Sample records for san gabriel faults

  1. Post-Miocene Right Separation on the San Gabriel and Vasquez Creek Faults, with Supporting Chronostratigraphy, Western San Gabriel Mountains, California (United States)

    Beyer, Larry A.; McCulloh, Thane H.; Denison, Rodger E.; Morin, Ronald W.; Enrico, Roy J.; Barron, John A.; Fleck, Robert J.


    The right lateral San Gabriel Fault Zone in southern California extends from the northwestern corner of the Ridge Basin southeastward to the eastern end of the San Gabriel Mountains. It bifurcates to the southeast in the northwestern San Gabriel Mountains. The northern and older branch curves eastward in the range interior. The southern younger branch, the Vasquez Creek Fault, curves southeastward to merge with the Sierra Madre Fault Zone, which separates the San Gabriel Mountains from the northern Los Angeles Basin margin. An isolated exposure of partly macrofossiliferous nearshore shallow-marine sandstone, designated the Gold Canyon beds, is part of the southwest wall of the fault zone 5.5 km northwest of the bifurcation. These beds contain multiple subordinate breccia-conglomerate lenses and are overlain unconformably by folded Pliocene-Pleistocene Saugus Formation fanglomerate. The San Gabriel Fault Zone cuts both units. Marine macrofossils from the Gold Canyon beds give an age of 5.2+-0.3 Ma by 87Sr/86Sr analyses. Magnetic polarity stratigraphy dates deposition of the overlying Saugus Formation to between 2.6 Ma and 0.78 Ma. Distinctive metaplutonic rocks of the Mount Lowe intrusive suite in the San Gabriel Range are the source of certain clasts in both the Gold Canyon beds and Saugus Formation. Angular clasts of nondurable Paleocene sandstone also occur in the Gold Canyon beds. The large size and angularity of some of the largest of both clast types in breccia-conglomerate lenses of the beds suggest landslides or debris flows from steep terrain. Sources of Mount Lowe clasts, originally to the north or northeast, are now displaced southeastward by faulting and are located between the San Gabriel and Vasquez Creek faults, indicating as much as 12+-2 km of post-Miocene Vasquez Creek Fault right separation, in accord with some prior estimates. Post-Miocene right slip thus transferred onto the Vasquez Creek Fault southeast of the bifurcation. The right separation

  2. 77 FR 63302 - San Gabriel Valley Water Company dba, Fontana Water Company; Notice of Application Accepted for... (United States)


    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission San Gabriel Valley Water Company dba, Fontana Water Company; Notice of.... d. Applicant: San Gabriel Valley Water Company dba, Fontana Water Company. e. Name of...

  3. Draft Genome Sequence of "Candidatus Liberibacter asiaticus" from a Citrus Tree in San Gabriel, California. (United States)

    Wu, F; Kumagai, L; Liang, G; Deng, X; Zheng, Z; Keremane, M; Chen, J


    The draft genome sequence of "Candidatus Liberibacter asiaticus" strain SGCA5 from an orange citrus tree in San Gabriel, California, is reported here. SGCA5 has a genome size of 1,201,445 bp, a G+C content of 36.4%, 1,152 predicted open reading frames (ORFs), and 42 RNA genes.

  4. Valley aggradation in the San Gabriel Mountains, California: climate change versus catastrophic landslide (United States)

    Scherler, D.; Lamb, M. P.; Rhodes, E. J.; Avouac, J. P.


    The San Gabriel Mountains (SGM) in Southern California, rate amongst the most rapidly uplifting and eroding mountains in the United States. Their steep slopes and sensitivity to wildfires, flash floods, landslides, and debris flows account for imminent hazards to nearby urban areas that might be accentuated by climatic and other environmental changes. Previous studies suggested that river terraces along the North Fork of the San Gabriel River, record temporal variations in sediment supply and river transport capacity that are representative for the SGM and related to climatic changes during the Quaternary. Based on field observations, digital topographic analysis, and dating of Quaternary deposits, we suggest that valley aggradation in the North Fork San Gabriel Canyon was spatially confined and a consequence of the sudden supply of unconsolidated material to upstream reaches by one of the largest known landslides in the SGM. New 10Be-derived surface exposure ages from the landslide deposits, previously assumed to be early to middle Pleistocene in age, indicate at least three Holocene events at ~8-9 ka, ~4-5 ka, and ~0.5-1 ka. The oldest landslide predates the valley aggradation period, which is constrained by existing 14C ages and new luminescence ages to ~7-8 ka. The spatial distribution, morphology, and sedimentology of the river terraces are consistent with deposition from far-travelling debris flows that originated within the landslide deposits. Valley aggradation in the North Fork San Gabriel Canyon therefore resulted from locally enhanced sediment supply that temporarily overwhelmed river capacity but the lack of similar deposits in other parts of the SGM argues against a regional climatic signal. So far, there exists no evidence that in the San Gabriel Mountains, climatic changes can cause sustained increases in hillslope sediment supply that lead to river aggradation and terrace formation.

  5. Influence of San Gabriel submarine canyon on narrow-shelf sediment dynamics, southern California (United States)

    Karl, Herman A.


    Variations in the concentration of total suspended particulate matter (TSM) collected 1 m above bottom, changes in vertical profiles of light transmission, and substrate textural patterns reveal a corridor for preferential sediment transport on San Pedro continental shelf, California. During the winter, this corridor, designated the preferential transport corridor (PTC), is defined by higher concentrations of TSM relative to the rest of the shelf and extends for 10-15 km from the inner shelf to the head of San Gabriel Submarine Canyon. Vertical profiles of light transmission within the PTC suggest density stratification throughout the water column and apparent mixing in the upper 15-20 m of water column on either side of the PTC. The PTC is not as fully developed during the summer. Excursions in isopleths of substrate textural variables perpendicular to isobaths in the PTC suggest that although the PTC is seasonally episodic, it recurs regularly over a longer period.

  6. Geophysical evidence for wedging in the San Gorgonio Pass structural knot, southern San Andreas fault zone, southern California (United States)

    Langenheim, V.E.; Jachens, R.C.; Matti, J.C.; Hauksson, E.; Morton, D.M.; Christensen, A.


    Geophysical data and surface geology define intertonguing thrust wedges that form the upper crust in the San Gorgonio Pass region. This picture serves as the basis for inferring past fault movements within the San Andreas system, which are fundamental to understanding the tectonic evolution of the San Gorgonio Pass region. Interpretation of gravity data indicates that sedimentary rocks have been thrust at least 5 km in the central part of San Gorgonio Pass beneath basement rocks of the southeast San Bernardino Mountains. Subtle, long-wavelength magnetic anomalies indicate that a magnetic body extends in the subsurface north of San Gorgonio Pass and south under Peninsular Ranges basement, and has a southern edge that is roughly parallel to, but 5-6 km south of, the surface trace of the Banning fault. This deep magnetic body is composed either of upper-plate rocks of San Gabriel Mountains basement or rocks of San Bernardino Mountains basement or both. We suggest that transpression across the San Gorgonio Pass region drove a wedge of Peninsular Ranges basement and its overlying sedimentary cover northward into the San Bernardino Mountains during the Neogene, offsetting the Banning fault at shallow depth. Average rates of convergence implied by this offset are broadly consistent with estimates of convergence from other geologic and geodetic data. Seismicity suggests a deeper detachment surface beneath the deep magnetic body. This interpretation suggests that the fault mapped at the surface evolved not only in map but also in cross-sectional view. Given the multilayered nature of deformation, it is unlikely that the San Andreas fault will rupture cleanly through the complex structures in San Gorgonio Pass. ?? 2005 Geological Society of America.

  7. Structure and mechanics of the San Andreas-San Gregorio fault junction, San Francisco, California (United States)

    Parsons, Tom; Bruns, Terry R.; Sliter, Ray


    The right-lateral San Gregorio and San Andreas faults meet west of the Golden Gate near San Francisco. Coincident seismic reflection and refraction profiling across the San Gregorio and San Andreas faults south of their junction shows the crust between them to have formed shallow extensional basins that are dissected by parallel strike-slip faults. We employ a regional finite element model to investigate the long-term consequences of the fault geometry. Over the course of 2-3 m.y. of slip on the San Andreas-San Gregorio fault system, elongated extensional basins are predicted to form between the two faults. An additional consequence of the fault geometry is that the San Andreas fault is expected to have migrated eastward relative to the San Gregorio fault. We thus propose a model of eastward stepping right-lateral fault formation to explain the observed multiple fault strands and depositional basins. The current manifestation of this process might be the observed transfer of slip from the San Andreas fault east to the Golden Gate fault.

  8. Status of groundwater quality in the San Fernando--San Gabriel study unit, 2005--California GAMA Priority Basin Project (United States)

    Land, Michael; Kulongoski, Justin T.; Belitz, Kenneth


    Groundwater quality in the approximately 460-square-mile San Fernando--San Gabriel (FG) study unit was investigated as part of the Priority Basin Project of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The study area is in Los Angeles County and includes Tertiary-Quaternary sedimentary basins situated within the Transverse Ranges of southern California. The GAMA Priority Basin Project is being conducted by the California State Water Resources Control Board in collaboration with the U.S. Geological Survey (USGS) and the Lawrence Livermore National Laboratory. The GAMA FG study was designed to provide a spatially unbiased assessment of the quality of untreated (raw) groundwater in the primary aquifer systems (hereinafter referred to as primary aquifers) throughout California. The assessment is based on water-quality and ancillary data collected in 2005 by the USGS from 35 wells and on water-quality data from the California Department of Public Health (CDPH) database. The primary aquifers were defined by the depth interval of the wells listed in the CDPH database for the FG study unit. The quality of groundwater in primary aquifers may be different from that in the shallower or deeper water-bearing zones; shallow groundwater may be more vulnerable to surficial contamination. This study assesses the status of the current quality of the groundwater resource by using data from samples analyzed for volatile organic compounds (VOCs), pesticides, and naturally occurring inorganic constituents, such as major ions and trace elements. This status assessment is intended to characterize the quality of groundwater resources in the primary aquifers of the FG study unit, not the treated drinking water delivered to consumers by water purveyors.

  9. Synthetic seismicity for the San Andreas fault

    Directory of Open Access Journals (Sweden)

    S. N. Ward


    Full Text Available Because historical catalogs generally span only a few repetition intervals of major earthquakes, they do not provide much constraint on how regularly earthquakes recur. In order to obtain better recurrence statistics and long-term probability estimates for events M ? 6 on the San Andreas fault, we apply a seismicity model to this fault. The model is based on the concept of fault segmentation and the physics of static dislocations which allow for stress transfer between segments. Constraints are provided by geological and seismological observations of segment lengths, characteristic magnitudes and long-term slip rates. Segment parameters slightly modified from the Working Group on California Earthquake Probabilities allow us to reproduce observed seismicity over four orders of magnitude. The model yields quite irregular earthquake recurrence patterns. Only the largest events (M ? 7.5 are quasi-periodic; small events cluster. Both the average recurrence time and the aperiodicity are also a function of position along the fault. The model results are consistent with paleoseismic data for the San Andreas fault as well as a global set of historical and paleoseismic recurrence data. Thus irregular earthquake recurrence resulting from segment interaction is consistent with a large range of observations.

  10. SAFOD Penetrates the San Andreas Fault

    Directory of Open Access Journals (Sweden)

    Mark D. Zoback


    Full Text Available SAFOD, the San Andreas Fault Observatory at Depth (Fig. 1, completed an important milestone in July 2005 by drilling through the San Andreas Fault at seismogenic depth. SAFOD is one of three major components of EarthScope, a U.S. National Science Foundation (NSF initiative being conducted in collaboration with the U.S. Geological Survey (USGS. The International Continental Scientific DrillingProgram (ICDP provides engineering and technical support for the project as well as online access to project data and information ( In 2002, the ICDP, the NSF, and the USGS provided funding for a pilot hole project at the SAFOD site. Twenty scientifi c papers summarizing the results of the pilot hole project as well as pre-SAFOD site characterization studies were published in Geophysical Research Letters (Vol.31, Nos. 12 and 15, 2004.

  11. Vertical tectonic deformation associated with the San Andreas fault zone offshore of San Francisco, California (United States)

    Ryan, H. F.; Parsons, T.; Sliter, R. W.


    A new fault map of the shelf offshore of San Francisco, California shows that faulting occurs as a distributed shear zone that involves many fault strands with the principal displacement taken up by the San Andreas fault and the eastern strand of the San Gregorio fault zone. Structures associated with the offshore faulting show compressive deformation near where the San Andreas fault goes offshore, but deformation becomes extensional several km to the north off of the Golden Gate. Our new fault map serves as the basis for a 3-D finite element model that shows that the block between the San Andreas and San Gregorio fault zone is subsiding at a long-term rate of about 0.2-0.3 mm/yr, with the maximum subsidence occurring northwest of the Golden Gate in the area of a mapped transtensional basin. Although the long-term rates of vertical displacement primarily show subsidence, the model of coseismic deformation associated with the 1906 San Francisco earthquake indicates that uplift on the order of 10-15 cm occurred in the block northeast of the San Andreas fault. Since 1906, 5-6 cm of regional subsidence has occurred in that block. One implication of our model is that the transfer of slip from the San Andreas fault to a fault 5 km to the east, the Golden Gate fault, is not required for the area offshore of San Francisco to be in extension. This has implications for both the deposition of thick Pliocene-Pleistocene sediments (the Merced Formation) observed east of the San Andreas fault, and the age of the Peninsula segment of the San Andreas fault.

  12. Abrupt along-strike change in tectonic style: San Andreas Fault zone, San Francisco Peninsula (United States)

    Zoback, Mary Lou; Jachens, Robert C.; Olson, Jean A.


    Seismicity and high-resolution aeromagnetic data are used to define an abrupt change from compressional to extensional tectonism within a 10- to 15-km-wide zone along the San Andreas fault on the San Francisco Peninsula and offshore from the Golden Gate. This 100-km-long section of the San Andreas fault includes the hypocenter of the Mw = 7.8 1906 San Francisco earthquake as well as the highest level of persistent microseismicity along that ˜470-km-long rupture. We define two distinct zones of deformation along this stretch of the fault using well-constrained relocations of all post-1969 earthquakes based a joint one-dimensional velocity/hypocenter inversion and a redetermination of focal mechanisms. The southern zone is characterized by thrust- and reverse-faulting focal mechanisms with NE trending P axes that indicate "fault-normal" compression in 7- to 10-km-wide zones of deformation on both sides of the San Andreas fault. A 1- to 2-km-wide vertical zone beneath the surface trace of the San Andreas is characterized by its almost complete lack of seismicity. The compressional deformation is consistent with the young, high topography of the Santa Cruz Mountains/Coast Ranges as the San Andreas fault makes a broad restraining left bend (˜10°) through the southernmost peninsula. A zone of seismic quiescence ˜15 km long separates this compressional zone to the south from a zone of combined normal-faulting and strike-slip-faulting focal mechanisms (including a ML = 5.3 earthquake in 1957) on the northernmost peninsula and offshore on the Golden Gate platform. Both linear pseudogravity gradients, calculated from the aeromagnetic data, and seismic reflection data indicate that the San Andreas fault makes an abrupt ˜3-km right step less than 5 km offshore in this northern zone. A similar right-stepping (dilatational) geometry is also observed for the subparallel San Gregorio fault offshore. Persistent seismicity and extensional tectonism occur within the San Andreas

  13. Variability of fault slip behavior along the San Andreas Fault in the San Juan Bautista Region (United States)

    Taira, Taka'aki; Bürgmann, Roland; Nadeau, Robert M.; Dreger, Douglas S.


    An improved understanding of the time history of fault slip at depth is an essential step toward understanding the underlying mechanics of the faulting process. Using a waveform cross-correlation approach, we document spatially and temporally varying fault slip along the northernmost creeping section of the San Andreas Fault near San Juan Bautista (SJB), California, by systematically examining spatiotemporal behaviors of characteristically repeating earthquakes (CREs). The spatial distribution of pre-1998 SJB earthquake (1984-1998) fault slip rate inferred from the CREs reveals a ~15 km long low creep or partially locked section located near the 1998 Mw 5.1 SJB earthquake rupture. A finite-fault slip inversion reveals that the rupture of the 1998 SJB earthquake is characterized by the failure of a compact ~4 km2 asperity with a maximum slip of about 90 cm and corresponding peak stress drop of up to 50 MPa, whereas the mean stress drop is about 15 MPa. Following the 1998 earthquake, the CRE activity was significantly increased in a 5-10 km deep zone extending 2-7 km northwest of the main shock, which indicates triggering of substantial aseismic slip. The postseismic slip inferred from the CRE activity primarily propagated to the northwest and released a maximum slip of 9 cm. In this 5-10 km depth range, the estimated postseismic moment release is 8.6 × 1016 N m, which is equivalent to Mw 5.22. The aseismic slip distribution following the 1998 earthquake is not consistent with coseismic stress-driven afterslip but represents a triggered, long-lasting slow earthquake.

  14. Shallow Subsurface Resistivity Profiles Across the San Jose Fault As It Transects the Cal Poly Pomona Campus (United States)

    Chantrapornlert, K. J.; Polet, J.; Colin, H.


    The San Jose fault is a left-lateral strike-slip fault located in the San Gabriel Valley in Southern California. The 1988 (M4.6) and 1990 (M5.2) Upland earthquakes have been attributed to this fault and it has been suggested that it is capable of producing a magnitude M6.0-6.5 earthquake. Sections of the fault are considered to run through the campus of California State Polytechnic University, Pomona as inferred from a 2001 geotechnical engineering report (Geocon, 2001). As it cuts across the campus, the geotechnical engineering report concluded that it has a reverse component of motion. Ascertaining the precise location of the San Jose fault traces on campus is crucial as the university plans its future buildings. Resistivity surveys were conducted across several suggested traces of the fault. The surveys consisted of 24 electrodes in a Wenner electrode configuration with an electrode spacing that varies between 1-5m. An IRIS Instruments Syscal KID switcher unit provided the power source and data recording hardware. The data was processed using IRIS Prosys II software suite before using Geotomo's Res2Dinv software to obtain 2D images of subsurface resistivity for these profiles. A total of 23 surveys were conducted throughout the campus. Surveys were performed before and after rainfall to compensate for the variation of water content and its effect on resistivity. Preliminary results indicate shallow, north-dipping contrasts in resistivity across many of the areas where the fault was previously identified in the Geocon 2001 report. More data will be analyzed to present an enhanced understanding of the San Jose fault in the vicinity of the Cal Poly Pomona campus at AGU.

  15. Faults--Offshore of San Francisco Map Area, California (United States)

    U.S. Geological Survey, Department of the Interior — This part of DS 781 presents data for faults for the geologic and geomorphic map of the Offshore San Francisco map area, California. The vector data file is included...

  16. Faults--Offshore of San Gregorio Map Area, California (United States)

    U.S. Geological Survey, Department of the Interior — This part of SIM 3306 presents data for the faults for the geologic and geomorphic map (see sheet 10, SIM 3306) of the Offshore of San Gregorio map area, California....

  17. Faults--Offshore of San Francisco Map Area, California (United States)

    U.S. Geological Survey, Department of the Interior — This part of DS 781 presents data for faults for the geologic and geomorphic map of the Offshore San Francisco map area, California. The vector data file is included...

  18. Faults--Offshore of San Gregorio Map Area, California (United States)

    U.S. Geological Survey, Department of the Interior — This part of SIM 3306 presents data for the faults for the geologic and geomorphic map (see sheet 10, SIM 3306) of the Offshore of San Gregorio map area, California....

  19. Faults--Offshore of San Francisco Map Area, California (United States)

    U.S. Geological Survey, Department of the Interior — This part of DS 781 presents data for faults for the geologic and geomorphic map of the Offshore San Francisco map area, California. The vector data file is...

  20. Faults--Offshore of San Gregorio Map Area, California (United States)

    U.S. Geological Survey, Department of the Interior — This part of SIM 3306 presents data for the faults for the geologic and geomorphic map (see sheet 10, SIM 3306) of the Offshore of San Gregorio map area,...

  1. San Francisco Bay Area Fault Observations Displayed in Google Earth (United States)

    Lackey, H.; Hernandez, M.; Nayak, P.; Zapata, I.; Schumaker, D.


    According to the United States Geological Survey (USGS), the San Francisco Bay Area has a 62% probability of experiencing a major earthquake in the next 30 years. The Hayward fault and the San Andreas fault are the two main faults in the Bay Area that are capable of producing earthquakes of magnitude 6.7 or larger - a size that could profoundly affect many of the 7 million people who live in the Bay Area. The Hayward fault has a 27% probability of producing a major earthquake in next 30 years, and the San Andreas fault has a 21% probability. Our research group, which is part of the SF-ROCKS high school outreach program, studied the Hayward and San Andreas faults. The goal of our project was to observe these faults at various locations, measure the effects of creep, and to present the data in Google Earth, a freeware tool for the public to easily view and interact with these and other seismic-hazard data. We examined the Hayward and San Andreas faults (as mapped by USGS scientists) in Google Earth to identify various sites where we could possibly find evidence of fault creep. We next visited these sites in the field where we mapped the location using a hand- held Global Positioning System, identified and photographed fault evidence, and measured offset features with a ruler or tape measure. Fault evidence included en echelon shears in pavement, warped buildings, and offset features such as sidewalks. Fault creep offset measurements range from 1.5 19 cm. We also identified possible evidence of fault creep along the San Andreas fault in South San Francisco where it had not been previously described. In Google Earth, we plotted our field sites, linked photographs showing evidence of faulting, and included detailed captions to explain the photographs. We will design a webpage containing the data in a Keyhole Markup Language (KML) file format for display in Google Earth. Any interested person needs only to download the free version of Google Earth software and visit our

  2. A Case for Historic Joint Rupture of the San Andreas and San Jacinto Faults (United States)

    Lozos, J.


    The ~M7.5 southern California earthquake of 8 December 1812 ruptured the San Andreas Fault from Cajon Pass to at least as far north as Pallet Creek (Biasi et al., 2002). The 1812 rupture has also been identified in trenches at Burro Flats to the south (Yule and Howland, 2001). However, the lack of a record of 1812 at Plunge Creek, between Cajon Pass and Burro Flats (McGill et al., 2002), complicates the interpretation of this event as a straightforward San Andreas rupture. Paleoseismic records of a large early 19th century rupture on the northern San Jacinto Fault (Onderdonk et al., 2013; Kendrick and Fumal, 2005) allow for alternate interpretations of the 1812 earthquake. I use dynamic rupture modeling on the San Andreas-San Jacinto junction to determine which rupture behaviors produce slip patterns consistent with observations of the 1812 event. My models implement realistic fault geometry, a realistic velocity structure, and stress orientations based on seismicity literature. Under these simple assumptions, joint rupture of the two faults is the most common behavior. My modeling rules out a San Andreas-only rupture that is consistent with the data from the 1812 earthquake, and also shows that single fault events are unable to match the average slip per event for either fault. The choice of nucleation point affects the details of rupture directivity and slip distribution, but not the first order result that multi-fault rupture is the preferred behavior. While it cannot be definitively said that joint San Andreas-San Jacinto rupture occurred in 1812, these results are consistent with paleoseismic and historic data. This has implications for the possibility of future multi-fault rupture within the San Andreas system, as well as for interpretation of other paleoseismic events in regions of complex fault interactions.

  3. The Tectonics and the Strength of the San Andreas Fault (United States)

    Lavier, L. L.; Bennett, R.


    Contrary to what is inferred from laboratory experiments, the average shear stress supported by the San Andreas fault is likely much less than 100 MPa. Heat flow measurements, stress orientation and shear stress magnitude measurements mostly argue for a very weak fault with an average shear stress lower than 20 MPa or an apparent coefficient of friction less than 0.1. It has been proposed that most of this difference can be explained by heat dissipation by fluid circulation around the fault. However, some workers have shown that with reasonable parameters for fluid flow in and around the fault the strength of the fault remains very weak. We evaluate 2.5 D numerical models of the formation and evolution of the San Andreas Fault zone. We explore a wide range of possible bottom and side boundary conditions to understand their potential effects on the apparent strength of a strike slip-fault. In particular, we consider the effects of a small amount of localized basal traction on one side of the fault. We use the numerical models to simulate partitioning of deformation between thrust and strike-slip faulting constrained by geodetic measurement of fault perpendicular convergence. The strength of the model San Andreas fault is chosen to be consistent with a Mohr-Coulomb failure mechanism for a strong fault consistent with Byerlee's rule. Wrench dominated deformation is driven from the Pacific plate side of the San Andreas fault, and convergence is driven by localized basal traction on the North America side. The rheology assumed in the experiments allows for the spontaneous formation of faults with a Mohr-coulomb plastic formulation in the upper crust, as well as viscous flow in the lower crust. The numerical calculations are performed with an extended version of the numerical code PARAVOZ. We find that a combination of loading from the side and the bottom as well as decoupling between the upper crustal and lower crustal deformation can decrease the shear stresses on the

  4. Geophysical investigation of the fault architecture of the San Andreas - Calaveras Fault junction in central California (United States)

    Watt, J. T.; Jachens, R. C.; Graymer, R. W.; Ponce, D. A.; Simpson, R. W.


    We use potential-field modeling, surface geologic mapping, and relocated seismicity (Waldhauser and Schaff, 2008) to investigate the three-dimensional structure of the San Andreas-Calaveras Fault junction to gain insight into regional tectonics, fault kinematics, and seismic hazards. South of the San Francisco Bay area, the San Andreas and Hayward-Calaveras-Paicines fault zones join to become a single San Andreas Fault. The Paicines fault is the southern-most extension of the Calaveras fault zone. At the surface, the San Andreas and Paicines faults are both creeping (Ryder and Burgmann, 2008), and parallel each other for about 65 km, separated by only 2-3 km. Approximately 175 km of slip has been transferred from the San Andreas onto the Calaveras-Hayward fault system in this area. The current geometry of this junction is not kinematically sustainable without deformation and/or slip on additional fault surfaces in the region (Burford and Savage, 1972). Dislocation modeling involving slip on detachment faults rather than on only strike-slip faults better predicts observations of geodetic displacements in the junction area, signifying the possible existence of active horizontal or dipping structures (Burgmann, 1997). Geophysical evidence suggests that the San Andreas and Paicines faults dip away from eachother within the fault junction, reflecting regional compression across the junction, and we identify multiple structures that may transfer slip through this complex structural zone. Geophysical modeling and relocated seismicity show the San Andreas fault dips steeply to the southwest within the join. Interpretation of relocated seismicity indicates multiple dipping and sub-horizontal faults. In particular, along the northern and southern portions of the junction, northeast-dipping alignments of hypocenters, if projected to the surface, correlate with the trace of the Paicines fault. In addition, we identify a laterally extensive magnetic body 1-8 km below the

  5. High Resolution Seismic Imaging of Fault Zones: Methods and Examples From The San Andreas Fault (United States)

    Catchings, R. D.; Rymer, M. J.; Goldman, M.; Prentice, C. S.; Sickler, R. R.; Criley, C.


    Seismic imaging of fault zones at shallow depths is challenging. Conventional seismic reflection methods do not work well in fault zones that consist of non-planar strata or that have large variations in velocity structure, two properties that occur in most fault zones. Understanding the structure and geometry of fault zones is important to elucidate the earthquake hazard associated with fault zones and the barrier effect that faults impose on subsurface fluid flow. In collaboration with the San Francisco Public Utilities Commission (SFPUC) at San Andreas Lake on the San Francisco peninsula, we acquired combined seismic P-wave and S-wave reflection, refraction, and guided-wave data to image the principal strand of the San Andreas Fault (SAF) that ruptured the surface during the 1906 San Francisco earthquake and additional fault strands east of the rupture. The locations and geometries of these fault strands are important because the SFPUC is seismically retrofitting the Hetch Hetchy water delivery system, which provides much of the water for the San Francisco Bay area, and the delivery system is close to the SAF at San Andreas Lake. Seismic reflection images did not image the SAF zone well due to the brecciated bedrock, a lack of layered stratigraphy, and widely varying velocities. Tomographic P-wave velocity images clearly delineate the fault zone as a low-velocity zone at about 10 m depth in more competent rock, but due to soil saturation above the rock, the P-waves do not clearly image the fault strands at shallower depths. S-wave velocity images, however, clearly show a diagnostic low-velocity zone at the mapped 1906 surface break. To image the fault zone at greater depths, we utilized guided waves, which exhibit high amplitude seismic energy within fault zones. The guided waves appear to image the fault zone at varying depths depending on the frequency of the seismic waves. At higher frequencies (~30 to 40 Hz), the guided waves show strong amplification at the

  6. Ground-Water Quality Data in the San Fernando-San Gabriel Study Unit, 2005 - Results from the California GAMA Program (United States)

    Land, Michael; Belitz, Kenneth


    Ground-water quality in the approximately 460 square mile San Fernando-San Gabriel study unit (SFSG) was investigated between May and July 2005 as part of the Priority Basin Assessment Project of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The GAMA Priority Basin Assessment Project was developed in response to the Groundwater Quality Monitoring Act of 2001 and is being conducted by the U.S. Geological Survey (USGS) in cooperation with the California State Water Resources Control Board (SWRCB). The San Fernando-San Gabriel study was designed to provide a spatially unbiased assessment of raw ground-water quality within SFSG, as well as a statistically consistent basis for comparing water quality throughout California. Samples were collected from 52 wells in Los Angeles County. Thirty-five of the wells were selected using a spatially distributed, randomized grid-based method to provide statistical representation of the study area (grid wells), and seventeen wells were selected to aid in the evaluation of specific water-quality issues or changes in water chemistry along a historic ground-water flow path (understanding wells). The ground-water samples were analyzed for a large number of synthetic organic constituents [volatile organic compounds (VOCs), pesticides and pesticide degradates], constituents of special interest [perchlorate, N-nitrosodimethylamine (NDMA), 1,2,3-trichloropropane (1,2,3-TCP), and 1,4-dioxane], naturally occurring inorganic constituents (nutrients, major and minor ions, and trace elements), radioactive constituents, and microbial indicators. Naturally occurring isotopes (tritium, and carbon-14, and stable isotopes of hydrogen, oxygen, and carbon), and dissolved noble gases also were measured to help identify the source and age of the sampled ground water. Quality-control samples (blanks, replicates, samples for matrix spikes) were collected at approximately one-fifth (11 of 52) of the wells, and the results for these

  7. Probabilistic fault displacement hazards for the southern san andreas fault using scenarios and empirical slips (United States)

    Chen, R.; Petersen, M.D.


    We apply a probabilistic method to develop fault displacement hazard maps and profiles for the southern San Andreas Fault. Two slip models are applied: (1) scenario slip, defined by the ShakeOut rupture model, and (2) empirical slip, calculated using regression equations relating global slip to earthquake magnitude and distance along the fault. The hazard is assessed using a range of magnitudes defined by the Uniform California Earthquake Rupture Forecast and the ShakeOut. For hazard mapping we develop a methodology to partition displacement among multiple fault branches basedon geological observations. Estimated displacement hazard extends a few kilometers wide in areas of multiple mapped fault branches and poor mapping accuracy. Scenario and empirical displacement hazard differs by a factor of two or three, particularly along the southernmost section of the San Andreas Fault. We recommend the empirical slip model with site-specific geological data to constrain uncertainties for engineering applications. ?? 2011, Earthquake Engineering Research Institute.

  8. Effects of Hayward fault interactions with the Rodgers Creek and San Andreas faults (United States)

    Parsons, T.; Geist, E.; Jachens, R.; Sliter, R.; Jaffe, B.


    Finite-element and crustal-structure models of the Hayward fault emphasize its position within a network of interacting faults, and indicate a number of expected influences from other faults. For example, a new structural cross section across San Pablo Bay in association with potential field maps allows us to map and model detailed interactions between the Hayward and Rodgers Creek faults. The two faults do not appear to connect at depth, and finite-element models indicate growing extensional stress in the stepover between the two faults. A model consequence of extensional stress in the stepover, combined with long-term interaction with the San Andreas fault, is normal-stress reduction (unclamping) of the north Hayward fault. If this occurs in the real Earth, then substantial reduction in frictional resistance on the north Hayward fault is expected, which might in turn be expected to influence the distribution of creep. Interaction effects on a shorter time scale are also evident. The 1906 San Francisco, and 1989 Loma Prieta earthquakes are calculated to have reduced stress on the Hayward fault at seismogenic depths. Models of the 1906 earthquake show complex interactions; coseismic static stress changes drop stress on the north Hayward fault while upper mantle viscoelastic relaxation slightly raises the stressing rate. Stress recovery is calculated to have occurred by ~1980, though earthquake probability is still affected by the delay induced by stress reduction. We conclude that the model Hayward fault is strongly influenced by its neighbors, and it is worth considering these effects when studying and attempting to understand the real fault.

  9. Overview of the Southern San Andreas Fault Model (United States)

    Weldon, Ray J.; Biasi, Glenn P.; Wills, Chris J.; Dawson, Timothy E.


    This appendix summarizes the data and methodology used to generate the source model for the southern San Andreas fault. It is organized into three sections, 1) a section by section review of the geological data in the format of past Working Groups, 2) an overview of the rupture model, and 3) a manuscript by Biasi and Weldon (in review Bulletin of the Seismological Society of America) that describes the correlation methodology that was used to help develop the ?geologic insight? model. The goal of the Biasi and Weldon methodology is to quantify the insight that went into developing all A faults; as such it is in concept consistent with all other A faults but applied in a more quantitative way. The most rapidly slipping fault and the only known source of M~8 earthquakes in southern California is the San Andreas fault. As such it plays a special role in the seismic hazard of California, and has received special attention in the current Working Group. The underlying philosophy of the current Working Group is to model the recurrence behavior of large, rapidly slipping faults like the San Andreas from observed data on the size, distribution and timing of past earthquakes with as few assumptions about underlying recurrence behavior as possible. In addition, we wish to carry the uncertainties in the data and the range of reasonable extrapolations from the data to the final model. To accomplish this for the Southern San Andreas fault we have developed an objective method to combine all of the observations of size, timing, and distribution of past earthquakes into a comprehensive set of earthquake scenarios that each represent a possible history of earthquakes for the past ~1400 years. The scenarios are then ranked according to their overall consistency with the data and then the frequencies of all of the ruptures permitted by the current Working Group?s segmentation model are calculated. We also present 30-yr conditional probabilities by segment and compare to previous

  10. Groundwater-quality data in the Santa Cruz, San Gabriel, and Peninsular Ranges Hard Rock Aquifers study unit, 2011-2012: results from the California GAMA program (United States)

    Davis, Tracy A.; Shelton, Jennifer L.


    Groundwater quality in the 2,400-square-mile Santa Cruz, San Gabriel, and Peninsular Ranges Hard Rock Aquifers (Hard Rock) study unit was investigated by the U.S. Geological Survey (USGS) from March 2011 through March 2012, as part of the California State Water Resources Control Board (SWRCB) Groundwater Ambient Monitoring and Assessment (GAMA) Program’s Priority Basin Project (PBP). The GAMA-PBP was developed in response to the California Groundwater Quality Monitoring Act of 2001 and is being conducted in collaboration with the SWRCB and Lawrence Livermore National Laboratory (LLNL). The Hard Rock study unit was the 35th study unit to be sampled as part of the GAMA-PBP.

  11. Microstructural Observations of the San Gregorio Fault, Moss Beach, CA. (United States)

    Baer, S. H.; Tobin, H. J.; Gettemy, G. L.


    The Seal Cove Strand of the San Gregorio Fault at Moss Beach, Ca. is an active, large-offset, dominantly strike-slip fault which is exceptionally well exposed. It cuts the Miocene Purisima Formation at the surface, juxtaposing moderately lithified sandstone and conglomerate interbeds in the hanging wall with mudstones in the footwall. Previous and ongoing work shows that styles of deformation and seismic velocities are dissimilar across the fault zone, and within individual lithologic units. Architectural elements of the fault zone include a 12-30 m wide, variably-foliated central clay-rich core zone, an apparent mixed zone (as described recently for faults in unlithified clastic sediments in other tectonic settings), and a surrounding damage zone. In tandem with an ongoing seismic velocity study, we have characterized microstructural textures present across the fault exposure, applying petrographic study, backscatter electron (BSE) and SEM imaging, and electron microprobe analysis. The resulting characterization elucidates both mineralogic and lithification-state controls on deformation mechanisms. Detailed analysis of microstructural fabrics documents a diversity of deformation mechanisms, including cataclasis, particulate flow, and fracturing, consistent with an interpreted stress path based on deposition, progressive lithification, and finally uplift unloading of the fault rocks, all during ongoing fault displacement. Documentation of characteristics of fabrics in each structural element, especially micro-fracture density, has important implications for interpretation of the fault zone seismic velocity structure.

  12. Evidence for 115 kilometers of right slip on the san gregorio-hosgri fault trend. (United States)

    Graham, S A; Dickinson, W R


    The San Gregorio-Hosgri fault trend is a component of the San Andreas fault system on which there may have been about 115 kilometers of post-early Miocene right-lateral strike slip. If so, right slip on the San Andreas and San Gregorio-Hosgri faults accounts for most of the movement between the Pacific and North American plates since mid-Miocene time. Furthermore, the magnitude of right slip on a Paleogene proto-San Andreas fault inferred from the present distribution of granitic basement is reduced considerably when Neogene-Recent San Gregorio-Hosgri right slip is taken into account.

  13. Loading of the San Andreas fault by flood-induced rupture of faults beneath the Salton Sea (United States)

    Brothers, Daniel; Kilb, Debi; Luttrell, Karen; Driscoll, Neal W.; Kent, Graham


    The southern San Andreas fault has not experienced a large earthquake for approximately 300 years, yet the previous five earthquakes occurred at ~180-year intervals. Large strike-slip faults are often segmented by lateral stepover zones. Movement on smaller faults within a stepover zone could perturb the main fault segments and potentially trigger a large earthquake. The southern San Andreas fault terminates in an extensional stepover zone beneath the Salton Sea—a lake that has experienced periodic flooding and desiccation since the late Holocene. Here we reconstruct the magnitude and timing of fault activity beneath the Salton Sea over several earthquake cycles. We observe coincident timing between flooding events, stepover fault displacement and ruptures on the San Andreas fault. Using Coulomb stress models, we show that the combined effect of lake loading, stepover fault movement and increased pore pressure could increase stress on the southern San Andreas fault to levels sufficient to induce failure. We conclude that rupture of the stepover faults, caused by periodic flooding of the palaeo-Salton Sea and by tectonic forcing, had the potential to trigger earthquake rupture on the southern San Andreas fault. Extensional stepover zones are highly susceptible to rapid stress loading and thus the Salton Sea may be a nucleation point for large ruptures on the southern San Andreas fault.

  14. Clay Mineralogy, Authigenic Smectite Concentration, and Fault Weakening of the San Gregorio Fault; Moss Beach, California (United States)

    Mazzoni, S.; Moore, J.; Bish, D. L.


    The apparently weak nature of the San Andreas fault system poses a fundamental geophysical question. The San Gregorio fault at Moss Beach, CA is an active splay of the right-lateral San Andreas fault zone and has a total offset of about 150 km. At Moss Beach, the San Gregorio fault offsets Pliocene sedimentary rocks and consists of a clay-rich gouge zone, eastern sandstone block, and western mudstone block. In the presence of fluids, smectite clays can swell and become very weak to shearing. We studied a profile of samples across the fault zone and wall rocks to determine if there is a concentration of smectite in the gouge zone and propose a possible formation mechanism. Samples were analyzed using standard quantitative X-ray diffraction methods and software recently developed at Los Alamos National Lab. XRD results show a high smectite/illite (weak clay/strong clay) ratio in the gouge (S/I ratio=2-4), lower in the mudstone (S/I ratio=2), and very low in the sandstone (S/I ratio=1). The variability of smectite/illite ratio in the gouge zone may be evidence of preferential alteration where developed shear planes undergo progressive smectite enrichment. The amount of illite layers in illite/smectites is 5-30%, indicating little illitization; therefore, these fault rocks have not undergone significant diagenesis above 100 degrees C and illite present must be largely detrital. Bulk mineralogy shows significant anti-correlation of smectite with feldspar, especially in the gouge, suggesting authigenic smectite generation from feldspar. Under scanning-electron microscope inspection, smectites have fibrous, grain coating growth fabrics, also suggesting smectite authigenesis. If in situ production of smectite via chemical alteration is possible in active faults, it could have significant implications for self-generated weakening of faults above the smectite-to-illite transition (<150 degrees C, or 5-7km).

  15. San Andreas Fault damage at SAFOD viewed with fault-guided waves (United States)

    Li, Yong-Gang; Malin, Peter E.


    Highly damaged rocks within the San Andreas fault zone at Parkfield form a low-velocity waveguide for seismic waves, giving rise to fault-guided waves. Prominent fault-guided waves have been observed at the San Andreas Fault Observatory at Depth (SAFOD) site, including a surface array across the fault zone and a borehole seismograph placed in the SAFOD well at a depth of ~2.7 km below ground. The resulting observations are modeled here using 3-D finite-difference methods. To fit the amplitude, frequency, and travel-time characteristics of the data, the models require a downward tapering, 30-40-m wide fault-core embedded in a 100-200-m wide jacket. Compared with the intact wall rocks, the core velocities are reduced by ~40% and jacket velocities by ~25%. Based on the depths of earthquakes generating guided waves, we estimate that the low-velocity waveguide along the fault at SAFOD extends at least to depths of ~7 km, more than twice the depth reported in pervious studies.

  16. San Andreas-sized Strike-slip Fault on Europa (United States)


    This mosaic of the south polar region of Jupiter's moon Europa shows the northern 290 kilometers (180 miles) of a strike-slip fault named Astypalaea Linea. The entire fault is about 810 kilometers (500 miles) long, about the size of the California portion of the San Andreas fault, which runs from the California-Mexico border north to the San Francisco Bay. In a strike-slip fault, two crustal blocks move horizontally past one another, similar to two opposing lanes of traffic. Overall motion along the fault seems to have followed a continuous narrow crack along the feature's entire length, with a path resembling steps on a staircase crossing zones that have been pulled apart. The images show that about 50 kilometers (30 miles) of displacement have taken place along the fault. The fault's opposite sides can be reconstructed like a puzzle, matching the shape of the sides and older, individual cracks and ridges broken by its movements. [figure removed for brevity, see original site] The red line marks the once active central crack of the fault. The black line outlines the fault zone, including material accumulated in the regions which have been pulled apart. Bends in the fault have allowed the surface to be pulled apart. This process created openings through which warmer, softer ice from below Europa's brittle ice shell surface, or frozen water from a possible subsurface ocean, could reach the surface. This upwelling of material formed large areas of new ice within the boundaries of the original fault. A similar pulling-apart phenomenon can be observed in the geological trough surrounding California's Salton Sea, in Death Valley and the Dead Sea. In those cases, the pulled-apart regions can include upwelled materials, but may be filled mostly by sedimentary and eroded material from above. One theory is that fault motion on Europa is induced by the pull of variable daily tides generated by Jupiter's gravitational tug on Europa. Tidal tension opens the fault and

  17. Late Quaternary Faulting along the San Juan de los Planes Fault Zone, Baja California Sur, Mexico (United States)

    Busch, M. M.; Coyan, J. A.; Arrowsmith, J.; Maloney, S. J.; Gutierrez, G.; Umhoefer, P. J.


    As a result of continued distributed deformation in the Gulf Extensional Province along an oblique-divergent plate margin, active normal faulting is well manifest in southeastern Baja California. By characterizing normal-fault related deformation along the San Juan de los Planes fault zone (SJPFZ) southwest of La Paz, Baja California Sur we contribute to understanding the patterns and rates of faulting along the southwest gulf-margin fault system. The geometry, history, and rate of faulting provide constraints on the relative significance of gulf-margin deformation as compared to axial system deformation. The SJPFZ is a major north-trending structure in the southern Baja margin along which we focused our field efforts. These investigations included: a detailed strip map of the active fault zone, including delineation of active scarp traces and geomorphic surfaces on the hanging wall and footwall; fault scarp profiles; analysis of bedrock structures to better understand how the pattern and rate of strain varied during the development of this fault zone; and a gravity survey across the San Juan de los Planes basin to determine basin geometry and fault behavior. The map covers a N-S swath from the Gulf of California in the north to San Antonio in the south, an area ~45km long and ~1-4km wide. Bedrock along the SJPFZ varies from Cretaceous Las Cruces Granite in the north to Cretaceous Buena Mujer Tonalite in the south and is scarred by shear zones and brittle faults. The active scarp-forming fault juxtaposes bedrock in the footwall against Late Quaternary sandstone-conglomerate. This ~20m wide zone is highly fractured bedrock infused with carbonate. The northern ~12km of the SJPFZ, trending 200°, preserves discontinuous scarps 1-2km long and 1-3m high in Quaternary units. The scarps are separated by stretches of bedrock embayed by hundreds of meters-wide tongues of Quaternary sandstone-conglomerate, implying low Quaternary slip rate. Further south, ~2 km north of the

  18. The San Andreas fault experiment. [gross tectonic plates relative velocity (United States)

    Smith, D. E.; Vonbun, F. O.


    A plan was developed during 1971 to determine gross tectonic plate motions along the San Andreas Fault System in California. Knowledge of the gross motion along the total fault system is an essential component in the construction of realistic deformation models of fault regions. Such mathematical models will be used in the future for studies which will eventually lead to prediction of major earthquakes. The main purpose of the experiment described is the determination of the relative velocity of the North American and the Pacific Plates. This motion being so extremely small, cannot be measured directly but can be deduced from distance measurements between points on opposite sites of the plate boundary taken over a number of years.

  19. Relations Between Rainfall and Postfire Debris-Flow and Flood Magnitudes for Emergency-Response Planning, San Gabriel Mountains, Southern California (United States)

    Cannon, Susan H.; Boldt, Eric M.; Kean, Jason W.; Laber, Jayme; Staley, Dennis M.


    Following wildfires, emergency-response and public-safety agencies are faced often with making evacuation decisions and deploying resources both well in advance of each coming winter storm and during storms themselves. Information critical to this process is provided for recently burned areas in the San Gabriel Mountains of southern California. The National Weather Service (NWS) issues Quantitative Precipitation Forecasts (QPFs) for the San Gabriel Mountains twice a day, at approximately 4 a.m. and 4 p.m., along with unscheduled updates when conditions change. QPFs provide estimates of rainfall totals in 3-hour increments for the first 12-hour period and in 6-hour increments for the second 12-hour period. Estimates of one-hour rainfall intensities can be provided in the forecast narrative, along with probable peak intensities and timing, although with less confidence than rainfall totals. A compilation of information on the hydrologic response to winter storms from recently burned areas in southern California steeplands was used to develop a system for classifying the magnitude of the postfire hydrologic response. The four-class system is based on a combination of the reported volume of individual debris flows, the consequences of these events in an urban setting, and the spatial extent of the response to the triggering storm. Threshold rainfall conditions associated with debris flow and floods of different magnitude classes are defined by integrating local rainfall data with debris-flow and flood magnitude information. The within-storm rainfall accumulations (A) and durations (D) above which magnitude I events are expected are defined by A=0.3D0.6. The function A=0.5D0.6 defines the within-storm rainfall accumulations and durations above which a magnitude III event will occur in response to a regional-scale storm, and a magnitude II event will occur if the storm affects only a few drainage basins. The function A=1.0D0.5defines the rainfall conditions above which

  20. Gabriel Bertrand


    Jaime Wisniak


    Gabriel Bertrand (1867 -1962), un prolífico bioquímico, farmacéutico y químico Francés, uno de los padres de la enzimología, descubrió un número importante de enzimas, demostró que varias de ellas contenían un metal y la importancia que tienen trazas de muchos elementos en el desarrollo de organismos vivientes. Sintetizó muchas sustancias nuevas por oxidación de azúcares cetónicos y polialcoholes; estudió el veneno de batracios y serpientes y la manera de neutralizar sus efectos; estudió la f...

  1. Gabriel Bertrand

    Directory of Open Access Journals (Sweden)

    Jaime Wisniak


    Full Text Available Gabriel Bertrand (1867 -1962, un prolífico bioquímico, farmacéutico y químico Francés, uno de los padres de la enzimología, descubrió un número importante de enzimas, demostró que varias de ellas contenían un metal y la importancia que tienen trazas de muchos elementos en el desarrollo de organismos vivientes. Sintetizó muchas sustancias nuevas por oxidación de azúcares cetónicos y polialcoholes; estudió el veneno de batracios y serpientes y la manera de neutralizar sus efectos; estudió la fermentación de vinos, la transformación de la xilosa en xilita, los fenómenos producidos por el Aspergillus níger, las acciones de las levaduras, alcaloides, etc.

  2. Fault rocks from the SAFOD core samples : implications for weakening at shallow depths along the San Andreas Fault, California

    NARCIS (Netherlands)

    Holdsworth, R.E.; van Diggelen, E.W.E.; Spiers, C.J.; Bresser, J.H.P. de; Walker, R.J.; Bown, L.


    The drilling of a deep borehole across the actively creeping Parkfield segment of the San Andreas Fault Zone (SAFZ), California, and collection of core materials permit direct geological study of fault zone processes at 2–3 km depth. The three drill cores sample both host and fault rocks and pass th

  3. Fault rocks from the SAFOD core samples : implications for weakening at shallow depths along the San Andreas Fault, California

    NARCIS (Netherlands)

    Holdsworth, R.E.; van Diggelen, E.W.E.; Spiers, C.J.; Bresser, J.H.P. de; Walker, R.J.; Bown, L.


    The drilling of a deep borehole across the actively creeping Parkfield segment of the San Andreas Fault Zone (SAFZ), California, and collection of core materials permit direct geological study of fault zone processes at 2–3 km depth. The three drill cores sample both host and fault rocks and pass th

  4. Small scale heterogeneity of Phanerozoic lower crust: evidence from isotopic and geochemical systematics of mid-Cretaceous granulite gneisses, San Gabriel Mountains, southern California (United States)

    Barth, A.P.; Wooden, J.L.; May, D.J.


    An elongate belt of mid-Cretaceous, compositionally banded gneisses and granulites is exposed in Cucamonga terrane, in the southeastern foothills of the San Gabriel Mountains of southern California. Banded gneisses include mafic granulites of two geochemical types: type 1 rocks are similar to high Al arc basalts and andesites but have higher HFSE (high-field-strength-element) abundances and extremely variable LILE (largeion-lithophile-element) abundances, while type 2 rocks are relatively low in Al and similar to alkali rich MOR (midocean-ridge) or intraplate basalts. Intercalated with mafic granulites are paragneisses which include felsic granulites, aluminous gneisses, marble, and calc-silicate gneisses. Type 1 mafic granulites and calcic trondhjemitic pegmatites also oceur as cross-cutting, synmetamorphic dikes or small plutons. Small-scale heterogeneity of deep continental crust is indicated by the lithologic and isotopic diversity of intercalated ortho-and paragneisses exposed in Cucamonga terrane. Geochemical and isotopic data indicate that K, Rb, and U depletion and Sm/Nd fractionation were associated with biotite +/- muscovite dehydration reactions in type 1 mafic granulites and aluminous gneisses during high-grade metamorphism. Field relations and model initial isotopic ratios imply a wide range of protolith ages, ranging from Early Proterozoic to Phanerozoic. ?? 1992 Springer-Verlag.

  5. The San Andreas fault in the San Francisco Bay region, California: Structure and kinematics of a Young plate boundary (United States)

    Jachens, R.C.; Zoback, M.L.


    Recently acquired high-resolution aeromagnetic data delineate offset and/or truncated magnetic rock bodies of the Franciscan Complex that define the location and structure of, and total offset across, the San Andreas fault in the San Francisco Bay region. Two distinctive magnetic anomalies caused by ultramafic rocks and metabasalts east of, and truncated at, the San Andreas fault have clear counterparts west of the fault that indicate a total right-lateral offset of only 22 km on the Peninsula segment, the active strand that ruptured in 1906. The location of the Peninsula segment is well defined magnetically on the northern peninsula where it goes offshore, and can be traced along strike an additional ~6 km to the northwest. Just offshore from Lake Merced, the inferred fault trace steps right (northeast) 3 km onto a nearly parallel strand that can be traced magnetically northwest more than 20 km as the linear northeast edge of a magnetic block bounded by the San Andreas fault, the Pilarcitos fault, and the San Gregorio-Hosgri fault zone. This right-stepping strand, the Golden Gate segment, joins the eastern mapped trace of the San Andreas fault at Bolinas Lagoon and projects back onshore to the southeast near Lake Merced. Inversion of detailed gravity data on the San Francisco Peninsula reveals a 3 km wide basin situated between the two strands of the San Andreas fault, floored by Franciscan basement and filled with Plio-Quaternary sedimentary deposits of the Merced and Colma formations. The basin, ~1 km deep at the coast, narrows and becomes thinner to the southeast along the fault over a distance of ~12 km. The length, width, and location of the basin between the two strands are consistent with a pull-apart basin formed behind the right step in the right-lateral strike-slip San Andreas fault system and currently moving southeast with the North American plate. Slight nonparallelism of the two strands bounding the basin (implying a small component of convergence

  6. Abundant off-fault seismicity and orthogonal structures in the San Jacinto fault zone (United States)

    Ross, Zachary E.; Hauksson, Egill; Ben-Zion, Yehuda


    The trifurcation area of the San Jacinto fault zone has produced more than 10% of all earthquakes in southern California since 2000, including the June 2016 Mw (moment magnitude) 5.2 Borrego Springs earthquake. In this area, the fault splits into three subparallel strands and is associated with broad VP/VS anomalies. We synthesize spatiotemporal properties of historical background seismicity and aftershocks of the June 2016 event. A template matching technique is used to detect and locate more than 23,000 aftershocks, which illuminate highly complex active fault structures in conjunction with a high-resolution regional catalog. The hypocenters form dipping seismicity lineations both along strike and nearly orthogonal to the main fault, and are composed of interlaced strike-slip and normal faults. The primary faults change dip with depth and become listric by transitioning to a dip of ~70° near a depth of 10 km. The Mw 5.2 Borrego Springs earthquake and past events with M > 4.0 occurred on the main faults, whereas most of the low-magnitude events are located in a damage zone (several kilometers wide) at seismogenic depths. The lack of significant low-magnitude seismicity on the main fault traces suggests that they do not creep. The very high rate of aftershocks likely reflects the large geometrical fault complexity and perhaps a relatively high stress due to a significant length of time elapsed since the last major event. The results provide important insights into the physics of faulting near the brittle-ductile transition. PMID:28345036

  7. Fine-scale delineation of the location of and relative ground shaking within the San Andreas Fault zone at San Andreas Lake, San Mateo County, California (United States)

    Catchings, R.D.; Rymer, M.J.; Goldman, M.R.; Prentice, C.S.; Sickler, R.R.


    The San Francisco Public Utilities Commission is seismically retrofitting the water delivery system at San Andreas Lake, San Mateo County, California, where the reservoir intake system crosses the San Andreas Fault (SAF). The near-surface fault location and geometry are important considerations in the retrofit effort. Because the SAF trends through highly distorted Franciscan mélange and beneath much of the reservoir, the exact trace of the 1906 surface rupture is difficult to determine from surface mapping at San Andreas Lake. Based on surface mapping, it also is unclear if there are additional fault splays that extend northeast or southwest of the main surface rupture. To better understand the fault structure at San Andreas Lake, the U.S. Geological Survey acquired a series of seismic imaging profiles across the SAF at San Andreas Lake in 2008, 2009, and 2011, when the lake level was near historical lows and the surface traces of the SAF were exposed for the first time in decades. We used multiple seismic methods to locate the main 1906 rupture zone and fault splays within about 100 meters northeast of the main rupture zone. Our seismic observations are internally consistent, and our seismic indicators of faulting generally correlate with fault locations inferred from surface mapping. We also tested the accuracy of our seismic methods by comparing our seismically located faults with surface ruptures mapped by Schussler (1906) immediately after the April 18, 1906 San Francisco earthquake of approximate magnitude 7.9; our seismically determined fault locations were highly accurate. Near the reservoir intake facility at San Andreas Lake, our seismic data indicate the main 1906 surface rupture zone consists of at least three near-surface fault traces. Movement on multiple fault traces can have appreciable engineering significance because, unlike movement on a single strike-slip fault trace, differential movement on multiple fault traces may exert compressive and

  8. The San Andreas Fault and a Strike-slip Fault on Europa (United States)


    The mosaic on the right of the south polar region of Jupiter's moon Europa shows the northern 290 kilometers (180 miles) of a strike-slip fault named Astypalaea Linea. The entire fault is about 810 kilometers (500 miles) long, the size of the California portion of the San Andreas fault on Earth which runs from the California-Mexico border north to the San Francisco Bay. The left mosaic shows the portion of the San Andreas fault near California's san Francisco Bay that has been scaled to the same size and resolution as the Europa image. Each covers an area approximately 170 by 193 kilometers(105 by 120 miles). The red line marks the once active central crack of the Europan fault (right) and the line of the San Andreas fault (left). A strike-slip fault is one in which two crustal blocks move horizontally past one another, similar to two opposing lanes of traffic. The overall motion along the Europan fault seems to have followed a continuous narrow crack along the entire length of the feature, with a path resembling stepson a staircase crossing zones which have been pulled apart. The images show that about 50 kilometers (30 miles) of displacement have taken place along the fault. Opposite sides of the fault can be reconstructed like a puzzle, matching the shape of the sides as well as older individual cracks and ridges that had been broken by its movements. Bends in the Europan fault have allowed the surface to be pulled apart. This pulling-apart along the fault's bends created openings through which warmer, softer ice from below Europa's brittle ice shell surface, or frozen water from a possible subsurface ocean, could reach the surface. This upwelling of material formed large areas of new ice within the boundaries of the original fault. A similar pulling apart phenomenon can be observed in the geological trough surrounding California's Salton Sea, and in Death Valley and the Dead Sea. In those cases, the pulled apart regions can include upwelled materials, but may

  9. Could lithospheric instability cause the San Andreas Fault to creep ? (United States)

    Le Pourhiet, L.; Saleeby, J.


    The Southern Sierra Nevada mountains range rapidly uplifted at ≈ 3.5 Ma simultaneously with a pulse of basaltic volcanism. Xenoliths recovered from volcanics indicate that the range lost a dense crustal root after the Miocene. The vertical motions and removal of the root have been linked to a fast seismic velocity anomaly that extends ≈ 200 km into the mantle but is offset to the west of the range. With visco-elasto-plastic thermo-mechanical numerical models, we have tested the influence of crustal strength on the kinematics of removal and on the amount of associated uplift. We find that delamination of the dense root is the most likely mechanism for gravitational instability to occur. In this class of models, the Great Valley deforms by elastic flexure in response to the load exerted by the delaminated root. We therefore explore the influence of the strength of the Great Valley on the wavelength of the flexure and complement 2D models by flexural 3D models. The study shows that for a Te=10 km, the flexural anomaly resulting from the drip pull outlines the limit between the area where the Quaternary sediments are found on-lapping or off-lapping the western flank of the Sierra. On the Western edge of the Sierra Nevada micro plate, the flexural anomaly crosses the San Andreas Fault. Where uplift is predicted Miocene strata are eroding, and where subsidence is predicted Quaternary sediments are at the surface. These geological limits also coincide with the limit of the creeping segment of the Fault. Geological evidence (especially fold kinematics) suggests that the extreme weakness of the San Andreas Fault in that area started during the Pliocene (~3 Ma). This timing also coincides with the rapid uplift of the Sierra Nevada. Simple coincidences or real mechanical link between these two anomalous behaviors? We will present and discuss how flexure could promote lithostatic fluid pressure in the depth range of 7 to 15 km along the creeping segment of the fault, and

  10. A Look Inside the San Andreas fault at Parkfield Through Vertical Seismic Profiling (United States)

    Chavarria, J.A.; Malin, P.; Catchings, R.D.; Shalev, E.


    The San Andreas Fault Observatory at Depth pilot hole is located on the southwestern side of the Parkfield San Andreas fault. This observatory includes a vertical seismic profiling (VSP) array. VSP seismograms from nearby micro-earthquakes contain signals between the P and S waves. These signals may be P and S waves scattered by the local geologic structure. The collected scattering points form planar surfaces that we interpret as the San Andreas fault and four other secondary faults. The scattering process includes conversions between P and S waves, the strengths of which suggest large contrasts in material properties, possibly indicating the presence of cracks or fluids.

  11. Hydrologic conditions and terrestrial laser scanning of post-fire debris flows in the San Gabriel Mountains, CA, U.S.A. (United States)

    Schmidt, Kevin M.; Hanshaw, M.N.; Howle, James F.; Kean, Jason W.; Staley, Dennis M.; Stock, Jonathan D.; Bawden, Gerald W.


    To investigate rainfall-runoff conditions that generate post-wildfire debris flows, we instrumented and surveyed steep, small watersheds along the tectonically active front of the San Gabriel Mountains, California. Fortuitously, we recorded runoff-generated debris-flows triggered by one spatially restricted convective event with 28 mm of rainfall falling over 62 minutes. Our rain gages, nested hillslope overland-flow sensors and soil-moisture probes, as well as a time series of terrestrial laser scanning (TLS) revealed the effects of the storm. Hillslope overland-flow response, along two ~10-m long flow lines perpendicular to and originating from a drainage divide, displayed only a 10 to 20 minute delay from the onset of rainfall with accumulated totals of merely 5-10 mm. Depth-stratified soil-moisture probes displayed a greater time delay, roughly 20- 30 minutes, indicating that initial overland flow was Hortonian. Furthermore, a downstream channel-monitoring array recorded a pronounced discharge peak generated by the passage of a debris flow after 18 minutes of rainfall. At this time, only four of the eleven hillslope overlandflow sensors confirmed the presence of surface-water flow. Repeat TLS and detailed field mapping using GPS document how patterns of rainsplash, overland-flow scour, and rilling contributed to the generation of meter-scale debris flows. In response to a single small storm, the debris flows deposited irregular levees and lobate terminal snouts on hillslopes and caused widespread erosion of the valley axis with ground surface lowering exceeding 1.5 m.

  12. Chemical Weathering in the San Gabriel Mountains of California: The influence of erosion rates, soil depth, and transport processes on soil chemical losses (Invited) (United States)

    Dixon, J. L.; Hartshorn, A. S.; Heimsath, A. M.; Dibiase, R. A.; Whipple, K. X.


    What controls the chemical weathering of soils in actively eroding landscapes? In this study, we explore the tectonic signature on soil weathering in the San Gabriel Mountains (SGM) of California, where propagating waves of incision triggered by increasing rock uplift have resulted in distinctly different hillslope morphologies and erosion rates across the range. We quantify downslope patterns of soil weathering across this landscape using sites that bracket low-gradient hillslopes of the stable upland plateau and hillslopes near the margins of the incising landscape. We use elemental mass balances in rock and soil to index the weathered extent of soils, and couple these extents with previously measured 10Be-derived soil production rates to calculate rates of soil weathering and erosion. Across all sites, Tau-Si—the fractional loss or gain of Si from parent material—averages -0.32±0.04, and the weathered extent of soils generally increases with increasing distance from the hillcrest. However, weathering intensities decrease as hillslope gradients steepen beyond 30°. Chemical weathering extents on slopes controlling mineral supply and residence time. These patterns are consistent with previously published predictive models for denudation-weathering relationships based on mineral weathering kinetics. Variable weathering extents in soils indicate that soil weathering in the SGM is largely kinetically limited. This work provides a field-based quantification of the complex relationship between soil erosion and chemical weathering, and together our data suggest that tectonic forcing strongly influences soil weathering rates and extents through its control on erosion rates, transport processes and soil thickness.

  13. Earthquake stress drops and inferred fault strength on the Hayward Fault, east San Francisco Bay, California (United States)

    Hardebeck, J.L.; Aron, A.


    We study variations in earthquake stress drop with respect to depth, faulting regime, creeping versus locked fault behavior, and wall-rock geology. We use the P-wave displacement spectra from borehole seismic recordings of M 1.0-4.2 earthquakes in the east San Francisco Bay to estimate stress drop using a stack-and-invert empirical Green's function method. The median stress drop is 8.7 MPa, and most stress drops are in the range between 0.4 and 130 MPa. An apparent correlation between stress drop and magnitude is entirely an artifact of the limited frequency band of 4-55 Hz. There is a trend of increasing stress drop with depth, with a median stress drop of ~5 MPa for 1-7 km depth, ~10 MPa for 7-13 km depth, and ~50 MPa deeper than 13 km. We use S=P amplitude ratios measured from the borehole records to better constrain the first-motion focal mechanisms. High stress drops are observed for a deep cluster of thrust-faulting earthquakes. The correlation of stress drops with depth and faulting regime implies that stress drop is related to the applied shear stress. We compare the spatial distribution of stress drops on the Hayward fault to a model of creeping versus locked behavior of the fault and find that high stress drops are concentrated around the major locked patch near Oakland. This also suggests a connection between stress drop and applied shear stress, as the locked patch may experience higher applied shear stress as a result of the difference in cumulative slip or the presence of higher-strength material. The stress drops do not directly correlate with the strength of the proposed wall-rock geology at depth, suggesting that the relationship between fault strength and the strength of the wall rock is complex.

  14. Mantle strength of the San Andreas fault system and the role of mantle-crust feedbacks

    NARCIS (Netherlands)

    Chatzaras, V.; Tikoff, B.; Newman, J.; Withers, A.C.; Drury, M.R.


    In lithospheric-scale strike-slip fault zones, upper crustal strength is well constrained from borehole observations and fault rock deformation experiments, but mantle strength is less well known. Using peridotite xenoliths, we show that the upper mantle below the San Andreas fault system (Californi

  15. The San Andreas Fault in the San Francisco Bay area, California: a geology fieldtrip guidebook to selected stops on public lands (United States)

    Stoffer, Philip W.


    This guidebook contains a series of geology fieldtrips with selected destinations along the San Andreas Fault in part of the region that experienced surface rupture during the Great San Francisco Earthquake of 1906. Introductory materials present general information about the San Andreas Fault System, landscape features, and ecological factors associated with faults in the South Bay, Santa Cruz Mountains, the San Francisco Peninsula, and the Point Reyes National Seashore regions. Trip stops include roadside areas and recommended hikes along regional faults and to nearby geologic and landscape features that provide opportunities to make casual observations about the geologic history and landscape evolution. Destinations include the sites along the San Andreas and Calaveras faults in the San Juan Bautista and Hollister region. Stops on public land along the San Andreas Fault in the Santa Cruz Mountains in Santa Clara and Santa Cruz counties include in the Loma Prieta summit area, Forest of Nicene Marks State Park, Lexington County Park, Sanborn County Park, Castle Rock State Park, and the Mid Peninsula Open Space Preserve. Destinations on the San Francisco Peninsula and along the coast in San Mateo County include the Crystal Springs Reservoir area, Mussel Rock Park, and parts of Golden Gate National Recreation Area, with additional stops associated with the San Gregorio Fault system at Montara State Beach, the James F. Fitzgerald Preserve, and at Half Moon Bay. Field trip destinations in the Point Reyes National Seashore and vicinity provide information about geology and character of the San Andreas Fault system north of San Francisco.

  16. San Andreas fault zone, California: M≥5.5 earthquake history (United States)

    Toppozada, Tousson R.; Branum, D.M.; Reichle, M.S.; Hallstrom, C.L.


    The San Andreas fault zone has been a very significant source of major California earthquakes. From 1812 to 1906 it generated four major earthquakes of M 7 or larger in two pairs on two major portions of the fault. A pair of major earthquakes occurred on the central to southern region, where the 1857 faulting overlapped the 1812 earthquake faulting. A pair of major earthquakes occurred on the northern region, where the 1906 faulting overlapped the 1838 earthquake faulting. Also, earthquakes of M 7 occurred in the San Francisco Bay area on the Hayward fault in 1868 and the Santa Cruz Mountains near Loma Prieta in 1989 and on the Imperial fault near the border with Mexico in 1940.

  17. Discovery Along the San Andreas Fault: Relocating Photographs From the 1906 Earthquake in San Francisco and San Mateo Counties (United States)

    Grove, K.; Prentice, C.; Polly, J.; Yuen, C.; Wu, K.; Zhong, S.; Lopez, J.


    April of 2006 will mark the 100-year anniversary of the great 1906 San Francisco earthquake. This earthquake was important not only because of its human tragedy (thousands of dead or homeless people), but also because of its scientific significance. The 8.3 magnitude earthquake ruptured 430 km of the northern San Andreas fault (SAF) and lasted nearly one minute. Investigations after the earthquake led to discoveries that were the beginning of modern earthquake theories and measuring instruments. This was also one of the first large-scale natural disasters to be photographed. Our research group, which is part of the National Science Foundation funded SF-ROCKS program, acquired photographs that were taken shortly after the earthquake in downtown San Francisco and along the SAF in San Mateo County. The SAF photos are part of a Geographical Information System (GIS) database being published on a U.S. Geological Survey web site. The goal of our project was to improve estimates of photograph locations and to compare the landscape features that were visible after the earthquake with the landscape that we see today. We used the GIS database to find initial photo locations, and we then used a high-precision Global Positioning System (GPS) to measure the geographic coordinates of the locations once we matched our view to what we saw in a photo. Where possible, we used a digital camera to retake photos from the same position, to show the difference in the landscape 100 years later. The 1906 photos show fault zone features such as ground rupture, sag ponds, shutter ridges, and offset fences. Changes to the landscape since 1906 have included erosion and grading of the land, building of houses and other structures, and more tree cover compared to previous grassland vegetation. Our project is part of 1906 Earthquake Centennial activities; it is contributing to the photo archive that helps scientists and engineers who study earthquakes and their effects. It will also help the

  18. Subsurface geometry of the San Andreas-Calaveras fault junction: influence of the Coast Range Ophiolite (United States)

    Watt, J. T.; Ponce, D. A.; Graymer, R. W.; Jachens, R. C.; Simpson, R. W.


    Potential-field modeling, surface geologic mapping, and relocated seismicity are used to investigate the three-dimensional structure of the San Andreas-Calaveras fault junction to gain insight into regional tectonics, fault kinematics, and seismic hazard. South of the San Francisco Bay area, the San Andreas and Hayward-Calaveras fault zones join to become a single San Andreas Fault. The fault junction, as defined in this study, represents a three-dimensional volume of crust extending from San Juan Bautista in the north to Bitterwater Valley in the south, bounded by the San Andreas Fault on the southwest and the Calaveras fault zone on the northeast. South of Hollister, the Calaveras fault zone includes the Paicines, San Benito, and Pine Rock faults. Within the junction, the San Andreas and Calaveras faults are both creeping at the surface, and strike parallel to each other for about 50 km, separated by only 2 to 6 km, but never actually merge at the surface. Geophysical evidence suggests that the San Andreas and Calaveras faults dip away from each other within the northern portion of the fault junction, bounding a triangular wedge of crust. This wedge changes shape to the south as the dips of both the San Andreas and Calaveras faults vary along strike. The main trace of the San Andreas Fault is clearly visible in cross-sections of relocated seismicity as a vertical to steeply southwest-dipping structure between 5 and 10 km depth throughout the junction. The Calaveras fault dips steeply to the northeast in the northern part of the junction. Near the intersection with the Vallecitos syncline, the dip of the Calaveras fault, as identified in relocated seismicity, shallows to 60 degrees. Northeast of the Calaveras fault, we identify a laterally extensive magnetic body 1 to 8 km below the surface that we interpret as a folded 1 to 3 km-thick tabular body of Coast Range Ophiolite at the base of the Vallecitos syncline. Potential-field modeling and relocated seismicity

  19. Interseismic interactions in geometrically complex fault systems: Implications for San Francisco Bay Area fault creep and tectonics (United States)

    Evans, E. L.; Meade, B. J.; Loveless, J. P.


