difference between sand liquefaction estimated based on codes and the practical earthquake damage is mainly attributed to the following two aspects: The primary reasons include disparity between seismic fortification intensity and practical seismic oscillation, changes of groundwater level, thickness of overlying non-liquefied soil layer, local site effect and personal error. Meanwhile, although the judgment methods in the codes exhibit certain universality, they are another reason causing the above difference due to the limitation of basic data and the qualitative anomaly of the judgment formulas.

  10. Managing A Lake/Aquifer System-Science, Policy, and the Public Interest

    Science.gov (United States)

    Shaver, R. B.

    2009-12-01

    Lake Isabel is a small (312 ha) natural lake located in central North Dakota in the glaciated Missouri Coteau. The average lake depth is about 1.8 m with a maximum depth of about 3.6 to 4.6 m. The lake overlies the Central Dakota aquifer complex which is comprised of three sand and gravel aquifer units that are either directly or indirectly (through leakage) hydraulically connected to the lake. The aquifer is a major water source for center pivot irrigation. During the 2001-2008 drought, lower lake levels reduced lake recreation, including leaving many boat docks unusable. Lake homeowners attribute lake level decline to irrigation pumping and believe that irrigation should be curtailed. There is no water right associated with Lake Isabel because there are no constructed works associated with the lake. Therefore, under North Dakota statute the lake cannot be protected as a prior (senior) appropriator. The lake does have standing under the public interest as defined by North Dakota statute. Evaluation of the public interest involves the integration of both science and policy. Is it in the best interest of the people of the state to prohibit ground water withdrawals for irrigation to protect the lake? This is a policy decision, not a scientific decision. The basis of the policy decision should include an economic analysis of the irrigated crops, fish, wildlife, recreation, and lake property. In addition, priority of use and lake level history should be considered. The issue can likely be resolved without scientific controversy arising from hydrologic system uncertainty. If the decision is to protect the lake at some level, the issue becomes “scientized” and the following questions need to be answered: 1) Does irrigation pumping effect changes in lake levels? 2) Is our level of scientific understanding sufficient to determine what volume of irrigation pumping will cause what amount of lake level change? 3) Given aquifer lag time response to changes in pumping and

  11. Simulated effects of Lower Floridan aquifer pumping on the Upper Floridan aquifer at Pooler, Chatham County, Georgia

    Science.gov (United States)

    Cherry, Gregory S.; Clarke, John S.

    2013-01-01

    A revised regional groundwater-flow model was used to assess the potential effects on the Upper Floridan aquifer (UFA) of pumping the Lower Floridan aquifer (LFA) from a new well (35Q069) located at the City of Pooler in coastal Georgia near Savannah. The spatial resolution of the original regional, steady-state, groundwater-flow model was increased to incorporate detailed hydrogeologic information resulting from field investigations at Pooler and existing wells in the area. Simulation results using the U.S. Geological Survey finite-difference code MODFLOW indicated that long-term pumping at a rate of 780 gallons per minute (gal/min) from the LFA well 35Q069 would cause a maximum drawdown of about 2.52 feet (ft) in the UFA (scenario A). This maximum drawdown in the UFA was greater than the observed draw-down of 0.9 ft in the 72-hour aquifer test, but this is expected because the steady-state simulated drawdown represents long-term pumping conditions. Model results for scenario A indicate that drawdown in the UFA exceeded 1 ft over a 163-square-mile (mi2) area. Induced vertical leakage from the UFA provided about 98 percent of the water to the LFA; the area within 1 mile of the pumped well contributed about 81 percent of the water pumped. Simulated pumping changed regional water-budget components slightly and redistributed flow among model layers, namely increasing downward leakage in all layers, decreasing upward leakage in all layers above the LFA, increasing inflow to and decreasing outflow from lateral specified-head boundaries in the UA and LFA, and increasing the volume of induced recharge from the general head boundary to outcrop units. An additional two groundwater-pumping scenarios were run to establish that a linear relation exists between pumping rates of the LFA well 35Q069 (varied from 390 to 1,042 gal/min) and amount of drawdown in the UFA and LFA. Three groundwater-pumping scenarios were run to evaluate the amount of UFA pumping (128 to 340 gal

  12. Aeolian sand transport over complex intertidal bar-trough beach topography

    Science.gov (United States)

    Anthony, Edward J.; Ruz, Marie-Hélène; Vanhée, Stéphane

    2009-04-01

    Aeolian sand transport on macrotidal beaches with complex intertidal bar-trough topography (ridge-and-runnel beaches) was assessed from experiments in northern France that involved measurements of wind speed, saltation, surface moisture contents, and rates of sand trapping across surveyed portions of the upper beach profile. Beaches exhibiting intertidal bars and troughs are much more complex, topographically, than simple reflective or dissipative beaches. Furthermore, the intertidal bar-trough morphology commonly exhibits strong cross-shore variations in the moisture contents of the beach surface and in patterns of bedform development. The results of four 30-minute experiments, conducted along topographically surveyed portions of the upper beach-dune toe profile, show that troughs act as extremely efficient sand interceptors, because of their permanently saturated state, which also inhibits sand mobilisation. Troughs, thus, limit or segment the dry fetch during conditions of intermittent saltation. Flow lines, inferred from the wind profiles, suggest that complex interactions at the boundary layer are generated by the bar-trough topography. Troughs systematically appear to be characterised by air expansion, while bar faces generate ramp wind acceleration for onshore winds, and sometimes immediate downwind deceleration for offshore winds. These effects may also contribute to cross-shore variations in the rates of sand trapping. Finally, a simple conceptual model of effective fetch development, integrating the effects of the spring-neap tidal range and of gross bar-trough morphological variability over time, is proposed for bar-trough beaches. The model highlights the key theme of fetch segmentation induced by cross-shore differentiation in the moisture contents of the beach surface hinged on the complex topography of multiple bars and troughs.

