WorldWideScience

Sample records for sampling geothermal effluents

  1. Feasibility of using geothermal effluents for waterfowl wetlands

    Energy Technology Data Exchange (ETDEWEB)

    None

    1981-09-01

    This project was conducted to evaluate the feasibility of using geothermal effluents for developing and maintaining waterfowl wetlands. Information in the document pertains to a seven State area the West where geothermal resources have development potential. Information is included on physiochemical characteristics of geothermal effluents; known effects of constituents in the water on a wetland ecosystem and water quality criteria for maintaining a viable wetland; potential of sites for wetland development and disposal of effluent water from geothermal facilities; methods of disposal of effluents, including advantages of each method and associated costs; legal and institutional constraints which could affect geothermal wetland development; potential problems associated with depletion of geothermal resources and subsidence of wetland areas; potential interference (adverse and beneficial) of wetlands with ground water; special considerations for wetlands requirements including size, flows, and potential water usage; and final conclusions and recommendations for suitable sites for developing demonstration wetlands.

  2. Trace metal characterization and speciation in geothermal effluent by multiple scanning anodic stripping voltammetry and atomic absorption analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kowalski, B.R.

    1979-05-25

    Recent studies have shown geothermal power plants to have a significant environmental impact on the ground water of the area. The heavy metals arsenic and mercury are special problems, as both are concentrated by flora and fauna exposed to the effluent waters. Because the toxicity of these and other metallic pollutants present in geothermal effluent depends on the chemical form, or speciation, of the particular metal, any serious study of the environmental impact of a geothermal development should include studies of trace metal speciation, in addition to trace metal concentration. This proposal details a method for determining metal speciation in dilute waters. The method is based on ion-exchange and backed by atomic absorption spectrometry and multiple scanning anodic stripping voltammetry. Special laboratory studies will be performed on mercury, arsenic and selenium speciation in synthetic geothermal water. The method will be applied to three known geothermal areas in Washington and Oregon, with emphasis on the speciation of mercury, arsenic and selenium in these waters. The computer controlled electrochemical instrumentation was built and tested. Using this instrumentation, a new experimental procedure was developed to determine the chemical form (speciation) of metal ions in very dilute solutions (ng/ml). This method was tested on model systems including Pb, Cd, and As with C1/sup -/, CO/sub 3//sup 2 -/ and glycine ligands. Finally, the speciation of lead in a geothermal water was examined and the PbC1/sup +/ complex was observed and quantified.

  3. Hawaii geothermal project

    Science.gov (United States)

    Kamins, R. M.

    1974-01-01

    Hawaii's Geothermal Project is investigating the occurrence of geothermal resources in the archipelago, initially on the Island of Hawaii. The state's interest in geothermal development is keen, since it is almost totally dependent on imported oil for energy. Geothermal development in Hawaii may require greater participation by the public sector than has been true in California. The initial exploration has been financed by the national, state, and county governments. Maximization of net benefits may call for multiple use of geothermal resources; the extraction of by-products and the application of treated effluents to agricultural and aquacultural uses.

  4. Flow proportional sampling of low level liquid effluent

    International Nuclear Information System (INIS)

    Colley, D.; Jenkins, R.

    1989-01-01

    A flow proportional sampler for use on low level radioactive liquid effluent has been developed for installation on all CEGB nuclear power stations. The sampler, operates by drawing effluent continuously from the main effluent pipeline, through a sampler loop and returning it to the pipeline. The effluent in this loop is sampled by taking small, frequent aliquots using a linear acting shuttle valve. The frequency of operation of this valve is controlled by a flowmeter installed in the effluent line; sampling rate being directly proportional to effluent flowrate. (author)

  5. 200 Area TEDF effluent sampling and analysis plan

    International Nuclear Information System (INIS)

    Alaconis, W.C.; Ballantyne, N.A.; Boom, R.J.

    1995-06-01

    This sampling analysis sets forth the effluent sampling requirements, analytical methods, statistical analyses, and reporting requirements to satisfy the State Waste Discharge Permit No. ST4502 for the Treated Effluent Disposal Facility. These requirements are listed below: Determine the variability in the effluent of all constituents for which enforcement limits, early warning values and monitoring requirements; demonstrate compliance with the permit; and verify that BAT/AKART (Best Available Technology/All know and Reasonable Treatment) source, treatment, and technology controls are being met

  6. Radioactive and electron microscope analysis of effluent monitor sample lines

    International Nuclear Information System (INIS)

    Kowalski, J.F.

    1986-01-01

    Effluent air sampling at nuclear power plant often leads to the question ''How representative is the sample of the effluent stream?'' Samples from radiation monitors are typically obtained at great distances from the sample nozzle because of high background concerns under postulated accidents. Sample line plateout during normal effluent sampling becomes the major concern. A US Nuclear Regulatory Commission inspection raised a concern that monitors were not collecting representative samples per ANSI standard N13.1. A comprehensive 2-yr study at Beaver Valley was performed during normal effluent releases in two phases: 1) weekly charcoal and glass fiber filter samples were analyzed for radioactivity for 6 months, and 2) nuclepore membrane filter samples were analyzed by electron microscope for 4- and 6-h periods. A specially designed test nozzle was directly inserted into an effluent stream for comparison with the radiation monitor samples. Particle behavior characteristics can be determined during effluent releases using a simple test probe. While particle plateout was the major purpose of the study, other particle behavior characteristics were evident and equally as important. Particle travel through long sample lines can also lead to (a) agglomeration or the coagulation of smaller particles to form larger ones, (b) particle splitting or fracturing upon impact with the sample line interior walls, and (c) resuspension of large particles in sample lines

  7. Contributions of arsenic and chloride from the Kawerau geothermal field to the Tarawera River, New Zealand

    International Nuclear Information System (INIS)

    Mroczek, E.K.

    2005-01-01

    The Tarawera River flows through the Kawerau geothermal field. Natural geothermal drainage as well as geothermal production fluid effluent (0.193 m 3 /s) discharge to the river. The concentrations and fluxes of arsenic and chloride were measured upstream and downstream of the field to quantify the proportion of natural inflows of geothermal fluid compared to the discharge of effluent. Upstream of the geothermal effluent outfalls, the arsenic and chloride concentrations in the river are about 0.021 mg/l and 39 mg/l, respectively. The discharge of effluent increases the concentrations in the river to 0.029 mg/l and 48 mg/l, respectively. Calculated concentrations, given the known discharge of effluent, are 0.038 mg/l for arsenic and 50 mg/l for chloride. The differences between the measured and calculated concentrations are within the gauging and analytical errors. At minimum and maximum mean river flows (1984-1992), the concentrations would increase and decrease by 23% and 46%, respectively. Arsenic appears to be soluble and not associated with suspended solids. However, increased transport of arsenic by suspended solids may be a factor at higher river flows. The input of natural geothermal fluid upstream of the effluent outfalls (estimated < 0.170 m3/s) could not be detected (within the errors) by an increase in river chloride concentrations. (author)

  8. Screening for crude oil degrading bacteria in liquid organic waste (effluent samples)

    International Nuclear Information System (INIS)

    Akpe, A.R.

    2014-01-01

    The screening for crude oil degrading bacteria in some liquid organic wastes (cassava mill effluents, rubber effluents and oil palm mill effluents) was carried out. Hydrocarbon utilising bacteria were isolated on mineral salt agar using vapour phase technique. The samples yielded 20 bacterial isolates from 13 different genera. Cassava mill effluent and rubber effluent had the highest number (7), while oil palm effluent had the least number (6) of bacterial isolates. The isolates that had the highest occurrence (occurring in all samples) were Pseudomonas aeruginosa and Escherichia coli. Of these 13 genera 9 were gram negative, while only 4 were gram positive. The total heterotrophic bacterial (THB) count and total hydrocarbon utilisers (THU) from all the effluent samples ranged from 3.0 * 10/sup 4/ to 6.0* 10/sup 7/ cfu/mL and 2.3 *10/sup 2/ to 4.2*10/sup 3/ cfu/mL, respectively. The counts of hydrocarbon utilisers were obviously lower than the heterotrophic counts, although the differences in counts were found to be statistically non-significant (P > 0.05). Rubber effluents and oil palm mill effluents had the highest number of hydrocarbon utilisers with three isolates each. The active hydrocarbon utilisers encountered in this study included Serratia marscescens, Bacillus cereus, P. aeruginosa, Enterobacter aerogenes and Bacillus subtilis. Presence of nutrients and crude oil degrading bacteria in these effluents suggests that these effluents can be used to enhance bioremediation through their use as biostimulation and bioaugmentation agents. (author)

  9. Liquid effluent Sampling and Analysis Plan (SAP) implementation summary report

    International Nuclear Information System (INIS)

    Lueck, K.J.

    1995-01-01

    This report summarizes liquid effluent analytical data collected during the Sampling and Analysis Plan (SAP) Implementation Program, evaluates whether or not the sampling performed meets the requirements of the individual SAPs, compares the results to the WAC 173-200 Ground Water Quality Standards. Presented in the report are results from liquid effluent samples collected (1992-1994) from 18 of the 22 streams identified in the Consent Order (No. DE 91NM-177) requiring SAPs

  10. Use of Geothermal Energy for Aquaculture Purposes - Phase III

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, W C; Smith, K C

    1981-09-01

    This project, financed by the Pacific Northwest Regional Commission (PNRC), was designed to provide information to evaluate the best methods to use for intensive aquaculture of freshwater prawns, Macrobrachium rosenbergii, using geothermal energy. The freshwater prawn is a tropical organism and is native to southeast Asia. Earlier projects at Oregon Institute of Technology have shown the feasibility of culturing this aquatic animal in geothermal water. This phase of the project was designed to investigate intensive culture of this animal as well as the advantages of growing rainbow trout, ornamental tropical fin fish, and mosquito fish, Gambusia affnis, for vector control using geothermal energy. The research data collected on the prawns was obtained from the stocking and sampling of two 0.2- ha (half-acre) ponds constructed as a part of the project. The ponds are equipped with recording monitors for temperature and flow. The geothermal energy used is the geothermal effluent from the Oregon Institute of Technology heating system. This water is of potable quality and ranges in temperature from 50 to 70oC. The geothermal water used in the ponds is controlled at 27oC, ± 2oC, by using thermostats and solenoid valves. A small building next to the ponds contains facilities for hatching larvae prawns and tanks for growing post-larvae prawns. The hatchery facility makes the project self-sustaining. The hatchery was obtained as part of an earlier PNRC project.

  11. Sampling and analysis methods for geothermal fluids and gases

    Energy Technology Data Exchange (ETDEWEB)

    Watson, J.C.

    1978-07-01

    The sampling procedures for geothermal fluids and gases include: sampling hot springs, fumaroles, etc.; sampling condensed brine and entrained gases; sampling steam-lines; low pressure separator systems; high pressure separator systems; two-phase sampling; downhole samplers; and miscellaneous methods. The recommended analytical methods compiled here cover physical properties, dissolved solids, and dissolved and entrained gases. The sequences of methods listed for each parameter are: wet chemical, gravimetric, colorimetric, electrode, atomic absorption, flame emission, x-ray fluorescence, inductively coupled plasma-atomic emission spectroscopy, ion exchange chromatography, spark source mass spectrometry, neutron activation analysis, and emission spectrometry. Material on correction of brine component concentrations for steam loss during flashing is presented. (MHR)

  12. Publications and geothermal sample library facilities of the Earth Science Laboratory, University of Utah Research Institute

    Energy Technology Data Exchange (ETDEWEB)

    Wright, Phillip M.; Ruth, Kathryn A.; Langton, David R.; Bullett, Michael J.

    1990-03-30

    The Earth Science Laboratory of the University of Utah Research Institute has been involved in research in geothermal exploration and development for the past eleven years. Our work has resulted in the publication of nearly 500 reports, which are listed in this document. Over the years, we have collected drill chip and core samples from more than 180 drill holes in geothermal areas, and most of these samples are available to others for research, exploration and similar purposes. We hope that scientists and engineers involved in industrial geothermal development will find our technology transfer and service efforts helpful.

  13. Community Geothermal Technology Program: Experimental lumber drying kiln. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Leaman, D.; Irwin, B.

    1989-10-01

    Goals were to demonstrate feasibility of using the geothermal waste effluent from the HGP-A well as a heat source for a kiln operation to dry hardwoods, develop drying schedules, and develop automatic systems to monitor/control the geothermally heated lumber dry kiln systems. The feasibility was demonstrated. Lumber was dried in periods of 2 to 6 weeks in the kiln, compared to 18 months air drying and 6--8 weeks using a dehumidified chamber. Larger, plate-type heat exchangers between the primary fluid and water circulation systems may enable the kiln to reach the planned temperatures (180--185 F). However, the King Koa partnership cannot any longer pursue the concept of geothermal lumber kilns.

  14. Southeast Regional Wastewater Treatment Plant Facilities Improvements Project and Geysers Effluent Pipeline Project. Draft EIR/EIS, Volume 2 of 2: Appendices

    International Nuclear Information System (INIS)

    1994-01-01

    The Southeast Regional Wastewater Treatment Plant (SERWTP) Facilities Improvement Plan and Geysers Effluent Pipeline and Effluent Injection Project are proposed as a plan to provide expanded wastewater treatment capabilities and to dispose of the effluent by injection in The Geysers geothermal field for purposes of power production. The project is located predominantly in the County of Lake, California, and also in part of Sonoma County. The plan includes various conventional facilities improvements in wastewater treatment to a secondary level of treatment at the SWERWTP. The plan includes facilities to convey the treated effluent in a 26-mile, 24-inch inside diameter pipeline to the Southeast Geysers. The wastewater from the SERWTP would be supplemented by raw lake water diverted from nearby Clear Lake. At The Geysers, the effluent would be directed into a system of distribution lines to wells. In the geothermal reservoir, the water will be converted to steam and collected in production wells that will direct the steam to six existing power plants. This document is a summary of a combined full Environmental Impact Report (EIR) and Environmental Impact Statement (EIS). The EIR/EIS describes the environmental impacts of the various components of the project. Mitigation measures are suggested for reducing impacts to a less than significant level. This report contains appendices A and B. Appendix A contains notices of preparation/notices of intent and EIR/EIS scoping comments. Appendix B contains GeothermEx, Inc., analysis of Geothermal Reservoir Effects and Induced Seismicity

  15. Measurement of actinides in samples from effluent air, primary coolant and effluent water of nuclear power stations in the Federal Republic of Germany

    International Nuclear Information System (INIS)

    Winkler, R.; Hoetzl, H.; Rosner, G.

    1977-01-01

    Since the middle of 1973 the alpha radioactivity of a number of aerosol filters from the stack monitoring systems of some nuclear power stations, of water effluent samples from all german nuclear power stations and of samples from the primary coolant water of one nuclear power reactor was measured. Essentially, the following procedures of sample preparation for alpha spectrometry of the samples in large area gridded ionization chambers were used; cold ashing of the aerosol samples in 'excited' oxygen, coprecipitation of the alpha emitters from the effluent water samples with iron hydroxide and subsequent cold ashing of the precipitate, and evaporation of the samples from the primary cycle on stainless steel plates. The following transuranium nuclides, or some of them, were found in the samples of the primary coolant and in several aerosol filter samples: Pu-239/240, Pu-238 and/or Am-241, Cm-242 and Cm-244. Cm-242 contributes most to the alpha radioactivity in fresh samples. In the effluent water samples Cm-242, Pu-239/240 and Pu-238 and/or Am-241 were identified in some cases, in one case also Cm-244. Detection limits of the procedures used for the analysis of the above stated transuranium nuclides were in the order of 0,1 fCi per m 3 for the aerosol samples and of 0.2 pCi per 1 for the liquid samples. For the effluent air and water samples in most cases specific activities near the detection limit or somewhat higher were found. On the basis of the measurements, an estimation of the annual actinides releases from nuclear power stations in the Federal Republic of Germany is given

  16. Geothermal Energy R&D Program Annual Progress Report Fiscal Year 1993

    Energy Technology Data Exchange (ETDEWEB)

    None

    1994-04-01

    In this report, the DOE Geothermal Program activities were split between Core Research and Industrial Development. The technical areas covered are: Exploration Technology, Drilling Technology, Reservoir Technology (including Hot Dry Rock Research and The Geyser Cooperation), and Conversion Technology (power plants, materials, and direct use/direct heat). Work to design the Lake County effluent pipeline to help recharge The Geysers shows up here for the first time. This Progress Report is another of the documents that are reasonable starting points in understanding many of the details of the DOE Geothermal Program. (DJE 2005)

  17. State-of-the-art of liquid waste disposal for geothermal energy systems: 1979. Report PNL-2404

    Energy Technology Data Exchange (ETDEWEB)

    Defferding, L.J.

    1980-06-01

    The state-of-the-art of geothermal liquid waste disposal is reviewed and surface and subsurface disposal methods are evaluated with respect to technical, economic, legal, and environmental factors. Three disposal techniques are currently in use at numerous geothermal sites around the world: direct discharge into surface waters; deep-well injection; and ponding for evaporation. The review shows that effluents are directly discharged into surface waters at Wairakei, New Zealand; Larderello, Italy; and Ahuachapan, El Salvador. Ponding for evaporation is employed at Cerro Prieto, Mexico. Deep-well injection is being practiced at Larderello; Ahuachapan; Otake and Hatchobaru, Japan; and at The Geysers in California. All sites except Ahuachapan (which is injecting only 30% of total plant flow) have reported difficulties with their systems. Disposal techniques used in related industries are also reviewed. The oil industry's efforts at disposal of large quantities of liquid effluents have been quite successful as long as the effluents have been treated prior to injection. This study has determined that seven liquid disposal methods - four surface and three subsurface - are viable options for use in the geothermal energy industry. However, additional research and development is needed to reduce the uncertainties and to minimize the adverse environmental impacts of disposal. (MHR)

  18. Neutron activation analysis of core and drill cutting samples from geothermal well drilling

    International Nuclear Information System (INIS)

    Miller, G.E.

    1986-01-01

    Samples of sandstones and shales were analysed by instrumental neutron activation analysis for a total of 30 elements. Three irradiation and five counting periods were employed. Solutions and National Bureau of Standards Reference Materials were used for comparison. The samples were obtained from drill cuttings (with a few core samples) from drillings in the Salton Sea geothermal field of California. These determinations form part of a major study to establish elemental variation as a function of mineral variation as depth and temperature in the well vary. The overall goal is to examine mineral alteration and/or element migration under typical geothermal conditions. The techniques involve typical compromises between maximizing precision for individual element determinations and the amount of time and effort that can be expended, as it is desired to examine large numbers of samples. With the limitations imposed by the reactor flux available at the U.C.Irvine TRIGA reactor, the detectors available, and time factors, most precisions are acceptable for geological comparison purposes. Some additional measurements were made by delayed-neutron counting methods to compare with uranium determinations made by conventional instrumental neutron activation analysis methods. (author)

  19. Quarterly sampling of the wetlands along the old F Area effluent ditch: August 1994

    International Nuclear Information System (INIS)

    Cummins, C.L.; Dixon, K.L.

    1994-08-01

    In August 1994, well point water and near-surface water samples were collected to characterize tritium and volatile organic compounds (VOC) in the wetlands along the old F-Area effluent ditch south of 643-E (old burial ground). The August sampling event was the third in a series of eight events. Groundwater flow paths suggest that compounds detected in water table wells around 643-E migrate towards the old F-Area effluent ditch and Fourmile Branch. Recent analytical results from well point and near-surface water sampling in the wetlands that comprise the old F-Area effluent ditch have shown that tritium and small quantities of VOCs are outcropping in the area. For this study, seven locations along the old F-Area effluent ditch were selected to be sampled. Well point samples were collected from all seven locations and near-surface water samples were collected at four locations. A secondary objective of this project was to compare VOC concentrations between the well points installed to depths of 6 to 8 ft and the near-surface water sampling buckets installed to depths of 1 to 2 ft. Based on differences in tritium concentrations at each location, it was determined that the sampling devices intercepted different groundwater flow paths. This negated direct comparison of analytical results between devices. However, when VOC concentrations measured at each well point and bucket location were normalized, based on the percent differences observed in tritium concentrations at that location, the resulting well point and bucket VOC concentrations were comparable in most cases. These results are consistent with the results from the three previous sampling events, and suggest that volatilization losses of VOCs from the buckets may be negligible. Since the results from the two sampling methodologies are not directly comparable, further sampling of the buckets is not planned

  20. Hydrochemical Characteristics and Evolution of Geothermal Fluids in the Chabu High-Temperature Geothermal System, Southern Tibet

    Directory of Open Access Journals (Sweden)

    X. Wang

    2018-01-01

    Full Text Available This study defines reasonable reservoir temperatures and cooling processes of subsurface geothermal fluids in the Chabu high-temperature geothermal system. This system lies in the south-central part of the Shenzha-Xietongmen hydrothermal active belt and develops an extensive sinter platform with various and intense hydrothermal manifestations. All the geothermal spring samples collected systematically from the sinter platform are divided into three groups by cluster analysis of major elements. Samples of group 1 and group 3 are distributed in the central part and northern periphery of the sinter platform, respectively, while samples of group 2 are scattered in the transitional zone between groups 1 and 3. The hydrochemical characteristics show that the geothermal waters of the research area have generally mixed with shallow cooler waters in reservoirs. The reasonable reservoir temperatures and the mixing processes of the subsurface geothermal fluids could be speculated by combining the hydrochemical characteristics of geothermal springs, calculated results of the chemical geothermometers, and silica-enthalpy mixing models. Contour maps are applied to measured emerging temperatures, mass flow rates, total dissolved solids of spring samples, and reasonable subsurface temperatures. They indicate that the major cooling processes of the subsurface geothermal fluids gradually transform from adiabatic boiling to conduction from the central part to the peripheral belt. The geothermal reservoir temperatures also show an increasing trend. The point with the highest reservoir temperature (256°C appears in the east-central part of the research area, which might be the main up-flow zone. The cooling processes of the subsurface geothermal fluids in the research area can be shown on an enthalpy-chloride plot. The deep parent fluid for the Chabu geothermal field has a Cl− concentration of 290 mg/L and an enthalpy of 1550 J/g (with a water temperature of

  1. Mountain Home Geothermal Project: geothermal energy applications in an integrated livestock meat and feed production facility at Mountain Home, Idaho. [Contains glossary

    Energy Technology Data Exchange (ETDEWEB)

    Longyear, A.B.; Brink, W.R.; Fisher, L.A.; Matherson, R.H.; Neilson, J.A.; Sanyal, S.K.

    1979-02-01

    The Mountain Home Geothermal Project is an engineering and economic study of a vertically integrated livestock meat and feed production facility utilizing direct geothermal energy from the KGRA (Known Geothermal Resource Area) southeast of Mountain Home, Idaho. A system of feed production, swine raising, slaughter, potato processing and waste management was selected for study based upon market trends, regional practices, available technology, use of commercial hardware, resource characteristics, thermal cascade and mass flow considerations, and input from the Advisory Board. The complex covers 160 acres; utilizes 115 million Btu per hour (34 megawatts-thermal) of geothermal heat between 300/sup 0/F and 70/sup 0/F; has an installed capital of $35.5 million;produces 150,000 hogs per year, 28 million lbs. of processed potatoes per year, and on the order of 1000 continuous horsepower from methane. The total effluent is 200 gallons per minute (gpm) of irrigation water and 7300 tons per year of saleable high grade fertilizer. The entire facility utilizes 1000 gpm of 350/sup 0/F geothermal water. The economic analysis indicates that the complex should have a payout of owner-invested capital of just over three years. Total debt at 11% per year interest would be paid out in 12 (twelve) years.

  2. Standard Specification for Sampling Single-Phase Geothermal Liquid or Steam for Purposes of Chemical Analysis

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1983-01-01

    1.1 This specification covers the basic requirements for equipment to be used for the collection of uncontaminated and representative samples from single-phase geothermal liquid or steam. Geopressured liquids are included. See Fig 1.

  3. Sign of Radon for locate geothermic sources

    International Nuclear Information System (INIS)

    Gonzalez Teran, D.

    1991-01-01

    Evaluation of a geothermic field is based upon geological, geophysical and geochemical studies that enable the evaluation of the deposit potential, that is to say, the amount of energy per unit mass, the volume of the trapped fluid, vapor fraction and fluid chemistry. This thesis has as its objective the evaluation of radon gas emanation in high potential geothermic zones in order to utilize the results as a low cost and easy to manage complimentary tool in geothermic source prospection. In chapter I the importance and evaluation of a geothermic deposit is discussed. In chapter II the general characteristics of radon are discussed: its radioactivity and behavior upon diffusion over the earth's surface> Chapter III establishes the approach used in the geothermic field of Los Azufres, Michoacan, to carry out samplings of radon and the laboratory techniques that were used to evaluate the concentration of radon in the subsoil. Finally in chapter IV measurements of radon in the field are compared to geological faults in the area under study. The sampling zones were: low geothermic potential zone of the northern and the southern zone having a greater geothermic potential than that in the north. The study was carried out at different sampling times using plastics detectors of from 30 to 46 days from February to July. From the results obtained we concluded that the emission of radon was greater in the zones of greatest geothermic potential than in the low geothermic potential zones it was also affected by the fault structure and the time of year in which sampling was done. (Author)

  4. Southeast Regional Wastewater Treatment Plant Facilities Improvements Project and Geysers Effluent Pipeline Project. Draft EIR/EIS: Executive summary

    International Nuclear Information System (INIS)

    1994-01-01

    The Southeast Regional Wastewater Treatment Plant (SERWTP) Facilities Improvement Plan and Geysers Effluent Pipeline and Effluent Injection Project are proposed as a plan to provide expanded wastewater treatment capabilities and to dispose of the effluent by injection in The Geysers geothermal field for purposes of power production. The project is located predominantly in the County of Lake, California, and also in part of Sonoma County. The plan includes various conventional facilities improvements in wastewater treatment to a secondary level of treatment at the SWERWTP. The plan includes facilities to convey the treated effluent in a 26-mile, 24-inch inside diameter pipeline to the Southeast Geysers. The wastewater from the SERWTP would be supplemented by raw lake water diverted from nearby Clear Lake. At The Geysers, the effluent would be directed into a system of distribution lines to wells. In the geothermal reservoir, the water will be converted to steam and collected in production wells that will direct the steam to six existing power plants. This document is a summary of a combined full Environmental Impact Report (EIR) and Environmental Impact Statement (EIS). The EIR/EIS describes the environmental impacts of the various components of the project. Mitigation measures are suggested for reducing impacts to a less than significant level

  5. The possibilities of utilisation of heat from Tattapani Geothermal field, India

    Energy Technology Data Exchange (ETDEWEB)

    Sarolkar, P.B. [Geological Survey of India, Hyderabad (India); Pitale, U.L. [Geological Survey of India, Nagpur (India)

    1996-12-31

    The Tattapani Geothermal field produces + 1800 1pm thermal water of 100{degrees}C from five production wells. The hot water production can sustain electricity production of 300 kWe by using a binary cycle power plant. The heat energy of effluent water from power plant can be utilized for direct heat utilization on horticulture, aquaculture, cold storage, silviculture etc; to augment the economics of the power plant be spot can be developed as a centre for tourist attraction by constructing botanical park, greenhouse, geyser show and crocodile farm. The direct heat utilization shemes can be planned in cascading order to achieve maximum utility of thermal water. Additional deep drilling is essential for optimum commercial utilization of the Geothermal energy. The direct heat utilisation shemes along with binary cycle power plant may help in development of the geothermal energy and boosting the economy of this region.

  6. The Role of Cost Shared R&D in the Development of Geothermal Resources

    Energy Technology Data Exchange (ETDEWEB)

    None

    1995-03-16

    This U.S. Department of Energy Geothermal Program Review starts with two interesting pieces on industries outlook about market conditions. Dr. Allan Jelacics introductory talk includes the statistics on the impacts of the Industry Coupled Drilling Program (late-1970's) on geothermal power projects in Nevada and Utah (about 140 MWe of power stimulated). Most of the papers in these Proceedings are in a technical report format, with results. Sessions included: Exploration, The Geysers, Reservoir Engineering, Drilling, Energy Conversion (including demonstration of a BiPhase Turbine Separator), Energy Partnerships (including the Lake County effluent pipeline to The Geysers), and Technology Transfer (Biochemical processing of brines, modeling of chemistry, HDR, the OIT low-temperature assessment of collocation of resources with population, and geothermal heat pumps). There were no industry reviews at this meeting.

  7. Gas and Isotope Geochemistry of 81 Steam Samples from Wells in The Geysers Geothermal Field, Sonoma and Lake Counties, California

    Science.gov (United States)

    Lowenstern, Jacob B.; Janik, Cathy J.; Fahlquist, Lynne; Johnson, Linda S.

    1999-01-01

    The Geysers geothermal field in northern California, with about 2000-MW electrical capacity, is the largest geothermal field in the world. Despite its importance as a resource and as an example of a vapor-dominated reservoir, very few complete geochemical analyses of the steam have been published (Allen and Day, 1927; Truesdell and others, 1987). This report presents data from 90 steam, gas, and condensate samples from wells in The Geysers geothermal field in northern California. Samples were collected between 1978 and 1991. Well attributes include sampling date, well name, location, total depth, and the wellhead temperature and pressure at which the sample was collected. Geochemical characteristics include the steam/gas ratio, composition of noncondensable gas (relative proportions of CO2, H2S, He, H2, O2, Ar, N2, CH4, and NH3), and isotopic values for deltaD and delta18O of H2O, delta13C of CO2, and delta34S of H2S. The compilation includes 81 analyses from 74 different production wells, 9 isotopic analyses of steam condensate pumped into injection wells, and 5 complete geochemical analyses on gases from surface fumaroles and bubbling pools. Most samples were collected as saturated steam and plot along the liquid-water/steam boiling curve. Steam-togas ratios are highest in the southeastern part of the geothermal field and lowest in the northwest, consistent with other studies. Wells in the Northwest Geysers are also enriched in N2/Ar, CO2 and CH4, deltaD, and delta18O. Well discharges from the Southeast Geysers are high in steam/gas and have isotopic compositions and N2/Ar ratios consistent with recharge by local meteoric waters. Samples from the Central Geysers show characteristics found in both the Southeast and Northwest Geysers. Gas and steam characteristics of well discharges from the Northwest Geysers are consistent with input of components from a high-temperature reservoir containing carbonrich gases derived from the host Franciscan rocks. Throughout the

  8. Quarterly sampling of the wetlands along the old F-Area effluent ditch: March 1994

    International Nuclear Information System (INIS)

    Dixon, K.L.; Cummins, C.L.; Rogers, V.A.

    1994-05-01

    In March 1994, well point water and near surface water (bucket) samples were collected to further characterize tritium and volatile organic compounds (VOC) in the wetlands along the old F-Area effluent ditch south of 643-E (old burial ground). Groundwater flow paths suggest that compounds detected in water table wells around 643-E would migrate towards the old F-Area effluent ditch and Fourmile Branch. Recent analytical results from near surface water sampling in the wetlands that comprise the old F-Area effluent ditch have shown that tritium and small quantities of VOCs are outcropping in the area. Results of the March 1994 sampling event further support findings that tritium and volatile organic compounds originating from 643-E are outcropping in the wetlands near the old F-Area effluent ditch. Six different analytes were detected in the well points at least once at concentrations greater than the method detection limit: d 1,2-dichloroethylene, acetone, methyl ethyl ketone, tetrachloroethylene, trichloroethylene, and tritium. 1,2-dichloroethylene, tetrachloroethylene, trichloroethylene, and tritium were detected at levels above Primary Drinking Water Standards or Maximum Contaminant Levels list. Four analytes, 1,2-dichloroethylene, trichloroethylene, tritium, and vinyl chloride, were detected at least once at concentrations greater than the method detection limit and least once at concentrations above the PDWS or the MCL. Based on differences in tritium concentrations at each location, it was determined that the sampling devices intercepted different groundwater flow paths. This negated direct comparison of analytical results between devices. However, when VOC concentrations measured at each well point and bucket location were normalized, resulting well point and bucket VOC concentrations were comparable in most cases. These results suggest that volatilization losses of VOCs from the buckets were negligible

  9. Determination of Kr-85 in environmental samples and gaseous effluents from nuclear industries using the standard method

    International Nuclear Information System (INIS)

    Heras Iniquez, M.C.; Perez Garcia, M.M.

    1983-01-01

    The determination of the Kr-85 activity in environmental samples and gaseous effluents from Spanish Nuclear Power Stations is described. The method employed has been published elsewhere. The determinations has been carried out in environmental samples token at JEN Laboratories (Madrid) and the Nuclear Power Stations, Jose Cabrera (Zorita), Garona and Vandellos. Also samples of gaseous effluents of the three plants has been analyzed. Values of the Kr-85 environmental background activity in the Almaraz Nuclear Power Stations, has been determined, before the beginning of its nuclear activity. In this paper the sampling equipment used is described and the values found of Kr-85 activity in all the samples in given. (Author) 29 refs

  10. Goechemical and Hydrogeochemical Properties of Cappadocia Geothermal Province

    Science.gov (United States)

    Furkan Sener, Mehmet; Sener, Mehmet; Uysal, Tonguc

    2016-04-01

    In order to determine the geothermal resource potential of Niǧde, Nevşehir and Aksaray provinces in Central Anatolian Volcanic Province (CAVP), geothermal fluids, surface water, and alteration rock samples from the Cappadocia volcanic zone in Turkey were investigated for their geochemical and stable isotopic characteristics in light of published geological and tectonic studies. Accordingly, the Cappadocia Geothermal Province (CGP) has two different geothermal systems located along tectonic zones including five active and two potential geothermal fields, which are located between Tuzgölü Fault Zone and Keçiboyduran-Melendiz Fault and north of Keçiboyduran-Melendiz Fault. Based on water chemistry and isotope compositions, samples from the first area are characterized by Ca-Mg-HCO3 ve Ca-HCO3 type mineral poor waters and Ca-Na-SO4 and Ca-Mg-SO4 type for the cold waters and the hot waters, respectively, whereas hot waters from the second area are Na-Cl-HCO3 and Ca-Na-HCO3 type mineral poor waters. According to δ18O and δ2H isotope studies, the geothermal waters are fed from meteoric waters. Results of silica geothermometer indicate that the reservoir temperature of Dertalan, Melendiz Mount, Keçiboyduran Mount, Hasan Mount (Keçikalesi), Ziga, Acıgöl, and Derinkuyu geothermal waters are 150-173 oC, 88-117 oC, 91-120 oC, 94-122 oC, 131-156 oC, 157-179 oC; 152-174 oC and 102-130 oC, respectively. The REE composition of geothermal fluids, surface water, and mineral precipitates indicate that temperature has a strong effect on REE fractionation of the sampled fluids. Eu- and Ce- anomalies (Eu/Eu*, Ce/Ce*) are visible in several samples, which are related to the inheritance from the host reservoir rocks and redox-controlled fractionation of these elements during water-rock interactions. REE and Yttrium geochemistry results of altered rock samples and water samples, which were taken from same locations exhibited quite similar features in each system. Hence, it was

  11. Sampling and analysis of soil from the old F-Area effluent ditch and its surrounding wetlands

    International Nuclear Information System (INIS)

    Dixon, K.L.

    1994-06-01

    Four surface soil samples were collected from the wetlands at the old F-Area effluent ditch. All samples were collected near shallow well point locations except FHB012, which was collected from the effluent ditch stream sediment. Samples were analyzed for metals, Target Compound List volatile organic compounds, and gross radiological indicators. Barium, beryllium, and zinc were detected in all four samples and antimony was detected in three of four samples. These metals occur naturally in the wetland soils at the SRS. Comparisons of metals concentrations were male to concentration ranges taken from background wetland soil samples. These comparison, showed that barium and beryllium concentrations were within expected ranges while zinc and antimony concentrations were elevated above expected concentration ranges. Volatile organic compounds were detected in all four samples. Detected compounds included acetone, 2-butanone, chloromethane, cis-1,2-dichloroethene, and toluene. The only radionuclide detected in a significant quantities was tritium which was detected in all four samples

  12. The Hydrogeochemistry of Qingshui Geothermal Field, Northeastern Taiwan.

    Science.gov (United States)

    Yu-Wen, Chen; Cheng-Kuo, Lin; Wayne, Lin; Yu-Te, Chang; Pei-Shan, Hsieh

    2015-04-01

    The Qingshui geothermal field is located at the upstream valley of Lanyang Creek, northeastern Taiwan. It is renowned as a geothermal field. The previous studies demonstrated a higher geothermal gradient, 100oC/km warmer than a normal geotherm. However, Qingshui geothermal field has not been well developed due to the higher mining costs. In the recent years, the Taiwan government has been focusing on developing alternative and renewable energy and initiated a 10 year project, Nation Energy Program. This study is part of this project In general, it is very difficult to collect deep downhole samples without considerable change of hydro- and gas- chemistry of water under high temperature and pressure. A new sampling tool, GTF Sampler, was designed by the research team, Green Energy and Environment Laboratories, Industrial Technology Research Institute. This tool can simultaneously collect high quality geothermal water and gas sample and moreover, the sampling depth can reach up to 800 meters. Accordingly, a more accurate measurements can be conducted in the laboratory. In this study, 10 geothermal samples were collected and measured. The results demonstrate that geothermal water samples are characterized with Na(K)-HCO3 water type and located at the mature water area in Giggenbach Na-K-Mg diagram. Several geothermometers, including silica and cation geothermometry, were used to estimate potential temperature in the geothermal reservoir systems. In general, the geothermoters of Na-K and Na-K-Ca obtain reservoir temperatures between 120-190oC and 130-210oC, respectively, but the silica geothermometer indicates a lower reservoir temperature between 90 and 170oC. There is no big difference among them. It is worth to note that all calculated temperatures are lower than those of in-situ downhole measurements; therefore, more detailed and advanced researches would be needed for the inconsistency. To examine the argument about igneous heat source in the previous studies, rare

  13. Quarterly sampling of the wetlands along the old F-Area effluent ditch: August 1994. Revision 1

    International Nuclear Information System (INIS)

    Cummins, C.L.; Dixon, K.L.

    1994-08-01

    In August 1994, well point water and near-surface water samples were collected to further characterize tritium and volatile organic compounds in the Wetlands along the old F-Area effluent ditch south of 643-E at the Savannah River Plant. Well point samples were collected from seven locations and near-surface water samples were collected at four locations. Results of the August 1994 sampling event further support findings that tritium and volatile organic compounds are outcropping in the Wetlands near the old F-area effluent ditch. Four analytes (1,2-dichloroethylene, trichloroethylene, tritium, and vinyl chloride) were detected at least once at concentrations above the primary Drinking Water Standards or the Maximum Contaminant Levels. Five analytes (the above chemicals plus tetrachloroethylene) were detected at least once in the near-surface water samples at concentrations greater than the method detection limit

  14. Geothermal energy

    International Nuclear Information System (INIS)

    Rummel, F.; Kappelmeyer, O.; Herde, O.A.

    1992-01-01

    Objective of this brochure is to present the subject Geothermics and the possible use of geothermal energy to the public. The following aspects will be refered to: -present energy situation -geothermal potential -use of geothermal energy -environemental aspects -economics. In addition, it presents an up-dated overview of geothermal projects funded by the German government, and a list of institutions and companies active in geothermal research and developments. (orig./HP) [de

  15. Preliminary evaluation of the gaseous effluent sampling and monitoring systems at the 291-Z-1 and 296-Z-3 stacks

    International Nuclear Information System (INIS)

    Schwendiman, L.C.; Glissmeyer, J.A.

    1992-04-01

    The 291-Z-1 and 296-Z-3 stack effluent particulate sampling and monitoring systems are being evaluated for compliance with Atlantic Richfield Hanford Company's Interim Criteria for such systems. This evaluation is part of a study by Battelle-Northwest of gaseous effluent sampling systems in ARHCO facilities. This letter report presents a preliminary evaluation of the mentioned facilities and the indicated improvements needed to meet the Interim Criteria so that conceptual design work for improved systems can be initiated. There is currently underway a detailed study at the two stacks including a series of sampling experiments, the findings of which will not be included in this report. The gaseous effluent sampling system at the 291-Z-1 and 296-Z-3 stacks are very dissimilar and will be treated in separate sections of this report. The discussions for each sampling system will include a brief description and a preliminary evaluation of the systems

  16. Geothermal Today: 2003 Geothermal Technologies Program Highlights (Revised)

    Energy Technology Data Exchange (ETDEWEB)

    2004-05-01

    This outreach publication highlights milestones and accomplishments of the DOE Geothermal Technologies Program for 2003. Included in this publication are discussions of geothermal fundamentals, enhanced geothermal systems, direct-use applications, geothermal potential in Idaho, coating technology, energy conversion R&D, and the GeoPowering the West initiative.

  17. Assessment of Physicochemical and Biochemical Qualities of Tannery Effluents of Hazaribagh, Dhaka, and Comparison with Non-Tannery Water Samples

    Directory of Open Access Journals (Sweden)

    Laila N. Islam

    2015-02-01

    Full Text Available NOTE: on 21st May 2015, the authors Mahmud Hossain and M Mohasin were added to the online information about the article. The PDF remains correct.In this study the physicochemical and biochemical qualities of the tannery effluents were analyzed to determine the pollution load of the openly released wastewaters in the environment and the findings were compared with the non-tannery waters. Fourteen samples of factory effluents were collected from the leather tanning industrial zone of Hazaribagh, Dhaka, and 13 non-tannery water samples were collected from different parts of Dhaka city. The effluents were mostly colored; their pH varied from highly acidic to basic values while densities were not much different from the non-tannery waters. The chromium contents of the effluents varied from less than 0.002 to 18.97 mg/L and the chemical oxygen demands (COD varied from 90 to 6500 mg/L, which were significantly higher than those of non-tannery waters. There was a strong direct correlation between chromium content and COD (p<0.01 indicating that chromium was hugely responsible for pollution caused by tannery effluents. The tannery wastewaters were highly toxic to brine shrimp nauplii (lethality: about 82%, and chromium was responsible for biotoxicity of the effluents since a direct significant correlation (p<0.021 was found between chromium content and lethality. Storage of the wastewater samples for 2 to 8 months at room temperature showed rise in the pH values possibly due to microbial action that resulted in decrease of dissolved chromium content from a mean value of 7.94 to 5.09 mg/L. These findings demonstrated that the presence of high concentrations of chromium and other chemicals in the untreated tannery effluents were contributing adverse effects on the environment and ecosystem.DOI: http://dx.doi.org/10.3126/ije.v4i1.12179International Journal of Environment Volume-4, Issue-1, Dec-Feb 2014/15, page: 68-81  

  18. Geothermal Energy

    International Nuclear Information System (INIS)

    Haluska, Oscar P.; Tangir, Daniel; Perri, Matias S.

    2002-01-01

    A general overview of geothermal energy is given that includes a short description of the active and stable areas in the world. The possibilities of geothermal development in Argentina are analyzed taking into account the geothermal fields of the country. The environmental benefits of geothermal energy are outlined

  19. Geotherm: the U.S. geological survey geothermal information system

    Science.gov (United States)

    Bliss, J.D.; Rapport, A.