    Fault systems at active plate boundaries accommodate the differential motion of tectonic plates through slip on anastomosing faults within the seismogenic upper crust. The partitioning of slip across fault systems can be inferred from models of space-based geodetic measurements to estimate both fault slip rates and interseismic fault creep. Covariance between slip rate estimates on sub-parallel faults may be significant but can be reduced with the addition of the fundamental constraint that total slip across a fault system must sum to the differential plate motion rate. The importance of ensuring such kinematic consistency becomes increasingly important in strike-slip fault systems such as in the San Francisco Bay Area, where slip is localized across 4-8 sub-parallel faults with San Francisco Bay Area constrained by both GPS and InSAR observations and find that this effect may lead to a substantial revision of interseismic creep estimates on the Hayward fault by as much as 6 mm/yr at depth.

  20. Predictive Upper Cretaceous to Early Miocene Paleogeography of the San Andreas Fault System (United States)

    Burnham, K.


    Paleogeographic reconstruction of the region of the San Andreas fault was hampered for more than twenty years by the apparent incompatibility of authoritative lithologic correlations. These led to disparate estimates of dextral strike-slip offsets, notably 315 km between Pinnacles and Neenach Volcanics (Matthews, 1976), versus 563 km between Anchor Bay and Eagle Rest Peak (Ross et al., 1973). In addition, estimates of total dextral slip on the San Gregorio fault have ranged from 5 km to 185 km. Sixteen upper Cretaceous and Paleogene conglomerates of the California Coast Ranges, from Anchor Bay to Simi Valley, have been included in a multidisciplinary study. Detailed analysis, including microscopic petrography and microprobe geochemistry, verified Seiders and Cox's (1992) and Wentworth's (1996) correlation of the upper Cretaceous Strata of Anchor Bay with an unnamed conglomerate east of Half Moon Bay. Similar detailed study, with the addition of SHRIMP U/Pb zircon dating, verified that the Paleocene or Eocene Point Reyes Conglomerate at Point Reyes is a tectonically displaced segment of the Carmelo Formation of Point Lobos. These studies centered on identification of matching unique clast varieties, rather than on simply counting general clast types, and included analyses of matrices, fossils, paleocurrents, diagenesis, adjacent rocks, and stratigraphy. The work also led to three new correlations: the Point Reyes Conglomerate with granitic source rock at Point Lobos; a magnetic anomaly at Black Point with a magnetic anomaly near San Gregorio; and the Strata of Anchor Bay with previously established source rock, the potassium-poor Logan Gabbro (Ross et al., 1973) at a more recently recognized location (Brabb and Hanna, 1981; McLaughlin et al., 1996) just east of the San Gregorio fault, south of San Gregorio. From these correlations, an upper Cretaceous early Oligocene paleogeography of the San Andreas fault system was constructed that honors both the Anchor Bay

  1. Low strength of deep San Andreas fault gouge from SAFOD core (United States)

    Lockner, David A.; Morrow, Carolyn A.; Moore, Diane E.; Hickman, Stephen H.


    The San Andreas fault accommodates 28–34 mm yr−1 of right lateral motion of the Pacific crustal plate northwestward past the North American plate. In California, the fault is composed of two distinct locked segments that have produced great earthquakes in historical times, separated by a 150-km-long creeping zone. The San Andreas Fault Observatory at Depth (SAFOD) is a scientific borehole located northwest of Parkfield, California, near the southern end of the creeping zone. Core was recovered from across the actively deforming San Andreas fault at a vertical depth of 2.7 km (ref. 1). Here we report laboratory strength measurements of these fault core materials at in situ conditions, demonstrating that at this locality and this depth the San Andreas fault is profoundly weak (coefficient of friction, 0.15) owing to the presence of the smectite clay mineral saponite, which is one of the weakest phyllosilicates known. This Mg-rich clay is the low-temperature product of metasomatic reactions between the quartzofeldspathic wall rocks and serpentinite blocks in the fault2, 3. These findings provide strong evidence that deformation of the mechanically unusual creeping portions of the San Andreas fault system is controlled by the presence of weak minerals rather than by high fluid pressure or other proposed mechanisms1. The combination of these measurements of fault core strength with borehole observations1, 4, 5 yields a self-consistent picture of the stress state of the San Andreas fault at the SAFOD site, in which the fault is intrinsically weak in an otherwise strong crust.

  2. Mechanical insights into tectonic reorganization of the southern San Andreas fault system at ca. 1.1-1.5 Ma (United States)

    Fattaruso, L.; Cooke, M. L.; Dorsey, R. J.


    Reorganization of active fault systems may result from changes in relative plate motion and evolving fault geometries. Between ~1.5 and 1.1 Ma the southern San Andreas fault system underwent a major reorganization that included initiation of the San Jacinto fault zone, termination of slip on the extensional West Salton detachment fault, and reorganization of structures in the Mecca Hills northeast of the San Andreas fault during a local change from transtension to transpression conditions with no known change in Pacific-North America relative plate motion. The active trace of the southern San Andreas fault itself also evolved during this time, with shifts in activity from the Mission Creek to Mill Creek to the present-day active fault geometry of the San Bernardino, Garnet Hill, and Banning strands of the San Andreas fault. Although there is a rich geologic record of these changes, the mechanisms that controlled abandonment of active faults, initiation of new strands, and shifting loci of uplift are poorly understood. We use three-dimensional mechanical Boundary Element Method models to investigate this major tectonic reorganization at ~1.1-1.5 Ma. Previous mechanical modeling studies have examined the evolution of the southern San Andreas fault geometry in the San Gorgonio Pass using a series of snapshot models of the succession of active fault geometries. We use the same approach to explore the role of fault interaction and tectonic loading in abandonment of the West Salton detachment fault and initiation of the San Jacinto fault. The snapshots include: (1) regional transtension with an active West Salton detachment fault and active Mission Creek strand of the San Andreas fault; (2) cessation of local extension in combination with initiation of the San Jacinto fault in which we explore both north-to-south propagation and simultaneous growth; (3) shift of activity to the Mill Creek strand of the San Andreas fault; and (4) shift of activity to the present

  3. Location and Shallow Structure of the Frijoles Strand of the San Gregorio Fault Zone, Pescadero, California (United States)

    Fox-Lent, C.; Catchings, R. D.; Rymer, M. J.; Goldman, M. R.; Steedman, C. E.; Prentice, C. S.


    The San Gregorio fault is one of the principal faults of the San Andreas fault system in the San Francisco Bay area. Located west of the active trace of the San Andreas fault and near the coast, the San Gregorio fault zone consists of at least two northwest-southeast-trending strands, the Coastways and Frijoles faults. Little is known about the slip history on the San Gregorio, and information for the Frijoles fault is especially scarce, as it lies mostly offshore. To better understand the contribution of the San Gregorio fault zone to slip along the San Andreas fault system, we conducted a high-resolution, seismic imaging investigation of the Frijoles fault to locate near-surface, onshore, branches of the fault that may be suitable for paleoseismic trenching. Our seismic survey consisted of a 590-meter-long, east-west-trending, combined seismic reflection and refraction profile across Butano Creek Valley, in Pescadero, California. The profile included 107 shot points and 120 geophones spaced at 5-m increments. Seismic sources were generated by a Betsy Seisgun in 0.3-m-deep holes. Data were recorded on two Geometrics Strataview RX-60 seismographs at a sampling rate of 0.5 ms. Seismic p-wave velocities, determined by inverting first-arrival refractions using tomographic methods, ranged from 900 m/s in the shallow subsurface to 5000 m/s at 200 m depth, with higher velocities in the western half of the profile. Migrated seismic reflection images show clear, planar layering in the top 100-200 meters on the eastern and western ends of the seismic profile. However, to within the shallow subsurface, a 200-m-long zone near the center of the profile shows disturbed stratigraphic layers with several apparent fault strands approaching within a few meters of the surface. The near-surface locations of the imaged strands suggest that the Frijoles fault has been active in the recent past, although further paleoseismic study is needed to detail the slip history of the San Gregorio

  4. Slip rates on San Francisco Bay area faults from anelastic deformation of the continental lithosphere (United States)

    Geist, Eric L.; Andrews, D. J.


    Long-term slip rates on major faults in the San Francisco Bay area are predicted by modeling the anelastic deformation of the continental lithosphere in response to regional relative plate motion. The model developed by Bird and Kong [1994] is used to simulate lithospheric deformation according to a Coulomb frictional rheology of the upper crust and a dislocation creep rheology at depth. The focus of this study is the long-term motion of faults in a region extending from the creeping section of the San Andreas fault to the south up to the latitude of Cape Mendocino to the north. Boundary conditions are specified by the relative motion between the Pacific plate and the Sierra Nevada-Great Valley microplate [Argus and Gordon, 2000]. Rheologic-frictional parameters are specified as independent variables, and prediction errors are calculated with respect to geologic estimates of slip rates and maximum compressive stress directions. The model that best explains the region-wide observations is one in which the coefficient of friction on all of the major faults is less than 0.15, with the coefficient of friction for the San Andreas fault being approximately 0.09, consistent with previous inferences of San Andreas fault friction. Prediction error increases with lower fault friction on the San Andreas, indicating a lower bound of μSAF > 0.08. Discrepancies with respect to previous slip rate estimates include a higher than expected slip rate along the peninsula segment of the San Andreas fault and a slightly lower than expected slip rate along the San Gregorio fault.

  5. The Eastern California Shear Zone as the northward extension of the southern San Andreas Fault (United States)

    Thatcher, Wayne R.; Savage, James C.; Simpson, Robert W.


    Cluster analysis offers an agnostic way to organize and explore features of the current GPS velocity field without reference to geologic information or physical models using information only contained in the velocity field itself. We have used cluster analysis of the Southern California Global Positioning System (GPS) velocity field to determine the partitioning of Pacific-North America relative motion onto major regional faults. Our results indicate the large-scale kinematics of the region is best described with two boundaries of high velocity gradient, one centered on the Coachella section of the San Andreas Fault and the Eastern California Shear Zone and the other defined by the San Jacinto Fault south of Cajon Pass and the San Andreas Fault farther north. The ~120 km long strand of the San Andreas between Cajon Pass and Coachella Valley (often termed the San Bernardino and San Gorgonio sections) is thus currently of secondary importance and carries lesser amounts of slip over most or all of its length. We show these first order results are present in maps of the smoothed GPS velocity field itself. They are also generally consistent with currently available, loosely bounded geologic and geodetic fault slip rate estimates that alone do not provide useful constraints on the large-scale partitioning we show here. Our analysis does not preclude the existence of smaller blocks and more block boundaries in Southern California. However, attempts to identify smaller blocks along and adjacent to the San Gorgonio section were not successful.

  6. Gravity constraints on the geometry of the Big Bend of the San Andreas Fault in the southern Carrizo Plains and Pine Mountain egion (United States)

    Altintas, Ali Can

    either side of the fault are Proterozoic - Cretaceous metamorphic or/and plutonic rocks. Previous work based on geologic mapping hypothesized the existence of a shallow, low angle Abel Mountain Thrust in which crystalline rocks were thrust over Miocene sedimentary rocks, near Apache Saddle. However, gravity models indicate the crystalline rocks are vertically extensive and form a positive flower structure bounded by high angle faults. Also, based on the thickness of fault adjacent sedimentary cover, the gravity models suggest a minimum exhumation of 5-6 km for crystalline rocks in the south. Assuming exhumation began with the switch from the transtensional San Gabriel Fault to transpressional San Andreas Fault at approximately 5 Ma, this indicates exhumation rates of 1 km/Ma. Overall, the broad gravity highs observed along the southern transects are due to uplift of basement rocks in this area.

  7. Lessons learned from an emergency release of a post-fire debris-flow hazard assessment for the 2009 Station fire, San Gabriel Mountains, southern California (United States)

    Cannon, S. H.; Perry, S. C.; Staley, D. M.


    The 2009 Station fire burned through portions of the steep, rugged terrain of the San Gabriel Mountains in southern California with a known history of producing large magnitude debris flows following fires. In response to the emergency, the U.S. Geological Survey released an assessment of debris-flow hazards as maps showing estimates of the probability and volume of debris-flow production from 678 burned drainage basins, and the areas that may be inundated by debris flows. The assessment was based on statistical-empirical models developed from post-fire hydrologic-response monitoring data throughout southern California steeplands. The intent of the assessment was to provide state-of-the-art information about potential debris-flow impacts to the public, and quantitative data critical for mitigation, resource-deployment and evacuation decisions by land-management, city and county public-works and flood-control, and emergency-response agencies. Here, we describe a research scientist perspective of the hits and misses associated with the release of this information. Release of the assessment was accompanied by an extensive multi-agency public information campaign. Hazards information was provided to the media and presented at numerous well-attended public meetings organized by local politicians, homeowner and religious associations, city councils, and a multi-agency response team. Meetings targeted to specific ethnic and religious groups resulted in increased attendance by members of these groups. Even with the extensive information campaign, the public response to both mandatory and voluntary evacuation orders was low, and decreased with each sequential winter storm. Interviews with local residents indicated that the low compliance could be attributed to: 1) a lack of a personal understanding of just how dangerous and destructive debris flows can be, 2) inconsistent messaging from different agencies regarding potential magnitudes of a debris-flow response, 3) a poor

  8. Pleistocene Brawley and Ocotillo Formations: Evidence for initial strike-slip deformation along the San Felipe and San Jacinto fault zonez, Southern California (United States)

    Kirby, S.M.; Janecke, S.U.; Dorsey, R.J.; Housen, B.A.; Langenheim, V.E.; McDougall, K.A.; Steeley, A.N.


    We examine the Pleistocene tectonic reorganization of the Pacific-North American plate boundary in the Salton Trough of southern California with an integrated approach that includes basin analysis, magnetostratigraphy, and geologic mapping of upper Pliocene to Pleistocene sedimentary rocks in the San Felipe Hills. These deposits preserve the earliest sedimentary record of movement on the San Felipe and San Jacinto fault zones that replaced and deactivated the late Cenozoic West Salton detachment fault. Sandstone and mudstone of the Brawley Formation accumulated between ???1.1 and ???0.6-0.5 Ma in a delta on the margin of an arid Pleistocene lake, which received sediment from alluvial fans of the Ocotillo Formation to the west-southwest. Our analysis indicates that the Ocotillo and Brawley formations prograded abruptly to the east-northeast across a former mud-dominated perennial lake (Borrego Formation) at ???1.1 Ma in response to initiation of the dextral-oblique San Felipe fault zone. The ???25-km-long San Felipe anticline initiated at about the same time and produced an intrabasinal basement-cored high within the San Felipe-Borrego basin that is recorded by progressive unconformities on its north and south limbs. A disconformity at the base of the Brawley Formation in the eastern San Felipe Hills probably records initiation and early blind slip at the southeast tip of the Clark strand of the San Jacinto fault zone. Our data are consistent with abrupt and nearly synchronous inception of the San Jacinto and San Felipe fault zones southwest of the southern San Andreas fault in the early Pleistocene during a pronounced southwestward broadening of the San Andreas fault zone. The current contractional geometry of the San Jacinto fault zone developed after ???0.5-0.6 Ma during a second, less significant change in structural style. ?? 2007 by The University of Chicago. All rights reserved.

  9. Recent deformation on the San Diego Trough and San Pedro Basin fault systems, offshore Southern California: Assessing evidence for fault system connectivity. (United States)

    Bormann, J. M.; Kent, G. M.; Driscoll, N. W.; Harding, A. J.


    The seismic hazard posed by offshore faults for coastal communities in Southern California is poorly understood and may be considerable, especially when these communities are located near long faults that have the ability to produce large earthquakes. The San Diego Trough fault (SDTF) and San Pedro Basin fault (SPBF) systems are active northwest striking, right-lateral faults in the Inner California Borderland that extend offshore between San Diego and Los Angeles. Recent work shows that the SDTF slip rate accounts for 25% of the 6-8 mm/yr of deformation accommodated by the offshore fault network, and seismic reflection data suggest that these two fault zones may be one continuous structure. Here, we use recently acquired CHIRP, high-resolution multichannel seismic (MCS) reflection, and multibeam bathymetric data in combination with USGS and industry MCS profiles to characterize recent deformation on the SDTF and SPBF zones and to evaluate the potential for an end-to-end rupture that spans both fault systems. The SDTF offsets young sediments at the seafloor for 130 km between the US/Mexico border and Avalon Knoll. The northern SPBF has robust geomorphic expression and offsets the seafloor in the Santa Monica Basin. The southern SPBF lies within a 25-km gap between high-resolution MCS surveys. Although there does appear to be a through-going fault at depth in industry MCS profiles, the low vertical resolution of these data inhibits our ability to confirm recent slip on the southern SPBF. Empirical scaling relationships indicate that a 200-km-long rupture of the SDTF and its southern extension, the Bahia Soledad fault, could produce a M7.7 earthquake. If the SDTF and the SPBF are linked, the length of the combined fault increases to >270 km. This may allow ruptures initiating on the SDTF to propagate within 25 km of the Los Angeles Basin. At present, the paleoseismic histories of the faults are unknown. We present new observations from CHIRP and coring surveys at

  10. Recent faulting in the Gulf of Santa Catalina: San Diego to Dana Point (United States)

    Ryan, H.F.; Legg, M.R.; Conrad, J.E.; Sliter, R.W.


    We interpret seismic-reflection profiles to determine the location and offset mode of Quaternary offshore faults beneath the Gulf of Santa Catalina in the inner California Continental Borderland. These faults are primarily northwest-trending, right-lateral, strike-slip faults, and are in the offshore Rose Canyon-Newport-Inglewood, Coronado Bank, Palos Verdes, and San Diego Trough fault zones. In addition we describe a suite of faults imaged at the base of the continental slope between Dana Point and Del Mar, California. Our new interpretations are based on high-resolution, multichannel seismic (MCS), as well as very high resolution Huntec and GeoPulse seismic-reflection profiles collected by the U.S. Geological Survey from 1998 to 2000 and MCS data collected by WesternGeco in 1975 and 1981, which have recently been made publicly available. Between La Jolla and Newport Beach, California, the Rose Canyon and Newport-Inglewood fault zones are multistranded and generally underlie the shelf break. The Rose Canyon fault zone has a more northerly strike; a left bend in the fault zone is required to connect with the Newport-Inglewood fault zone. A prominent active anticline at mid-slope depths (300-400 m) is imaged seaward of where the Rose Canyon fault zone merges with the Newport-Inglewood fault zone. The Coronado Bank fault zone is a steeply dipping, northwest-trending zone consisting of multiple strands that are imaged from south of the U.S.-Mexico border to offshore of San Mateo Point. South of the La Jolla fan valley, the Coronado Bank fault zone is primarily transtensional; this section of the fault zone ends at the La Jolla fan valley in a series of horsetail splays. The northern section of the Coronado Bank fault zone is less well developed. North of the La Jolla fan valley, the Coronado Bank fault zone forms a positive flower structure that can be mapped at least as far north as Oceanside, a distance of ??35 km. However, north of Oceanside, the Coronado Bank

  11. Distributed Plate Boundary Deformation Across the San Andreas Fault System, Central California (United States)

    Dyson, M.; Titus, S. J.; Demets, C.; Tikoff, B.


    Plate boundaries are now recognized as broad zones of complex deformation as opposed to narrow zones with discrete offsets. When assessing how plate boundary deformation is accommodated, both spatially and temporally, it is therefore crucial to understand the relative contribution of the discrete and distributed components of deformation. The creeping segment of the San Andreas fault is an ideal location to study the distribution of plate boundary deformation for several reasons. First, the geometry of the fault system in central California is relatively simple. Plate motion is dominated by slip along the relatively linear strike-slip San Andreas fault, but also includes lesser slip along the adjacent and parallel Hosgri-San Gregorio and Rinconada faults, as well as within the borderlands between the three fault strands. Second, the aseismic character of the San Andreas fault in this region allows for the application of modern geodetic techniques to assess creep rates along the fault and across the region. Third, geologic structures within the borderlands are relatively well-preserved allowing comparison between modern and ancient rates and styles of deformation. Continuous GPS stations, alignment arrays surveys, and other geodetic methods demonstrate that approximately 5 mm/yr of distributed slip is accumulated (on top of the fault slip rate) across a 70-100 km wide region centered on the San Andreas fault. New campaign GPS data also suggest 2-5 mm/yr of deformation in the borderlands. These rates depend on the magnitude of the coseismic and postseismic corrections that must be made to our GPS time series to compensate for the 2003 San Simeon and 2004 Parkfield earthquakes, which rupture faults outside, but near the edges of our GPS network. The off-fault deformation pattern can be compared to the style of permanent deformation recorded in the geologic record. Fold and thrust belts in the borderlands are better developed in the Tertiary sedimentary rocks west of

  12. Identification of Necessary Conditions for Super-shear Wave Rupture Speeds: The San Andreas Fault (United States)

    Das, S.


    The 2001 Kunlun, Tibet earthquake taught us that the portion of a strike-slip fault most likely to propagate at super-shear speeds are the long straight portions. This is only a necessary (but not sufficient) condition. That is, once a fault accelerates to the maximum permissible speed, it can continue at this speed provided it is straight and there are no obstacles along the way, and provided the fault friction is low. For the Tibet earthquake, the 100 km region of highest rupture speed also had the highest slip rate, the highest slip and the highest stress drop (Robinson et al., JGR, 2006). Off-fault cracks due to the passage of the Mach cone exists in only that portion of the fault identified as travelling at super-shear speed and not in other places along the fault (Bhat et al., JGR, 2007). Re-examination of earlier reports of super-shear rupture speeds on the North Anatolian fault and the Denali fault show that such speeds did occur on the straight section of these faults. Of course all straight portions of faults will not reach super-shear speeds. So what can the Tibet earthquake teach us about the San Andreas fault? Both the 1906 and the 1857 have long, straight portions, the former having been identified by Song et al. (EOS, 2005) as having reached super-shear speeds to the north of San Francisco, the region of highest slip. If the repeat of the 1857 starts in the central valley, as it is believed to have done in 1857, it has the potential to propagate at super-shear speeds through the long, straight portion of the San Andread fault in the Carrizo Plain, the region believed to have had the largest displacement in 1857 based on paleoseismic studies. The resulting shock waves would strike the highly populated regions of Santa Barbara and the Los Angeles Basin (Das, Science, 2007).

  13. Migrating tremors illuminate complex deformation beneath the seismogenic San Andreas fault (United States)

    Shelly, D.R.


    The San Andreas fault is one of the most extensively studied faults in the world, yet its physical character and deformation mode beneath the relatively shallow earthquake-generating portion remain largely unconstrained. Tectonic non-volcanic tremor, a recently discovered seismic signal probably generated by shear slip on the deep extension of some major faults, can provide new insight into the deep fate of such faults, including that of the San Andreas fault near Parkfield, California. Here I examine continuous seismic data from mid-2001 to 2008, identifying tremor and decomposing the signal into different families of activity based on the shape and timing of the waveforms at multiple stations. This approach allows differentiation between activities from nearby patches of the deep fault and begins to unveil rich and complex patterns of tremor occurrence. I find that tremor exhibits nearly continuous migration, with the most extensive episodes propagating more than 20 kilometres along fault strike at rates of 15-80 kilometres per hour. This suggests that the San Andreas fault remains a localized through-going structure, at least to the base of the crust, in this area. Tremor rates and recurrence behaviour changed markedly in the wake of the 2004 magnitude-6.0 Parkfield earthquake, but these changes were far from uniform within the tremor zone, probably reflecting heterogeneous fault properties and static and dynamic stresses decaying away from the rupture. The systematic recurrence of tremor demonstrated here suggests the potential to monitor detailed time-varying deformation on this portion of the deep San Andreas fault, deformation which unsteadily loads the shallower zone that last ruptured in the 1857 magnitude-7.9 Fort Tejon earthquake. ?? 2010 Macmillan Publishers Limited. All rights reserved.

  14. Scientific drilling into the San Andreas Fault Zone - an overview of SAFOD's first five years (United States)

    Zoback, Mark; Hickman, Stephen; Ellsworth, William; ,


    The San Andreas Fault Observatory at Depth (SAFOD) was drilled to study the physical and chemical processes controlling faulting and earthquake generation along an active, plate-bounding fault at depth. SAFOD is located near Parkfield, California and penetrates a section of the fault that is moving due to a combination of repeating microearthquakes and fault creep. Geophysical logs define the San Andreas Fault Zone to be relatively broad (~200 m), containing several discrete zones only 2–3 m wide that exhibit very low P- and S-wave velocities and low resistivity. Two of these zones have progressively deformed the cemented casing at measured depths of 3192 m and 3302 m. Cores from both deforming zones contain a pervasively sheared, cohesionless, foliated fault gouge that coincides with casing deformation and explains the observed extremely low seismic velocities and resistivity. These cores are being now extensively tested in laboratories around the world, and their composition, deformation mechanisms, physical properties, and rheological behavior are studied. Downhole measurements show that within 200 m (maximum) of the active fault trace, the direction of maximum horizontal stress remains at a high angle to the San Andreas Fault, consistent with other measurements. The results from the SAFOD Main Hole, together with the stress state determined in the Pilot Hole, are consistent with a strong crust/weak fault model of the San Andreas. Seismic instrumentation has been deployed to study physics of faulting—earthquake nucleation, propagation, and arrest—in order to test how laboratory-derived concepts scale up to earthquakes occurring in nature.

  15. Tectonic history of the north portion of the San Andreas fault system, California, inferred from gravity and magnetic anomalies (United States)

    Griscom, A.; Jachens, R.C.


    Geologic and geophysical data for the San Andreas fault system north of San Francisco suggest that the eastern boundary of the Pacific plate migrated eastward from its presumed original position at the base of the continental slope to its present position along the San Andreas transform fault by means of a series of eastward jumps of the Mendocino triple junction. These eastward jumps total a distance of about 150 km since 29 Ma. Correlation of right-laterally displaced gravity and magnetic anomalies that now have components at San Francisco and on the shelf north of Point Arena indicates that the presently active strand of the San Andreas fault north of the San Francisco peninsula formed recently at about 5 Ma when the triple junction jumped eastward a minimum of 100 km to its present location at the north end of the San Andreas fault. -from Authors

  16. Elevated time-dependent strengthening rates observed in San Andreas Fault drilling samples (United States)

    Ikari, Matt J.; Carpenter, Brett M.; Vogt, Christoph; Kopf, Achim J.


    The central San Andreas Fault in California is known as a creeping fault, however recent studies have shown that it may be accumulating a slip deficit and thus its seismogenic potential should be seriously considered. We conducted laboratory friction experiments measuring time-dependent frictional strengthening (healing) on fault zone and wall rock samples recovered during drilling at the San Andreas Fault Observatory at Depth (SAFOD), located near the southern edge of the creeping section and in the direct vicinity of three repeating microearthquake clusters. We find that for hold times of up to 3000 s, frictional healing follows a log-linear dependence on hold time and that the healing rate is very low for a sample of the actively shearing fault core, consistent with previous results. However, considering longer hold times up to ∼350,000 s, the healing rate accelerates such that the data for all samples are better described by a power law relation. In general, samples having a higher content of phyllosilicate minerals exhibit low log-linear healing rates, and the notably clay-rich fault zone sample also exhibits strong power-law healing when longer hold times are included. Our data suggest that weak faults, such as the creeping section of the San Andreas Fault, can accumulate interseismic shear stress more rapidly than expected from previous friction data. Using the power-law dependence of frictional healing on hold time, calculations of recurrence interval and stress drop based on our data accurately match observations of discrete creep events and repeating Mw = 2 earthquakes on the San Andreas Fault.

  17. Cien años de soledad, de Gabriel García Márquez. La solitude ontologique d'un monde sans transcendance.


    Gladieu, Marie-Madeleine


    Gabriel García Márquez dans son roman Cent ans de solitude présente toute une lignée de personnages qui déambulent au fil de l'histoire pouvant laisser croire dans une premier temps en une apparente chaîne de solidarité qui se délite sous le poids de la mémoire et des événements historiques et ne laissant aucune transcendance qui pourrait apporter une consolation à la solitude absolue de Macondo.

  18. Cien años de soledad, de Gabriel García Márquez. La solitude ontologique d'un monde sans transcendance.


    Gladieu, Marie-Madeleine


    Gabriel García Márquez dans son roman Cent ans de solitude présente toute une lignée de personnages qui déambulent au fil de l'histoire pouvant laisser croire dans une premier temps en une apparente chaîne de solidarité qui se délite sous le poids de la mémoire et des événements historiques et ne laissant aucune transcendance qui pourrait apporter une consolation à la solitude absolue de Macondo.

  19. Thermal-maturity trends within Franciscan rocks near Big Sur, California: Implications for offset along the San Gregorio San Simeon Hosgri fault zone (United States)

    Underwood, Michael B.; Laughland, Matthew M.; Shelton, Kevin L.; Sedlock, Richard L.


    Conventional neotectonic interpretations place the Lucia and Point Sur subterranes of the Franciscan subduction complex on opposite sides of the San Gregorio San Simeon Hosgri dextral fault system and connect that system through the Sur fault zone. Our reconstructed paleotemperature contours, however, are not offset across the San Simeon segment, so differential displacement between the subterranes after peak heating appears to have been negligible. One explanation is that dextral slip on the faults has totaled only 5 10 km. A second possibility is that a discrete Hosgri San Simeon segment extends offshore of the amalgamated Point Sur and Lucia subterranes and that an en echelon stepover transfers dextral slip eastward to the San Gregorio Palo Colorado segment. In either case, the Sur fault zone appears to play a relatively insignificant role in the late Cenozoic tectonic evolution of central California.

  20. Precise tremor source locations and amplitude variations along the lower-crustal central San Andreas Fault (United States)

    Shelly, David R.; Hardebeck, Jeanne L.


    We precisely locate 88 tremor families along the central San Andreas Fault using a 3D velocity model and numerous P and S wave arrival times estimated from seismogram stacks of up to 400 events per tremor family. Maximum tremor amplitudes vary along the fault by at least a factor of 7, with by far the strongest sources along a 25 km section of the fault southeast of Parkfield. We also identify many weaker tremor families, which have largely escaped prior detection. Together, these sources extend 150 km along the fault, beneath creeping, transitional, and locked sections of the upper crustal fault. Depths are mostly between 18 and 28 km, in the lower crust. Epicenters are concentrated within 3 km of the surface trace, implying a nearly vertical fault. A prominent gap in detectible activity is located directly beneath the region of maximum slip in the 2004 magnitude 6.0 Parkfield earthquake.

  1. Deep crustal heterogeneity along and around the San Andreas fault system in central California and its relation to the segmentation (United States)

    Nishigami, Kin'ya


    The three-dimensional distribution of scatterers in the crust along and around the San Andreas fault system in central California is estimated using an inversion analysis of coda envelopes from local earthquakes. I analyzed 3801 wave traces from 157 events recorded at 140 stations of the Northern California Seismic Network. The resulting scatterer distribution shows a correlation with the San Gregorio, San Andreas, Hayward, and Calaveras faults. These faults seem to be almost vertical from the surface to ˜15 km depth. Some of the other scatterers are estimated to be at shallow depths, 0-5 km, below the Diablo Range, and these may be interpreted as being generated by topographic roughness. The depth distribution of scatterers shows relatively stronger scattering in the lower crust, at ˜15-25 km depth, especially between the San Andreas fault and the Hayward-Calaveras faults. This suggests a subhorizontal detachment structure connecting these two faults in the lower crust. Several clusters of scatterers are located along the San Andreas fault at intervals of ˜20-30 km from south of San Francisco to the intersection with the Calaveras fault. This part of the San Andreas fault appears to consist of partially locked segments, also ˜20-30 km long, which rupture during M6-7 events, and segment boundaries characterized by stronger scattering and stationary microseismicity. The segment boundaries delineated by the present analysis correspond with those estimated from the slip distribution of the great 1906 San Francisco earthquake, and from the fault geometry as reported by the Working Group on California Earthquake Probabilities [1990], although the segment boundaries along the San Andreas fault in and around the San Francisco Bay area are still uncertain.

  2. Hydrogeologic Architecture of the San Andreas Fault near the Logan Quarry (United States)

    Xue, L.; Brodsky, E. E.; Erskine, J.; Fulton, P. M.; Carter, R.


    Hydrogeologic properties of fault zones are critical to the faulting processes; however, they are not well understood and difficult to measure in situ. Recording the tidal response of water level is a useful method to measure the in-situ properties. We utilize an array of wells near the San Andreas Fault zone in the Logan Quarry to study the fault zone hydrogeologic architecture by measuring the water tidal response. The measured specific storage and permeability show that there is a localized zone near the fault with higher specific storage and larger permeability than the surrounding region. This change of properties might be related to the fault zone fracture distribution. Surprisingly, the change of the specific storage is the clearest signal. The inferred compliance contrast is consistent with prior estimates of elastic moduli change in the near-fault environment, but the hydrogeologic effects of the compliance change have never before been measured on a major active fault. The observed specific storage structure implies that the fault zone plays an important role in permeability enhancement by seismic shaking. In addition, the measured diffusivity is about 10-2 m2/s, which is comparable to the post-earthquake hydraulic diffusivity measured on the Wenchuan Earthquake Fault. This observed high diffusivity with little variability inside the fault zone might suggest the accumulated pore pressure during interseismic period distributes over a broad region.

  3. Retardations in fault creep rates before local moderate earthquakes along the San Andreas fault system, central California (United States)

    Burford, R.O.


    Records of shallow aseismic slip (fault creep) obtained along parts of the San Andreas and Calaveras faults in central California demonstrate that significant changes in creep rates often have been associated with local moderate earthquakes. An immediate postearthquake increase followed by gradual, long-term decay back to a previous background rate is generally the most obvious earthquake effect on fault creep. This phenomenon, identified as aseismic afterslip, usually is characterized by above-average creep rates for several months to a few years. In several cases, minor step-like movements, called coseismic slip events, have occurred at or near the times of mainshocks. One extreme case of coseismic slip, recorded at Cienega Winery on the San Andreas fault 17.5 km southeast of San Juan Bautista, consisted of 11 mm of sudden displacement coincident with earthquakes of ML=5.3 and ML=5.2 that occurred 2.5 minutes apart on 9 April 1961. At least one of these shocks originated on the main fault beneath the winery. Creep activity subsequently stopped at the winery for 19 months, then gradually returned to a nearly steady rate slightly below the previous long-term average. The phenomena mentioned above can be explained in terms of simple models consisting of relatively weak material along shallow reaches of the fault responding to changes in load imposed by sudden slip within the underlying seismogenic zone. In addition to coseismic slip and afterslip phenomena, however, pre-earthquake retardations in creep rates also have been observed. Onsets of significant, persistent decreases in creep rates have occurred at several sites 12 months or more before the times of moderate earthquakes. A 44-month retardation before the 1979 ML=5.9 Coyote Lake earthquake on the Calaveras fault was recorded at the Shore Road creepmeter site 10 km northwest of Hollister. Creep retardation on the San Andreas fault near San Juan Bautista has been evident in records from one creepmeter site for

  4. FE modeling of present day tectonic stress along the San Andreas Fault zone


    Koirala, Matrika Prasad; Hauashi, Daigoro; 林, 大五郎


    F E modeling under plane stress condition is used to analyze the state of stress in and around the San Andreas Fault (SAF) System taking whole area of California. In this study we mainly focus on the state of stress at the general seismogenic depth of 12 km, imposing elastic rheology. The purpose of the present study is to simulate the regional stress field, displacement vectors and failures. Stress perturbation due to major fault, its geometry and major branches are analyzed. Depthwise varia...

  5. Deep rock damage in the San Andreas Fault revealed by P- and S-type fault-zone-guided waves (United States)

    Ellsworth, William L.; Malin, Peter E.


    Damage to fault-zone rocks during fault slip results in the formation of a channel of low seismic-wave velocities. Within such channels guided seismic waves, denoted by Fg, can propagate. Here we show with core samples, well logs and Fg-waves that such a channel is crossed by the SAFOD (San Andreas Fault Observatory at Depth) borehole at a depth of 2.7 km near Parkfield, California, USA. This laterally extensive channel extends downwards to at least half way through the seismogenic crust, more than about 7 km. The channel supports not only the previously recognized Love-type- (FL) and Rayleigh-type- (FR) guided waves, but also a new fault-guided wave, which we name FF. As recorded 2.7 km underground, FF is normally dispersed, ends in an Airy phase, and arrives between the P- and S-waves. Modelling shows that FF travels as a leaky mode within the core of the fault zone. Combined with the drill core samples, well logs and the two other types of guided waves, FF at SAFOD reveals a zone of profound, deep, rock damage. Originating from damage accumulated over the recent history of fault movement, we suggest it is maintained either by fracturing near the slip surface of earthquakes, such as the 1857 Fort Tejon M 7.9, or is an unexplained part of the fault-creep process known to be active at this site.

  6. San Andreas Fault, California, M 5.5 or greater Earthquakes 1800-2000 (United States)

    Toppozada, T.; Branum, D.; Reichle, M.; Hallstrom, C.


    The San Andreas fault has been the most significant source of major California earthquakes since 1800. From 1812 to 1906 it generated four major earthquakes of M 7.2 or greater in two pairs on two major regions of the fault. A pair of major earthquakes occurred on the Central to Southern region, where the 1857 faulting overlapped the 1812 earthquake faulting. And a pair of major earthquakes occurred on the Northern region, where the 1906 faulting overlapped the 1838 earthquake faulting. The 1812 earthquake resulted from a rupture of up to about 200 km, from the region of Cajon Pass to as far as about 50 km west of Fort Tejon (Sieh and others, 1989). This rupture is the probable source of both the destructive 1812.12.8 "San Juan Capistrano" and the 1812.12.21 "Santa Barbara Channel" earthquakes. The 1838 earthquake's damage effects throughout the Bay area, from San Francisco to Santa Clara Valley and Monterey, were unequalled by any Bay area earthquake other than the 1906 event. The mainshock's effects, and numerous strong probable aftershocks in the San Juan Bautista vicinity in the following three years, suggest 1838 faulting from San Francisco to San Juan Bautista, and M about 7.4. The 630 km length of the San Andreas fault between San Francisco and Cajon Pass ruptured in the 1838 and 1857 earthquakes, except for about 75 km between Bitterwater and San Juan Bautista. The 1840-1841 probable aftershocks of the 1838 event occurred near San Juan Bautista, and the foreshocks and aftershocks of the 1857 event occurred near Bitterwater. In the Bitterwater area, strong earthquakes continued to occur until the 1885 earthquake of M 6.5. Near Parkfield, 40 to 70 km southeast of Bitterwater, M 5.5 or greater earthquakes have occurred from the 1870s to the 1960s. In the total Bitterwater to Parkfield zone bracketing the northern end of the 1857 rupture, the seismicity and moment release has decreased steadily since 1857, and has tended to migrate southeastward with time. The

  7. Evidence for Late Oligocene-Early Miocene episode of transtension along San Andreas Fault system in central California

    Energy Technology Data Exchange (ETDEWEB)

    Stanley, R.G.


    The San Andreas is one of the most intensely studied fault systems in the world, but many aspects of its kinematic history remain controversial. For example, the period from the late Eocene to early Miocene is widely believed to have been a time of negligible strike-slip movement along the San Andreas fault proper, based on the rough similarity of offset of the Eocene Butano-Point of rocks Submarine Fan, the early Miocene Pinnacles-Neenach volcanic center, and an early Miocene shoreline in the northern Gabilan Range and San Emigdio Mountains. Nonetheless, evidence indicates that a late Oligocene-early Miocene episode of transtension, or strike-slip motion with a component of extension, occurred within the San Andreas fault system. The evidence includes: (1) about 22-24 Ma, widespread, synchronous volcanic activity occurred at about 12 volcanic centers along a 400-km long segment of the central California coast; (2) most of these volcanic centers are located along faults of the San Andreas system, including the San Andreas fault proper, the San Gregorio-Hosgri fault, and the Zayante-Vergeles fault, suggesting that these and other faults were active and served as conduits for magmas rising from below; (3) during the late Oligocene and early Miocene, a pull-apart basin developed adjacent to the San Andreas fault proper in the La Honda basin near Santa Cruz; and (4) during the late Oligocene and early Miocene, active faulting, rapid subsidence, and marine transgression occurred in the La Honda and other sedimentary basins in central California. The amount of right-lateral displacement along the San Andreas fault proper during this transtentional episode is unknown but was probably about 7.5-35 km, based on model studies of pull-apart basin formation. This small amount of movement is well within the range of error in published estimates of the offset of the Eocene to early Miocene geologic features noted.

  8. San Andreas fault geometry at Desert Hot Springs, California, and its effects on earthquake hazards and groundwater (United States)

    Catchings, R.D.; Rymer, M.J.; Goldman, M.R.; Gandhok, G.


    The Mission Creek and Banning faults are two of the principal strands of the San Andreas fault zone in the northern Coachella Valley of southern California. Structural characteristics of the faults affect both regional earthquake hazards and local groundwater resources. We use seismic, gravity, and geological data to characterize the San Andreas fault zone in the vicinity of Desert Hot Springs. Seismic images of the upper 500 m of the Mission Creek fault at Desert Hot Springs show multiple fault strands distributed over a 500 m wide zone, with concentrated faulting within a central 200 m wide area of the fault zone. High-velocity (up to 5000 m=sec) rocks on the northeast side of the fault are juxtaposed against a low-velocity (6.0) earthquakes in the area (in 1948 and 1986) occurred at or near the depths (~10 to 12 km) of the merged (San Andreas) fault. Large-magnitude earthquakes that nucleate at or below the merged fault will likely generate strong shaking from guided waves along both fault zones and from amplified seismic waves in the low-velocity basin between the two fault zones. The Mission Creek fault zone is a groundwater barrier with the top of the water table varying by 60 m in depth and the aquifer varying by about 50 m in thickness across a 200 m wide zone of concentrated faulting.

  9. Un poeta de nuestro tiempo: Gabriel Ulloa

    Directory of Open Access Journals (Sweden)

    Julian Garavito


    Full Text Available No es muy fácil hablar de poesía sin caer en lugares comunes. No es sencillo dar cuenta de las sensaciones y de las impresiones de un lector ante los poemas, poemillas o sonetos de Gabriel Ulloa, nacido en Bogotá el 31 de diciembre (tal vez La noche ,de San Silvestre, título de un poema suyo de 1930.

  10. The stress shadow effect: a mechanical analysis of the evenly-spaced parallel strike-slip faults in the San Andreas fault system (United States)

    Zuza, A. V.; Yin, A.; Lin, J. C.


    Parallel evenly-spaced strike-slip faults are prominent in the southern San Andreas fault system, as well as other settings along plate boundaries (e.g., the Alpine fault) and within continental interiors (e.g., the North Anatolian, central Asian, and northern Tibetan faults). In southern California, the parallel San Jacinto, Elsinore, Rose Canyon, and San Clemente faults to the west of the San Andreas are regularly spaced at ~40 km. In the Eastern California Shear Zone, east of the San Andreas, faults are spaced at ~15 km. These characteristic spacings provide unique mechanical constraints on how the faults interact. Despite the common occurrence of parallel strike-slip faults, the fundamental questions of how and why these fault systems form remain unanswered. We address this issue by using the stress shadow concept of Lachenbruch (1961)—developed to explain extensional joints by using the stress-free condition on the crack surface—to present a mechanical analysis of the formation of parallel strike-slip faults that relates fault spacing and brittle-crust thickness to fault strength, crustal strength, and the crustal stress state. We discuss three independent models: (1) a fracture mechanics model, (2) an empirical stress-rise function model embedded in a plastic medium, and (3) an elastic-plate model. The assumptions and predictions of these models are quantitatively tested using scaled analogue sandbox experiments that show that strike-slip fault spacing is linearly related to the brittle-crust thickness. We derive constraints on the mechanical properties of the southern San Andreas strike-slip faults and fault-bounded crust (e.g., local fault strength and crustal/regional stress) given the observed fault spacing and brittle-crust thickness, which is obtained by defining the base of the seismogenic zone with high-resolution earthquake data. Our models allow direct comparison of the parallel faults in the southern San Andreas system with other similar strike

  11. Rapid Post-Miocene tectonic rotation associated with the San Gregorio Fault Zone in central California (United States)

    Holm, Eric J.; Horns, Daniel M.; Verosub, Kenneth L.


    Paleomagnetic measurements of samples from the Mio-Pliocene Purisima Formation demonstrate that the Pomponio tectonic block of central coastal California has rotated clockwise by approximately 35° to 55° within the last 2.5 million years. The most likely interpretation of this data is that the Pomponio block is broken into several small blocks which have rotated by various amounts. The data suggest that rotations contribute to vertical deformation and secondary faulting within the central San Andreas Fault System, and that they play an important role in the accommodation of shear along the fault system.

  12. Geodetic estimates of fault slip rates in the San Francisco Bay area (United States)

    Savage, J. C.; Svarc, J. L.; Prescott, W. H.


    Bourne et al. [1998] have suggested that the interseismic velocity profile at the surface across a transform plate boundary is a replica of the secular velocity profile at depth in the plastosphere. On the other hand, in the viscoelastic coupling model the shape of the interseismic surface velocity profile is a consequence of plastosphere relaxation following the previous rupture of the faults that make up the plate boundary and is not directly related to the secular flow in the plastosphere. The two models appear to be incompatible. If the plate boundary is composed of several subparallel faults and the interseismic surface velocity profile across the boundary known, each model predicts the secular slip rates on the faults which make up the boundary. As suggested by Bourne et al., the models can then be tested by comparing the predicted secular slip rates to those estimated from long-term offsets inferred from geology. Here we apply that test to the secular slip rates predicted for the principal faults (San Andreas, San Gregorio, Hayward, Calaveras, Rodgers Creek, Green Valley and Greenville faults) in the San Andreas fault system in the San Francisco Bay area. The estimates from the two models generally agree with one another and to a lesser extent with the geologic estimate. Because the viscoelastic coupling model has been equally successful in estimating secular slip rates on the various fault strands at a diffuse plate boundary, the success of the model of Bourne et at. [1998] in doing the same thing should not be taken as proof that the interseismic velocity profile across the plate boundary at the surface is a replica of the velocity profile at depth in the plastosphere.

  13. High resolution measurements of aseismic slip (creep) on the San Andreas fault system from Parkfield to San Francisco Bay area; 1966 to the present (United States)

    U.S. Geological Survey, Department of the Interior — These data provide measures of aseismic slip (creep) at approximately 40 sites located on the San Andreas, Hayward, and Calaveras faults in Central California from...

  14. Connecting Aseismic Slip and Microseismicity on the Central San Andreas Fault (United States)

    Johanson, I. A.; Bürgmann, R.


    High precision micro-earthquake relocations have revealed seismicity structures that may be an indicator of the fault's slip characteristics. Characteristically repeating micro-earthquakes and aligned streaks of micro-seismicity suggest that these structures are associated with areas of active aseismic fault slip. A general inverse correspondence between zones of abundant micro-seismicity and the coseismic slip area of large earthquakes also implies a relationship between creep and micro-earthquakes. We test this relationship using geodetic measurements of near-fault deformation. Modeling of such measurements allow for determination of locked and creeping sections of the fault. We focus on the central San Andreas fault near San Juan Bautista; a segment which experiences both aseismic and seismic fault slip and where there is a long history of geodetic measurements. Aseismic slip on the central San Andreas is time dependent and has varied in response to regional earthquakes and in the form of slow earthquakes. Dislocations in an elastic half space are used to evaluate a range of scenario fault slip models whose geometry is guided by the locations of micro-seismic streaks. The inversions for distributed sub-surface slip are constrained by range-change data from InSAR and GPS site velocities. The InSAR data (ERS1&2 track 299 frame 2861) spans from 1996-2000 and were processed using ROI_Pac with the SNAPHU unwrapper and combined in a patchwork stack to reduce atmospheric errors. Campaign and continuous GPS data were processed using GAMIT/GLOBK and form part of the regional BA¯VU¯ dataset. To minimize the effect on our analysis of transient slip induced by the 1989 Loma Prieta earthquake, we limit our dataset to GPS observations from 1994 to 2003. Preliminary results confirm that the presence of seismicity streaks and characteristically repeating micro-earthquakes are indicative of aseismic slip. However, the absence of such seismicity patterns does not necessarily

  15. Mineralogy of Faults in the San Andreas System That are Characterized by Creep (United States)

    Moore, D. E.; Rymer, M. J.; McLaughlin, R. J.; Lienkaemper, J. J.


    The San Andreas Fault Observatory at Depth (SAFOD) is a deep-drilling program sited in the central creeping section of the San Andreas Fault (SAF) near Parkfield, California. Core was recovered from two locations at ~2.7 km vertical depth that correspond to the places where the well casing is being deformed in response to fault creep. The two creeping strands are narrow zones of fault gouge, 1.6 and 2.6 m in width, respectively, that are the products of shear-enhanced metasomatic reactions between serpentinite tectonically entrained in the fault and adjoining sedimentary wall rocks. Both gouge zones consist of porphyroclasts of serpentinite and sedimentary rock dispersed in a foliated matrix of Mg-rich, saponitic ± corrensitic clays, and porphyroclasts of all types are variably altered to the same Mg-rich clays as the gouge matrix. Some serpentinite porphyroclasts also contain the assemblage talc + actinolite + chlorite + andradite garnet, which is characteristic of reaction zones developed between ultramafic and crustal rocks at greenschist- to subgreenschist-facies conditions. The presence of this higher-temperature assemblage raises the possibility that the serpentinite and its alteration products may extend to significantly greater depths in the fault. Similar fault gouge has also been identified in a serpentinite outcrop near the drill site that forms part of a sheared serpentinite body mapped for several kilometers within the creeping section of the SAF. The SAFOD core thus supports the long-held view that serpentinite is implicated in the origin of creep, as does at least one other creeping fault of the San Andreas System. The Bartlett Springs Fault (BSF) is a right-lateral strike-slip fault located north of San Francisco, California. Its slip rate currently is estimated to be 6 +/- 2 mm/yr, and along a segment that crosses Lake Pillsbury half the surface slip rate is taken up by creep. An exposure of this fault segment near Lake Pillsbury consists of

  16. Geophysical evidence for Quaternary deformation within the offshore San Andreas Fault System, Point Reyes Peninsula, California (United States)

    Stozek, B.


    Our previous work studying the rate and style of uplift of marine terraces on the Point Reyes Peninsula indicates the peninsula has been undergoing differential uplift due to interacting fault geometries in the offshore zone. To better understand offshore fault interactions, recently collected mini-sparker seismic reflection data acquired by the USGS and multi-beam bathymetric data acquired by California State University at Monterey Bay within the 3-mile (5 km) limit offshore of the Point Reyes Peninsula, are being used to reinterpret the tectono-stratigraphic framework of the San Andreas fault (SAF) system. Eight offshore Shell exploratory well logs that provide seismic velocity and paleontologic data are being used in conjunction with industry multichannel (deep-penetration) seismic reflection profiles to provide age control and extend the analyses beyond 3 mile limit of the high-resolution data. Isopach and structure maps of key stratigraphic intervals were generated to show how the stratigraphic units are influenced by fault interactions. These datasets allow for new interpretations of the offshore Neogene stratigraphy and the evolution of the Point Reyes fault, an offshore component of the SAF system. Observations of Quaternary sedimentary sequences in the high-resolution mini-sparker dataset provide evidence of localized areas of subsidence and uplift within the offshore SAF system. For example, the most recent angular unconformity above the Point Reyes fault deepens to the north where the fault bends from an east-west to a more northerly orientation. Stratigraphic horizons in the offshore zone are correlated with the same geologic units exposed on the Point Reyes Peninsula. Both unconformity-bounded sedimentary sequences mapped on reflection profiles in the offshore and marine terraces that have been uplifted on the peninsula are tied to sea-level fluctuations. Our new interpretation of the Point Reyes fault zone will be incorporated into a kinematic fault

  17. Multi-scale compressional wave velocity structure of the San Gregorio Fault zone (United States)

    Gettemy, G. L.; Tobin, H. J.; Hole, J. A.; Sayed, A. Y.


    Understanding fault architecture at multiple scales is crucial to delineate in situ fault zone physical properties and rupture dynamics through modeling and geophysical imaging/monitoring. An exposure of the active large-offset, strike-slip San Gregorio Fault at Moss Beach, CA provides a unique field site to relate the well-mapped fault zone architecture with compressional wave velocity (Vp) structure measured at centimeter to meter scales. Laboratory ultrasonic velocities of fault zone samples, adjusted for fluid-related frequency and structural dispersion, indicate that (i) a seismic velocity reduction of ~30% characterizes the central smectite-rich clay gouge relative to the rocks 100 m away in the relatively undeformed host rocks, and (ii) the across-fault velocity profile trends for the seismic to ultrasonic bandwidth correlate almost exactly to the previously mapped macroscale fault zone structure. These results highlight the value of conducting multiscaled investigations when measuring fault zone properties defined by physical elements at multiple scale lengths.

  18. Inferences drawn from two decades of alinement array measurements of creep on faults in the San Francisco Bay Region (United States)

    Galehouse, J.S.; Lienkaemper, J.J.


    We summarize over 20 years of monitoring surface creep on faults of the San Andreas system in the San Francisco Bay region using alinement arrays. The San Andreas fault is fully locked at five sites northwest from San Juan Bautista, the southern end of the 1906 earthquake rupture, that is, no creep (San Gregorio, Rodgers Creek, and West Napa faults show no creep. The measured creep rate on the Calaveras-Paicines fault from Hollister southward is either 6 or ??? 10 mm/yr, depending on whether the arrays cross all of the creeping traces. Northward of Hollister, the central Calaveras creep rate reaches 14 ?? 2 mm/yr but drops to ??? 2 mm/yr near Calaveras Reservoir, where slip transfers to the southern Hayward fault at a maximum creep rate of 9 mm/yr at its south end. However, the Hayward fault averages only 4.6 mm/yr over most of its length. The Northern Calaveras fault, now creeping at 3-4 mm/yr, steps right to the Concord fault, which has a similar rate, 2.5-3.5 mm/yr, which is slightly slower than the 4.4 mm/yr rate on its northward continuation, the Green Valley fault. The Maacama fault creeps at 4.4 mm/yr near Ukiah and 6.5 mm/yr in Willits. The central and southern segments of the Calaveras fault are predominantly creeping, whereas the Hayward, Northern Calaveras, and Maacama faults are partly locked and, along with the Rodgers Creek and San Andreas, have high potential for major earthquakes.

  19. Gabriel's Other Possessions (United States)

    Royer, Melvin


    Gabriel's Horn is a solid of revolution commonly featured in calculus textbooks as a counter-intuitive example of a solid having finite volume but infinite surface area. Other examples of solids with surprising geometrical finitude relationships have also appeared in the literature. This article cites several intriguing examples (some of fractal…

  20. The kinematics of faults in the San Francisco Bay area inferred from geodetic and seismic data (United States)

    Schmidt, David Andrew


    The work presented in this dissertation focuses on the kinematics and mechanics of the Hayward fault, the Loma Prieta earthquake rupture, and the Silver Creek fault. To better understand their behavior and geometry, geodetic and seismic data are used in conjunction with elastic models of the crust. Along the northern and central segments of the Hayward fault, a steady interseismic deformation rate is observed. Variations in this rate along strike suggest a variable slip-rate distribution at depth indicative of locked and creeping patches. A locked patch that correlates with the presumed source region of the 1868 earthquake on the Hayward fault implies that elastic strain is accumulating at this location. The southern Hayward fault exhibits complex time-dependent slip. Interferometric Synthetic Aperture Radar (InSAR) is employed to visualize the crustal deformation signal by utilizing over 100 interferograms. Results suggest that the observed surface deformation is best explained by a combination of transient fault slip and land subsidence. This is in contrast to the Silver Creek fault in the Santa Clara Valley where all of the deformation is attributed to differential aquifer compaction and expansion across the fault. Regional faults interact through the redistribution of stress in the crust and upper mantle. The effect of this change in stress on the creeping portion of the Hayward fault following the 1906 San Francisco earthquake is explored using a rate-and-state friction model. The predicted surface creep response, driven by the postseismic relaxation of the mantle following the 1906 event, is used to constrain the rheology of the lower crust. Rheologies that include a horizontal shear zone underpredict the surface creep response observed from offset cultural features. Inversions for the coseismic slip distribution of the 1989 Loma Prieta earthquake are performed to evaluate the sensitivity of the inversion to the prescribed fault geometry. Models the

  1. Holocene slip rates along the San Andreas Fault System in the San Gorgonio Pass and implications for large earthquakes in southern California (United States)

    Heermance, Richard V.; Yule, Doug


    The San Gorgonio Pass (SGP) in southern California contains a 40 km long region of structural complexity where the San Andreas Fault (SAF) bifurcates into a series of oblique-slip faults with unknown slip history. We combine new 10Be exposure ages (Qt4: 8600 (+2100, -2200) and Qt3: 5700 (+1400, -1900) years B.P.) and a radiocarbon age (1260 ± 60 years B.P.) from late Holocene terraces with scarp displacement of these surfaces to document a Holocene slip rate of 5.7 (+2.7, -1.5) mm/yr combined across two faults. Our preferred slip rate is 37-49% of the average slip rates along the SAF outside the SGP (i.e., Coachella Valley and San Bernardino sections) and implies that strain is transferred off the SAF in this area. Earthquakes here most likely occur in very large, throughgoing SAF events at a lower recurrence than elsewhere on the SAF, so that only approximately one third of SAF ruptures penetrate or originate in the pass.Plain Language SummaryHow large are earthquakes on the southern San Andreas Fault? The answer to this question depends on whether or not the earthquake is contained only along individual fault sections, such as the Coachella Valley section north of Palm Springs, or the rupture crosses multiple sections including the area through the San Gorgonio Pass. We have determined the age and offset of faulted stream deposits within the San Gorgonio Pass to document slip rates of these faults over the last 10,000 years. Our results indicate a long-term slip rate of 6 mm/yr, which is almost 1/2 of the rates east and west of this area. These new rates, combined with faulted geomorphic surfaces, imply that large magnitude earthquakes must occasionally rupture a 300 km length of the San Andreas Fault from the Salton Sea to the Mojave Desert. Although many ( 65%) earthquakes along the southern San Andreas Fault likely do not rupture through the pass, our new results suggest that large >Mw 7.5 earthquakes are possible on the southern San Andreas Fault and likely

  2. Habitat information in the region on the underwater San Andreas Fault - Topic: Exploring the Undersea San Andreas Fault: Revealing the Past, Present, and Future at the Centennial of the Great 1906 Earthquake (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — During this exploration, the first comprehensive high-resolution multi-beam sonar and seismic reflection survey of the Northern San Andreas Fault (NSAF) was...

  3. Geodetic measurement of deformation east of the San Andreas fault in central California (United States)

    Sauber, Jeanne; Lisowski, Michael; Solomon, Sean C.

    Triangulation and trilateration data from two geodetic networks located between the San Andreas fault and the Great Valley have been used to calculate shear strain rates in the Diablo Range and to estimate the slip rate along the Calaveras and Paicines faults in central California. The shear strain rates, γ1 and γ2, were estimated independently from angle changes using Prescott's method and from the simultaneous reduction for station position and strain parameters using the DYNAP method with corrections to reduce the triangulation and trilateration data to a common reference surface. On the basis of Prescott's method, the average shear strain rate across the Diablo Range for the time period between 1962 and 1982 is 0.15±0.08 μrad/yr, with the orientation of the most compressive strain (β) at N16°E±14°. Utilizing corrections for the deflection of the vertical and the geoid reference ellipsoid separation computed on the basis of local gravity observations, γ = 0.19±0.09 μrad/yr and β = N16°E±13°. Although γ is not significantly greater than zero, at the 95% confidence level the orientation of β is similar to the direction of maximum compressive strain indicated by the orientation of major fold structures in the region (N25°E). We infer that the measured strain is due to compression across the folds of this area; the average shear straining corresponds to a relative shortening rate of 5.7±2.7 mm/yr. In contrast to the situation throughout most of the Coast Ranges where fold axes have orientations approximately parallel to the San Andreas fault, within the Diablo Range between Hollister and Coalinga the trends of the fold axes are different and are thought to be controlled by reactivation of older structures. From trilateration measurements made between 1972 and 1987 on lines that are within 10 km of the San Andreas fault, a slip rate of 10-12 mm/yr was calculated for the Calaveras-Paicines fault south of Hollister. The slip rate on the Paicines

  4. A Study of Current Interseismic Deformation of San Andreas Fault, San Bernardino Mountain section, using Interferometric Synthetic Aperture Radar (United States)

    Nee, P.; Funning, G. J.


    The San Andreas fault (SAF) system accommodates a significant fraction of the relative movement between the Pacific and North American plates. In the past 250 years, no significant earthquake was recorded on the southernmost section of the SAF, and thus there exists a substantial ongoing earthquake hazard. Estimates of its slip deficit rate, made with various geologic and geodetic observations typically fall in the range 15-25 mm/yr, in the vicinity of the San Bernadino Mountains. Assuming the fault system slips at a constant rate of 20mm/yr, a slip deficit of 5 m would have accumulated since the last event, equivalent to a potential Mw 7.5 or larger earthquake. To understand how much strain is accumulating on the southern SAF system during the current interseismic period, we investigate the surface deformation using radar interferometry. We use the entire catalog of ERS and Envisat Synthetic Aperture Radar (SAR) data from a descending track well oriented for the SAF (track 399). 53 images from ERS spanning 1992 to late 2000, and 50 images from Envisat spanning 2003 to 2010 are used. We perform ratemap inversion (Biggs et al. 2007, GJI) to obtain an estimate of interseismic slip deficit rate, and Persistent Scatterer InSAR (PSI) analysis to investigate the tectonic and non-tectonic surface displacements across the region. The ratemap inversion algorithm involves simultaneous estimation of long wavelength orbital errors, construction of a ratemap by finding the best fitting rate of each pixel, and estimation of slip deficit rate using a half-space elastic dislocation model (Okada 1985, BSSA) calculated from a representative fault model. We constructed and tested different conceptual models based on the SCEC rectangular community fault model (CFM-R). We find that our ERS data are strongly affected by the postseismic deformation of the 1992 Mw 7.3 Landers Earthquake. We therefore estimate the slip rate using the Envisat dataset, which is much less affected by the

  5. Paleomagnetic reorientation of San Andreas Fault Observatory at Depth (SAFOD) core (United States)

    Pares, J.M.; Schleicher, A.M.; van der Pluijm, B.A.; Hickman, S.


    We present a protocol for using paleomagnetic analysis to determine the absolute orientation of core recovered from the SAFOD borehole. Our approach is based on determining the direction of the primary remanent magnetization of a spot core recovered from the Great Valley Sequence during SAFOD Phase 2 and comparing its direction to the expected reference field direction for the Late Cretaceous in North America. Both thermal and alternating field demagnetization provide equally resolved magnetization, possibly residing in magnetite, that allow reorientation. Because compositionally similar siltstones and fine-grained sandstones were encountered in the San Andreas Fault Zone during Stage 2 rotary drilling, we expect that paleomagnetic reorientation will yield reliable core orientations for continuous core acquired from directly within and adjacent to the San Andreas Fault during SAFOD Phase 3, which will be key to interpretation of spatial properties of these rocks. Copyright 2008 by the American Geophysical Union.

  6. Investigating the creeping section of the San Andreas Fault using ALOS PALSAR interferometry (United States)

    Agram, P. S.; Wortham, C.; Zebker, H. A.


    In recent years, time-series InSAR techniques have been used to study the temporal characteristics of various geophysical phenomena that produce surface deformation including earthquakes and magma migration in volcanoes. Conventional InSAR and time-series InSAR techniques have also been successfully used to study aseismic creep across faults in urban areas like the Northern Hayward Fault in California [1-3]. However, application of these methods to studying the time-dependent creep across the Central San Andreas Fault using C-band ERS and Envisat radar satellites has resulted in limited success. While these techniques estimate the average long-term far-field deformation rates reliably, creep measurement close to the fault (Exploration Agency (JAXA) in 2006, to study the temporal characteristics of creep across the Central San Andreas Fault. The longer wavelength at L-band improves observed correlation over the entire scene which significantly increased the ground area coverage of estimated deformation in each interferogram but at the cost of decreased sensitivity of interferometric phase to surface deformation. However, noise levels in our deformation estimates can be decreased by combining information from multiple SAR acquisitions using time-series InSAR techniques. We analyze 13 SAR acquisitions spanning the time-period from March 2007 to Dec 2009 using the Short Baseline Subset Analysis (SBAS) time-series InSAR technique [3]. We present detailed comparisons of estimated time-series of fault creep as a function of position along the fault including the locked section around Parkfield, CA. We also present comparisons between the InSAR time-series and GPS network observations in the Parkfield region. During these three years of observation, the average fault creep is estimated to be 35 mm/yr. References [1] Bürgmann,R., E. Fielding and, J. Sukhatme, Slip along the Hayward fault, California, estimated from space-based synthetic aperture radar interferometry

  7. Structure of the 1906 near-surface rupture zone of the San Andreas Fault, San Francisco Peninsula segment, near Woodside, California (United States)

    Rosa, C.M.; Catchings, R.D.; Rymer, M.J.; Grove, Karen; Goldman, M.R.


    High-resolution seismic-reflection and refraction images of the 1906 surface rupture zone of the San Andreas Fault near Woodside, California reveal evidence for one or more additional near-surface (within about 3 meters [m] depth) fault strands within about 25 m of the 1906 surface rupture. The 1906 surface rupture above the groundwater table (vadose zone) has been observed in paleoseismic trenches that coincide with our seismic profile and is seismically characterized by a discrete zone of low P-wave velocities (Vp), low S-wave velocities (Vs), high Vp/Vs ratios, and high Poisson’s ratios. A second near-surface fault strand, located about 17 m to the southwest of the 1906 surface rupture, is inferred by similar seismic anomalies. Between these two near-surface fault strands and below 5 m depth, we observed a near-vertical fault strand characterized by a zone of high Vp, low Vs, high Vp/Vs ratios, and high Poisson’s ratios on refraction tomography images and near-vertical diffractions on seismic-reflection images. This prominent subsurface zone of seismic anomalies is laterally offset from the 1906 surface rupture by about 8 m and likely represents the active main (long-term) strand of the San Andreas Fault at 5 to 10 m depth. Geometries of the near-surface and subsurface (about 5 to 10 m depth) fault zone suggest that the 1906 surface rupture dips southwestward to join the main strand of the San Andreas Fault at about 5 to 10 m below the surface. The 1906 surface rupture forms a prominent groundwater barrier in the upper 3 to 5 m, but our interpreted secondary near-surface fault strand to the southwest forms a weaker barrier, suggesting that there has been less or less-recent near-surface slip on that strand. At about 6 m depth, the main strand of the San Andreas Fault consists of water-saturated blue clay (collected from a hand-augered borehole), which is similar to deeply weathered serpentinite observed within the main strand of the San Andreas Fault at

  8. Detailed Geophysical Imaging in San Pablo Bay Reveals a New Strand of the Hayward-Rodgers Creek Fault Zone (United States)

    Watt, J. T.; Ponce, D. A.; Hart, P. E.; Denton, K. M.; Parsons, T.; Graymer, R. W.


    High-resolution chirp seismic-reflection and marine magnetic data collected in San Pablo Bay reveal a new strand of the Hayward fault that helps constrain the geometry and connectivity of the Hayward-Rodgers Creek fault zone, one of the most hazardous faults in California. Over 1,200 km of marine magnetic data were collected in San Pablo Bay along NE-trending traverses spaced 200-m apart, and approximately 200 km of chirp data were collected along similarly oriented profiles spaced 1-km apart. Data were acquired using a 0.7-12 kHz sweep with a 20 ms length fired at 6 times per second. Due to attenuation of the acoustic signal by bay muds and persistent natural gas layers in San Pablo Bay, chirp data are only able to image the upper 2 to 5 meters of the sub-seafloor. Offset and warping of near-surface reflections delineates a previously unrecognized NW-trending strand of the Hayward fault that extends across San Pablo Bay, from Point Pinole to Lower Tubbs Island. Vertical offset along the fault varies in both direction and magnitude, with some indication of increasing offset with depth. The fault imaged in the chirp data corresponds to gravity, magnetic, and tomographic gradients in the bay. Relocated seismicity is aligned with the surface trace of the fault and repeating earthquakes along this trend suggest this strand of the Hayward fault is creeping. A northwestward onshore projection of this fault is coincident with gravity and topographic gradients that align with a SSE-trending splay of the Rodgers Creek Fault, suggesting the Hayward and Rodgers Creek faults may connect directly rather than through a wide step-over zone. Even if the faults do not directly connect, these new data indicate that the faults are much closer together (2 km vs 4 km) than previously thought, making a through-going rupture more plausible.

  9. Mechanical Modeling of Near-Fault Deformation Within the Dragon's Back Pressure Ridge, San Andreas Fault, Carrizo Plain, California (United States)

    Hilley, G. E.; Arrowsmith, R.


    This contribution uses field observations and numerical modeling to understand how slip along the variably oriented fault surfaces in the upper few km of the San Andreas Fault (SAF) zone produces near-fault deformation observed within a 4.5-km-long Dragon's Back Pressure Ridge (DBPR) in the Carrizo Plain, central California. Geologic and geomorphic mapping of this feature indicates that the amplitude of monoclinal warping of Quaternary sediments increases from southeast to northwest along the southwestern third of the DBPR, and remains approximately constant throughout the remaining two thirds of the landform. When viewed with other structural observations and limited near-surface magnetotelluric imaging, these geologic observations are most compatible with a scenario in which shallow offset of the SAF to the northeast creates a structural knuckle that is anchored to the North American plate. Thus, deformation accrues as right-lateral strike-slip motion along the SAF moves this obstruction along the fault plane through the DBPR block. We have used the Gale numerical model to simulate deformation expected for geometries similar to those inferred within the vicinity of the DBPR. This is accomplished by relating stresses and strains in the upper crust according to a Drucker-Prager (plastic yielding) constitutive rule. Deformation in the model is driven by applying 35 mm/yr of right-lateral strike-slip motion to the model boundary; this displacement rate is likewise applied to the base of the model. The model geometry of the SAF at the beginning of the loading was fashioned to produce the discontinuity in the geometry of the fault plane that is inferred from field observations. The friction and cohesion of crust on each side of the fault were changed between models to determine the parameter values that preserve the structural discontinuity along the SAF as finite deformation accrued. The structural discontinuity over the ~4.5 km of model displacement is maintained in

  10. GPS Seismology and Earthquake Early Warning along the Southern San Andreas Fault System (United States)

    Bock, Y.; Jackson, M. E.


    We are in the process of upgrading CGPS stations in southern California to high-rate (1-10 Hz) real-time (latency Cerro Prieto faults, the region of highest strain rate in southern California and the narrowest part of the North America-Pacific plate boundary. South of the Big Bend, the zero velocity contour (the "boundary") between the North America and Pacific plates does not follow the SAF segment, but rather is located just east of the San Jacinto Fault (SJF) segment and then follows the Imperial and Cerro Prieto faults. The primary purpose of the real-time network is to serve as an early warning system for a large earthquake along the southern San Andreas Fault System by quickly measuring coseismic displacements, and also for GPS seismology to rapidly measure the associated dynamic displacements. The network, called the California Real Time Network (CRTN), also supplies data for real GPS surveys within the region and will provide rapid displacement waveforms to the SCEC data archive at Caltech in the event of a medium to large earthquake. Although the real-time data flow is currently at 1 Hz, the PBO stations have an internal buffer that records GPS data at a 10 Hz rate.