  13. Geospatial compilation of historical water-level changes in the Chicot and Evangeline aquifers 1977-2013 and Jasper aquifer 2000-13, Gulf Coast aquifer system, Houston-Galveston region, Texas

    Science.gov (United States)

    Johnson, Michaela R.; Linard, Joshua I.

    2014-01-01

    The U.S. Geological Survey (USGS) in cooperation with the Harris-Galveston Subsidence District, City of Houston, Fort Bend Subsidence District, Lone Star Groundwater Conservation District, and Brazoria County Groundwater Conservation District has produced an annual series of reports that depict water-level changes in the Chicot, Evangeline, and Jasper aquifers of the Gulf Coast aquifer system in the Houston-Galveston region, Texas, from 1977 to 2013. Changes are determined from water-level measurements between December and March of each year from groundwater wells screened in one of the three aquifers. Existing published maps and unpublished geographic information system (GIS) datasets were compiled into a comprehensive geodatabase of all water-level-change maps produced as part of this multiagency effort. Annual water-level-change maps were georeferenced and digitized where existing GIS data were unavailable (1979–99). Existing GIS data available for 2000–13 were included in the geodatabase. The compilation contains 121 datasets showing water-level changes for each primary aquifer of the Gulf Coast aquifer system: 56 for the Chicot aquifer (1977; 1979–2013 and 1990; 1993–2013), 56 for the Evangeline aquifer (1977; 1979–2013 and 1990; 1993–2013), and 9 for the Jasper aquifer (2000; 2005–13).

  14. The Alberta oil sands story

    Energy Technology Data Exchange (ETDEWEB)

    1974-01-01

    This report serves as a detailed introduction to the Alberta oil sands and their development. It includes a description of the oil sands deposits, an outline of crude bitumen recovery and upgrading processes, the role of Alberta Energy Company in oil sands development, environmental aspects, manpower requirements for oil sands development, research needs, and further oil sands projects. Presently proven recoverable reserves in the oil sands amount to 26.5 billion bbl of synthetic crude. Production from the Syncrude plant (125,000 bbl/d capacity) is expected to begin in 1977, followed by a Shell Canada operation around 1980. The provincial government will participate in the oil sand industry through its joint venture participation in Syncrude and its 50% share in Alberta Energy Company; the latter company participates in related aspects of the Syncrude project, such as pipelines. The result of Alberta's participation in the industry will mean that, directly or indirectly, the province will realize 60% of the total profits. The job creation potential of oil sands projects is estimated to be extensive, with a direct and indirect work force supported by oil sands activities possibly reaching 180,000 persons by the year 2000. Research needs have been identified, particularly in the area of in-situ thermal recovery technology, and the creation of the Alberta Oil Sands Technology and Research Authority has been authorized in order to meet these needs. Although current reserves are sufficient to support 20-30 synthetic crude plants, a number of factors will limit expansion of the industry. 8 figs., 5 tabs.

  15. Subsurface fate and transport of cyanide species at a manufactured-gas plant site

    International Nuclear Information System (INIS)

    Ghosh, R.S.; Dzombak, D.A.; Luthy, R.G.; Nakles, D.V.

    1999-01-01

    Cyanide is present at manufactured-gas plant (MGP) sites in oxide-box residuals, which were often managed on-site as fill during active operations. Cyanide can leach from these materials, causing groundwater contamination. Speciation, fate, and transport of cyanide in a sand-gravel aquifer underlying an MGP site in the upper Midwest region of the US were studied through characterization, monitoring, and modeling of a plume of cyanide-contaminated groundwater emanating from the site. Results indicate that cyanide in the groundwater is primarily in the form of iron-cyanide complexes (>98%), that these complexes are stable under the conditions of the aquifer, and that they are transported as nonreactive solutes in the sand-gravel aquifer material. Weak-acid-dissociable cyanide, which represents a minute fraction of total cyanide in the site groundwater, may undergo chemical-biological degradation in the sand-gravel aquifer. It seems that dilution may be the only natural attenuation mechanism for iron-cyanide complexes in sand-gravel aquifers at MGP sites

  16. Guarani aquifer

    International Nuclear Information System (INIS)

    2007-01-01

    The environmental protection and sustain ability develop project of Guarani Aquifer System is a join work from Argentina, Brazil, Paraguay and Uruguay with a purpose to increase the knowledge resource and propose technical legal and organizational framework for sustainable management between countries.The Universities funds were created as regional universities support in promotion, training and academic research activities related to environmental al social aspects of the Guarani Aquifer System.The aim of the project is the management and protection of the underground waters resources taking advantage and assesment for nowadays and future generations

  17. Heating tar sands formations while controlling pressure

    Science.gov (United States)

    Stegemeier, George Leo [Houston, TX; Beer, Gary Lee [Houston, TX; Zhang, Etuan [Houston, TX

    2010-01-12

    Methods for treating a tar sands formation are described herein. Methods may include heating at least a section of a hydrocarbon layer in the formation from a plurality of heaters located in the formation. A pressure in the majority of the section may be maintained below a fracture pressure of the formation. The pressure in the majority of the section may be reduced to a selected pressure after the average temperature reaches a temperature that is above 240.degree. C. and is at or below pyrolysis temperatures of hydrocarbons in the section. At least some hydrocarbon fluids may be produced from the formation.

  18. Recharge sources and geochemical evolution of groundwater in the Quaternary aquifer at Atfih area, the northeastern Nile Valley, Egypt

    Science.gov (United States)

    El-Sayed, Salah Abdelwahab; Morsy, Samah M.; Zakaria, Khalid M.

