WorldWideScience

Sample records for sampling scintillation pulses

  1. Alpha pulse height distributions with ZnS(Ag) scintillator.

    Science.gov (United States)

    Gadd, M S; Borak, T B

    1995-03-01

    A flask coated with ZnS(Ag) scintillator is one of the most accurate detectors available for measuring 222Rn. To maintain this accuracy, the counting system consisting of a photomultiplier tube and associated electronics must be checked on a regular basis. A combination of an alpha source and a ZnS(Ag) scintillator is commonly used for these purposes. This paper compares the pulse height distributions of 4 alpha sources with the pulse height distribution from a 100 cm3 scintillation flask containing 222Rn. The source that most closely reproduced the distribution from an actual 222Rn sample in a 100 cm3 scintillation flask consisted of a sealed flask, of the same type, which contains a small piece of uranium-ore.

  2. Plastic scintillator detector for pulsed flux measurements

    Science.gov (United States)

    Kadilin, V. V.; Kaplun, A. A.; Taraskin, A. A.

    2017-01-01

    A neutron detector, providing charged particle detection capability, has been designed. The main purpose of the detector is to measure pulsed fluxes of both charged particles and neutrons during scientific experiments. The detector consists of commonly used neutron-sensitive ZnS(Ag) / 6LiF scintillator screens wrapping a layer of polystyrene based scintillator (BC-454, EJ-254 or equivalent boron loaded plastic). This type of detector design is able to log a spatial distribution of events and may be scaled to any size. Different variations of the design were considered and modelled in specialized toolkits. The article presents a review of the detector design features as well as simulation results.

  3. Alpha/beta separation in liquid scintillation gel samples

    Energy Technology Data Exchange (ETDEWEB)

    Grau Carles, A. (Instituto de Investigacion Basica, Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas, Avda. Complutense 22, 28040 Madrid (Spain)); Grau Malonda, A. (Instituto de Investigacion Basica, Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas, Avda. Complutense 22, 28040 Madrid (Spain))

    1994-06-01

    The pulse shape analysis commonly used in liquid scintillation alpha/beta separations is satisfactory for moderate quench levels. However, for gel samples, the alpha particle counting efficiency is never greater than 10%, and an optimum separation of the alpha component cannot be achieved when beta to alpha counting rate ratios are greater than 100. In such cases, it is better to use a spectrum analysis method for alpha/beta separation. ((orig.))

  4. Systematic studies of small scintillators for new sampling calorimeter

    Indian Academy of Sciences (India)

    The wrapped scintillator that gives the best light yield is determined by comparing the measured pulse height of each 10 × 40 × 2 mm strip scintillator covered with 3M reflective mirror film, teflon, white paint, black tape, gold, aluminum and white paint+teflon. The pulse height dependence on position, length and thickness of ...

  5. Systematic studies of small scintillators for new sampling calorimeter

    Indian Academy of Sciences (India)

    mirror film, teflon, white paint, black tape, gold, aluminum and white paint+teflon. The pulse height dependence on position, length and thickness of the 3M reflective mirror film and teflon wrapped scintillators are measured. Results show that the 3M radiant mirror film-wrapped scintillator has the greatest light yield with an ...

  6. Proton energy quenching and pulse shape discrimination in organic liquid scintillator for LENA

    Energy Technology Data Exchange (ETDEWEB)

    Prade, Ludwig; Appel, Simon; Beischler, German; Kaindl, Jill; Lewke, Timo; Meindl, Quirin; Moellenberg, Randolph; Oberauer, Lothar; Pfahler, Patrick; Stempfle, Tobias; Tippmann, Marc; Winter, Juergen; Zimmer, Vincenz [Technische Universitaet Muenchen, Physik Department E15, James Franck Strasse, 85748 Garching (Germany); Collaboration: LAGUNA-LENA working group

    2013-07-01

    LENA is a proposed 50 kt neutrino observatory based on liquid scintillator. Due to its low energy threshold, liquid scintillator allows measurements in the MeV range and below. The Maier-Leibnitz-Laboratorium in Garching provides excellent conditions for studying energy dependent quenching of protons and particle discrimination via pulse-shape analysis in liquid scintillator. The tandem-accelerator provides a source of mono-energetic neutrons to which a scintillator sample is exposed. To provide a good energy scale careful calibration with gamma-sources of the setup is required. For this, Monte-Carlo simulations have been performed to understand the physical processes inside the detector. The simulated data has then been compared to the real measurements and a good agreement has been found. Further understanding of the calibration is achieved by using a secondary HPGe-detector which measured the gammas backscattered within the scintillator. This work has been supported by the Maier-Leibnitz-Laboratorium and the cluster of excellence 'Origin and Structure of the Universe'.

  7. Organic Scintillators in Nonproliferation Applications With a Hybridized Double-Pulse Rejection Technique

    Science.gov (United States)

    Bourne, Mark Mitchell

    Alternative detection technologies are crucial to meeting demand for neutron detectors, for the current production of He-3, which has been the classical neutron choice, is insufficient. Organic scintillators are a strong candidate as a He-3 alternative due to their high efficiency, fast timing properties, and capabilities for separately identifying gamma-rays and neutrons through pulse shape discrimination (PSD). However, the use of organic scintillators in environments with numerous gamma rays can be limited because overlapping gamma-ray events can be misclassified as neutron events during PSD. To solve this problem, a new, hybridized double-pulse cleaning technique, consisting of three separate cleaning algorithms, was developed. The technique removes gamma-ray double pulses while preserving as many neutron pulses as possible. This technique was applied to separate experiments of Cf-252 and a gamma-ray source when measuring at a 100-kHz count rate and a field of 1000 incident gamma rays per incident neutron. It was found that stilbene scintillators were capable of intrinsic neutron efficiencies between 15-19% when measuring bare Cf-252 and 13-17% when exposed to the gamma-ray field. Misclassification rates ranged from 10-6-10-5, a factor-of-5 better than both the EJ-309 liquid and BB3-5 plastic. Next, plutonium experiments were performed with stilbene to determine which cleaning algorithm was best for each sample. A clear correlation was found that related the correct method of cleaning to the measured gamma ray-to-neutron ratio. When the measured gamma ray-to-neutron ratio is 10 or below, the template cleaning algorithm is preferred, while the fractional and hybrid cleaning algorithms are preferred when the gamma ray-to-neutron ratio is 100 or greater. Discriminating neutron sources such as Cf-252 or AmLi from SNM samples such as plutonium is a top priority in nonproliferation. We demonstrate that time-correlated experiments, utilizing both PSD-capable plastic

  8. Digital liquid-scintillation counting and effective pulse-shape discrimination with artificial neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Langrock, Gert; Wiehl, Norbert; Kling, Hans-Otto; Mendel, Matthias; Naehler, Andrea; Tharun, Udo; Eberhardt, Klaus; Trautmann, Norbert; Kratz, Jens Volker [Mainz Univ. (Germany). Inst. fuer Kernchemie; Omtvedt, Jon-Petter [Oslo Univ. (Norway). Dept. of Chemistry; Skarnemark, Gunnar [Chalmers Univ. of Technology, Goeteborg (Sweden)

    2015-05-01

    A typical problem in low-level liquid scintillation (LS) counting is the identification of α particles in the presence of a high background of β and γ particles. Especially the occurrence of β-β and β-γ pile-ups may prevent the unambiguous identification of an α signal by commonly used analog electronics. In this case, pulse-shape discrimination (PSD) and pile-up rejection (PUR) units show an insufficient performance. This problem was also observed in own earlier experiments on the chemical behaviour of transactinide elements using the liquid-liquid extraction system SISAK in combination with LS counting. α-particle signals from the decay of the transactinides could not be unambiguously assigned. However, the availability of instruments for the digital recording of LS pulses changes the situation and provides possibilities for new approaches in the treatment of LS pulse shapes. In a SISAK experiment performed at PSI, Villigen, a fast transient recorder, a PC card with oscilloscope characteristics and a sampling rate of 1 giga samples s{sup -1} (1 ns per point), was used for the first time to record LS signals. It turned out, that the recorded signals were predominantly α β-β and β-γ pile up, and fission events. This paper describes the subsequent development and use of artificial neural networks (ANN) based on the method of 'back-propagation of errors' to automatically distinguish between different pulse shapes. Such networks can 'learn' pulse shapes and classify hitherto unknown pulses correctly after a learning period. The results show that ANN in combination with fast digital recording of pulse shapes can be a powerful tool in LS spectrometry even at high background count rates.

  9. Application of a free parameter model to plastic scintillation samples

    Energy Technology Data Exchange (ETDEWEB)

    Tarancon Sanz, Alex, E-mail: alex.tarancon@ub.edu [Departament de Quimica Analitica, Universitat de Barcelona, Diagonal 647, E-08028 Barcelona (Spain); Kossert, Karsten, E-mail: Karsten.Kossert@ptb.de [Physikalisch-Technische Bundesanstalt (PTB), Bundesallee 100, 38116 Braunschweig (Germany)

    2011-08-21

    In liquid scintillation (LS) counting, the CIEMAT/NIST efficiency tracing method and the triple-to-double coincidence ratio (TDCR) method have proved their worth for reliable activity measurements of a number of radionuclides. In this paper, an extended approach to apply a free-parameter model to samples containing a mixture of solid plastic scintillation microspheres and radioactive aqueous solutions is presented. Several beta-emitting radionuclides were measured in a TDCR system at PTB. For the application of the free parameter model, the energy loss in the aqueous phase must be taken into account, since this portion of the particle energy does not contribute to the creation of scintillation light. The energy deposit in the aqueous phase is determined by means of Monte Carlo calculations applying the PENELOPE software package. To this end, great efforts were made to model the geometry of the samples. Finally, a new geometry parameter was defined, which was determined by means of a tracer radionuclide with known activity. This makes the analysis of experimental TDCR data of other radionuclides possible. The deviations between the determined activity concentrations and reference values were found to be lower than 3%. The outcome of this research work is also important for a better understanding of liquid scintillation counting. In particular the influence of (inverse) micelles, i.e. the aqueous spaces embedded in the organic scintillation cocktail, can be investigated. The new approach makes clear that it is important to take the energy loss in the aqueous phase into account. In particular for radionuclides emitting low-energy electrons (e.g. M-Auger electrons from {sup 125}I), this effect can be very important.

  10. Determination of (234)th in marine samples by liquid scintillation spectrometry.

    Science.gov (United States)

    Pates, J M; Cook, G T; Mackenzie, A B; Anderson, R; Bury, S J

    1996-11-01

    A liquid scintillation spectrometry method for the determination of (234)Th in seawater with (230)Th as the yield tracer has been developed and validated. (234)Th is separated from the dissolved phase by an Fe(OH)(3) precipitation and is then purified using ion exchange chromatography. The counting source is prepared by taking the sample to dryness in a vial, redissolving in acid, and mixing with a scintillation cocktail. The instrument employed has a relatively low background (11 cpm) and the ability to separate α from β activity on the basis of pulse shapes. The (234)Th + (234m)Pa counting efficiency is 50% over the counting window employed. The limit of detection, using the above parameters, a 20 L sample, and a 400 min count is found to be 0.04 dpm L(-)(1). It was also demonstrated that less advanced instruments, without α/β separation, can also be used effectively.

  11. Investigation of linear accelerator pulse delivery using fast organic scintillator measurements

    DEFF Research Database (Denmark)

    Beierholm, Anders Ravnsborg; Andersen, Claus Erik; Lindvold, Lars René

    2010-01-01

    Fiber-coupled organic plastic scintillators present an attractive method for time-resolved dose measurements during radiotherapy. Most organic scintillators exhibit a fast response, making it possible to use them to measure individual high-energy X-ray pulses from a medical linear accelerator....... This can be used in complex treatment procedures such as gated intensity-modulated radiotherapy (IMRT)1, where the advantage of dose rate measurements of high temporal resolution is highly emphasized. We report on development of a fast data acquisition scintillator-based system as well as measurements...

  12. Triple pulse shape discrimination and capture-gated spectroscopy in a composite heterogeneous scintillator

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, M., E-mail: mksharma@umich.edu [University of Michigan, Ann Arbor, MI 48109 (United States); Nattress, J. [University of Michigan, Ann Arbor, MI 48109 (United States); Wilhelm, K. [Pennsylvania State University, University Park, PA 16802 (United States); Jovanovic, I. [University of Michigan, Ann Arbor, MI 48109 (United States)

    2017-06-11

    We demonstrate an all-solid-state design for a composite heterogeneous scintillation detector sensitive to interactions with high-energy photons (gammas), fast neutrons, and thermal neutrons. The scintillator exhibits triple pulse shape discrimination, effectively separating electron recoils, fast neutron recoils, and neutron captures. This is accomplished by combining the properties of two distinct scintillators, whereby a 51-mm diameter, 51-mm tall cylinder of pulse shape discriminating plastic is wrapped by a 320-µm thick sheet of {sup 6}LiF:ZnS(Ag), optically coupling the scintillators to each other and to the photomultiplier tube. In this way, the sensitivity to neutron captures is achieved without the need to load the plastic scintillator with a capture agent. We demonstrate a figure of merit of up to 1.2 for fast neutrons/gammas and 5.7 for thermal neutrons/gammas. Intrinsic capture efficiency is found to be 0.46±0.05% and is in good agreement with simulation, while gamma rejection was 10{sup −6} with respect to the capture region and 10{sup −4} with respect to the recoil region using a 300 keVee threshold. Finally, we show an improvement in capture-gated neutron spectroscopy by rejecting accidental gamma coincidences using pulse shape discrimination in the plastic scintillator.

  13. Triple pulse shape discrimination and capture-gated spectroscopy in a composite heterogeneous scintillator

    Science.gov (United States)

    Sharma, M.; Nattress, J.; Wilhelm, K.; Jovanovic, I.

    2017-06-01

    We demonstrate an all-solid-state design for a composite heterogeneous scintillation detector sensitive to interactions with high-energy photons (gammas), fast neutrons, and thermal neutrons. The scintillator exhibits triple pulse shape discrimination, effectively separating electron recoils, fast neutron recoils, and neutron captures. This is accomplished by combining the properties of two distinct scintillators, whereby a 51-mm diameter, 51-mm tall cylinder of pulse shape discriminating plastic is wrapped by a 320-μm thick sheet of 6LiF:ZnS(Ag), optically coupling the scintillators to each other and to the photomultiplier tube. In this way, the sensitivity to neutron captures is achieved without the need to load the plastic scintillator with a capture agent. We demonstrate a figure of merit of up to 1.2 for fast neutrons/gammas and 5.7 for thermal neutrons/gammas. Intrinsic capture efficiency is found to be 0.46±0.05% and is in good agreement with simulation, while gamma rejection was 10-6 with respect to the capture region and 10-4 with respect to the recoil region using a 300 keVee threshold. Finally, we show an improvement in capture-gated neutron spectroscopy by rejecting accidental gamma coincidences using pulse shape discrimination in the plastic scintillator.

  14. Spectrum library concept and pulse shape analysis in liquid scintillation counting

    Energy Technology Data Exchange (ETDEWEB)

    Kaihola, L. [Wallac Oy, Turku (Finland)

    1997-03-01

    Wallac introduced in 1990 a new absolute liquid scintillation counting (LSC) method, Digital Overlay Technique (DOT) to correct for quench. This method allows quantization of multilabel samples by referring to library spectra which are generated against chemical and color quench indices at the factory. The libraries can further be expanded to any beta emitter by user with a method called fine tuning, which can be carried out even with a single sample. Spectrum libraries are created over the whole spectrum range of the radionuclide and allow automatic identification of a single label beta emitting radionuclide, called Easy Count method. Another improvement in LSC is commercial introduction of Pulse Shape Analysis (PSA) in 1986 by Wallac. This method recognizes alpha particle decay by pulse shape and leads to excellent sensitivity in alpha counting because most of the background signal in LSC comprises of short or beta like pulses. PSA detects alpha events in the presence of high excess of beta activity over alphas, up to a ratio 100000 to 1. (orig.)

  15. Investigation of linear accelerator pulse delivery using fast organic scintillator measurements

    Energy Technology Data Exchange (ETDEWEB)

    Beierholm, A.R., E-mail: anders.beierholm@risoe.d [Radiation Research Department, Riso National Laboratory for Sustainable Energy, Technical University of Denmark, DK-4000 Roskilde (Denmark); Andersen, C.E.; Lindvold, L.R. [Radiation Research Department, Riso National Laboratory for Sustainable Energy, Technical University of Denmark, DK-4000 Roskilde (Denmark); Aznar, M.C. [Department of Radiation Oncology, Copenhagen University Hospital, DK-2100 Copenhagen (Denmark)

    2010-03-15

    Fiber-coupled organic plastic scintillators present an attractive method for time-resolved dose measurements during radiotherapy. Most organic scintillators exhibit a fast response, making it possible to use them to measure individual high-energy X-ray pulses from a medical linear accelerator. This can be used in complex treatment procedures such as gated intensity-modulated radiotherapy (IMRT), where the advantage of dose rate measurements of high temporal resolution is highly emphasized. We report on development of a fast data acquisition scintillator-based system as well as measurements performed on Varian medical linear accelerators, delivering 6 MV X-ray beams. The dose delivery per radiation pulse was found to agree with expectations within roughly 1%, although minor discrepancies and transients were evident in the measurements.

  16. Fast neutron tomography with real-time pulse-shape discrimination in organic scintillation detectors

    Energy Technology Data Exchange (ETDEWEB)

    Joyce, Malcolm J., E-mail: m.joyce@lancaster.ac.uk [Department of Engineering, Lancaster University, Lancaster, Lancashire LA1 4YW (United Kingdom); Agar, Stewart [Department of Engineering, Lancaster University, Lancaster, Lancashire LA1 4YW (United Kingdom); Aspinall, Michael D. [Hybrid Instruments Ltd., Gordon Manley Building, Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YW (United Kingdom); Beaumont, Jonathan S.; Colley, Edmund; Colling, Miriam; Dykes, Joseph; Kardasopoulos, Phoevos; Mitton, Katie [Department of Engineering, Lancaster University, Lancaster, Lancashire LA1 4YW (United Kingdom)

    2016-10-21

    A fast neutron tomography system based on the use of real-time pulse-shape discrimination in 7 organic liquid scintillation detectors is described. The system has been tested with a californium-252 source of dose rate 163 μSv/h at 1 m and neutron emission rate of 1.5×10{sup 7} per second into 4π and a maximum acquisition time of 2 h, to characterize two 100×100×100 mm{sup 3} concrete samples. The first of these was a solid sample and the second has a vertical, cylindrical void. The experimental data, supported by simulations with both Monte Carlo methods and MATLAB®, indicate that the presence of the internal cylindrical void, corners and inhomogeneities in the samples can be discerned. The potential for fast neutron assay of this type with the capability to probe hydrogenous features in large low-Z samples is discussed. Neutron tomography of bulk porous samples is achieved that combines effective penetration not possible with thermal neutrons in the absence of beam hardening.

  17. Application of digital sampling techniques to particle identification in scintillation detectors

    CERN Document Server

    Bardelli, L; Poggi, G; Taccetti, N

    2002-01-01

    In this paper, the use of a fast digitizing system for identification of fast charged particles with scintillation detectors is discussed. The three-layer phoswich detectors developed in the framework of the FIASCO experiment for the detection of light charged particles (LCP) and intermediate mass fragments (IMF) emitted in heavy-ion collisions at Fermi energies are briefly discussed. The standard analog electronics treatment of the signals for particle identification is illustrated. After a description of the digitizer designed to perform a fast digital sampling of the phoswich signals, the feasibility of particle identification on the sampled data is demonstrated. The results obtained with two different pulse shape discrimination analyses based on the digitally sampled data are compared with the standard analog signal treatment. The obtained results suggest, for the present application, the replacement of the analog methods with the digital sampling technique.

  18. Pulse Shape Analysis and Discrimination for Silicon-Photomultipliers in Helium-4 Gas Scintillation Neutron Detector

    Science.gov (United States)

    Barker, Cathleen; Zhu, Ting; Rolison, Lucas; Kiff, Scott; Jordan, Kelly; Enqvist, Andreas

    2018-01-01

    Using natural helium (helium-4), the Arktis 180-bar pressurized gas scintillator is capable of detecting and distinguishing fast neutrons and gammas. The detector has a unique design of three optically separated segments in which 12 silicon-photomultiplier (SiPM) pairs are positioned equilaterally across the detector to allow for them to be fully immersed in the helium-4 gas volume; consequently, no additional optical interfaces are necessary. The SiPM signals were amplified, shaped, and readout by an analog board; a 250 MHz, 14-bit digitizer was used to examine the output pulses from each SiPMpair channel. The SiPM over-voltage had to be adjusted in order to reduce pulse clipping and negative overshoot, which was observed for events with high scintillation production. Pulse shaped discrimination (PSD) was conducted by evaluating three different parameters: time over threshold (TOT), pulse amplitude, and pulse integral. In order to differentiate high and low energy events, a 30ns gate window was implemented to group pulses from two SiPM channels or more for the calculation of TOT. It was demonstrated that pulses from a single SiPM channel within the 30ns window corresponded to low-energy gamma events while groups of pulses from two-channels or more were most likely neutron events. Due to gamma pulses having lower pulse amplitude, the percentage of measured gamma also depends on the threshold value in TOT calculations. Similarly, the threshold values were varied for the optimal PSD methods of using pulse amplitude and pulse area parameters. Helium-4 detectors equipped with SiPMs are excellent for in-the-field radiation measurement of nuclear spent fuel casks. With optimized PSD methods, the goal of developing a fuel cask content monitoring and inspection system based on these helium-4 detectors will be achieved.

  19. Pulse shape discrimination characteristics of stilbene crystal, pure and 6Li loaded plastic scintillators for a high resolution coded-aperture neutron imager

    Science.gov (United States)

    Cieślak, M. J.; Gamage, K. A. A.; Glover, R.

    2017-07-01

    Pulse shape discrimination performances of single stilbene crystal, pure plastic and 6Li loaded plastic scintillators have been compared. Three pulse shape discrimination algorithms have been tested for each scintillator sample, assessing their quality of neutron/gamma separation. Additionally, the digital implementation feasibility of each algorithm in a real-time embedded system was evaluated. Considering the pixelated architecture of the coded-aperture imaging system, a reliable method of simultaneous multi-channel neutron/gamma discrimination was sought, accounting for the short data analysis window available for each individual channel. In this study, each scintillator sample was irradiated with a 252Cf neutron source and a bespoke digitiser system was used to collect the data allowing detailed offline examination of the sampled pulses. The figure-of-merit was utilised to compare the discrimination quality of the collected events with respect to various discrimination algorithms. Single stilbene crystal presents superior neutron/gamma separation performance when compared to the plastic scintillator samples.

  20. Neutron generator burst timing measured using a pulse shape discrimination plastic scintillator with silicon photomultiplier readout

    Science.gov (United States)

    Preston, R. M.; Eberhardt, J. E.; Tickner, J. R.

    2013-12-01

    An EJ-299-34 plastic scintillator with silicon photomultiplier (SiPM) readout was used to measure the fast neutron output of a pulsed Thermo-Fisher A-325 Deuterium-Tritium sealed tube neutron generator (STNG). The SiPM signals were handled by a prototype digital pulse processing system, based on a free-running analogue to digital converter feeding a digital signal processor (DSP). Pulse shape discrimination was used to distinguish between detected fast-neutrons and gammas. Pulse detection, timing, energy and shape were all processed by the DSP in real-time. The time-dependency of the neutron output of the STNG was measured for various pulsing schemes. The switch-on characteristics of the tube strongly depended on the operating settings, with the delay between pulse turn-on and the production of neutrons ranging between 13 μs to 74 μs for the tested pulse rates and duty cycles. This work will facilitate the optimization and modeling of apparatus that use the neutron generator's pulsing abilities.

  1. Characterization of liquid scintillation detector (BC-501A) and digital pulse shape discrimination (DPSD) system

    Energy Technology Data Exchange (ETDEWEB)

    Lombigit, L., E-mail: lojius@nm.gov.my; Yussup, N., E-mail: nolida@nm.gov.my; Ibrahim, Maslina Mohd; Rahman, Nur Aira Abd; Rawi, M. Z. M. [Instrumentation Group, Malaysian Nuclear Agency, Bangi, 43000 Kajang, Selangor (Malaysia)

    2015-04-29

    A digital n/γ pulse shape discrimination (PSD) system is currently under development at Instrumentation and Automation Centre, Malaysian Nuclear Agency. This system aims at simultaneous detection of fast neutron and gamma ray in mixed radiations environment. This work reports the system characterization performed on the liquid scintillation detector (BC-501A) and digital pulse shape discrimination (DPSD) system. The characterization involves measurement of electron light output from the BC-501A detector and energy channels calibration of the pulse height spectra acquired with DPSD system using set of photon reference sources. The main goal of this experiment is to calibrate the ADC channel of our DPSD system, characterized the BC-501 detector and find the position of Compton edge which later could be used as threshold for the n/γ PSD experiment. The detector resolution however is worse as compared to other published data but it is expected as our detector has a smaller active volume.

  2. Measurement of actinides in environmental samples by Photo-Electron Rejecting Alpha Liquid Scintillation

    Energy Technology Data Exchange (ETDEWEB)

    Cadieux, J.R. [Westinghouse Savannah River Co., Aiken, SC (United States); Clark, S. [Savannah River Ecology Lab., Univ. of Georgia (United States); Fjeld, R.A.; Reboul, S.; Sowder, A. [Clemson Univ., SC (United States). Dept. of Environmental Systems Engineering

    1994-05-01

    This work describes the adaptation of extractive scintillation with a Photo-Electron Rejecting Alpha Liquid Scintillation (PERALS) (ORDELA, Inc.) spectrometer to the analysis of actinides in environmental samples from the Savannah River Site (SRS). Environmental quality assurance standards and actual water samples were treated by one of two methods; either a two step direct extraction, or for more complex samples, pretreatment by an extraction chromatographic separation prior to measurement of the alpha activity by PERALS.

  3. Pulse-shape discrimination with Cs2HfCl6 crystal scintillator

    Science.gov (United States)

    Cardenas, C.; Burger, A.; Goodwin, B.; Groza, M.; Laubenstein, M.; Nagorny, S.; Rowe, E.

    2017-10-01

    The results of investigation into cesium hafnium chloride (Cs2HfCl6) scintillating crystals as a promising detector to search for rare nuclear processes occurring in Hf isotopes is reported. The light output, quenching factor, and pulse-shape characteristics have been investigated at room temperature. The scintillation response of the crystal induced by α-particles and γ-quanta were studied to determine possibility of particle discrimination. Using the optimal filter method we obtained clear separation between signals with a factor of merit (FOM) = 9.3. This indicates that we are able to fully separate signals originating from α-particles and γ-quanta. Similar fruitful discrimination power was obtained by applying the mean time method (FOM = 7) and charge integration method (FOM = 7.5). The quenching factor for collimated 4 MeV α-particles is found to be 0.36, showing that α-particles generate more than a third of the light compared to γ-quanta at the same energy.

  4. Application of pulse decay discrimination liquid scintillation counting for indoor radon measurement

    Science.gov (United States)

    Bem, H.; Ostrowska, M.; Bem, E. M.

    1999-01-01

    The pulse decay discrimination (PDD) liquid scintillation technique has been applied to optimise radon counting by the Pico-Rad method. A dermination limit (with 10% relative error) of 4.8 Bqm-3 for indoor radon measurement has been achieved for optimal PDD setting with a radon elution cocktail containing 20% (v/v) of Ultima Gold AB in Instafluor. From a practical point of view this procedure allows a shortening of the counting time to 1 hour after 48 hours exposure to detectors. This method has been applied to indoor radon determinations in 626 places (municipal offices and private dwellings) in the Lódz region. These measureents resulted in an average concentration of 21.4 Bqm-3 and a median value of 15.1 Bqm-3. Analysis of the data indicates that most indoor radon comes from the underlying soil, which contains relatively little226Ra (10-20 Bqkg-1).

  5. Pulse-resolved radiotherapy dosimetry using fiber-coupled organic scintillators

    Energy Technology Data Exchange (ETDEWEB)

    Ravnsborg Beierholm, A.

    2011-05-15

    This PhD project pertains to the development and adaptation of a dosimetry system that can be used to verify the delivery of radiation in modern radiotherapy modalities involving small radiation fields and dynamic radiation delivery. The dosimetry system is based on fibre-coupled organic scintillators and can be perceived as a well characterized, independent alternative to the methods that are in clinical use today. The dosimeter itself does not require a voltage supply, and is composed of water equivalent materials. The dosimeter can be fabricated with a sensitive volume smaller than a cubic millimeter, which is small enough to resolve the small radiation fields encountered in modern radiotherapy. The fast readout of the dosimeter enables measurements on the same time scale as the pulsed radiation delivery from the medical linear accelerators used for treatment. The dosimetry system, comprising fiber-coupled organic scintillators and data acquisition hardware, was developed at the Radiation Research Division at Risoe DTU and tested using clinical x-ray beams at hospitals in Denmark and abroad. Measurements of output factors and percentage depth dose were performed and compared with reference values and Monte Carlo simulations for static square radiation fields for standard (4 cm x 4 cm to 20 cm x 20 cm) and small (down to 0.6 cm x 0.6 cm) field sizes. The accuracy of most of the obtained measurements was good, agreeing with reference and simulated dose values to within 2 % standard deviation for both standard and small fields. This thesis concludes that the new pulse-resolved dosimetry system holds great potential for modern radiotherapy applications, such as stereotactic radiotherapy and intensity-modulated radiotherapy. (Author)

  6. Pulse-resolved radiotherapy dosimetry using fiber-coupled organic scintillators

    DEFF Research Database (Denmark)

    Beierholm, Anders Ravnsborg

    This PhD project pertains to the development and adaptation of a dosimetry system that can be used to verify the delivery of radiation in modern radiotherapy modalities involving small radiation fields and dynamic radiation delivery. The dosimetry system is based on fibre-coupled organic scintill......This PhD project pertains to the development and adaptation of a dosimetry system that can be used to verify the delivery of radiation in modern radiotherapy modalities involving small radiation fields and dynamic radiation delivery. The dosimetry system is based on fibre-coupled organic...... millimeter, which is small enough to resolve the small radiation fields encountered in modern radiotherapy. The fast readout of the dosimeter enables measurements on the same time scale as the pulsed radiation delivery from the medical linear accelerators used for treatment. The dosimetry system, comprising...... for both standard and small fields. This thesis concludes that the new pulse-resolved dosimetry system holds great potential for modern radiotherapy applications, such as stereotactic radiotherapy and intensity-modulated radiotherapy....

  7. Energy calibration of CsI(Tl) scintillator in pulse-shape identification technique

    CERN Document Server

    Avdeichikov, V; Golubev, P; Jakobsson, B; Colonna, N

    2003-01-01

    A batch of 16 CsI(Tl) scintillator crystals, supplied by the Bicron Company, has been studied with respect to precise energy calibration in pulse-shape identification technique. The light corresponding to pulse integration within the time interval 1.6-4.5 mu s (long gate) and 0.0-4.5 mu s (extra-long gate) exhibits a power law relation, L(E,Z,A)=a1(Z,A)E sup a sup 2 sup ( sup Z sup , sup A sup ) , for sup 1 sup , sup 2 sup , sup 3 H isotopes in the measured energy range 5-150 MeV. For the time interval 0.0-0.60 mu s (short gate), a significant deviation from the power law relation is observed, for energy greater than approx 30 MeV. The character of the a2(p)-a2(d) and a2(p)-a2(t) correlations for protons, deuterons and tritons, reveals 3 types of crystals in the batch. These subbatches differ in the value of the extracted parameter a2 for protons, and in the value of the spread of a2 for deuterons and tritons. This may be explained by the difference in the energy dependence of the fast decay time component an...

  8. Time correlated measurements using plastic scintillators with neutron-photon pulse shape discrimination

    Science.gov (United States)

    Richardson, Norman E., IV

    nuclear and radiological material. Moreover, the production of 3He isotope as a byproduct of security programs was drastically decreased. This isotope shortage coupled with the disadvantages of relying on a detector that requires neutron moderation before the detection of fission neutrons, poses a significant challenge in supporting the existing detection systems and the development of future technologies. To address this problem, a reliable and accurate alternative technology to detect neutrons emitted in fissions must be developed. One such alternative technology that shows promise in this application is the use of scintillators based on solid state materials (plastics) which are sensitive to fast neutrons. However, plastic scintillators are also sensitive to photons. Hence, it is necessary to separate the neutron signals from the photon signals, using the pulse shape discrimination (PSD) analysis. The PSD is based on the comparison of the pulse shapes of digitized signal waveforms. This approach allows for the measurement of fast neutrons without the necessity of their moderation. Because the fission spectrum neutrons are mainly fast, methods employing fast neutron detection are applicable for the assay of fissile materials. In addition, the average time of scintillation of the plastic medium is much shorter than those of the gaseous counters, thus allowing scintillation detectors to be used in high count rate environments. Furthermore, the temporal information of the fast neutron detection using multiple sensors enables the time correlation analysis of the fission neutron multiplicity. The study of time correlation measurements of fast neutrons using the array of plastic scintillators is the basis of this work. The array of four plastic scintillator detectors equipped with the digital data acquisition and analysis system was developed. The digital PSD analysis of detector signals "on-the-fly" was implemented for the array. The time coincidence measurement technique

  9. Discrete Fourier Transform Method for Discrimination of Digital Scintillation Pulses in Mixed Neutron-Gamma Fields

    Science.gov (United States)

    Safari, M. J.; Davani, F. Abbasi; Afarideh, H.; Jamili, S.; Bayat, E.

    2016-02-01

    A discrete Fourier transform method (DFTM) for discrimination between the signal of neutrons and gamma rays in organic scintillation detectors is presented. The method is based on the transformation of signals into the frequency domain using the sine and cosine Fourier transforms in combination with the discrete Fourier transform. The method is largely benefited from considerable differences that usually is available between the zero-frequency components of sine and cosine and the norm of the amplitude of the DFT for neutrons and gamma-ray signals. Moreover, working in frequency domain naturally results in considerable suppression of the unwanted effects of various noise sources that is expected to be effective in time domain methods. The proposed method could also be assumed as a generalized nonlinear weighting method that could result in a new class of pulse shape discrimination methods, beyond definition of the DFT. A comparison to the traditional charge integration method (CIM), as well as the frequency gradient analysis method (FGAM) and the wavelet packet transform method (WPTM) has been presented to demonstrate the applicability and efficiency of the method for real-world applications. The method, in general, shows better discrimination Figure of Merits (FoMs) at both the low-light outputs and in average over the studied energy domain. A noise analysis has been performed for all of the abovementioned methods. It reveals that the frequency domain methods (FGAM and DFTM) are less sensitive to the noise effects.

  10. Scintillation Counters

    Science.gov (United States)

    Bell, Zane W.

    Scintillators find wide use in radiation detection as the detecting medium for gamma/X-rays, and charged and neutral particles. Since the first notice in 1895 by Roentgen of the production of light by X-rays on a barium platinocyanide screen, and Thomas Edison's work over the following 2 years resulting in the discovery of calcium tungstate as a superior fluoroscopy screen, much research and experimentation have been undertaken to discover and elucidate the properties of new scintillators. Scintillators with high density and high atomic number are prized for the detection of gamma rays above 1 MeV; lower atomic number, lower-density materials find use for detecting beta particles and heavy charged particles; hydrogenous scintillators find use in fast-neutron detection; and boron-, lithium-, and gadolinium-containing scintillators are used for slow-neutron detection. This chapter provides the practitioner with an overview of the general characteristics of scintillators, including the variation of probability of interaction with density and atomic number, the characteristics of the light pulse, a list and characteristics of commonly available scintillators and their approximate cost, and recommendations regarding the choice of material for a few specific applications. This chapter does not pretend to present an exhaustive list of scintillators and applications.

  11. Cherenkov radiation effects on counting efficiency in extremely quenched liquid scintillation samples

    Energy Technology Data Exchange (ETDEWEB)

    Grau Carles, A. (Instituto de Investigacion Basica, Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas, Madrid (Spain)); Grau Malonda, A. (Instituto de Investigacion Basica, Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas, Madrid (Spain)); Rodriguez Barquero, L. (Instituto de Investigacion Basica, Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas, Madrid (Spain))

    1993-10-01

    The CIEMAT/NIST tracer method has successfully standardized nuclides with diverse quench values and decay schemes in liquid scintillation counting. However, the counting efficiency is computed inaccurately for extremely quenched samples. This article shows that when samples are extremely quenched, the counting efficiency in high-energy beta-ray nuclides depends principally on the Cherenkov effect. A new technique is described for quench determination, which makes the measurement of counting efficiency possible when scintillation counting approaches zero. A new efficiency computation model for pure beta-ray nuclides is also described. The results of the model are tested experimentally for [sup 89]Sr, [sup 90]Y, [sup 36]Cl and [sup 204]Tl nuclides with independence of the quench level. (orig.)

  12. Calibration of a liquid scintillation counter to assess tritium levels in various samples

    CERN Document Server

    Al-Haddad, M N; Abu-Jarad, F A

    1999-01-01

    An LKB-Wallac 1217 Liquid Scintillation Counter (LSC) was calibrated with a newly adopted cocktail. The LSC was then used to measure tritium levels in various samples to assess the compliance of tritium levels with the recommended international levels. The counter was calibrated to measure both biological and operational samples for personnel and for an accelerator facility at KFUPM. The biological samples include the bioassay (urine), saliva, and nasal tests. The operational samples of the light ion linear accelerator include target cooling water, organic oil, fomblin oil, and smear samples. Sets of standards, which simulate various samples, were fabricated using traceable certified tritium standards. The efficiency of the counter was obtained for each sample. The typical range of the efficiencies varied from 33% for smear samples down to 1.5% for organic oil samples. A quenching curve for each sample is presented. The minimum detectable activity for each sample was established. Typical tritium levels in bio...

  13. Plastic scintillator with effective pulse shape discrimination for neutron and gamma detection

    Science.gov (United States)

    Zaitseva, Natalia P.; Carman, M Leslie; Cherepy, Nerine; Glenn, Andrew M.; Hamel, Sebastien; Payne, Stephen A.; Rupert, Benjamin L.

    2016-04-12

    In one embodiment, a scintillator material includes a polymer matrix; and a primary dye in the polymer matrix, the primary dye being a fluorescent dye, the primary dye being present in an amount of 5 wt % or more; wherein the scintillator material exhibits an optical response signature for neutrons that is different than an optical response signature for gamma rays. In another embodiment, a scintillator material includes a polymer matrix; and a primary dye in the polymer matrix, the primary dye being a fluorescent dye, the primary dye being present in an amount greater than 10 wt %.

  14. Analysis of {sup 210}Pb in water samples with plastic scintillation resins

    Energy Technology Data Exchange (ETDEWEB)

    Lluch, E.; Barrera, J. [Department of Analytical Chemistry, University of Barcelona, Martí i Franqués, 1-11, E-08028, Barcelona (Spain); Tarancón, A., E-mail: alex.tarancon@ub.edu [Department of Analytical Chemistry, University of Barcelona, Martí i Franqués, 1-11, E-08028, Barcelona (Spain); Bagán, H. [Department of Pure and Applied Biochemistry, Lund University, Getingevägen 60, Hus II, 22100 SE, Lund (Sweden); García, J.F. [Department of Analytical Chemistry, University of Barcelona, Martí i Franqués, 1-11, E-08028, Barcelona (Spain)

    2016-10-12

    {sup 210}Pb is a radioactive lead isotope present in the environment as member of the {sup 238}U decay chain. Since it is a relatively long-lived radionuclide (T{sub 1/2} = 22.2 years), its analysis is of interest in radiation protection and the geochronology of sediments and artwork. Here, we present a method for analysing {sup 210}Pb using plastic scintillation resins (PSresins) packaged in solid-phase extraction columns (SPE cartridge). The advantages of this method are its selectivity, the low limit of detection, as well as reductions in the amount of time and reagents required for analysis and the quantity of waste generated. The PSresins used in this study were composed of a selective extractant (4′,4″(5″)-Di-tert-butyldicyclohexano-18-crown-6 in 1-octanol) covering the surface of plastic scintillation microspheres. Once the amount of extractant (1:1/4) and medium of separation (2 M HNO{sub 3}) were optimised, PSresins in SPE cartridges were calibrated with a standard solution of {sup 210}Pb. {sup 210}Pb could be fully separated from its daughters, {sup 210}Bi and {sup 210}Po, with a recovery value of 91(3)% and detection efficiency of 44(3)%. Three spiked water samples (one underground and two river water samples) were analysed in triplicates with deviations lower than 10%, demonstrating the validity of the PS resin method for {sup 210}Pb analysis. - Highlights: • A plastic scintillation resin for selective analysis of {sup 210}Pb has been developed. • A commercial SPE cartridge has been use for separation and scintillation counting. • {sup 210}Pb separation from {sup 210}Bi and {sup 210}Po is achieved with a 91(3)% of recovery. • The method is valid for analysis of {sup 210}Pb in river water samples.

  15. Effects of instability of samples during liquid scintillation counting on the results of ligand-binding studies by equilibrium dialysis.

    Science.gov (United States)

    Ogawa, Y

    1985-01-01

    In binding studies using equilibrium dialysis, mixing of the aqueous samples with scintillation cocktails designed to accommodate aqueous samples produced grossly erroneous binding data. The amount of [1,5-14C]citrate apparently bound to rabbit muscle phosphofructokinase was a linear function of the citrate concentration, with no tendency to approach saturation, and highly variable. This problem was caused by very slow precipitation of citrate in the scintillation cocktail. Addition of a solubilizer stabilized the count rate during scintillation counting and resulted in acceptable binding curves.

  16. Alpha-gamma pulse shape discrimination in CsI:Tl, CsI:Na and BaF sub 2 scintillators

    CERN Document Server

    Dinca, L E; Haas, J; Bom, V R; Eijk, C W E

    2002-01-01

    Some scintillating materials offer the possibility of measuring well separated alpha and gamma scintillation response using a single crystal. Eventually aiming at thermal neutron detection using sup 6 Li or sup 1 sup 0 B admixture, pulse shape discrimination measurements were made on three scintillators: CsI:Tl, CsI:Na and pure BaF sub 2 crystals. A very good alpha/gamma discrimination was obtained using sup 2 sup 2 Na, sup 2 sup 4 sup 1 Am (gamma) and sup 2 sup 4 sup 4 Cm (alpha) radioactive sources.

  17. {sup 222}Rn determination in water and brine samples using liquid scintillation spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Thiago C.; Oliveira, Arno H., E-mail: oliveiratco2010@gmail.com [Universidade Federal de Minas Gerais (DEN/UFMG), Belo Horizonte (Brazil). Departamento de Engenharia Nuclear; Monteiro, Roberto P.G.; Moreira, Rubens M., E-mail: rpgm@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN-CNEN-MG), Belo Horizonte, MG (Brazil)

    2017-07-01

    Liquid scintillation spectrometry (LSC) is the most common technique used for {sup 222}Rn determination in environmental aqueous sample. In this study, the performance of water-miscible (Ultima Gold AB) and immiscible (Optiscint) liquid scintillation cocktails has been compared for different matrices. {sup 241}Am, {sup 90}Sr and {sup 226}Ra standard solutions were used for LSC calibration. {sup 214}Po region was defined as better for both cocktails. Counting efficiency of 76 % and optimum PSA level of 95 for Ultima Gold AB cocktail, and counting efficiency of 82 % and optimum PSA level of 85 for Optiscint cocktail were obtained. Both cocktails showed similar results when applied for {sup 222}Rn activity determination in water and brine samples. However the Optiscint is recommended due to its quenching resistance. Limit of detection of 0.08 and 0.06 Bq l{sup -1} were obtained for water samples using a sample:cocktail ratio of 10:12 mL for Ultima Gold AB and Optiscint cocktails, respectively. Limit of detection of 0.08 and 0.04 Bq l{sup -1} were obtained for brine samples using a sample:cocktail ratio of 8:12 mL for Ultima Gold AB and Optiscint cocktails, respectively. (author)

  18. Excellent pulse height uniformity response of a new LaBr{sub 3}:Ce scintillation crystal for gamma ray imaging

    Energy Technology Data Exchange (ETDEWEB)

    Pani, R., E-mail: roberto.pani@uniroma1.it [Department of Molecular Medicine, Sapienza University of Rome, Rome (Italy); Cinti, M.N.; Fabbri, A. [Department of Molecular Medicine, Sapienza University of Rome, Rome (Italy); Orlandi, C. [Department of Molecular Medicine, Sapienza University of Rome, Rome (Italy); Medical Physics Post Graduate School, Sapienza University of Rome, Rome (Italy); Pellegrini, R.; Scafè, R. [Department of Molecular Medicine, Sapienza University of Rome, Rome (Italy); Colarieti-Tosti, M. [KTH, School of Technology and Health (Sweden)

    2015-07-01

    Nuclear Medicine SPECT imaging is taking on new challenges, regarding the improvement of quality and contrast of images. In order to reach this goal, energy resolution and Compton rejection capability have to be enhanced. For detectors based on scintillation crystal, the choice of a scintillator with high light yield is suitable; recently one of the major candidates is Lanthanum Tri-Bromide (LaBr{sub 3}:Ce), with its high 63,000 ph/MeV light yield. Unfortunately, LaBr{sub 3}:Ce suffers size limitations due to the actual growth techniques (maximum 3 in. diameter) and has also elevated cost. For these reasons, great interest is shown on small field of view detectors based on LaBr{sub 3}:Ce, thought for imaging of specific physiological process or organ. To improve energy resolution, continuous crystals are more appropriate instead than pixelated ones. Since in a continuous crystal a decrease in position linearity, due to the light reflections, is typically obtained at the edges, an absorbent treatment of surfaces is generally utilized for SPECT applications. On the other hand, light absorption causes a relevant degradation of local energy resolution and pulse height uniformity response, affecting local image contrast. In this work an analysis on a new continuous LaBr{sub 3}:Ce scintillation crystal with size proper to a small field of view gamma imager but with reflective treatment of surfaces is presented. This leads up to outstanding overall and local energy resolution results and excellent pulse height uniformity response on the whole field of view. Furthermore, preliminary imaging results are satisfactory, compared to the ones from a scintillation crystal with absorbent edges. - Highlights: • Small FOV gamma camera based on LaBr{sub 3}:Ce is presented. • A new continuous LaBr{sub 3}:Ce for imaging but with reflective surfaces is proposed. • The reflective surfaces lead up to outstanding ER results on the whole FOV. • Excellent pulse height uniformity

  19. Determination of the form of very short luminous pulses. Application to scintillation phenomena (1962); Determination de la forme des impulsions lumineuses tres breves. Application aux phenomenes de scintillation (1962)

    Energy Technology Data Exchange (ETDEWEB)

    Koechlin, Y. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1961-12-15

    During studies on photomultipliers and scintillators we have developed a new method of measurement making it possible to determine with precision the form of luminous pulses whose duration may be less that of an anodic photomultiplier pulse. This method, which can be applied to non-recurrent pulses, makes possible the study of scintillations caused by particles of photons in the case where it is possible to operate on a large number of pulses having the same form. We have thus determined the form of the scintillations of various fluorescent liquids excited by {alpha} particles and {gamma} photons. The results obtained are in agreement with the energy transfer theory for organic liquids elaborated by H. Kallmann and M. FURST. The results are used to determine exactly the parameters occurring in the theory. (author) [French] A l'occasion d'etudes sur les photomultiplicateurs et les scintillateurs nous avons mis au point une nouvelle methode de mesure permettant de determiner avec precision la forme des impulsions lumineuses dont la duree peut etre inferieure a celle d'une impulsion anodique de photomultiplicateur. Cette methode, qui peut s'appliquer a des impulsions non recurrentes, permet d'etudier les scintillations provoquees par des particules ou des photons, a la seule condition que l'on puisse operer sur un grand nombre d'impulsions ayant la meme forme. Nous avons determine ainsi la forme des scintillations des divers liquides fluorescents excites par des particules {alpha} et des photons {gamma} Les resultats obtenus sont en accord avec la theorie des transferts d'energie dans les scintillateurs organiques, elaboree par H. KALLMANN et M. FURST. Ils conduisent a une determination precise des parameters intervenant dans cette theorie. (auteur)

  20. Calibration of a liquid scintillation counter to assess tritium levels in various samples

    Energy Technology Data Exchange (ETDEWEB)

    Al-Haddad, M.N. E-mail: meyassar@kfupm.edu.sa; Fayoumi, A.H.; Abu-Jarad, F.A

    1999-12-11

    An LKB-Wallac 1217 Liquid Scintillation Counter (LSC) was calibrated with a newly adopted cocktail. The LSC was then used to measure tritium levels in various samples to assess the compliance of tritium levels with the recommended international levels. The counter was calibrated to measure both biological and operational samples for personnel and for an accelerator facility at KFUPM. The biological samples include the bioassay (urine), saliva, and nasal tests. The operational samples of the light ion linear accelerator include target cooling water, organic oil, fomblin oil, and smear samples. Sets of standards, which simulate various samples, were fabricated using traceable certified tritium standards. The efficiency of the counter was obtained for each sample. The typical range of the efficiencies varied from 33% for smear samples down to 1.5% for organic oil samples. A quenching curve for each sample is presented. The minimum detectable activity for each sample was established. Typical tritium levels in biological and operational values are presented. All measured values are far below the recommended international limits.

  1. Optimization of liquid scintillation measurements applied to smears and aqueous samples collected in industrial environments

    Directory of Open Access Journals (Sweden)

    Arnaud Chapon

    2016-01-01

    Full Text Available Search for low-energy β contaminations in industrial environments requires using Liquid Scintillation Counting. This indirect measurement method supposes a fine control from sampling to measurement itself. Thus, in this paper, we focus on the definition of a measurement method, as generic as possible, for both smears and aqueous samples’ characterization. That includes choice of consumables, sampling methods, optimization of counting parameters and definition of energy windows, using the maximization of a Figure of Merit. Detection limits are then calculated considering these optimized parameters. For this purpose, we used PerkinElmer Tri-Carb counters. Nevertheless, except those relative to some parameters specific to PerkinElmer, most of the results presented here can be extended to other counters.

  2. Time and wavelength-resolved luminescence evaluation of several types of scintillators using streak camera system equipped with pulsed X-ray source

    Czech Academy of Sciences Publication Activity Database

    Furuya, Y.; Yanagida, T.; Fujimoto, Y.; Yokota, Y.; Kamada, K.; Kawaguchi, N.; Ishizu, S.; Uchiyama, K.; Mori, K.; Kitano, K.; Nikl, Martin; Yoshikawa, A.

    2011-01-01

    Roč. 634, č. 1 (2011), s. 59-63 ISSN 0168-9002 Institutional research plan: CEZ:AV0Z10100521 Keywords : streak camera system * scintillator * pulsed X-ray source Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.207, year: 2011

  3. Optimization of a Fast Neutron Scintillator for Real-Time Pulse Shape Discrimination in the Transient Reactor Test Facility (TREAT) Hodoscope

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, James T.; Thompson, Scott J.; Watson, Scott M.; Chichester, David L.

    2016-11-01

    We present a multi-channel, fast neutron/gamma ray detector array system that utilizes ZnS(Ag) scintillator detectors. The system employs field programmable gate arrays (FPGAs) to do real-time all digital neutron/gamma ray discrimination with pulse height and time histograms to allow count rates in excess of 1,000,000 pulses per second per channel. The system detector number is scalable in blocks of 16 channels.

  4. Performance of two liquids scintillation and optimization of a Wallac 1411 counter in the tritium quantification in aqueous samples; Desempeno de dos centelleadores liquidos y optimizacion de un contador Wallac 1411 en la cuantificacion de tritio en muestras acuosas

    Energy Technology Data Exchange (ETDEWEB)

    Contreras de la Cruz, E. de J.; Lopez del Rio, H.; Davila R, J. I.; Mireles G, F.; Pinedo V, J. L., E-mail: hlopezdelrio@hotmail.com [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas (Mexico)

    2014-10-15

    The optimization of a liquid scintillation counting Wallac 1411 is presented as well as the performance of the liquids scintillation miscible in water OptiPhase Hi Safe 3 and Last Gold Ab, in the tritium quantification in aqueous samples. The luminescence effect, the quenching, the solution ph and the level of pulse amplitude comparator (Pac) were evaluated in the response of both liquids scintillation in the tritium measurement. The quenching and the luminescence modify the scintillators response; in the first of them the counting efficiency decreases and the minimum detectable activity increases; the second interferes in the tritium quantification in the interest window, but the effect disappears after 4 hours of darkness of the samples. The maximum counting efficiency was of 24% for OptiPhase Hi Safe 3 and 31% for Last Gold Ab, diminishing with the quenching until values of 8 and 11%, respectively. For a counting time of 6 hours and lower quenching, the minimum detectable concentration for OptiPhase Hi Safe 3 was of 13.4 ± 0.2 Bq/L and 9.9 ± 0.1 Bq/L for Last Gold Ab. Both scintillators responded appropriately to sour and basic solutions, being only presented chemiluminescence in Last Gold Ab to ph highly basic. The Pac application that varies between 1 and 256 does not have effect in the tritium measurement until values above 90. (Author)

  5. Low-contrast visualization in megavoltage cone-beam CT at one beam pulse per projection using thick segmented scintillators

    Science.gov (United States)

    El-Mohri, Youcef; Antonuk, Larry E.; Zhao, Qihua; Choroszucha, Richard B.; Wang, Yi

    2010-04-01

    Megavoltage cone-beam computed tomography (MV CBCT) using an electronic portal imaging device (EPID) is a highly promising technique for providing valuable volumetric information for image guidance in radiotherapy. However, active matrix flat-panel imagers (AMFPIs), which are the established gold standard in portal imaging, require a relatively large dose to create images that are clinically useful. This is a consequence of the inefficiency of the phosphor screens employed in conventional MV AMFPIs, which utilize only ~2% of the incident radiation at 6 MV. Fortunately, the incorporation of thick, segmented scintillators can significantly improve the performance of MV AMFPIs, leading to improved image quality for projection imaging at extremely low dose. It is therefore of interest to explore the performance of such thick scintillators for MV CBCT toward the goal of soft-tissue contrast visualization. In this study, prototype AMFPIs incorporating segmented scintillators based on CsI:Tl and BGO crystals with thicknesses ranging from ~11 to 25 mm have been constructed and evaluated. Each prototype incorporates a detector consisting of a matrix of 120 × 60 scintillator elements separated by reflective septal walls, with an element-to-element pitch of 1.016 mm, coupled to an overlying ~1 mm thick Cu plate. The prototype AMFPIs were incorporated into a bench-top CBCT system, allowing the acquisition of tomographic images of a contrast phantom using a 6 MV radiotherapy photon beam. The phantom consists of a water-equivalent (solid water) cylinder, embedded with tissue-equivalent inserts having electron densities, relative to water, varying from ~0.43 to ~1.47. Reconstructed images of the phantom were obtained down to the lowest available dose (one beam pulse per projection), corresponding to a total scan dose of ~4 cGy using 180 projections. In this article, reconstructed images, contrast, noise and contrast-to-noise ratio for the tissue-equivalent objects using the

  6. The development of the SNO+ experiment: Scintillator timing, pulse shape discrimination, and sterile neutrinos

    Science.gov (United States)

    O'Sullivan, Erin

    The SNO+ experiment is a multi-purpose neutrino detector which is under construction in the SNOLAB facility in Sudbury, Ontario. SNO+ will search for neutrinoless double beta decay, and will measure low energy solar neutrinos. This thesis will describe three main development activities for the SNO+ experiment: the measurement of the timing parameters for the liquid scintillator cocktail, using those timing parameters to estimate the ability of SNO+ to discriminate alpha and beta events in the detector, and a sensitivity study that examines how solar neutrino data can constrain a light sterile neutrino model. Characterizing the timing parameters of the emission light due to charged-particle excitation in the scintillator is necessary for proper reconstruction of events in the detector. Using data obtained from a bench-top setup, the timing profile was modelled as three exponential components with distinct timing coefficients. Also investigated was the feasibility of using the timing profiles as a means to separate alpha and beta excitation events in the scintillator. The bench-top study suggested that using the peak-to-total method of analyzing the timing profiles could remove >99.9% of alpha events while retaining >99.9% of beta events. The timing parameters measured in the test set-up were then implemented in a Monte Carlo code which simulated the SNO+ detector conditions. The simulation results suggested that detector effects reduce the effectiveness of discriminating between alpha and beta events using the peak-to-total method. Using a more optimal method of analyzing the timing profile differences, specifically using a Gatti filter, improved the discrimination capability back to the levels determined in the bench-top setup. One of the physics goals of SNO+ is the first precision measurement of the pep solar neutrino ux at the level of about 5 % uncertainty. A study was performed to investigate how current solar neutrino data constrains the allowed parameters of

  7. Response Time-Shortened Zinc Oxide Scintillator for Accurate Single-Shot Synchronization of Extreme Ultraviolet Free-Electron Laser and Short-Pulse Laser

    Science.gov (United States)

    Shimizu, Toshihiko; Yamanoi, Kohei; Sakai, Kohei; Cadatal-Raduban, Marilou; Nakazato, Tomoharu; Sarukura, Nobuhiko; Kano, Masataka; Wakamiya, Akira; Ehrentraut, Dirk; Fukuda, Tsuguo; Nagasono, Mitsuru; Togashi, Tadashi; Matsubara, Shinichi; Tono, Kensuke; Higashiya, Atsushi; Yabashi, Makina; Kimura, Hiroaki; Ohashi, Haruhiko; Ishikawa, Tetsuya

    2011-06-01

    We report an over one-order-of magnitude improvement in the response time of conventional hydrothermal method-grown zinc oxide (ZnO) scintillator by introducing additional quenching channels via intentional indium ion doping. A 3-ps fluorescence decay time constant is achieved, therefore making it the fastest scintillator operating below 100 nm to date. Using this indium-doped ZnO, relative jitter between extreme ultraviolet free electron laser (EUV-FEL) probe and optical pump pulses is evaluated to be less than 3 ps. Moreover, pulses from these sources can be synchronized with 3-ps accuracy through in-situ observation of relative time difference in single-shot base.

  8. Study of the influence of ADC sampling rate on the efficiency of neutron-gamma discrimination by the pulse shape

    Science.gov (United States)

    Chepurnov, A. S.; Gavrilenko, O. I.; Kirsanov, M. A.; Klimanov, S. G.; Kubankin, A. S.

    2017-12-01

    The influence of a sampling rate of ADC on the efficiency of the pulse shape discrimination procedure (PSDP) developed for gamma-neutron discrimination was studied. Pu-Be neutron source and two types of digitizers (CAEN DT5730 and CAEN DT5743) were used. Both digitizers together with application software allow to store sequences of waveforms from a scintillation detector. The functional features of the CAEN DT5730 and CAEN DT5743 are described, and experimental characteristics of their operation are compared. Experimental values of an efficiency of neutron/gamma signal discrimination using two ADCs with different sampling frequencies are presented.

  9. High fluence neutron radiation of plastic scintillators for the TileCal of the ATLAS detector.

    Science.gov (United States)

    Mdhluli, J. E.; Davydov, Yu I.; Baranov, V.; Mthembu, S.; Erasmus, R.; Jivan, H.; Khanye, N.; Tlou, H.; Tjale, B.; Starchenko, J.; Solovyanov, O.; Mellado, B.; Sideras-Haddad, E.

    2017-09-01

    We report on structural and optical properties of neutron irradiated plastic scintillators. These scintillators were subjected to a neutron beam with wide energy range of up to 10MeV and a neutron flux range of 1.2 × 1012 - 9.4 × 1012 n/cm 2 using the IBR-2 pulsed reactor at the Joint Institute for Nuclear Research in Dubna. A study between polyvinyl toluene based commercial scintillators EJ200, EJ208 and EJ260 as well as polystyrene based scintillator from Kharkov is conducted. Light transmission, Raman spectroscopy, fluorescence spectroscopy and light yield testing was performed to characterize the damage induced in the samples. Preliminary results from the tests performed indicate no change in the optical and structural properties of the scintillators. The polystyrene based scintillators were further subjected to a higher neutron flux range of 3.8 × 1012 - 1.8 × 1014 n/cm 2 using the IBR-2 pulsed reactor.

  10. Developments for a scintillator tile sampling hadron calorimeter with 'longitudinal' tile configuration

    CERN Document Server

    Bosman, M; Teubert, F; Blaj, C; Boldea, V; Dita, S; Ajaltouni, Z; Badaud, F; Bouhemaid, N; Brette, P; Brossard, M; Chadelas, R; Chevaleyre, J C; Crouau, M; Daudon, F; Dugne, J J; Michel, B; Montarou, G; Muanza, G S; Pallin, D; Says, L P; Vazeille, F; Gildemeister, O; Nessi, M; Poggioli, L; Sonderegger, P; Amorin, A; Ferreira, P; Gomes, A; Henriques, A; Maio, A; Peralta, L; Leitner, M; Suk, M; Kostrikov, M; Kulagin, M; Lapin, V; Protopopov, Y; Solodkov, Alexander A; Zaitsev, A; Hakobian, H

    1993-01-01

    In a scintillation tile calorimeter with wavelength shifting fiber readout significant simplifications of the construction and the assembly are possible if the tiles are oriented "longitudinally", i.e. in r-phi plane for a barrel configuration. For a hybrid calorimeter consisting of a scintillator tile hadron compartment and a sufficiently containing LAr EM compartment, as proposed for the ATLAS detector, good jet resolution is predicted by simulations. The aim of the proposal is to construct a test module and to check the simulation results by test beam measurements. Several component tests and further simulations and engineering studies are needed to optimize the design of a large calorimeter structure.

  11. Radiocarbon dating of archaeological samples (sambaqui) using CO(2) absorption and liquid scintillation spectrometry of low background radiation.

    Science.gov (United States)

    Mendonça, Maria Lúcia T G; Godoy, José M; da Cruz, Rosana P; Perez, Rhoneds A R

    2006-01-01

    Sambaqui means, in the Tupi language, a hill of shells. The sambaquis are archaeological sites with remains of pre-historical Brazilian occupation. Since the sambaqui sites in the Rio de Janeiro state region are older than 10,000 years, the applicability of CO(2) absorption on Carbo-sorb and (14)C determination by counting on a low background liquid scintillation counter was tested. In the present work, sambaqui shells were treated with H(3)PO(4) in a closed vessel in order to generate CO(2). The produced CO(2) was absorbed on Carbo-sorb. On saturation about 0.6g of carbon, as CO(2), was mixed with commercial liquid scintillation cocktail (Permafluor), and the (14)C activity determined by counting on a low background counter, Packard Tricarb 3170 TR/SL, for a period of 1000 mins to enable detection of a radiocarbon age of 22,400 BP. But only samples with ages up to 3500 BP were submitted to the method because the samples had been collected in the municipality of Guapimirim, in archaeological sambaqui-type sites belonging to this age range. The same samples were sent to the (14)C Laboratory of the Centro de Energia Nuclear na Agricultura (CENA/USP) where similar results were obtained.

  12. Radiocarbon dating of archaeological samples (sambaqui) using CO{sub 2} absorption and liquid scintillation spectrometry of low background radiation

    Energy Technology Data Exchange (ETDEWEB)

    Mendonca, Maria Lucia T.G. [Department of Chemistry, Pontificia Universidade Catolica does Rio de Janeiro, Rua Marques de Sao Vicente 225, Gavea, Rio de Janeiro, RJ, CEP 22453-900 (Brazil)]. E-mail: luguerra@uol.com.br; Godoy, Jose M. [Department of Chemistry, Pontificia Universidade Catolica does Rio de Janeiro, Rua Marques de Sao Vicente 225, Gavea, Rio de Janeiro, RJ, CEP 22453-900 (Brazil); Instituto de Radioprotecao e Dosimetria, Comissao Nacional de Energia Nuclera, Caixa Postal 37750, Barra da Tijuca, Rio de Janeiro, RJ, CEP 22642-970 (Brazil); Cruz, Rosana P. da [Department of Chemistry, Pontificia Universidade Catolica does Rio de Janeiro, Rua Marques de Sao Vicente 225, Gavea, Rio de Janeiro, RJ, CEP 22453-900 (Brazil); Perez, Rhoneds A.R. [Museology Sector, National Museum, Federal University of Rio de Janeiro, Quinta da Boa Vista, s/no, Sao Cristovao, Rio de Janeiro, RJ, CEP 20940-040 (Brazil)

    2006-07-01

    Sambaqui means, in the Tupi language, a hill of shells. The sambaquis are archaeological sites with remains of pre-historical Brazilian occupation. Since the sambaqui sites in the Rio de Janeiro state region are older than 10,000 years, the applicability of CO{sub 2} absorption on Carbo-sorb[reg] and {sup 14}C determination by counting on a low background liquid scintillation counter was tested. In the present work, sambaqui shells were treated with H{sub 3}PO{sub 4} in a closed vessel in order to generate CO{sub 2}. The produced CO{sub 2} was absorbed on Carbo-sorb[reg]. On saturation about 0.6 g of carbon, as CO{sub 2}, was mixed with commercial liquid scintillation cocktail (Permafluor[reg]), and the {sup 14}C activity determined by counting on a low background counter, Packard Tricarb 3170 TR/SL, for a period of 1000 mins to enable detection of a radiocarbon age of 22,400 BP. But only samples with ages up to 3500 BP were submitted to the method because the samples had been collected in the municipality of Guapimirim, in archaeological sambaqui-type sites belonging to this age range. The same samples were sent to the {sup 14}C Laboratory of the Centro de Energia Nuclear na Agricultura (CENA/USP) where similar results were obtained.

  13. Sample preparation methods for the determination of plutonium and strontium in environmental samples by low level liquid scintillation counting and {alpha}-spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Solatie, D.; Carbol, P.; Hrnecek, E.; Betti, M. [European Commission, Joint Research Centre, Inst. for Transuranium Elements, Karlsruhe (Germany); Jaakkola, T. [Lab. of Radiochemistry, Univ. of Helsinki, Helsinki (Finland)

    2002-07-01

    Two different methods - leaching and microwave assisted total dissolution - have been exploited for the treatment of environmental samples for the determination of plutonium and strontium. Leaching applied to reference materials demonstrated the procedure to be applicable for the recovery of technogenic Pu and Sr from environmental samples. For the measurement of the alpha emitters of plutonium, co-precipitation with calcium oxalate and ferric hydroxide and separation with anion exchange has been used. For preparation of {alpha}-spectrometry sources, co-precipitation with NdF{sub 3} on a membrane filter or electro-deposition using the (NH{sub 4}){sub 2}C{sub 2}O{sub 4}/HCl method have been tested. The beta emitter {sup 241}Pu was measured by liquid scintillation counting. Pu isotope concentrations determined in the reference materials agreed well with the certified concentrations. {sup 90}Sr was measured in the leachate solutions from environmental samples collected close to a nuclear facility and from reference materials, after separation from the other leached elements, by liquid scintillation counting and Cherenkov counting. The {sup 90}Sr-concentrations determined in the reference materials agreed well with the certified concentrations. In the samples collected close a nuclear facility (soil, grass and sheep faeces), {sup 90}Sr was found at higher levels, which could also be correlated with the location of the sampling. (orig.)

  14. Polarized Scintillating Targets at Psi

    Science.gov (United States)

    van den Brandt, B.; Bunyatova, E. I.; Hautle, P.; Konter, J. A.; Mango, S.

    2001-02-01

    Scintillating polarized targets are now routinely available: blocks of 18×18×5 mm scintillating organic polymer, doped with TEMPO, polarized dynamically in a field of 2.5 T in a vertical 3He-4He dilution refrigerator. A 19 mm diameter plastic lightguide transports the scintillation light from the sample in the mixing chamber to a photomultiplier outside the cryostat.

  15. Determination of 63Ni and 55Fe in nuclear waste samples using radiochemical separation and liquid scintillation counting

    DEFF Research Database (Denmark)

    Hou, Xiaolin; Frøsig Østergaard, L.; Nielsen, S.P.

    2005-01-01

    An analytical method for the determination of Ni-63 and Fe-55 in nuclear waste samples such as graphite, heavy concrete, aluminium and lead was developed. Different decomposition methods (i.e. ashing, acid digestion and alkali fusion) were investigated for the decomposition of the samples...... and for the separation of Fe and Ni from the matrix. Hydroxide precipitation was used to separate Fe-55 and Ni-63 from the matrix elements and ion exchange chromatography was used to separate Fe-55 and Ni-63 from the interfering radionuclides as well as from each other. The separated Ni-63 was further purified...... by extraction chromatography. The purified Ni-63 and Fe-55 was then measured by liquid scintillation counting. The chemical yields of the separation procedures for Fe-55 and Ni-63 are above 90% and the decontamination factors for all interfering radionuclides are more than 10(5). The detection limits...

  16. Polarized scintillator targets

    Science.gov (United States)

    van den Brandt, B.; Bunyatova, E. I.; Hautle, P.; Konter, J. A.; Mango, S.

    2000-05-01

    The hydrogen nuclei in an organic scintillator have been polarized to more than 80% and the deuterons in its fully deuterated version to 24%. The scintillator, doped with TEMPO, has been polarized dynamically in a field of 2.5 T in a vertical dilution refrigerator in which a plastic lightguide transports the scintillation light from the sample in the mixing chamber to a photomultiplier outside the cryostat. Sizeable solid samples with acceptable optical properties and light output have been prepared and successfully operated as "live" polarized targets in nuclear physics experiments.

  17. Polarized scintillator targets

    Energy Technology Data Exchange (ETDEWEB)

    Brandt, B. van den E-mail: vandenbrandt@psi.ch; Bunyatova, E.I.; Hautle, P.; Konter, J.A.; Mango, S

    2000-05-21

    The hydrogen nuclei in an organic scintillator have been polarized to more than 80% and the deuterons in its fully deuterated version to 24%. The scintillator, doped with TEMPO, has been polarized dynamically in a field of 2.5 T in a vertical dilution refrigerator in which a plastic lightguide transports the scintillation light from the sample in the mixing chamber to a photomultiplier outside the cryostat. Sizeable solid samples with acceptable optical properties and light output have been prepared and successfully operated as 'live' polarized targets in nuclear physics experiments.

  18. Development of new Polysiloxane Based Liquid Scintillators

    Energy Technology Data Exchange (ETDEWEB)

    Dalla Palma, M.; Quaranta, A. [Department of Industrial Engineering, University of Trento,Via Sommarive, 9, 38123 Trento (Italy); INFN, Laboratori Nazionali di Legnaro,Viale dell' Universita, 2, 35020 Legnaro - Padova (Italy); Gramegna, F.; Marchi, T.; Cinausero, M. [INFN, Laboratori Nazionali di Legnaro,Viale dell' Universita, 2, 35020 Legnaro - Padova (Italy); Carturan, S.; Collazuol, G.; Checchia, C. [INFN, Laboratori Nazionali di Legnaro,Viale dell' Universita, 2, 35020 Legnaro - Padova (Italy); Department of Physics and Astronomy, University of Padova, Via Marzolo, 8, 35131 Padova (Italy); Degerlier, M. [Department of Physics, Nevsehir Haci Bektas Veli University, Science and Art Faculty, 50300 Nevsehir (Turkey)

    2015-07-01

    -toxic liquid scintillator (EJ309). The results have been related to the optical characterization of these materials, especially as regarding the fluorescence response, and the best performing material (1,1,5,5-Tetraphenyl 1,3,3,5-Tetramethyl Trisiloxane) showed a scintillation light-yield only slightly lower than EJ309, proving to be a promising candidate for the production of an efficient polysiloxane based liquid scintillator. The results as regarding the neutron-gamma pulse shape discrimination capability of the best performing materials are also reported in this work and the scintillation decay time of these materials are compared to the results of fluorescence lifetime analysis. PSD tests have been performed at CN accelerator in Legnaro National Laboratories with a 2.2 MeV pulsed neutron beam using TOF procedure and the pulses have been analyzed in order to evidence the PSD capability of every sample. The reported results pave the way to the development of a new promising class of non-toxic liquid scintillating materials for neutron detection, with good light output and interesting PSD characteristics. (authors)

  19. Procedure for the determination of uranium on cellulose air-sampling filters by photon-electron-rejecting-alpha-liquid-scintillation spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    McDowell, W.J.; Case, G.N.

    1986-08-01

    A procedure is described for obtaining from cellulose air-sampling filters the total uranium content whether it be in the form of metal, oxide, tetrafluoride or most other salts of uranium. It is demonstrated that the uranium content can be accurately assayed by low-temperature ashing of the filter paper, dissolving the ash in a mixed nitrate-sulfate system, extracting the uranium selectively into a scintillator containing a high-molecular-weight amine sulfate, and counting the extract using a Photon-Electron-Rejecting-Alpha-Liquid-Scintillation (PERALS) spectrometer. 2 refs., 4 figs., 2 tabs.

  20. Comparison of analysis techniques by liquid scintillation and Cerenkov Effect for {sup 40}K quantification in aqueous samples; Comparacion de las tecnicas de analisis por centelleo liquido y efecto Cerenkov para la cuantificacion {sup 40}K en muestras acuosas

    Energy Technology Data Exchange (ETDEWEB)

    Miranda C, L.; Davila R, J. I.; Lopez del R, H.; Mireles G, F., E-mail: lilimica20@hotmail.com [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas, Zac. (Mexico)

    2015-09-15

    In this work the counting by liquid scintillation and Cerenkov Effect to quantify {sup 40}K in aqueous samples was used. The performance of both techniques was studied by comparing the response of three commercial liquid scintillation OptiPhase HiSafe 3, Ultima Gold Ab and OptiPhase TriSafe, the vial type and presentation conditions of the sample for counting. In liquid scintillation, the ability to form homogeneous mixtures depended on the ionic strength of the aqueous solutions. The scintillator OptiPhase HiSafe 3 showed a greater charge capacity for solutions with high ionic strength (<3.4), while the scintillator OptiSafe TriSafe no form homogeneous mixtures for solutions of ionic strength higher than 0.3. Counting efficiencies for different proportions of sample and scintillator near 100% for the scintillators OptiSafe HiSafe 3 and Ultima Gold Ab were obtained. In the counting by Cerenkov Effect, the efficiency and sensitivity depended of the vial type; polyethylene vials were more suitable for counting that the glass vials. The sample volume had not significant effect on counting efficiency, obtaining an average value of 44.8% for polyethylene vials and 37.3% for glass vials. Therefore, the liquid scintillation was more efficient and sensitive for the measurement of {sup 40}K in aqueous solutions. (Author)

  1. A GIANT SAMPLE OF GIANT PULSES FROM THE CRAB PULSAR

    Energy Technology Data Exchange (ETDEWEB)

    Mickaliger, M. B.; McLaughlin, M. A.; Lorimer, D. R.; Palliyaguru, N. [Department of Physics, West Virginia University, Morgantown, WV 26506 (United States); Langston, G. I. [National Radio Astronomy Observatory, Green Bank, WV 24944 (United States); Bilous, A. V. [Department of Astronomy, University of Virginia, P.O. Box 400325, Charlottesville, VA 22904 (United States); Kondratiev, V. I. [Netherlands Institute for Radio Astronomy (ASTRON), Postbus 2, 7990 AA Dwingeloo (Netherlands); Lyutikov, M. [Department of Physics, Purdue University, 525 Northwestern Avenue, West Lafayette, IN 47907-2036 (United States); Ransom, S. M. [National Radio Astronomy Observatory, Charlottesville, VA 22903 (United States)

    2012-11-20

    We observed the Crab pulsar with the 43 m telescope in Green Bank, WV over a timespan of 15 months. In total we obtained 100 hr of data at 1.2 GHz and seven hours at 330 MHz, resulting in a sample of about 95,000 giant pulses (GPs). This is the largest sample, to date, of GPs from the Crab pulsar taken with the same telescope and backend and analyzed as one data set. We calculated power-law fits to amplitude distributions for main pulse (MP) and interpulse (IP) GPs, resulting in indices in the range of 2.1-3.1 for MP GPs at 1.2 GHz and in the range of 2.5-3.0 and 2.4-3.1 for MP and IP GPs at 330 MHz. We also correlated the GPs at 1.2 GHz with GPs from the Robert C. Byrd Green Bank Telescope (GBT), which were obtained simultaneously at a higher frequency (8.9 GHz) over a span of 26 hr. In total, 7933 GPs from the 43 m telescope at 1.2 GHz and 39,900 GPs from the GBT were recorded during these contemporaneous observations. At 1.2 GHz, 236 (3%) MP GPs and 23 (5%) IP GPs were detected at 8.9 GHz, both with zero chance probability. Another 15 (4%) low-frequency IP GPs were detected within one spin period of high-frequency IP GPs, with a chance probability of 9%. This indicates that the emission processes at high and low radio frequencies are related, despite significant pulse profile shape differences. The 43 m GPs were also correlated with Fermi {gamma}-ray photons to see if increased pair production in the magnetosphere is the mechanism responsible for GP emission. A total of 92,022 GPs and 393 {gamma}-ray photons were used in this correlation analysis. No significant correlations were found between GPs and {gamma}-ray photons. This indicates that increased pair production in the magnetosphere is likely not the dominant cause of GPs. Possible methods of GP production may be increased coherence of synchrotron emission or changes in beaming direction.