  11. The influence of the San Gregorio fault on the morphology of Monterey Canyon (United States)

    McHugh, C.M.G.; Ryan, William B. F.; Eittreim, S.; Donald, Reed


    A side-scan sonar survey was conducted of Monterey Canyon and the San Gregorio fault zone, off shore of Monterey Bay. The acoustic character and morphology of the sonar images, enhanced by SeaBeam bathymetry, show the path of the San Gregorio fault zone across the shelf, upper slope, and Monterey Canyon. High backscatter linear features a few kilometers long and 100 to 200 m wide delineate the sea-floor expression of the fault zone on the shelf. Previous studies have shown that brachiopod pavements and carbonate crusts are the source of the lineations backscatter. In Monterey Canyon, the fault zone occurs where the path of the canyon makes a sharp bend from WNW to SSW (1800 m). Here, the fault is marked by NW-SE-trending, high reflectivity lineations that cross the canyon floor between 1850 m and 1900 m. The lineations can be traced to ridges on the northwestern canyon wall where they have ~ 15 m of relief. Above the low-relief ridges, bowl-shaped features have been excavated on the canyon wall contributing to the widening of the canyon. We suggest that shear along the San Gregorio fault has led to the formation of the low-relief ridges near the canyon wall and that carbonate crusts, as along the shelf, may be the source of the high backscatter features on the canyon floor. The path of the fault zone across the upper slope is marked by elongated tributary canyons with high backscatter floors and 'U'-shaped cross-sectional profiles. Linear features and stepped scarps suggestive of recent crustal movement and mass-wasting, occur on the walls and floors of these canyons. Three magnitude-4 earthquakes have occurred within the last 30 years in the vicinity of the canyons that may have contributed to the observed features. As shown by others, motion along the fault zone has juxtaposed diverse lithologies that outcrop on the canyon walls. Gully morphology and the canyon's drainage patterns have been influenced by the substrate into which the gullies have formed.

  12. Tidal triggering of earthquakes suggests poroelastic behavior on the San Andreas Fault (United States)

    Delorey, Andrew A.; van der Elst, Nicholas J.; Johnson, Paul A.


    Tidal triggering of earthquakes is hypothesized to provide quantitative information regarding the fault's stress state, poroelastic properties, and may be significant for our understanding of seismic hazard. To date, studies of regional or global earthquake catalogs have had only modest successes in identifying tidal triggering. We posit that the smallest events that may provide additional evidence of triggering go unidentified and thus we developed a technique to improve the identification of very small magnitude events. We identify events applying a method known as inter-station seismic coherence where we prioritize detection and discrimination over characterization. Here we show tidal triggering of earthquakes on the San Andreas Fault. We find the complex interaction of semi-diurnal and fortnightly tidal periods exposes both stress threshold and critical state behavior. Our findings reveal earthquake nucleation processes and pore pressure conditions - properties of faults that are difficult to measure, yet extremely important for characterizing earthquake physics and seismic hazards.

  13. Quaternary crustal deformation along a major branch of the San Andreas fault in central California (United States)

    Weber, G.E.; Lajoie, K.R.; Wehmiller, J. F.


    Deformed marine terraces and alluvial deposits record Quaternary crustal deformation along segments of a major, seismically active branch of the San Andreas fault which extends 190 km SSE roughly parallel to the California coastline from Bolinas Lagoon to the Point Sur area. Most of this complex fault zone lies offshore (mapped by others using acoustical techniques), but a 4-km segment (Seal Cove fault) near Half Moon Bay and a 26-km segment (San Gregorio fault) between San Gregorio and Point Ano Nuevo lie onshore. At Half Moon Bay, right-lateral slip and N-S horizontal compression are expressed by a broad, synclinal warp in the first (lowest: 125 ka?) and second marine terraces on the NE side of the Seal Cove fault. This structure plunges to the west at an oblique angle into the fault plane. Linear, joint0controlled stream courses draining the coastal uplands are deflected toward the topographic depression along the synclinal axis where they emerge from the hills to cross the lowest terrace. Streams crossing the downwarped part of this terrace adjacent to Half Moon Bay are depositing alluvial fans, whereas streams crossing the uplifted southern limb of the syncline southwest of the bay are deeply incised. Minimum crustal shortening across this syncline parallel to the fault is 0.7% over the past 125 ka, based on deformation of the shoreline angle of the first terrace. Between San Gregorio and Point Ano Nuevo the entire fault zone is 2.5-3.0 km wide and has three primary traces or zones of faulting consisting of numerous en-echelon and anastomozing secondary fault traces. Lateral discontinuities and variable deformation of well-preserved marine terrace sequences help define major structural blocks and document differential motions in this area and south to Santa Cruz. Vertical displacement occurs on all of the fault traces, but is small compared to horizontal displacement. Some blocks within the fault zone are intensely faulted and steeply tilted. One major block 0

  14. Holocene geologic slip rate for the Banning strand of the southern San Andreas Fault, southern California (United States)

    Gold, Peter O.; Behr, Whitney M.; Rood, Dylan; Sharp, Warren D.; Rockwell, Thomas; Kendrick, Katherine J.; Salin, Aaron


    Northwest directed slip from the southern San Andreas Fault is transferred to the Mission Creek, Banning, and Garnet Hill fault strands in the northwestern Coachella Valley. How slip is partitioned between these three faults is critical to southern California seismic hazard estimates but is poorly understood. In this paper, we report the first slip rate measured for the Banning fault strand. We constrain the depositional age of an alluvial fan offset 25 ± 5 m from its source by the Banning strand to between 5.1 ± 0.4 ka (95% confidence interval (CI)) and 6.4 + 3.7/−2.1 ka (95% CI) using U-series dating of pedogenic carbonate clast coatings and 10Be cosmogenic nuclide exposure dating of surface clasts. We calculate a Holocene geologic slip rate for the Banning strand of 3.9 + 2.3/−1.6 mm/yr (median, 95% CI) to 4.9 + 1.0/−0.9 mm/yr (median, 95% CI). This rate represents only 25–35% of the total slip accommodated by this section of the southern San Andreas Fault, suggesting a model in which slip is less concentrated on the Banning strand than previously thought. In rejecting the possibility that the Banning strand is the dominant structure, our results highlight an even greater need for slip rate and paleoseismic measurements along faults in the northwestern Coachella Valley in order to test the validity of current earthquake hazard models. In addition, our comparison of ages measured with U-series and 10Be exposure dating demonstrates the importance of using multiple geochronometers when estimating the depositional age of alluvial landforms.

  15. Data from theodolite measurements of creep rates on San Francisco Bay region faults, California, 1979-2012 (United States)

    McFarland, Forrest S.; Lienkaemper, James J.; Caskey, S. John


    Our purpose is to annually update our creep-data archive on San Francisco Bay region active faults for use by the scientific research community. Earlier data (1979-2001) were reported in Galehouse (2002) and were analyzed and described in detail in a summary report (Galehouse and Lienkaemper, 2003). A complete analysis of our earlier results obtained on the Hayward Fault was presented in Lienkaemper, Galehouse and Simpson (2001) and updated in Lienkaemper and others (2012). Lienkaemper and others (2014a) provide a new overview and analysis of fault creep along all sections of the northern San Andreas Fault system, from which they estimate by how much fault creep reduces the seismic hazard for each fault section.

  16. Seismic-reflection evidence that the hayward fault extends into the lower crust of the San Francisco Bay Area, California (United States)

    Parsons, T.


    This article presents deep seismic-reflection data from an experiment across San Francisco Peninsula in 1995 using large (125 to 500 kg) explosive sources. Shot gathers show a mostly nonreflective upper crust in both the Franciscan and Salinian terranes (juxtaposed across the San Andreas fault), an onset of weak lower-crustal reflectivity beginning at about 6-sec two-way travel time (TWTT) and bright southwest-dipping reflections between 11 and 13 sec TWTT. Previous studies have shown that the Moho in this area is no deeper than 25 km (~8 to 9 sec TWTT). Three-dimensional reflection travel-time modeling of the 11 to 13 sec events from the shot gathers indicates that the bright events may be explained by reflectors 15 to 20 km into the upper mantle, northeast of the San Andreas fault. However, upper mantle reflections from these depths were not observed on marine-reflection profiles collected in San Francisco Bay, nor were they reported from a refraction profile on San Francisco Peninsula. The most consistent interpretation of these events from 2D raytracing and 3D travel-time modeling is that they are out-of-plane reflections from a high-angle (dipping ~70??to the southwest) impedance contrast in the lower crust that corresponds with the surface trace of the Hayward fault. These results suggest that the Hayward fault truncates the horizontal detachment fault suggested to be active beneath San Francisco Bay.

  17. Recurrence of seismic migrations along the central California segment of the San Andreas fault system (United States)

    Wood, M.D.; Allen, S.S.


    VERIFICATIONS of tectonic concepts1 concerning seafloor spreading are emerging in a manner that has direct bearing on earthquake prediction. Although the gross pattern of worldwide seismicity contributed to the formulation of the plate tectonic hypothesis, it is the space-time characteristics of this seismicity that may contribute more toward understanding the kinematics and dynamics of the driving mechanism long speculated to originate in the mantle. If the lithosphere is composed of plates that move essentially as rigid bodies, then there should be seismic edge effects associated with this movement. It is these interplate effects, especially seismic migration patterns, that we discuss here. The unidirectional propagation at constant velocity (80 km yr-1 east to west) for earthquakes (M???7.2) on the Antblian fault for the period 1939 to 1956 (ref. 2) is one of the earliest observations of such a phenomenon. Similar studies3,4 of the Alaska Aleutian seismic zone and certain regions of the west coast of South America suggest unidirectional and recurring migrations of earthquakes (M???7.7) occur in these areas. Between these two regions along the great transform faults of the west coast of North America, there is some evidence 5 for unidirectional, constant velocity and recurrent migration of great earthquakes. The small population of earthquakes (M>7.2) in Savage's investigation5 indicates a large spatial gap along the San Andreas system in central California from 1830 to 1970. Previous work on the seismicity of this gap in central California indicates that the recurrence curves remain relatively constant, independent of large earthquakes, for periods up to a century6. Recurrence intervals for earthquakes along the San Andreas Fault have been calculated empirically by Wallace7 on the basis of geological evidence, surface measurements and assumptions restricted to the surficial seismic layer. Here we examine the evidence for recurrence of seismic migrations along

  18. Investigating the Creeping Segment of the San Andreas fault using Persistent Scatterer Interferometry (United States)

    Agram, P.; Ryder, I.; Rolandone, F.; Zebker, H.


    We analyze the temporal characteristics of the creeping section of the San Andreas fault in Central California, using persistent scatterer interferometry (PS-InSAR) time series methods. In PS-InSAR, we identify a network of pixels whose scattering properties vary little between multiple SAR acquisitions spanning a period of time and use phase measurements at these points as a function of time to derive deformations. Applying PS-InSAR to natural terrains where conventional interferograms tend to suffer decorrelation is difficult, yet several PS-InSAR methods have been proposed and have been shown to work reliably in urban environments. The Stanford Method for PS (StaMPS) was the first method developed to extend the scope of PS-InSAR to work effectively in vegetated regions. We applied a maximum likelihood approach to PS selection and find it to be effective in identifying PS points in vegetated areas of the San Francisco Bay Area and Imperial Valley in California, USA. A key advantage of both StaMPS and the maximum likelihood method are that they do not require an a priori temporal model for the deformation pattern. Here we present results from applying these methods to the creeping section of the San Andreas fault. This segment of the fault creeps at rates in excess of 20 mm per year. Geodetic measurements in this area from creepmeters, alignment arrays and GPS typically have poor spatial and/or temporal resolution. Conventional stacking of ERS interferograms covering this segment of the fault provides good surface deformation information in parts of this region, but is not viable in areas that are heavily decorrelated due to vegetation and topography. The PS methods generate time series of surface displacement, even in steep, vegetated areas, and readily reproduce the creep rate of about 26 mm/yr along the fault and the spatial distribution of deformation away from the fault. The results are consistent, but more detailed than, the observations from GPS networks

  19. Cradle of the Earthquake: Exploring the Underwater San Andreas Fault on the R/V Pacific Storm and the SRV Derek M. Baylis between 20100910 and 20101003 (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Over one hundred years after the devastating Great 1906 Earthquake that nearly destroyed San Francisco, this expedition explored the Northern San Andreas Fault, the...

  20. Fault Creep along the Southern San Andreas from Interferometric Synthetic Aperture Radar, Permanent Scatterers, and Stacking (United States)

    Lyons, Suzanne; Sandwell, David


    Interferometric synthetic aperture radar (InSAR) provides a practical means of mapping creep along major strike-slip faults. The small amplitude of the creep signal (less than 10 mm/yr), combined with its short wavelength, makes it difficult to extract from long time span interferograms, especially in agricultural or heavily vegetated areas. We utilize two approaches to extract the fault creep signal from 37 ERS SAR images along the southem San Andreas Fault. First, amplitude stacking is utilized to identify permanent scatterers, which are then used to weight the interferogram prior to spatial filtering. This weighting improves correlation and also provides a mask for poorly correlated areas. Second, the unwrapped phase is stacked to reduce tropospheric and other short-wavelength noise. This combined processing enables us to recover the near-field (approximately 200 m) slip signal across the fault due to shallow creep. Displacement maps fiom 60 interferograms reveal a diffuse secular strain buildup, punctuated by localized interseismic creep of 4-6 mm/yr line of sight (LOS, 12-18 mm/yr horizontal). With the exception of Durmid Hill, this entire segment of the southern San Andreas experienced right-lateral triggered slip of up to 10 cm during the 3.5-year period spanning the 1992 Landers earthquake. The deformation change following the 1999 Hector Mine earthquake was much smaller (4 cm) and broader than for the Landers event. Profiles across the fault during the interseismic phase show peak-to-trough amplitude ranging from 15 to 25 mm/yr (horizontal component) and the minimum misfit models show a range of creeping/locking depth values that fit the data.

  1. Aseismic slip on the San Andreas Fault south of Loma Prieta (United States)

    Behr, J.; Bilham, R.; Bodin, P.; Burfoid, R. O.; Bürgmann, R.

    Two digital creepmeters installed within the San Andreas fault zone after the 18 Oct 1989 Loma Prieta main shock show less than 1 cm of post seismic right-lateral slip in the four months following the earthquake. At Mt. Madonna road a 23 mm coseismic fracture slipped a further 3 mm after heavy rain, and at Nyland Ranch near San Juan Bautista the fault slipped approximately 9 mm starting 42 days after the main shock. If the current trend at Nyland Ranch persists, more than 2 cm of post seismic slip will develop by 1991. At both sites minor left-lateral displacements occurred which are attributed to near-surface soil effects. The abutments of the railroad bridge across the Pajaro River at Chittenden, which were extended by the 1906 earthquake, were not extended during the Loma Prieta event although they have evidently moved apart by more than 7 cm since bridge reconstruction in 1940. This corresponds to 10 cm of right-lateral slip which could be related to M>5 events in mid-century or could be due to aseismic slip at a mean rate of 2.1 mm/a. The absence of significant surface slip within the fault zone in the decades before and the months following the Loma Prieta event suggests either that near-surface deformation is distributed over a wide zone or that a slip deficit remains. Several authors have proposed this region as a future location for M≈5 events.

  2. Investigations of fluid flow and heat transport related to the strength of the San Andreas fault (United States)

    Fulton, Patrick M.


    The shear strength of faults is an important factor in earthquake hazard assessment, and in understanding the earthquake process and the forces that drive tectonic deformation. However, on the basis of both geomechanical and thermal observations, many plate boundary faults, including the San Andreas Fault (SAF) in California, have been interpreted to slip at shear stresses considerably less than predicted by laboratory-derived friction laws and for hydrostatic fluid pressures. An understanding of whether plate-boundary faults truly are "weak" and the potential causes for such weakness are thus key unknowns in the physics of faulting. In the first section of this thesis, I evaluate whether thermal and hydrologic effects might disturb heat flow data which are used to interpret the strength of the SAF. Using numerical models of coupled fluid flow and heat transport, and by comparing model results with observational constraints, I show that redistribution of heat by groundwater flow is an unlikely explanation for the lack of a near fault increase in heat flow that would be associated with frictional heat generation on a strong fault (i.e. one that supports large shear stresses). I also show that the effects of topographic and subsurface refraction may account for previously unexplained spatial scatter in heat flow data around the fault, but even with these effects the data are most consistent with little or no frictional heat generation. In the second section of this thesis, I evaluate hypotheses invoking regional sources of fluid resulting from metamorphic dehydration reactions within the crust or upper mantle as mechanisms that generate large fluid overpressures within the fault zone required to explain the apparent weakness of the SAF. I calculate reasonable fluid source terms for both crustal and mantle dehydration following the creation of the SAF. I show that crustal dehydration sources are too small and short-lived to generate large overpressures, but it is

  3. Scientific Drilling Into the San Andreas Fault Zone —An Overview of SAFOD’s First Five Years

    Directory of Open Access Journals (Sweden)

    Stephen Hickman


    Full Text Available The San Andreas Fault Observatory at Depth (SAFODwas drilled to study the physical and chemical processes controlling faulting and earthquake generation along an active, plate-bounding fault at depth. SAFOD is located near Parkfield, California and penetrates a section of the fault that is moving due to a combination of repeating microearthquakes and fault creep. Geophysical logs define the SanAndreas Fault Zone to be relatively broad (~200 m, containing several discrete zones only 2–3 m wide that exhibit very low P- and S-wave velocities and low resistivity. Two of these zones have progressively deformed the cemented casing at measured depths of 3192 m and 3302 m. Cores from both deforming zones contain a pervasively sheared, cohesionless, foliated fault gouge that coincides with casing deformation and explains the observed extremely low seismic velocities and resistivity. These cores are being now extensivelytested in laboratories around the world, and their composition, deformation mechanisms, physical properties, and rheological behavior are studied. Downhole measurements show that within 200 m (maximum of the active fault trace, the direction of maximum horizontal stress remains at a high angle to the San Andreas Fault, consistent with other measurements. The results from the SAFOD Main Hole, together with the stress state determined in the Pilot Hole, are consistent with a strong crust/weak fault model of the San Andreas. Seismic instrumentation has been deployed to study physics of faulting—earthquake nucleation, propagation, and arrest—in order to test how laboratory-derived concepts scale up to earthquakes occurring in nature.

  4. Extensive barite deposits on a seepage site along the offshore San Clemente Fault, Mexican Borderland (United States)

    Gwiazda, R.; Paull, C. K.; Maier, K. L.; McGann, M.; Caress, D. W.; Herguera, J. C.; Lundsten, E. M.; Anderson, K.


    A 6 km-long section of San Clemente Fault Zone was recently mapped with an Autonomous Underwater Vehicle, 53 km south of the U.S.-Mexican border in ~1850 m water depth. The surface expression of the fault zone as well as patches of especially rough seafloor texture on both flanks of the fault are distinctively recognized in 1-m resolution bathymetry. On the SW side of the fault, apparently accreted ovoid mounds 10 to 30 meters in diameter and up to 11 m high cover up to 50% of the seafloor within a restricted 0.43 km2 area. In contrast, on the NE side similar mounds are identified along outcropping bedding planes, suggesting that on the NE side mound formation and distribution is stratigraphically controlled. On a dive with the Remotely Operated Vehicle (ROV) Doc Ricketts we observed variably colored ~1 m-sized material clusters accreted onto the sides and top of the mounds. Some clusters consist of white, fragile, vertical spires, suggesting active upward growth of chemical precipitates. The lightly colored clusters are partially covered with gelatinous and filamentous bacterial mats on their uppermost surfaces. The mounds broke easily when prodded with the ROV arm. X-ray powder diffraction analyses show the mounds are composed of barite. Black varnish variably covers the mounds and may be related to time since the last episode of barite precipitation in a particular area. Except for thickets of tubeworms, mounds are notably devoid of attached fauna. Concentration of methane in sediment pore fluids extracted from push cores collected at the base of a tubeworm thicket was low, in the order of micromolar to undetectable Sulfur isotopic compositions of seven rock samples range between δ34S +20.1‰ to +27.5‰, indicating the sulfate in barite is mainly seawater-derived (δ34S +21) which has undergone a small degree of sulfur reduction. Overall, barite deposits covered 14% of the area within a 500 m wide band along the SW side of the fault, and 22% within a 650 m

  5. Data-Derived Coulomb Stress Rate Uncertainties of the San Andreas Fault System (United States)

    Smith-Konter, B. R.; Solis, T.; Sandwell, D. T.


    Interseismic stress rates of the San Andreas Fault System (SAFS), derived from the present-day geodetic network spanning the North American-Pacific plate boundary, range from 0.5 - 7 MPa/100yrs and vary as a function of fault locking depth, slip rate, and fault geometry. Calculations of accumulated stress over several earthquake cycles, consistent with coseismic stress drops of ~3-7 MPa, also largely depend on the rupture history of a fault over the past few thousand years. However, uncertainties in paleoseismic slip history, combined with ongoing discrepancies in geologic/geodetic slip rates and variable locking depths throughout the earthquake cycle, can introduce uncertainties in stress rate and in present-day stress accumulation calculations. For example, a number of recent geodetic studies have challenged geologic slip rates along the SAFS, varying by as much as 25% of the total slip budget; geodetically determined locking depths, while within the bounds of seismicity, typically have uncertainties that range from 0.5 - 5 km; uncertainties in paleoseismic chronologies can span several decades, with slip uncertainties on the order of a few meters. Here we assess the importance of paleoseismic accuracy, variations in slip rates, and basic stress model components using a 3-D semi-analytic time-dependent deformation model of the SAFS. We perform a sensitivity analysis of Coulomb stress rate and present-day accumulated stress with respect to the six primary parameters of our model: slip rate, locking depth, mantle viscosity, elastic plate thickness, coefficient of friction, and slip history. In each case, we calculate a stress derivative with respect to a parameter over the estimated range of uncertainty, as well as any tradeoffs in parameters. Our results suggest that a 25% variation, or exchange, of slip rates between the primary SAFS and faults of the Eastern California Shear Zone (ECSZ) yields a respective decrease (SAFS) and increase (ECSZ) of stress rate by

  6. Southern San Andreas Fault seismicity is consistent with the Gutenberg-Richter magnitude-frequency distribution (United States)

    Page, Morgan T.; Felzer, Karen


    The magnitudes of any collection of earthquakes nucleating in a region are generally observed to follow the Gutenberg-Richter (G-R) distribution. On some major faults, however, paleoseismic rates are higher than a G-R extrapolation from the modern rate of small earthquakes would predict. This, along with other observations, led to formulation of the characteristic earthquake hypothesis, which holds that the rate of small to moderate earthquakes is permanently low on large faults relative to the large-earthquake rate (Wesnousky et al., 1983; Schwartz and Coppersmith, 1984). We examine the rate difference between recent small to moderate earthquakes on the southern San Andreas fault (SSAF) and the paleoseismic record, hypothesizing that the discrepancy can be explained as a rate change in time rather than a deviation from G-R statistics. We find that with reasonable assumptions, the rate changes necessary to bring the small and large earthquake rates into alignment agree with the size of rate changes seen in epidemic-type aftershock sequence (ETAS) modeling, where aftershock triggering of large earthquakes drives strong fluctuations in the seismicity rates for earthquakes of all magnitudes. The necessary rate changes are also comparable to rate changes observed for other faults worldwide. These results are consistent with paleoseismic observations of temporally clustered bursts of large earthquakes on the SSAF and the absence of M greater than or equal to 7 earthquakes on the SSAF since 1857.

  7. Inferring fault rheology from low-frequency earthquakes on the San Andreas (United States)

    Beeler, Nicholas M.; Thomas, Amanda; Bürgmann, Roland; Shelly, David R.


    Families of recurring low-frequency earthquakes (LFEs) within nonvolcanic tremor (NVT) on the San Andreas fault in central California show strong sensitivity to shear stress induced by the daily tidal cycle. LFEs occur at all levels of the tidal shear stress and are in phase with the very small, ~400 Pa, stress amplitude. To quantitatively explain the correlation, we use a model from the existing literature that assumes the LFE sources are small, persistent regions that repeatedly fail during shear of a much larger scale, otherwise aseismically creeping fault zone. The LFE source patches see tectonic loading, creep of the surrounding fault which may be modulated by the tidal stress, and direct tidal loading. If the patches are small relative to the surrounding creeping fault then the stressing is dominated by fault creep, and if patch failure occurs at a threshold stress, then the resulting seismicity rate is proportional to the fault creep rate or fault zone strain rate. Using the seismicity rate as a proxy for strain rate and the tidal shear stress, we fit the data with possible fault rheologies that produce creep in laboratory experiments at temperatures of 400 to 600°C appropriate for the LFE source depth. The rheological properties of rock-forming minerals for dislocation creep and dislocation glide are not consistent with the observed fault creep because strong correlation between small stress perturbations and strain rate requires perturbation on the order of the ambient stress. The observed tidal modulation restricts ambient stress to be at most a few kilopascal, much lower than rock strength. A purely rate dependent friction is consistent with the observations only if the product of the friction rate dependence and effective normal stress is ~ 0.5 kPa. Extrapolating the friction rate strengthening dependence of phyllosilicates (talc) to depth would require the effective normal stress to be ~50 kPa, implying pore pressure is lithostatic. If the LFE

  8. Subsurface structure and kinematics of the Calaveras-Hayward fault stepover from three-dimensional Vp and seismicity, San Francisco Bay region, California (United States)

    Manaker, David M.; Michael, Andrew J.; Burgmann, Roland


    The Calaveras and Hayward faults are major components of the San Andreas fault system in the San Francisco Bay region. Dextral slip is presumed to transfer from the Calaveras fault to the Hayward fault in the Mission Hills region, an area of uplift in the contractional stepover between the two faults. Here the estimated deep slip rates drop from 15 to 6 mm/yr on the Calaveras fault, and slip begins on the Hayward fault at an estimated 9 mm/yr. A lineament of microseismicity near the Mission fault links the seismicity on the Calaveras and Hayward faults and is presumed to be related directly to this slip transfer. However, geologic and seismologic evidence suggest that the Mission fault may not be the source of the seismicity and that the Mission fault is not playing a major role in the slip transfer.

  9. Constraining deformation at the lithosphere-asthenosphere boundary beneath the San Andreas fault with Sp phases (United States)

    Fischer, K. M.; Ford, H. A.; Lekic, V.


    The geometry of deformation in the deep mantle lithosphere beneath strike-slip plate boundaries has been enigmatic, with models ranging from localized shear zones that are deep extensions of individual crustal faults to broad zones of diffuse, distributed shear with widths of hundreds of kilometers. Using seismic phases that convert from shear to compressional motion (Sp) at the base of the lithosphere beneath California, we find evidence for strike-slip deformation in the deepest mantle lithosphere beneath the central San Andreas fault that occurs over a horizontal width of 50 km or less. This study is based on over 135,000 Sp receiver functions from 730 seismic stations, including the Northern and Southern California Seismic Networks and the NSF EarthScope Transportable and Flexible Arrays. Individual Sp receiver functions were calculated using an extended-time multi-taper method and were migrated and stacked according to their three-dimensional conversion point locations using a model for crust (Lowry and Pérez-Gussinyé, 2011) and mantle (Obrebski et al., 2010 and 2011) velocity structure beneath each station and a spline-function representation of the Sp Fresnel zone. Sp conversion points at lithosphere-asthenosphere boundary depths are very dense on both sides of the San Andreas fault, and we interpreted the Sp common conversion point stack only at those nodes with information from more than 300 receiver functions. To the east of the plate boundary, a strong coherent Sp phase, indicative of a decrease in shear-wave velocity with depth, is present in the depth range where tomographic studies image the transition from high velocity lithosphere to low velocity asthenosphere. This phase, interpreted as the seismological lithosphere-asthenosphere boundary, has systematically lower amplitudes on the western side of the plate boundary, indicating that the drop in shear velocity from lithosphere to asthenosphere is either smaller or is distributed over a larger

  10. Examining the Evolution of the Peninsula Segment of the San Andreas Fault, Northern California, Using a 4-D Geologic Model (United States)

    Horsman, E.; Graymer, R. W.; McLaughlin, R. J.; Jachens, R. C.; Scheirer, D. S.


    Retrodeformation of a three-dimensional geologic model allows us to explore the tectonic evolution of the Peninsula segment of the San Andreas Fault and adjacent rock bodies in the San Francisco Bay area. By using geological constraints to quantitatively retrodeform specific surfaces (e.g. unfolding paleohorizontal horizons, removing fault slip), we evaluate the geometric evolution of rock bodies and faults in the study volume and effectively create a four-dimensional model of the geology. The three-dimensional map is divided into fault-bounded blocks and subdivided into lithologic units. Surface geologic mapping provides the foundation for the model. Structural analysis and well data allow extrapolation to a few kilometers depth. Geometries of active faults are inferred from double-difference relocated earthquake hypocenters. Gravity and magnetic data provide constraints on the geometries of low density Cenozoic deposits on denser basement, highly magnetic marker units, and adjacent faults. Existing seismic refraction profiles constrain the geometries of rock bodies with different seismic velocities. Together these datasets and others allow us to construct a model of first-order geologic features in the upper ~15 km of the crust. Major features in the model include the active San Andreas Fault surface; the Pilarcitos Fault, an abandoned strand of the San Andreas; an active NE-vergent fold and thrust belt located E of the San Andreas Fault; regional relief on the basement surface; and several Cenozoic syntectonic basins. Retrodeformation of these features requires constraints from all available datasets (structure, geochronology, paleontology, etc.). Construction of the three-dimensional model and retrodeformation scenarios are non-unique, but significant insights follow from restricting the range of possible geologic histories. For example, we use the model to investigate how the crust responded to migration of the principal slip surface from the Pilarcitos Fault

  11. Low-altitude aerial color digital photographic survey of the San Andreas Fault (United States)

    Lynch, David K.; Hudnut, Kenneth W.; Dearborn, David S.P.


    Ever since 1858, when Gaspard-Félix Tournachon (pen name Félix Nadar) took the first aerial photograph (Professional Aerial Photographers Association 2009), the scientific value and popular appeal of such pictures have been widely recognized. Indeed, Nadar patented the idea of using aerial photographs in mapmaking and surveying. Since then, aerial imagery has flourished, eventually making the leap to space and to wavelengths outside the visible range. Yet until recently, the availability of such surveys has been limited to technical organizations with significant resources. Geolocation required extensive time and equipment, and distribution was costly and slow. While these situations still plague older surveys, modern digital photography and lidar systems acquire well-calibrated and easily shared imagery, although expensive, platform-specific software is sometimes still needed to manage and analyze the data. With current consumer-level electronics (cameras and computers) and broadband internet access, acquisition and distribution of large imaging data sets are now possible for virtually anyone. In this paper we demonstrate a simple, low-cost means of obtaining useful aerial imagery by reporting two new, high-resolution, low-cost, color digital photographic surveys of selected portions of the San Andreas fault in California. All pictures are in standard jpeg format. The first set of imagery covers a 92-km-long section of the fault in Kern and San Luis Obispo counties and includes the entire Carrizo Plain. The second covers the region from Lake of the Woods to Cajon Pass in Kern, Los Angeles, and San Bernardino counties (151 km) and includes Lone Pine Canyon soon after the ground was largely denuded by the Sheep Fire of October 2009. The first survey produced a total of 1,454 oblique digital photographs (4,288 x 2,848 pixels, average 6 Mb each) and the second produced 3,762 nadir images from an elevation of approximately 150 m above ground level (AGL) on the

  12. Correlation of clayey gouge in a surface exposure of the San Andreas fault with gouge at depth from SAFOD: Implications for the role of serpentinite in fault mechanics (United States)

    Moore, Diane E.; Rymer, Michael J.


    Magnesium-rich clayey gouge similar to that comprising the two actively creeping strands of the San Andreas Fault in drill core from the San Andreas Fault Observatory at Depth (SAFOD) has been identified in a nearby outcrop of serpentinite within the fault zone at Nelson Creek. Each occurrence of the gouge consists of porphyroclasts of serpentinite and sedimentary rocks dispersed in a fine-grained, foliated matrix of Mg-rich smectitic clays. The clay minerals in all three gouges are interpreted to be the product of fluid-assisted, shear-enhanced reactions between quartzofeldspathic wall rocks and serpentinite that was tectonically entrained in the fault from a source in the Coast Range Ophiolite. We infer that the gouge at Nelson Creek connects to one or both of the gouge zones in the SAFOD core, and that similar gouge may occur at depths in between. The special significance of the outcrop is that it preserves the early stages of mineral reactions that are greatly advanced at depth, and it confirms the involvement of serpentinite and the Mg-rich phyllosilicate minerals that replace it in promoting creep along the central San Andreas Fault.

  13. Predictive model of San Andreas fault system paleogeography, Late Cretaceous to early Miocene, derived from detailed multidisciplinary conglomerate correlations (United States)

    Burnham, Kathleen


    Paleogeographic reconstruction of the region of the San Andreas fault system in western California, USA, was hampered for more than two decades by the apparent incompatibility of authoritative lithologic correlations. These led to disparate estimates of dextral strike-slip offsets across the San Andreas fault, notably 315 km between Pinnacles and Neenach Volcanics, versus 563 km offset between Anchor Bay and Eagle Rest peak. Furthermore, one section of the San Andreas fault between Pinnacles and Point Reyes had been reported to have six pairs of features showing only ~ 30 km offset, while several younger features in that same area were reported consistent with ~ 315 km offset. Estimates of total dextral slip on the adjoining San Gregorio fault have ranged from 5 km to 185 km. Sixteen Upper Cretaceous and Paleogene conglomerates of the California Coast Ranges, from Anchor Bay to Simi Valley, were included in a multidisciplinary study centered on identification of matching unique clast varieties, rather than on simply counting general clast types. Detailed analysis verified the prior correlation of the Upper Cretaceous strata of Anchor Bay at Anchor Bay with a then-unnamed conglomerate at Highway 92 and Skyline Road (south of San Francisco); and verified that the Paleocene or Eocene Point Reyes Conglomerate at Point Reyes is a tectonically displaced segment of the Carmelo Formation of Point Lobos (near Monterey). The work also led to three new correlations: Point Reyes Conglomerate with granitic source rock at Point Lobos; a magnetic anomaly at Black Point (near Sea Ranch) with a magnetic anomaly near San Gregorio; and strata of Anchor Bay with previously established source rock, the potassium-poor Logan Gabbro of Eagle Rest peak, at a more recently recognized subsurface location just east of the San Gregorio fault, south of San Gregorio. From these correlations, a Late Cretaceous to early Oligocene paleogeography was constructed which was unique in utilizing modern

  14. Locating Very-Low-Frequency Earthquakes in the San Andreas Fault. (United States)

    Peña-Castro, A. F.; Harrington, R. M.; Cochran, E. S.


    The portion of tectonic fault where rheological properties transtition from brittle to ductile hosts a variety of seismic signals suggesting a range of slip velocities. In subduction zones, the two dominantly observed seismic signals include very-low frequency earthquakes ( VLFEs), and low-frequency earthquakes (LFEs) or tectonic tremor. Tremor and LFE are also commonly observed in transform faults, however, VLFEs have been reported dominantly in subduction zone environments. Here we show some of the first known observations of VLFEs occurring on a plate boundary transform fault, the San Andreas Fault (SAF) between the Cholame-Parkfield segment in California. We detect VLFEs using both permanent and temporary stations in 2010-2011 within approximately 70 km of Cholame, California. We search continous waveforms filtered from 0.02-0.05 Hz, and remove time windows containing teleseismic events and local earthquakes, as identified in the global Centroid Moment Tensor (CMT) and the Northern California Seismic Network (NCSN) catalog. We estimate the VLFE locations by converting the signal into envelopes, and cross-correlating them for phase-picking, similar to procedures used for locating tectonic tremor. We first perform epicentral location using a grid search method and estimate a hypocenter location using Hypoinverse and a shear-wave velocity model when the epicenter is located close to the SAF trace. We account for the velocity contrast across the fault using separate 1D velocity models for stations on each side. Estimated hypocentral VLFE depths are similar to tremor catalog depths ( 15-30 km). Only a few VLFEs produced robust hypocentral locations, presumably due to the difficulty in picking accurate phase arrivals with such a low-frequency signal. However, for events for which no location could be obtained, the moveout of phase arrivals across the stations were similar in character, suggesting that other observed VLFEs occurred in close proximity.

  15. A deep crustal fluid channel into the San Andreas Fault system near Parkfield, California (United States)

    Becken, M.; Ritter, O.; Park, S.K.; Bedrosian, P.A.; Weckmann, U.; Weber, M.


    Magnetotelluric (MT) data from 66 sites along a 45-km-long profile across the San Andreas Fault (SAF) were inverted to obtain the 2-D electrical resistivity structure of the crust near the San Andreas Fault Observatory at Depth (SAFOD). The most intriguing feature of the resistivity model is a steeply dipping upper crustal high-conductivity zone flanking the seismically defined SAF to the NE, that widens into the lower crust and appears to be connected to a broad conductivity anomaly in the upper mantle. Hypothesis tests of the inversion model suggest that upper and lower crustal and upper-mantle anomalies may be interconnected. We speculate that the high conductivities are caused by fluids and may represent a deep-rooted channel for crustal and/or mantle fluid ascent. Based on the chemical analysis of well waters, it was previously suggested that fluids can enter the brittle regime of the SAF system from the lower crust and mantle. At high pressures, these fluids can contribute to fault-weakening at seismogenic depths. These geochemical studies predicted the existence of a deep fluid source and a permeable pathway through the crust. Our resistivity model images a conductive pathway, which penetrates the entire crust, in agreement with the geochemical interpretation. However, the resistivity model also shows that the upper crustal branch of the high-conductivity zone is located NE of the seismically defined SAF, suggesting that the SAF does not itself act as a major fluid pathway. This interpretation is supported by both, the location of the upper crustal high-conductivity zone and recent studies within the SAFOD main hole, which indicate that pore pressures within the core of the SAF zone are not anomalously high, that mantle-derived fluids are minor constituents to the fault-zone fluid composition and that both the volume of mantle fluids and the fluid pressure increase to the NE of the SAF. We further infer from the MT model that the resistive Salinian block

  16. Asymmetric motion along the San Franciso Bay Area faults. Implication for the magnitude of future seismic events (United States)

    Houlie, N.; Romanowicz, B.


    The San Francisco Bay area is one of the tectonically most deformed areas in the world. This deformation is the result of relative motion of the Pacific and North-America plates. A large part of the strain (75 %) is accommodated along structures lying in a 50 km wide land strip. At least two major seismic events (Mw>6.5) are expected along the San Andreas (SAF) and Hayward faults (HAY) within the next decades. Triggering effects between the two seismic events may not be excluded. The BARD network is a permanent GPS network comprising 40 GPS sites, installed since 1994 in Northern California. Originally started as a collaborative effort of different Bay Area institutions, since the establishment of the Plate Boundary Observatory it has focused on real-time data acquisition from stations operated by UC Berkeley, with plans for expansion in collaboration with USGS/Menlo Park. The BARD network is streaming data to the Berkeley Seismological Laboratory in real-time (sampling rates of 1s and 15s, depending on the site). All sites are transmitting data using Frame Relay technology which makes them safer in case of earthquake occurrence. Data are archived at the Northern California Earthquake Data Center (NCEDC, and are freely available. The BARD network is currently able to provide high accuracy (errorSan Andreas fault may be asymmetric. Therefore, the common assumption that the deformation is symmetric across the fault could lead to a biased location of the region of maximum strain in the San Francisco Bay Area. The new location of the maximum static strain based on asymmetry influences estimates of the response of the Hayward Fault to deformation associated with the San Andreas fault. We also present preliminary velocities for PBO sites located in the San Francisco Bay Area and discuss them in the light of a BARD reference frame.

  17. Is magnitude variability on North-Anatolian and San-Andreas fault segments a consequence of geometry and resultant irregular tectonic loading? (United States)

    Parsons, T.


    Large earthquakes of varying magnitude are observed rupturing the same fault segments on the North Anatolian fault in Turkey, and on the San Andreas fault in California. In Turkey there enough reports of historical earthquake damage [Ambraseys, 2002] to assemble a ~500-yr catalog of M greater than 7 events along the Marmara-Sea portion of the right-lateral obliquely divergent North Anatolian fault. In California, analysis by Weldon et al. [2004, 2005] from paleoseismology on the right-lateral obliquely convergent southern San Andreas fault enabled a long slip-history at the Wrightwood site. In both cases there is resolvable magnitude variation on fault segments where at least two large earthquakes ruptured the same point(s). Characteristic earthquake models posit that repeated versions of the same earthquake rupture fault segments over time, and form the basis for time-dependent probability calculations. Finite element models of the North Anatolian and San Andreas fault systems driven by geodetically-determined displacements show variable long- term stress-loading on these faults. Stressing-rate variability comes from changes in fault geometry along strike, non-uniform motions of crustal blocks, and fault interactions. The North Anatolian and San Andreas finite element models show parts of faults achieving failure stresses sooner than others. Modeled heterogeneous fault loading suggests complex rupture sequences that are consistent with observations.

  18. Slicing up the San Francisco Bay Area: Block kinematics and fault slip rates from GPS-derived surface velocities (United States)

    D'Alessio, M. A.; Johanson, I. A.; Bürgmann, R.; Schmidt, D. A.; Murray, M. H.


    Observations of surface deformation allow us to determine the kinematics of faults in the San Francisco Bay Area. We present the Bay Area velocity unification (B?V?, "bay view"), a compilation of over 200 horizontal surface velocities computed from campaign-style and continuous Global Positioning System (GPS) observations from 1993 to 2003. We interpret this interseismic velocity field using a three-dimensional block model to determine the relative contributions of block motion, elastic strain accumulation, and shallow aseismic creep. The total relative motion between the Pacific plate and the rigid Sierra Nevada/Great Valley (SNGV) microplate is 37.9 ± 0.6 mm yr-1 directed toward N30.4°W ± 0.8° at San Francisco (±2σ). Fault slip rates from our preferred model are typically within the error bounds of geologic estimates but provide a better fit to geodetic data (notable right-lateral slip rates in mm yr-1: San Gregorio fault, 2.4 ± 1.0; West Napa fault, 4.0 ± 3.0; zone of faulting along the eastern margin of the Coast Range, 5.4 ± 1.0; and Mount Diablo thrust, 3.9 ± 1.0 of reverse slip and 4.0 ± 0.2 of right-lateral strike slip). Slip on the northern Calaveras is partitioned between both the West Napa and Concord/Green Valley fault systems. The total convergence across the Bay Area is negligible. Poles of rotation for Bay Area blocks progress systematically from the North America-Pacific to North America-SNGV poles. The resulting present-day relative motion cannot explain the strike of most Bay Area faults, but fault strike does loosely correlate with inferred plate motions at the time each fault initiated.

  19. Subsurface geometry of the San Andreas-Calaveras fault junction: influence of serpentinite and the Coast Range Ophiolite (United States)

    Watt, Janet Tilden; Ponce, David A.; Graymer, Russell W.; Jachens, Robert C.; Simpson, Robert W.


    While an enormous amount of research has been focused on trying to understand the geologic history and neotectonics of the San Andreas-Calaveras fault (SAF-CF) junction, fundamental questions concerning fault geometry and mechanisms for slip transfer through the junction remain. We use potential-field, geologic, geodetic, and seismicity data to investigate the 3-D geologic framework of the SAF-CF junction and identify potential slip-transferring structures within the junction. Geophysical evidence suggests that the San Andreas and Calaveras fault zones dip away from each other within the northern portion of the junction, bounding a triangular-shaped wedge of crust in cross section. This wedge changes shape to the south as fault geometries change and fault activity shifts between fault strands, particularly along the Calaveras fault zone (CFZ). Potential-field modeling and relocated seismicity suggest that the Paicines and San Benito strands of the CFZ dip 65° to 70° NE and form the southwest boundary of a folded 1 to 3 km thick tabular body of Coast Range Ophiolite (CRO) within the Vallecitos syncline. We identify and characterize two steeply dipping, seismically active cross structures within the junction that are associated with serpentinite in the subsurface. The architecture of the SAF-CF junction presented in this study may help explain fault-normal motions currently observed in geodetic data and help constrain the seismic hazard. The abundance of serpentinite and related CRO in the subsurface is a significant discovery that not only helps constrain the geometry of structures but may also help explain fault behavior and the tectonic evolution of the SAF-CF junction.

  20. Late Quaternary slip history of the Mill Creek strand of the San Andreas fault in San Gorgonio Pass, southern California: The role of a subsidiary left-lateral fault in strand switching (United States)

    Kendrick, Katherine J.; Matti, Jonathan; Mahan, Shannon


    The fault history of the Mill Creek strand of the San Andreas fault (SAF) in the San Gorgonio Pass region, along with the reconstructed geomorphology surrounding this fault strand, reveals the important role of the left-lateral Pinto Mountain fault in the regional fault strand switching. The Mill Creek strand has 7.1–8.7 km total slip. Following this displacement, the Pinto Mountain fault offset the Mill Creek strand 1–1.25 km, as SAF slip transferred to the San Bernardino, Banning, and Garnet Hill strands. An alluvial complex within the Mission Creek watershed can be linked to palinspastic reconstruction of drainage segments to constrain slip history of the Mill Creek strand. We investigated surface remnants through detailed geologic mapping, morphometric and stratigraphic analysis, geochronology, and pedogenic analysis. The degree of soil development constrains the duration of surface stability when correlated to other regional, independently dated pedons. This correlation indicates that the oldest surfaces are significantly older than 500 ka. Luminescence dates of 106 ka and 95 ka from (respectively) 5 and 4 m beneath a younger fan surface are consistent with age estimates based on soil-profile development. Offset of the Mill Creek strand by the Pinto Mountain fault suggests a short-term slip rate of ∼10–12.5 mm/yr for the Pinto Mountain fault, and a lower long-term slip rate. Uplift of the Yucaipa Ridge block during the period of Mill Creek strand activity is consistent with thermochronologic modeled uplift estimates.

  1. Data from theodolite measurements of creep rates on San Francisco Bay region faults, California: 1979-2001 (United States)

    Galehouse, Jon S.


    My purpose is to make our creep data on San Francisco Bay region active faults available to the scientific research community. My student research assistants and I measured creep (aseismic slip) rates on these faults from 1979 until my retirement from the project in 2001. These data are further described in my final technical report as principal investigator, which summarizes results from 22 September 1979 through 28 February 2001 (Galehouse, 2001). We made over 2,600 creep measurements, about one-third in the ten years prior to the Loma Prieta earthquake (LPEQ) and two-thirds in the 11.4 years following it. The measurements are continuing to be made by members of the Geosciences Department at San Francisco State University (SFSU) under the direction of Karen Grove and John Caskey. A complete analysis of our results obtained on the Hayward fault is presented in Lienkaemper, Galehouse, and Simpson (2001). A formal report based on the entire San Francisco Bay region data set is in preparation. Data sheets for each site along the fault are available for downloading in Excel format to facilitate analysis of the data. They are also available as tab-delimited raw data. The data include all regular measurement sites, SF–1 through SF–34, and the 20 SFSU and U.S. Geological Survey (USGS) afterslip sites on the Hayward fault.

  2. Geometrical impact of the San Andreas Fault on stress and seismicity in California (United States)

    Li, Qingsong; Liu, Mian


    Most large earthquakes in northern and central California clustered along the main trace of the San Andreas Fault (SAF), the North American-Pacific plate boundary. However, in southern California earthquakes were rather scattered. Here we suggest that such along-strike variation of seismicity may largely reflect the geometrical impact of the SAF. Using a dynamic finite element model that includes the first-order geometric features of the SAF, we show that strain partitioning and crustal deformation in California are closely related to the geometry of the SAF. In particular, the Big Bend is shown to reduce slip rate on southern SAF and cause high shear stress and strain energy over a broad region in southern California, and a belt of high strain energy in the Eastern California Shear Zone.

  3. Stress fields of the San Andreas and Queen Charlotte transform faults (United States)

    Kilty, Kevin T.


    Analytic solutions to the stress fields resulting from the San Andreas and Queen Charlotte transform faults may be found by applying conformal mappings to the generalized plane stress solution of stresses in a half-plane. The mean stress fields (one-half the trace of the stress tensor) found in this manner show a similarity to the deformation found in western Canada and the western United States. The results refute the hypothesis that Alaska acts as a continental buttress against deformation of the Canadian Cordillera. Moreover, these results imply that the differences in the tectonics of major transform boundaries are caused primarily by differences in lithospheric structure and differences in stress distribution along the plate boundaries.

  4. Possible Connections Between the Coronado Bank Fault Zone and the Newport-Inglewood, Rose Canyon, and Palos Verdes Fault Zones Offshore San Diego County, California. (United States)

    Sliter, R. W.; Ryan, H. F.


    High-resolution multichannel seismic-reflection and deep-tow Huntec data collected by the USGS were interpreted to map the Coronado Bank fault zone (CBFZ) offshore San Diego County, California. The CBFZ is comprised of several major strands (eastern, central, western) that change in both orientation and degree of deformation along strike. Between Coronado Bank and San Diego, the CBFZ trends N25W and occupies a narrow 7 km zone. Immediately north of La Jolla submarine canyon (LJSC), the easternmost strand changes orientation to almost due north and appears to be offset in a right-lateral sense across the canyon axis. The strand merges with a prominent fault that follows the base of the continental slope in about 600 m water depth. The central portion of the CBFZ is mapped as a negative flower structure and deforms seafloor sediment as far north as 15 km north of LJSC. Farther north, this structure is buried by more than 400 m of basin sediment. Along the eastern edge of the Coronado Bank, the western portion of the CBFZ is characterized by high angle normal faults that dip to the east. North of the Coronado Bank, the western segment follows the western edge of a basement high; it cuts through horizontal basin reflectors and in places deforms the seafloor. We mapped an additional splay of the CBFZ that trends N40W; it is only observed north and west of LJSC. Although the predominant trend of the CBFZ is about N40W, along strike deviations from this orientation of some of the strands indicate that these strands connect with other offshore fault zones in the area. Based on the limited data available, the trend of the CBFZ south of Coronado Bank suggests that it might connect with the Rose Canyon fault zone (RCFZ) that has been mapped in San Diego Bay. North of Coronado Bank, the CBFZ is a much broader fault zone (about 25 km wide) composed of diverging fault strands. The westernmost strand may merge with the western strand of the Palos Verdes fault zone (PVFZ) south of

  5. Elastic stress interaction between faulting and volcanism in the Olacapato-San Antonio de Los Cobres area (NW Argentina) (United States)

    Bonali, F. L.; Tibaldi, A.; Corazzato, C.; Lanza, F.; Cavallo, A.; Nardin, A.


    The aim of this work is to describe the relationships between Plio-Quaternary tectonics, palaeoseismicity and volcanism along the NW-trending Calama-Olacapato-El Toro (COT) lineament that crosses the Andean chain and the Puna Plateau and continues within the eastern Cordillera at about 24° S. Field and satellite data have been collected from the Chile-Argentina border to a few km east of the San Antonio del Los Cobres village. These data revealed the presence of seven Quaternary NW-striking normal left-lateral fault segments in the southeastern part of the studied area and of a Plio-Quaternary N-S-striking graben structure in the northwestern part. The NW-striking Chorrillos fault (CF) segment shows the youngest motions, of late Pleistocene age, being marked by several fault scarps, sag-ponds and offset Quaternary deposits and landforms. Offset lavas of 0.78±0.1 Ma to 0.2±0.08 Ma indicate fault kinematics characterized by a pitch angle of 20° to 27° SE, a total net displacement that ranges from 31 to 63.8 m, and a slip-rate of 0.16 to 0.08 mm/yr. This fault segment is 32 km long and terminates to the northwest near a set of ESE-dipping thrust faults affecting Tertiary strata, while to the southeast it terminates 10 km further from San Antonio. In the westernmost part of the examined area, in Chile at altitudes of 4000 m, recent N-S-striking normal fault scarps depict the 5-km-wide and 10-km-long graben structure. Locally, fault pitches indicate left-lateral normal kinematics. These faults affect deposits up to ignimbrites of Plio-Quaternary age. Scarp heights are from a few metres to 24 m. Despite this area is located along the trace of the COT strike-slip fault system, which is reported as a continuous structure from Chile to Argentina in the literature, no evidence of NW-striking Plio-Quaternary strike-slip structures is present here. A series of numerical models were developed in an elastic half-space with uniform isotropic elastic properties using the

  6. Structural features of the San Andreas fault at Tejon Pass, California (United States)

    Dewers, T. A.; Reches, Z.; Brune, J. N.


    We mapped a 2 km belt along the San Andreas fault (SAF) in the Tejon Pass area where road cuts provide fresh exposures of the fault zone and surrounding rocks. Our 1:2,000 structural mapping is focused on analysis of faulting processes and is complementary to regional mapping at 1:12,000 scale by Ramirez (M.Sc., UC Santa Barbara, 1984). The dominant rock units are the Hungry Valley Formation of Pliocene age (clastic sediments) exposed south of the SAF, and the Tejon Lookout granite (Cretaceous) and Neenach Volcanic Formation exposed north of it. Ramirez (1983) deduced ~220 km of post-Miocene lateral slip. The local trend of the SAF is about N60W and it includes at least three main, subparallel segments that form a 200 m wide zone. The traces of the segments are quasi-linear, discontinuous, and they are stepped with respect to each other, forming at least five small pull-aparts and sag ponds in the mapping area. The three segments were not active semi-contemporaneously and the southern segment is apparently the oldest. The largest pull-apart, 60-70 m wide, displays young (Quaternary?) silt and shale layers. We found two rock bodies that are suspected as fault-rocks. One is a 1-2 m thick sheet-like body that separates the Tejon Lookout granite from young (Recent?) clastic rocks. In the field, it appears as a gouge zone composed of poorly cemented, dark clay size grains; however, the microstructure of this rock does not reveal clear shear features. The second body is the 80-120 m wide zone of Tejon Lookout granite that extends for less than 1 km along the SAF in the mapped area. It is characterized by three structural features: (1) pulverization into friable, granular material by multitude of grain-crossing fractures; (2) abundance of dip-slip small faults that are gently dipping toward and away from the SAF; and (3) striking lack of evidence for shear parallel to the SAF. The relationships between these features and the large right-lateral shear along the SAF are

  7. Slip rate on the San Diego trough fault zone, inner California Borderland, and the 1986 Oceanside earthquake swarm revisited (United States)

    Ryan, Holly F.; Conrad, James E.; Paull, C.K.; McGann, Mary


    The San Diego trough fault zone (SDTFZ) is part of a 90-km-wide zone of faults within the inner California Borderland that accommodates motion between the Pacific and North American plates. Along with most faults offshore southern California, the slip rate and paleoseismic history of the SDTFZ are unknown. We present new seismic reflection data that show that the fault zone steps across a 5-km-wide stepover to continue for an additional 60 km north of its previously mapped extent. The 1986 Oceanside earthquake swarm is located within the 20-km-long restraining stepover. Farther north, at the latitude of Santa Catalina Island, the SDTFZ bends 20° to the west and may be linked via a complex zone of folds with the San Pedro basin fault zone (SPBFZ). In a cooperative program between the U.S. Geological Survey (USGS) and the Monterey Bay Aquarium Research Institute (MBARI), we measure and date the coseismic offset of a submarine channel that intersects the fault zone near the SDTFZ–SPBFZ junction. We estimate a horizontal slip rate of about 1:5 0:3 mm=yr over the past 12,270 yr.

  8. Preliminary geologic map and digital database of the San Bernardino 30' x 60' quadrangle, California (United States)

    Morton, Douglas M.; Miller, Fred K.


    The San Bernardino 30'x60' quadrangle, southern California, is diagonally bisected by the San Andreas Fault Zone, separating the San Gabriel and San Bernardino Mountains, major elements of California's east-oriented Transverse Ranges Province. Included in the southern part of the quadrangle is the northern part of the Peninsular Ranges Province and the northeastern part of the oil-producing Los Angeles basin. The northern part of the quadrangle includes the southern part of the Mojave Desert Province. Pre-Quaternary rocks within the San Bernardino quadrangle consist of three extensive, well-defined basement rock assemblages, the San Gabriel Mountains, San Bernardino Mountains, and the Peninsular Ranges assemblages, and a fourth assemblage restricted to a narrow block bounded by the active San Andreas Fault and the Mill Creek Fault. Each of these basement rock assemblages is characterized by a relatively unique suite of rocks that was amalgamated by the end of the Cretaceous and (or) early Cenozoic. Some Tertiary sedimentary and volcanic rocks are unique to specific assemblages, and some overlap adjacent assemblages. A few Miocene and Pliocene units cross the boundaries of adjacent assemblages, but are dominant in only one. Tectonic events directly and indirectly related to the San Andreas Fault system have partly dismembered the basement rocks during the Neogene, forming the modern-day physiographic provinces. Rocks of the four basement rock assemblages are divisible into an older suite of Late Cretaceous and older rocks and a younger suite of post-Late Cretaceous rocks. The age span of the older suite varies considerably from assemblage to assemblage, and the point in time that separates the two suites varies slightly. In the Peninsular Ranges, the older rocks were formed from the Paleozoic to the end of Late Cretaceous plutonism, and in the Transverse Ranges over a longer period of time extending from the Proterozoic to metamorphism at the end of the Cretaceous

  9. Seismic hazard in low slip rate crustal faults, estimating the characteristic event and the most hazardous zone: study case San Ramón Fault, in southern Andes (United States)

    Estay, Nicolás P.; Yáñez, Gonzalo; Carretier, Sebastien; Lira, Elias; Maringue, José


    Crustal faults located close to cities may induce catastrophic damages. When recurrence times are in the range of 1000-10 000 or higher, actions to mitigate the effects of the associated earthquake are hampered by the lack of a full seismic record, and in many cases, also of geological evidences. In order to characterize the fault behavior and its effects, we propose three different already-developed time-integration methodologies to define the most likely scenarios of rupture, and then to quantify the hazard with an empirical equation of peak ground acceleration (PGA). We consider the following methodologies: (1) stream gradient and (2) sinuosity indexes to estimate fault-related topographic effects, and (3) gravity profiles across the fault to identify the fault scarp in the basement. We chose the San Ramón Fault on which to apply these methodologies. It is a ˜ 30 km N-S trending fault with a low slip rate (0.1-0.5 mm yr-1) and an approximated recurrence of 9000 years. It is located in the foothills of the Andes near the large city of Santiago, the capital of Chile (> 6 000 000 inhabitants). Along the fault trace we define four segments, with a mean length of ˜ 10 km, which probably become active independently. We tested the present-day seismic activity by deploying a local seismological network for 1 year, finding five events that are spatially related to the fault. In addition, fault geometry along the most evident scarp was imaged in terms of its electrical resistivity response by a high resolution TEM (transient electromagnetic) profile. Seismic event distribution and TEM imaging allowed the constraint of the fault dip angle (˜ 65°) and its capacity to break into the surface. Using the empirical equation of Chiou and Youngs (2014) for crustal faults and considering the characteristic seismic event (thrust high-angle fault, ˜ 10 km, Mw = 6.2-6.7), we estimate the acceleration distribution in Santiago and the hazardous zones. City domains that are under

  10. Post-1906 stress recovery of the San Andreas fault system calculated from three-dimensional finite element analysis (United States)

    Parsons, T.


    The M = 7.8 1906 San Francisco earthquake cast a stress shadow across the San Andreas fault system, inhibiting other large earthquakes for at least 75 years. The duration of the stress shadow is a key question in San Francisco Bay area seismic hazard assessment. This study presents a three-dimensional (3-D) finite element simulation of post-1906 stress recovery. The model reproduces observed geologic slip rates on major strike-slip faults and produces surface velocity vectors comparable to geodetic measurements. Fault stressing rates calculated with the finite element model are evaluated against numbers calculated using deep dislocation slip. In the finite element model, tectonic stressing is distributed throughout the crust and upper mantle, whereas tectonic stressing calculated with dislocations is focused mostly on faults. In addition, the finite element model incorporates postseismic effects such as deep afterslip and viscoelastic relaxation in the upper mantle. More distributed stressing and postseismic effects in the finite element model lead to lower calculated tectonic stressing rates and longer stress shadow durations (17-74 years compared with 7-54 years). All models considered indicate that the 1906 stress shadow was completely erased by tectonic loading no later than 1980. However, the stress shadow still affects present-day earthquake probability. Use of stressing rate parameters calculated with the finite element model yields a 7-12% reduction in 30-year probability caused by the 1906 stress shadow as compared with calculations not incorporating interactions. The aggregate interaction-based probability on selected segments (not including the ruptured San Andreas fault) is 53-70% versus the noninteraction range of 65-77%.

  11. Seismic Attenuation in the Parkfield area of the San Andreas Fault (United States)

    Kelly, C. M.; Rietbrock, A.; Faulkner, D. R.


    Fault zone structure and rock properties at depth within the Parkfield area of San Andreas Fault are investigated through a seismic attenuation study. Attenuation is sensitive to the degree of fracturing, water saturation and other rock properties. The Parkfield area is of interest as it marks the boundary between the creeping area of the San Andreas Fault and an area which ruptured seismically in 1966 and again in 2004. It is also the area of the SAFOD drilling project. Previous studies of this area have suggested a complex picture of fault strands linking at depth and small bodies of high-velocity material (e.g. Li et al. 1997, Michael & Eberhart-Philips 1991). Various temporary and local seismic networks have been installed in the region and data from the PASO, PASO TRES and HRSN networks are used in this study. PASO data runs from 2001-2002 at sampling rate of 100sps. The PASO TRES data spans the time period 2004-2006 at 200sps. The HRSN network has been running since March 2001 to present with sampling at 250sps. Attenuation parameters (e.g. Q-values) are established using the spectral ratios technique. A window of 1.28 seconds around each event arrival is extracted together with a window of the same length within the noise directly preceding. Instrument corrected frequency spectra from both the event and the noise are smoothed in a logarithmically-scaled smoothing function. Only frequencies with a signal/noise ratio of 3 or above are used. The ratio between frequency spectra from event arrivals and synthetic frequency spectra of known seismic parameters is determined. A gridsearch method is used to fit the event corner frequency, searching within a range of corner frequencies implied from the reported event magnitude and assuming a stress drop of between 0.1 and 10MPa. A Brune source model is assumed (gamma=2, n=1) for the source spectra (Brune 1970). When the correct corner frequency is fitted, there should be a linear relationship between frequency and the

  12. Elastic stress interaction between faulting and volcanism in the Olacapato-San Antonio de Los Cobres area (Puna plateau, Argentina) (United States)

    Bonali, F. L.; Corazzato, C.; Tibaldi, A.


    We describe the relationships between Plio-Quaternary tectonics, palaeoseismicity and volcanism along the NW-trending Calama-Olacapato-El Toro (COT) lineament that crosses the Andean chain and the Puna Plateau and continues within the eastern Cordillera at about 24° S. We studied in detail the area from the Chile-Argentina border to a few km east of the San Antonio del Los Cobres village. Satellite and field data revealed the presence of seven Quaternary NW-striking normal left-lateral fault segments in the southeastern part of the studied area and of a Plio-Quaternary N-S-striking graben structure in the northwestern part. The NW-striking Chorrillos fault (CF) segment shows the youngest motions, of late Pleistocene age, being marked by several fault scarps, sag ponds and offset Quaternary deposits and landforms. Offset lavas of 0.78 ± 0.1 Ma to 0.2 ± 0.08 Ma indicate fault kinematics characterised by a pitch angle of 20° to 27° SE, a total net displacement of 31 to 63.8 m, and a slip-rate of 0.16 to 0.08 mm/yr. This fault segment is 32 km long and terminates to the northwest near a set of ESE-dipping thrust faults affecting Tertiary strata, while to the southeast it terminates 10 km further from San Antonio. In the westernmost part of the examined area, in Chile at altitudes > 4000 m, recent N-S-striking normal fault scarps depict the 5-km-wide and 10-km-long graben structure. Locally, fault pitches indicate left-lateral normal kinematics. These faults affect deposits up to ignimbrites of Plio-Quaternary age. Scarp heights are from a few metres to 24 m. Despite that this area is located along the trace of the COT strike-slip fault system, which is reported as a continuous structure from Chile to Argentina in the literature, no evidence of NW-striking Plio-Quaternary strike-slip structures is present here. A series of numerical models were also developed in an elastic half-space with uniform isotropic elastic properties using the Coulomb 3.1 code. We studied

  13. Internal structure of the San Jacinto fault zone at Blackburn Saddle from seismic data of a linear array (United States)

    Share, Pieter-Ewald; Ben-Zion, Yehuda; Ross, Zachary E.; Qiu, Hongrui; Vernon, Frank L.


    Local and teleseismic earthquake waveforms recorded by a 180-m-long linear array (BB) with seven seismometers crossing the Clark fault of the San Jacinto fault zone northwest of Anza are used to image a deep bimaterial interface and core damage structure of the fault. Delay times of P waves across the array indicate an increase in slowness from the southwest most (BB01) to the northeast most (BB07) station. Automatic algorithms combined with visual inspection and additional analyses are used to identify local events generating fault zone head and trapped waves. The observed fault zone head waves imply that the Clark fault in the area is a sharp bimaterial interface, with lower seismic velocity on the southwest side. The moveout between the head and direct P arrivals for events within ˜40 km epicentral distance indicates an average velocity contrast across the fault over that section and the top 20 km of 3.2 per cent. A constant moveout for events beyond ˜40 km to the southeast is due to off-fault locations of these events or because the imaged deep bimaterial interface is discontinuous or ends at that distance. The lack of head waves from events beyond ˜20 km to the northwest is associated with structural complexity near the Hemet stepover. Events located in a broad region generate fault zone trapped waves at stations BB04-BB07. Waveform inversions indicate that the most likely parameters of the trapping structure are width of ˜200 m, S velocity reduction of 30-40 per cent with respect to the bounding blocks, Q value of 10-20 and depth of ˜3.5 km. The trapping structure and zone with largest slowness are on the northeast side of the fault. The observed sense of velocity contrast and asymmetric damage across the fault suggest preferred rupture direction of earthquakes to the northwest. This inference is consistent with results of other geological and seismological studies.

  14. Near Surface Structure of the Frijoles Strand of the San Gregorio Fault, Point Año Nuevo, San Mateo County, California, from Seismic Imaging (United States)

    Campbell, L.; Catchings, R. D.; Rymer, M. J.; Goldman, M.; Weber, G. E.


    The San Gregorio Fault Zone (SGFZ) is one of the major faults of the San Andreas Fault (SAF) system in the San Francisco Bay region of California. The SGFZ is nearly 200 km long, trends subparallel to the SAF, and is located primarily offshore with two exceptions- between Point Año Nuevo and San Gregorio Beach and between Pillar Point and Moss Beach. It has a total width of 2 to 3 km and is comprised of seven known fault strands with Quaternary activity, five of which also demonstrate late Holocene activity. The fault is clearly a potential source of significant earthquakes and has been assigned a maximum likely magnitude of 7.3. To better understand the structure, geometry, and shallow-depth P-wave velocities associated with the SGFZ, we acquired a 585-m-long, high-resolution, combined seismic reflection and refraction profile across the Frijoles strand of the SGFZ at Point Año Nuevo State Park. Both P- and S-wave data were acquired, but here we present only the P-wave data. We used two 60-channel Geometrics RX60 seismographs and 120 40-Hz single-element geophones connected via cable to record Betsy Seisgun seismic sources (shots). Both shots and geophones were approximately co-located and spaced at 5-m intervals along the profile, with the shots offset laterally from the geophones by 1 m. We measured first-arrival refractions from all shots and geophones to develop a seismic refraction tomography velocity model of the upper 70 m. P-wave velocities range from about 600 m/s near the surface to more than 2400 m/s at 70 m depth. We used the refraction tomography image to infer the depth to the top of the groundwater table on the basis of the 1500 m/s velocity contour. The image suggests that the depth, along the profile, to the top of groundwater varies by about 18 m, with greater depth on the west side of the fault. At about 46 m depth, a 60- to 80-m-wide, low-velocity zone, which is consistent with faulting, is observed southwest of the Frijoles strand of the

  15. Southern San Andreas Fault evaluation field activity: approaches to measuring small geomorphic offsets--challenges and recommendations for active fault studies (United States)

    Scharer, Katherine M.; Salisbury, J. Barrett; Arrowsmith, J. Ramon; Rockwell, Thomas K.


    In southern California, where fast slip rates and sparse vegetation contribute to crisp expression of faults and microtopography, field and high‐resolution topographic data (<1  m/pixel) increasingly are used to investigate the mark left by large earthquakes on the landscape (e.g., Zielke et al., 2010; Zielke et al., 2012; Salisbury, Rockwell, et al., 2012, Madden et al., 2013). These studies measure offset streams or other geomorphic features along a stretch of a fault, analyze the offset values for concentrations or trends along strike, and infer that the common magnitudes reflect successive surface‐rupturing earthquakes along that fault section. Wallace (1968) introduced the use of such offsets, and the challenges in interpreting their “unique complex history” with offsets on the Carrizo section of the San Andreas fault; these were more fully mapped by Sieh (1978) and followed by similar field studies along other faults (e.g., Lindvall et al., 1989; McGill and Sieh, 1991). Results from such compilations spurred the development of classic fault behavior models, notably the characteristic earthquake and slip‐patch models, and thus constitute an important component of the long‐standing contrast between magnitude–frequency models (Schwartz and Coppersmith, 1984; Sieh, 1996; Hecker et al., 2013). The proliferation of offset datasets has led earthquake geologists to examine the methods and approaches for measuring these offsets, uncertainties associated with measurement of such features, and quality ranking schemes (Arrowsmith and Rockwell, 2012; Salisbury, Arrowsmith, et al., 2012; Gold et al., 2013; Madden et al., 2013). In light of this, the Southern San Andreas Fault Evaluation (SoSAFE) project at the Southern California Earthquake Center (SCEC) organized a combined field activity and workshop (the “Fieldshop”) to measure offsets, compare techniques, and explore differences in interpretation. A thorough analysis of the measurements from the

  16. Physical Models of a Locked-to-Creeping Transition Along a Strike-Slip Fault: Comparison with the San Andreas Fault System in Central California (United States)

    Ross, E. O.; Titus, S.; Reber, J. E.


    In central California, the plate boundary geometry of the San Andreas is relatively simple with several sub-parallel faults; however, slip behavior along the San Andreas fault changes from locked to creeping. In the SE, the fault is locked along the Carrizo segment, which last ruptured in the 1857 Fort Tejon earthquake. Towards the NW, the slip rates increase from 0 to 28 mm/yr along the creeping segment, before decreasing towards the locked segment that last ruptured in the 1906 San Francisco earthquake. Near the southern transition from locked behavior to creeping behavior, the GPS velocity field and simple elastic models predict a region of contraction NE of the fault. This region coincides with numerous well-developed folds in the borderlands as well as a series of off-fault earthquakes in the 1980s. Similarly, a region of extension is predicted SW of the transition. This area coincides with a large basin near the town of Paso Robles. In order to understand the development of these regions of contraction and extension and characterize the orientation of vectors in the velocity field, we model the transition from locked to creeping behavior using physical experiments. The model consists of a layer of silicone (PDMS SGM-36) and a layer of wet kaolin, mimicking the ductile lower crust and brittle upper crust. We cut and lubricate the silicone along one section of the basement fault, simulating creeping behavior, while leaving the rest of the silicone intact across the fault to represent the locked portion. With this simple alteration to experimental conditions, we are consistently able to produce a mountain-and-basin pair that forms on either side of the transition at a deformation speed of 0.22mm/sec. To compare the physical model's results to the observed velocity field, we use particle image velocimetry software in conjunction with strain computation software (SSPX). PIV analysis shows highly reproducible vectors, allowing us to examine off-fault deformation

  17. Spectral Analysis of Localized Stress Variations, the Spatial Distribution of Faults, and the Scaling of Physical Properties near the San Andreas Fault (United States)

    Day-Lewis, A.; Zoback, M. D.; Hickman, S. H.