    1983-01-01

    GEOTHERM is a comprehensive system of public databases and software used to store, locate, and evaluate information on the geology, geochemistry, and hydrology of geothermal systems. Three main databases address the general characteristics of geothermal wells and fields, and the chemical properties of geothermal fluids; the last database is currently the most active. System tasks are divided into four areas: (1) data acquisition and entry, involving data entry via word processors and magnetic tape; (2) quality assurance, including the criteria and standards handbook and front-end data-screening programs; (3) operation, involving database backups and information extraction; and (4) user assistance, preparation of such items as application programs, and a quarterly newsletter. The principal task of GEOTHERM is to provide information and research support for the conduct of national geothermal-resource assessments. The principal users of GEOTHERM are those involved with the Geothermal Research Program of the U.S. Geological Survey. Information in the system is available to the public on request. ?? 1983.

  20. Lagrangian sampling of wastewater treatment plant effluent in Boulder Creek, Colorado, and Fourmile Creek, Iowa, during the summer of 2003 and spring of 2005--Hydrological and chemical data

    Science.gov (United States)

    Barber, Larry B.; Keefe, Steffanie H.; Kolpin, Dana W.; Schnoebelen, Douglas J.; Flynn, Jennifer L.; Brown, Gregory K.; Furlong, Edward T.; Glassmeyer, Susan T.; Gray, James L.; Meyer, Michael T.; Sandstrom, Mark W.; Taylor, Howard E.; Zaugg, Steven D.

    2011-01-01

    This report presents methods and data for a Lagrangian sampling investigation into chemical loading and in-stream attenuation of inorganic and organic contaminants in two wastewater treatment-plant effluent-dominated streams: Boulder Creek, Colorado, and Fourmile Creek, Iowa. Water-quality sampling was timed to coincide with low-flow conditions when dilution of the wastewater treatment-plant effluent by stream water was at a minimum. Sample-collection times corresponded to estimated travel times (based on tracer tests) to allow the same "parcel" of water to reach downstream sampling locations. The water-quality data are linked directly to stream discharge using flow- and depth-integrated composite sampling protocols. A range of chemical analyses was made for nutrients, carbon, major elements, trace elements, biological components, acidic and neutral organic wastewater compounds, antibiotic compounds, pharmaceutical compounds, steroid and steroidal-hormone compounds, and pesticide compounds. Physical measurements were made for field conditions, stream discharge, and time-of-travel studies. Two Lagrangian water samplings were conducted in each stream, one in the summer of 2003 and the other in the spring of 2005. Water samples were collected from five sites in Boulder Creek: upstream from the wastewater treatment plant, the treatment-plant effluent, and three downstream sites. Fourmile Creek had seven sampling sites: upstream from the wastewater treatment plant, the treatment-plant effluent, four downstream sites, and a tributary. At each site, stream discharge was measured, and equal width-integrated composite water samples were collected and split for subsequent chemical, physical, and biological analyses. During the summer of 2003 sampling, Boulder Creek downstream from the wastewater treatment plant consisted of 36 percent effluent, and Fourmile Creek downstream from the respective wastewater treatment plant was 81 percent effluent. During the spring of 2005

  1. NATIONAL GEOTHERMAL DATA SYSTEM (NGDS) GEOTHERMAL DATA DOMAIN: ASSESSMENT OF GEOTHERMAL COMMUNITY DATA NEEDS

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Arlene [United States Department of Energy; Blackwell, David [Southern Methodist University; Chickering, Cathy [Southern Methodist University; Boyd, Toni [Oregon Institute of Technology; Horne, Roland [Stanford University; MacKenzie, Matthew [Uberity Technology Corporation; Moore, Joseph [University of Utah; Nickull, Duane [Uberity Technology Corporation; Richard, Stephen [Arizona Geological survey; Shevenell, Lisa A. [University of Nevada, Reno

    2013-01-01

    To satisfy the critical need for geothermal data to ad- vance geothermal energy as a viable renewable ener- gy contender, the U.S. Department of Energy is in- vesting in the development of the National Geother- mal Data System (NGDS). This paper outlines efforts among geothermal data providers nationwide to sup- ply cutting edge geo-informatics. NGDS geothermal data acquisition, delivery, and methodology are dis- cussed. In particular, this paper addresses the various types of data required to effectively assess geother- mal energy potential and why simple links to existing data are insufficient. To create a platform for ready access by all geothermal stakeholders, the NGDS in- cludes a work plan that addresses data assets and re- sources of interest to users, a survey of data provid- ers, data content models, and how data will be ex- changed and promoted, as well as lessons learned within the geothermal community.

  2. Geothermal energy

    International Nuclear Information System (INIS)

    Laplaige, Ph.; Lemale, J.

    2008-01-01

    Geothermal energy is a renewable energy source which consists in exploiting the heat coming from the Earth. It covers a wide range of techniques and applications which are presented in this article: 1 - the Earth, source of heat: structure of the Earth, geodynamic model and plate tectonics, origin of heat, geothermal gradient and terrestrial heat flux; 2 - geothermal fields and resources; 3 - implementation of geothermal resources: exploration, main characteristic parameters, resource exploitation; 4 - uses of geothermal resources: power generation, thermal uses, space heating and air conditioning heat pumps, district heating, addition of heat pumps; 5 - economical aspects: power generation, heat generation for district heating; 6 - environmental aspects: conditions of implementation, impacts as substitute to fossil fuels; 7 - geothermal energy in France: resources, organisation; 8 - conclusion. (J.S.)

  3. Geothermal spas

    International Nuclear Information System (INIS)

    Woodruff, J.L.; Takahashi, P.K.

    1990-01-01

    The spa business, part of the health and fitness industry that has sprung up in recent years, is highly successful world-wide. The most traditional type of spa is the geothermal spa, found in geothermal areas around the world. In Japan, for example, some 2,000 geothermal spas and resorts generate $6 billion annually. Hawaii has an ideal environment for geothermal spas, and several locations in the islands could supply warm mineral water for spa development. Hawaii receives about 6 million visitors annually, a high percentage of whom are familiar with the relaxing and therapeutic value of geothermal spas, virtually guaranteeing the success of this industry in Hawaii. Presently, Hawaii does not have a single geothermal spa. This paper reports that the geothermal spa business is an industry whose time has come, an industry that offers very promising investment opportunities, and one that would improve the economy while expanding the diversity of pleasurable vacation options in Hawaii

  4. Geothermal energy

    International Nuclear Information System (INIS)

    Le Du, H.; Bouchot, V.; Lopez, S.; Bialkowski, A.; Colnot, A.; Rigollet, C.; Sanjuan, B.; Millot, R.; Brach, M.; Asmundsson, R.; Giroud, N.

    2010-01-01

    Geothermal energy has shown a revival for several years and should strongly develop in a near future. Its potentiality is virtually unexhaustible. Its uses are multiple and various: individual and collective space heating, heat networks, power generation, heat storage, heat exchanges etc.. Re-launched by the demand of renewable energy sources, geothermal energy has become credible thanks to the scientific works published recently which have demonstrated its economical and technical relevance. Its image to the public is changing as well. However, lot of work remains to do to make geothermal energy a real industry in France. Several brakes have to be removed rapidly which concern the noise pollution of geothermal facilities, the risk of bad results of drillings, the electricity costs etc. This dossier gives an overview of today's main research paths in the domain of geothermal energy: 1 - geothermal energy in France: historical development, surface and deep resources, ambitions of the French national energy plan (pluri-annual investment plan for heat generation, incentives, regional 'climate-air-energy' schemes), specific regulations; 2 - geothermal energy at the city scale - sedimentary basins: Ile-de-France 40 years of Dogger reservoir exploitation, potentialities of clastic reservoirs - the Chaunoy sandstones example; 3 - geothermal power generation: conventional reservoirs - the Bouillante model (Guadeloupe, French Indies); the Soultz-sous-Forets pilot plant (Bas-Rhin, France); the supercritical reservoirs - the Krafla geothermal area (Iceland). (J.S.)

  5. General principles governing sampling and measurement techniques for monitoring radioactive effluents from nuclear facilities

    International Nuclear Information System (INIS)

    Fitoussi, L.

    1978-01-01

    An explanation is given of the need to monitor the release of radioactive gases and liquid effluents from nuclear facilities, with particular emphasis on the ICRP recommendations and on the interest in this problem shown by the larger international organizations. This is followed by a description of the classes of radionuclides that are normally monitored in this way. The characteristics of monitoring 'in line' and 'by sample taking' are described; the disadvantages of in line monitoring and the problem of sample representativity are discussed. There follows an account of the general principles for measuring gaseous and liquid effluents that are applied in the techniques normally employed at nuclear facilities. Standards relating to the specifications for monitoring instruments are at present being devised by the International Electrotechnical Commission, and there are still major differences in national practices, at least as far as measurement thresholds are concerned. In conclusion, it is shown that harmonization of practices and standardization of equipment would probably help to make international relations in the field more productive. (author)

  6. Geothermal energy

    International Nuclear Information System (INIS)

    Kappelmeyer, O.

    1991-01-01

    Geothermal energy is the natural heat of the earth. It represents an inexhaustible source of energy. In many countries, which are mostly located within the geothermal belts of the world, geothermal energy is being used since many decades for electricity generation and direct heating applications comprising municipal, industrial and agricultural heating. Outside the geothermal anomalous volcanic regions, hot ground water from deep rock formations at temperatures above 70 o C is used for process heat and space heating. Low prices for gas and oil hinder the development of geothermal plants in areas outside positive geothermal anomalies; the cost of drilling to reach depths, where temperatures are above 50 o C to 70 o C, is high. The necessary total investment per MW th installed capacity is in the order of 5 Mio- DM/MW th (3 Mio $/MW th ). Experience shows, that an economic break even with oil is reached at an oil price of 30$ per barrel or if an adequate bonus for the clean, environmentally compatible production of geothermal heat is granted. Worldwide the installed electric capacity of geothermal power plants is approximately 6 000 MW e . About 15 000 MW th of thermal capacity is being extracted for process heat and space heat. The importance of the terrestrial heat as an energy resource would be substantially increased, if the heat, stored in the hot crystalline basement could be extracted at economical production costs. Geothermal energy is a competitive energy source in areas with high geothermal gradients (relative low cost for drilling) and would be competitive in areas with normal geothermal gradients, if a fair compensation for environmental implications from fossil and nuclear power production would be granted. (author) 2 figs., 1 tab., 6 refs

  7. CONCAWE effluent speciation project

    Energy Technology Data Exchange (ETDEWEB)

    Leonards, P.; Comber, M.; Forbes, S.; Whale, G.; Den Haan, K.

    2010-09-15

    In preparation for the implementation of the EU REACH regulation, a project was undertaken to transfer the high-resolution analytical method for determining hydrocarbon blocks in petroleum products by comprehensive two-dimensional gas chromatography (GCxGC) to a laboratory external to the petroleum industry (Institute for Environmental Studies (IVM) of the VU University of Amsterdam). The method was validated and used for the analysis of petroleum hydrocarbons extracted from refinery effluents. The report describes the technology transfer and the approaches used to demonstrate the successful transfer and application of the GCxGC methodology from analysing petroleum products to the quantitative determination of hydrocarbon blocks in refinery effluents. The report describes all the methods used for all the determinations on the effluent samples along with an overview of the results obtained which are presented in summary tables and graphs. These data have significantly improved CONCAWE's knowledge of what refineries emit in their effluents. A total of 111 Effluent Discharge Samples from 105 CONCAWE refineries in Europe were obtained in the period June 2008 to March 2009. These effluents were analysed for metals, standard effluent parameters (including COD, BOD), oil in water, BTEX and volatile organic compounds. The hydrocarbon speciation determinations and other hydrocarbon analyses are also reported. The individual refinery analytical results are included into this report, coded as per the CONCAWE system. These data will be, individually, communicated to companies and refineries. The report demonstrates that it is feasible to conduct a research programme to investigate the fate and effects of hydrocarbon blocks present in discharged refinery effluents.

  8. Current and future geothermal research in New Zealand

    International Nuclear Information System (INIS)

    Graham, I.J.; Browne, P.; Christenson, B.W.; Hunt, T.M.; Weir, G.

    2000-01-01

    Research programs by Crown Research Institutes (Geological and Nuclear Sciences Ltd. and Industrial Research Ltd.), university departments (Auckland, Massey and Victoria), power companies and private consultancies aim to obtain a better understanding of currently producing geothermal fields in New Zealand, and of deep geothermal systems which might have potential for future resource development. Research is also being directed at industrial and environmental issues related to exploitation, water-rock alteration processes, changes in shallow geothermal systems with time, and mineralisation as it relates to epithermal ore formation. The chemical and physical environment of geothermal reservoirs in the Taupo Volcanic Zone (e.g. Thames, Kawerau, Ohaaki, Ngatamariki, Wairakei, Tongariro, Tauhara and Tokaanu-Waihi) is being quantified with the aim of developing a suite of magma to ambient production scenarios using numerical, reactive transport models. A variety of geological, geochemical and geophysical techniques including fluid inclusion geothermometry, stable isotope analysis, electromagnetic, micro-seismic and magnetotelluric analysis is providing high quality input data. Through experimentation and computer modelling, criteria for assessing the optimal depths for re-injection of production effluents are being developed, and related problems such as silica and calcite scaling, pipeline insulation and chemical corrosion investigated. Paths, flow mechanisms and flow rates of re-injection plumes are being modelled using electrical resistivity, micro-gravity and radioisotope tracer methods. Environmental effects related to testing and development, presently causing concern amongst local authorities and the public, are being quantitatively assessed, and recommendations made to mitigate them. The mechanical and petrological properties of rocks in shallow aquifers undergoing ground subsidence are being determined, and the extent and style of ground deformation investigated

  9. Quarterly sampling of the wetlands along the old F-Area effluent ditch, Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Dixon, K.L.; cummins, C.L.

    1994-05-01

    In May 1994, well point water and bucket samples were collected for tritium and volatile organic compounds in the wetlands along the old F-Area effluent ditch south of 643-E (old burial ground). The well point samples were collected from seven locations and the bucket samples from four locations. Results support that T and VOCs originating from 643-E are outcropping in the wetlands near this ditch. Based on differences in tritium contents at each location, it was determined that the sampling devices intercepted different groundwater flow paths; however, when VOCs were normalized, based on differences in T, resulting well point and bucket VOCs were comparable in most cases.

  10. West Florida continental shelf: a study of geothermal flows and other processes affecting radionuclides and trace metals. Final report, July 1, 1977-September 30, 1982

    International Nuclear Information System (INIS)

    Fanning, K.A.; Betzer, P.R.; Byrne, R.H.

    1982-01-01

    The characteristics and distribution of submarine geothermal springs along Florida's west coast were studied. The composition of the effluent, expressed as chlorinity ratios, indicates the source is normal seawater. Six springs have been definitely identified, occupying an 85 km 2 area off Fort Myers, Florida. The effluent is acidified, impoverished in magnesium and phosphate, and enriched in calcium, silica, Ra-226, Rn-222 and metals, and reduced compared to the parent seawater. 6 references, 5 figures, 2 tables

  11. Status of the S.E. Geysers effluent pipeline & injection project

    Energy Technology Data Exchange (ETDEWEB)

    Dellinger, M. [Lake County Sanitation District, Lakeport, CA (United States)

    1997-12-31

    A unique public/private partnership of local, state, federal, and corporate stakeholders is constructing the world`s first wastewater-to-electricity system in Lake County, California. A rare example of a genuinely {open_quotes}sustainable{close_quotes} system, three Lake County communities will recycle their treated wastewater effluent through the Geysers geothermal steamfield to produce an estimated 625,000 MWh of electricity annually from six existing geothermal power plants. The concept is shown schematically. Construction was initiated in October 1995, and as of this writing, the system is approximately 85% complete. Operational start-up is expected in October 1997. The key to the project`s success thus far has been its emphasis on cooperative action among affected stakeholders; and a broad, community-based view of solving problems rather than the traditional, narrower view of engineering-driven technical solutions. Special attention has been given to environmentally-responsive engineering design to avoid or minimize adverse environmental impacts.

  12. Geothermal Money Book [Geothermal Outreach and Project Financing

    Energy Technology Data Exchange (ETDEWEB)

    Elizabeth Battocletti

    2004-02-01

    Small business lending is big business and growing. Loans under $1 million totaled $460 billion in June 2001, up $23 billion from 2000. The number of loans under $100,000 continued to grow at a rapid rate, growing by 10.1%. The dollar value of loans under $100,000 increased 4.4%; those of $100,000-$250,000 by 4.1%; and those between $250,000 and $1 million by 6.4%. But getting a loan can be difficult if a business owner does not know how to find small business-friendly lenders, how to best approach them, and the specific criteria they use to evaluate a loan application. This is where the Geothermal Money Book comes in. Once a business and financing plan and financial proposal are written, the Geothermal Money Book takes the next step, helping small geothermal businesses locate and obtain financing. The Geothermal Money Book will: Explain the specific criteria potential financing sources use to evaluate a proposal for debt financing; Describe the Small Business Administration's (SBA) programs to promote lending to small businesses; List specific small-business friendly lenders for small geothermal businesses, including those which participate in SBA programs; Identify federal and state incentives which are relevant to direct use and small-scale (< 1 megawatt) power generation geothermal projects; and Provide an extensive state directory of financing sources and state financial incentives for the 19 states involved in the GeoPowering the West (GPW). GPW is a U.S. Department of Energy-sponsored activity to dramatically increase the use of geothermal energy in the western United States by promoting environmentally compatible heat and power, along with industrial growth and economic development. The Geothermal Money Book will not: Substitute for financial advice; Overcome the high exploration, development, and financing costs associated with smaller geothermal projects; Remedy the lack of financing for the exploration stage of a geothermal project; or Solve

  13. Sampling and monitoring of carbon-14 in gaseous effluents from nuclear facilities - a literature survey

    International Nuclear Information System (INIS)

    Snellman, M.

    1988-12-01

    C-14 compounds produced in the coolant may be released mainly together with off-gas and waste water from the coolant purification and treatment system. In reactors the release of C-14 will occur mainly in gaseous effluents and only a few percent in liquid effluents. Reported releases from BWRs range from 260 to 670 GBq/GW(e) x year and from 90 to 430 GBq/GW(e) x year for PWRs. At BWRs the condenser air ejector contributes the main inplant release pathway, whereas in PWRs the off-gas treatment vents are the main pathway for C-14 release. C-14 sampling methods depend generally on the C-14 being in the form of CO 2 . The off-gas discharges from BWRs are mainly in the form of CO 2 whereas in PWRs a major fraction of the released C-14 is in the form of hydrocarbons or carbon monoxide (generally 80-100%). Sampling systems in PWRs should therefore be equipped with a catalytic oxidizer to convert all C-14 to CO 2 before trapping. The purpose of this study is to provide information on the techniques available for sampling and monitoring C-14

  14. The evolution of the Cappadocia Geothermal Province, Anatolia (Turkey): geochemical and geochronological evidence

    Science.gov (United States)

    Şener, M. Furkan; Şener, Mehmet; Uysal, I. Tonguç

    2017-12-01

    Cappadocia Geothermal Province (CGP), central Turkey, consists of nine individual geothermal regions controlled by active regional fault systems. This paper examines the age dating of alteration minerals and the geochemistry (trace elements and isotopes) of the alteration minerals and geothermal waters, to assess the evolution of CGP in relation to regional tectonics. Ar-Ar age data of jarosite and alunite show that the host rocks were exposed to oxidizing conditions near the Earth's surface at about 5.30 Ma. Based on the δ18O-δD relationhip, water samples had a high altitude meteoric origin. The δ34S values of jarosite and alunite indicate that water samples from the southern part of the study area reached the surface after circulation through volcanic rocks, while northern samples had traveled to the surface after interacting with evaporates at greater depths. REY (rare earth elements and yttrium) diagrams of alteration minerals (especially illite, jarosite and alunite) from rock samples, taken from the same locations as the water samples, display a similar REY pattern to water samples. This suggests that thermal fluids, which reached the surface along a fault zone and caused the mineral alteration in the past, had similar chemical composition to the current geothermal water. The geothermal conceptual model, which defines a volcanically heated reservoir and cap rocks, suggests there are no structural drawbacks to the use of the CGP geothermal system as a resource. However, fluid is insufficient to drive the geothermal system as a result of scanty supply of meteoric water due to evaporation significantly exceeding rainfall.

  15. Geothermal Small Business Workbook [Geothermal Outreach and Project Financing

    Energy Technology Data Exchange (ETDEWEB)

    Elizabeth Battocletti

    2003-05-01

    Small businesses are the cornerstone of the American economy. Over 22 million small businesses account for approximately 99% of employers, employ about half of the private sector workforce, and are responsible for about two-thirds of net new jobs. Many small businesses fared better than the Fortune 500 in 2001. Non-farm proprietors income rose 2.4% in 2001 while corporate profits declined 7.2%. Yet not all is rosy for small businesses, particularly new ones. One-third close within two years of opening. From 1989 to 1992, almost half closed within four years; only 39.5% were still open after six years. Why do some new businesses thrive and some fail? What helps a new business succeed? Industry knowledge, business and financial planning, and good management. Small geothermal businesses are no different. Low- and medium-temperature geothermal resources exist throughout the western United States, the majority not yet tapped. A recent survey of ten western states identified more than 9,000 thermal wells and springs, over 900 low- to moderate-temperature geothermal resource areas, and hundreds of direct-use sites. Many opportunities exist for geothermal entrepreneurs to develop many of these sites into thriving small businesses. The ''Geothermal Small Business Workbook'' (''Workbook'') was written to give geothermal entrepreneurs, small businesses, and developers the tools they need to understand geothermal applications--both direct use and small-scale power generation--and to write a business and financing plan. The Workbook will: Provide background, market, and regulatory data for direct use and small-scale (< 1 megawatt) power generation geothermal projects; Refer you to several sources of useful information including owners of existing geothermal businesses, trade associations, and other organizations; Break down the complicated and sometimes tedious process of writing a business plan into five easy steps; Lead you

  16. Geothermal for kids

    International Nuclear Information System (INIS)

    Nemzer, M.; Condy, M.

    1990-01-01

    This paper reports that educating children about geothermal energy is crucial to the future growth of the geothermal industry. The Geothermal Education Office (GEO) was founded in 1989 to provide materials and support to teachers and the geothermal community in educating grades K-12 about geothermal energy. GEO's goals are to: provide easy access to or referral to appropriate sources of geothermal information; foster teacher interest; create posters, booklets, lesson plans and other educational materials; monitor and review textbooks, encyclopedias and other educational materials distributed by educational groups to ensure inclusion of appropriate, accurate information and to encourage fair treatment of alternative energy resources; contribute articles to industry, science and educational publications; and foster communication and cooperation among GEO, the geothermal industry, government agencies, and educational and environmental groups

  17. Geothermal studies in China

    International Nuclear Information System (INIS)

    Wang Ji-Yang; Chen Mo-Xiang; Wang Ji-An; Deng Xiao; Wang Jun; Shen Hsien-Chieh; Hsiung Liang-Ping; Yan Shu-Zhen; Fan Zhi-Cheng; Liu Xiu-Wen

    1981-01-01

    Geothermal studies have been conducted in China continuosly since the end of the 1950's with renewed activity since 1970. Three areas of research are defined: (1) fundamental theoretical research of geothermics, including subsurface temperatures, terrestrial heat flow and geothermal modeling; (2) exploration for geothermal resources and exploitation of geothermal energy; (3) geothermal studies in mines. (orig./ME)

  18. Monitoring Biological Activity at Geothermal Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Peter Pryfogle

    2005-09-01

    The economic impact of microbial growth in geothermal power plants has been estimated to be as high as $500,000 annually for a 100 MWe plant. Many methods are available to monitor biological activity at these facilities; however, very few plants have any on-line monitoring program in place. Metal coupon, selective culturing (MPN), total organic carbon (TOC), adenosine triphosphate (ATP), respirometry, phospholipid fatty acid (PLFA), and denaturing gradient gel electrophoresis (DGGE) characterizations have been conducted using water samples collected from geothermal plants located in California and Utah. In addition, the on-line performance of a commercial electrochemical monitor, the BIoGEORGE?, has been evaluated during extended deployments at geothermal facilities. This report provides a review of these techniques, presents data on their application from laboratory and field studies, and discusses their value in characterizing and monitoring biological activities at geothermal power plants.

  19. Microbiological monitoring in geothermal plants

    Science.gov (United States)

    Alawi, M.; Lerm, S.; Vetter, A.; Vieth, A.; Seibt, A.; Wolfgramm, M.; Würdemann, H.

    2009-12-01

    In times of increasing relevance of alternative energy resources the utilization of geothermal energy and subsurface energy storage gains importance and arouses increasing interest of scientists. The research project “AquiScreen” investigates the operational reliability of geothermally used groundwater systems under microbial, geochemical, mineralogical and petrological aspects. Microbiological analyses based on fluid and solid phases of geothermal systems are conducted to evaluate the impact of microbial populations on these systems. The presentation focuses on first results obtained from microbiological monitoring of geothermal plants located in two different regions of Germany: the North German Basin and the Molasse Basin in the southern part characterized by different salinities and temperatures. Fluid and filter samples taken during regular plant operation were investigated using genetic fingerprinting based on PCR-amplified 16S rRNA genes to characterize the microbial biocenosis of the geothermal aquifer. Sequencing of dominant bands of the fingerprints and the subsequent comparison to 16S rRNA genes from public databases enables a correlation to metabolic classes and provides information about the biochemical processes in the deep biosphere. The genetic profiles revealed significant differences in microbiological community structures of geothermal aquifers investigated. Phylogenetic analyses indicate broad metabolical diversity adapted to the specific conditions in the aquifers. Additionally a high amount of so far uncultivated microorganisms was detected indicating very specific indigenous biocenosis. However, in all geothermal plants bacteria were detected despite of fluid temperatures from 45° to 120°C. The identified microorganisms are closely related to thermophilic and hyperthermophilic species detectable in hot wells and hot springs, like Thermus scotoductus and Thermodesulfovibrio yellowstonii, respectively. Halophilic species were detected in

  20. TBP production plant effluent treatment process

    International Nuclear Information System (INIS)

    Sriniwas, C.; Sugilal, G.; Wattal, P.K.

    2004-06-01

    TBP production facility at Heavy Water Plant, Talcher generates about 2000 litres of effluent per 200 kg batch. The effluent is basically an aqueous solution containing dissolved and dispersed organics such as dibutyl phosphate, butanol etc. The effluent has high salinity, chemical oxygen demand (30-80 g/L) and pungent odour. It requires treatment before discharge. A chemical precipitation process using ferric chloride was developed for quantitative separation of organics from the aqueous part of the effluent. This process facilitates the discharge of the aqueous effluent. Results of the laboratory and bench scale experiments on actual effluent samples are presented in this report. (author)

  1. Geothermic Characters Of The Most Promising Geothermal Filed For Power Generation In Republic Of Yemen

    Directory of Open Access Journals (Sweden)

    Al Kubati M.

    2017-07-01

    Full Text Available This paper presents geothermal exploration and their geothermometric characteristics in the western part of Yemen. Geologically this volcanic province totals areas approximately 45000 km2. Tectonically the study area is considered one of the most active in the Arabian Plate boundaries that affected by the opening of the Red Sea and the Gulf of Aden as well as by the African rift valley. Extensive field work had been carried out to evaluate the geothermal characteristics of this area. Water and gas samples were collected from hundreds of thermal springs and shallow domestic wells and geochemically analyzed and reported. Temperatures and PH values range from 35 to 96.3 C and from 4.5 to 8.5 respectively. Deep geothermal gradient indicates that the geothermal gradients in the western part of the province Red Sea coast are relatively high up to 182 C at the depth of 3290 m. Volcanic units are affected by hydrothermal processes and became intensively altered. By applying geothermometric methods four geothermal fields have been primarily identified they are Al-Lisi and Isbil Dhamar province Al-Qafr Ibb province Damt Dhala province and the Red Sea coast geothermal fields and three water types were recognized which are Na-HCO3-Cl-S and Ca-Na-Cl and Na HCO3.Results from Al-Lisi and Isbil geothermal area are considered the most promising field. Geothermal detail studies have been achieves and location of the first geothermal exploration well is located in Al-Lisi and Isbil field.By applyig geophisical methods Iso- Resistivity contour mapsthese maps reflected high resistivity areas and low.Clearly shows the low resistivity values incentral and Western part of the study area about 11amp937mWhile up Resistivity values to the area in the eastern 600amp937m.Also through the use ofthe different current electrode spacing AB2 700 1000 1500 and 2000m.We find the low- Resistivity areas becoming more widespread and concentrated in the center of the study area and

  2. Geothermal energy

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    This chapter discusses the role of geothermal energy may have on the energy future of the US. The topics discussed in the chapter include historical aspects of geothermal energy, the geothermal resource, hydrothermal fluids, electricity production, district heating, process heating, geopressured brines, technology and costs, hot dry rock, magma, and environmental and siting issues

  3. Behavior of Rare Earth Element In Geothermal Systems; A New Exploration/Exploitation Tool

    Energy Technology Data Exchange (ETDEWEB)

    Scott A. Wood

    2002-01-28

    The goal of this four-year project was to provide a database by which to judge the utility of the rare earth elements (REE) in the exploration for and exploitation of geothermal fields in the United States. Geothermal fluids from hot springs and wells have been sampled from a number of locations, including: (1) the North Island of New Zealand (1 set of samples); (2) the Cascades of Oregon; (3) the Harney, Alvord Desert and Owyhee geothermal areas of Oregon; (4) the Dixie Valley and Beowawe fields in Nevada; (5) Palinpion, the Philippines: (6) the Salton Sea and Heber geothermal fields of southern California; and (7) the Dieng field in Central Java, Indonesia. We have analyzed the samples from all fields for REE except the last two.

  4. Geothermal in transition

    International Nuclear Information System (INIS)

    Anderson, J.L.

    1991-01-01

    This article examines the current market for geothermal projects in the US and overseas. The topics of the article include future capacity needs, upgrading the Coso Geothermal project, the productivity of the Geysers area of Northern California, the future of geothermal, and new projects at Soda Lake, Carson Basin, Unalaska Island, and the Puna Geothermal Venture in Hilo, Hawaii

  5. Natural radioactivity levels of geothermal waters and their influence on soil and agricultural activities.

    Science.gov (United States)

    Murat Saç, Müslim; Aydemir, Sercan; Içhedef, Mutlu; Kumru, Mehmet N; Bolca, Mustafa; Ozen, Fulsen

    2014-01-01

    All over the world geothermal sources are used for different purposes. The contents of these waters are important to understand positive/negative effects on human life. In this study, natural radioactivity concentrations of geothermal waters were investigated to evaluate the effect on soils and agricultural activities. Geothermal water samples were collected from the Seferihisar Geothermal Region, and the radon and radium concentrations of these waters were analysed using a collector chamber method. Also soil samples, which are irrigated with geothermal waters, were collected from the surroundings of geothermal areas, and natural radioactivity concentrations of collected samples (U, Th and K) were determined using an NaI(Tl) detector system. The activity concentrations of radon and radium were found to be 0.6-6.0 and 0.1-1.0 Bq l(-1), respectively. Generally, the obtained results are not higher compared with the geothermal waters of the world. The activity concentrations in soils were found to be in the range of 3.3-120.3 Bq kg(-1) for (226)Ra (eU), 0.3-108.5 Bq kg(-1) for (232)Th (eTh), 116.0-850.0 Bq kg(-1) for (40)K (% K).

  6. Geothermal pilot study final report: creating an international geothermal energy community

    Energy Technology Data Exchange (ETDEWEB)

    Bresee, J.C.; Yen, W.W.S.; Metzler, J.E. (eds.)

    1978-06-01

    The Geothermal Pilot Study under the auspices of the Committee on the Challenges of Modern Society (CCMS) was established in 1973 to apply an action-oriented approach to international geothermal research and development, taking advantage of the established channels of governmental communication provided by the North Atlantic Treaty Organization (NATO). The Pilot Study was composed of five substudies. They included: computer-based information systems; direct application of geothermal energy; reservoir assessment; small geothermal power plants; and hot dry rock concepts. The most significant overall result of the CCMS Geothermal Pilot Study, which is now complete, is the establishment of an identifiable community of geothermal experts in a dozen or more countries active in development programs. Specific accomplishments include the creation of an international computer file of technical information on geothermal wells and fields, the development of studies and reports on direct applications, geothermal fluid injection and small power plants, and the operation of the visiting scientist program. In the United States, the computer file has aready proven useful in the development of reservoir models and of chemical geothermometers. The state-of-the-art report on direct uses of geothermal energy is proving to be a valuable resource document for laypersons and experts in an area of increasing interest to many countries. Geothermal fluid injection studies in El Salvador, New Zealand, and the United States have been assisted by the Reservoir Assessment Substudy and have led to long-range reservoir engineering studies in Mexico. At least seven small geothermal power plants are in use or have been planned for construction around the world since the Small Power Plant Substudy was instituted--at least partial credit for this increased application can be assigned to the CCMS Geothermal Pilot Study. (JGB)

  7. Liquid Effluent Monitoring Information System (LEMIS) System Construction

    International Nuclear Information System (INIS)

    Adams, R.T.

    1994-01-01

    The liquid effluent sampling program is part of the effort to minimize adverse environmental impact during the cleanup operation at the Hanford Site. Of the 33 Phase I and Phase II liquid effluents, all streams actively discharged to the soil column will be sampled. The Liquid Effluent Monitoring Information System (LEMIS) is being developed as the organized information repository facility in support of the liquid effluent monitoring requirements of the Tri-Party Agreement. It is necessary to provide an automated repository into which the results from liquid effluent sampling will be placed. This repository must provide for effective retention, review, and retrieval of selected sample data by authorized persons and organizations. This System Construction document is the aggregation of the DMR P+ methodology project management deliverables. Together they represent a description of the project and its plan through four Releases, corresponding to the definition and prioritization of requirements defined by the user

  8. Geothermal tomorrow 2008

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2009-01-18

    Contributors from the Geothermal Technologies Program and the geothermal community highlight the current status and activities of the Program and the development of the global resource of geothermal energy.

  9. National Geothermal Data System (NGDS) Geothermal Data: Community Requirements and Information Engineering

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Arlene [United States Department of Energy; Blackwell, David [Southern Methodist University; Chickering, Cathy [Southern Methodist University; Boyd, Toni [Oregon Institute of Technology; Horne, Roland [Stanford University; MacKenzie, Matthew [Uberity Technology Corporation; Moore, Joseph [University of Utah; Nickull, Duane [Uberity Technology Corporation; Richard, Stephen [Arizona Geological survey; Shevenell, Lisa A. [University of Nevada, Reno

    2013-10-01

    To satisfy the critical need for geothermal data to advance geothermal energy as a viable renewable energy contender, the U.S. Department of Energy is investing in the development of the National Geothermal Data System (NGDS). This paper outlines efforts among geothermal data providers nationwide to supply cutting edge geo-informatics. NGDS geothermal data acquisition, delivery, and methodology are discussed. In particular, this paper addresses the various types of data required to effectively assess geothermal energy potential and why simple links to existing data are insufficient. To create a platform for ready access by all geothermal stakeholders, the NGDS includes a work plan that addresses data assets and resources of interest to users, a survey of data providers, data content models, and how data will be exchanged and promoted, as well as lessons learned within the geothermal community.

  10. World geothermal congress

    International Nuclear Information System (INIS)

    Povarov, O.A.; Tomarov, G.V.

    2001-01-01

    The World geothermal congress took place in the period from 28 May up to 10 June 2000 in Japan. About 2000 men from 43 countries, including specialists in the area of developing geothermal fields, creating and operating geothermal electrical and thermal plants and various systems for the earth heat application, participated in the work of the Congress. It was noted at the Congress, that development of the geothermal power engineering in the world is characterized by the large-scale application of geothermal resources for the electrical energy generation [ru

  11. Geothermal probabilistic cost study

    Energy Technology Data Exchange (ETDEWEB)

    Orren, L.H.; Ziman, G.M.; Jones, S.C.; Lee, T.K.; Noll, R.; Wilde, L.; Sadanand, V.

    1981-08-01

    A tool is presented to quantify the risks of geothermal projects, the Geothermal Probabilistic Cost Model (GPCM). The GPCM model is used to evaluate a geothermal reservoir for a binary-cycle electric plant at Heber, California. Three institutional aspects of the geothermal risk which can shift the risk among different agents are analyzed. The leasing of geothermal land, contracting between the producer and the user of the geothermal heat, and insurance against faulty performance are examined. (MHR)

  12. California: basic data for thermal springs and wells as recorded in GEOTHERM. Part A

    Energy Technology Data Exchange (ETDEWEB)

    Bliss, J.D.

    1983-07-01

    This GEOTHERM sample file contains 1535 records for California. Three computer-generated indexes give one line summaries of each GEOTHERM record. Each index is sorted by different variables to assist in locating geothermal records describing specific sites. 7 refs. (ACR)

  13. Geothermal energy

    International Nuclear Information System (INIS)

    Vuataz, F.-D.

    2005-01-01

    This article gives a general overview of the past and present development of geothermal energy worldwide and a more detailed one in Switzerland. Worldwide installed electrical power using geothermal energy sources amounts to 8900 MW el . Worldwide utilization of geothermal energy for thermal applications amounts to 28,000 MW th . The main application (56.5%) is ground-coupled heat pumps, others are thermal spas and swimming pools (17.7%), space heating (14.9%), heating of greenhouses (4.8%), fish farming (2.2%), industrial uses (1,8%), cooling and melting of snow (1.2%), drying of agricultural products (0.6 %). Switzerland has become an important user of geothermal energy only in the past 25 years. Earlier, only the exploitation of geothermal springs (deep aquifers) in Swiss thermal baths had a long tradition, since the time of the Romans. Today, the main use of geothermal energy is as a heat source for heat pumps utilizing vertical borehole heat exchangers of 50 to 350 meters length. 35,000 installations of this type with heating powers ranging from a few kW to 1000 kW already exist, representing the highest density of such installations worldwide. Other developments are geostructures and energy piles, the use of groundwater for heating and cooling, geothermal district heating, the utilization of draining water from tunnels and the project 'Deep Heat Mining' allowing the combined production of heat and electric power

  14. Advanced Geothermal Turbodrill

    Energy Technology Data Exchange (ETDEWEB)

    W. C. Maurer

    2000-05-01

    Approximately 50% of the cost of a new geothermal power plant is in the wells that must be drilled. Compared to the majority of oil and gas wells, geothermal wells are more difficult and costly to drill for several reasons. First, most U.S. geothermal resources consist of hot, hard crystalline rock formations which drill much slower than the relatively soft sedimentary formations associated with most oil and gas production. Second, high downhole temperatures can greatly shorten equipment life or preclude the use of some technologies altogether. Third, producing viable levels of electricity from geothermal fields requires the use of large diameter bores and a high degree of fluid communication, both of which increase drilling and completion costs. Optimizing fluid communication often requires creation of a directional well to intersect the best and largest number of fracture capable of producing hot geothermal fluids. Moineau motor stators made with elastomers cannot operate at geothermal temperatures, so they are limited to the upper portion of the hole. To overcome these limitations, Maurer Engineering Inc. (MEI) has developed a turbodrill that does not use elastomers and therefore can operate at geothermal temperatures. This new turbodrill uses a special gear assembly to reduce the output speed, thus allowing a larger range of bit types, especially tri-cone roller bits, which are the bits of choice for drilling hard crystalline formations. The Advanced Geothermal Turbodrill (AGT) represents a significant improvement for drilling geothermal wells and has the potential to significantly reduce drilling costs while increasing production, thereby making geothermal energy less expensive and better able to compete with fossil fuels. The final field test of the AGT will prepare the tool for successful commercialization.

  15. Guidebook to Geothermal Finance

    Energy Technology Data Exchange (ETDEWEB)

    Salmon, J. P.; Meurice, J.; Wobus, N.; Stern, F.; Duaime, M.

    2011-03-01

    This guidebook is intended to facilitate further investment in conventional geothermal projects in the United States. It includes a brief primer on geothermal technology and the most relevant policies related to geothermal project development. The trends in geothermal project finance are the focus of this tool, relying heavily on interviews with leaders in the field of geothermal project finance. Using the information provided, developers and investors may innovate in new ways, developing partnerships that match investors' risk tolerance with the capital requirements of geothermal projects in this dynamic and evolving marketplace.

  16. Behavior of Rare Earth Element In Geothermal Systems; A New Exploration/Exploitation Tool; FINAL

    International Nuclear Information System (INIS)

    Scott A. Wood

    2002-01-01

    The goal of this four-year project was to provide a database by which to judge the utility of the rare earth elements (REE) in the exploration for and exploitation of geothermal fields in the United States. Geothermal fluids from hot springs and wells have been sampled from a number of locations, including: (1) the North Island of New Zealand (1 set of samples); (2) the Cascades of Oregon; (3) the Harney, Alvord Desert and Owyhee geothermal areas of Oregon; (4) the Dixie Valley and Beowawe fields in Nevada; (5) Palinpion, the Philippines: (6) the Salton Sea and Heber geothermal fields of southern California; and (7) the Dieng field in Central Java, Indonesia. We have analyzed the samples from all fields for REE except the last two

  17. Geothermal direct use engineering and design guidebook

    International Nuclear Information System (INIS)

    Lienau, P.J.; Lunis, B.C.

    1991-01-01

    The Geothermal Direct Use Engineering and Design Guidebook is designed to be a comprehensive, thoroughly practical reference guide for engineers and designers of direct heat projects. These projects could include the conversion of geothermal energy into space heating and cooling of buildings, district heating, greenhouse heating, aquaculture and industrial processing. The Guidebook is directed at understanding the nature of geothermal resources and the exploration of the resources, fluid sampling techniques, drilling, and completion of geothermal wells through well testing, and reservoir evaluation. It presents information useful to engineers on the specification of equipment including well pumps, piping, heat exchangers, space heating equipment, heat pumps and absorption refrigeration. A compilation of current information about greenhouse aquaculture and industrial applications is included together with a discussion of engineering cost analysis, regulation requirements, and environmental consideration. The purpose of the Guidebook is to provide an integrated view for the development of direct use projects for which there is a very large potential in the United States

  18. Geothermal direct use engineering and design guidebook

    Energy Technology Data Exchange (ETDEWEB)

    Lienau, P.J.; Lunis, B.C. (eds.)

    1991-01-01

    The Geothermal Direct Use Engineering and Design Guidebook is designed to be a comprehensive, thoroughly practical reference guide for engineers and designers of direct heat projects. These projects could include the conversion of geothermal energy into space heating and cooling of buildings, district heating, greenhouse heating, aquaculture and industrial processing. The Guidebook is directed at understanding the nature of geothermal resources and the exploration of the resources, fluid sampling techniques, drilling, and completion of geothermal wells through well testing, and reservoir evaluation. It presents information useful to engineers on the specification of equipment including well pumps, piping, heat exchangers, space heating equipment, heat pumps and absorption refrigeration. A compilation of current information about greenhouse aquaculture and industrial applications is included together with a discussion of engineering cost analysis, regulation requirements, and environmental consideration. The purpose of the Guidebook is to provide an integrated view for the development of direct use projects for which there is a very large potential in the United States.