    2018-06-01

    This study addresses the topic of recharge sources and evolution of groundwater in the Atfih area situated in the northeastern part of the Nile Valley, Egypt. Inventory of water wells and collection of groundwater and surface water samples have been achieved. Water samples are analyzed for major ions according to the American Society for Testing and Materials and for the environmental isotopes analysis (oxygen-18 and deuterium) by using a Triple Liquid Isotopic Water Analyzer (Los Gatos). The groundwater is available from the Quaternary aquifer formed mainly of graded sand and gravel interbedded with clay lenses. The hydrogeologic, hydrogeochemical and isotopic investigations indicate the hydrodynamic nature of the aquifer, where different flow paths, recharge sources and evolution mechanisms are distinguished. The directions of groundwater flow are from E, W and S directions suggesting the contribution from Nile River, the Eocene aquifer and the Nile basin, respectively. The groundwater altitudes range from 13 m (MSL) to 44 m (MSL). The hydraulic gradient varies between 0.025 and 0.0015. The groundwater is alkaline (pH > 7) and has salinity ranging from fresh to brackish water (TDS between 528 mg/l and 6070 mg/l). The observed wide range in the ionic composition and water types reflects the effect of different environmental and geological conditions through which the water has flowed. The isotopic compositions of groundwater samples vary between -14.13‰ and +23.56 for δD and between - 2.91‰ and +3.10 for δ18O. The isotopic data indicates that the Quaternary aquifer receive recharge from different sources including the Recent Nile water, surplus irrigation water, old Nile water before the construction of Aswan High Dam, surface runoff of local rains and Eocene aquifer. Evaporation, water rock interaction and mixing between different types of waters are the main processes in the groundwater evolution. Major suggestions are presented to develop the aquifer

  19. Exploration of probability distribution of velocities of saltating sand particles based on the stochastic particle-bed collisions

    International Nuclear Information System (INIS)

    Zheng Xiaojing; Xie Li; Zhou Youhe

    2005-01-01

    The wind-blown sand saltating movement is mainly categorized into two mechanical processes, that is, the interaction between the moving sand particles and the wind in the saltation layer, and the collisions of incident particles with sand bed, and the latter produces a lift-off velocity of a sand particle moving into saltation. In this Letter a methodology of phenomenological analysis is presented to get probability density (distribution) function (pdf) of the lift-off velocity of sand particles from sand bed based on the stochastic particle-bed collision. After the sand particles are dealt with by uniform circular disks and a 2D collision between an incident particle and the granular bed is employed, we get the analytical formulas of lift-off velocity of ejected and rebound particles in saltation, which are functions of some random parameters such as angle and magnitude of incident velocity of the impacting particles, impact and contact angles between the collision particles, and creeping velocity of sand particles, etc. By introducing the probability density functions (pdf's) of these parameters in communion with all possible patterns of sand bed and all possible particle-bed collisions, and using the essential arithmetic of multi-dimension random variables' pdf, the pdf's of lift-off velocities are deduced out and expressed by the pdf's of the random parameters in the collisions. The numerical results of the distributions of lift-off velocities display that they agree well with experimental ones

  20. Shallow aquifer storage and recovery (SASR): Initial findings from the Willamette Basin, Oregon

    Science.gov (United States)

    Neumann, P.; Haggerty, R.

    2012-12-01

    A novel mode of shallow aquifer management could increase the volumetric potential and distribution of groundwater storage. We refer to this mode as shallow aquifer storage and recovery (SASR) and gauge its potential as a freshwater storage tool. By this mode, water is stored in hydraulically connected aquifers with minimal impact to surface water resources. Basin-scale numerical modeling provides a linkage between storage efficiency and hydrogeological parameters, which in turn guides rulemaking for how and where water can be stored. Increased understanding of regional groundwater-surface water interactions is vital to effective SASR implementation. In this study we (1) use a calibrated model of the central Willamette Basin (CWB), Oregon to quantify SASR storage efficiency at 30 locations; (2) estimate SASR volumetric storage potential throughout the CWB based on these results and pertinent hydrogeological parameters; and (3) introduce a methodology for management of SASR by such parameters. Of 3 shallow, sedimentary aquifers in the CWB, we find the moderately conductive, semi-confined, middle sedimentary unit (MSU) to be most efficient for SASR. We estimate that users overlying 80% of the area in this aquifer could store injected water with greater than 80% efficiency, and find efficiencies of up to 95%. As a function of local production well yields, we estimate a maximum annual volumetric storage potential of 30 million m3 using SASR in the MSU. This volume constitutes roughly 9% of the current estimated summer pumpage in the Willamette basin at large. The dimensionless quantity lag #—calculated using modeled specific capacity, distance to nearest in-layer stream boundary, and injection duration—exhibits relatively high correlation to SASR storage efficiency at potential locations in the CWB. This correlation suggests that basic field measurements could guide SASR as an efficient shallow aquifer storage tool.

  1. Application of hydrogeology and groundwater-age estimates to assess the travel time of groundwater at the site of a landfill to the Mahomet Aquifer, near Clinton, Illinois

    Science.gov (United States)

    Kay, Robert T.; Buszka, Paul M.