    Statistical characterization of stress-induced wellbore failures and rock property heterogeneity from well logs offers potential insight into the scaling properties and mechanisms of stress heterogeneity. Wellbore breakouts identified in acoustic wellbore image data obtained adjacent to the San Andreas Fault, from both the San Andreas Fault Observatory at Depth (SAFOD) and the Cajon Pass Scientific Borehole, reveal multi-scale rotations in the direction of maximum horizontal compressive stress (SHmax) as a function of depth. Similar breakout rotations are frequently observed in other deep wellbores and, in most cases, reflect small variations in the directions and/or magnitudes of the in situ principal stresses superimposed on a relatively uniform regional stress state. To determine possible physical causes for these rotations, we employ spectral and statistical methods to investigate the relationships between the breakout rotations observed in our study wells and stress drops associated with slip on faults in highly fractured crust adjacent to a major fault zone. We also address the possible role of rock property variability as a controlling mechanism, taking into account drilling and data acquisition artifacts. We find that physical property heterogeneity in the SAFOD Pilot Hole behaves as self-similar, flicker noise (i.e., 1/f) over wavelengths from one meter to one kilometer, a result that agrees with similar investigations at Cajon Pass and a variety of other locations throughout the world. The stress orientations in both wells, however, exhibit behavior between that of flicker noise and Brownian motion over wavelengths from one decimeter to several kilometers, which is similar to how earthquake frequency has been shown to scale with fault size. The fractal scaling of observed stress heterogeneity appears to be more closely related to the distribution of faults in the crust adjacent to the study wells than to heterogeneity of elastic or other in-situ physical

  18. Groundwater withdrawal in the Central Valley, California: implications for San Andreas Fault stressing and lithosphere rheology (United States)

    Lundgren, P.; Liu, Z.; Ali, S. T.; Farr, T.; Faunt, C. C.


    Anthropogenic perturbations to crustal loading due to groundwater pumping are increasingly recognized as causing changes in nearby fault stresses. We present preliminary analysis of crustal unloading in the Central Valley (CV), California, for the period 2006-2010 to infer Coulomb stress changes on the central San Andreas Fault (CSAF), lithospheric rheology, and system memory due to more than a century of groundwater withdrawal in the southern CV. We use data-driven unloading estimates to drive three-dimensional (3-D) finite element method models and compare model vertical surface deformation rates with observed GPS uplift rates outside the CV. Groundwater level changes are observed through well water elevation changes and through the resultant surface deformation (subsidence) by interferometric synthetic aperture radar (InSAR) and through broader scale changes in gravity from the GRACE satellite time variable gravity data [Famiglietti et al., 2011] that constrain the overall water volume changes. Combining InSAR with well-water data we are able to estimate the aquifer skeletal elastic and inelastic response and through a linear inversion derive the water volume (load) changes across the Central Valley and compare them with GRACE-inferred groundwater changes. Preliminary 3-D finite element method modeling that considers elastic and viscosity structure in the lithosphere gives three interesting results: 1) elastic models poorly fit the uplift rates near the SAF; 2) viscoelastic models that simulate different unloading histories show the past history of groundwater unloading has significant residual uplift rates and fault stress changes; 3) Coulomb stress change varies from inhibited on the locked (Carrizo) section to promoted on the creeping section of the SAF north of Parkfield. Thus, 3D models that account for lithosphere rheology, loading history viscous relaxation, have significant implications for longer-term time-dependent deformation, stress perturbation, and

  19. Heterogeneous slip and rupture models of the San Andreas fault zone based upon three-dimensional earthquake tomography

    Energy Technology Data Exchange (ETDEWEB)

    Foxall, William [Univ. of California, Berkeley, CA (United States)


    Crystal fault zones exhibit spatially heterogeneous slip behavior at all scales, slip being partitioned between stable frictional sliding, or fault creep, and unstable earthquake rupture. An understanding the mechanisms underlying slip segmentation is fundamental to research into fault dynamics and the physics of earthquake generation. This thesis investigates the influence that large-scale along-strike heterogeneity in fault zone lithology has on slip segmentation. Large-scale transitions from the stable block sliding of the Central 4D Creeping Section of the San Andreas, fault to the locked 1906 and 1857 earthquake segments takes place along the Loma Prieta and Parkfield sections of the fault, respectively, the transitions being accomplished in part by the generation of earthquakes in the magnitude range 6 (Parkfield) to 7 (Loma Prieta). Information on sub-surface lithology interpreted from the Loma Prieta and Parkfield three-dimensional crustal velocity models computed by Michelini (1991) is integrated with information on slip behavior provided by the distributions of earthquakes located using, the three-dimensional models and by surface creep data to study the relationships between large-scale lithological heterogeneity and slip segmentation along these two sections of the fault zone.

  20. Geomorphic evidence of active tectonics in the San Gorgonio Pass region of the San Andreas Fault system: an example of discovery-based research in undergraduate teaching (United States)

    Reinen, L. A.; Yule, J. D.


    Student-conducted research in courses during the first two undergraduate years can increase learning and improve student self-confidence in scientific study, and is recommended for engaging and retaining students in STEM fields (PCAST, 2012). At Pomona College, incorporating student research throughout the geology curriculum tripled the number of students conducting research prior to their senior year that culminated in a professional conference presentation (Reinen et al., 2006). Here we present an example of discovery-based research in Neotectonics, a second-tier course predominantly enrolling first-and second-year students; describe the steps involved in the four week project; and discuss early outcomes of student confidence, engagement and retention. In the San Gorgonio Pass region (SGPR) in southern California, the San Andreas fault undergoes a transition from predominantly strike-slip to a complex system of faults with significant dip-slip, resulting in diffuse deformation and raising the question of whether a large earthquake on the San Andreas could propagate through the region (Yule, 2009). In spring 2014, seven students in the Neotectonics course conducted original research investigating quantifiable geomorphic evidence of tectonic activity in the SGPR. Students addressed questions of [1] unequal uplift in the San Bernardino Mountains, [2] fault activity indicated by stream knick points, [3] the role of fault style on mountain front sinuosity, and [4] characteristic earthquake slip determined via fault scarp degradation models. Students developed and revised individual projects, collaborated with each other on methods, and presented results in a public forum. A final class day was spent reviewing the projects and planning future research directions. Pre- and post-course surveys show increases in students' self-confidence in the design, implementation, and presentation of original scientific inquiries. 5 of 6 eligible students participated in research the

  1. Depth-Dependent Low-Velocity Structure of the San Andreas Fault near the SAFOD Drilling Site at Parkfield from Fault-Zone Seismic Waves (United States)

    Alvarez, M.; Li, Y.; Vidale, J.; Cochran, E.


    Coordinated by the SAFOD PIs, we used 96 PASSCAL short-period three-component seismometers in linear arrays deployed across and along the San Andreas fault (SAF) near the town of Parkfield and the SAFOD drilling site in 2002 and 2003, respectively. The data recorded for near-surface explosions detonated in the experiments (Li and Vidale), PASO project (Thurber and Roecker) and refraction profiling (Hole), and local earthquakes show fault-zone trapped waves clearly for the source and receivers located close to the fault. The time duration of the dominant trapped energy after S-arrivals increases with the event-to-array distance and focal depth progressively. Using a finite-difference code, we first synthesize fault-zone trapped waves generated by explosions to determine the shallowest 1 or 2 km fault zone structure with the velocity constraints from seismic profiling of the shallow SAF at Parkfield [Catchings et al., 2002]. We then strip shallow effects to resolve deeper structure of the fault zone, and synthesize trapped waves from earthquakes at depths between 2.5 and 11 km to complete a model of the SAF with depth-variable structure in 3-D. We also use the P-first arrivals and polarity as additional information in modeling of velocities and location of the material interface with the structural constraints from seismic tomography at Parkfield [Thurber et al., 2004] to the bed-rock velocities. In grid-search modeling, we tested various values for fault zone depth, width, velocity, Q, and source location. The best-fit model parameters from this study show evidence of a damaged core zone on the main SAF, which likely extends to seismogenic depths. The zone is marked by a low-velocity waveguide ~150 m wide, in which Q is 10-50 and shear velocities are reduced by 30-45% from wall-rock velocities. We also find some seismic energy trapped partitioned in the branching faults that connect to the San Andreas main fault at a shallow depth near Parkfield.

  2. High-resolution seafloor mapping surveys over the San Gregorio-Palo Colorado Fault (United States)

    Paull, C. K.; Caress, D. W.; Thomas, H.; Lundsten, E.; Anderson, K.; Gwiazda, R.


    The San Gregorio-Palo Colorado Fault (SGPCF) is mapped as traversing the outer end of Monterey Bay and crossing Monterey Canyon near its intersection with Carmel Canyon. The location of the fault is based on offsets in seismic reflection profiles, lineations in the bathymetry, and locations of epicenters associated with small earthquakes. However, much of the offshore area where the trace of the SGPCF is postulated to be located is sediment bare, making it difficult to determine if there has been recent movement along this segment of the fault. High-resolution multibeam bathymetry (vertical precision of 0.15 m and horizontal resolution of 1.0 m) and 1-4.5 kHz chirp seismic reflection profiles have recently been collected in up to 1.6 km water depths on the northern flank of Monterey Canyon where the SGPCF is thought to cut across the canyon wall. The objective of these surveys was to look for indications of recent deformation associated with the SGPCF where accumulations of sediments could provide evidence of seafloor displacement along this segment of the fault since these sediments have been deposited. The surveys were conducted using an autonomous underwater vehicle (AUV) during two 17.5-hour-long dives. An inertial navigation system combined with a Doppler velocity sonar allowed the AUV to fly pre-programmed grids at 3 knots while maintaining an altitude of 50 m above the seafloor. These surveys are in addition to other recently published AUV surveys of the floor of Monterey Canyon extending out to 2.2 km water depths and including the zone where the SGPCF is mapped to cross the canyon floor. The lack of clear evidence of fault deformation along the SGPCF trace on the canyon floor is easily attributable to frequent sediment transport events within the canyon's channel, which would presumably overwrite sediment deformation associated with the SGPCF. The surveys presented here extend above the active canyon floor and cover the northern flank of Monterey Canyon

  3. A new method to identify earthquake swarms applied to seismicity near the San Jacinto Fault, California (United States)

    Zhang, Qiong; Shearer, Peter M.


    Understanding earthquake clustering in space and time is important but also challenging because of complexities in earthquake patterns and the large and diverse nature of earthquake catalogues. Swarms are of particular interest because they likely result from physical changes in the crust, such as slow slip or fluid flow. Both swarms and clusters resulting from aftershock sequences can span a wide range of spatial and temporal scales. Here we test and implement a new method to identify seismicity clusters of varying sizes and discriminate them from randomly occurring background seismicity. Our method searches for the closest neighbouring earthquakes in space and time and compares the number of neighbours to the background events in larger space/time windows. Applying our method to California's San Jacinto Fault Zone (SJFZ), we find a total of 89 swarm-like groups. These groups range in size from 0.14 to 7.23 km and last from 15 min to 22 d. The most striking spatial pattern is the larger fraction of swarms at the northern and southern ends of the SJFZ than its central segment, which may be related to more normal-faulting events at the two ends. In order to explore possible driving mechanisms, we study the spatial migration of events in swarms containing at least 20 events by fitting with both linear and diffusion migration models. Our results suggest that SJFZ swarms are better explained by fluid flow because their estimated linear migration velocities are far smaller than those of typical creep events while large values of best-fitting hydraulic diffusivity are found.

  4. Paleoseismic Investigations of the Walnut Site on the San Jacinto Fault (United States)

    Fumal, T.E.; Kendrick, K.J.


    The Walnut paleoseismic site is located along the northern San Jacinto fault about 3 km southeast of the San Bernardino, California city center (Figures 1, 2). More than 340 meters of trenches were excavated across the fault zone at this site as part of an Alquist-Priolo fault study (Figure 3). We photographed and logged the SE wall and most of the NE wall of trench 1, both walls of trenches 2 and 7, the NW walls of trenches 3 and 4 and the SE wall of trench 6. After carefully cleaning the trench walls we put up a 1m by 0.5m string and nail grid. For trenches 1, 2, 6, and 7, we photographed each 1m by 0.5m panel individually and photologged on these unrectified photos. These large-scale photos were later rectified to remove the distortion due to irregularities in the trench walls and slight distortion introduced by the camera lens. Field linework was then transferred to the rectified photomosaics. We also took a set of overview photographs for each trench taken from the top of the trench towards the opposite wall. We spliced together these overview photos to make photomosaics of all of the trenches. Because the photos were taken at a downward angle, there is significant distortion. Some of this distortion has been corrected: an attempt was made to keep horizontal grid lines horizontal and there has been some horizontal scaling to align vertical lines between benches. Although the string and nail grid spacing is 1 meter by 0.5 meter, because of the distortion in the photos and subsequent adjustments, the scale is variable along the benches, from bench to bench and from trench to trench for these overview mosaics. This report serves principally as a repository for the overview photomosaics. Sheet 1 shows the overview mosaics for both walls of trenches 1 and 2 along with some linework including most of the fault traces, a prominent unconformity within the fluvial deposits and the larger bodies of liquefied sand. Sheet 2 shows the overview mosaics for the SE wall of

  5. Gabriele Veneziano, CERN theoretical physicist

    CERN Multimedia

    Maximilien Brice


    Gabriele Veneziano is pictured here during an interview with Paola Catapano for the RAI The Italian TV. Often heralded as the 'father of string theory', a theory that attempts to describe the fundamental building blocks of the Universe, Veneziano is a member of the CERN theory group.

  6. Micromechanical Effects of Cement on Deformation of Porous Granular Media: Example from the San Gregorio Fault, California and Laboratory Studies (United States)

    Cook, J.; Goodwin, L.; Boutt, D.; Bucheitt, T.; Cook, B.


    The San Gregorio fault, part of the San Andreas fault system, provides a structural record of transitions in deformation mechanisms with progressive lithification. The San Gregorio is an active, predominantly dextral strike-slip fault with cumulative offset of 90 - 150 km. Within the study area the fault cuts syntectonic mudstones, siltstones, and sandstones of the Purisma Formation. Detailed mapping documents a post- lithification damage zone that overprinted pre-lithification mixed zones that bracket a well-developed, exceptionally wide (greater than 15 m) fault core. Deformation within the mixed zone was distributed and characterized by increasing disorganization and boudinage of relatively competent sedimentary layers. Multiple sandstone dikes crosscut these structures, demonstrating that they formed prior to lithification. Deformation is inferred to have occurred largely through particulate flow. The brittle damage zone, which consists of discrete fractures, minor faults, and veins that crosscut both boudins and sandstone dikes, is less extensive than the mixed zone. The transition in macroscale deformation behavior that these structures record is inferred to reflect a transition in grain-scale mechanics with progressive consolidation, tectonic compaction, and cementation. To quantitatively assess the importance of intergranular cements we are conducting experimental investigations of the micromechanical behavior of cemented granular systems, using both synthetic and natural samples. Synthetic samples have been created with both calcite and amorphous silica cement. Natural samples are sandstones with variations in primary grain and cement composition, cement abundance and distribution, and porosity, including selected samples from the San Gregorio fault. Synthetic grain assemblages will be tested in tension, compression, and shear. Nanoindentation and mm-scale deformation experiments will be used to probe the mechanical properties, including modulus, hardness

  7. High-resolution seismic velocities and shallow structure of the San Andreas fault zone at Middle Mountain, Parkfield, California (United States)

    Catchings, R.D.; Rymer, M.J.; Goldman, M.R.; Hole, J.A.; Huggins, R.; Lippus, C.


    A 5-km-long, high-resolution seismic imaging survey across the San Andreas fault (SAF) zone and the proposed San Andreas Fault Observatory at Depth (SAFOD) drill site near Parkfield, California, shows that velocities vary both laterally and vertically. Velocities range from 4.0 km/sec) probably correspond to granitic rock of the Salinian block, which is exposed a few kilometers southwest of the SAF. The depth to the top of probable granitic rock varies laterally along the seismic profile but is about 600 m below the surface at the proposed SAFOD site. We observe a prominent, lateral low-velocity zone (LVZ) beneath and southwest of the surface trace of the SAF. The LVZ is about 1.5 km wide at 300-m depth but tapers to about 600 m wide at 750-m depth. At the maximum depth of the velocity model (750 m), the LVZ is centered approximately 400 m southwest of the surface trace of the SAF. Similar velocities and velocity gradients are observed at comparable depths on both sides of the LVZ, suggesting that the LVZ is anomalous relative to rocks on either side of it. Velocities within the LVZ are lower than those of San Andreas fault gouge, and the LVZ is also anomalous with respect to gravity, magnetic, and resistivity measurements. Because of its proximity to the surface trace of the SAF, it is tempting to suggest that the LVZ represents a zone of fractured crystalline rocks at depth. However, the LVZ instead probably represents a tectonic sliver of sedimentary rock that now rests adjacent to or encompasses the SAF. Such a sliver of sedimentary rock implies fault strands on both sides and possibly within the sliver, suggesting a zone of fault strands at least 1.5 km wide at a depth of 300 m, tapering to about 600 m wide at 750-m depth. Fluids within the sedimentary sliver are probably responsible for observed low-resistivity values.

  8. Crystalline Bedrock Geology, Faulting, and Crustal Architecture in the Larse Region of the Transverse Ranges, Southern California (United States)

    Powell, R. E.


    Spanning the Transverse Ranges (TR) between the northern Los Angeles Basin and the western Mojave Desert (MD), the LARSE lines transect several distinct crystalline blocks: western Transverse Ranges (WTR), San Gabriel Mts-Soledad Basin (SGM), Sierra Pelona (SP), and Liebre Mtn. Juxtaposition of disparate blocks evolved during late Cenozoic (Cz) plate-margin reorganization of early Miocene and older paleogeologic and paleotectonic patterns. Crystalline basement rocks, ranging in age from Proterozoic to mid-Cz, constrain tectonic and near-surface crustal evolution of the region in various ways: (1) by their spatial distribution, (2) by basement-derived clast-types in Cz deposits, and (3) by the age and distribution of weathered zones developed on exhumed basement. Reassembly of paleogeologic patterns in the crystalline terrane of S California provides measurements of overall displacement on strike-slip faults of the San Andreas system. In the LARSE region, right-lateral displacements are demonstrable for the San Gabriel fault (SGF) in the SGM (22-23 km), the Vasquez Creek fault (5-15 km), and the SGF NW of the SGM (42-43 km). Displacement on the San Andreas fault NW of the TR (295 km) is partitioned onto the San Andreas-San Francisquito-Fenner-Clemens Well fault (100 km) and the SGF in the TR, and the post-5 Ma San Andreas fault in and south of the TR (ranging from 160 km along the MD-TR segment to 180 km along the Salton Trough segment). Left-lateral displacement has been demonstrated for the Santa Monica-Raymond fault (11-15 km), the Santa Ynez fault (0 km at its E end to as much as 37 km), and the Garlock fault (48-64 km along its central reach and perhaps as little as 12 km along its western reach). The Vasquez Creek and Santa Monica-Raymond faults are conjugate. Pre-Late Miocene extensional deformation is associated with exhumation of the Pelona Schist in SP and the Chocolate Mts and with ENE-trending left-separation faults in SGM. Reverse displacements are

  9. Characterization of a Strain Rate Transient Along the San Andreas and San Jacinto Faults Following the October 1999 Hector Mine Earthquake. (United States)

    Hernandez, D.; Holt, W. E.; Bennett, R. A.; Dimitrova, L.; Haines, A. J.


    We are continuing work on developing and refining a tool for recognizing strain rate transients as well as for quantifying the magnitude and style of their temporal and spatial variations. We determined time-averaged velocity values in 0.05 year epochs using time-varying velocity estimates for continuous GPS station data from the Southern California Integrated GPS Network (SCIGN) for the time period between October 1999 and February 2004 [Li et al., 2005]. A self-consistent model velocity gradient tensor field solution is determined for each epoch by fitting bi-cubic Bessel interpolation to the GPS velocity vectors and we determine model dilatation strain rates, shear strain rates, and the rotation rates. Departures of the time dependent model strain rate and velocity fields from a master solution, obtained from a time-averaged solution for the period 1999-2004, with imposed plate motion constraints and Quaternary fault data, are evaluated in order to best characterize the time dependent strain rate field. A particular problem in determining the transient strain rate fields is the level of smoothing or damping that is applied. Our current approach is to choose a damping that both maximizes the departure of the transient strain rate field from the long-term master solution and achieves a reduced chi-squared value between model and observed GPS velocities of around 1.0 for all time epochs. We observe several noteworthy time-dependent changes. First, in the Eastern California Shear Zone (ECSZ) region, immediately following the October 1999 Hector Mine earthquake, there occurs a significant spatial increase of relatively high shear strain rate, which encompasses a significant portion of the ECSZ. Second, also following the Hector Mine event, there is a strain rate corridor that extends through the Pinto Mt. fault connecting the ECSZ to the San Andreas fault segment in the Salton Trough region. As this signal slowly decays, shear strain rates on segments of the San

  10. Nucleation process of magnitude 2 repeating earthquakes on the San Andreas Fault predicted by rate-and-state fault models with SAFOD drill core data (United States)

    Kaneko, Yoshihiro; Carpenter, Brett M.; Nielsen, Stefan B.


    Recent laboratory shear-slip experiments conducted on a nominally flat frictional interface reported the intriguing details of a two-phase nucleation of stick-slip motion that precedes the dynamic rupture propagation. This behavior was subsequently reproduced by a physics-based model incorporating laboratory-derived rate-and-state friction laws. However, applying the laboratory and theoretical results to the nucleation of crustal earthquakes remains challenging due to poorly constrained physical and friction properties of fault zone rocks at seismogenic depths. Here we apply the same physics-based model to simulate the nucleation process of crustal earthquakes using unique data acquired during the San Andreas Fault Observatory at Depth (SAFOD) experiment and new and existing measurements of friction properties of SAFOD drill core samples. Using this well-constrained model, we predict what the nucleation phase will look like for magnitude ˜2 repeating earthquakes on segments of the San Andreas Fault at a 2.8 km depth. We find that despite up to 3 orders of magnitude difference in the physical and friction parameters and stress conditions, the behavior of the modeled nucleation is qualitatively similar to that of laboratory earthquakes, with the nucleation consisting of two distinct phases. Our results further suggest that precursory slow slip associated with the earthquake nucleation phase may be observable in the hours before the occurrence of the magnitude ˜2 earthquakes by strain measurements close (a few hundred meters) to the hypocenter, in a position reached by the existing borehole.

  11. Strength of the San Andreas Fault Zone: Insight From SAFOD Cuttings and Core (United States)

    Tembe, S.; Lockner, D. A.; Solum, J. G.; Morrow, C. A.; Wong, T.; Moore, D. E.


    Cuttings acquired during drilling of the SAFOD scientific hole near Parkfield, California offer a continuous physical record of the lithology across the San Andreas fault (SAF) zone and provide the only complete set of samples available for laboratory testing. Guided by XRD clay mineral analysis and velocity and gamma logs, we selected washed cuttings from depths spanning the main hole from 1.85 to 3.0 km true vertical depth. Cuttings were chosen to represent primary lithologic units as well as significant shear zones, including candidates for the currently active SAF. To determine frictional properties triaxial sliding tests were conducted on cylindrical granite blocks containing sawcuts inclined at 30° and filled with 1 mm-thick sample gouge layers. Tests were run at constant effective normal stresses of 10 and 40 MPa and constant pore pressure of 1 MPa. Samples were sheared up to 10.4 mm at room temperature and velocities of 1, 0.1 and 0.01 μm/s. Stable sliding behavior and overall strain hardening were observed in all tests. The coefficient of friction typically showed a modest decrease with increasing effective normal stress and mostly velocity strengthening was observed. Preliminary results yield coefficients of friction, μ, which generally fell into two clusters spanning the range of 0.45 to 0.8. The higher values of friction (~0.7 - 0.8) corresponded to quartzofeldspathic samples derived from granodiorites and arkoses encountered in the drill hole. Lower values of friction (0.45 - 0.55) were observed at depth intervals interpreted as shear zones based on enriched clay content, reduced seismic velocities and increased gamma radiation. Arguments for a weak SAF suggest coseismic frictional strength of μ = 0.1 to 0.2 yet the actual fault zone materials studied here appear consistently stronger. At least two important limitations exist for inferring in-situ fault strength from cuttings. (1) Clays and weak minerals are preferentially lost during drilling and

  12. Power-law Distribution of Normal Fault Displacement and Length and Estimation of Extensional Strain due to Normal Faults:A Case Study of the Sierra de San Miguelito,Mexico

    Institute of Scientific and Technical Information of China (English)



    The Sierra de San Miguelito is a relatively uplifted area and is constituted by a large amount of silicic volcanic rocks with ages from middle to late Cenozoic. The normal faults of the Sierra de San Miguelito are Domino-style and nearly parallel. The cumulative length and displacement of the faults obey power-law distribution. The fractal dimension of the fault traces is -1.49. Using the multi-line one-dimensional sampling, the calculated exponent of cumulative fault displacements is -0.66. A cumulative curve combining measurements of all four sections yielded a slope of -0.63. The displacement-length plot shows a non-linear relationship and large dispersion of data. The large dispersion in the plot is mainly due to the fault linkage during faulting. An estimation of extensional strain due to the normal faults is ca. 0.1830.The bed extension strain is always less than or equal to the horizontal extension strain. The deformation in the Sierra de San Miguelito occurred near the surface, producing pervasive faults and many faults are too small to appear in maps and sections at common scales. The stretching produced by small faults reach ca. 33% of the total horizontal elongation.

  13. Long-term rates and the depth extent of fault creep along the San Andreas Fault system in northern California from alinement arrays and GPS data (United States)

    Lienkaemper, J. J.; McFarland, F. S.; Simpson, R. W.; Caskey, J.


    The dextral San Andreas Fault system (SAFS) in northern California comprises five branches that exhibit considerable variation in the amount and spatial extent of aseismic release or creep. We estimate the depth extent of creep with a forward elastic model using the algorithms of Okada (1992) and boundary value dislocation solutions for creep rate and depth of creeping patches. For purposes of analysis we label branches, from west to east: A (San Gregorio), B (San Andreas), C (Calaveras-Hayward-Rodgers Creek-Maacama), D (Northern Calaveras-Green Valley-Bartlett Springs) and E (Greenville. Since the 1960s alinement arrays have provided one of the most accurate means to estimate the long-term creep rate and these rates have been reasonably well determined for much of the San Francisco Bay area (SFBA) southward. Over the past decade we have been installing alinement arrays along the more remote faults, especially northward of the SFBA, to monitor the extent of creep on branches C and D. We currently monitor about 80 such arrays throughout the northern SAFS. To analyze the depth extent of creep over the entire system, we model 30 fault sections on these five branches, delineated either by geometric discontinuities between them or by distinctly different creeping behaviors. We have removed any significant transient rate changes imposed by large regional earthquakes. We use crustal velocities determined for global-positioning station pairs of survey mode and continuous (SGPS, CGPS or mixed pairs) that are located near each fault to provide additional constraint on average creep rates. We estimate the mean depth of creep from the mean observed surface creep rate for each section and the rate uncertainty allows estimation of a depth uncertainty. Uncertainties are generally much higher where only five years or less of alinement array data are available, but in some cases the addition of CGPS or multiple SGPS station pairs has been essential for a more complete evaluation of

  14. A High shear stress segment along the San Andreas Fault: Inferences based on near-field stress direction and stress magnitude observations in the Carrizo Plain Area

    Energy Technology Data Exchange (ETDEWEB)

    Castillo, D. A., [Department of Geology and Geophysics, University of Adelaide (Australia); Younker, L.W. [Lawrence Livermore National Lab., CA (United States)


    Nearly 200 new in-situ determinations of stress directions and stress magnitudes near the Carrizo plain segment of the San Andreas fault indicate a marked change in stress state occurring within 20 km of this principal transform plate boundary. A natural consequence of this stress transition is that if the observed near-field ``fault-oblique`` stress directions are representative of the fault stress state, the Mohr-Coulomb shear stresses resolved on San Andreas sub-parallel planes are substantially greater than previously inferred based on fault-normal compression. Although the directional stress data and near-hydrostatic pore pressures, which exist within 15 km of the fault, support a high shear stress environment near the fault, appealing to elevated pore pressures in the fault zone (Byerlee-Rice Model) merely enhances the likelihood of shear failure. These near-field stress observations raise important questions regarding what previous stress observations have actually been measuring. The ``fault-normal`` stress direction measured out to 70 km from the fault can be interpreted as representing a comparable depth average shear strength of the principal plate boundary. Stress measurements closer to the fault reflect a shallower depth-average representation of the fault zone shear strength. If this is true, only stress observations at fault distances comparable to the seismogenic depth will be representative of the fault zone shear strength. This is consistent with results from dislocation monitoring where there is pronounced shear stress accumulation out to 20 km of the fault as a result of aseismic slip within the lower crust loading the upper locked section. Beyond about 20 km, the shear stress resolved on San Andreas fault-parallel planes becomes negligible. 65 refs., 15 figs.

  15. Characterizing the recent behavior and earthquake potential of the blind western San Cayetano and Ventura fault systems (United States)

    McAuliffe, L. J.; Dolan, J. F.; Hubbard, J.; Shaw, J. H.


    The recent occurrence of several destructive thrust fault earthquakes highlights the risks posed by such events to major urban centers around the world. In order to determine the earthquake potential of such faults in the western Transverse Ranges of southern California, we are studying the activity and paleoearthquake history of the blind Ventura and western San Cayetano faults through a multidisciplinary analysis of strata that have been folded above the fault tiplines. These two thrust faults form the middle section of a >200-km-long, east-west belt of large, interconnected reverse faults that extends across southern California. Although each of these faults represents a major seismic source in its own right, we are exploring the possibility of even larger-magnitude, multi-segment ruptures that may link these faults to other major faults to the east and west in the Transverse Ranges system. The proximity of this large reverse-fault system to several major population centers, including the metropolitan Los Angeles region, and the potential for tsunami generation during offshore ruptures of the western parts of the system, emphasizes the importance of understanding the behavior of these faults for seismic hazard assessment. During the summer of 2010 we used a mini-vibrator source to acquire four, one- to three-km-long, high-resolution seismic reflection profiles. The profiles were collected along the locus of active folding above the blind, western San Cayetano and Ventura faults - specifically, across prominent fold scarps that have developed in response to recent slip on the underlying thrust ramps. These high-resolution data overlap with the uppermost parts of petroleum-industry seismic reflection data, and provide a near-continuous image of recent folding from several km depth to within 50-100 m of the surface. Our initial efforts to document the earthquake history and slip-rate of this large, multi-fault reverse fault system focus on a site above the blind

  16. Human-induced uplift of the Sierra Nevada Mountains and seismicity modulation on the San Andreas Fault (United States)

    Amos, Colin; Audet, Pascal; Hammond, William C.; Burgmann, Roland; Johanson, Ingrid A.; Blewitt, Geoffrey


    We investigate the cause of geodetically observed mountain uplift in the Sierra Nevada, western US. In the process, we reveal a possible human-induced mechanism that may be driving Sierra Nevada uplift, and may also be pushing the San Andreas Fault closer to failure. An initial study of the Sierra Nevada [Hammond et al., Geology, 40, 2012] exploited the complementary strengths of point positions from GPS and blanket coverage measurements from InSAR, to show that contemporary vertical motion of the Sierra Nevada is between 1 - 2 mm/yr relative to the comparatively stable Great Basin to the east. One possible interpretation of this is that the most modern episode of tectonic uplift is still active in the Sierra Nevada. However, we now discover that GPS stations surrounding the southern San Joaquin Valley in California show a pattern of uplift concentrated not only in the Sierra Nevada to the east, but more broadly along the basin margins, including the adjacent central Coast Range to the west. Peak vertical velocities reach values up to 1 - 3 mm/yr. This suggests the San Joaquin Valley plays a key role in the uplift of the Sierra Nevada to the east, with possible implications for the San Andreas Fault to the west. Anthropogenic groundwater depletion in the southern San Joaquin Valley has been massive and sustained, therefore hydrological loading variation might explain contemporary uplift. To test this, we apply a simple elastic model that uses a line load centered along the valley axis, a range of elastic parameters, and published estimates of the integrated rate of mass loss due to groundwater removal over the last decade. Predicted uplift centered along the valley axis matches well with patterns of GPS motion, with the upward vertical rates decaying away from the valley margins. Observed seasonal variability in the vertical GPS positions lends support for this model, showing peak uplift for stations surrounding the valley during the dry summer and fall months. On

  17. A Bayesian exploration of the distribution of aseismic slip along the creeping section of the San Andreas Fault, California (United States)

    Jolivet, R.; Agram, P. S.; Simons, M.; Shen, Z.; Zhang, H.


    The 175-km-long creeping section of the San Andreas fault extends from the Bay Area region in the north to the Carizo plain in the south, and separates two fault sections that ruptured during the 1906 Mw 7.9, San Francisco earthquake and the 1857 Mw 7.9, Fort Tejon earthquake. In between San Juan Bautista and Parkfield, the San Andreas Fault slips continuously at rates close to the plate rate without accumulating a significant slip deficit - at least near the surface. However, previous studies indicate that surface creep rate vary along strike, suggesting variable slip deficit build-up. Here we map the distribution of slip at depth to illuminate where strain is localized along the fault and to investigate the relationship between this strain and local seismicity. We use Synthetic Aperture Radar (SAR) images from the ALOS satellite on the 4 ascending tracks 218, 219, 221 and 222, covering the whole creeping section from 2006 to 2010, to generate 4 Line-Of-Sight velocity maps. We use the Stanford Mocomp processor to generate the interferograms. We unwrap the interferograms using Snaphu and remove residual orbital errors using the GPS time series from SOPAC. For each track, we generate 4 maps of the ground velocity using the Multiscale Interferometric Time Series (MInTS) method. Interferograms are first decomposed into the wavelet domain. Then, we invert for a linear trend and an annual seasonal oscillation using a damped least-square scheme, on which the damping parameter has been determined by cross-validation. Finally, the linear trend determined on wavelets is transformed back into the space domain. We apply a Bayesian method to infer the creep rate distribution along the San Andreas Fault (SAF) and the southern section of the Calaveras-Paicines fault (CPF). In addition to the 4 InSAR rate maps, we use the Unified Western US Crustal motion GPS velocity field, including 200+ velocity measurements from both campaign and continuous GPS sites around the creeping

  18. Marine neotectonic investigation of the San Gregorio Fault Zone on the northern flank of Monterey Canyon, offshore central California (United States)

    Maier, K. L.; Paull, C. K.; Brothers, D. S.; McGann, M.; Caress, D. W.; Lundsten, E. M.; Anderson, K.; Gwiazda, R.


    The San Gregorio Fault Zone (SGFZ) is part of the North American-Pacific plate boundary and is thought to accommodate right-lateral offset up to 10 mm/yr. Because much of the SGFZ in Monterey Bay, central California, lies offshore in steep submarine canyon bathymetry, little is known of its recent activity. We provide initial direct evidence for faulting where the SGFZ has been interpreted based on canyon morphology to cross the northern flank of Monterey Canyon. High-resolution multibeam bathymetry and chirp subbottom profiles were acquired during 13 dives with the Monterey Bay Aquarium Research Institute's (MBARI) Autonomous Underwater Vehicle (AUV) from 2009-2014 on the northern flank of Monterey Canyon, extending from the shelf edge ~15 km offshore Santa Cruz to ~1850 m water depth. Chirp profiles resolve layered sediments up to ~40 m subsurface in this region, and no fault scarps or seafloor lineaments are visible in the 1-m resolution multibeam bathymetry. At least one subsurface fault is identified within the SGFZ by offset reflections across a discrete, nearly vertical fault. However, this fault is only imaged where mass wasting has exhumed older strata to within ~25 m of the seafloor. Numerous slumps scars on the seafloor and packages of chaotic internal reflectivity in chirp profiles suggest that submarine landslide processes dominate the study area. To constrain the age of reflections offset by the fault, MBARI's Remotely Operated Vehicle (ROV) Doc Ricketts, sampled faces of slump scars where the offset reflections crop out using vibracores and horizontal push cores. Radiocarbon dating of foraminifera within these core samples is being used to constrain the last recorded movement on the fault. Application of AUV and ROV methods allows detailed neotectonic investigation of significant offshore structures, like the SGFZ, that contribute to hazard assessment.

  19. Large-scale right-slip displacement on the East San Francisco Bay Region fault system, California: Implications for location of late Miocene to Pliocene Pacific plate boundary (United States)

    McLaughlin, R.J.; Sliter, W.V.; Sorg, D.H.; Russell, P.C.; Sarna-Wojcicki, A. M.


    A belt of northwardly younging Neogene and Quaternary volcanic rocks and hydrothermal vein systems, together with a distinctive Cretaceous terrane of the Franciscan Complex (the Permanente terrane), exhibits about 160 to 170 km of cumulative dextral offset across faults of the East San Francisco Bay Region (ESFBR) fault system. The offset hydrothermal veins and volcanic rocks range in age from .01 Ma at the northwest end to about 17.6 Ma at the southeast end. In the fault block between the San Andreas and ESFBR fault systems, where volcanic rocks are scarce, hydrothermal vein system ages clearly indicate that the northward younging thermal overprint affected these rocks beginning about 18 Ma. The age progression of these volcanic rocks and hydrothermal vein systems is consistent with previously proposed models that relate northward propagation of the San Andreas transform to the opening of an asthenospheric window beneath the North American plate margin in the wake of subducting lithosphere. The similarity in the amount of offset of the Permanente terrane across the ESFBR fault system to that derived by restoring continuity in the northward younging age progression of volcanic rocks and hydrothermal veins suggests a model in which 80-110 km of offset are taken up 8 to 6 Ma on a fault aligned with the Bloomfield-Tolay-Franklin-Concord-Sunol-Calaveras faults. An additional 50-70 km of cumulative slip are taken up ??? 6 Ma by the Rogers Creek-Hayward and Concord-Franklin-Sunol-Calaveras faults. An alternative model in which the Permanente terrane is offset about 80 km by pre-Miocene faults does not adequately restore the distribution of 8-12 Ma volcanic rocks and hydrothermal veins to a single northwardly younging age trend. If 80-110 km of slip was taken up by the ESFBR fault system between 8 and 6 Ma, dextral slip rates were 40-55 mm/yr. Such high rates might occur if the ESFBR fault system rather than the San Andreas fault acted as the transform margin at this time

  20. Along-strike variations in fault frictional properties along the San Andreas Fault near Cholame, California from joint earthquake and low-frequency earthquake relocations (United States)

    Harrington, Rebecca M.; Cochran, Elizabeth S.; Griffiths, Emily M.; Zeng, Xiangfang; Thurber, Clifford H.


    Recent observations of low‐frequency earthquakes (LFEs) and tectonic tremor along the Parkfield–Cholame segment of the San Andreas fault suggest slow‐slip earthquakes occur in a transition zone between the shallow fault, which accommodates slip by a combination of aseismic creep and earthquakes (fault, which accommodates slip by stable sliding (>35  km depth). However, the spatial relationship between shallow earthquakes and LFEs remains unclear. Here, we present precise relocations of 34 earthquakes and 34 LFEs recorded during a temporary deployment of 13 broadband seismic stations from May 2010 to July 2011. We use the temporary array waveform data, along with data from permanent seismic stations and a new high‐resolution 3D velocity model, to illuminate the fine‐scale details of the seismicity distribution near Cholame and the relation to the distribution of LFEs. The depth of the boundary between earthquakes and LFE hypocenters changes along strike and roughly follows the 350°C isotherm, suggesting frictional behavior may be, in part, thermally controlled. We observe no overlap in the depth of earthquakes and LFEs, with an ∼5  km separation between the deepest earthquakes and shallowest LFEs. In addition, clustering in the relocated seismicity near the 2004 Mw 6.0 Parkfield earthquake hypocenter and near the northern boundary of the 1857 Mw 7.8 Fort Tejon rupture may highlight areas of frictional heterogeneities on the fault where earthquakes tend to nucleate.

  1. Automatic identification of fault zone head waves and direct P waves and its application in the Parkfield section of the San Andreas Fault, California (United States)

    Li, Zefeng; Peng, Zhigang


    Fault zone head waves (FZHWs) are observed along major strike-slip faults and can provide high-resolution imaging of fault interface properties at seismogenic depth. In this paper, we present a new method to automatically detect FZHWs and pick direct P waves secondary arrivals (DWSAs). The algorithm identifies FZHWs by computing the amplitude ratios between the potential FZHWs and DSWAs. The polarities, polarizations and characteristic periods of FZHWs and DSWAs are then used to refine the picks or evaluate the pick quality. We apply the method to the Parkfield section of the San Andreas Fault where FZHWs have been identified before by manual picks. We compare results from automatically and manually picked arrivals and find general agreement between them. The obtained velocity contrast at Parkfield is generally 5-10 per cent near Middle Mountain while it decreases below 5 per cent near Gold Hill. We also find many FZHWs recorded by the stations within 1 km of the background seismicity (i.e. the Southwest Fracture Zone) that have not been reported before. These FZHWs could be generated within a relatively wide low velocity zone sandwiched between the fast Salinian block on the southwest side and the slow Franciscan Mélange on the northeast side. Station FROB on the southwest (fast) side also recorded a small portion of weak precursory signals before sharp P waves. However, the polarities of weak signals are consistent with the right-lateral strike-slip mechanisms, suggesting that they are unlikely genuine FZHW signals.

  2. The transtensional offshore portion of the northern San Andreas fault: Fault zone geometry, late Pleistocene to Holocene sediment deposition, shallow deformation patterns, and asymmetric basin growth (United States)

    Beeson, Jeffrey W.; Johnson, Samuel Y.; Goldfinger, Chris


    We mapped an ~120 km offshore portion of the northern San Andreas fault (SAF) between Point Arena and Point Delgada using closely spaced seismic reflection profiles (1605 km), high-resolution multibeam bathymetry (~1600 km2), and marine magnetic data. This new data set documents SAF location and continuity, associated tectonic geomorphology, shallow stratigraphy, and deformation. Variable deformation patterns in the generally narrow (∼1 km wide) fault zone are largely associated with fault trend and with transtensional and transpressional fault bends.We divide this unique transtensional portion of the offshore SAF into six sections along and adjacent to the SAF based on fault trend, deformation styles, seismic stratigraphy, and seafloor bathymetry. In the southern region of the study area, the SAF includes a 10-km-long zone characterized by two active parallel fault strands. Slip transfer and long-term straightening of the fault trace in this zone are likely leading to transfer of a slice of the Pacific plate to the North American plate. The SAF in the northern region of the survey area passes through two sharp fault bends (∼9°, right stepping, and ∼8°, left stepping), resulting in both an asymmetric lazy Z–shape sedimentary basin (Noyo basin) and an uplifted rocky shoal (Tolo Bank). Seismic stratigraphic sequences and unconformities within the Noyo basin correlate with the previous 4 major Quaternary sea-level lowstands and record basin tilting of ∼0.6°/100 k.y. Migration of the basin depocenter indicates a lateral slip rate on the SAF of 10–19 mm/yr for the past 350 k.y.Data collected west of the SAF on the south flank of Cape Mendocino are inconsistent with the presence of an offshore fault strand that connects the SAF with the Mendocino Triple Junction. Instead, we suggest that the SAF previously mapped onshore at Point Delgada continues onshore northward and transitions to the King Range thrust.

  3. Scientific drilling into the San Andreas fault and site characterization research: Planning and coordination efforts. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Zoback, M.D.


    The fundamental scientific issue addressed in this proposal, obtaining an improved understanding of the physical and chemical processes responsible for earthquakes along major fault zones, is clearly of global scientific interest. By sampling the San Andreas fault zone and making direct measurements of fault zone properties to 4.0 km at Parkfield they will be studying an active plate-boundary fault at a depth where aseismic creep and small earthquakes occur and where a number of the scientific questions associated with deeper fault zone drilling can begin to be addressed. Also, the technological challenges associated with drilling, coring, downhole measurements and borehole instrumentation that may eventually have to be faced in deeper drilling can first be addressed at moderate depth and temperature in the Parkfield hole. Throughout the planning process leading to the development of this proposal they have invited participation by scientists from around the world. As a result, the workshops and meetings they have held for this project have involved about 350 scientists and engineers from about a dozen countries.

  4. Mafic and ultramafic inclusions along the San Andreas Fault System: their geophysical character and effect on earthquake behavior, California, USA (United States)

    Ponce, D. A.; Langenheim, V. E.; Jachens, R. C.; Hildenbrand, T. G.


    Mafic and ultramafic rocks along the San Andreas Fault System (SAFS) influence earthquake processes where their geologic setting often provides information on the tectonic evolution of these large-scale strike-slip faults. In the northern part of the SAFS, along the Hayward Fault (HF), inversion of gravity and magnetic data indicate that seismicity avoids the interior of a large gabbro body and mechanical models may be able to explain how this massive mafic block influences the distribution of stress. Aftershocks of the M6.7 1989 Loma Prieta earthquake are also spatially related to the distribution of a gabbro body, clustering along the SAF and terminating at the NW end of the gabbro body where it abuts the fault surface. Based on geophysical modeling and a three-dimensional view of the subsurface geology and seismicity, aftershocks do not occur in the interior of the buried gabbro body. In the southern part of the SAFS, aftershocks and ruptures of the M7.1 1999 Hector Mine and M7.3 1992 Landers earthquakes avoid the interior of a Jurassic diorite that extends to depths of approximately 15 km and was probably an important influence on the rupture geometry of the these earthquakes. Seismicity prior to the Landers earthquake also tend to avoid the diorite, suggesting that it affects strain distribution. The San Jacinto Fault (SJF), a discontinuity within the Peninsular Ranges batholith (PRB), separates mafic, dense, and magnetic rocks of the western PRB from more felsic, less dense, and weakly magnetic rocks of the eastern PRB. The geophysical gradients do not cross the SJF zone, but instead bend to the northwest and coincide with the fault zone. Because emplacement of the PRB presumably welded across this older crustal boundary, the SJF zone probably developed along the favorably oriented margin of the dense, stronger western PRB. Two historical M6.7 earthquakes may have nucleated along the PRB discontinuity suggesting that the PRB may continue to affect how strain

  5. Data from Theodolite Measurements of Creep Rates on San Francisco Bay Region Faults, California (United States)

    U.S. Geological Survey, Department of the Interior — The data comprise an archive of repeated surveyed measurements to monitor surface fault creep (a form of gradual tectonic movement) occurring along active faults in...

  6. New constraints on the geometry and evolution of the Southern San Andreas Fault and Salton Pull-apart basin (United States)

    Sahakian, V. J.; Holmes, J. J.; Kell, A. M.; Harding, A. J.; Driscoll, N. W.; Kent, G.


    In the recent geologic past, the Salton pull-apart basin, northern Imperial Fault (IF) and Southern San Andreas Fault (SSAF) have been part of an evolving tectonic regime, subject to strain partitioning. This part of the North American/Pacific plate boundary has the potential for generating a large earthquake. Several lines of active-source seismic reflection and refraction data in the Salton Sea were analyzed to better understand the fault interactions and evolution in this region by investigating the SSAF geometry, stratigraphy, and velocity structure. These data, collected in conjunction with the Salton Seismic Imaging Project (SSIP) include two fault-perpendicular lines: one adjacent to the southern terminus of the SSAF (Line 7), and one just south of the terminus (Line 8). We present results from Multi Channel Seismic (MCS) data along Line 7, and refraction data along Lines 7 and 8. Velocity models along these lines were constructed from the refraction data. Included in the Line 7 model is an interface representing a strong reflector observed in the MCS data, which helps to constrain the raypaths and velocities in the model. Line 7 MCS data image stratigraphic layers thickening to and dipping down to the east towards the SSAF, indicative of a westward-dipping, oblique strike-slip fault. The refraction data along this line are consistent with a westward dipping SSAF and a down the west normal component. We present velocity models for Line 7 and 8, as well as resolution tests supporting the fault's geometry. The results from these two lines and a fault parallel line suggest that the SSAF is dipping to the west and is in transtension. We propose that the SSAF has migrated northward through time, partitioning its strain onto the IF. As the IF migrates northwards it forms the Salton pull-apart basin.

  7. Trees as indicators of past movements on the San Andreas Fault (United States)

    Wallace, R.E.; LaMarche, Valmore C.


    Trees are sources of information about fault movements that have occurred before the earliest historical reports. This kind of evidence can be used to improve estimates of when earthquakes will recur on faults known to be seismically active and to identify active faults that have no record of movement during recent history.

  8. Chemical controls on fault behavior: weakening of serpentinite sheared against quartz-bearing rocks and its significance for fault creep in the San Andreas system (United States)

    Moore, Diane E.; Lockner, David A.


    The serpentinized ultramafic rocks found in many plate-tectonic settings commonly are juxtaposed against crustal rocks along faults, and the chemical contrast between the rock types potentially could influence the mechanical behavior of such faults. To investigate this possibility, we conducted triaxial experiments under hydrothermal conditions (200-350°C), shearing serpentinite gouge between forcing blocks of granite or quartzite. In an ultramafic chemical environment, the coefficient of friction, µ, of lizardite and antigorite serpentinite is 0.5-0.6, and µ increases with increasing temperature over the tested range. However, when either lizardite or antigorite serpentinite is sheared against granite or quartzite, strength is reduced to µ ~ 0.3, with the greatest strength reductions at the highest temperatures (temperature weakening) and slowest shearing rates (velocity strengthening). The weakening is attributed to a solution-transfer process that is promoted by the enhanced solubility of serpentine in pore fluids whose chemistry has been modified by interaction with the quartzose wall rocks. The operation of this process will promote aseismic slip (creep) along serpentinite-bearing crustal faults at otherwise seismogenic depths. During short-term experiments serpentine minerals reprecipitate in low-stress areas, whereas in longer experiments new Mg-rich phyllosilicates crystallize in response to metasomatic exchanges across the serpentinite-crustal rock contact. Long-term shear of serpentinite against crustal rocks will cause the metasomatic mineral assemblages, which may include extremely weak minerals such as saponite or talc, to play an increasingly important role in the mechanical behavior of the fault. Our results may explain the distribution of creep on faults in the San Andreas system.

  9. The microstructural character and evolution of fault rocks from the SAFOD core and potential weakening mechanisms along the San Andreas Fault (Invited) (United States)

    Holdsworth, R. E.; van Diggelen, E.; Spiers, C.; de Bresser, J. H.; Smith, S. A.


    In the region of the SAFOD borehole, the San Andreas Fault (SAF) separates two very different geological terranes referred to here as the Salinian and Great Valley blocks (SB, GVB). The three sections of core preserve a diverse range of fault rocks and pass through the two currently active, highly localised slipping sections, the so-called ‘10480’ and ‘10830’ fault zones . These coincide with a broader region - perhaps as much as 100m wide - of high strain fault rocks formed at some time in the geological past, but now currently inactive. Both the slipping segments and older high strain zone(s) are developed in the GVB located NE of the terrane boundary. This is likely influenced by the phyllosilicate-rich protolith of the GVB and the large volume of trapped fluid known to exist NE and below the SAF in this region. Microstructurally, lower strain domains (most of Core 1 cutting the SB, significant parts of Core 3 cutting the GVB) preserve clear evidence for classic upper crustal cataclastic brittle faulting processes and associated fluid flow. The GVB in particular shows clear geological evidence for both fluid pressure and differential stress cycling (variable modes of hydrofacture associated with faults) during seismicity. There is also some evidence in all minor faults for the operation of limited amounts of solution-precipitation creep. High strain domains (much of Core 2 cutting the GVB, parts of Core 3 adjacent to the 10830 fault) are characterised by the development of foliated cataclasites and gouge largely due to the new growth of fine-grained phyllosilicate networks (predominantly smectite-bearing mixed layer clays, locally serpentinite, but not talc). The most deformed sections are characterised by the development of shear band fabrics and asymmetric folds. Reworking and reactivation is widespread manifested by: i) the preservation of one or more earlier generations of gouge preserved as clasts; and ii) by the development of later interconnected

  10. Along-strike variations in fault frictional properties along the San Andreas Fault near Cholame, California from joint earthquake and low-frequency earthquake relocations (United States)

    Harrington, R.M; Cochran, Elizabeth S.; Griffiths, E.M.; Zeng, X.; Thurber, C.


    Recent observations of low‐frequency earthquakes (LFEs) and tectonic tremor along the Parkfield–Cholame segment of the San Andreas fault suggest slow‐slip earthquakes occur in a transition zone between the shallow fault, which accommodates slip by a combination of aseismic creep and earthquakes (35  km depth). However, the spatial relationship between shallow earthquakes and LFEs remains unclear. Here, we present precise relocations of 34 earthquakes and 34 LFEs recorded during a temporary deployment of 13 broadband seismic stations from May 2010 to July 2011. We use the temporary array waveform data, along with data from permanent seismic stations and a new high‐resolution 3D velocity model, to illuminate the fine‐scale details of the seismicity distribution near Cholame and the relation to the distribution of LFEs. The depth of the boundary between earthquakes and LFE hypocenters changes along strike and roughly follows the 350°C isotherm, suggesting frictional behavior may be, in part, thermally controlled. We observe no overlap in the depth of earthquakes and LFEs, with an ∼5  km separation between the deepest earthquakes and shallowest LFEs. In addition, clustering in the relocated seismicity near the 2004 Mw 6.0 Parkfield earthquake hypocenter and near the northern boundary of the 1857 Mw 7.8 Fort Tejon rupture may highlight areas of frictional heterogeneities on the fault where earthquakes tend to nucleate.

  11. Long-term slip rate of the southern San Andreas Fault, from 10Be-26Al surface exposure dating of an offset alluvial fan

    Energy Technology Data Exchange (ETDEWEB)

    der Woerd, J v; Klinger, Y; Sieh, K; Tapponnier, P; Ryerson, F; M?riaux, A


    We determine the long-term slip rate of the southern San Andreas Fault in the southeastern Indio Hills using {sup 10}Be and {sup 26}Al isotopes to date an offset alluvial fan surface. Field mapping complemented with topographic data, air photos and satellite images allow to precisely determine piercing points across the fault zone that are used to measure an offset of 565 {+-} 80 m. A total of twenty-six quartz-rich cobbles from three different fan surfaces were collected and dated. The tight cluster of nuclide concentrations from 19 samples out of 20 from the offset fan surface implies a simple exposure history, negligible prior exposure and erosion, and yield an age of 35.5 {+-} 2.5 ka. The long-term slip rate of the San Andreas Fault south of Biskra Palms is thus 15.9 {+-} 3.4 mm/yr. This rate is about 10 mm/yr slower than geological (0-14 ka) and short-term geodetic estimates for this part of the San Andreas Fault implying changes in slip rate or in faulting behavior. This result puts new constraints on the slip rate of the San Jacinto and on the Eastern California Shear Zone for the last 35 ka. Our study shows that more sites along the major faults of southern California need to be targeted to better constrain the slip-rates over different time scales.

  12. Subsurface structure of the East Bay Plain ground-water basin: San Francisco Bay to the Hayward fault, Alameda County, California (United States)

    Catchings, R.D.; Borchers, J.W.; Goldman, M.R.; Gandhok, G.; Ponce, D.A.; Steedman, C.E.


    The area of California between the San Francisco Bay, San Pablo Bay, Santa Clara Valley, and the Diablo Ranges (East Bay Hills), commonly referred to as the 'East Bay', contains the East Bay Plain and Niles Cone ground-water basins. The area has a population of 1.46 million (2003 US Census), largely distributed among several cities, including Alameda, Berkeley, Fremont, Hayward, Newark, Oakland, San Leandro, San Lorenzo, and Union City. Major known tectonic structures in the East Bay area include the Hayward Fault and the Diablo Range to the east and a relatively deep sedimentary basin known as the San Leandro Basin beneath the eastern part of the bay. Known active faults, such as the Hayward, Calaveras, and San Andreas pose significant earthquake hazards to the region, and these and related faults also affect ground-water flow in the San Francisco Bay area. Because most of the valley comprising the San Francisco Bay area is covered by Holocene alluvium or water at the surface, our knowledge of the existence and locations of such faults, their potential hazards, and their effects on ground-water flow within the alluvial basins is incomplete. To better understand the subsurface stratigraphy and structures and their effects on ground-water and earthquake hazards, the U.S. Geological Survey (USGS), in cooperation with the East Bay Municipal Utility District (EBMUD), acquired a series of high-resolution seismic reflection and refraction profiles across the East Bay Plain near San Leandro in June 2002. In this report, we present results of the seismic imaging investigations, with emphasis on ground water.

  13. Kinematics of rotating panels of E-W faults in the San Andreas system: what can we tell from geodesy? (United States)

    Platt, J. P.; Becker, T. W.


    Sets of E- to NE-trending sinistral and/or reverse faults occur within the San Andreas system, and are associated with palaeomagnetic evidence for clockwise vertical-axis rotations. These structures cut across the trend of active dextral faults, posing questions as to how displacement is transferred across them. Geodetic data show that they lie within an overall dextral shear field, but the data are commonly interpreted to indicate little or no slip, nor any significant rate of rotation. We model these structures as rotating by bookshelf slip in a dextral shear field, and show that a combination of sinistral slip and rotation can produce the observed velocity field. This allows prediction of rates of slip, rotation, fault-parallel extension and fault-normal shortening within the panel. We use this method to calculate the kinematics of the central segment of the Garlock Fault, which cuts across the eastern California shear zone at a high angle. We obtain a sinistral slip rate of 6.1 ± 1.1 mm yr-1, comparable to geological evidence, but higher than most previous geodetic estimates, and a rotation rate of 4.0 ± 0.7° Myr-1 clockwise. The western Transverse Ranges transect a similar shear zone in coastal and offshore California, but at an angle of only 40°. As a result, the faults, which were sinistral when they were at a higher angle to the shear zone, have been reactivated in a dextral sense at a low rate, and the rate of rotation of the panel has decreased from its long-term rate of ˜5° to 1.6° ± 0.2° Myr-1 clockwise. These results help to resolve some of the apparent discrepancies between geological and geodetic slip-rate estimates, and provide an enhanced understanding of the mechanics of intracontinental transform systems.

  14. Observations at a San Jacinto Fault Zone site (Sage Brush Flat) Using a Nodal Seismic High Frequency Array (United States)

    Vernon, F.; Reyes, J. C.; White, M. C. A.; Davis, G. A.; Meyer, J. C.; Sahakian, V. J.; Mancinelli, N. J.; Ben-Zion, Y.; Zigone, D.; Harris, C.; Liu, X.; Qiu, H.; Share, P. E.; Ozakin, Y.; Hollis, D.; Barklage, M.


    Between 7 May 2014 and 13 June 2014 we deployed a tight 1108 element array of 10 Hz vertical geophones in a two-dimensional array with 700 meter aperture centered on the Clark Fault of the San Jacinto Fault Zone. The array was designed to make detailed observations of the shallow damage zone, local failure processes and noise properties of the Clark Fault near the Anza seismic gap. The core of the array consisted of a grid organized with 20 rows perpendicular to and centered on the fault trace, each row with 50 sensors at a nominal 10 meter interstation spacing. The spacing between rows was nominally 30 meters. The remaining 108 sensors were deployed as extensions to multiple rows providing a maximum 700 meter aperture. Each sensor was surveyed using a Real Time Kinematic (RTK) GPS system to an accuracy of approximately 30 cm. The RTK survey was enabled via ad-hoc networking using HPWREN. We will present observations of earthquakes with magnitudes -1 100 kilometers, along with prosperities of local structures and noise characteristics.

  15. Paleoseismic investigations in the Santa Cruz mountains, California: Implications for recurrence of large-magnitude earthquakes on the San Andreas Fault (United States)

    Schwartz, D. P.; Pantosti, D.; Okumura, K.; Powers, T. J.; Hamilton, J. C.


    Trenching, microgeomorphic mapping, and tree ring analysis provide information on timing of paleoearthquakes and behavior of the San Andreas fault in the Santa Cruz mountains. At the Grizzly Flat site alluvial units dated at 1640-1659 A.D., 1679-1894 A.D., 1668-1893 A.D., and the present ground surface are displaced by a single event. This was the 1906 surface rupture. Combined trench dates and tree ring analysis suggest that the penultimate event occurred in the mid-1600 s, possibly in an interval as narrow as 1632-1659 A.D. There is no direct evidence in the trenches for the 1838 or 1865 earthquakes, which have been proposed as occurring on this part of the fault zone. In a minimum time of about 340 years only one large surface faulting event (1906) occurred at Grizzly Flat, in contrast to previous recurrence estimates of 95-110 years for the Santa Cruz mountains segment. Comparison with dates of the penultimate San Andreas earthquake at sites north of San Francisco suggests that the San Andreas fault between Point Arena and the Santa Cruz mountains may have failed either as a sequence of closely timed earthquakes on adjacent segments or as a single long rupture similar in length to the 1906 rupture around the mid-1600 s. The 1906 coseismic geodetic slip and the late Holocene geologic slip rate on the San Francisco peninsula and southward are about 50-70% and 70% of their values north of San Francisco, respectively. The slip gradient along the 1906 rupture section of the San Andreas reflects partitioning of plate boundary slip onto the San Gregorio, Sargent, and other faults south of the Golden Gate. If a mid-1600 s event ruptured the same section of the fault that failed in 1906, it supports the concept that long strike-slip faults can contain master rupture segments that repeat in both length and slip distribution. Recognition of a persistent slip rate gradient along the northern San Andreas fault and the concept of a master segment remove the requirement that

  16. Rupture directivity of micro-earthquakes along the San Andreas fault (United States)

    Wang, E.; Rubin, A. M.


    Theoretically, it is expected that earthquakes occurring on an interface separating materials with different elastic properties might have a preferential rupture propagation direction. To test for this, we searched for indications of directivity by examining spectral ratios of multiple pairs of nearby earthquakes at azimuthally distributed seismic stations. By taking the spectral ratios, this technique is capable of canceling path and station terms in seismic spectra. It differs from a typical empirical Green's Function approach in that it compares events with similar sizes as well as events with significant size differences. The spectral ratios are fitted with a simple forward model, in which a bidirectional earthquake source is composed of two point sources moving at constant velocities in opposite directions (assumed to be horizontal). Each bidirectional earthquake has four model parameters: the lengths of the two rupture halves running in opposite directions, and their propagation velocities. A priori information concerning the total rupture length of bidirectional events are computed from catalog magnitude using a moment-magnitude relation and a 3MPa stress drop on an equidimensional rupture. The a priori rupture velocity is peaked at 0.8Vs and constrained to be smaller than Vs. Since identical earthquakes would produce frequency-independent spectral ratios at all azimuths, determining the initiation points of earthquakes requires variability in event size and/or relative directivity. The relocated catalog of Rubin [2002] was used to define 78 clusters of repeating earthquakes along the central San Andreas fault. The spectral ratios of all combinations of earthquake pairs in each cluster were fitted with synthetic spectral ratios at stations with sufficient signal-to-noise ratio and coherence. The inversion results show that, as might have been expected, differences in rupture processes (duration and relative directivity) of the earthquakes within most

  17. Preliminary Geologic Map of the San Fernando 7.5' Quadrangle, Southern California: A Digital Database (United States)

    Yerkes, R.F.


    The city of San Fernando sits atop a structurally complex, sedimentologically diverse, and tectonically evolving late Tertiary-Quaternary basin situated within the Transverse Ranges of southern California. The surrounding San Fernando Valley (SFV) contains the headwaters of the Los Angeles River and its tributaries. Prior to the advent of flood control, the valley floor was composed of active alluvial fans and floodplains. Seasonal streams emanating from Pacoima and Big Tujunga Canyons drain the complex western San Gabriel Mountains and deposit coarse, highly permeable alluvium that contains generally high-quality ground water. The more shallow western part derives mainly from Tertiary and pre-Tertiary sedimentary rocks, and is underlain by less permeable, fine-grained deposits containing persistent shallow ground water and poorer water quality. Home of the 1971 San Fernando and the 1994 Northridge earthquakes, the SFV experienced near-record levels of strong ground motion in 1994 that caused widespread damage from strong shaking and ground failure. A new map of late Quaternary deposits of the San Fernando area shows that the SFV is a structural trough that has been filled from the sides, with the major source of sediment being large drainages in the San Gabriel Mountains. Deposition on the major alluvial fan of Tujunga Wash and Pacoima Wash, which issues from the San Gabriel Mountains, and on smaller fans, has been influenced by ongoing compressional tectonics in the valley. Late Pleistocene deposits have been cut by active faults and warped over growing folds. Holocene alluvial fans are locally ponded behind active uplifts. The resulting complex pattern of deposits has a major effect on liquefaction hazards. Young sandy sediments generally are highly susceptible to liquefaction where they are saturated, but the distribution of young deposits, their grain size characteristics, and the level of ground water all are complexly dependent on the tectonics of the valley

  18. Seismic Documentation for Rock Damage and Heal on the San Andreas Fault Involved in the 2004 M6 Parkfield Earthquake (United States)

    Malin, P. M.; Li, Y.; Chen, P.; Cochran, E. M.; Vidale, J. E.


    After the M6 Parkfield earthquake that occurred on 28 September 2004, we deployed a dense seismic array at the same sites as used in our experiment in the fall of 2002. The measurements using moving-window cross- correlation of waveforms for the repeated explosions and microearthquakes recorded in 2002 and 2004 show a decrease in shear velocity of at least ~2.5% within a ~200-m-wide zone across the San Andreas main fault trace most likely owing to co-seismic damage of fault rocks caused by dynamic rupture in this M6 earthquake. The width of the damage zone characterized by larger velocity changes is consistent with the low-velocity waveguide model on the SAF near Parkfield derived from fault-zone trapped waves [Li et al., 2004]. The estimated ratio between the P and S wave traveltime changes is 0.57 within the rupture zone and ~0.65 in the surrounding rocks, indicating wetter cracks within the damaged fault zone, probably due to the ground water percolating into the cracks opened in the mainshock. The measurements of traveltime changes for repeated aftershocks in 21 clusters, with a total of ~130 events, located at different depths along the rupture in 2004 show that the maximum shear velocity increased by ~1.2% within the damage zone in 3.5 months starting a week after the mainshock, indicating that the fault heals in the post-seismic stage due to the closure of cracks in the damaged rock. The data recorded at a seismograph installed in the SAFOD mainhole passing the San Andreas fault zone at ~3-km depths for repeated aftershocks in December of 2004 and later show that seismic velocities within the damage zone were changed by ~0.3% in a month, but no changes were registered at seismographs installed in the vertical pilot borehole drilled ~1.8 km away from the main fault trace for the same repeated events. We find that the healing rate is logarithmically decreasing through time with greater healing rate in the earlier stage after the mainshock. The magnitude of

  19. Faults (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Through the study of faults and their effects, much can be learned about the size and recurrence intervals of earthquakes. Faults also teach us about crustal...

  20. Data from Theodolite Measurements of Creep Rates on San Francisco Bay Region Faults, California: 1979-2007 (United States)

    McFarland, Forrest S.; Lienkaemper, James J.; Caskey, S. John; Grove, Karen


    Introduction Our purpose is to update with six additional years of data, our creep data archive on San Francisco Bay region active faults for use by the scientific research community. Earlier data (1979-2001) were reported in Galehouse (2002) and were analyzed and described in detail in a summary report (Galehouse and Lienkaemper, 2003). A complete analysis of our earlier results obtained on the Hayward fault was presented in Lienkaemper, Galehouse and Simpson (2001). Jon Galehouse of San Francisco State University (SFSU) and many student research assistants measured creep (aseismic slip) rates on these faults from 1979 until his retirement from the project in 2001. The creep measurement project, which was initiated by Galehouse, has continued through the Geosciences Department at SFSU from 2001-2006 under the direction of Co-P.I.'s Karen Grove and John Caskey (Grove and Caskey, 2005), and by Caskey since 2006. Forrest McFarland has managed most of the technical and logistical project operations as well as data processing and compilation since 2001. We plan to publish detailed analyses of these updated creep data in future publications. We maintain a project web site ( that includes the following information: project description, project personnel, creep characteristics and measurement, map of creep measurement sites, creep measurement site information, and data plots for each measurement site. Our most current, annually updated results are therefore accessible to the scientific community and to the general public. Information about the project can currently be requested by the public by an email link ( found on our project website.

  1. Isotopic evidence for the infiltration of mantle and metamorphic CO2-H2O fluids from below in faulted rocks from the San Andreas Fault System

    Energy Technology Data Exchange (ETDEWEB)

    Pili, E.; Kennedy, B.M.; Conrad, M.E.; Gratier, J.-P.


    To characterize the origin of the fluids involved in the San Andreas Fault (SAF) system, we carried out an isotope study of exhumed faulted rocks from deformation zones, vein fillings and their hosts and the fluid inclusions associated with these materials. Samples were collected from segments along the SAF system selected to provide a depth profile from upper to lower crust. In all, 75 samples from various structures and lithologies from 13 localities were analyzed for noble gas, carbon, and oxygen isotope compositions. Fluid inclusions exhibit helium isotope ratios ({sup 3}He/{sup 4}He) of 0.1-2.5 times the ratio in air, indicating that past fluids percolating through the SAF system contained mantle helium contributions of at least 35%, similar to what has been measured in present-day ground waters associated with the fault (Kennedy et al., 1997). Calcite is the predominant vein mineral and is a common accessory mineral in deformation zones. A systematic variation of C- and O-isotope compositions of carbonates from veins, deformation zones and their hosts suggests percolation by external fluids of similar compositions and origin with the amount of fluid infiltration increasing from host rocks to vein to deformation zones. The isotopic trend observed for carbonates in veins and deformation zones follows that shown by carbonates in host limestones, marbles, and other host rocks, increasing with increasing contribution of deep metamorphic crustal volatiles. At each crustal level, the composition of the infiltrating fluids is thus buffered by deeper metamorphic sources. A negative correlation between calcite {delta}{sup 13}C and fluid inclusion {sup 3}He/{sup 4}He is consistent with a mantle origin for a fraction of the infiltrating CO{sub 2}. Noble gas and stable isotope systematics show consistent evidence for the involvement of mantle-derived fluids combined with infiltration of deep metamorphic H{sub 2}O and CO{sub 2} in faulting, supporting the involvement of

  2. Gravity and magnetic expression of the San Leandro gabbro with implications for the geometry and evolution of the Hayward Fault zone, northern California (United States)

    Ponce, D.A.; Hildenbrand, T.G.; Jachens, R.C.


    The Hayward Fault, one of the most hazardous faults in northern California, trends north-northwest and extends for about 90 km along the eastern San Francisco Bay region. At numerous locations along its length, distinct and elongate gravity and magnetic anomalies correlate with mapped mafic and ultramafic rocks. The most prominent of these anomalies reflects the 16-km-long San Leandro gabbroic block. Inversion of magnetic and gravity data constrained with physical property measurements is used to define the subsurface extent of the San Leandro gabbro body and to speculate on its origin and relationship to the Hayward Fault Zone. Modeling indicates that the San Leandro gabbro body is about 3 km wide, dips about 75??-80?? northeast, and extends to a depth of at least 6 km. One of the most striking results of the modeling, which was performed independently of seismicity data, is that accurately relocated seismicity is concentrated along the western edge or stratigraphically lower bounding surface of the San Leandro gabbro. The western boundary of the San Leandro gabbro block is the base of an incomplete ophiolite sequence and represented at one time, a low-angle roof thrust related to the tectonic wedging of the Franciscan Complex. After repeated episodes of extension and attenuation, the roof thrust of this tectonic wedge was rotated to near vertical, and in places, the strike-slip Hayward Fault probably reactivated or preferentially followed this pre-existing feature. Because earthquakes concentrate near the edge of the San Leandro gabbro but tend to avoid its interior, we qualitatively explore mechanical models to explain how this massive igneous block may influence the distribution of stress. The microseismicity cluster along the western flank of the San Leandro gabbro leads us to suggest that this stressed volume may be the site of future moderate to large earthquakes. Improved understanding of the three-dimensional geometry and physical properties along the

  3. Using surface creep rate to infer fraction locked for sections of the San Andreas fault system in northern California from alignment array and GPS data (United States)

    Lienkaemper, James J.; McFarland, Forrest S.; Simpson, Robert W.; Caskey, S. John


    Surface creep rate, observed along five branches of the dextral San Andreas fault system in northern California, varies considerably from one section to the next, indicating that so too may the depth at which the faults are locked. We model locking on 29 fault sections using each section’s mean long‐term creep rate and the consensus values of fault width and geologic slip rate. Surface creep rate observations from 111 short‐range alignment and trilateration arrays and 48 near‐fault, Global Positioning System station pairs are used to estimate depth of creep, assuming an elastic half‐space model and adjusting depth of creep iteratively by trial and error to match the creep observations along fault sections. Fault sections are delineated either by geometric discontinuities between them or by distinctly different creeping behaviors. We remove transient rate changes associated with five large (M≥5.5) regional earthquakes. Estimates of fraction locked, the ratio of moment accumulation rate to loading rate, on each section of the fault system provide a uniform means to inform source parameters relevant to seismic‐hazard assessment. From its mean creep rates, we infer the main branch (the San Andreas fault) ranges from only 20%±10% locked on its central creeping section to 99%–100% on the north coast. From mean accumulation rates, we infer that four urban faults appear to have accumulated enough seismic moment to produce major earthquakes: the northern Calaveras (M 6.8), Hayward (M 6.8), Rodgers Creek (M 7.1), and Green Valley (M 7.1). The latter three faults are nearing or past their mean recurrence interval.