  2. Performance of the NuTeV Fe-Scintillator Sampling Calorimeter and Implications for Thin Calorimeters

    Science.gov (United States)

    Avvakumov, S.; Adams, T.; Alton, A.; de Barbaro, L.; de Barbaro, P.; Berlin, D.; Bernstein, R. H.; Bodek, A.; Bolton, T.; Brau, J.; Buchholz, D.; Budd, H.; Bugel, L.; Conrad, J.; Drucker, R. B.; Frey, R.; Formaggio, J.; Goldman, J.; Goncharov, M.; Harris, D. A.; Johnson, R. A.; Koutsoliotas, S.; Kim, J. H.; Krishnaswami, G. K.; Lamm, M. J.; Marsh, W.; Mason, D.; McNulty, C.; McFarland, K. S.; Naples, D.; Nienaber, P.; Romosan, A.; Sakumoto, W. K.; Schellman, H.; Shaevitz, M. H.; Spentzouris, P.; Stern, E. G.; Tamminga, B.; Vakili, M.; Vaitaitis, A.; Wu, V.; Yang, U. K.; Yu, J.; Zeller, G. P.

    1999-08-01

    NuTeV is a neutrino-nucleon deep inelastic scattering experiment at Fermilab. The NuTeV detector is a traditional heavy target neutrino detector which consists of an iron/liquid scintillator sampling calorimeter followed by a muon spectrometer. The calorimeter response to hadrons, muons and electrons has been measured in an in situ calibration beam over the energy range from 4.5 to 190 GeV. The small non-linearity of the response to hadrons is compared to the expectation from the measured ratio of responses between electrons and hadrons combined with the energy dependence of the fractional electromagnetic energy deposition in the form of neutral pions in hadronic showers fπ0( Eπ). The predictions use fπ0( Eπ) from the Monte Carlo simulations by GHEISHA, GFLUKA and GCALOR and also from the parameterizations of Wigmans and Groom. In addition, a study based on the NuTeV hadron calibration data of the effectiveness of a thin calorimeter is presented. The results of this study have important consequences for the energy resolution of calorimeters used in other applications; for example, measuring the cosmic ray flux in space or with balloon-based experiments.

  3. Performance of the NuTeV Fe-scintillator sampling calorimeter and implications for thin calorimeters

    Energy Technology Data Exchange (ETDEWEB)

    Avvakumov, S.; Adams, T.; Alton, A.; Barbaro, L. de; Barbaro, P. de; Berlin, D.; Bernstein, R.H.; Bodek, A.; Bolton, T.; Brau, J.; Buchholz, D.; Budd, H.; Bugel, L.; Conrad, J.; Drucker, R. B.; Frey, R.; Formaggio, J.; Goldman, J.; Goncharov, M.; Harris, D. A.; Johnson, R. A.; Koutsoliotas, S.; Kim, J. H.; Krishnaswami, G. K.; Lamm, M. J.; Marsh, W.; Mason, D.; McNulty, C.; McFarland, K. S.; Naples, D.; Nienaber, P.; Romosan, A.; Sakumoto, W. K.; Schellman, H.; Shaevitz, M. H.; Spentzouris, P.; Stern, E. G.; Tamminga, B.; Vakili, M.; Vaitaitis, A.; Wu, V.; Yang, U. K.; Yu, J.; Zeller, G. P

    1999-08-01

    NuTeV is a neutrino-nucleon deep inelastic scattering experiment at Fermilab. The NuTeV detector is a traditional heavy target neutrino detector which consists of an iron/liquid scintillator sampling calorimeter followed by a muon spectrometer. The calorimeter response to hadrons, muons and electrons has been measured in an in situ calibration beam over the energy range from 4.5 to 190 GeV. The small non-linearity of the response to hadrons is compared to the expectation from the measured ratio of responses between electrons and hadrons combined with the energy dependence of the fractional electromagnetic energy deposition in the form of neutral pions in hadronic showers f{sub {pi}{sup 0}}(E{sub {pi}}). The predictions use f{sub {pi}{sup 0}}(E{sub {pi}}) from the Monte Carlo simulations by GHEISHA, GFLUKA and GCALOR and also from the parameterizations of Wigmans and Groom. In addition, a study based on the NuTeV hadron calibration data of the effectiveness of a thin calorimeter is presented. The results of this study have important consequences for the energy resolution of calorimeters used in other applications; for example, measuring the cosmic ray flux in space or with balloon-based experiments.

  4. Novel Scintillation Material - ZnO Transparent Ceramics

    OpenAIRE

    Rodnyi, P. A.; Chernenko, K. A.; Gorokhova, E. I.; Kozlovskii, S. S.; Khanin, V. M.; Khodyuk, I. V.

    2011-01-01

    ZnO-based scintillation ceramics for application in HENPA LENPA analyzers have been investigated. The following ceramic samples have been prepared: undoped ones (ZnO), an excess of zinc in stoichiometry (ZnO:Zn), doped with gallium (ZnO:Ga) and lithium (ZnO:Li). Optical transmission, x-ray excited emission, scintillation decay and pulse height spectra were measured and analyzed. Ceramics have reasonable transparency in visible range (up to 60% for 0.4 mm thickness) and energy resolution (14.9...

  5. High-symmetry organic scintillator systems

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Patrick L.

    2017-09-05

    An ionizing radiation detector or scintillator system includes a scintillating material comprising an organic crystalline compound selected to generate photons in response to the passage of ionizing radiation. The organic compound has a crystalline symmetry of higher order than monoclinic, for example an orthorhombic, trigonal, tetragonal, hexagonal, or cubic symmetry. A photodetector is optically coupled to the scintillating material, and configured to generate electronic signals having pulse shapes based on the photons generated in the scintillating material. A discriminator is coupled to the photon detector, and configured to discriminate between neutrons and gamma rays in the ionizing radiation based on the pulse shapes of the output signals.

  6. High-symmetry organic scintillator systems

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Patrick L.

    2018-02-06

    An ionizing radiation detector or scintillator system includes a scintillating material comprising an organic crystalline compound selected to generate photons in response to the passage of ionizing radiation. The organic compound has a crystalline symmetry of higher order than monoclinic, for example an orthorhombic, trigonal, tetragonal, hexagonal, or cubic symmetry. A photodetector is optically coupled to the scintillating material, and configured to generate electronic signals having pulse shapes based on the photons generated in the scintillating material. A discriminator is coupled to the photon detector, and configured to discriminate between neutrons and gamma rays in the ionizing radiation based on the pulse shapes of the output signals.

  7. Development of a liquid scintillation method for in vitro determination of {sup 226}Ra and {sup 228} Ra in bioassay samples

    Energy Technology Data Exchange (ETDEWEB)

    Fernandes, Paulo Cesar P.; Sousa, Wanderson O.; Juliao, Ligia M.Q.C.; Dantas, Bernardo M., E-mail: pcesar@ird.gov.b [Instituto de Radioprotecao e Dosimetria (IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2011-07-01

    Radium isotopes are dispersed in the environment according to their physicochemical characteristics. The intake of {sup 226}Ra and {sup 228}Ra in humans can occur by inhalation and ingestion and the risk of internal exposure are related to their long half-lives, characteristics of the emission and biokinetics of the isotopes in the human body. The goal of this work is to develop a methodology for the analysis of {sup 226}Ra and {sup 228}Ra in excreta samples (urine and feces), using liquid scintillation technique. Excreta samples were provided by non-exposed humans for the purpose of standardizing the methodology and the establishment of a background level of radium excretion. Radium isotopes were concentrated and separated from the constituents of the sample by co-precipitation with barium sulphate. The precipitate of Ba(Ra)SO{sub 4} was filtrated and weighted for the determination of the chemical yield. The filter containing the precipitate was transferred to a scintillation vial. In the scintillation vial, 8 mL of water, 8 mL of Instagel XF and 4 mL of UltimaGold were added, forming a gel suspension, after stirring the solution. The {sup 226}Ra and {sup 228}Ra activities were determined 21 days after the precipitation of samples. The samples were counted in a liquid scintillation spectrometer. The technique presented adequate sensitivity and reproducibility for the analysis of urine and feces. The activities of {sup 226}Ra and {sup 228}Ra in excreta samples provide useful information for the identification of the main route of intake and for the assessment of the internal exposure of occupationally exposed workers and inhabitants of high background areas. (author)

  8. Evaluation of different parameters affecting the liquid scintillation spectrometry measurement of gross alpha and beta index in water samples

    Energy Technology Data Exchange (ETDEWEB)

    Palomo, M. [Unitat de Radioquimica Ambiental i Sanitaria, Universitat Rovira i Virgili, Tarragona (Spain); Villa, M. [Centro de Investigacion, Tecnologia e Innovacion. Servicio Radioisotopos. Universidad de Sevilla (Spain); Casacuberta, N. [Institut de Ciencia i Tecnologia Ambientals-Departament de Fisica, Universitat Autonoma de Barcelona. Spain (Spain); Penalver, A.; Borrull, F. [Unitat de Radioquimica Ambiental i Sanitaria, Universitat Rovira i Virgili, Tarragona (Spain); Aguilar, C., E-mail: carme.aguilar@urv.cat [Unitat de Radioquimica Ambiental i Sanitaria, Universitat Rovira i Virgili, Tarragona (Spain)

    2011-09-15

    Liquid scintillation spectrometry is a fast competitive technique for the simultaneous evaluation of gross alpha and beta indexes. However, the implementation of this technique should not be considered as straightforward, and the pre-concentration methods to decrease the detection limit together with quenching and alpha, and beta crossover corrections should be carefully chosen according to the needs of the laboratory. Both aspects are being approached in this work as to find an easy and robust method for alpha/beta measurement in water samples, taking into account the quenching and alpha/beta crossover interferences effects. Results showed that most of the pre-concentration methods increased the quenching in the measurement, although HNO{sub 3} 0.05 M points to be the best solution for pre-concentration and re-dissolution of the sample as converges into low quenching and maximum recovery. Subsequently, in the measurement of water samples with different conductivities, the analysis of the raw counts to obtain gross alpha and beta indexes was carried out using different approaches to implement quenching and interference corrections. If quenching and salt content in the sample are relatively low, interference and quenching-efficiency corrections do not improve the accuracy of the results within the usual precision assumed for a result of gross alpha and beta index (25%). Special attention must be paid when corrections are applied to high quenched or saline samples and when alpha and beta activities values are different in several orders of magnitude. - Highlights: > Developed method for simultaneously quantifying gross alpha and gross beta indexes based on LSC was as accurate and precise as the results obtained from methods based on gas proportional counting and ZnS alpha counting. > Alpha/beta crossover and/or quenching corrections were applied and the results obtained did not improve accuracy within 25% dispersion, a widespread acceptance limit for gross alpha and

  9. The measurement of tritium in water samples with electrolytic enrichment using liquid scintillation counter

    Directory of Open Access Journals (Sweden)

    Janković Marija M.

    2012-01-01

    Full Text Available Tritium (3H present in the environment decreased in the last decades and nowadays it has low activity concentrations. Measurement of low-level tritium activities in natural waters, e. g. in precipitation, groundwater, and river water requires special techniques for water pretreatment and detection of low-level radioactivity. In order to increase the tritium concentration to an easily measurable level, electrolytic enrichment must be applied. This paper presents the enrichment method performed by electrolysis in a battery of 18 cells, giving an enrichment factor of 5.84 (calculated from 59 electrolyses. The calculated mean values of the separation factor and enrichment parameter were 4.10 and 0.84, respectively. Results for tritium activity in precipitation and surface water collected in Belgrade during 2008 and 2009 are presented. The Radiation and Environmental Protection Department of the Vinča Institute of Nuclear Sciences, participated in the IAEA TRIC2008 international intercomparison exercise. The participation in the intercomparisons for any laboratory doing low-level 3H measurements in the waters is very important and useful. It is considered the best way to check the entire procedure and methods of the measurements and the reliability of the standard used. The analysis of the reported 3H activity results showed that all results for five intercomparison samples, for which electrolytic enrichment were applied prior to the 3H measurement, are acceptable.

  10. Evaluation of correlation between physical properties and ultrasonic pulse velocity of fired clay samples.

    Science.gov (United States)

    Özkan, İlker; Yayla, Zeliha

    2016-03-01

    The aim of this study is to establish a correlation between physical properties and ultrasonic pulse velocity of clay samples fired at elevated temperatures. Brick-making clay and pottery clay were studied for this purpose. The physical properties of clay samples were assessed after firing pressed clay samples separately at temperatures of 850, 900, 950, 1000, 1050 and 1100 °C. A commercial ultrasonic testing instrument (Proceq Pundit Lab) was used to evaluate the ultrasonic pulse velocity measurements for each fired clay sample as a function of temperature. It was observed that there became a relationship between physical properties and ultrasonic pulse velocities of the samples. The results showed that in consequence of increasing densification of the samples, the differences between the ultrasonic pulse velocities were higher with increasing temperature. These findings may facilitate the use of ultrasonic pulse velocity for the estimation of physical properties of fired clay samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Neutron induced radiation damage of plastic scintillators for the upgrade of the Tile Calorimeter of the ATLAS detector.

    Science.gov (United States)

    Mdhluli, J. E.; Jivan, H.; Erasmus, R.; Davydov, Yu I.; Baranov, V.; Mthembu, S.; Mellado, B.; Sideras-Haddad, E.; Solovyanov, O.; Sandrock, C.; Peter, G.; Tlou, S.; Khanye, N.; Tjale, B.

    2017-07-01

    With the prediction that the plastic scintillators in the gap region of the Tile Calorimeter will sustain a significantly large amount of radiation damage during the HL-LHC run time, the current plastic scintillators will need to be replaced during the phase 2 upgrade in 2018. The scintillators in the gap region were exposed to a radiation environment of up to 10 kGy/year during the first run of data taking and with the luminosity being increased by a factor of 10, the radiation environment will be extremely harsh. We report on the radiation damage to the optical properties of plastic scintillators following irradiation using a neutron beam of the IBR-2 pulsed reactor in Joint Institute for Nuclear Research (JINR), Dubna. A comparison is drawn between polyvinyl toluene based commercial scintillators EJ200, EJ208 and EJ260 as well as polystyrene based scintillator from Kharkov. The samples were subjected to irradiation with high energy neutrons and a flux density range of 1 × 106-7.7 × 106. Light transmission, Raman spectroscopy, fluorescence spectroscopy and light yield testing was performed to characterize the damage induced in the samples. Preliminary results from the tests done indicate a minute change in the optical properties of the scintillators with further studies underway to gain a better understanding of the interaction between neutrons with plastic scintillators.

  12. Halide Scintillators

    NARCIS (Netherlands)

    Van Loef, E.V.D.

    2003-01-01

    Scintillators have been used for decades to make ionising radiation visible. Either by direct observation of the light flash produced by the material when it is exposed to radiation, or indirect by use of a photomultiplier tube or photodiode. Despite the enormous amount of commercially available

  13. A strategy for sampling on a sphere applied to 3D selective RF pulse design.

    Science.gov (United States)

    Wong, S T; Roos, M S

    1994-12-01

    Conventional constant angular velocity sampling of the surface of a sphere results in a higher sampling density near the two poles relative to the equatorial region. More samples, and hence longer sampling time, are required to achieve a given sampling density in the equatorial region when compared with uniform sampling. This paper presents a simple expression for a continuous sample path through a nearly uniform distribution of points on the surface of a sphere. Sampling of concentric spherical shells in k-space with the new strategy is used to design 3D selective inversion and spin-echo pulses. These new 3D selective pulses have been implemented and verified experimentally.

  14. Spectroscopic Investigations with Dual Neutron-Gamma Scintillators

    Science.gov (United States)

    Chowdhury, P.; Brown, T.; Doucet, E.; Lister, C. J.; Morse, C.; Rogers, A. M.; Wilson, G. L.; Devlin, M.; Fotiades, N.; Gomez, J. A.; Mosby, S.

    2017-09-01

    The spectroscopic capabilities of 7Li-enriched Cs27LiYCl6 (C7LYC) dual neutron-gamma scintillators are being tested in diverse application arenas to exploit the excellent pulse-shape discrimination together with the unprecedented pulse height resolution ( 10%) for fast neutrons in the accelerator at the UMass Lowell Radiation Laboratory. Tests of waveform digitizers with different sampling rates are also being performed. A key goal is to evaluate whether the low intrinsic efficiency of C7LYC for fast neutrons compared to traditional neutron detectors, such as liquid scintillators, can be effectively offset by the gain in solid angle obtained by positioning the detectors much closer to the target, since the typical long time-of-flight arms for energy resolution are not necessary. Supported by the NNSA Stewardship Science Academic Alliance Program under Grant DE-NA0002932.

  15. Temperature quenching in LAB based liquid scintillator

    Science.gov (United States)

    Sörensen, A.; Hans, S.; Junghans, A. R.; Krosigk, B. v.; Kögler, T.; Lozza, V.; Wagner, A.; Yeh, M.; Zuber, K.

    2018-01-01

    The effect of temperature changes on the light output of LAB based liquid scintillator is investigated in a range from -5 to 30°C with α -particles and electrons in a small scale setup. Two PMTs observe the scintillator liquid inside a cylindrically shaped aluminum cuvette that is heated or cooled and the temperature dependent PMT sensitivity is monitored and corrected. The α -emitting isotopes in dissolved radon gas and in natural Samarium (bound to a LAB solution) excite the liquid scintillator mixtures and changes in light output with temperature variation are observed by fitting light output spectra. Furthermore, also changes in light output by compton electrons, which are generated from external calibration γ -ray sources, is analysed with varying temperature. Assuming a linear behaviour, a combined negative temperature coefficient of {(-0.29 ± 0.01)}{ %/°}C is found. Considering hints for a particle type dependency, electrons show {(-0.17 ± 0.02)}{ %/°}C, whereas the temperature dependency seems stronger for α -particles, with {(-0.35 ± 0.03)}{ %/°}C. Due to a high sampling rate, a pulse shape analysis can be performed and shows an enhanced slow decay component at lower temperatures, pointing to reduced non-radiative triplet state de-excitations.

  16. Low Rate Sampling of Pulse Streams with Application to Ultrasound Imaging

    CERN Document Server

    Tur, Ronen; Friedman, Zvi

    2010-01-01

    Signals comprised of a stream of short pulses appear in many applications including bio-imaging, radar, and ultrawideband communication. Recently, a new framework, referred to as finite rate of innovation, has paved the way to low rate sampling of such pulses by exploiting the fact that only a small number of parameters per unit time are needed to fully describe these signals. Unfortunately, for high rates of innovation, existing approaches are numerically unstable. In this paper we propose a general sampling approach which leads to stable recovery even in the presence of many pulses. We begin by deriving a condition on the sampling kernel which allows perfect reconstruction of periodic streams of pulses from a minimal number of samples. This extends previous work which assumes that the sampling kernel is an ideal low-pass filter. A compactly supported class of filters, satisfying the mathematical condition, is then introduced, leading to a sampling framework based on compactly supported kernels. We then exte...

  17. Structure and luminescence properties of single crystal scintillator (Gd0.9Lu0.1)2Si2O7:0.1%Ce

    Science.gov (United States)

    Feng, He; Xu, WuSheng; Zhang, Zhijun; Xu, Zhan; Wan, Huanhuan; Zhao, Jingtai

    2017-12-01

    A novel mixed crystal scintillator of (Gd0.9Lu0.1)2Si2O7:0.1%Ce (Lu-GPS:Ce) was grown by floating zone method. The structure of as grown sample was determined through XRD to be triclinic. Its photoluminescence (PL) and scintillation properties, were evaluated in this paper. The PL properties were studied through Vacuum ultra-violet (VUV) excitation, emission and PL decay results. Scintillation properties were investigated through X-ray excited luminescence (XEL), scintillation decay curves and pulse spectrum under γ-ray excitation. The absolute light yield of as grown Lu-GPS:Ce sample is 16,600 ph/MeV. It is found that non-radiative energy transfer from Gd3+ to Ce3+ occurs, leading slow component in the PL and scintillation process.

  18. Electro-optic sampling of THz pulses at the CTR source at FLASH

    Energy Technology Data Exchange (ETDEWEB)

    Wunderlich, Steffen

    2012-06-15

    Several applications in material science, non-linear optics and solid-state physics require short pulses with a high pulse energy of radiation in the far-infrared and in the terahertz (THz) regime in particular. As described in the following, coherent transition radiation generated by high-relativistic electron bunches at FLASH provides broadband single-cycle pulses of sub-picosecond length. The pulses are characterized using the quantitative and time-resolved technique of electro-optic sampling showing peak field strengths in the order of 1 MV/cm.

  19. Influence of natural radium contamination of barium chloride on the determination of radium isotopes in the water samples using α/β liquid scintillation spectrometry

    Directory of Open Access Journals (Sweden)

    Nguyen Chau

    2016-12-01

    Full Text Available The determination of radium isotopes in drinking water by liquid scintillation technique requires some reagents that are used for separating radium from water samples. One of the main reagents is BaCl2·H2O. This paper presents the study of this compound and shows that barium chloride reagent is naturally contaminated with226Ra. The 226Ra activity concentration in BaCl2·H2O reagent produced by chemical companies from Poland and other countries is equal to a few dozen Bq/kg. Furthermore, 14 mL of 0.10 M BaCl2·H2O solution is the optimum amount which should be used for the chemical procedure. At the optimum amount of barium chloride and 2-hour measurement, the detection limit of 226Ra and 228Ra of the liquid scintillation counting method is equal to 5 and 30 mBq per sample, respectively.

  20. Digital neutron-gamma discrimination with scintillators: An innovative approach

    Science.gov (United States)

    Jamili, S.; Bayat, E.; Ghal-Eh, N.

    2017-03-01

    In this paper, a digital neutron-gamma discrimination (DNGD) method with an NE213 scintillator has been proposed in which the anode pulse is divided into two different pulses, one representing the amplitude and the other characterizes the DNGD. Then the two pulses are summed up after travelling through delay and mixer circuits to form an input pulse for sampling in analog-to-digital converter (ADC). The discrimination tests have been performed with an 8-bit digital storage oscilloscope (DSO) as ADC and 241Am-Be neutron source, whereas the Fourier method has been used to derive the discrimination characteristic. The results confirm the fast performance and efficiency of proposed method.

  1. NEXT GENERATION NEUTRON SCINTILLATORS BASED ON SEMICONDUCTOR NANOSTRUCTURES

    Energy Technology Data Exchange (ETDEWEB)

    Cai-Lin Wang

    2008-06-30

    The results reported here successfully demonstrate the technical feasibility of ZnS QDs/{sup 6}LiF/polymer composites as thermal neutron scintillators. PartTec has obtained stable ZnS QDs with a quantum yield of 17% induced by UV light, and light pulse decay lifetimes of 10-30 ns induced by both UV and neutrons. These lifetime values are much shorter than those of commercial ZnS microparticle and {sup 6}Li-glass scintillators. Clear pulse height peaks induced by neutron irradiation were seen for PartTec's ZnS nanocomposites. By adjusting the concentrations, particle size and degree of dispersion of ZnS QD/{sup 6}LiF in a PVA matrix, the light absorption and light yield of films at 420-440 nm can be optimized. PartTec's novel scintillators will replace traditional {sup 6}Li-glass and ZnS/{sup 6}LiF:Ag scintillators if the PL quantum yield can be improved above 30%, and/or increase the transparency of present nanoscintillators. Time and resources inhibited PartTec's total success in Phase I. For example, bulk doping preparations of ZnS QDs with Ag{sup +}, Eu{sup 3+} or Ce{sup 3+} QDs was impractical given those constraints, nor did they permit PartTec to measure systematically the change of PL decay lifetimes in different samples. PartTec will pursue these studies in the current proposal, as well as develop a better capping and dopant along with developing brighter and faster ZnS QD scintillators.

  2. Liquid scintillation counting standardization of 125I in organic and inorganic samples by the CIEMAT/NIST method; Calibracion por centelleo liquido del 125I en muestras inorganicas y organicas, mediante el metodo CIEMAT/NIST

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez Barquero, L.; Grau Malonda, A.; Los Arcos Merino, J. M.; Grau Carles, A.

    1994-07-01

    The liquid scintillation counting standardization of organic and inorganic samples of ''I25I by the CIEMAT/NIST method using five different scintillators is described. The discrepancies between experimental and computed efficiencies are lower than 1.4% and 1.7%, for inorganic and organic samples, respectively, in the interval 421-226 of quenching parameter. Both organic and inorganic solutions have been standardized in terms of activity concentration to an overall uncertainty of 0.76%. (Author) 14 refs.

  3. A comparison between the measurements of Kr-85 in environmental samples by liquid scintillation and proportional counters; Comparacion de resultados de la medida radiactiva del Kr-85 ambiental por centelleo liquido y contadores proporcionales

    Energy Technology Data Exchange (ETDEWEB)

    Heras, M. C.; Perez, M. M.

    1983-07-01

    The most used methods for the measurement of Kr-81 beta-activity after their concentration and aisolation are the liquid scintillation counting and the proportional counter. In this work the beta activity of concentrated and aisolated Kr-85 samples measured in collaboration with the Max-Planck Institut fur Kernphyslk, Aussenstelle Freiburg. Samples taken both In Madrid and Frelburg are measured by proportional counters in the Max-Planck lnstitut, Freibury and by liquid scintillation counting in JEN, Madrid. The comparison of both measurements do not show appreciable discrepancy between the results obtained to both techniques. (Author)

  4. Quadrature demodulation based circuit implementation of pulse stream for ultrasonic signal FRI sparse sampling

    Science.gov (United States)

    Shoupeng, Song; Zhou, Jiang

    2017-03-01

    Converting ultrasonic signal to ultrasonic pulse stream is the key step of finite rate of innovation (FRI) sparse sampling. At present, ultrasonic pulse-stream-forming techniques are mainly based on digital algorithms. No hardware circuit that can achieve it has been reported. This paper proposes a new quadrature demodulation (QD) based circuit implementation method for forming an ultrasonic pulse stream. Elaborating on FRI sparse sampling theory, the process of ultrasonic signal is explained, followed by a discussion and analysis of ultrasonic pulse-stream-forming methods. In contrast to ultrasonic signal envelope extracting techniques, a quadrature demodulation method (QDM) is proposed. Simulation experiments were performed to determine its performance at various signal-to-noise ratios (SNRs). The circuit was then designed, with mixing module, oscillator, low pass filter (LPF), and root of square sum module. Finally, application experiments were carried out on pipeline sample ultrasonic flaw testing. The experimental results indicate that the QDM can accurately convert ultrasonic signal to ultrasonic pulse stream, and reverse the original signal information, such as pulse width, amplitude, and time of arrival. This technique lays the foundation for ultrasonic signal FRI sparse sampling directly with hardware circuitry.

  5. Timing performance of ZnO:Ga nanopowder composite scintillators

    Energy Technology Data Exchange (ETDEWEB)

    Turtos, Rosana M. [Universita degli Studi di Milano-Bicocca, Milano (Italy); Gundacker, Stefan; Lucchini, Marco T.; Lecoq, Paul; Auffray, Etiennette [CERN, Geneva (Switzerland); Prochazkova, Lenka; Cuba, Vaclav [Czech Technical University, Faculty of Nuclear Sciences and Physical Engineering, Prague (Czech Republic); Buresova, Hana [Nuvia a.s, Kralupy nad Vltavou (Czech Republic); Mrazek, Jan [Institute of Photonics and Electronics AS CR, Prague (Czech Republic); Nikl, Martin [Institute of Physics of the AS CR, Prague (Czech Republic)

    2016-11-15

    The implementation of nanocrystal-based composite scintillators as a new generation of ultrafast particle detectors is explored using ZnO:Ga nanopowder. Samples are characterized with a spectral-time resolved photon counting system and pulsed X-rays, followed by coincidence time resolution (CTR) measurements under 511 keV gamma excitation. Results are comparable to CTR values obtained using bulk inorganic scintillators. Bringing the ZnO:Ga nanocrystal's timing performance to radiation detectors could pave the research path towards sub-20 ps time resolution as shown in this contribution. However, an efficiency boost when placing nanopowders in a transparent host constitutes the main challenge in order to benefit from sub-nanosecond recombination times. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  6. Determination of radium isotopes in environmental samples by gamma spectrometry, liquid scintillation counting and alpha spectrometry: a review of analytical methodology.

    Science.gov (United States)

    Jia, Guogang; Jia, Jing

    2012-04-01

    Radium (Ra) isotopes are important from the viewpoints of radiation protection and environmental protection. Their high toxicity has stimulated the continuing interest in methodology research for determination of Ra isotopes in various media. In this paper, the three most routinely used analytical techniques for Ra isotope determination in biological and environmental samples, i.e. low-background γ-spectrometry, liquid scintillation counting and α-spectrometry, were reviewed, with emphasis on new methodological developments in sample preparation, preconcentration, separation, purification, source preparation and measurement techniques. The accuracy, selectivity, traceability, applicability and minimum detectable activity (MDA) of the three techniques were discussed. It was concluded that the MDA (0.1mBqL(-1)) of the α-spectrometry technique coupled with chemical separation is about two orders of magnitude lower than that of low-background HPGe γ-spectrometry and LSC techniques. Therefore, when maximum sensitivity is required, the α-spectrometry technique remains the first choice. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Mixture quantification using PLS in plastic scintillation measurements

    Energy Technology Data Exchange (ETDEWEB)

    Bagan, H.; Tarancon, A.; Rauret, G. [Departament de Quimica Analitica, Universitat de Barcelona, Diagonal 647, E-08028 Barcelona (Spain); Garcia, J.F., E-mail: jfgarcia@ub.ed [Departament de Quimica Analitica, Universitat de Barcelona, Diagonal 647, E-08028 Barcelona (Spain)

    2011-06-15

    This article reports the capability of plastic scintillation (PS) combined with multivariate calibration (Partial least squares; PLS) to detect and quantify alpha and beta emitters in mixtures. While several attempts have been made with this purpose in mind using liquid scintillation (LS), no attempt was done using PS that has the great advantage of not producing mixed waste after the measurements are performed. Following this objective, ternary mixtures of alpha and beta emitters ({sup 241}Am, {sup 137}Cs and {sup 90}Sr/{sup 90}Y) have been quantified. Procedure optimisation has evaluated the use of the net spectra or the sample spectra, the inclusion of different spectra obtained at different values of the Pulse Shape Analysis parameter and the application of the PLS1 or PLS2 algorithms. The conclusions show that the use of PS+PLS2 applied to the sample spectra, without the use of any pulse shape discrimination, allows quantification of the activities with relative errors less than 10% in most of the cases. This procedure not only allows quantification of mixtures but also reduces measurement time (no blanks are required) and the application of this procedure does not require detectors that include the pulse shape analysis parameter.

  8. Optimizing ZnS/6LiF scintillators for wavelength-shifting-fiber neutron detectors

    Energy Technology Data Exchange (ETDEWEB)

    Crow, Lowell [ORNL; Funk, Loren L [ORNL; Hannan, Bruce W [ORNL; Hodges, Jason P [ORNL; Riedel, Richard A [ORNL; Wang, Cai-Lin [ORNL

    2016-01-01

    In this paper we compare the performance of grooved and flat ZnS/6LiF scintillators in a wavelength shifting-fiber (WLSF) detector. Flat ZnS/6LiF scintillators with the thickness L=0.2-0.8 mm were characterized using photon counting and pulse-height analysis and compared to a grooved scintillator of approximately 0.8 mm thick. While a grooved scintillator considerably increases the apparent thickness of the scintillator to neutrons for a given coating thickness, we find that the flat scintillators perform better than the grooved scintillators in terms of both light yield and neutron detection efficiency. The flat 0.8-mm-thick scintillator has the highest light output, and it is 52% higher compared with a grooved scintillator of same thickness. The lower light output of the grooved scintillator as compared to the flat scintillator is consistent with the greater scintillator-WLSF separation and the much larger average emission angle of the grooved scintillator. We also find that the average light cone width, or photon travel-length as measured using time-of-flight powder diffraction of diamond and vanadium, decreases with increasing L in the range of L=0.6-0.8 mm. This result contrasts with the traditional Swank diffusion model for micro-composite scintillators, and could be explained by a decrease in photon diffusion-coefficient or an increase in micro-particle content in the flat scintillator matrix for the thicker scintillators.

  9. Sample preparation method for glass welding by ultrashort laser pulses yields higher seam strength.

    Science.gov (United States)

    Cvecek, K; Miyamoto, I; Strauss, J; Wolf, M; Frick, T; Schmidt, M

    2011-05-01

    Glass welding by ultrashort laser pulses allows joining without the need of an absorber or a preheating and postheating process. However, cracks generated during the welding process substantially impair the joining strength of the welding seams. In this paper a sample preparation method is described that prevents the formation of cracks. The measured joining strength of samples prepared by this method is substantially higher than previously reported values.

  10. Determination of Carbon-14 in environmental samples by mixing 14CO{sub 2} with a liquid scintillator; Determinacion de carbono-14 en muestras ambientales por incorporacion de 14CO{sub 2} a un centelleador liquido

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, M. R.; Gomez, V.; Heras, M. C.; Beltran, M. A.

    1990-07-01

    A method for the determination of Carbon-14 (14CO2) in environmental samples has been developed. The method use the direct absorption of the carbon dioxide into Carbosorb, followed with incorporation of the mixture (Carbosorb-CO2) to the liquid scintillator. The results obtained to apply this method and the benzene synthesis, usual in our laboratory, are discussed and compared. The method of collection of atmospheric samples is also described. (Author) 10 refs.

  11. Survey on the presence of 90Sr in milk samples by a validated ultra low level liquid scintillation counting (LSC method

    Directory of Open Access Journals (Sweden)

    dell’Oro D.

    2013-04-01

    Full Text Available 90Sr is one of the most biologically hazardous radionuclides produced in nuclear fission processes and decays emitting high-energy beta particles turning 90Y. 90Sr is transferred from soil-plant to cow’s milk and then to humans if it is introduced into the environment. Radiostrontium is chemically similar to calcium entering the human body through several food chains and depositing in bone and blood-forming tissue (bone marrow. Among main foodstuffs assumed in human diet, milk is considered of special interest for radiostrontium determination, especially in emergency situations, because the consumption of contaminated milk is the main source of internal radiation exposure, particularly for infants. In this work an analytical method for the determination of radiostrontium in milk was developed and validated in order to determine low activity levels by liquid scintillation counting (LSC after achieving 90Y secular equilibrium condition. The analytical procedure was applied both in surveillance and routine programmes to detect radiocontamination in cow’s, goat and sheep milk samples.

  12. Scintillation response of organic and inorganic scintillators

    CERN Document Server

    Papadopoulos, L M

    1999-01-01

    A method to evaluate the scintillation response of organic and inorganic scintillators to different heavy ionizing particles is suggested. A function describing the rate of the energy consumed as fluorescence emission is derived, i.e., the differential response with respect to time. This function is then integrated for each ion and scintillator (anthracene, stilbene and CsI(Tl)) to determine scintillation response. The resulting scintillation responses are compared to the previously reported measured responses. Agreement to within 2.5% is observed when these data are normalized to each other. In addition, conclusions regarding the quenching parameter kB dependence on the type of the particle and the computed values of kB for certain ions are included. (author)

  13. Measurement of Radiation Damage of Water-based Liquid Scintillator and Liquid Scintillator

    CERN Document Server

    Bignell, Lindsey J; Hans, Sunej; Jaffe, David E; Rosero, Richard; Vigdor, Steven; Viren, Brett; Worcester, Elizabeth; Yeh, Minfang; Zhang, Chao

    2015-01-01

    Liquid scintillating phantoms have been proposed as a means to perform real-time 3D dosimetry for proton therapy treatment plan verification. We have studied what effect radiation damage to the scintillator will have upon this application. We have performed measurements of the degradation of the light yield and optical attenuation length of liquid scintillator and water-based liquid scintillator after irradiation by 201 MeV proton beams that deposited doses of approximately 52 Gy, 300 Gy, and 800 Gy in the scintillator. Liquid scintillator and water-based liquid scintillator (composed of $5\\%$ scintillating phase) exhibit light yield reductions of $1.74 \\pm 0.55 \\%$ and $1.31 \\pm 0.59 \\%$ after $\\approx$ 800 Gy of proton dose, respectively. Whilst some increased optical attenuation was observed in the irradiated samples, the measured reduction to the light yield is also due to damage to the scintillation light production. Based on our results and conservative estimates of the expected dose in a clinical conte...

  14. Application of pulsed OSL to the separation of the luminescence components from a mixed quartz/feldspar sample

    DEFF Research Database (Denmark)

    Denby, Phil M.; Bøtter-Jensen, L.; Murray, A.S.

    2006-01-01

    with a feldspar signal. We have developed instrumentation for the study of high-speed pulse stimulated OSL. Our system uses the standard blue/IR LED stimulation unit of a Riso reader (allowing stimulation pulses down to 1-2 mu s duration) and can thus be applied to the routine analysis of samples. Using...... this stimulation source, and hi.-h-speed photon timing, the OSL yield can be monitored throughout the pulsing cycle and subsequent OSL decay. It is found that the total photon yield per unit stimulation power in pulsed mode is, for quartz, twice and, for feldspar, nearly four times, that in continuous wave mode...

  15. A Comparative Study of Single-pulse and Double-pulse Laser-Induced Breakdown Spectroscopy with Uranium-containing Samples

    Energy Technology Data Exchange (ETDEWEB)

    Skrodzki, P. J.; Becker, J. R.; Diwakar, P. K.; Harilal, S. S.; Hassanein, A.

    2016-01-25

    Laser-induced breakdown spectroscopy (LIBS) holds potential advantages in special nuclear material (SNM) sensing and nuclear forensics which require rapid analysis, minimal sample preparation and stand-off distance capability. SNM, such as U, however, result in crowded emission spectra with LIBS, and characteristic emission lines are challenging to discern. It is well-known that double-pulse LIBS (DPLIBS) improves the signal intensity for analytes over conventional single-pulse LIBS (SPLIBS). This study investigates U signal in a glass matrix using DPLIBS and compares to signal features obtained using SPLIBS. DPLIBS involves sequential firing of 1.06 µm Nd:YAG pre-pulse and 10.6 µm TEA CO2 heating pulse in near collinear geometry. Optimization of experimental parameters including inter-pulse delay and energy follows identification of characteristic lines and signals for bulk analyte Ca and minor constituent analyte U for both DPLIBS and SPLIBS. Spatial and temporal coupling of the two pulses in the proposed DPLIBS technique yields improvements in analytical merits with negligible further damage to the sample compared to SPLIBS. Subsequently, the study discusses optimum plasma emission conditions of U lines and relative figures of merit in both SPLIBS and DPLIBS. Investigation into plasma characteristics also addresses plausible mechanisms related to observed U analyte signal variation between SPLIBS and DPLIBS.

  16. Synthesis and characterization of nanocomposite scintillators for radiation detection

    Science.gov (United States)

    Sahi, Sunil Kumar

    Inorganic single crystal and organic (plastic and liquid) scintillators are commonly used for radiation detection. Inorganic single crystals are efficient and have better energy resolution compared to organic scintillators. However, inorganic single crystals are difficult to grow in large size and hence expensive. On the other hand, fast decay time and ease of fabrication makes organic scintillators attractive for many applications. However, poor energy resolution of organic scintillators limits its applications in gamma ray spectroscopy. The poor energy resolution is due to the low Z-value and low density of organic scintillator. The Z-value of organic plastic scintillator can be increase by loading nanoparticles in plastic matrix. It is expected that the increase in Z-value would result in improve energy resolution of nanocomposite scintillator. However, the loss of optical transparency due to nanoparticles loading is one of the major concerns of nanocomposite scintillators. In this dissertation, we used different methods to synthesize La xCe1-xF3 nanoparticles with high dispersion in polymer matrix. High nanoparticle dispersion is important to load high concentration of nanoparticles into polymer matrix without losing the transparency of the polymer matrix. The as synthesized nanoparticles are dispersed into monomers and polymerized using heat initiated bulk polymerization method. Nanoparticles are characterized using TEM, XRD, FTIR and TGA. The optical and scintillation properties of nanoparticles and nanocomposites are studied using spectroscopic techniques. The pulse height spectra obtained using nanocomposite fabricated by loading up to 30 wt% nanoparticles clearly show a photopeak for the 122 keV line of the Co-57 isotope. The generation of the photopeak is due to the enhanced photoelectric effect as a result of increased effective atomic number (Zeff) and density of nanocomposite scintillator. The pulse height spectra of Cs-137 gamma source show a full

  17. Monte Carlo simulation of pulsed neutron experiments on samples of variable mass density

    Energy Technology Data Exchange (ETDEWEB)

    Dabrowska, Joanna; Drozdowicz, Krzysztof E-mail: Krzysztof.Drozdowicz@ifj.edu.pl

    2000-04-01

    A method is presented to facilitate the interpretation of a pulsed neutron experiment (the variable geometric buckling experiment) when the mass densities of individual samples differ. A generalisation of the classic expression, which connects the fundamental mode decay constant to the thermal neutron diffusion parameters and to the geometrical buckling, is presented. The method has been tested (on polyethylene) by means of a computer simulation of the experiments. The simulation has been based on a Monte Carlo method, using the MCNP code. The described generalised buckling method is especially recommended for experiments with bulk materials.

  18. A new technique for infrared scintillation measurements

    Energy Technology Data Exchange (ETDEWEB)

    Chiossi, F., E-mail: federico.chiossi@studenti.unipd.it [Dip. di Fisica e Astronomia and INFN, University of Padua, Via F. Marzolo 8, I-35131 Padova (Italy); Brylew, K. [Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziadzka 5, 87-100 Torun (Poland); Borghesani, A.F. [CNISM Unit and Dip. di Fisica e Astronomia, University of Padua, Via F. Marzolo 8, I-35131 Padova (Italy); Braggio, C.; Carugno, G. [Dip. di Fisica e Astronomia and INFN, University of Padua, Via F. Marzolo 8, I-35131 Padova (Italy); Drozdowski, W. [Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziadzka 5, 87-100 Torun (Poland); Guarise, M. [Dip. di Fisica e Astronomia and INFN, University of Padua, Via F. Marzolo 8, I-35131 Padova (Italy)

    2017-05-21

    We propose a new technique to measure the infrared scintillation light yield of rare earth doped crystals by comparing it to near UV–visible scintillation of a calibrated Pr:(Lu{sub 0.75}Y{sub 0.25}){sub 3}Al{sub 5}O{sub 12} sample. As an example, we apply this technique to provide the light yield in visible and infrared range up to 1700 nm of this crystal.

  19. Combination of microsecond and nanosecond pulsed electric field treatments for inactivation of Escherichia coli in water samples.

    Science.gov (United States)

    Žgalin, Maj Kobe; Hodžić, Duša; Reberšek, Matej; Kandušer, Maša

    2012-10-01

    Inactivation of microorganisms with pulsed electric fields is one of the nonthermal methods most commonly used in biotechnological applications such as liquid food pasteurization and water treatment. In this study, the effects of microsecond and nanosecond pulses on inactivation of Escherichia coli in distilled water were investigated. Bacterial colonies were counted on agar plates, and the count was expressed as colony-forming units per milliliter of bacterial suspension. Inactivation of bacterial cells was shown as the reduction of colony-forming units per milliliter of treated samples compared to untreated control. According to our results, when using microsecond pulses the level of inactivation increases with application of more intense electric field strengths and with number of pulses delivered. Almost 2-log reductions in bacterial counts were achieved at a field strength of 30 kV/cm with eight pulses and a 4.5-log reduction was observed at the same field strength using 48 pulses. Extending the duration of microsecond pulses from 100 to 250 μs showed no improvement in inactivation. Nanosecond pulses alone did not have any detectable effect on inactivation of E. coli regardless of the treatment time, but a significant 3-log reduction was achieved in combination with microsecond pulses.

  20. Sample pre-heating in magnetic ramp compression experiments on the GEPI high pulsed power driver

    Science.gov (United States)

    D'Almeida, Thierry; Chanal, Pierre-Yves; Zinszner, Jean-Luc; Daulhac, Gaetan

    2017-10-01

    GEPI is a 3 MA, 500 ns, high pulsed power driver operated by the CEA and mainly used for dynamically compressing materials in a quasi-isentropic regime at stress levels up to 100 GPa. Usually, materials are loaded starting from ambient temperature conditions, thus, following a single thermodynamic path near an isentrope. Dynamically loading samples from non-ambient initial conditions, either in pressure or temperature, can significantly improve our ability to obtain direct measurements over specific thermodynamic paths of interest. For instance, ramp-compressing multiphase metallic materials from various initial temperatures can help constrain their Equation of State. We have recently equipped the GEPI facility with a preheating device capable of pre-heating metallic samples up to 1100 K prior to their loading. We present results from preliminary experiments on copper and iron ramp compressed starting from temperatures ranging from 300 K to 900 K.

  1. Nonproportionality of inorganic scintillators

    NARCIS (Netherlands)

    Khodyuk, I.V.

    2013-01-01

    A scintillator is a transparent material that emits a flash of light when it absorbs a ?-ray photon or an energetic particle. Scintillation crystals are widely used as spectroscopic detectors of ionizing radiation in nuclear science, space exploration, medical imaging, homeland security, etc. This

  2. Optimization of light collection from crystal scintillators for cryogenic experiments

    Energy Technology Data Exchange (ETDEWEB)

    Danevich, F.A., E-mail: danevich@kinr.kiev.ua [Institute for Nuclear Research, MSP 03680, Kyiv (Ukraine); Kobychev, R.V. [Institute for Nuclear Research, MSP 03680, Kyiv (Ukraine); National Technical University of Ukraine “Kyiv Polytechnic Institute”, 03056 Kyiv (Ukraine); Kobychev, V.V. [Institute for Nuclear Research, MSP 03680, Kyiv (Ukraine); Kyungpook National University, Daegu 702-701 (Korea, Republic of); Kraus, H. [Department of Physics, University of Oxford, Keble Road, Oxford OX1 3RH (United Kingdom); Mikhailik, V.B. [Department of Physics, University of Oxford, Keble Road, Oxford OX1 3RH (United Kingdom); Diamond Light Source, Harwell Science Campus, Didcot, OX11 0DE (United Kingdom); Mokina, V.M. [Institute for Nuclear Research, MSP 03680, Kyiv (Ukraine)

    2014-04-21

    High light collection efficiency is an important requirement in any application of scintillation detectors. The purpose of this study is to investigate the possibility for improving this parameter in cryogenic scintillation bolometers, which can be considered as promising detectors in experiments investigating neutrinoless double beta decay and dark matter. Energy resolutions and relative pulse amplitudes of scintillation detectors using ZnWO{sub 4} scintillation crystals of different shapes (cylinder ∅ 20×20 mm and hexagonal prism with diagonal 20 mm and height 20 mm), reflector materials and shapes, optical contact and surface properties (polished and diffused) were measured at room temperature. Propagation of optical photons in these experimental conditions was simulated using Geant4 and ZEMAX codes. The results of the simulations are found to be in good agreement with each other and with direct measurements of the crystals. This could be applied to optimize the geometry of scintillation detectors used in the cryogenic experiments.

  3. Comparison of the methods for determination of scintillation light yield

    CERN Document Server

    Sysoeva, E; Zelenskaya, O

    2002-01-01

    One of the most important characteristics of scintillators is the light yield. It depends not only on the properties of scintillators, but also on the conditions of measurements. Even for widely used crystals, such as alkali halide scintillators NaI(Tl) and CsI(Tl), light yield data, obtained by various authors, are different. Therefore, it is very important to choose the convenient method of the light yield measurements. In the present work, methods for the determination of the physical light yield, based on measurements of pulse amplitude, single-electron pulses and intrinsic photomultiplier resolution are discussed. These methods have been used for the measurements of light yield of alkali halide crystals and oxide scintillators. Repeatability and reproducibility of results were determined. All these methods are rather complicated in use, not for measurements, but for further data processing. Besides that, they demand a precise determination of photoreceiver's parameters, as well as determination of light ...

  4. Development of a thin scintillation films fission-fragment detector and a novel neutron source

    Science.gov (United States)

    Rusev, G.; Jandel, M.; Baramsai, B.; Bond, E. M.; Bredeweg, T. A.; Couture, A.; Daum, J. K.; Favalli, A.; Ianakiev, K. D.; Iliev, M. L.; Mosby, S.; Roman, A. R.; Springs, R. K.; Ullmann, J. L.; Walker, C. L.

    2015-08-01

    Investigation of prompt fission and neutron-capture Υ rays from fissile actinide samples at the Detector for Advanced Neutron Capture Experiments (DANCE) requires use of a fission-fragment detector to provide a trigger or a veto signal. A fission-fragment detector based on thin scintillating films and silicon photomultipliers has been built to serve as a trigger/veto detector in neutron-induced fission measurements at DANCE. The fissile material is surrounded by scintillating films providing a 4π detection of the fission fragments. The scintillations were registered with silicon photomultipliers. A measurement of the 235U(n,f) reaction with this detector at DANCE revealed a correct time-of-flight spectrum and provided an estimate for the efficiency of the prototype detector of 11.6(7)%. Design and test measurements with the detector are described. A neutron source with fast timing has been built to help with detector-response measurements. The source is based on the neutron emission from the spontaneous fission of 252Cf and the same type of scintillating films and silicon photomultipliers. Overall time resolution of the source is 0.3 ns. Design of the source and test measurements with it are described. An example application of the source for determining the neutron/gamma pulse-shape discrimination by a stilbene crystal is given.

  5. Organic scintillators with long luminescent lifetimes for radiotherapy dosimetry

    DEFF Research Database (Denmark)

    Beierholm, Anders Ravnsborg; Lindvold, Lars René; Andersen, Claus Erik

    2011-01-01

    of experiments performed using two organic scintillators, one commercially available and one custom made. The luminescent lifetimes of the scintillators have been measured using i) optical excitation by pulsed UV light, and ii) irradiative excitation using high-energy X-rays from a linac. A luminescent lifetime......Organic scintillators with long luminescent lifetimes can theoretically be used to temporally filter out radiation-induced luminescence and Cerenkov light (the so-called stem signal) when used as fibre-coupled radiotherapy dosimeters. Since the medical linear accelerators (linacs1) used...

  6. Finite-key analysis for quantum key distribution with weak coherent pulses based on Bernoulli sampling

    Science.gov (United States)

    Kawakami, Shun; Sasaki, Toshihiko; Koashi, Masato

    2017-07-01

    An essential step in quantum key distribution is the estimation of parameters related to the leaked amount of information, which is usually done by sampling of the communication data. When the data size is finite, the final key rate depends on how the estimation process handles statistical fluctuations. Many of the present security analyses are based on the method with simple random sampling, where hypergeometric distribution or its known bounds are used for the estimation. Here we propose a concise method based on Bernoulli sampling, which is related to binomial distribution. Our method is suitable for the Bennett-Brassard 1984 (BB84) protocol with weak coherent pulses [C. H. Bennett and G. Brassard, Proceedings of the IEEE Conference on Computers, Systems and Signal Processing (IEEE, New York, 1984), Vol. 175], reducing the number of estimated parameters to achieve a higher key generation rate compared to the method with simple random sampling. We also apply the method to prove the security of the differential-quadrature-phase-shift (DQPS) protocol in the finite-key regime. The result indicates that the advantage of the DQPS protocol over the phase-encoding BB84 protocol in terms of the key rate, which was previously confirmed in the asymptotic regime, persists in the finite-key regime.

  7. Design and Implementation of a Facility for Discovering New Scintillator Materials

    Energy Technology Data Exchange (ETDEWEB)

    Derenzo, Stephen; Derenzo, Stephen E; Boswell, Martin S.; Bourret-Courchesne, Edith; Boutchko, Rostyslav; Budinger, Thomas F.; Canning, Andrew; Hanrahan, Stephen M.; Janecek, Martin; Peng, Qiyu; Porter-Chapman, Yetta; Powell, James; Ramsey, Christopher A.; Taylor, Scott E.; Wang, Lin-Wang; Weber, Marvin J.; Wilson, David S.

    2008-04-25

    We describe the design and operation of a high-throughput facility for synthesizing thousands of inorganic crystalline samples per year and evaluating them as potential scintillation detector materials. This facility includes a robotic dispenser, arrays of automated furnaces, a dual-beam X-ray generator for diffractometery and luminescence spectroscopy, a pulsed X-ray generator for time response measurements, computer-controlled sample changers, an optical spectrometer, and a network-accessible database management system that captures all synthesis and measurement data.

  8. Multi-parametric modeling of solid sample heating by nanosecond laser pulses in application for nano-ablation

    Science.gov (United States)

    Semerok, A.; Fomichev, S. V.; Jabbour, C.; Lacour, J.-L.; Tabarant, M.; Chartier, F.

    2017-10-01

    Multi-parametric theoretical studies to analyze the effect of both the matter properties (absorption coefficient, thermal conductivity and diffusivity) and the heating field parameters (spatial distribution and pulse duration) on the resulted temperature distribution are presented. For heating in sub-micrometric range (tip-enhanced near-field ablation (4 ns laser pulse duration, 266 nm wavelength) of Si- and Au-samples.

  9. B-Loaded Plastic Scintillator on the Base of Polystyrene

    CERN Document Server

    Brudanin, V B; Nemchenok, I B; Smolnikov, A A

    2000-01-01

    A method to produce polystyrene-based plastic scintillators with boron concentration from 0.38 to 5.0% of boron have been developed. o-Carborane was used as B-containing additive. The results of investigations of the optical, spectral and scintillation characteristics are presented and discussed. It is shown that 5% B-loaded scintillator has a light output as much as 70% relative to the unloaded one. High efficiency for thermal neutron registration achieved for produced samples makes it possible to use such scintillators in complex neutron high sensitive spectrometers. Measured level of radioactive contamination in this scintillation materials is good enough for using the B-loaded scintillators in the proposed large scale neutrino experiments.

  10. Pulsed EPR characterization of HIV-1 protease conformational sampling and inhibitor-induced population shifts.

    Science.gov (United States)

    Liu, Zhanglong; Casey, Thomas M; Blackburn, Mandy E; Huang, Xi; Pham, Linh; de Vera, Ian Mitchelle S; Carter, Jeffrey D; Kear-Scott, Jamie L; Veloro, Angelo M; Galiano, Luis; Fanucci, Gail E

    2016-02-17

    The conformational landscape of HIV-1 protease (PR) can be experimentally characterized by pulsed-EPR double electron-electron resonance (DEER). For this characterization, nitroxide spin labels are attached to an engineered cysteine residue in the flap region of HIV-1 PR. DEER distance measurements from spin-labels contained within each flap of the homodimer provide a detailed description of the conformational sampling of apo-enzyme as well as induced conformational shifts as a function of inhibitor binding. The distance distribution profiles are further interpreted in terms of a conformational ensemble scheme that consists of four unique states termed "curled/tucked", "closed", "semi-open" and "wide-open" conformations. Reported here are the DEER results for a drug-resistant variant clinical isolate sequence, V6, in the presence of FDA approved protease inhibitors (PIs) as well as a non-hydrolyzable substrate mimic, CaP2. Results are interpreted in the context of the current understanding of the relationship between conformational sampling, drug resistance, and kinetic efficiency of HIV-1PR as derived from previous DEER and kinetic data for a series of HIV-1PR constructs that contain drug-pressure selected mutations or natural polymorphisms. Specifically, these collective results support the notion that inhibitor-induced closure of the flaps correlates with inhibitor efficiency and drug resistance. This body of work also suggests DEER as a tool for studying conformational sampling in flexible enzymes as it relates to function.

  11. Study on the Characteristics of a Scintillator for Beta-ray Detection using Epoxy Resin

    Science.gov (United States)

    Nam, Jong Soo; Choi, Yong Seok; Hong, Sang Bum; Seo, Bum Kyung; Moon, Jei Kwon; Choi, Jong Won

    2017-09-01

    A thin plate of a plastic scintillator for detecting a beta-ray was developed. The plastic scintillator was made using epoxy resin and organic scintillators such as 2.5-diphenyloxazole (PPO) and 1,4-bis [5-phenyl-2-oxazole] benzene (POPOP). The mixture ratio of epoxy resin and the organic scintillators was determined using their absorbance, transmittance, emission spectra, and transparency. Their optimal weight percentage of PPO and POPOP in the organic scintillators was adjusted to 0.2 wt%:0.01 wt%. The prepared plastic scintillator was used to measure the standard source of Sr-90. The pulse height spectra and total counts of the prepared plastic scintillator were similar to a commercial plastic scintillator. Based on the above results, a large-area plastic scintillator was prepared for rapid investigation of a site contaminated with Sr-90. The prepared large-area plastic scintillator was evaluated for the characteristics in the laboratory. The evaluation results are expected to be usefully utilized in the development of a large-area plastic scintillation detector. The large-area plastic scintillation detector developed on the basis of the evaluation results is expected to be utilized to quickly measure the contamination of Sr-90 in the grounds used as a nuclear power facility.

  12. HiRadMat at CERN/SPS - A dedicated facility providing high intensity beam pulses to material samples

    CERN Multimedia

    Charitonidis, N; Efthymiopoulos, I

    2014-01-01

    HiRadMat (High Radiation to Materials), constructed in 2011, is a facility at CERN designed to provide high‐intensity pulsed beams to an irradiation area where material samples as well as accelerator component assemblies (e.g. vacuum windows, high power beam targets, collimators…) can be tested. The facility uses a 440 GeV proton beam extracted from the CERN SPS with a pulse length of up to 7.2 us, and with a maximum pulse energy of 3.4 MJ (3xE13 proton/pulse). In addition to protons, ion beams with energy of 440 GeV/charge and total pulse energy of 21 kJ can be provided. The beam parameters can be tuned to match the needs of each experiment. HiRadMat is not an irradiation facility where large doses on equipment can be accumulated. It is rather a test area designed to perform single pulse experiments to evaluate the effect of high‐intensity pulsed beams on materials or accelerator component assemblies in a controlled environment. The fa‐ cility is designed for a maximum of 1E16 protons per year, dist...

  13. Lead tungstate scintillation material

    CERN Document Server

    Annenkov, A N; Lecoq, P

    2002-01-01

    In this paper we summarize the results of a research programme on lead-tungstate (PWO) crystals performed by the CMS Collaboration at CERN, as well as by other groups who promoted the progress of the PWO scintillation crystal technology. Crystal properties, mass production technology, scintillation mechanism, origin of colouring, defects in crystal and radiation induced phenomena, light yield improvement and results of beam tests are described. (96 refs).

  14. Optimization of the wavelength shifter ratio in a polystyrene based plastic scintillator through energy spectrum analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ye Won; Kim, Myung Soo; Yoo, Hyun Jun; Lee, Dae Hee; Cho, Gyu Seong [Dept. of Nuclear and Quantum Engineering, KAIST, Daejeon (Korea, Republic of); Moon, Myung Kook [Neutron Instrumentation Division, Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2017-02-15

    The scintillation efficiency of the polystyrene based plastic scintillator depends on the ratio of the wavelength shifters, organic fluors (PPO and POPOP). Thus, 24 samples of the plastic scintillator were fabricated in order to find out the optimum ratio of the wavelength shifters in the plastic scintillator. The fabricated plastic scintillators were trimmed through a cutting and polishing process. They were used in gamma energy spectrum measurement with the {sup 137}Cs emitting monoenergy photon with 662 keV for the comparison of the scintillation efficiency. As a result, it was found out that the scintillator sample with 1.00 g of PPO (2,5-Diphenyloxazole) and 0.50 g of POPOP (1,4-Bis(5-phnyl-2oxidazolyl)benzene) dissolved in 100 g of styrene solution has the optimum ratio in terms of the light yield of the polystyrene based plastic scintillator.

  15. Carotid-femoral pulse wave velocity in a healthy adult sample: The ELSA-Brasil study.

    Science.gov (United States)

    Baldo, Marcelo Perim; Cunha, Roberto S; Molina, Maria Del Carmen B; Chór, Dora; Griep, Rosane H; Duncan, Bruce B; Schmidt, Maria Inês; Ribeiro, Antonio L P; Barreto, Sandhi M; Lotufo, Paulo A; Bensenor, Isabela M; Pereira, Alexandre C; Mill, José Geraldo

    2018-01-15

    Aging declines essential physiological functions, and the vascular system is strongly affected by artery stiffening. We intended to define the age- and sex-specific reference values for carotid-to-femoral pulse wave velocity (cf-PWV) in a sample free of major risk factors. The ELSA-Brasil study enrolled 15,105 participants aged 35-74years. The healthy sample was achieved by excluding diabetics, those over the optimal and normal blood pressure levels, body mass index ≤18.5 or ≥25kg/m2, current and former smokers, and those with self-report of previous cardiovascular disease. After exclusions, the sample consisted of 2158 healthy adults (1412 women). Although cf-PWV predictors were similar between sex (age, mean arterial pressure (MAP) and heart rate), cf-PWV was higher in men (8.74±1.15 vs. 8.31±1.13m/s; adjusted for age and MAP, PBrasil population (n=15,105) increased by twice the age-related slope of cf-PWV growth, regardless of sex (0.0919±0.182 vs. 0.0504±0.153m/s per year for men, 0.0960±0.173 vs. 0.0606±0.139m/s per year for women). cf-PWV is different between men and women and even in an optimal and normal range of MAP and free of other classical risk factors for arterial stiffness, reference values for cf-PWV should take into account MAP levels. Also, the presence of major risk factors in the general population doubles the age-related rise in cf-PWV. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Development of Cs2LiYCl6 scintillator

    Science.gov (United States)

    Glodo, J.; Hawrami, R.; Shah, K. S.

    2013-09-01

    Cs2LiYCl6 (CLYC) is one of the most interesting new scintillators developed during the last fifteen years. Its use as a thermal neutron scintillator was discovered in 1999 at the Delft University of Technology in Netherlands. In 2003, CLYC was selected by Radiation Monitoring Devices (RMD) for further studies and ultimately resulted in a commercial product. RMD's investigation of CLYC showed that it is a very good gamma ray detector with excellent 4% or better energy resolution, making it an ideal choice for dual mode detectors. Recently, Bubble Technology Industries of Canada discovered the possibility of fast neutron detection with CLYC, increasing its versatility even further. In this paper, we present the progress of CLYC's development since its inception, with a focus on the work conducted at RMD. Our initial results with small crystals are presented, followed by data collected with samples of consecutively larger volumes and quality. We discuss the improvements in the energy resolution from 7% to 3.6%, as well as volume from 1 cm3 to 100 cm3. In addition, we address basic properties, gamma ray and neutron detection, pulse shape discrimination, and recently discovered fast neutron detection.

  17. Heating of multi-layered samples by a Nd: YAG pulsed laser

    Directory of Open Access Journals (Sweden)

    Diniz Neto, O. O.

    1998-04-01

    Full Text Available In the work we examine the heating of multi-layered samples by a powerful Nd - YAG pulsed láser. The samples are made of two and three layers, conductor-isolator (Al-Al2O3, conductor-conductor (Al-Ag; Al-Au and conductor-conductor-conductor (Al-Au-Ag; Ag-Au-Al. The transient behaviour of the temperature distribution throughout the sample is computed. We carry out three dimensional model calculations for the heating process in which we consider not only the temperature dependence of the sample thermal and optical parameters but also the space and time characteristics of the laser beam as the heating source. We showed the influence of the substrate in the thermal profile, in space and time, and máximum temperature on the multi-layered samples.

    Em nosso trabalho examinamos o aquecimento de amostras compostas de duas e três camadas, condutor- isolante e condutor-condutor, com um pulso potente de láser. O comportamento transiente da distribuição de temperatura através da amostra foi calculado. Em nosso modelo de calculo para o processo de aquecimento levamos em conta a dependência com a temperatura dos parâmetros térmicos (difusividade, capacidade e condutividade térmica, óticos (refletividade e coeficiente de absorção, bem como a dependência das condições de contorno com o tempo e consequentemente com a temperatura. Aplicamos nossa metodología para calcular o aquecimento amostras compostas: Al-Au, Al-Ag, Al-Al2O3, Al-Au-Ag e Ag-Au-Al. Concluimos que o substrato influencia as temperaturas máximas nas superfície exposta ao láser e a forma com que a frente de calor se propaga nas amostras termicamente finas.

  18. The generation of warm dense matter samples using pulsed-power generators

    Science.gov (United States)

    Gourdain, P. A.; Seyler, C. E.; Knapp, P. F.

    2016-10-01

    Warm dense matter (WDM) bridges the gap between plasma and condensed matter, with densities similar to that of a solid, but temperature on the order of 1 eV. WDM is key to understanding the formation of gaseous giants, Mega-Earths, planetary collisions and inertial fusion implosions. Yet, the quantum properties of WDM and how they are expressed at the macroscopic level are mostly unknown. This paper uses 3-dimensional numerical simulations to show that cm-scale WDM samples can be generated by pulsed-power machines using a fast plasma closing switch, which virtually eliminates the mixing of WDM with other states of matter, allowing the measurement of its physical properties using line average diagnostics. A pre-ionized gas puff is imploded onto a central metal rod. Initially, most of the discharge current flows inside the gas shell. When the shell reaches the rod the full current switches to the rod in less than 10 ns. The subsequent compression produces WDM. We will discuss how an existing platform to generate cm-scale WDM at 20MA on the Z-machine at Sandia National Laboratories. This research is sponsored by DOE.

  19. Chirped Pulse Rotational Spectroscopy of a Single THUJONE+WATER Sample

    Science.gov (United States)

    Kisiel, Zbigniew; Perez, Cristobal; Schnell, Melanie

    2016-06-01

    Rotational spectroscopy of natural products dates over 35 years when six different species including thujone were investigated. Nevertheless, the technique of low-resolution microwave spectroscopy employed therein allowed determination of only a single conformational parameter. Advances in sensitivity and resolution possible with supersonic expansion techniques of rotational spectroscopy made possible much more detailed studies such that, for example, the structures of first camphor, and then of multiple clusters of camphor with water were determined. We revisited the rotational spectrum of the well known thujone molecule by using the chirped pulse spectrometer in Hamburg. The spectrum of a single thujone sample was recorded with an admixture of 18O enriched water and was successively analysed using an array of techniques, including the AUTOFIT program, the AABS package and the STRFIT program. We have, so far, been able to assign rotational transitions of α-thujone, β-thujone, another thujone isomer, fenchone, and several thujone-water clusters in the spectrum of this single sample. Natural abundance molecular populations were sufficient to determine precise heavy atom backbones of thujone and fenchone, and H_218O enrichment delivered water molecule orientations in the hydrated clusters. An overview of these results will be presented. Z.Kisiel, A.C.Legon, JACS 100, 8166 (1978) Z.Kisiel, O.Desyatnyk, E.Białkowska-Jaworska, L.Pszczółkowski, PCCP 5 820 (2003) C.Pérez, A.Krin, A.L.Steber, J.C.López, Z.Kisiel, M.Schnell, J.Phys.Chem.Lett. 7 154 (2016) N.A.Seifert, I.A.Finneran, C.Perez, et al. J.Mol.Spectrosc. 312, 12 (2015) Z.Kisiel, L.Pszczółkowski, B.J.Drouin, et al. J.Mol.Spectrosc. 280, 134 (2012). Z.Kisiel, J.Mol.Spectrosc. 218, 58 (2003)

  20. Scintillator Measurements for SNO+

    Science.gov (United States)

    Kaptanoglu, Tanner; SNO+ Collaboration

    2016-03-01

    SNO+ is a neutrino detector located 2km underground in the SNOLAB facility with the primary goal of searching for neutrinoless double beta decay. The detector will be filled with a liquid scintillator target primarily composed of linear alkyl benzene (LAB). As charged particles travel through the detector the LAB produces scintillation light which is detected by almost ten thousand PMTs. The LAB is loaded with Te130, an isotope known to undergo double beta decay. Additionally, the LAB is mixed with an additional fluor and wavelength shifter to improve the light output and shift the light to a wavelength regime in which the PMTs are maximally efficient. The precise scintillator optics drastically affect the ultimate sensitivity of SNO+. I will present work being done to measure the optical properties of the SNO+ scintillator cocktail. The measured properties are used as input to a scintillation model that allows us to extrapolate to the SNO+ scale and ultimately predict the sensitivity of the experiment. Additionally, I will present measurements done to characterize the R5912 PMT, a candidate PMT for the second phase of SNO+ that provides better light collection, improved charge resolution, and a narrower spread in timing.

  1. Final LDRD report : advanced plastic scintillators for neutron detection.

    Energy Technology Data Exchange (ETDEWEB)

    Vance, Andrew L.; Mascarenhas, Nicholas; O' Bryan, Greg; Mrowka, Stanley

    2010-09-01

    This report summarizes the results of a one-year, feasibility-scale LDRD project that was conducted with the goal of developing new plastic scintillators capable of pulse shape discrimination (PSD) for neutron detection. Copolymers composed of matrix materials such as poly(methyl methacrylate) (PMMA) and blocks containing trans-stilbene (tSB) as the scintillator component were prepared and tested for gamma/neutron response. Block copolymer synthesis utilizing tSBMA proved unsuccessful so random copolymers containing up to 30% tSB were prepared. These copolymers were found to function as scintillators upon exposure to gamma radiation; however, they did not exhibit PSD when exposed to a neutron source. This project, while falling short of its ultimate goal, demonstrated the possible utility of single-component, undoped plastics as scintillators for applications that do not require PSD.

  2. Optimized Optical Rectification and Electro-optic Sampling in ZnTe Crystals with Chirped Femtosecond Laser Pulses

    DEFF Research Database (Denmark)

    Erschens, Dines Nøddegaard; Turchinovich, Dmitry; Jepsen, Peter Uhd

    2011-01-01

    We report on optimization of the intensity of THz signals generated and detected by optical rectification and electro-optic sampling in dispersive, nonlinear media. Addition of a negative prechirp to the femtosecond laser pulses used in the THz generation and detection processes in 1-mm thick Zn...

  3. Wavelet-based analogous phase scintillation index for high latitudes

    Science.gov (United States)

    Ahmed, A.; Tiwari, R.; Strangeways, H. J.; Dlay, S.; Johnsen, M. G.

    2015-08-01

    The Global Positioning System (GPS) performance at high latitudes can be severely affected by the ionospheric scintillation due to the presence of small-scale time-varying electron density irregularities. In this paper, an improved analogous phase scintillation index derived using the wavelet-transform-based filtering technique is presented to represent the effects of scintillation regionally at European high latitudes. The improved analogous phase index is then compared with the original analogous phase index and the phase scintillation index for performance comparison using 1 year of data from Trondheim, Norway (63.41°N, 10.4°E). This index provides samples at a 1 min rate using raw total electron content (TEC) data at 1 Hz for the prediction of phase scintillation compared to the scintillation monitoring receivers (such as NovAtel Global Navigation Satellite Systems Ionospheric Scintillation and TEC Monitor receivers) which operate at 50 Hz rate and are thus rather computationally intensive. The estimation of phase scintillation effects using high sample rate data makes the improved analogous phase index a suitable candidate which can be used in regional geodetic dual-frequency-based GPS receivers to efficiently update the tracking loop parameters based on tracking jitter variance.

  4. Performance comparison of scintillators for alpha particle detectors

    Science.gov (United States)

    Morishita, Yuki; Yamamoto, Seiichi; Izaki, Kenji; Kaneko, Junichi H.; Toui, Kohei; Tsubota, Youichi; Higuchi, Mikio

    2014-11-01

    Scintillation detectors for alpha particles are often used in nuclear fuel facilities. Alpha particle detectors have also become important in the research field of radionuclide therapy using alpha emitters. ZnS(Ag) is the most often used scintillator for alpha particle detectors because its light output is high. However, the energy resolution of ZnS(Ag)-based scintillation detectors is poor because they are not transparent. A new ceramic sample, namely the cerium doped Gd2Si2O7 (GPS) scintillator, has been tested as alpha particle detector and its performances have been compared to that one of three different scintillating materials: ZnS(Ag), GAGG and a standard plastic scintillator. The different scintillating materials have been coupled to two different photodetectors, namely a photomultiplier tube (PMT) and a Silicon Photo-multiplier (Si-PM): the performances of each detection system have been compared. Promising results as far as the energy resolution performances (10% with PMT and 14% with Si-PM) have been obtained in the case of GPS and GAGG samples. Considering the quantum efficiencies of the photodetectors under test and their relation to the emission wavelength of the different scintillators, the best results were achieved coupling the GPS with the PMT and the GAGG with the Si-PM

  5. Performance comparison of scintillators for alpha particle detectors

    Energy Technology Data Exchange (ETDEWEB)

    Morishita, Yuki [Graduate School of Medicine, Nagoya University, 1-1-20 Daiko-Minami, Higashi-ku, Nagoya, Aichi 461-8673 (Japan); Japan Atomic Energy Agency, Muramatsu 4-33, Tokai-mura, Ibaraki 319-1194 (Japan); Yamamoto, Seiichi [Graduate School of Medicine, Nagoya University, 1-1-20 Daiko-Minami, Higashi-ku, Nagoya, Aichi 461-8673 (Japan); Izaki, Kenji [Japan Atomic Energy Agency, Muramatsu 4-33, Tokai-mura, Ibaraki 319-1194 (Japan); Kaneko, Junichi H.; Toui, Kohei; Tsubota, Youichi; Higuchi, Mikio [Graduate School of Engineering, Hokkaido University, Kita 13, Nishi 8, Kita-ku, Sapporo, Hokkaido 060-8628 (Japan)

    2014-11-11

    Scintillation detectors for alpha particles are often used in nuclear fuel facilities. Alpha particle detectors have also become important in the research field of radionuclide therapy using alpha emitters. ZnS(Ag) is the most often used scintillator for alpha particle detectors because its light output is high. However, the energy resolution of ZnS(Ag)-based scintillation detectors is poor because they are not transparent. A new ceramic sample, namely the cerium doped Gd{sub 2}Si{sub 2}O{sub 7} (GPS) scintillator, has been tested as alpha particle detector and its performances have been compared to that one of three different scintillating materials: ZnS(Ag), GAGG and a standard plastic scintillator. The different scintillating materials have been coupled to two different photodetectors, namely a photomultiplier tube (PMT) and a Silicon Photo-multiplier (Si-PM): the performances of each detection system have been compared. Promising results as far as the energy resolution performances (10% with PMT and 14% with Si-PM) have been obtained in the case of GPS and GAGG samples. Considering the quantum efficiencies of the photodetectors under test and their relation to the emission wavelength of the different scintillators, the best results were achieved coupling the GPS with the PMT and the GAGG with the Si-PM.