    2016-03-02

    The U.S. Geological Survey used interpretations of hydrogeologic conditions and tritium-based groundwater age estimates to assess the travel time of groundwater at a landfill site near Clinton, Illinois (the “Clinton site”) where a chemical waste unit (CWU) was proposed to be within the Clinton landfill unit #3 (CLU#3). Glacial deposits beneath the CWU consist predominantly of low-permeability silt- and clay-rich till interspersed with thin (typically less than 2 feet in thickness) layers of more permeable deposits, including the Upper and Lower Radnor Till Sands and the Organic Soil unit. These glacial deposits are about 170 feet thick and overlie the Mahomet Sand Member of the Banner Formation. The Mahomet aquifer is composed of the Mahomet Sand Member and is used for water supply in much of east-central Illinois.Eight tritium analyses of water from seven wells were used to evaluate the overall age of recharge to aquifers beneath the Clinton site. Groundwater samples were collected from six monitoring wells on or adjacent to the CLU#3 that were open to glacial deposits above the Mahomet aquifer (the upper and lower parts of the Radnor Till Member and the Organic Soil unit) and one proximal production well (approximately 0.5 miles from the CLU#3) that is screened in the Mahomet aquifer. The tritium-based age estimates were computed with a simplifying, piston-flow assumption: that groundwater moves in discrete packets to the sampled interval by advection, without hydrodynamic dispersion or mixing.Tritium concentrations indicate a recharge age of at least 59 years (pre-1953 recharge) for water sampled from deposits below the upper part of the Radnor Till Member at the CLU#3, with older water expected at progressively greater depth in the tills. The largest tritium concentration from a well sampled by this study (well G53S; 0.32 ± 0.10 tritium units) was in groundwater from a sand deposit in the upper part of the Radnor Till Member; the shallowest permeable unit

  2. Rapid estimation of aquifer salinity structure from oil and gas geophysical logs

    Science.gov (United States)

    Shimabukuro, D.; Stephens, M.; Ducart, A.; Skinner, S. M.

    2016-12-01

    We describe a workflow for creating aquifer salinity maps using Archie's equation for areas that have geophysical data from oil and gas wells. We apply this method in California, where geophysical logs are available in raster format from the Division of Oil, Gas, and Geothermal Resource (DOGGR) online archive. This method should be applicable to any region where geophysical logs are readily available. Much of the work is controlled by computer code, allowing salinity estimates for new areas to be rapidly generated. For a region of interest, the DOGGR online database is scraped for wells that were logged with multi-tool suites, such as the Platform Express or Triple Combination Logging Tools. Then, well construction metadata, such as measured depth, spud date, and well orientation, is attached. The resultant local database allows a weighted criteria selection of wells that are most likely to have the shallow resistivity, deep resistivity, and density porosity measurements necessary to calculate salinity over the longest depth interval. The algorithm can be adjusted for geophysical log availability for older well fields and density of sampling. Once priority wells are identified, a student researcher team uses Neuralog software to digitize the raster geophysical logs. Total dissolved solid (TDS) concentration is then calculated in clean, wet sand intervals using the resistivity-porosity method, a modified form of Archie's equation. These sand intervals are automatically selected using a combination of spontaneous potential and the difference in shallow resistivity and deep resistivity measurements. Gamma ray logs are not used because arkosic sands common in California make it difficult to distinguish sand and shale. Computer calculation allows easy adjustment of Archie's parameters. The result is a semi-continuous TDS profile for the wells of interest. These profiles are combined and contoured using standard 3-d visualization software to yield preliminary salinity

  3. Regional coupling of unsaturated and saturated flow and transport modeling - implementation at an alpine foothill aquifer in Austria

    Science.gov (United States)

    Klammler, G.; Rock, G.; Kupfersberger, H.; Fank, J.

    2012-04-01

    For many European countries nitrate leaching from the soil zone into the aquifer due to surplus application of mineral fertilizer and animal manure by farmers constitutes the most important threat to groundwater quality. Since this is a diffuse pollution situation measures to change agricultural production have to be investigated at the aquifer scale. In principal, the problem could be solved by the 3 dimensional equation describing variable saturated groundwater flow and solute transport. However, this is computationally prohibitive due to the temporal and spatial scope of the task, particularly in the framework of running numerous simulations to compromise between conflicting interests (i.e. good groundwater status and high agricultural yield). For the aquifer 'Westliches Leibnitzer Feld' we break down this task into 1d vertical movement of water and nitrate mass in the unsaturated zone and 2d horizontal flow of water and solutes in the saturated compartment. The aquifer is located within the Mur Valley about 20 km south of Graz and consists of early Holocene gravel with varying amounts of sand and some silt. The unsaturated flow and nitrate leaching package SIMWASER/STOTRASIM (Stenitzer, 1988; Feichtinger, 1998) is calibrated to the lysimeter data sets and further on applied to so called hydrotopes which are unique combinations of soil type and agricultural management. To account for the unknown regional distribution of crops grown and amount, timing and kind of fertilizers used a stochastic tool (Klammler et al, 2011) is developed that generates sequences of crop rotations derived from municipal statistical data. To match the observed nitrate concentrations in groundwater with a saturated nitrate transport model it is of utmost importance to apply a realistic input distribution of nitrate mass in terms of spatial and temporal characteristics. A table is generated by running SIMWASER/STOTRASIM that consists of unsaturated water and nitrate fluxes for each 10 cm

  4. Hydrogeology and groundwater quality of Highlands County, Florida

    Science.gov (United States)

    Spechler, Rick M.

    2010-01-01

    Groundwater is the main source of water supply in Highlands County, Florida. As the demand for water in the county increases, additional information about local groundwater resources is needed to manage and develop the water supply effectively. To address the need for additional data, a study was conducted to evaluate the hydrogeology and groundwater quality of Highlands County. Total groundwater use in Highlands County has increased steadily since 1965. Total groundwater withdrawals increased from about 37 million gallons per day in 1965 to about 107 million gallons per day in 2005. Much of this increase in water use is related to agricultural activities, especially citrus cultivation, which increased more than 300 percent from 1965 to 2005. Highlands County is underlain by three principal hydrogeologic units. The uppermost water-bearing unit is the surficial aquifer, which is underlain by the intermediate aquifer system/intermediate confining unit. The lowermost hydrogeologic unit is the Floridan aquifer system, which consists of the Upper Floridan aquifer, as many as three middle confining units, and the Lower Floridan aquifer. The surficial aquifer consists primarily of fine-to-medium grained quartz sand with varying amounts of clay and silt. The aquifer system is unconfined and underlies the entire county. The thickness of the surficial aquifer is highly variable, ranging from less than 50 to more than 300 feet. Groundwater in the surficial aquifer is recharged primarily by precipitation, but also by septic tanks, irrigation from wells, seepage from lakes and streams, and the lateral groundwater inflow from adjacent areas. The intermediate aquifer system/intermediate confining unit acts as a confining layer (except where breached by sinkholes) that restricts the vertical movement of water between the surficial aquifer and the underlying Upper Floridan aquifer. The sediments have varying degrees of permeability and consist of permeable limestone, dolostone, or