  4. Fault kinematics and depocenter evolution of oil-bearing, continental successions of the Mina del Carmen Formation (Albian) in the Golfo San Jorge basin, Argentina (United States)

    Paredes, José Matildo; Plazibat, Silvana; Crovetto, Carolina; Stein, Julián; Cayo, Eric; Schiuma, Ariel


    Up to 10% of the liquid hydrocarbons of the Golfo San Jorge basin come from the Mina del Carmen Formation (Albian), an ash-dominated fluvial succession preserved in a variably integrated channel network that evolved coeval to an extensional tectonic event, poorly analyzed up to date. Fault orientation, throw distribution and kinematics of fault populations affecting the Mina del Carmen Formation were investigated using a 3D seismic dataset in the Cerro Dragón field (Eastern Sector of the Golfo San Jorge basin). Thickness maps of the seismic sub-units that integrate the Mina del Carmen Formation, named MEC-A-MEC-C in ascending order, and mapping of fluvial channels performed applying geophysical tools of visualization were integrated to the kinematical analysis of 20 main normal faults of the field. The study provides examples of changes in fault throw patterns with time, associated with faults of different orientations. The "main synrift phase" is characterized by NE-SW striking (mean Az = 49°), basement-involved normal faults that attains its maximum throw on top of the volcanic basement; this set of faults was active during deposition of the Las Heras Group and Pozo D-129 formation. A "second synrift phase" is recognized by E-W striking normal faults (mean Az = 91°) that nucleated and propagated from the Albian Mina del Carmen Formation. Fault activity was localized during deposition of the MEC-A sub-unit, but generalized during deposition of MEC-B sub-unit, producing centripetal and partially isolated depocenters. Upward decreasing in fault activity is inferred by more gradual thickness variation of MEC-C and the overlying Lower Member of Bajo Barreal Formation, evidencing passive infilling of relief associated to fault boundaries, and conformation of wider depocenters with well integrated networks of channels of larger dimensions but random orientation. Lately, the Mina del Carmen Formation was affected by the downward propagation of E-W to ESE-WNW striking

  5. Geomorphology, denudation rates, and stream channel profiles reveal patterns of mountain building adjacent to the San Andreas fault in northern California, USA (United States)

    DeLong, Stephen B.; Hilley, George E.; Prentice, Carol S.; Crosby, Christopher J.; Yokelson, Intan N.


    Relative horizontal motion along strike-slip faults can build mountains when motion is oblique to the trend of the strike-slip boundary. The resulting contraction and uplift pose off-fault seismic hazards, which are often difficult to detect because of the poor vertical resolution of satellite geodesy and difficulty of locating offset datable landforms in active mountain ranges. Sparse geomorphic markers, topographic analyses, and measurement of denudation allow us to map spatiotemporal patterns of uplift along the northern San Andreas fault. Between Jenner and Mendocino, California, emergent marine terraces found southwest of the San Andreas fault record late Pleistocene uplift rates between 0.20 and 0.45 mm yr–1 along much of the coast. However, on the northeast side of the San Andreas fault, a zone of rapid uplift (0.6–1.0 mm yr–1) exists adjacent to the San Andreas fault, but rates decay northeastward as the coast becomes more distant from the San Andreas fault. A newly dated 4.5 Ma shallow-marine deposit located at ∼500 m above sea level (masl) adjacent to the San Andreas fault is warped down to just 150 masl 15 km northeast of the San Andreas fault, and it is exposed at just 60–110 masl to the west of the fault. Landscape denudation rates calculated from abundance of cosmogenic radionuclides in fluvial sediment northeast of, and adjacent to, the San Andreas fault are 0.16–0.29 mm yr–1, but they are only 0.03–0.07 mm yr–1 west of the fault. Basin-average channel steepness and the denudation rates can be used to infer the erosive properties of the underlying bedrock. Calibrated erosion rates can then be estimated across the entire landscape using the spatial distribution of channel steepness with these erosive properties. The lower-elevation areas of this landscape that show high channel steepness (and hence calibrated erosion rate) are distinct from higher-elevation areas with systematically lower channel steepness and denudation rates

  6. Discovery of Talc in SAFOD Serpentinite Cuttings: Possible Implications for the Origin of Creep in the San Andreas Fault (United States)

    Moore, D. E.; Rymer, M. J.


    The San Andreas Fault Observatory at Depth (SAFOD) drillsite is located near the southern end of the creeping section, and a portion of the well casing is actively deforming in response to creep on a fault strand intersected by the drillhole. Moderate amounts of serpentinite are present in SAFOD cuttings collected at 3320-3350 m measured depth, at the eastern margin of the zone of active deformation. Serpentinite also is found locally in surface exposures of the San Andreas Fault (SAF) along the creeping section. Aeromagnetic surveys indicate the presence of a flat-lying slab of serpentinite at several kilometers' depth on the northeast side of the SAF; this body truncates against the fault along a 50 kilometer segment northwest of Parkfield. Serpentinite commonly is invoked as the cause of creep along the SAF, but the frictional strengths of the serpentine minerals are too high overall to explain the low strength of the creeping section, as indicated by modelling of heat flow data and earthquake focal mechanisms. In addition, the serpentine minerals have the potential for unstable slip under certain P-T-velocity conditions. However, another mineral sometimes associated with serpentinite -- talc -- potentially could provide the connection between serpentinite and creep. Talc is a magnesium-rich phyllosilicate with a higher Si/Mg ratio than serpentine and it commonly forms as a result of Si-metasomatism of serpentinite and other ultramafic rocks. Recent experimental studies show that talc has a coefficient of friction on the order of 0.10-0.15 in the temperature range 100-400 degrees C (upper crustal temperatures) and it is characterized by inherently stable, velocity-strengthening behavior. Localization of shear in a talc-rich gouge zone could therefore satisfy the conditions for creep without the need to invoke other weakening mechanisms such as fluid overpressures. Talc has been identified in serpentinite grains from the SAFOD cutttings, using scanning electron

  7. Investigation of late Pleistocene and Holocene activity in the San Gregorio fault zone on the continental slope north of Monterey Canyon, offshore central California (United States)

    Maier, Katherine L.; Paull, Charles K.; Brothers, Daniel; Caress, David W.; McGann, Mary; Lundsten, Eve M.; Anderson, Krystle; Gwiazda, Roberto


    We provide an extensive high‐resolution geophysical, sediment core, and radiocarbon dataset to address late Pleistocene and Holocene fault activity of the San Gregorio fault zone (SGFZ), offshore central California. The SGFZ occurs primarily offshore in the San Andreas fault system and has been accommodating dextral strike‐slip motion between the Pacific and North American plates since the mid‐Miocene. Our study focuses on the SGFZ where it has been mapped through the continental slope north of Monterey Canyon. From 2009 to 2015, the Monterey Bay Aquarium Research Institute collected high‐resolution multibeam bathymetry and chirp sub‐bottom profiles using an autonomous underwater vehicle (AUV). Targeted samples were collected using a remotely operated vehicle (ROV) to provide radiocarbon age constraints. We integrate the high‐resolution geophysical data with radiocarbon dates to reveal Pleistocene seismic horizons vertically offset less than 5 m on nearly vertical faults. These faults are buried by continuous reflections deposited after ∼17.5  ka and likely following erosion during the last sea‐level lowstand ∼21  ka, bracketing the age of faulting to ∼32–21  ka. Clearly faulted horizons are only detected in a small area where mass wasting exhumed older strata to within ∼25  m of the seafloor. The lack of clearly faulted Holocene deposits and possible highly distributed faulting in the study area are consistent with previous interpretations that late Pleistocene and Holocene activity along the SGFZ may decrease to the south. This study illustrates the complexity of the SGFZ, offshore central California, and demonstrates the utility of very high‐resolution data from combined AUV (geophysical)–ROV (seabed sampling) surveys in offshore studies of fault activity.

  8. Hydrothermal frictional strengths of rock and mineral samples relevant to the creeping section of the San Andreas Fault (United States)

    Moore, Diane E.; Lockner, David A.; Hickman, Stephen H.


    We compare frictional strengths in the temperature range 25–250 °C of fault gouge from SAFOD (CDZ and SDZ) with quartzofeldspathic wall rocks typical of the central creeping section of the San Andreas Fault (Great Valley sequence and Franciscan Complex). The Great Valley and Franciscan samples have coefficients of friction, μ > 0.35 at all experimental conditions. Strength is unchanged between 25° and 150 °C, but μ increases at higher temperatures, exceeding 0.50 at 250 °C. Both samples are velocity strengthening at room temperature but show velocity-weakening behavior beginning at 150 °C and stick-slip motion at 250 °C. These rocks, therefore, have the potential for unstable seismic slip at depth. The CDZ gouge, with a high saponite content, is weak (μ = 0.09–0.17) and velocity strengthening in all experiments, and μ decreases at temperatures above 150 °C. Behavior of the SDZ is intermediate between the CDZ and wall rocks: μ < 0.2 and does not vary with temperature. Although saponite is probably not stable at depths greater than ∼3 km, substitution of the frictionally similar minerals talc and Mg-rich chlorite for saponite at higher temperatures could potentially extend the range of low strength and stable slip down to the base of the seismogenic zone.

  9. Three-Dimensional Investigation of a 5 m Deflected Swale along the San Andreas Fault in the Carrizo Plain

    KAUST Repository

    Akciz, S. O.


    Topographic maps produced from Light Detection and Ranging (LiDAR) data are useful for paleoseismic and neotectonic research because they provide submeter representation of faulting-related surface features. Offset measurements of geomorphic features, made in the field or on a remotely sensed imagery, commonly assume a straight or smooth (i.e., undeflected) pre-earthquake geometry. Here, we present results from investigation of an ∼20 cm deep and >5 m wide swale with a sharp bend along the San Andreas fault (SAF) at the Bidart fan site in the Carrizo Plain, California. From analysis of LiDAR topography images and field measurements, the swale was initially interpreted as a channel tectonically offset ∼4:7 m. Our observations from exposures in four backhoe excavations and 25 hand-dug trenchettes show that even though a sharp bend in the swale coincides with the trace of the A.D. 1857 fault rupture, the swale formed after the 1857 earthquake and was not tectonically offset. Subtle fractures observed within a surficial gravel unit overlying the 1857 rupture trace are similar to fractures previously documented at the Phelan fan and LY4 paleoseismic sites 3 and 35 km northwest of Bidart fan, respectively. Collectively, the fractures suggest that a post-1857 moderate-magnitude earthquake caused ground cracking in the Carrizo and Cholame stretches of the SAF. Our observations emphasize the importance of excavation at key locations to validate remote and ground-based measurements, and we advocate more geomorphic characterization for each site if excavation is not possible.

  10. TremorScope: A Tool to Image the Deep Workings of the San Andreas Fault near Cholame, CA (United States)

    Hellweg, M.; Burgmann, R.; Taira, T.; Nadeau, R. M.; Dreger, D. S.; Allen, R. M.


    Until recently, active fault zones were thought to deform via seismic slip during earthquakes in the upper, brittle portion of the crust, and by steady, aseismic shear below. However, since 2000, this view has been shaken by seismological observations of seismic tremor deep in the roots of active fault zones, including on the section of the San Andreas to the southeast of Parkfield, CA, deep (~20-30 km) beneath the nucleation zone of the great 1857 Fort Tejon earthquake. With funding from the Gordon and Betty Moore Foundation, we have improved the seismic network in the area above the tremor source by installing four new broadband/strong motion surface stations and four borehole sites with uphole accelerometers and downhole geophones, broadband and strong motion sensors. Data from all stations are telemetered in real-time. They are analysed as part of normal earthquake monitoring, and archived and distributed through the Northern California Earthquake Data Center (NCEDC). Data from the TremorScope project is improving earthquake monitoring in the region south of Parkfield, including allowing empirical Greens function finite fault analysis of moderate events in the area. Locations and characterization of tremor episodes are improved by the data recorded by TremorScope stations. For example, the rate of ambient tremor activity in the TremorScope area increased by a factor of ~8 within ~12 hours of the 2014 Napa M6.0 earthquake and remained elevated for ~ 100 days, exceeding the tremor rate increase following the 2004 Parkfield M6.0 quake despite the differences in epicentral distance (~300 km vs. ~15 km). No comparable increases in tremor rates have been observed between the Parkfield and Napa events. This suggests that the sensitivity to external stressing in the in the deep tremor zone of the TremorScope region may have increased since 2004. We also show how this network's strong motion instrumentation will provide unprecedented and exciting insights into the

  11. Geomorphic and Structural Analysis of the Verona-Williams-Pleasanton fault zone and implications for seismic hazard, eastern San Francisco Bay Area, California (United States)

    Sawyer, T. L.; Unruh, J. R.; Hoirup, D. F.; Barry, G.; Pearce, J. T.


    Folds and thrust faults adjacent to and beneath the Livermore Valley have accommodated Quaternary crustal shortening between major dextral faults of the eastern San Andreas fault system. The Verona and Williams faults are NE-dipping thrust or reverse faults that have uplifted the Pliocene-Pleistocene Livermore gravels along the western and southern margins of the valley. The Williams fault extends ~13 km northwest from the Mt. Lewis seismic trend to the sinistral Las Positas fault, which forms the southern margin of the valley. A 3-km left step along the Las Positas fault separates the surface traces of the Verona and Williams faults. The Verona fault extends ~8 km northwest from the stepover to southwestern Livermore Valley. It is possible that the Las Positas fault extends to the base of the seismogenic crust and separates the Verona and Williams faults into two kinematically independent structures. Alternatively, the Verona and Williams faults may merge downdip into a common thrust fault plane, with the Las Positas fault confined to the hanging wall as a tear fault. The Verona and Williams faults exhibit geomorphic evidence for late Quaternary fault rupture propagating to or very near the ground surface. The Williams fault tightly folds and overturns the Livermore gravels, and appears to form scarps that impound late Quaternary alluvium and cross Holocene landslide deposits. Many Holocene(?) alluvial fans exhibit distinct convex longitudinal profiles across the fault trace suggesting active folding above the Verona fault. The geomorphic position of a stream-terrace remnant suggests that >7 m of tectonic uplift is possible across the Verona fault during the late Quaternary. Surficial geologic mapping and geomorphic analysis of the ancestral Arroyo Valle drainage system reveals numerous paleochannels that generally decrease in elevation (age) to the northwest, and provide useful isochronous markers delineating a subtle tectonic uplift in western Livermore Valley

  12. Three-Dimensional Geologic Map of the Hayward Fault Zone, San Francisco Bay Region, California (United States)

    Phelps, G.A.; Graymer, R.W.; Jachens, R.C.; Ponce, D.A.; Simpson, R.W.; Wentworth, C.M.


    A three-dimensional (3D) geologic map of the Hayward Fault zone was created by integrating the results from geologic mapping, potential field geophysics, and seismology investigations. The map volume is 100 km long, 20 km wide, and extends to a depth of 12 km below sea level. The map volume is oriented northwest and is approximately bisected by the Hayward Fault. The complex geologic structure of the region makes it difficult to trace many geologic units into the subsurface. Therefore, the map units are generalized from 1:24,000-scale geologic maps. Descriptions of geologic units and structures are offered, along with a discussion of the methods used to map them and incorporate them into the 3D geologic map. The map spatial database and associated viewing software are provided. Elements of the map, such as individual fault surfaces, are also provided in a non-proprietary format so that the user can access the map via open-source software. The sheet accompanying this manuscript shows views taken from the 3D geologic map for the user to access. The 3D geologic map is designed as a multi-purpose resource for further geologic investigations and process modeling.

  13. Fault-related carbonate breccia dykes in the La Chilca area, Eastern Precordillera, San Juan, Argentina (United States)

    Castro de Machuca, Brígida; Perucca, Laura P.


    Carbonate fault breccia dykes in the Cerro La Chilca area, Eastern Precordillera, west-central Argentina, provide clues on the probable mechanism of both fault movement and dyke injection. Breccia dykes intrude Upper Carboniferous sedimentary rocks and Triassic La Flecha Trachyte Formation. The timing of breccia dyke emplacement is constrained by cross cutting relationships with the uppermost Triassic unit and conformable contacts with the Early Miocene sedimentary rocks. This study supports a tectonic-hydrothermal origin for these breccia dykes; fragmentation and subsequent hydraulic injection of fluidized breccia are the more important processes in the breccia dyke development. Brecciation can be triggered by seismic activity which acts as a catalyst. The escape of fluidized material can be attributed to hydrostatic pressure and the direction of movement of the material establishes the direction of least pressure. Previous studies have shown that cross-strike structures have had an important role in the evolution of this Andean segment since at least Triassic times. These structures represent pre-existing crustal fabrics that could have controlled the emplacement of the dykes. The dykes, which are composed mostly of carbonate fault breccia, were injected upward along WNW fractures.

  14. New insights on stress rotations from a forward regional model of the San Andreas fault system near its Big Bend in southern California (United States)

    Fitzenz, D.D.; Miller, S.A.


    Understanding the stress field surrounding and driving active fault systems is an important component of mechanistic seismic hazard assessment. We develop and present results from a time-forward three-dimensional (3-D) model of the San Andreas fault system near its Big Bend in southern California. The model boundary conditions are assessed by comparing model and observed tectonic regimes. The model of earthquake generation along two fault segments is used to target measurable properties (e.g., stress orientations, heat flow) that may allow inferences on the stress state on the faults. It is a quasi-static model, where GPS-constrained tectonic loading drives faults modeled as mostly sealed viscoelastic bodies embedded in an elastic half-space subjected to compaction and shear creep. A transpressive tectonic regime develops southwest of the model bend as a result of the tectonic loading and migrates toward the bend because of fault slip. The strength of the model faults is assessed on the basis of stress orientations, stress drop, and overpressures, showing a departure in the behavior of 3-D finite faults compared to models of 1-D or homogeneous infinite faults. At a smaller scale, stress transfers from fault slip transiently induce significant perturbations in the local stress tensors (where the slip profile is very heterogeneous). These stress rotations disappear when subsequent model earthquakes smooth the slip profile. Maps of maximum absolute shear stress emphasize both that (1) future models should include a more continuous representation of the faults and (2) that hydrostatically pressured intact rock is very difficult to break when no material weakness is considered. Copyright 2004 by the American Geophysical Union.

  15. A 15 year catalog of more than 1 million low-frequency earthquakes: Tracking tremor and slip along the deep San Andreas Fault (United States)

    Shelly, David R.


    Low-frequency earthquakes (LFEs) are small, rapidly recurring slip events that occur on the deep extensions of some major faults. Their collective activation is often observed as a semicontinuous signal known as tectonic (or nonvolcanic) tremor. This manuscript presents a catalog of more than 1 million LFEs detected along the central San Andreas Fault from 2001 to 2016. These events have been detected via a multichannel matched-filter search, cross-correlating waveform templates representing 88 different LFE families with continuous seismic data. Together, these source locations span nearly 150 km along the central San Andreas Fault, ranging in depth from 16 to 30 km. This accumulating catalog has been the source for numerous studies examining the behavior of these LFE sources and the inferred slip behavior of the deep fault. The relatively high temporal and spatial resolutions of the catalog have provided new insights into properties such as tremor migration, recurrence, and triggering by static and dynamic stress perturbations. Collectively, these characteristics are inferred to reflect a very weak fault likely under near-lithostatic fluid pressure, yet the physical processes controlling the stuttering rupture observed as tremor and LFE signals remain poorly understood. This paper aims to document the LFE catalog assembly process and associated caveats, while also updating earlier observations and inferred physical constraints. The catalog itself accompanies this manuscript as part of the electronic supplement, with the goal of providing a useful resource for continued future investigations.

  16. Deep-water turbidites as Holocene earthquake proxies: the Cascadia subduction zone and Northern San Andreas Fault systems

    Directory of Open Access Journals (Sweden)

    J. E. Johnson


    Full Text Available New stratigraphic evidence from the Cascadia margin demonstrates that 13 earthquakes ruptured the margin from Vancouver Island to at least the California border following the catastrophic eruption of Mount Mazama. These 13 events have occurred with an average repeat time of ?? 600 years since the first post-Mazama event ?? 7500 years ago. The youngest event ?? 300 years ago probably coincides with widespread evidence of coastal subsidence and tsunami inundation in buried marshes along the Cascadia coast. We can extend the Holocene record to at least 9850 years, during which 18 events correlate along the same region. The pattern of repeat times is consistent with the pattern observed at most (but not all localities onshore, strengthening the contention that both were produced by plate-wide earthquakes. We also observe that the sequence of Holocene events in Cascadia may contain a repeating pattern, a tantalizing look at what may be the long-term behavior of a major fault system. Over the last ?? 7500 years, the pattern appears to have repeated at least three times, with the most recent A.D. 1700 event being the third of three events following a long interval of 845 years between events T4 and T5. This long interval is one that is also recognized in many of the coastal records, and may serve as an anchor point between the offshore and onshore records. Similar stratigraphic records are found in two piston cores and one box core from Noyo Channel, adjacent to the Northern San Andreas Fault, which show a cyclic record of turbidite beds, with thirty- one turbidite beds above a Holocene/.Pleistocene faunal «datum». Thus far, we have determined ages for 20 events including the uppermost 5 events from these cores. The uppermost event returns a «modern» age, which we interpret is likely the 1906 San Andreas earthquake. The penultimate event returns an intercept age of A.D. 1664 (2 ?? range 1505- 1822. The third event and fourth event

  17. On Offset Stream Measurements and Recent Coseismic Surface Rupture in the Carrizo Section of the San Andreas Fault (United States)

    Brooks, B. A.; Hudnut, K. W.; Akciz, S. O.; Delano, J.; Glennie, C. L.; Prentice, C. S.; DeLong, S.


    Recent studies using airborne laser swath mapping (ALSM) topographic data have provoked debate about whether the Mw 7.9 Fort Tejon 1857 earthquake produced ~5m or ~10m of surface strike-slip displacement in the Carrizo section of the south-central San Andreas fault. Resolution of this discrepancy is important not only for understanding the proposed role of the Carrizo section in controlling repeated south-central San Andreas rupture but also for understanding the general utility of stream offset measurements for earthquake process studies. To explore if higher-resolution topographic data of the offset features would help reconcile the different interpretations, we used a mobile laser scanning (MLS) backpack-mounted system to survey 11 ~5m offset streams given 'high' quality rankings by previous studies. In our surveys, point density was on the order of 1000s pts/m^2 in comparison to 1-4 pts/m^2 for the ALSM data, enabling us to faithfully make digital elevation models with grid spacing smaller than 10cm. We adapt a geometric method that relies on a small number of user-dependent decisions to produce an offset estimate from a set of geomorphic markers (thalweg, channel margins, channel shoulders) from upstream and downstream locations. We typically derive an ensemble of at least 10 offset measurements per stream channel and from these calculate a mean and standard deviation. We also explore using gradient changes in long profiles of the offset stream reaches to diagnose the possibility of a ~10m channel experiencing 2 ~5m slip events. Preliminary results suggest a tendency towards the higher value offset estimates, although this does not necessarily preclude the possibility of two or more events causing the cumulative offset.

  18. Locating non-volcanic tremor along the San Andreas Fault using a multiple array source imaging technique (United States)

    Ryberg, T.; Haberland, C.H.; Fuis, G.S.; Ellsworth, W.L.; Shelly, D.R.


    Non-volcanic tremor (NVT) has been observed at several subduction zones and at the San Andreas Fault (SAF). Tremor locations are commonly derived by cross-correlating envelope-transformed seismic traces in combination with source-scanning techniques. Recently, they have also been located by using relative relocations with master events, that is low-frequency earthquakes that are part of the tremor; locations are derived by conventional traveltime-based methods. Here we present a method to locate the sources of NVT using an imaging approach for multiple array data. The performance of the method is checked with synthetic tests and the relocation of earthquakes. We also applied the method to tremor occurring near Cholame, California. A set of small-aperture arrays (i.e. an array consisting of arrays) installed around Cholame provided the data set for this study. We observed several tremor episodes and located tremor sources in the vicinity of SAF. During individual tremor episodes, we observed a systematic change of source location, indicating rapid migration of the tremor source along SAF. ?? 2010 The Authors Geophysical Journal International ?? 2010 RAS.

  19. Vertical-axis rotations and deformation along the active strike-slip El Tigre Fault (Precordillera of San Juan, Argentina) assessed through palaeomagnetism and anisotropy of magnetic susceptibility (United States)

    Fazzito, Sabrina Y.; Rapalini, Augusto E.; Cortés, José M.; Terrizzano, Carla M.


    Palaeomagnetic data from poorly consolidated to non-consolidated late Cenozoic sediments along the central segment of the active El Tigre Fault (Central-Western Precordillera of the San Juan Province, Argentina) demonstrate broad cumulative deformation up to ~450 m from the fault trace and reveal clockwise and anticlockwise vertical-axis rotations of variable magnitude. This deformation has affected in different amounts Miocene to late Pleistocene samples and indicates a complex kinematic pattern. Several inherited linear structures in the shear zone that are oblique to the El Tigre Fault may have acted as block boundary faults. Displacement along these faults may have resulted in a complex pattern of rotations. The maximum magnitude of rotation is a function of the age of the sediments sampled, with largest values corresponding to middle Miocene-lower Pliocene deposits and minimum values obtained from late Pleistocene deposits. The kinematic study is complemented by low-field anisotropy of magnetic susceptibility data to show that the local strain regime suggests a N-S stretching direction, subparallel to the strike of the main fault.

  20. Seismic evidence for rock damage and healing on the San Andreas fault associated with the 2004 M 6.0 Parkfield earthquake (United States)

    Li, Y.-G.; Chen, P.; Cochran, E.S.; Vidale, J.E.; Burdette, T.


    We deployed a dense linear array of 45 seismometers across and along the San Andreas fault near Parkfield a week after the M 6.0 Parkfield earthquake on 28 September 2004 to record fault-zone seismic waves generated by aftershocks and explosions. Seismic stations and explosions were co-sited with our previous experiment conducted in 2002. The data from repeated shots detonated in the fall of 2002 and 3 months after the 2004 M 6.0 mainshock show ???1.0%-1.5% decreases in seismic-wave velocity within an ???200-m-wide zone along the fault strike and smaller changes (0.2%-0.5%) beyond this zone, most likely due to the coseismic damage of rocks during dynamic rupture in the 2004 M 6.0 earthquake. The width of the damage zone characterized by larger velocity changes is consistent with the low-velocity waveguide model on the San Andreas fault, near Parkfield, that we derived from fault-zone trapped waves (Li et al., 2004). The damage zone is not symmetric but extends farther on the southwest side of the main fault trace. Waveform cross-correlations for repeated aftershocks in 21 clusters, with a total of ???130 events, located at different depths and distances from the array site show ???0.7%-1.1% increases in S-wave velocity within the fault zone in 3 months starting a week after the earthquake. The velocity recovery indicates that the damaged rock has been healing and regaining the strength through rigidity recovery with time, most likely . due to the closure of cracks opened during the mainshock. We estimate that the net decrease in seismic velocities within the fault zone was at least ???2.5%, caused by the 2004 M 6.0 Parkfield earthquake. The healing rate was largest in the earlier stage of the postmainshock healing process. The magnitude of fault healing varies along the rupture zone, being slightly larger for the healing beneath Middle Mountain, correlating well with an area of large mapped slip. The fault healing is most prominent at depths above ???7 km.

  1. Seismic and Aseismic Slip on the San-Jacinto Fault Near Anza, CA, from Joint Analysis of Strain and Aftershock Data (United States)

    Inbal, A.; Avouac, J. P.; Ampuero, J. P.


    The San-Jacinto Fault (SJF) is the most active fault in southern California, which together with the southern San-Andreas Fault accommodates a large fraction of the motion across the plate boundary. Seismicity along the SJF is distributed over several fault segments with distinct spatio-temporal characteristics. One of these segments, known as the Anza seismic gap, is a 25 km long strand almost devoid of seismicity. In recent years, four M4-5 events occurred SE of the gap. Despite their moderate magnitudes, these earthquakes triggered rich aftershock sequences and pronounced afterslip that lasted for several weeks, and was well captured by nearby PBO borehole strain meters. A similar transient was remotely triggered by the 2010 El Mayor-Cucapah earthquake. Geodetic and seismic observations following a local M5.4 mainshock indicate that afterslip propagated unilaterally towards the NW at speed of about 5 km/day. We infer the distribution of slip via a joint inversion of the aftershock and strain data. Our approach is based on Dieterich's (1994) model relating the evolution of seismicity rate to applied stresses, within the framework of rate-and-state friction. This approach provides resolution power at depths inaccessible to the surface geodetic network. Moreover, it allows us to gain important insights onto the fault mechanical properties. We apply this inversion scheme to episodes that occurred during 2010. Remarkably, we find that the cumulative moment released post-seismically during the locally triggered transient is 5-10 times larger than the moment of the mainshock. We show that the data favour a model in which deep slip transients, which may develop due to local or remote earthquakes, occur on a weak, close-to-velocity-neutral fault. The transients increase the stress along the Anza gap, and trigger earthquakes outside it through static stress transfer.

  2. Catalog of earthquakes along the San Andreas fault system in Central California, April-June 1972 (United States)

    Wesson, R.L.; Bennett, R.E.; Lester, F.W.


    Numerous small earthquakes occur each day in the coast ranges of Central California. The detailed study of these earthquakes provides a tool for gaining insight into the tectonic and physical processes responsible for the generation of damaging earthquakes. This catalog contains the fundamental parameters for earthquakes located within and adjacent to the seismograph network operated by the National Center for Earthquake Research (NCER), U.S. Geological Survey, during the period April - June, 1972. The motivation for these detailed studies has been described by Pakiser and others (1969) and by Eaton and others (1970). Similar catalogs of earthquakes for the years 1969, 1970 and 1971 have been prepared by Lee and others (1972 b, c, d). A catalog for the first quarter of 1972 has been prepared by Wesson and others (1972). The basic data contained in these catalogs provide a foundation for further studies. This catalog contains data on 910 earthquakes in Central California. A substantial portion of the earthquakes reported in this catalog represents a continuation of the sequence of earthquakes in the Bear Valley area which began in February, 1972 (Wesson and others, 1972). Arrival times at 126 seismograph stations were used to locate the earthquakes listed in this catalog. Of these, 101 are telemetered stations operated by NCER. Readings from the remaining 25 stations were obtained through the courtesy of the Seismographic Stations, University of California, Berkeley (UCB); the Earthquake Mechanism Laboratory, National Oceanic and Atmospheric Administration, San Francisco (EML); and the California Department of Water Resources, Sacramento. The Seismographic Stations of the University of California, Berkeley, have for many years published a bulletin describing earthquakes in Northern California and the surrounding area, and readings at UCB Stations from more distant events. The purpose of the present catalog is not to replace the UCB Bulletin, but rather to supplement

  3. Catalog of earthquakes along the San Andreas fault system in Central California: January-March, 1972 (United States)

    Wesson, R.L.; Bennett, R.E.; Meagher, K.L.


    Numerous small earthquakes occur each day in the Coast Ranges of Central California. The detailed study of these earthquakes provides a tool for gaining insight into the tectonic and physical processes responsible for the generation of damaging earthquakes. This catalog contains the fundamental parameters for earthquakes located within and adjacent to the seismograph network operated by the National Center for Earthquake Research (NCER), U.S. Geological Survey, during the period January - March, 1972. The motivation for these detailed studies has been described by Pakiser and others (1969) and by Eaton and others (1970). Similar catalogs of earthquakes for the years 1969, 1970 and 1971 have been prepared by Lee and others (1972 b,c,d). The basic data contained in these catalogs provide a foundation for further studies. This catalog contains data on 1,718 earthquakes in Central California. Of particular interest is a sequence of earthquakes in the Bear Valley area which contained single shocks with local magnitudes of S.O and 4.6. Earthquakes from this sequence make up roughly 66% of the total and are currently the subject of an interpretative study. Arrival times at 118 seismograph stations were used to locate the earthquakes listed in this catalog. Of these, 94 are telemetered stations operated by NCER. Readings from the remaining 24 stations were obtained through the courtesy of the Seismographic Stations, University of California, Berkeley (UCB); the Earthquake Mechanism Laboratory, National Oceanic and Atmospheric Administration, San Francisco (EML); and the California Department of Water Resources, Sacramento. The Seismographic Stations of the University of California, Berkeley,have for many years published a bulletin describing earthquakes in Northern California and the surrounding area, and readings at UCB Stations from more distant events. The purpose of the present catalog is not to replace the UCB Bulletin, but rather to supplement it, by describing the

  4. Catalog of earthquakes along the San Andreas fault system in Central California, July-September 1972 (United States)

    Wesson, R.L.; Meagher, K.L.; Lester, F.W.


    Numerous small earthquakes occur each day in the coast ranges of Central California. The detailed study of these earthquakes provides a tool for gaining insight into the tectonic and physical processes responsible for the generation of damaging earthquakes. This catalog contains the fundamental parameters for earthquakes located within and adjacent to the seismograph network operated by the National Center for Earthquake Research (NCER), U.S. Geological Survey, during the period July - September, 1972. The motivation for these detailed studies has been described by Pakiser and others (1969) and by Eaton and others (1970). Similar catalogs of earthquakes for the years 1969, 1970 and 1971 have been prepared by Lee and others (1972 b, c, d). Catalogs for the first and second quarters of 1972 have been prepared by Wessan and others (1972 a & b). The basic data contained in these catalogs provide a foundation for further studies. This catalog contains data on 1254 earthquakes in Central California. Arrival times at 129 seismograph stations were used to locate the earthquakes listed in this catalog. Of these, 104 are telemetered stations operated by NCER. Readings from the remaining 25 stations were obtained through the courtesy of the Seismographic Stations, University of California, Berkeley (UCB), the Earthquake Mechanism Laboratory, National Oceanic and Atmospheric Administration, San Francisco (EML); and the California Department of Water Resources, Sacramento. The Seismographic Stations of the University of California, Berkeley, have for many years published a bulletin describing earthquakes in Northern California and the surrounding area, and readings at UCB Stations from more distant events. The purpose of the present catalog is not to replace the UCB Bulletin, but rather to supplement it, by describing the seismicity of a portion of central California in much greater detail.

  5. Quaternary landscape development, alluvial fan chronology and erosion of the Mecca Hills at the southern end of the San Andreas Fault zone (United States)

    Gray, Harrison J.; Owen, Lewis; Dietsch, Craig; Beck, Richard A.; Caffee, Marc A.; Finkelman, Robert B.; Mahan, Shannon


    Quantitative geomorphic analysis combined with cosmogenic nuclide 10Be-based geochronology and denudation rates have been used to further the understanding of the Quaternary landscape development of the Mecca Hills, a zone of transpressional uplift along the southern end of the San Andreas Fault, in southern California. The similar timing of convergent uplifts along the San Andreas Fault with the initiation of the sub-parallel San Jacinto Fault suggest a possible link between the two tectonic events. The ages of alluvial fans and the rates of catchment-wide denudation have been integrated to assess the relative influence of climate and tectonic uplift on the development of catchments within the Mecca Hills. Ages for major geomorphic surfaces based on 10Be surface exposure dating of boulders and 10Be depth profiles define the timing of surface stabilization to 2.6 +5.6/–1.3 ka (Qyf1 surface), 67.2 ± 5.3 ka (Qvof2 surface), and 280 ± 24 ka (Qvof1 surface). Comparison of 10Be measurements from active channel deposits (Qac) and fluvial terraces (Qt) illustrate a complex history of erosion, sediment storage, and sediment transport in this environment. Beryllium-10 catchment-wide denudation rates range from 19.9 ± 3.2 to 149 ± 22.5 m/Ma and demonstrate strong correlations with mean catchment slope and with total active fault length normalized by catchment area. The lack of strong correlation with other geomorphic variables suggests that tectonic uplift and rock weakening have the greatest control. The currently measured topography and denudation rates across the Mecca Hills may be most consistent with a model of radial topographic growth in contrast to a model based on the rapid uplift and advection of crust.

  6. A reevaluation of the Pallett Creek earthquake chronology based on new AMS radiocarbon dates, San Andreas fault, California (United States)

    Scharer, K.M.; Biasi, G.P.; Weldon, R.J.


    The Pallett Creek paleoseismic record occupies a keystone position in most attempts to develop rupture histories for the southern San Andreas fault. Previous estimates of earthquake ages at Pallett Creek were determined by decay counting radiocarbon methods. That method requires large samples which can lead to unaccounted sources of uncertainty in radiocarbon ages because of the heterogeneous composition of organic layers. In contrast, accelerator mass spectrometry (AMS) radiocarbon dates may be obtained from small samples that have known carbon sources and also allow for a more complete sampling of the section. We present 65 new AMS radiocarbon dates that span nine ground-rupturing earthquakes at Pallett Creek. Overall, the AMS dates are similar to and reveal no dramatic bias in the conventional dates. For many layers, however, individual charcoal samples were younger than the conventional dates, leading to earthquake ages that are overall slightly younger than previously reported. New earthquake ages are determined by Bayesian refinement of the layer ages based on stratigraphic ordering and sedimentological constraints. The new chronology is more regular than previously published records in large part due to new samples constraining the age of event R. The closed interval from event C to 1857 has a mean recurrence of 135years (?? = 83.2 years) and a quasiperiodic coefficient of variation (COV) of 0.61. We show that the new dates and resultant earthquake chronology have a stronger effect on COV than the specific membership of this long series and dating precision improvements from sedimentation rates. Copyright 2011 by the American Geophysical Union.

  7. Orientation of three-component geophones in the San Andreas Fault observatory at depth Pilot Hole, Parkfield, California (United States)

    Oye, V.; Ellsworth, W.L.


    To identify and constrain the target zone for the planned SAFOD Main Hole through the San Andreas Fault (SAF) near Parkfield, California, a 32-level three-component (3C) geophone string was installed in the Pilot Hole (PH) to monitor and improve the locations of nearby earthquakes. The orientation of the 3C geophones is essential for this purpose, because ray directions from sources may be determined directly from the 3D particle motion for both P and S waves. Due to the complex local velocity structure, rays traced from explosions and earthquakes to the PH show strong ray bending. Observed azimuths are obtained from P-wave polarization analysis, and ray tracing provides theoretical estimates of the incoming wave field. The differences between the theoretical and the observed angles define the calibration azimuths. To investigate the process of orientation with respect to the assumed velocity model, we compare calibration azimuths derived from both a homogeneous and 3D velocity model. Uncertainties in the relative orientation between the geophone levels were also estimated for a cluster of 36 earthquakes that was not used in the orientation process. The comparison between the homogeneous and the 3D velocity model shows that there are only minor changes in these relative orientations. In contrast, the absolute orientations, with respect to global North, were significantly improved by application of the 3D model. The average data residual decreased from 13?? to 7??, supporting the importance of an accurate velocity model. We explain the remaining residuals by methodological uncertainties and noise and with errors in the velocity model.

  8. Focal spot imaging based on zero lag cross-correlation amplitude fields: Application to dense array data at the San Jacinto fault zone (United States)

    Hillers, G.; Roux, P.; Campillo, M.; Ben-Zion, Y.


    We image the subsurface below a dense seismic array straddling the Clark branch of the San Jacinto fault zone in Southern California. The analysis is based on focal spots of surface waves associated with the zero lag amplitudes of noise cross-correlations computed between all stations of the dense array. Local medium properties are inferred from the spatially variable focal spot size and shape based on the first zero crossing of amplitude versus distance distributions. The method provides simultaneous estimates of wave speed, apparent attenuation, and anisotropy without solving a tomographic inverse problem. The obtained images of the frequency dependent seismic velocity distributions are consistent with independent estimates from a far-field Rayleigh wave tomography. We observe an anticorrelation between our apparent attenuation coefficient and seismic velocity, and a fault-parallel alignment of fast propagation directions with greater structural complexity to the southwest of the fault. The results imply a complex fault zone structure including a waveguide to the northeast of the fault that is continuous across the observed depth range and a low-velocity structure to the southwest associated with a shallow sedimentary basin.

  9. The Relationship Between the Surface Expression of Blind Thrust Faults and Crustal-Scale Deformation in the Eastern Precordillera, San Juan, Argentina (United States)

    Schiffman, C. R.; Meigs, A. J.


    Large earthquakes (M w 6.5+) are often accompanied by surface rupture that has a predictable relationship with the magnitude. However, in large thrust earthquakes that have a deep (30+ km) hypocenter or fault tip, coseismic surface deformation is expressed primarily by folding rather than as rupture along the fault surface. Knowledge of source characteristics and surficial geology are required to characterize the relationship between earthquake fault slip and coseismic folding. By fully identifying and characterizing the fault plane of the M w 7.4 earthquake that occurred in 1944 in the eastern Precordillera of the Andes, destroying the city of San Juan in northwestern Argentina, we seek to relate active folding in the near-surface structures to the blind-thrust fault at depth. Coseismic deformation associated with the 1944 earthquake are secondary fault-related folding features, and there is a large discrepancy between the amount of surface rupture and the magnitude. Subtle fold-related clues at the surface represent the only potential for recognition of the occurrence of past earthquakes. This two-part study employs seismology and structural mapping to provide a new image of the Eastern Precordillera at the crustal scale. Source parameter inversion of teleseismic seismograms from the 1944 event place the hypocenter on a west-dipping plane approximately 30 km deep, which has previously been defined by microseismicity, as opposed to a surface-rupturing event in the Neogene sedimentary strata. Preliminary results from field mapping show two types of folding due to a west-dipping thrust fault with a tip at 5 km depth: a broad long-wavelength fold (~8 km) in deformed strath terraces cut into previously deformed bedrock, and short wavelength folding and faulting in the bedrock in the form of reactivation of older thrust planes. As of now, we cannot uniquely tie any one of these surficial structure to the thrust fault at depth because the pre-existing deformation in the

  10. Structure and geomorphology of the "big bend" in the Hosgri-San Gregorio fault system, offshore of Big Sur, central California (United States)

    Johnson, S. Y.; Watt, J. T.; Hartwell, S. R.; Kluesner, J. W.; Dartnell, P.


    The right-lateral Hosgri-San Gregorio fault system extends mainly offshore for about 400 km along the central California coast and is a major structure in the distributed transform margin of western North America. We recently mapped a poorly known 64-km-long section of the Hosgri fault offshore Big Sur between Ragged Point and Pfieffer Point using high-resolution bathymetry, tightly spaced single-channel seismic-reflection and coincident marine magnetic profiles, and reprocessed industry multichannel seismic-reflection data. Regionally, this part of the Hosgri-San Gregorio fault system has a markedly more westerly trend (by 10° to 15°) than parts farther north and south, and thus represents a transpressional "big bend." Through this "big bend," the fault zone is never more than 6 km from the shoreline and is a primary control on the dramatic coastal geomorphology that includes high coastal cliffs, a narrow (2- to 8-km-wide) continental shelf, a sharp shelfbreak, and a steep (as much as 17°) continental slope incised by submarine canyons and gullies. Depth-converted industry seismic data suggest that the Hosgri fault dips steeply to the northeast and forms the eastern boundary of the asymmetric (deeper to the east) Sur Basin. Structural relief on Franciscan basement across the Hosgri fault is about 2.8 km. Locally, we recognize five discrete "sections" of the Hosgri fault based on fault trend, shallow structure (e.g., disruption of young sediments), seafloor geomorphology, and coincidence with high-amplitude magnetic anomalies sourced by ultramafic rocks in the Franciscan Complex. From south to north, section lengths and trends are as follows: (1) 17 km, 312°; (2) 10 km, 322°; (3)13 km, 317°; (4) 3 km, 329°; (5) 21 km, 318°. Through these sections, the Hosgri surface trace includes several right steps that vary from a few hundred meters to about 1 km wide, none wide enough to provide a barrier to continuous earthquake rupture.

  11. Fluid‐driven seismicity response of the Rinconada fault near Paso Robles, California, to the 2003 M 6.5 San Simeon earthquake (United States)

    Hardebeck, Jeanne L.


    The 2003 M 6.5 San Simeon, California, earthquake caused significant damage in the city of Paso Robles and a persistent cluster of aftershocks close to Paso Robles near the Rinconada fault. Given the importance of secondary aftershock triggering in sequences of large events, a concern is whether this cluster of events could trigger another damaging earthquake near Paso Robles. An epidemic‐type aftershock sequence (ETAS) model is fit to the Rinconada seismicity, and multiple realizations indicate a 0.36% probability of at least one M≥6.0 earthquake during the next 30 years. However, this probability estimate is only as good as the projection into the future of the ETAS model. There is evidence that the seismicity may be influenced by fluid pressure changes, which cannot be forecasted using ETAS. The strongest evidence for fluids is the delay between the San Simeon mainshock and a high rate of seismicity in mid to late 2004. This delay can be explained as having been caused by a pore pressure decrease due to an undrained response to the coseismic dilatation, followed by increased pore pressure during the return to equilibrium. Seismicity migration along the fault also suggests fluid involvement, although the migration is too slow to be consistent with pore pressure diffusion. All other evidence, including focal mechanisms and b‐value, is consistent with tectonic earthquakes. This suggests a model where the role of fluid pressure changes is limited to the first seven months, while the fluid pressure equilibrates. The ETAS modeling adequately fits the events after July 2004 when the pore pressure stabilizes. The ETAS models imply that while the probability of a damaging earthquake on the Rinconada fault has approximately doubled due to the San Simeon earthquake, the absolute probability remains low.

  12. Potential and limits of InSAR to characterize interseismic deformation independently of GPS data: Application to the southern San Andreas Fault system (United States)

    Chaussard, E.; Johnson, C. W.; Fattahi, H.; Bürgmann, R.


    The evaluation of long-wavelength deformation associated with interseismic strain accumulation traditionally relies on spatially sparse GPS measurements, or on high spatial-resolution InSAR velocity fields aligned to a GPS-based model. In this approach the InSAR contributes only short-wavelength deformation and the two data sets are dependent, thereby challenging the evaluation of the InSAR uncertainties and the justification of atmospheric corrections. Here we present an analysis using 7 years of Envisat InSAR data to characterize interseismic deformation along the southern San Andreas Fault (SAF) and the San Jacinto Fault (SJF) in southern California, where the SAF bifurcates onto the Mission Creek (MCF) and the Banning (BF) fault strands. We outline the processing steps for using InSAR alone to characterize both the short- and long-wavelength deformation, and evaluate the velocity field uncertainties with independent continuous GPS data. InSAR line-of-sight (LOS) and continuous GPS velocities agree within ˜1-2 mm/yr in the study area, suggesting that multiyear InSAR time series can be used to characterize interseismic deformation with a higher spatial resolution than GPS. We investigate with dislocation models the ability of this mean LOS velocity field to constrain fault slip rates and show that a single viewing geometry can help distinguish between different slip-rate scenarios on the SAF and SJF (˜35 km apart) but multiple viewing geometries are needed to differentiate slip on the MCF and BF (<12 km apart). Our results demonstrate that interseismic models of strain accumulation used for seismic hazards assessment would benefit from the consideration of InSAR mean velocity maps.

  13. The Point Sal–Point Piedras Blancas correlation and the problem of slip on the San Gregorio–Hosgri fault, central California Coast Ranges (United States)

    Colgan, Joseph P.; Stanley, Richard G.


    Existing models for large-magnitude, right-lateral slip on the San Gregorio–Hosgri fault system imply much more deformation of the onshore block in the Santa Maria basin than is supported by geologic data. This problem is resolved by a model in which dextral slip on this fault system increases gradually from 0–10 km near Point Arguello to ∼150 km at Cape San Martin, but such a model requires abandoning the cross-fault tie between Point Sal and Point Piedras Blancas, which requires 90–100 km of right-lateral slip on the southern Hosgri fault. We collected stratigraphic and detrital zircon data from Miocene clastic rocks overlying Jurassic basement at both localities to determine if either section contained unique characteristics that could establish how far apart they were in the early Miocene. Our data indicate that these basins formed in the early Miocene during a period of widespread transtensional basin formation in the central Coast Ranges, and they filled with sediment derived from nearby pre-Cenozoic basement rocks. Although detrital zircon data do not indicate a unique source component in either section, they establish the maximum depositional age of the previously undated Point Piedras Blancas section to be 18 Ma. We also show that detrital zircon trace-element data can be used to discriminate between zircons of oceanic crust and arc affinity of the same age, a potentially useful tool in future studies of the California Coast Ranges. Overall, we find no characteristics in the stratigraphy and provenance of the Point Sal and Point Piedras Blancas sections that are sufficiently unique to prove whether they were far apart or close together in the early Miocene, making them of questionable utility as piercing points.

  14. Applying geophysical techniques to investigate a segment of a creeping fault in the urban area of San Gregorio di Catania, southern flank of Mt. Etna (Sicily - Italy) (United States)

    Imposa, S.; De Guidi, G.; Grassi, S.; Scudero, S.; Barreca, G.; Patti, G.; Boso, D.


    In an especially built-up area, such as the lower slopes of Etna volcano, the effects of surface faulting, caused by coseismic ruptures and aseismic creep, contribute significantly to increase the risk to towns and villages and their related infrastructure. This study aims to couple the geophysical and structural characteristics of an active fault zone, joining surficial and deep information, in the area of San Gregorio di Catania (Sicily - Italy). The occurrence of this structure and its associated fracture field were related to variations in the physical and mechanical properties of the hosting rocks. Surface structural survey detected a fracture zone with maximum width of 40 m, characterized with fractures oriented consistently with the kinematics of the fault. The geophysical surveys (ground penetrating radar, seismic tomography, and refraction microtremor), enabled to detect highly fractured rock volumes at variable depth whose occurrence has been linked to the presence of the fault at surface. The integration of various techniques, with different spatial resolution and depth range, allowed to fully reconstruct the 3D geological structure of the site down to about 15 m.

  15. Subsurface fault geometries in Southern California illuminated through Full-3D Seismic Waveform Tomography (F3DT) (United States)

    Lee, En-Jui; Chen, Po


    More precise spatial descriptions of fault systems play an essential role in tectonic interpretations, deformation modeling, and seismic hazard assessments. The recent developed full-3D waveform tomography techniques provide high-resolution images and are able to image the material property differences across faults to assist the understanding of fault systems. In the updated seismic velocity model for Southern California, CVM-S4.26, many velocity gradients show consistency with surface geology and major faults defined in the Community Fault Model (CFM) (Plesch et al. 2007), which was constructed by using various geological and geophysical observations. In addition to faults in CFM, CVM-S4.26 reveals a velocity reversal mainly beneath the San Gabriel Mountain and Western Mojave Desert regions, which is correlated with the detachment structure that has also been found in other independent studies. The high-resolution tomographic images of CVM-S4.26 could assist the understanding of fault systems in Southern California and therefore benefit the development of fault models as well as other applications, such as seismic hazard analysis, tectonic reconstructions, and crustal deformation modeling.

  16. Interseismic deformation associated with three-dimensional faults in the greater Los Angeles region, California (United States)

    Marshall, Scott T.; Cooke, Michele L.; Owen, Susan E.


    Existing interseismic models are not well-suited to simulate deformation within the network of finite, intersecting, nonplanar faults observed in the greater Los Angeles region. Instead of applying fault slip rates to a model a priori, we allow three-dimensional fault surfaces to interact and accumulate mechanically viable slip distributions and then use the deep nonseismogenic portion of slip to calculate interseismic deformation. We apply this approach to the Los Angeles region and find that the geologic timescale model results match well geologic slip rate data and the interseismic timescale model results match well the heterogeneous GPS velocity pattern in the Los Angeles region. Model results suggest that localized geodetic convergence in the San Gabriel basin can be achieved with slip on multiple active fault surfaces in the Los Angeles region including relatively fast slip on the Sierra Madre fault and slow slip on the Puente Hills thrusts, in agreement with geologic data. The ability of the three-dimensional model to reproduce well both geologic slip rates and interseismic geodetic velocity patterns suggests that current day contraction rates in the greater Los Angeles region are compatible with long-term geologic deformation rates and disputes suggestions of significant temporal variations in fault slip rates inferred from existing investigations.

  17. Fractal properties and simulation of micro-seismicity for seismic hazard analysis: a comparison of North Anatolian and San Andreas Fault Zones

    Directory of Open Access Journals (Sweden)

    Naside Ozer


    Full Text Available We analyzed statistical properties of earthquakes in western Anatolia as well as the North Anatolian Fault Zone (NAFZ in terms of spatio-temporal variations of fractal dimensions, p- and b-values. During statistically homogeneous periods characterized by closer fractal dimension values, we propose that occurrence of relatively larger shocks (M >= 5.0 is unlikely. Decreases in seismic activity in such intervals result in spatial b-value distributions that are primarily stable. Fractal dimensions decrease with time in proportion to increasing seismicity. Conversely, no spatiotemporal patterns were observed for p-value changes. In order to evaluate failure probabilities and simulate earthquake occurrence in the western NAFZ, we applied a modified version of the renormalization group method. Assuming an increase in small earthquakes is indicative of larger shocks, we apply the mentioned model to micro-seismic (M<= 3.0 activity, and test our results using San Andreas Fault Zone (SAFZ data. We propose that fractal dimension is a direct indicator of material heterogeneity and strength. Results from a model suggest simulated and observed earthquake occurrences are coherent, and may be used for seismic hazard estimation on creeping strike-slip fault zones.

  18. Paleoseismic event dating and the conditional probability of large earthquakes on the southern San Andreas fault, California (United States)

    Biasi, G.P.; Weldon, R.J.; Fumal, T.E.; Seitz, G.G.


    We introduce a quantitative approach to paleoearthquake dating and apply it to paleoseismic data from the Wrightwood and Pallett Creek sites on the southern San Andreas fault. We illustrate how stratigraphic ordering, sedimentological, and historical data can be used quantitatively in the process of estimating earthquake ages. Calibrated radiocarbon age distributions are used directly from layer dating through recurrence intervals and recurrence probability estimation. The method does not eliminate subjective judgements in event dating, but it does provide a means of systematically and objectively approaching the dating process. Date distributions for the most recent 14 events at Wrightwood are based on sample and contextual evidence in Fumal et al. (2002) and site context and slip history in Weldon et al. (2002). Pallett Creek event and dating descriptions are from published sources. For the five most recent events at Wrightwood, our results are consistent with previously published estimates, with generally comparable or narrower uncertainties. For Pallett Creek, our earthquake date estimates generally overlap with previous results but typically have broader uncertainties. Some event date estimates are very sensitive to details of data interpretation. The historical earthquake in 1857 ruptured the ground at both sites but is not constrained by radiocarbon data. Radiocarbon ages, peat accumulation rates, and historical constraints at Pallett Creek for event X yield a date estimate in the earliest 1800s and preclude a date in the late 1600s. This event is almost certainly the historical 1812 earthquake, as previously concluded by Sieh et al. (1989). This earthquake also produced ground deformation at Wrightwood. All events at Pallett Creek, except for event T, about A.D. 1360, and possibly event I, about A.D. 960, have corresponding events at Wrightwood with some overlap in age ranges. Event T falls during a period of low sedimentation at Wrightwood when conditions

  19. The Observation of Fault Finiteness and Rapid Velocity Variation in Pnl Waveforms for the Mw 6.5, San Simeon, California Earthquake (United States)

    Konca, A. O.; Ji, C.; Helmberger, D. V.


    We observed the effect of the fault finiteness in the Pnl waveforms from regional distances (4° to 12° ) for the Mw6.5 San Simeon Earthquake on 22 December 2003. We aimed to include more of the high frequencies (2 seconds and longer periods) than the studies that use regional data for focal solutions (5 to 8 seconds and longer periods). We calculated 1-D synthetic seismograms for the Pn_l portion for both a point source, and a finite fault solution. The comparison of the point source and finite fault waveforms with data show that the first several seconds of the point source synthetics have considerably higher amplitude than the data, while finite fault does not have a similar problem. This can be explained by reversely polarized depth phases overlapping with the P waves from the later portion of the fault, and causing smaller amplitudes for the beginning portion of the seismogram. This is clearly a finite fault phenomenon; therefore, can not be explained by point source calculations. Moreover, the point source synthetics, which are calculated with a focal solution from a long period regional inversion, are overestimating the amplitude by three to four times relative to the data amplitude, while finite fault waveforms have the similar amplitudes to the data. Hence, a moment estimation based only on the point source solution of the regional data could have been wrong by half of magnitude. We have also calculated the shifts of synthetics relative to data to fit the seismograms. Our results reveal that the paths from Central California to the south are faster than to the paths to the east and north. The P wave arrival to the TUC station in Arizona is 4 seconds earlier than the predicted Southern California model, while most stations to the east are delayed around 1 second. The observed higher uppermost mantle velocities to the south are consistent with some recent tomographic models. Synthetics generated with these models significantly improves the fits and the

  20. Gabriel del Sarto (Ronchi, Massa, 1972

    Directory of Open Access Journals (Sweden)

    Juan Pérez Andrés


    Full Text Available Gabriel del Sarto publica sus primeros poemas en 1998 en el Sesto quaderno di poesia contemporanea a manos de Franco Buffoni. Poco después su nombre empieza a ser frecuente en antologías dedicadas a los nuevos poetas emergentes italianos, como L’opera comune (Atelier, 1999, Poeti di Vent’anni (ed. Mario Santagostini, La Stampa, 2000 y Nuovissima poesia italiana (Mondadori, 2004, editada por Maurizio Cucchi y Antonio Ricciardi, en la que comparte espacio con algunos de los poetas más sobresalientes de su generación, como Silvia Caratti, Francesca Moccia o Alberto Pellegatta. En 2003 publica su primera colección de poemas con el título de I viali (Ed. Atelier, a la que sigue en 2011 el libro Sul vuoto (Transeuropa. Aparte de su faceta como poeta, Gabriel del Sarto es autor de diferentes ensayos sogre el uso y el sentido de la narración en la práctica formativa, como Raccontare storie (con F. Batini, Carocci, 2007 o el manual de escritura creativa Narrazione e invenzione (con S. Giusti y F. Batini, Erickson, 2007

  1. Detecting Significant Stress Drop Variations in Large Micro-Earthquake Datasets: A Comparison Between a Convergent Step-Over in the San Andreas Fault and the Ventura Thrust Fault System, Southern California (United States)

    Goebel, T. H. W.; Hauksson, E.; Plesch, A.; Shaw, J. H.


    A key parameter in engineering seismology and earthquake physics is seismic stress drop, which describes the relative amount of high-frequency energy radiation at the source. To identify regions with potentially significant stress drop variations, we perform a comparative analysis of source parameters in the greater San Gorgonio Pass (SGP) and Ventura basin (VB) in southern California. The identification of physical stress drop variations is complicated by large data scatter as a result of attenuation, limited recording bandwidth and imprecise modeling assumptions. In light of the inherently high uncertainties in single stress drop measurements, we follow the strategy of stacking large numbers of source spectra thereby enhancing the resolution of our method. We analyze more than 6000 high-quality waveforms between 2000 and 2014, and compute seismic moments, corner frequencies and stress drops. Significant variations in stress drop estimates exist within the SGP area. Moreover, the SGP also exhibits systematically higher stress drops than VB and shows more scatter. We demonstrate that the higher scatter in SGP is not a generic artifact of our method but an expression of differences in underlying source processes. Our results suggest that higher differential stresses, which can be deduced from larger focal depth and more thrust faulting, may only be of secondary importance for stress drop variations. Instead, the general degree of stress field heterogeneity and strain localization may influence stress drops more strongly, so that more localized faulting and homogeneous stress fields favor lower stress drops. In addition, higher loading rates, for example, across the VB potentially result in stress drop reduction whereas slow loading rates on local fault segments within the SGP region result in anomalously high stress drop estimates. Our results show that crustal and fault properties systematically influence earthquake stress drops of small and large events and should

  2. Detecting Significant Stress Drop Variations in Large Micro-Earthquake Datasets: A Comparison Between a Convergent Step-Over in the San Andreas Fault and the Ventura Thrust Fault System, Southern California (United States)

    Goebel, T. H. W.; Hauksson, E.; Plesch, A.; Shaw, J. H.


    A key parameter in engineering seismology and earthquake physics is seismic stress drop, which describes the relative amount of high-frequency energy radiation at the source. To identify regions with potentially significant stress drop variations, we perform a comparative analysis of source parameters in the greater San Gorgonio Pass (SGP) and Ventura basin (VB) in southern California. The identification of physical stress drop variations is complicated by large data scatter as a result of attenuation, limited recording bandwidth and imprecise modeling assumptions. In light of the inherently high uncertainties in single stress drop measurements, we follow the strategy of stacking large numbers of source spectra thereby enhancing the resolution of our method. We analyze more than 6000 high-quality waveforms between 2000 and 2014, and compute seismic moments, corner frequencies and stress drops. Significant variations in stress drop estimates exist within the SGP area. Moreover, the SGP also exhibits systematically higher stress drops than VB and shows more scatter. We demonstrate that the higher scatter in SGP is not a generic artifact of our method but an expression of differences in underlying source processes. Our results suggest that higher differential stresses, which can be deduced from larger focal depth and more thrust faulting, may only be of secondary importance for stress drop variations. Instead, the general degree of stress field heterogeneity and strain localization may influence stress drops more strongly, so that more localized faulting and homogeneous stress fields favor lower stress drops. In addition, higher loading rates, for example, across the VB potentially result in stress drop reduction whereas slow loading rates on local fault segments within the SGP region result in anomalously high stress drop estimates. Our results show that crustal and fault properties systematically influence earthquake stress drops of small and large events and should

  3. Evolution of the Puente Hills Thrust Fault (United States)

    Bergen, K. J.; Shaw, J. H.; Dolan, J. F.


    This study aims to assess the evolution of the blind Puente Hills thrust fault system (PHT) by determining its age of initiation, lateral propagation history, and changes in slip rate over time. The PHT presents one of the largest seismic hazards in the United States, given its location beneath downtown Los Angeles. The PHT is comprised of three fault segments: the Los Angeles (LA), Santa Fe Springs (SFS), and Coyote Hills (CH). The LA and SFS segments are characterized by growth stratigraphy where folds formed by uplift on the fault segments have been continually buried by sediment from the Los Angeles and San Gabriel rivers. The CH segment has developed topography and is characterized by onlapping growth stratigraphy. This depositional setting gives us the unique opportunity to measure uplift on the LA and SFS fault segments, and minimum uplift on the CH fault segment, as the difference in sediment thicknesses across the buried folds. We utilize depth converted oil industry seismic reflection data to image the fold geometries. Identifying time-correlative stratigraphic markers for slip rate determination in the basin has been a problem for researchers in the past, however, as the faunal assemblages observed in wells are time-transgressive by nature. To overcome this, we utilize the sequence stratigraphic model and well picks of Ponti et al. (2007) as a basis for mapping time-correlative sequence boundaries throughout our industry seismic reflection data from the present to the Pleistocene. From the Pleistocene to Miocene we identify additional sequence boundaries in our seismic reflection data from imaged sequence geometries and by correlating industry well formation tops. The sequence and formation top picks are then used to build 3-dimensional surfaces in the modeling program Gocad. From these surfaces we measure the change in thicknesses across the folds to obtain uplift rates between each sequence boundary. Our results show three distinct phases of

  4. Evaluating the relationship between lateral slip and repeated fold deformation along a transtensive step-over on the San Andreas fault at the Frazier Mountain site (United States)

    Weldon, R. J.; Streig, A. R.; Frazier Mountain SoSAFE Trenching Team


    Transtensive step-overs known as sags are among the most ubiquitous features of strike slip faults. These structures create closed depressions that collect sediment, are often wet and thus preserve organic material that can be used to date the thick and rapidly accumulating section. It is clear from historical ruptures that these depressions grow incrementally with each earthquake. We are developing methods to carefully document and separate individual folding events, and to relate the amount of sagging or folding to the amount of horizontal slip creating the sag, with the goal of generating slip per event chronologies. This will be useful as sags are often the best sites for preserving evidence of earthquake timing, and determining slip at these sites will eliminate the ambiguity inherent in tying earthquake age data from micro-stratigraphic sites to nearby undated sites with good micro-geomorphic slip evidence. We apply this approach to the Frazier Mountain site on the Southern San Andreas fault where we integrate trenching, cone penetrometer testing (CPT), surveying, photomosaicing, B4 LiDAR data and GIS techniques to make a detailed 3D map of subsurface geology, fault traces and related folds across the site. These data are used to generate structure contour and isopach maps for key stratigraphic units in order to evaluate fold deformation of paleo-ground surfaces across a transtensional step-over on the San Andreas fault. Approximately 20 trenches show the main active trace of the San Andreas fault right stepping ~30 m over ~100 m along strike producing two small synclinal sags that dramatically thicken the stratigraphic section. The northwest sag is about 50 m long, 5 m wide, and the southwest sag measures 20 m long and about 8 m wide. The Frazier Mountain site has yielded good earthquake chronologies, and relationships between fold deformation and surface fault rupture for the last 6 earthquakes. We observe that the degree of sagging in the synclines varies

  5. Complex faulting associated with the 22 December 2003 Mw 6.5 San Simeon California, earthquake, aftershocks and postseismic surface deformation (United States)

    McLaren, M.K.; Hardebeck, J.L.; van der Elst, N.; Unruh, J.R.; Bawden, G.W.; Blair, J.L.


    We use data from two seismic networks and satellite interferometric synthetic aperture radar (InSAR) imagery to characterize the 22 December 2003 Mw 6.5 San Simeon earthquake sequence. Absolute locations for the mainshock and nearly 10,000 aftershocks were determined using a new three-dimensional (3D) seismic velocity model; relative locations were obtained using double difference. The mainshock location found using the 3D velocity model is 35.704?? N, 121.096?? W at a depth of 9.7 ?? 0.7 km. The aftershocks concentrate at the northwest and southeast parts of the aftershock zone, between the mapped traces of the Oceanic and Nacimiento fault zones. The northwest end of the mainshock rupture, as defined by the aftershocks, projects from the mainshock hypocenter to the surface a few kilometers west of the mapped trace of the Oceanic fault, near the Santa Lucia Range front and the > 5 mm postseismic InSAR imagery contour. The Oceanic fault in this area, as mapped by Hall (1991), is therefore probably a second-order synthetic thrust or reverse fault that splays upward from the main seismogenic fault at depth. The southeast end of the rupture projects closer to the mapped Oceanic fault trace, suggesting much of the slip was along this fault, or at a minimum is accommodating much of the postseismic deformation. InSAR imagery shows ???72 mm of postseismic uplift in the vicinity of maximum coseismic slip in the central section of the rupture, and ???48 and ???45 mm at the northwest and southeast end of the aftershock zone, respectively. From these observations, we model a ???30-km-long northwest-trending northeast-dipping mainshock rupture surface - called the mainthrust - which is likely the Oceanic fault at depth, a ???10-km-long southwest-dipping backthrust parallel to the mainthrust near the hypocenter, several smaller southwest-dipping structures in the southeast, and perhaps additional northeast-dipping or subvertical structures southeast of the mainshock plane

  6. S-wave triggering of tremor beneath the Parkfield, California, section of the San Andreas fault by the 2011 Tohoku, Japan earthquake: observations and theory (United States)

    Hill, David P.; Peng, Zhigang; Shelly, David R.; Aiken, Chastity


    The dynamic stresses that are associated with the energetic seismic waves generated by the Mw 9.0 Tohoku earthquake off the northeast coast of Japan triggered bursts of tectonic tremor beneath the Parkfield section of the San Andreas fault (SAF) at an epicentral distance of ∼8200  km. The onset of tremor begins midway through the ∼100‐s‐period S‐wave arrival, with a minor burst coinciding with the SHSH arrival, as recorded on the nearby broadband seismic station PKD. A more pronounced burst coincides with the Love arrival, followed by a series of impulsive tremor bursts apparently modulated by the 20‐ to 30‐s‐period Rayleigh wave. The triggered tremor was located at depths between 20 and 30 km beneath the surface trace of the fault, with the burst coincident with the S wave centered beneath the fault 30 km northwest of Parkfield. Most of the subsequent activity, including the tremor coincident with the SHSH arrival, was concentrated beneath a stretch of the fault extending from 10 to 40 km southeast of Parkfield. The seismic waves from the Tohoku epicenter form a horizontal incidence angle of ∼14°, with respect to the local strike of the SAF. Computed peak dynamic Coulomb stresses on the fault at tremor depths are in the 0.7–10 kPa range. The apparent modulation of tremor bursts by the small, strike‐parallel Rayleigh‐wave stresses (∼0.7  kPa) is likely enabled by pore pressure variations driven by the Rayleigh‐wave dilatational stress. These results are consistent with the strike‐parallel dynamic stresses (δτs) associated with the S, SHSH, and surface‐wave phases triggering small increments of dextral slip on the fault with a low friction (μ∼0.2). The vertical dynamic stresses δτd do not trigger tremor with vertical or oblique slip under this simple Coulomb failure model.

  7. Timing of Landform Displacements along the Mojave Section of the San Andreas Fault: A Comparison of Field-based and Remote Reconstructions at Two Sites (United States)

    Barr, M. A.; Cowgill, E.


    Determining the Holocene slip rate of the Mojave section of the San Andreas Fault (MSAF) is key for assessing the earthquake hazard that this ~150-km-long section of fault poses to the Los Angeles metropolitan area, which is located ~45 km to the southwest. Possible temporal variations in slip rate along the MSAF are suggested by an apparent discrepancy between geologically and geodetically determined slip rates, with rates from geologic observations reported to be up to twice as fast as those reported from geodetic data. This apparent variability could be the result of changes in slip rate over time, which is known as secular variation in slip. To test the hypothesis that the MSAF exhibits variability in slip rate over time requires establishing not just a Holocene-average slip rate, but a Holocene slip history. Previous work along the MSAF using remote, virtual-reality based analysis of B4 LiDAR topographic data and pilot field observations identified ~60 potential slip-rate sites with landform offsets between 30 and 300 m, 10 of which are particularly promising. We are currently conducting detailed, field-based studies at two of these 10 sites (Oakdale and Shoemaker Canyon), with an emphasis on collecting age and offset data to determine both Holocene-average slip rates and constrain slip-history analysis. Initial offset estimates were made by remote analysis using 3D visualization software with 1-meter resolution LiDAR (Light Detection and Ranging) data. We plan to excavate exploratory, fault-parallel trenches both northwest and southeast of the fault to constrain the ages of offset landforms, correlate depositional events across the fault, and test the offset estimates that were determined remotely. Upon establishing the stratigraphic relationships of lithologic units within the trenches and correlating this stratigraphy across the fault, we plan to employ geochronologic techniques to quantify the age of depositional events. The nature of the deposits will

  8. Sierran affinity (?) metasedimentary rocks beneath the Coast Range Ophiolite of the Sierra Azul block east of the San Andreas fault, Santa Clara County, CA (United States)

    McLaughlin, R. J.; Dumitru, T. A.; Ernst, W. G.


    The Loma Prieta slate (LPS) is a 200 Ma are generally similar in the LPS and MFS, with minor age groupings at roughly 950-1450 and 1750-2100 Ma. As with the MFS, the LPS data suggest a major influence from sources in the Sierra Nevada arc, with minimal influences from sources in the Klamath Mountains and Nevada miogeocline. Available detrital zircon data require Cretaceous or younger maximum depositional ages for metaclastic terranes of the Franciscan Complex. The LPS detrital zircon data thus, are in reasonable agreement with the MFS data and permit interpretation of the LPS as displaced northward by the San Andreas and Hayward-Calaveras faults from the southwestern Great Valley margin.