  6. Size-dependent ultrafast ionization dynamics of nanoscale samples in intense femtosecond x-ray free-electron-laser pulses.

    Science.gov (United States)

    Schorb, Sebastian; Rupp, Daniela; Swiggers, Michelle L; Coffee, Ryan N; Messerschmidt, Marc; Williams, Garth; Bozek, John D; Wada, Shin-Ichi; Kornilov, Oleg; Möller, Thomas; Bostedt, Christoph

    2012-06-08

    All matter exposed to intense femtosecond x-ray pulses from the Linac Coherent Light Source free-electron laser is strongly ionized on time scales competing with the inner-shell vacancy lifetimes. We show that for nanoscale objects the environment, i.e., nanoparticle size, is an important parameter for the time-dependent ionization dynamics. The Auger lifetimes of large Ar clusters are found to be increased compared to small clusters and isolated atoms, due to delocalization of the valence electrons in the x-ray-induced nanoplasma. As a consequence, large nanometer-sized samples absorb intense femtosecond x-ray pulses less efficiently than small ones.

  7. Microfluidic Scintillation Detectors

    CERN Multimedia

    Microfluidic scintillation detectors are devices of recent introduction for the detection of high energy particles, developed within the EP-DT group at CERN. Most of the interest for such technology comes from the use of liquid scintillators, which entails the possibility of changing the active material in the detector, leading to an increased radiation resistance. This feature, together with the high spatial resolution and low thickness deriving from the microfabrication techniques used to manufacture such devices, is desirable not only in instrumentation for high energy physics experiments but also in medical detectors such as beam monitors for hadron therapy.

  8. Neutron detection with single crystal organic scintillators

    Energy Technology Data Exchange (ETDEWEB)

    Zaitseva, N; Newby, J; Hamel, S; Carman, L; Faust, M; Lordi, V; Cherepy, N; Stoeffl, W; Payne, S

    2009-07-15

    Detection of high-energy neutrons in the presence of gamma radiation background utilizes pulse-shape discrimination (PSD) phenomena in organics studied previously only with limited number of materials, mostly liquid scintillators and single crystal stilbene. The current paper presents the results obtained with broader varieties of luminescent organic single crystals. The studies involve experimental tools of crystal growth and material characterization in combination with the advanced computer modeling, with the final goal of better understanding the relevance between the nature of the organic materials and their PSD properties. Special consideration is given to the factors that may diminish or even completely obscure the PSD properties in scintillating crystals. Among such factors are molecular and crystallographic structures that determine exchange coupling and exciton mobility in organic materials and the impurity effect discussed on the examples of trans-stilbene, bibenzyl, 9,10-diphenylanthracene and diphenylacetylene.

  9. Infrared scintillation in gases, liquids and crystals

    NARCIS (Netherlands)

    Belogurov, S.; Bressi, G; Carugno, G.; Conti, E; Iannuzzi, D; Meneguzzo, AT

    2000-01-01

    We report about experimental evidences of infrared scintillation in gaseous, liquid and crystal samples. We firstly studied noble gases at room temperature and near atmospheric pressure in the wavelength range between 0.7 and 1.81 mum. Ar gas emits infrared photons when irradiated by a proton beam.

  10. Experimental evidence of infrared scintillation in crystals

    CERN Document Server

    Belogurov, S; Carugno, Giovanni; Conti, E; Iannuzzi, D; Meneguzzo, Anna Teresa

    2000-01-01

    We present experimental results on infrared emission induced by protons in some solid-state samples. Infrared scintillation occurs in many crystals, with different yield values and time-response behaviours. A rough measurement of the emission wavelength of CsI(Tl) is also reported.

  11. Scintillation properties of acrylate based plastic scintillator by photoploymerization method

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sung Hwan [Dept. of Radiological Science, Cheongju University, Cheongju (Korea, Republic of); Lee, Joo Il [Dept. of of Radiology, Daegu Health College, Daegu (Korea, Republic of)

    2016-12-15

    In this study, we prepared and characterized a acrylate based UV-curable plastic scintillator. It was used co-polymers TMPTA, DHPA and Ultima GoldTM LLT organic scintillator. The emission spectrum of the plastic scintillator was located in the range of 380⁓520 nm, peaking at 423 nm. And the scintillator is more than 50% transparent in the range of 400⁓ 800 nm. The emission spectrum is well match to the quantum efficiency of photo-multiplier tube and the fast decay time of the scintillation is 12 ns, approximately. This scintillation material provides the possibility of combining 3D printing technology, and then the applications of the plastic scintillator may be expected in human dosimetry etc.

  12. Neutron spectroscopy with scintillation detectors using wavelets

    Science.gov (United States)

    Hartman, Jessica

    The purpose of this research was to study neutron spectroscopy using the EJ-299-33A plastic scintillator. This scintillator material provided a novel means of detection for fast neutrons, without the disadvantages of traditional liquid scintillation materials. EJ-299-33A provided a more durable option to these materials, making it less likely to be damaged during handling. Unlike liquid scintillators, this plastic scintillator was manufactured from a non-toxic material, making it safer to use, as well as easier to design detectors. The material was also manufactured with inherent pulse shape discrimination abilities, making it suitable for use in neutron detection. The neutron spectral unfolding technique was developed in two stages. Initial detector response function modeling was carried out through the use of the MCNPX Monte Carlo code. The response functions were developed for a monoenergetic neutron flux. Wavelets were then applied to smooth the response function. The spectral unfolding technique was applied through polynomial fitting and optimization techniques in MATLAB. Verification of the unfolding technique was carried out through the use of experimentally determined response functions. These were measured on the neutron source based on the Van de Graff accelerator at the University of Kentucky. This machine provided a range of monoenergetic neutron beams between 0.1 MeV and 24 MeV, making it possible to measure the set of response functions of the EJ-299-33A plastic scintillator detector to neutrons of specific energies. The response of a plutonium-beryllium (PuBe) source was measured using the source available at the University of Nevada, Las Vegas. The neutron spectrum reconstruction was carried out using the experimentally measured response functions. Experimental data was collected in the list mode of the waveform digitizer. Post processing of this data focused on the pulse shape discrimination analysis of the recorded response functions to remove the

  13. Structure and Scintillation Properties of Cerium-Doped Barium Chloride Ceramics: Effects of Cation and Anion Substitution

    Science.gov (United States)

    Edgar, Andrew; Bartle, Murray; Varoy, Chris; Raymond, Sebastiampillai; Williams, Grant

    2010-06-01

    Barium chloride has been doped with cerium chloride to form ceramic samples of composition Ba1-xCexCl2+x We find from the powder X-ray diffraction patterns that the compounds adopt the cubic fluorite structure for 0.06 translucent, and show a scintillation photopeak for 137Cs gamma rays which can be used to compute a light yield of 7200 photons/MeV. The scintillation decay is characterized by a time constant of 50 ns, compared to a Ce3+ photoluminescence lifetime of 26 ns. We also report the structural effects of alternative cation dopants, including Gd, Lu, Sm and Y, and find that only Gd results in the same structural stabilization, but when additionally Ce doped the scintillation efficiency is only 2600 ph/MeV with a long afterglow. The effects of bromine substitution for chlorine in Ba1-xCexCl2+x to form Ba1-xCexCl2-2xBr3x results in a material of near-cubic symmetry which is not transparent and does not show a photopeak, but for which the largest scintillation pulses correspond to an efficiency of 14,000 ph/MeV.

  14. Comparing the response of PSD-capable plastic scintillator to standard liquid scintillator

    Science.gov (United States)

    Woolf, Richard S.; Hutcheson, Anthony L.; Gwon, Chul; Phlips, Bernard F.; Wulf, Eric A.

    2015-06-01

    This work discusses a test campaign to characterize the response of the recently developed plastic scintillator with pulse shape discrimination (PSD) capabilities (EJ-299-33). PSD is a property exhibited by certain types of scintillating material in which incident stimuli (fast neutrons or γ rays) can be separated by exploiting differences in the scintillation light pulse tail. Detector geometries used were: a 10 cm×10 cm×10 cm cube and a 10-cm diameter×10-cm long cylinder. EJ-301 and EJ-309 liquid scintillators with well-known responses were also tested. The work was conducted at the University of Massachusetts Lowell Van De Graaff accelerator. The facility accelerated protons on a thin Li target to yield quasi-monoenergetic neutrons from the 7Li(p,n)7Be reaction (Q-value: -1.644 MeV). Collimated fast neutrons were obtained by placing detectors behind a neutron spectrometer. Rotating the spectrometer, and thus changing the neutron energy, allowed us to achieve 0.5-3.2 MeV neutrons in 200-300 keV steps. Data were acquired through a flash analog-to-digital converter (ADC) capable of performing digital PSD measurements. By using the PSD technique to separate the neutron events from unwanted γ background, we constructed a pulse height spectrum at each energy. Obtaining a relationship of the relative light output versus energy allowed us to construct the response function for the EJ-299-33 and liquid scintillator. The EJ-299-33 response in terms of electron equivalent energy (Ee.e.) vs. proton equivalent energy (Ep.e.), how it compared with the standard xylene-based EJ-301 (or, NE-213/BC-501 A equivalent) and EJ-309 liquid scintillator response, and how the EJ-301 and EJ-309 compared, are presented. We find that the EJ-299-33 demonstrated a lower light output by up to 40% for environment affected the detector response. We find relatively good agreement between our results and the modeling; however, the observed response could not be fully accounted for due to

  15. Transparent plastic scintillators for neutron detection based on lithium salicylate

    Energy Technology Data Exchange (ETDEWEB)

    Mabe, Andrew N.; Glenn, Andrew M.; Carman, M. Leslie; Zaitseva, Natalia P.; Payne, Stephen A.

    2016-01-01

    Transparent plastic scintillators with pulse shape discrimination containing 6Li salicylate have been synthesized by bulk polymerization with a maximum 6Li loading of 0.40 wt%. Photoluminescence and scintillation responses to gamma-rays and neutrons are reported herein. Plastics containing 6Li salicylate exhibit higher light yields and permit a higher loading of 6Li as compared to previously reported plastics based on lithium 3-phenylsalicylate. However, pulse shape discrimination performance is reduced in lithium salicylate plastics due to the requirement of adding more nonaromatic monomers to the polymer matrix as compared to those based on lithium 3-phenylsalicylate. Reduction in light yield and pulse shape discrimination performance in lithium-loaded plastics as compared to pulse shape discrimination plastics without lithium is interpreted in terms of energy transfer interference by the aromatic lithium salts.

  16. Scintillator requirements for medical imaging

    Energy Technology Data Exchange (ETDEWEB)

    Moses, William W.

    1999-09-01

    Scintillating materials are used in a variety of medical imaging devices. This paper presents a description of four medical imaging modalities that make extensive use of scintillators: planar x-ray imaging, x-ray computed tomography (x-ray CT), SPECT (single photon emission computed tomography) and PET (positron emission tomography). The discussion concentrates on a description of the underlying physical principles by which the four modalities operate. The scintillator requirements for these systems are enumerated and the compromises that are made in order to maximize imaging performance utilizing existing scintillating materials are discussed, as is the potential for improving imaging performance by improving scintillator properties.

  17. Recent Developments In Fast Neutron Detection And Multiplicity Counting With Verification With Liquid Scintillator

    Energy Technology Data Exchange (ETDEWEB)

    Nakae, L; Chapline, G; Glenn, A; Kerr, P; Kim, K; Ouedraogo, S; Prasad, M; Sheets, S; Snyderman, N; Verbeke, J; Wurtz, R

    2011-09-30

    For many years at LLNL, we have been developing time-correlated neutron detection techniques and algorithms for applications such as Arms Control, Threat Detection and Nuclear Material Assay. Many of our techniques have been developed specifically for the relatively low efficiency (a few percent) attainable by detector systems limited to man-portability. Historically, we used thermal neutron detectors (mainly {sup 3}He), taking advantage of the high thermal neutron interaction cross-sections. More recently, we have been investigating the use of fast neutron detection with liquid scintillators, inorganic crystals, and in the near future, pulse-shape discriminating plastics which respond over 1000 times faster (nanoseconds versus tens of microseconds) than thermal neutron detectors. Fast neutron detection offers considerable advantages, since the inherent nanosecond production time-scales of spontaneous fission and neutron-induced fission are preserved and measured instead of being lost by thermalization required for thermal neutron detectors. We are now applying fast neutron technology to the safeguards regime in the form of fast portable digital electronics as well as faster and less hazardous scintillator formulations. Faster detector response times and sensitivity to neutron momentum show promise for measuring, differentiating, and assaying samples that have modest to very high count rates, as well as mixed fission sources like Cm and Pu. We report on measured results with our existing liquid scintillator array, and progress on the design of a nuclear material assay system that incorporates fast neutron detection, including the surprising result that fast liquid scintillator detectors become competitive and even surpass the precision of {sup 3}He-based counters measuring correlated pairs in modest (kg) samples of plutonium.

  18. Polarized nuclei in plastic scintillators: a new class of polarized targets

    Science.gov (United States)

    van den Brandt, B.; Bunyatova, E. I.; Hautle, P.; Konter, J. A.; Mango, S.; Nemchonok, I. B.

    2001-06-01

    Polarized scintillating targets are now routinely available: protons, deuterons or other nuclei in blocks of scintillating organic polymer, doped with the free radical TEMPO, are polarized dynamically in a field of 2.5 T in a vertical 3He-4He dilution refrigerator. A 19 mm diameter plastic lightguide transports the scintillation light from the sample in the mixing chamber to a photomultiplier outside the cryostat. Sizeable nuclear polarizations have been achieved newly in boron enriched polystyrene-based scintillating material. A scintillator target with high detection sensitivity for low energy neutrons has been so made available, in which both protons and boron nuclei are polarized. .

  19. Digital Gamma-Neutron Discrimination with Organic Plastic Scintillator EJ 299-33

    Directory of Open Access Journals (Sweden)

    Nyibule S.

    2014-07-01

    Full Text Available The neutron / gamma pulse shape discrimination (PSD is measured for the newly dis- covered plastic scintillator EJ 299-33 using a fast digitizer DDC10. This plastic scin- tillator (EJ 299-33 discovered by Lawrence Livermore National Laboratory(LLNL is now commercially available by Eljen Technology. Some of its properties include light output emission efficiency of 56 / 100 (of Anthracene, wavelength of maximum emis- sion of 420 nm, C:H ratio of 1:1.06 and density of 1.08 g / cm 3 . The PSD between neutrons and gamma rays in this plastic scintillator is studied using a 5.08-cm diameter by 5.08-cm thick sample irradiated by a neutron-gamma source AmBe-241 and em- ploying charge integration method. The results show that EJ 299-33 has a very good PSD, having a figure of merit of approximately 0.80, 2.5 and 3.09 at 100 KeVee, 450 KeVee and 750 KeVee light outputs respectively. The performance of this new material is compared to that of a liquid scintillator with a well proven excellent PSD performance NE213, having a figure of merit of 0.93, 2.95 and 3.30 at 100 KeVee, 450 KeVee and 750 KeVee respectively. The PSD performance of EJ 299-33 is found to be comparable to that of NE 213.

  20. Preference pulses and the win-stay, fix-and-sample model of choice.

    Science.gov (United States)

    Hachiga, Yosuke; Sakagami, Takayuki; Silberberg, Alan

    2015-11-01

    Two groups of six rats each were trained to respond to two levers for a food reinforcer. One group was trained on concurrent variable-ratio 20 extinction schedules of reinforcement. The second group was trained on a concurrent variable-interval 27-s extinction schedule. In both groups, lever-schedule assignments changed randomly following reinforcement; a light cued the lever providing the next reinforcer. In the next condition, the light cue was removed and reinforcer assignment strictly alternated between levers. The next two conditions redetermined, in order, the first two conditions. Preference pulses, defined as a tendency for relative response rate to decline to the just-reinforced alternative with time since reinforcement, only appeared during the extinction schedule. Although the pulse's functional form was well described by a reinforcer-induction equation, there was a large residual between actual data and a pulse-as-artifact simulation (McLean, Grace, Pitts, & Hughes, 2014) used to discern reinforcer-dependent contributions to pulsing. However, if that simulation was modified to include a win-stay tendency (a propensity to stay on the just-reinforced alternative), the residual was greatly reduced. Additional modifications of the parameter values of the pulse-as-artifact simulation enabled it to accommodate the present results as well as those it originally accommodated. In its revised form, this simulation was used to create a model that describes response runs to the preferred alternative as terminating probabilistically, and runs to the unpreferred alternative as punctate with occasional perseverative response runs. After reinforcement, choices are modeled as returning briefly to the lever location that had been just reinforced. This win-stay propensity is hypothesized as due to reinforcer induction. © Society for the Experimental Analysis of Behavior.

  1. The improved scintillation crystal lead tungstate scintillation for PET

    Science.gov (United States)

    Wan, Youbao; WU, Rurong; Xiao, Linrong; Zhang, Jianxin; Yang, Peizhi; Yan, Hui

    2009-07-01

    As a valuable material for the detecting of γ-ray, PbWO4 and BaF2:PbWO4 crystals were grown by a novel multi-crucible temperature gradient system developed by ourselves. Utilizing a topical partial heating method, this system can form a topical partial high temperature in its hearth. Thus this system could melt raw materials in step by step as requirement. The advantage of this method is that there would be solid obstruct left on the melt in the procedure of the crystal growing up. The left obstruct could prevent the volatilization of the component in the melt. Hence it is helpful for the composition homogenization in the crystal. The system also offers a sustaining device for multi-crucibles and thus it can grow many crystals simultaneity. The optical properties and scintillation properties of the crystals were studied. The results reveal that the ions doping improves the scintillation properties of the crystal. The transmittance spectra show that the transmittance of BaF2:PbWO4 crystals are better than that of PbWO4 crystals. For the PbWO4 crystals, their absorption edge is at 325nm, and their maximum transmittance is 68%. For the BaF2:PbWO4 crystals, their absorption edge is at 325nm and their maximum transmittance is upto76%. The X-ray excited luminescence spectra shows that the luminescence peak is at 420nm for the samples of PbWO4 crystal while the peak is at 430nm for the samples of BaF2:PbWO4 crystal respectively. The luminescence intensity of the samples of BaF2:PbWO4 crystal is about two times than that of PbWO4 crystal. And their peak shape is different for the two kind of crystal. The light yield of BaF2:PbWO4 crystals is about 2.9 times than that of PbWO4 crystal Analyzing these scintillation properties, we find that the VPb 3+ and VO- defects do harm for the optical properties of the crystal. Ions doping method could reduce the defect concentration and improving its illumination performance of the crystal. Specially, the doped F- ions in O2- site can

  2. Scintillation and luminescence in transparent colorless single and polycrystalline bulk ceramic ZnS

    Energy Technology Data Exchange (ETDEWEB)

    McCloy, John S., E-mail: john.mccloy@wsu.edu [School of Mechanical and Materials Engineering, Washington State University, P.O. Box 642920, Pullman, WA 99164 (United States); Materials Science and Engineering Program, Washington State University, PO Box 641030, Pullman, WA 99164 (United States); Bliss, Mary; Miller, Brian; Wang, Zheming; Stave, Sean [Pacific Northwest National Laboratory, P.O. Box 999, Richland, WA 99352 (United States)

    2015-01-15

    ZnS:Ag is a well-known, extremely bright scintillator used in powder form for α-particle detection and, mixed with powdered LiF, for thermal neutron detection. Recently, we discovered some colorless and transparent commercial bulk single-crystal and polycrystalline (chemical vapor-deposited) ZnS forms that scintillate in response to α-particles. The scintillation light transmits through the sample thickness (millimeters), challenging the commonly held assumption that ZnS is opaque to its own scintillation light. Individual α-particle events were imaged in space and time using a charged-particle camera originally developed for medical imaging applications. Photoluminescence (PL) and PL excitation show that scintillating bulk ZnS likely depends on different electronic defects than commercial ZnS powder scintillators. These defects, associated with copper and oxygen, are discussed in relation to PL results and extensive literature assessment. Commercial transparent ZnS is routinely produced by chemical vapor deposition to sizes larger than square meters, enabling potentially novel radiation detection applications requiring large, thick apertures. - Highlights: • Colorless transparent chemical vapor deposited ZnS shows α-particle scintillation. • Scintillation in CVD ZnS has been imaged spatially and temporally. • Scintillation light transmitted through 1 to 5 mm thick samples. • Photoluminescence data suggests origin of scintillation behavior. • Copper and oxygen impurities likely linked to scintillation in CVD ZnS.

  3. Preparation of 45Ca(HDEHP)n and (CaH{sub 1}50{sub 2})2 samples for liquid scintillation counting, compared to 45caCl{sub 2} results; Preparacion de Ca (HDEHP)n y (C{sub 8}H{sub 1}50{sub 2})2 marcados con 45Ca y estudio comparativo con 4 5ca Cl2 en medidas por centelleo liquido

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, L.; Arcos, J. M. los; Grau Malonda, A.

    1994-07-01

    A procedure for preparation of liquid scintillation counting organic samples of the Di-2-ethylhexyl phosphate calcium complex and the 2-ethylhexanoate calcium salt, labelled with 45Ca, is described. The chemical quench, the counting stability and spectral evolution of both compounds is studied in six scintillators,Toluene-alcohol, Dioxane-naphtalene, Hi safe II, Ultimate-Gold and Instagel, and compared to results obtained from a commercial solution of 4 5CaCl2. (Author) 7 refs.

  4. Effect of tidal volume, sampling duration, and cardiac contractility on pulse pressure and stroke volume variation during positive-pressure ventilation.

    Science.gov (United States)

    Kim, Hyung Kook; Pinsky, Michael R

    2008-10-01

    Both pulse pressure variation and stroke volume variation during intermittent positive-pressure ventilation predict preload responsiveness. However, because ventilatory and cardiac frequencies are not the same, increasing the number of breaths sampled may increase calculated pulse pressure variation and stroke volume variation because larger (max) and smaller (min) pulse pressure and stroke volume may occur. Tidal volume and contractility may also alter pulse pressure variation and stroke volume variation. We hypothesized that the magnitude of pulse pressure variation would increase with sampling duration, and that both tidal volume and contractility would independently alter pulse pressure variation and stroke volume variation. In seven pentobarbital-anesthetized intact dogs arterial and left ventricular pressure (Millar) and left ventricular volume (Leycom) were measured over 8 intermittent positive-pressure ventilation breaths at tidal volume of 5, 10, 15, and 20 mL/kg (f = 20/min, 40% inspiratory time) under baseline, esmolol (2 mg/min), dobutamine infusions (5 microg/kg/min) and following volume loading (500 mL NaCl). Stroke volume variation was calculated using pulse contour method (PiCCO, Pulsion Medical Systems, Munich, Germany) averaged over 12 secs. Pulse pressure variation was calculated as 100 x (PPmax - PPmin)/PPmean and calculated over 1, 2, 3, 4, 5, 6, 7, or 8 breaths. Pulse pressure variation increased progressively with increasing sampling duration up to but not exceeding five breaths. The effect on sampling duration was increased by greater tidal volume. Esmolol infusion decreased both pulse pressure variation and stroke volume variation as compared with baseline (p variation or stroke volume variation. Sampling duration, tidal volume, and beta-adrenergic blockade differentially alters pulse pressure variation and stroke volume variation during intermittent positive-pressure ventilation. Thus, separate validation is required to define threshold

  5. Boron-Loaded Silicone Rubber Scintillators

    CERN Document Server

    Bell, Z W; Maya, L; Sloop, F V J

    2003-01-01

    Silicone rubber received attention as an alternative to polyvinyltoluene in applications in which the scintillator is exposed to high doses because of the increased resistance of the rubber to the formation of blue-absorbing color centers. Work by Bowen, et al., and Harmon, et al., demonstrated their properties under gamma/x-ray irradiation, and Bell, et al. have shown their response to thermal neutrons. This last work, however, provided an example of a silicone in which both the boron and the scintillator were contained in the rubber as solutes, a formulation which led to the precipitation of solids and sublimation of the boron component. In the present work we describe a scintillator in which the boron is chemically bonded to the siloxane and so avoids the problem of precipitation and loss of boron to sublimation. Material containing up to 18% boron, by weight, was prepared, mounted on photomultipliers, and exposed to both neutron and gamma fluxes. Pulse height spectra showing the neutron and photon respons...

  6. Scattering of light from the liquid scintillator used in SNO+

    Science.gov (United States)

    Major, Timothy

    2012-10-01

    SNO+ is a double-beta decay experiment currently under construction in Sudbury, Ontario. It will contain approximately a kiloton of liquid scintillator loaded with a neodymium isotope that it is thought may undergo neutrinoless double-beta decay. To simulate events and to interpret data, it is important to understand how light scatters in the liquid scintillator, including the angular distribution of scattered photons. This talk will highlight the status of SNO+ and discuss a measurement of the distribution of scattered light from a sample of liquid scintillator.

  7. Versatile pulsed laser setup for depth profiling analysis of multilayered samples in the field of cultural heritage

    Science.gov (United States)

    Mendes, N. F. C.; Osticioli, I.; Striova, J.; Sansonetti, A.; Becucci, M.; Castellucci, E.

    2009-04-01

    The present study considers the use of a nanosecond pulsed laser setup capable of performing laser induced breakdown spectroscopy (LIBS) and pulsed Raman spectroscopy for the study of multilayered objects in the field of cultural heritage. Controlled etching using the 4th harmonic 266 nm emission of a Nd:YAG laser source with a 8 ns pulse duration was performed on organic films and mineral strata meant to simulate different sequence of layers usually found in art objects such as in easel and mural paintings. The process of micro ablation coupled with powerful spectroscopic techniques operating with the same laser source, constitutes an interesting alternative to mechanical sampling especially when dealing with artworks such as ceramics and metal works which are problematic due to their hardness and brittleness. Another case is that of valuable pieces where sampling is not an option and the materials to analyse lie behind the surface. The capabilities and limitations of such instrumentation were assessed through several tests in order to characterize the trend of the laser ablation on different materials. Monitored ablation was performed on commercial sheets of polyethylene terephthalate (PET), a standard material of known thickness and mechanical stability, and rabbit glue, an adhesive often used in works of art. Measurements were finally carried out on a specimen with a stratigraphy similar to those found in real mural paintings.

  8. Radioluminescent characteristics of the EJ 299-33 plastic scintillator

    Energy Technology Data Exchange (ETDEWEB)

    Nyibule, S. [University of Rochester, Department of Physics, Rochester, NY 14627 (United States); Henry, E. [University of Rochester, Department of Chemistry, Rochester, NY 14627 (United States); Schröder, W.U., E-mail: w.udo.schroeder@rochester.edu [University of Rochester, Department of Physics, Rochester, NY 14627 (United States); University of Rochester, Department of Chemistry, Rochester, NY 14627 (United States); Tõke, J. [University of Rochester, Department of Chemistry, Rochester, NY 14627 (United States); Acosta, L. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Sud, Catania (Italy); Departamento de Fisica Aplicada, Universidad de Huelva, Huelva (Spain); Auditore, L. [Istituto Nazionale di Fisica Nucleare, Gruppo Collegato di Messina and Department of Physics, Messina University, Messina (Italy); Cardella, G.; De Filippo, E. [Istituto Nazionale di Fisica Nucleare, Sezione di Catania (Italy); Francalanza, L. [Department of Physics and Astronomy, Catania University, Catania (Italy); Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Sud, Catania (Italy); Gìani, S. [Department of Physics and Astronomy, Catania University, Catania (Italy); Minniti, T.; Morgana, E. [Istituto Nazionale di Fisica Nucleare, Gruppo Collegato di Messina and Department of Physics, Messina University, Messina (Italy); Pagano, E.V. [Department of Physics and Astronomy, Catania University, Catania (Italy); Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Sud, Catania (Italy); Pirrone, S. [Istituto Nazionale di Fisica Nucleare, Sezione di Catania (Italy); Politi, G. [Istituto Nazionale di Fisica Nucleare, Sezione di Catania (Italy); Department of Physics and Astronomy, Catania University, Catania (Italy); Quattrocchi, L. [Istituto Nazionale di Fisica Nucleare, Gruppo Collegato di Messina and Department of Physics, Messina University, Messina (Italy); Rizzo, F. [Department of Physics and Astronomy, Catania University, Catania (Italy); and others

    2013-11-11

    The response of the EJ 299-33 plastic scintillator to energetic charged nuclear particles ranging from isotopes of hydrogen to isotopes of carbon has been determined over a wide energy range using a complex experimental setup and nuclear reactions induced by a 20 AMeV carbon beam on an aluminum target. A strong pulse-shape dependence of the generated light bursts on the impinging particle specie is observed, which makes this scintillator suitable, among other things, for neutron vs.γ-ray identification. Fit formulas are proposed for the normalized light output as a function of particle energy for eleven isotopes of elements ranging from hydrogen to carbon.

  9. Laser-Induced Breakdown Spectroscopy and Plasma Characterization Generated by Long-Pulse Laser on Soil Samples

    Science.gov (United States)

    Xu, S.; Duan, W.; Ning, R.; Li, Q.; Jiang, R.

    2017-03-01

    The plasma is generated by focusing a long-pulse (80 μs) Nd:YAG laser on chromium-doped soil samples. The calibration curves are drawn using the intensity ratio of the chromium spectral line at 425.435 nm with the iron spectral line (425.079 nm) as reference. The regression coefficient of the calibration curve is 0.993, and the limit of detection is 16 mg/kg, which is 19% less than that for the case of a Q-switched laser In the method of long-pulse laser-induced breakdown spectroscopy, the laser-induced plasma had a temperature of 15795.907 K and an electron density of 2.988 × 1017 cm-3, which exceeded the corresponding plasma parameters of the Q-switched laser-induced breakdown spectroscopy by 75% and 24% respectively.

  10. {sup 6}LiF:ZnS(Ag) Neutrons Scintillator Detector Configuration for Optimal Readout

    Energy Technology Data Exchange (ETDEWEB)

    Osovizky, A. [NIST Center for Neutron Research, Gaithersburg, Maryland (United States); Rotem Industries Ltd, Rotem Industrial Park (Israel); University of Maryland, College park, Maryland (United States); Yehuda-Zada, Y.; Ghelman, M.; Tsai, P.; Thompson, A.K. [Nuclear Research Center Negev, Beer-Sheva (Israel); Pritchard, K.; Ziegler, J.B.; Ibberson, R.M.; Majkrzak, C.F.; Maliszewskyj, N.C. [NIST Center for Neutron Research, Gaithersburg, Maryland (United States)

    2015-07-01

    A Chromatic Analysis Neutron Diffractometer Or Reflectometer (CANDOR) is under development at the NIST Center for Neutron Research (NCNR). The CANDOR neutron sensor will rely on scintillator material for detecting the neutrons scattered by the sample under test. It consists of {sup 6}LiF:ZnS(Ag) scintillator material into which wavelength shifting (WLS) fibers have been embedded. Solid state photo-sensors (silicon photomultipliers) coupled to the WLS fibers are used to detect the light produced by the neutron capture event ({sup 6}Li (n,α) {sup 3}H reaction) and ionization of the ZnS(Ag). This detector configuration has the potential to accomplish the CANDOR performance requirements for efficiency of 90% for 5 A (3.35 meV) neutrons with high gamma rejection (10{sup 7}) along with compact design, affordable cost and materials availability. However this novel design includes challenges for precise neutron detection. The recognizing of the neutron signature versus the noise event produce by gamma event cannot be easy overcome by pulse height discrimination obstacle as can be achieved with {sup 3}He gas tube. Furthermore the selection of silicon photomultipliers (SiPM) as the light sensor maintains the obstacle of dark noise that does not exist when a photomultiplier tube is coupled to the scintillator. A proper selection of SiPM should focus on increasing the output signal and reducing the dark noise in order to optimize the detection sensitivity and to provide a clean signal pulse shape discrimination. The main parameters for evaluation are: - Quantum Efficiency (QE) - matching the SiPM peak QE with the peak transmission wavelength emission of the WLS. - Recovery time - a short recovery time is preferred to minimize the pulse width beyond the intrinsic decay time of the scintillator crystal (improves the gamma rejection based output pulse shape (time)). - Diode dimensions -The dark noise is proportional to the diode active area while the signal is provided by the

  11. Staged Z-pinch Experiments at the 1MA Zebra pulsed-power generator: Neutron measurements

    Science.gov (United States)

    Ruskov, Emil; Darling, T.; Glebov, V.; Wessel, F. J.; Anderson, A.; Beg, F.; Conti, F.; Covington, A.; Dutra, E.; Narkis, J.; Rahman, H.; Ross, M.; Valenzuela, J.

    2017-10-01

    We report on neutron measurements from the latest Staged Z-pinch experiments at the 1MA Zebra pulsed-power generator. In these experiments a hollow shell of argon or krypton gas liner, injected between the 1 cm anode-cathode gap, compresses a deuterium plasma target of varying density. Axial magnetic field Bz liquid scintillator detector to which fast gatedPhotek photomultipliers are attached. Sample data from these neutron diagnostics systems is presented. Consistently high neutron yields YDD >109 are measured, with highest yield of 2.6 ×109 . A pair of horizontally and vertically placed plastic scintillator nTOFs suggest isotropic i.e. thermonuclear origin of the neutrons produced. nTOF data from the liquid scintillator detector was cross-calibrated with the silver activation detector, and can be used for accurate calculation of the neutron yield. Funded by the Advanced Research Projects Agency - Energy, under Grant Number DE-AR0000569.

  12. Automatic Frequency Identification under Sample Loss in Sinusoidal Pulse Width Modulation Signals Using an Iterative Autocorrelation Algorithm

    Directory of Open Access Journals (Sweden)

    Alejandro Said

    2016-08-01

    Full Text Available In this work, we present a simple algorithm to calculate automatically the Fourier spectrum of a Sinusoidal Pulse Width Modulation Signal (SPWM. Modulated voltage signals of this kind are used in industry by speed drives to vary the speed of alternating current motors while maintaining a smooth torque. Nevertheless, the SPWM technique produces undesired harmonics, which yield stator heating and power losses. By monitoring these signals without human interaction, it is possible to identify the harmonic content of SPWM signals in a fast and continuous manner. The algorithm is based in the autocorrelation function, commonly used in radar and voice signal processing. Taking advantage of the symmetry properties of the autocorrelation, the algorithm is capable of estimating half of the period of the fundamental frequency; thus, allowing one to estimate the necessary number of samples to produce an accurate Fourier spectrum. To deal with the loss of samples, i.e., the scan backlog, the algorithm iteratively acquires and trims the discrete sequence of samples until the required number of samples reaches a stable value. The simulation shows that the algorithm is not affected by either the magnitude of the switching pulses or the acquisition noise.

  13. Radioactive contamination of BaF2 crystal scintillator

    CERN Document Server

    Polischuk, O G; Bernabei, R; Cappella, F; Caracciolo, V; Cerulli, R; Di Marco, A; Danevich, F A; Incicchitti, A; Poda, D V; Tretyak, V I

    2013-01-01

    Barium fluoride (BaF$_2$) crystal scintillators are promising detectors to search for double beta decay processes in $^{130}$Ba ($Q_{2{\\beta}}$ = 2619(3) keV) and $^{132}$Ba ($Q_{2{\\beta}}$ = 844(1) keV). The $^{130}$Ba isotope is of particular interest because of the indications on 2${\\beta}$ decay found in two geochemical experiments. The radioactive contamination of BaF$_2$ scintillation crystal with mass of 1.714 kg was measured over 113.4 hours in a low-background DAMA/R&D set-up deep underground (3600 m w.e.) at the Gran Sasso National Laboratories of INFN (LNGS, Italy). The half-life of $^{212}$Po (present in the crystal scintillator due to contamination by radium) was estimated as $T_{1/2}$ = 298.8 $\\pm$ 0.8(stat.) $\\pm$ 1.4(syst.) ns by analysis of the events pulse profiles.

  14. Determination of cadmium and lead in perch fish samples by differential pulse anodic stripping voltammetry and furnace atomic absorption spectrometry

    Directory of Open Access Journals (Sweden)

    Ahmed F. Al-Hossainy

    2017-02-01

    Full Text Available Lead and cadmium contents in the edible parts (muscle, fillet of 17 commercially used fish species from South Egypt River Nile (Aswan were determined by means of DPSAV (differential pulse stripping anodic voltammetry. In the sample preparation step, all fish samples were lyophilised, milled in a ball mill and finally decomposed by using mixed acid (HNO3 + HClO4. The accuracy of the concentrations determined in this study was checked by the measurements of the certified reference material CRM No. 422, cod muscle from the Commission of the European Communities, Community Bureau of Reference. All Pb2+ and Cd2+ concentrations observed from species of Egypt River Nile showed that fish from this area are a good source of these essential elements and the developed method is accepted as a good analytical routine method for these samples.

  15. Scintillating fiber detector

    CERN Document Server

    Vozak, Matous

    2016-01-01

    NA61 is one of the physics experiments at CERN dedicated to study hadron states coming from interactions of SPS beams with various targets. To determine the position of a secondary beam, three proportional chambers are placed along the beamline. However, these chambers tend to have slow response. In order to obtain more precise time information, use of another detector is being considered. Fast response and compact size is making scintillation fiber (SciFi) with silicon photomultiplier (Si-PM) read out a good candidate. This report is focused on analysing data from SciFi collected in a test beam at the beginning of July 2016.

  16. Laser Beam Scintillation with Applications

    CERN Document Server

    Andrews, Larry C; Young, Cynthia

    2001-01-01

    Renewed interest in laser communication systems has sparked development of useful new analytic models. This book discusses optical scintillation and its impact on system performance in free-space optical communication and laser radar applications, with a detailed look at propagation phenomena and the role of scintillation on system behavior. Intended for practicing engineers, scientists, and students.

  17. Radiation hardness of plastic scintillators for the Tile Calorimeter of the ATLAS detector

    CERN Document Server

    Jivan, Harshna; The ATLAS collaboration

    2014-01-01

    The Tile Calorimeter of the ATLAS detector, is a hadronic calorimeter responsible for detecting hadrons as well as accommodating for the missing transverse energy that result from the p-p collisions within the LHC. Plastic scintillators form an integral component of this calorimeter due to their ability to undergo prompt fluorescence when exposed to ionising particles. The scintillators employed are specifically chosen for their properties of high optical transmission and fast rise and decay time which enables efficient data capture since fast signal pulses can be generated. The main draw-back of plastic scintillators however is their susceptibility to radiation damage. The damage caused by radiation exposure reduces the scintillation light yield and introduces an error into the time-of flight data acquired. During Run 1 of the LHC data taking period, plastic scintillators employed within the GAP region between the Tile Calorimeter’s central and extended barrels sustained a significant amount of damage. Wit...

  18. Ce{sup 3+}-doped crystalline garnet films - scintillation characterization using {alpha}-particle excitation

    Energy Technology Data Exchange (ETDEWEB)

    Mares, Jiri A., E-mail: amares@fzu.c [Institute of Physics, Academy of Sciences of the Czech Republic, Cukrovarnicka 10, 162 53 Prague 6 (Czech Republic); Prusa, Petr [Institute of Physics, Academy of Sciences of the Czech Republic, Cukrovarnicka 10, 162 53 Prague 6 (Czech Republic); Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University, Brehova 7, 115 19 Prague 1 (Czech Republic); Nikl, Martin; Nitsch, Karel; Beitlerova, Alena [Institute of Physics, Academy of Sciences of the Czech Republic, Cukrovarnicka 10, 162 53 Prague 6 (Czech Republic); Kucera, Miroslav; Hanus, Martin [Charles University, Faculty of Mathematics and Physics, Ke Karlovu 5, 121 16 Prague 2 (Czech Republic); Zorenko, Yurij [Laboratory of Optoelectronic Materials, Department of Electronics, Ivan Franko National University of Lviv, 107 Gen. Tarnavskogo Str. (Ukraine)

    2010-03-15

    Scintillating properties of Ce{sup 3+}-doped (Lu,Y) aluminum garnet single crystalline films (SCF) were investigated. Thin SCF films of thickness between 1 and 30 {mu}m were grown by a liquid phase epitaxy (LPE) method in various fluxes. The {alpha}-particle excitation (mainly 5.4857 MeV line of {sup 241}Am) of pulse height spectra is used to measure scintillation response of SCF, especially peak of those {alpha}-rays which are totally absorbed in the films. Detailed studies and evaluation of scintillation measurements of large sets of Ce{sup 3+}-doped SCF (Lu,Y) aluminum garnets showed that at present time (i) YAG:Ce SCF have comparable scintillation properties as YAG:Ce single crystals, especially their N{sub phels} photoelectron yields are the same while (ii) scintillation properties of LuAG:Ce SCF do not reach those of LuAG:Ce single crystal.

  19. Scintillation properties of solution-grown trans-stilbene single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Zaitseva, Natalia, E-mail: zaitseva1@llnl.gov [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA 94551 (United States); Glenn, Andrew; Carman, Leslie; Paul Martinez, H.; Hatarik, Robert [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA 94551 (United States); Klapper, Helmut [Institut für Kristallographie, Jägerstraße 17-19, D-52066 Aachen (Germany); Payne, Stephen [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA 94551 (United States)

    2015-07-21

    The scintillation properties of trans-stilbene crystals grown for the first time by application of the solution growth technique to the scale of 10 cm are reported. Measurements of the scintillation light output, pulse shape discrimination, and neutron detection efficiency were made with sets of crystals cut as 50 cm diameter cylinders of different lengths from 0.3 to 10 cm. Comparison to liquid scintillators and traditional melt-grown stilbene showed that at increasing sizes new solution-grown crystals exhibit better scintillation performance that makes them promising for use in large scale neutron detectors. Results are discussed in relation to structural imperfections attributed to different methods of growth. - Highlights: • 10-cm-scale trans-stilbene single crystals grown from organic solutions. • Crystals have high optical quality required for fast neutron detection. • Scintillation performance superior to liquids and melt-grown stilbene demonstrated.

  20. High-density scintillating glasses for a proton imaging detector

    Science.gov (United States)

    Tillman, I. J.; Dettmann, M. A.; Herrig, V.; Thune, Z. L.; Zieser, A. J.; Michalek, S. F.; Been, M. O.; Martinez-Szewczyk, M. M.; Koster, H. J.; Wilkinson, C. J.; Kielty, M. W.; Jacobsohn, L. G.; Akgun, U.

    2017-06-01

    High-density scintillating glasses are proposed for a novel proton-imaging device that can improve the accuracy of the hadron therapy. High-density scintillating glasses are needed to build a cost effective, compact calorimeter that can be attached to a gantry. This report summarizes the study on Europium, Terbium, and Cerium-doped scintillating glasses that were developed containing heavy elements such as Lanthanum, Gadolinium, and Tungsten. The density of the samples reach up to 5.9 g/cm3, and their 300-600 nm emission overlaps perfectly with the peak cathode sensitivity of the commercial photo detectors. The developed glasses do not require any special quenching and can be poured easily, which makes them a good candidate for production in various geometries. Here, the glass making conditions, preliminary tests on optical and physical properties of these scintillating, high-density, oxide glasses developed for a novel medical imaging application are reported.

  1. Modular Serial Flow Through device for pulsed electric field treatment of the liquid samples.

    Science.gov (United States)

    Kandušer, Maša; Belič, Aleš; Čorović, Selma; Škrjanc, Igor

    2017-08-14

    In biotechnology, medicine, and food processing, simple and reliable methods for cell membrane permeabilization are required for drug/gene delivery into the cells or for the inactivation of undesired microorganisms. Pulsed electric field treatment is among the most promising methods enabling both aims. The drawback in current technology is controllable large volume operation. To address this challenge, we have developed an experimental setup for flow through electroporation with online regulation of the flow rate with feedback control. We have designed a modular serial flow-through co-linear chamber with a smooth inner surface, the uniform cross-section geometry through the majority of the system's length, and the mesh in contact with the electrodes, which provides uniform electric field distribution and fluid velocity equilibration. The cylindrical cross-section of the chamber prevents arching at the active treatment region. We used mathematical modeling for the evaluation of electric field distribution and the flow profile in the active region. The system was tested for the inactivation of Escherichia coli. We compared two flow-through chambers and used a static chamber as a reference. The experiments were performed under identical experimental condition (product and similar process parameters). The data were analyzed in terms of inactivation efficiency and specific energy consumption.

  2. The light-yield response of a NE-213 liquid-scintillator detector measured using 2–6 MeV tagged neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Scherzinger, J. [Division of Nuclear Physics, Lund University, SE-221 00 Lund (Sweden); Detector Group, European Spallation Source ERIC, SE-221 00 Lund (Sweden); Al Jebali, R.; Annand, J.R.M. [SUPA School of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ, Scotland (United Kingdom); Fissum, K.G., E-mail: kevin.fissum@nuclear.lu.se [Division of Nuclear Physics, Lund University, SE-221 00 Lund (Sweden); Detector Group, European Spallation Source ERIC, SE-221 00 Lund (Sweden); Hall-Wilton, R. [Detector Group, European Spallation Source ERIC, SE-221 00 Lund (Sweden); Mid-Sweden University, SE-851 70 Sundsvall (Sweden); Kanaki, K. [Detector Group, European Spallation Source ERIC, SE-221 00 Lund (Sweden); Lundin, M. [MAX IV Laboratory, Lund University, SE-221 00 Lund (Sweden); Nilsson, B. [Detector Group, European Spallation Source ERIC, SE-221 00 Lund (Sweden); MAX IV Laboratory, Lund University, SE-221 00 Lund (Sweden); Perrey, H. [Division of Nuclear Physics, Lund University, SE-221 00 Lund (Sweden); Detector Group, European Spallation Source ERIC, SE-221 00 Lund (Sweden); Rosborg, A. [MAX IV Laboratory, Lund University, SE-221 00 Lund (Sweden); Svensson, H. [MAX IV Laboratory, Lund University, SE-221 00 Lund (Sweden); Sweflo Engineering, SE-275 63 Blentarp (Sweden)

    2016-12-21

    The response of a NE-213 liquid-scintillator detector has been measured using tagged neutrons from 2 to 6 MeV originating from an Am/Be neutron source. The neutron energies were determined using the time-of-flight technique. Pulse-shape discrimination was employed to discern between gamma-rays and neutrons. The behavior of both the fast (35 ns) and the combined fast and slow (475 ns) components of the neutron scintillation-light pulses were studied. Three different prescriptions were used to relate the neutron maximum energy-transfer edges to the corresponding recoil-proton scintillation-light yields, and the results were compared to simulations. The overall normalizations of parametrizations which predict the fast or total light yield of the scintillation pulses were also tested. Our results agree with both existing data and existing parametrizations. We observe a clear sensitivity to the portion and length of the neutron scintillation-light pulse considered.

  3. Infrared emissivity studies of melting thresholds and structural changes of aluminium and copper samples heated by femtosecond laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Hallo, L; Riou, O; Stenz, C; Tikhonchuk, V T [Centre Lasers Intenses et Applications, UMR 5107 CNRS-Universite Bordeaux 1-CEA, Universite Bordeaux 1, 351 Cours de la Liberation, 33405 Talence Cedex (France)

    2006-12-21

    We propose a new method for studies of laser-induced heating and melting of metallic foils. The method is based on time-integrated measurements of the surface infrared thermal emission. The experimental data are compared with a model where two equations describe the evolution of electron and lattice temperatures and the emissivity is found from the Drude model with the temperature-dependent electron collision frequency. A good agreement between the experimental data and the model is found for the aluminium samples. It is less satisfactory for the copper, but a signature of phase melting can also be pointed out. A multi-pulse laser irradiation study indicates significant changes in the surface emittance, related to preheating, oxidation and/or chemical modification of the copper sample. The proposed method is relatively simple and complementary to the pump-probe technique.

  4. An ``active'' target for spin physics: polarizing nuclei in plastic scintillators

    Science.gov (United States)

    van den Brandt, B.; Bunyatova, E. I.; Hautle, P.; Konter, J. A.; Mango, S.; Nemchonok, I. B.

    2002-03-01

    Polarized scintillating targets are now routinely available: protons, deuterons or other nuclei in blocks of scintillating organic polymer, doped with the free radical TEMPO, have been polarized dynamically in a field of 2.5 T in a vertical 3He-4He dilution refrigerator. A 19 mm diameter plastic lightguide carries the scintillation light from the sample in the mixing chamber to a photomultiplier outside the cryostat.

  5. LiCaAlF sub 6 :Ce crystal: a new scintillator

    CERN Document Server

    Gektin, A V; Neicheva, S; Gavrilyuk, V; Bensalah, A; Fukuda, T; Shimamura, K

    2002-01-01

    Scintillation properties of LiCaAlF sub 6 :Ce crystal, well known as the effective UV laser material, is reported. Ce sup 3 sup + emission at 286-305 nm with a single exponential decay time of 35 ns provides a scintillation pulse. Radiation damage in pure and Ce-doped crystals is studied. In contrast to the majority of fluoride crystals, cerium is responsible for the ultradeep traps formation revealing thermostimulated luminescence. Overlapping of color center absorption and Ce sup 3 sup + ion emission bands limits the scintillation efficiency of LiCaAlF sub 6 :Ce at high radiation doses.

  6. Photoplethysmography sampling frequency: pilot assessment of how low can we go to analyze pulse rate variability with reliability?

    Science.gov (United States)

    Choi, A; Shin, H

    2017-03-01

    Pulse rate variability (PRV) analysis appears as the first alternative to heart rate variability analysis for wearable devices; however, there is a constraint on computational load and energy consumption for the limited system resources available to the devices. Considering that adjustment of the sampling frequency is one of the strategies for reducing computational load and power consumption, this study aimed to investigate the influence of sampling frequency (f s) on PRV analysis and to find the minimum sampling frequency while maintaining reliability. We generated 5000, 2500, 1000, 500, 250, 100, 50, 25, 20, 15, 10, 5 Hz down-sampled photoplethysmograms from 10 kHz-sampled PPGs and derived time- and frequency-domain variables of the PRV. These included AVNN, SDNN, SDSD, RMSSD, NN50, pNN50, total power, VLF, LF, HF, LF/HF, nLF and nHF for each down-sampled signal. Derived variables were compared with heart rate variability of the 10 kHz-sampled electrocardiograms, and then statistically investigated using one-way ANOVA test and Bland-Altman analysis. As a result, significant differences (P  SDSD, RMSSD, NN50, pNN50, TP, HF, LF/HF, nLF and nHF, but not for AVNN, VLF and LF. Based on the post hoc tests, it was found that the NN50 and pNN50, SDSD and RMSSD, LF/HF and nHF, SDNN, TP and nLF analysis had significant differences at f s  ⩽  20 Hz, f s  ⩽  15 Hz, f s  ⩽10 Hz; f s  =  5 Hz, respectively. In other words, a significant difference was not seen for any variable if the f s was greater than 25 Hz. Consequently, our pilot study suggests that analysis of variability in the time and frequency domain from pulse rate obtained through PPG may be potentially as reliable as that derived from the analysis of the electrocardiogram, provided that f s  ⩾25 Hz sampling frequency is used.

  7. Spectroscopic neutron detection using composite scintillators

    Science.gov (United States)

    Jovanovic, I.; Foster, A.; Kukharev, V.; Mayer, M.; Meddeb, A.; Nattress, J.; Ounaies, Z.; Trivelpiece, C.

    2016-09-01

    Shielded special nuclear material (SNM), especially highly enriched uranium, is exceptionally difficult to detect without the use of active interrogation (AI). We are investigating the potential use of low-dose active interrogation to realize simultaneous high-contrast imaging and photofission of SNM using energetic gamma-rays produced by low-energy nuclear reactions, such as 11B(d,nγ)12C and 12C(p,p‧)12C. Neutrons produced via fission are one reliable signature of the presence of SNM and are usually identified by their unique timing characteristics, such as the delayed neutron die-away. Fast neutron spectroscopy may provide additional useful discriminating characteristics for SNM detection. Spectroscopic measurements can be conducted by recoil-based or thermalization and capture-gated detectors; the latter may offer unique advantages since they facilitate low-statistics and event-by-event neutron energy measurements without spectrum unfolding. We describe the results of the development and characterization of a new type of capture-gated spectroscopic neutron detector based on a composite of scintillating polyvinyltoluene and lithium-doped scintillating glass in the form of millimeter-thick rods. The detector achieves >108 neutron-gamma discrimination resulting from its geometric properties and material selection. The design facilitates simultaneous pulse shape and pulse height discrimination, despite the fact that no materials intrinsically capable of pulse shape discrimination have been used to construct the detector. Accurate single-event measurements of neutron energy may be possible even when the energy is relatively low, such as with delayed fission neutrons. Simulation and preliminary measurements using the new composite detector are described, including those conducted using radioisotope sources and the low-dose active interrogation system based on low-energy nuclear reactions.

  8. Cold neutron imaging detection with a GSO scintillator

    CERN Document Server

    Tokanai, F; Oku, T; Ino, T; Suzuki, J I; Ikeda, T; Ootani, W; Otani, C; Sato, H; Shimizu, H M; Kiyanagi, Y; Hirota, T

    2000-01-01

    The pulse-height spectrum and two-dimensional image of a 0.5 mm thick GSO scintillator were investigated for a 6 A cold neutron beam. The 31 and 81 keV peaks resulting from neutron absorption by Gd nuclei were identified in the pulse-height spectrum by using a photomultiplier tube. Images of 1.5 and 2.1 mm (FWHM) in diameter were observed for 1 and 2 mm diameter incident beams with an image intensifier and viewed by a CCD camera, corresponding to a position resolution of 1.3 mm (FWHM). The result implies that a position resolution of better than 100 mu m would be achievable by employing a GSO scintillator thinner than 20 mu m.

  9. Novel scintillating material 2-(4-styrylphenylbenzoxazole for the fully digital and MRI compatible J-PET tomograph based on plastic scintillators.

    Directory of Open Access Journals (Sweden)

    Anna Wieczorek

    Full Text Available A novel plastic scintillator is developed for the application in the digital positron emission tomography (PET. The novelty of the concept lies in application of the 2-(4-styrylphenylbenzoxazole as a wavelength shifter. The substance has not been used as scintillator dopant before. A dopant shifts the scintillation spectrum towards longer wavelengths making it more suitable for applications in scintillators of long strips geometry and light detection with digital silicon photomultipliers. These features open perspectives for the construction of the cost-effective and MRI-compatible PET scanner with the large field of view. In this article we present the synthesis method and characterize performance of the elaborated scintillator by determining its light emission spectrum, light emission efficiency, rising and decay time of the scintillation pulses and resulting timing resolution when applied in the positron emission tomography. The optimal concentration of the novel wavelength shifter was established by maximizing the light output and it was found to be 0.05 ‰ for cuboidal scintillator with dimensions of 14 mm x 14 mm x 20 mm.

  10. Properties of scintillator solutes

    Energy Technology Data Exchange (ETDEWEB)

    Fluornoy, J.M.

    1998-06-01

    This special report summarizes measurements of the spectroscopic and other properties of the solutes that were used in the preparation of several new liquid scintillators developed at EG and G/Energy Measurements/Santa Barbara Operations (the precursor to Bechtel Nevada/Special Technologies Laboratory) on the radiation-to-light converter program. The data on the individual compounds are presented in a form similar to that used by Prof. Isadore Berlman in his classic handbook of fluorescence spectra. The temporal properties and relative efficiencies of the new scintillators are presented in Table 1, and the efficiencies as a function of wavelength are presented graphically in Figure 1. In addition, there is a descriptive glossary of the abbreviations used herein. Figure 2 illustrates the basic structures of some of the compounds and of the four solvents reported in this summary. The emission spectra generally exhibit more structure than the absorption spectra, with the result that the peak emission wavelength for a given compound may lie several nm away from the wavelength, {lambda}{sub avg}, at the geometric center of the emission spectrum. Therefore, the author has chosen to list absorption peaks, {lambda}{sub max}, and emission {lambda}{sub avg} values in Figures 3--30, as being most illustrative of the differences between the compounds. The compounds, BHTP, BTPB, ADBT, and DPTPB were all developed on this program. P-terphenyl, PBD, and TPB are commercially available blue emitters. C-480 and the other longer-wavelength emitters are laser dyes available commercially from Exciton Corporation. 1 ref., 30 figs.

  11. Influence of temperature to quenching on liquid scintillation measurement

    CERN Document Server

    Kato, T

    2003-01-01

    The amount of quench is measured with liquid scintillation spectrometer changing the temperature of the sample. The range of the changed temperature is between 0 deg C and 35 deg C. The measurement is carried out for three kinds of unquenched standard, two quenched standards and fifteen kinds of scintillation cocktail and the mixed sample. It is confirmed that the amount of quench increases for all samples as the temperature rises. The influence of the changed amount of quench to the quench correction is examined. (author)

  12. The First Tests of a Large-Area Light Detector Equipped with Metallic Magnetic Calorimeters for Scintillating Bolometers for the LUMINEU Neutrinoless Double Beta Decay Search

    Science.gov (United States)

    Gray, D.; Enss, C.; Fleischmann, A.; Gastaldo, L.; Hassel, C.; Hengstler, D.; Kempf, S.; Loidl, M.; Navick, X. F.; Rodrigues, M.

    2016-08-01

    Future rare-event searches using scintillating crystals need very low background levels for high sensitivity; however, unresolved pile-up can limit this. We present the design and fabrication of large-area photon detectors based on metallic magnetic calorimeters (MMCs), optimized for fast rise times to resolve close pile-up. The first prototypes have been characterized using Fe-55 X-rays and ZnMoO4 crystal scintillation light. A fast intrinsic rise time of 25-30 \\upmu s has been measured and has been compared to the 250 \\upmu s scintillation light pulse rise time constant. The difference indicates that the scintillation process limits the light pulse rise time. The fast rise time allows for a reduction of background due to close pile-up events as well as the study of the inherent crystal scintillation process. MMC-based photon detectors are shown to be a promising tool for scintillating crystal based rare event searches.

  13. A novel segmented-scintillator antineutrino detector

    Science.gov (United States)

    Abreu, Y.; Amhis, Y.; Arnold, L.; Ban, G.; Beaumont, W.; Bongrand, M.; Boursette, D.; Buhour, J. M.; Castle, B. C.; Clark, K.; Coupé, B.; Cucoanes, A. S.; Cussans, D.; De Roeck, A.; D'Hondt, J.; Durand, D.; Fallot, M.; Fresneau, S.; Ghys, L.; Giot, L.; Guillon, B.; Guilloux, G.; Ihantola, S.; Janssen, X.; Kalcheva, S.; Kalousis, L. N.; Koonen, E.; Labare, M.; Lehaut, G.; Mermans, J.; Michiels, I.; Moortgat, C.; Newbold, D.; Park, J.; Petridis, K.; Piñera, I.; Pommery, G.; Popescu, L.; Pronost, G.; Rademacker, J.; Reynolds, A.; Ryckbosch, D.; Ryder, N.; Saunders, D.; Shitov, Yu. A.; Schune, M.-H.; Scovell, P. R.; Simard, L.; Vacheret, A.; Van Dyck, S.; Van Mulders, P.; van Remortel, N.; Vercaemer, S.; Waldron, A.; Weber, A.; Yermia, F.

    2017-04-01

    The next generation of very-short-baseline reactor experiments will require compact detectors operating at surface level and close to a nuclear reactor. This paper presents a new detector concept based on a composite solid scintillator technology. The detector target uses cubes of polyvinyltoluene interleaved with 6LiF:ZnS(Ag) phosphor screens to detect the products of the inverse beta decay reaction. A multi-tonne detector system built from these individual cells can provide precise localisation of scintillation signals, making efficient use of the detector volume. Monte Carlo simulations indicate that a neutron capture efficiency of over 70 % is achievable with a sufficient number of 6LiF:ZnS(Ag) screens per cube and that an appropriate segmentation enables a measurement of the positron energy which is not limited by γ-ray leakage. First measurements of a single cell indicate that a very good neutron-gamma discrimination and high neutron detection efficiency can be obtained with adequate triggering techniques. The light yield from positron signals has been measured, showing that an energy resolution of 14%/√E(MeV) is achievable with high uniformity. A preliminary neutrino signal analysis has been developed, using selection criteria for pulse shape, energy, time structure and energy spatial distribution and showing that an antineutrino efficiency of 40% can be achieved. It also shows that the fine segmentation of the detector can be used to significantly decrease both correlated and accidental backgrounds.

  14. Evaluation and calibration of a pulsed neutron method for total hydrogen determination in mineral and concrete samples

    Energy Technology Data Exchange (ETDEWEB)

    Bennun, L.; Santibanez, M. [Universidad de Concepcion, Laboratorio de Fisica Aplicada, Departamento de Fisica, P.O. Box 160c, Concepcion (Chile); Gomez, J. [Holcim (Costa Rica) S.A, Alajuela (Costa Rica); Santisteban, J.R. [Centro Atomico Bariloche e Instituto Balseiro, Bariloche Rio Negro (Argentina)

    2011-11-15

    We studied the feasibility of a nondestructive method to determine hydrogen concentrations in concrete and mineral samples. The amount of total hydrogen in the sample is directly related to the proportion of water included in the paste preparation; and also considers all subsequent processes which can add or remove hydrogen in a real sample (like rain, evaporation, etc.). The hydrogen proportion is a critical variable in the curing concrete process; its excess or deficiency impacts negatively in the quality of the final product. The proposed technique is based on a pulsed neutron source and the technical support of the time of flight, which allow discriminating epithermal neutrons interacting with hydrogen (inelastic scattering) from the elastic and quasi-isotropic scattering produced by other kinds of atoms. The method was externally calibrated in limestone rocks fragments (CaCO{sub 3}-main material used in cement fabrication) and in steel, allowing an easy retrieval of the required information. The technique's simplicity may facilitate the development of a mobile measuring device in order to make determinations ''in situ.'' In this paper, we describe the foundations of the proposed method and various analysis results. (orig.)

  15. High sensitivity photonic time-stretch electro-optic sampling of terahertz pulses

    CERN Document Server

    Szwaj, Christophe; Parquier, Marc Le; Roy, Pascale; Manceron, Laurent; Brubach, Jean-Blaise; Tordeux, Marie-Agnès; Bielawski, Serge

    2016-01-01

    Single-shot recording of terahertz electric signals has recently become possible at high repetition rates, by using the photonic time-stretch electro-optic sampling (EOS) technique. However the moderate sensitivity of time-stretch EOS is still a strong limit for a range of applications. Here we present a variant enabling to increase the sensitivity of photonic time-stretch for free-propagating THz signals. A key point is to integrate the idea presented in Ref. [Ahmed et al., Rev. Sci. Instrum. 85, 013114 (2014)], for upgrading classical time-stretch systems. The method is tested using the high repetition rate terahertz coherent synchrotron radiation source (CSR) of the SOLEIL synchrotron radiation facility. The signal-to-noise ratio of our terahertz digitizer could thus be straightforwardly improved by a factor $\\approx 6.5$, leading to a noise-equivalent input electric field below $1.25$~V/cm inside the electro-optic crystal, over the 0-300~GHz band (i.e, 2.3~$\\mu$V/cm/$\\sqrt{\\text{Hz}}$). The sensitivity is...

  16. Optical readout for imaging neutron scintillation detectors

    Science.gov (United States)

    Hutchinson, Donald P.; Richards, Roger K.; Maxey, L. Curt; Cooper, Ronald G.; Holcomb, David E.

    2002-11-01

    The Spallation Neutron Source (SNS) under construction at the Oak Ridge National Laboratory (ORNL) will be the most important new neutron scattering facility in the United States. Neutron scattering instruments for the SNS will require large area detectors with fast response (LiF/ZnS(Ag) scintillator screen coupled to a wavelength-shifting fiber optic readout array. A 25 x 25 cm prototype detector is currently under development. Initial tests at the Intense Pulsed Neutron Source at the Argonne National Laboratory have demonstrated good imaging properties coupled with very low gamma ray sensitivity. The response time of this detector is approximately 1 microsecond. Details of the design and test results of the detector will be presented.

  17. Scintillation Properties of Praseodymium Activated Lu3Al5O12 Single Crystals

    NARCIS (Netherlands)

    Drozdowski, W.; Dorenbos, P.; De Haas, J.T.M.; Drozdowska, R.; Owens, A.; Kamada, K.; Tsutsumi, K.; Usuki, Y.; Yanagida, T.; Yoshikawa, A.

    2008-01-01

    Scintillation properties of LuAG:Pr grown by Furukawa Co. Ltd., Japan, have been studied. The best crystals display light outputs up to 19000 ph/MeV and an energy resolution of 4.6% at 662 keV. The scintillation yield is found to be a function of size and temperature of the sample; it can be

  18. A 12 kV, 1 kHz, Pulse Generator for Breakdown Studies of Samples for CLIC RF Accelerating Structures

    CERN Document Server

    Soares, R H; Kovermann, J; Calatroni, S; Wuensch, W

    2012-01-01

    Compact Linear Collider (CLIC) RF structures must be capable of sustaining high surface electric fields, in excess of 200 MV/m, with a breakdown (BD) rate below 3×10-7 breakdowns/pulse/m. Achieving such a low rate requires a detailed understanding of all the steps involved in the mechanism of breakdown. One of the fundamental studies is to investigate the statistical characteristics of the BD rate phenomenon at very low values to understand the origin of an observed dependency of the surface electric field raised to the power of 30. To acquire sufficient BD data, in a reasonable period of time, a high repetition rate pulse generator is required for an existing d.c. spark system at CERN. Following BD of the material sample the pulse generator must deliver a current pulse of several 10’s of Amperes for ~2 μs. A high repetition rate pulse generator has been designed, built and tested; this utilizes pulse forming line technology and employs MOSFET switches. This paper describes the design of the pulse generat...

  19. The characterization of scintillator performance at temperatures up to 400 degrees centigrade

    Energy Technology Data Exchange (ETDEWEB)

    Boatner, Lynn A., E-mail: boatnerla@ornl.gov [Materials Science and Technology Division, ORNL Center for Radiation Detection Materials and Systems, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Neal, John S., E-mail: Nealjs1@ornl.gov [Global Nuclear Security Technology Division, ORNL Center for Radiation Detection Materials and Systems, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831 (United States); Kolopus, James A., E-mail: kolopusja@ornl.gov [Materials Science and Technology Division, ORNL Center for Radiation Detection Materials and Systems, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Ramey, Joanne O., E-mail: rameyjo@ornl.gov [Materials Science and Technology Division, ORNL Center for Radiation Detection Materials and Systems, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Akkurt, Hatice, E-mail: akkurth@ornl.gov [Reactor and Nuclear Systems Division, ORNL Center for Radiation Detection Materials and Systems, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831 (United States)

    2013-05-01

    The logging and characterization of geothermal wells requires improved scintillator systems that are capable of operation at temperatures significantly above those commonly encountered in the logging of most conventional oil and gas wells (e.g., temperatures nominally in the range of up to 150 °C). Unfortunately, most of the existing data on the performance of scintillators for radiation detection at elevated temperatures is fragmentary, uncorrelated, and generally limited to relatively low temperatures—in most cases to temperatures well below 200 °C. We have designed a system for characterizing scintillator performance at temperatures extending up to 400 °C under inert atmospheric conditions, and this system is applied here to the determination of scintillator performance at elevated temperatures for a wide range of scintillators including, among others: bismuth germanate, cadmium tungstate, cesium iodide, cesium iodide (Tl), cesium iodide (Na), sodium iodide, sodium iodide (Tl), lutetium oxy-orthosilicate (Ce), zinc tungstate, yttrium aluminum perovskite (Ce), yttrium aluminum garnet (Ce), lutetium aluminum perovskite (Ce), and barium fluoride, strontium iodide (Eu). Most of the scintillator samples exhibited severe degradation in light yield at elevated temperatures. Measurements were terminated at temperatures at which the measured light yield no longer appeared useful. The results of these high-temperature scintillator performance tests are described in detail here. Comparisons of the relative elevated-temperature properties of the various scintillator materials have resulted in the identification of promising scintillator candidates for high-temperature use in geothermal and fossil-fuel well environments. -- Highlights: ► Scintillator performance at elevated temperatures up to 400°C. ► Scintillators for geothermal logging. ► Scintillators for oil well logging. ► LuAP:Ce high temperature performance.

  20. Advanced Large Area Plastic Scintillator Project (ALPS): Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Jordan, David V.; Reeder, Paul L.; Todd, Lindsay C.; Warren, Glen A.; McCormick, Kathleen R.; Stephens, Daniel L.; Geelhood, Bruce D.; Alzheimer, James M.; Crowell, Shannon L.; Sliger, William A.

    2008-02-05

    The advanced Large-Area Plastic Scintillator (ALPS) Project at Pacific Northwest National Laboratory investigated possible technological avenues for substantially advancing the state-of-the-art in gamma-ray detection via large-area plastic scintillators. The three predominant themes of these investigations comprised the following: * Maximizing light collection efficiency from a single large-area sheet of plastic scintillator, and optimizing hardware event trigger definition to retain detection efficiency while exploiting the power of coincidence to suppress single-PMT "dark current" background; * Utilizing anti-Compton vetoing and supplementary spectral information from a co-located secondary, or "Back" detector, to both (1) minimize Compton background in the low-energy portion of the "Front" scintillator's pulse-height spectrum, and (2) sharpen the statistical accuracy of the front detector's low-energy response prediction as impelmented in suitable energy-windowing algorithms; and * Investigating alternative materials to enhance the intrinsic gamma-ray detection efficiency of plastic-based sensors.

  1. Co-doping effects on luminescence and scintillation properties of Ce doped Lu{sub 3}Al{sub 5}O{sub 12} scintillator

    Energy Technology Data Exchange (ETDEWEB)

    Kamada, Kei, E-mail: kamada@imr.tohoku.ac.jp [Tohoku University, New Industry Creation Hatchery Center, 6-6-10 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Miyagi (Japan); C& A Corporation, T-Biz, 6-6-10 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Miyagi (Japan); Nikl, Martin [Institute of Physics AS CR, Cukrovarnicka 10, 16253 Prague (Czech Republic); Kurosawa, Shunsuke [Tohoku University, New Industry Creation Hatchery Center, 6-6-10 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Miyagi (Japan); Tohoku University Institute for Material Reseach, 2-1-1 Katahira Aoba-ku, Sendai 980-8577, Miyagi (Japan); Beitlerova, Alena [Institute of Physics AS CR, Cukrovarnicka 10, 16253 Prague (Czech Republic); Nagura, Aya [Tohoku University Institute for Material Reseach, 2-1-1 Katahira Aoba-ku, Sendai 980-8577, Miyagi (Japan); Shoji, Yasuhiro [C& A Corporation, T-Biz, 6-6-10 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Miyagi (Japan); Tohoku University Institute for Material Reseach, 2-1-1 Katahira Aoba-ku, Sendai 980-8577, Miyagi (Japan); Pejchal, Jan [Tohoku University, New Industry Creation Hatchery Center, 6-6-10 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Miyagi (Japan); Institute of Physics AS CR, Cukrovarnicka 10, 16253 Prague (Czech Republic); Ohashi, Yuji [Tohoku University Institute for Material Reseach, 2-1-1 Katahira Aoba-ku, Sendai 980-8577, Miyagi (Japan); Yokota, Yuui [Tohoku University, New Industry Creation Hatchery Center, 6-6-10 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Miyagi (Japan); Yoshikawa, Akira [Tohoku University, New Industry Creation Hatchery Center, 6-6-10 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Miyagi (Japan); C& A Corporation, T-Biz, 6-6-10 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Miyagi (Japan); Tohoku University Institute for Material Reseach, 2-1-1 Katahira Aoba-ku, Sendai 980-8577, Miyagi (Japan)

    2015-05-11

    The Mg, Ca, Sr and Ba 200 ppm co-doped Ce:Lu{sub 3}Al{sub 5}O{sub 12} single crystals were prepared by micro pulling down method. Absorption and luminescence spectra were measured together with several other scintillation characteristics, namely the scintillation decay and light yield to reveal the effect of the co-doping. The scintillation decays were accelerated by both Mg and Ca co-dopants. The Mg co-doped samples showed the fastest decay and the highest light yield among the co-doped samples.

  2. Determination of {sup 90}Sr, {sup 63}Ni and {sup 55}Fe activities by liquid scintillation counting in the environmental samples close to French nuclear power plants located on Loire and Garonne rivers

    Energy Technology Data Exchange (ETDEWEB)

    Rousseau, G.; Mokili, M.B.; Le Roy, C.; Deniau, I. [SUBATECH, IN2P3 (France); Gontier, G.; Boyer, C. [EDF-DPI-DIN-CIDEN (France); Hemidy, P.Y. [EDF-DPN-UNIE-GPRE-IEV (France); Chardon, P. [CNRS/IN2P3 (France)

    2014-07-01

    The protection of the aquatic and terrestrial environment from a wide range of radioactive contaminants released by nuclear industry requires continuous monitoring of radionuclides released into the environment. Specific measurement methods depending of the radionuclide are used to determinate this contribution. A lot of radionuclide can easily be measured at low level by gamma spectrometry, like {sup 137}Cs, {sup 60}Co..., but others like {sup 90}Sr, {sup 63}Ni or {sup 55}Fe require prior specific radiochemical separations. Activity of {sup 90}Sr values in environmental samples are available but only few measurements of {sup 63}Ni and {sup 55}Fe activities have been carried out in samples collected in the environment close to French nuclear power plants located on the Loire and Garonne rivers despite they represent 12% to 24% for {sup 63}Ni activity and <1% for {sup 55}Fe + other minor radionuclides of total activity of their liquid effluent discharges. {sup 90}Sr is not rejected by the liquid effluent discharges of Nuclear Power Plants and can be found in the environmental samples because of thermonuclear test and subsequently after the Chernobyl nuclear power plant accident. Considering the French Nuclear Power Plant located on Loire and Garonne rivers, the determination of {sup 90}Sr, {sup 63}Ni and {sup 55}Fe levels in the environmental samples around French nuclear power plants is carried out to detect the traces of these radionuclides originating from nuclear technology activities. The environment around five French nuclear Power Plants was investigated for 4 years between 2009 and 2014. The radionuclide activities determined by liquid scintillation counting after chemical steps were performed on a large set of various matrix samples likely to be encountered in environmental monitoring as soils, sediments, terrestrial and aquatic bio-indicators. It was found that the mean activity concentration of the most frequently detected was for the radionuclide {sup 90

  3. Shifting scintillator prototype large pixel wavelength-shifting fiber detector for the POWGEN3 powder diffractometer

    Energy Technology Data Exchange (ETDEWEB)

    Crow, M.L. E-mail: crowmljr@ornl.gov; Hodges, J.P.; Cooper, R.G

    2004-08-21

    A prototype neutron scintillation detector has been developed, specifically aimed at the needs of the powder diffractometer POWGEN3 at the Spallation Neutron Source at Oak Ridge National Laboratory. This instrument requires a detector array with large (6 mmx40 mm) pixels and an area of several square meters. The prototype uses a two-dimensional grid of wavelength shifting fibers, with the fiber axes parallel to the scintillator screen, to collect the scintillation photons. The fiber ends for each pixel go to a specific set of four photomultiplier tubes, so that the position of each event can be determined by a 4-tube {sup 2}C{sub n}x{sup 2}C{sub n} coded coincidence. The observed maximum light yield with a {sup 6}LiF/ZnS:Ag neutron scintillation screen, summed over four tubes, is greater than 200 photons/neutron. This is about 0.13% of the {approx}150,000 photons/neutron produced in the scintillator. The light yield is sufficient to allow pulse discrimination between neutron signals and gamma-ray background. Further light collection gains should be achievable using double-clad fiber and green-enhanced photomultiplier tubes. Currently, the shape, structure, and specific composition of the scintillator are being investigated, on the assumption that {sup 6}LiF/ZnS:Ag will be the chosen scintillator material.