  5. Three-dimensional chemical structure of the INEL aquifer system near the Idaho Chemical Processing Plant

    International Nuclear Information System (INIS)

    McCurry, M.; Estes, M.; Fromm, J.; Welhan, J.; Barrash, W.

    1994-01-01

    Sampling and analysis from the Snake River Plain aquifer using a stainless-steel and teflon constructed straddle-packer system has established detailed vertical profiles of aquifer chemistry from three wells near a major source of low-level waste injection at the Idaho Chemical Processing Plant. Multiple intervals, varying from 4.6 to 6.1 m in length, were sampled between the water table (140.5 mbls - meters below land surface), and approximately 200 mbls to obtain a wide spectrum of metals, anions, radiological and organic components analyses. Measurements were also made at the well sites of important transient parameters (T, Eh, Fe 3+ , Fe 2+ , DO and SC). The principal purpose of this ongoing work is to improve our understanding of the third (i.e. vertical) dimension of aquifer chemistry at the INEL as a basis for critically evaluating site-wide monitoring procedures, and, ultimately, for improving fate and transport models for aquifer contaminants within basalt-hosted aquifers. Chemical and radiological data indicates that substantial systematic vertical and lateral variations occur in the aquifer hydrochemistry - in particular for conservative radiological nuclide concentrations. Radiological data define a three-layered zonation. Ground water within upper and lower zones contain up to 10 times higher concentrations of H-3 and I-129 than in the middle zone. Sr-90 activity is decoupled from H-3 and I-129-relatively high activity was detected within the upper zone nearest the ICPP, but activities elsewhere are very low. 27 refs., 4 figs., 1 tab

  6. Model-based assessment of the potential of seasonal aquifer thermal energy storage and recovery as a groundwater ecosystem service for the Brussels-Capital Region

    Science.gov (United States)

    Anibas, Christian; Huysmans, Marijke

    2015-04-01

    Urban areas are characterized by their concentrated demand of energy, applying a high pressure on urban ecosystems including atmosphere, soils and groundwater. In the light of global warming, urbanization and an evolving energy system, it is important to know how urbanized areas can contribute to their own energy demands. One option is to use the possibilities aquifers offer as an ecosystem service (BONTE et al., 2011). If used effectively an improvement in air and groundwater quality is achieved. Additionally, the more efficient distribution of the used energy may also lead to a decrease in primary energy consumption (ZUURBIER, 2013). Therefore, investigations of the potential of seasonal aquifer thermal energy storage and recovery (ATES) for the Brussels-Capital Region, Belgium is being conducted. The potential of ATES systems are of special interest for energy demands in high density urban areas because of such infrastructure as office buildings, schools, hospitals and shopping malls. In an open water circuit ATES systems consist of two or more groundwater wells, where in seasonal cycles one subtracts and the other recharges water to the aquifer. Heat pumps use the heat capacity of water for heating or cooling a building. An important limitation of the methodology is the quality of the groundwater used (i.e. precipitation of Fe- or Mn-oxides can decrease the yield). However, ATES systems on the other hand can also improve groundwater quality and groundwater ecosystems. The current knowledge of the potential for ATES systems in the Brussels-Capital Region is based on geological assessments from VITO (2007). The Brussels-Capital Region is divided into a western and eastern section with respect to geology. While the western part has less favorable conditions for ATES, the eastern is composed of the Brussels Sand formation, which is a 20-40 m thick aquifer layer that has the highest potential for ATES systems in the region. By applying groundwater flow and heat

  7. Geohydrology of the Cerro Prieto geothermal aquifer

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez R, J.; de la Pena L, A.

    1981-01-01

    The most recent information on the Cerro Prieto geothermal aquifer is summarized, with special emphasis on the initial production zone where the wells completed in the Alpha aquifer are located. These wells produce steam for power plant units 1 and 2. Brief comments also are made on the Beta aquifer, which underlies the Alpha aquifer in the Cerro Prieto I area and which extends to the east to what is known as the Cerro Prieto II and Cerro Prieto III areas. The location of the area studied is shown. The Alpha and Beta aquifers differ in their mineralogy and cementing mineral composition, temperatures, and piezometric levels. The difference in piezometric levels indicates that there is no local communication between the two aquifers. This situation has been verified by a well interference test, using well E-1 as a producer in the Beta aquifer and well M-46 as the observation well in the Alpha aquifer. No interference between them was observed. Information on the geology, geohydrology, and geochemistry of Cerro Prieto is presented.

  8. Compressive behavior of fine sand.

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Bradley E. (Air Force Research Laboratory, Eglin, FL); Kabir, Md. E. (Purdue University, West Lafayette, IN); Song, Bo; Chen, Wayne (Purdue University, West Lafayette, IN)

    2010-04-01

    The compressive mechanical response of fine sand is experimentally investigated. The strain rate, initial density, stress state, and moisture level are systematically varied. A Kolsky bar was modified to obtain uniaxial and triaxial compressive response at high strain rates. A controlled loading pulse allows the specimen to acquire stress equilibrium and constant strain-rates. The results show that the compressive response of the fine sand is not sensitive to strain rate under the loading conditions in this study, but significantly dependent on the moisture content, initial density and lateral confinement. Partially saturated sand is more compliant than dry sand. Similar trends were reported in the quasi-static regime for experiments conducted at comparable specimen conditions. The sand becomes stiffer as initial density and/or confinement pressure increases. The sand particle size become smaller after hydrostatic pressure and further smaller after dynamic axial loading.