  9. Gabriel Tarde (Sarlat 1843 - Paris 1904

    Directory of Open Access Journals (Sweden)

    Louise Salmon


    Full Text Available Fils d’un juge d’instruction près du tribunal civil de Sarlat, Gabriel Tarde se destina à son tour à cette profession. Bachelier ès sciences et ès lettres, il avait du renoncer à son projet de préparer Polytechnique suite à des troubles ophtalmologiques et avait poursuivit ses études à la Faculté de Droit de Toulouse, il les acheva à Paris en 1866 diplômé d’une licence. Secrétaire assistant du Juge de Sarlat en 1867, puis nommé Juge suppléant au Parquet de Sarlat en septembre 1869, il devint ...

  10. A methodological approach towards high-resolution surface wave imaging of the San Jacinto Fault Zone using ambient-noise recordings at a spatially dense array (United States)

    Roux, Philippe; Moreau, Ludovic; Lecointre, Albanne; Hillers, Gregor; Campillo, Michel; Ben-Zion, Yehuda; Zigone, Dimitri; Vernon, Frank


    We present a new technique for deriving detailed information on seismic velocities of the subsurface material from continuous ambient noise recorded by spatially dense seismic arrays. This method uses iterative double beamforming between various subarrays to extract surface wave contributions from the ambient-noise data in complex environments with unfavourable noise-source distributions. The iterative double beamforming extraction makes it possible to retrieve large amounts of Rayleigh wave traveltime information in a wide frequency band. The method is applied to data recorded by a highly dense Nodal array with 1108 vertical geophones, centred on the damage zone of the Clark branch of the San Jacinto Fault Zone south of Anza, California. The array covers a region of ˜650 × 700 m2, with instrument spacing of 10-30 m, and continuous recording at 500 samples s-1 over 30 d in 2014. Using this iterative double beamforming on subarrays of 25 sensors and cross-correlations between all of the station pairs, we separate surface waves from body waves that are abundant in the raw cross-correlation data. Focusing solely on surface waves, maps of traveltimes are obtained at different frequencies with unprecedented accuracy at each point of a 15-m-spacing grid. Group velocity inversions at 2-4 Hz reveal depth and lateral variations in the structural properties within and around the San Jacinto Fault Zone in the study area. This method can be used over wider frequency ranges and can be combined with other imaging techniques, such as eikonal tomography, to provide unprecedented detailed structural images of the subsurface material.

  11. A New Estimate for Total Offset on the Southern San Andreas Fault: Implications for Cumulative Plate Boundary Shear in the Northern Gulf of California (United States)

    Darin, M. H.; Dorsey, R. J.


    Development of a consistent and balanced tectonic reconstruction for the late Cenozoic San Andreas fault (SAF) in southern California has been hindered for decades by incompatible estimates of total dextral offset based on different geologic cross-fault markers. The older estimate of 240-270 km is based on offset fluvial conglomerates of the middle Miocene Mint Canyon and Caliente Formations west of the SAF from their presumed source area in the northern Chocolate Mountains NE of the SAF (Ehlig et al., 1975; Ehlert, 2003). The second widely cited offset marker is a distinctive Triassic megaporphyritic monzogranite that has been offset 160 ± 10 km between Liebre Mountain west of the SAF and the San Bernadino Mountains (Matti and Morton, 1993). In this analysis we use existing paleocurrent data and late Miocene clockwise rotation in the eastern Transverse Ranges (ETR) to re-assess the orientation of the piercing line used in the 240 km-correlation, and present a palinspastic reconstruction that satisfies all existing geologic constraints. Our reconstruction of the Mint Canyon piercing line reduces the original estimate of 240-270 km to 195 ± 15 km of cumulative right-lateral slip on the southern SAF (sensu stricto), which is consistent with other published estimates of 185 ± 20 km based on correlative basement terranes in the Salton Trough region. Our estimate of ~195 km is consistent with the lower estimate of ~160 km on the Mojave segment because transform-parallel extension along the southwestern boundary of the ETR during transrotation produces ~25-40 km of displacement that does not affect offset markers of the Liebre/San Bernadino correlation located northwest of the ETR rotating domain. Reconciliation of these disparate estimates places an important new constraint on the total plate boundary shear that is likely accommodated in the adjacent northern Gulf of California. Global plate circuit models require ~650 km of cumulative Pacific-North America (PAC

  12. Flow and Chemistry Pulsations, Monterey: Implications for Stress Transient Modulations of Hydrologic and Geochemical Systems in the Greater San Andreas Fault Zone (United States)

    Brown, K. M.; Fueri, E.; Hilton, D. R.


    Submarine fluid venting at continental shelf and slope regions has been recognized over the past ten years as an important, yet under-studied process in marine science. Seeps are now known to be a general feature of the hydrogeology of many tectonically active continental margins. The eastern Pacific margin is characterized by a variety of tectonic settings (i.e. convergent and strike-slip) where active venting of fluids and gases has been documented. Reports include vents off Alaska, Costa Rica, Monterey Bay, Eel River basin, and Heceta Bay, OR. Indications of seismic tremor, linked to hydrologic transience in the offshore regions of subduction zones have recently been published elsewhere (see Brown et al, EPSL 2005). We now address here the varying nature of submarine fluid discharges in a San Andreas strike-slip setting. A key element of the proposed work is the combined multidisciplinary measurement of fluid flow, seep temperatures, and dissolved noble gases and chemistry of the Monterey seep sites at Extrovert Cliff. The seeps are situated close to several active strike-slip faults including the Monterey and San Gregorio fault zones. Initial results of 2 week deployments in 2004 of flow meters at Extravert Cliff indicated high flow rates and elevated seep temperatures that vary by as much as a factor of 2 on diurnal time scales with subtle changes over longer periods (>2 weeks). There are also indicative chemical signals of deeply sourced fluids that vary widely with time that show the following signals: 1) Elevated abundances of both mantle derived Helium (3He) as well as 4He and 40Ar of radiogenic crustal relevant trace element components; 2) Altered fluid chemistry (including, Ca Mg, Li and B); 3) The fluid temperature, flow rates, and gas chemistry, in particular, vary with time. We have both long-term and sub-diurnal variations in flow and temperature as well as the 3He/4He ratios, helium concentration, CO2 concentration and d13C values perhaps influenced

  13. Increasing lengths of aftershock zones with depths of moderate-size earthquakes on the San Jacinto Fault suggests triggering of deep creep in the middle crust (United States)

    Meng, Xiaofeng; Peng, Zhigang


    Recent geodetic studies along the San Jacinto Fault (SJF) in southern California revealed a shallower locking depth than the seismogenic depth outlined by microseismicity. This disagreement leads to speculations that creeping episodes drive seismicity in the lower part of the seismogenic zone. Whether deep creep occurs along the SJF holds key information on how fault slips during earthquake cycle and potential seismic hazard imposed to southern California. Here we apply a matched filter technique to 10 M > 4 earthquake sequences along the SJF since 2000 and obtain more complete earthquake catalogues. We then systematic investigate spatio-temporal evolutions of these aftershock sequences. We find anomalously large aftershock zones for earthquakes occurred below the geodetically inferred locking depth (i.e. 11-12 km), while aftershock zones of shallower main shocks are close to expectations from standard scaling relationships. Although we do not observe clear migration of aftershocks, most aftershock zones do expand systematically with logarithmic time since the main shock. All the evidences suggest that aftershocks near or below the locking depth are likely driven by deep creep following the main shock. The presence of a creeping zone below 11-12 km may have significant implications on the maximum sizes of events in this region.

  14. Timing of large earthquakes during the past 500 years along the Santa Cruz Mountains segment of the San Andreas fault at Mill Canyon, near Watsonville, California (United States)

    Fumal, Thomas E.


    A paleoseismic investigation across the Santa Cruz Mountains section of the San Andreas fault at Mill Canyon indicates that four surface‐rupturing earthquakes have occurred there during the past ~500  years. At this site, right‐lateral fault slip has moved a low shutter ridge across the mouth of the canyon, ponding latest Holocene sediments. These alluvial deposits are deformed along a narrow zone of faulting. There is excellent evidence for a 1906 (M 7.8) and three earlier earthquakes consisting of well‐developed fissures, scarps, and colluvial wedges. Deformation resulting from the earlier earthquakes is comparable to that from 1906, suggesting they also were large‐magnitude events. The earthquake prior to 1906 occurred either about A.D. 1750 (1711–1770) or A.D. 1855 (1789–1904), depending on assumptions incorporated into two alternative OxCal models. If the later age range is correct, then the earthquake may have been a historical early‐to‐mid‐nineteenth‐century earthquake, possibly the A.D. 1838 earthquake. Both models are viable, and there is no way to select one over the other with the available data. Two earlier earthquakes occurred about A.D. 1690 (1660–1720) and A.D. 1522 (1454–1605). Using OxCal, recalculation of the age of the reported penultimate earthquake reported from the Grizzly Flat site, located about 10 km northwest of Mill Canyon, indicates it occurred about A.D. 1105–1545, earlier than any of the past three earthquakes, and possibly correlates to the fourth earthquake at Mill Canyon.

  15. A new look at vertical motion around the San Andreas Fault in the Southern California from Integrated GPS and InSAR measurements (United States)

    Hammond, W. C.; Johnson, K. M.; Weldon, R. J.; Blewitt, G.; Burgette, R. J.


    Here we report on a new analysis of GPS and space-based InSAR-estimated vertical motions in the vicinity of the southern San Andreas Fault (SAF) near the eastern Transverse Ranges. We consider GPS data from all of the available high precision geodetic networks in southern California such as the EarthScope Plate Boundary Observatory and SCIGN networks. We analyze raw GPS observations using the GIPSY-OASIS software, and align the solutions to the newly updated NA12 reference frame, derived from ITRF2008. Vertical data are considered if the station has at least 4 years of data, have time series that are fit well by a linear plus seasonal terms plus steps from known equipment changes and earthquakes. We supplement the data with rates from time series analyses of ERS and ENVISAT radar data between 1992 and 2009, obtained from the WinSAR archive. We use 532 scenes from 7 track/frames to form 7476 interferograms, providing line-of-sight (LOS) velocities for overlapping descending (6) and ascending (1) frames. To separate the vertical from the horizontal signals, we align the InSAR LOS rates to the GPS LOS rates using a bilinear transformation and subtract the LOS signal of horizontal deformation estimated from a strain rate map constructed from horizontal GPS velocities. The result is an InSAR LOS rate map aligned to NA12, which we unproject into the vertical direction. InSAR and GPS motions track one another well, with RMS difference in vertical rate of 1.0 mm/yr, where the signal of vertical rate varies between -5.0 and 2.6 mm/yr. Aligning the InSAR to GPS reduces errors in InSAR attributable to long wavelength effects from the atmosphere and orbit uncertainties. The vertical rates show both basin-scale pockets of subsidence and regional wavelength variations in uplift rate. We detect previously reported signals in the San Bernadino, San Jacinto, Pomona, and LA basins with both the GPS and InSAR. Near the coast uplift patterns are similar to those from repeated leveling

  16. Gabriel Garcia Marquez; The Significant Message of His Literary Discourse

    National Research Council Canada - National Science Library

    Mohammad B. Aghaei

    Gabriel Garcia Marquez’s literary discourse actually portrays the destructive domination of colonial and imperialistic powers and civil wars that led to a series of insecurities and poverty in the community...

  17. A Long-term Slip Model for the San Ramón Fault, Santiago de Chile, from Tectonically Reconcilable Boundary Conditions (United States)

    Aron, F.; Estay, N.; Cembrano, J. M.; Yanez, G. A.


    We constructed a 3D Boundary Elements model simulating subduction of the Nazca plate underneath South America, from 29° to 38° S, to compute long-term surface deformation and slip rates on crustal faults imbedded in the upper-plate wedge of the Andean orogen. We tested our model on the San Ramón Fault (SRF), a major E-dipping, thrust structure limiting the western front of the Main Cordillera with surface expression along the entire, 40 km long, extension of the Santiago de Chile basin. Long-lived thrusting has produced more than 2 km of differential uplift of the mountains. Given its proximity to the country's largest city, this potentially seismogenic fault —dormant during historic times— has drawn increasing public attention. We used earthquake hypocenters captured over a one-year seismic deployment, 2D resistivity profiles, and published geologic cross-sections to determine the geometry of the SRF. The base of the lithosphere and plate interface surfaces were defined based on average Andean values and the Slab1.0 model. The simulation reproduces plate convergence and mechanic decoupling of the lithospheric plates across the subduction seismic cycle using mixed boundary conditions. Relative plate motion is achieved prescribing uniform, far-field horizontal displacement over the depth extension of both the oceanic and continental lithospheric plates. Long-term deformation is carried out in two steps. First, the modeled surfaces are allowed to slip freely emulating continuous slip on the subduction megathrust; subsequently, zero displacement is prescribed on the locking zone of the megathrust down to 40 km depth, while keeping the rest of the surfaces traction free, mimicking interseismic conditions. Long-term slip rate fields obtained for the SRF range between 0.1 and 1% the plate convergence rate, with maximum values near the surface. Interestingly, at an estimated 76-77 mm/yr relative plate motion velocity, those rates agree well with what has been

  18. Thirty years of collaboration with Gabriel Horn. (United States)

    Bateson, Patrick


    All the collaborative work described in this review was on the process of behavioural imprinting occurring early in the life of domestic chicks. Finding a link between learning and a change in the brain was only a first step in establishing a representation of the imprinting object. A series of overlapping experiments were necessary to eliminate alternative explanations. Once completed, a structure, the intermediate and medial mesopallium (IMM), was found to be strongly linked to the formation of a neural representation of the object used for imprinting the birds. With the site identified, lesion experiments showed that it was necessary for imprinting but not associative learning. Also the two sides of the brain responded differently with the left IMM acting as a permanent store and the right side acting as a way station to other parts of the brain. The collaborative work led to many studies by Gabriel Horn with others on the molecular and cellular bases of imprinting, and also to neural net modelling and behavioural studies with me on the nature of category formation in intact animals. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Gabriel Weinreich: The life and style (United States)

    Hartmann, William M.


    Gabriel Weinreich (Gabi) was born in Vilna, Poland (now the capitol of Lithuania) one year prior to the founding of the Acoustical Society of America. When the second world war began in central Europe, Gabi's family came, in serial fashion, to New York City-Gabi himself arriving in 1941. Gabi studied physics at Columbia, and received a Ph.D. in 1953 for a thesis on atomic physics directed by the legendary I. I. Rabi. He subsequently worked on fundamental properties of semiconductors, first at Bell Labs, then, starting in 1960, at the University of Michigan. In 1977 he turned his attention to the acoustics of musical instruments, mainly the piano and bowed strings. He studied all phases of the physical elements: string excitation, string vibration, coupling, and radiation. Gabi brought his special style to acoustics-a combination of theory and experiment that imaginatively imports ideas and techniques from one area of physics into another, a willingness to attack traditional problems afresh by returning to first principles, and the ability to present ideas with incisive wit and charm so that information is not only informative but is also entertaining.

  20. A Large Scale Automatic Earthquake Location Catalog in the San Jacinto Fault Zone Area Using An Improved Shear-Wave Detection Algorithm (United States)

    White, M. C. A.; Ross, Z.; Vernon, F.; Ben-Zion, Y.


    UC San Diego's ANZA network began archiving event-triggered data in 1982. As a result of improved recording technology, continuous waveform data archives are available starting in 1998. This continuous dataset, from 1998-present, represents a wealth of potential insight into spatio-temporal seismicity patterns, earthquake physics and mechanics of the San Jacinto Fault Zone. However, the volume of data renders manual analysis costly. In order to investigate the characteristics of the data in space and time, an automatic earthquake location catalog is needed. To this end, we apply standard earthquake signal processing techniques to the continuous data to detect first-arriving P-waves in combination with a recently developed S-wave detection algorithm. The resulting dataset of arrival time observations are processed using a grid association algorithm to produce initial absolute locations which are refined using a location inversion method that accounts for 3-D velocity heterogeneities. Precise relative locations are then derived from the refined absolute locations using the HypoDD double-difference algorithm. Moment magnitudes for the events are estimated from multi-taper spectral analysis. A >650% increase in the S:P pick ratio is achieved using the updated S-wave detection algorithm, when compared to the currently available catalog for the ANZA network. The increased number of S-wave observations leads to improved earthquake location accuracy and reliability (ie. less false event detections). Various aspects of spatio-temporal seismicity patterns and size distributions are investigated. Updated results will be presented at the meeting.

  1. Gabriel Richet: the Man and the Scientist. (United States)

    Ardaillou, Raymond; Ronco, Pierre


    Gabriel Richet who died in Paris in October 2014 was the fourth of a brilliant dynasty of professors of medicine including a Nobel prize, his grandfather, Charles Richet. He behaved courageously during the Second World War and participated in the Campaign of France in 1940 and in the combats in the Vosges Mountains in 1945. His family participated in the resistance during the German occupation of France and three of his parents including his father, one of his brothers and one of his cousins were deported in Germany. At the end of the war, he was with Jean Hamburger the founder of French nephrology at Necker Hospital in Paris. He realized the first hemodialyses in France and was involved in the first allogenic transplantation that was not immediately rejected. From 1961 to 1985, he was the head of a school of nephrology at Tenon Hospital and attracted in his department many young collaborators and scientists. He was the first to describe the role of specialized cells of the collecting duct in the control of acid base equilibrium. He was the subject of a national and international recognition. Founding member of the International Society of Nephrology in 1960, he was elected his President from 1981-1984. His fame could be measured by the number of fellows and visiting facultiesfrom countries all over the world. When he retired in 1985, he left an important legacy involving several departments of nephrology directed by his ancient collaborators. After his retirement, he was an active member of the French Academy of Medicine and devoted much of his time to the history of medicine and, particularly, of nephrology. The main qualities of the man were his constant research of new ideas, his eagerness to work and his open mind to understand others.

  2. Volatile fluxes through the Big Bend section of the San Andreas Fault, California: helium and carbon-dioxide systematics (United States)

    Kulongoski, Justin T.; Hilton, David R.; Barry, Peter H.; Esser, Bradley K.; Hillegonds, Darren; Belitz, Kenneth


    To investigate the source of volatiles and their relationship to the San Andreas Fault System (SAFS), 18 groundwater samples were collected from wells near the Big Bend section of the SAFS in southern California and analyzed for helium and carbon abundance and isotopes. Concentrations of 4He, corrected for air-bubble entrainment, vary from 4.15 to 62.7 (× 10− 8) cm3 STP g− 1 H2O. 3He/4He ratios vary from 0.09 to 3.52 RA (where RA = air 3He/4He), consistent with up to 44% mantle helium in samples. A subset of 10 samples was analyzed for the major volatile phase (CO2) — the hypothesized carrier phase of the helium in the mantle–crust system: CO2/3He ratios vary from 0.614 to 142 (× 1011), and δ13C (CO2) values vary from − 21.5 to − 11.9‰ (vs. PDB). 3He/4He ratios and CO2 concentrations are highest in the wells located in the Mil Potrero and Cuddy valleys adjacent to the SAFS. The elevated 3He/4He ratios are interpreted to be a consequence of a mantle volatile flux though the SAFS diluted by radiogenic He produced in the crust. Samples with the highest 3He/4He ratios also had the lowest CO2/3He ratios. The combined helium isotope, He–CO2 elemental relationships, and δ13C (CO2) values of the groundwater volatiles reveal a mixture of mantle and deep crustal (metamorphic) fluid origins. The flux of fluids into the seismogenic zone at high hydrostatic pressure may cause fault rupture, and transfer volatiles into the shallow crust. We calculate an upward fluid flow rate of 147 mm a− 1 along the SAFS, up to 37 times higher than previous estimates (Kennedy et al., 1997). However, using newly identified characteristics of the SAFS, we calculate a total flux of 3He along the SAFS of 7.4 × 103 cm3 STP a− 1 (0.33 mol 3He a− 1), and a CO2 flux of 1.5 × 1013 cm3STP a− 1 (6.6 × 108 mol a− 1), ~ 1% of previous estimates. Lower fluxes along the Big Bend section of the SAFS suggest that the flux of mantle volatiles alone is insufficient to cause the

  3. Zoogeography of the San Andreas Fault system: Great Pacific Fracture Zones correspond with spatially concordant phylogeographic boundaries in western North America. (United States)

    Gottscho, Andrew D


    The purpose of this article is to provide an ultimate tectonic explanation for several well-studied zoogeographic boundaries along the west coast of North America, specifically, along the boundary of the North American and Pacific plates (the San Andreas Fault system). By reviewing 177 references from the plate tectonics and zoogeography literature, I demonstrate that four Great Pacific Fracture Zones (GPFZs) in the Pacific plate correspond with distributional limits and spatially concordant phylogeographic breaks for a wide variety of marine and terrestrial animals, including invertebrates, fish, amphibians, reptiles, birds, and mammals. These boundaries are: (1) Cape Mendocino and the North Coast Divide, (2) Point Conception and the Transverse Ranges, (3) Punta Eugenia and the Vizcaíno Desert, and (4) Cabo Corrientes and the Sierra Transvolcanica. However, discussion of the GPFZs is mostly absent from the zoogeography and phylogeography literature likely due to a disconnect between biologists and geologists. I argue that the four zoogeographic boundaries reviewed here ultimately originated via the same geological process (triple junction evolution). Finally, I suggest how a comparative phylogeographic approach can be used to test the hypothesis presented here.

  4. Rock Properties and Internal Structure of the San Andreas Fault near ~ 3 km Depth in the SAFOD Borehole Based on Meso- to Micro-scale Analyses of Phase III whole rock core (United States)

    Bradbury, K.; Evans, J. P.


    We examine the relationships between rock properties and structure within ~ 41 m of PHASE III whole-rock core collected from ~ 3 km depth along the SAF in the San Andreas Fault Observatory at Depth (SAFOD) borehole, near Parkfield, CA. Direct mesoscale observations of the core are integrated with detailed petrography and microstructural analyses coupled with X-Ray Diffraction and X-Ray Fluorescence techniques to document variations in composition, alteration, and structures that may be related to deformation and/or fluid-rock interactions. Across the low velocity zone (LVZ) defined by borehole geophysical data, lithologies are comprised of a heterogeneous sequence of fine-grained sandstones, siltstones, mudstones, and shales with block-in-matrix textures and pervasively foliated fabrics. More competent clasts within the block-in-matrix materials exhibit pinch-and-swell shaped structures with crosscutting veins that do not extend into the surrounding phyllosilicate-rich matrix. Narrow fault strands at 3192 and 3302 m bound the LVZ and correspond to sites of active casing deformation (aseismic creep). Here, the rock consists of ~ 2 m thick serpentinite-bearing phyllosilicate gouge with a pervasive penetrative scaly clay fabric and phacoidal-shaped clasts. Bounding these two active slip surfaces are highly sheared and comminuted ultrafine-grained black fault rocks with abundant calcite veins parallel and oblique to the foliation trend. Localized shear surfaces bound multi-layered zones of medium to ultra-fine grained cataclasite in the near-fault environment and record multiple generations of brittle deformation processes. Deformation at high-strain rates is suggested by the presence of crack-seal veins in clasts within the block-in-matrix materials, the presence of porphyroclasts, and the development of S-C fabrics in the phyllosilicate-rich gouge. Across the fault(s) and related damage zones, foliated fabrics alternating with discrete fractures suggest a mixed

  5. Scientific Visualizations of Data Collected From EarthScope's Seismic Observatory (USArray) and San Andreas Fault Observatory at Depth (SAFOD) (United States)

    Kilb, D.; Im, T.; Quan, A.; Nayak, A.; Weiland, C.; Kent, G.


    Looking at data from perspectives other than map view, or standard cross sections, can help researchers with their science. Interactively exploring visualizations of multi-dimensional data allows scientists to assess the quality of their data, identify links between different data types, assist with project planning, refine their hypotheses and more easily convey research findings to a wide range of audiences. Working with EarthScope scientists we explore ways to use visualization techniques to help researchers explore their data and explain key concepts and theories. Examples of our visualizations include: (1) Movies of the temporal evolution of earthquakes, detected and recorded by USArray stations, juxtaposed with the progress of USArray station deployment. (2) Using the USArray station spacing as an irregular grid we create a 3D mesh depicting displacements generated by teleseismic waves. (3) An interactive 3D visualization of data pertaining to the SAFOD observatory (i.e., drill hole plans, side tracks, surface and borehole experiment locations, geologic cross-sections, seismicity and fault planes). (4) Exploration of the temporal evolution of the Rayleigh wave group velocity dispersion throughout the California region. (5) Interactive 3D visualizations of notable earthquakes that include, but are not limited to, the location of the mainshock epicenter and hypocenter, historical seismicity, USArray seismic station locations and station codes, geographic boundaries and topography of the region. We make these visualizations available for free download on the web within a day or two of the mainshock event so they can be used in classrooms, outreach venues and for media response. These visualizations can be accessed from the visual objects library at the Scripps Institution of Oceanography's Visualization Center ( They include 3D interactive visualizations, Quicktime movies and online tools and can be explored using

  6. LiDAR Imagery of the San Andreas Fault Zone at the Vedanta and Olema Ridge Paleoseismic Trench Sites, Pt. Reyes, CA (United States)

    Niemi, T. M.; Kayen, R.; Zhang, H.; Dunn, C. R.; Doolin, D. M.


    At the Vedanta and Olema Ridge paleoseismic trench sites along the San Andreas fault (SAF) in Marin County, we experimented with collecting tripod LiDAR (Light Detection And Ranging) data in order to test its utility in stratigraphic and tectonic geomorphic mapping. To characterized the terrain surface surroundings and within the exposed trench walls, we performed ground-based LiDAR surveys using a portable color sensitive tripod-mounted system. To produce a digital terrain model (DTM) for each site, we used a Riegl Z210i laser-scanner to target the ground and saturate it with point targets at three or more locations around the exposed trench. Local geo-referencing and control points were established using temporary auto reflectors. Using the LiDAR-based terrain model software package, ISite3D, we then merged these scans into a single surface model for each site. The same technique was used to image and process the exposed walls of the trench. We found that using a rotating scanning-laser allows us to very rapidly produce ultra-high resolution and quantitative DTMs for geomorphic analysis of a large (>0.1 km2) area surrounding the trench and that that the DTM can be used to resolve fine scale (rendering of the microtopography. Using the DTM for the Olema Ridge site, we can determine the probable age of the SAF at this location by palinspastic reconstruction of the surface topography and restoration of the ridge sliver back to its slope position. In addition, through comparison of archival photographs taken after the 1906 earthquake, our detailed tectonic morphologic mapping shows how the 1906 rupture has changed geologically over the past 100 years. We also compare the historical photographs to the subsurface stratigraphic section exposed in a trench. A low sedimentation rate and high rates of bioturbation have largely homogenized the stratigraphic data. We see clear evidence for the 1906 rupture and at least two prior earthquakes are also preserved. At the Vedanta

  7. Earthquake fault superhighways (United States)

    Robinson, D. P.; Das, S.; Searle, M. P.


    Motivated by the observation that the rare earthquakes which propagated for significant distances at supershear speeds occurred on very long straight segments of faults, we examine every known major active strike-slip fault system on land worldwide and identify those with long (> 100 km) straight portions capable not only of sustained supershear rupture speeds but having the potential to reach compressional wave speeds over significant distances, and call them "fault superhighways". The criteria used for identifying these are discussed. These superhighways include portions of the 1000 km long Red River fault in China and Vietnam passing through Hanoi, the 1050 km long San Andreas fault in California passing close to Los Angeles, Santa Barbara and San Francisco, the 1100 km long Chaman fault system in Pakistan north of Karachi, the 700 km long Sagaing fault connecting the first and second cities of Burma, Rangoon and Mandalay, the 1600 km Great Sumatra fault, and the 1000 km Dead Sea fault. Of the 11 faults so classified, nine are in Asia and two in North America, with seven located near areas of very dense populations. Based on the current population distribution within 50 km of each fault superhighway, we find that more than 60 million people today have increased seismic hazards due to them.

  8. Juan Gabriel and audience interpretation. cultural impressions of effeminacy and sexuality in Mexico. (United States)

    Sowards, S K


    Juan Gabriel's purported effeminacy and sexuality have made him a controversial subject in Mexico, but still loved by fans. Juan Gabriel, by trying to gain acceptance into Mexican society, has become part of a hybrid culture, between the feminine/masculine and homosexual/bisexual/heterosexual groups. This study focuses on interviews with 20 participants who discuss Juan Gabriel's popularity and sexuality. The findings of the study indicate that Juan Gabriel may be considered by his fans to be effeminate, and consequently homosexual. Even though homophobia is widespread in Mexico, Juan Gabriel's fans tend to ignore or exoticize his sexuality, thus affording his success. It is also possible that Juan Gabriel, consciously or not, uses his controversial sexuality as a way to generate popular interest.

  9. The manifesto as genre in Ibsen's John Gabriel Borkman

    Directory of Open Access Journals (Sweden)

    Christine Korte


    Full Text Available This article examines John Gabriel Borkman’s neo-aristocratic performance of power and authority in Ibsen’s eponymously titled play (1896. After his downfall, John Gabriel has retreated into his once grand reception hall wherein he has become like a petrified relic from a preceding era. His performance within the “fading glory” of the upstairs hall– a veritable theatre for his delusions of grandeur – is one of an outmoded type of bourgeois “hero” whose flagrantly illicit dealings are no longer tenable as capitalism becomes ever-more “rational” and bureaucratic in its façade. The article focuses on John Gabriel’s performance of a “sovereign” or charismatic authority and examines his future visions as “manifestos”. The manifesto is a form belonging to a feudal era of rule by divine right – one that is necessarily “theatrical” in its performance of a legitimate authority. Assuming the voice of the sovereign, John Gabriel attempts to address the needs of the iron-ore miners – a desiring, albeit latent force in Ibsen’s text. The desires of the workers, however, are continually effaced by the bewitching powers of capitalist abstraction, which account for the alienation of family and individuals in Ibsen’s play.   Comparing John Gabriel’s manifesto with Marx and Engels’ Communist Manifesto not only accounts for the end of an age of neo-aristocratic bourgeois decadence, but also marks labour as the definitive socio-political issue of the late 19th century. Where John Gabriel uses a dramaturgy rooted in past models of rule to address the workers in his vision of a benevolent “kingdom”, the Communist Manifesto heralds the death of his class and replaces the voice of the “sovereign authority” with the self-authorising voice of the workers themselves. Borkman’s fatal flaw then is failing to sufficiently address the plight of the iron-ore miners with whom he claims intimate acquaintance but with whom

  10. Analysis of nonvolcanic tremor on the San Andreas Fault near Parkfield, CA using U.S. Geological Survey Parkfield Seismic Array (United States)

    Fletcher, Jon B.; Baker, Lawrence M.


    Reports by Nadeau and Dolenc (2005) that tremor had been detected near Cholame Valley spawned an effort to use UPSAR (U. S. Geological Survey Parkfield Seismic Array) to study characteristics of tremor. UPSAR was modified to record three channels of velocity at 40–50 sps continuously in January 2005 and ran for about 1 month, during which time we recorded numerous episodes of tremor. One tremor, on 21 January at 0728, was recorded with particularly high signal levels as well as another episode 3 days later. Both events were very emergent, had a frequency content between 2 and 8 Hz, and had numerous high-amplitude, short-duration arrivals within the tremor signal. Here using the first episode as an example, we discuss an analysis procedure, which yields azimuth and apparent velocity of the tremor at UPSAR. We then provide locations for both tremor episodes. The emphasis here is how the tremor episode evolves. Twelve stations were operating at the time of recording. Slowness of arrivals was determined using cross correlation of pairs of stations; the same method used in analyzing the main shock data from 28 September 2004. A feature of this analysis is that 20 s of the time series were used at a time to calculate correlation; the longer windows resulted in more consistent estimates of slowness, but lower peak correlations. These values of correlation (peaks of about 0.25), however, are similar to that obtained for the S wave of a microearthquake. Observed peaks in slowness were traced back to source locations assumed to lie on the San Andreas fault. Our inferred locations for the two tremor events cluster near the locations of previously observed tremor, south of the Cholame Valley. Tremor source depths are in the 14–24 km range, which is below the seismogenic brittle zone, but above the Moho. Estimates of error do not preclude locations below the Moho, however. The tremor signal is very emergent but contains packets that are several times larger than the

  11. Investigating fault coupling: Creep and microseismicity on the Hayward fault (United States)

    Evans, E. L.; Loveless, J. P.; Meade, B. J.; Burgmann, R.


    We seek to quantify the relationship between interseismic slip activity and microseismicity along the Hayward fault in the eastern San Francisco Bay Area. During the interseismic regime the Hayward fault is known to exhibit variable degrees of locking both along strike and down-dip. Background microseismicity on and near the fault has been suggested to provide independent information about the rates of interseismic creep and the boundaries of creeping regions. In particular, repeating earthquakes within the fault zone have been suggested as a proxy for fault creep rates. To investigate this relationship, we invert GPS data for microplate rotations, fault slip rates, and fault coupling using a block model that spans western United States and includes the San Andreas, Hayward, Calaveras, Rogers Creek, and Green Valley faults in the greater Bay area. The tectonic context provided by the regional scale model ensures that the slip budget across Bay Area faults is consistent with large scale tectonic motions and kinematically connected to the central San Andreas fault. We image the spatial distribution of interseismic slip on a triangulated mesh of the Hayward fault and compare the distribution of interseismic fault coupling with the number of earthquakes and the moment rate of all on-fault seismicity. We quantitatively test the hypothesis that microseismicity might define the transitions between locked and creeping regions. The calculated correlations are tested against a null hypothesis that microseismicity is randomly distributed. We further extend this investigation to the step over region between the Hayward and Calaveras faults to illuminate the interactions between linking faults.

  12. Dynamic rupture simulations on complex fault zone structures with off-fault plasticity using the ADER-DG method (United States)

    Wollherr, Stephanie; Gabriel, Alice-Agnes; Igel, Heiner


    zones or branched faults. Studying the interplay of stress conditions and angle dependence of neighbouring branches including inelastic material behaviour and its effects on rupture jumps and seismic activation helps to advance our understanding of earthquake source processes. An application is the simulation of a real large-scale subduction zone scenario including plasticity to validate the coupling of our dynamic rupture calculations to a tsunami model in the framework of the ASCETE project ( Andrews, D. J. (2005): Rupture dynamics with energy loss outside the slip zone, J. Geophys. Res., 110, B01307. Heinecke, A. (2014), A. Breuer, S. Rettenberger, M. Bader, A.-A. Gabriel, C. Pelties, A. Bode, W. Barth, K. Vaidyanathan, M. Smelyanskiy and P. Dubey: Petascale High Order Dynamic Rupture Earthquake Simulations on Heterogeneous Supercomputers. In Supercomputing 2014, The International Conference for High Performance Computing, Networking, Storage and Analysis. IEEE, New Orleans, LA, USA, November 2014. Roten, D. (2014), K. B. Olsen, S.M. Day, Y. Cui, and D. Fäh: Expected seismic shaking in Los Angeles reduced by San Andreas fault zone plasticity, Geophys. Res. Lett., 41, 2769-2777.

  13. LiDAR-derived measurements of slip in the most recent ground-rupturing earthquakes along elements of the San Andreas fault system (United States)

    Haddad, D. E.; Madden, C.; Salisbury, J. B.; Arrowsmith, R.; Weldon, R. J.


    Tectonically displaced geomorphic markers record the surface manifestation of earthquake-induced ground ruptures. Of particular interest to earthquake forecast models is the slip produced during the most recent ground-rupturing earthquake. High-resolution digital topography from light detection and ranging (LiDAR) is a powerful tool for measuring the most recent meter-scale slip along fault zones. We present surface slip measurements of recent ground-rupturing earthquakes along the Garlock, Owens Valley, Elsinore, and Blackwater-Calico fault zones. Fault scarp traces were mapped using LiDAR-derived digital elevation models (DEMs), local topographic gradient and relief maps, and aerial photography. An individual slip measurement was made for each offset feature by iteratively reconstructing the topography on either side of the fault and finding the best-matching vertically backslipped value. A goodness-of-fit approach was then used to calculate the best laterally backslipped displacement using a combination of vertical backslip, horizontal backslip, and topographic scaling. Along-strike, reach-averaged surface displacement distributions of the most recent earthquakes were then generated from the LiDAR-derived offsets and compared to published field-derived offset measurements. For the eastern section of the Garlock fault, our LiDAR-derived offsets compared well with those measured in the field and attained an R2 value of 0.88 with reach-averaged slip in the last event of 4.19 m ±0.69 m for the Searles Valley area (2.67 km reach), 4.65 m +0.76/-0.92 m for the Pilot Knob Valley area (24.68 km reach), and 3.45 m +0.82/-0.87 m for the Leach Lake and Avawatz Mountains areas (12.65 km reach), computed from a total of 129 offsets. Our results show that LiDAR-derived offset measurements compare well with field measurements in the comprehensive documentation of along-strike surface slip distributions of the most recent earthquake. Furthermore, our results demonstrate the

  14. Celebrando a Gabriel García Márquez

    Directory of Open Access Journals (Sweden)

    Boletín Cultural y Bibliográfico Banco de la República


    Full Text Available Un clásico vivo. Sin duda alguna eso es Gabriel García Márquez, quien en su obra logró crear  un lenguaje con nuevas palabras inconfundibles –como cuando se dice que algo es  macondiano y nadie tiene que consultar el diccionario para saber a qué se refiere. Gabo es, además, un ambiente, una temperatura, una manera de hablar que los colombianos tenemos nítida en nuestra memoria colectiva. Como una invitación para que sigamos leyendo e  interpretando su obra desde perspectivas nuevas y desde aquellas ya establecidas, este número del Boletín Cultural y Bibliográfico reúne artículos de críticos y escritores que se han dedicado a interpelar e interpretar al escritor y a su obra.

  15. Gabriele Stein. Developing Your English Vocabulary: A Systematic New Approach

    Directory of Open Access Journals (Sweden)

    Michaël Abecassis


    Full Text Available Gabriele Stein is professor of English linguistics at the University of Heidelberg in Germany and has published widely on lexicography and lexicology. The objective of this book is twofold: to compile a lexical core and to maximise the skills of language students by developing ways of expanding this core. It is intended to function as a teaching aid for teachers of English as well as a self-study book for learners of English as a second language. Lexical knowledge is a crucial part of language acquisition and depends on different external factors such as the age and profession of the learner, his/her goals, expectations and needs in learning a language. Beck et al. (2002 have demonstrated the small extent of the emphasis on the acquisition vocabulary in school curricula.

  16. Gabriel Garcia Marquez; The Significant Message of His Literary Discourse

    Directory of Open Access Journals (Sweden)

    Mohammad B. Aghaei


    Full Text Available Gabriel Garcia Marquez’s literary discourse actually portrays the destructive domination of colonial and imperialistic powers and civil wars that led to a series of insecurities and poverty in the community. In fact, whatever he has presented in his works is related to the realities of the continent that have been portrayed in his fictional world. In his works, every single line is a reference to a certain critical point in the history of Latin American continent and provides a magnifying glass for the reader to clearly conceptualize them. His works also represent the contemporary events that are frequently happening in the society. Keywords: Latin America, figurative techniques, legacy of colonialism, violence, Liberal and Conservative parties

  17. Absolute age determination of quaternary faults

    Energy Technology Data Exchange (ETDEWEB)

    Cheong, Chang Sik; Lee, Seok Hoon; Choi, Man Sik [Korea Basic Science Institute, Seoul (Korea, Republic of)] (and others)


    To constrain the age of neotectonic fault movement, Rb-Sr, K-Ar, U-series disequilibrium, C-14 and Be-10 methods were applied to the fault gouges, fracture infillings and sediments from the Malbang, Ipsil, Wonwonsa faults faults in the Ulsan fault zone, Yangsan fault in the Yeongdeog area and southeastern coastal area. Rb-Sr and K-Ar data imply that the fault movement of the Ulan fault zone initiated at around 30 Ma and preliminary dating result for the Yang san fault is around 70 Ma in the Yeongdeog area. K-Ar and U-series disequilibrium dating results for fracture infillings in the Ipsil fault are consistent with reported ESR ages. Radiocarbon ages of quaternary sediments from the Jeongjari area are discordant with stratigraphic sequence. Carbon isotope data indicate a difference of sedimentry environment for those samples. Be-10 dating results for the Suryum fault area are consistent with reported OSL results.

  18. Coulomb static stress interactions between simulated M>7 earthquakes and major faults in Southern California (United States)

    Rollins, J. C.; Ely, G. P.; Jordan, T. H.


    We calculate the Coulomb stress changes imparted to major Southern California faults by thirteen simulated worst-case-scenario earthquakes for the region, including the “Big Ten” scenarios (Ely et al, in progress). The source models for the earthquakes are variable-slip simulations from the SCEC CyberShake project (Graves et al, 2010). We find strong stress interactions between the San Andreas and subparallel right-lateral faults, thrust faults under the Los Angeles basin, and the left-lateral Garlock Fault. M>7 earthquakes rupturing sections of the southern San Andreas generally decrease Coulomb stress on the San Jacinto and Elsinore faults and impart localized stress increases and decreases to the Garlock, San Cayetano, Puente Hills and Sierra Madre faults. A M=7.55 quake rupturing the San Andreas between Lake Hughes and San Gorgonio Pass increases Coulomb stress on the eastern San Cayetano fault, consistent with Deng and Sykes (1996). M>7 earthquakes rupturing the San Jacinto, Elsinore, Newport-Inglewood and Palos Verdes faults decrease stress on parallel right-lateral faults. A M=7.35 quake on the San Cayetano Fault decreases stress on the Garlock and imparts localized stress increases and decreases to the San Andreas. A M=7.15 quake on the Puente Hills Fault increases stress on the San Andreas and San Jacinto faults, decreases stress on the Sierra Madre Fault and imparts localized stress increases and decreases to the Newport-Inglewood and Palos Verdes faults. A M=7.25 shock on the Sierra Madre Fault increases stress on the San Andreas and decreases stress on the Puente Hills Fault. These findings may be useful for hazard assessment, paleoseismology, and comparison with dynamic stress interactions featuring the same set of earthquakes.

  19. Archaeological Investigations at the San Gabriel Reservoir Districts, Central Texas. Volume 3. (United States)


    A-4 North Fork Granger Cyperaceae ( Sedge fami ly) cont. Cyperus uniflorus T. A N. (otneflower flatsedge) W.S U Cyju a. Eleocharis eiacrostachys...Cypracaae ( Sedge family) Cars% aa~hibolo Steud. (amphibious sedges ) W Cares cherokeensis Schwein. (Cherokee sedge ) W 11Carex microdonta T. a H...littletooth sedge ) U.S W fAM m stL~achysi~ Kunz*. (dAdar sedge ) S rymerus aicii1ontus L. (yellow nut-grass) W Cynerus odoretus L. (fragrant flatsedge) W W 7

  20. Archaeological Investigations at the San Gabriel Reservoir Districts, Central Texas. Volume 2. (United States)


    area include pecan (CaUa illinoensis ), hackberry (Celtis reticulata), walnut (Juglans ar, willow (Salix spp.), and elm (Ulmus alta). The most common...remains recovered from Feature 6 include acorn fragments and possibly some pecan nutshell ( Carya sp.). However, the identification of pecan is tentative...was used to roast acorns (Quercus sp.), walnuts (Juglans sp.), and pecans ( Carya sp.). Since these nuts are available at app-,1ximately the same time

  1. Archaeological Investigations at the San Gabriel Reservoir Districts Central Texas. Volume I. (United States)


    quantities of leaf litter mix in the upper oortions of the solum where deciduous trees cover the slopes. The soils are well- drained and are moderately...34 association of scrub live oak ( Quercus virginiana var. fusiformus) and post cedar (Juniperus ashei). Although all of the upland areas surveyed have undergone...Analysis of Sediments from Archaeological Sites - Douglas R. Connor 15-19 15.6 Invertebrate Faunal Analysis - Richard and Kate Fullington 15-33 15.7

  2. Archaeological Investigations at the San Gabriel Reservoir Districts, Central Texas. Volume 4. (United States)


    the cemento -enamel junction and this caused numerous abscesses. 1-12 This skeleton is one of the more delicate females, and she was in advanced middle...roots instead of the usual two. An enamel pearl was noted at the cemento -enamel junction on the lingual side of a left maxillary third molar. Individual

  3. Edificio de los Tribunales Municipales - Valle de San Gabriel, Los Ángeles - California (EE. UU.

    Directory of Open Access Journals (Sweden)

    Editorial, Equipo


    Full Text Available The most outstanding feature of this construction are the columns of the main facades which are formed by big prefabricated concrete members and which cover the entire height of the four story structure. The Southern facade is protected from the direct sunlight by means of long prefabricated vertical elements. The building is crowned with a large crobel which is supported by the columns. The space of the four storeys is distributed in the following manner: courtrooms, judges chambers and jury assembly; facilities for the district attorney, the public defender and the marshal; rooms for the court reporters; waiting rooms for the witnesses and premises for the accused. The general planning is such that the court rooms separate the private sector from the public one, at the same time as they are connected with the judges chambers and jury assembly. The interior features have a sober elegance in keeping with the function of the building. The construction is completed by a large parking space and gardens. OEl rasgo más sobresaliente de esta construcción son las columnatas de las fachadas principales, formadas por grandes elementos prefabricados de hormigón que cubren las cuatro plantas de altura del edificio. En la fachada sur, el peristilo se completa con largos partesoles verticales, también prefabricados, que protegen de la luz solar directa. En la parte superior el edificio culmina en un amplio voladizo apoyado sobre las grandes columnas. En el interior de las cuatro plantas se han distribuido: salas para los tribunales; dependencias destinadas a los jueces y jurados; locales para el fiscal, el abogado y el jefe de policía; salas para periodistas; salas de espera para los testigos, e instalaciones para los acusados. La organización general es tal que las salas de las audiencias separan la zona pública de la privada, quedando, al mismo tiempo, enlazadas con las salas de los jueces y de los jurados correspondientes. En la decoración interior se buscó un acabado sobrio y noble, de acuerdo con la función del edificio. La construcción se completa con un extenso aparcamiento y grandes zonas ajardinadas.

  4. A Partial Index to the Mission San Gabriel Baptism, Marriage, and Death Registers, (United States)


    de agua por todas lados, parece que en la lengua llaman a esta Rancherfa los Yndios, -2- Gui-chi, y para que mejor se conoscf le puse por nombre a...34-" for a baptism performed in casu necessitatis or in articulo mortis, i.e., in an emergency or at death) is shown in column six. Columns seven and eight

  5. Järelmõtteid ühe doktoritöö kaitsmisele / Gabriel Hazak

    Index Scriptorium Estoniae

    Hazak, Gabriel, 1938-


    TTÜ majandusteaduskonnas kaitses oma doktoritööd poliitik Mart Nutt. Töö teemaks „Eesti parlamendi pädevuse kujunemine ja rakendamine välissuhtlemises“. Oponent Gabriel Hazaku mõtteid kaitsmiselt

  6. Järelmõtteid ühe doktoritöö kaitsmisele / Gabriel Hazak

    Index Scriptorium Estoniae

    Hazak, Gabriel, 1938-


    TTÜ majandusteaduskonnas kaitses oma doktoritööd poliitik Mart Nutt. Töö teemaks „Eesti parlamendi pädevuse kujunemine ja rakendamine välissuhtlemises“. Oponent Gabriel Hazaku mõtteid kaitsmiselt


    Directory of Open Access Journals (Sweden)

    B\\u00E1rbara M. Aramendi


    Full Text Available En el Antiguo Régimen más que con instituciones se gobernaba con hombres y las redes de relaciones eran un elemento fundamental de capital social y capacidad de acción que las personas podían movilizar en su favor. En el presente trabajo se pretende reflexionar sobre el funcionamiento administrativo del imperio español a través del análisis de un funcionario en particular: Gabriel Güemes Montero, enviado por la corona para servir como tesorero en las cajas principales de la Real Hacienda de la Gobernación del Tucumán. La elección de Güemes, como excusa para analizar un contexto más amplio, estuvo dada por la existencia de una amplia información y conocimiento sobre su figura en la sociedad salteña por ser el padre de Martín Miguel de Güemes. La historiografía tradicional ha ensalzado y enaltecido su figura creando la imagen del hombre extraordinario, profesional e incorruptible que permanece hasta nuestros días pero nuestra intención aquí es otra: definir la trayectoria de un burócrata peninsular y reconstruir las redes de las cuales formó parte lo cual nos permitirá visualizar la organización administrativa desde el punto de vista de las relaciones interpersonales y analizar su rol de intermediario entre los intereses de la corona y los de la sociedad local.

  8. On Gabriel Conroy’s Epiphany from Perspective of Possible Worlds

    Institute of Scientific and Technical Information of China (English)



    The Dead,the last and longest story in Dubliners summarizes the theme of Dubliners’ paralysis,focuses on Gabriel Conroy on the night of the Morkan sisters’ annual dance and dinner,and develops toward a moment of painful selfawareness which James Joyce described as an epiphany.The paper reveals how the protagnist Gabriel Conroy’s knowledge world, wish world and obligation world are respectively contradicted with his society and explores his awakening or epiphany so as to find out the creation of the text.

  9. Jerome McGann: Dante Gabriel Rossetti, Collected Poetry and Prose




    Jerome J. McGann is well-known as one of the leading theorists of New Historicism, as a scholar of the Romantic period in general and of the work of Lord Byron in particular. Nevertheless, this collected edition of the poetry and prose of Dante Gabriel Rossetti should not come as a surprise, since Jerome McGann has also published on the painter-poet extensively, his latest book of criticism on the subject being Dante Gabriel Rossetti and the Game that Must Be Lost (Yale University Press, New ...

  10. Jerome McGann: Dante Gabriel Rossetti, Collected Poetry and Prose

    Directory of Open Access Journals (Sweden)



    Full Text Available Jerome J. McGann is well-known as one of the leading theorists of New Historicism, as a scholar of the Romantic period in general and of the work of Lord Byron in particular. Nevertheless, this collected edition of the poetry and prose of Dante Gabriel Rossetti should not come as a surprise, since Jerome McGann has also published on the painter-poet extensively, his latest book of criticism on the subject being Dante Gabriel Rossetti and the Game that Must Be Lost (Yale University Press, New ...

  11. Gabriel Tarde, critique du militarisme « scientifique »


    Autin, Gauthier


    Gabriel Tarde (1843-1904) analyse le lien étroit qui associe les idéologies de son temps (darwinisme social, lutte des classes et des races) à la politique belliciste des États. À cette alliance néfaste, il oppose le mouvement pacificateur du droit international qui oscille entre la constitution d’une fédération mondiale et l’avènement d’un Empire. Le discours militariste ne peut être réfuté que par l’émergence d’une nouvelle unité politique globale.    Gabriel Tarde (1843-1904) analyzes t...

  12. San Francisco District Laboratory (SAN) (United States)

    Federal Laboratory Consortium — Program Capabilities Food Analysis SAN-DO Laboratory has an expert in elemental analysis who frequently performs field inspections of materials. A recently acquired...

  13. The Bossoroca Complex, São Gabriel Terrane, Dom Feliciano Belt, southernmost Brazil: Usbnd Pb geochronology and tectonic implications for the neoproterozoic São Gabriel Arc (United States)

    Gubert, Mauricio Lemos; Philipp, Ruy Paulo; Stipp Basei, Miguel Angelo


    Usbnd Pb LA-ICPMS geochronological analyses were carried out on zircon grains from metavolcanic rocks of the Bossoroca Complex and for one ash tuff of the Acampamento Velho Formation of the Camaquã Basin, in order to understand the evolution of the Neoproterozoic São Gabriel magmatic arc. A total of 42 analyses of igneous zircon grains were performed in three samples. The results yielded Usbnd Pb ages of 767.2 ± 2.9 Ma for the metavolcanic agglomerate (BOS-02); 765 ± 10 Ma for the metacrystal tuff (BOS-03) and 565.8 ± 4.8 Ma for the ash tuff (BOS-04). The Orogenic Cycle in Brazil is characterized by a set of orogenic belts consisting of petrotectonic associations juxtaposed by two collisional events that occurred at the end of the Neoproterozoic. In southern Brazil this orogeny formed the Dom Feliciano Belt, a unit composed of associations of rocks developed during two major orogenic events called São Gabriel (900-680 Ma) and Dom Feliciano (650-540 Ma). The main São Gabriel associations are tectonically juxtaposed as elongated strips according to the N20-30°E direction, bounded by ductile shear zones. The Bossoroca Complex comprises predominantly metavolcano-sedimentary rocks, characterized by medium-K calc-alkaline association generated in a cordillera-type magmatic arc. The volcanism occurred in sub-aerial environment, developing deposits generated by flow, resurgence and fall, sporadically interrupted by subaqueous epiclastic deposits, suggesting an arc related basin. The São Gabriel Terrane contains the petrotectonic units that represent the closure of the Charrua Ocean associated to the subduction period of the Brasiliano Orogenic Cycle in the Sul-rio-grandense Shield.

  14. Fault Estimation

    DEFF Research Database (Denmark)

    Stoustrup, Jakob; Niemann, H.


    This paper presents a range of optimization based approaches to fault diagnosis. A variety of fault diagnosis prob-lems are reformulated in the so-called standard problem setup introduced in the literature on robust control. Once the standard problem formulations are given, the fault diagnosis pr...... problems can be solved by standard optimization tech-niques. The proposed methods include: (1) fault diagnosis (fault estimation, (FE)) for systems with model uncertainties; (2) FE for systems with parametric faults, and (3) FE for a class of nonlinear systems.......This paper presents a range of optimization based approaches to fault diagnosis. A variety of fault diagnosis prob-lems are reformulated in the so-called standard problem setup introduced in the literature on robust control. Once the standard problem formulations are given, the fault diagnosis...

  15. Cronología de Gabriel García Márquez

    Directory of Open Access Journals (Sweden)

    Andrés Arias


    Full Text Available En el documento que se expone a continuación, se presenta la cronología histórica del escritor colombiano Gabriel García Márquez, desde su nacimiento, en 1927, y los hitos relacionados a su vida y obra hasta la actualidad (2014.

  16. The Necessity of the Literary Tradition: Gabriel Garcia Marquez's "One-Hundred Years of Solitude." (United States)

    Jupp, James C.


    Argues that literature from other countries, taught as multicultural literature, must be taught in the context of its own literary tradition in order to provide high-quality academic instruction. Offers an example with Gabriel Garcia Marquez's "One-Hundred Years of Solitude" to show how teaching multicultural literature can live up to…

  17. The Necessity of the Literary Tradition: Gabriel Garcia Marquez's "One-Hundred Years of Solitude." (United States)

    Jupp, James C.


    Argues that literature from other countries, taught as multicultural literature, must be taught in the context of its own literary tradition in order to provide high-quality academic instruction. Offers an example with Gabriel Garcia Marquez's "One-Hundred Years of Solitude" to show how teaching multicultural literature can live up to its…

  18. [The pendulum and the mortar. Some pharmacist deviners and particularly Gabriel Lesourd]. (United States)

    Lefebvre, Thierry


    At the beginning of the 1930s, many French doctors and pharmacists practised dowsing. Some adhered to the 'Association des amis de la radiesthésie'. It was in particular the case of Gabriel Lesourd (1890-1976), owner of the famous "Tisane du Curé de Deuil".

  19. Canonizing Latin American Literature: Gabriel Garcia Marquez and Mario Vargas Llosa Enter the English Curriculum. (United States)

    Cellini, Alva V.

    As Latin American literature progressively enters into the English curriculum, two writers deserve special commentary for their representative contribution to the literary world. Through their works, the Columbian author, Gabriel Garcia Marquez, and the Peruvian author, Mario Vargas Llosa clearly convey the Latin American writer's desire to be…

  20. Tres mitos griegos en la narrativa de Gabriel García Márquez




    Este trabajo expone la recepción de los mitos de Antígona, Ulises y Prometeo en la narrativa del escritor colombiano Gabriel García Márquez. Se analiza la re-creación de los mitos indicados en el contexto peculiar del Realismo mágico.

  1. The Necessity of the Literary Tradition: Gabriel Garcia Marquez's "One-Hundred Years of Solitude." (United States)

    Jupp, James C.


    Argues that literature from other countries, taught as multicultural literature, must be taught in the context of its own literary tradition in order to provide high-quality academic instruction. Offers an example with Gabriel Garcia Marquez's "One-Hundred Years of Solitude" to show how teaching multicultural literature can live up to…

  2. San Francisco District Laboratory (SAN) (United States)

    Federal Laboratory Consortium — Program CapabilitiesFood Analysis SAN-DO Laboratory has an expert in elemental analysis who frequently performs field inspections of materials. A recently acquired...

  3. Wind power system for Sao Gabriel, Irece region, Bahia-Brazil; Sistema eolico de Sao Gabriel, regiao de Irece-Bahia

    Energy Technology Data Exchange (ETDEWEB)

    Bruni, Carlos D' Alexandria [Centro Federal de Educacao Tecnologica da Bahia (CEFET-BA), Salvador, BA (Brazil)], e-mail:; Camelier, Luiz Alberto A. [Companhia de Engenharia Rural da Bahia, Salvador, BA (Brazil)], e-mail:


    An electric power plant supplied by a wind-generator is the solution for supply drink water on a small community on Sao Gabriel, Irece - Bahia -Brazil. On behalf of the feasibility a wind power system is described in detail concerning it's technical specifications, it's operation, constraints and it's energy demand. Furthermore wind power system supply is described in detail. Simulations is shows how the system is designed to guarantee a reliability in pumping of drinking water powered by wind power system and it's expansion in the future. (author)

  4. 1906 Letter to the San Francisco Health Department (United States)

    Schmachtenberg, Kristin


    On Wednesday, April 18, 1906, an earthquake, measuring 7.8 on the Richter magnitude scale and lasting 48 seconds, erupted along the San Andreas fault with a flash point originating in the San Francisco Bay area. The force of the earthquake tore apart buildings and roads, causing water and gas mains to twist and break. The resulting effects of the…

  5. Väikeste värviliste asjade ajastu = The Era of Small Colourful Things / Gabriel Verilaskja

    Index Scriptorium Estoniae

    Verilaskja, Gabriel


    Uutest suundadest valgustuses, tarkvaraga lampidest, valgustite muutumisest väiksemaks, imetillukestest valgustitest, mille sisse on ehitatud võimalus muuta värvi. Illustratsiooniks neli Gabriel Verilaskja ja Kalli Seina disainitud valgustit

  6. Väikeste värviliste asjade ajastu = The Era of Small Colourful Things / Gabriel Verilaskja

    Index Scriptorium Estoniae

    Verilaskja, Gabriel


    Uutest suundadest valgustuses, tarkvaraga lampidest, valgustite muutumisest väiksemaks, imetillukestest valgustitest, mille sisse on ehitatud võimalus muuta värvi. Illustratsiooniks neli Gabriel Verilaskja ja Kalli Seina disainitud valgustit

  7. Eesti filmitegijate edu jääb alaväärsuskompleksi taha / Gabriel Dettre ; intervjueerinud Andra Teede

    Index Scriptorium Estoniae

    Dettre, Gabriel


    Intervjuu Ungari päritolu režissööri ja produtsendi Gabriel Dettrega, kes sel hooajal õpetab filmitegemist Balti Filmi- ja Meediakoolis ja Lavakunstikoolis. Intervjuu teemadeks filmitegemine ja -õpetamine

  8. Volba pseudonymu Gabriely Mistralové: Gabriele D'Annunzio, Frederic Mistral a Gabriela Mistralová


    Štěpánková, Kristýna


    The aim of this bachelor thesis is to examine the origin of Gabriela Mistral's literary pseudonym, particularly, the probability of the pen name being chosen by her, in order to honour two european writers, an Italian writer Gabriele D'Annunzio and a French writer Frederic Mistral. This work contains general information concerning pen names, their creation and use in Europe and Latin America, also the biography of Gabriela Mistral, Gabriele D'Annunzio and Frederic Mistral, including the compa...

  9. Gabriel y Galán, el maestro-poeta de Castilla


    Gómez Martín, Fernando E.


    RESUMEN: Cien años se cumplen en el presente curso de la titulación de José Ma Gabriel y Galán como «Maestro de primera enseñanza superior». Los documentos arriba transcritos son el primero y el último del expediente académico de nuestro ilustre alumno1. La efemérides podría desatar múltiples evocaciones. Alumno tan preclaro, paisano tan ligrimo, poeta tan castellano, Gabriel y Galán muestra tres vertientes en las que, sin duda alguna, alcanza grados máximos de calificación que no pueden pasa...

  10. Earthquake Surface Fault Rupture Interaction with Building Foundations


    Oettle, Nicolas Karl


    Recent earthquakes have provided numerous examples of the devastating effects of earthquake surface fault rupture on structures. Several major cities are built in areas containing active faults that can break the ground surface (e.g., Los Angeles, Salt Lake City, San Diego, San Francisco, and Seattle). Along with the often spectacular observations of damage, examples of satisfactory performance of structures were also observed. These examples of satisfactory performance indicate that similar ...

  11. San Marino. (United States)


    San Marino, an independent republic located in north central Italy, in 1983 had a population of 22,206 growing at an annual rate of .9%. The literacy rate is 97% and the infant mortality rate is 9.6/1000. The terrain is mountainous and the climate is moderate. According to local tradition, San Marino was founded by a Christian stonecutter in the 4th century A.D. as a refuge against religious persecution. Its recorded history began in the 9th century, and it has survived assaults on its independence by the papacy, the Malatesta lords of Rimini, Cesare Borgia, Napoleon, and Mussolini. An 1862 treaty with the newly formed Kingdom of Italy has been periodically renewed and amended. The present government is an alliance between the socialists and communists. San Marino has had its own statutes and governmental institutions since the 11th century. Legislative authority at present is vested in a 60-member unicameral parliament. Executive authority is exercised by the 11-member Congress of State, the members of which head the various administrative departments of the goverment. The posts are divided among the parties which form the coalition government. Judicial authority is partly exercised by Italian magistrates in civil and criminal cases. San Marino's policies are tied to Italy's and political organizations and labor unions active in Italy are also active in San Marino. Since World War II, there has been intense rivalry between 2 political coalitions, the Popular Alliance composed of the Christian Democratic Party and the Independent Social Democratic Party, and the Liberty Committee, coalition of the Communist Party and the Socialist Party. San Marino's gross domestic product was $137 million and its per capita income was $6290 in 1980. The principal economic activities are farming and livestock raising, along with some light manufacturing. Foreign transactions are dominated by tourism. The government derives most of its revenue from the sale of postage stamps to

  12. A Study of the San Andreas Slip Rate on the San Francisco Peninsula, California (United States)

    Feigelson, L. M.; Prentice, C.; Grove, K.; Caskey, J.; Ritz, J. F.; Leslie, S.


    The most recent large earthquake on the San Andreas Fault (SAF) along the San Francisco Peninsula was the great San Francisco earthquake of April 18, 1906, when a Mw= 7.8 event ruptured 435-470 km of the northern SAF. The slip rate for this segment of the SAF is incompletely known but is important for clarifying seismic hazard in this highly urbanized region. A previous study south of our site has found an average slip rate of 17±4 mm/yr for the late Holocene on the San Francisco Peninsula segment of the SAF. North of the Golden Gate, the SAF joins the San Gregorio Fault with an estimated slip rate of 6 mm/yr. A trench study north of where the two faults join has produced an average late Holocene slip rate of 24±3 mm/yr. To refine slip-rate estimates for the peninsula segment of the SAF, we excavated a trench across the fault where we located an abandoned channel between the San Andreas and Lower Crystal Springs reservoirs. This abandoned channel marks the time when a new channel cut across the SAF; the new channel has since been offset in a right-lateral sense about 20 m. The measured amount of offset and the age of the youngest fluvial sediments in the abandoned channel will yield a slip rate for the San Francisco Peninsula segment of the SAF. We excavated a trench across the abandoned channel and logged the exposed sediments. Our investigation revealed channel-fill alluvium incised and filled by probable debris flow sediments, and a wide fault zone in bedrock, west of the channel deposits. The most prominent fault is probably the strand that moved in 1906. We completed a total-station survey to more precisely measure the offset stream, and to confirm that the fault exposed in the trench aligns with a fence that is known to have been offset 2.8m during the 1906 earthquake. We interpret the debris flow sediments to represent the last phase of deposition prior to abandonment of the old channel. We collected samples for radiocarbon dating, optically stimulated

  13. Structural superposition in fault systems bounding Santa Clara Valley, California (United States)

    Graymer, Russell W.; Stanley, Richard G.; Ponce, David A.; Jachens, Robert C.; Simpson, Robert W.; Wentworth, Carl M.


    Santa Clara Valley is bounded on the southwest and northeast by active strike-slip and reverse-oblique faults of the San Andreas fault system. On both sides of the valley, these faults are superposed on older normal and/or right-lateral normal oblique faults. The older faults comprised early components of the San Andreas fault system as it formed in the wake of the northward passage of the Mendocino Triple Junction. On the east side of the valley, the great majority of fault displacement was accommodated by the older faults, which were almost entirely abandoned when the presently active faults became active after ca. 2.5 Ma. On the west side of the valley, the older faults were abandoned earlier, before ca. 8 Ma and probably accumulated only a small amount, if any, of the total right-lateral offset accommodated by the fault zone as a whole. Apparent contradictions in observations of fault offset and the relation of the gravity field to the distribution of dense rocks at the surface are explained by recognition of superposed structures in the Santa Clara Valley region.

  14. Stress sensitivity of fault seismicity: A comparison between limited-offset oblique and major strike-slip faults (United States)

    Parsons, Tom; Stein, Ross S.; Simpson, Robert W.; Reasenberg, Paul A.


    We present a new three-dimensional inventory of the southern San Francisco Bay area faults and use it to calculate stress applied principally by the 1989 M = 7.1 Loma Prieta earthquake and to compare fault seismicity rates before and after 1989. The major high-angle right-lateral faults exhibit a different response to the stress change than do minor oblique (right-lateral/thrust) faults. Seismicity on oblique-slip faults in the southern Santa Clara Valley thrust belt increased where the faults were undamped. The strong dependence of seismicity change on normal stress change implies a high coefficient of static friction. In contrast, we observe that faults with significant offset (>50-100 km) behave differently; microseismicity on the Hayward fault diminished where right-lateral shear stress was reduced and where it was undamped by the Loma Prieta earthquake. We observe a similar response on the San Andreas fault zone in southern California after the Landers earthquake sequence. Additionally, the offshore San Gregorio fault shows a seismicity rate increase where right-lateral/oblique shear stress was increased by the Loma Prieta earthquake despite also being clamped by it. These responses are consistent with either a low coefficient of static friction or high pore fluid pressures within the fault zones. We can explain the different behavior of the two styles of faults if those with large cumulative offset become impermeable through gouge buildup; coseismically pressurized pore fluids could be trapped and negate imposed normal stress changes, whereas in more limited offset faults, fluids could rapidly escape. The difference in behavior between minor and major faults may explain why frictional failure criteria that apply intermediate coefficients of static friction can be effective in describing the broad distributions of aftershocks that follow large earthquakes, since many of these events occur both inside and outside major fault zones.

  15. Geometry and earthquake potential of the shoreline fault, central California (United States)

    Hardebeck, Jeanne L.


    The Shoreline fault is a vertical strike‐slip fault running along the coastline near San Luis Obispo, California. Much is unknown about the Shoreline fault, including its slip rate and the details of its geometry. Here, I study the geometry of the Shoreline fault at seismogenic depth, as well as the adjacent section of the offshore Hosgri fault, using seismicity relocations and earthquake focal mechanisms. The Optimal Anisotropic Dynamic Clustering (OADC) algorithm (Ouillon et al., 2008) is used to objectively identify the simplest planar fault geometry that fits all of the earthquakes to within their location uncertainty. The OADC results show that the Shoreline fault is a single continuous structure that connects to the Hosgri fault. Discontinuities smaller than about 1 km may be undetected, but would be too small to be barriers to earthquake rupture. The Hosgri fault dips steeply to the east, while the Shoreline fault is essentially vertical, so the Hosgri fault dips towards and under the Shoreline fault as the two faults approach their intersection. The focal mechanisms generally agree with pure right‐lateral strike‐slip on the OADC planes, but suggest a non‐planar Hosgri fault or another structure underlying the northern Shoreline fault. The Shoreline fault most likely transfers strike‐slip motion between the Hosgri fault and other faults of the Pacific–North America plate boundary system to the east. A hypothetical earthquake rupturing the entire known length of the Shoreline fault would have a moment magnitude of 6.4–6.8. A hypothetical earthquake rupturing the Shoreline fault and the section of the Hosgri fault north of the Hosgri–Shoreline junction would have a moment magnitude of 7.2–7.5.

  16. Fault diagnosis (United States)

    Abbott, Kathy


    The objective of the research in this area of fault management is to develop and implement a decision aiding concept for diagnosing faults, especially faults which are difficult for pilots to identify, and to develop methods for presenting the diagnosis information to the flight crew in a timely and comprehensible manner. The requirements for the diagnosis concept were identified by interviewing pilots, analyzing actual incident and accident cases, and examining psychology literature on how humans perform diagnosis. The diagnosis decision aiding concept developed based on those requirements takes abnormal sensor readings as input, as identified by a fault monitor. Based on these abnormal sensor readings, the diagnosis concept identifies the cause or source of the fault and all components affected by the fault. This concept was implemented for diagnosis of aircraft propulsion and hydraulic subsystems in a computer program called Draphys (Diagnostic Reasoning About Physical Systems). Draphys is unique in two important ways. First, it uses models of both functional and physical relationships in the subsystems. Using both models enables the diagnostic reasoning to identify the fault propagation as the faulted system continues to operate, and to diagnose physical damage. Draphys also reasons about behavior of the faulted system over time, to eliminate possibilities as more information becomes available, and to update the system status as more components are affected by the fault. The crew interface research is examining display issues associated with presenting diagnosis information to the flight crew. One study examined issues for presenting system status information. One lesson learned from that study was that pilots found fault situations to be more complex if they involved multiple subsystems. Another was pilots could identify the faulted systems more quickly if the system status was presented in pictorial or text format. Another study is currently under way to

  17. Prevalencia de Hipotiroidismo en Pacientes Menopáusicas que acuden al Hospital de San Gabriel, Provincia del Carchi


    Montenegro Sánchez, Marco Trajano


    La menopausia se define clínicamente como la ausencia de la menstruación por un período igual o mayor a 12 meses. El incremento en la concentración de tirotropina sérica (TSH), en presencia de concentraciones normales o bajas de hormonas tiroideas circulantes, define la situación de hipotiroidismo subclínico y clínico, respectivamente. La escasa literatura sobre el tema de hipotiroidismo subclínico en pacientes menopáusicas en Ecuador, motivó la realización de este estudio, con el fin de det...

  18. La productividad en el proceso de restauración del Portal de Peregrinos del convento de "San Gabriel"


    Agraz Rodríguez, Lilia Patricia; Diaz Meneses, Marcelo


    INTRODUCCIÓN El objeto de esta tesis es brindarles a los Gerentes de Proyectos en Construcción, pautas prácticas que fueron comprobadas para el mejoramiento de la Productividad durante toda la ejecución de la obra. Las pautas se basan en una revisión de lo que se ha investigado hasta ahora en las Mediciones de Proceso y el Comportamiento Organizacional, filtrada a través de la experiencia observada en obra. El haber seleccionado en estudio este tipo de proyecto y su ent...