  4. Cherenkov and scintillation light separation in organic liquid scintillators

    Science.gov (United States)

    Caravaca, J.; Descamps, F. B.; Land, B. J.; Yeh, M.; Orebi Gann, G. D.

    2017-12-01

    The CHErenkov/Scintillation Separation experiment (CHESS) has been used to demonstrate the separation of Cherenkov and scintillation light in both linear alkylbenzene (LAB) and LAB with 2 g/L of PPO as a fluor (LAB/PPO). This is the first successful demonstration of Cherenkov light detection from the more challenging LAB/PPO cocktail and improves on previous results for LAB. A time resolution of 338± 12 ps FWHM results in an efficiency for identifying Cherenkov photons in LAB/PPO of 70 ± 3 % and 63± 8% for time- and charge-based separation, respectively, with scintillation contamination of 36± 5% and 38± 4%. LAB/PPO data is consistent with a rise time of τ _r=0.72± 0.33 ns.

  5. Climatology of GPS phase scintillation at northern high latitudes for the period from 2008 to 2013

    Directory of Open Access Journals (Sweden)

    P. Prikryl

    2015-05-01

    Full Text Available Global positioning system scintillation and total electron content (TEC data have been collected by ten specialized GPS Ionospheric Scintillation and TEC Monitors (GISTMs of the Canadian High Arctic Ionospheric Network (CHAIN. The phase scintillation index σΦ is obtained from the phase of the L1 signal sampled at 50 Hz. Maps of phase scintillation occurrence as a function of the altitude-adjusted corrected geomagnetic (AACGM latitude and magnetic local time (MLT are computed for the period from 2008 to 2013. Enhanced phase scintillation is collocated with regions that are known as ionospheric signatures of the coupling between the solar wind and magnetosphere. The phase scintillation mainly occurs on the dayside in the cusp where ionospheric irregularities convect at high speed, in the nightside auroral oval where energetic particle precipitation causes field-aligned irregularities with steep electron density gradients and in the polar cap where electron density patches that are formed from a tongue of ionization. Dependences of scintillation occurrence on season, solar and geomagnetic activity, and the interplanetary magnetic field (IMF orientation are investigated. The auroral phase scintillation shows semiannual variation with equinoctial maxima known to be associated with auroras, while in the cusp and polar cap the scintillation occurrence is highest in the autumn and winter months and lowest in summer. With rising solar and geomagnetic activity from the solar minimum to solar maximum, yearly maps of mean phase scintillation occurrence show gradual increase and expansion of enhanced scintillation regions both poleward and equatorward from the statistical auroral oval. The dependence of scintillation occurrence on the IMF orientation is dominated by increased scintillation in the cusp, expanded auroral oval and at subauroral latitudes for strongly southward IMF. In the polar cap, the IMF BY polarity controls dawn–dusk asymmetries in

  6. Molecular origins of scintillation in organic scintillators (Conference Presentation)

    Science.gov (United States)

    Feng, Patrick; Mengesha, Wondwosen; Myllenbeck, Nicholas

    2016-09-01

    Organic-based scintillators are indispensable materials for radiation detection owing to their high sensitivity to fast neutrons, low cost, and tailorable properties. There has been a recent resurgence of interest in organic scintillators due to exciting discoveries related to neutron discrimination and gamma-ray spectroscopy, which represent capabilities previously thought not possible in these materials. I will discuss our development of crystalline and polymer-based scintillators for these applications. Structure-property relationships related to intermolecular interactions and host-guest electronic exchange will be discussed in the context of energy-transfer pathways relevant to scintillation. An emphasis will be placed on the rational design of these materials, as guided by first principles and DFT calculations. Two related topics will be discussed: 1) Incorporation of organometallic triplet-harvesting additives to plastic scintillator matrices to confer a 'two-state' (singlet and triplet) luminescence signature to different types of ionizing radiation. This approach relies upon energetic and spatial overlap between the donor and acceptor excited states for efficient electronic exchange. Key considerations also include synthetic modification of the luminescence spectra and kinetics, as well as the addition of secondary additives to increase the recombination efficiency. 2) Design of organotin-containing plastic scintillators as a route towards gamma-ray spectroscopy. Organometallic compounds were selected on the basis of distance-dependent quenching relationships, phase compatibility with the polymer matrix, and the gamma-ray cross sections. This approach is guided by molecular modeling and radiation transport modeling to achieve the highest possible detection sensitivity luminescence intensity.

  7. Melt-cast organic glasses as high-efficiency fast neutron scintillators

    Energy Technology Data Exchange (ETDEWEB)

    Carlson, Joseph S.; Feng, Patrick L., E-mail: plfeng@sandia.gov

    2016-10-01

    In this work we report a new class of organic-based scintillators that combines several of the desirable attributes of existing crystalline, liquid, and plastic organic scintillators. The prepared materials may be isolated in single crystalline form or melt-cast to produce highly transparent glasses that have been shown to provide high light yields of up to 16,000 photons/MeVee, as evaluated against EJ-200 plastic scintillators and solution-grown trans-stilbene crystals. The prepared organic glasses exhibit neutron/gamma pulse-shape discrimination (PSD) and are compatible with wavelength shifters to reduce optical self-absorption effects that are intrinsic to pure materials such as crystalline organics. The combination of high scintillation efficiency, PSD capabilities, and facile scale-up via melt-casting distinguishes this new class of amorphous materials from existing alternatives.

  8. New halide scintillators for gamma ray detection

    NARCIS (Netherlands)

    Alekhin, M.S.

    2013-01-01

    Scintillators are used for the detection of ionizing radiation. Despite decades of intensive search and numerous compounds discovered, there is still a need for materials with improved properties. Recently, several new scintillators with excellent light yield, energy resolution, and proportionality

  9. Radiopure Metal-Loaded Liquid Scintillator

    Energy Technology Data Exchange (ETDEWEB)

    Rosero, Richard [Brookhaven National Lab. (BNL), Upton, NY (United States). Chemistry Dept.; Yeh, Minfang [Brookhaven National Lab. (BNL), Upton, NY (United States). Chemistry Dept.

    2015-03-18

    Metal-loaded liquid scintillator plays a key role in particle and nuclear physics experiments. The applications of metal ions in various neutrino experiments and the purification methods for different scintillator components are discussed in this paper.

  10. High energy resolution with transparent ceramic garnet scintillators

    Science.gov (United States)

    Cherepy, N. J.; Seeley, Z. M.; Payne, S. A.; Beck, P. R.; Swanberg, E. L.; Hunter, S.; Ahle, L.; Fisher, S. E.; Melcher, C.; Wei, H.; Stefanik, T.; Chung, Y.-S.; Kindem, J.

    2014-09-01

    Breakthrough energy resolution, R(662keV) Gadolinium Yttrium Gallium Aluminum Garnet, or GYGAG(Ce). Transparent ceramic GYGAG(Ce), has a peak emission wavelength of 550 nm that is better matched to Silicon photodetectors than to standard PMTs. We are therefore developing a spectrometer based on pixelated GYGAG(Ce) on a Silicon photodiode array that can provide R(662 keV) = 3.6%. In comparison, with large 1-2 in3 size GYGAG(Ce) ceramics we obtain R(662 keV) = 4.6% with PMT readout. We find that ceramic GYGAG(Ce) of a given stoichiometric chemical composition can exhibit very different scintillation properties, depending on sintering conditions and post-anneal treatments. Among the characteristics of transparent ceramic garnet scintillators that can be controlled by fabrication conditions are: scintillation decay components and their amplitudes, intensity and duration of afterglow, thermoluminescence glow curve peak positions and amplitudes, integrated light yield, light yield non-proportionality - as measured in the Scintillator Light Yield Non-Proportionality Characterization Instrument (SLYNCI), and energy resolution for gamma spectroscopy. Garnet samples exhibiting a significant fraction of Cerium dopant in the tetravalent valence also exhibit: faster overall scintillation decay, very low afterglow, high light yield, but poor light yield proportionality and degraded energy resolution.

  11. Simultaneous determination of paracetamol and ibuprofen in pharmaceutical samples by differential pulse voltammetry using a boron-doped diamond electrode

    Energy Technology Data Exchange (ETDEWEB)

    Lima, Amanda B.; Guimaraes, Carlos F.R.C.; Verly, Rodrigo M.; Silva, Leonardo M. da [Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, MG (Brazil). Departamento de Quimica; Torres, Livia M.F.C.; Carvalho Junior, Alvaro D.; Santos, Wallans T. P. dos, E-mail: wallanst@ufvjm.edu.br [Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, MG (Brazil). Departamento de Farmacia

    2014-03-15

    This work presents a simple, fast and low-cost methodology for the simultaneous determination of paracetamol (PC) and ibuprofen (IB) in pharmaceutical formulations by differential pulse voltammetry using a boron-doped diamond (BDD) electrode. A well-defined oxidation peak was observed using the BDD electrode for each analyte (0.85 V for PC and 1.72 V for IB (vs. Ag/AgCl)) in 0.1 mol L{sup -1} H{sub 2}SO{sub 4} solution containing 10% (v/v) of ethanol. Calibration curves for the simultaneous determination of PC and IB showed a linear response for both drugs in a concentration range of 20 to 400 μmol L{sup -1} (r{sup 2} = 0.999), with a detection limit of 7.1 μmol L{sup -1} for PC and 3.8 μmol L{sup -1} for IB. The addition-recovery studies in samples were about 100% and the results were validated by chromatographic methods. (author)

  12. Discrete Wavelet Transform Method for High Flux n-γ Discrimination With Liquid Scintillators

    Science.gov (United States)

    Singh, Harleen; Mehra, Rohit

    2017-07-01

    A Novel method based on discrete wavelet transform (DWT) for n-γ discrimination in high radiation flux is presented. We investigated the behavior of higher order wavelets from different families such as the Daubechies family, symlets, and coiflet type wavelets for pulse shape discrimination. A DWT-based average pulse analysis of neutron and γ-ray pulses suggests less sensitivity of db2, db3, sym4, and coif1 wavelets over the widely used Haar wavelet and the charge comparison method for the pile-up events. The DWT method with proposed wavelets is applied to a mixed radiation field at an energy threshold of 500 keVee obtained from an americium-beryllium source exposed to BC501 liquid scintillator which was coupled to a 12-b digital oscilloscope with sampling rate of 2.5 GSamples/s. The proposed wavelets require a short processing gate and are more suitable when applied to high count rate measurement with large fraction of pile-up events in the data set. Furthermore, these wavelets are very stable toward the variation in the width of processing gate in DWT. This feature is very helpful in the optimization of processing gate for the real-time applications.

  13. Scintillation-Hardened GPS Receiver

    Science.gov (United States)

    Stephens, Donald R.

    2015-01-01

    CommLargo, Inc., has developed a scintillation-hardened Global Positioning System (GPS) receiver that improves reliability for low-orbit missions and complies with NASA's Space Telecommunications Radio System (STRS) architecture standards. A software-defined radio (SDR) implementation allows a single hardware element to function as either a conventional radio or as a GPS receiver, providing backup and redundancy for platforms such as the International Space Station (ISS) and high-value remote sensing platforms. The innovation's flexible SDR implementation reduces cost, weight, and power requirements. Scintillation hardening improves mission reliability and variability. In Phase I, CommLargo refactored an open-source GPS software package with Kalman filter-based tracking loops to improve performance during scintillation and also demonstrated improved navigation during a geomagnetic storm. In Phase II, the company generated a new field-programmable gate array (FPGA)-based GPS waveform to demonstrate on NASA's Space Communication and Navigation (SCaN) test bed.

  14. Fracture-resistant lanthanide scintillators

    Science.gov (United States)

    Doty, F Patrick [Livermore, CA

    2011-01-04

    Lanthanide halide alloys have recently enabled scintillating gamma ray spectrometers comparable to room temperature semiconductors (<3% FWHM energy resolutions at 662 keV). However brittle fracture of these materials upon cooling hinders the growth of large volume crystals. Efforts to improve the strength through non-lanthanide alloy substitution, while preserving scintillation, have been demonstrated. Isovalent alloys having nominal compositions of comprising Al, Ga, Sc, Y, and In dopants as well as aliovalent alloys comprising Ca, Sr, Zr, Hf, Zn, and Pb dopants were prepared. All of these alloys exhibit bright fluorescence under UV excitation, with varying shifts in the spectral peaks and intensities relative to pure CeBr.sub.3. Further, these alloys scintillate when coupled to a photomultiplier tube (PMT) and exposed to .sup.137Cs gamma rays.

  15. Ionospheric precursors to scintillation activity

    Directory of Open Access Journals (Sweden)

    Paul S.J. Spencer

    2014-03-01

    Full Text Available Ionospheric scintillation is the rapid fluctuation of both phase and amplitude of trans-ionospheric radio waves due to small scale electron density irregularities in the ionosphere. Prediction of the occurrence of scintillation at L band frequencies is needed to mitigate the disruption of space-based communication and navigation systems. The purpose of this paper is to present a method of using tomographic inversions of the ionospheric electron density obtained from ground-based GPS data to infer the location and strength of the post-sunset plasma drift vortex. This vortex is related to the pre-reversal enhancement in the eastwards electric field which has been correlated to the subsequent occurrence of scintillation.

  16. Studies on scintillating fiber response

    Energy Technology Data Exchange (ETDEWEB)

    Albers, D. [Bonn Univ. (Germany). Inst. fuer Strahlen- und Kernphysik; Bisplinghoff, J.; Bollmann, R.; Buesser, K.; Cloth, P.; Diehl, O.; Dohrmann, F.; Drueke, V.; Engelhardt, H.P.; Ernst, J.; Eversheim, P.D.; Filges, D.; Gasthuber, M.; Gebel, R.; Greiff, J.; Gross, A.; Gross-Hardt, R.; Heine, A.; Heider, S.; Hinterberger, F.; Igelbrink, M.; Jahn, R.; Jeske, M.; Langkau, R.; Lindlein, J.; Maier, R.; Maschuw, R.; Mayer-Kuckuk, T.; Mertler, G.; Metsch, B.; Mosel, F.; Mueller, M.; Muenstermann, M.; Paetz genannt Schieck, H.; Petry, H.R.; Prasuhn, D.; Rohdjess, H.; Rosendaal, D.; Ross, U.; Rossen, P. von; Scheid, H.; Schirm, N.; Schulz-Rojahn, M.; Schwandt, F.; Scobel, W.; Steeg, B.; Sterzenbach, G.; Trelle, H.J.; Wellinghausen, A.; Wiedmann, W.; Woller, K.; Ziegler, R. [Institut fuer Strahlen- und Kernphysik, Universitaet Bonn, Bonn (Germany)]|[1. Institut fuer Experimentalphysik, Universitaet Hamburg, Hamburg (Germany)]|[Institut fuer Kernphysik, KFA, Juelich (Germany)]|[Institut fuer Theor. Kernphysik, Universitaet Bonn, Bonn (Germany)]|[Institut fuer Kernphysik, Universitaet Koeln, Koeln (Germany)

    1995-03-11

    Scintillating fibers of type Bicron BCF-12 with 2 x 2 mm{sup 2} cross section, up to 600 mm length, and PMMA cladding have been tested, in conjunction with the multi-channel photomultiplier Hamamatsu R 4760, with minimum ionizing electrons. The impact of cladding, extramural absorbers and/or wrapping on the light attenuation and photoelectron yield is studied in detail. Fibers have been circularly bent with radii of 171 mm and arranged in two layers to bundles forming granulated scintillator rings. Their performance in the EDDA experiment at COSY for detection of high energy protons revealed typically more than 9 (6) photoelectrons per fiber from bundles with (without) mirror on the rear side, guaranteeing detection efficiencies >99% and full compatibility with corresponding solid scintillator rings. The time resolution of 3.4 ns FWHM per fiber read out is essentially due to the R 4760. (orig.).

  17. Studies on scintillating fiber response

    Science.gov (United States)

    Albers, D.; Bisplinghoff, J.; Bollmann, R.; Büßer, K.; Cloth, P.; Diehl, O.; Dohrmann, F.; Drüke, V.; Engelhardt, H. P.; Ernst, J.; Eversheim, P. D.; Filges, D.; Gasthuber, M.; Gebel, R.; Greiff, J.; Groß, A.; Groß-Hardt, R.; Heine, A.; Heider, S.; Hinterberger, F.; Igelbrink, M.; Jahn, R.; Jeske, M.; Langkau, R.; Lindlein, J.; Maier, R.; Maschuw, R.; Mayer-Kuckuk, T.; Mertler, G.; Metsch, B.; Mosel, F.; Müller, M.; Münstermann, M.; Paetz gen. Schieck, H.; Petry, H. R.; Prasuhn, D.; Rohdjeß, H.; Rosendaal, D.; Roß, U.; von Rossen, P.; Scheid, H.; Schirm, N.; Schulz-Rojahn, M.; Schwandt, F.; Scobel, W.; Steeg, B.; Sterzenbach, G.; Trelle, H. J.; Wellinghausen, A.; Wiedmann, W.; Woller, K.; Ziegler, R.

    1996-02-01

    Scintillating fibers of type Bicron BCF-12 with 2 × 2 mm 2 cross section, up to 600 mm length, and PMMA cladding have been tested, in conjunction with the multi-channel photomultiplier Hamamatsu R 4760, with minimum ionizing electrons. The impact of cladding, extramural absorbers and/or wrapping on the light attenuation and photoelectron yield is studied in detail. Fibers have been circularly bent with radii of 171 mm and arranged in two layers to bundles forming granulated scintillator rings. Their performance in the EDDA experiment at COSY for detection of high energy protons revealed typically more than 9 (6) photoelectrons per fiber from bundles with (without) mirror on the rear side, guaranteeing detection efficiencies >99% and full compatibility with corresponding solid scintillator rings. The time resolution of 3.4 ns FWHM per fiber read out is essentially due to the R 4760.

  18. Effects of hadron irradiation on scintillating fibers

    Energy Technology Data Exchange (ETDEWEB)

    Atac, M. (Univ. of California, Los Angeles, CA (United States) Fermi National Accelerator Lab., Batavia, IL (United States)); Buchanan, C.; Chrisman, D.; Cline, D.; Kolonko, J.; Kubic, J.; Park, J. (Univ. of California, Los Angeles, CA (United States)); Baumbaugh, A.; Binkley, M.; Bross, A.D.; Finley, D.; Elias, J.; Foster, G.W.; Kephart, R.; Kephart, R.; Kim, C.; Park, H.; Pla-Dalmau, A.; Rivetta, C.; Tkaczyk, S.; Wagner, R. (Fermi National Accelerator Lab., Batavia, IL (United States)); Chung, M.; Goldberg, H.; Jeskik, R.; Margulies, S.; Mendez, H.; Solomon, J.; Vaca, F. (Univ. of Illinois, Chicago, IL (United States)); Kelley, C. (Massachusetts College of Pharmacy and Allied Health Sciences, Boston, MA (United States)); Baumbaugh, B.; Bishop, J.; Biswas, N.; Cason, N.; Jacques, J.; Kehoe, R.; Kelly, M.; Kenney, V.; LoSecco, J.; Ruchti, R.; Shephard, W.; Warchol, J.; Wayne, M.; Marchant, J.; Mountain, R.J. (Univ. of Notre Dame, IN (United States)); Davis, D.; Vandergriff, D. (O

    1993-08-01

    Trackers based on scintillating-fiber technology are being considered by the Solenoidal Detector Collaboration at SSC and the D[phi] collaboration at Fermilab. An important issue is the effect of the radiation existing in the detector cores on fiber properties. Most studies of radiation damage in scintillators have irradiated small bulk samples rather than fibers, and have used X-rays, [sup 60]Co gammas, or electron beams, often at accelerated rates. The authors have irradiated some 600 fibers in the Fermilab Tevatron C[phi] area, thereby obtaining a hadronic irradiation at realistic rates. Four-meter-long samples of ten Bicron polystyrene-based fiber types, maintained in air, dry nitrogen, argon, and vacuum atmospheres within stainless-steel tubes, were irradiated for seven weeks at various distances from the accelerator beam pipes. Maximum doses, measured by thermoluminescence detectors, were about 80 Krad. Fiber properties, particularly light yield and attenuation length, have been measured over a one-year period. A description of the work together with the results is presented. At the doses achieved, corresponding to a few years of actual fiber-tracking detector operation, little degradation is observed. In addition, recovery after several days' exposure to air has been noted. Properties of unirradiated samples kept in darkness show no changes after one year.

  19. Composite scintillators for detection of ionizing radiation

    Science.gov (United States)

    Dai, Sheng [Knoxville, TN; Stephan, Andrew Curtis [Knoxville, TN; Brown, Suree S [Knoxville, TN; Wallace, Steven A [Knoxville, TN; Rondinone, Adam J [Knoxville, TN

    2010-12-28

    Applicant's present invention is a composite scintillator having enhanced transparency for detecting ionizing radiation comprising a material having optical transparency wherein said material comprises nano-sized objects having a size in at least one dimension that is less than the wavelength of light emitted by the composite scintillator wherein the composite scintillator is designed to have selected properties suitable for a particular application.

  20. Photonic crystal scintillators and methods of manufacture

    Science.gov (United States)

    Torres, Ricardo D.; Sexton, Lindsay T.; Fuentes, Roderick E.; Cortes-Concepcion, Jose

    2015-08-11

    Photonic crystal scintillators and their methods of manufacture are provided. Exemplary methods of manufacture include using a highly-ordered porous anodic alumina membrane as a pattern transfer mask for either the etching of underlying material or for the deposition of additional material onto the surface of a scintillator. Exemplary detectors utilizing such photonic crystal scintillators are also provided.

  1. Thin Scintillating Polarized Targets for Spin Physics

    Science.gov (United States)

    van den Brandt, B.; Bunyatova, E. I.; Hautle, P.; Konter, J. A.

    2003-07-01

    At PSI polarized scintillating targets are available since 1996. Proton polarizations of more than 80%, and deuteron polarizations of 25% in polystyrene-based scintillators can be reached under optimum conditions in a vertical dilution refrigerator with optical access, suited for nuclear and particle physics experiments. New preparation procedures allow to provide very thin polarizable scintillating targets and widen the spectrum of conceivable experiments.

  2. Large scintillation cells for high sensitivity radon concentration measurements

    Science.gov (United States)

    Cohen, B. L.; El Ganayni, M.; Cohen, E. S.

    1983-07-01

    Methods for improving the sensitivity of scintillation cells for radon concentration measurements were studied with emphasis on improving light collection efficiency. This allows the length and hence the volume of the cell to be increased. Variables studied were choice of scintillator material, its method of application and thickness, length of cell, cell material, type and configuration of reflectors, choice of photomultipliers, and factors affecting background. Response from various areas of the cell surface was studied with an alpha source and with radon filling. Coating the window with phosphor was found to be counter-productive. The optimum results obtained were with the inside of the cell (other than the window) covered with a thick layer of ZnS(Ag), or with a thick layer of reflective material coated with a thin layer of phosphor. With it, a 10 cm diameter plexiglass cell can be extended to at least 50 cm length without difficulty from insufficient pulse height.

  3. Plastic scintillators with high loading of one or more metal carboxylates

    Science.gov (United States)

    Cherepy, Nerine; Sanner, Robert Dean

    2016-01-12

    In one embodiment, a material includes at least one metal compound incorporated into a polymeric matrix, where the metal compound includes a metal and one or more carboxylate ligands, where at least one of the one or more carboxylate ligands includes a tertiary butyl group, and where the material is optically transparent. In another embodiment, a method includes: processing pulse traces corresponding to light pulses from a scintillator material; and outputting a result of the processing, where the scintillator material comprises at least one metal compound incorporated into a polymeric matrix, the at least one metal compound including a metal and one or more carboxylate ligands, where at least one of the one or more carboxylate ligands has a tertiary butyl group, and where the scintillator material is optically transparent and has an energy resolution at 662 keV of less than about 20%.

  4. Characteristics of a thermal neutrons scintillation detector with the [ZnS(Ag)+$^6$LiF] at different conditions of measurements

    OpenAIRE

    Alekseenko, V. V.; Barabanov, I. R.; Etezov, R. A.; Gavrilyuk, Yu. M.; Gangapshev, A. M.; Gezhaev, A. M.; Kazalov, V. V.; Khokonov, A. Kh.; Kuzminov, V. V.; Panasenko, S. I.; Ratkevich, S. S.

    2015-01-01

    A construction of a thermal neutron testing detector with a thin [ZnS(Ag)+$^6$LiF] scintillator is described. Results of an investigation of sources of the detector pulse origin and the pulse features in a ground and underground conditions are presented. Measurements of the scintillator own background, registration efficiency and a neutron flux at different objects of the BNO INR RAS were performed. The results are compared with the ones measured by the $^3$He proportional counter.

  5. Pointing Calorimeter for Measuring K0L -> π 0ν barν Decay and Development of Extruded Scintillator

    Science.gov (United States)

    Bryman, Douglas; Ives, Joss; Amaudruz, Pierre; Davydov, Yuri; Henderson, Robert; Khan, Naimat; Lim, Chapman; Miller, Andrew; Numao, Toshio; Sher, Aleksey; Wong, David

    2006-04-01

    A sampling calorimeter based on plastic scintillator-drift chamber sandwiches was designed to measure the angles, positions, energies, and times of medium energy photons with good resolution and high efficiency. Techniques for manufacturing extruded plastic scintillators with multiple holes for wave length shifting fibers have been developed. Light output comparable to commercial scintillator and good dimensional tolerances have been achieved for 8 mm × 70 mm × 2.5 m planks which can be glued into large sheets.

  6. GPS scintillations and total electron content climatology in the southern low, middle and high latitude regions

    Directory of Open Access Journals (Sweden)

    Luca Spogli

    2013-06-01

    Full Text Available In recent years, several groups have installed high-frequency sampling receivers in the southern middle and high latitude regions, to monitor ionospheric scintillations and the total electron content (TEC changes. Taking advantage of the archive of continuous and systematic observations of the ionosphere on L-band by means of signals from the Global Positioning System (GPS, we present the first attempt at ionospheric scintillation and TEC mapping from Latin America to Antarctica. The climatology of the area considered is derived through Ground-Based Scintillation Climatology, a method that can identify ionospheric sectors in which scintillations are more likely to occur. This study also introduces the novel ionospheric scintillation 'hot-spot' analysis. This analysis first identifies the crucial areas of the ionosphere in terms of enhanced probability of scintillation occurrence, and then it studies the seasonal variation of the main scintillation and TEC-related parameters. The results produced by this sophisticated analysis give significant indications of the spatial/ temporal recurrences of plasma irregularities, which contributes to the extending of current knowledge of the mechanisms that cause scintillations, and consequently to the development of efficient tools to forecast space-weather-related ionospheric events.

  7. Scintillating Lustre Induced by Radial Fins

    Directory of Open Access Journals (Sweden)

    Kohske Takahashi

    2012-02-01

    Full Text Available Radial lines of Ehrenstein patterns induce illusory scintillating lustre in gray disks inserted into the central gaps (scintillating-lustre effect. We report a novel variant of this illusion by replacing the radial lines with white and black radial fins. Both white and gray disks inserted into the central gaps were perceived as scintillating, if the ratio of the black/white fin width were balanced (ie, close to 1.0. Thus, the grayness of the central disk is not a prerequisite for the scintillation. However, the scintillation was drastically reduced when the ratio was imbalanced. Furthermore, the optimal ratio depended on the color of the center disks.

  8. A study of the scintillation induced by alpha particles and gamma rays in liquid xenon in an electric field

    OpenAIRE

    Dawson, JV; Howard, AS; Akimov, D.; Araujo, H.; Bewick, A.; Davidge, DCR; Jones, WG; M; Joshi; Lebedenko, VN; Liubarsky, I.; Quenby, JJ; Rochester, G.; Shaul, D; Sumner, TJ; Walker, RJ

    2005-01-01

    Scintillation produced in liquid xenon by alpha particles and gamma rays has been studied as a function of applied electric field. For back scattered gamma rays with energy of about 200 keV, the number of scintillation photons was found to decrease by 64+/-2% with increasing field strength. Consequently, the pulse shape discrimination power between alpha particles and gamma rays is found to reduce with increasing field, but remaining non-zero at higher fields.

  9. SNO+ Scintillator Purification and Assay

    Science.gov (United States)

    Ford, R.; Chen, M.; Chkvorets, O.; Hallman, D.; Vázquez-Jáuregui, E.

    2011-04-01

    We describe the R&D on the scintillator purification and assay methods and technology for the SNO+ neutrino and double-beta decay experiment. The SNO+ experiment is a replacement of the SNO heavy water with liquid scintillator comprised of 2 g/L PPO in linear alkylbenzene (LAB). During filling the LAB will be transported underground by rail car and purified by multi-stage distillation and steam stripping at a flow rate of 19 LPM. While the detector is operational the scintillator can be recirculated at 150 LPM (full detector volume in 4 days) to provide repurification as necessary by either water extraction (for Ra, K, Bi) or by functional metal scavenger columns (for Pb, Ra, Bi, Ac, Th) followed by steam stripping to remove noble gases and oxygen (Rn, O2, Kr, Ar). The metal scavenger columns also provide a method for scintillator assay for ex-situ measurement of the U and Th chain radioactivity. We have developed "natural" radioactive spikes of Pb and Ra in LAB and use these for purification testing. Lastly, we present the planned operating modes and purification strategies and the plant specifications and design.

  10. Complex Dynamics of Equatorial Scintillation

    Science.gov (United States)

    Piersanti, Mirko; Materassi, Massimo; Forte, Biagio; Cicone, Antonio

    2017-04-01

    Radio power scintillation, namely highly irregular fluctuations of the power of trans-ionospheric GNSS signals, is the effect of ionospheric plasma turbulence. The scintillation patterns on radio signals crossing the medium inherit the ionospheric turbulence characteristics of inter-scale coupling, local randomness and large time variability. On this basis, the remote sensing of local features of the turbulent plasma is feasible by studying radio scintillation induced by the ionosphere. The distinctive character of intermittent turbulent media depends on the fluctuations on the space- and time-scale statistical properties of the medium. Hence, assessing how the signal fluctuation properties vary under different Helio-Geophysical conditions will help to understand the corresponding dynamics of the turbulent medium crossed by the signal. Data analysis tools, provided by complex system science, appear to be best fitting to study the response of a turbulent medium, as the Earth's equatorial ionosphere, to the non-linear forcing exerted by the Solar Wind (SW). In particular we used the Adaptive Local Iterative Filtering, the Wavelet analysis and the Information theory data analysis tool. We have analysed the radio scintillation and ionospheric fluctuation data at low latitude focusing on the time and space multi-scale variability and on the causal relationship between forcing factors from the SW environment and the ionospheric response.

  11. New advanced in alpha spectrometry by liquid scintillation methods

    Energy Technology Data Exchange (ETDEWEB)

    McDowell, W.J.; Case, G.N.

    1979-01-01

    Although the ability to count alpha particles by liquid scintillation methods has been long recognized, limited use has been made of the method because of problems of high background and alpha energy identification. In recent years some new developments in methods of introducing the alpha-emitting nuclide to the scintillator, in detector construction, and in electronics for processing the energy analog and time analog signals from the detector have allowed significant alleviation of the problems of alpha spectrometry by liquid scintillation. Energy resolutions of 200 to 300 keV full peak width at half maximum and background counts of < 0.01 counts/min with rejection with rejection of > 99% of all beta plus gamma interference is now possible. Alpha liquid scintillation spectrometry is now suitable for a wide range of applications, from the accurate quantitative determination of relatively large amounts of known nuclides in laboratory-generated samples to the detection and identification of very small, subpicocurie amounts of alpha emitters in environmental-type samples. Suitable nuclide separation procedures, sample preparation methods, and instrument configurations are available for a variety of analyses.

  12. Characterization of polysiloxane organic scintillators produced with different phenyl containing blends

    Energy Technology Data Exchange (ETDEWEB)

    Quaranta, A., E-mail: quaranta@ing.unitn.it [University of Trento, Department of Materials Engineering and Industrial Technologies, Via Mesiano 77, 38123 Povo, Trento (Italy); INFN - Laboratori Nazionali di Legnaro, Viale dell' Universita 2, 35020 Legnaro, Padova (Italy); Carturan, S. [INFN - Laboratori Nazionali di Legnaro, Viale dell' Universita 2, 35020 Legnaro, Padova (Italy); University of Padova, Department of Physics and Astronomy, Via Marzolo 8, 35100 Padova (Italy); Cinausero, M. [INFN - Laboratori Nazionali di Legnaro, Viale dell' Universita 2, 35020 Legnaro, Padova (Italy); Marchi, T. [INFN - Laboratori Nazionali di Legnaro, Viale dell' Universita 2, 35020 Legnaro, Padova (Italy); University of Padova, Department of Physics and Astronomy, Via Marzolo 8, 35100 Padova (Italy); Gramegna, F. [INFN - Laboratori Nazionali di Legnaro, Viale dell' Universita 2, 35020 Legnaro, Padova (Italy); Degerlier, M. [University of Nevsehir, Science and Art Faculty, Physics Department, Nevsehir (Turkey); Cemmi, A.; Baccaro, S. [ENEA, Unita Tecnica Tecnologie dei Materiali (UTTMAT), Via Anguillarese 301, 00123 Roma (Italy)

    2013-01-15

    Aiming at the fabrication of elastomeric organic scintillators for the detection of ionizing particles and neutrons with good light yield, mechanical robustness and radiation resistance, several samples of polysiloxane added with suitable amounts of fluorophores, such as 2,5-diphenyloxazole (PPO) and Lumogen Violet (LV), have been herein produced starting from either the copolymer polydiphenyldimethylsiloxane with 22 mol% of diphenyl groups or from blends of this precursor with different amounts of the homopolymer polymethylphenylsiloxane, thereby ultimately obtaining, after room temperature vulcanization (RTV), siloxane scintillators bearing different amounts of phenyl side groups. The scintillators have been characterized as for optical properties by excitation and fluorescence spectroscopy, while their performances as radiation detectors have been derived from light yield measurements upon irradiation with {alpha} particles. Ion beam-induced luminescence (IBIL) has been also applied using a proton beam of 2 MeV to compare the behavior of the different compositions by observing the in-situ degradation rate of the emitting species under ion irradiation. The samples and commercial scintillators (EJ-212 and EJ-200) used as a standard underwent heavy irradiation with {gamma}-rays from a {sup 60}Co source at different doses, up to 54 kGy. Then, the ex-situ light yield toward {alpha} particles for each scintillator was collected twice again: immediately after the irradiation stage and after one month, in order to characterize the stability and the radiation hardness of scintillators produced with the different blends. -- Highlights: Black-Right-Pointing-Pointer Scintillators based on phenyl containing polysiloxane blends were synthesized. Black-Right-Pointing-Pointer Scintillation yield stability and radiation hardness was analyzed. Black-Right-Pointing-Pointer Scintillators with high scintillation yield and very stable even after 54 kGy of irradiation doese were

  13. Determination of 226Ra and 224Ra in drinking waters by liquid scintillation counting.

    Science.gov (United States)

    Manjón, G; Vioque, I; Moreno, H; García-Tenorio, R; García-León, M

    1997-04-01

    A method for the determination of Ra-isotopes in water samples has been developed. Ra is coprecipitated with Ba as sulphate. The precipitate is then dissolved with EDTA and counted with a liquid scintillation system after mixing with a scintillation cocktail. The study of the temporal evolution of the separated activity gives the isotopic composition of the sample, i.e. the 224Ra and 226Ra contribution to the total activity. The method has been applied to some Spanish drinking waters.

  14. Capture-gated Spectroscopic Measurements of Monoenergetic Neutrons with a Composite Scintillation Detector

    Energy Technology Data Exchange (ETDEWEB)

    Nattress, Jason; Mayer, M.; Foster, A.; Barhoumi Meddeb, A.; Trivelpiece, C.; Ounaies, Z.; Jovanovic, I.

    2016-04-01

    Abstract—We report on the measurements of Monoenergetic neutrons from DD and DT fusion reactions by use of the capture gating method in a heterogeneous plastic-glass composite scintillation detector. The cylindrical detector is 5.08 cm in diameter and 5.05 cm in height and was fabricated using 1-mm diameter Li-doped glass rods(GS20) and scintillating polyvinyl toluene (EJ-290). Different scintillation decay constants are used to identify energy depositions in two materials constituting the composite scintillator. Geant4 simulations of the neutron thermalization and capture process were conducted, finding a mean capture time of approximately 2.6 ms for both DD and DT neutrons. A capture gating time acceptance window based on simulation results was used to identify the neutron thermalization pulses. The total scintillation light yield produced in neutron thermalization was measured and found to show consistency on event-by-event basis despite the variety of neutron thermalization histories prior to capture. The ratio of light yields from thermalization of 14.1 MeV and 2.45 MeV neutrons in the EJ-290 scintillator was determined to be 14.6, and the light output from 2.45 MeV neutrons was also correlated to its electron equivalent, obtaining a value of 0.58*0.05 MeVee.

  15. Energy-selective neutron transmission imaging at a pulsed source

    Science.gov (United States)

    Kockelmann, W.; Frei, G.; Lehmann, E. H.; Vontobel, P.; Santisteban, J. R.

    2007-08-01

    Energy-selective neutron radiography experiments were carried out at the ISIS pulsed spallation source. This neutron transmission imaging technique combines the hardware used for conventional neutron radiography with the Bragg edge transmission features of time-of-flight methods. The main component of the energy-selective radiography set-up was a gated image-intensified CCD camera that viewed a neutron sensitive scintillation screen via a mirror. Energy resolution was obtained via synchronization of the light-intensifier with the pulse structure of the neutron source. It is demonstrated that contrast enhancement of materials can be straightforwardly achieved, and that microstructural features in metal samples can be directly visualized with high spatial resolution by taking advantage of the Bragg edges in the energy dependent neutron cross sections.

  16. Isotope dilution mass spectrometry for quantitative elemental analysis of powdered samples by radiofrequency pulsed glow discharge time of flight mass spectrometry.

    Science.gov (United States)

    Alvarez-Toral, Aitor; Fernandez, Beatriz; Malherbe, Julien; Claverie, Fanny; Molloy, John L; Pereiro, Rosario; Sanz-Medel, Alfredo

    2013-10-15

    In recent years particular effort is being devoted to the development of pulsed glow discharges (PGDs) for mass spectrometry because this powering operation mode could offer important ionization analytical advantages. However, the capabilities of radiofrequency (RF) PGD coupled to a time of flight mass spectrometry (ToFMS) for accurate isotope ratio measurements have not been demonstrated yet. This work is focused on investigating different time positions along the pulse profile for the accurate measurement of isotope ratios. As a result, a method has been developed for the direct and simultaneous multielement determination of trace elements in powdered geological samples by RF-PGD-ToFMS in combination with isotope dilution mass spectrometry (IDMS) as an absolute measurement method directly traceable to the International System of Units. Optimized operating conditions were 70 W of applied radiofrequency power, 250 Pa of pressure, 2 ms of pulse width and 4 ms of pulse period, being argon the plasma gas used. To homogeneously distribute the added isotopically-enriched standards, lithium borate fusion of powdered solid samples was used as sample preparation approach. In this way, Cu, Zn, Ba and Pb were successfully determined by RF-PGD-ToF(IDMS) in two NIST Standard Reference Materials (SRM 2586 and SRM 2780) representing two different matrices of geological interest (soil and rock samples). Cu, Zn, Ba and Pb concentrations determined by RF-PGD-ToF(IDMS) were well in agreement with the certified values at 95% confidence interval and precisions below 12% relative standard deviation were observed for three independent analyses. Elemental concentrations investigated were in the range of 81-5770 mg/kg, demonstrating the potential of RF-PGD-ToF(IDMS) for a sensitive, accurate and robust analysis of powdered samples. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. BGO scintillating bolometer: Its application in dark matter experiments

    Energy Technology Data Exchange (ETDEWEB)

    Coron, N; Gironnet, J; Leblanc, J; Marcillac, P de; Martinez, M; Redon, T; Torres, L [Institut d' Astrophysique Spatiale (IAS), Batiment 121, Universite Paris-Sud 11 and CNRS (UMR 8617), 91405 Orsay Cedex (France); Cuesta, C; Garcia, E; Ortigoza, Y; Ortiz de Solorzano, A; Pobes, C; Puimedon, J; Rolon, T; Salinas, A; Sarsa, M L; Villar, J A, E-mail: ortigoza@unizar.e [Laboratorio de Fisica Nuclear y Astroparticulas, Universidad de Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza (Spain)

    2010-01-01

    In the frame of the ROSEBUD (Rare Objects SEarch with Bolometers UndergrounD) collaboration, we have tested at surface level (Orsay) and underground (Canfranc) properties at low temperature of a BGO scintillating bolometer developed as a prototype for dark matter searches. The response of the detector to different particles, both in heat and light, using internal and external radioactive sources is reported. We have focused on its sensitivity as dark matter target and as {gamma}-ray spectrometer to monitor external background. An algorithm implemented to analyze high energy events, which produce saturated pulses in low energy experiments (like dark matter searches), is also discussed.

  18. Organic Scintillator Detector Response Simulations with DRiFT

    Energy Technology Data Exchange (ETDEWEB)

    Andrews, Madison Theresa [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Bates, Cameron Russell [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Mckigney, Edward Allen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Rising, Michael Evan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Pinilla, Maria Isabel [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Solomon, Jr., Clell Jeffrey [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Sood, Avneet [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-12-19

    Accurate detector modeling is a requirement to design systems in many non-proliferation scenarios; by determining a Detector’s Response Function (DRF) to incident radiation, it is possible characterize measurements of unknown sources. DRiFT is intended to post-process MCNP® output and create realistic detector spectra. Capabilities currently under development include the simulation of semiconductor, gas, and (as is discussed in this work) scintillator detector physics. Energy spectra and pulse shape discrimination (PSD) trends for incident photon and neutron radiation have been reproduced by DRiFT.

  19. The readout electronics for Plastic Scintillator Detector of DAMPE

    Science.gov (United States)

    Kong, Jie; Yang, Haibo; Zhao, Hongyun; Su, Hong; Sun, Zhiyu; Yu, Yuhong; JingZhe, Zhang; Wang, XiaoHui; Liu, Jie; Xiao, Guoqing; Ma, Xinwen

    2016-07-01

    The Dark Matter Particle Explorer (DAMPE) satellite, which launched in December 2015, is designed to find the evidence of the existence of dark matter particles in the universe via the detection of the high-energy electrons and gamma-ray particles produced possibly by the annihilation of dark matter particles. Plastic Scintillator Detector (PSD) is one of major part of the satellite payload, which is comprised of a crossed pair of layers with 41 plastic scintillator-strips, each read out from both ends by the same Hamamatsu R4443MOD2 photo-multiplier tubes (PMTs). In order to extend linear dynamic range of detector, PMTs read out each plastic scintillator-strip separately with two dynode pickoffs. Therefore, the readout electronics system comprises of four Front-end boards to receive the pulses from 328 PMTs and implement charge measurement, which is based on the Application Specific Integrated Circuit (ASIC) chip VA160, 16 bits ADC and FPGA. The electronics of the detector has been designed following stringent requirements on mechanical and thermal stability, power consumption, radiation hardness and double redundancy. Various experiments are designed and implemented to check the performance of the electronics, some excellent results has been achieved.According to experimental results analysis, it is proved that the readout electronics works well.

  20. Effects of lidar pulse density and sample size on a model-assisted approach to estimate forest inventory variables

    Science.gov (United States)

    Jacob Strunk; Hailemariam Temesgen; Hans-Erik Andersen; James P. Flewelling; Lisa Madsen

    2012-01-01

    Using lidar in an area-based model-assisted approach to forest inventory has the potential to increase estimation precision for some forest inventory variables. This study documents the bias and precision of a model-assisted (regression estimation) approach to forest inventory with lidar-derived auxiliary variables relative to lidar pulse density and the number of...

  1. MILLISECOND PULSAR SCINTILLATION STUDIES WITH LOFAR: INITIAL RESULTS

    Energy Technology Data Exchange (ETDEWEB)

    Archibald, Anne M.; Kondratiev, Vladislav I.; Hessels, Jason W. T.; Stinebring, Daniel R., E-mail: archibald@astron.nl, E-mail: kondratiev@astron.nl, E-mail: hessels@astron.nl, E-mail: dan.stinebring@oberlin.edu [ASTRON, The Netherlands Institute for Radio Astronomy, Postbus 2, 7990-AA Dwingeloo (Netherlands)

    2014-08-01

    High-precision timing of millisecond pulsars (MSPs) over years to decades is a promising technique for direct detection of gravitational waves at nanohertz frequencies. Time-variable, multi-path scattering in the interstellar medium is a significant source of noise for this detector, particularly as timing precision approaches 10 ns or better for MSPs in the pulsar timing array. For many MSPs, the scattering delay above 1 GHz is at the limit of detectability; therefore, we study it at lower frequencies. Using the LOw-Frequency ARray (LOFAR) radio telescope, we have analyzed short (5-20 minutes) observations of 3 MSPs in order to estimate the scattering delay at 110-190 MHz, where the number of scintles is large and, hence, the statistical uncertainty in the scattering delay is small. We used cyclic spectroscopy, still relatively novel in radio astronomy, on baseband-sampled data to achieve unprecedented frequency resolution while retaining adequate pulse-phase resolution. We detected scintillation structure in the spectra of the MSPs PSR B1257+12, PSR J1810+1744, and PSR J2317+1439 with diffractive bandwidths of 6 ± 3, 2.0 ± 0.3, and ∼7 kHz, respectively, where the estimate for PSR J2317+1439 is reliable to about a factor of two. For the brightest of the three pulsars, PSR J1810+1744, we found that the diffractive bandwidth has a power-law behavior Δν{sub d}∝ν{sup α}, where ν is the observing frequency and α = 4.5 ± 0.5, consistent with a Kolmogorov inhomogeneity spectrum. We conclude that this technique holds promise for monitoring the scattering delay of MSPs with LOFAR and other high-sensitivity, low-frequency arrays like the low-frequency component of the Square Kilometre Array.

  2. A helical scintillating fiber hodoscope

    Energy Technology Data Exchange (ETDEWEB)

    Altmeier, M.; Bauer, F.; Bisplinghoff, J.; Bissel, T.; Bollmann, R.; Busch, M.; Buesser, K.; Colberg, T.; Demiroers, L.; Diehl, O.; Dohrmann, F.; Engelhardt, H.P.; Eversheim, P.D.; Felden, O.; Gebel, R.; Glende, M.; Greiff, J.; Gross, A.; Gross-Hardt, R.; Hinterberger, F.; Jahn, R.; Jeske, M.; Jonas, E.; Krause, H.; Lahr, U.; Langkau, R.; Lindemann, T.; Lindlein, J.; Maier, R.; Maschuw, R.; Mayer-Kuckuck, T.; Meinerzhagen, A.; Naehle, O.; Pfuff, M.; Prasuhn, D.; Rohdjess, H.; Rosendaal, D.; Rossen, P. von; Sanz, B.; Schirm, N.; Schulz-Rojahn, M.; Schwarz, V.; Scobel, W.; Thomas, S.; Trelle, H.J.; Weise, E.; Wellinghausen, A.; Wiedmann, W.; Woller, K.; Ziegler, R

    1999-07-21

    A novel scintillating fiber hodoscope in helically cylindric geometry has been developed for detection of low multiplicity events of fast protons and other light charged particles in the internal target experiment EDDA at the Cooler Synchrotron COSY. The hodoscope consists of 640 scintillating fibers (2.5 mm diameter), arranged in four layers surrounding the COSY beam pipe. The fibers are helically wound in opposing directions and read out individually using 16-channel photomultipliers connected to a modified commercial encoding system. The detector covers an angular range of 9 deg. {<=}{theta}{<=}72 deg. and 0 deg. {<=}phi (cursive,open) Greek{<=}360 deg. in the lab frame. The detector length is 590 mm, the inner diameter 161 mm. Geometry and granularity of the hodoscope afford a position resolution of about 1.3 mm. The detector design took into consideration a maximum of reliability and a minimum of maintenance. An LED array may be used for monitoring purposes. (author)

  3. A helical scintillating fiber hodoscope

    CERN Document Server

    Altmeier, M; Bisplinghoff, J; Bissel, T; Bollmann, R; Busch, M; Büsser, K; Colberg, T; Demiroers, L; Diehl, O; Dohrmann, F; Engelhardt, H P; Eversheim, P D; Felden, O; Gebel, R; Glende, M; Greiff, J; Gross, A; Gross-Hardt, R; Hinterberger, F; Jahn, R; Jeske, M; Jonas, E; Krause, H; Lahr, U; Langkau, R; Lindemann, T; Lindlein, J; Maier, R; Maschuw, R; Mayer-Kuckuck, T; Meinerzhagen, A; Naehle, O; Pfuff, M; Prasuhn, D; Rohdjess, H; Rosendaal, D; Von Rossen, P; Sanz, B; Schirm, N; Schulz-Rojahn, M; Schwarz, V; Scobel, W; Thomas, S; Trelle, H J; Weise, E; Wellinghausen, A; Wiedmann, W; Woller, K; Ziegler, R

    1999-01-01

    A novel scintillating fiber hodoscope in helically cylindric geometry has been developed for detection of low multiplicity events of fast protons and other light charged particles in the internal target experiment EDDA at the Cooler Synchrotron COSY. The hodoscope consists of 640 scintillating fibers (2.5 mm diameter), arranged in four layers surrounding the COSY beam pipe. The fibers are helically wound in opposing directions and read out individually using 16-channel photomultipliers connected to a modified commercial encoding system. The detector covers an angular range of 9 deg. <= THETA<=72 deg. and 0 deg. <=phi (cursive,open) Greek<=360 deg. in the lab frame. The detector length is 590 mm, the inner diameter 161 mm. Geometry and granularity of the hodoscope afford a position resolution of about 1.3 mm. The detector design took into consideration a maximum of reliability and a minimum of maintenance. An LED array may be used for monitoring purposes. (author)

  4. A helical scintillating fiber hodoscope

    Science.gov (United States)

    Altmeier, M.; Bauer, F.; Bisplinghoff, J.; Bissel, T.; Bollmann, R.; Busch, M.; Büßer, K.; Colberg, T.; Demirörs, L.; Diehl, O.; Dohrmann, F.; Engelhardt, H. P.; Eversheim, P. D.; Felden, O.; Gebel, R.; Glende, M.; Greiff, J.; Groß, A.; Groß-Hardt, R.; Hinterberger, F.; Jahn, R.; Jeske, M.; Jonas, E.; Krause, H.; Lahr, U.; Langkau, R.; Lindemann, T.; Lindlein, J.; Maier, R.; Maschuw, R.; Mayer-Kuckuck, T.; Meinerzhagen, A.; Nähle, O.; Pfuff, M.; Prasuhn, D.; Rohdjeß, H.; Rosendaal, D.; von Rossen, P.; Sanz, B.; Schirm, N.; Schulz-Rojahn, M.; Schwarz, V.; Scobel, W.; Thomas, S.; Trelle, H. J.; Weise, E.; Wellinghausen, A.; Wiedmann, W.; Woller, K.; Ziegler, R.; EDDA Collaboration

    1999-07-01

    A novel scintillating fiber hodoscope in helically cylindric geometry has been developed for detection of low multiplicity events of fast protons and other light charged particles in the internal target experiment EDDA at the Cooler Synchrotron COSY. The hodoscope consists of 640 scintillating fibers (2.5 mm diameter), arranged in four layers surrounding the COSY beam pipe. The fibers are helically wound in opposing directions and read out individually using 16-channel photomultipliers connected to a modified commercial encoding system. The detector covers an angular range of 9°⩽ Θ⩽72° and 0°⩽ ϕ⩽360° in the lab frame. The detector length is 590 mm, the inner diameter 161 mm. Geometry and granularity of the hodoscope afford a position resolution of about 1.3 mm. The detector design took into consideration a maximum of reliability and a minimum of maintenance. An LED array may be used for monitoring purposes.

  5. Multivariate optimization of differential pulse polarographic–catalytic hydrogen wave technique for the determination of nickel(II) in real samples

    OpenAIRE

    Kanchi, S.; Sabela, M.I.; Singh, P.; Bisetty, K.

    2013-01-01

    Multivariate optimized experimental conditions were established for the determination of nickel(II) in 92 grape samples after complexation with ammonium piperidine dithiocarbamate (APDC) and ammonium morpholine dithiocarbamate (AMDC). Differential pulse polarographic (DPP) studies of the wave characteristics indicated that it is of the catalytic hydrogen wave (CHW) type sensitive to pH, concentration and scan rates. A single, sharp peak obtained at −1.22 V allowed for the trace determination ...

  6. A Multi-Constellation Multi-Frequency GNSS Software Receiver Design for Ionosphere Scintillation Studies

    OpenAIRE

    Peng, Senlin

    2012-01-01

    Ionospheric scintillations can cause significant amplitude and/or phase fluctuations of GNSS signals. This work presents analysis results of scintillation effects on the new GPS L5 signal based on data collected using a real-time scintillation monitoring and data collection system at HAARP, Alaska. The data collection setup includes a custom narrow band front end that collects GPS L1, L2 IF samples and two reconfigurable USRP2 based RF front ends to collect wideband GPS L5 and GLONASS L1 and ...

  7. Study of polystyrene scintillators-WLS fiber elements and scintillating tile-WLS prototypes for New CHOD detector of CERN NA-62 experiment

    CERN Document Server

    Semenov, Vitaliy; Gorin, Aleksandr; Khudyakov, Aleksey; Rykalin, Vladimir; Yushchenko, Oleg

    2016-01-01

    We measured the light output and the time resolution of few sets comprised of polystyrene scintillator and wavelength shifting (WLS) fibers as readout. The samples of different thickness (7-30 mm) have been made in the shape of bricks and plates with the areas of 25×80, 108×134 and 108×268 of mm2. In addition to samples of “ordinary” scintillator with additions of 2% p- Terphenyl + 0.05% POPOP, the rapid ultraviolet scintillator with single 2% additive PBD was tested. For the light collection WLS-fibers BCF92, Y11 and scintillation fiber SCSF-78M as reemitting were checked. The fibers were glued into the grooves on the front surface of scintillators. As the photo detectors silicon photomultipliers (SiPM) produced by CPTA (Russia) and SensL (Ireland) were used. It is shown that the dependence of light output on the thickness of scintillator is nonlinear and close to the square root function, which is also confirmed by the calculations carried out by Monte Carlo. The measured value of a light output make...

  8. Buried plastic scintillator muon telescope

    Science.gov (United States)

    Sanchez, F.; Medina-Tanco, G.A.; D'Olivo, J.C.; Paic, G.; Patino Salazar, M.E.; Nahmad-Achar, E.; Valdes Galicia, J.F.; Sandoval, A.; Alfaro Molina, R.; Salazar Ibarguen, H.; Diozcora Vargas Trevino, M.A.; Vergara Limon, S.; Villasenor, L.M.

    Muon telescopes can have several applications, ranging from astrophysical to solar-terrestrial interaction studies, and fundamental particle physics. We show the design parameters, characterization and end-to-end simulations of a detector composed by a set of three parallel dual-layer scintillator planes, buried at fix depths ranging from 0.30 m to 3 m. Each layer is 4 m2 and is composed by 50 rectangular pixels of 4cm x 2 m, oriented at a 90 deg angle with respect to its companion layer. The scintillators are MINOS extruded polystyrene strips with two Bicron wavelength shifting fibers mounted on machined grooves. Scintillation light is collected by multi-anode PMTs of 64 pixels, accommodating two fibers per pixel. The front-end electronics has a time resolution of 7.5 nsec. Any strip signal above threshold opens a GPS-tagged 2 micro-seconds data collection window. All data, including signal and background, are saved to hard disk. Separation of extensive air shower signals from secondary cosmic-ray background muons and electrons is done offline using the GPS-tagged threefold coincidence signal from surface water cerenkov detectors located nearby in a triangular array. Cosmic-ray showers above 6 PeV are selected. The data acquisition system is designed to keep both, background and signals from extensive air showers for a detailed offline data.

  9. A Performance Comparison of Nine Selected Liquid Scintillation Cocktails

    Energy Technology Data Exchange (ETDEWEB)

    Verrezen, F.; Loots, H.; Hurtgen, Ch.

    2008-06-15

    In the selection of a suitable liquid scintillation (LSC) cocktail, the primary aspects taken into consideration are overall cocktail performance and specific laboratory needs. Overall performance of 9 selected, commercially available LSC cocktails was assessed by studying parameters of importance for the requirements of the Laboratory for Low Level Radioactivity Measurements of SCK-CEN: sample load capacity, sample compatibility, influence of sample load on counting efficiency, background count rate, figure of merit, quench resistance, sample stability and alpha/beta separation characteristics. The cocktails tested were EcoscintA, Insta Gel Plus, OptiPhase Hisafe3, OptiPhase Trisafe, Ready Gel, SafeScint 1:1, Ultima Gold, Ultima Gold LLT, and Ultima Gold XR. For the data acquisition a Packard TriCarb Model 1900CA and a Quantulus 1220 liquid scintillation counter is used. All samples were prepared in either 20 mL low potassium, borosilicate glass vials or 20 mL high density, polyethylene vials. The aim of this study was to determine a single cocktail that best suits all measurement requirements of the liquid scintillation laboratory at SCK-CEN for the determination of low levels of radioactivity in biological and environmental samples. As a conclusion, Optiphase HiSafe 3 was confirmed to be the optimal cocktail for the laboratory.

  10. Comparative study of n-gamma discrimination with liquid scintillation detectors of different size

    Energy Technology Data Exchange (ETDEWEB)

    Varela G, A.; Policroniades R, R.; Moreno B, E.; Murillo O, G. [Laboratorio del Acelerador Tandem, ININ, A.P. 18-1027, 11801 Mexico D.F. (Mexico); Chavez L, E.; Ortiz S, M.E.; Huerta H, A. [IFUNAM, A.P. 20-364, Mexico D.F. (Mexico)

    2004-07-01

    A study concerning the neutron-gamma (n- {gamma}) pulse shape discrimination (PSD) properties of a set of three cylindrical cells filled with NE-213 and BC501A liquid scintillators, is reported in this paper. The study is intended to choose a PSD technique in order to handle neutron detector arrays with large volume of scintillation liquid, which will be used in the measurement of the neutron decay spectra coming up from nuclear states far from stability for some neutron rich nuclei. (Author)

  11. Reduction of the ionization loss distribution width of several simultaneous relativistic particles traversing a scintillation counter

    CERN Document Server

    Aderholz, M; Matthewson, R

    1975-01-01

    A Poisson distribution of number of electrons at the input stages of a photomultiplier has been folded into a Landau-Symon distribution of ionization losses in a plastic scintillator and a distribution of the smallest value out of n detectors was derived analytically for m simultaneous particles. A group of four identical scintillation counters was constructed and the smallest of the four output pulses was used for selective triggering of the bubble chamber flash with the greater precision engendered by the considerably reduced distribution width. (22 refs).

  12. A Review of Ionospheric Scintillation Models.

    Science.gov (United States)

    Priyadarshi, S

    This is a general review of the existing climatological models of ionospheric radio scintillation for high and equatorial latitudes. Trans-ionospheric communication of radio waves from transmitter to user is affected by the ionosphere which is highly variable and dynamic in both time and space. Scintillation is the term given to irregular amplitude and phase fluctuations of the received signals and related to the electron density irregularities in the ionosphere. Key sources of ionospheric irregularities are plasma instabilities; every irregularities model is based on the theory of radio wave propagation in random media. It is important to understand scintillation phenomena and the approach of different theories. Therefore, we have briefly discussed the theories that are used to interpret ionospheric scintillation data. The global morphology of ionospheric scintillation is also discussed briefly. The most important (in our opinion) analytical and physical models of scintillation are reviewed here.

  13. Accelerated Aging Test for Plastic Scintillator Gamma Ray Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Kouzes, Richard T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2017-05-12

    Polyvinyl toluene (PVT) and polystyrene (PS), collectively referred to as “plastic scintillator,” are synthetic polymer materials used to detect gamma radiation, and are commonly used in instrumentation. Recent studies have revealed that plastic scintillator undergoes an environmentally related material degradation that adversely affects performance under certain conditions and histories. A significant decrease in gamma ray sensitivity has been seen in some detectors in systems as they age. The degradation of sensitivity of plastic scintillator over time is due to a variety of factors, and the term “aging” is used to encompass all factors. Some plastic scintillator samples show no aging effects (no significant change in sensitivity over more than 10 years), while others show severe aging (significant change in sensitivity in less than 5 years). Aging effects arise from weather (variations in heat and humidity), chemical exposure, mechanical stress, light exposure, and loss of volatile components. The damage produced by these various causes can be cumulative, causing observable damage to increase over time. Damage may be reversible up to some point, but becomes permanent under some conditions. It has been demonstrated that exposure of plastic scintillator in an environmental chamber to 30 days of high temperature and humidity (90% relative humidity and 55°C) followed by a single cycle to cold temperature (-30°C) will produce severe fogging in all PVT samples. This thermal cycle will be referred to as the “Accelerated Aging Test.” This document describes the procedure for performing this Accelerated Aging Test.

  14. First approach to radionuclide mixtures quantification by using plastic scintillators

    Energy Technology Data Exchange (ETDEWEB)

    Tarancon, A. [Departament de Quimica Analitica, Universitat de Barcelona, Diagonal 647, E-08028 Barcelona (Spain); Garcia, J.F. [Departament de Pintura, Universitat de Barcelona, Pau Gargallo 4, E-08028 Barcelona (Spain)]. E-mail: jfgarcia@ub.edu; Rauret, G. [Departament de Quimica Analitica, Universitat de Barcelona, Diagonal 647, E-08028 Barcelona (Spain)

    2007-05-08

    Recent studies have evaluated the capability of plastic scintillation (PS) as an alternative to liquid scintillation (LS) in radionuclide activity determination without mixed waste production. In order to complete the comparison, we now assess the extent to which PS can be used to quantify mixtures of radionuclides and the influence of the diameter of the plastic scintillation beads in detection efficiency. The results show that the detection efficiency decreases and the spectrum shrink to lower energies when the size of the plastic scintillation beads increases, and that the lower the energy of the beta particle, the greater the variation takes place. Similar behaviour has been observed for beta-gamma and alpha emitters. Two scenarios for the quantification of mixtures are considered, one including two radionuclides ({sup 14}C and {sup 60}Co) whose spectra do not overlap significantly, and the other including two radionuclides ({sup 137}Cs and {sup 90}Sr/{sup 90}Y), where the spectra of one the isotopes is totally overlapped by the other The calculation has been performed by using the conventional window selection procedure and a new approach in which the selected windows correspond to those with lower quantification errors. Relative errors obtained using the proposed approach (less than 10%) are lower than those of the conventional procedure, even when a radionuclide is completely overlapped, except for those samples with extreme activity ratios that were not included in the window optimization process.

  15. Multisector scintillation detector with fiber-optic light collection

    Science.gov (United States)

    Ampilogov, N. V.; Denisov, S. P.; Kokoulin, R. P.; Petrukhin, A. A.; Prokopenko, N. N.; Shulzhenko, I. A.; Unatlokov, I. B.; Yashin, I. I.

    2017-07-01

    A new type of scintillation detector for the use in high energy physics is described. The octagonal detector consists of eight triangular scintillator sectors with total area of 1 m2. Each sector represents two plates of 2 cm thick plastic scintillator. Seven 1 mm thick WLS fibers are laid evenly between the plates. The space between the fibers is filled with silicone compound to provide better light collection. Fiber ends from all eight sectors are gathered in the central part of the detector into a bunch and docked to the cathode of a FEU-115m photomultiplier. The read-out of the counter signals is carried out from 7th and 12th dynodes, providing a wide dynamic range up to about 10000 particles. The front-end electronics of the detector is based on the flash-ADC with a sampling frequency of 200 MHz. The features of detecting and recording systems of the multisector scintillation detector (MSD) and the results of its testing are discussed.

  16. An interhemispheric comparison of GPS phase scintillation with auroral emission observed at the South Pole and from the DMSP satellite

    Directory of Open Access Journals (Sweden)

    Paul Prikryl

    2013-06-01

    Full Text Available The global positioning system (GPS phase scintillation caused by high-latitude ionospheric irregularities during an intense high-speed stream (HSS of the solar wind from April 29 to May 5, 2011, was observed using arrays of GPS ionospheric scintillation and total electron content monitors in the Arctic and Antarctica. The one-minute phase-scintillation index derived from the data sampled at 50 Hz was complemented by a proxy index (delta phase rate obtained from 1-Hz GPS data. The scintillation occurrence coincided with the aurora borealis and aurora australis observed by an all-sky imager at the South Pole, and by special sensor ultraviolet scanning imagers on board satellites of the Defense Meteorological Satellites Program. The South Pole (SP station is approximately conjugate with two Canadian High Arctic Ionospheric Network stations on Baffin Island, Canada, which provided the opportunity to study magnetic conjugacy of scintillation with support of riometers and magnetometers. The GPS ionospheric pierce points were mapped at their actual or conjugate locations, along with the auroral emission over the South Pole, assuming an altitude of 120 km. As the aurora brightened and/or drifted across the field of view of the all-sky imager, sequences of scintillation events were observed that indicated conjugate auroras as a locator of simultaneous or delayed bipolar scintillation events. In spite of the greater scintillation intensity in the auroral oval, where phase scintillation sometimes exceeded 1 radian during the auroral break-up and substorms, the percentage occurrence of moderate scintillation was highest in the cusp. Interhemispheric comparisons of bipolar scintillation maps show that the scintillation occurrence is significantly higher in the southern cusp and polar cap.

  17. Holes: Ionospheric Scintillation, GPS and Imputation

    Science.gov (United States)

    2007-03-01

    by Klobuchar [Parkinson et al., 1996]. 2.3.2 Definition, Characteristics and Models. The situation for scintillation, sadly, is not so simple.Groves...and J. A. Klobuchar (2003), Ionospheric scintillation effects on single and dual frequency gps positioning, in Proceedings of ION GPS/GNSS 2003... Klobuchar (1996), Commercial ionospheric scintillation monitoring receiver development and test results, in Proceedings of the 52nd Annual Meeting of the

  18. Advances in Yield Calibration of Scintillators

    NARCIS (Netherlands)

    De Haas, J.T.M.; Dorenbos, P.

    2008-01-01

    By means of a photomultiplier tube, a Si-photodiode, and a Si-avalanche photodiode, the absolute scintillation yield of recently developed LaBr3:Ce, LaCl3:Ce, and (Lu Y)2SiO5:Ce scintillators and traditional Lu2SiO5:Ce, Bi4Ge3O12, NaI:Tl CsI:Tl, and CsI:Na scintillators were determined. These are

  19. Liquid Scintillation High Resolution Spectral Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Grau Carles, A.; Grau Malonda, A.

    2010-08-06

    The CIEMAT/NIST and the TDCR methods in liquid scintillation counting are based on the determination of the efficiency for total counting. This paper tries to expand these methods analysing the pulse-height spectrum of radionuclides. To reach this objective we have to generalize the equations used in the model and to analyse the influence of ionization and chemical quench in both spectra and counting efficiency. We present equations to study the influence of different photomultipliers response in systems with one, two or three photomultipliers. We study the effect of the electronic noise discriminator level in both spectra and counting efficiency. The described method permits one to study problems that up to now was not possible to approach, such as the high uncertainty in the standardization of pure beta-ray emitter with low energy when we apply the TDCR method, or the discrepancies in the standardization of some electron capture radionuclides, when the CIEMAT/NIST method is applied. (Author) 107 refs.

  20. Designing an optimally proportional inorganic scintillator

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Jai, E-mail: jai.singh@cdu.edu.au [School of Engineering and IT, B-Purple-12, Faculty of EHSE, Charles Darwin University, NT 0909 (Australia); Koblov, Alexander [School of Engineering and IT, B-Purple-12, Faculty of EHSE, Charles Darwin University, NT 0909 (Australia)

    2012-09-01

    The nonproportionality observed in the light yield of inorganic scintillators is studied theoretically as a function of the rates of bimolecular and Auger quenching processes occurring within the electron track initiated by a gamma- or X-ray photon incident on a scintillator. Assuming a cylindrical track, the influence of the track radius and concentration of excitations created within the track on the scintillator light yield is also studied. Analysing the calculated light yield a guideline for inventing an optimally proportional scintillator with optimal energy resolution is presented.

  1. Random wave fields and scintillated beams

    CSIR Research Space (South Africa)

    Roux, FS

    2009-01-01

    Full Text Available fields . Artificial vortex fields CSIR National Laser Centre – p.2/29 Scintillated optical beams When an optical beam propagates through a turbulent atmosphere, the index variations cause random phase modulations that lead to distortions of the optical... beam. CSIR National Laser Centre – p.3/29 Weak scintillation If the scintillation is weak the resulting phase function of the optical beam is still continuous. Such a weakly scintillated beam can be corrected by an adaptive optical system. CSIR National...

  2. A tunable general purpose Q-band resonator for CW and pulse EPR/ENDOR experiments with large sample access and optical excitation

    Science.gov (United States)

    Reijerse, Edward; Lendzian, Friedhelm; Isaacson, Roger; Lubitz, Wolfgang

    2012-01-01

    We describe a frequency tunable Q-band cavity (34 GHz) designed for CW and pulse Electron Paramagnetic Resonance (EPR) as well as Electron Nuclear Double Resonance (ENDOR) and Electron Electron Double Resonance (ELDOR) experiments. The TE 011 cylindrical resonator is machined either from brass or from graphite (which is subsequently gold plated), to improve the penetration of the 100 kHz field modulation signal. The (self-supporting) ENDOR coil consists of four 0.8 mm silver posts at 2.67 mm distance from the cavity center axis, penetrating through the plunger heads. It is very robust and immune to mechanical vibrations. The coil is electrically shielded to enable CW ENDOR experiments with high RF power (500 W). The top plunger of the cavity is movable and allows a frequency tuning of ±2 GHz. In our setup the standard operation frequency is 34.0 GHz. The microwaves are coupled into the resonator through an iris in the cylinder wall and matching is accomplished by a sliding short in the coupling waveguide. Optical excitation of the sample is enabled through slits in the cavity wall (transmission ˜60%). The resonator accepts 3 mm o.d. sample tubes. This leads to a favorable sensitivity especially for pulse EPR experiments of low concentration biological samples. The probehead dimensions are compatible with that of Bruker flexline Q-band resonators and it fits perfectly into an Oxford CF935 Helium flow cryostat (4-300 K). It is demonstrated that, due to the relatively large active sample volume (20-30 μl), the described resonator has superior concentration sensitivity as compared to commercial pulse Q-band resonators. The quality factor ( Q L) of the resonator can be varied between 2600 (critical coupling) and 1300 (over-coupling). The shortest achieved π/2-pulse durations are 20 ns using a 3 W microwave amplifier. ENDOR (RF) π-pulses of 20 μs ( 1H @ 51 MHz) were obtained for a 300 W amplifier and 7 μs using a 2500 W amplifier. Selected applications of the

  3. A large-scale low-background liquid scintillation detector: the counting test facility at Gran Sasso

    Science.gov (United States)

    Alimonti, G.; Arpesella, C.; Bacchiocchi, G.; Balata, M.; Bellini, G.; Benziger, J.; Bonetti, S.; Brigatti, A.; Cadonati, L.; Calaprice, F. P.; Cavaletti, R.; Cecchet, G.; Chen, M.; Darnton, N.; Debari, A.; Deutsch, M.; Elisei, F.; von Feilitzsch, F.; Galbiati, C.; Garagiola, A.; Gatti, F.; Giammarchi, M. G.; Giugni, D.; Goldbrunner, T.; Golubchikov, A.; Goretti, A.; Grabar, S.; Hagner, T.; Hartmann, F.; von Hentig, R.; Heusser, G.; Ianni, A.; Jochum, J.; Johnson, M.; Laubenstein, M.; Loeser, F.; Lombardi, P.; Magni, S.; Malvezzi, S.; Manno, I.; Manuzio, G.; Masetti, F.; Mazzucato, U.; Meroni, E.; Neff, M.; Nisi, S.; Nostro, A.; Oberauer, L.; Perotti, A.; Preda, A.; Raghavan, P.; Raghavan, R. S.; Ranucci, G.; Resconi, E.; Ruscitti, P.; Scardaoni, R.; Schoenert, S.; Smirnov, O.; Tartaglia, R.; Testera, G.; Ullucci, P.; Vogelaar, R. B.; Vitale, S.; Zaimidoroga, O.

    1998-02-01

    A 4.8 m3 unsegmented liquid scintillation detector at the underground Laboratori Nazionali del Gran Sasso has shown the feasibility of multi-ton low-background detectors operating to energies as low as 250 keV. Detector construction and the handling of large volumes of liquid scintillator to minimize the background are described. The scintillator, 1.5 g PPO/L-pseudocumene, is held in a flexible nylon vessel shielded by 1000 t of purified water. The active detector volume is viewed by 100 photomultipliers, which measure time and charge for each event, from which energy, position and pulse shape are deduced. On-line purification of the scintillator by water extraction, vacuum distillation and nitrogen stripping removed radioactive impurities. Upper limits were established of < 10-7 Bq/kg-scintillator for events with energies 250 keV < E < 800 keV, and < 10-9 Bq/kg-scintillator due to the decay products of uranium and thorium. The isotopic abundance of 14C/12C in the scintillator was shown to be approximately 10-18 by extending the energy window of the detector to 25-250 keV. The 14C abundance and uranium and thorium levels in the CTF are compatible with the Borexino Solar Neutrino Experiment.

  4. Discrimination methods between neutron and gamma rays for boron loaded plastic scintillators

    CERN Document Server

    Normand, S; Haan, S; Louvel, M

    2002-01-01

    Boron loaded plastic scintillators exhibit interesting properties for neutron detection in nuclear waste management and especially in investigating the amount of fissile materials when enclosed in waste containers. Combining a high thermal neutron efficiency and a low mean neutron lifetime, they are suitable in neutron multiplicity counting. However, due to their high sensitivity to gamma rays, pulse shape discrimination methods need to be developed in order to optimize the passive neutron assay measurement. From the knowledge of their physical properties, it is possible to separate the three kinds of particles that have interacted in the boron loaded plastic scintillator (gamma, fast neutron and thermal neutron). For this purpose, we have developed and compared the two well known discrimination methods (zero crossing and charge comparison) applied for the first time to boron loaded plastic scintillator. The setup for the zero crossing discrimination method and the charge comparison methods is thoroughly expl...

  5. Monte Carlo simulations and measurements for efficiency determination of lead shielded plastic scintillator detectors

    Science.gov (United States)

    Yasin, Zafar; Negoita, Florin; Tabbassum, Sana; Borcea, Ruxandra; Kisyov, Stanimir

    2017-12-01

    The plastic scintillators are used in different areas of science and technology. One of the use of these scintillator detectors is as beam loss monitors (BLM) for new generation of high intensity heavy ion in superconducting linear accelerators. Operated in pulse counting mode with rather high thresholds and shielded by few centimeters of lead in order to cope with radiofrequency noise and X-ray background emitted by accelerator cavities, they preserve high efficiency for high energy gamma ray and neutrons produced in the nuclear reactions of lost beam particles with accelerator components. Efficiency calculation and calibration of detectors is very important before their practical usage. In the present work, the efficiency of plastic scintillator detectors is simulated using FLUKA for different gamma and neutron sources like, 60Co, 137Cs and 238Pu-Be. The sources are placed at different positions around the detector. Calculated values are compared with the measured values and a reasonable agreement is observed.