  19. Geothermal direct use engineering and design guidebook

    Energy Technology Data Exchange (ETDEWEB)

    Bloomquist, R.G.; Culver, G.; Ellis, P.F.; Higbee, C.; Kindle, C.; Lienau, P.J.; Lunis, B.C.; Rafferty, K.; Stiger, S.; Wright, P.M.

    1989-03-01

    The Geothermal Direct Use Engineering and Design Guidebook is designed to be a comprehensive, thoroughly practical reference guide for engineers and designers of direct heat projects. These projects could include the conversion of geothermal energy into space heating cooling of buildings, district heating, greenhouse heating, aquaculture and industrial processing. The Guidebook is directed at understanding the nature of geothermal resources and the exploration of these resources, fluid sampling techniques, drilling, and completion of geothermal wells through well testing, and reservoir evaluation. It presents information useful to engineers on the specification of equipment including well pumps, piping, heat exchangers, space heating equipment, heat pumps and absorption refrigeration. A compilation of current information about greenhouse, aquaculture and industrial applications is included together with a discussion of engineering cost analysis, regulation requirements, and environmental considerations. The purpose of the Guidebook is to provide an integrated view for the development of direct use projects for which there is a very potential in the United States.

  20. Statistical evaluation of effluent monitoring data for the 200 Area Treated Effluent Disposal Facility

    International Nuclear Information System (INIS)

    Chou, C.J.; Johnson, V.G.

    2000-01-01

    The 200 Area Treated Effluent Disposal Facility (TEDF) consists of a pair of infiltration basins that receive wastewater originating from the 200 West and 200 East Areas of the Hanford Site. TEDF has been in operation since 1995 and is regulated by State Waste Discharge Permit ST 4502 (Ecology 1995) under the authority of Chapter 90.48 Revised Code of Washington (RCW) and Washington Administrative Code (WAC) Chapter 173-216. The permit stipulates monitoring requirements for effluent (or end-of-pipe) discharges and groundwater monitoring for TEDF. Groundwater monitoring began in 1992 prior to TEDF construction. Routine effluent monitoring in accordance with the permit requirements began in late April 1995 when the facility began operations. The State Waste Discharge Permit ST 4502 included a special permit condition (S.6). This condition specified a statistical study of the variability of permitted constituents in the effluent from TEDF during its first year of operation. The study was designed to (1) demonstrate compliance with the waste discharge permit; (2) determine the variability of all constituents in the effluent that have enforcement limits, early warning values, and monitoring requirements (WHC 1995); and (3) determine if concentrations of permitted constituents vary with season. Additional and more frequent sampling was conducted for the effluent variability study. Statistical evaluation results were provided in Chou and Johnson (1996). Parts of the original first year sampling and analysis plan (WHC 1995) were continued with routine monitoring required up to the present time

  1. Geothermal energy

    Directory of Open Access Journals (Sweden)

    Manzella A.

    2017-01-01

    Full Text Available Geothermal technologies use renewable energy resources to generate electricity and direct use of heat while producing very low levels of greenhouse-gas (GHG emissions. Geothermal energy is the thermal energy stored in the underground, including any contained fluid, which is available for extraction and conversion into energy products. Electricity generation, which nowadays produces 73.7 TWh (12.7 GW of capacity worldwide, usually requires geothermal resources temperatures of over 100 °C. For heating, geothermal resources spanning a wider range of temperatures can be used in applications such as space and district heating (and cooling, with proper technology, spa and swimming pool heating, greenhouse and soil heating, aquaculture pond heating, industrial process heating and snow melting. Produced geothermal heat in the world accounts to 164.6 TWh, with a capacity of 70.9 GW. Geothermal technology, which has focused for decades on extracting naturally heated steam or hot water from natural hydrothermal reservoirs, is developing to more advanced techniques to exploit the heat also where underground fluids are scarce and to use the Earth as a potential energy battery, by storing heat. The success of the research will enable energy recovery and utilization from a much larger fraction of the accessible thermal energy in the Earth’s crust.

  2. Geothermal energy

    Science.gov (United States)

    Manzella, A.

    2017-07-01

    Geothermal technologies use renewable energy resources to generate electricity and direct use of heat while producing very low levels of greenhouse-gas (GHG) emissions. Geothermal energy is the thermal energy stored in the underground, including any contained fluid, which is available for extraction and conversion into energy products. Electricity generation, which nowadays produces 73.7 TWh (12.7 GW of capacity) worldwide, usually requires geothermal resources temperatures of over 100 °C. For heating, geothermal resources spanning a wider range of temperatures can be used in applications such as space and district heating (and cooling, with proper technology), spa and swimming pool heating, greenhouse and soil heating, aquaculture pond heating, industrial process heating and snow melting. Produced geothermal heat in the world accounts to 164.6 TWh, with a capacity of 70.9 GW. Geothermal technology, which has focused for decades on extracting naturally heated steam or hot water from natural hydrothermal reservoirs, is developing to more advanced techniques to exploit the heat also where underground fluids are scarce and to use the Earth as a potential energy battery, by storing heat. The success of the research will enable energy recovery and utilization from a much larger fraction of the accessible thermal energy in the Earth's crust.

  3. Isotope and hydrogeochemical studies of southern Jiangxi geothermal systems, China

    International Nuclear Information System (INIS)

    Zhou Wenbin; Li Xueli; Shi Weijun; Sun Zhanxue

    1999-01-01

    Southern Jiangxi is a geothermally active region, especially in Hengjing area. According to the work plan of IAEA Regional Collaboration in the Development of Geothermal Energy Resources and Environment Management through Isotope Techniques in East Asia and the Pacific (RAS-8-075), field investigation was carried out in Hengjing, southern Jiangxi Province, to demonstrate the use of isotope and geochemical techniques in low to medium temperature geothermal system. During the field investigation, 19 samples were taken from cold springs, hot springs and surface water in the area to determine their hydrochemical and gas compositions, hydrogen, oxygen, carbon and helium isotopes. The results of the study have shown that the geothermal waters in the studying region are of the same characteristics with the local meteoric water in oxygen and hydrogen isotope composition, indicating the geothermal waters are mainly derived from the local precipitation, while the gas composition and carbon and helium isotopes reveal that some gases in the geothermal waters have mantle origin. (author)

  4. Geothermal energy worldwide

    International Nuclear Information System (INIS)

    Barbier, Enriko

    1997-01-01

    Geothermal energy, as a natural steam and hot water, has been exploited for decades in order to generate electricity as well as district heating and industrial processes. The present geothermal electrical installed capacity in the world is about 10.000 MWe and the thermal capacity in non-electrical uses is about 8.200 MWt. Electricity is produced with an efficiency of 10-17%, and the cost of the kWh is competitive with conventional energy sources. In the developing countries, where a total installed electrical power is still low, geothermal energy can play a significant role: in El Salvador, for example, 25% of electricity comes from geothermal spring, 20% in the Philippines and 8% in Kenya. Present technology makes it possible to control the environmental impact of geothermal exploitation. Geothermal energy could also be extracted from deep geopressured reservoirs in large sedimentary basins, hot dry rock systems and magma bodies. (author)

  5. Geothermal energy

    OpenAIRE

    Manzella A.

    2017-01-01

    Geothermal technologies use renewable energy resources to generate electricity and direct use of heat while producing very low levels of greenhouse-gas (GHG) emissions. Geothermal energy is the thermal energy stored in the underground, including any contained fluid, which is available for extraction and conversion into energy products. Electricity generation, which nowadays produces 73.7 TWh (12.7 GW of capacity) worldwide, usually requires geothermal resources temperatures of over 100 °C. Fo...

  6. Natural radioactivity of geothermal water in Beijing, China

    International Nuclear Information System (INIS)

    Shufang Wang; Chao Ye; Jiurong Liu; Pei Lin; Kai Liu; Pei Dong; Ying Sun; Yuanzhang Liu; Liya Wang; Guifang Wang

    2017-01-01

    In this work, we collected 101 geothermal water samples to investigate comprehensively the radioactivity of geothermal water in Beijing. The concentrations of gross beta, 226 Ra and 222 Rn were measured and the obtained values were in the range of 0.032-7.060, 0.023-0.363 and 0.470-29.700 Bq/L, respectively. The samples with higher concentration of 222 Rn were found to be located near large faults. The effective dose of 222 Rn in the air for three cases were calculated to be greater than radiation dose limit of 1 mSv/a. (author)

  7. Geothermal system 'Toplets' and geothermal potential of Dojran region

    International Nuclear Information System (INIS)

    Karakashev, Deljo; Delipetrov, Marjan; Jovanov, Kosta

    2008-01-01

    The Toplets geothermal spring that expands into a wide geothermal net in the watershed of Lake Dojran along the geophysical exploration work carried out in the terrain, indicated the presence of a significant geothermal potential in the region. In the future it may become the major factor for the development of vegetable growing, the use of the medicinal properties of the mineral spas and tourism as well as the prosperity of the region. Water temperature in Lake Dojran amounts 15°C to 28°C during the year that is mach higher compared with the temperature of water lakes in neighbouring Greece. This indicates that beneath Lake Dojran there are other geothermal sources that replenish the lake with thermal water. Such manifestations of geothermal energy in the region along with other thermal phenomena speak for the presence of large reserves of geothermal energy in the Dojran depression. (Author)

  8. Geothermal system 'Toplets' and geothermal potential of Dojran region

    International Nuclear Information System (INIS)

    Karakashev, Deljo; Delipetrov, Marjan; Jovanov, Kosta

    2007-01-01

    The Toplets geothermal spring that expands into a wide geothermal net in the watershed of Lake Dojran along the geophysical exploration work carried out in the terrain, indicated the presence of a significant geothermal potential in the region. In the future it may become the major factor for the development of vegetable growing, the use of the medicinal properties of the mineral spas and tourism as well as the prosperity of the region. Water temperature in Lake Dojran amounts 15°C to 28°C during the year that is mach higher compared with the temperature of water lakes in neighbouring Greece. This indicates that beneath Lake Dojran there are other geothermal sources that replenish the lake with thermal water. Such manifestations of geothermal energy in the region along with other thermal phenomena speak for the presence of large reserves of geothermal energy in the Dojran depression. (Author)

  9. Geothermal long-term modelling of a solar coupled geothermal probe heat storage in Crailsheim; Geothermische Langzeitmodellierung eines solargekoppelten Erdsonden-Waermespeichers in Crailsheim

    Energy Technology Data Exchange (ETDEWEB)

    Homuth, Sebastian; Mikisek, Philipp; Goetz, Annette E.; Sass, Ingo [Technische Univ. Darmstadt (Germany). Fachgebiet Angewandte Geothermie

    2011-10-24

    The thermal variations of the subsurface in the vicinity of a seasonal solar coupled geothermal probe heat storage were modeled using FEFLOW {sup registered} over a period of thirty years. The geothermal probe heat storage consists of eighty boreholes in an area of 85 square meters. The geothermal probes have a depth of 55 m and are mainly located in limestones of the Upper Muschelkalk (Triassic). The geothermal probe heat storage is thermally loaded from April to September. The thermal discharge takes place from October to March. The thermal and hydraulic input data of the model are based on three 80 meter deep geothermal probes (GWM 1-3) in the vicinity of the storage. The cores were completely lithologically, facially and finely stratigraphically affiliated. Measurements of thermal conductivity, permeability, porosity and density of 76 representative samples from the geothermal probe GWM 3 and measurements of the main fracture directions in two reference digestions at Crailsheim enabled a most realistic modeling of the storage. The results of the long-term modeling can be used for a detailed forecasting of the thermal alterations in the subsurface.

  10. Geothermal System Extensions

    Energy Technology Data Exchange (ETDEWEB)

    Gunnerson, Jon [Boise City Corporation, ID (United States); Pardy, James J. [Boise City Corporation, ID (United States)

    2017-09-30

    This material is based upon work supported by the Department of Energy under Award Number DE-EE0000318. The City of Boise operates and maintains the nation’s largest geothermal heating district. Today, 91 buildings are connected, providing space heating to over 5.5 million square feet, domestic water heating, laundry and pool heating, sidewalk snowmelt and other related uses. Approximately 300 million gallons of 177°F geothermal water is pumped annually to buildings and institutions located in downtown Boise. The closed loop system returns all used geothermal water back into the aquifer after heat has been removed via an Injection Well. Water injected back into the aquifer has an average temperature of 115°F. This project expanded the Boise Geothermal Heating District (Geothermal System) to bring geothermal energy to the campus of Boise State University and to the Central Addition Eco-District. In addition, this project also improved the overall system’s reliability and increased the hydraulic capacity.

  11. Application of ICP-QMS for the determination of ultratrace-levels of 226Ra in geothermal water and sediment samples

    International Nuclear Information System (INIS)

    Tsuey-Lin Tsai; Tsung-Yuan Wang; Hwa-Jou Wei; Lee-Chung Men; Chun-Chih Lin

    2010-01-01

    A rapid, accurate and less labor intensive approach to determining 226 Ra in environmental samples was examined; this utilized quadrupole-based inductively coupled plasma mass spectrometry (ICP-QMS). The procedure used chemical separation by ion exchange chromatography to remove most of the matrices after coprecipitation with BaSO 4 . The average chemical recovery of the NIST SRM preparation method ranged from 60.5 to 85.9% using 133 Ba as internal tracer by gamma counting. This technique was capable of completing a 226 Ra measurement within 3 min. It did not require an in-growth period to allow radon and its progeny to achieve secular equilibrium with the parent 226 Ra as is needed for liquid scintillation analyzer (LSA). The method detection limits for the determination of 226 Ra in geothermal water and sediment samples were 0.02 mBq L -1 (0.558 fg L -1 ) and 0.10 Bq kg -1 (2.79 fg g -1 ), respectively. The results obtained with various natural samples and the suitability of the method when applied to various environmental matrices such as geothermal water and sediment are discussed. When ICP-QMS was compared to double-focusing magnetic sector field inductively coupled plasma mass spectrometry (ICP-SFMS), good agreement was obtained with a correlation coefficient, r 2 = 0.982. (author)

  12. GEOTHERMAL / SOLAR HYBRID DESIGNS: USE OF GEOTHERMAL ENERGY FOR CSP FEEDWATER HEATING

    Energy Technology Data Exchange (ETDEWEB)

    Craig Turchi; Guangdong Zhu; Michael Wagner; Tom Williams; Dan Wendt

    2014-10-01

    This paper examines a hybrid geothermal / solar thermal plant design that uses geothermal energy to provide feedwater heating in a conventional steam-Rankine power cycle deployed by a concentrating solar power (CSP) plant. The geothermal energy represents slightly over 10% of the total thermal input to the hybrid plant. The geothermal energy allows power output from the hybrid plant to increase by about 8% relative to a stand-alone CSP plant with the same solar-thermal input. Geothermal energy is converted to electricity at an efficiency of 1.7 to 2.5 times greater than would occur in a stand-alone, binary-cycle geothermal plant using the same geothermal resource. While the design exhibits a clear advantage during hybrid plant operation, the annual advantage of the hybrid versus two stand-alone power plants depends on the total annual operating hours of the hybrid plant. The annual results in this draft paper are preliminary, and further results are expected prior to submission of a final paper.

  13. Geothermal energy

    Directory of Open Access Journals (Sweden)

    Manzella A.

    2015-01-01

    Full Text Available Geothermal technologies use renewable energy resources to generate electricity and direct use of heat while producing very low levels of greenhouse-gas (GHG emissions. Geothermal energy is stored in rocks and in fluids circulating in the underground. Electricity generation usually requires geothermal resources temperatures of over 100°C. For heating, geothermal resources spanning a wider range of temperatures can be used in applications such as space and district heating (and cooling, with proper technology, spa and swimming pool heating, greenhouse and soil heating, aquaculture pond heating, industrial process heating and snow melting. Geothermal technology, which has focused so far on extracting naturally heated steam or hot water from natural hydrothermal reservoirs, is developing to more advanced techniques to exploit the heat also where underground fluids are scarce and to use the Earth as a potential energy battery, by storing heat. The success of the research will enable energy recovery and utilization from a much larger fraction of the accessible thermal energy in the Earth’s crust.

  14. Geothermal energy in Jordan

    International Nuclear Information System (INIS)

    Al-Dabbas, Moh'd A. F.

    1993-11-01

    The potential of geothermal energy utilization in Jordan was discussed. The report gave a summary of the location of geothermal anomalies in Jordan, and of ongoing projects that utilize geothermal energy for greenhouse heating, fish farming, refrigeration by absorption, and water desalination of deep aquifers. The problems facing the utilization of geothermal energy in Jordan were identified to be financial (i.e. insufficient allocation of local funding, and difficulty in getting foreign financing), and inadequate expertise in the field of geothermal energy applications. The report gave a historical account of geothermal energy utilization activities in Jordan, including cooperation activities with international organizations and foreign countries. A total of 19 reports already prepared in the areas of geochemical and hydrological studies were identified. The report concluded that the utilization of geothermal energy offers some interesting economic possibilities. (A.M.H.). 4 refs. 1 map

  15. Waste analysis plan for the 200 area effluent treatment facility and liquid effluent retention facility

    International Nuclear Information System (INIS)

    Ballantyne, N.A.

    1995-01-01

    This waste analysis plan (WAP) has been prepared for startup of the 200 Area Effluent Treatment Facility (ETF) and operation of the Liquid Effluent Retention Facility (LERF), which are located on the Hanford Facility, Richland, Washington. This WAP documents the methods used to obtain and analyze representative samples of dangerous waste managed in these units, and of the nondangerous treated effluent that is discharged to the State-Approved Land Disposal System (SALDS). Groundwater Monitoring at the SALDS will be addressed in a separate plan

  16. Success in geothermal development

    International Nuclear Information System (INIS)

    Stefansson, V.

    1992-01-01

    Success in geothermal development can be defined as the ability to produce geothermal energy at compatible energy prices to other energy sources. Drilling comprises usually the largest cost in geothermal development, and the results of drilling is largely influencing the final price of geothermal energy. For 20 geothermal fields with operating power plants, the ratio between installed capacity and the total number of well in the field is 1.9 MWe/well. The drilling history in 30 geothermal fields are analyzed by plotting the average cumulative well outputs as function of the number of wells drilled in the field. The range of the average well output is 1-10 MWe/well with the mean value 4.2 MWe/well for the 30 geothermal fields studied. A leaning curve is defined as the number of wells drilled in each field before the average output per well reaches a fairly constant value, which is characteristic for the geothermal reservoir. The range for this learning time is 4-36 wells and the average is 13 wells. In general, the average well output in a given field is fairly constant after some 10-20 wells has been drilled in the field. The asymptotic average well output is considered to be a reservoir parameter when it is normalized to the average drilling depth. In average, this reservoir parameter can be expressed as 3.3 MWe per drilled km for the 30 geothermal fields studied. The lifetime of the resource or the depletion time of the geothermal reservoir should also be considered as a parameter influencing the success of geothermal development. Stepwise development, where the reservoir response to the utilization for the first step is used to determine the timing of the installment of the next step, is considered to be an appropriate method to minimize the risk for over investment in a geothermal field

  17. Evaluation of the cytogenotoxicity of textile effluents using Allium cepa L.

    Directory of Open Access Journals (Sweden)

    Sandro Barbosa

    2011-08-01

    Full Text Available The cytotoxic and genotoxic potential of the raw (EB and treated (ET effluents of two textile mills located in south of Minas Gerais State that have their effluents treated at the same Effluent Treatment Plant was investigated using the Allium cepa test system. Cytotoxicity was evaluated by the root elongation and mitotic index (MI endpoints and the genotoxicity was assessed by de determination of chromosome aberrations (CA.The effluent samples were tested at the concentrations 0 (ultrapure water, 25, 50, 75, and 100 % (v/v. A Completely Randomized Design with four replicates of 30 seeds was used. The effluent samples in almost all tested concentrations promoted an increase in root elongation compared to the negative control and this effect was probably related to nutrients levels and organic matter in effluent samples. A lower MI at all concentrations of ET compared to EB. The highest MI was observed at 100% (v/v concentration of both effluents. The highest rates of CA occurred at concentrations 75% (v/v of EB and 100% (v/v of both effluents. The effluent samples showed no cytotoxic effect, but cell division occurred disorderly, leading to increase rate of AC, revealing a genetoxic effect. Improvements in the wastewater treatment are needed to reduce environmental impacts.

  18. The geothermal power organization

    Energy Technology Data Exchange (ETDEWEB)

    Scholl, K.L. [National Renewable Energy Lab., Golden, CO (United States)

    1997-12-31

    The Geothermal Power Organization is an industry-led advisory group organized to advance the state-of-the-art in geothermal energy conversion technologies. Its goal is to generate electricity from geothermal fluids in the most cost-effective, safe, and environmentally benign manner possible. The group achieves this goal by determining the Member`s interest in potential solutions to technological problems, advising the research and development community of the needs of the geothermal energy conversion industry, and communicating research and development results among its Members. With the creation and adoption of a new charter, the Geothermal Power Organization will now assist the industry in pursuing cost-shared research and development projects with the DOE`s Office of Geothermal Technologies.

  19. Geothermal reservoir engineering

    CERN Document Server

    Grant, Malcolm Alister

    2011-01-01

    As nations alike struggle to diversify and secure their power portfolios, geothermal energy, the essentially limitless heat emanating from the earth itself, is being harnessed at an unprecedented rate.  For the last 25 years, engineers around the world tasked with taming this raw power have used Geothermal Reservoir Engineering as both a training manual and a professional reference.  This long-awaited second edition of Geothermal Reservoir Engineering is a practical guide to the issues and tasks geothermal engineers encounter in the course of their daily jobs. The bo

  20. GEOTHERM programme supports geothermal energy world-wide. Geothermal energy, a chance for East African countries; GEOTHERM: BGR foerdert weltweit Nutzung geothermischer Energie. Geothermie - eine Chance fuer ostafrikanische Laender

    Energy Technology Data Exchange (ETDEWEB)

    Kraml, M.; Kessels, K.; Kalberkamp, U.; Ochmann, N.; Stadtler, C. [Bundesanstalt fuer Geowissenschaften und Rohstoffe (BGR), Hannover (Germany)

    2007-02-15

    The high geothermal potential of East Africa, especially of the Eastern Rift, is known for a long time. Since these pioneer studies, geothermal plants have been constructed at three sites in East Africa. Nevertheless, up to now geothermal has been a success story only in Kenya. The steam power plant Olkaria I in Kenya is running reliability since 25 years. Today, the country produces more than 12% of its electricity from geothermal. Now, Eritrea, Djibouti, Uganda, Tanzania and Ethiopia which are also situated along the East African Rift, are planning similar projects. The countries need to develop new energy sources because oil prices have reached a critical level. In the past, hydro power was regarded to be a reliable source of energy, but increased droughts changed the situation. Thus, the african states are searching for alternatives to be able to stabilise their energy supply and to cover the growing energy demand. There is much hope that the success of the Kenyan geothermal power plants will be repeated in the neighbouring countries. The East African countries have joined their forces to give impetus to the use of the regional geothermal resources. On behalf of the Federal Ministry for Economic Cooperation and Development, the Federal Institute for Geosciences and Natural Resources supports the countries in realising their plans as part of the GEOTHERM Programme. Together with further donors (Iceland, France, USA, Global Environment Facility) the path will be paved for geothermal power plants in the above mentioned six East African countries. The following main steps are necessary: - Awareness raising of political decision makers about the advantages of including geothermal into the national power plans - Improvement of knowledge about potentials geothermal sites - Development of a regional equipment pool including the necessary geophysical equipment, laboratories, etc. - Training in geothermal exploration and plant maintenance, to minimise risks of site

  1. Geothermal fields of China

    Science.gov (United States)

    Kearey, P.; HongBing, Wei

    1993-08-01

    There are over 2500 known occurrences of geothermal phenomena in China. These lie mainly in four major geothermal zones: Xizang (Tibet)-Yunnan, Taiwan, East Coast and North-South. Hot water has also been found in boreholes in major Mesozoic-Cenozoic sedimentary basins. This paper presents a summary of present knowledge of these geothermal zones. The geological settings of geothermal occurrences are associated mainly with magmatic activity, fault uplift and depressional basins and these are described by examples of each type. Increased multipurpose utilisation of geothermal resources is planned and examples are given of current usages.

  2. Soil mercury levels in the area surrounding the Cerro Prieto geothermal complex, MEXICO.

    Science.gov (United States)

    Pastrana-Corral, M A; Wakida, F T; García-Flores, E; Rodriguez-Mendivil, D D; Quiñonez-Plaza, A; Piñon-Colin, T D J

    2016-08-01

    Even though geothermal energy is a renewable energy source that is seen as cost-effective and environmentally friendly, emissions from geothermal plants can impact air, soil, and water in the vicinity of geothermal power plants. The Cerro Prieto geothermal complex is located 30 km southeast of the city of Mexicali in the Mexican state of Baja California. Its installed electricity generation capacity is 720 MW, being the largest geothermal complex in Mexico. The objective of this study was to evaluate whether the emissions generated by the geothermal complex have increased the soil mercury concentration in the surrounding areas. Fifty-four surface soil samples were collected from the perimeter up to an approximate distance of 7660 m from the complex. Additionally, four soil depth profiles were performed in the vicinity of the complex. Mercury concentration in 69 % of the samples was higher than the mercury concentration found at the baseline sites. The mercury concentration ranged from 0.01 to 0.26 mg/kg. Our results show that the activities of the geothermal complex have led to an accumulation of mercury in the soil of the surrounding area. More studies are needed to determine the risk to human health and the ecosystems in the study area.

  3. Geothermal systems: Principles and case histories

    Science.gov (United States)

    Rybach, L.; Muffler, L. J. P.

    The classification of geothermal systems is considered along with the geophysical and geochemical signatures of geothermal systems, aspects of conductive heat transfer and regional heat flow, and geothermal anomalies and their plate tectonic framework. An investigation of convective heat and mass transfer in hydrothermal systems is conducted, taking into account the mathematical modelling of hydrothermal systems, aspects of idealized convective heat and mass transport, plausible models of geothermal reservoirs, and preproduction models of hydrothermal systems. Attention is given to the prospecting for geothermal resources, the application of water geochemistry to geothermal exploration and reservoir engineering, heat extraction from geothermal reservoirs, questions of geothermal resource assessment, and environmental aspects of geothermal energy development. A description is presented of a number of case histories, taking into account the low enthalpy geothermal resource of the Pannonian Basin in Hungary, the Krafla geothermal field in Northeast Iceland, the geothermal system of the Jemez Mountains in New Mexico, and extraction-reinjection at the Ahuachapan geothermal field in El Salvador.

  4. Data Acquisition for Low-Temperature Geothermal Well Tests and Long-Term Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Lienau, P J

    1992-03-01

    Groundwater monitoring is an essential part of the development of a low-temperature geothermal field for production and injection wells. State water resource and environmental departments are requiring both geothermal well testing and long-term monitoring as a part of the permitting process for geothermal developments. This report covers water-level measurement methods, instruments used for well testing, geochemical sampling, examples of data acquisition and regulatory mandates on groundwater monitoring.

  5. Data acquisition for low-temperature geothermal well tests and long-term monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Lienau, P.J.

    1992-09-01

    Groundwater monitoring is an essential part of the development of a low-temperature geothermal field for production and injection wells. State water resource and environmental departments are requiring both geothermal well testing and long-term monitoring as a part of the permitting process for geothermal developments. This report covers water-level measurement methods, instruments used for well testing, geochemical sampling, examples of data acquisition and regulatory mandates on groundwater monitoring.

  6. Geothermal training at the International Institute of Geothermal Research in Pisa, Italy

    International Nuclear Information System (INIS)

    Dickson, M.H.; Fanelli, M.

    1990-01-01

    Between 1985 and 1990 the International School of Geothermics of Pisa has held 5 long-term courses, attended by 93 trainees. This paper reports that since 1970, when it began its activity, the Italian geothermal training center has prepared a total of 293 goethermists from 64 countries. Under its present structure the International School of Geothermics organizes short courses and seminars, along with the long-term courses directed mainly at geothermal exploration

  7. GEOTHERMAL GREENHOUSING IN TURKEY

    Directory of Open Access Journals (Sweden)

    Sedat Karaman

    2016-07-01

    Full Text Available Use of renewable energy resources should be brought forward to reduce heating costs of greenhouses and to minimize the use of ever-depleting fossil fuels. Geothermal energy not only provides the heat required throughout plant growth, but also allow a year-long production. Geothermal resources with several other benefits therefore play significant role in agricultural activities. With regard to geothermal potential and implementation, Turkey has the 7th place in the world and the 1st place in Europe. Majority of country geothermal resources is used in greenhouse heating. The size of geothermal greenhouses increased 5 folds during the last decade and reached to 2500 decare. In this study, current status of geothermal greenhousing of Turkey was presented; problems and possible solutions were discussed.

  8. PFOS and PFOA in influents, effluents, and biosolids of Chinese wastewater treatment plants and effluent-receiving marine environments

    International Nuclear Information System (INIS)

    Chen Hong; Zhang Can; Han Jianbo; Yu Yixuan; Zhang Peng

    2012-01-01

    Concentrations of perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) in influents, effluents and sludges were investigated by analyzing the samples from twelve wastewater treatment plants (WWTPs) in China. The highest concentrations of PFOS and PFOA in influents were found to occur in municipal and industrial WWTPs, respectively. Relative to PFOS and PFOA concentrations in influents, elevated concentrations were observed in effluents from WWTPs applying anaerobic–anoxic–oxic wastewater treatment process. Importantly, application of previously reported organic carbon normalized partition coefficients (K OC ) derived from sediment-based sorption experiments appear to underestimate the PFOS and PFOA levels in biosolids quantified in the current study. PFOS and PFOA levels in effluents were found to be approximately 27 and 2 times higher than those detected in the effluent-receiving seawater, respectively. However, their levels in this area of seawater haven't exceeded the provisional short-term health advisories in drinking water issued by U.S. EPA yet. - Highlights: ► Levels of PFOS and PFOA in influents, effluents and sludge from Chinese WWTPs were examined. ► Municipal sewage was the main source for PFOS in Chinese WWTPs, while industrial sewage for PFOA. ► PFOS and PFOA concentrations in effluents were much higher than those in receiving seawater. - Levels of PFOS and PFOA in influent, effluent and sludge samples from Chinese WWTPs were examined and found much higher than those in receiving seawater.

  9. Radon and temperature as tracer of geothermal flow system: application to Arxan geothermal system, Northeastern China

    Science.gov (United States)

    Gu, X.; Shao, J.; Cui, Y.

    2017-12-01

    In this work, hydrogeological and hydrochemical investigations were applied to explain geothermal system factors controlling groundwater mineralization in Arxan geothermal system, Northeastern China. Geothermal water samples were collected from different locations (thermal baths and wells). Radon concentrations of water samples representing different water types and depths were controlled using RAD7. In addition to radon concentration, physical parameters such as temperature (T), pH, electrical conductivity (EC) and TDS were measured in situ, while major ions were analyzed in laboratory. Temperature spatial variability in the study area was described using kriging interpolation method. Hydrochemical analysis and thermal parameters suggest two distinct hydrogeological systems. The first type was dominated by a moderate temperature (25 41°C) with a chemical facies Na-HCO3, which characterizes Jurassic deep water. The second water type was characterized by Ca.Na-HCO3 type with a temperature <25 °C and represents the shallow aquifer. Superficial aquifer displays higher radon concentration (37 to 130 Bq/L), while deep groundwater from Jurassic aquifer shows relatively a low radon concentration (6 to 57.4 Bq/L). Seasonal and geographical variations of radon give insight into the processes controlling radon activities in the Arxan groundwater. Radon concentrations along with spatial distribution of water temperature reveal the existence of vertical communication between shallow aquifer and deep Jurassic aquifer through vertical faults and fractures system, the emanation of radon from thermal water and groundwater is controlled by the geological structure of the area. Furthermore, the knowledge and conclusion demonstrates that combined use of radon and temperature as tracers can give insight into the characteristics of geological structure and geothermal flow system.

  10. Geothermal Power Technologies

    DEFF Research Database (Denmark)

    Montagud, Maria E. Mondejar; Chamorro, C.R.

    2017-01-01

    Although geothermal energy has been widely deployed for direct use in locations with especial geologic manifestations, its potential for power generation has been traditionally underestimated. Recent technology developments in drilling techniques and power conversion technologies from low......-temperature heat resources are bringing geothermal energy to the spotlight as a renewable baseload energy option for a sustainable energy mix. Although the environmental impact and economic viability of geothermal exploitation must be carefully evaluated for each case, the use of deep low-temperature geothermal...... reservoirs could soon become an important contributor to the energy generation around the world....

  11. Trace element hydrochemistry indicating water contamination in and around the Yangbajing geothermal field, Tibet, China.

    Science.gov (United States)

    Guo, Qinghai; Wang, Yanxin

    2009-10-01

    Thirty-eight water samples were collected at Yangbajing to investigate the water contamination resulting from natural geothermal water discharge and anthropogenic geothermal wastewater drainage. The results indicate that snow or snow melting waters, Yangbajing River waters and cold groundwaters are free from geothermal water-related contamination, whereas Zangbo river waters are contaminated by geothermal wastewaters. Moreover, there may exist geothermal springs under the riverbed of a tributary stream of Zangbo River as shown by its Cd, Li, Mo and Pb concentrations. The efforts made in this study show trace element hydrochemistry can well indicate water quality degradation related to geothermal water exploitation.

  12. Geothermal Risk Reduction via Geothermal/Solar Hybrid Power Plants. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Wendt, Daniel [Idaho National Lab. (INL), Idaho Falls, ID (United States); Mines, Greg [Idaho National Lab. (INL), Idaho Falls, ID (United States); Turchi, Craig [National Renewable Energy Lab. (NREL), Golden, CO (United States); Zhu, Guangdong [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-11-01

    There are numerous technical merits associated with a renewable geothermal-solar hybrid plant concept. The performance of air-cooled binary plants is lowest when ambient temperatures are high due to the decrease in air-cooled binary plant performance that occurs when the working fluid condensing temperature, and consequently the turbine exhaust pressure, increases. Electrical power demand is generally at peak levels during periods of elevated ambient temperature and it is therefore especially important to utilities to be able to provide electrical power during these periods. The time periods in which air-cooled binary geothermal power plant performance is lowest generally correspond to periods of high solar insolation. Use of solar heat to increase air-cooled geothermal power plant performance during these periods can improve the correlation between power plant output and utility load curves. While solar energy is a renewable energy source with long term performance that can be accurately characterized, on shorter time scales of hours or days it can be highly intermittent. Concentrating solar power (CSP), aka solar-thermal, plants often incorporate thermal energy storage to ensure continued operation during cloud events or after sunset. Hybridization with a geothermal power plant can eliminate the need for thermal storage due to the constant availability of geothermal heat. In addition to the elimination of the requirement for solar thermal storage, the ability of a geothermal/solar-thermal hybrid plant to share a common power block can reduce capital costs relative to separate, stand-alone geothermal and solar-thermal power plant installations. The common occurrence of long-term geothermal resource productivity decline provides additional motivation to consider the use of hybrid power plants in geothermal power production. Geothermal resource productivity decline is a source of significant risk in geothermal power generation. Many, if not all, geothermal resources

  13. Geothermal energy

    International Nuclear Information System (INIS)

    Lemale, J.

    2009-01-01

    The geothermal energy, listed among the new and renewable energy sources, is characterized by a huge variety of techniques and applications. This book deals with the access to underground geothermal resources and with their energy valorization as well. After a presentation of the main geological, hydrogeological and thermal exploitation aspects of this resource, the book presents the different geothermal-related industries in detail, in particular the district heating systems, the aquifer-based heat pumps, the utilizations in the agriculture, fishery and balneology sectors, and the power generation. (J.S.)

  14. Coordination of geothermal research

    Energy Technology Data Exchange (ETDEWEB)

    Jessop, A.M.; Drury, M.J.

    1983-01-01

    Visits were made in 1983 to various investigators and institutions in Canada to examine developments in geothermal research. Proposals for drilling geothermal wells to provide hot water for heating at a college in Prince Edward Island were made. In Alberta, the first phase of a program examining the feasibility of mapping sedimentary geothermal reservoirs was discussed. Some sites for possible geothermal demonstration projects were identified. In British Columbia, discussions were held between BC Hydro and Energy, Mines and Resources Canada on the drilling of a research hole into the peak of a temperature anomaly in the Meager Creek Valley. The British Columbia government has offered blocks of land in the Mount Cayley volcanic complex for lease to develop geothermal resources. A list of papers of interest to the Canadian geothermal energy program is appended.

  15. Geothermal Information Dissemination and Outreach

    Energy Technology Data Exchange (ETDEWEB)

    Clutter, Ted J. [Geothermal Resources Council (United States)

    2005-02-18

    Project Purpose. To enhance technological and topical information transfer in support of industry and government efforts to increase geothermal energy use in the United States (power production, direct use, and geothermal groundsource heat pumps). Project Work. GRC 2003 Annual Meeting. The GRC convened the meeting on Oct. 12-15, 2003, at Morelia's Centro de Convenciones y ExpoCentro in Mexico under the theme, International Collaboration for Geothermal Energy in the Americas. The event was also sponsored by the Comision Federal de Electricidad. ~600 participants from more than 20 countries attended the event. The GRC convened a Development of Geothermal Projects Workshop and Geothermal Exploration Techniques Workshop. GRC Field Trips included Los Azufres and Paricutin Volcano on Oct. 11. The Geothermal Energy Association (Washington, DC) staged its Geothermal Energy Trade Show. The Annual Meeting Opening Session was convened on Oct. 13, and included the governor of Michoacan, the Mexico Assistant Secretary of Energy, CFE Geothermal Division Director, DOE Geothermal Program Manager, and private sector representatives. The 2003 Annual Meeting attracted 160 papers for oral and poster presentations. GRC 2004. Under the theme, Geothermal - The Reliable Renewable, the GRC 2004 Annual Meeting convened on Aug. 29-Sept. 1, 2004, at the Hyatt Grand Champions Resort at Indian Wells, CA. Estimated total attendance (including Trade Show personnel, guests and accompanying persons) was ~700. The event included a workshop, Geothermal Production Well Pump Installation, Operation and Maintenance. Field trips went to Coso/Mammoth and Imperial Valley/Salton Sea geothermal fields. The event Opening Session featured speakers from the U.S. Department of Energy, U.S. Department of the Interior, and the private sector. The Geothermal Energy Association staged its Geothermal Energy Trade Show. The Geothermal Education Office staged its Geothermal Energy Workshop. Several local radio and

  16. Classification of public lands valuable for geothermal steam and associated geothermal resources

    Energy Technology Data Exchange (ETDEWEB)

    Goodwin, L.H.; Haigler, L.B.; Rioux, R.L.; White, D.E.; Muffler, L.J.P.; Wayland, R.G.

    1973-01-01

    The Organic Act of 1879 (43 USC 31) that established the US Geological Survey provided, among other things, for the classification of the public lands and for the examination of the geological structure, mineral resources, and products of the national domain. In order to provide uniform executive action in classifying public lands, standards for determining which lands are valuable for mineral resources, for example, leasable mineral lands, or for other products are prepared by the US Geological Survey. This report presents the classification standards for determining which Federal lands are classifiable as geothermal steam and associated geothermal resources lands under the Geothermal Steam Act of 1970 (84 Stat. 1566). The concept of a geothermal resouces province is established for classification of lands for the purpose of retention in Federal ownership of rights to geothermal resources upon disposal of Federal lands. A geothermal resources province is defined as an area in which higher than normal temperatures are likely to occur with depth and in which there is a resonable possiblity of finding reservoir rocks that will yield steam or heated fluids to wells. The determination of a known geothermal resources area is made after careful evaluation of the available geologic, geochemical, and geophysical data and any evidence derived from nearby discoveries, competitive interests, and other indicia. The initial classification required by the Geothermal Steam Act of 1970 is presented.

  17. "Assistance to States on Geothermal Energy"

    Energy Technology Data Exchange (ETDEWEB)

    Linda Sikkema; Jennifer DeCesaro

    2006-07-10

    This final report summarizes work carried out under agreement with the U.S. Department of Energy, related to geothermal energy policy issues. This project has involved a combination of outreach and publications on geothermal energy—Contract Number DE-FG03-01SF22367—with a specific focus on educating state-level policymakers. Education of state policymakers is vitally important because state policy (in the form of incentives or regulation) is a crucial part of the success of geothermal energy. State policymakers wield a significant influence over all of these policies. They are also in need of high quality, non-biased educational resources which this project provided. This project provided outreach to legislatures, in the form of responses to information requests on geothermal energy and publications. The publications addressed: geothermal leasing, geothermal policy, constitutional and statutory authority for the development of geothermal district energy systems, and state regulation of geothermal district energy systems. These publications were distributed to legislative energy committee members, and chairs, legislative staff, legislative libraries, and other related state officials. The effect of this effort has been to provide an extensive resource of information about geothermal energy for state policymakers in a form that is useful to them. This non-partisan information has been used as state policymakers attempt to develop their own policy proposals related to geothermal energy in the states. Coordination with the National Geothermal Collaborative: NCSL worked and coordinated with the National Geothermal Collaborative (NGC) to ensure that state legislatures were represented in all aspects of the NGC's efforts. NCSL participated in NGC steering committee conference calls, attended and participated in NGC business meetings and reviewed publications for the NGC. Additionally, NCSL and WSUEP staff drafted a series of eight issue briefs published by the

  18. Geothermal Energy Program overview

    International Nuclear Information System (INIS)

    1991-12-01

    The mission of the Geothermal Energy Program is to develop the science and technology necessary for tapping our nation's tremendous heat energy sources contained with the Earth. Geothermal energy is a domestic energy source that can produce clean, reliable, cost- effective heat and electricity for our nation's energy needs. Geothermal energy -- the heat of the Earth -- is one of our nation's most abundant energy resources. In fact, geothermal energy represents nearly 40% of the total US energy resource base and already provides an important contribution to our nation's energy needs. Geothermal energy systems can provide clean, reliable, cost-effective energy for our nation's industries, businesses, and homes in the form of heat and electricity. The US Department of Energy's (DOE) Geothermal Energy Program sponsors research aimed at developing the science and technology necessary for utilizing this resource more fully. Geothermal energy originates from the Earth's interior. The hottest fluids and rocks at accessible depths are associated with recent volcanic activity in the western states. In some places, heat comes to the surface as natural hot water or steam, which have been used since prehistoric times for cooking and bathing. Today, wells convey the heat from deep in the Earth to electric generators, factories, farms, and homes. The competitiveness of power generation with lower quality hydrothermal fluids, geopressured brines, hot dry rock, and magma ( the four types of geothermal energy) still depends on the technical advancements sought by DOE's Geothermal Energy Program

  19. Groundwater Monitoring and Engineered Geothermal Systems: The Newberry EGS Demonstration

    Science.gov (United States)

    Grasso, K.; Cladouhos, T. T.; Garrison, G.