  19. Between phrén and psyché: Gabriele Buccola and his contribution to the birth of experimental psychology in Italy. (United States)

    Degni, Silvia


    The institution in 1880 of a laboratory of experimental psychology in the San Lazzaro Mental Hospital of Reggio Emilia, directed by Augusto Tamburini, marks a fundamental stage for the birth of scientific psychology in Italy. It was in this laboratory that the Sicilian psychiatrist Gabriele Buccola worked, carrying out reaction-time experiments in a broad and systematic way on "sane" and mentally ill individuals. In so doing, he was following Claude Bernard's lesson--which was advocated also by Comte, Taine, and Ribot, as in Italy by Livi and Tamburini-- according to which mental functions are to be studied in both normal and pathological conditions. With these experiments, Buccola highlighted the way in which reaction time is tied to "attention," how it is altered by mental illness, and how there are various "modifiers" that influence the results. He also shows how the measurement of this "time" represents an important instrument for the differential diagnosis of several mental pathologies. Buccola's work, which is implemented in the first volume of experimental psychology written in Italy, demonstrates how psychology, which in the second half of the nineteenth century aspired to become an autonomous science, developed in Italy from the root of psychiatry, on the common ground of evolutionary positivism.

  20. Global strike-slip faults: Bounds from plate tectonics (United States)

    Gordon, R. G.; Argus, D. F.


    According to the tenets of plate tectonics, a transform fault is a strike-slip fault along which neither convergence nor divergence occurs. Analysis of global plate motion data indicates that the only true transform faults are the strike-slip faults that offset segments of mid-ocean ridges. Thus, many of Earth's major strike-slip fault systems are not true transform faults as they accommodate large components of oblique convergence or oblique divergence. This is particularly true for several important ocean-continent systems such as the San Andreas, the strike-slip systems bounding the northern and southern Caribbean plate, the Alpine fault system of New Zealand, the Anatolian fault system, and the Azores-Gibraltar-Alboran sea system. These strike-slip systems are commonly sites of large scale mountain building and basin formation. Here we examine the far-field constraints on the motions of the plates bounding several of these strike-slip systems using both conventional plate motion circuits and results from global positioning system and other space geodetic data. We pay particular attention to the San Andreas fault system in central and northern California, where the San Andreas system is part of the boundary between the Sierran microplate and the Pacific plate. Most of the fault system accommodates obliquely convergent motion, giving rise to the California Coast Range, but in the northern San Francisco Bay Area it is obliquely divergent, producing San Pablo Bay and a gap in the Coast Range that permits the Sierran watershed to drain to the Pacific through the Golden Gate.

  1. No-nonsense physicist an overview of Gabriele Giuliani’s work and life

    CERN Document Server

    Vignale, Giovanni; Pellegrini, Vittorio; Jain, Jainendra


    This book presents a compact personal biography and a collection of works by Gabriele F. Giuliani - a distinguished condensed matter theorist who made important contributions to our understanding of collective effects in electronic materials. In 2012 he passed away after a long battle with cancer. In addition, the book features scientific contributions from some of Prof. Giuliani's former students and collaborators and a number of personal recollections by friends and colleagues which shed light on the complex, multifaceted personality of a physicist who was also a passionate soccer player and formula Ford pilot.




    El artículo ofrece una exposición desde la historia y teoría del arte acerca de la imitación entre distintas artes, entre artistas y los posibles motivos para que ocurra la copia de la pintura en el cine. El caso que sirve de referencia es la recreación del grabado de José Clemente Orozco, El Réquiem, que el cinefotógrafo Gabriel Figueroa Mateos elaboró en una película.

  3. Gabriel Marcel e a teoria da participação ontológica

    Directory of Open Access Journals (Sweden)

    Claudinei Aparecido de Freitas da Silva


    Full Text Available O texto visa situar a gênese da teoria da “participação ontológica” a partir dos escritos iniciais de Gabriel Marcel (1889-1973 compreendidos entre 1910 e 1914. Para tanto, trata-se de explicitar o estatuto dessa seminal posição e seu respectivo contraponto onto-fenomenológico à ideia de “saber absoluto” no contexto do idealismo moderno tendo, em particular, na “doutrina da intuição”, uma de suas versões mais emblemáticas.

  4. Freedom and Communion: Sameness and Alterity Articulation in Gabriel Marcel’s Philosophy. Some Approaches


    Grassi, Martín; Pontificia Universidad Católica Argentina y Universidad del Salvador-Área San Miguel


    In this paper we will try to show how Gabriel Marcel understands the junction between the self and the other as appears in his reflections on the opposition freedom-gift, on his critique of Sartre’s philosophy of freedom, and on metaphysical implications of love. These three approaches point out a way that leads to understand man’s tension between selfhood and alterity, in the heart of a fundamental communion which refer, ultimately, to the divine. Therefore, metaphysical and religious discou...

  5. Magic Realism in Gabriel Garcia Marquez’s One Hundred Years of Solitude

    Directory of Open Access Journals (Sweden)

    B.J Geetha


    Full Text Available In his One Hundred Years of Solitude Gabriel Garcia Marquez through the arsenal of magicrealism, deals with war, suffering, and death in the mid-1960 of Colombia which hadwitnessed two hundred thousand politically motivated deaths. The purpose behind portrayingthe politics of the region is to comment on how the nature of Latin American politics is towardsabsurdity, denial, and never-ending repetitions of tragedy. His magical flair is to mergefantastic with reality by introducing to the reader his Colombia, where myths, portents, andlegends exist side by side with technology and modernity. These myths, along with otherelements and events in the novel recount a large portion of Colombian history.

  6. Review of the Luca Aloi's work Ontologia e dramma: Gabriel Marcel e Jean-Paul Sartre a confronto


    Claudinei Aparecido de Freitas da Silva


    O texto resenha a obra de Luca Aloi, Ontologia e dramma: Gabriel Marcel e Jean-Paul Sartre a confronto, com prefácio de Franco Riva, Milano: Albo Versorio, 2014. O livro que conta com 175 páginas traz, para o primeiro plano, o cenário acerca da produção dramatúrgico-filosófica de Gabriel Marcel e Jean-Paul Sartre no contexto da tradição fenomenológico-existencial. This text makes a review of theLuca Aloi's work Ontologia e dramma:Gabriel Marcel e Jean-Paul Sartre a confronto, prefaced by F...

  7. Observaciones sobre algunas obras de Pablo Veronés y de sus seguidores en España (Carletto, Benedetto y Gabriele Caliari

    Directory of Open Access Journals (Sweden)

    Ruiz Manero, José María


    Full Text Available The author studies the known works in Spain by Carletto, Benedetto and Gabriele Caliari, as well as others attributed to them for the first time.

    En este artículo se estudian tanto las obras conocidas en España de Carletto, Benedetto y Gabriele Caliari, como otras que se les atribuyen por primera vez.

  8. 76 FR 1212 - Gabriel D. Hall-Corporate Family Transaction Exemption-U S Rail New York, LLC and U S Rail... (United States)


    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF TRANSPORTATION Surface Transportation Board Gabriel D. Hall--Corporate Family Transaction Exemption--U S Rail New York, LLC and U S Rail Corporation Gabriel D. Hall (Applicant), an individual, has filed a verified...

  9. Ontologia e drama: Gabriel Marcel e Jean-Paul Sartre em tête-à-tête

    Directory of Open Access Journals (Sweden)

    Claudinei Aparecido de Freitas da Silva


    Full Text Available O texto resenha a obra de Luca Aloi, Ontologia e dramma: Gabriel Marcel e Jean-Paul Sartre a confronto, com prefácio de Franco Riva, Milano: Albo Versorio, 2014. O livro que conta com 175 páginas traz, para o primeiro plano, o cenário acerca da produção dramatúrgico-filosófica de Gabriel Marcel e Jean-Paul Sartre no contexto da tradição fenomenológico-existencial.

  10. Crustal structure and tectonics from the Los Angeles basin to the Mojave Desert, southern California (United States)

    Fuis, G. S.; Ryberg, T.; Godfrey, N. J.; Okaya, D. A.; Murphy, J. M.


    A seismic refraction and low-fold reflection survey, known as the Los Angeles Region Seismic Experiment (LARSE), was conducted along a transect (line 1) extending from Seal Beach, California, to the Mojave Desert, crossing the Los Angeles and San Gabriel Valley basins and San Gabriel Mountains. The chief result of this survey is an interpreted cross section that addresses a number of questions regarding the crustal structure and tectonics of southern California that have been debated for decades and have important implications for earthquake hazard assessment. The results (or constraints) are as follows. (1) The maximum depth of the Los Angeles basin along line 1 is 8 9 km. (2) The deep structure of the Sierra Madre fault zone in the northern San Gabriel Valley is as follows. The Duarte branch of the Sierra Madre fault zone forms a buried, 2.5-km-high, moderately north dipping buttress between the sedimentary and volcanic rocks of the San Gabriel Valley and the igneous and metamorphic rocks of the San Gabriel Mountains. (For deeper structure, see following.) (3) There are active crustal décollements in southern California. At middle-crustal depths, the Sierra Madre fault zone appears to sole into a master décollement that terminates northward at the San Andreas fault and projects southward beneath the San Gabriel Valley to the Puente Hills blind thrust fault. (4) The dip and depth extent of the San Andreas fault along line 1 dips steeply (˜83°) northward and extends to at least the Moho. (5) The subsurface lateral extent of the Pelona Schist in southern California is as follows. Along line 1, the Pelona Schist underlies much, if not all of the San Gabriel Mountains south of the San Andreas fault to middle-crustal depths. North of the San Andreas fault, it is apparently not present along the transect.

  11. Gabriele Winker, Nina Degele: Intersektionalität. Zur Analyse sozialer Ungleichheiten. Bielefeld: transcript Verlag 2009.

    Directory of Open Access Journals (Sweden)

    Heike Kahlert


    Full Text Available Gabriele Winker und Nina Degele legen mit ihrer kompakten Monographie erstmals für den deutschsprachigen Raum eine in Theorie, Methodologie und Empirie stringente eigenständige Abhandlung zur intersektionalen Analyse von sozialen Ungleichheiten vor. Das in jeder Hinsicht übersichtlich gestaltete Buch besticht durch eine begründete Argumentation, insbesondere in Bezug auf die theoretischen Vorentscheidungen, durch eine klare Gliederung und vor allem durch die Schritt für Schritt nachvollziehbare Umsetzung des vorgeschlagenen theoretischen und methodologischen Rahmens in die empirische Sozialforschung. Es ist daher uneingeschränkt empfehlenswert, auch für den Einsatz in der Hochschullehre, und es ist von hohem Anregungspotential für die wissenschaftliche Weiterentwicklung intersektionaler Analysen von sozialen Ungleichheiten.This compact monograph by Gabriele Winker and Nina Degele, intended for a German-speaking readership, provides a theoretically, methodologically, and empirically stringent as well as independent critique of intersectional analysis of social inequalities. The book, which is in every sense clearly organized, is striking because of its well-founded argumentation (especially in terms of the authors’ theoretical decisions, its clear structure, and most notably its step-by-step and comprehensible application of the suggested theoretical and methodological framework for empirical social research. The book is thus recommended without reserve, also for use in higher education, and it has the potential to inspire further scientific development of intersectional analysis of social inequities.

  12. Geologic Map of the San Luis Quadrangle, Costilla County, Colorado (United States)

    Machette, Michael N.; Thompson, Ren A.; Drenth, Benjamin J.


    The map area includes San Luis and the primarily rural surrounding area. San Luis, the county seat of Costilla County, is the oldest surviving settlement in Colorado (1851). West of the town are San Pedro and San Luis mesas (basalt-covered tablelands), which are horsts with the San Luis fault zone to the east and the southern Sangre de Cristo fault zone to the west. The map also includes the Sanchez graben (part of the larger Culebra graben), a deep structural basin that lies between the San Luis fault zone (on the west) and the central Sangre de Cristo fault zone (on the east). The oldest rocks exposed in the map area are the Pliocene to upper Oligocene basin-fill sediments of the Santa Fe Group, and Pliocene Servilleta Basalt, a regional series of 3.7?4.8 Ma old flood basalts. Landslide deposits and colluvium that rest on sediments of the Santa Fe Group cover the steep margins of the mesas. Rare exposures of the sediment are comprised of siltstones, sandstones, and minor fluvial conglomerates. Most of the low ground surrounding the mesas and in the graben is covered by surficial deposits of Quaternary age. The alluvial deposits are subdivided into three Pleistocene-age units and three Holocene-age units. The oldest Pleistocene gravel (unit Qao) forms extensive coalesced alluvial fan and piedmont surfaces, the largest of which is known as the Costilla Plain. This surface extends west from San Pedro Mesa to the Rio Grande. The primary geologic hazards in the map area are from earthquakes, landslides, and localized flooding. There are three major fault zones in the area (as discussed above), and they all show evidence for late Pleistocene to possible Holocene movement. The landslides may have seismogenic origins; that is, they may be stimulated by strong ground shaking during large earthquakes. Machette and Thompson based this geologic map entirely on new mapping, whereas Drenth supplied geophysical data and interpretations.

  13. Surface and boundary layer exchanges of volatile organic compounds, nitrogen oxides and ozone during the GABRIEL campaign

    NARCIS (Netherlands)

    Ganzeveld, L.; Eerdekens, G.; Feig, G.; Fischer, H.; Harder, H.; Konigstedt, R.; Kubistin, D.; Martinez, M.; Meixner, F. X.; Scheeren, H. A.; Sinha, V.; Taraborrelli, D.; Williams, J.; de Arellano, J. Vila-Guerau; Lelieveld, J.


    We present an evaluation of sources, sinks and turbulent transport of nitrogen oxides, ozone and volatile organic compounds (VOC) in the boundary layer over French Guyana and Suriname during the October 2005 GABRIEL campaign by simulating observations with a single-column chemistry and climate model

  14. Timing of Surface-Rupturing Earthquakes on the Philippine Fault Zone in Central Luzon Island, Philippines (United States)

    Tsutsumi, H.; Daligdig, J. A.; Goto, H.; Tungol, N. M.; Kondo, H.; Nakata, T.; Okuno, M.; Sugito, N.


    The Philippine fault zone is an arc-parallel left-lateral strike-slip fault zone related to oblique subduction of the Philippine Sea plate beneath the Philippine island arc. The fault zone extends for about 1300 km from the Luzon Island southward to the Mindanao Island. This fault zone has been seismically active with more than 10 earthquakes greater than M7 in the last century. The July 16, 1990, Luzon earthquake was the largest event that produced 120-km-long surface rupture along the Digdig fault. The coseismic displacement was predominantly left-lateral strike-slip with maximum slip of about 6 m. The Philippine fault zone in the Luzon Island consists of four left-stepping en echelon faults: the San Manuel, San Jose, Digdig, and Gabaldon faults from north to south. Historical documents and geomorphic data suggest that the San Manuel and Gabaldon faults ruptured most recently during historical earthquakes in 1796 and 1645, respectively. However, paleoseismic activities and slip rates for these faults were poorly constrained. In order to reconstruct chronology of surface-rupturing earthquakes, we excavated multiple trenches across these faults in the past three years. We have excavated two sites, San Gregorio and Puncan sites, across the Digdig fault. At the both sites, we identified near vertical fault zones that contain evidence for four surface-rupturing earthquakes during the past 2000 years, including the 1990 rupture. The timing of the penultimate earthquake is constrained to prior to 1400 AD, suggesting that the Digdig fault did not rupture during the 1645 earthquake. The average recurrence interval of the Digdig fault is about 600 years. A left-lateral slip rate of 8-13 mm/yr was obtained for the Digdig fault based on stream offsets and age of alluvial fan at San Juan in the central portion of the fault. For the San Jose fault, we excavated two trenches north of downtown San Jose. The sediments exposed on the trench walls were warped into a monocline by

  15. Strike-slip faulting in the Inner California Borderlands, offshore Southern California. (United States)

    Bormann, J. M.; Kent, G. M.; Driscoll, N. W.; Harding, A. J.; Sahakian, V. J.; Holmes, J. J.; Klotsko, S.; Kell, A. M.; Wesnousky, S. G.


    In the Inner California Borderlands (ICB), offshore of Southern California, modern dextral strike-slip faulting overprints a prominent system of basins and ridges formed during plate boundary reorganization 30-15 Ma. Geodetic data indicate faults in the ICB accommodate 6-8 mm/yr of Pacific-North American plate boundary deformation; however, the hazard posed by the ICB faults is poorly understood due to unknown fault geometry and loosely constrained slip rates. We present observations from high-resolution and reprocessed legacy 2D multichannel seismic (MCS) reflection datasets and multibeam bathymetry to constrain the modern fault architecture and tectonic evolution of the ICB. We use a sequence stratigraphy approach to identify discrete episodes of deformation in the MCS data and present the results of our mapping in a regional fault model that distinguishes active faults from relict structures. Significant differences exist between our model of modern ICB deformation and existing models. From east to west, the major active faults are the Newport-Inglewood/Rose Canyon, Palos Verdes, San Diego Trough, and San Clemente fault zones. Localized deformation on the continental slope along the San Mateo, San Onofre, and Carlsbad trends results from geometrical complexities in the dextral fault system. Undeformed early to mid-Pleistocene age sediments onlap and overlie deformation associated with the northern Coronado Bank fault (CBF) and the breakaway zone of the purported Oceanside Blind Thrust. Therefore, we interpret the northern CBF to be inactive, and slip rate estimates based on linkage with the Holocene active Palos Verdes fault are unwarranted. In the western ICB, the San Diego Trough fault (SDTF) and San Clemente fault have robust linear geomorphic expression, which suggests that these faults may accommodate a significant portion of modern ICB slip in a westward temporal migration of slip. The SDTF offsets young sediments between the US/Mexico border and the

  16. Faulting processes in active faults - Evidences from TCDP and SAFOD drill core samples

    Energy Technology Data Exchange (ETDEWEB)

    Janssen, C.; Wirth, R.; Wenk, H. -R.; Morales, L.; Naumann, R.; Kienast, M.; Song, S. -R.; Dresen, G. [UCB; (GFZ); (NTU)


    The microstructures, mineralogy and chemistry of representative samples collected from the cores of the San Andreas Fault drill hole (SAFOD) and the Taiwan Chelungpu-Fault Drilling project (TCDP) have been studied using optical microscopy, TEM, SEM, XRD and XRF analyses. SAFOD samples provide a transect across undeformed host rock, the fault damage zone and currently active deforming zones of the San Andreas Fault. TCDP samples are retrieved from the principal slip zone (PSZ) and from the surrounding damage zone of the Chelungpu Fault. Substantial differences exist in the clay mineralogy of SAFOD and TCDP fault gouge samples. Amorphous material has been observed in SAFOD as well as TCDP samples. In line with previous publications, we propose that melt, observed in TCDP black gouge samples, was produced by seismic slip (melt origin) whereas amorphous material in SAFOD samples was formed by comminution of grains (crush origin) rather than by melting. Dauphiné twins in quartz grains of SAFOD and TCDP samples may indicate high seismic stress. The differences in the crystallographic preferred orientation of calcite between SAFOD and TCDP samples are significant. Microstructures resulting from dissolution–precipitation processes were observed in both faults but are more frequently found in SAFOD samples than in TCDP fault rocks. As already described for many other fault zones clay-gouge fabrics are quite weak in SAFOD and TCDP samples. Clay-clast aggregates (CCAs), proposed to indicate frictional heating and thermal pressurization, occur in material taken from the PSZ of the Chelungpu Fault, as well as within and outside of the SAFOD deforming zones, indicating that these microstructures were formed over a wide range of slip rates.

  17. Émile Durkheim between Gabriel Tarde and Arnold van Gennep

    DEFF Research Database (Denmark)

    Thomassen, Bjørn


    This article will situate Durkheim's work by revisiting two debates that influenced his attempt to define and give direction to sociology and anthropology: the debates between Durkheim and Gabriel Tarde and the debates between Durkheim and Arnold van Gennep. The battle between Tarde and Durkheim...... has in recent years been the object of several conferences and publications. This has happened alongside a much needed Tarde revival in sociology. However, Tarde was only one of Durkheim's opponents. For a long period, following Tarde's death in 1904, Arnold van Gennep represented the strongest...... critique of Durkheim's project. This ‘debate’ is little known among anthropologists and social scientists. The aim of this article is to situate Durkheim and the birth of the social sciences in France between both of these two figures. The aim is therefore also to bring together two disciplinary debates...

  18. La Sanidad en la Base Antártica del E.T. "Gabriel de Castilla" The Medical Service in the Army's Antarctic Base "Gabriel de Castilla"

    Directory of Open Access Journals (Sweden)

    F. De Diego Lousa


    Full Text Available En marzo de 2007, dio comienzo el Año Polar Internacional 2007-2008 (IPY, que se desarrolló durante 2 años hasta marzo de 2009, para abarcar temporadas completas en el Ártico y en la Antártida. Es un acontecimiento de carácter científico y a escala mundial, que tiene carácter conmemorativo. Su celebración coincide con el 125 aniversario del Primer Año Polar Internacional (1887-1888, el 75 Aniversario del Segundo Año Polar Internacional (1932-1933 y el 50 Aniversario del Año Geofísico Internacional (1957-1958, que condujo al establecimiento del SCAR y del Tratado Antártico. El IPY 2007-2009 está promovido por el Internacional Council for Science (ICSU y la World Meteorological Organization (WMO. España es la primera vez que ha participado activamente en este acontecimiento, haciéndolo con la primera campaña Ártica del BIO Hespérides, y con las 2 bases antárticas operativas. Para la base Antártica del Ejército de Tierra "Gabriel de Castilla", el año 2008 es especial ya que, a la celebración del Año Polar Internacional, se une la conmemoración del 20 aniversario de la presencia española en la Isla Decepción. Fue en el año 1988 cuando se instaló un primer refugio, pero no fue hasta el año 1998, cuando tuvo consideración de Base Antártica. Este artículo tiene como finalidad la descripción de las áreas de Sanidad y de Medio Ambiente, tal y como se denominan en la estructura de la Campaña Antártica del Ejército de Tierra, o áreas cuya responsabilidad corresponden a Oficiales del Cuerpo Militar de Sanidad; también conmemorar esta fecha tan señalada, y a las personas que han participado en las distintas campañas antárticas.In March 2007 began the International Polar Year 2007-2008 (IPY that lasted two years until March 2009 to span complete seasons in the Arctic and the Antarctic. It is a scientific event on a global scale with a commemorative character. Its celebration coincides with the 125th Anniversary of

  19. Fallas con actividad cuaternaria en el corredor tectonico Matagusanos-Maradona-Acequion entre los rios de La Flecha y del Agua, provincia de San Juan Faults with Quaternary activity in the Matagusanos-Maradona-Acequión tectonic depression between the ríos de la La Flecha and del Agua, San Juan province

    Directory of Open Access Journals (Sweden)

    Laura P Perucca


    Full Text Available En la depresión situada entre los ríos de La Flecha y del Agua, se encuentran evidencias de fallamiento cuaternario, entre dos sistemas estructurales con rumbo norte y vergencias opuestas, Precordillera Central con vergencia oriental y estilo de piel fina y Precordillera Oriental, con vergencia occidental y piel gruesa. Se reconocieron numerosas fallas con actividad cuaternaria a lo largo de toda la depresión: aquellas ubicadas en su porción oriental, en las proximidades del cerro La Chilca, con el mismo estilo estructural de Precordillera Oriental: fallas inversas inclinando al este con alto ángulo en la superficie. Por el contrario, las fallas localizadas en el piedemonte oriental del cordón de Las Osamentas tienen un estilo estructural consistente con Precordillera Central, inversas y con vergencia oriental. Este arreglo estructural de las fallas cuaternarias con vergencia opuesta se compara con aquellos descriptos en la depresión de Matagusanos, donde se identificó una zona triangular de tipo piel gruesa localizada cerca de su porción occidental y en el valle de zonda, situado al norte del sector analizado.Evidence of Quaternary faults between two structural systems with regional N-trending strike and opposite vergence occur at the depression located between La Flecha and del Agua rivers; the east-verging thin-skinned Central Precordillera and the west-verging, thick-skinned Eastern Precordillera. Several Quaternary faults have been recognized across the whole depression. Those located in the eastern sector near Cerro La Chilca, show the structural style of Precordillera Oriental: east-dipping reverse faults with a high angle on the surface. On the contrary, faults located at the eastern piedmont of Cordón de Las Osamentas have a structural style consistent with Precordillera Central, reverse faults and east vergence. This structural arrange of Quaternary faults with opposite vergence was compared with those described at

  20. Global Positioning System constraints on fault slip rates in southern California and northern Baja, Mexico (United States)

    Bennett, Richard A.; Rodi, William; Reilinger, Robert E.


    We use Global Positioning System (GPS) estimates of horizontal site velocity to constrain slip rates on faults comprising the Pacific-North America plate boundary in southern California and northern Mexico. We enlist a simple elastic block model to parameterize the distribution and sum of deformation within and across the plate boundary. We estimate a Pacific-North America relative plate motion rate of 49 ± 3 mm/yr (one standard deviation), consistent with NUVEL-1A estimates. We are able to resolve robust slip rate estimates for the southernmost San Andreas, San Jacinto, and Elsinore faults (26 ± 2, 9 ± 2, and 6 ± 2 mm/yr, respectively) and for the Imperial and Cerro Prieto faults (35 ± 2 and 42 ± 1 mm/yr, respectively), accounting for about 86% of the total plate motion. The remaining 14% appears to be accommodated to the west of these fault systems, probably via slip along the San Clemente fault and/or the San Miguel, Vallecitos, Rose Canyon, and Newport-Inglewood fault systems. These results are highly consistent with paleoseismic estimates for slip rates implying that off-fault strain accumulation within the deforming zone of the plate boundary is largely elastic. We estimate that the seismically quiescent, southernmost San Andreas fault has incurred about 8.2 m of slip deficit over the last few hundred years, presumably to be recovered during a future large earthquake.


    Directory of Open Access Journals (Sweden)

    Yu. O. Kuzmin


    Full Text Available Recent deformation processes taking place in real time are analyzed on the basis of data on fault zones which were collected by long-term detailed geodetic survey studies with application of field methods and satellite monitoring.A new category of recent crustal movements is described and termed as parametrically induced tectonic strain in fault zones. It is shown that in the fault zones located in seismically active and aseismic regions, super intensive displacements of the crust (5 to 7 cm per year, i.e. (5 to 7·10–5 per year occur due to very small external impacts of natural or technogenic / industrial origin.The spatial discreteness of anomalous deformation processes is established along the strike of the regional Rechitsky fault in the Pripyat basin. It is concluded that recent anomalous activity of the fault zones needs to be taken into account in defining regional regularities of geodynamic processes on the basis of real-time measurements.The paper presents results of analyses of data collected by long-term (20 to 50 years geodetic surveys in highly seismically active regions of Kopetdag, Kamchatka and California. It is evidenced by instrumental geodetic measurements of recent vertical and horizontal displacements in fault zones that deformations are ‘paradoxically’ deviating from the inherited movements of the past geological periods.In terms of the recent geodynamics, the ‘paradoxes’ of high and low strain velocities are related to a reliable empirical fact of the presence of extremely high local velocities of deformations in the fault zones (about 10–5 per year and above, which take place at the background of slow regional deformations which velocities are lower by the order of 2 to 3. Very low average annual velocities of horizontal deformation are recorded in the seismic regions of Kopetdag and Kamchatka and in the San Andreas fault zone; they amount to only 3 to 5 amplitudes of the earth tidal deformations per year.A ‘fault

  2. Secondary Fault Activity of the North Anatolian Fault near Avcilar, Southwest of Istanbul: Evidence from SAR Interferometry Observations

    Directory of Open Access Journals (Sweden)

    Faqi Diao


    Full Text Available Strike-slip faults may be traced along thousands of kilometers, e.g., the San Andreas Fault (USA or the North Anatolian Fault (Turkey. A closer look at such continental-scale strike faults reveals localized complexities in fault geometry, associated with fault segmentation, secondary faults and a change of related hazards. The North Anatolian Fault displays such complexities nearby the mega city Istanbul, which is a place where earthquake risks are high, but secondary processes are not well understood. In this paper, long-term persistent scatterer interferometry (PSI analysis of synthetic aperture radar (SAR data time series was used to precisely identify the surface deformation pattern associated with the faulting complexity at the prominent bend of the North Anatolian Fault near Istanbul city. We elaborate the relevance of local faulting activity and estimate the fault status (slip rate and locking depth for the first time using satellite SAR interferometry (InSAR technology. The studied NW-SE-oriented fault on land is subject to strike-slip movement at a mean slip rate of ~5.0 mm/year and a shallow locking depth of <1.0 km and thought to be directly interacting with the main fault branch, with important implications for tectonic coupling. Our results provide the first geodetic evidence on the segmentation of a major crustal fault with a structural complexity and associated multi-hazards near the inhabited regions of Istanbul, with similarities also to other major strike-slip faults that display changes in fault traces and mechanisms.

  3. The SCEC 3D Community Fault Model (CFM-v5): An updated and expanded fault set of oblique crustal deformation and complex fault interaction for southern California (United States)

    Nicholson, C.; Plesch, A.; Sorlien, C. C.; Shaw, J. H.; Hauksson, E.


    Southern California represents an ideal natural laboratory to investigate oblique deformation in 3D owing to its comprehensive datasets, complex tectonic history, evolving components of oblique slip, and continued crustal rotations about horizontal and vertical axes. As the SCEC Community Fault Model (CFM) aims to accurately reflect this 3D deformation, we present the results of an extensive update to the model by using primarily detailed fault trace, seismic reflection, relocated hypocenter and focal mechanism nodal plane data to generate improved, more realistic digital 3D fault surfaces. The results document a wide variety of oblique strain accommodation, including various aspects of strain partitioning and fault-related folding, sets of both high-angle and low-angle faults that mutually interact, significant non-planar, multi-stranded faults with variable dip along strike and with depth, and active mid-crustal detachments. In places, closely-spaced fault strands or fault systems can remain surprisingly subparallel to seismogenic depths, while in other areas, major strike-slip to oblique-slip faults can merge, such as the S-dipping Arroyo Parida-Mission Ridge and Santa Ynez faults with the N-dipping North Channel-Pitas Point-Red Mountain fault system, or diverge with depth. Examples of the latter include the steep-to-west-dipping Laguna Salada-Indiviso faults with the steep-to-east-dipping Sierra Cucapah faults, and the steep southern San Andreas fault with the adjacent NE-dipping Mecca Hills-Hidden Springs fault system. In addition, overprinting by steep predominantly strike-slip faulting can segment which parts of intersecting inherited low-angle faults are reactivated, or result in mutual cross-cutting relationships. The updated CFM 3D fault surfaces thus help characterize a more complex pattern of fault interactions at depth between various fault sets and linked fault systems, and a more complex fault geometry than typically inferred or expected from

  4. Structure of the San Fernando Valley region, California: implications for seismic hazard and tectonic history (United States)

    Langenheim, V.E.; Wright, T.L.; Okaya, D.A.; Yeats, R.S.; Fuis, G.S.; Thygesen, K.; Thybo, H.


    Industry seismic reflection data, oil test well data, interpretation of gravity and magnetic data, and seismic refraction deep-crustal profiles provide new perspectives on the subsurface geology of San Fernando Valley, home of two of the most recent damaging earthquakes in southern California. Seismic reflection data provide depths to Miocene–Quaternary horizons; beneath the base of the Late Miocene Modelo Formation are largely nonreflective rocks of the Middle Miocene Topanga and older formations. Gravity and seismic reflection data reveal the North Leadwell fault zone, a set of down-to-the-north faults that does not offset the top of the Modelo Formation; the zone strikes northwest across the valley, and may be part of the Oak Ridge fault system to the west. In the southeast part of the valley, the fault zone bounds a concealed basement high that influenced deposition of the Late Miocene Tarzana fan and may have localized damage from the 1994 Northridge earthquake. Gravity and seismic refraction data indicate that the basin underlying San Fernando Valley is asymmetric, the north part of the basin (Sylmar subbasin) reaching depths of 5–8 km. Magnetic data suggest a major boundary at or near the Verdugo fault, which likely started as a Miocene transtensional fault, and show a change in the dip sense of the fault along strike. The northwest projection of the Verdugo fault separates the Sylmar subbasin from the main San Fernando Valley and coincides with the abrupt change in structural style from the Santa Susana fault to the Sierra Madre fault. The Simi Hills bound the basin on the west and, as defined by gravity data, the boundary is linear and strikes ~N45°E. That northeast-trending gravity gradient follows both the part of the 1971 San Fernando aftershock distribution called the Chatsworth trend and the aftershock trends of the 1994 Northridge earthquake. These data suggest that the 1971 San Fernando and 1994 Northridge earthquakes reactivated portions of

  5. Continuity of slip rates over various time scales on the Puente Hills Blind-thrust Fault, Los Angeles, California (United States)

    Bergen, Kristian J.; Shaw, John H.; Leon, Lorraine A.; Dolan, James F.; Pratt, Thomas L.; Ponti, Daniel J.; Barrera, Wendy; Rhodes, Edward J.; Murari, Madhav K.; Owen, Lewis A.


    Our study seeks to assess the history of slip on the Los Angeles segment of the Puente Hills blind-thrust fault system (PHT) from its inception through the Holocene by integrating a suite of geological and geophysical datasets. The PHT presents one of the largest seismic hazards in the United States, given its location beneath downtown Los Angeles. It is also well suited to slip rate studies, as fold scarps formed by slip on the PHT at depth have been continually buried by flood deposits from the Los Angeles and San Gabriel Rivers, preserving a record of uplift in the form of growth stratigraphy. We determined uplift from the growth stratigraphy by measuring the difference in sediment thickness across the folded layers. At our study site above the western segment of the PHT, the fold structure was imaged by industry seismic reflection data and a pair of high-resolution (100 to 700 m depth) seismic reflection profiles acquired by the authors for this study using weight drop and small vibrator sources. The industry and high-resolution profiles were stacked, migrated and depth converted using a velocity model based on the stacking velocities and the Southern California Earthquake Center Community Velocity Model. The shallowest layers of growth stratigraphy were geometrically constrained by lithological correlations across a series of cone penetration tests and continuously cored boreholes. Age control was provided by radiocarbon dating, optically stimulated luminescence (OSL) and infrared stimulated luminescence (IRSL) dating, and sequence-stratigraphic boundaries. Radiocarbon dating was used to constrain individual earthquake event ages in the borehole transect. Using a novel coring procedure, light-protected samples for quartz OSL and feldspar IRSL dating were acquired from a 171-m-deep borehole that we drilled within the growth fold. These samples provided age constraints on growth strata that were tied to prominent seismic reflections and were combined with

  6. Structural character of Hosgri fault zone and adjacent areas in offshore central California

    Energy Technology Data Exchange (ETDEWEB)

    Crouch, J.K.; Bachman, S.B.


    The Hosgri fault zone extends from the east-west Transverse Ranges structures near Point Arguello northward for more than 150 km to the offshore area near San Simeon Point. The fault zone is seismically active and consists chiefly of a continuous series of eastside-up thrust and high-angle reverse faults. East of the fault zone, Miocene Monterey and volcanic rocks, along with underlying pre-Miocene strata, have been tightly folded as a result of low-angle imbricate thrust faulting during post-Miocene time. These highly deformed strata have been uplited and truncated along the inner shelf. Immediately west of the Hosgria fault zone, similar Monterey and older rocks, which are less folded, conformably underlie Pliocene and younger basinal strata at structural levels that are generally 1200 to 2000 m deeper than correlative strata east of the Hosgri fault zone. Following its discovery in 1971, the Hosgri fault zone was characterized by subsequent investigators as a northwest-trending fault that was part of the San Andreas system of strike-slip faults, with disagreements on the timing and amount of right-lateral offset along the fault zone. However, modern offshore seismic-reflection data, earthquake focal-mechanism studies, and recently available offshore well information suggest that the Hosgri fault zone is instead a major imbricate thrust zone. Detailed structural analyses along part of the Hosgri fault zone suggest that little, if any, strike-slip offset has occurred along this structural trend since its post-Miocene inception. Nevertheless, the Hosgri fault zone itself can be interpreted to be a product of the larger overall San Andreas transform system in that compression has developed because the San Andreas is not parallel to the Pacific-North American plate motion.

  7. Machine Fault Signature Analysis

    Directory of Open Access Journals (Sweden)

    Pratesh Jayaswal


    Full Text Available The objective of this paper is to present recent developments in the field of machine fault signature analysis with particular regard to vibration analysis. The different types of faults that can be identified from the vibration signature analysis are, for example, gear fault, rolling contact bearing fault, journal bearing fault, flexible coupling faults, and electrical machine fault. It is not the intention of the authors to attempt to provide a detailed coverage of all the faults while detailed consideration is given to the subject of the rolling element bearing fault signature analysis.

  8. Measuring and Modeling Fault Density for Plume-Fault Encounter Probability Estimation

    Energy Technology Data Exchange (ETDEWEB)

    Jordan, P.D.; Oldenburg, C.M.; Nicot, J.-P.


    Emission of carbon dioxide from fossil-fueled power generation stations contributes to global climate change. Storage of this carbon dioxide within the pores of geologic strata (geologic carbon storage) is one approach to mitigating the climate change that would otherwise occur. The large storage volume needed for this mitigation requires injection into brine-filled pore space in reservoir strata overlain by cap rocks. One of the main concerns of storage in such rocks is leakage via faults. In the early stages of site selection, site-specific fault coverages are often not available. This necessitates a method for using available fault data to develop an estimate of the likelihood of injected carbon dioxide encountering and migrating up a fault, primarily due to buoyancy. Fault population statistics provide one of the main inputs to calculate the encounter probability. Previous fault population statistics work is shown to be applicable to areal fault density statistics. This result is applied to a case study in the southern portion of the San Joaquin Basin with the result that the probability of a carbon dioxide plume from a previously planned injection had a 3% chance of encountering a fully seal offsetting fault.

  9. A new GPS velocity field for the Pacific Plate - Part 2: implications for fault slip rates in western California (United States)

    DeMets, C.; Márquez-Azúa, Bertha; Cabral-Cano, Enrique


    Lower and upper bounds for present deformation rates across faults in central California between the San Andreas Fault and Pacific coast are estimated from a new Global Positioning System (GPS) velocity field for central, western California in light of geodetic evidence presented in a companion paper for slow, but significant deformation within the Pacific Plate between young seafloor in the eastern Pacific and older seafloor elsewhere on the plate. Transects of the GPS velocity field across the San Andreas Fault between Parkfield and San Juan Buatista, where fault slip is dominated by creep and the velocity field thus reveals the off-fault deformation, show that GPS sites in westernmost California move approximately parallel to the fault at an average rate of 3.4 ± 0.4 mm yr-1 relative to the older interior of the Pacific Plate, but only 1.8 ± 0.6 mm yr-1 if the Pacific Plate frame of reference is corrected for deformation within the plate. Modelled interseismic elastic deformation from the weakly coupled creeping segment of the San Andreas Fault is an order-of-magnitude too small to explain the southeastward motions of coastal sites in western California. Similarly, models that maximize residual viscoelastic deformation from the 1857 Fort Tejon and 1906 San Francisco earthquakes mismatch both the rates and directions of GPS site motions in central California relative to the Pacific Plate. Neither thus explains the site motions southwest of the San Andreas fault, indicating that the site motions measure deformation across faults and folds outboard of the San Andreas Fault. The non-zero site velocities thus constitute strong evidence for active folding and faulting outboard from the creeping segment of the San Andreas Fault and suggest limits of 0-2 mm yr-1 for the Rinconada Fault slip rate and 1.8 ± 0.6 to 3.4 ± 0.4 mm yr-1 for the slip rates integrated across near-coastal faults such as the Hosgri, San Gregorio and San Simeon faults.

  10. Crustal structure of the coastal and marine San Francisco Bay region, California (United States)

    Parsons, Tom


    As of the time of this writing, the San Francisco Bay region is home to about 6.8 million people, ranking fifth among population centers in the United States. Most of these people live on the coastal lands along San Francisco Bay, the Sacramento River delta, and the Pacific coast. The region straddles the tectonic boundary between the Pacific and North American Plates and is crossed by several strands of the San Andreas Fault system. These faults, which are stressed by about 4 cm of relative plate motion each year, pose an obvious seismic hazard.

  11. Continuity of the West Napa Fault Zone Inferred from Aftershock Recordings on Fault-Crossing Arrays (United States)

    Catchings, R.; Goldman, M.; Slad, G. W.; Criley, C.; Chan, J. H.; Fay, R. P.; Fay, W.; Svitek, J. F.


    In an attempt to determine the continuity and lateral extent of the causative fault(s) of the 24 August 2014 Mw 6.0 Napa earthquake and possible interconnections with other mapped faults, we recorded aftershocks on three closely spaced (100 m) seismograph arrays that were positioned across the coseismic rupture zone and across mapped faults located north and south of coseismic rupture. Array 1 was located in northwest Napa, between Highway 29 and the intersection of Redwood and Mt. Veeder roads, array 2 was located southwest of Napa, ~1 km north of Cuttings Wharf, and array 3 was located south of San Pablo Bay, within the town of Alhambra. Our intent was to record high-amplitude guided waves that only travel within the causative fault zone and its extensions (Li and Vidale, 1996). Preliminary analysis of seismic data from an M 3.2 aftershock shows high-amplitude (up to 1 cm/s) seismic waves occurred on seismographs within 100 m of mapped surface ruptures and fault zones. Northwest of Napa, the high amplitudes along array 1 coincide with zones of structural damage and wide spread surface ground cracking, and along array 2 near Cuttings Wharf, the high amplitudes occur slightly east of surface ruptures seen along Los Amigas Road. We also observe relatively high-amplitude seismic waves across the Franklin Fault (array 3), approximately 32 km southeast of the mainshock epicenter; this observation suggests the West Napa and the Franklin faults may be continuous or connected. Existing fault maps show that the Franklin Fault extends at least 15 km southward to the Calaveras Fault zone and the West Napa Fault extends at least 25 km north of our array 1. Collectively, the mapped faults, surface ruptures, and guided waves suggest that the West Napa- Franklin Fault zone may extend more than 85 km before it merges with the Calaveras Fault. Assuming a continuous fault zone, the West Napa - Franklin Fault zone may be capable of generating a much larger magnitude earthquake that

  12. Surface fault slip associated with the 2004 Parkfield, California, earthquake (United States)

    Rymer, M.J.; Tinsley, J. C.; Treiman, J.A.; Arrowsmith, J.R.; Ciahan, K.B.; Rosinski, A.M.; Bryant, W.A.; Snyder, H.A.; Fuis, G.S.; Toke, N.A.; Bawden, G.W.


    Surface fracturing occurred along the San Andreas fault, the subparallel Southwest Fracture Zone, and six secondary faults in association with the 28 September 2004 (M 6.0) Parkfield earthquake. Fractures formed discontinuous breaks along a 32-km-long stretch of the San Andreas fault. Sense of slip was right lateral; only locally was there a minor (1-11 mm) vertical component of slip. Right-lateral slip in the first few weeks after the event, early in its afterslip period, ranged from 1 to 44 mm. Our observations in the weeks following the earthquake indicated that the highest slip values are in the Middle Mountain area, northwest of the mainshock epicenter (creepmeter measurements indicate a similar distribution of slip). Surface slip along the San Andreas fault developed soon after the mainshock; field checks in the area near Parkfield and about 5 km to the southeast indicated that surface slip developed more than 1 hr but generally less than 1 day after the event. Slip along the Southwest Fracture Zone developed coseismically and extended about 8 km. Sense of slip was right lateral; locally there was a minor to moderate (1-29 mm) vertical component of slip. Right-lateral slip ranged from 1 to 41 mm. Surface slip along secondary faults was right lateral; the right-lateral component of slip ranged from 3 to 5 mm. Surface slip in the 1966 and 2004 events occurred along both the San Andreas fault and the Southwest Fracture Zone. In 1966 the length of ground breakage along the San Andreas fault extended 5 km longer than that mapped in 2004. In contrast, the length of ground breakage along the Southwest Fracture Zone was the same in both events, yet the surface fractures were more continuous in 2004. Surface slip on secondary faults in 2004 indicated previously unmapped structural connections between the San Andreas fault and the Southwest Fracture Zone, further revealing aspects of the structural setting and fault interactions in the Parkfield area.

  13. 77 FR 54811 - Safety Zone; TriRock San Diego, San Diego Bay, San Diego, CA (United States)


    ... SECURITY Coast Guard 33 CFR Part 165 RIN 1625-AA00 Safety Zone; TriRock San Diego, San Diego Bay, San Diego... safety zone upon the navigable waters of the San Diego Bay, San Diego, CA, in support of a bay swim in San Diego Harbor. This safety zone is necessary to provide for the safety of the participants, crew...

  14. 78 FR 58878 - Safety Zone; San Diego Shark Fest Swim; San Diego Bay, San Diego, CA (United States)


    ... SECURITY Coast Guard 33 CFR Part 165 RIN 1625-AA00 Safety Zone; San Diego Shark Fest Swim; San Diego Bay, San Diego, CA AGENCY: Coast Guard, DHS. ACTION: Temporary final rule. SUMMARY: The Coast Guard is establishing a safety zone upon the navigable waters of the San Diego Bay, San Diego, CA, in support of San...

  15. 78 FR 53243 - Safety Zone; TriRock San Diego, San Diego Bay, San Diego, CA (United States)


    ... SECURITY Coast Guard 33 CFR Part 165 RIN 1625-AA00 Safety Zone; TriRock San Diego, San Diego Bay, San Diego... temporary safety zone upon the navigable waters of the San Diego Bay, San Diego, CA, in support of a... Bryan Gollogly, Waterways Management, U.S. Coast Guard Sector San Diego; telephone (619) 278-7656, email...

  16. Implications for Fault and Basin Geometry in the Central California Coast Ranges from Preliminary Gravity and Magnetic Data (United States)

    Langenheim, V. E.; Jachens, R. C.; Graymer, R. W.; Wentworth, C. M.


    Preliminary aeromagnetic and newly processed gravity data help define block-bounding faults and deep sedimentary basins in the central California Coast Ranges, ranging from the Hosgri fault east to the San Andreas fault and from Monterey Bay south to Pt. Conception. Interpretation of these data results in an improved framework for seismic hazard and groundwater studies. Aeromagnetic data include a new survey with a flight-line spacing of 800 m at a nominal 300 m above ground and covering 15,000 km2. More than 11,500 gravity measurements, reprocessed with terrain corrections calculated from 30-m DEMs, form a roughly 2-km grid over most of the study area. Combined potential-field data and existing geologic mapping, delineate major fault-bounded blocks in the central California Coast Ranges. Main block-bounding faults from west to east include the San Gregorio- Hosgri, San Luis-Willmar-Santa Maria River-Little Pine, Oceanic-West Huasna, Nacimiento, Rinconada-South Cuyama, San Juan-Chimineas-Morales, and San Andreas faults. Most of these faults have evidence of Quaternary activity. Gravity gradients indicate that the reach of the San Andreas fault bounding the Gabilan Range and the northern extension of the Rinconada fault bounding the Santa Lucia Range dip steeply southwestward and have a reverse component of slip. Magnetic and microseismicity data suggest that the northern reach of the Hosgri fault dips eastward. The potential-field data also delineate several deep sedimentary basins, such as the 3-4 km deep Cuyama basin, the Santa Maria basin, and several basins along and possibly offset by the Rinconada fault. Gravity data show that the main west-northwest-striking faults bounding the Cuyama basin dip away from the basin, indicating compression adjacent to the big bend in the San Andreas fault. Prominent gravity and magnetic highs northeast of the San Andreas fault immediately east of Cuyama Valley suggest that there the San Andreas fault dips southwest. Such dip

  17. Do faults stay cool under stress? (United States)

    Savage, H. M.; Polissar, P. J.; Sheppard, R. E.; Brodsky, E. E.; Rowe, C. D.


    Determining the absolute stress on faults during slip is one of the major goals of earthquake physics as this information is necessary for full mechanical modeling of the rupture process. One indicator of absolute stress is the total energy dissipated as heat through frictional resistance. The heat results in a temperature rise on the fault that is potentially measurable and interpretable as an indicator of the absolute stress. We present a new paleothermometer for fault zones that utilizes the thermal maturity of extractable organic material to determine the maximum frictional heating experienced by the fault. Because there are no retrograde reactions in these organic systems, maximum heating is preserved. We investigate four different faults: 1) the Punchbowl Fault, a strike-slip fault that is part of the ancient San Andreas system in southern California, 2) the Muddy Mountain Thrust, a continental thrust sheet in Nevada, 3) large shear zones of Sitkanik Island, AK, part of the proto-megathrust of the Kodiak Accretionary Complex and 4) the Pasagshak Point Megathrust, Kodiak Accretionary Complex, AK. According to a variety of organic thermal maturity indices, the thermal maturity of the rocks falls within the range of heating expected from the bounds on burial depth and time, indicating that the method is robust and in some cases improving our knowledge of burial depth. Only the Pasagshak Point Thrust, which is also pseudotachylyte-bearing, shows differential heating between the fault and off-fault samples. This implies that most of the faults did not get hotter than the surrounding rock during slip. Simple temperature models coupled to the kinetic reactions for organic maturity let us constrain certain aspects of the fault during slip such as fault friction, maximum slip in a single earthquake, the thickness of the active slipping zone and the effective normal stress. Because of the significant length of these faults, we find it unlikely that they never sustained

  18. From tomographic images to fault heterogeneities

    Directory of Open Access Journals (Sweden)

    A. Amato


    Full Text Available Local Earthquake Tomography (LET is a useful tool for imaging lateral heterogeneities in the upper crust. The pattern of P- and S-wave velocity anomalies, in relation to the seismicity distribution along active fault zones. can shed light on the existence of discrete seismogenic patches. Recent tomographic studies in well monitored seismic areas have shown that the regions with large seismic moment release generally correspond to high velocity zones (HVZ's. In this paper, we discuss the relationship between the seismogenic behavior of faults and the velocity structure of fault zones as inferred from seismic tomography. First, we review some recent tomographic studies in active strike-slip faults. We show examples from different segments of the San Andreas fault system (Parkfield, Loma Prieta, where detailed studies have been carried out in recent years. We also show two applications of LET to thrust faults (Coalinga, Friuli. Then, we focus on the Irpinia normal fault zone (South-Central Italy, where a Ms = 6.9 earthquake occurred in 1980 and many thousands of attershock travel time data are available. We find that earthquake hypocenters concentrate in HVZ's, whereas low velocity zones (LVZ’ s appear to be relatively aseismic. The main HVZ's along which the mainshock rupture bas propagated may correspond to velocity weakening fault regions, whereas the LVZ's are probably related to weak materials undergoing stable slip (velocity strengthening. A correlation exists between this HVZ and the area with larger coseismic slip along the fault, according to both surface evidence (a fault scarp as high as 1 m and strong ground motion waveform modeling. Smaller wave-length, low-velocity anomalies detected along the fault may be the expression of velocity strengthening sections, where aseismic slip occurs. According to our results, the rupture at the nucleation depth (~ 10-12 km is continuous for the whole fault lenoth (~ 30 km, whereas at shallow depth

  19. Spacing and strength of active continental strike-slip faults (United States)

    Zuza, Andrew V.; Yin, An; Lin, Jessica; Sun, Ming


    Parallel and evenly-spaced active strike-slip faults occur widely in nature across diverse tectonic settings. Despite their common existence, the fundamental question of what controls fault spacing remains unanswered. Here we present a mechanical model for the generation of parallel strike-slip faults that relates fault spacing to the following parameters: (1) brittle-crust thickness, (2) fault strength, (3) crustal strength, and (4) crustal stress state. Scaled analogue experiments using dry sand, dry crushed walnut shells, and viscous putty were employed to test the key assumptions of our quantitative model. The physical models demonstrate that fault spacing (S) is linearly proportional to brittle-layer thickness (h), both in experiments with only brittle materials and in two-layer trials involving dry sand overlying viscous putty. The S / h slope in the two-layer sand-putty experiments may be controlled by the (1) rheological/geometric properties of the viscous layer, (2) effects of distributed basal loading caused by the viscous shear of the putty layer, and/or (3) frictional interaction at the sand-putty interface (i.e., coupling between the viscous and brittle layers). We tentatively suggest that this third effect exerts the strongest control on fault spacing in the analogue experiments. By applying our quantitative model to crustal-scale strike-slip faults using fault spacing and the seismogenic-zone thickness obtained from high-resolution earthquake-location data, we estimate absolute fault friction of active strike-slip faults in Asia and along the San Andreas fault system in California. We show that the average friction coefficient of strike-slip faults in the India-Asia collisional orogen is lower than that of faults in the San Andreas fault system. Weaker faults explain why deformation penetrates >3500 km into Asia from the Himalaya and why the interior of Asia is prone to large (M > 7.0) devastating earthquakes along major intra-continental strike

  20. A fault-based model for crustal deformation, fault slip-rates and off-fault strain rate in California (United States)

    Zeng, Yuehua; Shen, Zheng-Kang


    We invert Global Positioning System (GPS) velocity data to estimate fault slip rates in California using a fault‐based crustal deformation model with geologic constraints. The model assumes buried elastic dislocations across the region using Uniform California Earthquake Rupture Forecast Version 3 (UCERF3) fault geometries. New GPS velocity and geologic slip‐rate data were compiled by the UCERF3 deformation working group. The result of least‐squares inversion shows that the San Andreas fault slips at 19–22  mm/yr along Santa Cruz to the North Coast, 25–28  mm/yr along the central California creeping segment to the Carrizo Plain, 20–22  mm/yr along the Mojave, and 20–24  mm/yr along the Coachella to the Imperial Valley. Modeled slip rates are 7–16  mm/yr lower than the preferred geologic rates from the central California creeping section to the San Bernardino North section. For the Bartlett Springs section, fault slip rates of 7–9  mm/yr fall within the geologic bounds but are twice the preferred geologic rates. For the central and eastern Garlock, inverted slip rates of 7.5 and 4.9  mm/yr, respectively, match closely with the geologic rates. For the western Garlock, however, our result suggests a low slip rate of 1.7  mm/yr. Along the eastern California shear zone and southern Walker Lane, our model shows a cumulative slip rate of 6.2–6.9  mm/yr across its east–west transects, which is ∼1  mm/yr increase of the geologic estimates. For the off‐coast faults of central California, from Hosgri to San Gregorio, fault slips are modeled at 1–5  mm/yr, similar to the lower geologic bounds. For the off‐fault deformation, the total moment rate amounts to 0.88×1019  N·m/yr, with fast straining regions found around the Mendocino triple junction, Transverse Ranges and Garlock fault zones, Landers and Brawley seismic zones, and farther south. The overall California moment rate is 2.76×1019

  1. Magnetic levitation assisted aircraft take-off and landing (feasibility study - GABRIEL concept) (United States)

    Rohacs, Daniel; Rohacs, Jozsef


    The Technology Roadmap 2013 developed by the International Air Transport Association envisions the option of flying without an undercarriage to be in operation by 2032. Preliminary investigations clearly indicate that magnetic levitation technology (MagLev) might be an appealing solution to assist the aircraft take-off and landing. The EU supported research project, abbreviated as GABRIEL, was dealing with (i) the concept development, (ii) the identification, evaluation and selection of the deployable magnetic levitation technology, (iii) the definition of the core system elements (including the required aircraft modifications, the ground-based system and airport elements, and the rendezvous control system), (iv) the analysis of the safety and security aspects, (v) the concept validation and (vi) the estimation of the proposed concept impact in terms of aircraft weight, noise, emission, cost-benefit). All results introduced here are compared to a medium size hypothetic passenger aircraft (identical with an Airbus A320). This paper gives a systematic overview of (i) the applied methods, (ii) the investigation of the possible use of magnetic levitation technology to assist the commercial aircraft take-off and landing processes and (iii) the demonstrations, validations showing the feasibility of the radically new concept. All major results are outlined.

  2. Medicine, Gabriel García Márquez, and 'Love in the time of cholera'. (United States)

    Toledo-Pereyra, Luis H


    The Nobel award-winning author Gabriel García Márquez (born 1927) originally released his book Love in the Time of Cholera in Colombia in 1985. For us physicians and surgeons this book contains lessons about medical humanities and the opportunity to apply them to our profession. Dr. Juvenal Urbino, one of the book's central figures, is a distinguished physician with impeccable training in Paris in the late 1870s to early 1880s. He returned to his native Colombian Caribbean coast to practice medicine and surgery. There his practice set an example for contemporary and future generations of physicians. Urbino was knowledgeable, dedicated, committed, studious, and well-intentioned. He mastered the humanities to the benefit of patients and society alike. He was an outstanding professor at the medical school and a favorite teacher to his attentive students. For all his good virtues, however, he did not serve the poor as much as he should have, possibly as a consequence of his opulent origin in the District of the Viceroys of his natal city. In short, Dr. Urbino brought to the medical profession a bright example of responsibility, professionalism, and integrity. Thus, he should be remembered as a physician and professor worthy of imitating in today's practice of medicine.

  3. [The measurement of time and its instruments: the program of experimental psychology of Gabriele Buccola]. (United States)

    Degni, Silvia


    Gabriele Buccola is remembered as the first Italian psychologist to have developed a rigorous program of laboratory research. The careful examination of the instruments and experimental planning of his psychochronometric investigations reveals the indissoluble bond between theory and experimentation that defines a scientific conception of psychology on the basis of a differential methodology. For Buccola it is important to demonstrate that there exist "laws" that govern the mental processes, and that there exists a time that regulates human reactions and behaviour, considering however the individual differences and various factors that can bear influence to increase or decrease it. The use of 'intelligent' instruments proves to be fundamental within a model of experimentation directed towards pointing out individual differences and not just identifying the general laws of mental functioning. Buccola in this way imparts a psychological characterization to the study of mental illness--placing him as an initiator of experimental psychopathology, which will have a significant development in Europe thanks precisely to the work of Kraepelin--along with a differential and clinical-experimental bent to the emerging Italian scientific psychology. Lastly, the attention directed to the study of complex mental processes leads Buccola to lay the foundation in Italy for the study of the subjective experience of time.

  4. El infante don Gabriel y el impresor Ibarra en la obra cumbre del Salustio

    Directory of Open Access Journals (Sweden)

    Olaechea Labayen, Juan B.


    Full Text Available Not available.En la obra conocida como el «Salustio de Ibarra», considerada por especialistas domésticos y foráneos como la mejor impresa en España, convergen circunstancias relevantes debidas a la participación intelectual del infante don Gabriel de Borbón y la eficiencia técnica de Joaquín Ibarra. El autor reivindica la autenticidad de los textos atribuidos al infante contra cierto escepticismo sembrado en razón de la elevada alcurnia de la atribución. Seguidamente, se realiza el análisis de las cualidades técnicas de la impresión, eminentes en una época de esplendor del arte impresorio, y en cuya confección colaboraron los más descollantes artistas del buril de aquel período considerado de triunfo de la estampa ilustrada.

  5. Political Ecology in Gabriel Garcia Marquez's One Hundred Years of Solitude

    Directory of Open Access Journals (Sweden)

    Eman Mohammed ElSherief


    Full Text Available The roots of ecology prolong profoundly within earlier phases of history, when the naturalistic fabric was first evinced.  Bringing out his On the Origin of Species in 1859, Darwin not merely engendered a biological culmination but also heralded the revolutionary critical canon of naturalism that was virtually a stone thrown in the vast stagnant lake of traditional literature. Via the naturalistic lens, the whole bulk of man’s behavioral attributes are being expounded in terms of milieu and heredity. The mid-1990s witnessed the publication of The Environmental Imagination by Lawrence Buell in 1995, and The Ecocriticism Reader edited by Cheryll Gloffelty and Harold Fromm in 1996, which palpably underpinned ecocriticism as revolving around the inextricable liaison between literature and the physical environment. The political ecology term was coined to further scrutinize relations among people that pertain to nature. The present paper is an endeavor to pursue the ecological tenor of Gabriel Garcia Marquez’s landmark novel, One Hundred Years of Solitude, and how it was admirably exploited to address precarious postcolonial issues. Keywords: Political ecology, Marquez, naturalism, ecocriticism, post-colonialism.

  6. Predicted liquefaction of East Bay fills during a repeat of the 1906 San Francisco earthquake (United States)

    Holzer, T.L.; Blair, J.L.; Noce, T.E.; Bennett, M.J.


    Predicted conditional probabilities of surface manifestations of liquefaction during a repeat of the 1906 San Francisco (M7.8) earthquake range from 0.54 to 0.79 in the area underlain by the sandy artificial fills along the eastern shore of San Francisco Bay near Oakland, California. Despite widespread liquefaction in 1906 of sandy fills in San Francisco, most of the East Bay fills were emplaced after 1906 without soil improvement to increase their liquefaction resistance. They have yet to be shaken strongly. Probabilities are based on the liquefaction potential index computed from 82 CPT soundings using median (50th percentile) estimates of PGA based on a ground-motion prediction equation. Shaking estimates consider both distance from the San Andreas Fault and local site conditions. The high probabilities indicate extensive and damaging liquefaction will occur in East Bay fills during the next M ??? 7.8 earthquake on the northern San Andreas Fault. ?? 2006, Earthquake Engineering Research Institute.

  7. Calculating the probability of injected carbon dioxide plumes encountering faults

    Energy Technology Data Exchange (ETDEWEB)

    Jordan, P.D.


    One of the main concerns of storage in saline aquifers is leakage via faults. In the early stages of site selection, site-specific fault coverages are often not available for these aquifers. This necessitates a method using available fault data to estimate the probability of injected carbon dioxide encountering and migrating up a fault. The probability of encounter can be calculated from areal fault density statistics from available data, and carbon dioxide plume dimensions from numerical simulation. Given a number of assumptions, the dimension of the plume perpendicular to a fault times the areal density of faults with offsets greater than some threshold of interest provides probability of the plume encountering such a fault. Application of this result to a previously planned large-scale pilot injection in the southern portion of the San Joaquin Basin yielded a 3% and 7% chance of the plume encountering a fully and half seal offsetting fault, respectively. Subsequently available data indicated a half seal-offsetting fault at a distance from the injection well that implied a 20% probability of encounter for a plume sufficiently large to reach it.

  8. How does the 2010 El Mayor - Cucapah Earthquake Rupture Connect to the Southern California Plate Boundary Fault System (United States)

    Donnellan, A.; Ben-Zion, Y.; Arrowsmith, R.


    The Pacific - North American plate boundary in southern California is marked by several major strike slip faults. The 2010 M7.2 El Mayor - Cucapah earthquake ruptured 120 km of upper crust in Baja California to the US-Mexico border. The earthquake triggered slip along an extensive network of faults in the Salton Trough from the Mexican border to the southern end of the San Andreas fault. Earthquakes >M5 were triggered in the gap between the Laguna Salada and Elsinore faults at Ocotillo and on the Coyote Creek segment of the San Jacinto fault 20 km northwest of Borrego Springs. UAVSAR observations, collected since October of 2009, measure slip associated with the M5.7 Ocotillo aftershock with deformation continuing into 2014. The Elsinore fault has been remarkably quiet, however, with only M5.0 and M5.2 earthquakes occurring on the Coyote Mountains segment of the fault in 1940 and 1968 respectively. In contrast, the Imperial Valley has been quite active historically with numerous moderate events occurring since 1935. Moderate event activity is increasing along the San Jacinto fault zone (SJFZ), especially the trifurcation area, where 6 of 12 historic earthquakes in this 20 km long fault zone have occurred since 2000. However, no recent deformation has been detected using UAVSAR measurements in this area, including the recent M5.2 June 2016 Borrego earthquake. Does the El Mayor - Cucapah rupture connect to and transfer stress primarily to a single southern California fault or several? What is its role relative to the background plate motion? UAVSAR observations indicate that the southward extension of the Elsinore fault has recently experienced the most localized deformation. Seismicity suggests that the San Jacinto fault is more active than neighboring major faults, and geologic evidence suggests that the Southern San Andreas fault has been the major plate boundary fault in southern California. Topographic data with 3-4 cm resolution using structure from motion from

  9. The role of a keystone fault in triggering the complex El Mayor-Cucapah earthquake rupture (United States)

    Fletcher, John M.; Oskin, Michael E.; Teran, Orlando J.


    The 2010 Mw 7.2 El Mayor-Cucapah earthquake in Baja California, Mexico activated slip on multiple faults of diverse orientations, which is commonly the case for large earthquakes. The critical stress level for fault failure depends on fault orientation and is lowest for optimally oriented faults positioned approximately 30° to the greatest principal compressive stress. Yet, misoriented faults whose positioning is not conducive to rupture are also common. Here we use stress inversions of surface displacement and seismic data to show that the El Mayor-Cucapah earthquake initiated on a fault that, owing to its orientation, was among those that required the greatest stress for failure. Although other optimally oriented faults must have reached critical stress earlier in the interseismic period, Coulomb stress modelling shows that slip on these faults was initially muted because they were pinned, held in place by misoriented faults that helped regulate their slip. In this way, faults of diverse orientations could be maintained at critical stress without destabilizing the network. We propose that regional stress build-up continues until a misoriented keystone fault reaches its threshold and its failure then spreads spontaneously across the network in a large earthquake. Our keystone fault hypothesis explains seismogenic failure of severely misoriented faults such as the San Andreas fault and the entire class of low-angle normal faults.

  10. Potential earthquake faults offshore Southern California, from the eastern Santa Barbara Channel south to Dana Point (United States)

    Fisher, M.A.; Sorlien, C.C.; Sliter, R.W.


    Urban areas in Southern California are at risk from major earthquakes, not only quakes generated by long-recognized onshore faults but also ones that occur along poorly understood offshore faults. We summarize recent research findings concerning these lesser known faults. Research by the U.S. Geological Survey during the past five years indicates that these faults from the eastern Santa Barbara Channel south to Dana Point pose a potential earthquake threat. Historical seismicity in this area indicates that, in general, offshore faults can unleash earthquakes having at least moderate (M 5-6) magnitude. Estimating the earthquake hazard in Southern California is complicated by strain partitioning and by inheritance of structures from early tectonic episodes. The three main episodes are Mesozoic through early Miocene subduction, early Miocene crustal extension coeval with rotation of the Western Transverse Ranges, and Pliocene and younger transpression related to plate-boundary motion along the San Andreas Fault. Additional complication in the analysis of earthquake hazards derives from the partitioning of tectonic strain into strike-slip and thrust components along separate but kinematically related faults. The eastern Santa Barbara Basin is deformed by large active reverse and thrust faults, and this area appears to be underlain regionally by the north-dipping Channel Islands thrust fault. These faults could produce moderate to strong earthquakes and destructive tsunamis. On the Malibu coast, earthquakes along offshore faults could have left-lateral-oblique focal mechanisms, and the Santa Monica Mountains thrust fault, which underlies the oblique faults, could give rise to large (M ??7) earthquakes. Offshore faults near Santa Monica Bay and the San Pedro shelf are likely to produce both strike-slip and thrust earthquakes along northwest-striking faults. In all areas, transverse structures, such as lateral ramps and tear faults, which crosscut the main faults, could

  11. A Fault-based Crustal Deformation Model for UCERF3 and Its Implication to Seismic Hazard Analysis (United States)

    Zeng, Y.; Shen, Z.


    We invert GPS data to determine slip rates on major California faults using a fault-based crustal deformation model with geological slip rate constraints. The model assumes buried elastic dislocations across the region using fault geometries defined by the Uniform California Earthquake Rupture Forecast version 3 (UCERF3) project with fault segments slipping beneath their locking depths. GPS observations across California and neighboring states were obtained from the UNAVCO western US GPS velocity model and edited by the SCEC UCERF3 geodetic deformation working group. The geologic slip rates and fault style constraints were compiled by the SCEC UCERF3 geologic deformation working group. Continuity constraints are imposed on slips among adjacent fault segments to regulate slip variability and to simulate block-like motion. Our least-squares inversion shows that slip rates along the northern San Andreas fault system agree well with the geologic estimates provided by UCERF3, and slip rates for the Calaveras-Hayward-Maacama fault branch and the Greenville-Great Valley fault branch are slightly higher than that of the UCERF3 geologic model. The total slip rates across transects of the three fault branches in Northern California amount to 39 mm/yr. Slip rates determined for the Garlock fault closely match geologic rates. Slip rates for the Coachella Valley and Brawley segment of the San Andreas are nearly twice that of the San Jacinto fault branch. For the off-coast faults along the San Gregorio, Hosgri, Catalina, and San Clemente faults, slip rates are near their geologic lower bounds. Comparing with the regional geologic slip rate estimates, the GPS based model shows a significant decrease of 6-14 mm/yr in slip rates along the San Andreas fault system from the central California creeping section through the Mojave to the San Bernardino Mountain segments, whereas the model indicates significant increase of 1-3 mm/yr in slip-rates for faults along the east California

  12. Behavior of Repeating Earthquake Sequences in Central California and the Implications for Subsurface Fault Creep

    Energy Technology Data Exchange (ETDEWEB)

    Templeton, D C; Nadeau, R; Burgmann, R


    Repeating earthquakes (REs) are sequences of events that have nearly identical waveforms and are interpreted to represent fault asperities driven to failure by loading from aseismic creep on the surrounding fault surface at depth. We investigate the occurrence of these REs along faults in central California to determine which faults exhibit creep and the spatio-temporal distribution of this creep. At the juncture of the San Andreas and southern Calaveras-Paicines faults, both faults as well as a smaller secondary fault, the Quien Sabe fault, are observed to produce REs over the observation period of March 1984-May 2005. REs in this area reflect a heterogeneous creep distribution along the fault plane with significant variations in time. Cumulative slip over the observation period at individual sequence locations is determined to range from 5.5-58.2 cm on the San Andreas fault, 4.8-14.1 cm on the southern Calaveras-Paicines fault, and 4.9-24.8 cm on the Quien Sabe fault. Creep at depth appears to mimic the behaviors seen of creep on the surface in that evidence of steady slip, triggered slip, and episodic slip phenomena are also observed in the RE sequences. For comparison, we investigate the occurrence of REs west of the San Andreas fault within the southern Coast Range. Events within these RE sequences only occurred minutes to weeks apart from each other and then did not repeat again over the observation period, suggesting that REs in this area are not produced by steady aseismic creep of the surrounding fault surface.

  13. Offset of Latest Pleistocene Shoreface Reveals Slip Rate on the Hosgri Strike-Slip Fault, Offshore Central California (United States)

    Johnson, S. Y.; Hartwell, S. R.; Dartnell, P.


    The Hosgri fault is the southern part of the regional Hosgri-San Gregorio dextral strike-slip fault system, which extends primarily in the offshore region for about 400 km in central California. Between Morro Bay and San Simeon, high-resolution multibeam bathymetry reveals that the eastern strand of the Hosgri fault is crossed by a ~265-m-wide slope interpreted as the shoreface of a relict sand spit that formed during a period of relatively slower sea-level rise (Younger Dryas stadial) in the latest Pleistocene. This sand spit crossed an embayment and connected a western fault-bounded bedrock peninsula and an eastern bedrock highland, a paleogeography similar to modern geomorphology along coastal segments of the San Andreas fault. Detailed analysis of the relict shoreface with slope profiles and slope maps indicates a lateral slip rate of 2.6 ± 0.9 mm/yr. Because the Hosgri fault locally includes an active western strand, and regionally converges with several other faults, this slip rate should be considered a minimum for the Hosgri fault in central California and should not be applied for the entire Hosgri-San Gregorio fault system. This slip rate indicates that the Hosgri system takes up the largest share of the strike-slip fault budget and is the most active strike-slip fault west of the San Andreas fault in central California. This result further demonstrates the value and potential of high-resolution bathymetry in earthquake-hazard characterization of active offshore faults.

  14. Geologic map of the Hayward fault zone, Contra Costa, Alameda, and Santa Clara counties, California: a digital database (United States)

    Graymer, R.W.; Jones, D.L.; Brabb, E.E.