  9. New methodology for aquifer influx status classification for single wells in a gas reservoir with aquifer support

    Directory of Open Access Journals (Sweden)

    Yong Li

    2016-10-01

    Full Text Available For gas reservoirs with strong bottom or edge aquifer support, the most important thing is avoiding aquifer breakthrough in a gas well. Water production in gas wells does not only result in processing problems in surface facilities, but it also explicitly reduces well productivity and reservoir recovery. There are a lot of studies on the prediction of water breakthrough time, but they are not completely practicable due to reservoir heterogeneity. This paper provides a new method together with three diagnostic curves to identify aquifer influx status for single gas wells; the aforementioned curves are based on well production and pressure data. The whole production period of a gas well can be classified into three periods based on the diagnostic curves: no aquifer influx period, early aquifer influx period, and middle-late aquifer influx period. This new method has been used for actual gas well analysis to accurately identify gas well aquifer influx status and the water breakthrough sequence of all wells in the same gas field. Additionally, the evaluation results are significantly beneficial for well production rate optimization and development of an effective gas field.

  10. Groundwater vulnerability assessment using hydrogeologic and geoelectric layer susceptibility indexing at Igbara Oke, Southwestern Nigeria

    Science.gov (United States)

    Oni, T. E.; Omosuyi, G. O.; Akinlalu, A. A.

    2017-12-01

    Groundwater vulnerability assessment was carried out at Igbara Oke Southwestern Nigeria, with a view to classify the area into vulnerability zones, by applying the electrical resistivity method, using Schlumberger electrode arrays with maximum electrode separation (AB/2) of 65 m in (41) different locations for data acquisition. Geoelectric parameters (layer resistivity and thickness) were determined from the interpreted data. The study area comprises four geoelectric layers (topsoil, lateritic layer, weathered/fractured layer and fresh basement). The geoelectric parameters of the overlying layers across the area were used to assess the vulnerability of the underlying aquifers to near-surface contaminants with the aid of vulnerability maps generated. Three models were compared by maps using geo-electrically derived models; longitudinal conductance, GOD (groundwater occurrence, overlying lithology and depth to the aquifer) and GLSI (geoelectric layer susceptibility indexing). The total longitudinal conductance map shows the north central part of the study area as a weakly protected (0.1-0.19) area, while the northern and southern parts have poor protective capacity (septic tank, refuse dump should be cited far from groundwater development area.

  11. An investigation into workability of the cover layer materials

    International Nuclear Information System (INIS)

    Ninomiya, Koji; Yoshizawa, Hideaki; Sato, Yasushi; Onishi, Toshimitsu

    2004-02-01

    It was the main object of this research to gather basic data on the quality of the constructive performance of a cover layer material as the Radon Barrier Layer through the 'An Investigation into Workability of the Cover Layer Materials' to be applied for the capping of uranium mill tailings and waste rock yard at Ningyo-toge Environmental Engineering Center. In consideration of the business scale, operation efficiency and cost performance, etc, we selected the decomposed granite as a base soil, bentonite as an additive, and a Twister(rotary type comprehensive unit for grinding and mixing) as a mixer for this research. Based on those materials and a mixer, we actually made the cover layer (radon barrier) and measured the permeability, N 2 ventilation, strength of the layer, using as a parameter different types of bentonite and different bentonite/sand mixture rations. According to the permeability test results, permeability coefficient proved to be stand at below 1x10 -9 m/s, regardless of any combination of bentonite/sand mixture ratios made with the twister. Through a series of laboratory tests, taking into consideration such variation factors as quality variation of the cover layer, base soil and additive, we found out the optimum phase of combination, which are the 7wt% bentonite/sand mixture in case of Volclay; and 16wt% in case Redhill. N 2 ventilation tests were also carried out, using as a parameter the degree of moisture saturation of cover layer material. Test results showed that the gas ventilation is sensitive to changes of the degree of the saturation, and that under the conditions of moisture saturation of over 90%, the coefficient of N 2 ventilation stands at below 1x10 -10 m/s, under which conditions the radon barrier will work out in an efficient way. Lastly, in order to secure the long-term safety of the radon barrier, we described the directions of future investigations and studies, including the necessity of gathering technical data on the

  12. Insights on surface-water/groundwater exchange in the upper Floridan aquifer, north-central Florida (USA), from streamflow data and numerical modeling

    Science.gov (United States)

    Sutton, James E.; Screaton, Elizabeth J.; Martin, Jonathan B.

    2015-03-01

    Surface-water/groundwater exchange impacts water quality and budgets. In karst aquifers, these exchanges also play an important role in dissolution. Five years of river discharge data were analyzed and a transient groundwater flow model was developed to evaluate large-scale temporal and spatial variations of exchange between an 80-km stretch of the Suwannee River in north-central Florida (USA) and the karstic upper Floridan aquifer. The one-layer transient groundwater flow model was calibrated using groundwater levels from 59 monitoring wells, and fluxes were compared to the exchange calculated from discharge data. Both the numerical modeling and the discharge analysis suggest that the Suwannee River loses water under both low- and high-stage conditions. River losses appear greatest at the inside of a large meander, and the former river water may continue across the meander within the aquifer rather than return to the river. In addition, the numerical model calibration reveals that aquifer transmissivity is elevated within this large meander, which is consistent with enhanced dissolution due to river losses. The results show the importance of temporal and spatial variations in head gradients to exchange between streams and karst aquifers and dissolution of the aquifers.