  6. Tests of a high resolution time of flight system based on long and narrow scintillator

    CERN Document Server

    Chen, E; Sun, W; Yamamoto, H

    1996-01-01

    We have tested a prototype time-of-flight system based on bulk scintillator block of dimensions 2.5 \\times 2.5 \\times 200 cm. Using a calibration scheme similar to the one used in actual collider experiments, we have achieved a resolution of 71 ps using Amperex XP2020/UR photomultipliers and 81 ps using proximity-focusing fine-mesh photomultipliers (Hamamatsu R2021). Results are also obtained for scintillating fiber blocks of the same dimensions. Good internal reflectivity of the bulk scintillator block resulted in resolutions superior to the fibre blocks. A single-photon pulsed laser system was used to study photomultipliers and the results were used in a Monte Carlo simulation of the system to study the critical elements that determine the resolution.

  7. 10B enriched plastic scintillators for application in thermal neutron detection

    Science.gov (United States)

    Mahl, Adam; Yemam, Henok A.; Fernando, Roshan; Koubek, Joshua T.; Sellinger, Alan; Greife, Uwe

    2018-02-01

    We report here on the synthesis and characterization of a novel 10B enriched aromatic molecule that can be incorporated into common poly(vinyltoluene) (PVT) based plastic scintillators to achieve enhanced thermal neutron detection. Starting from relatively inexpensive 10B enriched boric acid, we have prepared 4,4,5,5-tetramethyl-2-phenyl-1,3,2-dioxaborolane (MBB) in three high yield steps. MBB is soluble and compatible with PVT based formulations and results in stable plastic scintillators. Chemical synthesis, solubility limit in PVT, and the physical properties of the dopant were explored. The relevant response properties of the resulting scintillators when exposed to neutron and gamma radiation, including light yield and pulse shape discrimination properties were measured and analyzed.

  8. On-line coupling of sequential injection lab-on-valve to differential pulse anodic stripping voltammetry for determination of Pb in water samples.

    Science.gov (United States)

    Wang, Yang; Liu, Zaiqing; Hu, Xiaoya; Cao, Jinglian; Wang, Fei; Xu, Qin; Yang, Chun

    2009-01-15

    Sequential injection lab-on-valve (LOV) was first proposed for analyzing ultra-trace amounts of Pb using differential pulse anodic stripping voltammetry (DPASV) with a miniaturized electrochemical flow cell fabricated in the LOV unit. Deposition and stripping processes took place between the renewable mercury film carbon paste electrode and sample solution, the peak current was employed as the basis of quantification. The mercury film displayed a long-term stability and reproducibility for at least 50 cycles before next renewal, the properties of integrated miniature LOV unit not only enhanced the automation of the analysis procedure but also declined sample/reagent consumption. Potential factors that affect the present procedure were investigated in detail, i.e., deposition potential, deposition time, electrode renewable procedure and the volume of sample solution. The practical applicability of the present procedure was demonstrated by determination of Pb in environmental water samples.

  9. Progress in the development of LuAlO3 based scintillators

    CERN Document Server

    Belsky, A; Lecoq, P; Dujardin, C; Garnier, N; Canibano, H; Pédrini, C; Petrosian, A

    2000-01-01

    LuAlO3:Ce3+ (LuAP) and LuxY1-xAlO3:Ce3+ (LuYAP) crystals are the promote scintillation materials for Positron Emission Tomography. Actual study of these scintillators develops in the tree directions: (i) growth of large size LuAP crystals with stable properties, (ii) relationship between composition of LuYAP crystals and scintillation properties, and (iii) scintillation mechanisms in lutetium compounds. After improving of growth conditions a large size samples (length greater than 40 mm) have been prepared. Crystals show a good correlation between growth parameters, light yield and transmission spectra. We performed a series of samples with calibrated size (2x2x10 mm3) and compare the light yield with a standard BGO and LSO samples. Mixed crystals with composition of 0.6 less than x less than 0.8 show a significant increase of light yield. We suggest that the short order clusterisation in mixed crystals may by playing an important role in governing the scintillation efficiency. In order to clarify the scintil...

  10. Optical properties of quantum-dot-doped liquid scintillators.

    Science.gov (United States)

    Aberle, C; Li, J J; Weiss, S; Winslow, L

    2013-10-14

    Semiconductor nanoparticles (quantum dots) were studied in the context of liquid scintillator development for upcoming neutrino experiments. The unique optical and chemical properties of quantum dots are particularly promising for the use in neutrinoless double-beta decay experiments. Liquid scintillators for large scale neutrino detectors have to meet specific requirements which are reviewed, highlighting the peculiarities of quantum-dot-doping. In this paper, we report results on laboratory-scale measurements of the attenuation length and the fluorescence properties of three commercial quantum dot samples. The results include absorbance and emission stability measurements, improvement in transparency due to filtering of the quantum dot samples, precipitation tests to isolate the quantum dots from solution and energy transfer studies with quantum dots and the fluorophore PPO.

  11. Basic performance of Mg co-doped new scintillator used for TOF-DOI-PET systems

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, Takahiro, E-mail: kobayashi.takahiro@a.mbox.nagoya-u.ac.jp [Nagoya University Graduate School of Medicine (Japan); Daiyukai General Hospital (Japan); Yamamoto, Seiichi; Okumura, Satoshi [Nagoya University Graduate School of Medicine (Japan); Yeom, Jung Yeol [School of Biomedical Engineering, Korea University, Seoul (Korea, Republic of); Kamada, Kei; Yoshikawa, Akira [New Industry Creation Hatchery Center (NICHe), Tohoku University (Japan)

    2017-01-11

    Phoswich depth-of-interaction (DOI) detectors utilizing multiple scintillators with different decay time are a useful device for developing a high spatial resolution, high sensitivity PET scanner. However, in order to apply pulse shape discrimination (PSD), there are not many combinations of scintillators for which phoswich technique can be implemented. Ce doped Gd{sub 3}Ga{sub 3}Al{sub 2}O{sub 12} (GFAG) is a recently developed scintillator with a fast decay time. This scintillator is similar to Ce doped Gd{sub 3}Al{sub 2}Ga{sub 3}O{sub 12} (GAGG), which is a promising scintillator for PET detector with high light yield. By stacking these scintillators, it may be possible to realize a high spatial resolution and high timing resolution phoswich DOI detector. Such phoswich DOI detector may be applied to time-of-flight (TOF) systems with high timing performance. Therefore, in this study, we tested the basic performance of the new scintillator –GFAG for use in a TOF phoswich detector. The measured decay time of a GFAG element of 2.9 mmx2.9 mmx10 mm in dimension, which was optically coupled to a photomultiplier tube (PMT), was faster (66 ns) than that of same sized GAGG (103 ns). The energy resolution of the GFAG element was 5.7% FWHM which was slightly worse than that of GAGG with 4.9% FWHM for 662 keV gamma photons without saturation correction. Then we assembled the GFAG and the GAGG crystals in the depth direction to form a 20 mm long phoswich element (GFAG/GAGG). By pulse shape analysis, the two types of scintillators were clearly resolved. Measured timing resolution of a pair of opposing GFAG/GAGG phoswich scintillator coupled to Silicon Photomultipliers (Si-PM) was good with coincidence resolving time of 466 ps FWHM. These results indicate that the GFAG combined with GAGG can be a candidate for TOF-DOI-PET systems.

  12. Simultaneous determination of paracetamol and ibuprofen in pharmaceutical samples by differential pulse voltammetry using a boron-doped diamond electrode

    OpenAIRE

    Lima, Amanda B.; Torres, Lívia M. F. C.; Guimarães, Carlos F. R. C.; Rodrigo M Verly; Silva, Leonardo M. da; Carvalho Júnior, Álvaro D.; Santos, Wallans T. P. dos

    2014-01-01

    This work presents a simple, fast and low-cost methodology for the simultaneous determination of paracetamol (PC) and ibuprofen (IB) in pharmaceutical formulations by differential pulse voltammetry using a boron-doped diamond (BDD) electrode. A well-defined oxidation peak was observed using the BDD electrode for each analyte (0.85 V for PC and 1.72 V for IB (vs. Ag/AgCl)) in 0.1 mol L-1 H2SO4 solution containing 10% (v/v) of ethanol. Calibration curves for the simultaneous determination of PC...

  13. New experimental validation of the pulse height weighting technique for capture cross-section measurements

    Energy Technology Data Exchange (ETDEWEB)

    Abbondanno, U.; Aerts, G.; Alvarez, H.; Andriamonje, S.; Angelopoulos, A.; Assimakopoulos, P.; Bacri, C.O.; Badurek, G.; Baumann, P.; Becvar, F.; Beer, H.; Benlliure, J.; Berthier, B.; Berthomieux, E.; Boffi, S.; Borcea, C.; Boscolo-Marchi, E.; Bustreo, N.; Calvino, P.; Cano-Ott, D.; Capote, R.; Carlson, P.; Cennini, P.; Chepel, V.; Chiaveri, E.; Coceva, C.; Colonna, N.; Cortes, G.; Cortina, D.; Couture, A.; Cox, J.; Dababneh, S.; Dahlfors, M.; David, S.; Dolfini, R.; Domingo-Pardo, C.; Duran, I.; Eleftheriadis, C.; Embid-Segura, M.; Ferrant, L.; Ferrari, A.; Ferreira-Lourenco, L.; Ferreira-Marques, R.; Frais-Koelbl, H.; Furman, W.I.; Giomataris, Y.; Goncalves, I.F.; Gonzalez-Romero, E.; Goverdovski, A.; Gramegna, F.; Griesmayer, E.; Gunsing, F.; Haight, R.; Heil, M.; Herrera-Martinez, A.; Ioannides, K.G.; Janeva, N.; Jericha, E.; Kaeppeler, F.; Kadi, Y.; Karamanis, D.; Kelic, A.; Ketlerov, V.; Kitis, G.; Koehler, P.E.; Konovalov, V.; Kossionides, E.; Lacoste, V.; Leeb, H.; Lindote, A.; Lopes, M.I.; Lozano, M.; Lukic, S.; Markov, S.; Marrone, S.; Martinez-Val, J.; Mastinu, P.; Mengoni, A.; Milazzo, P.M.; Minguez, E.; Molina-Coballes, A.; Moreau, C.; Neves, F.; Oberhummer, H.; O' Brien, S.; Pancin, J.; Papaevangelou, T.; Paradela, C.; Pavlik, A.; Pavlopoulos, P.; Perez-Parra, A.; Perlado, J.M.; Perrot, L.; Peskov, V.; Plag, R.; Plompen, A.; Plukis, A.; Poch, A.; Policarpo, A.; Pretel, C.; Quesada, J.M.; Radici, M.; Raman, S.; Rapp, W.; Rauscher, T.; Reifarth, R.; Rejmund, F.; Rosetti, M.; Rubbia, C.; Rudolf, G.; Rullhusen, P.; Salgado, J.; Savvidis, E.; Soares, J.C.; Stephan, C.; Tagliente, G.; Tain, J.L. E-mail: jose.luis.tain@ific.uv.es; Tapia, C.; Tassan-Got, L.; Tavora, L.M.N.; Terlizzi, R.; Terrani, M.; Tsangas, N.; Vannini, G.; Vaz, P.; Ventura, A.; Villamarin-Fernandez, D.; Vincente-Vincente, M.; Vlachoudis, V.; Vlastou, R.; Voss, F.; Wendler, H.; Wiescher, M.; Wisshak, K.; Zanini, L

    2004-04-01

    The accuracy of the pulse height weighting technique for the determination of neutron capture cross-sections is investigated. The technique is applied to measurements performed with C{sub 6}D{sub 6} liquid scintillation detectors of two different types using capture samples of various dimensions. The data for well-known (n,{gamma}) resonances are analyzed using weighting functions obtained from Monte Carlo simulations of the experimental set-up. Several causes of systematic deviation are identified and their effect is quantified. In all the cases measured the reaction yield agrees with the standard value within 2%.

  14. Bi4Si3O12 thin films for scintillator applications

    Science.gov (United States)

    Rincón-López, J. A.; Fernández-Benavides, D. A.; Giraldo-Betancur, A. L.; Cruz-Muñoz, B.; Riascos, H.; Muñoz-Saldaña, J.

    2016-04-01

    Bismuth silicate Bi4Si3O12 or BSO thin films were synthesized by pulsed laser deposition and a subsequent annealing treatment from a Bi-Fe-O and compared with films obtained with a pure Bi2O3 target. Bi-Fe-O amorphous thin films of different thicknesses were deposited on silicon substrates at room temperature and subsequently heat treated at 800 °C at different times to study the phase transformations, keeping in all steps a constant oxygen atmosphere. After annealing, Bi-Si-O crystalline phases are formed in all cases with different synthesis kinetics. The Bi-Fe-O target clearly increases the synthesis kinetic of a textured BSO phase having a dissociation and precipitation of homogeneously distributed Fe2O3 particles in the BSO matrix. The key aspects to obtain the Bi4Si3O12 stoichiometric phase are both the film thickness and the heat treatment time to allow the reaction between the Bi2O3 from the target and the SiO2 obtained after the oxidation of the substrate. A deposition time of Bi-Fe-O for 120 and 30 min annealing fulfills the conditions to obtain the Bi4Si3O12 stoichiometric composition and thus scintillation performance. The scintillation properties were measured by a fluorescence spectrophotometry. The stoichiometric Bi4Si3O12 samples show that under 260 nm excitation the material exhibits a peak emission at 466.6 nm. These Bi4Si3O12 thin films crystallize in eulytite phase with cubic structure (a = b = c = 10.291 Å). The phase content was obtained by Rietveld analysis of X-ray diffraction patterns.

  15. Fabrication and scintillation characteristics of CsI:Tl scintillator for X-ray imaging system

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Ju; Kim, Kyong Woo [NanoFocusRay, Jeonju (Korea, Republic of); Kim, Hyun Duk; Cho, Gyu Seong; Kim, Jong Yul [Korea Advanced Tnstitute of Science Technology, Daejeon (Korea, Republic of)

    2011-05-15

    The scintillator absorb X-ray and emit visible light. Thallium-doped cesium iodide(CsI:Tl) scintillator have been widely used in X-ray imaging system for medical and industrial because of high scintillation efficiency and proper emission wavelength (550nm) highly matching silicon-based photo-sensor. In this study, Scintillation film was fabricated by using a thermal evaporation method. CsI:Tl films according to fabrication condition such as different doped Tl concentrations, heat treatment temperature, chamber vacuum pressure, deposition thickness and substrate structure onto a glass. Fabricated CsI:Tl scintillators were observed using scanning electron microscopy(SEM), and scintillation characteristics were evaluated such as wavelength, light output of CsI:Tl scintillators were obtained by an X-ray measurement system.

  16. Photodetectors for scintillator proportionality measurement

    Energy Technology Data Exchange (ETDEWEB)

    Moses, William W. [Lawrence Berkeley National Laboratory (United States)], E-mail: wwmoses@lbl.gov; Choong, Woon-Seng [Lawrence Berkeley National Laboratory (United States); Hull, Giulia; Payne, Steve; Cherepy, Nerine; Valentine, John D. [Lawrence Livermore National Laboratory (United States)

    2009-10-21

    We evaluate photodetectors for use in a Compton Coincidence apparatus designed for measuring scintillator proportionality. There are many requirements placed on the photodetector in these systems, including active area, linearity, and the ability to accurately measure low light levels (which implies high quantum efficiency and high signal-to-noise ratio). Through a combination of measurement and Monte Carlo simulation, we evaluate a number of potential photodetectors, especially photomultiplier tubes and hybrid photodetectors. Of these, we find that the most promising devices available are photomultiplier tubes with high ({approx}50%) quantum efficiency, although hybrid photodetectors with high quantum efficiency would be preferable.

  17. Pulsar scintillation patterns and strangelets

    Energy Technology Data Exchange (ETDEWEB)

    Pérez-García, M. Ángeles, E-mail: mperezga@usal.es [Department of Fundamental Physics and IUFFyM, University of Salamanca, Plaza de la Merced s/n, 37008 Salamanca (Spain); Silk, Joseph, E-mail: silk@iap.fr [Institut d' Astrophysique, UMR 7095, CNRS, Université Pierre et Marie Curie, 98bis Blvd Arago, 75014 Paris (France); Department of Physics and Astronomy, Johns Hopkins University, Homewood Campus, Baltimore MD 21218 (United States); Beecroft Institute of Particle Astrophysics and Cosmology, Department of Physics, University of Oxford, Oxford OX1 3RH (United Kingdom); Pen, Ue-Li, E-mail: pen@cita.utoronto.ca [Canadian Institute for Theoretical Astrophysics, University of Toronto, 0N M5S 3H8 (Canada)

    2013-12-18

    We propose that interstellar extreme scattering events, usually observed as pulsar scintillations, may be caused by a coherent agent rather than the usually assumed turbulence of H{sub 2} clouds. We find that the penetration of a flux of ionizing, positively charged strangelets or quark nuggets into a dense interstellar hydrogen cloud may produce ionization trails. Depending on the specific nature and energy of the incoming droplets, diffusive propagation or even capture in the cloud are possible. As a result, enhanced electron densities may form and constitute a lens-like scattering screen for radio pulsars and possibly for quasars.

  18. Supernova Neutrino Detection With Liquid Scintillators

    Energy Technology Data Exchange (ETDEWEB)

    Ianni, Aldo, E-mail: aldo.ianni@lngs.infn.it [I.N.F.N. Gran Sasso Laboratory, S.S. 17bis, 67100, Assergi (Italy)

    2011-08-10

    Core collapse supernovae are a remarkable source of neutrinos. These neutrinos can also be detected by means of massive liquid scintillators located underground. Observations of supernova neutrinos can shed light on the explosion mechanism and on neutrino properties. In this paper we review the detection channels for neutrinos in liquid scintillators. We consider present and future experiments for supernova neutrino searches.

  19. Neutron scintillators with high detection efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Kojima, T.; Katagiri, M. E-mail: kata@stsp2a0.tokai.jaeri.go.jp; Tsutsui, N.; Imai, K.; Matsubayashi, M.; Sakasai, K

    2004-08-21

    We have developed three kinds of phosphor/neutron-converter scintillators aiming to increase the detection efficiency of the neutron imaging detectors. One is the ZnS:Ag/{sup 6}LiF (powder) scintillator, which contained {sup 6}LiF about twice in amount comparing to the commercial product (Bicron, BC-704) and painted in a sheet, and the 0.4-mm-thick scintillator sheet exhibited the detection efficiency of 43.5% for thermal neutrons. This value was improved {approx}1.5 times than that of BC-704. Another developed scintillator was a ZnS:Ag/{sup 10}B{sub 2}O{sub 3} (powder), which contained {sup 10}B as a neutron converter. The scintillator was fabricated by sintering up to the temperature of 500 or 600 deg. C, and it exhibited the detection efficiency of 30% for thermal neutrons. Moreover, we developed ZnS:Ag/{sup 10}B{sub 2}O{sub 3} glass-scintillator, which was fabricated by increasing the amount of {sup 10}B{sub 2}O{sub 3} up to 70-90% of the constituents and by sintering the scintillator materials up to the temperature of 650 deg. C. The fabricated glass scintillators, which had a thickness of 0.9-1 mm, exhibited the detection efficiency of 20-40% for thermal neutrons.

  20. Epoxy resins produce improved plastic scintillators

    Science.gov (United States)

    Markley, F. W.

    1967-01-01

    Plastic scintillator produced by the substitution of epoxy resins for the commonly used polystyrene is easy to cast, stable at room temperature, and has the desirable properties of a thermoset or cross-linked system. Such scintillators can be immersed directly in strong solvents, an advantage in many chemical and biological experiments.

  1. Response function study of a scintillator detector of NaI(Tl); Estudo da funcao resposta de um detector cintilador de NaI(Tl)

    Energy Technology Data Exchange (ETDEWEB)

    Villa, Marcelo Barros; Costa, Alessandro Martins da, E-mail: amcosta@usp.br [Universidade de Sao Paulo (FFCLRP/USP), Ribeirao Preto, SP (Brazil). Faculdade de Filosofia, Ciencias e Letras. Dept. de Fisica

    2014-07-01

    In measurements of gamma rays with Nai (Tl) scintillator, the detectors output data are pulse height spectra, that corresponding to distorted information about the radiation source due to various errors associated with the crystal scintillation process and electronics associated, instead of power spectra photons. Pulse height spectra are related to the real power spectra by means of scintillator detector response function NaI (Tl). In this work, the response function for a cylindrical crystal of Nal (Tl) of 7,62 x 7,62 cm (diameter x length) was studied, by Monte Carlo method, using the EGSnrc tool to model the transport of radiation, combined with experimental measurements. An inverse response matrix, even with the energy of the square root, which transforms the pulse height spectrum of photon energy spectrum was obtained. The results of this transformation of pulse height spectrum for photon energy spectrum is presented, showing that the methodology employed in this study is suitable.

  2. Scintillation screen materials for beam profile measurements of high energy ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Krishnakumar, Renuka

    2016-06-22

    For the application as a transverse ion beam diagnostics device, various scintillation screen materials were analysed. The properties of the materials such as light output, image reproduction and radiation stability were investigated with the ion beams extracted from heavy ion synchrotron SIS-18. The ion species (C, Ne, Ar, Ta and U) were chosen to cover the large range of elements in the periodic table. The ions were accelerated to the kinetic energies of 200 MeV/u and 300 MeV/u extracted with 300 ms pulse duration and applied to the screens. The particle intensity of the ion beam was varied from 10{sup 4} to 10{sup 9} particles per pulse. The screens were irradiated with typically 40 beam pulses and the scintillation light was captured using a CCD camera followed by characterization of the beam spot. The radiation hardness of the screens was estimated with high intensity Uranium ion irradiation. In the study, a linear light output for 5 orders of magnitude of particle intensities was observed from sensitive scintillators and ceramic screens such as Al{sub 2}O{sub 3}:Cr and Al{sub 2}O{sub 3}. The highest light output was recorded by CsI:Tl and the lowest one by Herasil. At higher beam intensity saturation of light output was noticed from Y and Mg doped ZrO{sub 2} screens. The light output from the screen depends not only on the particle intensity but also on the ion species used for irradiation. The light yield (i.e. the light intensity normalised to the energy deposition in the material by the ion) is calculated from the experimental data for each ion beam setting. It is shown that the light yield for light ions is about a factor 2 larger than the one of heavy ions. The image widths recorded exhibit a dependence on the screens material and differences up to 50 % were registered. On radiation stability analysis with high particle intensity of Uranium ions of about 6 x 10{sup 8} ppp, a stable performance in light output and image reproduction was documented from Al

  3. Laser assisted removal of synthetic painting-conservation materials using UV radiation of ns and fs pulse duration: Morphological studies on model samples

    Energy Technology Data Exchange (ETDEWEB)

    Pouli, P., E-mail: ppouli@iesl.forth.gr [Institute of Electronic Structure and Laser, Foundation for Research and Technology Hellas (IESL-FORTH), P.O. Box 1385, Heraklion, 71110 Crete (Greece); Nevin, A. [Institute of Electronic Structure and Laser, Foundation for Research and Technology Hellas (IESL-FORTH), P.O. Box 1385, Heraklion, 71110 Crete (Greece); Courtauld Institute of Art, University of London, Somerset House, Strand, WC2R 0RN, London (United Kingdom); Andreotti, A.; Colombini, P. [Dipartimento di Chimica e Chimica Industriale, Universita di Pisa, via Risorgimento 35, 56126 Pisa (Italy); Georgiou, S. [Institute of Electronic Structure and Laser, Foundation for Research and Technology Hellas (IESL-FORTH), P.O. Box 1385, Heraklion, 71110 Crete (Greece); Fotakis, C. [Institute of Electronic Structure and Laser, Foundation for Research and Technology Hellas (IESL-FORTH), P.O. Box 1385, Heraklion, 71110 Crete (Greece); Department of Physics, University of Crete, P.O. Box 2208, Heraklion, 71003 (Greece)

    2009-02-15

    In an effort to establish the optimal parameters for the cleaning of complex layers of polymers (mainly based on acrylics, vinyls, epoxys known as Elvacite, Laropal, Paraloid B72, among others) applied during past conservation treatments on the surface of wall paintings, laser cleaning tests were performed with particular emphasis on the plausible morphological modifications induced in the remaining polymeric material. Pulse duration effects were studied using laser systems of different pulse durations (ns and fs) at 248 nm. Prior to tests on real fragments from the Monumental Cemetery in Pisa (Italy) which were coated with different polymers, attention was focused on the study of model samples consisting of analogous polymer films cast on quartz disks. Ultraviolet irradiation is strongly absorbed by the studied materials both in ns and fs irradiation regimes. However, it is demonstrated that ultrashort laser pulses result in reduced morphological alterations in comparison to ns irradiation. In addition, the dependence of the observed alterations on the chemical composition of the consolidation materials in both regimes was examined. Most importantly, it was shown that in this specific conservation problem, an optimum cleaning process may rely not only on the minimization of laser-induced morphological changes but also on the exploitation of the conditions that favour the disruption of the adhesion between the synthetic material and the painting.

  4. Towards diffractive imaging with single pulses of FEL radiation. Dynamics within irradiatied samples and their influence on the analysis of imaging data

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Fenglin

    2010-08-15

    3D single particle coherent diffraction imaging (CDI) of bioparticles (such as proteins, macromolecules and viruses) is one of the main possible applications of the new generation of light sources: free-electron lasers (FELs), which are now available at FLASH (Hamburg, Germany) and LCLS (Stanford, U.S.A.). The extremely bright and ultrashort FEL pulses potentially enable CDI to achieve high resolution down to subnanometer length scale. However, intense FEL pulses cause serious radiation damage in bioparticles, even during single shots, which may set the resolution limits for CDI with FELs. Currently, since the signal-to-noise ratio is very low for small biological particles, direct experimental study of radiation damage in the single particle imaging is fairly difficult. Single atomic (noble gas) clusters become good objects to reveal effects of radiation damage processes on CDI with FEL radiation. This thesis studies three aspects of the radiation damage problem, which are treated in three independent chapters: (1) Molecular Dynamics simulations to quantitively describe radiation damage processes within irradiated atomic clusters during single pulses; (2) reconstruction analysis of single-shot CDI diffraction patterns of atomic clusters, which may potentially help to understand the radiation damage occurring in biological samples; and (3) testing the effects of coating water layers in CDI, which is supposed to minimize the radiation damage in irradiated bioparticles. (orig.)

  5. Airfoil sampling of a pulsed Laval beam with tunable vacuum ultraviolet synchrotron ionization quadrupole mass spectrometry: application to low-temperature kinetics and product detection.

    Science.gov (United States)

    Soorkia, Satchin; Liu, Chen-Lin; Savee, John D; Ferrell, Sarah J; Leone, Stephen R; Wilson, Kevin R

    2011-12-01

    A new pulsed Laval nozzle apparatus with vacuum ultraviolet (VUV) synchrotron photoionization quadrupole mass spectrometry is constructed to study low-temperature radical-neutral chemical reactions of importance for modeling the atmosphere of Titan and the outer planets. A design for the sampling geometry of a pulsed Laval nozzle expansion has been developed that operates successfully for the determination of rate coefficients by time-resolved mass spectrometry. The new concept employs airfoil sampling of the collimated expansion with excellent sampling throughput. Time-resolved profiles of the high Mach number gas flow obtained by photoionization signals show that perturbation of the collimated expansion by the airfoil is negligible. The reaction of C(2)H with C(2)H(2) is studied at 70 K as a proof-of-principle result for both low-temperature rate coefficient measurements and product identification based on the photoionization spectrum of the reaction product versus VUV photon energy. This approach can be used to provide new insights into reaction mechanisms occurring at kinetic rates close to the collision-determined limit.

  6. Inorganic-organic rubbery scintillators

    CERN Document Server

    Gektin, A V; Pogorelova, N; Neicheva, S; Sysoeva, E; Gavrilyuk, V

    2002-01-01

    Spectral-kinetic luminescence properties of films, containing homogeneously dispersed scintillation particles of CsI, CsI:Tl, CsI:Na, and NaI:Tl in optically transparent organosiloxane matrix, are presented. Material is flexible and rubbery and in consequence the detectors of convenient shapes can be produced. It is found that luminescence spectra of the received films are identical whereas decay times are much shorter compared to the same ones of the corresponding single crystals. Layers with pure CsI demonstrate only the fast UV emission (307 nm, 10 ns) without blue microsecond afterglow typical for crystals. The films containing NaI:Tl are non-hygroscopic and preserve scintillation properties for a long time in humid atmosphere unlike single crystals. Organosiloxane layers with CsI:Tl particles provide high light output with good energy resolution for sup 5 sup 5 Fe, sup 1 sup 0 sup 9 Cd, sup 2 sup 4 sup 1 Am sources, and are capable of detecting both X-rays and alpha-, beta-particles.

  7. Study of pulse shape discrimination for a neutron phoswich detector

    Science.gov (United States)

    Hartman, Jessica; Barzilov, Alexander

    2017-09-01

    A portable phoswich detector capable of differentiating between fast neutrons and thermal neutrons, and photons was developed. The detector design is based on the use of two solid-state scintillators with dissimilar scintillation time properties coupled with a single optical sensor: a 6Li loaded glass and EJ-299-33A plastic. The on-the-fly digital pulse shape discrimination and the wavelet treatment of measured waveforms were employed in the data analysis. The instrument enabled neutron spectrum evaluation.

  8. Systolic MOLLI T1 mapping with heart-rate-dependent pulse sequence sampling scheme is feasible in patients with atrial fibrillation.

    Science.gov (United States)

    Zhao, Lei; Li, Songnan; Ma, Xiaohai; Greiser, Andreas; Zhang, Tianjing; An, Jing; Bai, Rong; Dong, Jianzeng; Fan, Zhanming

    2016-03-15

    T1 mapping enables assessment of myocardial characteristics. As the most common type of arrhythmia, atrial fibrillation (AF) is often accompanied by a variety of cardiac pathologies, whereby the irregular and usually rapid ventricle rate of AF may cause inaccurate T1 estimation due to mis-triggering and inadequate magnetization recovery. We hypothesized that systolic T1 mapping with a heart-rate-dependent (HRD) pulse sequence scheme may overcome this issue. 30 patients with AF and 13 healthy volunteers were enrolled and underwent cardiovascular magnetic resonance (CMR) at 3 T. CMR was repeated for 3 patients after electric cardioversion and for 2 volunteers after lowering heart rate (HR). A Modified Look-Locker Inversion Recovery (MOLLI) sequence was acquired before and 15 min after administration of 0.1 mmol/kg gadopentetate dimeglumine. For AF patients, both the fixed 5(3)3/4(1)3(1)2 and the HRD sampling scheme were performed at diastole and systole, respectively. The HRD pulse sequence sampling scheme was 5(n)3/4(n)3(n)2, where n was determined by the heart rate to ensure adequate magnetization recovery. Image quality of T1 maps was assessed. T1 times were measured in myocardium and blood. Extracellular volume fraction (ECV) was calculated. In volunteers with repeated T1 mapping, the myocardial native T1 and ECV generated from the 1st fixed sampling scheme were smaller than from the 1st HRD and 2nd fixed sampling scheme. In healthy volunteers, the overall native T1 times and ECV of the left ventricle (LV) in diastolic T1 maps were greater than in systolic T1 maps (P T1 times and ECV generated from the fixed sampling scheme were smaller than in the 1st and 2nd HRD sampling scheme (all P T1 maps with artifact were found in diastole than in systole (P T1 times and ECV of the left ventricle (LV) in diastolic T1 maps were greater than systolic T1 maps, either with fixed or HRD sampling scheme (all P T1 mapping with heart-rate-dependent pulse sequence scheme

  9. Improving detector spatial resolution using pixelated scintillators with a barrier rib structure

    Science.gov (United States)

    Liu, Langechuan; Lu, Minghui; Cao, Wanqing; Peng, Luke; Chen, Arthur

    2016-03-01

    Indirect conversion flat panel detectors (FPDs) based on amorphous silicon (a-Si) technology are widely used in digital X-ray imaging. In such FPDs a scintillator layer is used for converting X-rays into visible light photons. However, the lateral spread of these photons inside the scintillator layer reduces spatial resolution of the FPD. In this study, FPDs incorporating pixelated scintillators with a barrier rib structure were developed to limit lateral spread of light photons thereby improving spatial resolution. For the pixelated scintillator, a two-dimensional barrier rib structure was first manufactured on a substrate layer, coated with reflective materials, and filled to the rim with the scintillating material of gadolinium oxysulfide (GOS). Several scintillator samples were fabricated, with pitch size varying from 160 to 280 μm and rib height from 200 to 280 μm. The samples were directly coupled to an a-Si flat panel photodiode array with a pitch of 200 μm to convert optical photons to electronic signals. With the pixelated scintillator, the detector modulation transfer function was shown to improve significantly (by 94% at 2 cycle/mm) compared to a detector using an unstructured GOS layer. However, the prototype does show lower sensitivity due to the decrease in scintillator fill factor. The preliminary results demonstrated the feasibility of using the barrier-rib structure to improve the spatial resolution of FPDs. Such an improvement would greatly benefit nondestructive testing applications where the spatial resolution is the most important parameter. Further investigation will focus on improving the detector sensitivity and exploring its medical applications.

  10. Radon measurement of natural gas using alpha scintillation cells.

    Science.gov (United States)

    Kitto, Michael E; Torres, Miguel A; Haines, Douglas K; Semkow, Thomas M

    2014-12-01

    Due to their sensitivity and ease of use, alpha-scintillation cells are being increasingly utilized for measurements of radon ((222)Rn) in natural gas. Laboratory studies showed an average increase of 7.3% in the measurement efficiency of alpha-scintillation cells when filled with less-dense natural gas rather than regular air. A theoretical calculation comparing the atomic weight and density of air to that of natural gas suggests a 6-7% increase in the detection efficiency when measuring radon in the cells. A correction is also applicable when the sampling location and measurement laboratory are at different elevations. These corrections to the measurement efficiency need to be considered in order to derive accurate concentrations of radon in natural gas. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Sampling

    CERN Document Server

    Thompson, Steven K

    2012-01-01

    Praise for the Second Edition "This book has never had a competitor. It is the only book that takes a broad approach to sampling . . . any good personal statistics library should include a copy of this book." —Technometrics "Well-written . . . an excellent book on an important subject. Highly recommended." —Choice "An ideal reference for scientific researchers and other professionals who use sampling." —Zentralblatt Math Features new developments in the field combined with all aspects of obtaining, interpreting, and using sample data Sampling provides an up-to-date treat

  12. Liquid Scintillation Detectors for Gamma and Neutron Diagnostic at Textor and Results of Runaway and Sawtooth Oscillations

    NARCIS (Netherlands)

    Hoenen, F.; Graffmann, E.; Finken, K.H.; Barrenscheen, H. J.; Klein, H.; R. Jaspers,

    1994-01-01

    Time and energy resolved neutron and gamma measurements are performed at the TEXTOR tokamak with a fast liquid NE-213 scintillator. To distinguish between neutron and gamma (gamma)-ray induced events, pulse shape discrimination is used. To suppress scattered radiation, the detector is installed in

  13. An organic dye in a polymer matrix – A search for a scintillator with long luminescent lifetime

    DEFF Research Database (Denmark)

    Lindvold, Lars René; Beierholm, Anders Ravnsborg; Andersen, Claus Erik

    2010-01-01

    Fiber-coupled organic plastic scintillators enable dose rate monitoring in conjunction with pulsed radiation sources like linear medical accelerators. The accelerator, however, generates a significant amount of stray ionizing radiation. This radiation excites the long optical fiber cable (15–20 m...

  14. Forecasting scintillation activity and equatorial spread F

    Science.gov (United States)

    Anderson, David N.; Redmon, Robert J.

    2017-03-01

    When transionospheric radio waves propagate through an irregular ionosphere with plasma depletions or "bubbles," they are subject to sporadic enhancement and fading, which is referred to as scintillation. Communication and navigation systems may be subject to these detrimental effects if the scintillation is strong enough. It is critical to have knowledge of the current ionospheric conditions so that system operators can distinguish between the natural radio environment and system-induced failures. In this paper we briefly describe the Forecasting Ionospheric Real-time Scintillation Tool UHF scintillation forecasting technique, which utilizes the observed characteristic parameter h'F from a ground-based, ionospheric sounder near the magnetic equator. The prereversal enhancement in vertical E × B drift velocity after sunset is the prime driver for creating plasma depletions and bubbles. In addition, there exists a "threshold" in the h'F value at 1930 LT, h'Fthr, such that, on any given evening, if h'F is significantly above h'Fthr, then scintillation activity is likely to occur, and if it is below h'Fthr, scintillation activity is unlikely to occur. We use this technique to explain the lack of scintillation activity prior to the Halloween storm in October 2003 in the Peruvian longitude sector. In addition, we have carried out a study which forecasts the occurrence or nonoccurrence of equatorial spread F (ESF), on a night-to-night basis, in five longitude sectors. The overall forecasting success is greater than 80% for each of the five longitude sectors.

  15. Development of a simple desulfurization procedure for the determination of butyltins in complex sediment samples using gas chromatography-pulsed flame photometric detection.

    Science.gov (United States)

    Bravo, M; Valenzuela, A; Quiroz, W; Pinto, M; Flores, M; Pinochet, H

    2010-05-15

    In this study a rapid solid phase extraction (SPE) procedure was developed to minimize the effect of different sulfur species for the determination of butyltin in sediments. The organosulfur species and organotins were firstly retained on C8 cartridges and then organotins were selectively eluted and analyzed by gas chromatography-pulsed flame photometric detection (GC-PFPD). Optimal conditions for the SPE procedure were obtained using an experimental design approach. The method's accuracy was established by analyzing a certified reference material (CRM), BCR-646 freshwater sediment. The experimental values were found to be in agreement with the assigned values for butyltins. Finally, complex sediment samples collected from a Chilean harbor were analyzed using this methodology to demonstrate its analytical potential for the determination of butyltin in environmental samples.

  16. Scintillation and luminescence in transparent colorless single and polycrystalline bulk ceramic ZnS

    Energy Technology Data Exchange (ETDEWEB)

    McCloy, John S.; Bliss, Mary; Miller, Brian W.; Wang, Zheming; Stave, Sean C.

    2015-01-01

    ZnS:Ag is a well-known extremely bright scintillator used in powder form for α-particle detection and, mixed with powdered LiF, for thermal neutron detection. Recently, we discovered some commercial bulk colorless and transparent, single-crystal and polycrystalline (chemical vapor-deposited) ZnS forms that scintillate in response to α-particles. The scintillation light transmits through the sample thickness (mm), challenging the commonly held assumption that ZnS is opaque to its own scintillation light. Individual α-particle events were imaged in space and time using a charged-particle camera originally developed for medical imaging applications. Photoluminescence (PL) and PL excitation show that scintillating bulk ZnS likely depends on different electronic defects than commercial ZnS powder scintillators. These defects, associated with copper and oxygen, are discussed in relation to PL results and extensive literature assessment. Commercial transparent ZnS is routinely produced by chemical vapor deposition to sizes larger than square meters, enabling potentially novel radiation detection applications requiring large, thick apertures.

  17. POLARIS: Portable Liquid Argon Imaging Scintillator

    Science.gov (United States)

    Jia, Yanyu; Kovacs, Benjamin; Kamp, Nicholas; Aidala, Christine; Polaris Team

    2017-09-01

    Liquefied noble gas detectors have become widely used in nuclear and particle physics, in particular for detecting neutrinos and in dark matter searches. However, their potential for neutron detection in low-energy nuclear physics has not yet been realized. The University of Michigan has been constructing a hybrid scintillating time projection chamber for detection of neutrons in the 200 keV 10 MeV range. The scintillation material is argon, and various dopants to improve detector efficiency are being explored. With collection of both scintillation light and ionization charge, improved energy resolution for neutrons is expected compared to existing measurement techniques.

  18. Scintillation particle detection based on microfluidics

    CERN Document Server

    Mapelli, A; Renaud, P; Gorini, B; Trivino, N Vico; Jiguet, S; Vandelli, W; Haguenauer, M

    2010-01-01

    A novel type of particle detector based on scintillation, with precise spatial resolution and high radiation hardness, is being studied. It consists of a single microfluidic channel filled with a liquid scintillator and is designed to define an array of scintillating waveguides each independently coupled to a photodetector. Prototype detectors built using an SU-8 epoxy resin have been tested with electrons from a radioactive source. The experimental results show a light yield compatible with the theoretical expectations and confirm the validity of the approach. (C) 2010 Elsevier B.V. All rights reserved.

  19. Advanced plastic scintillators for fast neutron discrimination

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Patrick L [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Anstey, Mitchell [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Doty, F. Patrick [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Mengesha, Wondwosen [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2014-09-01

    The present work addresses the need for solid-state, fast neutron discriminating scintillators that possess higher light yields and faster decay kinetics than existing organic scintillators. These respective attributes are of critical importance for improving the gamma-rejection capabilities and increasing the neutron discrimination performance under high-rate conditions. Two key applications that will benefit from these improvements include large-volume passive detection scenarios as well as active interrogation search for special nuclear materials. Molecular design principles were employed throughout this work, resulting in synthetically tailored materials that possess the targeted scintillation properties.

  20. Direct spectral analysis of tea samples using 266 nm UV pulsed laser-induced breakdown spectroscopy and cross validation of LIBS results with ICP-MS.

    Science.gov (United States)

    Gondal, M A; Habibullah, Y B; Baig, Umair; Oloore, L E

    2016-05-15

    Tea is one of the most common and popular beverages spanning vast array of cultures all over the world. The main nutritional benefits of drinking tea are its anti-oxidant properties, presumed protection against certain cancers, inhibition of inflammation and possible protective effects against diabetes. Laser induced breakdown spectrometer (LIBS) was assembled as a powerful tool for qualitative and quantitative analysis of various brands of tea samples using 266 nm pulsed UV laser. LIBS spectra for six brands of tea samples in the wavelength range of 200-900 nm was recorded and all elements present in our tea samples were identified. The major toxic elements detected in several brands of tea samples were bromine, chromium and minerals like iron, calcium, potassium and silicon. The spectral assignment was conducted prior to the determination of concentration of each element. For quantitative analysis, calibration curves were drawn for each element using standard samples prepared in known concentration in the tea matrix. The plasma parameters (electron temperature and electron density) were also determined prior to the tea samples spectroscopic analysis. The concentration of iron, chromium, potassium, bromine, copper, silicon and calcium detected in all tea samples was between 378-656, 96-124, 1421-6785, 99-1476, 17-36, 2-11 and 92-130 mg L(-1) respectively. The limits of detection estimated for Fe, Cr, K, Br, Cu, Si, Ca in tea samples were 22, 12, 14, 11, 6, 1 and 12 mg L(-1) respectively. To further confirm the accuracy of our LIBS results, we determined the concentration of each element present in tea samples by using standard analytical technique like ICP-MS. The concentrations detected with our LIBS system are in excellent agreement with ICP-MS results. The system assembled for spectral analysis in this work could be highly applicable for testing the quality and purity of food and also pharmaceuticals products. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. RESULTS OF CALCULATION-EXPERIMENTAL INVESTIGATIONS OF ELECTRO-THERMAL RESISTIBILITY OF SHEET STEEL SAMPLES TO ACTION OF RATIONED COMPONENTS OF PULSED CURRENT OF ARTIFICIAL LIGHTING

    Directory of Open Access Journals (Sweden)

    M.I. Baranov

    2016-06-01

    Full Text Available Purpose. Calculation and experimental researches of the electro-thermal resistibility of the steel sheet samples to action standard pulse current components of the artificial lightning with amplitude-time parameters (ATP, corresponded the requirements of normative documents of USA for SAE ARP 5412 & SAE ARP 5416. Methodology. Electrophysics bases of technique of high tensions and large impulsive currents (LIC, and also scientific and technical bases of planning of devices of high-voltage impulsive technique and measuring in them LIC. Сurrent amplitude ImA=±200 kA (with a tolerance of ±10 %; current action integral JA=2∙106 A2•s (with a tolerance of ±20 %; time, corresponding to the amplitude of the current ImA, tmA≤50 microseconds; the duration of the current flow τpA≤500 microseconds. Results. The results of the evaluation of the calculated and experimental studies of electro-thermal resistance of the samples of plates measuring 0,5 m  0,5 m stainless steel 1 mm thickness to the action on them artificial lightning impulse currents with rationed ATP on the requirements of normative documents of USA for SAE ARP 5412 & SAE ARP 5416. A pulse A- component have a first amplitude 192 kA, the corresponding time of 34 μs, and the duration aperiodic component amplitude 804 A, corresponding to the time 9 ms. It has been shown that the long C- component current of artificial lightning can lead to keyhole these samples. The diameter of the holes in this thin steel sheet, which is formed during the flow of current C- components can reach 15 mm. The results of calculation and experiment agree within 28 %. Originality. For the first time in world practice on the generator large pulsed currents experimental studies of resistibility of sheet steel samples to the action of artificial lightning currents with critical parameters. Practical value. Using the results obtained in the practice of lightning protection will significantly improve the

  2. Pixel-structured scintillators for digital x-ray imaging

    Science.gov (United States)

    Yun, Seung Man; Lim, Chang Hwy; Kim, Tae Woo; Kim, Ho Kyung

    2009-02-01

    We exploit the development of a pixel-structured scintillator that would match the readout pixel array, such as a photodiode array. This combination may become an indirect-conversion detector having high x-ray sensitivity without sacrificing the inherent resolving power defined by the pixel geometry of the photodiodes, because the scintillation material has a relatively high atomic number and density compared with the photoconductors, and the pixel-structured design may provide a band-limited modulation-transfer function (MTF) characteristic even with a thicker scintillator. For the realization of pixel-structured scintillators, two-dimensional (2D) array of pixel-structured wells with a depth of 100μm was prepared by using a deep reactive ion etching (DRIE) process on a silicon wafer. Then, Gd2O2S:Tb phosphor powders with organic binders were filled within the well array by using a sedimentation method. Three different pixel designs of 50, 100 and 200 μm with a wall (or septum) thickness of 10 μm were considered. Each sample size was 20 × 30 mm2 considering intra-oral imaging. The samples were coupled to the CMOS photodiode array with a pixel pitch of 48 μm and the imaging performances were evaluated in terms of MTF, NPS (noise-power spectrum) and DQE (detective quantum efficiency) at intra-oral imaging conditions. From the measurement results, the sensitivities of the samples with 50, 100 and 200 μm pitch designs were about 12, 25 and 41% of that of the reference commercial phosphor screen (MinR-2000). Hence the DQE performances at 0.2 lp/mm were about 3.7, 9.6, 22.7% of the reference screen. According to the Monte Carlo simulations, the lower sensitivity was due to the loss of optical photons in silicon walls. However, the MTF performance was mainly determined by the designed pixel apertures. If we make pixel-structured scintillators with a deeper depth and provide reflectance on walls, much enhanced DQE performance is expected.

  3. High-efficiency organic glass scintillators

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Patrick L.; Carlson, Joseph S.

    2017-12-19

    A new family of neutron/gamma discriminating scintillators is disclosed that comprises stable organic glasses that may be melt-cast into transparent monoliths. These materials have been shown to provide light yields greater than solution-grown trans-stilbene crystals and efficient PSD capabilities when combined with 0.01 to 0.05% by weight of the total composition of a wavelength-shifting fluorophore. Photoluminescence measurements reveal fluorescence quantum yields that are 2 to 5 times greater than conventional plastic or liquid scintillator matrices, which accounts for the superior light yield of these glasses. The unique combination of high scintillation light-yields, efficient neutron/gamma PSD, and straightforward scale-up via melt-casting distinguishes the developed organic glasses from existing scintillators.

  4. GEM scintillation readout with avalanche photodiodes

    CERN Document Server

    Conceição, A S; Fernandes, L M P; Monteiro, C M B; Coelho, L C C; Azevedo, C D R; Veloso, J F C A; Lopesac, J A M; dos Santosa, J M F

    2007-01-01

    The use of the scintillation produced in the charge avalanches in GEM holes as signal amplification and readout is investigated for xenon. A VUV-sensitive avalanche photodiode has been used as photosensor. Detector gains of about 4 × 104 are achieved in scintillation readout mode, for GEM voltages of 490 V and for a photosensor gain of 150. Those gains are more than one order of magnitude larger than what is obtained using charge readout. In addition, the energy resolutions achieved with the scintillation readout are lower than those achieved with charge readout. The GEM scintillation yield in xenon was measured as a function of GEM voltage, presenting values that are about a half of those achieved for the charge yield, and reach about 730 photons per primary electron at GEM voltages of 490 V.

  5. CALICE scintillator hadron calorimeter prototype commissioning and ...

    Indian Academy of Sciences (India)

    . J CVACH. Institute of Physics, Academy of Sciences of the Czech Republic, Na Slovance 2,. 182 21 Prague, Czech Republic. E-mail: cvach@fzu.cz. Abstract. First experience with construction and positron beam tests of a scintillator.

  6. How Photonic Crystals Can Improve the Timing Resolution of Scintillators

    CERN Document Server

    Lecoq, P; Knapitsch, A

    2013-01-01

    Photonic crystals (PhCs) and quantum optics phenomena open interesting perspectives to enhance the light extraction from scintillating me dia with high refractive indices as demonstrated by our previous work. By doing so, they also in fl uence the timing resolution of scintillators by improving the photostatistics. The present cont ribution will demonstrate that they are actually doing much more. Indeed, photonic crystals, if properly designed, allow the extr action of fast light propagation modes in the crystal with higher efficiency, therefore contributing to increasing the density of photons in the early phase of the light pulse. This is of particular interest to tag events at future high-energy physics colliders, such as CLIC, with a bunch-crossing rate of 2 GHz, as well as for a new generation of time-of-flight positron emission tomographs (TOFPET) aiming at a coincidence timing resolution of 100 ps FWHM. At this level of precision, good control of the light propagation modes is crucial if we consid...

  7. Can Transient Phenomena Help Improving Time Resolution in Scintillators?

    CERN Document Server

    Lecoq, P; Vasiliev, A

    2014-01-01

    The time resolution of a scintillator-based detector is directly driven by the density of photoelectrons generated in the photodetector at the detection threshold. At the scintillator level it is related to the intrinsic light yield, the pulse shape (rise time and decay time) and the light transport from the gamma-ray conversion point to the photodetector. When aiming at 10 ps time resolution, fluctuations in the thermalization and relaxation time of hot electrons and holes generated by the interaction of ionization radiation with the crystal become important. These processes last for up to a few tens of ps and are followed by a complex trapping-detrapping process, Poole-Frenkel effect, Auger ionization of traps and electron-hole recombination, which can last for a few ns with very large fluctuations. This paper will review the different processes at work and evaluate if some of the transient phenomena taking place during the fast thermalization phase can be exploited to extract a time tag with a precision in...

  8. Scintillation measurements of the millisecond pulsar PSR J0030+0451 and pulsar space velocities

    CERN Document Server

    Nicastro, L; D'Amico, N; Lumiella, V; Johnston, S

    2001-01-01

    Scintillation observations of the nearby single millisecond pulsar (MSP) PSR J0030+0451 were carried out with the Parkes 64m radiotelescope at three different epochs in 1999. From analysis of the dynamic spectrum we obtained the amplitude of the electron density power spectrum log C_N^2 ~= -3.33$ and a scintillation velocity V_iss <~ 15 km s^-1. This result shows that the Shklovskii effect on the spin-down rate \\dot P is negligible. We also performed a correlation analysis between pulsar proper motions (V_pm) and scintillation velocities (V_iss) using updated measurements for a sample of 77 objects, 17 of which are MSPs. The full sample shows a correlation coefficient r_s ~= 80% at an extremely high significance level, while for the MSP sub-sample (excluding 2 outliers) we obtain r_s ~= 90%.

  9. Terahertz cyclotron resonance spectroscopy of an AlGaN/GaN heterostructure using a high-field pulsed magnet and an asynchronous optical sampling technique

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, B. F., E-mail: Ben.Spencer@manchester.ac.uk; Smith, W. F.; Hibberd, M. T.; Dawson, P.; Graham, D. M. [School of Physics and Astronomy and the Photon Science Institute, The University of Manchester, Manchester M13 9PL (United Kingdom); Beck, M.; Bartels, A. [Laser Quantum GmbH, Max-Stromeyer-Str. 116, 78467 Konstanz (Germany); Guiney, I.; Humphreys, C. J. [Department of Materials Science and Metallurgy, 27 Charles Babbage Road, University of Cambridge, Cambridge CB3 0FS (United Kingdom)

    2016-05-23

    The effective mass, sheet carrier concentration, and mobility of electrons within a two-dimensional electron gas in an AlGaN/GaN heterostructure were determined using a laboratory-based terahertz cyclotron resonance spectrometer. The ability to perform terahertz cyclotron resonance spectroscopy with magnetic fields of up to 31 T was enabled by combining a high-field pulsed magnet with a modified asynchronous optical sampling terahertz detection scheme. This scheme allowed around 100 transmitted terahertz waveforms to be recorded over the 14 ms magnetic field pulse duration. The sheet density and mobility were measured to be 8.0 × 10{sup 12 }cm{sup −2} and 9000 cm{sup 2} V{sup −1} s{sup −1} at 77 K. The in-plane electron effective mass at the band edge was determined to be 0.228 ± 0.002m{sub 0}.

  10. Development of an analytical method for the determination of polyphenolic compounds in vegetable origin samples by liquid chromatography and pulsed amperometric detection at a glassy carbon electrode.

    Science.gov (United States)

    Natale, Anna; Nardiello, Donatella; Palermo, Carmen; Muscarella, Marilena; Quinto, Maurizio; Centonze, Diego

    2015-11-13

    A sensitive and accurate method for the determination of polyphenolic compounds in artichoke bract extracts and olive mill wastewaters by liquid chromatography coupled with pulsed amperometric detection at a glassy carbon working electrode was developed. Preliminary experiments were carried out by cyclic voltammetry to investigate the electrochemical behavior of polyphenols under different mobile phase compositions, and to test the detection and cleaning electrode potentials. Chromatographic separations were performed by using a core-shell C18 column, eluted with acetic acid and acetonitrile, by combined concave-linear binary gradients. Under the optimized experimental conditions, a good column efficiency and peak symmetry were observed, also for stereo and positional isomeric compounds. The developed three-step potential waveform for pulsed amperometric detection was successfully applied for the sensitive chromatographic determination of polyphenols in artichoke extracts and olive mill wastewaters. Linearity, precision and sensitivity of the proposed method have been evaluated. A wide linear range of response (up to 20 mg/L) has been obtained for all the investigated compounds. Detection and quantification limits in the vegetable origin sample extracts were in the range 0.004-0.6 mg/L and 0.01-2mg/L, respectively, while the injection-to-injection repeatability (n=6) ranged from 5 to 13%. The obtained results confirmed the excellent sensitivity of the electrochemical detection, and its suitability for the determination of electroactive polyphenolic compounds at low concentration levels. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Spectrometric characteristics of polystyrene scintillation films

    CERN Document Server

    Astvatsaturov, A R; Gavalyan, V B; Gavalyan, V G

    1999-01-01

    The spectrometric characteristics of five types of polystyrene scintillation films with thicknesses of 10, 30, 50 and 80 mu m and of analogous 250 mu m thick plates irradiated with sup 2 sup 3 sup 9 Pu, sup 2 sup 3 sup 8 Pu and sup 2 sup 2 sup 6 Ra sources of alpha-particles have been studied. The prospects of utilization of scintillation films as radiators for detection of heavy charged particles and measurement of their energy was experimentally shown.

  12. STRAIN LOCALIZATION PECULIARITIES AND DISTRIBUTION OF ACOUSTIC EMISSION SOURCES IN ROCK SAMPLES TESTED BY UNIAXIAL COMPRESSION AND EXPOSED TO ELECTRIC PULSES

    Directory of Open Access Journals (Sweden)

    V. A. Mubassarova

    2014-01-01

    Full Text Available Results of uniaxial compression tests of rock samples in electromagnetic fields are presented. The experiments were performed in the Laboratory of Basic Physics of Strength, Institute of Continuous Media Mechanics, Ural Branch of RAS (ICMM. Deformation of samples was studied, and acoustic emission (AE signals were recorded. During the tests, loads varied by stages. Specimens of granite from the Kainda deposit in Kyrgyzstan (similar to samples tested at the Research Station of RAS, hereafter RS RAS were subject to electric pulses at specified levels of compression load. The electric pulses supply was galvanic; two graphite electrodes were fixed at opposite sides of each specimen. The multichannel Amsy-5 Vallen System was used to record AE signals in the six-channel mode, which provided for determination of spatial locations of AE sources. Strain of the specimens was studied with application of original methods of strain computation based on analyses of optical images of deformed specimen surfaces in LaVISION Strain Master System.Acoustic emission experiment data were interpreted on the basis of analyses of the AE activity in time, i.e. the number of AE events per second, and analyses of signals’ energy and AE sources’ locations, i.e. defects.The experiment was conducted at ICMM with the use of the set of equipment with advanced diagnostic capabilities (as compared to earlier experiments described in [Zakupin et al., 2006a, 2006b; Bogomolov et al., 2004]. It can provide new information on properties of acoustic emission and deformation responses of loaded rock specimens to external electric pulses.The research task also included verification of reproducibility of the effect (AE activity when fracturing rates responded to electrical pulses, which was revealed earlier in studies conducted at RS RAS. In terms of the principle of randomization, such verification is methodologically significant as new effects, i.e. physical laws, can be considered

  13. Dependence of the ablative effect of nanosecond laser pulses at the surface of dentine samples on the laser wavelength

    Science.gov (United States)

    Fenic, Constantin G.; Chis, Ioan; Dabu, Razvan V.; Stratan, Aurel; Apostol, Ion G.; Stoian, Razvan; Luculescu, C.; Ghica, Cornel; Nistor, Leona C.

    1998-07-01

    A Q-switched Nd:YAG laser beam and its second and fourth harmonics were focused onto the polished surface of dentine samples in order to compare the ablative effect for the three wavelengths. A photoacoustic technique is applied for the ablation threshold determination. The Scanning Electron Microscope images of the produced craters are investigated and the volume of ablated material is determined. The necessary optical constants for the ablation calculation are experimentally determined.

  14. Pulsed beam dosimetry using fiber-coupled radioluminescence detectors

    DEFF Research Database (Denmark)

    Andersen, Claus Erik

    2012-01-01

    The objective of this work was to review and discuss the potential application of fiber-coupled radioluminescence detectors for dosimetry in pulsed MV photon beams. Two types of materials were used: carbon-doped aluminium oxide (Al2O3:C) and organic plastic scintillators. Special consideration...... was given to the discrimination between radioluminescence signals from the phosphors and unwanted light induced in the optical fiber cables during irradiation (Cerenkov and fluorescence). New instrumentation for dose-per-pulse measurements with organic plastic scintillators was developed....

  15. DESCANT - The DEuterated SCintillator Array for Neutron Tagging

    Science.gov (United States)

    Bildstein, Vinzenz; Garrett, P. E.; Bandyopadhay, D.; Bangay, J.; Bianco, L.; Demand, G.; Hadinia, B.; Leach, K. G.; Sumithrarachchi, C.; Turko, J.; Wong, J.; Ashley, S. F.; Crider, B. P.; McEllistrem, M. T.; Peters, E. E.; Prados-Estévez, F. M.; Yates, S. W.; Vanhoy, J. R.; Ball, G. C.; Bishop, D. P.; Garnsworthy, A. B.; Hackman, G.; Pearson, C. J.; Shaw, B.; Saran, F.

    2016-09-01

    The DESCANT array at TRIUMF is designed to detect neutrons from RIB experiments. DESCANT is composed of 70 close-packed deuterated organic liquid scintillators coupled to digital fast read-out ADC modules. This configuration will permit online pulse-shape discrimination between neutron and γ-ray events. A prototype detector has been tested with monoenergetic neutrons at the accelerator laboratory of the University of Kentucky. A first commissioning experiment of the full array, using the decay of 145-146Cs, will be performed in August 2016. The results of the tests and a preliminary analysis of the commissioning experiment will be presented. Work supported by the Canada Foundation for Innovation, the Natural Sciences and Engineering Research Council of Canada, the National Research Council of Canada and the Canadian Research Chairs program.

  16. A Real-Time Scintillation Crystal Identification Method and Its FPGA Implementation

    Science.gov (United States)

    Arafa, A. A.; Saleh, H. I.

    2014-10-01

    At the expense of increasing the complexity, Zernike Moment (ZM) was used in Crystal Identification (CI) to solve the parallax error with the highest identification performance among recent methods that are based on Digital signal processing (DSP) algorithms. In Positron Emission Tomography (PET) scanners, the CI method must fulfill the real-time event rate processing that requires low complexity and fast algorithms. The main idea of this paper is the complexity reduction of the ZM-based CI method and using a Support Vector Machine (SVM) classifier to comply with the rate of real-time PET scanners. To achieve this goal, 1-D form of ZM and fast computations of cascaded ZM and SVM stages are proposed to minimize the complexity while preserving the highest performance among compared methods. The proposed fast ZM-SVM CI method is implemented using both MATLAB and FPGA and verified by identification of 100 000 pulses of LSO-LuYAP scintillation crystals. The FPGA realization of the fast ZM-SVM CI method offers an identification rate of 90.6% at a rate of 6.2 Mevents/s using 16 samples per event which is sufficient for real time small animal PET scanners.

  17. Application of the efficiency tracing method to the liquid scintillation metrology of 3H and 14C dual-labelled samples; Aplicacion del metodo de la figura de merito a la metrologia por centelleo liquido de muestras doblemente marcadas con 3H y 14C.

    Energy Technology Data Exchange (ETDEWEB)

    Martin-Casallo, M. T.; Los Arcos, J. M.; Grau, A.

    1989-07-01

    Two calculation procedures have been tested for the application of the efficiency tracing method to the activity determination of 3H and 14C dual- -labelled samples in the liquid scintillation metrology. A procedure Ieads to the statement of a linear equations system as a function of the quenching parameter, while the other one uses a least-square algorithm to fit the total count rate against the quenching parameter. The first procedure is strongly sensitive to the statistical uncertainty on the partial efficiencies and produces discrepancies which may reach more than 100% compared to the real values. The second procedure leads to more reliable results, showing discrepancies between 0.1% and 0.6% for the 3H activity and between 0.6% and 5% for the 14C activity, as that the efficiency tracing method can be applied to the metro- logy of dual-labelled samples of 3H and 14C by means of this procedure. (Author) 7 refs.

  18. Simultaneous extraction of trace organophosphorous pesticides from plasma sample by automated solid phase extraction and determination by gas chromatography coupled with pulsed flame photometric detector.

    Science.gov (United States)

    Wang, Yuanfeng; Du, Ran

    2010-05-20

    The purpose of our work was to develop a simple and efficient analytical method for simultaneous determination of different species of organic phosphorus pesticides from plasma sample by using automated solid phase extraction (SPE) and gas chromatography/pulsed flame photometric detector (GC/PFPD) as a diagnostic tool. Firstly, the developed extraction method was validated using 5 certified reference materials; then, it was applied to plasma sample. Such factors as the category and volume of wash and elution solvent were examined separately. Among these factors, the category of elution solvent is most important. Hexane-acetone (50:50, v/v) seems to be the best choice for it. The eluent was evaporated on a nitrogen stream at room temperature and redissolved by acetone. 1microL of aliquots was chromatographed on GC/PFPD. Response versus the amount of pesticides injected ranging from 0.05 to 2ng showed a good linearity. The detection limits were 0.01ng for dimethoate, 0.03ng for methyl-parathion and malathion, 0.04ng for terbufos and 0.02ng for parathion. Extraction recoveries range from 84.3% to 109.1%.This extraction method for multispecies analysis incorporates many benefits in terms of speed, low solvent use, accuracy of measurement, sensitivity, relative simplicity, as well as the time saving and convenience of multiple species measurement through sample preparation and analysis as an integrated step.

  19. Detector for the FSD Fourier-Diffractometer Based on ZnS(Ag)/^{6}LiF Scintillation Screen and Wavelength Shifting Fibers Readout

    CERN Document Server

    Kuzmin, E S; Bokuchava, G D; Zhuk, V V; Kudryashov, V A; Buklin, A P; Trounov, V A

    2001-01-01

    At the IBR-2 pulsed reactor (FLNP, JINR, Dubna), a specialized time-of-flight instrument Fourier-Stress-Diffractometer (FSD) intended for the measurement of internal steresses in bulk samples by using high-resolution neutron diffraction is under construction. One of the main components of the diffractometer is a new-type detector with combined electronic - geometrical focusing uniting a large solid angle and a small geometry contribution to the instrumental resolution. The first two modules of the detector, based on scintillation screen ZnS(Ag)/^{6}LiF with wavelength shifting fibers readout have been developed and tested. The design of the detector and associated electronics are described. The method of time focusing surface approximation, using the screen flexibility is proposed. Characteristics of tested modules in comparison with a detector of previous generation are presented and advantages of new detector design for high-resolution diffractometry are discussed.

  20. Effects of Photonic Crystals on the Light Output of Heavy Inorganic Scintillators

    CERN Document Server

    Knapitsch, Arno; Fabjan, Christian W; Leclercq, Jean-Louis; Letartre, Xavier; Mazurczyk, Radoslaw; Lecoq, Paul

    2013-01-01

    Photonic crystals (PhCs) are optical materials which can affect the propagation of light in multiple ways. In recent years PhCs contributed to major technological developments in the field of semiconductor lasers, light emitting diodes and photovoltaic applications. In our case we are investigating the capabilities of photonic crystal slabs with the aim to improve the performance of heavy inorganic scintillators. To study the combination of scintillators and PhCs we use a Monte-Carlo program to simulate the light propagation inside a scintillator and a rigorous coupled wave analysis (RCWA) framework to analyse the optical PhC properties. The simulations show light output improvements of a wide range of scintillating materials due to light scattering effects of the PhC slabs. First samples have been produced on top of 1.2 × 2.6 × 5 mm LSO (cerium-doped Lutetium Oxyorthosilicate, Lu_2SiO_5:Ce^3+) scintillators using electron beam lithography and reactive ion etching (RIE). Our samples show a 30-60% light outp...

  1. Conference on Engineering of Scintillation Materials and Radiation Technologies

    CERN Document Server

    Gektin, Alexander

    2017-01-01

    This volume provides a broad overview of the latest achievements in scintillator development, from theory to applications, and aiming for a deeper understanding of fundamental processes, as well as the discovery and availability of components for the production of new generations of scintillation materials. It includes papers on the microtheory of scintillation and the initial phase of luminescence development, applications of the various materials, and development and characterization of ionizing radiation detection equipment. The book also touches upon the increased demand for cryogenic scintillators, the renaissance of  garnet materials for scintillator applications, nano-structuring in scintillator development, development and applications for security, and exploration of hydrocarbons and ecological monitoring.

  2. Role of hot electron transport in scintillators: A theoretical study

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Huihui [SZU-NUS Collaborative Innovation Center for Optoelectronic Science and Technology, Key Lab. of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen Univ. (China); Li, Qi [Physical Sciences Division, IBM TJ Watson Research Center, Yorktown Heights, NY (United States); Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL (United States); Lu, Xinfu; Williams, R.T. [Department of Physics, Wake Forest University, Winston Salem, NC (United States); Qian, Yiyang [College of Engineering and Applied Science, Nanjing University (China); Wu, Yuntao [Scintillation Materials Research Center, University of Tennessee, Knoxville, TN (United States)

    2016-10-15

    Despite recent intensive study on scintillators, several fundamental questions on scintillator properties are still unknown. In this work, we use ab-initio calculations to determine the energy dependent group velocity of the hot electrons from the electronic structures of several typical scintillators. Based on the calculated group velocities and optical phonon frequencies, a Monte-Carlo simulation of hot electron transport in scintillators is carried out to calculate the thermalization time and diffusion range in selected scintillators. Our simulations provide physical insights on a recent trend of improved proportionality and light yield from mixed halide scintillators. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  3. Compensated bismuth-loaded plastic scintillators for neutron detection using low-energy pseudo-spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Dumazert, Jonathan, E-mail: jonathan.dumazert@cea.fr [CEA, LIST, Laboratoire Capteurs Architectures Electroniques, 91191 Gif-sur-Yvette (France); Coulon, Romain; Bertrand, Guillaume H.V.; Normand, Stéphane [CEA, LIST, Laboratoire Capteurs Architectures Electroniques, 91191 Gif-sur-Yvette (France); Méchin, Laurence [CNRS, UCBN, Groupe de Recherche en Informatique, Image, Automatique et Instrumentation de Caen, 14050 Caen (France); Hamel, Matthieu [CEA, LIST, Laboratoire Capteurs Architectures Electroniques, 91191 Gif-sur-Yvette (France)

    2016-05-21

    Gadolinium-covered modified plastic scintillators show a high potential for the deployment of cost-effective neutron detectors. Taking advantage of the low-energy photon and electron signature of thermal neutron captures in gadolinium-155 and gadolinium-157 however requires a background correction. In order to display a trustable rate, dual compensation schemes appear as an alternative to Pulse Shape Discrimination. This paper presents the application of such a compensation scheme to a two-bismuth loaded plastic scintillator system. A detection scintillator interacts with incident photon and fast neutron radiations and is covered with a gadolinium converter to become thermal neutron-sensitive as well. In the meantime, an identical compensation scintillator, covered with terbium, solely interacts with the photon and fast neutron part of incident radiations. After the acquisition and the treatment of the counting signals from both sensors, a hypothesis test determines whether the resulting count rate after subtraction falls into statistical fluctuations or provides a robust image of neutron activity. A laboratory prototype is tested under both photon and neutron radiations, allowing us to investigate the performance of the overall compensation system. The study reveals satisfactory results in terms of robustness to a cesium-137 background and in terms of sensitivity in presence of a californium-252 source.

  4. Compensated gadolinium-loaded plastic scintillators for thermal neutron detection (and counting)

    Energy Technology Data Exchange (ETDEWEB)

    Dumazert, Jonathan; Coulon, Romain; Bertrand, Guillaume H. V.; Hamel, Matthieu; Sguerra, Fabien; Dehe-Pittance, Chrystele; Normand, Stephane [CEA, LIST, Laboratoire Capteurs Architectures Electroniques, 99 Gif-sur-Yvette, (France); Mechin, Laurence [CNRS, UCBN, Groupe de Recherche en Informatique, Image, Automatique et Instrumentation de Caen, 4050 Caen, (France)

    2015-07-01

    Plastic scintillator loading with gadolinium-rich organometallic complexes shows a high potential for the deployment of efficient and cost-effective neutron detectors. Due to the low-energy photon and electron signature of thermal neutron capture by gadolinium-155 and gadolinium-157, alternative treatment to Pulse Shape Discrimination has to be proposed in order to display a trustable count rate. This paper discloses the principle of a compensation method applied to a two-scintillator system: a detection scintillator interacts with photon radiation and is loaded with gadolinium organometallic compound to become a thermal neutron absorber, while a non-gadolinium loaded compensation scintillator solely interacts with the photon part of the incident radiation. Posterior to the nonlinear smoothing of the counting signals, a hypothesis test determines whether the resulting count rate after photon response compensation falls into statistical fluctuations or provides a robust image of a neutron activity. A laboratory prototype is tested under both photon and neutron irradiations, allowing us to investigate the performance of the overall compensation system in terms of neutron detection, especially with regards to a commercial helium-3 counter. The study reveals satisfactory results in terms of sensitivity and orientates future investigation toward promising axes. (authors)

  5. The role of air annealing on the optical and scintillation properties of Mg co-doped Pr:LuAG transparent ceramics

    Science.gov (United States)

    Hu, Zewang; Cao, Maoqing; Chen, Haohong; Shi, Yun; Kou, Huamin; Xie, Tengfei; Wu, Lexiang; Pan, Yubai; Feng, Xiqi; Vedda, Anna; Beitlerova, A.; Nikl, M.; Li, Jiang

    2017-10-01

    Polycrystalline 0.2at%Pr:Lu3Al5O12 (Pr:LuAG) transparent ceramics were fabricated by solid-state reaction using 0.01 wt% MgO as sintering aid. The as-sintered ceramics were annealed in air at different temperatures. Optical absorption, photoluminescence, X-ray excited luminescence and pulse height spectra obtained after different annealing were compared. Modifications of the oxygen vacancy concentrations are found to govern the changes of the optical and scintillation response for annealing temperatures lower than 1000 °C, while the oxidation of Pr3+ to Pr4+ plays a more important role for higher temperatures. Air annealing up to 700 °C is an effective tool to improve the 5d-4f emission efficiency of MgO co-doped Pr:LuAG transparent ceramics. The highest radioluminescence intensity is obtained for the 700 °C annealed sample. At variance, higher temperature annealing leads to the deterioration of 5d-4f photoluminescence and scintillation properties because of the self-absorption of Pr4+ and energy transfer from Pr3+ to Pr4+. In addition, we find that the 4f-4f slow emission of ceramics shows different response characteristics under different irradiation sources.

  6. Silver particles-modified carbon paste electrodes for differential pulse voltammetric determination of paraquat in ambient water samples

    Directory of Open Access Journals (Sweden)

    A. Farahi

    2016-02-01

    Full Text Available This paper describes the construction of silver particles-impregnated carbon paste electrode (Ag-CPE. The new electrode revealed an interesting determination of paraquat (II. The latter was accumulated on the modified electrode surface by adsorption onto silver particles and was reduced in 0.1 mol L−1 of Na2SO4 electrolyte at −0.70 V and −1.0 V for peaks 1 and 2, respectively. Experimental conditions were optimized by varying the heating temperature of the silver/carbon composite, the Ag/CP ratio, pH of measuring solution and accumulation time. Under the optimized working conditions, calibration graphs were linear for the concentration ranging from 1.0 × 10−7 to 1.0 × 10−3 mol L−1 with detection limits (DL, 3σ 3.3 and 6.4 × 10−9 mol L−1, respectively, for peaks 1 and 2. The precision of this methodology was evaluated for eight successive measurements of the same samples containing 1.0 × 10−4 mol L−1 of paraquat. The relative standard deviations (D.S.R. were 1.9% and 2.4% for the peaks 1 and 2, respectively. The Ag/CP composite was characterized by X-ray diffraction (XRD and BET adsorption analysis.

  7. Optimization of screening for radioactivity in urine by liquid scintillation.

    Energy Technology Data Exchange (ETDEWEB)

    Shanks, Sonoya Toyoko; Reese, Robert P.; Preston, Rose T. (Technadyne Engineering Consultants, Inc., Albuquerque, NM)

    2007-08-01

    Numerous events have or could have resulted in the inadvertent uptake of radionuclides by fairly large populations. Should a population receive an uptake, valuable information could be obtained by using liquid scintillation counting (LSC) techniques to quickly screen urine from a sample of the affected population. This study investigates such LSC parameters as discrimination, quench, volume, and count time to yield guidelines for analyzing urine in an emergency situation. Through analyzing variations of the volume and their relationships to the minimum detectable activity (MDA), the optimum ratio of sample size to scintillating chemical cocktail was found to be 1:3. Using this optimum volume size, the alpha MDA varied from 2100 pCi/L for a 30-second count time to 35 pCi/L for a 1000-minute count time. The typical count time used by the Sandia National Laboratories Radiation Protection Sample Diagnostics program is 30 minutes, which yields an alpha MDA of 200 pCi/L. Because MDA is inversely proportional to the square root of the count time, count time can be reduced in an emergency situation to achieve the desired MDA or response time. Note that approximately 25% of the response time is used to prepare the samples and complete the associated paperwork. It was also found that if the nuclide of interest is an unknown, pregenerated discriminator settings and efficiency calibrations can be used to produce an activity value within a factor of two, which is acceptable for a screening method.