    The Hayward is one of three major fault zones of the San Andreas system that have produced large historic earthquakes in the San Francisco Bay Area (the others being the San Andreas and Calaveras). Severe earthquakes were generated by this fault zone in 1836 and in 1868, and several large earthquakes have been recorded since 1868. The Hayward fault zone is considered to be the most probable source of a major earthquake in the San Francisco Bay Area, as much as 28% chance for a magnitude 7 earthquake before the year 2021 (Working Group on California Earthquake Probabilities, 1990). The Hayward fault zone, as described in this work, is a zone of highly deformed rocks, trending north 30 degrees west and ranging in width from about 2 to 10 kilometers. The historic earthquake generating activity has been concentrated in the western portion of the zone, but the zone as a whole reflects deformation derived from oblique right-lateral and compressive tectonic stress along a significant upper crustal discontinuity for the past 10 million or more years. The Hayward fault zone is bounded on the east by a series of faults that demarcate the beginning of one or more structural blocks containing rocks and structures unrelated to the Hayward fault zone. The eastern bounding faults are, from the south, the Calaveras, Stonybrook, Palomares, Miller Creek, and Moraga faults. These faults are not considered to be part of the Hayward fault zone, although they are shown on the map to demarcate its boundary. The western boundary of the zone is less clearly defined, because the alluvium of the San Francisco Bay and Santa Clara Valley basins obscures bedrock and structural relationships. Although several of the westernmost faults in the zone clearly project under or through the alluvium, the western boundary of the fault is generally considered to be the westernmost mapped fault, which corresponds more or less with the margin of thick unconsolidated surficial deposits. The Hayward fault

  15. Reconnaissance study of late quaternary faulting along cerro GoDen fault zone, western Puerto Rico (United States)

    Mann, P.; Prentice, C.S.; Hippolyte, J.-C.; Grindlay, N.R.; Abrams, L.J.; Lao-Davila, D.


    The Cerro GoDen fault zone is associated with a curvilinear, continuous, and prominent topographic lineament in western Puerto Rico. The fault varies in strike from northwest to west. In its westernmost section, the fault is ???500 m south of an abrupt, curvilinear mountain front separating the 270- to 361-m-high La CaDena De San Francisco range from the Rio A??asco alluvial valley. The Quaternary fault of the A??asco Valley is in alignment with the bedrock fault mapped by D. McIntyre (1971) in the Central La Plata quadrangle sheet east of A??asco Valley. Previous workers have postulated that the Cerro GoDen fault zone continues southeast from the A??asco Valley and merges with the Great Southern Puerto Rico fault zone of south-central Puerto Rico. West of the A??asco Valley, the fault continues offshore into the Mona Passage (Caribbean Sea) where it is characterized by offsets of seafloor sediments estimated to be of late Quaternary age. Using both 1:18,500 scale air photographs taken in 1936 and 1:40,000 scale photographs taken by the U.S. Department of Agriculture in 1986, we iDentified geomorphic features suggestive of Quaternary fault movement in the A??asco Valley, including aligned and Deflected drainages, apparently offset terrace risers, and mountain-facing scarps. Many of these features suggest right-lateral displacement. Mapping of Paleogene bedrock units in the uplifted La CaDena range adjacent to the Cerro GoDen fault zone reveals the main tectonic events that have culminated in late Quaternary normal-oblique displacement across the Cerro GoDen fault. Cretaceous to Eocene rocks of the La CaDena range exhibit large folds with wavelengths of several kms. The orientation of folds and analysis of fault striations within the folds indicate that the folds formed by northeast-southwest shorTening in present-day geographic coordinates. The age of Deformation is well constrained as late Eocene-early Oligocene by an angular unconformity separating folDed, Deep

  16. Gabriel Tarde ve Medya-Toplum İlişkisini Yeniden Keşfetmek

    Directory of Open Access Journals (Sweden)

    Murat Sadullah Çebi


    Full Text Available ÖzBu çalışmanın amacı, Fransız sosyolog Gabriel Tarde’ın geliştirdiği ‘kamusal alan modeli’ üzerinden medya ve toplum ilişkisini yeniden keşfetmek, anlamak ve açıklamaktır. Tarde’ın kamusal alan modeli, karşılıklı etkileşen dört unsurdan oluşur: Basın, sohbet, kamuoyu, eylem. Tarde, modern toplumda basına önemli işlevler yükler. Tarde’a göre basın; bilgili, eleştirel ve rasyonel bir kamunun ortaya çıkmasını ve gelişmesini sağlamıştır. İkinci olarak; kahvehane ve salonlarda cereyan eden bir kamusal tartışma ve müzakere biçimine, yani sohbetlere zemin oluşturmuştur. Üçüncü olarak; kamuoyunu dillendirmiş ve oluşturmuştur. Dördüncü olarak; bireylerin sosyal, politik ve ekonomik süreçlerdeki seçim ve kararlarını etkilemiştir. Nihayetinde, zihinlerde hayalî bir kurgu olarak millet ve milliyet fikrini oluşturmuştur. Araştırmada; Tarde’ın kamusal alan modelinin, iletişim biliminde ‘iki aşamalı iletişim akışı modeli’ olarak bilinen ‘sınırlı medya etkileri modeli’nin ilk örneklerinden biri olduğu sonucuna ulaşılacaktır. AbstractThe purpose of this study is to rediscover, to understand and to interpret, relationships between the mass media and society through public sphere model developed by French sociologist Gabriel Tarde. Tarde’s public sphere model consists of four elements: Press, conversation, public opinion and action. Tarde attributed important roles to press in modern society. Firstly, according to Tarde press provided to emerge and to develop of a knowledgeable, critical and rational public. Secondly, it formed a basis for public discussions and deliberations, in other words for conversations that took place in coffee houses and saloons. Thirdly, it expressed and created public opinion. Fourthly, it determined choices and decisions of people in social, economic and political processes. Lastly, it created the idea of nation and nationality

  17. Adult onset asthma and interaction between genes and active tobacco smoking: The GABRIEL consortium (United States)

    Postma, D. S.; Moffatt, M. F.; Jarvis, D.; Ramasamy, A.; Wjst, M.; Omenaas, E. R.; Bouzigon, E.; Demenais, F.; Nadif, R.; Siroux, V.; Polonikov, A. V.; Solodilova, M.; Ivanov, V. P.; Curjuric, I.; Imboden, M.; Kumar, A.; Probst-Hensch, N.; Ogorodova, L. M.; Puzyrev, V. P.; Bragina, E. Yu; Freidin, M. B.; Nolte, I. M.; Farrall, A. M.; Cookson, W. O. C. M.; Strachan, D. P.; Koppelman, G. H.; Boezen, H. M.


    Background Genome-wide association studies have identified novel genetic associations for asthma, but without taking into account the role of active tobacco smoking. This study aimed to identify novel genes that interact with ever active tobacco smoking in adult onset asthma. Methods We performed a genome-wide interaction analysis in six studies participating in the GABRIEL consortium following two meta-analyses approaches based on 1) the overall interaction effect and 2) the genetic effect in subjects with and without smoking exposure. We performed a discovery meta-analysis including 4,057 subjects of European descent and replicated our findings in an independent cohort (LifeLines Cohort Study), including 12,475 subjects. Results First approach: 50 SNPs were selected based on an overall interaction effect at p<10−4. The most pronounced interaction effect was observed for rs9969775 on chromosome 9 (discovery meta-analysis: ORint = 0.50, p = 7.63*10−5, replication: ORint = 0.65, p = 0.02). Second approach: 35 SNPs were selected based on the overall genetic effect in exposed subjects (p <10−4). The most pronounced genetic effect was observed for rs5011804 on chromosome 12 (discovery meta-analysis ORint = 1.50, p = 1.21*10−4; replication: ORint = 1.40, p = 0.03). Conclusions Using two genome-wide interaction approaches, we identified novel polymorphisms in non-annotated intergenic regions on chromosomes 9 and 12, that showed suggestive evidence for interaction with active tobacco smoking in the onset of adult asthma. PMID:28253294

  18. The Handheld Library: Developments at the Rector Gabriel Ferraté Library, UPC

    Directory of Open Access Journals (Sweden)

    Beatriz Benítez Juan


    Full Text Available The purpose of this paper is to highlight the mobile services developed by the Rector Gabriel Ferraté Library (BRGF of the Universitat Politècnica de Catalunya (UPC-Barcelona Tech in Barcelona, Spain. We hope this paper will be of use to other libraries exploring new technologies for communicating and delivering their services to users at a time when mobile services are an emerging topic in librarianship and information science literature. By setting out the successive steps involved in the as yet unfinished process of building our mobile services portfolio, we aim to offer a detailed picture of the mobile services and features offered by a university library from a case study perspective. The main topics to be discussed include: The BRGF’s mobile website, including the information available, its interactive capabilities and the services it provides to its users. The mobile-friendly version of UP Commons(the UPC Library Service’s institutional repositories. The UPC Library Service’s mobile OPAC. The mobile version of u-win(BRGF’s videogame service. The use of QR codes to deliver information to mobile devices. Text message notifications. Additional topics for discussion include: The library’s organisation and the organisational concepts that underpin and make possible its technological developments (including mobile. BRGF’s concern regarding the reduction of investment in the development of mobile services. The criteria and tools used to guide the library’s decisions regarding the design and orientation of current and future mobile services. How mobile services can help to improve the image of the library as a leading technology site. Selected mobile features that BRGF plans to offer in the near future. Ultimately, this paper aims to delineate the effectiveness and potential of delivering library services by the preferred means of communication of a new generation of students and teachers.

  19. La Medicina en la Obra Literaria de Gabriel García Márquez

    Directory of Open Access Journals (Sweden)

    Fernando Sánchez Torres


    había hojeado todos y leído algunos.

    Si analizamos sus novelas, crónicas y cuentos con el propósito de extraer de ellos los temas médi-cos -que es lo que hice para poder escribir este ensayo- encontraremos que, en efecto, Gabriel García Márquez estaba muy familiarizado con los asuntos galénicos. Se advierte su afición y hasta su pasión por ellos. Además de haber leído enciclo-pedias, tuvo también que documentarse muy bien en otras fuentes para poder escribir con tanta propiedad, no siendo la medicina su profesión.

    En la década de los 60, cuando residía en Ciudad de México y daba a conocer en privado y a cuenta gotas Cien años de soledad, sus amigos compro-baron su obsesión documental, como que su mesa de trabajo acumulaba montones de libros que hablaban de alquimia, de navegantes, “manuales de medicina casera, crónicas sobre las pestes medievales, manuales de venenos y antídotos, crónicas de Indias, estudios sobre el escorbuto, el beriberi y la pelagra…” (6. No es de extrañar, entonces, que en su novela cumbre mencione que Melquíades “era un fugitivo de cuantas plagas y catástrofes habían flagelado al género humano. Sobrevivió -dice- a la pelagra en Persia, al escorbuto en el Archipiélago de Malasia, a la lepra en Alejandría, al beriberi en el Japón, a la peste bubónica en Madagascar…” (7

    Veremos luego que lo afirmado ahora salta a la vista en algunas de sus principales narraciones: Crónica de una muerte anunciada, El general en su laberinto, El amor en los tiempos del cólera, Sobre el amor y otros demonios…

    El inmortal Lope de Vega goza de la predilección de García Márquez. Otro tanto puede decirse del francés François Rabelais, según deduzco de un párrafo extraído de Cien años de soledad. En el último capítulo de su obra maestra aparece un personaje, Gabriel, que tenía una sigilosa novia llamada Mercedes. Formaba parte -dice el narrador- de un grupo de jóvenes intelectuales

  20. Style and rate of quaternary deformation of the Hosgri Fault Zone, offshore south-central coastal California (United States)

    Hanson, Kathryn L.; Lettis, William R.; McLaren, Marcia; Savage, William U.; Hall, N. Timothy; Keller, Mararget A.


    The Hosgri Fault Zone is the southernmost component of a complex system of right-slip faults in south-central coastal California that includes the San Gregorio, Sur, and San Simeon Faults. We have characterized the contemporary style of faulting along the zone on the basis of an integrated analysis of a broad spectrum of data, including shallow high-resolution and deep penetration seismic reflection data; geologic and geomorphic data along the Hosgri and San Simeon Fault Zones and the intervening San Simeon/Hosgri pull-apart basin; the distribution and nature of near-coast seismicity; regional tectonic kinematics; and comparison of the Hosgri Fault Zone with worldwide strike-slip, oblique-slip, and reverse-slip fault zones. These data show that the modern Hosgri Fault Zone is a convergent right-slip (transpressional) fault having a late Quaternary slip rate of 1 to 3 mm/yr. Evidence supporting predominantly strike-slip deformation includes (1) a long, narrow, linear zone of faulting and associated deformation; (2) the presence of asymmetric flower structures; (3) kinematically consistent localized extensional and compressional deformation at releasing and restraining bends or steps, respectively, in the fault zone; (4) changes in the sense and magnitude of vertical separation both along trend of the fault zone and vertically within the fault zone; (5) strike-slip focal mechanisms along the fault trace; (6) a distribution of seismicity that delineates a high-angle fault extending through the seismogenic crust; (7) high ratios of lateral to vertical slip along the fault zone; and (8) the separation by the fault of two tectonic domains (offshore Santa Maria Basin, onshore Los Osos domain) that are undergoing contrasting styles of deformation and orientations of crustal shortening. The convergent component of slip is evidenced by the deformation of the early-late Pliocene unconformity. In characterizing the style of faulting along the Hosgri Fault Zone, we assessed

  1. California State Waters Map Series: offshore of San Gregorio, California (United States)

    Cochrane, Guy R.; Dartnell, Peter; Greene, H. Gary; Watt, Janet T.; Golden, Nadine E.; Endris, Charles A.; Phillips, Eleyne L.; Hartwell, Stephen R.; Johnson, Samuel Y.; Kvitek, Rikk G.; Erdey, Mercedes D.; Bretz, Carrie K.; Manson, Michael W.; Sliter, Ray W.; Ross, Stephanie L.; Dieter, Bryan E.; Chin, John L.; Cochran, Susan A.; Cochrane, Guy R.; Cochran, Susan A.


    In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within the 3-nautical-mile limit of California's State Waters. The CSMP approach is to create highly detailed seafloor maps through collection, integration, interpretation, and visualization of swath sonar data, acoustic backscatter, seafloor video, seafloor photography, high-resolution seismic-reflection profiles, and bottom-sediment sampling data. The map products display seafloor morphology and character, identify potential marine benthic habitats, and illustrate both the surficial seafloor geology and shallow (to about 100 m) subsurface geology. The Offshore of San Gregorio map area is located in northern California, on the Pacific coast of the San Francisco Peninsula about 50 kilometers south of the Golden Gate. The map area lies offshore of the Santa Cruz Mountains, part of the northwest-trending Coast Ranges that run roughly parallel to the San Andreas Fault Zone. The Santa Cruz Mountains lie between the San Andreas Fault Zone and the San Gregorio Fault system. The nearest significant onshore cultural centers in the map area are San Gregorio and Pescadero, both unincorporated communities with populations well under 1,000. Both communities are situated inland of state beaches that share their names. No harbor facilities are within the Offshore of San Gregorio map area. The hilly coastal area is virtually undeveloped grazing land for sheep and cattle. The coastal geomorphology is controlled by late Pleistocene and Holocene slip in the San Gregorio Fault system. A westward bend in the San Andreas Fault Zone, southeast of the map area, coupled with right-lateral movement along the San Gregorio Fault system have caused regional folding and uplift. The coastal area consists of high coastal bluffs and vertical sea cliffs. Coastal promontories in

  2. SAN CARLOS APACHE PAPERS. (United States)



  3. San Carlo Operaen

    DEFF Research Database (Denmark)

    Holm, Bent


    En indplacering af operahuset San Carlo i en kulturhistorisk repræsentationskontekst med særligt henblik på begrebet napolalità.......En indplacering af operahuset San Carlo i en kulturhistorisk repræsentationskontekst med særligt henblik på begrebet napolalità....

  4. Gabriele Veneziano : "La physique moderne doit dépasser Einstein et explorer l'avant-Big Bang"

    CERN Multimedia

    Deschamps, Pascale-Marie


    Interview with Gabriele Veneziana: in search of the infinitesimally small and infinitesimally large, the Standard Model of elementary particles and Einstein's general relativity are not enough to explain the universe. The "visible" matter predicted by the Standard Model represents only 5% of the energy of the Universe, the dark "invisible" matter constitutes 25 to 30%. Therefore 65 to 70 % of something else is missing. String theory calls into question all that one knows of the primordial universe formulated by the Standard Model (4 pages)


    Directory of Open Access Journals (Sweden)



    Full Text Available Os romances As vidas de Dubin, de escritor norte-americano Bernard Malamud,e O general em seu labirinto, do escritor latino-americano Gabriel GarcíaMárquez, são analisados sobre o mesmo eixo temático que diz respeito àconflitante tentativa das personagens principais dessas narrativas em constituiruma identidade. A hipótese geradora dessa leitura é de que, ao construir umaidentidade individual, essas personagens buscam (reconstruir uma identidadenacional. Os referenciais teóricos advindos dos estudos pós-coloniais são abase para a análise comparativa dessas duas narrativas.

  6. Testimonio del historiador José Gabriel Vazeilles : Trabajadores, política y cambios en la Argentina de 2004



    El historiador José Gabriel Vazeilles brinda su mirada en el Día de los Trabajadores, 1º de mayo de 2004, sobre la situación actual, los recientes cambios políticos luego de la crisis argentina del año 2001; describe etapas dentro del sistema capitalista dependiente en el que el país se desarrolla y caracteriza el gobierno naciente del presidente Néstor Kirchner. Este testimonio sale al aire y se registra del programa Todos los Climas, conducido por Cintia Rodil y Mario Arteca con producción ...

  7. Cien años de soledad : Novela de Gabriel García Márquez

    Directory of Open Access Journals (Sweden)

    Germán Vargas


    Full Text Available Cien años de soledad, la novela de Gabriel García Márquez publicada por la Editorial Sudamericana de Buenos Aires, es la culminación y la conclusión definitiva del ciclo de Macondo y significa el tránsito hacia nuevos ternas y nuevos personajes. Macondo, el pueblo costeño de sol abrumador y calor inaguantable y de amplias calles arenosas, es la Aracataca natal del autor, un poblado magdalenense que vivió mejores épocas en los años del auge del cultivo del banano.

  8. La religión del amor en la última narrativa de Gabriel García Márquez


    Giobanna Patricia Buenahora Molina


    Gabriel García Márquez es un escritor con una profunda vocación religiosa, tal y como ha demostrado en su ya dilatada trayectoria novelística. Sus obras están llenas de mitos bíblicos, personajes legendarios, criaturas procedentes del Antiguo Testamento, vendedores de milagros, santos, predicadores de pelaje variopinto, sermoneros profesionales, ángeles destronados, sábanas santas, mujeres que suben al cielo en estado virginal, resurrecciones, etcétera. Faltaba por tanto uno de los temas más ...

  9. CBM in 3-D: coalbed methane multicomponent 3-D reservoir characterisation study, Cedar Hill Field, San Juan Basin, New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Davis, T.; Shuck, E.; Benson, R. [Colorado School of Mines, Golden, CO (United States). Dept. of Geophysics


    The article explains how 3-D multicomponent seismic surveys could substantially improve the production and development of fractured coalbed methane reservoirs. The technique has been used by Northern Geophysical for the detection of geological faults and zones of enhanced fracture permeability proximal to the fault in the western side of the Cedar Hill field in San Juan Basin, NM, USA. 3 figs.

  10. Probability of rupture of multiple fault segments (United States)

    Andrews, D.J.; Schwerer, E.


    Fault segments identified from geologic and historic evidence have sometimes been adopted as features limiting the likely extends of earthquake ruptures. There is no doubt that individual segments can sometimes join together to produce larger earthquakes. This work is a trial of an objective method to determine the probability of multisegment ruptures. The frequency of occurrence of events on all conjectured combinations of adjacent segments in northern California is found by fitting to both geologic slip rates and to an assumed distribution of event sizes for the region as a whole. Uncertainty in the shape of the distribution near the maximum magnitude has a large effect on the solution. Frequencies of individual events cannot be determined, but it is possible to find a set of frequencies to fit a model closely. A robust conclusion for the San Francisco Bay region is that large multisegment events occur on the San Andreas and San Gregorio faults, but single-segment events predominate on the extended Hayward and Calaveras strands of segments.

  11. Fault Tolerant Feedback Control

    DEFF Research Database (Denmark)

    Stoustrup, Jakob; Niemann, H.


    An architecture for fault tolerant feedback controllers based on the Youla parameterization is suggested. It is shown that the Youla parameterization will give a residual vector directly in connection with the fault diagnosis part of the fault tolerant feedback controller. It turns out...... that there is a separation be-tween the feedback controller and the fault tolerant part. The closed loop feedback properties are handled by the nominal feedback controller and the fault tolerant part is handled by the design of the Youla parameter. The design of the fault tolerant part will not affect the design...... of the nominal feedback con-troller....

  12. Estimating earthquake-rupture rates on a fault or fault system (United States)

    Field, E.H.; Page, M.T.


    Previous approaches used to determine the rates of different earthquakes on a fault have made assumptions regarding segmentation, have been difficult to document and reproduce, and have lacked the ability to satisfy all available data constraints. We present a relatively objective and reproducible inverse methodology for determining the rate of different ruptures on a fault or fault system. The data used in the inversion include slip rate, event rate, and other constraints such as an optional a priori magnitude-frequency distribution. We demonstrate our methodology by solving for the long-term rate of ruptures on the southern San Andreas fault. Our results imply that a Gutenberg-Richter distribution is consistent with the data available for this fault; however, more work is needed to test the robustness of this assertion. More importantly, the methodology is extensible to an entire fault system (thereby including multifault ruptures) and can be used to quantify the relative benefits of collecting additional paleoseismic data at different sites.

  13. New High-Resolution 3D Seismic Imagery of Deformation and Fault Architecture Along Newport-Inglewood/Rose Canyon Fault in the Inner California Borderlands (United States)

    Holmes, J. J.; Bormann, J. M.; Driscoll, N. W.; Kent, G.; Harding, A. J.; Wesnousky, S. G.


    The tectonic deformation and geomorphology of the Inner California Borderlands (ICB) records the transition from a convergent plate margin to a predominantly dextral strike-slip system. Geodetic measurements of plate boundary deformation onshore indicate that approximately 15%, or 6-8 mm/yr, of the total Pacific-North American relative plate motion is accommodated by faults offshore. The largest near-shore fault system, the Newport-Inglewood/Rose Canyon (NI/RC) fault complex, has a Holocene slip rate estimate of 1.5-2.0 mm/yr, according to onshore trenching, and current models suggest the potential to produce an Mw 7.0+ earthquake. The fault zone extends approximately 120 km, initiating from the south near downtown San Diego and striking northwards with a constraining bend north of Mt. Soledad in La Jolla and continuing northwestward along the continental shelf, eventually stepping onshore at Newport Beach, California. In late 2013, we completed the first high-resolution 3D seismic survey (3.125 m bins) of the NI/RC fault offshore of San Onofre as part of the Southern California Regional Fault Mapping project. We present new constraints on fault geometry and segmentation of the fault system that may play a role in limiting the extent of future earthquake ruptures. In addition, slip rate estimates using piercing points such as offset channels will be explored. These new observations will allow us to investigate recent deformation and strain transfer along the NI/RC fault system.

  14. What is a Society? Gabriel Tarde’s Philosophy of Appropriations

    Directory of Open Access Journals (Sweden)

    José García Molina


    Full Text Available Hace apenas una década Gabriel Tarde era desconocido para la mayoría de profesores e investigadores de las ciencias sociales o la filosofía. Asistimos, en el nuevo milenio, a una multiplicación exponencial de las referencias a su pensamiento y obra. “El regreso de Tarde” propicia diferentes preguntas que obligan a análisis alejados de fáciles hagiografías, de abusivas apropiaciones o rechazos y de otros peligros comunes a toda exhumación de un corpus enterrado. Por todo ello, el presente artículo persigue dos objetivos. Primero, presentar esquemáticamente el sistema filosófico de Tarde. Su “ontologie de l’avoir”, la otra metafísica, propia de ciertos pensadores europeos de finales del siglo XIX, desemboca en un vitalismo que se opone a cualquier totalización o clausura física, biológica o social. La neo-monadología tardeana y sus derivaciones sociológicas se deducen de ciertas vías metafísicas sobre la naturaleza del universo, de los elementos que lo componen y de la perpetua acción que ejercen unos sobre otros. Ontología del tener, sostenida en un psicomorfismo y sociomorfismo universal, que sustituye a la tradicional ontología del ser y presenta una original forma de cartografía de la constitución de las sociedades. En segundo lugar, señalaremos algunas intuiciones acerca de los usos de Tarde. Su vuelta puede ser pensada como moda que rescata y consume “antiguos autores menores” alegando el agotamiento de los paradigmas hegemónicos clásicos; pero también como política de memoria y restitución de saberes sometidos/olvidados por el concurso de lógicas más poderosas. La pregunta más urgente es a nuestro juicio: ¿para qué sirve el renacido Tarde? Apuntamos apenas amagos de respuesta. Lejos de cerrar las preguntas pretendemos reabrirlas en la dirección de un trabajo más amplio y detenido que ya está en marcha.

  15. Fault detection and isolation in systems with parametric faults

    DEFF Research Database (Denmark)

    Stoustrup, Jakob; Niemann, Hans Henrik


    The problem of fault detection and isolation of parametric faults is considered in this paper. A fault detection problem based on parametric faults are associated with internal parameter variations in the dynamical system. A fault detection and isolation method for parametric faults is formulated...

  16. Iowa Bedrock Faults (United States)

    Iowa State University GIS Support and Research Facility — This fault coverage locates and identifies all currently known/interpreted fault zones in Iowa, that demonstrate offset of geologic units in exposure or subsurface...

  17. null Faults, null Images (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Through the study of faults and their effects, much can be learned about the size and recurrence intervals of earthquakes. Faults also teach us about crustal...

  18. Criticism of the narrative works of Gabriel García Márquez in Serbian literary magazines

    Directory of Open Access Journals (Sweden)

    Vesna Z Dickov


    Full Text Available Since the Serbian translation of the novel One Hundred Years of Solitude appeared in 1973, the narrative works of Gabriel García Márquez have continued to interest Serbian critics. After an initial break with readers’ expectations, criticism of the magical realism and other aspects of the prose of García Márquez soon (from 1975 began to develop in Serbia, and intensified in the later seventies of the last century as well as at the end of the first decade of the 21st century, when a series of essays, reviews, articles and studies were published on the novels, stories, reportages, essays and memoirs of García Márquez, including his journalistic work. Half of the texts written by Serbian critics for literary journals came out in Belgrade, especially in Književna reč (The Literary Word, the most prolific authors being Radomir Ivanović and Branko Anđić. The judgment of Serbian critics, presented in the literary magazines, which was based frequently on the latest advances in narratology, genealogy and comparative literature, has contributed greatly to the shaping of readers’ expectations not only regarding Gabriel García Márquez’s prose but also new Latin American narrative in general.

  19. Gabriel Miró, Del vivir (1904 y su ruptura con la convención novelesca

    Directory of Open Access Journals (Sweden)

    Lozano Marco, Miguel Ángel


    Full Text Available I'm trying to analyze, with our new criteria, Del vivir, the first work recognized by Gabriel Miró as his, after repudiating his two previous novels. The proposal, documented, of the writing date allows venturing one hypothesis: the influence that Antonio Azorin could exercise over the young Miró. The novelistic model found in the Jose Martinez Ruiz work teaches him to disregard the argument in order to attend to the life, and allows him to conceive a character (whom we only know that his name is Sigüenza without neither physical features nor story, in order to emphasize its substance and moral nature.Pretendo analizar, con nuevos criterios, Del vivir, la primera obra que Gabriel Miró reconoce como suya después de repudiar sus dos novelas anteriores. La propuesta, documentada, de la fecha de escritura permite aventurar una hipótesis: la influencia que Antonio Azorín pudo ejercer sobre el joven Miró. El modelo novelístico que encuentra en la obra de José Martínez Ruiz le enseña a prescindir del argumento para atender a la vida, y le permite concebir un personaje (del que sólo sabemos que se llama Sigüenza sin rasgos físicos y sin historia, para destacar su sustancia y carácter moral.

  20. Spatio-temporal mapping of plate boundary faults in California using geodetic imaging (United States)

    Donnellan, Andrea; Arrowsmith, Ramon; DeLong, Stephen B.


    The Pacific–North American plate boundary in California is composed of a 400-km-wide network of faults and zones of distributed deformation. Earthquakes, even large ones, can occur along individual or combinations of faults within the larger plate boundary system. While research often focuses on the primary and secondary faults, holistic study of the plate boundary is required to answer several fundamental questions. How do plate boundary motions partition across California faults? How do faults within the plate boundary interact during earthquakes? What fraction of strain accumulation is relieved aseismically and does this provide limits on fault rupture propagation? Geodetic imaging, broadly defined as measurement of crustal deformation and topography of the Earth’s surface, enables assessment of topographic characteristics and the spatio-temporal behavior of the Earth’s crust. We focus here on crustal deformation observed with continuous Global Positioning System (GPS) data and Interferometric Synthetic Aperture Radar (InSAR) from NASA’s airborne UAVSAR platform, and on high-resolution topography acquired from lidar and Structure from Motion (SfM) methods. Combined, these measurements are used to identify active structures, past ruptures, transient motions, and distribution of deformation. The observations inform estimates of the mechanical and geometric properties of faults. We discuss five areas in California as examples of different fault behavior, fault maturity and times within the earthquake cycle: the M6.0 2014 South Napa earthquake rupture, the San Jacinto fault, the creeping and locked Carrizo sections of the San Andreas fault, the Landers rupture in the Eastern California Shear Zone, and the convergence of the Eastern California Shear Zone and San Andreas fault in southern California. These examples indicate that distribution of crustal deformation can be measured using interferometric synthetic aperture radar (InSAR), Global Navigation

  1. Four-Dimensional Transform Fault Processes: Evolution of Step-Overs and Bends at Different Scales (United States)

    Wakabayashi, J.; Hengesh, J. V.; Sawyer, T. L.


    Many bends or step-overs along strike-slip faults may evolve by propagation of the strike-slip fault on one side of the structure and progressive shut off of the strike-slip fault on the other side. In such a process, new transverse structures form, old ones become inactive, and the bend or step-over region migrates with respect to materials that were once affected by it. This process is the progressive asymmetric development of a strike-slip duplex. Consequences of this type of step-over evolution include the following: 1. the amount of vertical structural relief in restraining step-over or bend regions is less than expected (apatite fission track ages associated with these step-over regions predate the strike-slip faulting); 2. pull-apart basin deposits are left outside of the active basin and commonly subjected to contractional deformation and uplift; and 3. local basin inversion occurs that is not linked to regional plate motion changes. This type of evolution of step-overs and bends may be common along the dextral San Andreas fault system of California. Examples of pull-apart basin deposits related to migrating releasing () bends or step-overs are the Plio-Pleistocene Merced Formation (tens of km along strike), the Pleistocene Olema Creek Formation (several km along strike) along the San Andreas fault in the San Francisco Bay area, and an inverted colluvial graben exposed in a paleoseismic trench across the Miller Creek fault (meters to tens of meters along strike) in the eastern San Francisco Bay area. Examples of migrating restraining bends or step-overs include the transfer of slip from the Calaveras to Hayward fault in the Mission Peak area, and the Greenville to the Concord fault at Mount Diablo (10 km or more along strike), the offshore San Gregorio fold and thrust belt (40 km along strike), and the progressive transfer of slip from the eastern faults of the San Andreas system to the migrating Mendocino triple junction (over 150 km along strike). Another

  2. Performance based fault diagnosis

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik


    Different aspects of fault detection and fault isolation in closed-loop systems are considered. It is shown that using the standard setup known from feedback control, it is possible to formulate fault diagnosis problems based on a performance index in this general standard setup. It is also shown...

  3. Fault tolerant computing systems

    CERN Document Server

    Randell, B


    Fault tolerance involves the provision of strategies for error detection, damage assessment, fault treatment and error recovery. A survey is given of the different sorts of strategies used in highly reliable computing systems, together with an outline of recent research on the problems of providing fault tolerance in parallel and distributed computing systems. (15 refs).

  4. Fault Tolerant Control Systems

    DEFF Research Database (Denmark)

    Bøgh, S. A.

    was to avoid a total close-down in case of the most likely faults. The second was a fault tolerant attitude control system for a micro satellite where the operation of the system is mission critical. The purpose was to avoid hazardous effects from faults and maintain operation if possible. A method...

  5. Offset of latest pleistocene shoreface reveals slip rate on the Hosgri strike-slip fault, offshore central California (United States)

    Johnson, Samuel Y.; Hartwell, Stephen R.; Dartnell, Peter


    The Hosgri fault is the southern part of the regional Hosgri–San Gregorio dextral strike‐slip fault system, which extends primarily in the offshore for about 400 km in central California. Between Morro Bay and San Simeon, high‐resolution multibeam bathymetry reveals that the eastern strand of the Hosgri fault is crossed by an ∼265  m wide slope interpreted as the shoreface of a latest Pleistocene sand spit. This sand spit crossed an embayment and connected a western fault‐bounded bedrock peninsula and an eastern bedrock highland, a paleogeography resembling modern coastal geomorphology along the San Andreas fault. Detailed analysis of the relict shoreface with slope profiles and slope maps indicates a lateral slip rate of 2.6±0.9  mm/yr, considered a minimum rate for the Hosgri given the presence of an active western strand. This slip rate indicates that the Hosgri system takes up the largest share of the strike‐slip fault budget and is the most active strike‐slip fault west of the San Andreas fault in central California. This result further demonstrates the value and potential of high‐resolution bathymetry in characterization of active offshore faults.

  6. Additional Shear Resistance from Fault Roughness and its Role in Determining Stress Levels on Mature and Immature Faults (United States)

    Fang, Z.; Dunham, E. M.


    The majority of crustal faults host earthquakes at τ /(σ - p) ˜ 0.6 (τ is shear stress and (σ - p) is the effective normal stress), while mature plate-boundary faults, like the San Andreas Fault (SAF), host earthquakes at τ /(σ - p) ˜ 0.2. A leading explaination for the weakness of the SAF is the existence of dynamic weakening, which, on planar faults, allows self-sustaining rupture at a critical background stress level τ pulse/(σ - p) ˜ 0.25. Provided that dynamic weakening also occurs on less mature faults, which seems likely given the ubiquity of dynamic weakening in high velocity friction experiments, the stress levels on the less mature faults are puzzling. We offer a self-consistent explanation for the relatively high stress levels on immature faults that is compatible with dynamic weakening and low coseismic strength of all faults. Our explanation is that increased geometrical complexity of less mature faults introduces an additional resistance to slip that must be overcome in order for the fault to host ruptures. Lab and field observations suggest that faults are self-similar surfaces with amplitude-to-wavelength ratio α in the range of 10-3 (mature faults) to 10-2 (immature faults). Slip on such faults induces huge stress perturbations near the fault. Projection of these stress perturbations back onto the rough fault surface results in an additional shear resistance to slip, the 'roughness drag' τ drag, that exists even if the fault is frictionless. A perturbation analysis, accurate to second order in α , shows that τ drag = 8π 3 α 2[G/(1-&nu)][Δ u/λ min], in which G is shear modulus, ν is the Poisson's ratio, Δ u is the amount of slip, and λ min is the minimum wavelength of roughness. Estimates indicate that τ drag is negligible on mature faults (α ˜ 10-3) but can become substantial on immature faults (α ˜ 10-2). We expect that the finite strength of the off-fault material ultimately bounds τ drag to a value determined by the

  7. Strain accumulation across the Coast Ranges at the latitude of San Francisco, 1994-2000 (United States)

    Savage, J. C.; Gan, W.; Prescott, W. H.; Svarc, J. L.


    A 66-monument geodetic array spanning the Coast Ranges near San Francisco has been surveyed more than eight times by GPS between late 1993 and early 2001. The measured horizontal velocities of the monuments are well represented by uniform, right-lateral, simple shear parallel to N29°W. (The local strike of the San Andreas Fault is ˜N34°W.) The observed areal dilatation rate of 6.9 ± 10.0 nstrain yr-1 (quoted uncertainty is one standard deviation and extension is reckoned positive) is not significantly different from zero, which implies that the observed strain accumulation could be released by strike-slip faulting alone. Our results are consistent with the slip rates assigned by the [2003] to the principal faults (San Gregorio, San Andreas, Hayward-Rodgers Creek, Calaveras-Concord-Green Valley, and Greenville Faults) cutting across the GPS array. The vector sum of those slip rates is 39.8 ± 2.6 mm yr-1 N29.8°W ± 2.8°, whereas the motion across the GPS array (breadth 120 km) inferred from the uniform strain rate approximation is 38.7 ± 1.2 mm yr-1 N29.0°W ± 0.9° right-lateral shear and 0.4 ± 0.9 mm yr-1 N61°E ± 0.9° extension. We interpret the near coincidence of these rates and the absence of significant accumulation of areal dilatation to imply that right-lateral slip on the principal faults can release the accumulating strain; major strain release on reverse faults subparallel to the San Andreas Fault within the Coast Ranges is not required.

  8. Information Based Fault Diagnosis

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik; Poulsen, Niels Kjølstad


    Fault detection and isolation, (FDI) of parametric faults in dynamic systems will be considered in this paper. An active fault diagnosis (AFD) approach is applied. The fault diagnosis will be investigated with respect to different information levels from the external inputs to the systems....... These inputs are disturbance inputs, reference inputs and auxilary inputs. The diagnosis of the system is derived by an evaluation of the signature from the inputs in the residual outputs. The changes of the signatures form the external inputs are used for detection and isolation of the parametric faults....

  9. Fault-Tree Compiler (United States)

    Butler, Ricky W.; Boerschlein, David P.


    Fault-Tree Compiler (FTC) program, is software tool used to calculate probability of top event in fault tree. Gates of five different types allowed in fault tree: AND, OR, EXCLUSIVE OR, INVERT, and M OF N. High-level input language easy to understand and use. In addition, program supports hierarchical fault-tree definition feature, which simplifies tree-description process and reduces execution time. Set of programs created forming basis for reliability-analysis workstation: SURE, ASSIST, PAWS/STEM, and FTC fault-tree tool (LAR-14586). Written in PASCAL, ANSI-compliant C language, and FORTRAN 77. Other versions available upon request.

  10. Dual-system Tectonics of the San Luis Range and Vicinity, Coastal Central California (United States)

    Hamilton, D. H.


    The M 6.5 "San Simeon" earthquake of December 22, 2003, occurred beneath the Santa Lucia Range in coastal central California, and resulted in around $250,000,000 property damage and two deaths from collapse of an historic building in the town of Paso Robles, located 40 km from the epicenter. The earthquake and more than 10,000 aftershocks were well recorded by nearby seismographs, which permitted detailed analysis of the event (eg: McLaren et al., 2008). This analysis facilitated evaluation of the hazard of the occurrence of a similar event in the nearby San Luis Range, located along the coast west of the city of San Luis Obispo some 55 km south of the San Simeon epicenter. The future occurrence of earthquakes analogous to the 2003 event in this area had been proposed in the late 1960’s (eg: Benioff and Smith, 1967; Richter, 1969) but the apparent hazard of such occurrences came to be overshadowed by the discovery of the “Hosgri” strike slip fault passing close to the area in the offshore. However data accumulated since the early 1970’s clearly demonstrate the hazard as being partitioned between nearby earthquakes of strike slip origin, and underlying earthquakes of thrust origin analogous to that of the 2003 San Simeon earthquake. And for the onshore San Luis Range area, an underlying actively seismogenic thrust wedge appears to provide the maximum potential seismic ground motion; exceeding that potentially resulting from large events on nearby strike slip faults of the San Simeon-Hosgri system, for onshore sites. Understanding and documentation of the geology, geomorphology, tectonics and seismogenesis of the San Luis Range and vicinity has recently experienced a quantum improvement as both new and accumulated data have been analysed. An integrated interpretation of all available data now clearly shows that a dual “side by side” system of active tectonics exists in the region. Essentially the most obvious evidence for this is seen simply in the

  11. Estimating surface faulting impacts from the shakeout scenario earthquake (United States)

    Treiman, J.A.; Pontib, D.J.


    An earthquake scenario, based on a kinematic rupture model, has been prepared for a Mw 7.8 earthquake on the southern San Andreas Fault. The rupture distribution, in the context of other historic large earthquakes, is judged reasonable for the purposes of this scenario. This model is used as the basis for generating a surface rupture map and for assessing potential direct impacts on lifelines and other infrastructure. Modeling the surface rupture involves identifying fault traces on which to place the rupture, assigning slip values to the fault traces, and characterizing the specific displacements that would occur to each lifeline impacted by the rupture. Different approaches were required to address variable slip distribution in response to a variety of fault patterns. Our results, involving judgment and experience, represent one plausible outcome and are not predictive because of the variable nature of surface rupture. ?? 2011, Earthquake Engineering Research Institute.

  12. Space Geodetic Imaging of Earthquake Potential in the San Francisco Bay Area (United States)

    Bürgmann, R.; Funning, G. J.; Ferretti, A.; Novali, F.


    Active crustal deformation in the San Francisco Bay Area includes contributions from elastic strain buildup across major faults and aseismic fault creep relieving a small portion of the plate tectonic fault slip budget. Increasingly precise and dense measurements of surface motions using GPS and InSAR satellite data provide valuable information on the distribution and rates of surface deformation. In the Eastern Bay Area, the Hayward, Calaveras and Concord faults are known to be source areas of moderate to large earthquakes, but also exhibit significant aseismic fault creep. Modeling of space geodetic data collected along the Hayward fault over > 10-year period allows for the determination of the distribution of currently locked asperities and creeping portions of the fault zone. Inversions of these data reveal a locked zone at depth which has built up a slip deficit since the 1868 Hayward fault rupture that is large enough to produce a M > 6.7 earthquake. The inferred slip rates along the creeping portions of the Hayward fault are significantly less than the long-term slip rate, and thus a substantial slip deficit is accumulating there as well. However, it is possible that the creeping portions of the East Bay faults will catch up most of their slip deficit by accelerated postseismic creep following large ruptures of the currently locked asperities. The kinematic locking models help inform dynamic rupture scenarios and ground motion simulations of major earthquakes along the Hayward fault (Aagaard et al., 2008 Fall AGU).

  13. Rethinking Inclusion as Mundanity: Insights from an Experimental Bilingual Kindergarten Classe LSF at École Maternelle Gabriel Sajus in France (United States)

    Valente, Joseph Michael


    In this article, I demonstrate how hybrid language practices allow for children to make use of their full linguistic repertoire in negotiating the social and communicative demands of the school environment (Axelrod in "Early Child Educ J," p 1-8, 2014). I argue that the unusual case of classe LSF and École Maternelle Gabriel Sajus…

  14. Gabriel Sánchez Espinosa, ed., Pruebas de imprenta. Estudios sobre la cultura editorial del libro en la España moderna y contemporánea

    Directory of Open Access Journals (Sweden)

    Alejandra Ulla Lorenzo


    Full Text Available Reseña de Gabriel Sánchez Espinosa, ed., Pruebas de imprenta. Estudios sobre la cultura editorial del libro en la España moderna y contemporánea, Iberoamericana / Vervuert, Madrid / Frankfurt am Main, 2013, 284 pp. ISBN: 9788484897637 (Iberoamericana, 9783954873074 (Vervuert.

  15. Gabriel Sánchez Espinosa, ed., Pruebas de imprenta. Estudios sobre la cultura editorial del libro en la España moderna y contemporánea


    Alejandra Ulla Lorenzo


    Reseña de Gabriel Sánchez Espinosa, ed., Pruebas de imprenta. Estudios sobre la cultura editorial del libro en la España moderna y contemporánea, Iberoamericana / Vervuert, Madrid / Frankfurt am Main, 2013, 284 pp. ISBN: 9788484897637 (Iberoamericana), 9783954873074 (Vervuert).

  16. Seismic velocity structure and seismotectonics of the eastern San Francisco Bay region, California (United States)

    Hardebeck, J.L.; Michael, A.J.; Brocher, T.M.


    The Hayward Fault System is considered the most likely fault system in the San Francisco Bay Area, California, to produce a major earthquake in the next 30 years. To better understand this fault system, we use microseismicity to study its structure and kinematics. We present a new 3D seismic-velocity model for the eastern San Francisco Bay region, using microseismicity and controlled sources, which reveals a ???10% velocity contrast across the Hayward fault in the upper 10 km, with higher velocity in the Franciscan Complex to the west relative to the Great Valley Sequence to the east. This contrast is imaged more sharply in our localized model than in previous regional-scale models. Thick Cenozoic sedimentary basins, such as the Livermore basin, which may experience particularly strong shaking during an earthquake, are imaged in the model. The accurate earthquake locations and focal mechanisms obtained by using the 3D model allow us to study fault complexity and its implications for seismic hazard. The relocated hypocenters along the Hayward Fault in general are consistent with a near-vertical or steeply east-dipping fault zone. The southern Hayward fault merges smoothly with the Calaveras fault at depth, suggesting that large earthquakes may rupture across both faults. The use of the 3D velocity model reveals that most earthquakes along the Hayward fault have near-vertical strike-slip focal mechanisms, consistent with the large-scale orientation and sense of slip of the fault, with no evidence for zones of complex fracturing acting as barriers to earthquake rupture.

  17. Nearly frictionless faulting by unclamping in long-term interaction models (United States)

    Parsons, T.


    In defiance of direct rock-friction observations, some transform faults appear to slide with little resistance. In this paper finite element models are used to show how strain energy is minimized by interacting faults that can cause long-term reduction in fault-normal stresses (unclamping). A model fault contained within a sheared elastic medium concentrates stress at its end points with increasing slip. If accommodating structures free up the ends, then the fault responds by rotating, lengthening, and unclamping. This concept is illustrated by a comparison between simple strike-slip faulting and a mid-ocean-ridge model with the same total transform length; calculations show that the more complex system unclapms the transforms and operates at lower energy. In another example, the overlapping San Andreas fault system in the San Francisco Bay region is modeled; this system is complicated by junctions and stepovers. A finite element model indicates that the normal stress along parts of the faults could be reduced to hydrostatic levels after ???60-100 k.y. of system-wide slip. If this process occurs in the earth, then parts of major transform fault zones could appear nearly frictionless.

  18. Estructura de la región Sierra de Guayaguas -Marayes, Provincia de San Juan y San Luis Structure of the region of Sierra de Guayaguas- Marayes, provinces of San Juan and San Luis

    Directory of Open Access Journals (Sweden)

    Carlos Gardini


    Full Text Available El sector ubicado en las serranías del Desierto -serranías occidentales de San Juan y San Luis está caracterizado pordeformaciones tectónicas neógenas del tipo thick-skinned, que afectan a núcleosde basamento cristalino como así también las secuencias sedimentariascontinentales del Triásico y Cretácico, producto de inversión tectónica de losdepocentros. Como resultado de ésto se generan pliegues por propagación defalla asociados a una sucesión de corrimientos submeridianos de inclinaciónintermedia al este. Mediante el estudio y mapeo de las diferentes estructurasen el campo, se han definido diferentes tipos de movimientos a lo largo de lossegmentos de falla analizados, asociados con movimientos transcurrentes concaracterísticas transpresivas y localmente transtensivas.The area located in the Serranias del Desierto - SierrasOccidentales of San Juan and San Luis is characterized by Neogene tectonicdeformation of thick-skinned type that affected the nuclei of crystallinebasement and the Triassic and Cretaceous continental sedimentary sequences,product of inversion tectonics of those depocenters. Because of the inversiontectonics are generated fault propagation folds, associated with a submeridianparallel succession of thrusts with middle dipping to the east. Different directionsof displacements along the analyzed fault segments are defined based on thefield study and mapping of the differents structures associated withstrike-slip movement with transpressional and locally transtensionalcharacteristics.

  19. Fault Hydrogeology Characterization for a Civil Infrastructure Project (United States)

    Sholley, M. G.; Waterman, M. K.; Attanayake, P. M.


    Planning for the construction of an 18-ft diameter water conveyance tunnel in Southern California was made additionally complex due to the tunnel alignment crossing the San Andreas Fault and a tunnel portal within an area of elevated groundwater temperatures associated with branches/splays of the Arrowhead Spring fault system. This abstract describes the investigation techniques used to characterize the hydrogeology associated with these faults and the conceptual models developed to assist with hazard mitigation during construction. From an early phase of the project it was recognized that tunneling through the San Andreas Fault posed the risk of increased groundwater inflows and therefore potentially hazardous construction conditions. Characterization of the fault focused on estimating those parameters critical to the groundwater regime. In addition to geologic mapping, several boreholes were drilled and the cores logged to determine rock mass characteristics. Prior to installing monitoring wells in these boreholes, in-situ testing to determine hydraulic conductivity was conducted with a double packer system. Analysis of the packer test results demonstrated that factors found to have significant correspondence to hydraulic conductivity were depth of test and proximity to faults. The combination of rock mass characterization, hydraulic conductivity distribution, and water levels were then used to estimate groundwater inflows to the tunnel. The inflow estimates were developed to provide a measure for determining the need to prevent and control the inflows and in identifying likely delays in construction progress. Two semi-empirical methods were used to evaluate the probable magnitude of tunnel inflow. This combination of field techniques and analyses led to a preliminary understanding of the hydrogeological characteristics of the San Andreas Fault and the potential interaction between tunnel construction and the groundwater resource. A detailed understanding of the

  20. The Quaternary Silver Creek Fault Beneath the Santa Clara Valley, California (United States)

    Wentworth, Carl M.; Williams, Robert A.; Jachens, Robert C.; Graymer, Russell W.; Stephenson, William J.


    The northwest-trending Silver Creek Fault is a 40-km-long strike-slip fault in the eastern Santa Clara Valley, California, that has exhibited different behaviors within a changing San Andreas Fault system over the past 10-15 Ma. Quaternary alluvium several hundred meters thick that buries the northern half of the Silver Creek Fault, and that has been sampled by drilling and imaged in a detailed seismic reflection profile, provides a record of the Quaternary history of the fault. We assemble evidence from areal geology, stratigraphy, paleomagnetics, ground-water hydrology, potential-field geophysics, and reflection and earthquake seismology to determine the long history of the fault in order to evaluate its current behavior. The fault formed in the Miocene more than 100 km to the southeast, as the southwestern fault in a 5-km-wide right step to the Hayward Fault, within which the 40-km-long Evergreen pull-apart basin formed. Later, this basin was obliquely cut by the newly recognized Mt. Misery Fault to form a more direct connection to the Hayward Fault, although continued growth of the basin was sufficient to accommodate at least some late Pliocene alluvium. Large offset along the San Andreas-Calaveras-Mt Misery-Hayward Faults carried the basin northwestward almost to its present position when, about 2 Ma, the fault system was reorganized. This led to near abandonment of the faults bounding the pull-apart basin in favor of right slip extending the Calaveras Fault farther north before stepping west to the Hayward Fault, as it does today. Despite these changes, the Silver Creek Fault experienced a further 200 m of dip slip in the early Quaternary, from which we infer an associated 1.6 km or so of right slip, based on the ratio of the 40-km length of the strike-slip fault to a 5-km depth of the Evergreen Basin. This dip slip ends at a mid-Quaternary unconformity, above which the upper 300 m of alluvial cover exhibits a structural sag at the fault that we interpret as

  1. The Verbal Periphrasis ir a + Infinitive in the Narrative Texts by Gabriel García Márquez

    Directory of Open Access Journals (Sweden)

    Jasmina Markič


    Full Text Available This article deals with ir a + infinitive, one of the most frequent verbal periphrases in Spanish with temporal, aspectual and modal values. It presents the analysis of narrative texts written by the Colombian writer Gabriel García Márquez and emphasizes the expression of aspectual values of imminence of the event and the expression of future with the auxiliary verb in present replacing the simple future tense in Colombian Spanish corroborating, thus, the fact that in contemporary American Spanish the expression of futurity is in the process of transfer from a synthetic to an analytic form. However, these aspectual and temporal values are not always alone, frequently they merge with other mainly modal values which confer to this periphrasis additional expressive and stylistic uses.

  2. La religión del amor en la última narrativa de Gabriel García Márquez

    Directory of Open Access Journals (Sweden)

    Giobanna Patricia Buenahora Molina


    Full Text Available Gabriel García Márquez es un escritor con una profunda vocación religiosa, tal y como ha demostrado en su ya dilatada trayectoria novelística. Sus obras están llenas de mitos bíblicos, personajes legendarios, criaturas procedentes del Antiguo Testamento, vendedores de milagros, santos, predicadores de pelaje variopinto, sermoneros profesionales, ángeles destronados, sábanas santas, mujeres que suben al cielo en estado virginal, resurrecciones, etcétera. Faltaba por tanto uno de los temas más sugerentes con los que podía tropezarse el novelista colombiano: el amor entendido como una posesión demoníaca. Este es precisamente el tema desarrollado en su novela, Del amor y otros demonios.

  3. Archeology, biology, anthropology: human evolution according to Gabriel de Mortillet and John Lubbock (France, England c. 1860-1870). (United States)

    Richard, Nathalie


    This essay compares the first evolutionary syntheses on human prehistory formulated by John Lubbock (1865) in Britain and Gabriel de Mortillet (1869-1883) in France, which both brought the question of human evolution in multidisciplinary light by borrowing tools from archaeology and ethnology rather than from biology. This paper shows that these syntheses displayed similarities as well as differences, and intends to give a comparative assessment of some intellectual and social characteristics of British and French nineteenth-century prehistoric archaeology. Lubbock's and Mortillet's syntheses relied heavily on archaeological collections but these were of different content and status. They stressed progress but they were also organized in accordance to different visions of evolution. Both were articulated from political and religious standpoints, but these standpoints were different in their content and tone.

  4. Individuo, Multitud y Cambio Social. Una aproximación a la Teoría Social de Gabriel Tarde

    Directory of Open Access Journals (Sweden)

    Sergio Tonkonoff


    Full Text Available The reading hypothesis that has guided this paper is that the work of Gabriel Tarde offers a solution to the individualism-holism alternative that still dominates the social sciences, because it tends to conceptualize the social as a third term that exceeds both the individual and society. The concept of the social here is the plural and heterogeneous field of interactions in which individuals, groups and social systems are produced, reproduced, transformed and eventually diluted. Supported by this hypothesis, and reconstructing Tarde’s conceptual syntax on the basis of it, we seek to clarify some fundamental elements of the theory of the individual outlined in various passages of his work. We also attempt to account for his ideas regarding the masses and the public, and we have proposed a re-reading of his concept of the multitude. Finally, we have tried to show some of the ethical-political consequences arising from that hypothesis and that syntax.

  5. Valences temporal tuning fork in novel One Hundred Years of Solitude by Gabriel García Márquez

    Directory of Open Access Journals (Sweden)

    Victoria BARAGA


    Full Text Available Class time is experiencing a particularly wide spread in different spheres of human manifestation: in science and art, religion and everyday life. During World Literature the time becomes subject to interest. Colombian writer Gabriel García Márquez in his creation, but especially in the novel One Hundred Years of Solitude, with great talent show time category. In the present investigation, based on the content quality of time and in the figurative image of the movement, we deduced the most representative forms of temporal in garciamarquezian novel. We disclose specifics forms of macondiene time: Time of sacred history, time of eternal return, historical time and Apocalyptic time. Originality of macondian time consists of temporal relationship between these forms, the magic of virtualization game and their updates. And while macondian prodigious time impresses just by strength revealing of the imaginary area.

  6. Rezension zu: Gabriele Winker, Nina Degele: Intersektionalität. Zur Analyse sozialer Ungleichheiten. Bielefeld: transcript Verlag 2009.

    Directory of Open Access Journals (Sweden)

    Heike Kahlert


    Full Text Available Gabriele Winker und Nina Degele legen mit ihrer kompakten Monographie erstmals für den deutschsprachigen Raum eine in Theorie, Methodologie und Empirie stringente eigenständige Abhandlung zur intersektionalen Analyse von sozialen Ungleichheiten vor. Das in jeder Hinsicht übersichtlich gestaltete Buch besticht durch eine begründete Argumentation, insbesondere in Bezug auf die theoretischen Vorentscheidungen, durch eine klare Gliederung und vor allem durch die Schritt für Schritt nachvollziehbare Umsetzung des vorgeschlagenen theoretischen und methodologischen Rahmens in die empirische Sozialforschung. Es ist daher uneingeschränkt empfehlenswert, auch für den Einsatz in der Hochschullehre, und es ist von hohem Anregungspotential für die wissenschaftliche Weiterentwicklung intersektionaler Analysen von sozialen Ungleichheiten.

  7. Gabriel de Aristizábal y su viaje a Constantinopla en el año 1784

    Directory of Open Access Journals (Sweden)

    González Castrillo, Ricardo


    Full Text Available Estudio del manuscrito 11-1051 de la Real Biblioteca de Madrid que contiene el relato de la embajada de buena voluntad enviada a Constantinopla por el monarca Carlos III en 1784, con el fin de afianzar los incipientes lazos establecidos entre España y Turquía, a raíz del Tratado de Amistad y Comercio suscrito dos años antes. La expedición, portadora de ricos presentes para el soberano otomano, estaba integrada por cuatro navios al mando de Gabriel de Aristizábal, cuya biografía se incorpora, extraída de un documento ajeno al manuscrito. La derrota seguida y las vivencias de los expedicionarios en tierras turcas, constituyen el núcleo del relato.…

  8. A poet with a painter's eye : aspects of devotion and desire in Dante Gabriel Rossetti's double works


    Vicente Henrique Brückmann Saldanha


    A presente tese visa analisar um grupo específico de poemas de Dante Gabriel Rossetti (os chamados poemas de imagens), e pinturas e gravuras de sua autoria, a fim de mostrar como a ligação entre desejo físico e devoção espiritual ilustra a expressão de Rossetti como artista, e como ela ajuda a colocá-lo como uma figura de transição no sistema literário britânico. O desejo físico e a devoção espiritual são duas forças antagônicas que ocupam um espaço predominante na literatura e na imaginação ...

  9. Seismotectonics and fault structure of the California Central Coast (United States)

    Hardebeck, Jeanne L.


    I present and interpret new earthquake relocations and focal mechanisms for the California Central Coast. The relocations improve upon catalog locations by using 3D seismic velocity models to account for lateral variations in structure and by using relative arrival times from waveform cross-correlation and double-difference methods to image seismicity features more sharply. Focal mechanisms are computed using ray tracing in the 3D velocity models. Seismicity alignments on the Hosgri fault confirm that it is vertical down to at least 12 km depth, and the focal mechanisms are consistent with right-lateral strike-slip motion on a vertical fault. A prominent, newly observed feature is an ~25 km long linear trend of seismicity running just offshore and parallel to the coastline in the region of Point Buchon, informally named the Shoreline fault. This seismicity trend is accompanied by a linear magnetic anomaly, and both the seismicity and the magnetic anomaly end where they obliquely meet the Hosgri fault. Focal mechanisms indicate that the Shoreline fault is a vertical strike-slip fault. Several seismicity lineations with vertical strike-slip mechanisms are observed in Estero Bay. Events greater than about 10 km depth in Estero Bay, however, exhibit reverse-faulting mechanisms, perhaps reflecting slip at the top of the remnant subducted slab. Strike-slip mechanisms are observed offshore along the Hosgri–San Simeon fault system and onshore along the West Huasna and Rinconada faults, while reverse mechanisms are generally confined to the region between these two systems. This suggests a model in which the reverse faulting is primarily due to restraining left-transfer of right-lateral slip.

  10. High-Resolution LiDAR Topography of the Plate-Boundary Faults in Northern California (United States)

    Prentice, C. S.; Phillips, D. A.; Furlong, K. P.; Brown, A.; Crosby, C. J.; Bevis, M.; Shrestha, R.; Sartori, M.; Brocher, T. M.; Brown, J.


    GeoEarthScope acquired more than 1500 square km of airborne LiDAR data in northern California, providing high-resolution topographic data of most of the major strike-slip faults in the region. The coverage includes the San Andreas Fault from its northern end near Shelter Cove to near Parkfield, as well as the Rodgers Creek, Maacama, Calaveras, Green Valley, Paicines, and San Gregorio Faults. The Hayward fault was added with funding provided by the US Geological Survey, the City of Berkeley, and the San Francisco Public Utilities Commission. Data coverage is typically one kilometer in width, centered on the fault. In areas of particular fault complexity the swath width was increased to two kilometers, and in selected areas swath width is as wide as five kilometers. A five-km-wide swath was flown perpendicular to the plate boundary immediately south of Cape Mendocino to capture previously unidentified faults and to understand off-fault deformation associated with the transition zone between the transform margin and the Cascadia subduction zone. The data were collected in conjunction with an intensive GPS campaign designed to improve absolute data accuracy and provide quality control. Data processing to classify the LiDAR point data by return type allows users to filter out vegetation and produce high-resolution DEMs of the ground surface beneath forested regions, revealing geomorphic features along and adjacent to the faults. These data will allow more accurate mapping of fault traces in regions where the vegetation canopy has hampered this effort in the past. In addition, the data provide the opportunity to locate potential sites for detailed paleoseismic studies aimed at providing slip rates and event chronologies. The GeoEarthScope LiDAR data will be made available via an interactive data distribution and processing workflow currently under development.

  11. Coefficient of Variation Estimates for the Plate Boundary Fault System of California (United States)

    Biasi, G. P.; Scharer, K. M.


    The number of high-quality paleoseismic records on major strike-slip faults of California has increased in recent years to the point that patterns in earthquake recurrence are emerging. The degree of predictability in time intervals between ground-rupturing earthquakes can be measured by the CoV (coefficient of variation). The CoV approximately normalizes for mean recurrence, and is thus useful to isolate the temporal variability of earthquake records. CoV estimates are themselves uncertain because input dates are actually probability distributions and because paleoseismic records are short and not necessarily representative samples from the underlying recurrence distribution. Radiocarbon dating uncertainty can be incorporated by sampling from event PDFs and compiling sample CoV estimates. Uncertainty due to the brevity of the site event record is larger, and neglect of it can lead to improbable estimates. Long records are now available on the San Andreas and San Jacinto faults in Southern California, and the San Andreas and Hayward faults in northern California. These faults accommodate most of the Pacific-North American relative plate motion in their respective regions. CoV estimates from sites with 8 or more events cluster around 0.63, but are as low as 0.4 for the southern Hayward fault. Sites with fewer events give similar estimates, though with lower resolution. The one prominent outlier, Burro Flats, with a CoV near 1.0, is in a region of severe fault complexity and rapid fault-normal compression. Quasi-periodic recurrence is emerging as a general property for these plate boundary faults. Some individual site records allow that, at low probabilities, recurrence could be random in time. When the ensemble is considered together, however, it is improbable that we would see the observed degree of agreement among boundary fault paleoseismic records; the more likely explanation is that quasi-periodic recurrence is a real property of the boundary fault system.

  12. Fault Length Vs Fault Displacement Evaluation In The Case Of Cerro Prieto Pull-Apart Basin (Baja California, Mexico) Subsidence (United States)

    Glowacka, E.; Sarychikhina, O.; Nava Pichardo, F. A.; Farfan, F.; Garcia Arthur, M. A.; Orozco, L.; Brassea, J.


    The Cerro Prieto pull-apart basin is located in the southern part of San Andreas Fault system, and is characterized by high seismicity, recent volcanism, tectonic deformation and hydrothermal activity (Lomnitz et al, 1970; Elders et al., 1984; Suárez-Vidal et al., 2008). Since the Cerro Prieto geothermal field production started, in 1973, significant subsidence increase was observed (Glowacka and Nava, 1996, Glowacka et al., 1999), and a relation between fluid extraction rate and subsidence rate has been suggested (op. cit.). Analysis of existing deformation data (Glowacka et al., 1999, 2005, Sarychikhina 2011) points to the fact that, although the extraction changes influence the subsidence rate, the tectonic faults control the spatial extent of the observed subsidence. Tectonic faults act as water barriers in the direction perpendicular to the fault, and/or separate regions with different compaction, and as effect the significant part of the subsidence is released as vertical displacement on the ground surface along fault rupture. These faults ruptures cause damages to roads and irrigation canals and water leakage. Since 1996, a network of geotechnical instruments has operated in the Mexicali Valley, for continuous recording of deformation phenomena. To date, the network (REDECVAM: Mexicali Valley Crustal Strain Measurement Array) includes two crackmeters and eight tiltmeters installed on, or very close to, the main faults; all instruments have sampling intervals in the 1 to 20 minutes range. Additionally, there are benchmarks for measuring vertical fault displacements for which readings are recorded every 3 months. Since the crackmeter measures vertical displacement on the fault at one place only, the question appears: can we use the crackmeter data to evaluate how long is the lenth of the fractured fault, and how quickly it grows, so we can know where we can expect fractures in the canals or roads? We used the Wells and Coppersmith (1994) relations between

  13. The Cenozoic evolution of the San Joaquin Valley, California (United States)

    Bartow, J. Alan


    The San Joaquin Valley, which is the southern part of the 700-km-long Great Valley of California, is an asymmetric structural trough that is filled with a prism of upper Mesozoic and Cenozoic sediments up to 9 km thick; these sediments rest on crystalline basement rocks of the southwestward-tilted Sierran block. The San Joaquin sedimentary basin is separated from the Sacramento basin to the north by the buried Stockton arch and associated Stockton fault. The buried Bakersfield arch near the south end of the valley separates the small Maricopa-Tejon subbasin at the south end of the San Joaquin basin from the remainder of the basin. Cenozoic strata in the San Joaquin basin thicken southeastward from about 800 m in the north to over 9,000 m in the south. The San Joaquin Valley can be subdivided into five regions on the basis of differing structural style. They are the northern Sierran block, the southern Sierran block, the northern Diablo homocline, the westside fold belt, and the combined Maricopa-Tejon subbasin and southmargin deformed belt. Considerable facies variation existed within the sedimentary basin, particularly in the Neogene when a thick section of marine sediment accumulated in the southern part of the basin, while a relatively thin and entirely nonmarine section was deposited in the northern part. The northern Sierran block, the stable east limb of the valley syncline between the Stockton fault and the San Joaquin River, is the least deformed region of the valley. Deformation consists mostly of a southwest tilt and only minor late Cenozoic normal faulting. The southern Sierran block, the stable east limb of the valley syncline between the San Joaquin River and the Bakersfield arch, is similar in style to the northern part of the block, but it has a higher degree of deformation. Miocene or older normal faults trend mostly north to northwest and have a net down-to-the-west displacement with individual offsets of as much as 600 m. The northern Diablo

  14. Minisparker seismic-reflection data of field activity S-5-09-SC: San Pedro Basin, offshore southern California from 2009-07-06 to 2009-07-10 (United States)

    Sliter, Ray W.; Conrad, James E.; Ryan, Holly F; Triezenberg, Peter


    This dataset includes raw and processed, high-resolution seismic-reflection data collected in 2009 to explore a possible connection between the San Diego Trough Fault and the San Pedro Basin Fault. The survey is in the San Pedro Basin between Santa Catalina Island and San Pedro, California. The data were collected aboard the U.S. Geological Survey R/V Parke Snavely. The seismic-reflection data were acquired using a SIG 2mille minisparker. Subbottom acoustic penetration spanned tens to several hundreds of meters, variable by location.

  15. Chirp seismic-reflection data of field activity S-5-09-SC: San Pedro Basin, offshore southern California from 2009-07-06 to 2009-07-10 (United States)

    Sliter, Ray W.; Conrad, James E.; Ryan, Holly F.; Triezenberg, Peter


    This dataset includes raw and processed, high-resolution seismic-reflection data collected in 2009 to explore a possible connection between the San Diego Trough Fault and the San Pedro Basin Fault. The survey is in the San Pedro Basin between Catalina Island and San Pedro, California. The data were collected aboard the U.S. Geological Survey R/V Parke Snavely. The seismic-reflection data were acquired using an Edgetech 512 Chirp subbottom profiling system. Subbottom acoustic penetration spanned tens to hundreds of meters, variable by location.

  16. Depositional history and fault-related studies, Bolinas Lagoon, California (United States)

    Berquist, Joel R.


    Studies of core sediments and seismic reflection profiles elucidate the structure and depositional history of Bolinas Lagoon, Calif., which covers 4.4 km 2 and lies in the San Andreas fault zone at the southeast corner of the Point Reyes Peninsula 20 km northwest of San Francisco. The 1906 trace of the San Andreas fault crosses the west side of the lagoon and was determined from (1) tectonically caused salt-marsh destruction indicated by comparison of 1854 and 1929 U.S. Coast and Geodetic Survey (U.S.C. & G.S.) topographic surveys, (2) formation of a tidal channel along the border of destroyed salt marshes, and (3) azimuths of the trend of the fault measured in 1907. Subsidence in the lagoon of 30 cm occurred east of the San Andreas fault in 1906. Near the east shore, seismic-reflection profiling indicates the existence of a graben fault that may connect to a graben fault on the Golden Gate Platform. Comparison of radiocarbon dates on shells and plant debris from boreholes drilled on Stinson Beach spit with a relative sea-level curve constructed for southern San Francisco Bay indicates 5.8 to more than 17.9 m of tectonic subsidence of sediments now located 33 m below mean sea level. Cored sediments indicate a marine transgression dated at 7770?65 yrs B.P. overlying freshwater organic-rich lake deposits. Fossil pollen including 2 to 8 percent Picea (spruce) indicate a late Pleistocene (?)-Early Holocene climate, cooler, wetter, and foggier than at present. Above the transgression are discontinuous and interfingering sequences of transgressive-regressive marine, estuarine, and barrier sediments that reflect rapid lateral and vertical shifts of successive depositional environments. Fossil megafauna indicate (1) accumulation in a protected, shallow-water estuary or bay, and (2) that the lagoon was probably continuously shallow and never a deep-water embayment. Analysis of grain-size parameters, pollen frequencies, and organic remains from a core near the north end of

  17. Mineralogical Controls of Fault Healing in Natural and Simulated Gouges with Implications for Fault Zone Processes and the Seismic Cycle (United States)

    Carpenter, B. M.; Ikari, M.; Marone, C.


    The frictional strength and stability of tectonic faults is determined by asperity contact processes, granular deformation, and fault zone fabric development. The evolution of grain-scale contact area during the seismic cycle likely exhibits significant control on overall fault stability by influencing frictional restrengthening, or healing, during the interseismic period, and the rate-dependence of sliding friction, which controls earthquake nucleation and the mode of fault slip. We report on laboratory experiments designed to explore the affect of mineralogy on fault healing. We conducted frictional shear experiments in a double-direct shear configuration at room temperature, 100% relative humidity, and a normal stress of 20 MPa. We used samples from a wide range of natural faults, including outcrop samples and core recovered during scientific drilling. Faults include: Alpine (New Zealand), Zuccale (Italy), Rocchetta (Italy), San Gregorio (California), Calaveras (California), Kodiak (Alaska), Nankai (Japan), Middle America Trench (Costa Rica), and San Andreas (California). To isolate the role of mineralogy, we also tested simulated fault gouges composed of talc, montmorillonite, biotite, illite, kaolinite, quartz, andesine, and granite. Frictional healing was measured at an accumulated shear strain of ~15 within the gouge layers. We conducted slide-hold-slide tests ranging from 3 to 3000 seconds. The main suite of experiments used a background shearing rate of 10 μm/s; these were augmented with sub-suites at 1 and 100 μm/s. We find that phyllosilicate-rich gouges (e.g. talc, montmorillonite, San Andreas Fault) show little to no healing over all hold times. We find the highest healing rates (β ≈ 0.01, Δμ per decade in time, s) in gouges from the Alpine and Rocchetta faults, with the rest of our samples falling into an intermediate range of healing rates. Nearly all gouges exhibit log-linear healing rates with the exceptions of San Andreas Fault gouge and

  18. Extremely Shallow Extensional Faulting Near Geothermal Fields (United States)

    Hudnut, K. W.; Wei, S.; Donnellan, A.; Fielding, E. J.; Graves, R. W.; Helmberger, D. V.; Liu, Z.; Parker, J. W.; Treiman, J. A.