    2013-12-01

    Engineered Geothermal Systems (EGS) represent the next generation of geothermal energy development. Stimulation of multiple zones within a single geothermal reservoir could significantly reduce the cost of geothermal energy production. Newberry Volcano in central Oregon represents an ideal location for EGS research and development. As such, the goals of the Newberry EGS Demonstration, operated by AltaRock Energy, Inc., include stimulation of a multiple-zone EGS reservoir, testing of single-well tracers and a demonstration of EGS reservoir viability through flow-back and circulation tests. A shallow, local aquifer supplied the approximately 41,630 m3 (11 million gals) of water used during stimulation of NWG 55-29, a deep geothermal well on the western flank of Newberry Volcano. Protection of the local aquifer is of primary importance to both the Newberry EGS Demonstration and the public. As part of the Demonstration, AltaRock Energy, Inc. has developed and implemented a groundwater monitoring plan to characterize the geochemistry of the local aquifer before, during and after stimulation. Background geochemical conditions were established prior to stimulation of NWG 55-29, which was completed in 2012. Nine sites were chosen for groundwater monitoring. These include the water supply well used during stimulation of NWG 55-29, three monitoring wells, three domestic water wells and two hot seeps located in the Newberry Caldera. Together, these nine monitoring sites represent up-, down- and cross-gradient locations. Groundwater samples are analyzed for 25 chemical constituents, stable isotopes, and geothermal tracers used during stimulation. In addition, water level data is collected at three monitoring sites in order to better characterize the effects of stimulation on the shallow aquifer. To date, no significant geochemical changes and no geothermal tracers have been detected in groundwater samples from these monitoring sites. The Newberry EGS Demonstration groundwater

  20. Behaviour of radioiodine in gaseous effluents

    International Nuclear Information System (INIS)

    Barry, P.J.

    1968-01-01

    Because of the different chemical forms in which radioiodine occurs in the gaseous state, it is important when designing efficient filters to know the chemical forms which may be present in the effluent gases when various operations are being carried out and to know the effect of different gaseous environments on the filtration efficiency. To obtain this information it is necessary to have available reliable means of characterizing different chemical forms and to sample gaseous effluents when these operations are being carried out. This paper describes the use for identifying molecular iodine of metallic screens in a multi-component sampling pack in different gaseous environments. Using multi-component sampling packs, the fractionation of iodine nuclides between different chemical forms was measured in the effluent gases escaping from an in-pile test loop in which the fuel was deliberately ruptured by restricting the flow of coolant. Sequential samples were taken for six hours after the rupture and it was possible to follow during this period the individual behaviours of 13 '1I, 133 I and 135 I. Simultaneous samples were also obtained of the noble gases in the effluent gas stream and of the iodine nuclides in the loop coolant. Similar experiments have been carried out with a view to characterizing the different chemical behaviour of radioiodine as it is released from a variety of operations in the nuclear industry including the cutting of fuel sections in metallurgical examination caves and an incinerator. (author)

  1. Geothermal waters from the Taupo Volcanic Zone, New Zealand: Li, B and Sr isotopes characterization

    International Nuclear Information System (INIS)

    Millot, Romain; Hegan, Aimee; Négrel, Philippe

    2012-01-01

    Chemical and isotopic data for 23 geothermal water samples collected in New Zealand within the Taupo Volcanic Zone (TVZ) are reported. Major and trace elements including Li, B and Sr and their isotopic compositions (δ 7 Li, δ 11 B, 87 Sr/ 86 Sr) were determined in high temperature geothermal waters collected from deep boreholes in different geothermal fields (Ohaaki, Wairakei, Mokai, Kawerau and Rotokawa geothermal systems). Lithium concentrations are high (from 4.5 to 19.9 mg/L) and Li isotopic compositions (δ 7 Li) are homogeneous, ranging between −0.5‰ and +1.4‰. In particular, it is noteworthy that, except for the samples from the Kawerau geothermal field having slightly higher δ 7 Li values (+1.4%), the other geothermal waters have a near constant δ 7 Li signature around a mean value of 0‰ ± 0.6 (2σ, n = 21). Boron concentrations are also high and relatively homogeneous for the geothermal samples, falling between 17.5 and 82.1 mg/L. Boron isotopic compositions (δ 11 B) are all negative, and display a range between −6.7‰ and −1.9‰. These B isotope compositions are in agreement with those of the Ngawha geothermal field in New Zealand. Lithium and B isotope signatures are in a good agreement with a fluid signature mainly derived from water/rock interaction involving magmatic rocks with no evidence of seawater input. On the other hand, Sr concentrations are lower and more heterogeneous and fall between 2 and 165 μg/L. The 87 Sr/ 86 Sr ratios range from 0.70549 to 0.70961. These Sr isotope compositions overlap those of the Rotorua geothermal field in New Zealand, confirming that some geothermal waters (with more radiogenic Sr) have interacted with bedrocks from the metasedimentary basement. Each of these isotope systems on their own reveals important information about particular aspects of either water source or water/rock interaction processes, but, considered together, provide a more integrated understanding of the geothermal systems from

  2. Geothermal country update of Japan

    International Nuclear Information System (INIS)

    Higo, M.

    1990-01-01

    This paper reports on the status of geothermal energy in Japan. Topics covered include: present and planned production of electricity, present utilization of geothermal energy for direct heat, information about geothermal localities, and wells drilled for electrical utilization of geothermal resources to January 1, 1990

  3. Lessons learned from a review of post-accident sampling systems, high range effluent monitors and high concentration particulate iodine samplers

    International Nuclear Information System (INIS)

    Hull, A.P.; Knox, W.H.; White, J.R.

    1987-01-01

    Post-accident sampling systems (PASS), high range gaseous effluent monitors and sampling systems for particulates and iodine in high concentrations have been reviewed at twenty-one licensee sites in Region I of the US Nuclear Regulatory Commission which includes fifteen BWR's and fourteen PWR's. Although most of the installed PASS met the criteria, the highest operational readiness was found in on-line systems that were also used for routine sampling and analysis. The detectors used in the gaseous effluent monitors included external ion chambers, GM tubes, organic scintillators and Cd-Te solid state crystals. Although all were found acceptable, each had its own inherent limitations in the conversion of detector output to the time varying concentration of a post-accident mixture of noble gases. None of the installed particulate and iodine samplers fully met all of the criteria. Their principal limitations included a lack of documentation showing that they could obtain a representative sample and that many of them would collect of an excessive amount of activity at the design criteria. 10 refs., 4 figs., 5 tabs

  4. Analytical strategies for uranium determination in natural water and industrial effluents samples

    International Nuclear Information System (INIS)

    Santos, Juracir Silva

    2011-01-01

    The work was developed under the project 993/2007 - 'Development of analytical strategies for uranium determination in environmental and industrial samples - Environmental monitoring in the Caetite city, Bahia, Brazil' and made possible through a partnership established between Universidade Federal da Bahia and the Comissao Nacional de Energia Nuclear. Strategies were developed to uranium determination in natural water and effluents of uranium mine. The first one was a critical evaluation of the determination of uranium by inductively coupled plasma optical emission spectrometry (ICP OES) performed using factorial and Doehlert designs involving the factors: acid concentration, radio frequency power and nebuliser gas flow rate. Five emission lines were simultaneously studied (namely: 367.007, 385.464, 385.957, 386.592 and 409.013 nm), in the presence of HN0 3 , H 3 C 2 00H or HCI. The determinations in HN0 3 medium were the most sensitive. Among the factors studied, the gas flow rate was the most significant for the five emission lines. Calcium caused interference in the emission intensity for some lines and iron did not interfere (at least up to 10 mg L -1 ) in the five lines studied. The presence of 13 other elements did not affect the emission intensity of uranium for the lines chosen. The optimized method, using the line at 385.957 nm, allows the determination of uranium with limit of quantification of 30 μg L -1 and precision expressed as RSD lower than 2.2% for uranium concentrations of either 500 and 1000 μg L -1 . In second one, a highly sensitive flow-based procedure for uranium determination in natural waters is described. A 100-cm optical path flow cell based on a liquid-core waveguide (LCW) was exploited to increase sensitivity of the arsenazo 111 method, aiming to achieve the limits established by environmental regulations. The flow system was designed with solenoid micro-pumps in order to improve mixing and minimize reagent consumption, as well as

  5. Geothermal studies in China

    Science.gov (United States)

    Ji-Yang, Wang; Mo-Xiang, Chen; Ji-An, Wang; Xiao, Deng; Jun, Wang; Hsien-Chieh, Shen; Liang-Ping, Hsiung; Shu-Zhen, Yan; Zhi-Cheng, Fan; Xiu-Wen, Liu; Ge-Shan, Huang; Wen-Ren, Zhang; Hai-Hui, Shao; Rong-Yan, Zhang

    1981-01-01

    Geothermal studies have been conducted in China continuously since the end of the 1950's with renewed activity since 1970. Three areas of research are defined: (1) fundamental theoretical research on geothermics, including subsurface temperatures, terrestrial heat flow and geothermal modeling; (2) exploration for geothermal resources and exploitation of geothermal energy; and (3) geothermal studies in mines. Regional geothermal studies have been conducted recently in North China and more than 2000 values of subsurface temperature have been obtained. Temperatures at a depth of 300 m generally range from 20 to 25°C with geothermal gradients from 20 to 40°C/km. These values are regarded as an average for the region with anomalies related to geological factors. To date, 22 reliable heat flow data from 17 sites have been obtained in North China and the data have been categorized according to fault block tectonics. The average heat flow value at 16 sites in the north is 1.3 HFU, varying from 0.7 to 1.8 HFU. It is apparent that the North China fault block is characterized by a relatively high heat flow with wide variations in magnitude compared to the mean value for similar tectonic units in other parts of the world. It is suggested that although the North China fault block can be traced back to the Archaean, the tectonic activity has been strengthening since the Mesozoic resulting in so-called "reactivation of platform" with large-scale faulting and magmatism. Geothermal resources in China are extensive; more than 2000 hot springs have been found and there are other manifestations including geysers, hydrothermal explosions, hydrothermal steam, fumaroles, high-temperature fountains, boiling springs, pools of boiling mud, etc. In addition, there are many Meso-Cenozoic sedimentary basins with widespread aquifers containing geothermal water resources in abundance. The extensive exploration and exploitation of these geothermal resources began early in the 1970's. Since then

  6. Effluent Treatment Facility tritium emissions monitoring

    International Nuclear Information System (INIS)

    Dunn, D.L.

    1991-01-01

    An Environmental Protection Agency (EPA) approved sampling and analysis protocol was developed and executed to verify atmospheric emissions compliance for the new Savannah River Site (SRS) F/H area Effluent Treatment Facility. Sampling equipment was fabricated, installed, and tested at stack monitoring points for filtrable particulate radionuclides, radioactive iodine, and tritium. The only detectable anthropogenic radionuclides released from Effluent Treatment Facility stacks during monitoring were iodine-129 and tritium oxide. This paper only examines the collection and analysis of tritium oxide

  7. Geothermics in Aquitaine

    International Nuclear Information System (INIS)

    Dane, J.P.

    1995-01-01

    The geothermal exploitation of the Aquitanian Basin (S W France) started 15 years ago and has extended today to 12 different places. Three main aquifers of different depth are exploited in Bordeaux region: the old alluvial deposits of Garonne river (20-30 m), the Middle Eocene aquifer (300-400 m), and the Cenomanian-Turonian aquifer (900-1100 m) which is the deepest and most exploited for geothermal purposes. The drinkable quality of the water and the use of single-well technique are important factors that reduce the operating costs. Geothermics remains competitive with other energy sources due to the long-term stability of geothermal energy costs. (J.S.). 2 figs., 1 tab., 5 photos

  8. 2008 Geothermal Technologies Market Report

    Energy Technology Data Exchange (ETDEWEB)

    Cross, J.; Freeman, J.

    2009-07-01

    This report describes market-wide trends for the geothermal industry throughout 2008 and the beginning of 2009. It begins with an overview of the U.S. DOE's Geothermal Technology Program's (GTP's) involvement with the geothermal industry and recent investment trends for electric generation technologies. The report next describes the current state of geothermal power generation and activity within the United States, costs associated with development, financing trends, an analysis of the levelized cost of energy (LCOE), and a look at the current policy environment. The report also highlights trends regarding direct use of geothermal energy, including geothermal heat pumps (GHPs). The final sections of the report focus on international perspectives, employment and economic benefits from geothermal energy development, and potential incentives in pending national legislation.

  9. 200 Area Liquid Effluent Facilities -- Quality assurance program plan

    International Nuclear Information System (INIS)

    Fernandez, L.

    1995-01-01

    This Quality Assurance Program Plan (QAPP) describes the quality assurance and management controls used by the 200 Area Liquid Effluent Facilities (LEF) to perform its activities in accordance with DOE Order 5700.6C. The 200 Area LEF consists of the following facilities: Effluent Treatment Facility (ETF); Treated Effluent Disposal Facility (TEDF); Liquid Effluent Retention facility (LERF); and Truck Loading Facility -- (Project W291). The intent is to ensure that all activities such as collection of effluents, treatment, concentration of secondary wastes, verification, sampling and disposal of treated effluents and solids related with the LEF operations, conform to established requirements

  10. South Dakota geothermal handbook

    Energy Technology Data Exchange (ETDEWEB)

    1980-06-01

    The sources of geothermal fluids in South Dakota are described and some of the problems that exist in utilization and materials selection are described. Methods of heat extraction and the environmental concerns that accompany geothermal fluid development are briefly described. Governmental rules, regulations and legislation are explained. The time and steps necessary to bring about the development of the geothermal resource are explained in detail. Some of the federal incentives that encourage the use of geothermal energy are summarized. (MHR)

  11. California Geothermal Forum: A Path to Increasing Geothermal Development in California

    Energy Technology Data Exchange (ETDEWEB)

    Young, Katherine R. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2017-01-01

    The genesis of this report was a 2016 forum in Sacramento, California, titled 'California Geothermal Forum: A Path to Increasing Geothermal Development in California.' The forum was held at the California Energy Commission's (CEC) headquarters in Sacramento, California with the primary goal being to advance the dialogues for the U.S. Department of Energy's Geothermal Technologies Office (GTO) and CEC technical research and development (R&D) focuses for future consideration. The forum convened a diverse group of stakeholders from government, industry, and research to lay out pathways for new geothermal development in California while remaining consistent with critical Federal and State conservation planning efforts, particularly at the Salton Sea.

  12. Facility effluent monitoring plan for the 327 Facility

    International Nuclear Information System (INIS)

    1994-11-01

    The 327 Facility [Post-Irradiation Testing Laboratory] provides office and laboratory space for Pacific Northwest Laboratory (PNL) scientific and engineering staff conducting multidisciplinary research in the areas of post-irradiated fuels and structural materials. The facility is designed to accommodate the use of radioactive and hazardous materials in the conduct of these activities. This report summarizes the airborne emissions and liquid effluents and the results of the Facility Effluent Monitoring Plan (FEMP) determination for the facility. The complete monitoring plan includes characterization of effluent streams, monitoring/sampling design criteria, a description of the monitoring systems and sample analysis, and quality assurance requirements

  13. Impact of fertilizer plant effluent on water quality

    International Nuclear Information System (INIS)

    Obire, O.; Ogan, A.; Okigbo, R. N.

    2008-01-01

    The impact of National Fertilizer Company of Nigeria out fall effluent on the physico chemistry and bacteriology of Okrika creek was investigated during the sampling period from May to December, 1998. The National Fertilizer Company of Nigeria out fall effluent, the Okrika creek water and the lkpukulubie creek (control) water samples were collected. The physico-chemical parameters analyzed for all the samples included temperature, p H, total chloride, total dissolved solids, dissolved oxygen, conductivity, free ammonia, total phosphate, urea, zinc and iron, while the bacteriological determinations were total culturable aerobic heterotrophic bacteria count and identification of representative isolates. The Okrika creek recorded higher concentrations for all the physicochemical parameters and bacteria load than the control creek. The higher values of p H, Free NH 3 , urea, TDS and the conductivity of the National Fertilizer Company of Nigeria out fall effluent above the FEPA standards reflect the poor effluent quality generated by National Fertilizer Company of Nigeria. The bacteria species isolated from the samples include Aerococcus viridans, Alcaligenes faecalis, Bacillus cereus, Citrobacter freundii, Escherichia coli, Klebsiella pneumoniae, Proteus vulgaris, Pseudomonas aeruginosa, Serratia marcescens and Staphylococcus aureus. In general, the investigation revealed that there was an extremely adverse impact on the physico-chemical and bacteriological water quality characteristics of the Okrika creek as a result of the discharge of poor quality effluent from National Fertilizer Company of Nigeria operations

  14. Geothermal development plan: Maricopa county

    Energy Technology Data Exchange (ETDEWEB)

    White, D.H.

    1981-01-01

    Maricopa county is the area of Arizona receiving top priority since it contains over half of the state's population. The county is located entirely within the Basin and Range physiographic region in which geothermal resources are known to occur. Several approaches were taken to match potential users to geothermal resources. One approach involved matching some of the largest facilities in the county to nearby geothermal resources. Other approaches involved identifying industrial processes whose heat requirements are less than the average assessed geothermal reservoir temperature of 110/sup 0/C (230/sup 0/F). Since many of the industries are located on or near geothermal resources, geothermal energy potentially could be adapted to many industrial processes.

  15. Geothermal Today - 1999

    Energy Technology Data Exchange (ETDEWEB)

    None

    2000-05-01

    U.S. Department of Energy 1999 Geothermal Energy Program Highlights The Hot Facts Getting into Hot Water Turning Waste water into Clean Energy Producing Even Cleaner Power Drilling Faster and Cheaper Program in Review 1999: The Year in Review JanuaryCal Energy announced sale of Coso geothermal power plants at China Lake, California, to Caithness Energy, for $277 million. U.S. Export-Import Bank completed a $50 million refinancing of the Leyte Geothermal Optimization Project in the Philippines. F

  16. Geothermal handbook

    Science.gov (United States)

    1976-01-01

    The Bureau of Land Management offered over 400,000 hectares (one million acres) for geothermal exploration and development in 1975, and figure is expected to double this year. The Energy Research and Development Administration hopes for 10-15,000 megawatts of geothermal energy by 1985, which would require, leasing over 16.3 million hectares (37 million acres) of land, at least half of which is federal land. Since there is an 8 to 8-1/2 year time laf between initial exploration and full field development, there would have to be a ten-fold increase in the amount of federal land leased within the next three years. Seventy percent of geothermal potential, 22.3 million hectares (55 million acres), is on federal lands in the west. The implication for the Service are enormous and the problems immediate. Geothermal resource are so widespread they are found to some extent in most biomes and ecosystems in the western United States. In most cases exploitation and production of geothermal resources can be made compatible with fish and wildlife management without damage, if probable impacts are clearly understood and provided for before damage has unwittingly been allowed to occur. Planning for site suitability and concern with specific operating techniques are crucial factors. There will be opportunities for enhancement: during exploration and testing many shallow groundwater bodies may be penetrated which might be developed for wildlife use. Construction equipment and materials needed for enhancement projects will be available in areas heretofore considered remote projects will be available in areas heretofore considered remote by land managers. A comprehensive knowledge of geothermal development is necessary to avoid dangers and seize opportunities. This handbook is intended to serve as a working tool in the field. It anticipated where geothermal resource development will occur in the western United States in the near future. A set of environmental assessment procedures are

  17. Human Resources in Geothermal Development

    Energy Technology Data Exchange (ETDEWEB)

    Fridleifsson, I.B.

    1995-01-01

    Some 80 countries are potentially interested in geothermal energy development, and about 50 have quantifiable geothermal utilization at present. Electricity is produced from geothermal in 21 countries (total 38 TWh/a) and direct application is recorded in 35 countries (34 TWh/a). Geothermal electricity production is equally common in industrialized and developing countries, but plays a more important role in the developing countries. Apart from China, direct use is mainly in the industrialized countries and Central and East Europe. There is a surplus of trained geothermal manpower in many industrialized countries. Most of the developing countries as well as Central and East Europe countries still lack trained manpower. The Philippines (PNOC) have demonstrated how a nation can build up a strong geothermal workforce in an exemplary way. Data from Iceland shows how the geothermal manpower needs of a country gradually change from the exploration and field development to monitoring and operations.

  18. Geothermal energy in Denmark. The Committee for Geothermal Energy of the Danish Energy Agency

    International Nuclear Information System (INIS)

    1998-06-01

    The Danish Energy Agency has prepared a report on the Danish geothermal resources and their contribution to the national energy potential.Environmental and socio-economic consequences of geothermal power systems implementation are reviewed. Organizational models and financing of geothermal-seismic research are discussed, and the Committee of the Energy Agency for Geothermal Energy recommends financing of a pilot plant as well as a prompt elucidation of concession/licensing problems. (EG)

  19. Geothermal. Possibilities of use of the geothermal energy in the Colombian Atlantic Coast and general aspects on this energy type

    International Nuclear Information System (INIS)

    Lozano, E.

    1987-01-01

    With base in the compilation and prosecution of the geologic information and available geophysics in the Departments of Cordoba, Sucre, Bolivar, Atlantic and Magdalena and of the analysis of the results obtained for samples of thermal waters, the possible existence of attractive reas; geothermically was evaluated by the light of the main constituent elements of a geothermal field: Source of heat. Reservoir. Waterproof covering. Recharge area. The absence of recent volcanic manifestations as much in surface as to shallow depths, the nonexistence of a source of heat of economic interest is suggested. The presence of thermal manifestations in 3 towns of the Atlantic Costa shows results of the chemical analyses characterized by the drop silica concentration (92 ppm) and high concentration of bicarbonates (504 ppm) that which identifies to waters of low temperature, what reinforces the nonexistence of a source of significant heat. With the current information it is but attractiveness to focus the investigations in the Atlantic Costa toward the use in other such energy ways as the lot, eolic, biomass, Ph; that toward the use of endogenous fluids. It is included information related with the exploration and exploitation of a geothermal field and with the economic evaluation for geothermal plants of several capacities. Additionally specific examples of four countries in the world that you/they generate electricity with base in geothermal vapor

  20. Proceedings of NEDO International Geothermal Symposium

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-11

    This is a proceedings of the NEDO International Geothermal Symposium held in Sendai in 1997. The worldwide geothermal energy power generation capacity exceeds 7000 MW. Geothermal energy is widely used also for heating, snow melting, greenhouse cultivation as well as electric power generation. Geothermal energy generates far less CO2 causing the global warming than fossil fuels. The geothermal energy is clean and renewable. Considering the environmental issue and energy supply/demand of the world, we have to exert further efforts for the geothermal development. In this conference, discussions were made on each country`s experiences of the geothermal development, and future prediction and strategies for geothermal utilization in the Asia/Pacific region, in particular. Further, in the technical session, conducted were the IEA study and technical presentation/discussion for technical cooperation. The proceedings includes research reports of more than 30, which are clarified into three fields: impacts of the geothermal development on the environment, technical development of the hot dry rock power generation system, and development of technology for collecting deep-seated geothermal resource

  1. Study of sample-detector assemblies for application to in-situ measurement of radioactivity in liquid effluents

    International Nuclear Information System (INIS)

    Pendharkar, K.A.; Narayanan Kutty, K.; Krishnamony, S.

    1991-01-01

    This paper describes the experimental investigations carried out on four different types of sample-detector assemblies with a view to determining their detection limits and relative merits for application to in-situ measurement of radioactivity in liquid effluents. The four systems studied were: (1) gamma detection using 11 cm x 8 cm NaI (Tl) scintillation detector inserted in the cavity of a specially designed stainless steel chamber of capacity 15 liters, (2) gamma detection using a metal-walled G.M. counter in a similar manner, (3) beta detection using twin thin-walled G.M. counters immersed in liquid, and (4) end window G.M. counter positioned above the liquid surface in a shallow tray. The design features of an in-line monitor employing a 11 cm x 8 cm NaI (Tl) detector used for the routine monitoring of beta gamma activity concentrations in the low level effluents of the Tarapur Fuel Processing Plant are described. (author). 1 tab

  2. Characteristics of treated effluents and their potential applications for producing concrete.

    Science.gov (United States)

    Noruzman, Ainul Haezah; Muhammad, Bala; Ismail, Mohammad; Abdul-Majid, Zaiton

    2012-11-15

    Conservation and preservation of freshwater is increasingly becoming important as the global population grows. Presently, enormous volumes of freshwater are used to mix concrete. This paper reports experimental findings regarding the feasibility of using treated effluents as alternatives to freshwater in mixing concrete. Samples were obtained from three effluent sources: heavy industry, a palm-oil mill and domestic sewage. The effluents were discharge into public drain without danger to human health and natural environment. Chemical compositions and physical properties of the treated effluents were investigated. Fifteen compositional properties of each effluent were correlated with the requirements set out by the relevant standards. Concrete mixes were prepared using the effluents and freshwater to establish a base for control performance. The concrete samples were evaluated with regard to setting time, workability, compressive strength and permeability. The results show that except for some slight excesses in total solids and pH, the properties of the effluents satisfy the recommended disposal requirements. Two concrete samples performed well for all of the properties investigated. In fact, one sample was comparatively better in compressive strength than the normal concrete; a 9.4% increase was observed at the end of the curing period. Indeed, in addition to environmental conservation, the use of treated effluents as alternatives to freshwater for mixing concrete could save a large amount of freshwater, especially in arid zones. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Deep geothermics

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    The hot-dry-rocks located at 3-4 km of depth correspond to low permeable rocks carrying a large amount of heat. The extraction of this heat usually requires artificial hydraulic fracturing of the rock to increase its permeability before water injection. Hot-dry-rocks geothermics or deep geothermics is not today a commercial channel but only a scientific and technological research field. The Soultz-sous-Forets site (Northern Alsace, France) is characterized by a 6 degrees per meter geothermal gradient and is used as a natural laboratory for deep geothermal and geological studies in the framework of a European research program. Two boreholes have been drilled up to 3600 m of depth in the highly-fractured granite massif beneath the site. The aim is to create a deep heat exchanger using only the natural fracturing for water transfer. A consortium of german, french and italian industrial companies (Pfalzwerke, Badenwerk, EdF and Enel) has been created for a more active participation to the pilot phase. (J.S.). 1 fig., 2 photos

  4. Geothermal energy: a brief assessment

    Energy Technology Data Exchange (ETDEWEB)

    Lunis, B.C.; Blackett, R.; Foley, D. (eds.)

    1982-07-01

    This document includes discussions about geothermal energy, its applications, and how it is found and developed. It identifies known geothermal resources located in Western's power marketing area, and covers the use of geothermal energy for both electric power generation and direct applications. Economic, institutional, environmental, and other factors are discussed, and the benefits of the geothermal energy resource are described.

  5. Geothermal energy. A national proposal for geothermal resources research

    Energy Technology Data Exchange (ETDEWEB)

    Denton, J.C. (ed.)

    1972-01-01

    Discussions are given for each of the following topics: (1) importance to the Nation of geothermal resources, (2) budget recommendations, (3) overview of geothermal resources, (4) resource exploration, (5) resource assessment, (6) resource development and production, (7) utilization technology and economics, (8) environmental effects, (9) institutional considerations, and (10) summary of research needs.

  6. Hydrochemical and isotopic (2H, 18O and 37Cl) constraints on evolution of geothermal water in coastal plain of Southwestern Guangdong Province, China

    Science.gov (United States)

    Chen, Liuzhu; Ma, Teng; Du, Yao; Xiao, Cong; Chen, Xinming; Liu, Cunfu; Wang, Yanxin

    2016-05-01

    Geothermal energy is abundant in Guangdong Province of China, however, majority of it is still unexploited. To take full advantage of this energy, it is essential to know the information of geothermal system. Here, physical parameters such as pH and temperature, major ion (Na+, Ca2 +, Mg2 +, Cl-, SO42 - and HCO3-), trace elements (Br-, Sr2 +, Li+ and B3 +) and stable isotopes (2H, 18O and 37Cl) in geothermal water, non-geothermal water (river water, cold groundwater) and seawater were used to identify the origin and evolution of geothermal water in coastal plain of Southwest of Guangdong. Two separate groups of geothermal water have been identified in study area. Group A, located in inland of study area, is characterized by Na+ and HCO3-. Group B, located in coastal area, is characterized by Na+ and Cl-. The relationships of components vs. Cl for different water samples clearly suggest the hydrochemical differences caused by mixing with seawater and water-rock interactions. It's evident that water-rock interactions under high temperature make a significant contribution to hydrochemistry of geothermal water for both Group A and Group B. Besides, seawater also plays an important role during geothermal water evolution for Group B. Mixing ratios of seawater with geothermal water for Group B are calculated by Cl and Br binary diagram, the estimated results show that about < 1% to < 35% of seawater has mixed into geothermal water, and seawater might get into the geothermal system by deep faults. Molar Na/Cl ratios also support these two processes. Geothermal and non-geothermal water samples plot around GMWL in the δ2H vs. δ18O diagram, indicating that these samples have a predominant origin from meteoric water. Most of geothermal water samples display δ37Cl values between those of the non-geothermal water and seawater samples, further reveals three sources of elements supply for geothermal water, including atmospheric deposition, bedrocks and seawater, which show a

  7. Geothermal Program Review XII: proceedings. Geothermal Energy and the President's Climate Change Action Plan

    Energy Technology Data Exchange (ETDEWEB)

    1994-12-31

    Geothermal Program Review XII, sponsored by the Geothermal Division of US Department of Energy, was held April 25--28, 1994, in San Francisco, California. This annual conference is designed to promote effective technology transfer by bringing together DOE-sponsored researchers; utility representatives; geothermal energy developers; suppliers of geothermal goods and services; representatives from federal, state, and local agencies; and others with an interest in geothermal energy. In-depth reviews of the latest technological advancements and research results are presented during the conference with emphasis on those topics considered to have the greatest potential to impact the near-term commercial development of geothermal energy.

  8. Hydrogeochemistry and environmental impact of geothermal waters from Yangyi of Tibet, China

    Science.gov (United States)

    Guo, Qinghai; Wang, Yanxin; Liu, Wei

    2009-02-01

    The Yangyi geothermal field, located 72 km northwest to Lhasa City, capital of Tibet, has a high reservoir temperature up to at least 207.2 °C. The geothermal waters from both geothermal wells and hot springs belong to the HCO 3 (+CO 3)-Na type. Factor analysis of all the chemical constituents shows that they can be divided into two factors: F 1 factor receives the contributions of SO 42-, Cl -, SiO 2, As, B, Na +, K +, and Li +; whereas F 2 factor is explained by HCO 3-, F -, CO 32-, Ca 2+, and Sr 2+. The F 1 factor can be regarded as an indicator of the reservoir temperature distribution at Yangyi, but its variable correlation with the results of different geothermometers (Na-K, quartz and K-Mg) does not allow one to draw further inferences. Different from F 1, the F 2 factor is an indicator of a group of hydrogeochemical processes resulting from the CO 2 pressure decrease in geothermal water during its ascent from the deep underground, including transformation of HCO 3- to CO 32-, precipitation of Ca 2+ and Sr 2+, and release of F - from some fluoride-bearing minerals of reservoir rocks. The plot of enthalpy vs. chloride, prepared on the basis of Na-K equilibrium temperatures, suggests that a parent geothermal liquid (PGL) with Cl - concentration of 185 mg/L (that of sample YYT-8) and enthalpy of 1020 J/g (corresponding to a temperature of 236-237 °C, i.e., somewhat higher than that of sample YYT-6) is present in the geothermal reservoir of the Yangyi area, below both the Qialagai valley and the Bujiemu valley, although the samples less affected by mixing and cooling (YYT-6 and YYT-7) come from the second site. The discharge of geothermal waters with high contents of toxic elements such as B, As and F into the Luolang River, the only drinking water source for local residents, has caused slight pollution of the river water. Great care should therefore be taken in the geothermal water resource management at Yangyi.

  9. High- and middle-energy geothermics

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    High and middle energy geothermal resources correspond to temperature intervals of 220-350 C and 90-180 C, respectively, and are both exploited for electricity production. Exploitation techniques and applications of high and of middle energy geothermics are different. High energy geothermics is encountered in active volcanic and tectonic zones, such as the circum-Pacific fire-belt, the lesser Antilles, the peri-Mediterranean Alpine chain or the African rift zone. The geothermal steam is directly expanded in a turbine protected against gas and minerals corrosion. About 350 high energy plants are distributed in more than 20 different countries and represent 6000 M We. The cost of high energy installed geothermal kWh ranges from 0.20 to 0.50 French Francs. Middle energy geothermics is encountered in sedimentary basins (between 2000 and 4000 m of depth), in localized fractured zones or at lower depth in the high energy geothermal fields. Heat exchangers with organic fluid Rankine cycle technology is used to produce electricity. Unit power of middle energy plants generally ranges from few hundreds of k W to few MW and correspond to a worldwide installed power of about 400 M We. The annual progression of geothermal installed power is estimated to 4 to 8 % in the next years and concerns principally the circum-Pacific countries. In France, geothermal resources are mainly localized in overseas departments. (J.S.). 3 photos

  10. Magnetotelluric-Geochemistry Investigations of Blawan Geothermal Field, East Java, Indonesia

    Directory of Open Access Journals (Sweden)

    Sukir Maryanto

    2017-06-01

    Full Text Available An integrated magnetotelluric (MT and geochemical study of the Blawan geothermal field has been performed. The character of the hot springs, the reservoir temperature, and geothermal reserve potential of Blawan geothermal field are assessed. MT measurements, with 250 m up to 1200 m spacings, were made at 19 sites, and 6 locations at the Blawan hot springs have been sampled for geochemical survey. The results of 2D modelling indicated that the geothermal system in the research area consisted of a cap rock zone (≤32 Ω•m, reservoir zone (>32 – ≤512 Ω•m, and heat source zone (>512 Ω•m, and also identified faults. The characteristics of the hot spring water were identified through analyzing the major and minor elements. A ternary diagram (Cl-SO4-HCO3 showed that the Blawan hot springs consist of bicarbonate water (at locations of AP-01, AP-02, AP-03 and chloride water (at locations of AP-04, AP-05, and AP-06, with a reservoir temperature of approximately 90 °C based on the Na–K–Ca geothermometer results. An estimate of the geothermal energy using the volumetric method, gave a total geothermal reserve potential of 1.823 MWe.

  11. Health impacts of geothermal energy

    International Nuclear Information System (INIS)

    Layton, D.W.; Anspaugh, L.R.

    1982-01-01

    Geothermal resources are used to produce electrical energy and to supply heat for non-electric applications like residential heating and crop drying. The utilization of geothermal energy consists of the extraction of hot water or steam from an underground reservoir followed by different methods of surface processing along with the disposal of liquid, gaseous, and even solid wastes. The focus of this paper is on electric power production using geothermal resources greater than 150 0 C because this form of geothermal energy utilization has the most serious health-related consequences. Based on measurements and experience at existing geothermal power plants, atmospheric emissions of non-condensing gases such as hydrogen sulphide and benzene pose the greatest hazards to public health. Surface and ground waters contaminated by discharges of spent geothermal fluids constitute another health hazard. In this paper it is shown that hydrogen sulphide emissions from most geothermal power plants are apt to cause odour annoyances among members of the exposed public -some of whom can detect this gas at concentrations as low as 0.002 ppmv. A risk-assessment model is used to estimate the lifetime risk of incurring leukaemia from atmospheric benzene caused by 2000 MW(e) of geothermal development in California's Imperial Valley. Also assessed is the risk of skin cancer due to the ingestion of river water in New Zealand that is contaminated by waste geothermal fluids containing arsenic. Finally, data on the occurrence of occupational disease in the geothermal industry is briefly summarized. (author)

  12. Preliminary geothermal investigations at Manley Hot Springs, Alaska

    Energy Technology Data Exchange (ETDEWEB)

    East, J.

    1982-04-01

    Manley Hot Springs is one of several hot springs which form a belt extending from the Seward Peninsula to east-central Alaska. All of the hot springs are low-temperature, water-dominated geothermal systems, having formed as the result of circulation of meteoric water along deepseated fractures near or within granitic intrusives. Shallow, thermally disturbed ground at Manley Hot Springs constitutes an area of 1.2 km by 0.6 km along the lower slopes of Bean Ridge on the north side of the Tanana Valley. This area includes 32 springs and seeps and one warm (29.1/sup 0/C) well. The hottest springs range in temperature from 61/sup 0/ to 47/sup 0/C and are presently utilized for space heating and irrigation. This study was designed to characterize the geothermal system present at Manley Hot Springs and delineate likely sites for geothermal drilling. Several surveys were conducted over a grid system which included shallow ground temperature, helium soil gas, mercury soil and resistivity surveys. In addition, a reconnaissance ground temperature survey and water chemistry sampling program was undertaken. The preliminary results, including some preliminary water chemistry, show that shallow hydrothermal activity can be delineated by many of the surveys. Three localities are targeted as likely geothermal well sites, and a model is proposed for the geothermal system at Manley Hot Springs.

  13. Research status of geothermal resources in China

    Science.gov (United States)

    Zhang, Lincheng; Li, Guang

    2017-08-01

    As the representative of the new green energy, geothermal resources are characterized by large reserve, wide distribution, cleanness and environmental protection, good stability, high utilization factor and other advantages. According to the characteristics of exploitation and utilization, they can be divided into high-temperature, medium-temperature and low-temperature geothermal resources. The abundant and widely distributed geothermal resources in China have a broad prospect for development. The medium and low temperature geothermal resources are broadly distributed in the continental crustal uplift and subsidence areas inside the plate, represented by the geothermal belt on the southeast coast, while the high temperature geothermal resources concentrate on Southern Tibet-Western Sichuan-Western Yunnan Geothermal Belt and Taiwan Geothermal Belt. Currently, the geothermal resources in China are mainly used for bathing, recuperation, heating and power generation. It is a country that directly makes maximum use of geothermal energy in the world. However, China’s geothermal power generation, including installed generating capacity and power generation capacity, are far behind those of Western European countries and the USA. Studies on exploitation and development of geothermal resources are still weak.

  14. Reinjection of geothermal water-imperative of geothermal system Geoterma - Kochani

    International Nuclear Information System (INIS)

    Naunov, Jordan

    2007-01-01

    Geothermal locality 'Podlog-Banja' - Kochani, Republic of Macedonia, represent one of the more significant aquifers of geothermal water, not only in local frames but also in world scale, especially if we have in mind the possible capacity of exploitation of 300 l, with average temperature of 75° C. Many years of exploitation was escorted with constant irreversible drop down of piezo metric level of underground waters and because of this reason, there was a necessary of installation of reinjection system of used geothermal water, especially for two factors: Keeping of balance conditions in the underground from one side and reduction of thermal pollution to the environment especially from energetic and ecological aspect. In this written effort beside the basic information for geothermal system 'Geoterma' will be present all significant phases and elements of the system for reinjection, it's exploration, implementation, construction and of course the effects from the same one. (Author)

  15. Geothermal survey handbook

    Energy Technology Data Exchange (ETDEWEB)

    1974-01-01

    The objective of this handbook is to publicize widely the nature of geothermal surveys. It covers geothermal survey planning and measurement as well as measurement of thermal conductivity. Methods for the detection of eruptive areas, the measurement of radiative heat using snowfall, the measurement of surface temperature using infrared radiation and the measurement of thermal flow are described. The book also contains information on physical detection of geothermal reservoirs, the measurement of spring wells, thermographic measurement of surface heat, irregular layer surveying, air thermographics and aerial photography. Isotope measurement techniques are included.

  16. Navy Geothermal Plan

    Energy Technology Data Exchange (ETDEWEB)

    1984-12-01

    Domestic geothermal resources with the potential for decreasing fossil fuel use and energy cost exist at a significant number of Navy facilities. The Geothermal Plan is part of the Navy Energy R and D Program that will evaluate Navy sites and provide a technical, economic, and environmental base for subsequent resource use. One purpose of the program will be to provide for the transition of R and D funded exploratory efforts into the resource development phase. Individual Navy geothermal site projects are described as well as the organizational structure and Navy decision network. 2 figs.

  17. INTEGRATED EXPLORATION OF GEOTHERMAL RESOURCES

    Directory of Open Access Journals (Sweden)

    A. B. Alkhasov

    2016-01-01

    Full Text Available The aim. The aim is to develop the energy efficient technologies to explore hydro geothermal resources of different energy potential.Methods. Evaluation of the effectiveness of the proposed technologies has been carried out with the use of physical and mathematical, thermodynamic and optimization methods of calculation and the physical and chemical experimental research.Results. We propose the technology of integrated exploration of low-grade geothermal resources with the application of heat and water resource potential on various purposes. We also argue for the possibility of effective exploration of geothermal resources by building a binary geothermal power plant using idle oil and gas wells. We prove the prospect of geothermal steam and gas technologies enabling highly efficient use of thermal water of low energy potential (80 - 100 ° C degrees to generate electricity; the prospects of complex processing of high-temperature geothermal brine of Tarumovsky field. Thermal energy is utilized in a binary geothermal power plant in the supercritical Rankine cycle operating with a low-boiling agent. The low temperature spent brine from the geothermal power plant with is supplied to the chemical plant, where the main chemical components are extracted - lithium carbonate, magnesium burning, calcium carbonate and sodium chloride. Next, the waste water is used for various water management objectives. Electricity generated in the binary geothermal power plant is used for the extraction of chemical components.Conclusions. Implementation of the proposed technologies will facilitate the most efficient development of hydro geothermal resources of the North Caucasus region. Integrated exploration of the Tarumovsky field resources will fully meet Russian demand for lithium carbonate and sodium chloride.

  18. Geothermal alteration of basaltic core from the Snake River Plain, Idaho

    Science.gov (United States)

    Sant, Christopher J.

    The Snake River Plain is located in the southern part of the state of Idaho. The eastern plain, on which this study focuses, is a trail of volcanics from the Yellowstone hotspot. Three exploratory geothermal wells were drilled on the Snake River Plain. This project analyzes basaltic core from the first well at Kimama, north of Burley, Idaho. The objectives of this project are to establish zones of geothermal alteration and analyze the potential for geothermal power production using sub-aquifer resources on the axial volcanic zone of the Snake River Plain. Thirty samples from 1,912 m of core were sampled and analyzed for clay content and composition using X-ray diffraction. Observations from core samples and geophysical logs are also used to establish alteration zones. Mineralogical data, geophysical log data and physical characteristics of the core suggest that the base of the Snake River Plain aquifer at the axial zone is located 960 m below the surface, much deeper than previously suspected. Swelling smectite clay clogs pore spaces and reduces porosity and permeability to create a natural base to the aquifer. Increased temperatures favor the formation of smectite clay and other secondary minerals to the bottom of the hole. Below 960 m the core shows signs of alteration including color change, formation of clay, and filling of other secondary minerals in vesicles and fractured zones of the core. The smectite clay observed is Fe-rich clay that is authigenic in some places. Geothermal power generation may be feasible using a low temperature hot water geothermal system if thermal fluids can be attained near the bottom of the Kimama well.