  8. The Seeding tracking algorithm for a scintillating detector at LHCb

    CERN Document Server

    Amhis, Y; De Cian, M; Nikodem, T; Polci, F

    2014-01-01

    The project of the LHCb upgraded detector foreseens the presence of a Scintillating Fiber Tracker (SciFi). This note describes the algorithm used for reconstructing standalone tracks in the SciFi, called $Seeding$. This algorithm is crucial for reconstructing tracks generated by long lived particles such as $K^0_s$. The main performances on simulated samples for running conditions expected in future data taking after the upgrade, namely a luminosity larger than $\\mathcal{L} = 2 \\times 10^{33} cm^{-2}s^{1}$, are also discussed.

  9. Long-term stability scintillation tiles for LHCb detector

    CERN Document Server

    Grinyov, B V; Khlapova, N P; Lebedev, V N; Melnychuk, S V; Senchyshyn, V G

    2004-01-01

    Accelerated thermal aging tests of materials-UPS-923A, UPS-96G, UPS-96GM and their analogues, SCSN-81 (Kuraray) and BC-408 (Bicron)- were made. A forecast of tile lifetime was made for normal conditions of usage (20% reduction of light output and 50% reduction of the bulk attenuation length (BAL) and technical attenuation length (TAL). Scintillator UPS-96GM has the most long-term stability of parameters- more than 11 yr. BC-408 samples have the minimum lifetime ~7 yr. The long-term stability, calculated by light yield reduction, of UPS-96G, UPS-923A and SCSN-81 is 10, 9 and 8 yr, respectively.

  10. Scintillation Detectors for Charged Particles and Photons

    CERN Document Server

    Lecoq, P

    2011-01-01

    Scintillation Detectors for Charged Particles and Photons in 'Charged Particle Detectors - Particle Detectors and Detector Systems', part of 'Landolt-Börnstein - Group I Elementary Particles, Nuclei and Atoms: Numerical Data and Functional Relationships in Science and Technology, Volume 21B1: Detectors for Particles and Radiation. Part 1: Principles and Methods'. This document is part of Part 1 'Principles and Methods' of Subvolume B 'Detectors for Particles and Radiation' of Volume 21 'Elementary Particles' of Landolt-Börnstein - Group I 'Elementary Particles, Nuclei and Atoms'. It contains the Subsection '3.1.1 Scintillation Detectors for Charged Particles and Photons' of Section '3.1 Charged Particle Detectors' of Chapter '3 Particle Detectors and Detector Systems' with the content: 3.1.1 Scintillation Detectors for Charged Particles and Photons 3.1.1.1 Basic detector principles and scintillator requirements 3.1.1.1.1 Interaction of ionizing radiation with scintillator material 3.1.1.1.2 Important scint...

  11. Demonstration of nuclear recoil discrimination using recoil range in a mixed CaF 2 + liquid scintillator gel detector for dark matter searches

    Science.gov (United States)

    Spooner, N. J. C.; Tovey, D. R.; Peak, C. D.; Roberts, J. W.

    1997-12-01

    We present first measurements on a prototype dark matter detector being developed to achieve event by event discrimination of nuclear recoils from electron recoils below 100 keV by utilising the difference in the recoil ranges of these particles. The detector consists of sub-micron scintillating grains of CaF 2 suspended in Dioxan gel scintillator with matched refractive index. We call this form of detector CASPAR (Cocktail of Alkali halide Scintillating PARticles). We present here results of monoenergetic neutron scattering tests on CASPAR and show how scintillation pulse shape analysis can be used as a powerful means of distinguishing Ca, F, C and H recoil events from electron recoils. > 90% discrimination of Ca and F recoils from electrons at 60 keV was observed for <5% loss of signal.

  12. Multistage plasma initiation process by pulsed CO2 laser irradiation of a Ti sample in an ambient gas (He, Ar, or N2)

    Science.gov (United States)

    Hermann, J.; Boulmer-Leborgne, C.; Mihailescu, I. N.; Dubreuil, B.

    1993-02-01

    New experimental results are reported on plasma initiation in front of a titanium sample irradiated by ir (λ=10.6 μm) laser pulses in an ambient gas (He, Ar, and N2) at pressures ranging from several Torr up to the atmosphere. The plasma is studied by space- and time-resolved emission spectroscopy, while sample vaporization is probed by laser-induced fluorescence spectroscopy. Threshold laser intensities leading to the formation of a plasma in the vapor and in the ambient gases are determined. Experimental results support the model of a vaporization mechanism for the plasma initiation (vaporization-initiated plasma breakdown). The plasma initiation is described by simple numerical criteria based on a two-stage process. Theoretical predictions are found to be in a reasonable agreement with the experiment. This study provides also a clear explanation of the influence of the ambient gas on the laser beam-metal surface energy transfer. Laser irradiation always causes an important vaporization when performed in He, while in the case of Ar or N2, the interaction is reduced in heating and vaporization of some surface defects and impurities.

  13. Isotopic response with small scintillator based gamma-ray spectrometers

    Science.gov (United States)

    Madden, Norman W [Sparks, NV; Goulding, Frederick S [Lafayette, CA; Asztalos, Stephen J [Oakland, CA

    2012-01-24

    The intrinsic background of a gamma ray spectrometer is significantly reduced by surrounding the scintillator with a second scintillator. This second (external) scintillator surrounds the first scintillator and has an opening of approximately the same diameter as the smaller central scintillator in the forward direction. The second scintillator is selected to have a higher atomic number, and thus has a larger probability for a Compton scattering interaction than within the inner region. Scattering events that are essentially simultaneous in coincidence to the first and second scintillators, from an electronics perspective, are precluded electronically from the data stream. Thus, only gamma-rays that are wholly contained in the smaller central scintillator are used for analytic purposes.

  14. Improved fission neutron energy discrimination with {sup 4}He detectors through pulse filtering

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Ting, E-mail: ting.zhu@ufl.edu [University of Florida, Gainesville, FL (United States); Liang, Yinong; Rolison, Lucas; Barker, Cathleen; Lewis, Jason; Gokhale, Sasmit [University of Florida, Gainesville, FL (United States); Chandra, Rico [Arktis Radiation Detectors Ltd., Räffelstrasse 11, Zürich (Switzerland); Kiff, Scott [Sandia National Laboratories, CA (United States); Chung, Heejun [Korean Institute for Nuclear Nonproliferation and Control, 1534 Yuseong-daero, Yuseong-gu, Daejeon (Korea, Republic of); Ray, Heather; Baciak, James E.; Enqvist, Andreas; Jordan, Kelly A. [University of Florida, Gainesville, FL (United States)

    2017-03-11

    This paper presents experimental and computational techniques implemented for {sup 4}He gas scintillation detectors for induced fission neutron detection. Fission neutrons are produced when natural uranium samples are actively interrogated by 2.45 MeV deuterium-deuterium fusion reaction neutrons. Fission neutrons of energies greater than 2.45 MeV can be distinguished by their different scintillation pulse height spectra since {sup 4}He detectors retain incident fast neutron energy information. To enable the preferential detection of fast neutrons up to 10 MeV and suppress low-energy event counts, the detector photomultiplier gain is lowered and trigger threshold is increased. Pile-up and other unreliable events due to the interrogating neutron flux and background radiation are filtered out prior to the evaluation of pulse height spectra. With these problem-specific calibrations and data processing, the {sup 4}He detector's accuracy at discriminating fission neutrons up to 10 MeV is improved and verified with {sup 252}Cf spontaneous fission neutrons. Given the {sup 4}He detector's ability to differentiate fast neutron sources, this proof-of-concept active-interrogation measurement demonstrates the potential of special nuclear materials detection using a {sup 4}He fast neutron detection system.

  15. Characterization of GAGG:Ce scintillators with various Al-to-Ga ratio

    Science.gov (United States)

    Sibczynski, Pawel; Iwanowska-Hanke, Joanna; Moszyński, Marek; Swiderski, Lukasz; Szawłowski, Marek; Grodzicka, Martyna; Szczęśniak, Tomasz; Kamada, Kei; Yoshikawa, Akira

    2015-02-01

    We have studied the scintillation properties of cerium doped gadolinium aluminum gallium garnet (GAGG:Ce) scintillators with various Al-to-Ga ratio. Having many advantages, like high density (6.63 g/cm3), high light output, fair energy resolution and quite fast decay time, the scintillators are an excellent solution for gamma rays detection. In this paper performance of the GAGG:1%Ce crystals with different Al-to-Ga ratios is presented. The study covered measurements of emission spectra, light output, energy resolution and non-proportionality for each crystal. It was observed that the light output of the recently obtainable crystals varies from 40,000 to 55,000 ph/MeV. Maximum emission wavelength of about 520 nm promotes silicon based photodetectors for use with these scintillators. The best energy resolution of 3.7% at 662 keV, measured with Hamamatsu S8664-1010 APD, was obtained for the sample with the minimum gallium content. This result is close to these obtained with the group of scintillators retaining very good energy resolution, like LaCl3 and CeBr3.

  16. Hybrid scintillators for x-ray imaging

    Science.gov (United States)

    Bueno, Clifford; Rairden, Richard L.; Betz, Robert A.

    1996-04-01

    The objective of this effort is to improve x-ray absorption and light production while maintaining high spatial resolution in x-ray imaging phosphor screens. Our current target is to improve screen absorption efficiency and screen brightness by factors of 2 or greater over existing screens that have 10-1p/mm resolution. In this program, commercial phosphor screens are combined with highly absorbing, high-resolution scintillating fiber-optic (SFO) face plates to provide a hybrid sensor that exhibits superior spatial resolution, x-ray absorption, and brightness values over the phosphor material alone. These characteristics of hybrid scintillators can be adjusted to meet specific x-ray imaging requirements over a wide range of x-ray energy. This paper discusses the design, fabrication, and testing of a new series of hybrid scintillators.

  17. Microfluidic Scintillation Detectors for High Energy Physics

    CERN Document Server

    Maoddi, Pietro; Mapelli, Alessandro

    This thesis deals with the development and study of microfluidic scintillation detectors, a technology of recent introduction for the detection of high energy particles. Most of the interest for such devices comes from the use of a liquid scintillator, which entails the possibility of changing the active material in the detector, leading to increased radiation resistance. A first part of the thesis focuses on the work performed in terms of design and modelling studies of novel prototype devices, hinting to new possibilities and applications. In this framework, the simulations performed to validate selected designs and the main technological choices made in view of their fabrication are addressed. The second part of this thesis deals with the microfabrication of several prototype devices. Two different materials were studied for the manufacturing of microfluidic scintillation detectors, namely the SU-8 photosensitive epoxy and monocrystalline silicon. For what concerns the former, an original fabrication appro...

  18. Tl2LaCl5:Ce, high performance scintillator for gamma-ray detectors

    Science.gov (United States)

    Hawrami, R.; Ariesanti, E.; Wei, H.; Finkelstein, J.; Glodo, J.; Shah, K. S.

    2017-10-01

    This paper reports on a new Ce-doped Tl-based scintillator, Tl2LaCl5 (TLC), for gamma-ray detection. 10 mm diameter crystals have been successfully grown using the vertical Bridgman method. The emission peak of TLC is detected at 383 nm under X-ray excitation. The light yield of TLC is 76,000 ph/MeV. The samples show excellent energy resolution of 3.4% (FWHM) at 662 keV. The non-proportionality is less than 1%, from 32 keV to 1275 keV. The major scintillation decay time is 36 ns.

  19. Light Distribution in the E3 and E4 Scintillation Counters of the ATLAS Tile Calorimeter

    CERN Document Server

    Hsu, Catherine

    2013-01-01

    The Tile Calorimeter (TileCal) of the ATLAS experiment is an important component of the ATLAS calorimetry because they play a crucial role in the search for new particles. The E3 and E4 are crack scintillators of TileCal that extend into the gap region between the EM barrel and EM endcaps. They thus sample the energy of the EM showers produced by particles interacting with the dead material in the EM calorimeters and with the inner detector cables. This project focuses on the study of the light collection uniformity in the E3 and E4 scintillating tiles using low energy electrons as the ionising particles. It is important to have uniform light response in the tiles because it would ensure a good energy resolution for the dead region. However, many factors affect the uniform light collection within the scintillating tiles.

  20. Characterization and optimization of Silicon Photomultipliers and small size scintillator tiles for future calorimeter applications

    CERN Document Server

    AUTHOR|(CDS)2095312; Horváth, Ákos

    For the active layers of highly granular sampling calorimeters, small scintillator tiles read out by Silicon Photomultipliers (SiPM) can be an interesting and cost effective alternative to silicon sensors. At CERN a test setup was realized for the development of new generations of calorimeters to characterize new types of Silicon Photomultipliers in terms of gain, noise, afterpulses and crosstalk and to study the impact of scintillator wrappings and the tile size on the measured light yield and uniformity. In this thesis work, the experimental setup is described and the steps for commissioning the equipment are discussed. Then, the temperature dependence of the Silicon Photomultiplier response will be investigated, including the dependence of bare Silicon Photomultipliers as well as Silicon Photomultipliers coupled to scintillator tiles. Finally, the tile-photomultiplier response for different tile sizes and coating options will be evaluated. The experimental setup will be extended to allow for the characteri...

  1. Relations between Arctic large-scale TEC changes and scintillations over Greenland

    DEFF Research Database (Denmark)

    Durgonics, Tibor; Høeg, Per; von Benzon, Hans-Henrik

    The increasing dependence on GNSS-based methods and technologies for global or regionalnavigation and communication has raised concerns about the impact of space weather on thesesystems. Temporal and spatial ionosphere variations caused by driving forces, such as changes insolar radiation, solar...... of stations in Greenland are analyzed and geophysicalvariables such as such as TEC, amplitude scintillation indices (S4), and phase scintillation indices (σϕ), are calculated together with 2D/3D electron density and scintillation maps. For the TEC weapplied data from the Greenland GNET network of stations...... – consisting of 62 stations, while thescintillations data are based on 50 Hz sampled data from a set of sites on the west coast ofGreenland (i.e., Thule, Sisimiut, and Kangerlussuaq).The GNSS-derived data is augmented by ground-based geomagnetic measurements, such as theDst-index and magnetic H-component data...

  2. Design, Construction and Installation of the ATLAS Hadronic Barrel Scintillator-Tile Calorimeter

    CERN Document Server

    Abdallah, J; Alexa, C; Alves, R; Amaral, P; Ananiev, A; Anderson, K; Andresen, X; Antonaki, A; Batusov, V; Bednar, P; Bergeaas, E; Biscarat, C; Blanch, O; Blanchot, G; Bohm, C; Boldea, V; Bosi, F; Bosman, M; Bromberg, C; Budagov, Yu A; Calvet, D; Cardeira, C; Carli, T; Carvalho, J; Cascella, M; Castillo, M V; Costello, J; Cavalli-Sforza, M; Cavasinni, V; Cerqueira, A S; Clément, C; Cobal, M; Cogswell, F; Constantinescu, S; Costanzo, D; Da Silva, P; Davidek, M; David, T; Dawson, J; De, K; Del Prete, T; Di Girolamo, B; Dita, S; Dolejsi, J; Dolezal, Z; Dotti, A; Downing, R; Drake, G; Efthymiopoulos, I; Errede, D; Errede, S; Farbin, A; Fassouliotis, D; Feng, E; Fenyuk, A; Ferdi, C; Ferreira, B C; Ferrer, A; Flaminio, V; Flix, J; Francavilla, P; Fullana, E; Garde, V; Gellerstedt, K; Giakoumopoulou, V; Giangiobbe, V; Gildemeister, O; Gilewsky, V; Giokaris, N; Gollub, N; Gomes, A; González, V; Gouveia, J; Grenier, P; Gris, P; Guarino, V; Guicheney, C; Sen-Gupta, A; Hakobyan, H; Haney, M; Hellman, S; Henriques, A; Higón, E; Hill, N; Holmgren, S; Hruska, I; Hurwitz, M; Huston, J; Jen-La Plante, I; Jon-And, K; Junk, T; Karyukhin, A; Khubua, J; Klereborn, J; Kopikov, S; Korolkov, I; Krivkova, P; Kulchitsky, Y; Kurochkin, Yu; Kuzhir, P; Lapin, V; Le Compte, T; Lefèvre, R; Leitner, R; Li, J; Liablin, M; Lokajícek, M; Lomakin, Y; Lourtie, P; Lovas, L; Lupi, A; Maidantchik, C; Maio, A; Maliukov, S; Manousakis, A; Marques, C; Marroquim, F; Martin, F; Mazzoni, E; Merritt, F S; Myagkov, A; Miller, R; Minashvili, I; Miralles, L; Montarou, G; Némécek, S; Nessi, M; Nikitine, I; Nodulman, L; Norniella, O; Onofre, A; Oreglia, M; Palan, B; Pallin, D; Pantea, D; Pereira, A; Pilcher, J E; Pina, J; Pinhão, J; Pod, E; Podlyski, F; Portell, X; Poveda, J; Pribyl, L; Price, L E; Proudfoot, J; Ramalho, M; Ramstedt, M; Raposeiro, L; Reis, J; Richards, R; Roda, C; Romanov, V; Rosnet, P; Roy, P; Ruiz, A; Rumiantsau, V; Russakovich, N; Sada Costa, J; Salto, O; Salvachúa, B; Sanchis, E; Sanders, H; Santoni, C; Santos, J; Saraiva, J G; Sarri, F; Says, L P; Schlager, G; Schlereth, J L; Seixas, J M; Selldén, B; Shalanda, N; Shevtsov, P; Shochet, M; Simaitis, V; Simonyan, M; Sisakian, A; Sjölin, J; Solans, C; Solodkov, A; Solovianov, J; Silva, O; Sosebee, M; Spanó, F; Speckmeyer, P; Stanek, R; Starchenko, E; Starovoitov, P; Suk, M; Sykora, I; Tang, F; Tas, P; Teuscher, R; Tokar, S; Topilin, N; Torres, J; Underwood, D; Usai, G; Valero, A; Valkár, S; Valls, J A; Vartapetian, A; Vazeille, F; Vellidis, C; Ventura, F; Vichou, I; Vivarelli, I; Volpi, M; White, A; Zaitsev, A; Zenin, A; Zenis, T; Zenonos, Z; Zenz, S; Zilka, B

    2007-01-01

    The scintillator tile hadronic calorimeter is a sampling calorimeter using steel as the absorber structure and scintillator as the active medium. The scintillator is located in "pockets" in the steel structure and the wavelength-shifting fibers are contained in channels running radially within the absorber to photomultiplier tubes which are located in the outer support girders of the calorimeter structure. In addition, to its role as a detector for high energy particles, the tile calorimeter provides the direct support of the liquid argon electromagnetic calorimeter in the barrel region, and the liquid argon electromagnetic and hadronic calorimeters in the endcap region. Through these, it indirectly supports the inner tracking system and beam pipe. The steel absorber, and in particular the support girders, provide the flux return for the solenoidal field from the central solenoid. Finally, the end surfaces of the barrel calorimeter are used to mount services, power supplies and readout crates for the inner tr...

  3. Measurement of Stratospheric Chromatic Scintillation with the AMON-RA Balloonborne Spectrometer

    Science.gov (United States)

    Renard, Jean-Baptiste; Dalaudier, Francis; Hauchecorne, Alain; Robert, Claude; Lemaire, Thierry; Pirre, Michel; Bertaux, Jean-Loup

    2001-08-01

    The balloonborne instrument AMON (which is a French acronym for Absorption par les Minoritaires Ozone et NOx ) has been modified to record chromatic scintillation during stellar occultation by the Earth s atmosphere. A 14-channel spectrophotometer with a sampling rate of 10 Hz was added, and the modified instrument, AMON-RA, performed successful measurements of the setting star Alnilam during the third European Stratospheric Experiment on Ozone (THESEO) project. Unambiguous records of the chromatic scintillation were obtained, to our knowledge for the first time from above the atmosphere, and some of its basic properties are reported. The properties of atmospheric structures that are responsible for this chromatic scintillation were found to be consistent with those of previous monochromatic measurements performed from space. A maximum chromatic delay of 2.5 s was observed for widely different wavelengths.

  4. Near-infrared scintillation of liquid argon

    Energy Technology Data Exchange (ETDEWEB)

    Alexander, T. [Fermilab; Escobar, C. O. [Campinas State U.; Lippincott, W. H. [Fermilab; Rubinov, P. [Fermilab

    2016-03-03

    Since the 1970s it has been known that noble gases scintillate in the near infrared (NIR) region of the spectrum (0.7 $\\mu$m < $\\lambda$; < 1.5$\\mu$m). More controversial has been the question of the NIR light yield for condensed noble gases. We first present the motivation for using the NIR scintillation in liquid argon detectors, then briefly review early as well as more recent efforts and finally show encouraging preliminary results of a test performed at Fermilab.

  5. Pulse on Pulse

    DEFF Research Database (Denmark)

    Schmidt, Ulrik; Carlson, Merete

    2012-01-01

    of the visitor’s beating heart to the blink of a fragile light bulb, thereby transforming each light bulb into a register of individual life. But at the same time the blinking light bulbs together produce a chaotically flickering light environment composed by various layers of repetitive rhythms, a vibrant...... and pulsating ‘room’. Hence, the visitors in Pulse Room are invited into a complex scenario that continuously oscillates between various aspects of signification (the light bulbs representing individual lives; the pulse itself as the symbolic ‘rhythm of life’) and instants of pure material processuality...... (flickering light bulbs; polyrhythmic layers). Taking our point of departure in a discussion of Gilles Deleuze’s concepts of modulation and signaletic material in relation to electronic media, we examine how the complex orchestration of pulsation between signification and material modulation produces...

  6. Upconverting nanoparticles for optimizing scintillator based detection systems

    Science.gov (United States)

    Kross, Brian; McKisson, John E; McKisson, John; Weisenberger, Andrew; Xi, Wenze; Zom, Carl

    2013-09-17

    An upconverting device for a scintillation detection system is provided. The detection system comprises a scintillator material, a sensor, a light transmission path between the scintillator material and the sensor, and a plurality of upconverting nanoparticles particles positioned in the light transmission path.

  7. 21 CFR 892.1100 - Scintillation (gamma) camera.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Scintillation (gamma) camera. 892.1100 Section 892...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1100 Scintillation (gamma) camera. (a) Identification. A scintillation (gamma) camera is a device intended to image the distribution of radionuclides in...

  8. Evaluation of a SiPM array detector coupled to a LFS-3 pixellated scintillator for PET/MR applications

    Energy Technology Data Exchange (ETDEWEB)

    David, Stratos; Fysikopoulos, Eleftherios [Technological Educational Institute of Athens (Greece); Georgiou, Maria [Technological Educational Institute of Athens (Greece); Department of Medical School, University of Thessaly, Larissa (Greece); Loudos, George [Technological Educational Institute of Athens (Greece)

    2015-05-18

    SiPM arrays are insensitive to magnetic fields and thus good candidates for hybrid PET/MR imaging systems. Moreover, due to their small size and flexibility can be used in dedicated small field of view small animal imaging detectors and especially in head PET/MR studies in mice. Co-doped LFS-3 scintillator crystals have higher light yield and slightly faster response than that of LSO:Ce mainly due to the co-doped activation of emission centers with varying materials such as Ce, Gd, Sc, Y, La, Tb, or Ca distributed at the molecular scale through the lutetium silicate crystal host. The purpose of this study is to investigate the behavior of the SensL ArraySL-4 (4x4 element array of 3x3 mm{sup 2} silicon photomultipliers) optical detector coupled to a 6x6 LFS-3 scintillator array, with 2x2x5 mm{sup 3} crystal size elements, for possible applications in small field of view PET/MR imaging detectors. We have designed a symmetric resistive charge division circuit to read out the signal outputs of 4x4 pixel SiPM array reducing the 16 pixel outputs of the photodetector to 4 position signals. The 4 position signals were digitized using free running Analog to Digital Converters. The ADCs sampling rate was 50 MHz. An FPGA (Spartan 6 LX150T) was used for triggering and digital signal processing of the pulses. Experimental evaluation was carried out with {sup 22}Na radioactive source and the parameters studied where energy resolution and peak to valley ratio. The first preliminary results of the evaluation shows a clear visualization of the discrete 2x2x5 mm{sup 3} LFS-3 scintillator elements. The mean peak to valley ratio of the horizontal profiles on the raw image was measured equal to 11 while the energy resolution was calculated equal to 30% at the central pixels.

  9. Performance of a scintillating strip detector with G-APD readout

    Science.gov (United States)

    Tarkovsky, Evgueny

    2011-02-01

    The upgraded KLM detector end cap of Belle II experiment will consist of more than 16 000 scintillating detectors of 0.5-2.8 m long strips. One of possible solutions is presented: a detector of 2800×40×10 mm 3 with light readout via WLS fiber and new solid state photo-detector multi-pixel avalanche photo-diode working in Geiger mode. Concept of the mechanical structure of upgraded KLM detector is given. Properties demonstrating the operation capabilities of such a scintillating detector: MIP registration efficiency, noise pulse rate with respect to expected background rate are demonstrated as well as response distributions in longitudinal and transverse directions. Study of radiation damage of photo-detectors shows that Hamamatsu MPPC can be used in Belle II environment during at least 10 years.

  10. Scintillation properties of a La, Lu-admix gadolinium pyrosilicate crystal

    Energy Technology Data Exchange (ETDEWEB)

    Kurosawa, Shunsuke, E-mail: kurosawa@imr.tohoku.ac.jp [Institute for Materials Research (IMR), Tohoku University 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577 (Japan); New Industry Creation Hatchery Center (NICHe) 6-6-10 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579 (Japan); Shishido, Toetsu; Suzuki, Akira; Sugawara, Takamasa; Nomura, Akiko; Yubuta, Kunio [Institute for Materials Research (IMR), Tohoku University 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577 (Japan); Shoji, Yasuhiro [Institute for Materials Research (IMR), Tohoku University 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577 (Japan); C& A Corporation, 6-6-40 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8577 (Japan); Yokota, Yuui [New Industry Creation Hatchery Center (NICHe) 6-6-10 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579 (Japan); Pejchal, Jan [New Industry Creation Hatchery Center (NICHe) 6-6-10 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579 (Japan); Institute of Physics, AS CR, Cukrovarnická 10, 162 53 Prague (Czech Republic); Ohashi, Yuji [Institute for Materials Research (IMR), Tohoku University 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577 (Japan); Kamada, Kei [New Industry Creation Hatchery Center (NICHe) 6-6-10 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579 (Japan); C& A Corporation, 6-6-40 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8577 (Japan); Yoshikawa, Akira [Institute for Materials Research (IMR), Tohoku University 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577 (Japan); New Industry Creation Hatchery Center (NICHe) 6-6-10 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579 (Japan); C& A Corporation, 6-6-40 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8577 (Japan)

    2015-06-01

    In order to obtain new scintillator with higher effective atomic number, a pyrosilicate crystal with a composition (Ce{sub 0.01}, Gd{sub 0.54}, La{sub 0.25}, Lu{sub 0.20}){sub 2}Si{sub 2}O{sub 7} (Ce:LaLu-GPS) was grown by the floating zone method. Emission wavelengths of this material were at 370 and 390 nm. Gamma-ray-excited pulse height and scintillation decay measurement showed that Ce:LaLu-GPS had a light output of 34,000±2000 photons/MeV, an FWHM energy resolution of 6.9±0.2%, and the decay time components of 59±1 ns (13%) and 570±20 ns (87%)

  11. Science-Driven Candidate Search for New Scintillator Materials FY 2013 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Fei; Kerisit, Sebastien N.; Xie, YuLong; Wu, Dangxin; Prange, Micah P.; Van Ginhoven, Renee M.; Campbell, Luke W.; Wang, Zhiguo

    2013-10-01

    This annual report presents work carried out during Fiscal Year (FY) 2013 at Pacific Northwest National Laboratory (PNNL) under the project entitled “Science-Driven Candidate Search for New Scintillator Materials” (Project number: PL13-SciDriScintMat-PD05) and led by Dr. Fei Gao. This project is divided into three tasks, namely (1) Ab initio calculations of electronic properties, electronic response functions and secondary particle spectra; (2) Intrinsic response properties, theoretical light yield, and microscopic description of ionization tracks; and (3) Kinetics and efficiency of scintillation: nonlinearity, intrinsic energy resolution, and pulse shape discrimination. Detailed information on the findings and insights obtained in each of these three tasks are provided in this report. Additionally, papers published this fiscal year or currently in review are included in Appendix together with presentations given this fiscal year.

  12. C7LYC Scintillators and Fast Neutron Spectroscopy

    Science.gov (United States)

    Chowdhury, P.; Brown, T.; Doucet, E.; Lister, C. J.; Wilson, G. L.; D'Olympia, N.; Devlin, M.; Mosby, S.

    2016-09-01

    Cs2 LiYCl6 (CLYC) scintillators detect both gammas and neutrons with excellent pulse shape discrimination. At UML, fast neutron measurements with a 16-element 1''x1'' CLYC array show promise for low energy nuclear science. CLYC detects fast neutrons via the 35Cl (n,p) reaction (resolution < 10 % at < 8 MeV). In our 7Li-enriched C7LYC, the thermal neutron response from the 6Li(n, α)t reaction is virtually eliminated. The low intrinsic efficiency of CLYC for fast neutrons (< 1 %) is offset by increased solid angle with the array placed near the target, since TOF is not needed for energy resolution. The array was tested at LANL for measuring elastic and inelastic neutron scattering on 56Fe. The incident energy from the white neutron source was measured via TOF, and the scattered neutron energy via the pulse height in CLYC. The array was also tested at CARIBU for measuring beta-delayed neutrons. Larger CLYC crystals are now a reality. Measurements with the first 3'' x 3'' C7LYC crystal are in progress at UML. Results will be discussed in the context of constructing a C7LYC array at FRIB for reaction and decay spectroscopy of neutron-rich fragments. Supported by the NNSA Stewardship Science Academic Alliance Program under Grant DE-NA00013008.

  13. Robust GPS carrier tracking under ionospheric scintillation

    Science.gov (United States)

    Susi, M.; Andreotti, M.; Aquino, M. H.; Dodson, A.

    2013-12-01

    Small scale irregularities present in the ionosphere can induce fast and unpredictable fluctuations of Radio Frequency (RF) signal phase and amplitude. This phenomenon, known as scintillation, can degrade the performance of a GPS receiver leading to cycle slips, increasing the tracking error and also producing a complete loss of lock. In the most severe scenarios, if the tracking of multiple satellites links is prevented, outages in the GPS service can also occur. In order to render a GPS receiver more robust under scintillation, particular attention should be dedicated to the design of the carrier tracking stage, that is the receiver's part most sensitive to these types of phenomenon. This paper exploits the reconfigurability and flexibility of a GPS software receiver to develop a tracking algorithm that is more robust under ionospheric scintillation. For this purpose, first of all, the scintillation level is monitored in real time. Indeed the carrier phase and the post correlation terms obtained by the PLL (Phase Locked Loop) are used to estimate phi60 and S4 [1], the scintillation indices traditionally used to quantify the level of phase and amplitude scintillations, as well as p and T, the spectral parameters of the fluctuations PSD. The effectiveness of the scintillation parameter computation is confirmed by comparing the values obtained by the software receiver and the ones provided by a commercial scintillation monitoring, i.e. the Septentrio PolarxS receiver [2]. Then the above scintillation parameters and the signal carrier to noise density are exploited to tune the carrier tracking algorithm. In case of very weak signals the FLL (Frequency Locked Loop) scheme is selected in order to maintain the signal lock. Otherwise an adaptive bandwidth Phase Locked Loop (PLL) scheme is adopted. The optimum bandwidth for the specific scintillation scenario is evaluated in real time by exploiting the Conker formula [1] for the tracking jitter estimation. The performance

  14. Selective and simultaneous determination of indigo carmine and allura red in candy samples at the nano-concentration range by flow injection analysis with multiple pulse amperometric detection.

    Science.gov (United States)

    Deroco, Patrícia B; Medeiros, Roberta A; Rocha-Filho, Romeu C; Fatibello-Filho, Orlando

    2018-05-01

    A novel, unique electroanalytical method was developed for the simultaneous quantification of the dyes indigo carmine (IC) and allura red (AR) in candies by coupling flow injection analysis and multiple pulse amperometry with a cathodically pretreated boron-doped diamond electrode, using 0.30 mol L-1 H2SO4 as supporting electrolyte. A dual-potential waveform was employed, causing the electrooxidation of either IC solely or IC and AR simultaneously. Thence, subtraction of current signals was used to quantify IC and AR in the concentration ranges of 70.0-1000 nmol L-1 and 40.0-770 nmol L-1, with limits of detection of 40.0 nmol L-1 and 7.0 nmol L-1, respectively. The proposed method, which permits up to 153 determinations per hour with good precision, was successfully applied in the quantification of these dyes in samples of commercial candies; their obtained contents were similar (at a 95% confidence level) to those from a comparative HPLC method. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Calculations and measurements of the scintillator-to-water stopping power ratio of liquid scintillators for use in proton radiotherapy.

    Science.gov (United States)

    Ingram, W Scott; Robertson, Daniel; Beddar, Sam

    2015-03-11

    Liquid scintillators are a promising detector for high-resolution three-dimensional proton therapy dosimetry. Because the scintillator comprises both the active volume of the detector and the phantom material, an ideal scintillator will exhibit water equivalence in its radiological properties. One of the most fundamental of these is the scintillator's stopping power. The objective of this study was to compare calculations and measurements of scintillator-to-water stopping power ratios to evaluate the suitability of the liquid scintillators BC-531 and OptiPhase HiSafe 3 for proton dosimetry. We also measured the relative scintillation output of the two scintillators. Both calculations and measurements show that the linear stopping power of OptiPhase is significantly closer to water than that of BC-531. BC-531 has a somewhat higher scintillation output. OptiPhase can be mixed with water at high concentrations, which further improves its scintillator-to-water stopping power ratio. However, this causes the solution to become cloudy, which has a negative impact on the scintillation output and spatial resolution of the detector. OptiPhase is preferred over BC-531 for proton dosimetry because its density and scintillator-to-water stopping power ratio are more water equivalent.

  16. The SNO+ Scintillator Purification Plant and Projected Sensitivity to Solar Neutrinos in the Pure Scintillator Phase

    Science.gov (United States)

    Pershing, Teal; SNO+ Collaboration

    2016-03-01

    The SNO+ detector is a neutrino and neutrinoless double-beta decay experiment utilizing the renovated SNO detector. In the second phase of operation, the SNO+ detector will contain 780 tons of organic liquid scintillator composed of 2 g/L 2,5-diphenyloxazole (PPO) in linear alkylbenzene (LAB). In this phase, SNO+ will strive to detect solar neutrinos in the sub-MeV range, including CNO production neutrinos and pp production neutrinos. To achieve the necessary detector sensitivity, a four-part scintillator purification plant has been constructed in SNOLAB for the removal of ionic and radioactive impurities. We present an overview of the SNO+ scintillator purification plant stages, including distillation, water extraction, gas stripping, and metal scavenger columns. We also give the projected SNO+ sensitivities to various solar-produced neutrinos based on the scintillator plant's projected purification efficiency.

  17. Development of ZnO:Ga as an Ultrafast Scintillator

    Energy Technology Data Exchange (ETDEWEB)

    Bourret-Courchesne, E.D.; Derenzo, S.E.; Weber, M.J.

    2008-12-10

    We report on several methods for synthesizing the ultra-fast scintillator ZnO(Ga), and measurements of the resulting products. This material has characteristics that make it an excellent alpha detector for tagging the time and direction of individual neutrons produced by t-d and d-d neutron generators (associated particle imaging). The intensity and decay time are strongly dependent on the method used for dopant incorporation. We compare samples made by diffusion of Ga metal to samples made by solid state reaction between ZnO and Ga2O3 followed by reduction in hydrogen. The latter is much more successful and has a pure, strong near-band-edge fluorescence and an ultra-fast decay time of the x-ray-excited luminescence. The luminescence increases dramatically as the temperature is reduced to 10K. We also present results of an alternate low-temperature synthesis that produces luminescent particles with a more uniform size distribution. We examine possible mechanisms for the bright near-band-edge scintillation and favor the explanation that it is due to the recombination of Ga3+ donor electrons with ionization holes trapped on H+ ion acceptors.

  18. Polycrystalline scintillators for large area detectors in HEP experiments

    Science.gov (United States)

    Dosovitskiy, G.; Fedorov, A.; Karpyuk, P.; Kuznetsova, D.; Mikhlin, A.; Kozlov, D.; Dosovitskiy, A.; Korjik, M.

    2017-06-01

    After significant increase of the accelerator luminosity throughout the High Luminosity phase of LHC, charged hadrons and neutrons with fluences higher than 1014 p/cm2 per year in the largest pseudo-rapidity regions of the detectors will cause increased radiation damage of materials. Increasing activation of the experimental equipment will make periodical maintenance and replacement of detector components difficult. Therefore, the selected materials for new detectors should be tolerant to radiation damage. Y3Al5O12:Ce (YAG:Ce) crystal was found to be one of the most radiation hard scintillation materials. However, production of YAG:Ce in a single crystalline form is costly, because crystal growth is performed at temperature near 1900°C with a very low rate of transformation of a raw material into a crystal. We propose translucent YAG:Ce ceramics as an alternative cheaper solution. Ceramic samples were sintered up to density ~98% of the theoretical value and were translucent. The samples have demonstrated light yield of 2200 phot./MeV under 662 keV γ-quanta, which gives the expected response to minimum ionizing particle around 3000 phot. for 2 mm thick plate. Scintillation light yield, registered under surface layer excitation with α-particles, was 50-70% higher than for the reference single crystal YAG:Ce.

  19. SU-8 microfluidic device for scintillating particle detection

    CERN Document Server

    Mapelli, A; Haguenauer, M; Jiguet, S; Vico Triviño, N; Renaud, P

    2009-01-01

    This paper presents the study of a novel scintillation detector based on standard microfabrication techniques. It consists of a fine pitch array of hollow waveguides filled with a liquid scintillator and optically coupled to photodetectors. The detector has been fabricated by patterning the SU-8 photoresist on silicon wafers. Experimental studies have been performed by exciting the liquid scintillator contained in the SU-8 waveguides with electrons. The scintillation light produced was read out by an external photodetector. The results obtained with this set-up demonstrate the concept of microfluidic scintillation detection and are very encouraging for future developments.

  20. Scintillating fibre (SciFi) tracker

    CERN Multimedia

    Caraban Gonzalez, Noemi

    2017-01-01

    128 modules – containing 11 000 km of scintillating fibres – will make up the new SciFi tracker, which will replace the outer and inner trackers of the LHCb detector as part of the experiment’s major upgrade during Long Shutdown 2 (LS2)

  1. Progress in studying scintillator proportionality: Phenomenological model

    Energy Technology Data Exchange (ETDEWEB)

    Bizarri, Gregory; Cherepy, Nerine; Choong, Woon-Seng; Hull, Giulia; Moses, William; Payne, Sephen; Singh, Jai; Valentine, John; Vasilev, Andrey; Williams, Richard

    2009-04-30

    We present a model to describe the origin of non-proportional dependence of scintillator light yield on the energy of an ionizing particle. The non-proportionality is discussed in terms of energy relaxation channels and their linear and non-linear dependences on the deposited energy. In this approach, the scintillation response is described as a function of the deposited energy deposition and the kinetic rates of each relaxation channel. This mathematical framework allows both a qualitative interpretation and a quantitative fitting representation of scintillation non-proportionality response as function of kinetic rates. This method was successfully applied to thallium doped sodium iodide measured with SLYNCI, a new facility using the Compton coincidence technique. Finally, attention is given to the physical meaning of the dominant relaxation channels, and to the potential causes responsible for the scintillation non-proportionality. We find that thallium doped sodium iodide behaves as if non-proportionality is due to competition between radiative recombinations and non-radiative Auger processes.

  2. The E835 scintillating fiber tracking detector

    Energy Technology Data Exchange (ETDEWEB)

    Ambrogiani, M.; Baldini, W.; Bettoni, D.; Bonora, G.; Bonsi, D.; Calabrese, R.; Carassiti, V.; Chiozzi, S.; Frabetti, S.; Luppi, E.; Milano, L.; Rossetto, L.; Stancari, G. [Ferrara Univ. (Italy). Dipt. di Fisica; Bombonati, M.; Mussa, R. [Ferrara Univ. (Italy). Dipt. di Fisica]|[Fermi National Accelerator Laboratory, 60510, Batavia (United States); Gasteyer, T.; Rivetta, C.; Wheelwright, P. [Fermi National Accelerator Laboratory, 60510, Batavia (United States)

    1998-02-01

    This paper describes the scintillating fiber tracking detector designed and built for the Fermilab experiment E835. This detector uses visible light photon counters (VLPC) readout system and is in use at the anti p accumulator ring at Fermilab. A description of the components of the detector and preliminary results of its performances are given. (orig.). 7 refs.

  3. Fluorescent compounds for plastic scintillation applications

    Energy Technology Data Exchange (ETDEWEB)

    Pla-Dalmau, A.; Bross, A.D.

    1994-04-01

    Several 2-(2{prime}-hydroxyphenyl)benzothiazole, -benzoxazole, and -benzimidazole derivatives have been prepared. Transmittance, fluorescence, light yield, and decay time characteristics of these compounds have been studied in a polystyrene matrix and evaluated for use in plastic scintillation detectors. Radiation damage studies utilizing a {sup 60}C source have also been performed.

  4. Scintillation gamma spectrometer for analysis of hydraulic fracturing waste products.

    Science.gov (United States)

    Ying, Leong; O'Connor, Frank; Stolz, John F

    2015-01-01

    Flowback and produced wastewaters from unconventional hydraulic fracturing during oil and gas explorations typically brings to the surface Naturally Occurring Radioactive Materials (NORM), predominantly radioisotopes from the U238 and Th232 decay chains. Traditionally, radiological sampling are performed by sending collected small samples for laboratory tests either by radiochemical analysis or measurements by a high-resolution High-Purity Germanium (HPGe) gamma spectrometer. One of the main isotopes of concern is Ra226 which requires an extended 21-days quantification period to allow for full secular equilibrium to be established for the alpha counting of its progeny daughter Rn222. Field trials of a sodium iodide (NaI) scintillation detector offers a more economic solution for rapid screenings of radiological samples. To achieve the quantification accuracy, this gamma spectrometer must be efficiency calibrated with known standard sources prior to field deployments to analyze the radioactivity concentrations in hydraulic fracturing waste products.

  5. Rapid determination of gross alpha/beta activity in milk using liquid scintilation counter technique

    Directory of Open Access Journals (Sweden)

    Sas Daniel

    2016-01-01

    Full Text Available Rapid determination of gross alpha and beta emitters in milk by liquid scintillation counter is discussed. This method is based on direct addition of different types of milk into scintillation cocktail and therefore it is very promising for fast determination of alpha/beta activity due to direct alpha and beta separation, measurement in close 4p geometry and without sample treatment. The selected group of radionuclides was chosen with the respect to military significance, radio-toxicity, and possibility of potential misuse. As model radionuclides 241Am, 239Pu, and 90Sr were selected. The Liquid Scintilation Counter Hidex 300 SL equipped with triple-double-coincidence-ratio technique was used for sample measurement. The aim of the work was focused on comparison of different cocktails produced by Hidex and Perkin Elmer, choosing the best cocktail based on our measurement results and adjustment of its appropriate volume. Furthermore, the optimization of ratio between the volume of scintillation cocktail and the volume of urine was investigated with the respect to the model radionuclides. According to the obtained results, the efficiency for alpha emitters was greater than 85% and for beta, greater than 95%. The obtained results allowed this method to be used for rapid determination of gross alpha/beta activity in cases where time is an essence, such as first responders or mass-scale samples, where ordinary means suffer from lack of capacity or simply collapse under the onslaught.

  6. An easy method for Ra-226 determination in river waters by liquid-scintillation counting

    Science.gov (United States)

    Moreno, H. P.; Vioque, I.; Manjón, G.; García-Tenorio, R.

    1999-01-01

    226Ra activity concentration in river water was determined using a low background liquid scintillation counter. Radium was extracted from the samples as Ra-BaSO4 precipitate which, afterwards, was dissolved with EDTA in ammonia medium. Solution was transferred into a low potassium glass vial and then mixed with a scintillation cocktail. Two different scintillation cocktails were selected for comparison. Efficiency, recovery yield and α/β separation were studied with both liquid scintillation cocktails. One single measurement, made one month after radium separation, allows to calculate the226Ra concentration as well as to assess the presence of alpha contamination of the sample. In the case of negligible interferences,224Ra concentrations can be subsequently evaluated in the same sample by the measurement made just after chemical separation of radium. This method has been applied for the determination of226Ra and224Ra activity concentrations in river water collected from different locations along the Odiel river estuary area (South-west of Spain). The presence of chemical industry, the wastes of which are released into the river, could be connected with radium activity concentration enhancements in the water.

  7. Nonproportional response of LaBr3:Ce and LaCl3:Ce scintillators to synchrotron x-ray irradiation

    NARCIS (Netherlands)

    Khodyuk, I.V.; Dorenbos, P.

    2010-01-01

    The nonproportional scintillation response of LaBr3 doped with 5% Ce3+ and of LaCl3 doped with 10% Ce3+ was measured using highly monochromatic synchrotron irradiation. To estimate the photon response, pulse height spectra at many finely spaced energy values between 9 and 100 keV were measured. The

  8. Non-Carbon Dyes For Platic Scintillators- Report

    Energy Technology Data Exchange (ETDEWEB)

    Teprovich, J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Colon-Mercado, H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Gaillard, J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Sexton, L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Washington, A. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Ward, P. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Velten, J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-10-19

    Scintillation based detectors are desirable for many radiation detection applications (portal and border monitoring, safeguards verification, contamination detection and monitoring). The development of next generation scintillators will require improved detection sensitivity for weak gamma ray sources, and fast and thermal neutron quantification. Radiation detection of gamma and neutron sources can be accomplished with organic scintillators, however, the single crystals are difficult to grow for large area detectors and subject to cracking. Alternatives to single crystal organic scintillators are plastic scintillators (PS) which offer the ability to be shaped and scaled up to produce large sized detectors. PS is also more robust than the typical organic scintillator and are ideally suited for deployment in harsh real-world environments. PS contain a mixture of dyes to down-convert incident radiation into visible light that can be detected by a PMT. This project will evaluate the potential use of nano-carbon dyes in plastic scintillators.

  9. Digital neutron/gamma discrimination with an organic scintillator at energies between 1 MeV and 100 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Comrie, A.C. [Department of Physics, University of Cape Town, Rondebosch 7700 (South Africa); Buffler, A., E-mail: andy.buffler@uct.ac.za [Department of Physics, University of Cape Town, Rondebosch 7700 (South Africa); Smit, F.D. [iThemba LABS, Somerset West 7129 (South Africa); Wörtche, H.J. [INCAS" 3, Dr. Nassaulaan 9. 9400 AT Assen (Netherlands)

    2015-02-01

    Three different digital implementations of pulse shape discrimination for pulses from an EJ301 liquid scintillator detector are presented, and illustrated with neutrons and gamma-rays produced by an Am–Be radioisotopic source, a D–T generator and beams produced by cyclotron-accelerated protons of energies 42, 62 and 100 MeV on a Li target. A critical comparison between the three methods is provided.

  10. A new type of thermal-neutron detector based on ZnS(Ag)/LiF scintillator and avalanche photodiodes

    Science.gov (United States)

    Marin, V. N.; Sadykov, R. A.; Trunov, D. N.; Litvin, V. S.; Aksenov, S. N.; Stolyarov, A. A.

    2015-09-01

    A high-efficiency thermal-neutron detector based on ZnS(Ag)/LiF scintillator is described, which employs a new technique of signal pick-up with the aid of a light guide and avalanche photodiodes instead of optical fibers and photomultipliers. Results of tests on the RADEX pulsed neutron source are presented, in which neutron diffraction patterns of test objects have been obtained.

  11. Development of pixelated scintillator-based compact radio-TLC

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Sang June; Kim, Kyeong Min; Kim, Jong Guk [Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of)

    2016-05-15

    The radio-TLC system generally shows as a graph of counting gamma radioactivity, emitting by radiopharmaceutical including a specific radioisotope. it makes guarantee quantitative accuracy and reproducibility for chemically stability and change of a targeting radiopharmaceutical. In present the radio-TLC produced by a few companies use a gas-filled proportional counter with high cost, and it has limitations of both gas diffusion and ion density. Recently, Ce:GAGG has been developed and presented as promising scintillators for PET and SPECT due to high density, high light yield (- 46,000-51,000 photon/MeV), and fast decay time. We have adapted GAGG scintillation crystal array to radio-TLC detector. We developed the GAGG crystal array based radio-TLC RT-102. The RT-102 has several advantages such as the compact size, the no-gas usage, and the lower cost in comparison with commercial radio-TLC scanner. In order to verify the performance of RT-102, we compared RT-102 with AR-2000. We scanned and compared Tc-99m and F-18 solution spotted samples in the same conditions. The ROI counts ratio and position detecting performances of RT-102 are approximately same with AR-2000. The results indicate the RT-102 has enough resolution and sensitivity to be used in the measurement of radiochemical purity test in radio-TLC devices.

  12. Liquid argon scintillation light studies in LArIAT

    Energy Technology Data Exchange (ETDEWEB)

    Kryczynski, Pawel [Fermilab

    2016-10-12

    The LArIAT experiment is using its Liquid Argon Time Projection Chamber (LArTPC) in the second run of data-taking at the Fermilab Test Beam Facility. The goal of the experiment is to study the response of LArTPCs to charged particles of energies relevant for planned neutrino experiments. In addition, it will help to develop and evaluate the performance of the simulation, analysis, and reconstruction software used in other LAr neutrino experiments. Particles from a tertiary beam detected by LArIAT (mainly protons, pions and muons) are identified using a set of beamline detectors, including Wire Chambers, Time of Flight counters and Cherenkov counters, as well as a simplified sampling detector used to detect muons. In its effort towards augmenting LArTPC technology for other neutrino experiments, LArIAT also takes advantage of the scintillating capabilities of LAr and is testing the possibility of using the light signal to help reconstruct calorimetric information and particle ID. In this report, we present results from these studies of the scintillation light signal to evaluate detector performance and calorimetry.

  13. Liquid argon scintillation light studies in LArIAT

    Science.gov (United States)

    Kryczynski, Pawel; LArIAT Collaboration

    2017-09-01

    The LArIAT experiment is using its Liquid Argon Time Projection Chamber (LArTPC) in the second run of data-taking at the Fermilab Test Beam Facility. The goal of the experiment is to study the response of LArTPCs to charged particles of energies relevant for planned neutrino experiments. In addition, it will help to develop and evaluate the performance of the simulation, analysis, and reconstruction software used in other LAr neutrino experiments. Particles from a tertiary beam detected by LArIAT (mainly protons, pions and muons) are identified using a set of beamline detectors, including Wire Chambers, Time of Flight counters and Cherenkov counters, as well as a simplified sampling detector used to detect muons. In its effort towards augmenting LArTPC technology for other neutrino experiments, LArIAT also takes advantage of the scintillating capabilities of LAr and is testing the possibility of using the light signal to help reconstruct calorimetric information and particle ID. In this report, we present results from these studies of the scintillation light signal to evaluate detector performance and calorimetry.

  14. Development of a low background liquid scintillation counter for a shallow underground laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Erchinger, Jennifer L.; Aalseth, Craig E.; Bernacki, Bruce E.; Douglas, Matthew; Fuller, Erin S.; Keillor, Martin E.; Morley, Shannon M.; Mullen, Crystal A.; Orrell, John L.; Panisko, Mark E.; Warren, Glen A.; Williams, Russell O.; Wright, Michael E.

    2015-08-20

    Pacific Northwest National Laboratory has recently opened a shallow underground laboratory intended for measurement of lowconcentration levels of radioactive isotopes in samples collected from the environment. The development of a low-background liquid scintillation counter is currently underway to further augment the measurement capabilities within this underground laboratory. Liquid scintillation counting is especially useful for measuring charged particle (e.g., B, a) emitting isotopes with no (orvery weak) gamma-ray yields. The combination of high-efficiency detection of charged particle emission in a liquid scintillation cocktail coupled with the low-background environment of an appropriately-designed shield located in a clean underground laboratory provides the opportunity for increased-sensitivity measurements of a range of isotopes. To take advantage of the 35-meter water-equivalent overburden of the underground laboratory, a series of simulations have evaluated the instrumental shield design requirements to assess the possible background rate achievable. This report presents the design and background evaluation for a shallow underground, low background liquid scintillation counter design for sample measurements.

  15. Real-time Scintillation Monitoring in Alaska from a Longitudinal Chain of ASTRA's SM-211 GPS TEC and Scintillation Receivers

    Science.gov (United States)

    Crowley, G.; Azeem, S. I.; Reynolds, A.; Santana, J.; Hampton, D. L.

    2013-12-01

    Amplitude and phase scintillation can cause serious difficulties for GPS receivers. Intense scintillation can cause loss of lock. High latitude studies generally show that phase scintillation can be severe, but the amplitude scintillation tends to be small. The reason for this is not yet understood. Furthermore, the actual causes of the ionospheric irregularities that produce high latitude scintillation are not well understood. While the gradient drift instability is thought to be important in the F-region, there may be other structures present in either the E- or F-regions. The role of particle precipitation is also not well understood. Four of ASTRA's CASES GPS receivers were deployed in Alaska to demonstrate our ability to map scintillation in realtime, to provide space weather services to GPS users, and to initiate a detailed investigation of these effects. These dual-frequency GPS receivers measure total electron content (TEC) and scintillation. The scintillation monitors were deployed in a longitudinal chain at sites in Kaktovic, Fort Yukon, Poker Flat, and Gakona. Scintillation statistics show phase scintillations to be largest at Kaktovic and smallest at Gakona. We present GPS phase scintillation and auroral emission results from the Alaska chain to characterize the correspondence between scintillation and auroral features, and to investigate the role of high latitude auroral features in driving the phase scintillations. We will also present data showing how phase scintillation can cause other GPS receivers to lose lock. The data and results are particularly valuable because they illustrate some of the challenges of using GPS systems for positioning and navigation in an auroral region like Alaska. These challenges for snowplough drivers were recently highlighted, along with the CASES SM-211 space weather monitor, in a special video in which ASTRA and three other small businesses were presented with an entrepreneurial award from William Shatner (http://youtu.be/bIVKEQH_YPk).

  16. Assessment of scintillation proxy maps for a scintillation study during geomagnetically quiet and disturbed conditions over Uganda

    Science.gov (United States)

    Amabayo, Emirant B.; Jurua, Edward; Cilliers, Pierre J.

    2017-02-01

    The objective of this paper is demonstrate the validity and usefulness of scintillation proxies derived from IGS data, through its comparison with data from dedicated scintillation monitors and its application to GNSS scintillation patterns. The paper presents scintillation patterns developed by using data from the dedicated scintillation monitors of the scintillation network decision aid (SCINDA) network, and proxy maps derived from IGS GPS data for 2011 and 2012 over low latitude stations in Uganda. The amplitude and phase scintillation indicies (S4 and σΦ) were obtained from the Novatel GSV4004B ionospheric scintillation and total electron content (TEC) monitor managed by SCINDA at Makerere (0.340N, 32.570E). The corresponding IGS GPS proxy data were obtained from the receivers at Entebbe (0.040N, 32.440E) and Mbarara (0.600S, 30.740E). The derived amplitude (S4p) and phase (sDPR) scintillation proxy maps were compared with maps of S4 and σΦ during geomagnetic storms (moderate and strong) and geomagnetically quiet conditions. The scintillation patterns using S4 and σΦ and their respective proxies revealed similar diurnal and seasonal patterns of strong scintillation occurrence. The peaks of scintillation occurrence with mean values in the range 0.3 irregularities over Uganda irrespective of the geomagnetic conditions. Therefore, the amplitude and phase scintillation proxies presented here can be used to fill gaps in low-latitude data where there are no data available from dedicated scintillation receivers, irrespective of the geomagnetic conditions.

  17. Comparison of the quantulus 1220 and 300SL liquid scintillation counters for the analysis of {sup 222}Rn in groundwater

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyun Cheol; Jung, Yoon Hee; Lee, Wanno; Choi, Guen Sik; Chung, Kun Ho; Kang, Mun Ja [Environmental Radioactivity Assessment Team, Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-12-15

    Liquid scintillation counters (LSCs) are commonly used as an analytical method for detecting {sup 222}Rn in groundwater because they involve a simple sample pretreatment and allow high throughout with an autosampler. The Quantulus 1220 is the best-selling LSC in Korea, but its production was stopped. Recently, a new type of LSC, the 300SL, was introduced. In this study, the 300SL was compared with the Quantulus 1220 in order to evaluate the ability of each apparatus to detect {sup 222}Rn in groundwater. The Quantulus 1220 and 300SL were used to detect the presence of {sup 222}Rn. Radon gas was extracted from a groundwater sample using a water-immiscible cocktail in a LSC vial. The optimal analytical conditions for each LSC were determined using a {sup 222}Rn calibration source prepared with a {sup 226}Ra source. The optimal pulse shape analysis level for alpha and beta separation was 80 for the Quantulus 1220, and the corresponding pulse length index was 12 in the 300SL. The counting efficiency of the Quantulus 1220 for alpha emissions was similar to that of the 300SL, but the background count rate of the Quantulus 1220 was 10 times lower than that of the 300SL. The minimum detectable activity of the Quantulus 1220 was 0.08 Bq·L{sup -,} while that of the 300SL was 0.20 Bq·L{sup -1}. The analytical results regarding {sup 222}Rn in groundwater were less than 10% different between these LSCs. The 300SL is an LSC that is comparable to the Quantulus 1220 for detecting {sup 222}Rn in groundwater. Both LSCs can be applied to determine the levels of {sup 222}Rn in groundwater under the management of the Ministry of Environment.

  18. High-DQE EPIDs based on thick, segmented BGO and CsI:Tl scintillators: performance evaluation at extremely low dose.

    Science.gov (United States)

    Wang, Yi; Antonuk, Larry E; Zhao, Qihua; El-Mohri, Youcef; Perna, Louis

    2009-12-01

    Electronic portal imaging devices (EPIDs) based on active matrix, flat-panel imagers (AMFPIs) have become the gold standard for portal imaging and are currently being investigated for megavoltage cone-beam computed tomography (CBCT) and cone-beam digital tomosynthesis (CBDT). However, the practical realization of such volumetric imaging techniques is constrained by the relatively low detective quantum efficiency (DQE) of AMFPI-based EPIDs at radiotherapy energies, approximately 1% at 6 MV. In order to significantly improve DQE, the authors are investigating thick, segmented scintillators, consisting of 2D matrices of scintillating crystals separated by septal walls. A newly constructed segmented BGO scintillator (11.3 mm thick) and three segmented CsI:Tl scintillators (11.4, 25.6, and 40.0 mm thick) were evaluated using a 6 MV photon beam. X-ray sensitivity, modulation transfer function, noise power spectrum, DQE, and phantom images were obtained using prototype EPIDs based on the four scintillators. The BGO and CsI:Tl prototypes were found to exhibit improvement in DQE ranging from approximately 12 to 25 times that of a conventional AMFPI-based EPID at zero spatial frequency. All four prototype EPIDs provide significantly improved contrast resolution at extremely low doses, extending down to a single beam pulse. In particular, the BGO prototype provides contrast resolution comparable to that of the conventional EPID, but at 20 times less dose, with spatial resolution sufficient for identifying the boundaries of low-contrast objects. For this prototype, however, the BGO scintillator exhibited an undesirable radiation-induced variation in x-ray sensitivity. Prototype EPIDs based on thick, segmented BGO and CsI:T1 scintillators provide significantly improved portal imaging performance at extremely low dose (i.e., down to 1 beam pulse corresponding to approximately 0.022 cGy), creating the possibility of soft-tissue visualization using MV CBCT and CBDT at clinically

  19. Nonproportionality of Scintillator Detectors: Theory and Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Payne, Stephen; Cherepy, Nerine; Hull, Giulia; Valentine, John; Moses, William; Choong, Woon-Seng

    2009-08-17

    On the basis of nonproportionality data obtained for several scintillators, we have developed a theory to describe the carrier dynamics to fit the light yield versus electron energy. The theory of Onsager was adapted to explain how the carriers form excitons or sequentially arrive at the activators to promote the ion to an excited state, and the theory of Birks was employed to allow for exciton-exciton annihilation. We then developed a second theory to deduce the degradation in resolution that results from nonproportionality by evoking Landau fluctuations, which are essentially variations in the deposited energy density that occur as the high energy electron travels along its trajectory. In general there is good agreement with the data, in terms of fitting the nonproportionality curves and reproducing the literature values of nonproportionality's contribution to the scintillator resolution. With the resurgence of interest in developing scintillator detectors that have good energy resolution, an improved understanding of nonproportionality has become a crucial matter since it presents the fundamental limit to the achievable resolution. In order to hasten an improved understanding of scintillator nonproportionality, we have constructed an instrument referred to as SLYNCI (Scintillator Light Yield Nonproportionality Compton Instrument). This is a second-generation instrument to the original device developed by Valentine and coworkers, wherein several new principles of operation have served to increase the data rate by an order of magnitude as discussed in detail in References. In the present article, the focus is on a theory to describe the measured electron response, which is the light yield as a function of the electron energy. To do this, we account for transport of carriers and excitons, in terms of how they transfer their energy to the activators with competition from nonradiative decay pathways. This work builds on the original work of Murray and coworkers

  20. Neutron-gamma discrimination employing pattern recognition of the signal from liquid scintillator

    CERN Document Server

    Kamada, K; Ogawa, S

    1999-01-01

    A pattern recognition method was applied to the neutron-gamma discrimination of the pulses from the liquid scintillator, NE-213. The circuit for the discrimination is composed of A/D converter, fast SCA, memory control circuit, two digital delay lines and two buffer memories. All components are packed on a small circuit board and are installed into a personal computer. Experiments using a weak sup 2 sup 5 sup 2 Cf n-gamma source were undertaken to test the feasibility of the circuit. The circuit is of very easy adjustment and, at the same time, of very economical price when compared with usual discrimination circuits, such as the TAC system.

  1. Calibration of the time response functions of a quenched plastic scintillator for neutron time of flight

    CERN Document Server

    Chen, J B; Peng, H S; Tang, C H; Zhang, B H; Ding, Y K; Chen, M; Chen, H S; Li, C G; Wen, T S; Yu, R Z

    2002-01-01

    The time response functions of an ultrafast quenched plastic scintillation detector used to measure neutron time of flight spectra were calibrated by utilizing cosmic rays and implosion neutrons from DT-filled capsules at the Shenguang II laser facility. These sources could be regarded as delta function pulses due to their much narrower time widths than those of the time response functions of the detection system. The results showed that the detector responses to DT neutrons and to cosmic rays were 1.18 and 0.96 ns FWHM, respectively.

  2. A Minor Modification of Leading Edge Discriminator Circuitry with a Delay Line for Baseline Restoration of Scintillation Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Izumi, N

    2003-05-27

    Multi-channel neutron time-of-flight detector arrays LaNSA, T-ion, Medusa, and Mandala, have been used for neutron spectroscopy in inertial confinement fusion experiments. These multi-channel neutron detector arrays consist of many identical scintillation detectors (842 {approx} 1024 channel), data acquisition electronics (discriminators, time-to digital converters, and controller). Each detector element is operated in neutron counting mode. Time-of-flight of individual detected neutrons are recorded by time to digital converters. The energy of each detected neutrons is determined from its time-of-flight. The accurate time measurement ({Delta}t {approx} 0.5 ns) and straightforward statistical features of the data obtained with these systems provides good integrity and reliability. The elements detector used in these systems are organic scintillators coupled with photo multiplier tubes. A scintillation detector operated in particle-counting mode requires finite recovery time after each detection event. The recovery time is determined by the time responses of scintillators, photo multiplier tubes, and the dead times of following discriminators and time-to digital converters. The harsh gamma ray background environment of fast ignitor experiments requires detectors that have fast recovery times. In high intensity laser experiments (I > 10{sup 19} W/cm{sup 2}), strong gamma ray bursts are produced by relativistic laser plasma interactions. Prior to the neutron signal, these strong gamma ray bursts hit the detectors and interfere with the detection of following neutron signals. In these situations, the recovery time of the system after preceding gamma ray bursts is determined mainly by the base line shift of the PMT signal (due to slower decay components of scintillators ''after glow''). Discriminators cannot detect following signal pulses until the proceeding burst decays below its threshold voltage. The base line shift caused by the after glow

  3. Scintillation light production, propagation and detection in the Stereo reactor antineutrino experiment

    Science.gov (United States)

    Buck, Christian; Lindner, Manfred; Roca, Christian

    2017-09-01

    The Stereo experiment’s detector has been optimized to observe reactor antineutrinos via inverse beta decay within a 1800 liter volume filled with Gadolinium-doped organic liquid scintillator (LS). The main requirements for the scintillator in Stereo are compatibility with detector materials as the acrylic vessels, transparency, light yield, pulse shape discrimination capabilities as well as chemical and optical stability over several years of data taking. With these conditions in mind, the composition of the LS is mainly a mix of 75% LAB, 20%PXE and 5% DIN combined with the two wavelength-shifters PPO and Bis-MSB. The final admixture after the full scale production lead to an attenuation length of more than 5 meters for optical photons of 430 nm. The scintillation light produced in the Gd-loaded target volume and the Gd-free outer crown is detected by 48 eight inch PMTs on top of the detector. A correct performance of the PMTs has been ensured through several tests. Common characteristics for PMTs as gain, single photoelectron peak, time behaviour, dark rate and afterpulse ratio were measured resulting in a complete agreement with the manufacturer values.

  4. Response of Inorganic Scintillators to Neutrons of 3 and 15 MeV Energy

    CERN Document Server

    Lucchini, M; Pizzichemi, M; Chipaux, R; Jacquot, F; Mazue, H; Wolff, H; Lecoq, P; Auffray, E

    2014-01-01

    In the perspective of the development of future high energy physics experiments, homogeneous calorimeters based on inorganic scintillators can be considered for the detection of hadrons (e.g., calorimeter based on dual-readout technique). Although of high importance in the high energy physics framework as well as for homeland security applications, the response of these inorganic scintillators to neutrons has been only scarcely investigated. This paper presents results obtained using five common scintillating crystals (of size around 2x2x2 cm 3), namely lead tungstate (PbWO4), bismuth germanate (BGO), cerium fluoride (CeF3), Ce-doped lutetium-yttrium orthosilicate (LYSO:Ce) and lutetium aluminum garnet (LuAG:Ce) in a pulsed flux of almost mono-energetic (similar to 3 MeV and similar to 15 MeV) neutrons provided by the Van de Graff accelerator SAMES of CEA Valduc. Energy spectra have been recorded, calibrated and compared with Geant4 simulations computed with different physics models. The neutron detection eff...

  5. Some rules to improve the energy resolution in alpha liquid scintillation with beta rejection

    CERN Document Server

    Aupiais, J; Dacheux, N

    2003-01-01

    Two common scintillating mixtures dedicated to alpha measurements by means of alpha liquid scintillation with pulse shape discrimination were tested: the di-isopropylnaphthalene - based and the toluene-based solvents containing the commercial cocktails Ultima Gold AB trademark and Alphaex trademark. We show the possibility to enhance the resolution up to 200% by using no-water miscible cocktails and by reducing the optical path. Under these conditions, the resolution of about 200 keV can be obtained either by the Tri Carb sup T sup M or by the Perals sup T sup M spectrometers. The time responses, e.g., the time required for a complete energy transfer between the initial interaction alpha particle-solvent and the final fluorescence of the organic scintillator, have been compared. Both cocktails present similar behavior. According to the Foerster theory, about 6-10 ns are required to complete the energy transfer. For both apparatus, the detection limits were determined for alpha emitters. The sensitivity of the...

  6. Evaluating scintillator performance in time-resolved hard X-ray studies at synchrotron light sources

    Energy Technology Data Exchange (ETDEWEB)

    Rutherford, Michael E.; Chapman, David J.; White, Thomas G. [Imperial College London, London (United Kingdom); Drakopoulos, Michael [Diamond Light Source, I12 Joint Engineering, Environmental, Processing (JEEP) Beamline, Didcot, Oxfordshire (United Kingdom); Rack, Alexander [European Synchrotron Radiation Facility, Grenoble (France); Eakins, Daniel E., E-mail: d.eakins@imperial.ac.uk [Imperial College London, London (United Kingdom)

    2016-03-24

    Scintillator performance in time-resolved, hard, indirect detection X-ray studies on the sub-microsecond timescale at synchrotron light sources is reviewed, modelled and examined experimentally. LYSO:Ce is found to be the only commercially available crystal suitable for these experiments. The short pulse duration, small effective source size and high flux of synchrotron radiation is ideally suited for probing a wide range of transient deformation processes in materials under extreme conditions. In this paper, the challenges of high-resolution time-resolved indirect X-ray detection are reviewed in the context of dynamic synchrotron experiments. In particular, the discussion is targeted at two-dimensional integrating detector methods, such as those focused on dynamic radiography and diffraction experiments. The response of a scintillator to periodic synchrotron X-ray excitation is modelled and validated against experimental data collected at the Diamond Light Source (DLS) and European Synchrotron Radiation Facility (ESRF). An upper bound on the dynamic range accessible in a time-resolved experiment for a given bunch separation is calculated for a range of scintillators. New bunch structures are suggested for DLS and ESRF using the highest-performing commercially available crystal LYSO:Ce, allowing time-resolved experiments with an interframe time of 189 ns and a maximum dynamic range of 98 (6.6 bits)

  7. The study of inorganic scintillating materials

    Science.gov (United States)

    Dudkin, G. N.; Kuznetsov, S. I.; Padalko, V. N.; Syrtanov, M. S.

    2017-05-01

    The procedure for measuring the temporal characteristics and light output of inorganic scintillating materials excited by β-, γ-, and α-particles from radioactive sources is described. Results of measurements of characteristics are presented for ∼30 scintillating compounds including cerium-doped yttrium silicate and scandium borate; europium-doped strontium phosphate; cerium-doped strontium silicate, calcium silicate and magnesium calcium silicate, etc. Upon β- and γ-excitation, cerium-doped scandium borate gives the highest light output with a fluorescent lifetime of 40 ± 4 ns. The highest light output for α-excitation was from cerium-doped yttrium aluminum perovskite, with a fluorescent lifetime of 29 ± 3 ns.

  8. Transparent Ceramic Scintillator Fabrication, Properties and Applications

    Energy Technology Data Exchange (ETDEWEB)

    Cherepy, N J; Kuntz, J D; Roberts, J J; Hurst, T A; Drury, O B; Sanner, R D; Tillotson, T M; Payne, S A

    2008-08-24

    Transparent ceramics offer an alternative to single crystals for scintillator applications such as gamma ray spectroscopy and radiography. We have developed a versatile, scaleable fabrication method, using Flame Spray Pyrolysis (FSP) to produce feedstock which is readily converted into phase-pure transparent ceramics. We measure integral light yields in excess of 80,000 Ph/MeV with Cerium-doped Garnets, and excellent optical quality. Avalanche photodiode readout of Garnets provides resolution near 6%. For radiography applications, Lutetium Oxide offers a high performance metric and is formable by ceramics processing. Scatter in transparent ceramics due to secondary phases is the principal limitation to optical quality, and afterglow issues that affect the scintillation performance are presently being addressed.

  9. Ultra-fast timing with plastic scintillators

    Energy Technology Data Exchange (ETDEWEB)

    Hoischen, Robert [Department of Physics, Lund University, S-22100 Lund (Sweden); Helmholtzzentrum fuer Schwerionenforschung GmbH, D-64291 Darmstadt (Germany); Pietri, Stephane; Prokopowicz, Wawrzyniec; Schaffner, Henning; Gerl, Juergen; Wollersheim, Hans Juergen; Kurz, Nikolaus [Helmholtzzentrum fuer Schwerionenforschung GmbH, D-64291 Darmstadt (Germany); Rudolph, Dirk [Department of Physics, Lund University, S-22100 Lund (Sweden)

    2009-07-01

    Fast timing detectors for time-of-flight measurements are essential identification tools for isotopes studied at fragment separators at major heavy-ion research facilities. While today's standard technique of utilizing a plastic scintillator read out by few photomultiplier tubes proofs to be efficient, it does not provide the required time resolution for future key experiments at, for example, the Super-FRS at FAIR. A common present-day approach is to use diamond detectors instead. While they do provide a better time resolution compared to scintillators, they are more difficult to use and far more expensive. Results from tests using a new design approach with standard materials will be presented. This leads to a much improved performance, but remains both cost-efficient, compact, and reliable. The design goals and how to accomplish them will be exemplified by the LYCCA (Lund-York-Cologne CAlorimeter) detector aiming for fast-beam experiments at HISPEC within NUSTAR.

  10. Central Tracking Detector Based on Scintillating Fibres

    CERN Multimedia

    2002-01-01

    Scintillating fibres form a reasonable compromise for central tracking detectors in terms of price, resolution, response time, occupancy and heat production. \\\\ \\\\ New fluorescents with large Stokes shifts have been produced, capable of working without wavelength shifters. Coherent multibundles have been developed to achieve high packing fractions. Small segments of tracker shell have been assembled and beam tests have confirmed expectations on spatial resolution. An opto-electronic delay line has been designed to delay the track patterns and enable coincidences with a first level trigger. Replacement of the conventional phosphor screen anode with a Si pixel chip is achieved. This tube is called ISPA-tube and has already been operated in beam tests with a scintillating fibres tracker. \\\\ \\\\ The aim of the proposal is to improve hit densities for small diameter fibres by increasing the fraction of trapped light, by reducing absorption and reflection losses, by reflecting light at the free fibre end, and by inc...

  11. Nanophosphor composite scintillators comprising a polymer matrix

    Science.gov (United States)

    Muenchausen, Ross Edward; Mckigney, Edward Allen; Gilbertson, Robert David

    2010-11-16

    An improved nanophosphor composite comprises surface modified nanophosphor particles in a solid matrix. The nanophosphor particle surface is modified with an organic ligand, or by covalently bonding a polymeric or polymeric precursor material. The surface modified nanophosphor particle is essentially charge neutral, thereby preventing agglomeration of the nanophosphor particles during formation of the composite material. The improved nanophosphor composite may be used in any conventional scintillator application, including in a radiation detector.

  12. Simulation of Scintillating Fibres in Geant4

    CERN Document Server

    Deckenhoff, Mirco

    2014-01-01

    This technical note describes a scintillating fibre (SciFi) simulation using the GEANT4 toolkit. The simulation is designed to enable comprehensive studies accounting for many different aspects, $e.g$ geometry, emission spectra and radiation damages of the SciFi and matrices build from it in the context of the LHCb tracking detector upgrade. It is a further development of the simulation presented in 1.

  13. A novel segmented-scintillator antineutrino detector

    OpenAIRE

    Abreu, Y.; Amhis, Y.; Arnold, L; Ban, G.; Beaumont, W.; Bongrand, M.; Boursette, D.; Buhour, J. M.; Castle, B.C.; Clark, K.; Coupé, B; Cucoanes, A.S.; Cussans, D; De Roeck, A.; D'Hondt, J.