  13. On the relation between fluvio-deltaic flood basin geomorphology and the wide-spread occurrence of arsenic pollution in shallow aquifers.

    Science.gov (United States)

    Donselaar, Marinus E; Bhatt, Ajay G; Ghosh, Ashok K

    2017-01-01

    Pollution of groundwater with natural (geogenic) arsenic occurs on an enormous, world-wide scale, and causes wide-spread, serious health risks for an estimated more than hundred million people who depend on the use of shallow aquifers for drinking and irrigation water. A literature review of key studies on arsenic concentration levels yields that Holocene fluvial and deltaic flood basins are the hotspots of arsenic pollution, and that the dominant geomorphological setting of the arsenic-polluted areas consists of shallow-depth meandering-river deposits with sand-prone fluvial point-bar deposits surrounded by clay-filled (clay plug) abandoned meander bends (oxbow lakes). Analysis of the lithofacies distribution and related permeability contrasts of the geomorphological elements in two cored wells in a point bar and adjacent clay plug along the Ganges River, in combination with data of arsenic concentrations and organic matter content reveals that the low-permeable clay-plug deposits have a high organic matter content and the adjacent permeable point-bar sands show high but spatially very variable arsenic concentrations. On the basis of the geomorphological juxtaposition, the analysis of fluvial depositional processes and lithofacies characteristics, inherent permeability distribution and the omnipresence of the two geomorphological elements in Holocene flood basins around the world, a generic model is presented for the wide-spread arsenic occurrence. The anoxic deeper part (hypolimnion) of the oxbow lake, and the clay plugs are identified as the loci of reactive organic carbon and microbial respiration in an anoxic environment that triggers the reductive dissolution of iron oxy-hydroxides and the release of arsenic on the scale of entire fluvial floodplains and deltaic basins. The adjacent permeable point-bar sands are identified as the effective trap for the dissolved arsenic, and the internal permeability heterogeneity is the cause for aquifer compartmentalization

  14. Elevated Uranium in Aquifers of the Jacobsville Sandstone

    Science.gov (United States)

    Sherman, H.; Gierke, J.

    2003-12-01

    The EPA has announced a new standard for uranium in drinking water of 30 parts per billion (ppb). This maximum contaminant level (MCL) takes effect for community water supplies December 2003. The EPA's ruling has heightened awareness among residential well owners that uranium in drinking water may increase the risk of kidney disease and cancer and has created a need for a quantified, scientific understanding of the occurrence and distribution of uranium isotopes in aquifers. The authors are investigating the occurrence of elevated uranium in northern Michigan aquifers of the Middle Proterozoic Jacobsville sandstone, a red to mottled sequence of sandstones, conglomerates, siltstones and shales deposited as basin fill in the 1.1 Ga Midcontinent rift. Approximately 25% of 300 well water samples tested for isotopic uranium have concentrations above the MCL. Elevated uranium occurrences are distributed throughout the Jacobsville sandstone aquifers stretching across Michigan's Upper Peninsula. However, there is significant variation in well water uranium concentrations (from 0.01 to 190 ppb) and neighboring wells do not necessarily have similar concentrations. The authors are investigating hydrogeologic controls on ground water uranium concentrations in the Jacobsville sandstone, e.g. variations in lithology, mineralogy, groundwater residence time and geochemistry. Approximately 2000' of Jacobsville core from the Amoco St. Amour well was examined in conjunction with the spectral gamma ray log run in the borehole. Spikes in equivalent uranium (eU) concentration from the log are frequently associated with clay and heavy mineral layers in the sandstone core. The lithology and mineralogy of these layers will be determined by analysis of thin sections and x-ray diffraction. A portable spectrometer, model GRS-2000/BL, will be used on the sandstone cliffs along Lake Superior to characterize depositional and lithologic facies of the Jacobsville sandstone in terms of

  15. Hydrostratigraphy, soil/sediment chemistry, and water quality, Potomac-Raritan-Magothy aquifer system, Puchack Well Field Superfund site and vicinity, Pennsauken Township, Camden County, New Jersey, 1997-2001

    Science.gov (United States)

    Barringer, Julia L.; Walker, Richard L.; Jacobsen, Eric; Jankowski, Pamela

    2010-01-01

    Drinking-water supplies from the Potomac-Raritan-Magothy aquifer system at the Puchack well field in Pennsauken Township, Camden County, New Jersey, have been contaminated by hexavalent chromium-the most toxic and mobile form-at concentrations exceeding the New Jersey maximum contaminant level of 100 micrograms per liter. Also, scattered but widespread instances of volatile organic compounds (primarily trichloroethylene) at concentrations that exceed their respective maximum contaminant levels in the area's ground water have been reported. Because inorganic and organic contaminants are present in the ground water underlying the Puchack well field, no water from there has been withdrawn for public supply since 1998, when the U.S. Environmental Protection Agency (USEPA) added the area that contains the Puchack well field to the National Priorities List. As part of the USEPA's investigation of the Puchack Well Field Superfund site, the U.S. Geological Survey (USGS) conducted a study during 1997-2001 to (1) refine previous interpretations of the hydrostratigraphic framework, hydraulic gradients, and local directions of ground-water flow; (2) describe the chemistry of soils and saturated aquifer sediments; and (3) document the quality of ground water in the Potomac-Raritan-Magothy aquifer system in the area. The four major water-bearing units of the Potomac-Raritan-Magothy aquifer system-the Upper aquifer (mostly unsaturated in the study area), the Middle aquifer, the Intermediate Sand (a local but important unit), and the Lower aquifer-are separated by confining units. The confining units contain areas of cut and fill, resulting in permeable zones that permit water to pass through them. Pumping from the Puchack well field during the past 3 decades resulted in downward hydraulic gradients that moved contaminants into the Lower aquifer, in which the production wells are finished, and caused ground water to flow northeast, locally. A comparison of current (1997