  19. Mexican geothermal development and the future

    International Nuclear Information System (INIS)

    Serrano, J.M.E.V.

    1998-01-01

    Geothermics in Mexico started in 1954, by drilling the first geothermal well in Pathe, State of Hidalgo, which reached a depth of 237 meters. In 1959 electrical generation from geothermal origin began, with an installed capacity of 3.5 MW. From 1959 to 1994 Mexico increased its installed capacity to 753 MW, by developing three geothermal fields: Cerro Prieto, Los Azufres, and Los Humeros. Currently, 177 wells produce steam at a rate of 36 tons per hour (t/h) each. Comision Federal de Electricidad (CFE, Federal Commission of Electricity) has planned to increase the geothermal-electric installed capacity through construction and installation of several projects. Repowering of operating units and development of new geothermal zones will also allow Mexican geothermal growth

  20. Geothermal heat can cool, too

    International Nuclear Information System (INIS)

    Wellstein, J.

    2008-01-01

    This article takes a look at how geothermal energy can not only be used to supply heating energy, but also be used to provide cooling too. The article reports on a conference on heating and cooling with geothermal energy that was held in Duebendorf, Switzerland, in March 2008. The influence of climate change on needs for heating and cooling and the need for additional knowledge and data on deeper rock layers is noted. The seasonal use of geothermal systems to provide heating in winter and cooling in summer is discussed. The planning of geothermal probe fields and their simulation is addressed. As an example, the geothermal installations under the recently renewed and extended 'Dolder Grand' luxury hotel in Zurich are quoted. The new SIA 384/6 norm on geothermal probes issued by the Swiss Association of Architects SIA is briefly reviewed.

  1. Geothermal energy utilization in Russia

    Energy Technology Data Exchange (ETDEWEB)

    Svalova, V. [Institute of Environmental Geoscience, RAS, Moscow (Russian Federation)

    2011-07-01

    Geothermal energy use is the way to clean, sustainable energy development for the world. Russia has rich high and low temperature geothermal resources and is making progress using them - mostly with low-temperature geothermal resources and heat pumps This is optimal for many regions of Russia -in the European part, in the Urals and others. Electricity is generated by some geothermal power plants (GeoPP) only in the Kamchatka Peninsula and Kuril Islands There are two possible ways of using geothermal resources, depending on the properties of thermal waters heat/power and mineral extraction. The mineral-extraction direction is basic for geothermal waters, which contain valuable components in industrial quantities The most significant deposits of thermal waters represent the brines containing from 35 up to 400 and more g/l of salts. These are the minerals of many chemical dements. (author)

  2. Accelerating Geothermal Research (Fact Sheet)

    Energy Technology Data Exchange (ETDEWEB)

    2014-05-01

    Geothermal research at the National Renewable Energy Laboratory (NREL) is advancing geothermal technologies to increase renewable power production. Continuous and not dependent on weather, the geothermal resource has the potential to jump to more than 500 gigawatts in electricity production, which is equivalent to roughly half of the current U.S. capacity. Enhanced geothermal systems have a broad regional distribution in the United States, allowing the potential for development in many locations across the country.

  3. Cyanobacterial flora from polluted industrial effluents.

    Science.gov (United States)

    Parikh, Amit; Shah, Vishal; Madamwar, Datta

    2006-05-01

    Effluents originating from pesticides, agro-chemicals, textile dyes and dyestuffs industries are always associated with high turbidity, colour, nutrient load, and heavy metals, toxic and persistent compounds. But even with such an anthropogenic nature, these effluents contain dynamic cyanobacterial communities. Documentation of cyanobacterial cultures along the water channels of effluents discharged by above mentioned industries along the west coast of India and their relationship with water quality is reported in this study. Intensity of pollution was evaluated by physico-chemical analysis of water. Higher load of solids, carbon and nutrients were found to be persistent throughout the analysis. Sediment and water samples were found to be colored in nature. Cyanobacterial community structure was found to be influenced by the anthropogenic pollution. 40 different cyanobacterial species were recorded from 14 genera of 5 families and an elevated occurrence of Phormidium, Oscillatoria and Chroococcus genera was observed in all the sampling sites.

  4. 2012 geothermal energy congress. Proceedings

    International Nuclear Information System (INIS)

    2012-01-01

    Within the Geothermal Energy Congress 2012 from 13th to 16th November 2012, in Karlsruhe (Federal Republic of Germany), the following lectures were held: (1) Comparison of different methods for the design of geothermal probes on the example of the thermal utilization of smouldering fires at heaps (Sylvia Kuerten); (2) Determination of the thermo-physical features of loose rocks (Johannes Stegner); (3) Tools for the planning and operation of district heating grids (Werner Seichter); (4) geo:build - System optimisation of the cooling mode of the ground-source heat and cooling supply (Franziska Bockelmann); (5) Successful and economic conception, planning and optimization of district heating grids (Werner Seichter); (6) Treacer / Heat transfer decoupling in a heterogeneous hydrothermal reservoir characterized by geological faults in the Upper Rhine Graben (I. Ghergut); (7) Determination of the porosity, thermal conductivity and particle size distribution in selected sections of the Meisenheim-1 drilling core (Saar-Nahe basin, Rheinland-Palatinate) under consideration of geothermally relevant formulation of questions (Gillian Inderwies); (8) Innovative technologies of exploration in the Jemez Geothermal project, New Mexico, USA (Michael Albrecht); (9) Geothermal energy, heat pump and TABS - optimization of planning, operational control and control (Franziska Bockelmann); (10) The impact of large-scale geothermal probes (storage probes) on the heat transfer and heat loss (Christopher Steins); (11) Numeric modelling of the permocarbon in the northern Upper Rhine Graben (L. Dohrer); (12) Engineering measurement solutions on quality assurance in the exploitation of geothermal fields (C. Lehr); (13) Evaluation and optimization of official buildings with the near-surface geothermal energy for heating and cooling (Franziska Bockelmann); (14) On-site filtration for a rapid and cost-effective quantification of the particle loading in the thermal water stream (Johannes Birner

  5. High-resolution chemical composition of geothermal scalings from Hungary: Preliminary results

    Science.gov (United States)

    Boch, Ronny; Dietzel, Martin; Deák, József; Leis, Albrecht; Mindszenty, Andrea; Demeny, Attila

    2015-04-01

    Geothermal fluids originating from several hundreds to thousands meters depth mostly hold a high potential for secondary mineral precipitation (scaling) due to high total dissolved solid contents at elevated temperature and pressure conditions. The precipitation of e.g. carbonates, sulfates, sulfides, and silica has shown to cause severe problems in geothermal heat and electric power production, when clogging of drill-holes, downhole pumps, pipes and heat exchangers occurs (e.g. deep geothermal doublet systems). Ongoing scaling reduces the efficiency in energy extraction and might even question the abandonment of installations in worst cases. In an attempt to study scaling processes both temporally and spatially we collected mineral precipitates from selected sites in Hungary (Bükfürdo, Szechenyi, Szentes, Igal, Hajduszoboszlo). The samples of up to 8 cm thickness were recovered from different positions of the geothermal systems and precipitated from waters of various temperatures (40-120 °C) and variable overall chemical composition. Most of these scalings show fine lamination patterns representing mineral deposition from weeks up to 45 years at our study sites. Solid-fluid interaction over time captured in the samples are investigated applying high-resolution analytical techniques such as laser-ablation mass-spectrometry and electron microprobe, micromill-sampling for stable isotope analysis, and micro-XRD combined with hydrogeochemical modeling. A detailed investigation of the processes determining the formation and growth of precipitates can help to elucidate the short-term versus long-term geothermal performance with regard to anthropogenic and natural reservoir and production dynamics. Changes in fluid chemistry, temperature, pressure, pH, degassing rate (CO2) and flow rate are reflected by the mineralogical, chemical and isotopic composition of the precipitates. Consequently, this high-resolution approach is intended as a contribution to decipher the

  6. Assessing Past Fracture Connectivity in Geothermal Reservoirs Using Clumped Isotopes: Proof of Concept in the Blue Mountain Geothermal Field, Nevada USA

    Science.gov (United States)

    Huntington, K. W.; Sumner, K. K.; Camp, E. R.; Cladouhos, T. T.; Uddenberg, M.; Swyer, M.; Garrison, G. H.

    2015-12-01

    Subsurface fluid flow is strongly influenced by faults and fractures, yet the transmissivity of faults and fractures changes through time due to deformation and cement precipitation, making flow paths difficult to predict. Here we assess past fracture connectivity in an active hydrothermal system in the Basin and Range, Nevada, USA, using clumped isotope geochemistry and cold cathodoluminescence (CL) analysis of fracture filling cements from the Blue Mountain geothermal field. Calcite cements were sampled from drill cuttings and two cores at varying distances from faults. CL microscopy of some of the cements shows banding parallel to the fracture walls as well as brecciation, indicating that the cements record variations in the composition and source of fluids that moved through the fractures as they opened episodically. CL microscopy, δ13C and δ18O values were used to screen homogeneous samples for clumped isotope analysis. Clumped isotope thermometry of most samples indicates paleofluid temperatures of around 150°C, with several wells peaking at above 200°C. We suggest that the consistency of these temperatures is related to upwelling of fluids in the convective hydrothermal system, and interpret the similarity of the clumped isotope temperatures to modern geothermal fluid temperatures of ~160-180°C as evidence that average reservoir temperatures have changed little since precipitation of the calcite cements. In contrast, two samples, one of which was associated with fault gauge observed in drill logs, record significantly cooler temperatures of 19 and 73°C and anomalous δ13C and δ18Owater values, which point to fault-controlled pathways for downwelling meteoric fluid. Finally, we interpret correspondence of paleofluid temperatures and δ18Owater values constrained by clumped isotope thermometry of calcite from different wells to suggest past connectivity of fractures among wells within the geothermal field. Results show the ability of clumped isotope

  7. Microbiological Monitoring in Geothermal Plants

    Science.gov (United States)

    Alawi, M.; Lerm, S.; Linder, R.; Vetter, A.; Vieth-Hillebrand, A.; Miethling-Graff, R.; Seibt, A.; Wolfgramm, M.; Wuerdemann, H.

    2010-12-01

    In the scope of the research projects “AquiScreen” and “MiProTherm” we investigated geothermally used groundwater systems under microbial, geochemical, mineralogical and petrological aspects. On one side an enhanced process understanding of engineered geothermal systems is mandatory to optimize plant reliability and economy, on the other side this study provides insights into the microbiology of terrestrial thermal systems. Geothermal systems located in the North German Basin and the Molasse Basin were analyzed by sampling of fluids and solid phases. The investigated sites were characterized by different temperatures, salinities and potential microbial substrates. The microbial population was monitored by the use of genetic fingerprinting techniques and PCR-cloning based on PCR-amplified 16S rRNA and dissimilatory sulfite reductase (DSR) genes. DNA-sequences of fingerprints and cloned PCR-products were compared to public databases and correlated with metabolic classes to provide information about the biogeochemical processes. In all investigated geothermal plants, covering a temperature range from 5° to 120°C, microorganisms were found. Phylogenetic gene analyses indicate a broad diversity of microorganisms adapted to the specific conditions in the engineered system. Beside characterized bacteria like Thermus scotoductus, Siderooxidans lithoautotrophicus and the archaeon Methanothermobacter thermoautotrophicus a high number of so far uncultivated microorganisms was detected. As it is known that - in addition to abiotic factors - microbes like sulfate-reducing bacteria (SRB) are involved in the processes of corrosion and scaling in plant components, we identified SRB by specific analyses of DSR genes. The SRB detected are closely related to thermotolerant and thermophilic species of Desulfotomaculum, Thermodesulfovibrio, Desulfohalobium and Thermodesulfobacterium, respectively. Overall, the detection of microbes known to be involved in biocorrosion and the

  8. A guide for preparing Hanford Site facility effluent monitoring plans

    International Nuclear Information System (INIS)

    Nickels, J.M.

    1992-06-01

    This document provides guidance on the format and content of effluent monitoring plans for facilities at the Hanford Site. The guidance provided in this document is designed to ensure compliance with US Department of Energy (DOE) Orders 5400.1 (DOE 1988a), 5400.3 (DOE 1989a), 5400.4 (DOE 1989b), 5400.5 (DOE 1990a), 5480.1 (DOE 1982), 5480.11 (DOE 1988b), and 5484.1 (DOE 1981). These require environmental monitoring plans for each site, facility, or process that uses, generates, releases, or manages significant pollutants of radioactive or hazardous materials. In support of DOE Orders 5400.5 (Radiation Protection of the Public and the Environment) and 5400.1 (General Environmental Protection Program), the DOE Environmental Regulatory Guide for Radiological Effluent Monitoring and Environmental Surveillance (DOE 1991) should be used to establish elements of a radiological effluent monitoring program in the Facility Effluent Monitoring Plan. Evaluation of facilities for compliance with the US Environmental Protection Agency Clean Air Act of 1977 requirements also is included in the airborne emissions section of the Facility Effluent Monitoring Plans. Sampling Analysis Plans for Liquid Effluents, as required by the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement), also are included in the Facility Effluent Monitoring Plans. The Facility Effluent Monitoring Plans shall include complete documentation of gaseous and liquid effluent sampling and monitoring systems

  9. The management plan of liquid effluent in Korean advanced light water reactor

    International Nuclear Information System (INIS)

    Kim, S. H.; Lim, H. S.; Jeong, D. W.; Jeong, D. Y.

    2001-01-01

    Non-radioactive liquid effluent in Korean Advanced Light Water Reactor is transferred and treated in centralized waste treatment facility after the radioactivity in effluent is checked within power block. The liquid effluent from centralized waste treatment facility will be discharged by way of discharge canal in order to be in the sufficient condition. As a result of investigating the radiation monitoring design in accordance with 20 provisions by Korean Regulatory Authority, each effluent radiation monitoring with 20 provisions by Korean Regulatory Authority, each effluent radiation monitoring design satisfies the regulatory guideline. In relation to sampling and analyses, most systems satisfy the regulatory guideline except for some effluents from turbine building. And, though sampling and analyses are performed after radioactivity is monitored at each system in turbine building, these exceptions in turbine building effluents are expected to cause no significant problems because radioactivity is monitored by direct or indirect methods prior to release from turbine building. Integrated monitoring on liquid effluent from the centralized waste water treatment facility is not necessary because radiation monitoring, sampling and analyses on each system within power block are performed, and operational effectiveness compared with cost according to adding the radiation monitoring equipment is too low. So, whether the radiation monitoring in this effluent is reflected on design or not is planned to be determined through discussion with regulatory authority

  10. Interstratified Illite/Montmorillonite in Kamojang Geothermal Field, Indonesia

    Directory of Open Access Journals (Sweden)

    D. F. Yudiantoro

    2014-07-01

    Full Text Available DOI: 10.17014/ijog.v8i4.167Kamojang geothermal field located in West Java Province, falls under the Pangkalan Subregency, Bandung Regency. The researched area is a geothermal field located in the Quaternary volcanic caldera system of about 0.452 to 1.2 Ma. The volcanic activity generated hydrothermal fluids, interacting with rocks producing mineral alteration. The minerals formed in the areas of research are interstratified illite/montmorillonite (I/M. Analyses to identify interstratified I/M have been performed by X-ray diffraction using ethylene glycol, while the determination of the type and percentage of interstratified I/M was based on the calculation method of Watanabe. The methodology was applied on core and cutting samples from Wells KMJ-8, 9, 11, 13, 16, 23, 49, 51, and 54. The result of analysis of the samples shows that the type of clay is interstratified illite/montmorillonite and the minerals are formed at temperatures ranging from 180 to 220° C. The type of interstratified I/M in the studied area is S = 0 and S = 1. The percentage of illite type S = 0 is between 20 - 35% illite, whereas type S = 1 has about 45 - 72% illite. Along with the increasing depth, the percentage of illite is getting greater. This is consistent with the vertical distribution of temperature which increases according to the depth. This correlation results in an interpretation that the upflow zone of the geothermal reservoir is located in the centre of the Kamojang geothermal field.

  11. National Geothermal Data System: Transforming the Discovery, Access, and Analytics of Data for Geothermal Exploration

    Energy Technology Data Exchange (ETDEWEB)

    Patten, Kim [Arizona Geological Survey

    2013-05-01

    Compendium of Papers from the 38th Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California February 11-13, 2013 The National Geothermal Data System (NGDS) is a distributed, interoperable network of data collected from state geological surveys across all fifty states and the nation’s leading academic geothermal centers. The system serves as a platform for sharing consistent, reliable, geothermal-relevant technical data with users of all types, while supplying tools relevant for their work. As aggregated data supports new scientific findings, this content-rich linked data ultimately broadens the pool of knowledge available to promote discovery and development of commercial-scale geothermal energy production. Most of the up-front risks associated with geothermal development stem from exploration and characterization of subsurface resources. Wider access to distributed data will, therefore, result in lower costs for geothermal development. NGDS is on track to become fully operational by 2014 and will provide a platform for custom applications for accessing geothermal relevant data in the U.S. and abroad. It is being built on the U.S. Geoscience Information Network (USGIN) data integration framework to promote interoperability across the Earth sciences community. The basic structure of the NGDS employs state-of-the art informatics to advance geothermal knowledge. The following four papers comprising this Open-File Report are a compendium of presentations, from the 38th Annual Workshop on Geothermal Reservoir Engineering, taking place February 11-13, 2013 at Stanford University, Stanford, California. “NGDS Geothermal Data Domain: Assessment of Geothermal Community Data Needs,” outlines the efforts of a set of nationwide data providers to supply data for the NGDS. In particular, data acquisition, delivery, and methodology are discussed. The paper addresses the various types of data and metadata required and why simple links to existing

  12. Outline of geothermal activity in Czechoslovakia

    International Nuclear Information System (INIS)

    Franko, O.; Bodis, D.; Dendek, M.; Remsik, A.

    1990-01-01

    This paper reports that in respect of different geothermal conditions in the Bohemian Massif (unfavorable) and in the West Carpathians (favorable), the development and utilization of geothermal energy are concentrated in Slovakia. THe utilization of geothermal energy for the heating of buildings in spas commenced in 1958. Thermal energy of geothermal waters was used for direct heating through heat exchangers, and in one case by a heat pump. Concentrated continuous development and utilization of geothermal energy started in 1971

  13. 2008 Geothermal Technologies Market Report

    Energy Technology Data Exchange (ETDEWEB)

    Jonathan Cross

    2009-07-01

    This report describes market-wide trends for the geothermal industry throughout 2008 and the beginning of 2009. It begins with an overview of the GTP’s involvement with the geothermal industry and recent investment trends for electric generation technologies. The report next describes the current state of geothermal power generation and activity within the United States, costs associated with development, financing trends, an analysis of the levelized cost of energy (LCOE), and a look at the current policy environment. The report also highlights trends regarding direct use of geothermal energy, including GHPs.† The final sections of the report focus on international perspectives, employment and economic benefits from geothermal energy development, and potential incentives in pending national legislation.

  14. Renewability of geothermal resources

    Energy Technology Data Exchange (ETDEWEB)

    O' Sullivan, Michael; Yeh, Angus [Department of Engineering Science, University of Auckland, Auckland (New Zealand); Mannington, Warren [Contact Energy Limited, Taupo (New Zealand)

    2010-12-15

    In almost all geothermal projects worldwide, the rate of extraction of heat energy exceeds the pre-exploitation rate of heat flow from depth. For example, current production of geothermal heat from the Wairakei-Tauhara system exceeds the natural recharge of heat by a factor of 4.75. Thus, the current rate of heat extraction from Wairakei-Tauhara is not sustainable on a continuous basis, and the same statement applies to most other geothermal projects. Nevertheless, geothermal energy resources are renewable in the long-term because they would fully recover to their pre-exploitation state after an extended shut-down period. The present paper considers the general issue of the renewability of geothermal resources and uses computer modeling to investigate the renewability of the Wairakei-Tauhara system. In particular, modeling is used to simulate the recovery of Wairakei-Tauhara after it is shut down in 2053 after a hundred years of production. (author)

  15. Geothermal electricity generation

    International Nuclear Information System (INIS)

    Eliasson, E.T.

    1991-01-01

    Geothermal conversion, as discussed here, is the conversion of the heat bound within the topmost three kilometres of the upper crust of the earth into useful energy, principally electricity. The characteristics of a geothermal reservoir and its individual technical features are highly site-specific. Applications therefore must be designed to match the specific geothermal reservoir. An estimate of the electric energy potential world-wide made by the Electric Power Research Institute (United States) in 1978 and based on sustaining a continuous 30-year operation is given in the box at the right for comparison purposes only. 8 refs, 5 figs

  16. A case study of radial jetting technology for enhancing geothermal energy systems at Klaipeda geothermal demonstration plant

    NARCIS (Netherlands)

    Nair, R.; Peters, E.; Sliaupa, S.; Valickas, R.; Petrauskas, S.

    2017-01-01

    In 1996 a geothermal energy project was initiated at Klaipėda, Lithuania, to demonstrate the feasibility of using low enthalpy geothermal water as a renewable energy resource in district heating systems. The Klaipėda geothermal plant is situated within the West Lithuanian geothermal anomaly with a

  17. Policy for geothermal energy development

    Energy Technology Data Exchange (ETDEWEB)

    Kiuchi, S [Public Utilities Bureau, Ministry of International Trade and Industry, Japan

    1973-01-01

    Government actions related to Japanese geothermal energy development in the past include: a mining and industrial research subsidy of 27 million yen granted to Kyushu Electric Power Co. in 1952, a mining and industrial research subsidy of 13 million yen granted to Japan Metals and Chemicals Co. in 1960, a study on steam production technology for geothermal power generation by Japan Metals and Chemicals Co. funded at 3.5 hundred million yen from the Research Development Corporation of Japan, and a study on steam production technology for large scale geothermal power generation by Japan Metals and Chemicals Co. funded at 7.6 hundred million yen by the Research Development Corporation of Japan. The following projects are planned by the Ministry of International Trade and Industry for 1973: a two-year geothermal power promotion including investigations into the utilization of hot water, new methods for geothermal reservoir detection and steam well drilling, and environmental effects, studies on hydrothermal systems, basic investigations for geothermal indicators in 30 areas, and a means to finance the construction of geothermal power plants in Kakkonda (Iwate Prefecture) and Hatchobara (Oita Prefecture).

  18. Boron isotopes in geothermal systems

    International Nuclear Information System (INIS)

    Aggarwal, J.

    1997-01-01

    Boron is a highly mobile element and during water-rock reactions, boron is leached out of rocks with no apparent fractionation. In geothermal systems where the water recharging the systems are meteoric in origin, the B isotope ratio of the geothermal fluid reflects the B isotope ratio of the rocks. Seawater has a distinctive B isotope ratio and where seawater recharges the geothermal system, the B isotope ratio of the geothermal system reflects the mixing of rock derived B and seawater derived B. Any deviations of the actual B isotope ratio of a mixture reflects subtle differences in the water-rock ratios in the cold downwelling limb of the hydrothermal system. This paper will present data from a variety of different geothermal systems, including New Zealand; Iceland; Yellowston, USA; Ibusuki, Japan to show the range in B isotope ratios in active geothermal systems. Some of these systems show well defined mixing trends between seawater and the host rocks, whilst others show the boron isotope ratios of the host rock only. In geothermal systems containing high amounts of CO 2 boron isotope ratios from a volatile B source can also be inferred. (auth)

  19. Potential of geothermal systems in Picardy

    OpenAIRE

    Dourlat, Estelle

    2017-01-01

    Geothermal systems are not only about electrical plants or urban heating networks, but also concerned with geothermal energy assisted with a heat pump. In the former region of Picardy (North of France), 97% of the territory is suitable for very low temperature geothermal power. The French Agency for the Environment and Energy Management and the Picardy Region decided in 2016 to finance a facilitator to encourage geothermal use. To carry out this aim, it is important to consider the geothermal...

  20. Direct application of geothermal energy

    Energy Technology Data Exchange (ETDEWEB)

    Reistad, G.M.

    1980-01-01

    An overall treatment of direct geothermal applications is presented with an emphasis on the above-ground engineering. The types of geothermal resources and their general extent in the US are described. The potential market that may be served with geothermal energy is considered briefly. The evaluation considerations, special design aspects, and application approaches for geothermal energy use in each of the applications are considered. The present applications in the US are summarized and a bibliography of recent studies and applications is provided. (MHR)

  1. Relation between 1m depth temperature and average geothermal gradient at 75cm depth in geothermal fields

    OpenAIRE

    江原, 幸雄

    2009-01-01

    Shallow ground temperatures such as 1m depth temperature have been measured to delineate thermal anomalies of geothermal fields and also to estimate heat discharge rates from geothermal fields. As a result, a close linear relation between 1m depth temperature and average geothermal gradient at 75cm depth has been recognized in many geothermal fields and was used to estimate conductive heat discharge rates. However, such a linear relation may show that the shallow thermal regime in geothermal ...

  2. Geothermal Program Review XVII: proceedings. Building on 25 years of Geothermal Partnership with Industry

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-10-01

    The US Department of Energy's Office (DOE) of Geothermal Technologies conducted its annual Program Review XVII in Berkeley, California, on May 18--20, 1999. The theme this year was "Building on 25 Years of Geothermal Partnership with Industry". In 1974, Congress enacted Public Law 93-410 which sanctioned the Geothermal Energy Coordination and Management Project, the Federal Government's initial partnering with the US geothermal industry. The annual program review provides a forum to foster this federal partnership with the US geothermal industry through the presentation of DOE-funded research papers from leaders in the field, speakers who are prominent in the industry, topical panel discussions and workshops, planning sessions, and the opportunity to exchange ideas. Speakers and researchers from both industry and DOE presented an annual update on research in progress, discussed changes in the environment and deregulated energy market, and exchanged ideas to refine the DOE Strategic Plan for research and development of geothermal resources in the new century. A panel discussion on Climate Change and environmental issues and regulations provided insight into the opportunities and challenges that geothermal project developers encounter. This year, a pilot peer review process was integrated with the program review. A team of geothermal industry experts were asked to evaluate the research in progress that was presented. The evaluation was based on the Government Performance and Results Act (GPRA) criteria and the goals and objectives of the Geothermal Program as set forth in the Strategic Plan. Despite the short timeframe and cursory guidance provided to both the principle investigators and the peer reviewers, the pilot process was successful. Based on post review comments by both presenters and reviewers, the process will be refined for next year's program review.

  3. Effluent treatment efficiency and compliance monitoring in Nigerian ...

    African Journals Online (AJOL)

    The effectiveness of effluent treatment at the Eleme Petrochemical Industry, Port Harcourt, Nigeria was monitored weekly for six weeks to assess their level of compliance with the Directorate of Petroleum Resources (DPR) guidelines and standards for environmental safety. Effluent samples were taken from the untreated ...

  4. Geothermal Financing Workbook

    Energy Technology Data Exchange (ETDEWEB)

    Battocletti, E.C.

    1998-02-01

    This report was prepared to help small firm search for financing for geothermal energy projects. There are various financial and economics formulas. Costs of some small overseas geothermal power projects are shown. There is much discussion of possible sources of financing, especially for overseas projects. (DJE-2005)

  5. Application of hydrocyanic acid vapor generation via focused microwave radiation to the preparation of industrial effluent samples prior to free and total cyanide determinations by spectrophotometric flow injection analysis.

    Science.gov (United States)

    Quaresma, Maria Cristina Baptista; de Carvalho, Maria de Fátima Batista; Meirelles, Francis Assis; Santiago, Vânia Maria Junqueira; Santelli, Ricardo Erthal

    2007-02-01

    A sample preparation procedure for the quantitative determination of free and total cyanides in industrial effluents has been developed that involves hydrocyanic acid vapor generation via focused microwave radiation. Hydrocyanic acid vapor was generated from free cyanides using only 5 min of irradiation time (90 W power) and a purge time of 5 min. The HCN generated was absorbed into an accepting NaOH solution using very simple glassware apparatus that was appropriate for the microwave oven cavity. After that, the cyanide concentration was determined within 90 s using a well-known spectrophotometric flow injection analysis system. Total cyanide analysis required 15 min irradiation time (90 W power), as well as chemical conditions such as the presence of EDTA-acetate buffer solution or ascorbic acid, depending on the effluent to be analyzed (petroleum refinery or electroplating effluents, respectively). The detection limit was 0.018 mg CN l(-1) (quantification limit of 0.05 mg CN l(-1)), and the measured RSD was better than 8% for ten independent analyses of effluent samples (1.4 mg l(-1) cyanide). The accuracy of the procedure was assessed via analyte spiking (with free and complex cyanides) and by performing an independent sample analysis based on the standard methodology recommended by the APHA for comparison. The sample preparation procedure takes only 10 min for free and 20 min for total cyanide, making this procedure much faster than traditional methodologies (conventional heating and distillation), which are time-consuming (they require at least 1 h). Samples from oil (sour and stripping tower bottom waters) and electroplating effluents were analyzed successfully.

  6. Geothermal energy probes. Increasing the radiation exposures of the population?

    International Nuclear Information System (INIS)

    Melzer, Danica; Wilhelm, Christoph

    2014-01-01

    In Baden-Wuerttemberg 10 private geothermal drilling projects in geologically interesting areas have been accompanied by measurements. During the drillings samples of the excavated earth were taken to determine the concentration of natural nuclides in the bored strata. Before and after finishing the geothermal construction works the airborne radon concentration of surrounding dwellings was measured. On the basis of the obtained measuring data the maximum expected additional effective annual doses received by individuals as a result of geothermal drilling were calculated. The exposure pathways were observed, i.e. air, water, sold - plant - human and terrestrial gamma radiation. In spite of conservative accounts in each case that should be considered as worst case scenario no relevant increase of radiation exposure could be detected. (orig.)

  7. Status of geothermal energy in Ethiopia

    International Nuclear Information System (INIS)

    Endeshaw, A.; Belaineh, M.

    1990-01-01

    This paper reports that there are several identified geothermal localities in Ethiopia. Ten geothermal localities have been studied with regional assessments, while three localities have had pre-feasibility studies. In one area, the Aluto-Langano geothermal field, the feasibility studies have been completed. However, the geothermal resources have not been utilized yet except in the traditional baths

  8. Uncertainty analysis of geothermal energy economics

    Science.gov (United States)

    Sener, Adil Caner

    This dissertation research endeavors to explore geothermal energy economics by assessing and quantifying the uncertainties associated with the nature of geothermal energy and energy investments overall. The study introduces a stochastic geothermal cost model and a valuation approach for different geothermal power plant development scenarios. The Monte Carlo simulation technique is employed to obtain probability distributions of geothermal energy development costs and project net present values. In the study a stochastic cost model with incorporated dependence structure is defined and compared with the model where random variables are modeled as independent inputs. One of the goals of the study is to attempt to shed light on the long-standing modeling problem of dependence modeling between random input variables. The dependence between random input variables will be modeled by employing the method of copulas. The study focuses on four main types of geothermal power generation technologies and introduces a stochastic levelized cost model for each technology. Moreover, we also compare the levelized costs of natural gas combined cycle and coal-fired power plants with geothermal power plants. The input data used in the model relies on the cost data recently reported by government agencies and non-profit organizations, such as the Department of Energy, National Laboratories, California Energy Commission and Geothermal Energy Association. The second part of the study introduces the stochastic discounted cash flow valuation model for the geothermal technologies analyzed in the first phase. In this phase of the study, the Integrated Planning Model (IPM) software was used to forecast the revenue streams of geothermal assets under different price and regulation scenarios. These results are then combined to create a stochastic revenue forecast of the power plants. The uncertainties in gas prices and environmental regulations will be modeled and their potential impacts will be

  9. Geothermal progress monitor report No. 6

    Energy Technology Data Exchange (ETDEWEB)

    1982-06-01

    Geothermal Progress Monitor Report No. 6 presents a state-by-state summary of the status of geothermal leasing, exploration, and development in major physiographic regions where geothermal resource potential has been identified. Recent state-specific activities are reported at the end of each state status report, while recent activities of a more general nature are summarized briefly in Part II of the report. A list of recent publications of potential interest to the geothermal community and a directory of contributors to the geothermal progress monitoring system are also included.

  10. Using mineral thermal diffusivities measured with Laser-Flash Analysis to redefine the continental geotherm

    Science.gov (United States)

    Branlund, J. M.; Hofmeister, A.; Merriman, J. D.; Nabelek, P. I.; Whittington, A. G.

    2010-12-01

    We've created a new model for the average continental geotherm by incorporating accurate thermal conductivity values into Fourier's law. Previous geotherm models used thermal conductivities (k) with systematic errors: (1) Pores and microcracks in polycrystalline samples provide artificially low k compared to buried rocks, (2) conventional measurement techniques involve contact losses between thermocouples and samples, especially at high temperature, and/or (3) many techniques inadequately remove ballistic radiative transfer, which does not represent true heat transfer in the earth. To provide k values appropriate for Earth’s interior, we measured thermal diffusivity and its temperature derivatives using laser-flash analysis (LFA) for common rock-forming minerals. To avoid problems of pores and microcracks artificially lowering measured k values, we mathematically mixed mineral data to create synthetic rocks representative of the upper and lower crust and mantle, and checked our values against measurements of rocks least contaminated. Compared to previous models using k of rocks measured with non-LFA methods, our mixture models give higher k of crustal rocks at room temperature, but lower values at higher temperatures. Calculating a geotherm with these revised thermal conductivity values gives a lower temperature throughout the lower crust and mantle lithosphere. Altering the composition of the crust will change the geotherm; crust with more quartz, olivine and/or pyroxene has higher k and a lower geothermal gradient. Adding calcic plagioclase lowers k and steepens the geotherm. The new constraints on k allow us to set bounds on the steady-state geotherm based on ranges of possible mineralogy, chemistry, and radiogenic contents.

  11. Geothermal low-temperature reservoir assessment program: A new DOE geothermal initiative

    International Nuclear Information System (INIS)

    Wright, P.M.; Lienau, P.J.; Mink, L.L.

    1992-01-01

    In Fiscal Year 1991, Congress appropriated money for the Department of Energy to begin a new program in the evaluation and use of low- and moderate-temperature geothermal resources. The objective of this program is to promote accelerated development of these resources to offset fossil-fuel use and help improve the environment. The program will consist of several components, including: (1) compilation of all available information on resource location and characteristics, with emphasis on resources located within 5 miles of population centers; (2) development and testing of techniques to discover and evaluate low- and moderate-temperature geothermal resources; (3) technical assistance to potential developers of low- and moderate-temperature geothermal resources; and (4) evaluation of the use of geothermal heat pumps in domestic and commercial applications. Program participants will include the Geo-Heat Center at the Oregon Institute of Technology, the University of Utah Research Institute, the Idaho Water Resources Research Institute and agencies of state governments in most of the western states

  12. The Preston Geothermal Resources; Renewed Interest in a Known Geothermal Resource Area

    Energy Technology Data Exchange (ETDEWEB)

    Wood, Thomas R. [Univ. of Idaho, Idaho Falls, ID (United States); Worthing, Wade [Univ. of Idaho, Idaho Falls, ID (United States); Cannon, Cody [Univ. of Idaho, Idaho Falls, ID (United States); Palmer, Carl [Univ. of Idaho, Idaho Falls, ID (United States); Neupane, Ghanashyam [Idaho National Lab. (INL), Idaho Falls, ID (United States); McLing, Travis L [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Earth Sciences Div.; Mattson, Earl [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Earth Sciences Div.; Dobson, Patric [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Earth Sciences Div.; Conrad, Mark [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Earth Sciences Div.

    2015-01-01

    The Preston Geothermal prospect is located in northern Cache Valley approximately 8 kilometers north of the city of Preston, in southeast Idaho. The Cache Valley is a structural graben of the northern portion of the Basin and Range Province, just south of the border with the Eastern Snake River Plain (ESRP). This is a known geothermal resource area (KGRA) that was evaluated in the 1970's by the State of Idaho Department of Water Resources (IDWR) and by exploratory wells drilled by Sunedco Energy Development. The resource is poorly defined but current interpretations suggest that it is associated with the Cache Valley structural graben. Thermal waters moving upward along steeply dipping northwest trending basin and range faults emanate in numerous hot springs in the area. Springs reach temperatures as hot as 84° C. Traditional geothermometry models estimated reservoir temperatures of approximately 125° C in the 1970’s study. In January of 2014, interest was renewed in the areas when a water well drilled to 79 m (260 ft) yielded a bottom hole temperature of 104° C (217° F). The well was sampled in June of 2014 to investigate the chemical composition of the water for modeling geothermometry reservoir temperature. Traditional magnesium corrected Na-K-Ca geothermometry estimates this new well to be tapping water from a thermal reservoir of 227° C (440° F). Even without the application of improved predictive methods, the results indicate much higher temperatures present at much shallower depths than previously thought. This new data provides strong support for further investigation and sampling of wells and springs in the Northern Cache Valley, proposed for the summer of 2015. The results of the water will be analyzed utilizing a new multicomponent equilibrium geothermometry (MEG) tool called Reservoir Temperature Estimate (RTEst) to obtain an improved estimate of the reservoir temperature. The new data suggest that other KGRAs and overlooked areas may need

  13. Proceedings 43rd Stanford Geothermal Workshop

    Energy Technology Data Exchange (ETDEWEB)

    Simmons, Stuart; Kirby, Stefan; Verplanck, Philip; Kelley, Karen

    2018-02-12

    Herein we summarize the results of an investigation dealing with the concentrations and inventories of strategic, critical and valuable materials (SCVM) in produced fluids from geothermal and hydrocarbon reservoirs (50-250° C) in Nevada and Utah. Water samples were collected from thirty-four production wells across eight geothermal fields, the Uinta Basin oil/gas province in northeast Utah, and the Covenant oil field in southwestern Utah; additional water samples were collected from six hot springs in the Sevier Thermal Belt in southwestern Utah. Most SCVM concentrations in produced waters range from <0.1 to 100 µg/kg; the main exception is lithium, which has concentrations that range from <1000 to 25,000 ug/kg. Relatively high concentrations of gallium, germanium, scandium, selenium, and tellurium are measured too. Geothermal waters contain very low concentrations of REEs, below analytical detections limits (0.01 µg/kg), but the concentrations of lanthanum, cerium, and europium range from 0.05 to 5 µg/kg in Uinta basin waters. Among the geothermal fields, the Roosevelt Hot Spring reservoir appears to have the largest inventories of germanium and lithium, and Patua appears to have the largest inventories of gallium, scandium, selenium, and tellurium. By comparison, the Uinta basin has larger inventories of gallium. The concentrations of gallium, germanium, lithium, scandium, selenium, and tellurium in produced waters appear to be partly related to reservoir temperature and concentrations of total dissolved salts. The relatively high concentration and large inventory of lithium occurring at Roosevelt Hot Springs may be related to granitic-gneissic crystalline rocks, which host the reservoir. Analyses of calcite scales from Dixie Valley indicate enrichments in cobalt, gallium, gold, palladium, selenium and tellurium, and these metals appear to be depositing at deep levels in production wells due to boiling. Comparisons with SCVM mineral deposits suggest that

  14. Fluid geochemistry and geothermometry applications of the Kangding high-temperature geothermal system in eastern Himalayas

    International Nuclear Information System (INIS)

    Guo, Qi; Pang, Zhonghe; Wang, Yingchun; Tian, Jiao

    2017-01-01

    High-temperature geothermal systems hold an enormous capacity for generating geothermal energy. The Kangding area is a typical high-temperature geothermal field in the Himalayan Geothermal Belt. Hydrogeochemical, gas geochemical and isotopic investigations were performed to identify and qualify the main hydrogeochemical processes affecting thermal water composition, including mixing and degassing, and then to estimate a reliable reservoir temperature. Nine water samples and four geothermal gas samples were collected and analysed for chemical and isotopic components. The results demonstrate the alkaline deep geothermal water is the mixtures of approximately 75% snow-melt water and 25% magmatic water. It is enriched in Na, K, F, Li and other trace elements, indicating the granite reservoir nature. The shallow geothermal water is the mixtures of approximately 30% upward flow of deep geothermal water and 70% meteoric cold water. High concentrations of Ca, Mg and HCO_3 indicate the limestone reservoir nature. There is no remarkable oxygen isotope shift in the geothermal water since the rapid circulation is difficult to trigger off strong water-rock interaction. CO_2 is the predominant geothermal gas, accounting for more than 97% of total gases in volume percentage. The concentration of CO_2 degassing ranged from 0.4 mol L"−"1 to 0.8 mol L"−"1 via geothermometrical modelling. As a result, the geothermal water pH increased from 6.0 to 9.0, and approximately 36% of the total SiO_2 re-precipitate. The sources of CO_2 are the metamorphism of limestone and magmatic degassing based on the composition of carbon isotope. The appropriate geothermometers of Na-K and Na-Li yield reservoir temperature of 280 °C. The geothermometrical modelling, developed to eliminate the effects of CO_2 degassing, yields temperature of 250 °C. The silica-enthalpy mixing model yields temperature of 270 °C with no steam separation before mixing. - Highlights: • Water and gas

  15. Pharmaceutical Formulation Facilities as Sources of Opioids and Other Pharmaceuticals to Wastewater Treatment Plant Effluents

    Science.gov (United States)

    2010-01-01

    Facilities involved in the manufacture of pharmaceutical products are an under-investigated source of pharmaceuticals to the environment. Between 2004 and 2009, 35 to 38 effluent samples were collected from each of three wastewater treatment plants (WWTPs) in New York and analyzed for seven pharmaceuticals including opioids and muscle relaxants. Two WWTPs (NY2 and NY3) receive substantial flows (>20% of plant flow) from pharmaceutical formulation facilities (PFF) and one (NY1) receives no PFF flow. Samples of effluents from 23 WWTPs across the United States were analyzed once for these pharmaceuticals as part of a national survey. Maximum pharmaceutical effluent concentrations for the national survey and NY1 effluent samples were generally effluent had median concentrations ranging from 3.4 to >400 μg/L. Maximum concentrations of oxycodone (1700 μg/L) and metaxalone (3800 μg/L) in samples from NY3 effluent exceeded 1000 μg/L. Three pharmaceuticals (butalbital, carisoprodol, and oxycodone) in samples of NY2 effluent had median concentrations ranging from 2 to 11 μg/L. These findings suggest that current manufacturing practices at these PFFs can result in pharmaceuticals concentrations from 10 to 1000 times higher than those typically found in WWTP effluents. PMID:20521847

  16. COTHERM: Geophysical Modeling of High Enthalpy Geothermal Systems

    Science.gov (United States)

    Grab, Melchior; Maurer, Hansruedi; Greenhalgh, Stewart

    2014-05-01

    three components: (1) A literature study to find relevant, existing theoretical models, (2) laboratory determinations to confirm their validity for Icelandic rocks of interest and (3) a field campaign to obtain in-situ, shallow rock properties from seismic and resistivity tomography surveys over a fossilized and exhumed geothermal system. Theoretical models describing physical behavior for rocks with strong inhomogeneities, complex pore structure and complicated fluid-rock interaction mechanisms are often poorly constrained and require the knowledge about a wide range of parameters that are difficult to quantify. Therefore we calibrate the theoretical models by laboratory measurements on samples of rocks, forming magmatic geothermal reservoirs. Since the samples used in the laboratory are limited in size, and laboratory equipment operates at much higher frequency than the instruments used in the field, the results need to be up-scaled from the laboratory scale to field scale. This is not a simple process and entails many uncertainties.