    2017-01-01

    The next generation of very-short-baseline reactor experiments will require compact detectors operating at surface level and close to a nuclear reactor. This paper presents a new detector concept based on a composite solid scintillator technology. The detector target uses cubes of polyvinyltoluene interleaved with 6LiF:ZnS(Ag) phosphor screens to detect the products of the inverse beta decay reaction. A multi-tonne detector system built from these individual cells can provide precise localisa...

  14. A novel segmented-scintillator antineutrino detector

    OpenAIRE

    Abreu, Y.; Amhis, Y.; Arnold, L; Ban, G.; Beaumont, W.; Bongrand, M.; Boursette, D.; Buhour, J. M.; Castle, B.C.; Clark, K.; Coupé, B; Cucoanes, A.S.; Cussans, D; De Roeck, A.; D'Hondt, J.

    2017-01-01

    The next generation of very-short-baseline reactor experiments will require compact detectors operating at surface level and close to a nuclear reactor. This paper presents a new detector concept based on a composite solid scintillator technology. The detector target uses cubes of polyvinyltoluene interleaved with (6)LiF:ZnS(Ag) phosphor screens to detect the products of the inverse beta decay reaction. A multi-tonne detector system built from these individual cells can provide precise locali...

  15. Improved Neutron Scintillators Based on Nanomaterials

    Energy Technology Data Exchange (ETDEWEB)

    Dennis Friesel, PhD

    2008-06-30

    The development work conducted in this SBIR has so far not supported the premise that using nano-particles in LiFZnS:Ag foils improves their transparency to 420 (or other frequency) light. This conclusion is based solely on the light absorption properties of LiFZnS foils fabricated from nano- and from micro-particles. Furthermore, even for the case of the Gd{sub 2}O{sub 3} foils, the transmission of 420 nm light gained by using nano-particles all but disappears as the foil thickness is increased beyond about 0.2 mm, a practical scintillator thickness. This was not immediately apparent from the preliminary study since no foils thicker than about 0.04 mm were produced. Initially it was believed that the failure to see an improvement by using nano-particles for the LiFZnS foils was caused by the clumping of the particles in Toluene due to the polarity of the ZnS particles. However, we found, much to our surprise, that nano-particle ZnS alone in polystyrene, and in Epoxy, had worse light transmission properties than the micro-particle foils for equivalent thickness and density foils. The neutron detection measurements, while disappointing, are attributable to our inability to procure or fabricate Bulk Doped ZnS nanoparticles. The cause for the failure of nano-particles to improve the scintillation light, and hence improved neutron detection efficiency, is a fundamental one of light scattering within the scintillator. A consequence of PartTec's documentation of this is that several concepts for the fabrication of improved {sup 6}LiFZnS scintillators were formulated that will be the subject of a future SBIR submission.

  16. Low current charge normalization with scintillators

    Science.gov (United States)

    Plompen, A. J. M.; Munnik, F.; Wätjen, U.

    1996-04-01

    The use of ZnS(Ag) and YAG(Ce) scintillators for charge normalization at low currents (> 15 pA) was demonstrated with current gains of 2 × 10 3 using a photomultiplier tube (PMT) and up to 10 with a photodiode (PD). An accuracy of a few percent, sufficient for ion beam applications, was obtained. The potential of the method and its use for microprobe applications is discussed.

  17. Barium halide nanocrystals in fluorozirconate based glass ceramics for scintillation application

    Energy Technology Data Exchange (ETDEWEB)

    Selling, J.

    2007-07-01

    Europium (Eu)-activated barium halide nanocrystals in fluorozirconate based glass ceramics represent a promising class of Xray scintillators. The scintillation in these glass ceramics is mainly caused by the emission of divalent Eu incorporated in hexagonal BaCl{sub 2} nanocrystals which are formed in the glass matrix upon appropriate annealing. Experiments with cerium (Ce)-activated fluorozironate glass ceramics showed that Ce is an interesting alternative. In order to get a better understanding of the scintillation mechanism in Eu- or Ce-activated barium halide nanocrystals, an investigation of the processes in the corresponding bulk material is essential. The objective of this thesis is the investigation of undoped, Eu-, and Ce-doped barium halides by X-ray excited luminescence (XL), pulse height, and scintillation decay spectra. That will help to figure out which of these crystals has the most promising scintillation properties and would be the best nanoparticles for the glass ceramics. Furthermore, alternative dopants like samarium (Sm) and manganese (Mn) were also investigated. Besides the above-mentioned optical investigation electron paramagnetic resonance (EPR) and Moessbauer measurements were carried out in order to complete the picture of Eu-doped barium halides. The EPR data of Eu-doped BaI{sub 2} is anticipated to yield more information about the crystal field and crystal structure that will help to understand the charge carrier process during the scintillation process. The main focus of the Moessbauer investigations was set on the Eu-doped fluorochlorozirconate glass ceramics. The results of this investigation should help to improve the glass ceramics. The Eu{sup 2+}/Eu{sup 3+} ratio in the glass ceramics should be determined and optimize favor of the Eu{sup 2+}. We also want to distinguish between Eu{sup 2+} in the glass matrix and Eu{sup 2+} in the nanocrystals. For a better understanding of Moessbauer spectroscopy on Eu also measurements on Eu in a

  18. Scintillating Cocktail Mixtures and the Role of Water on the Optophysical Properties.

    Energy Technology Data Exchange (ETDEWEB)

    Cordaro, Joseph Gabriel [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Feng, Patrick L. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Mengesha, Wondwosen [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Murtagh, Dustin [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Anstey, Mitchell [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2015-10-01

    reactive radicals. This hypothesis is consistent with subsequent experiments that showed reduced light - yield quenching in the presence of radical - trapping additives. A notable result from these surfactant studies was the preparation of an aqueous scintillator that was transparent and showed neutron/gamma pulse - shape discrimination. Section II below provides background information on the s ignificance of this finding. The combined work described herein has implications on other efforts to make water - based solution scintillators -- without aromatic content an efficient mechanism for ionizing radiation to sensitize emission from a dye is limited.

  19. New scintillating crystals for PET scanners

    CERN Document Server

    Lecoq, P

    2002-01-01

    Systematic R&D on basic mechanism in inorganic scintillators, initiated by the Crystal Clear Collaboration at CERN 10 years ago, has contributed not to a small amount, to the development of new materials for a new generation of medical imaging devices with increased resolution and sensitivity. The first important requirement for a scintillator to be used in medical imaging devices is the stopping power for the given energy range of X and gamma rays to be considered, and more precisely the conversion efficiency. A high light yield is also mandatory to improve the energy resolution, which is essentially limited by the photostatistics and the electronic noise at these energies. A short scintillation decay time allows to reduce the dead time and therefore to increase the limiting counting rate. When all these requirements are fulfilled the sensitivity and image contrast are increased for a given patient dose, or the dose can be reduced. Examples of new materials under development by the Crystal Clear Collabor...

  20. Scintillation counter with MRS APD light readout

    CERN Document Server

    INSPIRE-00061314; Malkevich, D.; Martemyanov, A.; Ryabinin, M.; Smirnitsky, A.; Voloshin, K.; Bondarenko, G.; Golovin, V.; Grigoriev, E.

    2005-01-01

    START, a high-efficiency and low-noise scintillation detector for ionizing particles, was developed for the purpose of creating a high-granular system for triggering cosmic muons. Scintillation light in START is detected by MRS APDs (Avalanche Photo-Diodes with Metal-Resistance-Semiconductor structure), operated in the Geiger mode, which have 1 mm^2 sensitive areas. START is assembled from a 15 x 15 x 1 cm^3 scintillating plastic plate, two MRS APDs and two pieces of wavelength-shifting optical fiber stacked in circular coils inside the plastic. The front-end electronic card is mounted directly on the detector. Tests with START have confirmed its operational consistency, over 99% efficiency of MIP registration and good homogeneity. START demonstrates a low intrinsic noise of about 10^{-2} Hz. If these detectors are to be mass-produced, the cost of a mosaic array of STARTs is estimated at a moderate level of 2-3 kUSD/m^2.

  1. Chloride, bromide and iodide scintillators with europium

    Science.gov (United States)

    Zhuravleva, Mariya; Yang, Kan

    2016-09-27

    A halide scintillator material is disclosed where the halide may comprise chloride, bromide or iodide. The material is single-crystalline and has a composition of the general formula ABX.sub.3 where A is an alkali, B is an alkali earth and X is a halide which general composition was investigated. In particular, crystals of the formula ACa.sub.1-yEu.sub.yI.sub.3 where A=K, Rb and Cs were formed as well as crystals of the formula CsA.sub.1-yEu.sub.yX.sub.3 (where A=Ca, Sr, Ba, or a combination thereof and X=Cl, Br or I or a combination thereof) with divalent Europium doping where 0.ltoreq.y.ltoreq.1, and more particularly Eu doping has been studied at one to ten mol %. The disclosed scintillator materials are suitable for making scintillation detectors used in applications such as medical imaging and homeland security.

  2. Forecasting scintillations, the CNOFS satellite challenge

    Science.gov (United States)

    de La Beaujardiere, O.; Retterer, J.; Groves, K.; Burke, W.; Rich, F.; Basu, B.; Decker, D.; Jeong, L.

    2003-04-01

    This paper describes the science issues associated with the Communication / Navigation Outage Forecasting System (C/NOFS) Mission of the Air Force Research Laboratory. The primary purpose of C/NOFS is to forecast ionospheric irregularities that adversely impact communication and navigation systems. A satellite, scheduled for launch in January 2004 into a low inclination (13^o), elliptical (˜400 × 700 km) orbit, is the main component of the C/NOFS Mission. Complementary ground-based measurements are also part of the Mission. Difficulties in predicting the presence of scintillation-producing irregularities may be organized into three categories: (1) understand physical processes active in the background ionosphere and thermosphere, in order to nowcast and forecast the equatorial ionosphere; (2) identify mechanisms that trigger or quench the plasma irregularities; and (3) determine how irregularity spectra evolve. C/NOFS is the first satellite solely dedicated to forecasting ionospheric irregularities and radio wave scintillations. Its sensors will measure the following parameters: ambient and fluctuating electron densities; ion and electron temperatures; AC and DC electric fields; magnetic fields; neutral winds; ionospheric scintillations; and electron content along the lines of sight between the C/NOFS and GPS satellites. Forecasting will be based on both ground and space data. Significant international participation in pursuing C/NOFS science goals is desired and anticipated.

  3. Phase and coherence analysis of VHF scintillation over Christmas Island

    Directory of Open Access Journals (Sweden)

    E. B. Shume

    2014-03-01

    Full Text Available This short paper presents phase and coherence data from the cross-wavelet transform applied on longitudinally separated very high frequency (VHF equatorial ionospheric scintillation observations over Christmas Island. The phase and coherence analyses were employed on a pair of scintillation observations, namely, the east-looking and west-looking VHF scintillation monitors at Christmas Island. Our analysis includes 3 years of peak season scintillation data from 2008, 2009 (low solar activity, and 2011 (moderate solar activity. In statistically significant and high spectral coherence regions of the cross-wavelet transform, scintillation observations from the east-looking monitor lead those from the west-looking monitor by about 20 to 60 (40 ± 20 min (most frequent lead times. Using several years (seasons and solar cycle of lead (or lag and coherence information of the cross-wavelet transform, we envisage construction of a probability model for forecasting scintillation in the nighttime equatorial ionosphere.

  4. Characteristics of plastic scintillators fabricated by a polymerization reaction

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Cheol Ho; Son, Jaebum; Kim, Tae Hoon; Kim, Yong Kyun [Dept. of Nuclear Engineering, Hanyang University, Seoul (Korea, Republic of)

    2017-04-15

    Three plastic scintillators of 4.5 cm diameter and 2.5-cm length were fabricated for comparison with commercial plastic scintillators using polymerization of the styrene monomer 2.5-diphenyloxazole (PPO) and 1,4-bis benzene (POPOP). Their maximum emission wavelengths were determined at 426.06 nm, 426.06 nm, and 425.00 nm with a standard error of 0.2% using a Varian spectrophotometer (Agilent, Santa Clara, CA, USA). Compton edge spectra were measured using three gamma ray sources [i.e., cesium 137 ({sup 137}Cs), sodium 22 ({sup 22}Na), and cobalt 60 ({sup 60}Co)]. Energy was calibrated by analyzing the Compton edge spectra. The fabricated scintillators possessed more than 99.7% energy linearity. Light output was comparable to that of the BC-408 scintillator (Saint-Gobain, Paris, France). The fabricated scintillators showed a light output of approximately 59–64% of that of the BC-408 scintillator.

  5. The Statistics of Emission and Detection of Neutrons and Photons from Fissile Samples for Safeguard Applications

    Energy Technology Data Exchange (ETDEWEB)

    Enqvist, Andreas

    2008-03-15

    One particular purpose of nuclear safeguards, in addition to accounting for known materials, is the detection, identifying and quantifying unknown material, to prevent accidental and clandestine transports and uses of nuclear materials. This can be achieved in a non-destructive way through the various physical and statistical properties of particle emission and detection from such materials. This thesis addresses some fundamental aspects of nuclear materials and the way they can be detected and quantified by such methods. Factorial moments or multiplicities have long been used within the safeguard area. These are low order moments of the underlying number distributions of emission and detection. One objective of the present work was to determine the full probability distribution and its dependence on the sample mass and the detection process. Derivation and analysis of the full probability distribution and its dependence on the above factors constitutes the first part of the thesis. Another possibility of identifying unknown samples lies in the information in the 'fingerprints' (pulse shape distribution) left by a detected neutron or photon. A study of the statistical properties of the interaction of the incoming radiation (neutrons and photons) with the detectors constitutes the second part of the thesis. The interaction between fast neutrons and organic scintillation detectors is derived, and compared to Monte Carlo simulations. An experimental approach is also addressed in which cross correlation measurements were made using liquid scintillation detectors. First the dependence of the pulse height distribution on the energy and collision number of an incoming neutron was derived analytically and compared to numerical simulations. Then an algorithm was elaborated which can discriminate neutron pulses from photon pulses. The resulting cross correlation graphs are analyzed and discussed whether they can be used in applications to distinguish possible

  6. Scintillation measurements at Bahir Dar during the high solar activity phase of solar cycle 24

    Energy Technology Data Exchange (ETDEWEB)

    Kriegel, Martin; Jakowski, Norbert; Berdermann, Jens; Sato, Hiroatsu [German Aerospace Center (DLR), Neustrelitz (Germany). Inst. of Communications and Navigation; Mersha, Mogese Wassaie [Bahir Dar Univ. (Ethiopia). Washera Geospace and Radar Science Lab.

    2017-04-01

    Small-scale ionospheric disturbances may cause severe radio scintillations of signals transmitted from global navigation satellite systems (GNSSs). Consequently, smallscale plasma irregularities may heavily degrade the performance of current GNSSs such as GPS, GLONASS or Galileo. This paper presents analysis results obtained primarily from two high-rate GNSS receiver stations designed and operated by the German Aerospace Center (DLR) in cooperation with Bahir Dar University (BDU) at 11.6 N, 37.4 E. Both receivers collect raw data sampled at up to 50 Hz, from which characteristic scintillation parameters such as the S4 index are deduced. This paper gives a first overview of the measurement setup and the observed scintillation events over Bahir Dar in 2015. Both stations are located close to one another and aligned in an east-west, direction which allows us to estimate the zonal drift velocity and spatial dimension of equatorial ionospheric plasma irregularities. Therefore, the lag times of moving electron density irregularities and scintillation patterns are derived by applying cross-correlation analysis to high-rate measurements of the slant total electron content (sTEC) along radio links between a GPS satellite and both receivers and to the associated signal power, respectively. Finally, the drift velocity is derived from the estimated lag time, taking into account the geometric constellation of both receiving antennas and the observed GPS satellites.

  7. Effect of Ca doping on the structure and scintillation properties of ZnWO{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Kraus, H.; Mikhailik, V.B. [Department of Physics, University of Oxford, Oxford OX1 3RH (United Kingdom); Vasylechko, L. [Semiconductor Electronics Department, Lviv Polytechnic National University, 12 Bandera Str., 79013 Lviv (Ukraine); Day, D.; Hutton, K.B.; Telfer, J. [Hilger Crystals, Margate, Kent CT9 4JL (United Kingdom); Prots, Yu. [Max-Planck-Institut fuer Chemische Physik fester Stoffe, Noethnitzer Strasse 40, 01187 Dresden (Germany)

    2007-03-15

    The future application of ZnWO{sub 4} scintillator in a cryogenic search for rare events is the motivation for optimization of this material. We present results on the effect of Ca doping on the structure and scintillation properties of ZnWO{sub 4}. X-ray diffraction analysis revealed that there is no mixing in the CaWO{sub 4}-ZnWO{sub 4} pseudobinary system due to a significant mismatch of the crystal structures of CaWO{sub 4} and ZnWO{sub 4}. The lattice parameters of Ca-doped ZnWO{sub 4} samples obtained from X-ray powder diffraction data confirmed this finding. It is also shown that ZnWO{sub 4} retains the monoclinic wolframite structure when cooling, at 12 K exhibiting the following lattice parameters: a=4.6826(2) Aa, b=5.7088(2) Aa, c=4.9230(2) Aa and {beta}=90.541(2) . The scintillation light yield of the Zn{sub 1-x}Ca {sub x} WO {sub 4} was measured using the multi-photon counting technique and it is found that small concentrations of Ca (x=0.001-0.02) cause no deterioration of this parameter. Ca doping of ZnWO{sub 4} is expected to facilitate production of a single-crystalline scintillator. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  8. Scintillation measurements at Bahir Dar during the high solar activity phase of solar cycle 24

    Science.gov (United States)

    Kriegel, Martin; Jakowski, Norbert; Berdermann, Jens; Sato, Hiroatsu; Wassaie Mersha, Mogese

    2017-01-01

    Small-scale ionospheric disturbances may cause severe radio scintillations of signals transmitted from global navigation satellite systems (GNSSs). Consequently, small-scale plasma irregularities may heavily degrade the performance of current GNSSs such as GPS, GLONASS or Galileo. This paper presents analysis results obtained primarily from two high-rate GNSS receiver stations designed and operated by the German Aerospace Center (DLR) in cooperation with Bahir Dar University (BDU) at 11.6° N, 37.4° E. Both receivers collect raw data sampled at up to 50 Hz, from which characteristic scintillation parameters such as the S4 index are deduced. This paper gives a first overview of the measurement set-up and the observed scintillation events over Bahir Dar in 2015. Both stations are located close to one another and aligned in an east-west, direction which allows us to estimate the zonal drift velocity and spatial dimension of equatorial ionospheric plasma irregularities. Therefore, the lag times of moving electron density irregularities and scintillation patterns are derived by applying cross-correlation analysis to high-rate measurements of the slant total electron content (sTEC) along radio links between a GPS satellite and both receivers and to the associated signal power, respectively. Finally, the drift velocity is derived from the estimated lag time, taking into account the geometric constellation of both receiving antennas and the observed GPS satellites.

  9. Scintillating Screens Based on the Single Crystalline Films of Multicomponent Garnets: New Achievements and Possibilities

    Science.gov (United States)

    Zorenko, Yuriy; Gorbenko, Vitalii; Zorenko, Tetiana; Paprocki, Kazimierz; Nikl, Martin; Mares, Jiri A.; Bilski, Pawel; Twardak, Anna; Sidletskiy, Oleg; Gerasymov, Iaroslav; Grinyov, Boris; Fedorov, Alexandr

    2016-04-01

    The paper is dedicated to development of the novel scintillating screens based on single crystalline films (SCF) of Ce doped Lu3 - xTbxAl5 - yGayO12 multicomponent garnets at x = 2 - 3 and y = 0 - 2.5 onto Y3Al5O12 (YAG) and Gd3Al2.5Ga2.5O12 (GAGG) substrates using the liquid phase epitaxy (LPE) method. We report the optimized content and high scintillation figure of merit of SCF of these garnets grown by the LPE method with using PbO based flux. Namely, the Tb3Al2.5Ga2.5O12:Ce SCFs possess the highest values of light yield (LY) compared to all earlier investigated SCF samples, with their LY exceeding by 2.35 and 1.15 times the LY values for YAG:Ce and LuAG:Ce SCF scintillators, respectively. The SCFs of the mentioned compounds show very lower thermoluminescence in the above room temperature range and relatively fast scintillation decay.

  10. Validation of dose measurements by scintillating fiber optic dosimeters for medical applications

    Science.gov (United States)

    Correia, A.; Pirraco, R.; Rosa, C. C.

    2013-11-01

    Organic scintillators have been promoted and widely used in scintillating fiber-optic dosimeters (SFOD) due to their tissue-equivalent characteristics, small sensitive volume combined with high spatial resolution, and emission of visible light proportional to the absorbed electron and gamma dose rate. In this paper we will present the validation of Monte Carlo simulations of dose measurements assisted by scintillating fiber optic dosimeters operating in the visible spectral range, in the context of the development of fiber optic dosimeters targeted to Brachytherapy. The Monte Carlo simulation results are compared to measurements performed with SFOD test probes, assembled with BCF-60 (Saint Gobain) samples of 1 mm diameter and 0.35 to 1.5 cm length, coupled to PMMA optical fiber. The optical signal resulting from scintillation and Cherenkov light is transmitted through an additional optical fiber link to a remote measuring device. For SFOD probes irradiation a dedicated PMMA phantom was used. The results were validated against measurements obtained with a properly calibrated pinpoint ionization chamber (PTW). The probes were positioned in a radial arrangement, with a radioactive source at its center point. The γ-rays source is a Nucletron Microselectron-V2 192Ir. The dose curves are obtained according to the different positions in the phantom with the SFOD dosimeters. The system is able to use a Fiber Optic Multiplexer (FOM) controlled with Labview software.

  11. Sapphire scintillation tests for cryogenic detectors in the Edelweiss dark matter search

    Energy Technology Data Exchange (ETDEWEB)

    Luca, M

    2007-07-15

    Identifying the matter in the universe is one of the main challenges of modern cosmology and astrophysics. An important part of this matter seems to be made of non-baryonic particles. Edelweiss is a direct dark matter search using cryogenic germanium bolometers in order to look for particles that interact very weakly with the ordinary matter, generically known as WIMPs (weakly interacting massive particles). An important challenge for Edelweiss is the radioactive background and one of the ways to identify it is to use a larger variety of target crystals. Sapphire is a light target which can be complementary to the germanium crystals already in use. Spectroscopic characterization studies have been performed using different sapphire samples in order to find the optimum doping concentration for good low temperature scintillation. Ti doped crystals with weak Ti concentrations have been used for systematic X ray excitation tests both at room temperature and down to 30 K. The tests have shown that the best Ti concentration for optimum room temperature scintillation is 100 ppm and 50 ppm at T = 45 K. All concentrations have been checked by optical absorption and fluorescence. After having shown that sapphire had interesting characteristics for building heat-scintillation detectors, we have tested if using a sapphire detector was feasible within a dark matter search. During the first commissioning tests of Edelweiss-II, we have proved the compatibility between a sapphire heat scintillation detector and the experimental setup. (author)

  12. Comparison of the efficacy of biodegradable and non-biodegradable scintillation liquids on the counting of tritium- and [14C]-labeled compounds

    Directory of Open Access Journals (Sweden)

    Medeiros R.B.

    2003-01-01

    Full Text Available The widespread use of ³H and 14C in research has generated a large volume of waste mixed with scintillation liquid, requiring an effective control and appropriate storage of liquid radioactive waste. In the present study, we compared the efficacy of three commercially available scintillation liquids, Optiphase HiSafe 3, Ultima-Gold(TM AB (biodegradable and Insta-Gel-XF (non-biodegradable, in terms of [14C]-glucose and [³H]-thymidine counting efficiency. We also analyzed the effect of the relative amount of water (1.6 to 50%, radioisotope concentration (0.1 to 100 nCi/ml, pH (2 to 10 and color of the solutions (samples containing 0.1 to 1.0 mg/ml of Trypan blue on the counting efficiency in the presence of these scintillation liquids. There were few significant differences in the efficiency of 14C and ³H counting obtained with biodegradable or non-biodegradable scintillation liquids. However, there was an 83 and 94% reduction in the efficiency of 14C and ³H counting, respectively, in samples colored with 1 mg/ml Trypan blue, but not with 0.1 mg/ml, independent of the scintillation liquid used. Considering the low cost of biodegradable scintillation cocktails and their efficacy, these results show that traditional hazardous scintillation fluids may be replaced with the new safe biodegradable fluids without impairment of ³H and 14C counting efficiency. The use of biodegradable scintillation cocktails minimizes both human and environmental exposure to hazardous solvents. In addition, some biodegradable scintillation liquids can be 40% less expensive than the traditional hazardous cocktails.

  13. Optical, scintillation and dosimeter properties of MgO translucent ceramic doped with Cr3+

    Science.gov (United States)

    Kato, Takumi; Okada, Go; Yanagida, Takayuki

    2016-04-01

    We have investigated the photoluminescence (PL), scintillation and thermally-stimulated luminescence (TSL) dosimeter properties of MgO translucent ceramic doped with Cr3+ ion (0.001, 0.01 and 0.1%). The ceramic samples were synthesized by a Spark Plasma Sintering (SPS) technique. The broad and sharp emission peaks appeared around 600-850 nm in all the samples. The PL decay time constants of all the samples were a few ms which were on the typical order of Cr3+ doped phosphors. As with the PL, the peak resulted from Cr3+ ion was detected in the scintillation spectra. The TSL glow curves showed the main peak around 140 °C. The TSL response was confirmed to be linear to the irradiation dose over the dose range from 0.1 to 1000 mGy.

  14. Ionospheric scintillation in Brazil: Analyses and Effects on GNSS Positioning

    Science.gov (United States)

    Alves, D. B.; Souza, J. S.; Silva, H. D.

    2013-05-01

    Ionosphere has a great influence on GNSS (Global Navigation Satellite System) signals and its behavior depends on several variables: local time, geographic location, seasons and solar activity. Besides, there are ionospheric irregularities that also affect the GNSS signal propagation, as the ionospheric scintillation. The ionospheric scintillation can be described as a fast change in phase and amplitude of GNSS signal, caused by irregularities of electron density. Scintillation can degrade or cause the GNSS signal lost. Due to these described factors, one can say that the ionosphere can cause important effects on GNSS positioning. It can degrade the coordinate accuracy obtained by GNSS positioning methods. In this paper the goal is to evaluate the ionospheric effect, in special the ionospheric scintillation in different regions of Brazil, and its effects on GNSS Point Positioning. In order to evaluate the days where the scintillation was more significant it is used a database (http://200.145.185.118/cigala/index.php) from CIGALA (Concept for Ionospheric Scintillation Mitigation for Professional GNSS in Latin America) project (http://cigala.galileoic.org/). Using these data it is possible to obtain information about ionospheric scintillation in different GNSS stations in Brazil. It is possible to correlate the data according to time, season and other factors that can contribute to scintillation analysis. In 2013 must occur an intense solar activity, which can intensify the ionospheric effects, and consequently ionospheric scintillation, mainly in Brazil region, where the scintillation index is already intense. Preliminary evaluations, showed larger values of S4 (scintillation index) in Brazil. For example, in October 2012, it was obtained S4 values larger than 1 in several epochs. This causes severe effects in GNSS Positioning. In this paper, the results of GNSS positioning under ionosphere scintillation effects in different regions of Brazil will be presented.

  15. Determination of the scintillator decay time by the autocorrelation method

    Science.gov (United States)

    Morozov, V. A.; Morozova, N. V.

    2017-09-01

    An autocorrelation method is developed for determining the composition and decay time of scintillators. This method also allows studying the spatial distribution of nuclear radiation and controlling the amount of the dopants introduced in the scintillator. The decay time is measured from a few nanoseconds to microseconds. It is found out that the decay time increases in plastic scintillators with a wavelength shifter and a Gd doped.

  16. Progress in Scintillating Polarized Targets for Spin Physics

    Science.gov (United States)

    van den Brandt, B.; Hautle, P.; Konter, J. A.; Bunyatova, E. I.

    2003-06-01

    At PSI polarized scintillating targets have been operated in several particle physics experiments over extended periods of time. They proved to be very robust and reliable. Proton polarizations of more than 80%, and deuteron polarizations of 25% in fully deuterated polystyrene based scintillator have been reached in a vertical dilution refrigerator with optical access. New choices of materials and preparation procedures show potential for an improvement of the scintillation and polarization properties.

  17. Optimization of ultra-cold neutron scintillation detectors

    Science.gov (United States)

    Novopoltsev, M. I.; Pokotilovskii, Yu. N.

    1980-05-01

    The results are presented of the optimization of scintillation detectors of ultra-cold neutrons relative to the thickness of scintillator ZnS(Ag) and radiator LiOH. The method is stated and results are reported of measurements of the energy dependence of the efficiency of UCN detectors. The detector with a rotating scintillator is described. It has a high and constant efficiency over the whole UCN energy range.

  18. LArGe. A liquid argon scintillation veto for GERDA

    Energy Technology Data Exchange (ETDEWEB)

    Heisel, Mark

    2011-04-13

    LArGe is a GERDA low-background test facility to study novel background suppression methods in a low-background environment, for possible applications in the GERDA experiment. GERDA searches for the neutrinoless double-beta decay in {sup 76}Ge, by operating naked germanium detectors submersed into 65 m{sup 3} of liquid argon. Similarly, LArGe runs Ge-detectors in 1 m{sup 3} (1.4 tons) of liquid argon, which in addition is instrumented with photomultipliers to detect argon scintillation light. The light is used in anti-coincidence with the germanium detectors, to effectively suppress background events that deposit energy in the liquid argon. This work adresses the design, construction, and commissioning of LArGe. The background suppression efficiency has been studied in combination with a pulse shape discrimination (PSD) technique for various sources, which represent characteristic backgrounds to GERDA. Suppression factors of a few times 10{sup 3} have been achieved. First background data of LArGe (without PSD) yield a background index of (0.12-4.6).10{sup -2} cts/(keV.kg.y) (90% c.l.), which is at the level of the Gerda phase I design goal. Furthermore, for the first time we measure the natural {sup 42}Ar abundance (in parallel to Gerda), and have indication for the 2{nu}{beta}{beta}-decay in natural germanium. (orig.)

  19. Optics general-purpose scintillator light response simulation code

    CERN Document Server

    Frlez, E; Pocanic, D

    2001-01-01

    We present the program optics that simulates the light response of an arbitrarily shaped scintillation particle detector. Predicted light responses of pure CsI polygonal detectors, plastic scintillator staves, cylindrical plastic target scintillators and a Plexiglas light-distribution plate are illustrated. We demonstrate how different bulk and surface optical properties of a scintillator lead to specific volume and temporal light collection probability distributions. High-statistics optics simulations are calibrated against the detector responses measured in a custom-made cosmic muon tomography apparatus. The presented code can also be used to track particles intersecting complex geometrical objects.

  20. Development of Plastic Scintillation Detector of Low Energy Protons

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, J. K.; Lee, K. H.; Hwang, S. H.; Ko, S. K.; Park, S. H.; Kim, B. T. [Busan National Univ., Busan (Korea, Republic of)

    2007-04-15

    Development of Plastic Scintillator with thickness of 200 {mu}m. Development of the HV supply and Divider with the maximum voltage of -1200V. Development of Control Program using BASIC Computer Language. Development of Changed Mode Program for Start, Stop, Data Display and Data Transfer using Button Switch. Development of Monitoring Program for Data Transfer and Display Spectra. Development of high-efficiency plastic scintillator. Development of the 12-bit Resolution circuit. Development of main control program. Data Transmission via TCP/IP. Measurement of Beta Spectrum using Plastic Scintillator Detector. Identification of Electrons, Protons and Deuterons using Plastic Scintillator Detectors. Design and Fabrication of the Mock-up mode.

  1. Ionospheric scintilations over the polish LOFAR station PL610

    Science.gov (United States)

    Pożoga, Mariusz; Rothkaehl, Hanna; Matyjasiak, Barbara; Grzesiak, Marcin; Przepiórka, Dorota

    2017-04-01

    Using polish station PL610 of international LOFAR interferometer we present here observations of ionospheric scintillation over station. Scintillation phenomenon occurs as a result of variations in the refractive index of the medium through which waves are traveling. In particular Earth's ionosphere is strongly variable medium where high density gradients occure. Scintillation measurements may be successfully used to study the irregular structure of the ionosphere. The LOFAR telescope operates at frequencies from 10 to 240 MHz thus provides good opportunity to broad-band study of ionospheric irregularities. During the local mode periods four strong radio sources (LOFAR bright A-team sources) were observed in order to measure ionospheric scintillations.

  2. Lanthanide doped strontium-barium cesium halide scintillators

    Science.gov (United States)

    Bizarri, Gregory; Bourret-Courchesne, Edith; Derenzo, Stephen E.; Borade, Ramesh B.; Gundiah, Gautam; Yan, Zewu; Hanrahan, Stephen M.; Chaudhry, Anurag; Canning, Andrew

    2015-06-09

    The present invention provides for a composition comprising an inorganic scintillator comprising an optionally lanthanide-doped strontium-barium, optionally cesium, halide, useful for detecting nuclear material.

  3. Investigation of organic liquid-scintillator optical properties

    Energy Technology Data Exchange (ETDEWEB)

    Winter, Juergen; Feilitzsch, Franz von; Goeger-Neff, Marianne; Lewke, Timo; Meindl, Quirin; Oberauer, Lothar; Potzel, Walter; Todor, Sebastian; Wurm, Michael [Physik Department E15, Technische Universitaet Muenchen, James-Franck-Str., 85748 Garching (Germany); Marrodan Undagoitia, Teresa [Physik Department E15, Technische Universitaet Muenchen, James-Franck-Str., 85748 Garching (Germany); Physik-Institut, Universitaet Zuerich (Switzerland)

    2009-07-01

    The characterization of different organic liquid-scintillator mixtures is an important step towards the design of a large-scale detector such as LENA (Low Energy Neutrino Astronomy). Its physics goals, extending from particle and geological to astrophysical issues, set high demands on the optical properties of the liquid scintillator. Therefore, small-scale experiments are carried out in order to optimize the final scintillator mixture. PXE, LAB, and dodecane are under consideration as solvents. Setups for the determination of scintillator properties are presented, such as attenuation length, light yield, emission spectra, fluorescence decay times, and quenching factors. Furthermore, results are discussed.

  4. Electrical and optical properties of zinc oxide for scintillator applications

    Science.gov (United States)

    Yang, Xiaocheng

    Zinc oxide (ZnO) is a wide-band-gap semiconductor suitable for many optical and optoelectronic applications. Among these is to use single crystal, powder, or ceramic forms of ZnO as a fast UV scintillator. In this work, the electrical and optical properties of ZnO were studied using photoluminescence, X-ray-induced luminescence, optical absorption, and Hall Effect techniques. This study included single crystal ZnO and ZnO:Ga samples grown from high-pressure-melt (HPM), seeded chemical-vapor-transport (SCVT), and hydrothermal (HYD) techniques; powder samples synthesized using both solution and solid-state processes, and purchased from different commercial sources; and ceramic samples prepared by hot-uni-axial-pressing and spark-plasma-sintering methods. Temperature-dependent PL and Hall measurements were combined to establish the luminescence origins in the n-type ZnO and ZnO:Ga single crystals. Based on a PL line-shape analysis, including band-gap renormalization, the direct (e,h) transition is the main luminescent channel in highly n-type ZnO:Ga, while FX and FX-LO recombinations are responsible for the UV PL from as-grown ZnO. An intrinsic mobility limit for n-type ZnO was established by including three major phonon-scattering mechanisms. Analysis of Hall data from single-crystal samples including both neutral- and ionized-impurity scatterings provided donor and acceptor concentrations and energy levels. High n-type single-crystal ZnO samples prepared either by Ga doping and co-doping, or by after-growth treatments, were also studied. Absorption and reflectance data were used to obtain free carrier concentrations from the Ga-doped and co-doped crystals, and it was found that several samples with n ˜ high-1018 to low-1019 cm -3 had optimum UV luminescence. Anneal treatments in reducing atmospheres increased free carrier concentrations in HPM and HYD samples, but an induced absorption band due to oxygen vacancies limited the UV emission from these samples. PL and

  5. Quasi-pixel structured nanocrystalline Gd2O3(Eu) scintillation screens and imaging performance for indirect X-ray imaging sensors

    Science.gov (United States)

    Cha, Bo Kyung; Kim, Jong Yul; Cho, Gyuseong; Seo, Chang-Woo; Jeon, Sungchae; Huh, Young

    2011-08-01

    A novel quasi-pixel structured scintillation screen with nanocrystalline Gd2O3:Eu particle sizes was introduced for indirect X-ray imaging sensors with high sensitivity and high spatial resolution. A nanocrystalline Gd2O3:Eu scintillating phosphor with average 100 nm sizes was used as a conversion material for incident X-rays into optical photons. In this work, silicon-based pixel structures with different 100 and 50 μm pixel sizes, 10 μm wall width and 120 μm thickness were fabricated by a standard photolithography and deep reactive ion etching (DRIE) process. The pixelated scintillation screen was fabricated by filling the synthesized nanocrystalline Gd2O3:Eu scintillating phosphor into pixel-structured silicon arrays, and X-ray imaging performance such as relative light intensity, X-ray to light response and spatial resolution in terms of modulation transfer function (MTF) of the fabricated samples were measured. Although high spatial resolution imaging was largely achieved by pixel-structured nanocrystalline Gd2O3:Eu scintillation screens, X-ray sensitivity was still low for medical imaging applications. As a result, novel quasi-pixel structured screens with additional thin Gd2O2S:Tb scintillating layer were proposed for X-ray imaging detector with suitable sensitivity and spatial resolution in comparison with pixel-structured screens, and X-ray imaging performance of quasi-pixel structured nanocrystalline Gd2O3:Eu scintillating screens was investigated.

  6. Integration losses and clutter-Doppler spread for a space based radar caused by ionospheric scintillation during a solar maximum

    Science.gov (United States)

    Mokole, Eric L.

    1991-07-01

    Estimates are obtained of the effect of worst-case, ionospheric scintillation on the combined, coherent-noncoherent, integration process and on the clutter-Doppler spread for a specific waveform and a space based radar in a 1030-km orbit. The experiments are representative of worst-case scintillation conditions. The results of these data, which correspond to a period of solar maximum, are compared to earlier results for a period of severe scintillation but minimal solar activity. The frequency-diverse waveform consists of bursts (coherent pulse trains) of 0.256-s duration at four distinct frequencies per look and six looks per dwell. The space based radar will suffer a combined integration loss not exceeding 2.54 dB, 0.70 dB, and 0.06 dB at VHF, UHF, and L band, respectively, for 95 percent of the time in worst-case conditions. In addition, the clutter Doppler spread that is induced by ionospheric scintillation is less than 4.90 Hz, 1.58 Hz, and 0.26 Hz at the same frequencies and under the same conditions as for 95 percent of the time.

  7. Silicon photomultiplier arrays for the LHCb scintillating fibre tracker

    CERN Multimedia

    Girard, Olivier Goran; Kuonen, Axel Kevin; Stramaglia, Maria Elena

    2017-01-01

    For the LHCb detector upgrade in 2019, a large scale scintillating fibre tracker read out with silicon photomultipliers is under construction. The harsh radiation environment (neutron and ionising radiation), the 40MHz read-out rate of the trigger less system and the large detector surface of 320m2 impose many challenges. We present the results from lab tests with 1MeV electrons and from the SPS test facility at CERN for the mulitchannel SiPM array that combines peak photo-detection efficiency of 48% and extremely low correlated noise. The measurements were performed with detectors irradiated with neutrons up to a fluence of 12*1011 neq/cm2 and single photon detection was maintained. First results of the characterization of the pre-series of 500 detectors delivered by Hamamatsu and irradiation studies on a large sample will be included.

  8. Calibration of scintillation cells for radon-222 measurements

    Science.gov (United States)

    Aakko, Kyllikki; Oksanen, Eero

    The calibration, of a radon-222 measurement system is described. The detector of the system is based on ZnS(Ag) coated scintillation cell. Evacuated cells are used for grab sample measurements of radon-222 in air. Three types of radioactive sources were used to evaluate the calibration coefficient. Standard activities were generated from commercially available solid and liquid radium-226 sources, and from a self-made radon-222 source whose activity was crosschecked by gamma spectrometric measurements. Radium-226 sources are traceable to US National Institute of Standards and Technology reference standards. Sources of error on calibration are discussed. Best accuracy was obtained by gamma spectrometrically crosschecked radon source. Considerable difficulties were encountered with the traditional method of emanating a known activity of radon-222 from a standard liquid radium-226 source. Three separate solid radium-226 sources gave results with rather large deviations. The final error weighted coefficients agree well with international intercalibration results.

  9. Strontium-90 ({sup 90}Sr) determination using liquid scintillation counting

    Energy Technology Data Exchange (ETDEWEB)

    Cheberle, L.T.V.; Rosa, M.M.L.; Ferreira, M.T.; Taddei, M.H.T. [Comissao Nacional de Energia Nuclear (LAPOC/CNEN-MG), Pocos de Caldas, MG (Brazil). Laboratorio de Pocos de Caldas

    2015-07-01

    This procedure describes a method for separation and measurement of strontium {sup 90}Sr in water, soils, and biological samples. Water samples may be concentrated using evaporation or calcium phosphate coprecipitation. Soils and biological materials must be dissolved using wet digestion. Tracers and carriers must be added before the attack. Radioactive strontium is separated employing a specific resin before determination by liquid scintillation counting using the double energetic window method. The resin is used to concentrate strontium from samples. Stable strontium is used to monitor method yields and correct results to improve precision and accuracy. The presence of elemental strontium in the sample may bias the gravimetric yield determination. If it is suspected that natural strontium is present in the sample, its concentration should be determined by a suitable means (ICP), and the yield calculation properly modified. Sr-Spec resin with an 8M HNO{sub 3} load solution is used to effectively remove {sup 140}Ba and {sup 40}K isotopes, as well as other interferences from the matrix. Tetravalent plutonium, neptunium, cerium and ruthenium, however, are not removed using nitric acid. The radiochemical procedure was tested using PROCORAD intercomparison exercises and PNI samples. (author)

  10. Separation of Interplanetary and Ionospheric Scintillations of Cosmic Sources at Decameter Wavelengths

    Science.gov (United States)

    Kalinichenko, N. N.; Falkovich, I. S.; Konovalenko, O. O.; Brazhenko, A. I.

    2013-09-01

    The influence of Earth's ionosphere on statistic characteristics, of compact space sources scintillations (cross-correlation, function of scintillations at two frequencies, cross-correlation, function of scintillations at two radio telescopes, power spectrum, of scintillations, probability density function of scintillations), has been experimentally estimated at decameter wavelength. A new method for selection of interplanetary scintillations, from experimental data obtained with the URAN system, radio telescopes has been developed.

  11. Investigation of rare nuclear decays with BaF$_2$ crystal scintillator contaminated by radium

    CERN Document Server

    Belli, P; Cappella, F; Caracciolo, V; Cerulli, R; Danevich, F A; Di Marco, A; Incicchitti, A; Poda, D V; Polischuk, O G; Tretyak, V I

    2014-01-01

    The radioactive contamination of a BaF$_2$ scintillation crystal with mass of 1.714 kg was measured over 101 hours in the low-background DAMA/R&D set-up deep underground (3600 m w.e.) at the Gran Sasso National Laboratories of INFN (LNGS, Italy). The half-life of $^{212}$Po (present in the crystal scintillator due to contamination by radium) was measured as $T_{1/2}(^{212}$Po) = 298.8$\\pm$0.8(stat.)$\\pm$1.4(syst.) ns by analysis of the events' pulse profiles. The $^{222}$Rn nuclide is known as 100% decaying via emission of $\\alpha$ particle with $T_{1/2}$ = 3.82 d; however, its $\\beta$ decay is also energetically allowed with $Q_\\beta = 24\\pm21$ keV. Search for decay chains of events with specific pulse shapes characteristic for $\\alpha$ or for $\\beta/\\gamma$ signals and with known energies and time differences allowed us to set, for the first time, the limit on the branching ratio of $^{222}$Rn relatively to $\\beta$ decay as $B_\\beta 8.0$ y). Half-life limits of $^{212}$Pb, $^{222}$Rn and $^{226}$Ra rel...

  12. Neutron irradiation and damage assessment of plastic scintillators of the Tile Calorimeter

    Science.gov (United States)

    Mdhluli, J. E.; Mellado, B.; Sideras-Haddad, E.

    2017-01-01

    Following the comparative study of proton induced radiation damage on various plastic scintillator samples from the ATLAS-CERN detector, a study on neutron irradiation and damage assessment on the same type of samples will be conducted. The samples will be irradiated with different dose rates of neutrons produced in favourable nuclear reactions using a radiofrequency linear particle accelerator as well as from the SAFARI nuclear reactor at NECSA. The MCNP 5 code will be utilized in simulating the neutron transport for determining the dose rate. Light transmission and light yield tests will be performed in order to assess the radiation damage on the scintillators. In addition, Raman spectroscopy and Electron Paramagnetic Resonance (EPR) analysis will be used to characterize the samples after irradiation. The project aims to extent these studies to include radiation assessment damage of any component that processes the scintillating light and deteriorates the quantum efficiency of the Tilecal detector, namely, photomultiplier tubes, wavelength shifting optical fibres and the readout electronics. They will also be exposed to neutron irradiation and the damage assessed in the same manner.

  13. Fitting of alpha-efficiency versus quenching parameter by exponential functions in liquid scintillation counting

    Energy Technology Data Exchange (ETDEWEB)

    Sosa, M. [Departamento de Ingeniería Física, Campus León, Universidad de Guanajuato, 37150 León, Guanajuato (Mexico); Universidad de Sevilla, Departamento de Física Aplicada II, E.T.S. Arquitectura, Av. Reina Mercedes, 2, 41012 Sevilla (Spain); Manjón, G., E-mail: manjon@us.es [Universidad de Sevilla, Departamento de Física Aplicada II, E.T.S. Arquitectura, Av. Reina Mercedes, 2, 41012 Sevilla (Spain); Mantero, J.; García-Tenorio, R. [Universidad de Sevilla, Departamento de Física Aplicada II, E.T.S. Arquitectura, Av. Reina Mercedes, 2, 41012 Sevilla (Spain)

    2014-05-01

    The objective of this work is to propose an exponential fit for the low alpha-counting efficiency as a function of a sample quenching parameter using a Quantulus liquid scintillation counter. The sample quenching parameter in a Quantulus is the Spectral Quench Parameter of the External Standard (SQP(E)), which is defined as the number of channel under which lies the 99% of Compton spectrum generated by a gamma emitter ({sup 152}Eu). Although in the literature one usually finds a polynomial fitting of the alpha counting efficiency, it is shown here that an exponential function is a better description. - Highlights: • We have studied the quenching in alpha measurement by liquid scintillation counting. • We have reviewed typical fitting of alpha counting efficiency versus quenching parameter. • Exponential fitting of data is proposed as better fitting. • We consider exponential fitting has a physical basis.

  14. Background characterization in a liquid scintillation spectrometer; Caracterizacion del fondo de un espectrometro de centelleo liquido

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez Barquero, L.; Los Arcos, J.M.; Jimenez de Mingo, A.

    1995-07-01

    An alternate procedure for background count rate estimation in a liquid scintillation spectrometer is presented, which does not require to measure a blank with similar composition, volume and quench, to the problem sample. The procedure is based on a double linear parameterization which was obtained from a systematic study of the background observed with glass vials, in three different windows, 0 - 20 KeV, 0 - 800 KeV and 0 - 2 MeV, for volume between 2 and 20 mi of three commercial scintillators, Hisafe II, Ultima-Gold and Instagel, and quenching degree in the interval equivalent to 50% - 3% tritium efficiency. This procedure was tested with standard samples of 3H, and led to average discrepancies less than 10% for activity {>=}0,6 Bq, against conventional methods for which the discrepancies are twice on average. (Author) 10 refs.

  15. High density scintillating glass proton imaging detector

    Science.gov (United States)

    Wilkinson, C. J.; Goranson, K.; Turney, A.; Xie, Q.; Tillman, I. J.; Thune, Z. L.; Dong, A.; Pritchett, D.; McInally, W.; Potter, A.; Wang, D.; Akgun, U.

    2017-03-01

    In recent years, proton therapy has achieved remarkable precision in delivering doses to cancerous cells while avoiding healthy tissue. However, in order to utilize this high precision treatment, greater accuracy in patient positioning is needed. An accepted approximate uncertainty of +/-3% exists in the current practice of proton therapy due to conversions between x-ray and proton stopping power. The use of protons in imaging would eliminate this source of error and lessen the radiation exposure of the patient. To this end, this study focuses on developing a novel proton-imaging detector built with high-density glass scintillator. The model described herein contains a compact homogeneous proton calorimeter composed of scintillating, high density glass as the active medium. The unique geometry of this detector allows for the measurement of both the position and residual energy of protons, eliminating the need for a separate set of position trackers in the system. Average position and energy of a pencil beam of 106 protons is used to reconstruct the image rather than by analyzing individual proton data. Simplicity and efficiency were major objectives in this model in order to present an imaging technique that is compact, cost-effective, and precise, as well as practical for a clinical setting with pencil-beam scanning proton therapy equipment. In this work, the development of novel high-density glass scintillator and the unique conceptual design of the imager are discussed; a proof-of-principle Monte Carlo simulation study is performed; preliminary two-dimensional images reconstructed from the Geant4 simulation are presented.

  16. Scintillating Fibre Calorimetry at the LHC

    CERN Multimedia

    2002-01-01

    Good electromagnetic and hadronic calorimetry will play a central role in an LHC detector. The lead/scintillating fibre calorimeter technique provides a fast signal response well matched to the LHC rate requirements. It can be made to give equal response for electrons and hadrons (compensation) with good electromagnetic and hadronic energy resolutions.\\\\ \\\\ The aim of this R&D proposal is to study in detail the aspects that are relevant for application of this type of calorimeter in an LHC environment, including its integration in a larger system of detectors, e.g.~projective geometry, radiation hardness, light detection, calibration and stability monitoring, electron/hadron separation.....

  17. AA, beam stopper with scintillator screen

    CERN Document Server

    CERN PhotoLab

    1980-01-01

    An insertable steel-plate beam stopper was located after nearly a full turn downstream of the injection point. It was fitted with a scintillator screen, a thin plate of Cr-doped alumina, imprinted with a grid and reference points. The screen was illuminated through a window and observed with a highly sensitive TV camera plus image intensifier. This allowed observation of beam position and size of a proton test beam and of the beam from the target, which consisted not only of antiprotons but contained as well electrons, pions and muons of the same momentum.

  18. Scintillator calorimeters for a future linear collider experiment

    Energy Technology Data Exchange (ETDEWEB)

    Hartbrich, Oskar

    2016-07-15

    This thesis presents the first analysis of a full calorimeter system based on the scintillator-SiPM technology. In the testbeam campaign at the Fermilab testbeam facility in May 2009, the combined scintillator-SiPM prototype calorimeter system consisting of the CALICE Scintillator Electromagnetic Calorimeter (ScECAL), the CALICE Analogue Hadronic Calorimeter (AHCAL) and the CALICE Tail Catcher and Muon Tracker (TCMT) were operated in particle beams of electrons, pions and muons in the energy range up to 32 GeV. The absorber material and sampling fraction of the ScECAL is different from the AHCAL and TCMT, which complicates the reconstruction of shower energies and potentially impacts the achievable energy resolution of showers extending through the whole calorimeter system. A clean selection of single particle events of a given particle type is obtained using the information from the beam instrumentation installed in the beam line and from the reconstruction of features of the shower topology to identify additional particles entering the detectors. The remaining contaminations are found to be small enough to not significantly bias the results. Possible selection biases on the energy response or resolution are found to be negligible in simulation studies. A detailed validation of the ScECAL model is performed with electromagnetic showers and interactions, ranging from the single cell spectra of MIP particles up to full electromagnetic shower profile and their response and resolution. Adapting the geometry of the ScECAL simulation model can reduce the observed discrepancies, however not within reasonable ranges of modification. The analysis of pion data recorded with the combined scintillator-SiPM system aims to extract the energy resolution for single, contained pion showers, both in comparison to different simulations and to the resolutions obtained from a similar setup without the ScECAL. In the ScECAL the longitudinal shower profile as a function of distance to

  19. Scintillation {gamma} spectrography. Physical principles. Apparatus. Operation; Spectrographie {gamma} a scintillations. Principes physiques. Appareillage. Utilisation

    Energy Technology Data Exchange (ETDEWEB)

    Julliot, C. [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1960-07-01

    The scintillation detector forms the main part of the instrument used, the electronic unit presenting the results produced. After a brief description of the process of {gamma} photon absorption in the material, the particular case of NaI (T1), the scintillator used, is examined. The intensity of the scintillation caused by {gamma} ray absorption and the characteristics of the photomultiplier play a determining part in the energy resolution of the instrument. For the {gamma} recording spectrograph, we show to what extent the technique for using the electronic unit can modify the results. A detailed description is given of the activity measurement of a {gamma}-emitting radioelement by the spectrographic method. (author) [French] Dans l'appareillage utilise, le detecteur a scintillations constitue la piece maitresse, l'ensemble electronique presente les resultats issus du detecteur. Apres avoir brievement decrit le processus d'absorption des photons {gamma} dans la matiere, nous examinons le cas particulier du NaI(T1), le scintillateur utilise. L'intensite de la scintillation provoque par l'absorption des rayons {gamma} et les caracteristiques du photomultiplicateur jouent un role determinant dans la resolution en energie de l'appareil. Pour le spectrographe {gamma} enregistreur, nous indiquons dans quelle mesure la technique d'utilisation de l'ensemble electronique peut modifier les resultats. La-mesure de l'activite d'un radioelement emetteur {gamma} par spectrographie fait l'objet d'une description detaillee. (auteur)

  20. Temperature dependent scintillation properties of pure LaCl3

    NARCIS (Netherlands)

    Bizarri, G.; Dorenbos, P.

    2009-01-01

    The scintillation yield, scintillation decay, and x-ray excited emission of pure LaCl3 was studied as a function of temperature between 80 and 600 K. Two broad band emissions centered around 325 nm and 400 nm were identified and correlated to emissions from two localized exciton states named STE1

  1. Performance evaluation of GPS receiver under equatorial scintillation

    Directory of Open Access Journals (Sweden)

    Alison de Oliveira Moraes

    2009-06-01

    Full Text Available Equatorial scintillation is a phenomenon that occurs daily in the equatorial region after the sunset and affects radio signals that propagate through the ionosphere. Depending on the temporal and spatial situation, equatorial scintillation can represent a problem in the availability and precision of the Global Positioning System (GPS. This work is concerned with evaluating the impact of equatorial scintillation on the performance of GPS receivers. First, the morphology and statistical model of equatorial scintillation is briefly presented. A numerical model that generates synthetic scintillation data to simulate the effects of equatorial scintillation is presented. An overview of the main theoretical principles on GPS receivers is presented. The analytical models that describe the effects of scintillation at receiver level are presented and compared with numerical simulations using a radio software receiver and synthetic data. The results achieved by simulation agreed quite well with those predicted by the analytical models. The only exception is for links with extreme levels of scintillation and when weak signals are received.

  2. Extraction of Doppler Scintillation from Deep Space Probe Tracking Data

    OpenAIRE

    Yamamoto, Zenichi; Toriyama, Gaku; Hirosawa, Haruto; 山本, 善一; 鳥山, 学; 廣澤, 春任

    1990-01-01

    Doppler frequencies of deep space probe tracking signalsfluctuate randomly when solar wind passes across ray-pathes of the radio waves. In this paper we present a method to extract Doppler scintillations from deep space probe tracking signals by applying filterings. We discuss the Doppler scintillations extracted from the tracking data of "SAKIGAKE" and "SUISEI".

  3. Application of two-photon absorption in PWO scintillator for fast timing of interaction with ionizing radiation

    Energy Technology Data Exchange (ETDEWEB)

    Auffray, E. [CERN, Geneva (Switzerland); Buganov, O. [Stepanov Institute of Physics, Minsk (Belarus); Korjik, M.; Fedorov, A. [Research Institute for Nuclear Problems, Belarus State University, 11 Bobruiskaya, 220030 Minsk (Belarus); Nargelas, S.; Tamulaitis, G. [Semiconductor Physics Department and Institute of Applied Research, Vilnius University, Saulėtekio 9-III, LT-10222 Vilnius (Lithuania); Tikhomirov, S. [Stepanov Institute of Physics, Minsk (Belarus); Vaitkevičius, A., E-mail: augustas.vaitkevicius@ff.vu.lt [Semiconductor Physics Department and Institute of Applied Research, Vilnius University, Saulėtekio 9-III, LT-10222 Vilnius (Lithuania)

    2015-12-21

    This work was aimed at searching for fast phenomena in scintillators in sub-10-ps range, a benchmark timing for the time response of radiation detectors in particle colliders. The pump-and-probe optical absorption technique with a tunable-wavelength parametric oscillator as the pump and a continuous-spectrum source as the probe beam was used to study lead tungstate PbWO{sub 4} (PWO) single crystals. It is shown that the rise time of the probe pulse absorption induced by the pump pulse is shorter than the pump pulse width of 200 fs. The approximately linear dependence of the probe absorption on the pump pulse energy density evidences that the induced absorption is caused by two-photon absorption involving one probe and one pump photon. We demonstrate that the intensity of the induced absorption at certain wavelengths is influenced by gamma irradiation, provided that an appropriate light polarization is selected. The application of the irradiation-sensitive nonlinearity for fast timing in radiation detectors is discussed. - Highlights: • Nonlinear transmittance with femtosecond rise time is observed in PWO scintillators. • The nonlinearity is caused by two-photon absorption of pump and probe photons. • Gamma irradiation imposes change in the nonlinearity for certain light polarization. • Application of the nonlinearity for fast timing in radiation detectors is feasible.

  4. A method for the selection of the optimum counting conditions in a ZnS(Ag) scintillation detector.

    Science.gov (United States)

    Pujo, L; Suarez-Navarro, J A; Montero, M

    2000-04-01

    The well-known criteria for the selection of the optimum counting conditions in a ZnS(Ag) scintillation detector seem to restrict its applicability. These do not consider simultaneously operating voltage and electronic threshold variation to reach the best counting conditions. Therefore, a more general method for the determination of the optimum counting conditions in ZnS(Ag) scintillation detectors is proposed. In this method, a relationship between voltage and electronic threshold is derived for counting efficiency. In order to test the method, quality control procedures have been carried out as well as the determination of gross alpha activity in environmental samples.

  5. Analysis of Ionospheric Scintillation Characteristics in Sub-Antarctica Region with GNSS Data at Macquarie Island.

    Science.gov (United States)

    Guo, Kai; Liu, Yang; Zhao, Yan; Wang, Jinling

    2017-01-12

    Ionospheric scintillation has a great impact on radio propagation and electronic system performance, thus is extensively studied currently. The influence of scintillation on Global Navigation Satellite System (GNSS) is particularly evident, making GNSS an effective medium to study characteristics of scintillation. Ionospheric scintillation varies greatly in relation with temporal and spatial distribution. In this paper, both temporal and spatial characteristics of scintillation are investigated based on Macquarie Island's GNSS scintillation data collected from 2011 to 2015. Experiments demonstrate that occurrence rates of amplitude scintillation have a close relationship with solar activity, while phase scintillation is more likely to be generated by geomagnetic activity. In addition, scintillation distribution behaviors related to elevation and azimuth angles are statistically analyzed for both amplitude and phase scintillation. The proposed work is valuable for a deeper understanding of theoretical mechanisms of ionospheric scintillation in this region, and provides a reference for GNSS applications in certain regions around sub-Antarctica.

  6. Ionospheric irregularities causing scintillation of GHz frequency radio signals

    Science.gov (United States)

    Wernik, A. W.; Liu, C. H.

    1974-01-01

    Consideration of the recently observed phenomenon of scintillation of satellite signals at GHz frequency range. Based on the scintillation data and results from in situ measurements, several ionospheric irregularity models with different power spectra are studied. Scintillation index is computed for the various models and compared with observed results. Both magnitude and frequency dependence of the scintillation index are investigated. It is found that a thick irregularity slab of the order of 200 km with an electron density fluctuation of about 20 per cent of its background value and with a nonmonotonic power spectrum may account for the maximum observed values of the scintillation index as well as its frequency dependence. Some future observations and measurements are suggested.

  7. Fabrication, optical and scintillation properties of transparent YAG:Ce ceramics

    Science.gov (United States)

    Osipov, V. V.; Ishchenko, A. V.; Shitov, V. A.; Maksimov, R. N.; Lukyashin, K. E.; Platonov, V. V.; Orlov, A. N.; Osipov, S. N.; Yagodin, V. V.; Viktorov, L. V.; Shulgin, B. V.

    2017-09-01

    Highly transparent YAG:Ce ceramics (transmission of 72-82% for 2-mm-thick samples in 550-900 nm wavelength range) were fabricated by solid-state reactive sintering using a mixture of Ce2xY2-2xO3 (x = 0.001, 0.01, 0.03, and 0.05) and Al2O3 nanopowders synthesized by laser ablation with an additional round of pre-calcining before compaction. The synthesized YAG:Ce ceramic materials showed intense luminescence with a maximum at 525-545 nm. The measured absolute light yields of the synthesized YAG:Ce ceramics were 18-21 photon/MeV for 1-5 at.% Ce and 5 photon/MeV for 0.1 at.% Ce. The energy resolutions of the fabricated thin ceramic samples (2 mm) under 662 keV gamma ray were measured to be 10-15%. The decay curves of scintillations consisted of two components with the decay times depending on the Ce3+ concentration. The sample doped with 5 at.% of Ce exhibited the main fast component with 26 ns decay time. The measured data was compared to that of YAG:Ce and well-known CsI:Tl single crystal scintillators. The influence of dopant concentration on the optical, luminescence and scintillation properties was discussed.

  8. Integrated readout of organic scintillator and ZnS:Ag/6LiF for segmented antineutrino detectors.

    Energy Technology Data Exchange (ETDEWEB)

    Kiff, Scott D.; Reyna, David; Monahan, James (Drexel University, Philadelphia, PA); Bowden, Nathaniel S. (Lawrence Livermore National Laboratory, Livermore, CA)

    2010-10-01

    Antineutrino detection using inverse beta decay conversion has demonstrated the capability to measure nuclear reactor power and fissile material content for nuclear safeguards. Current efforts focus on aboveground deployment scenarios, for which highly efficient capture and identification of neutrons is needed to measure the anticipated antineutrino event rates in an elevated background environment. In this submission, we report on initial characterization of a new scintillation-based segmented design that uses layers of ZnS:Ag/{sup 6}LiF and an integrated readout technique to capture and identify neutrons created in the inverse beta decay reaction. Laboratory studies with multiple organic scintillator and ZnS:Ag/{sup 6}LiF configurations reliably identify {sup 6}Li neutron captures in 60 cm-long segments using pulse shape discrimination.

  9. Integrated readout of organic scintillator and ZnS:Ag/6LiF for segmented antineutrino detectors.

    Energy Technology Data Exchange (ETDEWEB)

    Kiff, Scott D.; Reyna, David; Monahan, James; Bowden, Nathaniel S.

    2010-11-01

    Antineutrino detection using inverse beta decay conversion has demonstrated the capability to measure nuclear reactor power and fissile material content for nuclear safeguards. Current efforts focus on aboveground deployment scenarios, for which highly efficient capture and identification of neutrons is needed to measure the anticipated antineutrino event rates in an elevated background environment. In this submission, we report on initial characterization of a new scintillation-based segmented design that uses layers of ZnS:Ag/{sup 6}LiF and an integrated readout technique to capture and identify neutrons created in the inverse beta decay reaction. Laboratory studies with multiple organic scintillator and ZnS:Ag/{sup 6}LiF configurations reliably identify {sup 6}Li neutron captures in 60 cm-long segments using pulse shape discrimination.

  10. First Demonstration of a Scintillating Xenon Bubble Chamber for Detecting Dark Matter and Coherent Elastic Neutrino-Nucleus Scattering.

    Science.gov (United States)

    Baxter, D; Chen, C J; Crisler, M; Cwiok, T; Dahl, C E; Grimsted, A; Gupta, J; Jin, M; Puig, R; Temples, D; Zhang, J

    2017-06-09

    A 30-g xenon bubble chamber, operated at Northwestern University in June and November 2016, has for the first time observed simultaneous bubble nucleation and scintillation by nuclear recoils in a superheated liquid. This chamber is instrumented with a CCD camera for near-IR bubble imaging, a solar-blind photomultiplier tube to detect 175-nm xenon scintillation light, and a piezoelectric acoustic transducer to detect the ultrasonic emission from a growing bubble. The time of nucleation determined from the acoustic signal is used to correlate specific scintillation pulses with bubble-nucleating events. We report on data from this chamber for thermodynamic "Seitz" thresholds from 4.2 to 15.0 keV. The observed single- and multiple-bubble rates when exposed to a ^{252}Cf neutron source indicate that, for an 8.3-keV thermodynamic threshold, the minimum nuclear recoil energy required to nucleate a bubble is 19±6  keV (1σ uncertainty). This is consistent with the observed scintillation spectrum for bubble-nucleating events. We see no evidence for bubble nucleation by gamma rays at any of the thresholds studied, setting a 90% C.L. upper limit of 6.3×10^{-7} bubbles per gamma interaction at a 4.2-keV thermodynamic threshold. This indicates stronger gamma discrimination than in CF_{3}I bubble chambers, supporting the hypothesis that scintillation production suppresses bubble nucleation by electron recoils, while nuclear recoils nucleate bubbles as usual. These measurements establish the noble-liquid bubble chamber as a promising new technology for the detection of weakly interacting massive particle dark matter and coherent elastic neutrino-nucleus scattering.

  11. First Demonstration of a Scintillating Xenon Bubble Chamber for Detecting Dark Matter and Coherent Elastic Neutrino-Nucleus Scattering

    Science.gov (United States)

    Baxter, D.; Chen, C. J.; Crisler, M.; Cwiok, T.; Dahl, C. E.; Grimsted, A.; Gupta, J.; Jin, M.; Puig, R.; Temples, D.; Zhang, J.

    2017-06-01

    A 30-g xenon bubble chamber, operated at Northwestern University in June and November 2016, has for the first time observed simultaneous bubble nucleation and scintillation by nuclear recoils in a superheated liquid. This chamber is instrumented with a CCD camera for near-IR bubble imaging, a solar-blind photomultiplier tube to detect 175-nm xenon scintillation light, and a piezoelectric acoustic transducer to detect the ultrasonic emission from a growing bubble. The time of nucleation determined from the acoustic signal is used to correlate specific scintillation pulses with bubble-nucleating events. We report on data from this chamber for thermodynamic "Seitz" thresholds from 4.2 to 15.0 keV. The observed single- and multiple-bubble rates when exposed to a Cf 252 neutron source indicate that, for an 8.3-keV thermodynamic threshold, the minimum nuclear recoil energy required to nucleate a bubble is 19 ±6 keV (1 σ uncertainty). This is consistent with the observed scintillation spectrum for bubble-nucleating events. We see no evidence for bubble nucleation by gamma rays at any of the thresholds studied, setting a 90% C.L. upper limit of 6.3 ×10-7 bubbles per gamma interaction at a 4.2-keV thermodynamic threshold. This indicates stronger gamma discrimination than in CF3 I bubble chambers, supporting the hypothesis that scintillation production suppresses bubble nucleation by electron recoils, while nuclear recoils nucleate bubbles as usual. These measurements establish the noble-liquid bubble chamber as a promising new technology for the detection of weakly interacting massive particle dark matter and coherent elastic neutrino-nucleus scattering.

  12. Response of CsI:Pb Scintillator Crystal to Neutron Radiation

    Science.gov (United States)

    Costa Pereira, Maria da Conceição; Filho, Tufic Madi; Berretta, José Roberto; Náhuel Cárdenas, José Patrício; Iglesias Rodrigues, Antonio Carlos

    2018-01-01

    The helium-3 world crisis requires a development of new methods of neutron detection to replace commonly used 3He proportional counters. In the past decades, great effort was made to developed efficient and fast scintillators to detect radiation. The inorganic scintillator may be an alternative. Inorganic scintillators with much higher density should be selected for optimal neutron detection efficiency taking into consideration the relevant reactions leading to light emission. These detectors should, then, be carefully characterized both experimentally and by means of advanced simulation code. Ideally, the detector should have the capability to separate neutron and gamma induced events either by amplitude or through pulse shape differences. As neutron sources also generate gamma radiation, which can interfere with the measurement, it is necessary that the detector be able to discriminate the presence of such radiation. Considerable progress has been achieved to develop new inorganic scintillators, in particular increasing the light output and decreasing the decay time by optimized doping. Crystals may be found to suit neutron detection. In this report, we will present the results of the study of lead doped cesium iodide crystals (CsI:Pb) grown in our laboratory, using the vertical Bridgman technique. The concentration of the lead doping element (Pb) was studied in the range 5x10-4 M to 10-2 M . The crystals grown were subjected to annealing (heat treatment). In this procedure, vacuum of 10-6 mbar and continuous temperature of 350°C, for 24 hours, were employed. In response to neutron radiation, an AmBe source with energy range of 1 MeV to 12 MeV was used. The activity of the AmBe source was 1Ci Am. The fluency was 2.6 x 106 neutrons/second. The operating voltage of the photomultiplier tube was 1700 V; the accumulation time in the counting process was 600 s and 1800 s. The scintillator crystals used were cut with dimensions of 20 mm diameter and 10 mm height.

  13. Characterization of cerium fluoride nanocomposite scintillators

    Energy Technology Data Exchange (ETDEWEB)

    Stange, Sy [Los Alamos National Laboratory; Esch, Ernst I [Los Alamos National Laboratory; Brown, Leif O [Los Alamos National Laboratory; Couture, Aaron J [Los Alamos National Laboratory; Mckigney, Edward A [Los Alamos National Laboratory; Muenchausen, Ross E [Los Alamos National Laboratory; Del Sesto, Rico E [Los Alamos National Laboratory; Gilbertson, Robert D [Los Alamos National Laboratory; Mccleskey, T Mark [Los Alamos National Laboratory; Reifarth, Rene [Los Alamos National Laboratory

    2009-01-01

    Measurement of the neutron capture cross-sections of a number of short-lived isotopes would advance both pure and applied scientific research. These cross-sections are needed for calculation of criticality and waste production estimates for the Advanced Fuel Cycle Initiative, for analysis of data from nuclear weapons tests, and to improve understanding of nucleosynthesis. However, measurement of these cross-sections would require a detector with a faster signal decay time than those used in existing neutron capture experiments. Crystals of faster detector materials are not available in sufficient sizes and quantities to supply these large-scale experiments. Instead, we propose to use nanocomposite detectors, consisting of nanoscale particles of a scintillating material dispersed in a matrix material. We have successfully fabricated cerium fluoride (CeF{sub 3}) nanoparticles and dispersed them in a liquid matrix. We have characterized this scintillator and have measured its response to neutron capture. Results of the optical, structural, and radiation characterization will be presented.

  14. A scintillating fiber dosimeter for radiotherapy

    Science.gov (United States)

    Bartesaghi, G.; Conti, V.; Bolognini, D.; Grigioni, S.; Mascagna, V.; Prest, M.; Scazzi, S.; Mozzanica, A.; Cappelletti, P.; Frigerio, M.; Gelosa, S.; Monti, A.; Ostinelli, A.; Giannini, G.; Vallazza, E.

    2007-10-01

    Radiotherapy, together with chemotherapy and surgery, is one of the main methods applied in the fight against cancer; in order to increase the chances of a successful radiotherapy treatment the dose delivery to the tumor and the surrounding normal tissues has to be computed with high accuracy. Traditional dosimeters are accurate but single channel (ionization chambers and diodes) or non real-time (radiographic films) devices. At present there is no device water equivalent that can perform real-time and bidimensional measurements of a dose distribution. This article describes the development of a real-time dosimeter based on scintillating fibers for photon and electron beams; the fibers are made of polystyrene, that is water equivalent and thus tissue equivalent, allowing a direct dose calculation. Three prototypes (single and multichannel) have been assembled, consisting in small scintillators coupled to white fibers that carry the light to photomultiplier tubes. In this article the prototypes and the readout electronics are described, together with the results of the measurements with electron and photon beams with energy up to 20 MeV (produced by linear accelerators Varian Clinac 1800 and 2100CD).

  15. Pulse Oximetry

    Science.gov (United States)

    ... people need more oxygen when asleep than when awake. Some need more oxygen with activity than when ... oxygen saturation levels (below 80%) or with very dark skin. When should I use a pulse oximeter? ...

  16. Radiation damages in chemical components of organic scintillator detectors; Danos de radiacao em componentes quimicos de detectores cintiladores organicos

    Energy Technology Data Exchange (ETDEWEB)

    Fernandes Neto, Jose Maria

    2003-07-01

    Samples containing PPO (1%, g/ml), diluted in toluene, they were irradiated in a {sup 60}Co irradiator (6.46 kGy/h) at different doses. The PPO concentration decay bi-exponentially with the dose, generating the degradation products: benzoic acid, benzamide and benzilic alcohol. The liquid scintillator system was not sensitive to the radiation damage until 20 kGy. Otherwise, the pulse height analysis showed that dose among 30 to 40 kGy generate significant loss of quality of the sensor (liquid scintillating) and the light yield was reduced in half with the dose of (34.04 {+-} 0.80) kGy. This value practically was confirmed by the photo peak position analysis that resulted D{sub 1/2} = (31.7 {+-} 1,4) kGy, The transmittance, at 360 nm, of the irradiated solution decreased exponentially. The compartmental model using five compartments (fast decay PPO, slow decay PPO, benzamide, benzoic acid and benzilic alcohol) it was satisfactory to explain the decay of the PPO in its degradation products in function of the dose. The explanation coefficient r{sup 2} = 0.985636 assures that the model was capable to explain 98.6% of the experimental variations. The Target Theory together with the Compartmental Analysis showed that PPO irradiated in toluene solution presents two sensitive molecular diameters both of them larger than the true PPO diameter. >From this analysis it showed that the radiolytic are generated, comparatively, at four toluene molecules diameter far from PPO molecules. For each one PPO-target it was calculated the G parameter (damage/100 eV). For the target expressed by the fast decay the G value was (418.4 {+-} 54.1) damages/100 eV, and for the slow decay target the G value was (54.5 {+-} 8.9) damages/100 eV. The energies involved in the chemical reactions were w (0.239 {+-} 0.031) eV/damage (fast decay) and w = (1 834 {+-} 0.301) eV/damage (slow decay). (author)

  17. Passive neutron coincidence counting with plastic scintillators for the characterization of radioactive waste drums

    Energy Technology Data Exchange (ETDEWEB)

    Deyglun, C.; Simony, B.; Perot, B.; Carasco, C. [CEA, DEN, Cadarache, Nuclear Measurement Laboratory, F-13108 Saint-Paul-lez-Durance (France); Saurel, N.; Colas, S. [CEA, DAM, Valduc, F-21120 Is-sur-Tille (France); Collot, J. [Laboratoire de Physique Subatomique et de Cosmologie, Universite Grenoble Alpes, CNRS/IN2P3, Grenoble (France)

    2015-07-01

    The quantification of radioactive material is essential in the fields of safeguards, criticality control of nuclear processes, dismantling of nuclear facilities and components, or radioactive waste characterization. The Nuclear Measurement Laboratory (LMN) of CEA is involved in the development of time-correlated neutron detection techniques using plastic scintillators. Usually, 3He proportional counters are used for passive neutron coincidence counting owing to their high thermal neutron capture efficiency and gamma insensitivity. However, the global {sup 3}He shortage in the past few years has made these detectors extremely expensive. In addition, contrary to {sup 3}He counters for which a few tens of microseconds are needed to thermalize fast neutrons, in view to maximize the {sup 3}He(n,p){sup 3}H capture cross section, plastic scintillators are based on elastic scattering and therefore the light signal is formed within a few nanoseconds, correlated pulses being detected within a few dozen- or hundred nanoseconds. This time span reflects fission particles time of flight, which allows reducing accordingly the duration of the coincidence gate and thus the rate of random coincidences, which may totally blind fission coincidences when using {sup 3}He counters in case of a high (α,n) reaction rate. However, plastic scintillators are very sensitive to gamma rays, requiring the use of a thick metallic shield to reduce the corresponding background. Cross talk between detectors is also a major issue, which consists on the detection of one particle by several detectors due to elastic or inelastic scattering, leading to true but undesired coincidences. Data analysis algorithms are tested to minimize cross-talk in simultaneously activated detectors. The distinction between useful fission coincidences and the correlated background due to cross-talk, (α,n) and induced (n,2n) or (n,n'γ) reactions, is achieved by measuring 3-fold coincidences. The performances of a

  18. Luminescence decay of S Zn::Ag and O Zn:Ga scintillation detectors excited by a pulsed laser; Evolucion temporal de la luminiscencia producida por un laser pulsado de los detectores de centello SZn:Ag y OZn:Ga

    Energy Technology Data Exchange (ETDEWEB)

    Romero, L.; Campos, J.