  16. Increasing freshwater recovery upon aquifer storage : A field and modelling study of dedicated aquifer storage and recovery configurations in brackish-saline aquifers

    NARCIS (Netherlands)

    Zuurbier, Koen

    2016-01-01

    The subsurface may provide opportunities for robust, effective, sustainable, and cost-efficient freshwater management solutions. For instance, via aquifer storage and recovery (ASR; Pyne, 2005): “the storage of water in a suitable aquifer through a well during times when water is available, and the

  17. Predictive hydrogeochemical modelling of bauxite residue sand in field conditions.

    Science.gov (United States)

    Wissmeier, Laurin; Barry, David A; Phillips, Ian R

    2011-07-15

    surface cover simulation demonstrates that the soil moisture status in the residue sand can be ameliorated by an appropriate design of the cover layer with respect to thickness, slope and distance between lateral drains. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Epigenetic zonation and fluid flow history of uranium-bearing fluvial aquifer systems, south Texas uranium province. Report of Investigations No. 119

    International Nuclear Information System (INIS)

    Galloway, W.E.

    1982-01-01

    The Oligocene-Miocene fluvial uranium host aquifers of the South Texas uranium province were deposited principally as syndepositionally oxidized sands and muds. Early intrusion of reactive sulfide-enriched waters produced large intrastratal islands of epigenetic sulfidic alteration, which contain isotopically heavy pyrite exhibiting unique replacement textures. The only known reservoir containing such sulfidic waters is the deeply buried Mesozoic carbonate section beneath the thick, geopressured Tertiary basin fill. Thermobaric waters were expulsed upward along major fault zones into shallow aquifers in response to a pressure head generated by compaction and dehydration in the abyssal ground-water regime. Vertical migration of gaseous hydrogen sulfide was less important. Repeated flushing of the shallow aquifers by oxidizing meteoric waters containing anomalous amounts of uranium, selenium, and molybdenum alternating with sulfidic thermobaric waters caused cyclic precipitation and oxidation of iron disulfide. Uranium deposits formed along hydrologically active oxidation interfaces separating epigenetic sulfidic and epigenetic oxidation zones. Multiple epigenetic events are recorded in imperfectly superimposed, multiple mineralization fronts, in regional and local geometric relations between different alteration zones, and in the bulk matrix geochemistry and mineralogy of alteration zones. The dynamic mineralization model described in this report may reflect processes active in many large, depositionally active basins

  19. An analytical model for flow induced by a constant-head pumping in a leaky unconfined aquifer system with considering unsaturated flow

    Science.gov (United States)

    Lin, Ye-Chen; Li, Ming-Hsu; Yeh, Hund-Der

    2017-09-01

    A new mathematical model is developed to describe the flow in response to a constant-head pumping (or constant-head test, CHT) in a leaky unconfined aquifer system of infinite lateral extent with considering unsaturated flow. The model consists of an unsaturated zone on the top, an unconfined aquifer in the middle, and a second aquifer (aquitard) at the bottom. The unsaturated flow is described by Richard's equation, and the flows in unconfined aquifer and second layer are governed by the groundwater flow equation. The well partially penetrates the unconfined aquifer with a constant head in the well due to CHT. The governing equations of the model are linearized by the perturbation method and Gardner's exponential model is adopted to describe the soil retention curves. The solution of the model for drawdown distribution is obtained by applying the methods of Laplace transform and Weber transform. Then the solution for the wellbore flowrate is derived from the drawdown solution with Darcy's law. The issue of the equivalence of normalized drawdown predicted by the present solution for constant-head pumping and Tartakovsky and Neuman's (2007) solution for constant-rate pumping is discussed. On the basis of the wellbore flowrate solution, the results of the sensitivity analysis indicate that the wellbore flowrate is very sensitive to the changes in the radial hydraulic conductivity and the thickness of the saturated zone. Moreover, the results predicted from the present wellbore flowrate solution indicate that this new solution can reduce to Chang's et al. (2010a) solution for homogenous aquifers when the dimensionless unsaturated exponent approaches 100. The unsaturated zone can be considered as infinite extent in the vertical direction if the thickness ratio of the unsaturated zone to the unconfined aquifer is equal to or greater than one. As for the leakage effect, it can be ignored when the vertical hydraulic conductivity ratio (i.e., the vertical hydraulic

  20. The Geometry of the Aquifer's System of the Terraguelt Graben by the Gravimetry and the Electric Prospecting

    International Nuclear Information System (INIS)

    Brahmia, A.; Hani, A.; Lamouroux, C.

    2009-01-01

    The goal of the present survey is the determination of the shape of Terraguelt graben aquifer system. The gravimetric survey brings a satisfactory answer in this sense that the residual anomaly map made appear a negative anomaly of - 20 m Gals and that the gradient delimits the Graben enough well. The electric survey on the basis of the geologic information and the few mechanical boring achieved in the plain permits to retail the facies of the replenishment better. Indeed some either the length of the current electrode AB line, the center of the plain makes appear of weak values of apparent resistivity, the shalky limestone substratum of age superior Maestrichien is not reached in spite of a length of AB line = 3000 m. Whereas the borders appear with resistivities more important, in the center of the plain these last become more and more weak with the increase of the AB length. The shape of the Graben is illustrated well in the electric cross sections and is confirmed by the interrelationship of the lithostratigraphique columns of the mechanical boring. The interpretation of mechanical boring data shows two principals aquifers : the first one is included in the karstified limestone of upper Maestrichien and the second one is in the replenishment constituted by sand, and gravel, pebble. This replenishment is estimated at 1200 m thickness. The piezo metric maps shows that the aquifers are feeded from the the East and South mountains borders