  17. Analysis format and evaluation methods for effluent particle sampling systems in nuclear facilities

    International Nuclear Information System (INIS)

    Schwendiman, L.C.; Glissmeyer, J.A.

    1976-06-01

    Airborne effluent sampling systems for nuclear facilities are frequently designed, installed, and operated without a systematic approach which discloses and takes into account all the circumstances and conditions which would affect the validity and adequacy of the sample. Without a comprehensive check list or something similar, the designer of the system may not be given the important information needed to provide a good design. In like manner, an already operating system may be better appraised. Furthermore, the discipline of a more formal approach may compel the one who will use the system to make sure he knows what he wants and can thus give the designer the needed information. An important consideration is the criteria to be applied to the samples to be taken. This analysis format consists of a listing of questions and statements calling forth the necessary information required to analyze a sampling system. With this information developed, one can proceed with an evaluation, the methodology of which is also discussed in the paper. Errors in probe placement, failure to sample at the proper rate, delivery line losses, and others are evaluated using mathematical models and empirically derived relationships. Experimental methods are also described for demonstrating that quality sampling will be achieved. The experiments include using a temporary, simple, but optimal sample collection system to evaluate the more complex systems. The use of tracer particles injected in the stream is also discussed. The samples obtained with the existing system are compared with those obtained by the temporary, optimal system

  18. Overexpression of antibiotic resistance genes in hospital effluents over time.

    Science.gov (United States)

    Rowe, Will P M; Baker-Austin, Craig; Verner-Jeffreys, David W; Ryan, Jim J; Micallef, Christianne; Maskell, Duncan J; Pearce, Gareth P

    2017-06-01

    Effluents contain a diverse abundance of antibiotic resistance genes that augment the resistome of receiving aquatic environments. However, uncertainty remains regarding their temporal persistence, transcription and response to anthropogenic factors, such as antibiotic usage. We present a spatiotemporal study within a river catchment (River Cam, UK) that aims to determine the contribution of antibiotic resistance gene-containing effluents originating from sites of varying antibiotic usage to the receiving environment. Gene abundance in effluents (municipal hospital and dairy farm) was compared against background samples of the receiving aquatic environment (i.e. the catchment source) to determine the resistome contribution of effluents. We used metagenomics and metatranscriptomics to correlate DNA and RNA abundance and identified differentially regulated gene transcripts. We found that mean antibiotic resistance gene and transcript abundances were correlated for both hospital ( ρ  = 0.9, two-tailed P  hospital effluent samples. High β-lactam resistance gene transcript abundance was related to hospital antibiotic usage over time and hospital effluents contained antibiotic residues. We conclude that effluents contribute high levels of antibiotic resistance genes to the aquatic environment; these genes are expressed at significant levels and are possibly related to the level of antibiotic usage at the effluent source. © The Author 2017. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy.

  19. FY 1993 report on the survey of geothermal development promotion. Survey of geothermal water (No.36 - Amemasu-dake area); 1993 nendo chinetsu kaihatsu sokushin chosa. Nessui no chosa hokokusho (No.36 Amemasu dake chiiki)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-01-01

    As a part of the survey of geothermal development promotion in FY 1993, survey of geothermal fluid was made using a precise structure drilling well N5-AM-5 as exploration well in the Amemasu-dake area, Hokkaido. The induced jetting of geothermal fluid was carried out by the Swabbing method in the total number of times of 185 in 11 days at 10-20 times/day, but did not result in the jetting of geothermal water. The sampling of geothermal water was conducted by guiding the geothermal water that overflowed the guide pipe to the tank. The temperature of geothermal water indicated approximately 20 degrees C in the 1st time and 40-60 degrees C in and after the 2nd time every day. The electric conductivity of geothermal water was 2.033 mS/cm, chlorine ion concentration was 420-500 ppm, and pH value was 7.17-7.72. As a result of the survey, it was presumed that the geothermal water of this well originated in the meteoric water around the area and formed slightly supported by emitted volcanic matters. As to the geochemical temperature, the silica temperature indicated about 120 degrees C and the alkali ratio temperature did about 180 degrees C. It was considered that there possibly existed geothermal reservoirs of approximately 180 degrees C in alkali ratio temperature around the well. (NEDO)

  20. Environmental Assessment Lakeview Geothermal Project

    Energy Technology Data Exchange (ETDEWEB)

    Treis, Tania [Southern Oregon Economic Development Department, Medford, OR (United States)

    2012-04-30

    The Town of Lakeview is proposing to construct and operate a geothermal direct use district heating system in Lakeview, Oregon. The proposed project would be in Lake County, Oregon, within the Lakeview Known Geothermal Resources Area (KGRA). The proposed project includes the following elements: Drilling, testing, and completion of a new production well and geothermal water injection well; construction and operation of a geothermal production fluid pipeline from the well pad to various Town buildings (i.e., local schools, hospital, and Lake County Industrial Park) and back to a geothermal water injection well. This EA describes the proposed project, the alternatives considered, and presents the environmental analysis pursuant to the National Environmental Policy Act. The project would not result in adverse effects to the environment with the implementation of environmental protection measures.

  1. Geothermal Program Review XIV: proceedings. Keeping Geothermal Energy Competitive in Foreign and Domestic Markets

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-01-01

    The U.S. Department of Energy`s Office of Geothermal Technologies conducted its annual Program Review XIV in Berkeley, April 8-10, 1996. The geothermal community came together for an in-depth review of the federally-sponsored geothermal research and development program. This year`s theme focused on ``Keeping Geothermal Energy Competitive in Foreign and Domestic Markets.`` This annual conference is designed to promote technology transfer by bringing together DOE-sponsored researchers; utility representatives; geothermal developers; equipment and service suppliers; representatives from local, state, and federal agencies; and others with an interest in geothermal energy. Program Review XIV consisted of eight sessions chaired by industry representatives. Introductory and overview remarks were presented during every session followed by detailed reports on specific DOE-funded research projects. The progress of R&D projects over the past year and plans for future activities were discussed. The government-industry partnership continues to strengthen -- its success, achievements over the past twenty years, and its future direction were highlighted throughout the conference. The comments received from the conference evaluation forms are published in this year`s proceedings. Individual papers have been processed for inclusion in the Energy Science and Technology Database.

  2. Federal Geothermal Research Program Update Fiscal Year 2004

    Energy Technology Data Exchange (ETDEWEB)

    2005-03-01

    The Department of Energy (DOE) and its predecessors have conducted research and development (R&D) in geothermal energy since 1971. The Geothermal Technologies Program (GTP) works in partnership with industry to establish geothermal energy as an economically competitive contributor to the U.S. energy supply. Geothermal energy production, a $1.5 billion a year industry, generates electricity or provides heat for direct use applications. The technologies developed by the Geothermal Technologies Program will provide the Nation with new sources of electricity that are highly reliable and cost competitive and do not add to America's air pollution or the emission of greenhouse gases. Geothermal electricity generation is not subject to fuel price volatility and supply disruptions from changes in global energy markets. Geothermal energy systems use a domestic and renewable source of energy. The Geothermal Technologies Program develops innovative technologies to find, access, and use the Nation's geothermal resources. These efforts include emphasis on Enhanced Geothermal Systems (EGS) with continued R&D on geophysical and geochemical exploration technologies, improved drilling systems, and more efficient heat exchangers and condensers. The Geothermal Technologies Program is balanced between short-term goals of greater interest to industry, and long-term goals of importance to national energy interests. The program's research and development activities are expected to increase the number of new domestic geothermal fields, increase the success rate of geothermal well drilling, and reduce the costs of constructing and operating geothermal power plants. These improvements will increase the quantity of economically viable geothermal resources, leading in turn to an increased number of geothermal power facilities serving more energy demand. These new geothermal projects will take advantage of geothermal resources in locations where development is not currently

  3. Federal Geothermal Research Program Update - Fiscal Year 2004

    Energy Technology Data Exchange (ETDEWEB)

    Patrick Laney

    2005-03-01

    The Department of Energy (DOE) and its predecessors have conducted research and development (R&D) in geothermal energy since 1971. The Geothermal Technologies Program (GTP) works in partnership with industry to establish geothermal energy as an economically competitive contributor to the U.S. energy supply. Geothermal energy production, a $1.5 billion a year industry, generates electricity or provides heat for direct use applications. The technologies developed by the Geothermal Technologies Program will provide the Nation with new sources of electricity that are highly reliable and cost competitive and do not add to America's air pollution or the emission of greenhouse gases. Geothermal electricity generation is not subject to fuel price volatility and supply disruptions from changes in global energy markets. Geothermal energy systems use a domestic and renewable source of energy. The Geothermal Technologies Program develops innovative technologies to find, access, and use the Nation's geothermal resources. These efforts include emphasis on Enhanced Geothermal Systems (EGS) with continued R&D on geophysical and geochemical exploration technologies, improved drilling systems, and more efficient heat exchangers and condensers. The Geothermal Technologies Program is balanced between short-term goals of greater interest to industry, and long-term goals of importance to national energy interests. The program's research and development activities are expected to increase the number of new domestic geothermal fields, increase the success rate of geothermal well drilling, and reduce the costs of constructing and operating geothermal power plants. These improvements will increase the quantity of economically viable geothermal resources, leading in turn to an increased number of geothermal power facilities serving more energy demand. These new geothermal projects will take advantage of geothermal resources in locations where development is not currently possible or

  4. Imperial County geothermal development annual meeting: summary

    Energy Technology Data Exchange (ETDEWEB)

    1983-01-01

    All phases of current geothermal development in Imperial County are discussed and future plans for development are reviewed. Topics covered include: Heber status update, Heber binary project, direct geothermal use for high-fructose corn sweetener production, update on county planning activities, Brawley and Salton Sea facility status, status of Imperial County projects, status of South Brawley Prospect 1983, Niland geothermal energy program, recent and pending changes in federal procedures/organizations, plant indicators of geothermal fluid on East Mesa, state lands activities in Imperial County, environmental interests in Imperial County, offshore exploration, strategic metals in geothermal fluids rebuilding of East Mesa Power Plant, direct use geothermal potential for Calipatria industrial Park, the Audubon Society case, status report of the Cerro Prieto geothermal field, East Brawley Prospect, and precision gravity survey at Heber and Cerro Prieto geothermal fields. (MHR)

  5. Geothermal development plan: Maricopa County

    Energy Technology Data Exchange (ETDEWEB)

    White, D.H.; Goldstone, L.A.

    1982-08-01

    The Maricopa County Geothermal Development Plan evaluated the market potential for utilizing geothermal energy. The study identified six potential geothermal resource areas with temperatures less than 100{sup 0}C (212{sup 0}F) and in addition, four suspected intermediate temperature areas (90{sup 0} to 150{sup 0}C, 194{sup 0} to 300{sup 0}F). Geothermal resources are found to occur in and near the Phoenix metropolitan area where average population growth rates of two to three percent per year are expected over the next 40 years. Rapid growth in the manufacturing, trade and service sectors of the regional economy provides opportunities for the direct utilization of geothermal energy. A regional energy use analysis is included containing energy use and price projections. Water supplies are found to be adequate to support this growth, though agricultural water use is expected to diminish. The study also contains a detailed section matching geothermal resources to potential users. Two comparative analyses providing economic details for space heating projects are incorporated.

  6. Geothermal energy abstract sets. Special report No. 14

    Energy Technology Data Exchange (ETDEWEB)

    Stone, C. (comp.)

    1985-01-01

    This bibliography contains annotated citations in the following areas: (1) case histories; (2) drilling; (3) reservoir engineering; (4) injection; (5) geothermal well logging; (6) environmental considerations in geothermal development; (7) geothermal well production; (8) geothermal materials; (9) electric power production; (10) direct utilization of geothermal energy; (11) economics of geothermal energy; and (12) legal, regulatory and institutional aspects. (ACR)

  7. Non-electrical uses of geothermal energy

    Energy Technology Data Exchange (ETDEWEB)

    Barber E.; Fanelli, M.

    1977-01-01

    A comprehensive review covers the recognition of natural hot fluids in ancient times and their use for therapeutic baths; the first production of electricity from geothermal steam at Larderello, Italy, in 1904; the widespread geographical occurrence of geothermal fluids; exploration techniques; the extraction of geothermal fluids and their uses in spas, agriculture, aquaculture, domestic heating, and industrial applications; geothermal greenhouse heating world-wide; geothermal heating of animal and poultry houses, in culture of alligators and crocodiles (in Atagawa, Japan), and in fish culture; piping arrangements for district heating, and a tabulation of district heating installations world-wide; downhole exchanger systems used in Klamath Falls, Oregon, for domestic heating; industrial heating applications; and methods of disposal of geothermal fluids. Maps, diagrams, graphs, photographs, tables, and 48 references are included.

  8. Determination of beta-adrenergic receptor blocking pharmaceuticals in united states wastewater effluent

    Energy Technology Data Exchange (ETDEWEB)

    Huggett, D.B.; Khan, I.A.; Foran, C.M.; Schlenk, D

    2003-02-01

    This is the first report of beta-adrenergic receptor antagonist pharmaceuticals in United States wastewater effluent. - Beta adrenergic receptor antagonists ({beta}-Blockers) are frequently prescribed medications in the United States and have been identified in European municipal wastewater effluent, however no studies to date have investigated these compounds in United States wastewater effluent. Municipal wastewater effluent was collected from treatment facilities in Mississippi, Texas, and New York to investigate the occurrence of metoprolol, nadolol, and propranolol. Propranolol was identified in all wastewater samples analyzed (n=34) at concentrations {<=}1.9 {mu}g/l. Metoprolol and nadolol were identified in {>=}71% of the samples with concentrations of metoprolol {<=}1.2 {mu}g/l and nadolol {<=}0.36 {mu}g/l. Time course studies at both Mississippi plants and the Texas plant indicate that concentrations of propranolol, metoprolol, and nadolol remain relatively constant at each sampling period. This study indicates that {beta}-Blockers are present in United States wastewater effluent in the ng/l to {mu}g/l range.

  9. Chemical investigation of sewage effluents of Hyderabad city

    International Nuclear Information System (INIS)

    Laghari, A.; Chandio, S.N.; Khushawar, M.Y.; Laghari, M.Y.

    2000-01-01

    Water samples of sewage effluents were collected from sewage collection points located at Latifabad units 9-11, Husainabad and Qasimabad sewage pumping stations. The sewage is pumped towards Southern Sewage treatment plant (SSTP) or is used for agricultural purposes. The water samples from SSTP were also collected and analyzed for pH, conducively, salinity, alkalinity, chlorides, hardness, total, volatile and fixed residues, dissolved oxygen, chemical oxygen demand, nitrogen and phosphorous contents. Variation in the results between sewage water and effluents were noted. (author)

  10. Geothermal Program Review VII: proceedings. DOE Research and Development for the Geothermal Marketplace

    Energy Technology Data Exchange (ETDEWEB)

    1989-01-01

    Each year the Geothermal Technology Division of the US Department of Energy conducts an indepth review of its entire geothermal R and D program. The 2--3 day conference serves several purposes: a status report on current R and D activities, an assessment of progress and problems, a review of management issues, and a technology transfer opportunity between DOE and the US geothermal industry. This year's conference, Program Review 7, was held in San Francisco on March 21--23, 1989. As indicated by its title, ''DOE Research and Development for the Geothermal Marketplace'', Program Review 7 emphasized developing technologies, concepts, and innovations having potential for commercial application in the foreseeable future. Program Review 7 was comprised of eight sessions including an opening session and a special presentation on the ''Role of Geothermal Energy in Minimizing Global Environmental Problems.'' The five technical sessions covered GTD-sponsored R and D in the areas of hydrothermal (two sessions), hot dry rock, geopressured, and magma. Presentations were made by the relevant field researchers, and sessions were chaired by the appropriate DOE Operations Office Geothermal Program Manager. The technical papers and commentary of invited speakers contained in these Proceedings have been compiled in the order in which they were presented at Program Review 7.

  11. NEDO geothermal energy subcommittee. 18th project report meeting; NEDO chinetsu bunkakai. Dai 18 kai jigyo hokokukai

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-09-01

    Reporting on geothermal energy-related efforts, Taro Yamayasu, a NEDO (New Energy and Industrial Technology Development Organization) director, explains the promotion of researches on geothermal energy exploitation, researches on small and medium scale geothermal binary power system utilization, researches on geothermal exploration technology verification, and joint researches on small scale geothermal exploration on remote islands. Achievement reports are delivered concerning geothermal survey technology verification involving the development of reservoir fluctuation probing technology, deep-seated geothermal resources survey, and international joint projects. Concerning the research cooperation promotion project, a joint research program is reported involving a comprehensive geothermal resources analysis system for a remote island in the eastern part of Indonesia. In relation with the development of thermal water power plants, reports are delivered on the development of a 10MW class demonstration plant, development of technologies (study of elements) for a hot dry rock power system, development of a hole bottom data detection system for drilling in thermal water, and the development of deep-seated geothermal resources sampling technologies. (NEDO)

  12. Mutnovo geothermal power complex at Kamchatka

    International Nuclear Information System (INIS)

    Britvin, O.V.; Povarov, O.A.; Klochkov, E.F.; Tomarov, G.V.; Koshkin, N.L.; Luzin, V.E.

    2001-01-01

    The data on geothermal resources at Kamchatka and experience in their application are presented. The description of the geothermal power complex objects at the Mutnovo deposit is given. The basic trends and stages of the prospective geothermal power development in this region are indicated. It is specified for unique huge geothermal heat reserves, which by different estimates may provide for the total electrical and thermal capacity, exceeding 2000 MW [ru

  13. Geothermal Field Investigations of Turkey

    Science.gov (United States)

    Sayın, N.; Özer, N.

    2017-12-01

    Geothermal energy is a type of energy that are found in the accessible depth of the crust, in the reservoirs by way of the permeable rocks, specially in heated fluid. Geothermal system is made of 3 main components; heat source, reservoir, and fluid bearing heat. Geothermal system mechanism is comprise of fluid transmission. Convection current (heat transmission) is caused by heating and causes the fluid in the system to expand. Heated fluid with low density show tendency to rise in system. Geothermal system occurs with variable geophysics and geochemical properties. Geophysical methods can determine structural properties of shallow and deep reservoirs with temperature, mineralization, gas amount, fluid movement, faulting, and sudden change in lithostratigraphic strata. This study revealed possible reservoir structures and showed examples of geophysics and gas measuring results in Turkey which is wealthy in regard to Geothermal sources.

  14. Groundwater chemistry in the vicinity of the Puna Geothermal Venture Power Plant, Hawai‘i, after two decades of production

    Science.gov (United States)

    Evans, W.C.; Bergfeld, D.; Sutton, A.J.; Lee, R.C.; Lorenson, T.D.

    2015-01-01

    We report chemical data for selected shallow wells and coastal springs that were sampled in 2014 to determine whether geothermal power production in the Puna area over the past two decades has affected the characteristics of regional groundwater. The samples were analyzed for major and minor chemical species, trace metals of environmental concern, stable isotopes of water, and two organic compounds (pentane and isopropanol) that are injected into the deep geothermal reservoir at the power plant. Isopropanol was not detected in any of the groundwaters; confirmed detection of pentane was restricted to one monitoring well near the power plant at a low concentration not indicative of source. Thus, neither organic compound linked geothermal operations to groundwater contamination, though chemical stability and transport velocity questions exist for both tracers. Based on our chemical analysis of geothermal fluid at the power plant and on many similar results from commercially analyzed samples, we could not show that geothermal constituents in the groundwaters we sampled came from the commercially developed reservoir. Our data are consistent with a long-held view that heat moves by conduction from the geothermal reservoir into shallow groundwaters through a zone of low permeability rock that blocks passage of geothermal water. The data do not rule out all impacts of geothermal production on groundwater. Removal of heat during production, for example, may be responsible for minor changes that have occurred in some groundwater over time, such as the decline in temperature of one monitoring well near the power plant. Such indirect impacts are much harder to assess, but point out the need for an ongoing groundwater monitoring program that should include the coastal springs down-gradient from the power plant.

  15. Impact of partially treated sewage effluent on the water quality of ...

    African Journals Online (AJOL)

    Impact of partially treated sewage effluent on the water quality of recipient. Epie Creek in the Niger Delta area of Nigeria was investigated experimentally by analysing the physico-chemical and biological characteristics of the surface water samples collected at four (4) sampling stations: at the effluent discharge point (fall ...

  16. The effects of Niger State water treatment plant effluent on its ...

    African Journals Online (AJOL)

    The effect of water treatment plant effluent on its receiving river (Kaduna) was examined. Samples were collected from the effluents discharge from Chanchaga water treatment plant into upstream and down stream of the receiving river monthly for six month. Samples were analyzed in the laboratory for microbial counts and ...

  17. Deep Seawater Intrusion Enhanced by Geothermal Through Deep Faults in Xinzhou Geothermal Field in Guangdong, China

    Science.gov (United States)

    Lu, G.; Ou, H.; Hu, B. X.; Wang, X.

    2017-12-01

    This study investigates abnormal sea water intrusion from deep depth, riding an inland-ward deep groundwater flow, which is enhanced by deep faults and geothermal processes. The study site Xinzhou geothermal field is 20 km from the coast line. It is in southern China's Guangdong coast, a part of China's long coastal geothermal belt. The geothermal water is salty, having fueled an speculation that it was ancient sea water retained. However, the perpetual "pumping" of the self-flowing outflow of geothermal waters might alter the deep underground flow to favor large-scale or long distant sea water intrusion. We studied geochemical characteristics of the geothermal water and found it as a mixture of the sea water with rain water or pore water, with no indication of dilution involved. And we conducted numerical studies of the buoyancy-driven geothermal flow in the deep ground and find that deep down in thousand meters there is favorable hydraulic gradient favoring inland-ward groundwater flow, allowing seawater intrude inland for an unusually long tens of kilometers in a granitic groundwater flow system. This work formed the first in understanding geo-environment for deep ground water flow.

  18. Geothermal and volcanism in west Java

    Science.gov (United States)

    Setiawan, I.; Indarto, S.; Sudarsono; Fauzi I, A.; Yuliyanti, A.; Lintjewas, L.; Alkausar, A.; Jakah

    2018-02-01

    Indonesian active volcanoes extend from Sumatra, Jawa, Bali, Lombok, Flores, North Sulawesi, and Halmahera. The volcanic arc hosts 276 volcanoes with 29 GWe of geothermal resources. Considering a wide distribution of geothermal potency, geothermal research is very important to be carried out especially to tackle high energy demand in Indonesia as an alternative energy sources aside from fossil fuel. Geothermal potency associated with volcanoes-hosted in West Java can be found in the West Java segment of Sunda Arc that is parallel with the subduction. The subduction of Indo-Australian oceanic plate beneath the Eurasian continental plate results in various volcanic products in a wide range of geochemical and mineralogical characteristics. The geochemical and mineralogical characteristics of volcanic and magmatic rocks associated with geothermal systems are ill-defined. Comprehensive study of geochemical signatures, mineralogical properties, and isotopes analysis might lead to the understanding of how large geothermal fields are found in West Java compared to ones in Central and East Java. The result can also provoke some valuable impacts on Java tectonic evolution and can suggest the key information for geothermal exploration enhancement.

  19. Deep Geothermal Energy Production in Germany

    Directory of Open Access Journals (Sweden)

    Thorsten Agemar

    2014-07-01

    Full Text Available Germany uses its low enthalpy hydrothermal resources predominantly for balneological applications, space and district heating, but also for power production. The German Federal government supports the development of geothermal energy in terms of project funding, market incentives and credit offers, as well as a feed-in tariff for geothermal electricity. Although new projects for district heating take on average six years, geothermal energy utilisation is growing rapidly, especially in southern Germany. From 2003 to 2013, the annual production of geothermal district heating stations increased from 60 GWh to 530 GWh. In the same time, the annual power production increased from 0 GWh to 36 GWh. Currently, almost 200 geothermal facilities are in operation or under construction in Germany. A feasibility study including detailed geological site assessment is still essential when planning a new geothermal facility. As part of this assessment, a lot of geological data, hydraulic data, and subsurface temperatures can be retrieved from the geothermal information system GeotIS, which can be accessed online [1].

  20. Hydrogeology of the Owego-Apalachin Elementary School Geothermal Fields, Tioga County, New York

    Science.gov (United States)

    Williams, John H.; Kappel, William M.

    2015-12-22

    The hydrogeology of the Owego-Apalachin Elementary School geothermal fields, which penetrate saline water and methane in fractured upper Devonian age bedrock in the Owego Creek valley, south-central New York, was characterized through the analysis of drilling and geophysical logs, water-level monitoring data, and specific-depth water samples. Hydrogeologic insights gained during the study proved beneficial for the design of the geothermal drilling program and protection of the overlying aquifer during construction, and may be useful for the development of future geothermal fields and other energy-related activities, such as drilling for oil and natural gas in similar fractured-bedrock settings.

  1. Geothermal Technologies Program: Alaska

    Energy Technology Data Exchange (ETDEWEB)

    2005-02-01

    This fact sheets provides a summary of geothermal potential, issues, and current development in Alaska. This fact sheet was developed as part of DOE's GeoPowering the West initiative, part of the Geothermal Technologies Program.

  2. Project Title: Geothermal Play Fairway Analysis of Potential Geothermal Resources in NE California, NW Nevada, and Southern Oregon: A Transition between Extension$-$Hosted and Volcanically$-$Hosted Geothermal Fields

    Energy Technology Data Exchange (ETDEWEB)

    McClain, James S. [Univ. of California, Davis, CA (United States). Dept. of; Dobson, Patrick [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Glassley, William [Univ. of California, Davis, CA (United States). Dept. of Earth and Planetary Sciences; Schiffman, Peter [Univ. of California, Davis, CA (United States). Dept. of Earth and Planetary Sciences; Zierenberg, Robert [Univ. of California, Davis, CA (United States). Dept. of Earth and Planetary Sciences; Zhang, Yingqi [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Conrad, Mark [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Siler, Drew [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Gasperikova, Erika [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Spycher, Nicolas F. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2016-09-30

    Final report for the UCD-LBNL effort to apply Geothermal Play Fairway Analysis to a transition zone between a volcanically-hosted and extensionally-hosted geothermal. The project focusses on the geothermal resources in northeastern California.

  3. Geothermal Technologies Program Blue Ribbon Panel Recommendations

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2011-06-17

    The Geothermal Technologies Program assembled a geothermal Blue Ribbon Panel on March 22-23, 2011 in Albuquerque, New Mexico for a guided discussion on the future of geothermal energy in the United States and the role of the DOE Program. The Geothermal Blue Ribbon Panel Report captures the discussions and recommendations of the experts. An addendum is available here: http://www.eere.energy.gov/geothermal/pdfs/gtp_blue_ribbon_panel_report_addendum10-2011.pdf

  4. Facility effluent monitoring plan for the 324 Facility

    International Nuclear Information System (INIS)

    1994-11-01

    The 324 Facility [Waste Technology Engineering Laboratory] in the 300 Area primarily supports the research and development of radioactive and nonradioactive waste vitrification technologies, biological waste remediation technologies, spent nuclear fuel studies, waste mixing and transport studies, and tritium development programs. All of the above-mentioned programs deal with, and have the potential to, release hazardous and/or radioactive material. The potential for discharge would primarily result from (1) conducting research activities using the hazardous materials, (2) storing radionuclides and hazardous chemicals, and (3) waste accumulation and storage. This report summarizes the airborne and liquid effluents, and the results of the Facility Effluent Monitoring Plan (FEMP) determination for the facility. The complete monitoring plan includes characterizing effluent streams, monitoring/sampling design criteria, a description of the monitoring systems and sample analysis, and quality assurance requirements

  5. White paper on geothermal sustainability; Grundlagenpapier 'Geothermal sustainability - A review with identified research needs'

    Energy Technology Data Exchange (ETDEWEB)

    Rybach, L.; Megel, T.

    2006-12-15

    This comprehensive appendix contained in a comprehensive annual report 2006 for the Swiss Federal Office of Energy (SFOE) reviews research needs identified in connection with the topic of geothermal sustainability. It is noted that excessive production often pursued - mostly for economical reasons - can lead to the depletion of heat reservoirs. Sustainable production can be achieved with lower production rates and still provide similar total energy yields. The regeneration of geothermal resources following exploitation is discussed. The need for further research into geothermal production sustainability is noted. A doublet system realised in Riehen, Switzerland, is discussed, as is an Enhanced Geothermal System EGS using circulation in fractured rock layers. Research still needed is noted.

  6. Geothermal Progress Monitor: Report No. 14

    Energy Technology Data Exchange (ETDEWEB)

    1992-12-01

    This issue of the Geothermal Progress Monitor, the 14th since its inception in 1980, highlights the anticipated rapid growth in the use of geothermal heat pumps and documents the continued growth in the use of geothermal energy for power generation, both in this country and abroad. In countries with a relatively large demand for new generation capacity, geothermal, if available, is being called on as a preferable alternative to the use of domestic or imported oil. On the other hand, in this country where current demand for new capacity is less, geothermal energy is commonly being put to use in small power generation units operating on the hot water resource.

  7. Geothermal energy

    Energy Technology Data Exchange (ETDEWEB)

    Gasparovic, N

    1962-07-01

    Live steam, transformed steam, and steam produced by expansion flashing are outlined with respect to their use in the production of electricity. The capacity, pressure, and temperature of a steam must be determined empirically by exploratory drilling. These factors are dependent on time and on the extent of nearby drilling-activity. Particulars of geothermal-steam power-plants such as steam dryness, hot-water flashing, condensation, gas extraction, and corrosion are discussed in detail. All available data (as per 1962) concerning the costs of operation and construction of geothermal power plants are tabulated. For space-heating purposes, two basic systems are utilized. When little corrosion or precipitation is expected, an open system is used, otherwise, closed systems are necessary. The space-heating system of Reykjavik, Iceland is cited as an example. A brief description of industrial applications of geothermal energy, such as the extraction of NaCl, D/sub 2/O, or boric acid, is provided. Thirty-two references are given.

  8. Environment - Geothermal, the energy to wake up - Stimulation rather than fracturing - Iceland, the Texas of geothermal energy

    International Nuclear Information System (INIS)

    Chandes, Camille; Moragues, Manuel

    2013-01-01

    A first article comments the current efforts for the development of geothermal in France after a period during which it has been given up. It evokes the project of a geothermal plant near Paris (to supply Arcueil and Gentilly with energy), the increasing number of projects in different countries. It outlines the French delay in this sector, and that geothermal energy is as difficult to find as oil. It evokes the new actors of the sector and outlines the fierce competition in front of Icelander, Italian, US and Japanese actors, and the opportunities for the French ones. A second article comments the use of the hydraulic stimulation in geothermal energy exploration rather than hydraulic fracturing as in shale gas exploration, and outlines that according to geothermal energy actors this technique avoids the risk of micro-earthquake. A last article describes the activity of the geothermal sector in Iceland: geothermal energy supplies two thirds of primary energy consumption in this country. It exploits the Icelander volcanism. This development has been particularly noticeable since 2000, but some questions are raised regarding the production potential

  9. Global geothermal energy scenario

    International Nuclear Information System (INIS)

    Singh, S.K.; Singh, A.; Pandey, G.N.

    1993-01-01

    To resolve the energy crisis efforts have been made in exploring and utilizing nonconventional energy resources since last few decades. Geothermal energy is one such energy resource. Fossil fuels are the earth's energy capital like money deposited in bank years ago. The energy to build this energy came mainly from the sun. Steam geysers and hot water springs are other manifestations of geothermal energy. Most of the 17 countries that today harness geothermal energy have simply tapped such resources where they occur. (author). 8 refs., 4 tabs., 1 fig

  10. Worldwide installed geothermal power

    International Nuclear Information System (INIS)

    Laplaige, P.

    1995-01-01

    Worldwide electric energy production data are easy to compile, according to the informations given by individual countries. On the contrary, thermal applications of geothermics are difficult to quantify due to the variety of applications and the number of countries concerned. Exhaustive informations sometimes cannot be obtained from huge countries (China, Russia..) because of data centralization problems or not exploitable data transmission. Therefore, installed power data for geothermal heat production are given for 26 countries over the 57 that have answered the International Geothermal Association questionnaire. (J.S.). 1 fig., 2 tabs., 1 photo

  11. Geothermal Energy and its Prospects in Lithuania

    International Nuclear Information System (INIS)

    Radeckas, B.

    1995-01-01

    Data on the geothermal resources in lithuania and on their prospective usage are presented. The analysis covers water horizons of the geothermal anomaly in West Lithuania and their hydrogeology. The energy of the 3 km thick geothermal source was evaluated. Technical and economical possibilities of using geothermal energy in West Lithuania are described. Some aspects of the investment and of the project of a geothermal power plant in Klaipeda are considered. (author). 6 refs., 6 tabs., 2 figs

  12. Geothermal program review 16: Proceedings. A strategic plan for geothermal research

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-31

    The proceedings contain 21 papers arranged under the following topical sections: Exploration technology (4 papers); Reservoir technology (5 papers); Energy conversion technology (8 papers); Drilling technology (2 papers); and Direct use and geothermal heat pump technology (2 papers). An additional section contains a report on a workshop on dual-use technologies for hydrothermal and advanced geothermal reservoirs.

  13. Geophysical contribution to evaluate the subsurface structural setting using magnetic and geothermal data in El-Bahariya Oasis, Western Desert, Egypt

    Directory of Open Access Journals (Sweden)

    Esmat Abd El All

    2015-12-01

    The geothermal studies in EL Bahariya-Oasis comprise subsurface temperature contour map which illustrates that the study area has geothermal groundwater reservoirs. The measurements of the geothermal properties for measured rock samples show that the rocks of the study area have moderate values of geothermal properties. This may be due to the seasonal variation in soil temperatures. These soil thermal properties depend on soil porosity and moisture content.

  14. Federal Geothermal Research Program Update Fiscal Year 2002

    Energy Technology Data Exchange (ETDEWEB)

    2003-09-01

    The Department of Energy (DOE) and its predecessors have conducted research and development (R&D) in geothermal energy since 1971. To develop the technology needed to harness the Nation's vast geothermal resources, DOE's Office of Geothermal Technologies oversees a network of national laboratories, industrial contractors, universities, and their subcontractors. The goals are: (1) Double the number of States with geothermal electric power facilities to eight by 2006; (2) Reduce the levelized cost of generating geothermal power to 3-5 cents per kWh by 2007; and (3) Supply the electrical power or heat energy needs of 7 million homes and businesses in the United States by 2010. This Federal Geothermal Program Research Update reviews the specific objectives, status, and accomplishments of DOE's Geothermal Program for Federal Fiscal Year (FY) 2002. The information contained in this Research Update illustrates how the mission and goals of the Office of Geothermal Technologies are reflected in each R&D activity. The Geothermal Program, from its guiding principles to the most detailed research activities, is focused on expanding the use of geothermal energy. balanced strategy for the Geothermal Program.

  15. Federal Geothermal Research Program Update Fiscal Year 2003

    Energy Technology Data Exchange (ETDEWEB)

    2004-03-01

    The Department of Energy (DOE) and its predecessors have conducted research and development (R&D) in geothermal energy since 1971. To develop the technology needed to harness the Nation's vast geothermal resources, DOE's Office of Geothermal Technologies oversees a network of national laboratories, industrial contractors, universities, and their subcontractors. The following mission and goal statements guide the overall activities of the Office. The goals are: (1) Reduce the levelized cost of generating geothermal power to 3-5 cents per kWh by 2007; (2) Double the number of States with geothermal electric power facilities to eight by 2006; and (3) Supply the electrical power or heat energy needs of 7 million homes and businesses in the United States by 2010. This Federal Geothermal Program Research Update reviews the accomplishments of DOE's Geothermal Program for Federal Fiscal Year (FY) 2003. The information contained in this Research Update illustrates how the mission and goals of the Office of Geothermal Technologies are reflected in each R&D activity. The Geothermal Program, from its guiding principles to the most detailed research activities, is focused on expanding the use of geothermal energy. balanced strategy for the Geothermal Program.

  16. NEDO Forum 2000. Geothermal technology development session (new development of geothermal energy); Chinetsu gijutsu kaihatsu session. Chinetsu energy no shintenkai

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-09-01

    The following themes were presented at this session: (1) geothermal development in the future, (2) the current status of geothermal development and utilization, (3) surveys on the promotion of geothermal development, and (4) verification and investigation on geothermal exploration technologies, development of hot water utilizing power generation plants, and international cooperation on geothermal development and utilization. In Item 2, report was made on the current status of geothermal power plants in Japan and their future development targets, long-term overview of geothermal development, measures and budgets to achieve the targets of geothermal development. In Item 3, it is reported that out of 48 areas completed of the survey (including the new promotion surveyed areas), the areas possible of steam power generation and confirmed of temperatures higher than 200 degrees C are 30 areas, and the areas possible of binary power generation (using down hole pumps) and small to medium scale power generation, confirmed of temperatures of 100 to 200 degrees C are 13 areas. In Item 4, reports were made on the reservoir bed variation exploring method, surveys on deep geothermal resources, a 10-MW demonstration plant, a system to detect well bottom information during excavation of geothermal wells, a technology to collect deep geothermal resources, and a hot-rock using power generation system. In Item 5, geothermal exploration in remote islands in the eastern part of Indonesia, and the IEA cooperation projects were reported. (NEDO)

  17. Advanced seismic imaging for geothermal development

    Energy Technology Data Exchange (ETDEWEB)

    Louie, John [UNR; Pullammanappallil, Satish [Optim; Honjas, Bill [Optim

    2016-08-01

    J. N. Louie, Pullammanappallil, S., and Honjas, W., 2011, Advanced seismic imaging for geothermal development: Proceedings of the New Zealand Geothermal Workshop 2011, Nov. 21-23, Auckland, paper 32, 7 pp. Preprint available at http://crack.seismo.unr.edu/geothermal/Louie-NZGW11.pdf

  18. Geothermal Progress Monitor report No. 11

    Energy Technology Data Exchange (ETDEWEB)

    1989-12-01

    This issue of the Geothermal Progress Monitor (GPM) is the 11th since the inception of the publication in 1980. It continues to synthesize information on all aspects of geothermal development in this country and abroad to permit identification and quantification of trends in the use of this energy technology. In addition, the GPM is a mechanism for transferring current information on geothermal technology development to the private sector, and, over time, provides a historical record for those interested in the development pathway of the resource. In sum, the Department of Energy makes the GPM available to the many diverse interests that make up the geothermal community for the multiple uses it may serve. This issue of the GPM points up very clearly how closely knit many of those diverse interests have become. It might well be called an international issue'' since many of its pages are devoted to news of geothermal development abroad, to the efforts of the US industry to participate in overseas development, to the support given those efforts by federal and state agencies, and to the formation of the International Geothermal Association (IGA). All of these events indicate that the geothermal community has become truly international in character, an occurrence that can only enhance the future of geothermal energy as a major source of energy supply worldwide. 15 figs.

  19. World status of geothermal energy use: past and potential

    International Nuclear Information System (INIS)

    Lund, John

    2000-01-01

    The past and potential development of geothermal energy is reviewed, and the use of geothermal energy for power generation and direct heat utilisation is examined. The energy savings that geothermal energy provides in terms of fuel oil and carbon savings are discussed. Worldwide development of geothermal electric power (1940-2000) and direct heat utilisation (1960 to 2000), regional geothermal use in 2000, the national geothermal contributions of geothermal energy, and the installed geothermal electric generating capacities in 2000 are tabulated

  20. Geothermal Program Review X: proceedings. Geothermal Energy and the Utility Market -- the Opportunities and Challenges for Expanding Geothermal Energy in a Competitive Supply Market

    Energy Technology Data Exchange (ETDEWEB)

    1992-01-01

    Each year the Geothermal Division of the US Department of Energy conducts an in-depth review of its entire geothermal R&D program. The conference serves several purposes: a status report on current R&D activities, an assessment of progress and problems, a review of management issues, and a technology transfer opportunity between DOE and the US geothermal city. This year`s conference, Program Review X, was held in San Francisco on March 24--26, 1992. The theme of the review, ``Geothermal Energy and the Utility Market -- The Opportunities and Challenges for Expanding Geothermal Energy in a Competitive Supply Market,`` focused on the needs of the electric utility sector. Geothermal energy, with its power capacity potential of 10 GWe by the year 2010, can provide reliable, enviromentally clean electricity which can help offset the projected increase in demand. Program Review X consisted of seven sessions including an opening session with presentations by Mr. Vikram Budhraja, Vice President of System Planning and Operations, Southern California Edison Company, and Mr. Richard Jaros, President and Chief Operating Officer, California Energy Company. The six technical sessions included presentations by the relevant field researchers covering DOE-sponsored R&D in hydrothermal, hot dry rock, and geopressured energy. Individual projects are processed separately for the data bases.

  1. Liquid Effluent Monitoring Information System test plans release 1.2

    International Nuclear Information System (INIS)

    Adams, R.T.

    1994-01-01

    The Liquid Effluent Monitoring Information System (LEMIS) is being developed as the organized information repository facility in support of the liquid effluent monitoring requirements of the Tri-Party Agreement. It is necessary to provide an automated repository into which the results from liquid effluent sampling will be placed. This repository must provide for effective retention, review, and retrieval of selected sample data by authorized persons and organizations. This System Architecture document is the aggregation of the DMR P+ methodology project management deliverables. Together they represent a description of the project and its plan through four Releases, corresponding to the definition and prioritization of requirements defined by the user

  2. Federal Geothermal Research Program Update Fiscal Year 1999

    Energy Technology Data Exchange (ETDEWEB)

    2004-02-01

    The Department of Energy (DOE) and its predecessors have conducted research and development (R&D) in geothermal energy since 1971. To develop the technology needed to harness the Nation's vast geothermal resources, DOE's Office of Geothermal and Wind Technologies oversees a network of national laboratories, industrial contractors, universities, and their subcontractors. The following mission and goal statements guide the overall activities of the Office of Geothermal and Wind Technologies. This Federal Geothermal Program Research Update reviews the specific objectives, status, and accomplishments of DOE's Geothermal Program for Federal Fiscal Year (FY) 1999. The information contained in this Research Update illustrates how the mission and goals of the Office of Geothermal and Wind Technologies are reflected in each R&D activity. The Geothermal Program, from its guiding principles to the most detailed research activities, is focused on expanding the use of geothermal energy.