    1981-07-01

    In the present work a high sensitivity experimental set up for luminescence decay measurements in the 1 0 {sup -}1 sec range has been developed. As an application, luminescence light decay In S Zn:Ag and 0Zn:Ga after excitation by a pulsed N{sub 2} laser has been measured. In SZnrAg, measurements of total light decay was compared with donor acceptor pairs theory. In both substances, spectral evolution in the first 15 sec was investigated. (Author) 4 refs.

  19. Performance of Large Neutron Detectors Containing Lithium-Gadolinium-Borate Scintillator

    Energy Technology Data Exchange (ETDEWEB)

    Slaughter, David M.; Stuart, Cory R.; Klaass, R. Fred; Merrill, David B. [MSI/Photogenics Division, Orem, Utah (United States)

    2015-07-01

    This paper describes the development and testing of a neutron counter, spectrometer, and dosimeter that is compact, efficient, and accurate. A self-contained neutron detection instrument has wide applications in health physics, scientific research, and programs to detect, monitor, and control strategic nuclear materials (SNM). The 1.3 liter detector head for this instrument is a composite detector with an organic scintillator containing uniformly distributed {sup 6}Li{sub 6}{sup nat}Gd{sup 10}B{sub 3}O{sub 9}:Ce (LGB:Ce) microcrystals. The plastic scintillator acts to slow impinging neutrons and emits light proportional to the energy lost by the neutrons as they moderate in the detector body. Moderating neutrons that have slowed sufficiently capture in one of the Lithium-6, Boron-10, or Gadolinium-157 atoms in the LGB:Ce scintillator, which then releases the capture energy in a characteristic cerium emission pulse. The measured captured pulses indicate the presence of neutrons. When a scintillating fluor is present in the plastic, the light pulse resulting from the neutron moderating in the plastic is paired with the LGB:Ce capture pulse to identify the energy of the neutron. About 2% of the impinging neutrons lose all of their energy in a single collision with the detector. There is a linear relationship between the pulse areas of this group of neutrons and energy. The other 98% of neutrons have a wide range of collision histories within the detector body. When these neutrons are 'binned' into energy groups, each group contains a distribution of pulse areas. This data was used to assist in the unfolding of the neutron spectra. The unfolded spectra were then validated with known spectra, at both neutron emitting isotopes and fission/accelerator facilities. Having validated spectra, the dose equivalent and dose rate are determined by applying standard, regulatory damage coefficients to the measured neutron counts for each energy bin of the spectra. Testing

  20. Simulation tool for optical design of PET detector modules including scintillator material and sensor array

    Energy Technology Data Exchange (ETDEWEB)

    Jatekos, B.; Erdei, G.; Lorincz, E. [Budapest Univ. of Technology and Economics, Dept. of Atomic Physics, Budafoki ut 8, H-1111 Budapest (Hungary)

    2011-07-01

    The appearance of single photon avalanche diodes (SPADs) in the field of PET detector modules made it necessary to apply more complex optical design methods to refine the performance of such assemblies. We developed a combined simulation tool that is capable to model complex detector structures including scintillation material, light guide, light collection optics and sensor, correctly taking into account the statistical behavior of emission of scintillation light and its absorbance in SPADs. As a validation we compared simulation results obtained by our software and another optical design program. Calculations were performed for a simple PET detector arrangement used for testing purposes. According to the results, deviation of center of gravity coordinates between the two simulations is 0.0195 mm, the average ratio of total counts 1.0052. We investigated the error resulting from finite sampling in wavelength space and we found that 20 nm pitch is sufficient for the simulation in case of the given spectral dependencies. (authors)

  1. Validation of GEANT4 Monte Carlo Models with a Highly Granular Scintillator-Steel Hadron Calorimeter

    CERN Document Server

    Adloff, C; Blaising, J J; Drancourt, C; Espargiliere, A; Gaglione, R; Geffroy, N; Karyotakis, Y; Prast, J; Vouters, G; Francis, K; Repond, J; Schlereth, J; Smith, J; Xia, L; Baldolemar, E; Li, J; Park, S T; Sosebee, M; White, A P; Yu, J; Buanes, T; Eigen, G; Mikami, Y; Watson, N K; Mavromanolakis, G; Thomson, M A; Ward, D R; Yan, W; Benchekroun, D; Hoummada, A; Khoulaki, Y; Apostolakis, J; Dotti, A; Folger, G; Ivantchenko, V; Uzhinskiy, V; Benyamna, M; Cârloganu, C; Fehr, F; Gay, P; Manen, S; Royer, L; Blazey, G C; Dyshkant, A; Lima, J G R; Zutshi, V; Hostachy, J Y; Morin, L; Cornett, U; David, D; Falley, G; Gadow, K; Gottlicher, P; Gunter, C; Hermberg, B; Karstensen, S; Krivan, F; Lucaci-Timoce, A I; Lu, S; Lutz, B; Morozov, S; Morgunov, V; Reinecke, M; Sefkow, F; Smirnov, P; Terwort, M; Vargas-Trevino, A; Feege, N; Garutti, E; Marchesini, I; Ramilli, M; Eckert, P; Harion, T; Kaplan, A; Schultz-Coulon, H Ch; Shen, W; Stamen, R; Bilki, B; Norbeck, E; Onel, Y; Wilson, G W; Kawagoe, K; Dauncey, P D; Magnan, A M; Bartsch, V; Wing, M; Salvatore, F; Alamillo, E Calvo; Fouz, M C; Puerta-Pelayo, J; Bobchenko, B; Chadeeva, M; Danilov, M; Epifantsev, A; Markin, O; Mizuk, R; Novikov, E; Popov, V; Rusinov, V; Tarkovsky, E; Kirikova, N; Kozlov, V; Smirnov, P; Soloviev, Y; Buzhan, P; Ilyin, A; Kantserov, V; Kaplin, V; Karakash, A; Popova, E; Tikhomirov, V; Kiesling, C; Seidel, K; Simon, F; Soldner, C; Szalay, M; Tesar, M; Weuste, L; Amjad, M S; Bonis, J; Callier, S; Conforti di Lorenzo, S; Cornebise, P; Doublet, Ph; Dulucq, F; Fleury, J; Frisson, T; van der Kolk, N; Li, H; Martin-Chassard, G; Richard, F; de la Taille, Ch; Poschl, R; Raux, L; Rouene, J; Seguin-Moreau, N; Anduze, M; Boudry, V; Brient, J-C; Jeans, D; Mora de Freitas, P; Musat, G; Reinhard, M; Ruan, M; Videau, H; Bulanek, B; Zacek, J; Cvach, J; Gallus, P; Havranek, M; Janata, M; Kvasnicka, J; Lednicky, D; Marcisovsky, M; Polak, I; Popule, J; Tomasek, L; Tomasek, M; Ruzicka, P; Sicho, P; Smolik, J; Vrba, V; Zalesak, J; Belhorma, B; Ghazlane, H; Takeshita, T; Uozumi, S; Gotze, M; Hartbrich, O; Sauer, J; Weber, S; Zeitnitz, C

    2013-01-01

    Calorimeters with a high granularity are a fundamental requirement of the Particle Flow paradigm. This paper focuses on the prototype of a hadron calorimeter with analog readout, consisting of thirty-eight scintillator layers alternating with steel absorber planes. The scintillator plates are finely segmented into tiles individually read out via Silicon Photomultipliers. The presented results are based on data collected with pion beams in the energy range from 8GeV to 100GeV. The fine segmentation of the sensitive layers and the high sampling frequency allow for an excellent reconstruction of the spatial development of hadronic showers. A comparison between data and Monte Carlo simulations is presented, concerning both the longitudinal and lateral development of hadronic showers and the global response of the calorimeter. The performance of several GEANT4 physics lists with respect to these observables is evaluated.

  2. FLUKA studies of hadron-irradiated scintillating crystals for calorimetry at the High-Luminosity LHC

    CERN Document Server

    Quittnat, Milena Eleonore

    2015-01-01

    Calorimetry at the High-Luminosity LHC (HL-LHC) will be performed in a harsh radiation environment with high hadron fluences. The upgraded CMS electromagnetic calorimeter design and suitable scintillating materials are a focus of current research. In this paper, first results using the Monte Carlo simulation program FLUKA are compared to measurements performed with proton-irradiated LYSO, YSO and cerium fluoride crystals. Based on these results, an extrapolation to the behavior of an electromagnetic sampling calorimeter, using one of the inorganic scintillators above as an active medium, is performed for the upgraded CMS experiment at the HL-LHC. Characteristic parameters such as the induced ambient dose, fluence spectra for different particle types and the residual nuclei are studied, and the suitability of these materials for a future calorimeter is surveyed. Particular attention is given to the creation of isotopes in an LYSO-tungsten calorimeter that might contribute a prohibitive background to the measu...

  3. An ultrafast X-ray scintillating detector made of ZnO(Ga)

    Science.gov (United States)

    Zhang, Qingmin; Yan, Jun; Deng, Bangjie; Zhang, Jingwen; Lv, Jinge; Wen, Xin; Gao, Keqing

    2017-12-01

    Owing to its ultrafast scintillation, quite high light yield, strong radiation resistance, and non-deliquescence, ZnO(Ga) is a highly promising choice for an ultrafast X-ray detector. Because of its high deposition rate, good production repeatability and strong adhesive force, reactive magnetron sputtering was used to produce a ZnO(Ga) crystal on a quartz glass substrate, after the production conditions were optimized. The fluorescence lifetime of the sample was 173 ps. An ultrafast X-ray scintillating detector, equipped with a fast microchannel plate (MCP) photomultiplier tube (PMT), was developed and the X-ray tests show a signal full width at half maximum (FWHM) of only 385.5 ps. Moreover, derivation from the previous measurement shows the ZnO(Ga) has an ultrafast time response (FWHM = 355.1 ps) and a high light yield (14740 photons/MeV).

  4. Microscale luminescence imaging of defects, inhomogeneities, and secondary phases in halide scintillators

    Energy Technology Data Exchange (ETDEWEB)

    Lam, S., E-mail: lam@capesym.com; Swider, S.; Fiala, J.; Datta, A.; Motakef, S.

    2015-06-01

    A microscale luminescence system was custom-built to investigate crystallinity, crystal quality, and emission homogeneity in scintillator crystals. This system consists of a fluorescence microscope that has been integrated with a spectrometer and custom-software for both manual and automated collection of two-dimensional reflection and emission images and maps of scintillators under excitation. The system’s capabilities are demonstrated through imaging studies on samples of CsBa{sub 2}I{sub 5} (2%Eu) (CBI), CsI (5%Ba, 3%Eu), and SrI{sub 2} (5%Eu). Emission images obtained under 365 nm excitation reveal features that cannot be visualized using light microscopy alone. In the CBI samples, rod-like structures of 100–200 μm in diameter were observed. Using electron probe microanalysis (EPMA), these rods were found to be rich in barium and poor in cesium and europium. In CsI (Ba, Eu), oblong features were observed. Electron probe microanalysis confirmed that these regions varied in composition. Finally, an emission map of a one-inch diameter disk of SrI{sub 2} (Eu) indicated a uniform distribution of the dopant. This study demonstrates that the microscale luminescence system is a valuable complement to the current suite of scintillator characterization tools. Its capabilities for evaluating crystal quality and homogeneity will provide useful feedback for crystal growth optimization.

  5. The influence of neutron radiation damage on the optical properties of plastic scintillator UPS 923A

    Science.gov (United States)

    Mthembu, Skhathisomusa; Davydov, Yuri; Baranov, Vladimir; Mellado Garcia, Bruce; Mdhluli, Joyful; Sideras-Haddad, Elias

    2017-09-01

    Plastic scintillators are vital in the reconstruction of hadronic particle energy and tracks resulting from the collision of high energy particles in the Large Hadron Collider (LHC) at CERN. These plastic scintillators are exposed to harsh radiation environments and are susceptible to radiation damage. The effects of radiation damage on the transmittance, luminescence and light yield of Ukraine polystyrene-based scintillator UPS 923A were studied. Samples were irradiated with fast neutrons, of varying energies and fluences, using the IBR-2 reactor FLNP (Frank Laboratory for Nuclear Problems) at the Joint Institute for Nuclear Research. Results show a small change in the transmittance of the higher energy visible spectrum, and a noticeable change in the light yield of the samples as a result of the damage. There is no change observed on the luminescence as a result of radiation damage at studied fluences. The doses and uences of the neutrons shall be increased and changes in optical properties as a result of the radiation shall be further studied.

  6. Rapid analysis of pesticide residues in drinking water samples by dispersive solid-phase extraction based on multiwalled carbon nanotubes and pulse glow discharge ion source ion mobility spectrometry.

    Science.gov (United States)

    Zou, Nan; Gu, Kejia; Liu, Shaowen; Hou, Yanbing; Zhang, Jialei; Xu, Xiang; Li, Xuesheng; Pan, Canping

    2016-03-01

    An analytical method based on dispersive solid-phase extraction with a multiwalled carbon nanotubes sorbent coupled with positive pulse glow discharge ion mobility spectrometry was developed for analysis of 30 pesticide residues in drinking water samples. Reduced ion mobilities and the mass-mobility correlation of 30 pesticides were measured. The pesticides were divided into five groups to verify the separation capability of pulse glow discharge in mobility spectrometry. The extraction conditions such as desorption solvent, ionic strength, conditions of adsorption and desorption, the amounts of multiwalled carbon nanotubes, and solution pH were optimized. The enrichment factors of pesticides were 5.4- to 48.7-fold (theoretical enrichment factor was 50-fold). The detection limits of pesticides were 0.01∼0.77 μg/kg. The linear range was 0.005-0.2 mg/L for pesticide standard solutions, with determination coefficients from 0.9616 to 0.9999. The method was applied for the analysis of practical and spiked drinking water samples. All results were confirmed by high-performance liquid chromatography with tandem mass spectrometry. The proposed method was proven to be a commendably rapid screening qualitative and semiquantitative technique for the analysis of pesticide residues in drinking water samples on site. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Optimization of {sup 6}LiF:ZnS(Ag) Scintillator Light Yield Using Geant4

    Energy Technology Data Exchange (ETDEWEB)

    Yehuda-Zada, Y. [Nuclear Research Center Negev, Beer-Sheva (Israel); Ben-Gurion University (Israel); Pritchard, K.; Ziegler, J.B.; Cooksey, C.; Siebein, K. [National Institute of Standards and Technology, Gaithersburg, Maryland (United States); Jackson, M.; Hurlbut, C. [Eljen Technology, Sweetwater Texas (United States); Kadmon, Y.; Cohen, Y.; Maliszewskyj, N.C. [Nuclear Research Center Negev, Beer-Sheva (Israel); Ibberson, R.M.; Majkrzak, C.F. [National Institute of Standards and Technology, Gaithersburg, Maryland (United States); Orion, Y. [Ben-Gurion University (Israel); Osovizky, A. [National Institute of Standards and Technology, Gaithersburg, Maryland (United States); Rotem Industries Ltd, Rotem Industrial Park (Israel); University of Maryland (United States)

    2015-07-01

    Neutrons provide an effective tool to probe materials structure. Neutron diffraction is a method to determine the atomic and magnetic structure of a material based on neutron scattering. By this method a collimated incident beam of thermal neutrons heat the examined sample and based on the obtained diffraction pattern information on the structure of the material is provided. Research for developing a novel cold neutron detector for Chromatic Analysis Neutron Diffractometer Or Reflectometer (CANDOR) is underway at the NIST center for neutron research. The system unique design is aimed to provide over ten times fold faster analysis of materials than conventional system. In order to achieve the fast analysis a large number of neutron detectors is required. A key design constraint for this detector is the thickness of the neutron sensitive element. This is met using {sup 6}LiF:ZnS(Ag) scintillation material with embedded wavelength shifting (WLS) fibers conducting scintillation light to silicon photomultiplier photo-sensors. The detector sensitivity is determined by both the neutron capture probability ({sup 6}Li density) and the detectable light output produced by the ZnS(Ag) ionization, the latter of which is hindered by the fluorescence absorption of the scintillation light by the ZnS. Tradeoffs between the neutron capture probability, stimulated light production and light attenuation for determining the optimal stoichiometry of the {sup 6}LiF and ZnS(Ag) as well as the volume ratio of scintillator and fiber. Simulations performed using the GEANT4 Monte Carlo package were made in order to optimize the detector design. GEANT4 enables the investigation of the neutron interaction with the detector, the ionization process and the light transfer process following the nuclear process. The series of conversions required for this detector were modelled: - A cold neutron enters the sensor and is captured by {sup 6}Li in the scintillator mixture ({sup 6}Li (n,α) {sup 3}H

  8. Optimal Linear Filters. 2. Pulse Time Measurements in the Presence of Noise

    Energy Technology Data Exchange (ETDEWEB)

    Nygaard, K.

    1966-09-15

    The problem of calculating the maximum available timing information contained in nuclear pulses in the presence of noise is solved theoretically. Practical experiments show that the theoretical values can be obtained by very simple, but untraditional, means. An output pulse from a practical filter connected to a charge sensitive amplifier with a Ge(Li) detector showed a rise time of 30 ns and a noise level of less than 5 keV. The time jitter measured was inversely proportional to the pulse height and less than 30 ns for 10 keV pulses. With the timing filter shown solid state detectors can be classified somewhere between Nal scintillators and organic scintillators with respect to time resolution.

  9. Monte Carlo simulation of electron thermalization in scintillator materials: Implications for scintillator nonproportionality

    Science.gov (United States)

    Prange, Micah P.; Xie, YuLong; Campbell, Luke W.; Gao, Fei; Kerisit, Sebastien

    2017-12-01

    The lack of reliable quantitative estimates of the length and time scales associated with hot electron thermalization after a gamma-ray induced energy cascade obscures the interplay of various microscopic processes controlling scintillator performance and hampers the search for improved detector materials. We apply a detailed microscopic kinetic Monte Carlo model of the creation and subsequent thermalization of hot electrons produced by gamma irradiation of six important scintillating crystals to determine the spatial extent of the cloud of excitations produced by gamma rays and the time required for the cloud to thermalize with the host lattice. The main ingredients of the model are ensembles of microscopic track structures produced upon gamma excitation (including the energy distribution of the excited carriers), numerical estimates of electron-phonon scattering rates, and a calculated particle dispersion to relate the speed and energy of excited carriers. All these ingredients are based on first-principles density functional theory calculations of the electronic and phonon band structures of the materials. The details of the Monte Carlo model are presented along with the results for thermalization time and distance distributions. These results are discussed in light of previous work. It is found that among the studied materials, calculated thermalization distances are positively correlated with measured nonproportionality. In the important class of halide scintillators, the particle dispersion is found to be more influential than the largest phonon energy in determining the thermalization distance.

  10. The theory of scintillation with applications in remote sensing

    CERN Document Server

    Rino, Charles

    2011-01-01

    "In order to truly understand data signals transmitted by satellite, one must understand scintillation theory in addition to well established theories of EM wave propagation and scattering. Scintillation is a nuisance in satellite EM communications, but it has stimulated numerous theoretical developments with science applications. This book not only presents a thorough theoretical explanation of scintillation, but it also offers a complete library of MATLAB codes that will reproduce the book examples. The library includes GPS coordinate manipulations, satellite orbit prediction, and earth mean magnetic field computations. The subect matter is for EM researchers; however, also theory is relevant to geophysics, acoustics, optics and astoronomy"--Provided by publisher.

  11. Neutron detector using lithiated glass-scintillating particle composite

    Science.gov (United States)

    Wallace, Steven [Knoxville, TN; Stephan, Andrew C [Knoxville, TX; Dai, Sheng [Knoxville, TN; Im, Hee-Jung [Knoxville, TN

    2009-09-01

    A neutron detector composed of a matrix of scintillating particles imbedded in a lithiated glass is disclosed. The neutron detector detects the neutrons by absorbing the neutron in the lithium-6 isotope which has been enriched from the natural isotopic ratio to a commercial ninety five percent. The utility of the detector is optimized by suitably selecting scintillating particle sizes in the range of the alpha and the triton. Nominal particle sizes are in the range of five to twenty five microns depending upon the specific scintillating particle selected.

  12. Design and Prototyping of a High Granularity Scintillator Calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Zutshi, Vishnu [Northern Illinois Univ., DeKalb, IL (United States). Dept. of Physics

    2016-03-27

    A novel approach for constructing fine-granularity scintillator calorimeters, based on the concept of an Integrated Readout Layer (IRL) was developed. The IRL consists of a printed circuit board inside the detector which supports the directly-coupled scintillator tiles, connects to the surface-mount SiPMs and carries the necessary front-end electronics and signal/bias traces. Prototype IRLs using this concept were designed, prototyped and successfully exposed to test beams. Concepts and implementations of an IRL carried out with funds associated with this contract promise to result in the next generation of scintillator calorimeters.

  13. Alpha counting and spectrometry using liquid scintillation methods

    Energy Technology Data Exchange (ETDEWEB)

    McDowell, W J

    1986-01-01

    The material in this report is intended to be a practical introduction and guide to the use of liquid scintillation for alpha counting and spectrometry. Other works devoted to the development of the theory of liquid scintillation exist and a minimum of such material is repeated here. Much remains to be learned and many improvements remain to be made in the use of liquid scintillation for alpha counting and spectrometry. It is hoped that this modest work will encourage others to continue development in the field.

  14. A coincidental timing model for the scintillating fibers

    Energy Technology Data Exchange (ETDEWEB)

    Zugec, Petar, E-mail: pzugec@phy.hr [Department of Physics, Faculty of Science, University of Zagreb, Bijenicka cesta 32, Zagreb (Croatia)

    2011-12-11

    A model describing the coincidental timing of scintillating fibers is developed. Fiber geometry, the rate of scintillation decay together with the mean number, spatial dispersion and attenuation of emitted photons are considered. For a specific selection of probability distributions and parameters involved, the entire coincidental timing distributions, corresponding FWHM values and the photon detection efficiencies are extracted. The significance of the number of photons from the scintillation process is specially emphasized. Additionally, the model is extended to include a triggering feature, experimentally realized by coupling fibers to any photon resolving device. Finally, the measurements of a coincidental timing distribution were performed, with an excellent agreement found between the experimental and predicted theoretical results.

  15. Modelling of an IR scintillation counter

    CERN Document Server

    Fraga, M M F; Policarpo, Armando

    2000-01-01

    A systematic study of the excitation and de-excitation mechanisms in ternary gas mixtures Ar+CO sub 2 +N sub 2 is presented regarding the possibility of developing a proportional scintillation counter based on the detection of the infrared molecular emissions associated with the lowest vibrational states of molecules. The use of visible or near-infrared photons (lambda<1 mu m) for applications like imaging and quality control of microstructure detectors has been reported. In view of these applications we analyse the processes leading to near-infrared emissions in pure argon and give an estimation of the number of photons emitted per electron, at several pressures, as a function of the charge gain.

  16. Enhancement of beam pulse controllability for a single-pulse formation system of a cyclotron.

    Science.gov (United States)

    Kurashima, Satoshi; Miyawaki, Nobumasa; Kashiwagi, Hirotsugu; Okumura, Susumu; Taguchi, Mitsumasa; Fukuda, Mitsuhiro

    2015-07-01

    The single-pulse formation technique using a beam chopping system consisting of two types of high-voltage beam kickers was improved to enhance the quality and intensity of the single-pulse beam with a pulse interval over 1 μs at the Japan Atomic Energy Agency cyclotron facility. A contamination rate of neighboring beam bunches in the single-pulse beam was reduced to less than 0.1%. Long-term purification of the single pulse beam was guaranteed by the well-controlled magnetic field stabilization system for the cyclotron magnet. Reduction of the multi-turn extraction number for suppressing the neighboring beam bunch contamination was achieved by restriction of a beam phase width and precise optimization of a particle acceleration phase. In addition, the single-pulse beam intensity was increased by a factor of two or more by a combination of two types of beam bunchers using sinusoidal and saw-tooth voltage waveforms. Provision of the high quality intense single-pulse beam contributed to improve the accuracy of experiments for investigation of scintillation light time-profile and for neutron energy measurement by a time-of-flight method.

  17. Pulse plating

    CERN Document Server

    Hansal, Wolfgang E G; Green, Todd; Leisner, Peter; Reichenbach, Andreas

    2012-01-01

    The electrodeposition of metals using pulsed current has achieved practical importance in recent years. Although it has long been known that changes in potential, with or without polarity reversal, can significantly affect the deposition process, the practical application of this has been slow to be adopted. This can largely be explained in terms of the complex relationship between the current regime and its effect on the electrodeposition process. In order to harness these effects, an understanding of the anodic and cathodic electrochemical processes is necessary, together with the effects of polarity reversal and the rate of such reversals. In this new monograph, the basics of metal electrodeposition from solution are laid out in great detail in seven distinct chapters. With this knowledge, the reader is able to predict how a given pulse train profile can be adopted to achieve a desired outcome. Equally important is the choice of a suitable rectifier and the ancillary control circuits to enable pulse platin...

  18. A Sub-Sampling Approach for Data Acquisition in Gamma Ray Emission Tomography

    Science.gov (United States)

    Fysikopoulos, Eleftherios; Kopsinis, Yannis; Georgiou, Maria; Loudos, George

    2016-06-01

    State of the art data acquisition systems for small animal imaging gamma ray detectors often rely on free running Analog to Digital Converters (ADCs) and high density Field Programmable Gate Arrays (FPGA) devices for digital signal processing. In this work, a sub-sampling acquisition approach, which exploits a priori information regarding the shape of the obtained detector pulses is proposed. Output pulses shape depends on the response of the scintillation crystal, photodetector's properties and amplifier/shaper operation. Using these known characteristics of the detector pulses prior to digitization, one can model the voltage pulse derived from the shaper (a low-pass filter, last in the front-end electronics chain), in order to reduce the desirable sampling rate of ADCs. Fitting with a small number of measurements, pulse shape estimation is then feasible. In particular, the proposed sub-sampling acquisition approach relies on a bi-exponential modeling of the pulse shape. We show that the properties of the pulse that are relevant for Single Photon Emission Computed Tomography (SPECT) event detection (i.e., position and energy) can be calculated by collecting just a small fraction of the number of samples usually collected in data acquisition systems used so far. Compared to the standard digitization process, the proposed sub-sampling approach allows the use of free running ADCs with sampling rate reduced by a factor of 5. Two small detectors consisting of Cerium doped Gadolinium Aluminum Gallium Garnet (Gd3Al2Ga3O12 : Ce or GAGG:Ce) pixelated arrays (array elements: 2 × 2 × 5 mm3 and 1 × 1 × 10 mm3 respectively) coupled to a Position Sensitive Photomultiplier Tube (PSPMT) were used for experimental evaluation. The two detectors were used to obtain raw images and energy histograms under 140 keV and 661.7 keV irradiation respectively. The sub-sampling acquisition technique (10 MHz sampling rate) was compared with a standard acquisition method (52 MHz sampling

  19. Upgrade of the POLDI diffractometer with a ZnS(Ag)/6LiF scintillation detector read out with WLS fibers coupled to SiPMs

    OpenAIRE

    Mosset, J. -B.; Stoykov, A.; Davydov, V.; Hildebrandt, M.; Van Swygenhoven, H.; Wagner, W.

    2013-01-01

    A thermal neutron detector based on ZnS(Ag)/6LiF scintillator, wavelength-shifting fibers (WLS) and silicon photomultipliers (SiPM) is under development at the Paul Scherrer Institute (PSI) for upgrading the POLDI instrument, a pulse-overlap diffractometer. The design of the detector is outlined, and the measurements performed on a single channel prototype are presented. An innovative signal processing system based on a photon counting approach is under development. Its principle of operation...

  20. Simultaneous determination of Cd, Pb, Cu, Sb, Bi, Se, Zn, Mn, Ni, Co and Fe in water samples by differential pulse stripping voltammetry at a hanging mercury drop electrode.

    Science.gov (United States)

    Ghoneim, M M; Hassanein, A M; Hammam, E; Beltagi, A M

    2000-06-01

    A highly sensitive and selective voltammetric procedure is described for the simultaneous determination of eleven elements (Cd, Pb, Cu, Sb, Bi, Se, Zn, Mn, Ni, Co and Fe) in water samples. Firstly, differential pulse anodic stripping voltammetry (DPASV) with a hanging mercury drop electrode (HMDE) is used for the direct simultaneous determination of Cd, Pb, Cu, Sb and Bi in 0.1 M HCI solution (pH = 1) containing 2 M NaCl. Then, differential pulse cathodic stripping voltammetry (DPCSV) is used for the determination of Se in the same solution. Zn is subsequently determined by DPASV after raising the pH of the same solution to pH 4. Next, the pH of the medium is raised to pH 8.5 by adding NH3/NH4Cl buffer solution for the determination of Mn by DPASV. Ni and Co are determined in the same solution by differential pulse adsorptive stripping voltammetry (DPAdSV) after adding DMG (1 x 10(-4) M). Finally, 1 x 10(-5) M 2-(5-bromo-2-pyridylazo)-5-diethylaminophenol (5-Br-PADAP) is added to the solution for the determination of Fe by DPAdSV. The optimal conditions are described. Relative standard deviations and relative errors are calculated for the eleven elements at three different concentration levels. The lower detection limits for the investigated elements range from 1.11 x 10(-10) to 1.05 x 10(-9)M, depending on the element determined. The proposed analysis scheme was applied for the determination of these eleven elements in some ground water samples.

  1. Highly fluorescent xerogels with entrapped carbon dots for organic scintillators

    Energy Technology Data Exchange (ETDEWEB)

    Quaranta, A., E-mail: quaranta@ing.unitn.it [University of Trento, Department of Industrial Engineering, via Mesiano, 77, 38123 Trento (Italy); Laboratori Nazionali di Legnaro, INFN, Viale dell' Università, 2, 35020 Legnaro (PD) (Italy); Carturan, S. [Laboratori Nazionali di Legnaro, INFN, Viale dell' Università, 2, 35020 Legnaro (PD) (Italy); University of Padova, Department of Physics and Astronomy “Galileo Galilei”, Via Marzolo, 8, 35131 Padova (Italy); Campagnaro, A.; Dalla Palma, M. [University of Trento, Department of Industrial Engineering, via Mesiano, 77, 38123 Trento (Italy); Laboratori Nazionali di Legnaro, INFN, Viale dell' Università, 2, 35020 Legnaro (PD) (Italy); Giarola, M.; Daldosso, N. [University of Verona, Department of Informatics, Strada le Grazie,15, 37134 Verona (Italy); Maggioni, G. [Laboratori Nazionali di Legnaro, INFN, Viale dell' Università, 2, 35020 Legnaro (PD) (Italy); University of Padova, Department of Physics and Astronomy “Galileo Galilei”, Via Marzolo, 8, 35131 Padova (Italy); Mariotto, G. [University of Verona, Department of Informatics, Strada le Grazie,15, 37134 Verona (Italy)

    2014-02-28

    Organically modified silicate thin film and bulk samples were prepared using [3-(2-aminoethylamino)propyl]trimethoxysilane (AEAP-TMOS) as precursor with the addition of different amounts of AEAP-TMOS functionalized C-dots, prepared by reaction of AEAP-TMOS and citric acid at high temperature. The synthesis of surface functionalized C-dots was followed by Fourier Transform Infrared (FTIR) spectroscopy, and the C-dots optical properties were characterized by optical absorption and UV–vis fluorescence. Thin xerogel films and bulk samples were studied by FTIR, Raman and fluorescence spectroscopy. Intense blue-green emission was observed by UV excitation of functionalized C-dots. Carbon quantum dot (CQD) luminescence was preserved also in the xerogel matrices, and the energy transfer from the matrix to CQDs, which is a key characteristic for scintillation detectors, was investigated in the two systems. - Highlights: • Functionalized carbon dots were synthesized. • Carbon dots were dispersed in hybrid xerogel bulk and thin film. • Carbon dots exhibit a strong tunable blue luminescence. • Xerogels were characterized by FT-IR, Raman and fluorescence spectroscopies. • Energy transfer processes were evidenced between C-dots and xerogel matrix.

  2. Ionospheric Scintillations from Conjugate Stations during the 2015 St. Patrick Storm.

    Science.gov (United States)

    D'angelo, G.; Piersanti, M.; Alfonsi, L.; Spogli, L.

    2016-12-01

    The storm onset on the St. Patrick day of March 2015 triggered several fluctuations of the electron density causing severe scintillations at polar latitudes of both hemispheres. L-band monitoring of the ionosphere can be accomplished by means of specially modified GNSS (Global Navigation Satellite Systems) receivers capable to sample the received signals at 50 Hz. Thanks to the availability of data acquired by such kind of devices, we had the opportunity to investigate the ionospheric response, in terms of GPS phase scintillations, recorded at ground in Antarctica and in the Arctic. In particular, we analyzed data from Eureka (79.99°N, 274.10°E) and Concordia (75.10°S, 123.35°E) stations to look at the conjugate response of the ionosphere to the most intense storm of the current solar cycle. We found an asymmetric response of the intensity of the phase scintillations recorded at the same Universal Time (UT) by the two stations during the main phase of the storm. While we found a completely asymmetric response (in terms of hemisphere, UT and intensity) during the recovery phase. By using the POES and GOES magnetospheric field and electron density data, we evaluated the magnetospheric field and the electron flux responses to the storm. We used the TS04 (Tsyganenko and Sitnov, 2005) model prevision to estimate the current configurations that better reproduce the actual magnetospheric observations. Additionally, we adopted the Rankine-Hugoniot conditions, applied to L1 satellites measurements, to assess the normal direction of the interplanetary shock. The proposed multi-disciplinary approach revealed to be a powerful tool to explain the symmetric/asymmetric response of the scintillations occurrence over the two conjugated stations. The storm onset on the St. Patrick day of March 2015 triggered several fluctuations of the electron density causing severe scintillations at polar latitudes of both hemispheres. L-band monitoring of the ionosphere can be accomplished by

  3. Production of the Large-area Plastic Scintillator for Beta-ray Detection using Epoxy Resin

    Energy Technology Data Exchange (ETDEWEB)

    Nam, Jong Soo; Choi, Yong Seok; Hong, Sang Bum; Seo, Bum Kyung; Moon, Jei Kwon; Choi, Jong Won [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    In this study, we prepared a plastic scintillator whose manufacturing process is simple and can be freely shaped. A thin plate of the plastic scintillator was manufactured using epoxy resin as a polymer. The plastic scintillator was made by mixing epoxy resin and organic scintillators under various conditions. The optimal mixture ratio to prepare the plastic scintillator was derived from the above results. Using the derived results, we made the large-area plastic scintillator which can quickly measure the contamination site and evaluated characteristics of the large-area plastic scintillator in the laboratory. A thin plate of a plastic scintillator with a simple preparation process can be freely shaped using epoxy resin and organic scintillators such as PPO and POPOP. PPO emits scintillation of light in the ultraviolet range, and POPOP is a wave shifter for moving the wavelength responsible for the PMT. The mixture ratio of PPO and POPOP was determined using their emission spectra. The optimal weight percentage of PPO and POPOP in an organic scintillator was determined to be 0.2 wt%:0.01 wt%. Based on the above results, the large-area plastic scintillator of the window size of a typical pancake-type αβ surface contamination counter was prepared. We want to evaluate the characteristics of the large-area plastic scintillator. However, there were the difficulties in evaluating characteristics of the large-area plastic scintillator. The cross-sectional area of the large-area plastic scintillator is significantly different to PMT.

  4. Analysis and comparison model for measuring tropospheric scintillation intensity for Ku-band frequency in Malaysia

    Directory of Open Access Journals (Sweden)

    Mandeep JS

    2011-06-01

    Full Text Available This study has been based on understanding local propagation signal data distribution characteristics and identifying and predicting the overall impact of significant attenuating factors regarding the propagation path such as impaired propagation for a signal being transmitted. Predicting propagation impairment is important for accurate link budgeting, thereby leading to better communication network system designation. This study has thus used sample data for one year concerning beacon satellite operation in Malaysia from April 2008 to April 2009. Data concerning 12GHz frequency (Ku-band and 40° elevation angle was collected and analysed, obtaining average signal amplitude value, ÷ and also standard deviation ó which is normally measured in dB to obtain long-term scintillation intensity distribution. This analysis showed that scintillation intensity distribution followed Gaussian distribution for long-term data distribution. A prediction model was then selected based on the above; Karasawa,
    ITU-R, Van de Kamp and Otung models were compared to obtain the best prediction model performance for selected data regarding specific meteorological conditions. This study showed that the Karasawa model had the best performance for predicting scintillation intensity for the selected da ta.

  5. Improved Scintillator Materials For Compact Electron Antineutrino Detectors

    NARCIS (Netherlands)

    Dijkstra, Peter; Wortche, Heinrich J.; Browne, Wesley R.

    2012-01-01

    Recent developments provide new components holding the potential to improve the performance of liquid scintillation electron antineutrino detectors used as nuclear reactors monitors. Current systems raise issues regarding size, quantum efficiency, stability, and spatial resolution of the vertex

  6. Large liquid-scintillator trackers for neutrino experiments

    CERN Document Server

    Benussi, L; D'Ambrosio, N; Déclais, Y; Dupraz, J P; Fabre, Jean-Paul; Fanti, V; Forton, E; Frekers, D; Frenkel, A; Girerd, C; Golovkin, S V; Grégoire, G; Harrison, K; Jonkmans, G; Jonsson, P; Katsanevas, S; Kreslo, I; Marteau, J; Martellotti, G; Martínez, S; Medvedkov, A M; Moret, G; Niwa, K; Novikov, V; Van Beek, G; Penso, G; Vasilchenko, V G; Vuilleumier, J L; Wilquet, G; Zucchelli, P; Kreslo, I E

    2002-01-01

    Results are given on tests of large particle trackers for the detection of neutrino interactions in long-baseline experiments. Module prototypes have been assembled using TiO$_2$-doped polycarbonate panels. These were subdivided into cells of $\\sim 1$~cm$^2$ cross section and 6~m length, filled with liquid scintillator. A wavelength-shifting fibre inserted in each cell captured a part of the scintillation light emitted when a cell was traversed by an ionizing particle. Two different fibre-readout systems have been tested: an optoelectronic chain comprising an image intensifier and an Electron Bombarded CCD (EBCCD); and a hybrid photodiode~(HPD). New, low-cost liquid scintillators have been investigated for applications in large underground detectors. Testbeam studies have been performed using a commercially available liquid scintillator. The number of detected photoelectrons for minimum-ionizing particles crossing a module at different distances from the fibre readout end was 6 to 12 with the EBCCD chain and ...

  7. A scintillator purification plant and fluid handling system for SNO+

    Science.gov (United States)

    Ford, Richard J.

    2015-08-01

    A large capacity purification plant and fluid handling system has been constructed for the SNO+ neutrino and double-beta decay experiment, located 6800 feet underground at SNOLAB, Canada. SNO+ is a refurbishment of the SNO detector to fill the acrylic vessel with liquid scintillator based on Linear Alkylbenzene (LAB) and 2 g/L PPO, and also has a phase to load natural tellurium into the scintillator for a double-beta decay experiment with 130Te. The plant includes processes multi-stage dual-stream distillation, column water extraction, steam stripping, and functionalized silica gel adsorption columns. The plant also includes systems for preparing the scintillator with PPO and metal-loading the scintillator for double-beta decay exposure. We review the basis of design, the purification principles, specifications for the plant, and the construction and installations. The construction and commissioning status is updated.

  8. Subnanosecond scintillation detector for high energy cosmic rays Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The task objective is to develop a gamma ray scintillator technology with subnanosecond temporal resolution and the capability to withstand unprecedented rates and...

  9. Scintillation Particle Detectors Based on Plastic Optical Fibres and Microfluidics

    CERN Document Server

    Mapelli, Alessandro; Renaud, Philippe

    2011-01-01

    This thesis presents the design, development, and experimental validation of two types of scintillation particle detectors with high spatial resolution. The first one is based on the well established scintillating fibre technology. It will complement the ATLAS (A Toroidal Large ApparatuS) detector at the CERN Large Hadron Collider (LHC). The second detector consists in a microfabricated device used to demonstrate the principle of operation of a novel type of scintillation detector based on microfluidics. The first part of the thesis presents the work performed on a scintillating fibre tracking system for the ATLAS experiment. It will measure the trajectory of protons elastically scattered at very small angles to determine the absolute luminosity of the CERN LHC collider at the ATLAS interaction point. The luminosity of an accelerator characterizes its performance. It is a process-independent parameter that is completely determined by the properties of the colliding beams and it relates the cross section of a ...

  10. Photonic Crystals: Enhancing the Light Output of Scintillation Based Detectors

    CERN Document Server

    Knapitsch, Arno Richard

    A scintillator is a material which emits light when excited by ionizing radiation. Such materials are used in a diverse range of applications; From high energy particle physics experiments, X-ray security, to nuclear cameras or positron emission tomography. Future high-energy physics (HEP) experiments as well as next generation medical imaging applications are more and more pushing towards better scintillation characteristics. One of the problems in heavy scintillating materials is related to their high index of refraction. As a consequence, most of the scintillation light produced in the bulk material is trapped inside the crystal due to total internal reflection. The same problem also occurs with light emitting diodes (LEDs) and has for a long time been considered as a limiting factor for their overall efficiency. Recent developments in the area of nanophotonics were showing now that those limitations can be overcome by introducing a photonic crystal (PhC) slab at the outcoupling surface of the substrate. P...

  11. Inorganic scintillators for detector systems physical principles and crystal engineering

    CERN Document Server

    Lecoq, Paul; Korzhik, Mikhail

    2017-01-01

    This second edition features new chapters highlighting advances in our understanding of the behavior and properties of scintillators, and the discovery of new families of materials with light yield and excellent energy resolution very close to the theoretical limit. The book focuses on the discovery of next-generation scintillation materials and on a deeper understanding of fundamental processes. Such novel materials with high light yield as well as significant advances in crystal engineering offer exciting new perspectives. Most promising is the application of scintillators for precise time tagging of events, at the level of 100 ps or higher, heralding a new era in medical applications and particle physics. Since the discovery of the Higgs Boson with a clear signature in the lead tungstate scintillating blocks of the CMS Electromagnetic Calorimeter detector, the current trend in particle physics is toward very high luminosity colliders, in which timing performance will ultimately be essential to mitigating...

  12. A scintillator purification plant and fluid handling system for SNO+

    Energy Technology Data Exchange (ETDEWEB)

    Ford, Richard J., E-mail: ford@snolab.ca [SNOLAB, Creighton Mine #9, 1039 R.R.24, Lively, Ontario, Canada. (Canada)

    2015-08-17

    A large capacity purification plant and fluid handling system has been constructed for the SNO+ neutrino and double-beta decay experiment, located 6800 feet underground at SNOLAB, Canada. SNO+ is a refurbishment of the SNO detector to fill the acrylic vessel with liquid scintillator based on Linear Alkylbenzene (LAB) and 2 g/L PPO, and also has a phase to load natural tellurium into the scintillator for a double-beta decay experiment with {sup 130}Te. The plant includes processes multi-stage dual-stream distillation, column water extraction, steam stripping, and functionalized silica gel adsorption columns. The plant also includes systems for preparing the scintillator with PPO and metal-loading the scintillator for double-beta decay exposure. We review the basis of design, the purification principles, specifications for the plant, and the construction and installations. The construction and commissioning status is updated.

  13. Inorganic Scintillators for Detector Systems Physical Principles and Crystal Engineering

    CERN Document Server

    AUTHOR|(CDS)2068219; Gektin, Alexander; Korzhik, Mikhail; Pédrini, Christian

    2006-01-01

    The development of new scintillators as components of modern detector systems is increasingly defined by the end user's needs. This book provides an introduction to this emerging topic at the interface of physics and materials sciences, with emphasis on bulk inorganic scintillators. After surveying the end user's needs in a vast range of applications, ranging from astrophysics to industrial R & D, the authors move on to review scintillating mechanisms and the properties of the most important materials used. A chapter on crystal engineering and examples of recent developments in the field of high-energy physics and medical imaging introduce the reader to the practical aspects. This book will benefit researchers and scientists working in academic and industrial R & D related to the development of scintillators.

  14. A ruggedized ZnS(Ag)/epoxy alpha scintillation detector

    Science.gov (United States)

    McElhaney, S. A.; Ramsey, J. A.; Bauer, M. L.; Chiles, M. M.

    1990-12-01

    An alpha scintillation survey instrument has been developed which is more rugged and efficient than conventional alpha scintillation detectors that use aluminized Mylar radiation entrance windows. This new detector consists of a mixture of ZnS(Ag) phosphor and optically transparent epoxy. The scintillator mixture is poured into a preformed mold to provide a thin layer of phosphor after the particles settle to the clear epoxy surface. After partial curing, an optically transparent light pipe is coupled to the ZnS(Ag)/epoxy film by using an additional thin epoxy layer, forming a monolithic scintillator assembly. Experimental results indicate that the new probe is 44% efficient (2π) for a large-area 239Pu alpha source; resistant to scratches, tears, and corrosives; watertight; and temperature independent between -20°C and 54°C. Mylar is a trademark of E.I. du Pont de Nemours & Co., Inc., Wilmington, DE, USA.

  15. Rational design of binary halide scintillators via data mining

    Energy Technology Data Exchange (ETDEWEB)

    Kong, Chang Sun [Department of Materials Science and Engineering, Iowa State University, 2220 Hoover Hall, Ames, Iowa 50011-2300 (United States); Rajan, Krishna, E-mail: krajan@iastate.edu [Department of Materials Science and Engineering, Iowa State University, 2220 Hoover Hall, Ames, Iowa 50011-2300 (United States)

    2012-07-11

    We introduce a new search strategy for the development of novel inorganic scintillators. For designing new scintillation host media having the improved properties, the potential candidate materials were chosen by using a chemical selection scheme based on a multi-dimensional similarity metric. For the quantitative assessment of the chosen materials, predictive models based on informatics were built by correlating a set of key parameters which reflect the features of the host materials with the performance of inorganic scintillators. The resulting design rules generated from the relationships serve as a guide to identify HfI{sub 4} and TaI{sub 5} as two new host lattices with high light yield. The method we have outlined here serves as a new computational template based statistical learning method to search for new inorganic scintillators with targeted properties.

  16. Closed-form BER analysis of variable weight MPPM coding under gamma-gamma scintillation for atmospheric optical communications.

    Science.gov (United States)

    Balsells, José María Garrido; Jurado-Navas, Antonio; Paris, José Francisco; Castillo-Vázquez, Miguel; Puerta-Notario, Antonio

    2012-02-15

    In this paper, the performance of the variable weight multiple pulse-position modulation (MPPM) coding technique in an atmospheric optical communication environment under gamma-gamma optical scintillation is analyzed, proposing a closed-form expression for the average bit error rate (BER). This study is based on a hyperexponential fitting of the conditional BER in absence of turbulence fluctuations, leading to closed-form expressions that characterize the behavior of this nonlinear coding scheme. Finally, conditional and average BER expressions proposed here are corroborated with Monte Carlo simulations results.

  17. Pulse image recognition using fuzzy neural network.

    Science.gov (United States)

    Xu, L S; Meng, Max Q -H; Wang, K Q

    2007-01-01

    The automatic recognition of pulse images is the key in the research of computerized pulse diagnosis. In order to automatically differentiate the pulse patterns by using small samples, a fuzzy neural network to classify pulse images based on the knowledge of experts in traditional Chinese pulse diagnosis was designed. The designed classifier can make hard decision and soft decision for identifying 18 patterns of pulse images at the accuracy of 91%, which is better than the results that achieved by back-propagation neural network.

  18. Two pulse recoupling

    Science.gov (United States)

    Khaneja, Navin; Kumar, Ashutosh

    2017-08-01

    The paper describes a family of novel recoupling pulse sequences in magic angle spinning (MAS) solid state NMR, called two pulse recoupling. These pulse sequences can be employed for both homonuclear and heteronuclear recoupling experiments and are robust to dispersion in chemical shifts and rf-inhomogeneity. The homonuclear pulse sequence consists of a building block (π)ϕ(π) - ϕ where ϕ =π/4n, and n is number of blocks in a rotor period. The recoupling block is made robust to rf-inhomogeneity by extending it to (π)ϕ(π) - ϕ(π) π + ϕ(π) π - ϕ . The heteronuclear recoupling pulse sequence consists of a building block (π)ϕ1(π)-ϕ1 and (π)ϕ2(π)-ϕ2 on channel I and S, where ϕ1 = 3π/8n, ϕ2 = π/8n and n is number of blocks in a rotor period. The recoupling block is made robust to rf-inhomogeneity by extending it to (π)ϕ1(π)-ϕ1(π) π +ϕ1(π) π -ϕ1 and (π)ϕ2(π)-ϕ2(π) π +ϕ2(π) π -ϕ2 on two channels respectively. The recoupling pulse sequences mix the z magnetization. Experimental quantification of this method is shown for 13Cα-13CO homonuclear recoupling in a sample of Glycine and 15N-13Cα heteronuclear recoupling in Alanine. Application of this method is demonstrated on a sample of tripeptide N-formyl-[U-13C,15N]-Met-Leu-Phe-OH (MLF). Compared to R-sequences (Levitt, 2002), these sequences are more robust to rf-inhomogeneity and give better sensitivity, as shown in Fig. 3.

  19. Science-Driven Candidate Search for New Scintillator Materials: FY 2014 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Kerisit, Sebastien N.; Gao, Fei; Xie, YuLong; Campbell, Luke W.; Wu, Dangxin; Prange, Micah P.

    2014-10-01

    This annual reports presents work carried out during Fiscal Year (FY) 2014 at Pacific Northwest National Laboratory (PNNL) under the project entitled “Science-Driven Candidate Search for New Scintillator Materials” (Project number: PL13-SciDriScintMat-PD05) and led by Drs. Fei Gao and Sebastien N. Kerisit. This project is divided into three tasks: 1) Ab initio calculations of electronic properties, electronic response functions and secondary particle spectra; 2) Intrinsic response properties, theoretical light yield, and microscopic description of ionization tracks; and 3) Kinetics and efficiency of scintillation: nonproportionality, intrinsic energy resolution, and pulse shape discrimination. Detailed information on the results obtained in each of the three tasks is provided in this Annual Report. Furthermore, peer-reviewed articles published this FY or currently under review and presentations given this FY are included in Appendix. This work was supported by the National Nuclear Security Administration, Office of Nuclear Nonproliferation Research and Development (DNN R&D/NA-22), of the U.S. Department of Energy (DOE).

  20. Radionuclide identification algorithm for organic scintillator-based radiation portal monitor

    Energy Technology Data Exchange (ETDEWEB)

    Paff, Marc Gerrit, E-mail: mpaff@umich.edu; Di Fulvio, Angela; Clarke, Shaun D.; Pozzi, Sara A.

    2017-03-21

    We have developed an algorithm for on-the-fly radionuclide identification for radiation portal monitors using organic scintillation detectors. The algorithm was demonstrated on experimental data acquired with our pedestrian portal monitor on moving special nuclear material and industrial sources at a purpose-built radiation portal monitor testing facility. The experimental data also included common medical isotopes. The algorithm takes the power spectral density of the cumulative distribution function of the measured pulse height distributions and matches these to reference spectra using a spectral angle mapper. F-score analysis showed that the new algorithm exhibited significant performance improvements over previously implemented radionuclide identification algorithms for organic scintillators. Reliable on-the-fly radionuclide identification would help portal monitor operators more effectively screen out the hundreds of thousands of nuisance alarms they encounter annually due to recent nuclear-medicine patients and cargo containing naturally occurring radioactive material. Portal monitor operators could instead focus on the rare but potentially high impact incidents of nuclear and radiological material smuggling detection for which portal monitors are intended.

  1. Evaluating scintillator performance in time-resolved hard X-ray studies at synchrotron light sources.

    Science.gov (United States)

    Rutherford, Michael E; Chapman, David J; White, Thomas G; Drakopoulos, Michael; Rack, Alexander; Eakins, Daniel E

    2016-05-01

    The short pulse duration, small effective source size and high flux of synchrotron radiation is ideally suited for probing a wide range of transient deformation processes in materials under extreme conditions. In this paper, the challenges of high-resolution time-resolved indirect X-ray detection are reviewed in the context of dynamic synchrotron experiments. In particular, the discussion is targeted at two-dimensional integrating detector methods, such as those focused on dynamic radiography and diffraction experiments. The response of a scintillator to periodic synchrotron X-ray excitation is modelled and validated against experimental data collected at the Diamond Light Source (DLS) and European Synchrotron Radiation Facility (ESRF). An upper bound on the dynamic range accessible in a time-resolved experiment for a given bunch separation is calculated for a range of scintillators. New bunch structures are suggested for DLS and ESRF using the highest-performing commercially available crystal LYSO:Ce, allowing time-resolved experiments with an interframe time of 189 ns and a maximum dynamic range of 98 (6.6 bits).

  2. FDTD Modeling and Counteraction to Scintillation Effects in the lonosphere

    Science.gov (United States)

    2014-04-05

    AFRL-RV-PS- TR-2014-0101 AFRL-RV-PS- TR-2014-0101 FDTD MODELING AND COUNTERACTION TO SCINTILLATION EFFECTS IN THE IONOSPHERE Christos...DATE (DD-MM-YYYY) 05-04-2014 2. REPORT TYPE Final Report 3. DATES COVERED (From - To) 24 Feb 2012 – 23 Feb 2014 4. TITLE AND SUBTITLE FDTD ...SUPPLEMENTARY NOTES 14. ABSTRACT This study investigated the Finite Difference Time Domain ( FDTD ) modeling of ionospheric scintillation

  3. Secondary scintillation in Ar-CF$_4$ mixtures

    CERN Document Server

    Beschi, Andrea

    2015-01-01

    In order to build a optical time projection chamber that can be used as a tracking detector, it is necessary to study the scintillation proprieties of gases in order to optimize the light emission. A detailed study of the scintillation of Ar-CF$_4$ mixtures at different concentrations has been performed to study the light emission of the gas in a triple GEM detector.

  4. Detection of {sup 8}B solar neutrinos in liquid scintillators

    Energy Technology Data Exchange (ETDEWEB)

    Ianni, A [Laboratori Nazionali del Gran Sasso and INFN, I-67010 Assergi (Italy); Montanino, D [Dipartimento di Fisica, Universita' di Lecce and INFN, I-73100 Lecce (Italy); Villante, F L [Dipartimento di Fisica, Universita di Ferrara and INFN, I-44100 Ferrara (Italy)

    2006-05-15

    We show that liquid organic scintillator detectors (e. g., KamLAND and Borexino) can measure the {sup 8}B solar neutrino flux by means of the {nu}{sub e} charged current interaction with the {sup 13}C nuclei naturally contained in the scintillators. The neutrino events can be identified by exploiting the time and space coincidence with the subsequent decay of the produced {sup 13}N nuclei.

  5. Li-containing scintillating bolometers for low background physics

    Directory of Open Access Journals (Sweden)

    Pattavina L.

    2014-01-01

    Full Text Available We present the performances of Li-based compounds used as scintillating bolometer for rare decay studies such as double-beta decay and direct dark matter investigations. The compounds are tested in a dilution refrigerator installed in the underground laboratory of Laboratori Nazionali del Gran Sasso (Italy. Low temperature scintillating properties are investigated by means of different radioactive sources, and the radio-purity level for internal contaminations are estimated for possible employment for next generation experiments.

  6. Ternary liquid scintillator for optical-fiber applications

    Energy Technology Data Exchange (ETDEWEB)

    Franks, L.A.; Lutz, S.S.

    1981-06-01

    A multicomponent liquid scintillator solution for use as a radiation-to-light converter in conjunction with a fiber optic transmission system. The scintillator includes a quantity of 5-amino-9-diethylaminobenz (a) phenoxazonium nitrate (Nile Blue Nitrate) as a solute in a fluor solvent such as benzyl alcohol. The use of PPD as an additional solute is also disclosed. The system is controllable by addition of a suitable quenching agent, such as phenol.

  7. A study of possibility to design a fast neutron spectrometer based on the organic scintillator with surrounding materials

    Directory of Open Access Journals (Sweden)

    Avdić Senada

    2014-01-01

    Full Text Available This paper deals with the design of a novel spectrometer of fast neutrons in nuclear safeguards applications based on the liquid organic scintillator EJ-309 with materials of different thickness surrounding the detector. The investigation was performed on the simulated data obtained by the MCNPX-PoliMi numerical code based on the Monte Carlo method. Among the various materials (polyethylene, iron, aluminum, and graphite investigated as layers around the scintillator, polyethylene and iron have shown the most promising characteristics for evaluation of fast neutron energy spectra. The simulated pulse height distributions were summed up for each energy bin in the neutron energy range between 1 MeV and 15 MeV in order to obtain better counting statistics. The unfolded results for monoenergetic neutron sources obtained by a first order of Tikhonov regularization and non-linear neural network show very good agreement with the reference data while the evaluated spectra of neutron sources continuous in energy follow the trend of the reference spectra. The possible advantages of a novel spectrometer include a less number of input data for processing and a less sensitivity to the noise compared to the scintillation detector without surrounding materials.

  8. Development of neutron-monitor detector using liquid organic scintillator coupled with 6Li + ZnS(Ag) Sheet.

    Science.gov (United States)

    Sato, Tatsuhiko; Endo, Akira; Yamaguchi, Yasuhiro; Takahashi, Fumiaki

    2004-01-01

    A phoswitch-type detector has been developed for monitoring neutron doses in high-energy accelerator facilities. The detector is composed of a liquid organic scintillator (BC501A) coupled with ZnS(Ag) sheets doped with 6Li. The dose from neutrons with energies above 1 MeV is evaluated from the light output spectrum of the BC501A by applying the G-function, which relates the spectrum to the neutron dose directly. The dose from lower energy neutrons, on the other hand, is estimated from the number of scintillations emitted from the ZnS(Ag) sheets. Characteristics of the phoswitch-type detector were studied experimentally in some neutron fields. It was found from the experiments that the detector has an excellent property of pulse-shape discrimination between the scintillations of BC501A and the ZnS(Ag) sheets. The experimental results also indicate that the detector is capable of reproducing doses from thermal neutrons as well as neutrons with energies from one to several tens of megaelectronvolts (MeV).

  9. Scintillation index of Gaussian waves in weak turbulent ocean

    Science.gov (United States)

    Wang, Zhiqiang; Zhang, Pengfei; Qiao, Chunhong; Lu, Lu; Fan, Chengyu; Ji, Xiaoling

    2016-12-01

    The analytical expressions of radial and the longitudinal components of scintillation index are derived in weak oceanic turbulence. The effects of off-axis distance, propagation distance, and three oceanic parameters (i.e., the ratio of temperature to salinity contribution to the refractive index spectrum w, the rate of dissipation of the mean squared temperature χT and the rate of dissipation of the turbulent kinetic energy ε) on radial component of scintillation index are examined. The influences of propagation distance and three oceanic parameters on the longitudinal component of scintillation index are investigated. It is shown that the radial component of scintillation increases as off-axis distance increases. Both radial and longitudinal components of scintillation increase as propagation distance, w and χT increase while decreases as ε increases. Besides, the longitudinal component of scintillation increases more drastically for plane wave than others, which indicates the plane wave is affected the most at the fixed turbulent strength. The longest weak turbulence distance for a plane wave is shorter than that for a Gaussian or spherical wave.

  10. Effects of atmospheric scintillation in Ka-band satellite communications

    Science.gov (United States)

    Borgsmiller, Scott A.

    This research is motivated by the need to characterize the effects of atmospheric scintillation on Ka-band satellite communications. The builders of satellite communications systems are planning to utilize Ka-band in more than a dozen systems that have been proposed for launch in the next decade. The NASA ACTS (Advanced Communication Technology Satellite) program has provided a means to investigate the problems associated with Ka-band satellite transmissions. Experimental measurements have been conducted using a very small aperture terminal (VSAT) to evaluate the effects of scintillation on narrowband and wideband signals. The theoretical background of scintillation theory is presented, noting especially the additional performance degradation predicted for wideband Ka-band systems using VSATs. Experimental measurements of the amplitude and phase variations in received narrowband carrier signals were performed, using beacon signals transmitted by ACTS and carrier signals which are relayed through the satellite. Measured amplitude and phase spectra have been compared with theoretical models to establish the presence of scintillation. Measurements have also been performed on wideband spread spectrum signals which are relayed through ACTS to determine the bit-error rate degradation of the digital signal resulting from scintillation effects. The theory and measurements presented for the geostationary ACTS have then been applied to a low-earth orbiting satellite system, by extrapolating the effects of the moving propagation path on scintillation.

  11. Experiment to demonstrate separation of Cherenkov and scintillation signals

    Science.gov (United States)

    Caravaca, J.; Descamps, F. B.; Land, B. J.; Wallig, J.; Yeh, M.; Orebi Gann, G. D.

    2017-05-01

    The ability to separately identify the Cherenkov and scintillation light components produced in scintillating mediums holds the potential for a major breakthrough in neutrino detection technology, allowing development of a large, low-threshold, directional detector with a broad physics program. The CHESS (CHErenkov/Scintillation Separation) experiment employs an innovative detector design with an array of small, fast photomultiplier tubes and state-of-the-art electronics to demonstrate the reconstruction of a Cherenkov ring in a scintillating medium based on photon hit time and detected photoelectron density. This paper describes the physical properties and calibration of CHESS along with first results. The ability to reconstruct Cherenkov rings is demonstrated in a water target, and a time precision of 338 ±12 ps FWHM is achieved. Monte Carlo-based predictions for the ring imaging sensitivity with a liquid scintillator target predict an efficiency for identifying Cherenkov hits of 94 ±1 % and 81 ±1 % in pure linear alkyl benzene (LAB) and LAB loaded with 2 g/L of a fluor, PPO, respectively, with a scintillation contamination of 12 ±1 % and 26 ±1 % .

  12. Effects of depletion sampling by standard three-pass pulsed DC electrofishing on blood chemistry parameters of fishes from Appalachian streams

    Science.gov (United States)

    Densmore, Christine L.; Panek, Frank M.

    2013-01-01

    Adverse effects on fishes captured by electrofishing techniques have long been recognized, although the extent of associated physical injury and behavioral alterations are highly variable and dependent on a number of factors. We examined the effects of three-pass pulsed DC (PDC) electrofishing on two salmonid species (Rainbow Trout Oncorhynchus mykiss and Brook Trout Salvelinus fontinalis) and five other genera (Green Sunfish Lepomis cyanellus, Potomac Sculpin Cottus girardi, Fathead Minnow Pimephales promelas, Largemouth Bass Micropterus salmoides, and Channel Catfish Ictalurus punctatus) common to Appalachian streams. We examined the corresponding effects of PDC electroshock on the following physiological indicators of stress and trauma: blood glucose and serum lactate, as well as on other blood chemistry, namely, enzymes, electrolytes, minerals, and proteins. All species demonstrated physiological responses to PDC electroshock, indicated by the biochemical differences in blood parameters in unshocked and shocked groups of fish with or without gross evidence of hemorrhagic trauma. Serum lactate was the most consistent indicator of these effects. Significant differences in whole blood glucose levels were also noted in treatment groups in all species except Green Sunfish, although the patterns observed were not as consistent as for serum lactate. Elevations in the serum enzymes, aspartate aminotransferase and creatine kinase, in the electroshocked fish occurred only in the two salmonid species. In many instances, although blood parameters were elevated in electroshocked fish compared with the unshocked controls for a given species, there were no differences in those levels in electroshocked fish based on the presence of gross hemorrhagic trauma to axial musculature. While some of the blood parameters examined correlated with both the occurrence of electroshock and the resultant tissue injury, there was no apparent link between the altered blood chemistry and

  13. Fast frame rate rodent cardiac x-ray imaging using scintillator lens coupled to CMOS camera

    Science.gov (United States)

    Swathi Lakshmi, B.; Sai Varsha, M. K. N.; Kumar, N. Ashwin; Dixit, Madhulika; Krishnamurthi, Ganapathy

    2017-03-01

    Micro-Computed Tomography (MCT) systems for small animal imaging plays a critical role for monitoring disease progression and therapy evaluation. In this work, an in-house built micro-CT system equipped with a X-ray scintillator lens coupled to a commercial CMOS camera was used to test the feasibility of its application to Digital Subtraction Angiography (DSA). Literature has reported such studies being done with clinical X-ray tubes that can be pulsed rapidly or with rotating gantry systems, thus increasing the cost and infrastructural requirements.The feasibility of DSA was evaluated by injected Iodinated contrast agent (ICA) through the tail vein of a mouse. Projection images of the heart were acquired pre and post contrast using the high frame rate X-ray detector and processing done to visualize transit of ICA through the heart.

  14. Influence of coma aberration on aperture averaged scintillations in oceanic turbulence

    Science.gov (United States)

    Luo, Yujuan; Ji, Xiaoling; Yu, Hong

    2018-01-01

    The influence of coma aberration on aperture averaged scintillations in oceanic turbulence is studied in detail by using the numerical simulation method. In general, in weak oceanic turbulence, the aperture averaged scintillation can be effectively suppressed by means of the coma aberration, and the aperture averaged scintillation decreases as the coma aberration coefficient increases. However, in moderate and strong oceanic turbulence the influence of coma aberration on aperture averaged scintillations can be ignored. In addition, the aperture averaged scintillation dominated by salinity-induced turbulence is larger than that dominated by temperature-induced turbulence. In particular, it is shown that for coma-aberrated Gaussian beams, the behavior of aperture averaged scintillation index is quite different from the behavior of point scintillation index, and the aperture averaged scintillation index is more suitable for characterizing scintillations in practice.

  15. Optical Design Considerations for Efficient Light Collection from Liquid Scintillation Counters

    Energy Technology Data Exchange (ETDEWEB)

    Bernacki, Bruce E.; Douglas, Matthew; Erchinger, Jennifer L.; Fuller, Erin S.; Keillor, Martin E.; Morley, Shannon M.; Mullen, Crystal A.; Orrell, John L.; Panisko, Mark E.; Warren, Glen A.; Wright, Michael E.

    2015-01-01

    Liquid scintillation counters measure charged particle-emitting radioactive isotopes and are used for environmental studies, nuclear chemistry, and life science. Alpha and beta emissions arising from the material under study interact with the scintillation cocktail to produce light. The prototypical liquid scintillation counter employs low-level photon-counting detectors to measure the arrival of the scintillation light produced as a result of the dissolved material under study interacting with the scintillation cocktail. For reliable operation the counting instrument must convey the scintillation light to the detectors efficiently and predictably. Current best practices employ the use of two or more detectors for coincidence processing to discriminate true scintillation events from background events due to instrumental effects such as photomultiplier tube dark rates, tube flashing, or other light emission not generated in the scintillation cocktail vial. In low background liquid scintillation counters additional attention is paid to shielding the scintillation cocktail from naturally occurring radioactive material (NORM) present in the laboratory and within the instruments construction materials. Low background design is generally at odds with optimal light collection. This study presents the evolution of a light collection design for liquid scintillation counting in a low background shield. The basic approach to achieve both good light collection and a low background measurement is described. The baseline signals arising from the scintillation vial are modeled and methods to efficiently collect scintillation light are presented as part of the development of a customized low-background, high sensitivity liquid scintillation counting system.

  16. Developments in the use of EISCAT for interplanetary scintillation

    Directory of Open Access Journals (Sweden)

    R. A. Fallows

    2008-08-01

    Full Text Available The antennas of EISCAT have been used for interplanetary scintillation (IPS studies of the solar wind for many years. The main science found from these studies is obtained through the cross-correlation of signals from antennas having the longest baseline, providing more accurate information on the different solar wind streams which may be present in the line of sight. The development of dual-frequency IPS observations between the 1.4 GHz receivers at the remote sites and Tromsø, has allowed the use of the EISCAT Svalbard Radar for IPS, increasing the available baselines to the extent that three solar wind streams can sometimes be identified in the cross-correlation functions. A weak-scattering model incorporating three possible solar wind streams and dual observing frequencies is discussed and some results presented. A recent study found that the current sampling bandwidth limits the sensitivity of IPS observations at EISCAT. Methods of increasing the sensitivity, and the results of trials, are discussed.

  17. Scintillating screens based on the LPE grown Tb3Al5O12:Ce single crystalline films

    Science.gov (United States)

    Zorenko, Yuriy; Douissard, Paul-Antoine; Martin, Thierry; Riva, Federica; Gorbenko, Vitaliy; Zorenko, Tetiana; Paprocki, Kazimierz; Iskalieva, Aizhan; Witkiewicz, Sandra; Fedorov, Alexander; Bilski, Paweł; Twardak, Anna

    2017-03-01

    We report in this work the creation of new heavy and efficient Tb3Al5O12:Ce (TbAG:Ce) single crystalline film (SCF) scintillators, grown by LPE method from PbO-B2O3 based flux onto Y3Al5O12 (YAG) and Gd3Ga2.5Al2.5O12 (GAGG) substrates, for different optoelectronic applications. The luminescent and scintillation properties of the TbAG:Ce SCF screens, grown onto different types of substrates, are studied and compared with the properties of the Lu3Al5O12:Ce (LuAG:Ce) and YAG:Ce SCF counterparts. TbAG:Ce SCFs show very high scintillation light yield (LY) under α-particles excitation, which overcomes by 30% the LY of high-quality LuAG:Ce SCF samples. In comparison with YAG:Ce and LuAG:Ce SCFs, TbAG:Ce SCF screens show also significantly lower afterglow (up to 10-4 level at X-ray burst duration of 0.1 s), which is comparable with the afterglow level of the best samples of LSO:Ce, Tb SCFs typically being used now for microimaging. Together with a high light output of X-ray excited luminescence, such extremely low afterglow of TbAG:Ce SCF is a very good reason for future development of scintillating screens based on the mentioned garnet. We also introduce the possibility to create new types of ;film-substrate; hybrid scintillators using the LPE method for simultaneous registration of different components of ionizing radiation and microimaging based on the TbAG:Ce SCF and GAGG:Ce substrates.

  18. Development of novel neutron and gamma-ray scintillators: Cesium lithium yttrium chloride and cesium bromide

    Science.gov (United States)

    D'Olympia, Nathan W.

    Two promising inorganic scintillators, Cs2LiYCl 6 (CLYC) and CeBr3, important for both basic and applied nuclear science, have been developed in this work. CLYC is a dual neutron/gamma scintillator with excellent pulse-shape discrimination and good energy resolution. Whereas thermal neutron detection is accomplished using the 6Li(n,alpha) reaction, direct fast neutron spectroscopy was discovered to be due to the 35Cl(n,p) reaction. Thermal neutron measurements were carried out using a moderated PuBe source and thermal beams from the UMass Research Reactor neutron radiography port. A study of the fast neutron response in CLYC was performed at the UMass Lowell Van de Graaff using mono-energetic neutron beams between 0.8 and 2.5 MeV. Simulations of the fast/thermal neutron response and efficiency were performed with the Monte Carlo code MCNPX (v2.7.0). Experiments with CeBr3, a fast gamma-ray detector with high light output, focused on its excellent timing resolution (≤100 ps for 1 cm x 1 cm detector). A pair of CeBr3 detectors were used for direct measurements of nanosecond and sub-nanosecond isomers in 152Sm and 177Hf, using the delayed coincidence technique, to demonstrate its usefulness in nuclear physics measurements. The position resolution of a positron emitting source placed between detectors was evaluated to assess the potential use of CeBr3 as a time-of-flight positron emission tomography (TOF PET) detector. Additional characterizations were performed for both CLYC and CeBr3, including energy resolution, timing resolution, efficiency, and pulse-shape analysis.

  19. Detection of atmospheric tritium by scintillation. Variations in its concentration in France; Detection du tritium atmospherique par scintillation. Evolution de sa concentration en France

    Energy Technology Data Exchange (ETDEWEB)

    Bibron, R. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1964-06-01

    The tritium released into the atmosphere as a result of the explosion of thermonuclear devices is a useful radioactive tracer for the study of certain geophysical problems. The low concentrations found however call for the use of extremely sensitive detectors. Two detection methods using liquid scintillators are described. In the first method, the sample is introduced into the scintillator in liquid form, after prior concentration of the tritium by electrolysis. In the second method the tritium is incorporated into the scintillator solvent molecule by chemical synthesis. In the last part of the report are examined the variations in the tritium concentration in rain-water and of the free hydrogen in the air in France. A discussion is then made of the seasonal variations in the case of rain-water and these are compared to the variations in the strontium-90 concentrations. (author) [French] Le tritium introduit dans l'atmosphere par les explosions d'armes thermonucleaires est un traceur radioactif Interessant pour l'etude de certains problemes de geophysique. Les faibles concentrations rencontrees obligent toutefois a utiliser des detecteurs extremement sensibles. On decrit deux methodes de detection utilisant des scintillateurs liquides. Dans la premiere methode, l'echantillon est introduit dans le scintillateur, sous forme aqueuse, apres une concentration prealable du tritium par electrolyse. Dans la seconde methode, le tritium est incorpore a la molecule du solvant du scintillateur par synthese chimique. Dans la derniere partie du rapport, on examine l'evolution de la concentration du tritium dans les eaux de precipitation et l'hydrogene libre de l'air en France. On discute ensuite les variations saisonnieres dans le cas des eaux de precipitation et on les compare aux variations du strontium 90. (auteur)

  20. Identification of sulfur interferences during organotin determination in harbour sediment samples by sodium tetraethyl borate ethylation and gas chromatography-pulsed flame photometric detection.

    Science.gov (United States)

    Bravo, Manuel; Lespes, Gäetane; De Gregori, Ida; Pinochet, Hugo; Potin-Gautier, Martine

    2004-08-13

    Because of the high toxicity of organotin compounds and the current regulation about their applications, analytical method usable in routine analysis is required. A speciation procedure based on NaBEt4 ethylation and GC-PFPD analysis has shown to be suitable for the organotin determination. Unfortunately, some matrix effects were observed during the analysis of harbour sediments from Chile. These effects were identified as the alkylation of elemental sulfur and the coelution between the organotin compounds and some dialkylsulfides. The re-optimization of GC parameters and application of solid phase microextraction (SPME) were proposed to solve these analytical problems. Certified reference materials and different harbour sediment samples were analysed in order to evaluate the suitability of the methods for organotin control in complex environment samples.