  3. Long-term Sustainability of Fracture Conductivity in Geothermal Systems using Proppants

    Energy Technology Data Exchange (ETDEWEB)

    Earl D Mattson; Ghanashyam Neupane; Mitchell Plummer; Clay Jones; Joe Moore

    2016-02-01

    Long-term sustainability of fracture conductivity is critical for commercial success of engineered geothermal system (EGS) and hydrogeothermal field sites. The injection of proppants has been suggested as a means to enhance the conductivity in these systems. Several studies have examined the chemical behavior of proppants that are not at chemical equilibrium with the reservoir rock and water. These studies have suggested that in geothermal systems, geochemical reactions can lead to enhance proppant dissolution and deposition alteration minerals. We hypothesize that proppant dissolution will decrease the strength of the proppant and can potentially reduce the conductivity of the fracture. To examine the geomechanical strength of proppants, we have performed modified crushing tests of proppants and reservoir rock material that was subjected to geothermal reservoir temperature conditions. The batch reactor experiments heated crushed quartz monzonite rock material, proppants (either quartz sand, sintered bauxite or kryptospheres) with Raft River geothermal water to 250 ºC for a period of 2 months. Solid and liquid samples were shipped to University of Utah for chemical characterization with ICP-OES, ICP-MS, and SEM. A separate portion of the rock/proppant material was subjected to a modified American Petroleum Institute ISO 13503-2 proppant crushing test. This test is typically used to determine the maximum stress level that can be applied to a proppant pack without the occurrence of unacceptable proppant crushing. We will use the test results to examine potential changes in proppant/reservoir rock geomechanical properties as compared to samples that have not been subjected to geothermal conditions. These preliminary results will be used to screen the proppants for long term use in EGS and hot hydrogeothermal systems.

  4. Geothermal development and policy in the Philippines

    International Nuclear Information System (INIS)

    Datuin, R.; Roxas, F.

    1990-01-01

    The Philippines is the second largest geothermal energy producer in the world although its geothermal energy potential has barely been utilized. Out of an estimated total reserves of 8,000 MW, only about 11 percent or 894 MW are currently on stream for power generation. The electricity production from geothermal steam registered a growth of 8.9 percent from 1988 to 1989, one of the highest among local energy sources. During that same period, geothermal energy rated the highest capacity utilization of 67 percent compared to the average system capacity utilization of 43 percent. This paper describes both the use of geothermal energy and government policies concerning geothermal energy in the Philippines

  5. Chemical logging of geothermal wells

    Science.gov (United States)

    Allen, C.A.; McAtee, R.E.

    The presence of geothermal aquifers can be detected while drilling in geothermal formations by maintaining a chemical log of the ratio of the concentrations of calcium to carbonate and bicarbonate ions in the return drilling fluid. A continuous increase in the ratio of the concentrations of calcium to carbonate and bicarbonate ions is indicative of the existence of a warm or hot geothermal aquifer at some increased depth.

  6. Toxicity of leather tanning wastewater effluents in sea urchin early development and in marine microalgae.

    Science.gov (United States)

    Meriç, Süreyya; De Nicola, Elena; Iaccarino, Mario; Gallo, Marialuisa; Di Gennaro, Annamaria; Morrone, Gaetano; Warnau, Michel; Belgiorno, Vincenzo; Pagano, Giovanni

    2005-10-01

    This study was designed to investigate the composition and the toxicity of leather tanning wastewater and conditioned sludge collected at the leather tanning wastewater treatment plant (CODISO) located in Solofra, Avellino (Southern Italy). Samples were analyzed for their conventional parameters (COD, TSS, chromium and ammonia) and for metal content. Effluent samples included raw wastewater, and samples collected following coagulation/flocculation process and biological treatment. A set of toxicity endpoints were tested using sea urchin and marine microalgal bioassays by evaluating acute embryotoxicity, developmental defects, changes in sperm fertilization success and transmissible damage from sperm to the offspring, and changes in algal growth rate. Dose-related toxicity to sea urchin embryogenesis and sperm fertilization success was exerted by effluent or sludge samples according to the following rank: conditioned sludge > coagulated effluent > or = raw influent > effluent from biological treatment. Offspring quality was not affected by sperm exposure to any wastewater or to sludge samples. Algal growth was inhibited by raw or coagulated effluent to a similar extent and, again, the effluent from the biological treatment resulted in a decreased toxicity. The results suggest that coagulated effluent and conditioned sludge result in higher toxicity than raw influent in sea urchin embryos and sperm, whereas the biological wastewater treatment of coagulated effluent, in both sea urchins and algae, cause a substantial improvement of wastewater quality. Hence a final biological wastewater treatment should be operated to minimize any environmental damage from tannery wastewater.

  7. Geothermal Energy Development annual report 1979

    Energy Technology Data Exchange (ETDEWEB)

    1980-08-01

    This report is an exerpt from Earth Sciences Division Annual Report 1979 (LBL-10686). Progress in thirty-four research projects is reported including the following area: geothermal exploration technology, geothermal energy conversion technology, reservoir engineering, and geothermal environmental research. Separate entries were prepared for each project. (MHR)

  8. The National Geothermal Energy Research Program

    Science.gov (United States)

    Green, R. J.

    1974-01-01

    The continuous demand for energy and the concern for shortages of conventional energy resources have spurred the nation to consider alternate energy resources, such as geothermal. Although significant growth in the one natural steam field located in the United States has occurred, a major effort is now needed if geothermal energy, in its several forms, is to contribute to the nation's energy supplies. From the early informal efforts of an Interagency Panel for Geothermal Energy Research, a 5-year Federal program has evolved whose objective is the rapid development of a commercial industry for the utilization of geothermal resources for electric power production and other products. The Federal program seeks to evaluate the realistic potential of geothermal energy, to support the necessary research and technology needed to demonstrate the economic and environmental feasibility of the several types of geothermal resources, and to address the legal and institutional problems concerned in the stimulation and regulation of this new industry.

  9. Effects of treated sewage effluent on immune function in rainbow trout (Oncorhynchus mykiss)

    Energy Technology Data Exchange (ETDEWEB)

    Hoeger, Birgit [Environmental Toxicology, University of Konstanz, P.O. Box X918, D-78457 Constance (Germany); Heuvel, Michael R. van den [Forest Research, Private Bag 3020, Sala St., Rotorua (New Zealand); Hitzfeld, Bettina C. [Swiss Agency for the Environment, Forests and Landscape (SAEFL), Substances, Soil, Biotechnology Division, Section Substances, 3003 Bern (Switzerland); Dietrich, Daniel R. [Environmental Toxicology, University of Konstanz, P.O. Box X918, D-78457 Constance (Germany)]. E-mail: daniel.dietrich@uni-konstanz.de

    2004-12-20

    In this study, the immune reactions of rainbow trout (Oncorhynchus mykiss) were examined, after exposure to 10, 30 and 70% of tertiary-treated municipal sewage effluent for 27 days. Exposures were conducted concurrently with and without an immune challenge using intraperitoneal injections of inactivated Aeromonas salmonicida salmonicida. Due to the time required to prepare and analyse samples, fish sampling was conducted over two consecutive days. There was no trout mortality for any of the experimental treatments. The exposure to effluent increased in vitro lymphocyte proliferation, decreased circulating lymphocytes and increased degrading erythrocytes in peripheral blood samples. Circulating lymphocytes were only decreased in the sham-injected, but not in the A. salmonicida-injected group. In addition to effluent effects, circulating lymphocytes and lymphocyte proliferation were decreased on day 2 of sampling as compared to day 1. Concentration-dependent degradation of erythrocytes was only observed on day 2 of sampling. Capture and removal of trout on day 1 of sampling presumably caused low-level stress that affected some results on day 2. Oxidative burst, phagocytosis, lysozyme, leucocyte populations other than lymphocytes and A. salmonicida-specific IgM production were not affected by exposure to effluent, and of these parameters, only oxidative burst and total leucocytes showed sampling day effects. From these results it can be observed, that with the exception of oxidative burst, those variables affected by effluent exposure were also significantly changed by the low-level sampling stress imposed by staggered sampling. Elevated liver mixed-function oxygenase activity as measured by 7-ethoxyresorufin-O-deethylase activity, and increased bile polycyclic aromatic hydrocarbon (PAH) metabolites were observed in response to sewage effluent exposure. As both PAHs and stress are known immune suppressors, it is difficult to conclude whether or not changes in immune

  10. Effects of treated sewage effluent on immune function in rainbow trout (Oncorhynchus mykiss)

    International Nuclear Information System (INIS)

    Hoeger, Birgit; Heuvel, Michael R. van den; Hitzfeld, Bettina C.; Dietrich, Daniel R.

    2004-01-01

    In this study, the immune reactions of rainbow trout (Oncorhynchus mykiss) were examined, after exposure to 10, 30 and 70% of tertiary-treated municipal sewage effluent for 27 days. Exposures were conducted concurrently with and without an immune challenge using intraperitoneal injections of inactivated Aeromonas salmonicida salmonicida. Due to the time required to prepare and analyse samples, fish sampling was conducted over two consecutive days. There was no trout mortality for any of the experimental treatments. The exposure to effluent increased in vitro lymphocyte proliferation, decreased circulating lymphocytes and increased degrading erythrocytes in peripheral blood samples. Circulating lymphocytes were only decreased in the sham-injected, but not in the A. salmonicida-injected group. In addition to effluent effects, circulating lymphocytes and lymphocyte proliferation were decreased on day 2 of sampling as compared to day 1. Concentration-dependent degradation of erythrocytes was only observed on day 2 of sampling. Capture and removal of trout on day 1 of sampling presumably caused low-level stress that affected some results on day 2. Oxidative burst, phagocytosis, lysozyme, leucocyte populations other than lymphocytes and A. salmonicida-specific IgM production were not affected by exposure to effluent, and of these parameters, only oxidative burst and total leucocytes showed sampling day effects. From these results it can be observed, that with the exception of oxidative burst, those variables affected by effluent exposure were also significantly changed by the low-level sampling stress imposed by staggered sampling. Elevated liver mixed-function oxygenase activity as measured by 7-ethoxyresorufin-O-deethylase activity, and increased bile polycyclic aromatic hydrocarbon (PAH) metabolites were observed in response to sewage effluent exposure. As both PAHs and stress are known immune suppressors, it is difficult to conclude whether or not changes in immune

  11. Studies for improvement of regulatory control on the radioactive effluent released from nuclear facilities

    International Nuclear Information System (INIS)

    Cheong, Jae Hak; Park, H. M.; Song, M. C.; Lee, K. H.; Jang, J. K.; Chun, J. K.; Jeong, K. H.

    2005-05-01

    This report contains the second-year results of the research project titled 'Studies for Improvement of Regulatory Control on the Radioactive Effluent Released from Nuclear Facilities' and mainly provides technical and strategic approaches to improve performance of regulatory control on the gaseous effluent released from domestic nuclear facilities. The main result contained here includes overview and technical bases of radioactive gaseous effluent control (Chapter 1), reconsideration of the sensitivity requirements for measurement of radioactivity in gaseous effluent sample (Chapter 2), uncertainty analysis of the calculated radioactivity in gaseous effluent (Chapter 3), and improvement of quantification method of noble gas releases (Chapter 4). In addition, analysis of the impact due to combined sampling of particulate from multiple release points (Chapter 5), comparison of domestic nuclear reactors gaseous effluent data to foreign PWRs (Chapter 6), standardized sampling technique for collection of gaseous tritium (Chapter 7), and application of Xe-133 equivalent concept to gaseous effluent control (Chapter 8) are also provided. As a whole, this report provides a generic approach to improve the performance of regulatory control on the gaseous effluent. Therefore, actual enforcement of the recommendations should be preceded by establishment of a series of action plans reflecting on the site- and facility-specific design and operational features

  12. Geothermics of the Apenninic subduction

    Directory of Open Access Journals (Sweden)

    G. Zito

    1997-06-01

    Full Text Available The subduction of the Adriatic microplate is analysed from a geothermal point of view. In particular four main geodynamic units are distinguished: foreland, foredeep and slab, accretionary prism, and back-arc basin. Each of them is examined from a geothermal point of view and the related open question are discussed. The most relevant results are the determination of the undisturbed geothermal gradient in the aquifer of the foreland; the discovery of a « hot » accretionary prism; and a new model of instantaneous extension of the back-arc basins. The main conclusion is that geothermal data are consistent with a westward dipping subduction that migrated eastward producing a sequence of several episodes at the surface.

  13. Water Desalination using geothermal energy

    KAUST Repository

    Goosen, M.

    2010-08-03

    The paper provides a critical overview of water desalination using geothermal resources. Specific case studies are presented, as well as an assessment of environmental risks and market potential and barriers to growth. The availability and suitability of low and high temperature geothermal energy in comparison to other renewable energy resources for desalination is also discussed. Analysis will show, for example, that the use of geothermal energy for thermal desalination can be justified only in the presence of cheap geothermal reservoirs or in decentralized applications focusing on small-scale water supplies in coastal regions, provided that society is able and willing to pay for desalting. 2010 by the authors; licensee MDPI, Basel, Switzerland.

  14. Engineered Geothermal System Demonstration Project

    Energy Technology Data Exchange (ETDEWEB)

    Petty, Susan

    2014-06-19

    In June 2009, AltaRock Energy began field work on a project supported by the U.S. Department of Energy entitled “Use of Multiple Stimulations to Improve Economics of Engineered Geothermal Systems in Shallow High Temperature Intrusives.” The goal of the project was to develop an Engineered Geothermal System (EGS) in the portion of The Geysers geothermal field operated by the Northern California Power Agency (NCPA). The project encountered several problems while deepening Well E-7 which culminated in the suspension of field activities in September 2009. Some of the problems encountered are particular to The Geysers area, while others might be encountered in any geothermal field, and they might be avoided in future operations.

  15. Determination of beta-adrenergic receptor blocking pharmaceuticals in united states wastewater effluent

    International Nuclear Information System (INIS)

    Huggett, D.B.; Khan, I.A.; Foran, C.M.; Schlenk, D.

    2003-01-01

    This is the first report of beta-adrenergic receptor antagonist pharmaceuticals in United States wastewater effluent. - Beta adrenergic receptor antagonists (β-Blockers) are frequently prescribed medications in the United States and have been identified in European municipal wastewater effluent, however no studies to date have investigated these compounds in United States wastewater effluent. Municipal wastewater effluent was collected from treatment facilities in Mississippi, Texas, and New York to investigate the occurrence of metoprolol, nadolol, and propranolol. Propranolol was identified in all wastewater samples analyzed (n=34) at concentrations ≤1.9 μg/l. Metoprolol and nadolol were identified in ≥71% of the samples with concentrations of metoprolol ≤1.2 μg/l and nadolol ≤0.36 μg/l. Time course studies at both Mississippi plants and the Texas plant indicate that concentrations of propranolol, metoprolol, and nadolol remain relatively constant at each sampling period. This study indicates that β-Blockers are present in United States wastewater effluent in the ng/l to μg/l range

  16. Effects of potential geothermal development in the Corwin Springs Known Geothermal Resources Area, Montana, on the thermal features of Yellowstone National Park. Water Resources Investigation

    International Nuclear Information System (INIS)

    Sorey, M.L.

    1991-01-01

    A two-year study by the U.S. Geological Survey, in collaboration with the National Park Service, Argonne National Laboratory, and Los Alamos National Laboratory was initiated in 1988 to determine the effects of potential geothermal development in the Corwin Springs Known Geothermal Resources Area (KGRA), Montana, on the thermal features of Yellowstone National Park. The study addressed three principal issues: (1) the sources of thermal water in the hot springs at Mammoth, La Duke, and Bear Creek; (2) the degree of subsurface connection between these areas; and (3) the effects of geothermal development in the Corwin Springs KGRA on the Park's thermal features. The authors investigations included, but were not limited to, geologic mapping, electrical geophysical surveys, chemical sampling and analyses of waters and rocks, determinations of the rates of discharge of various thermal springs, and hydrologic tracer tests

  17. Optimizing Liquid Effluent Monitoring at a Large Nuclear Complex

    International Nuclear Information System (INIS)

    Chou, Charissa J.; Johnson, V.G.; Barnett, Brent B.; Olson, Phillip M.

    2003-01-01

    Monitoring data for a centralized effluent treatment and disposal facility at the Hanford Site, a defense nuclear complex undergoing cleanup and decommissioning in southeast Washington State, was evaluated to optimize liquid effluent monitoring efficiency. Wastewater from several facilities is collected and discharged to the ground at a common disposal site. The discharged water infiltrates through 60 m of soil column to the groundwater, which eventually flows into the Columbia River, the second largest river in the contiguous United States. Protection of this important natural resource is the major objective of both cleanup and groundwater and effluent monitoring activities at the Hanford Site. Four years of effluent data were evaluated for this study. More frequent sampling was conducted during the first year of operation to assess temporal variability in analyte concentrations, to determine operational factors contributing to waste stream variability and to assess the probability of exceeding permit limits. Subsequently, the study was updated which included evaluation of the sampling and analysis regime. It was concluded that the probability of exceeding permit limits was one in a million under normal operating conditions, sampling frequency could be reduced, and several analytes could be eliminated, while indicators could be substituted for more expensive analyses. Findings were used by the state regulatory agency to modify monitoring requirements for a new discharge permit. The primary focus of this paper is on the statistical approaches and rationale that led to the successful permit modification and to a more cost-effective effluent monitoring program

  18. The effects of Niger State water treatment plant effluent on its ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-05-16

    May 16, 2008 ... The effect of water treatment plant effluent on its receiving river (Kaduna) was examined. Samples were ... Agency (FEPA) limits for effluent discharge into surface water. .... municipal sewage, garbages, domestic and industrial.

  19. Geological and hydrogeochemical explorations for geothermal resources in eastern Sabalan, NW Iran.

    Science.gov (United States)

    Masoumi, Roohangiz

    2017-04-01

    Geological considerations in the east of Sabalan volcano indicate that the calc-alkaline volcanic-sedimentary units constitute the great volume of the geothermal reservoir in the study district. The rocks suffered argillic alteration acted as cap rocks for this reservoir. In some localities in the study district siliceous (chalcedony and opal) sinters were developed around the orifice of the hot springs. The geothermal fluids in the study district, in terms of physico-chemical parameters, have characteristics which differ from other geothermal fields around the Mount Sabalan particularly in the southern and northwestern districts. These differences are: (a) the measured pH values of the geothermal fluids range from approximately 4.5 to 8.8 signifying a variation from acidity to alkalinity; (b) the measured TDS values of these waters, in comparison with the average TDS values for most types of geothermal systems, are low and the minimum values were recorded in the Viladara area; (c) estimation of concentration values of anions and cations in the selected spring water samples indicate that they have chiefly chloride and bicarbonate anions however, samples from the Sardabeh area contain relatively high sulfate (SO42-) content. The concentration values of rare elements in these waters are noticeable. Selenium has the highest concentration value (170 mg/l) among the rare elements. The maximum concentration values of boron and arsenic were measured to be 7 mg/l and 10 mg/l, respectively. The rest of rare elements have relatively low concentration values in the studied samples. The calculation of solute-based geothermometry was done on the basis of Na-Li, Na-K, Na-K, Ca, and silica for the water samples. The results of all these procedures for estimation of temperature of the geothermal reservoir in the east of Mount Sabalan were relatively very close to one another. Nevertheless, the temperatures determined by the Na-Li and Na-K geothermometric methods are 225°C and 239

  20. Fluid sample collection and distribution system. [qualitative analysis of aqueous samples from several points

    Science.gov (United States)

    Brooks, R. L. (Inventor)

    1979-01-01

    A multipoint fluid sample collection and distribution system is provided wherein the sample inputs are made through one or more of a number of sampling valves to a progressive cavity pump which is not susceptible to damage by large unfiltered particles. The pump output is through a filter unit that can provide a filtered multipoint sample. An unfiltered multipoint sample is also provided. An effluent sample can be taken and applied to a second progressive cavity pump for pumping to a filter unit that can provide one or more filtered effluent samples. The second pump can also provide an unfiltered effluent sample. Means are provided to periodically back flush each filter unit without shutting off the whole system.

  1. Very low energy geothermics

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    Very low energy geothermics correspond to temperatures below 30 C and has been developed to cover heating and cooling needs of recent individual houses or tertiary industries using heat pumps and low depth aquifers (<100 m). Geothermal heat pumps industry has made great strides in European Northern countries, China, Japan and the United States of America. Geothermal heat pumps are less energy consuming than air heat pumps and require less cooling fluid and maintenance. The Aquapac procedure has been developed in France in 1983 by the AFME (French Energy Control Agency), EdF and the BRGM (Geologic and Mining Research Office) to encourage the use of geothermal heat pump for domestic and sanitary water heating and to make a survey of low-depth aquifers in the whole french territory. The decay of energy costs that started in 1986 has led to a loss of interest for the Aquapac procedure, even in the tertiary industries for which the air-conditioning demand is growing up. (J.S.). 1 tab

  2. Geothermal well log interpretation midterm report

    Energy Technology Data Exchange (ETDEWEB)

    Sanyal, S.K.; Wells, L.E.; Bickham, R.E.

    1979-02-01

    Reservoir types are defined according to fluid phase and temperature, lithology, geologic province, pore geometry, and salinity and fluid chemistry. Improvements are needed in lithology and porosity definition, fracture detection, and thermal evaluation for more accurate interpretation. Further efforts are directed toward improving diagnostic techniques for relating rock characteristics and log response, developing petrophysical models for geothermal systems, and developing thermal evaluation techniques. The Geothermal Well Log Interpretation study and report has concentrated only on hydrothermal geothermal reservoirs. Other geothermal reservoirs (hot dry rock, geopressured, etc.) are not considered.

  3. Viruses in acidic geothermal environments of the Kamchatka Peninsula

    DEFF Research Database (Denmark)

    Bize, Ariane; Peng, Xu; Prokofeva, Maria

    2008-01-01

    Screening for viruses in samples taken from acidic hot springs of Kamchatka (Russia) revealed a collection of morphotypes, including linear, spherical and complex fusiform shapes, which show partial similarity to those found in acidic geothermal environments in other geographical locations. One...

  4. Uranium disequilibrium investigation of the Las Cruces East Mesa Geothermal Field

    International Nuclear Information System (INIS)

    Gross, J.; Cochran, J.; Icerman, L.

    1985-03-01

    The concentration of dissolved uranium in 33 thermal and nonthermal groundwaters was found to vary from less than 1 part per billion to 285 parts per billion. The uranium-234 to uranium-238 alpha activity ratio of the 33 samples varied from 0.8 to 4.6. Young waters in the recharge area of the Jornada del Muerto Basin are characterized by low uranium concentrations and high activity ratios. Uranium concentrations of groundwaters increase down hydraulic gradient. Concentrations and activity ratios of dissolved uranium in Mesilla Valley groundwater exhibit wide variation and appear to be related to both short-term and long-term removal of groundwater from storage. Geothermal waters exhibit low uranium concentrations and activity ratios. The water produced from New Mexico State University geothermal wells appears to be a mixture of deep upwelling geothermal water and shallow Jornada del Muerto Basin water. The low activity ratio of water from an 800 meter geothermal well may be the result of thermally-induced isotopic equilibration. Isotopic equilibration suggests that higher temperatures may be found deeper within the reservoir

  5. Radiator Enhanced Geothermal System - A Revolutionary Method for Extracting Geothermal Energy

    Science.gov (United States)

    Karimi, S.; Marsh, B. D.; Hilpert, M.

    2017-12-01

    A new method of extracting geothermal energy, the Radiator Enhanced Geothermal System (RAD-EGS) has been developed. RAD-EGS attempts to mimic natural hydrothermal systems by 1) generating a vertical vane of artificially produced high porosity/permeability material deep in a hot sedimentary aquifer, 2) injecting water at surface temperatures to the bottom of the vane, where the rock is the hottest, 3) extracting super-heated water at the top of the vane. The novel RAD-EGS differs greatly from the currently available Enhanced Geothermal Systems in vane orientation, determined in the governing local crustal stress field by Shmax and Sl (meaning it is vertical), and in the vane location in a hot sedimentary aquifer, which naturally increases the longevity of the system. In this study, we explore several parameters regimes affecting the water temperature in the extraction well, keeping in mind that the minimum temperature of the extracted water has to be 150 °C in order for a geothermal system to be commercially viable. We used the COMSOL finite element package to simulate coupled heat and fluid transfer within the RAD-EGS model. The following geologic layers from top to bottom are accounted for in the model: i) confining upper layer, ii) hot sedimentary aquifer, and iii) underlying basement rock. The vane is placed vertically within the sedimentary aquifer. An injection well and an extraction well are also included in the simulation. We tested the model for a wide range of various parameters including background heat flux, thickness of geologic layers, geometric properties of the vane, diameter and location of the wells, fluid flow within the wells, regional hydraulic gradient, and permeability and porosity of the layers. The results show that among the aforementioned parameters, background heat flux and the depth of vane emplacement are highly significant in determining the level of commercial viability of the geothermal system. These results indicate that for the

  6. Geothermal Loan Guaranty Program and its impact on geothermal exploration and development

    Energy Technology Data Exchange (ETDEWEB)

    Nasr, L.H.

    1978-05-01

    The study showed that the Geothermal Loan Guaranty Program has had only a negligible effect on geothermal development and the response to the program was far less than expected. The streamlining of environmental regulations and leasing policies, and the granting of intangible drilling cost write-offs and depletion allowances to operators would have had a greater impact on geothermal energy development. The loan guaranty program did not promote the undertaking of any new projects that would not have been undertaken without it. The program only accelerated the pace for some development which might have commenced in the future. Included in the study are recommendations for improving the operation of the program thereby increasing its attractiveness to potential applicants.

  7. Geothermal Permeability Enhancement - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Joe Beall; Mark Walters

    2009-06-30

    The overall objective is to apply known permeability enhancement techniques to reduce the number of wells needed and demonstrate the applicability of the techniques to other undeveloped or under-developed fields. The Enhanced Geothermal System (EGS) concept presented in this project enhances energy extraction from reduced permeability zones in the super-heated, vapor-dominated Aidlin Field of the The Geysers geothermal reservoir. Numerous geothermal reservoirs worldwide, over a wide temperature range, contain zones of low permeability which limit the development potential and the efficient recovery of heat from these reservoirs. Low permeability results from poorly connected fractures or the lack of fractures. The Enhanced Geothermal System concept presented here expands these technologies by applying and evaluating them in a systematic, integrated program.

  8. Geothermal Potential Based on Physical Characteristics of the Region (Case Study: Mount Karang, Pandeglang Regency and Banten Province

    Directory of Open Access Journals (Sweden)

    Russel Fhillipo

    2018-01-01

    Full Text Available This research is about geothermal potential of Mount Karang, Banten Province which is based on the characteristics of the region. This research method used is geochemistry sample of hot springs and integrated with GIS method for spatial of geothermal potential. Based on the geothermal potential, Mount Karang is divided into three regions, ie high potential, normal potential, and low potential. The high geothermal potential region covers an area of 24.16 Km2 and which there are Cisolong and Banjar 2 hot springs. The normal potential covers Kawah hot spring. Index of the fault of Mount Karang region is one of the significant physical characteristics to determine geothermal potential.

  9. Prospects of geothermal energy

    International Nuclear Information System (INIS)

    Manzella, A.; Bianchi, A.

    2008-01-01

    Geothermal energy has great potential as a renewable energy with low environmental impact, the use of heat pumps is becoming established in Italy but the national contributions are still modest when compared to other nations. Mature technologies could double the installed geothermal power in Italy at 2020. [it

  10. Electric utility companies and geothermal power

    Science.gov (United States)

    Pivirotto, D. S.

    1976-01-01

    The requirements of the electric utility industry as the primary potential market for geothermal energy are analyzed, based on a series of structured interviews with utility companies and financial institution executives. The interviews were designed to determine what information and technologies would be required before utilities would make investment decisions in favor of geothermal energy, the time frame in which the information and technologies would have to be available, and the influence of the governmental politics. The paper describes the geothermal resources, electric utility industry, its structure, the forces influencing utility companies, and their relationship to geothermal energy. A strategy for federal stimulation of utility investment in geothermal energy is suggested. Possibilities are discussed for stimulating utility investment through financial incentives, amelioration of institutional barriers, and technological improvements.

  11. Status of geothermal resources in Mexico

    International Nuclear Information System (INIS)

    Le-Bert, G.

    1990-01-01

    Except for some isolated instances with tourist or therapeutic objectives and some attempts in the Cerro Prieto geothermal field, there are no projects for direct heat utilization of geothermal resources in Mexico. Therefore, all places that are studied are studied with geothermal-electric objectives. It is convenient to keep in mind that in Mexico, by law, the Comision Federal de Electricidad (CFE) is the public utility in charge of electrical energy service. This institution is directly responsible for the exploration, development and commercial use of geothermal energy for electrical generation. Therefore, this paper includes the present and planned exploration and utilization of geothermal resources only for electricity generation for the period 1985 to the present. Likewise, starting 5 years ago, the CFE efforts have been directed toward the development of high enthalpy fields

  12. Quality Assurance Project Plan for Facility Effluent Monitoring Plan activities

    International Nuclear Information System (INIS)

    Nickels, J.M.

    1991-06-01

    This Quality Assurance Project Plan addresses the quality assurance requirements for the Facility Monitoring Plans of the overall site-wide environmental monitoring plan. This plan specifically applies to the sampling and analysis activities and continuous monitoring performed for all Facility Effluent Monitoring Plan activities conducted by Westinghouse Hanford Company. It is generic in approach and will be implemented in conjunction with the specific requirements of individual Facility Effluent Monitoring Plans. This document is intended to be a basic road map to the Facility Effluent Monitoring Plan documents (i.e., the guidance document for preparing Facility Effluent Monitoring Plans, Facility Effluent Monitoring Plan determinations, management plan, and Facility Effluent Monitoring Plans). The implementing procedures, plans, and instructions are appropriate for the control of effluent monitoring plans requiring compliance with US Department of Energy, US Environmental Protection Agency, state, and local requirements. This Quality Assurance Project Plan contains a matrix of organizational responsibilities, procedural resources from facility or site manuals used in the Facility Effluent Monitoring Plans, and a list of the analytes of interest and analytical methods for each facility preparing a Facility Effluent Monitoring Plan. 44 refs., 1 figs., 2 tabs

  13. Heavy-metal contamination of agricultural soils irrigated with industrial effluents

    International Nuclear Information System (INIS)

    Nabi, G.; Ashraf, M.; Aslam, M. R.

    2001-01-01

    Pakistan is facing a thread of degradation of water and land-resources by industrial effluents. To evaluated the suitability of these effluents as a source of irrigation for agriculture and the study their effects on soil chemical properties, experiments were conducted in the industrial area of Sheikhupura, where effluent from Paper and Board Mill (PBM), Leather Industry (LI) and Fertilizer Industry (FI) were being used for irrigation. At each site, two fields were selected, one irrigated with industrial effluents and the other with tube-well/canal water. The soil samples were collected and analyzed for pH, ECe, SAR and for heavy metals, such as Cu, Cd, Cr, Zn, Pb, Mn, Fe, Al and Ni. Soil receiving effluent from LI showed higher ECe and SAR values, as compared to the soils receiving other effluents. The concentration of Al was high in the soil irrigated with LI effluent. The Mn and Fe contents were higher in soils irrigated with PBM effluent. Effluent from LI is not fit for irrigation, since its recipient soil showed high concentration of Cr and also high sodicity values. Except Cr, the heavy metals were not of environmental concern. (author)

  14. Water quality changes due to abattoir effluent: A case on Mchesa ...

    African Journals Online (AJOL)

    user

    impact of effluent from Shire Valley Abattoir on the physico-chemical parameters of Mchesa Stream in. Blantyre. Water ... Sampling point located 10m downstream from effluent discharge. S50 ..... Similar studies done in Mudi River (Masamba.

  15. Geothermal Frontier: Penetrate a boundary between hydrothermal convection and heat conduction zones to create 'Beyond Brittle Geothermal Reservoir'

    Science.gov (United States)

    Tsuchiya, N.; Asanuma, H.; Sakaguchi, K.; Okamoto, A.; Hirano, N.; Watanabe, N.; Kizaki, A.

    2013-12-01

    EGS has been highlightened as a most promising method of geothermal development recently because of applicability to sites which have been considered to be unsuitable for geothermal development. Meanwhile, some critical problems have been experimentally identified, such as low recovery of injected water, difficulties to establish universal design/development methodology, and occurrence of large induced seismicity. Future geothermal target is supercritical and superheated geothermal fluids in and around ductile rock bodies under high temperatures. Ductile regime which is estimated beyond brittle zone is target region for future geothermal development due to high enthalpy fluids and relatively weak water-rock interaction. It is very difficult to determine exact depth of Brittle-Ductile boundary due to strong dependence of temperature (geotherm) and strain rate, however, ductile zone is considered to be developed above 400C and below 3 km in geothermal fields in Tohoku District. Hydrothermal experiments associated with additional advanced technology will be conducting to understand ';Beyond brittle World' and to develop deeper and hotter geothermal reservoir. We propose a new concept of the engineered geothermal development where reservoirs are created in ductile basement, expecting the following advantages: (a)simpler design and control the reservoir, (b)nearly full recovery of injected water, (c)sustainable production, (d)cost reduction by development of relatively shallower ductile zone in compression tectonic zones, (e)large quantity of energy extraction from widely distributed ductile zones, (f)establishment of universal and conceptual design/development methodology, and (g) suppression of felt earthquakes from/around the reservoirs. In ductile regime, Mesh-like fracture cloud has great potential for heat extraction between injection and production wells in spite of single and simple mega-fracture. Based on field observation and high performance hydrothermal

  16. National Geothermal Data System: A Geothermal Data System for Exploration and Development

    Energy Technology Data Exchange (ETDEWEB)

    Allison, Lee [Executive Office of the State of Arizona (Arizona Geological Survey); Richard, Stephen [Executive Office of the State of Arizona (Arizona Geological Survey); Patten, Kim [Executive Office of the State of Arizona (Arizona Geological Survey); Love, Diane [Executive Office of the State of Arizona (Arizona Geological Survey); Coleman, Celia [Executive Office of the State of Arizona (Arizona Geological Survey); Chen, Genhan [Executive Office of the State of Arizona (Arizona Geological Survey)

    2012-09-30

    Geothermal-relevant geosciences data from all 50 states (www.stategeothermaldata.org), federal agencies, national labs, and academic centers are being digitized and linked in a distributed online network funded by the U.S. Department of Energy Geothermal Data System (GDS) to foster geothermal energy exploration and development through use of interactive online ‘mashups,’data integration, and applications. Emphasis is first to make as much information as possible accessible online, with a long range goal to make data interoperable through standardized services and interchange formats. A growing set of more than thirty geoscience data content models is in use or under development to define standardized interchange formats for: aqueous chemistry, borehole temperature data, direct use feature, drill stem test, seismic event hypocenter, fault feature, geologic contact feature, geologic unit feature, thermal/hot spring description, metadata, quaternary fault, volcanic vent description, well header feature, borehole lithology log, crustal stress, gravity, heat flow/temperature gradient, permeability, and feature description data like developed geothermal systems, geologic unit geothermal characterization, permeability, production data, rock alteration description, rock chemistry, and thermal conductivity. Map services are also being developed for isopach maps, aquifer temperature maps, and several states are working on geothermal resource overview maps. Content models are developed based on existing community datasets to encourage widespread adoption and promulgate content quality standards. Geoscience data and maps from other GDS participating institutions, or “nodes” (e.g., U.S. Geological Survey, Southern Methodist University, Oregon Institute of Technology, Stanford University, the University of Utah) are being supplemented with extensive land management and land use resources from the Western Regional Partnership (15 federal agencies and 5 Western states) to

  17. China starts tapping rich geothermal resources

    Science.gov (United States)

    Guang, D.

    1980-09-01

    Attention is given to the electric and power installation running on geothermal energy at Yangbajain, Tibet. Other geothermal projects in Tibet, the Yunnan Province and the North China Plain are also outlined. Applications of geothermal energy are described, including the heating of homes and factories, spinning, weaving, paper-making and the making of wine.

  18. Materials selection guidelines for geothermal energy utilization systems

    Energy Technology Data Exchange (ETDEWEB)

    Ellis, P.F. II; Conover, M.F.

    1981-01-01

    This manual includes geothermal fluid chemistry, corrosion test data, and materials operating experience. Systems using geothermal energy in El Salvador, Iceland, Italy, Japan, Mexico, New Zealand, and the United States are described. The manual provides materials selection guidelines for surface equipment of future geothermal energy systems. The key chemical species that are significant in determining corrosiveness of geothermal fluids are identified. The utilization modes of geothermal energy are defined as well as the various physical fluid parameters that affect corrosiveness. Both detailed and summarized results of materials performance tests and applicable operating experiences from forty sites throughout the world are presented. The application of various non-metal materials in geothermal environments are discussed. Included in appendices are: corrosion behavior of specific alloy classes in geothermal fluids, corrosion in seawater desalination plants, worldwide geothermal power production, DOE-sponsored utilization projects, plant availability, relative costs of alloys, and composition of alloys. (MHR)

  19. Prospects of geothermal resource exploitation

    International Nuclear Information System (INIS)

    Bourrelier, P.H.; Cornet, F.; Fouillac, C.

    1994-01-01

    The use of geothermal energy to generate electricity has only occurred during the past 50 years by drilling wells in aquifers close to magmas and producing either dry steam or hot water. The world's production of electricity from geothermal energy is over 6000 MWe and is still growing. The direct use of geothermal energy for major urban communities has been developed recently by exploitation of aquifers in sedimentary basins under large towns. Scaling up the extraction of heat implies the exploitation of larger and better located fields requiring an appropriate method of extraction; the objective of present attempts in USA, Japan and Europe is to create heat exchangers by the circulation of water between several deep wells. Two field categories are considered: the extension of classical geothermal fields beyond the aquifer areas, and areas favoured by both a high geothermal gradient, fractures inducing a natural permeability at large scale, and good commercial prospects (such as in the Rhenan Graben). Hot dry rocks concept has gained a large interest. 1 fig., 5 tabs., 11 refs

  20. The Oregon Geothermal Planning Conference

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-10-02

    Oregon's geothermal resources represent a large portion of the nation's total geothermal potential. The State's resources are substantial in size, widespread in location, and presently in various stages of discovery and utilization. The exploration for, and development of, geothermal is presently dependent upon a mixture of engineering, economic, environmental, and legal factors. In response to the State's significant geothermal energy potential, and the emerging impediments and incentives for its development, the State of Oregon has begun a planning program intended to accelerate the environmentally prudent utilization of geothermal, while conserving the resource's long-term productivity. The program, which is based upon preliminary work performed by the Oregon Institute of Technology's Geo-Heat Center, will be managed by the Oregon Department of Energy, with the assistance of the Departments of Economic Development, Geology and Mineral Industries, and Water Resources. Funding support for the program is being provided by the US Department of Energy. The first six-month phase of the program, beginning in July 1980, will include the following five primary tasks: (1) coordination of state and local agency projects and information, in order to keep geothermal personnel abreast of the rapidly expanding resource literature, resource discoveries, technological advances, and each agency's projects. (2) Analysis of resource commercialization impediments and recommendations of incentives for accelerating resource utilization. (3) Compilation and dissemination of Oregon geothermal information, in order to create public and potential user awareness, and to publicize technical assistance programs and financial incentives. (4) Resource planning assistance for local governments in order to create local expertise and action; including a statewide workshop for local officials, and the formulation of two specific community resource development

  1. Federal Geothermal Research Program Update - Fiscal Year 2001

    Energy Technology Data Exchange (ETDEWEB)

    Laney, P.T.

    2002-08-31

    This Federal Geothermal Program Research Update reviews the specific objectives, status, and accomplishments of DOE's Geothermal Program for Federal Fiscal Year (FY) 2001. The information contained in this Research Update illustrates how the mission and goals of the Office of Geothermal Technologies are reflected in each R&D activity. The Geothermal Program, from its guiding principles to the most detailed research activities, is focused on expanding the use of geothermal energy.

  2. Development of geothermal-well-completion systems. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, E.B.

    1979-01-01

    Results of a three year study concerning the completion of geothermal wells, specifically cementing, are reported. The research involved some specific tasks: (1) determination of properties an adequate geothermal well cement must possess; (2) thorough evaluation of current high temperature oilwell cementing technology in a geothermal context; (3) basic research concerning the chemical and physical behavior of cements in a geothermal environment; (4) recommendation of specific cement systems suitable for use in a geothermal well.

  3. Quality Assurance Project Plan for Facility Effluent Monitoring Plan activities

    International Nuclear Information System (INIS)

    Frazier, T.P.

    1994-01-01

    This Quality Assurance Project Plan addresses the quality assurance requirements for the activities associated with the Facility Effluent Monitoring Plans, which are part of the overall Hanford Site Environmental Protection Plan. This plan specifically applies to the sampling and analysis activities and continuous monitoring performed for all Facility Effluent Monitoring Plan activities conducted by Westinghouse Hanford Company. It is generic in approach and will be implemented in conjunction with the specific requirements of the individual Facility Effluent Monitoring Plans

  4. Geothermal environmental impact

    International Nuclear Information System (INIS)

    Armannsson, H.; Kristmannsdottir, H.

    1992-01-01

    Geothermal utilization can cause surface disturbances, physical effects due to fluid withdrawal noise, thermal effects and emission of chemicals as well as affect the communities concerned socially and economically. The environmental impact can be minimized by multiple use of the energy source and the reinjection of spent fluids. The emission of greenhouse gases to the atmosphere can be substantially reduced by substituting geothermal energy for fossil fuels as an industrial energy source wherever possible

  5. Status on high enthalpy geothermal resources in Greece

    International Nuclear Information System (INIS)

    Koutinas, G.A.

    1990-01-01

    Greece is privileged to have many high and medium enthalpy geothermal resources. Related activities during the last 5 years were conducted mainly on the previously discovered geothermal fields of Milos, Nisyros and Lesvos islands, without any deep geothermal drilling. Most efforts were focused on the demonstration of a high enthalpy geothermal reservoir on Milos, by generating electricity from high salinity fluid, with a 2 MW pilot plant. Significant experience has been gained there, by solving technical problems, but still site specific constraints have to be overcome in order to arrive at a comprehensive feasibility study, leading to the development phase. A pre-feasibility study has been carried out in the Nisyros geothermal field. Moreover, a detailed geoscientific exploration program has been completed on Lesvos island, where very promising geothermal areas have been identified. In this paper, reference is made to the most important data concerning high enthalpy geothermal resources by emphasizing the Milos geothermal field

  6. Federal Geothermal Research Program Update, FY 2000

    Energy Technology Data Exchange (ETDEWEB)

    Renner, Joel Lawrence

    2001-08-01

    The Department of Energy's Geothermal Program serves two broad purposes: 1) to assist industry in overcoming near-term barriers by conducting cost-shared research and field verification that allows geothermal energy to compete in today's aggressive energy markets; and 2) to undertake fundamental research with potentially large economic payoffs. The four categories of work used to distinguish the research activities of the Geothermal Program during FY 2000 reflect the main components of real-world geothermal projects. These categories form the main sections of the project descriptions in this Research Update. Exploration Technology research focuses on developing instruments and techniques to discover hidden hydrothermal systems and to explore the deep portions of known systems. Research in geophysical and geochemical methods is expected to yield increased knowledge of hidden geothermal systems. Reservoir Technology research combines laboratory and analytical investigations with equipment development and field testing to establish practical tools for resource development and management for both hydrothermal reservoirs and enhanced geothermal systems. Research in various reservoir analysis techniques is generating a wide range of information that facilitates development of improved reservoir management tools. Drilling Technology focuses on developing improved, economic drilling and completion technology for geothermal wells. Ongoing research to avert lost circulation episodes in geothermal drilling is yielding positive results. Conversion Technology research focuses on reducing costs and improving binary conversion cycle efficiency, to permit greater use of the more abundant moderate-temperature geothermal resource, and on the development of materials that will improve the operating characteristics of many types of geothermal energy equipment. Increased output and improved performance of binary cycles will result from investigations in heat cycle research.

  7. Minutes of the conference 'Geothermal energy in Asia '98'. Symposium on the current status and the future of developing geothermal energy in Asia

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-10-22

    This paper summarizes the proceedings presented at the 'Geothermal energy in Asia '98' held on October 22, 1998 in the Philippines. The Philippines, Japan, Indonesia, China, Malaysia, and Vietnam presented proceedings on the current status and the future of developing geothermal energy in each country. Technical theses presented relate to the following matters: a geothermal development model in the Khoy geothermal area in Iran, the result of surveys on promotion of geothermal development in Japan, the thermal fluid sources in the geothermal fluid systems in the Hachijo volcanic island in Japan, strategies for heat reservoir management by using numerical simulation in the Hacchobari geothermal area in Japan, a geological model for the north Negros geothermal area in the center of the Philippines, application of the NEDO rock core analyzing method in the Wasabizawa geothermal development area in Japan, measurements of geomagnetism, geocurrent, and gravity in the north Negros in the center of the Philippines, geophysical studies in geothermal exploration in the Mataloko area in the Nustenggara island in the eastern Indonesia, and the background of magma/crust structure in the geothermal systems. (NEDO)

  8. Update of geothermal energy development in Greece

    International Nuclear Information System (INIS)

    Koutroupis, N.

    1992-01-01

    Following the completion of the Geothermal Reconnaissance Study in Greece and the successful drilling of seven deep geothermal wells in the Aegean islands of Milos and Nisyros, PPC started the first step towards geothermal development for electricity production as follows: A geothermal electric pilot plant of 2 MW e nominal capacity was installed on the Zephyria plain in Milos island (1985). During a nine month operation of the plant, problems connected with its long term operation were solved (hot reinjection of the high salinity brine, turbine washing etc). A feasibility study regarding exploitation of the Nisyros geothermal resources was completed and PPC connected Nisyros island electrically to Kos island via submarine cables. As consequence of the reaction against geothermal development by the people of Milos in early 1989, the power plant is still out of operation and the feasibility study planned for Milos has been postponed. For similar reasons the Nisyros drilling contract for five new geothermal deep wells has not come into force as yet. This paper summarizes the main PPC geothermal activities to date, the problems caused by the reactions of the Milos and Nisyros population and the relevant PPC countermeasures, as well as outlining the PPC development program for the near future

  9. Multivariate analysis of selected metals in tannery effluents and related soil.

    Science.gov (United States)

    Tariq, Saadia R; Shah, Munir H; Shaheen, N; Khalique, A; Manzoor, S; Jaffar, M

    2005-06-30

    Effluent and relevant soil samples from 38 tanning units housed in Kasur, Pakistan, were obtained for metal analysis by flame atomic absorption spectrophotometric method. The levels of 12 metals, Na, Ca, K, Mg, Fe, Mn, Cr, Co, Cd, Ni, Pb and Zn were determined in the two media. The data were evaluated towards metal distribution and metal-to-metal correlations. The study evidenced enhanced levels of Cr (391, 16.7 mg/L) and Na (25,519, 9369 mg/L) in tannery effluents and relevant soil samples, respectively. The effluent versus soil trace metal content relationship confirmed that the effluent Cr was strongly correlated with soil Cr. For metal source identification the techniques of principal component analysis, and cluster analysis were applied. The principal component analysis yielded two factors for effluents: factor 1 (49.6% variance) showed significant loading for Ca, Fe, Mn, Cr, Cd, Ni, Pb and Zn, referring to a tanning related source for these metals, and factor 2 (12.6% variance) with higher loadings of Na, K, Mg and Co, was associated with the processes during the skin/hide treatment. Similarly, two factors with a cumulative variance of 34.8% were obtained for soil samples: factor 1 manifested the contribution from Mg, Mn, Co, Cd, Ni and Pb, which though soil-based is basically effluent-derived, while factor 2 was found associated with Na, K, Ca, Cr and Zn which referred to a tannery-based source. The dendograms obtained from cluster analysis, also support the observed results. The study exhibits a gross pollution of soils with Cr at levels far exceeding the stipulated safe limit laid down for tannery effluents.

  10. Optimizing liquid effluent monitoring at a large nuclear complex.

    Science.gov (United States)

    Chou, Charissa J; Barnett, D Brent; Johnson, Vernon G; Olson, Phil M

    2003-12-01

    Effluent monitoring typically requires a large number of analytes and samples during the initial or startup phase of a facility. Once a baseline is established, the analyte list and sampling frequency may be reduced. Although there is a large body of literature relevant to the initial design, few, if any, published papers exist on updating established effluent monitoring programs. This paper statistically evaluates four years of baseline data to optimize the liquid effluent monitoring efficiency of a centralized waste treatment and disposal facility at a large defense nuclear complex. Specific objectives were to: (1) assess temporal variability in analyte concentrations, (2) determine operational factors contributing to waste stream variability, (3) assess the probability of exceeding permit limits, and (4) streamline the sampling and analysis regime. Results indicated that the probability of exceeding permit limits was one in a million under normal facility operating conditions, sampling frequency could be reduced, and several analytes could be eliminated. Furthermore, indicators such as gross alpha and gross beta measurements could be used in lieu of more expensive specific isotopic analyses (radium, cesium-137, and strontium-90) for routine monitoring. Study results were used by the state regulatory agency to modify monitoring requirements for a new discharge permit, resulting in an annual cost savings of US dollars 223,000. This case study demonstrates that statistical evaluation of effluent contaminant variability coupled with process knowledge can help plant managers and regulators streamline analyte lists and sampling frequencies based on detection history and environmental risk.

  11. Liquid Effluent Monitoring Information System (LEMIS) test plans release 1.0

    International Nuclear Information System (INIS)

    Adams, R.T.

    1994-01-01

    The Liquid Effluent Monitoring Information System (LEMIS) is being developed as the organized information repository facility in support of the liquid effluent monitoring requirements of the Tri-Party Agreement. It is necessary to provide an automated repository into which the results from liquid effluent sampling will be placed. This repository must provide for effective retention, review, and retrieval of selected sample data by authorized persons and organizations. This System Architecture document is the aggregation of the DMR P+ methodology project management deliverables. Together they represent a description of the project and its plan through four Releases, corresponding to the definition and prioritization of requirements defined by the user

  12. Liquid Effluent Monitoring Information System (LEMIS) test plans release 1.1

    International Nuclear Information System (INIS)

    Adams, R.T.

    1994-01-01

    The Liquid Effluent Monitoring Information System (LEMIS) is being developed as the organized information repository facility in support of the liquid effluent monitoring requirements of the Tri-Party Agreement. It is necessary to provide an automated repository into which the results from liquid effluent sampling will be placed. This repository must provide for effective retention, review, and retrieval of selected sample data by authorized persons and organizations. This System Architecture document is the aggregation of the DMR P+ methodology project management deliverables. Together they represent a description of the project and its plan through four Releases, corresponding to the definition and prioritization of requirements defined by the user

  13. Use of a Geothermal-Solar Hybrid Power Plant to Mitigate Declines in Geothermal Resource Productivity

    Energy Technology Data Exchange (ETDEWEB)

    Dan Wendt; Greg Mines

    2014-09-01

    Many, if not all, geothermal resources are subject to decreasing productivity manifested in the form of decreasing brine temperature, flow rate, or both during the life span of the associated power generation project. The impacts of resource productivity decline on power plant performance can be significant; a reduction in heat input to a power plant not only decreases the thermal energy available for conversion to electrical power, but also adversely impacts the power plant conversion efficiency. The reduction in power generation is directly correlated to a reduction in revenues from power sales. Further, projects with Power Purchase Agreement (PPA) contracts in place may be subject to significant economic penalties if power generation falls below the default level specified. A potential solution to restoring the performance of a power plant operating from a declining productivity geothermal resource involves the use of solar thermal energy to restore the thermal input to the geothermal power plant. There are numerous technical merits associated with a renewable geothermal-solar hybrid plant in which the two heat sources share a common power block. The geo-solar hybrid plant could provide a better match to typical electrical power demand profiles than a stand-alone geothermal plant. The hybrid plant could also eliminate the stand-alone concentrated solar power plant thermal storage requirement for operation during times of low or no solar insolation. This paper identifies hybrid plant configurations and economic conditions for which solar thermal retrofit of a geothermal power plant could improve project economics. The net present value of the concentrated solar thermal retrofit of an air-cooled binary geothermal plant is presented as functions of both solar collector array cost and electricity sales price.

  14. National Geothermal Data System: Interactive Assessment of Geothermal Energy Potential in the U.S.

    Energy Technology Data Exchange (ETDEWEB)

    Allison, Lee [Executive Office of the State of Arizona (Arizona Geological Survey); Richard, Stephen [Executive Office of the State of Arizona (Arizona Geological Survey); Clark, Ryan; Patten, Kim; Love, Diane; Coleman, Celia; Chen, Genhan; Matti, Jordan; Pape, Estelle; Musil, Leah

    2012-01-30

    Geothermal-relevant geosciences data from all 50 states (www.stategeothermaldata.org), federal agencies, national labs, and academic centers are being digitized and linked in a distributed online network via the U.S. Department of Energy-funded National Geothermal Data System (NGDS) to foster geothermal energy exploration and development through use of interactive online ‘mashups,’data integration, and applications. Emphasis is first to make as much information as possible accessible online, with a long range goal to make data interoperable through standardized services and interchange formats. An initial set of thirty geoscience data content models is in use or under development to define a standardized interchange format: aqueous chemistry, borehole temperature data, direct use feature, drill stem test, earthquake hypocenter, fault feature, geologic contact feature, geologic unit feature, thermal/hot spring description, metadata, quaternary fault, volcanic vent description, well header feature, borehole lithology log, crustal stress, gravity, heat flow/temperature gradient, permeability, and feature descriptions data like developed geothermal systems, geologic unit geothermal properties, permeability, production data, rock alteration description, rock chemistry, and thermal conductivity. Map services are also being developed for isopach maps, aquifer temperature maps, and several states are working on geothermal resource overview maps. Content models are developed preferentially from existing community use in order to encourage widespread adoption and promulgate minimum metadata quality standards. Geoscience data and maps from other NGDS participating institutions, or “nodes” (USGS, Southern Methodist University, Boise State University Geothermal Data Coalition) are being supplemented with extensive land management and land use resources from the Western Regional Partnership (15 federal agencies and 5 Western states) to provide access to a comprehensive

  15. Further Development and Application of GEOFRAC-FLOW to a Geothermal Reservoir

    Energy Technology Data Exchange (ETDEWEB)

    Einstein, Herbert [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Vecchiarelli, Alessandra [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2014-05-01

    GEOFRAC is a three-dimensional, geology-based, geometric-mechanical, hierarchical, stochastic model of natural rock fracture systems. The main characteristics of GEOFRAC are its use of statistical input representing fracture patterns in the field in form of the fracture intensity P32 (fracture area per volume) and the best estimate fracture size E(A). This information can be obtained from boreholes or scanlines on the surface, on the one hand, and from window sampling of fracture traces on the other hand. In the context of this project, “Recovery Act - Decision Aids for Geothermal Systems”, GEOFRAC was further developed into GEOFRAC-FLOW as has been reported in the reports, “Decision Aids for Geothermal Systems - Fracture Pattern Modelling” and “Decision Aids for Geothermal Systems - Fracture Flow Modeling”. GEOFRAC-FLOW allows one to determine preferred, interconnected fracture paths and the flow through them.

  16. The low-energy geothermics

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    Low-energy geothermal resources are characterized by temperatures ranging from 30 to 100 C. The principal worldwide applications are: towns and greenhouses heating, spa bathing, agriculture products drying, etc.. Sources depth ranges from 1500 to 2500 m in porous and permeable formations (sandstones, sands, conglomerates, limestones..) carrying aquifers. The worldwide installed power was of about 11500 MWth in 1990, with an annual production of about 36000 GWh (about 1% of worldwide energy consumption). The annual production rate is estimated to 10% and would represent a 30000 and 80000 MWth power in 2000 and 2010, respectively. In France, low-energy geothermal resources are encountered principally in Mesozoic sediments of the Parisian and Aquitanian basins. French geothermics has developed during the last 30 years and principally between 1980 and 1985 after the second petroleum crack. After 1985, the decay of fossil fuel costs and the development of corrosion problems in the geothermal wells have led to the abandonment of the less productive fields and to the study of technical solutions to solve the corrosion problems. (J.S.). 1 fig., 5 photos

  17. Geothermal energy conversion facility

    Energy Technology Data Exchange (ETDEWEB)

    Kutscher, C.F.

    1997-12-31

    With the termination of favorable electricity generation pricing policies, the geothermal industry is exploring ways to improve the efficiency of existing plants and make them more cost-competitive with natural gas. The Geothermal Energy Conversion Facility (GECF) at NREL will allow researchers to study various means for increasing the thermodynamic efficiency of binary cycle geothermal plants. This work has received considerable support from the US geothermal industry and will be done in collaboration with industry members and utilities. The GECF is being constructed on NREL property at the top of South Table Mountain in Golden, Colorado. As shown in Figure 1, it consists of an electrically heated hot water loop that provides heating to a heater/vaporizer in which the working fluid vaporizes at supercritical or subcritical pressures as high as 700 psia. Both an air-cooled and water-cooled condenser will be available for condensing the working fluid. In order to minimize construction costs, available equipment from the similar INEL Heat Cycle Research Facility is being utilized.

  18. The geochemistry of lithium-bearing geothermal water, Taupo Volcanic Zone, and shallow fluid processes in a very active silicic volcanic arc

    Science.gov (United States)

    Dean, A. S.; Hoskin, P. W.; Rudnick, R. L.; Liu, X.; Boseley, C.

    2011-12-01

    The Li abundances and isotopic systematics of Taupo Volcanic Zone (TVZ) geothermal fluids preserves a record of processes occurring within shallow portions of geothermal reservoirs as well as deeper portions of the arc crust. Understanding Li cycling and isotopic fractionation in TVZ geothermal systems contributes to a more refined understanding of physicochemical processes affecting New Zealand's geothermal resources. A comprehensive dataset of 73 samples was compiled, with samples collected from geothermal surface features (springs, spouters, geysers, etc.) and electric-power industry production wells, collectively representing18 geothermal fields across the breadth and width the TVZ. No comparable dataset of fluid analyses exists. Ion chromatography, AAS, and quadrupole ICP-MS analyses were done for Li, Cl-, SiO2, SO42- K, Na, Ca, Mg, B, Sr and Pb concentrations. Lithium abundance in geothermal fluids from the TVZ have a dataset-wide average of 5.9 mg/L and range 4 μg/L to 29 mg/L. The Li abundance and Li/Cl ratios for geothermal water and steam condensates vary systematically as a result of boiling, mixing, and water/rock reaction. Lithium abundance and Li/Cl ratios are, therefore, indicators of shallow (above 2.5 km) and locally variable reservoir processes. δ7Li analysis of 63 samples was performed at the University of Maryland, College Park. Data quality was controlled by measurement of L-SVEC as a calibration standard and by multiple analysis of selected samples. The average δ7Li value for TVZ geothermal fluids is -0.8%. Most δ7Li values for geothermal water fall within a small range of about -3% to+2% indicating similar processes are causing similar isotopic fractionation throughout the region. Considered together, Li aundances and δ7Li values, in combination with numerical models, indicate possible evolution pathways and water/rock reactions in TVZ geothermal systems. Models based on rocks and surface water analysis indicate that Li cycles and

  19. Geothermal heat pump

    International Nuclear Information System (INIS)

    Bruno, R.; Tinti, F.

    2009-01-01

    In recent years, for several types of buildings and users, the choice of conditioning by heat pump and low enthalpy geothermal reservoir has been increasing in the Italian market. In fact, such systems are efficient in terms of energy and consumption, they can perform, even at the same time, both functions, heating and cooling and they are environmentally friendly, because they do not produce local emissions. This article will introduce the technology and will focus on critical points of a geothermal field design, from actual practice, to future perspectives for the geo exchanger improvement. Finally, the article presents a best practice case in Bologna district, with an economic analysis showing the convenience of a geothermal heat pump. Conclusions of the real benefits of these plants can be drawn: compared to a non-negligible initial cost, the investment has a pay-back period almost always acceptable, usually less than 10 years. [it

  20. Atomics International environmental monitoring and facility effluent annual report, 1976

    International Nuclear Information System (INIS)

    Moore, J.D.

    1977-01-01

    Environmental and facility effluent radioactivity monitoring at Atomics International (AI) is performend by the Radiation and Nuclear Safety Unit of the Health, Safety, and Radiation Services Department. Soil, vegetation, and surface water are routinely sampled to a distance of 10 miles from AI sites. Continuous ambient air sampling and thermoluminescent dosimetry are performed on site for monitoring airborne radioactivity and site ambient radiation levels. Radioactivity in effluents discharged to the atmosphere from AI facilities is continuously sampled and monitored to ensure that levels released to unrestricted areas are within appropriate limits, and to identify processes which may require additional engineering safeguards to minimize radioactivity levels in such effluents. In addition, selected nonradioactive constituents in surface water discharged to unrestricted areas are determined. This report summarizes and discusses monitoring results for 1976. The results of a special soil plutonium survey performed during the year are also summarized

  1. DMRC studies geothermal energy options

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-03-01

    The Deep Mining Research Consortium (DMRC) is an industry-led research consortium that includes Vale Inco, Xstrata, Rio Tinto, Goldcorp, Agnico-Eagle, Barrick Gold, CANMET and the City of Sudbury. This article reported on the application of geothermal energy technologies to cool deep mine workings and use the heat from underground to produce energy to heat surface buildings. Researchers at the University of British Columbia's Centre for Environmental Research in Minerals, Metals and Materials have proposed the use of heat pumps and water-to-air heat exchangers at depth to chill mine workings. The heat pumps would act as refrigerators, taking heat from one area and moving it elsewhere. The purpose would be to extract heat from naturally occurring ground water and pass the chilled water through a heat exchanger to cool the air. The heated water would then be pumped to surface and used to heat surface facilities. The technology is well suited for using geothermal energy from decommissioned mines for district heating. The technology has been successfully used in Spring Hill, Nova Scotia, where geothermal energy from a decommissioned coal mine is used to heat an industrial park. A feasibility study is also underway for the city of Yellowknife in the Northwest Territories to produce up to 10 megawatts of heat from the Con Gold Mine, enough energy to heat half of Yellowknife. Geothermal energy can also be used to generate electricity, particularly in the Pacific Rim where underground temperatures are higher and closer to surface. In Sudbury Ontario, the enhanced geothermal systems technology would require two holes drilled to a depth of four kilometers. The ground between the two holes should be fractured to create an underground geothermal circuit. Geothermal energy does not produce any greenhouse gases or chemical wastes. 1 fig.

  2. FY 1990 report on the survey of geothermal development promotion. Survey of geothermal water (No.34 - Kaminoyu/Santai area); 1990 nendo chinetsu kaihatsu sokushin chosa. Nessui no chosa hokokusho (No.34 Kaminoyu Santai chiiki)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1991-12-01

    For the contribution to elucidation of the structure of geothermal reservoir in the Kaminoyu/Santai area in the southwest part of Hokkaido, jetting test/sampling of geothermal fluid/analysis of properties were carried out in Structural Drilling Well N2-KS-2. The induced jetting of N2-KS-2 was conducted by the air lift method in consideration of the well temperature, state of lost circulation while drilling and results of the water pouring test. As a result, the mean jetting amount of geothermal water was 202.4L/min. The total pumping amount was 559kL, which is equal to approximately 119 times as much as the volume of well. The maximum temperature was 95.9 degrees C, resulting in no steam jetting. The pH of geothermal water was 7.41-8.44, electric conductivity was 9,620-10,450 {mu}s/cm, and the Cl ion concentration was 2,204-2,545 mg/L, which are almost stable. Properties of geothermal water is classified into an alkalescent CL-SO{sub 4} type. As a result of the study, the geothermal reservoir of N2-KS-2 is basically formed by a mechanism of a mixture of the surface water and the deep geothermal water that is similar in isotope to the geothermal water of Nigorikawa production well, which indicated a tight relation in the origin with the group of Kaminoyu hot spring. (NEDO)

  3. Geothermal resource assessment in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Youngmin; Kim, Hyoung Chan [Korea Institute of Geoscience and Mineral Resources (Korea); Park, Sungho; Kim, Jongchan; Koo, Min-Ho [Kongju National University (Korea)

    2010-10-15

    To estimate available geothermal energy and to construct temperature at depth maps in Korea, various geothermal data have been used. Those include 1560 thermal property data such as thermal conductivity, specific heat and density, 353 heat flow data, 54 surface temperature data, and 180 heat production data. In Korea, subsurface temperature ranges from 23.9 C to 47.9 C at a depth of 1 km, from 34.2 C to 79.7 C at 2 km, from 44.2 C to 110.9 C at 3 km, from 53.8 C to 141.5 C at 4 km, and from 63.1 C to 171.6 C at 5 km. The total available subsurface geothermal energy in Korea is 4.25 x 10{sup 21} J from surface to a depth of 1 km, 1.67 x 10{sup 22} J to 2 km, 3.72 x 10{sup 22} J to 3 km, 6.52 x 10{sup 22} J to 4 km, and 1.01 x 10{sup 23} J to 5 km. In particular, the southeastern part of Korea shows high temperatures at depths and so does high geothermal energy. If only 2% of geothermal resource from surface to a depth of 5 km is developed in Korea, energy from geothermal resources would be equivalent to about 200 times annual consumption of primary energy ({proportional_to}2.33 x 10{sup 8} TOE) in Korea in 2006. (author)

  4. Geothermal Progress Monitor. Report No. 15

    Energy Technology Data Exchange (ETDEWEB)

    1993-12-01

    Two themes dominate this issue of the Geothermal Progress Monitor, the 15th since its inception in 1980. The first of these is the significance of the government/industry partnership role in geothermal development. This joint effort is reflected in the continued, measured growth in the use of geothermal energy, for both power generation and direct use applications, in this country and abroad, as well as in the development of new, innovative technologies to ensure a bright future for the resource. The second theme is the growing popularity of geothermal heat pumps (GHPs) among utilities, their customers, and federal agencies, all with disparate interests in the technology.

  5. Decoloration and detoxification of effluents by ionizing radiation

    Science.gov (United States)

    Borrely, Sueli I.; Morais, Aline V.; Rosa, Jorge M.; Badaró-Pedroso, Cintia; da Conceição Pereira, Maria; Higa, Marcela C.

    2016-07-01

    Three distinct textile samples were investigated for color and toxicity (S1-chemical/textile industry; S2-final textile effluent; S3 - standard textile produced effluent-untreated blue). Radiation processing of these samples were carried out at Dynamitron Electron Beam Accelerator and color and toxicity removal were determined: color removal by radiation was 96% (40 kGy, S1); 55% (2.5 kGy, S2) and 90% (2.5 kGy, S3). Concerning toxicity assays, Vibrio fischeri luminescent bacteria demonstrated higher reduction after radiation than the other systems: removal efficiencies were 33% (20 kGy, S1); 55% (2.5 kGy, S2) and 33% (2.5 kGy, S3). Daphnia similis and Brachionus plicatilis fitted well for S3 effluents. Hard toxic volumes into biological treatment plant may be avoided if radiation would be previously applied in a real plant. Results reveled how indispensable is to run toxicity to more than one living-organism.

  6. Geothermal probes for the development of medium-deep geothermal heating; Erdwaermesonden zur Erschliessung der mitteltiefen Geothermie

    Energy Technology Data Exchange (ETDEWEB)

    Stuckmann, Uwe [REHAU AG + Co, Erlangen (Germany)

    2012-07-01

    Compared to the near-surface geothermal energy, in the medium-deep geothermal between between 400 and 1,000 meters higher temperature levels may opened up. Thus the efficiency of geothermal power plants can be increased. The possibly higher installation costs are significantly higher yield compared to the yields and withdrawal benefits. At higher thermal gradient of the underground it even is possible to dispense entirely on the heat pump and to heat directly.

  7. Geothermal energy for American Samoa

    Energy Technology Data Exchange (ETDEWEB)

    1980-03-01

    The geothermal commercialization potential in American Samoa was investigated. With geothermal energy harnessed in American Samoa, a myriad of possibilities would arise. Existing residential and business consumers would benefit from reduced electricity costs. The tuna canneries, demanding about 76% of the island's process heat requirements, may be able to use process heat from a geothermal source. Potential new industries include health spas, aquaculture, wood products, large domestic and transhipment refrigerated warehouses, electric cars, ocean nodule processing, and a hydrogen economy. There are no territorial statutory laws of American Samoa claiming or reserving any special rights (including mineral rights) to the territorial government, or other interests adverse to a land owner, for subsurface content of real property. Technically, an investigation has revealed that American Samoa does possess a geological environment conducive to geothermal energy development. Further studies and test holes are warranted.

  8. Geothermal energy for Hawaii: a prospectus

    Energy Technology Data Exchange (ETDEWEB)

    Yen, W.W.S.; Iacofano, D.S.

    1981-01-01

    An overview of geothermal development is provided for contributors and participants in the process: developers, the financial community, consultants, government officials, and the people of Hawaii. Geothermal energy is described along with the issues, programs, and initiatives examined to date. Hawaii's future options are explored. Included in appendices are: a technical glossary, legislation and regulations, a geothermal directory, and an annotated bibliography. (MHR)

  9. Overview of geothermal activities in Tunisia

    International Nuclear Information System (INIS)

    Ben Dhia, H.

    1990-01-01

    For Tunisia, the oil crisis and the decrease in local energy resources gave impetus to geothermal energy for potential assessment, exploration and utilization. Research undertaken showed a country with real potentialities either by its important deep aquifers or by the relatively high values of geothermal gradient and heat flow. This paper reports that it is expected that these efforts of geothermal investigation will continue in the future

  10. Genotoxic Assessment of Some Inorganic Compounds in Desert Pupfish (Cyprinodon macularius) in the Evaporation Pond from a Geothermal Plant.

    Science.gov (United States)

    Flores-Galván, Miguel; Arellano-García, Evarista; Ruiz-Campos, Gorgonio; Daesslé, Luis Walter

    2017-08-01

    The frequency of micro nucleated erythrocytes in peripheral blood of the desert pupfish (Cyprinodon macularius) from a geothermal effluent pond is determined and compared to organisms kept in an aquarium. The frequency of micronucleated erythrocytes found in pupfish from the geothermal pond is 2.75 (±2.09) and only 0.44 (±0.52) in captivity organisms. Dissolved As in the ponds doubles the 340 µg L -1 US-EPA acute quality criteria for aquatic life and Hg equals the 1.77 µg L -1 chronic criteria. The organisms with high MNE also have significantly high Se, As and Hg concentrations in muscle and liver. Compared to international maximum allowable limits for fish consumption, there is 81× enrichment for Se, 6× for As and 5× for Hg. Although Se is not significantly enriched in water, it is likely that its bioaccumulation occurs via feeding of detritus. The desert pupfish has a significant resistance to extreme metal accumulations and to recover under unpolluted conditions.

  11. Strategies for Detecting Hidden Geothermal Systems by Near-Surface Gas Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Lewicki, Jennifer L.; Oldenburg, Curtis M.

    2004-12-15

    the near-surface environment include (1) the infrared gas analyzer (IRGA) for measurement of concentrations at point locations, (2) the accumulation chamber (AC) method for measuring soil CO2 fluxes at point locations, (3) the eddy covariance (EC) method for measuring net CO2 flux over a given area, (4) hyperspectral imaging of vegetative stress resulting from elevated CO2 concentrations, and (5) light detection and ranging (LIDAR) that can measure CO2 concentrations over an integrated path. Technologies currently in developmental stages that have the potential to be used for CO2 monitoring include tunable lasers for long distance integrated concentration measurements and micro-electronic mechanical systems (MEMS) that can make widespread point measurements. To address the challenge of detecting potentially small-magnitude geothermal CO2 emissions within the natural background variability of CO2, we propose an approach that integrates available detection and monitoring methodologies with statistical analysis and modeling strategies. Within the area targeted for geothermal exploration, point measurements of soil CO2 fluxes and concentrations using the AC method and a portable IRGA, respectively, and measurements of net surface flux using EC should be made. Also, the natural spatial and temporal variability of surface CO2 fluxes and subsurface CO2 concentrations should be quantified within a background area with similar geologic, climatic, and ecosystem characteristics to the area targeted for geothermal exploration. Statistical analyses of data collected from both areas should be used to guide sampling strategy, discern spatial patterns that may be indicative of geothermal CO2 emissions, and assess the presence (or absence) of geothermal CO2 within the natural background variability with a desired confidence level. Once measured CO2 concentrations and fluxes have been determined to be of anomalous geothermal origin with high confidence, more expensive vertical

  12. Origin of rainwater acidity near the Los Azufres geothermal field, Mexico

    International Nuclear Information System (INIS)

    Verma, M.P.; Arellano, V.; Quijano, J.L.; Johnson, C.; Gerardo, J.Y.

    2000-01-01

    The chemical and isotopic compositions of rainwater were monitored at Los Azufres geothermal field (88 MWe) and its surroundings during May-September 1995, which is the rainy season. Samples were collected from eight sites: three within the field, three in its surroundings and two sufficiently far from the field such that they have no geothermal input. The concentrations of Cl - , SO 4 2- and NO 3 - were measured in about 350 samples and found to be generally - , SO 4 2- and delta 34 S also suggests an industrial source for the rainwater sulfur. The determination of pH was found to be necessary, but is not sufficient to characterize rainwater acidity. The Gran titration method was used to determine alkalinity with respect to equivalence point of H 2 CO 3 * . Values of alkalinity were found to range from 10 -4 to 10 -6 eq/L, and were negative only for some samples from Vivero and Guadalajara. Thus, SO 4 2- and NO 3 - are in general not in acidic form (i.e. balanced by Na + Ca 2+ etc. rather than H + ). Sulfate delta 34 S values were about -1.5 per mille in Los Azufres and its surroundings, and in Morelia, but differed from the value of -0.2 per mille for Guadalajara. The delta 34 S values for H 2 S from the Los Azufres geothermal wells are in the range -3.4 to 0.0 per mille. Thedelta 34 S ranges for the natural and anthropogenic sources for environmental sulfur overlap, making it difficult to differentiate between the contribution of different sources. However, a similarity of values of delta 34 S at Los Azufres and Morelia (85km distant) suggest a regional source of sulfate that is not associated with geothermal emissions from Los Azufres. (Author)

  13. SPP retains interest in geothermal project

    International Nuclear Information System (INIS)

    Anon

    2007-01-01

    Slovensky plynarensky priemysel (SPP) officially indicated that it intended to drop its project of using geothermal energy in the Kosicka kotlina. This spring it published an advert that it was looking for a company that wished to acquire a majority stake in the company, Geoterm Kosice. The company was established to commercially develop this geothermal source. But it seems SPP does not want to drop the project completely. It has kept some important cards, such as control over the land where the boreholes are located Any company that wants to use geothermal energy needs a ruling issued by the Ministry of Environment defining the exploration area. Geothermal sources were found in the villages of Durkov, Svinica, Bidovce and Olsovany. Not so long ago the area was assigned to Geoterm but from May 9 the area can be explored by Slovgeoterm. Both companies have the same majority shareholder - SPP. It controls 96% of Geoterm shares and 50% of Slovgeoterm. So far it has only officially announced its intention to sell the Geoterm shares. But as far as the use of the geothermal resource is concerned since May Slovgeoterm has played a key role.The company focuses on the utilization of geothermal energy. In addition to the project in the Kosice region, it has also participated in a project to heat more than a thousand flats using geothermal water in Galanta and a project to heat greenhouses in Podhajske. There are also other geothermal projects running in Presov and Michalovce. Icelandic company, Enex, with the same specialisation controls 28% of the company and a further 20% is owned by the investment group, NEFCO based in Helsinki. Two percent of the company is owned by its general director and the general proxy of Geoterm, Otto Halas. And so without the agreement of this company no-one can start any activities related to the utilization of geothermal energy. (authors)

  14. Geothermal life cycle assessment - part 3

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, J. L. [Argonne National Lab. (ANL), Argonne, IL (United States); Frank, E. D. [Argonne National Lab. (ANL), Argonne, IL (United States); Han, J. [Argonne National Lab. (ANL), Argonne, IL (United States); Elgowainy, A. [Argonne National Lab. (ANL), Argonne, IL (United States); Wang, M. Q. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2013-11-01

    A set of key issues pertaining to the environmental performance of geothermal electric power have been addressed. They include: 1) greenhouse gas emissions (GHG) from geothermal facilities, 2) the use of supercritical carbon dioxide (scCO2) as a geofluid for enhanced geothermal systems (EGS), 3) quantifying the impact of well field exploration on the life cycle of geothermal power, and finally 4) criteria pollutant emissions for geothermal and other electric power generation. A GHG emission rate (g/kWh) distribution as function of cumulative running capacity for California has been developed based on California and U. S. government data. The distribution is similar to a global distribution for compared geothermal technologies. A model has been developed to estimate life cycle energy of and CO2 emissions from a coupled pair of coal and EGS plants, the latter of which is powered by scCO2 captured from coal plant side. Depending on the CO2 capture rate on the coal side and the CO2 consumption rate on the EGS side, significant reductions in GHG emissions were computed when the combined system is compared to its conventional coal counterpart. In effect, EGS CO2 consumption acts as a sequestration mechanism for the coal plant. The effects CO2 emissions from the coupled system, prompt on the coal side and reservoir leakage on the EGS side, were considered as well as the subsequent decline of these emissions after entering the atmosphere over a time frame of 100 years. A model was also developed to provide better estimates of the impact of well field exploration on the life cycle performance of geothermal power production. The new estimates increase the overall life cycle metrics for the geothermal systems over those previously estimated. Finally, the GREET model has been updated to include the most recent criteria pollutant emissions for a range of renewable (including geothermal) and other power

  15. Utilising geothermal energy in Victoria

    International Nuclear Information System (INIS)

    Driscoll, Jim

    2006-01-01

    Geothermal energy is generated from the radioactive decay of naturally occurring isotopes and about 20% is generated from primordial heat associated with the formation of the earth. Geothermal project reduce energy and water cost and reduces greenhouse gas emissions

  16. Investigations of the detection of α-radioactivity in samples of effluent water primary circuit and exhaust air of nuclear power plants in the FRG in the years 1973-1975

    International Nuclear Information System (INIS)

    Hoetzl, H.; Rosner, G.; Winkler, R.

    1976-05-01

    Since the middle of 1973 the α-radioactivity of aerosol filters from the stack monitoring system and since the middle of 1974 the α-radioactivity in samples from the primary cycle of the KRB was monitored. Effluent water samples of all nuclear power reactors of the FRG were also examined from the middle of 1973 till 1974. Furthermore, aerosol filters sampled in 1973 and 1974 from various places at the KRB and some aerosol filters from the stack monitoring systems of KWW (1973), KWO (1974) and KKS (1975) were also measured. Essentially, the following procedures of sample preparation for α-spectrometry of the samples in large-area gridded ionization chambers were used: cold ashing of the aerosol samples in 'excited' oxygen; coprecipitation of the alpha emitters from the effluent water samples with iron hydroxide and subsequent cold ashing of the precipitate; evaporation of the samples from the primary cycle on SS plates. The following transuranium nuclides, or some of them, were found in the samples of the primary coolant and in several aerosol filter samples: Pu-239/240, Pu-238 and/or Am-241, Cm-242 and Cm-244. Cm-242 contributes most to the α-radioactivity in fresh samples. In the effluent water samples Cm-242. Pu-239/240 and Pu-238 and/or Am-241 were identified in some cases, in one case also Cm-244. The aim of these investigations is to establish procedures for the measurement and surveillance of α-emitting nuclides in the emissions of power reactors in order to study the contribution of transuranium nuclides to the radiation exposure of the population living in the vicinity of nuclear power stations. (orig.) [de

  17. Japanese geothermics

    International Nuclear Information System (INIS)

    Laplaige, P.

    1995-01-01

    At the end of the seventies, the NEDO (New Energy and Industrial Technology Development Organisation) and the Central Research Institute of Electric Power Industry have started two independent projects of deep geothermics research in Honshu island (Japan). The two sites are 50 km apart of each other and the boreholes have been drilled up to 2300 and 1100 m of depth, respectively, in hot-dry moderately fractured volcanic rocks. These sites are characterized by high geothermal gradients with a rock temperature reaching 250 C at the bottom of the wells. Hydraulic circulation tests are still in progress to evaluate the profitability of these sites. (J.S.). 1 fig., 1 photo

  18. A guide to geothermal energy and the environment

    Energy Technology Data Exchange (ETDEWEB)

    Kagel, Alyssa; Bates, Diana; Gawell, Karl

    2005-04-22

    Geothermal energy, defined as heat from the Earth, is a statute-recognized renewable resource. The first U.S. geothermal power plant, opened at The Geysers in California in 1960, continues to operate successfully. The United States, as the world's largest producer of geothermal electricity, generates an average of 15 billion kilowatt hours of power per year, comparable to burning close to 25 million barrels of oil or 6 million short tons of coal per year. Geothermal has a higher capacity factor (a measure of the amount of real time during which a facility is used) than many other power sources. Unlike wind and solar resources, which are more dependent upon weather fluctuations and climate changes, geothermal resources are available 24 hours a day, 7 days a week. While the carrier medium for geothermal electricity (water) must be properly managed, the source of geothermal energy, the Earth's heat, will be available indefinitely. A geothermal resource assessment shows that nine western states together have the potential to provide over 20 percent of national electricity needs. Although geothermal power plants, concentrated in the West, provide the third largest domestic source of renewable electricity after hydropower and biomass, they currently produce less than one percent of total U.S. electricity.

  19. The USGS national geothermal resource assessment: An update

    Science.gov (United States)

    Williams, C.F.; Reed, M.J.; Galanis, S.P.; DeAngelo, J.

    2007-01-01

    The U. S. Geological Survey (USGS) is working with the Department of Energy's (DOE) Geothermal Technologies Program and other geothermal organizations on a three-year effort to produce an updated assessment of available geothermal resources. The new assessment will introduce significant changes in the models for geothermal energy recovery factors, estimates of reservoir volumes, and limits to temperatures and depths for electric power production. It will also include the potential impact of evolving Enhanced Geothermal Systems (EGS) technology. An important focus in the assessment project is on the development of geothermal resource models consistent with the production histories and observed characteristics of exploited geothermal fields. New models for the recovery of heat from heterogeneous, fractured reservoirs provide a physically realistic basis for evaluating the production potential of both natural geothermal reservoirs and reservoirs that may be created through the application of EGS technology. Project investigators have also made substantial progress studying geothermal systems and the factors responsible for their formation through studies in the Great Basin-Modoc Plateau region, Coso, Long Valley, the Imperial Valley and central Alaska, Project personnel are also entering the supporting data and resulting analyses into geospatial databases that will be produced as part of the resource assessment.

  20. Analysis of Low-Temperature Utilization of Geothermal Resources

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Brian

    2015-06-30

    Full realization of the potential of what might be considered “low-grade” geothermal resources will require that we examine many more uses for the heat than traditional electricity generation. To demonstrate that geothermal energy truly has the potential to be a national energy source we will be designing, assessing, and evaluating innovative uses for geothermal-produced water such as hybrid biomass-geothermal cogeneration of electricity and district heating and efficiency improvements to the use of cellulosic biomass in addition to utilization of geothermal in district heating for community redevelopment projects. The objectives of this project were: 1) to perform a techno-economic analysis of the integration and utilization potential of low-temperature geothermal sources. Innovative uses of low-enthalpy geothermal water were designed and examined for their ability to offset fossil fuels and decrease CO2 emissions. 2) To perform process optimizations and economic analyses of processes that can utilize low-temperature geothermal fluids. These processes included electricity generation using biomass and district heating systems. 3) To scale up and generalize the results of three case study locations to develop a regionalized model of the utilization of low-temperature geothermal resources. A national-level, GIS-based, low-temperature geothermal resource supply model was developed and used to develop a series of national supply curves. We performed an in-depth analysis of the low-temperature geothermal resources that dominate the eastern half of the United States. The final products of this study include 17 publications, an updated version of the cost estimation software GEOPHIRES, and direct-use supply curves for low-temperature utilization of geothermal resources. The supply curves for direct use geothermal include utilization from known hydrothermal, undiscovered hydrothermal, and near-hydrothermal EGS resources and presented these results at the Stanford

  1. Effluent standards

    Energy Technology Data Exchange (ETDEWEB)

    Geisler, G C [Pennsylvania State University (United States)

    1974-07-01

    At the conference there was a considerable interest in research reactor standards and effluent standards in particular. On the program, this is demonstrated by the panel discussion on effluents, the paper on argon 41 measured by Sims, and the summary paper by Ringle, et al. on the activities of ANS research reactor standards committee (ANS-15). As a result, a meeting was organized to discuss the proposed ANS standard on research reactor effluents (15.9). This was held on Tuesday evening, was attended by members of the ANS-15 committee who were present at the conference, participants in the panel discussion on the subject, and others interested. Out of this meeting came a number of excellent suggestions for changes which will increase the utility of the standard, and a strong recommendation that the effluent standard (15.9) be combined with the effluent monitoring standard. It is expected that these suggestions and recommendations will be incorporated and a revised draft issued for comment early this summer. (author)

  2. Vegetation and geothermal development in the vicinity of the Takinogami geothermal field

    Energy Technology Data Exchange (ETDEWEB)

    Ohba, T

    1973-07-01

    After site studies for a new geothermal power plant at the Takinogami geothermal field, the Japan Natural Conservation Association recommended against locating the plant near the office and dormitory complexes at Matsukurasawa junction. An alternate site located about 1 km upstream on the Takinogami River was proposed. It was recommended that a buffer zone be established between the construction road and the local forest. This zone would be planted with Uwamizu cherry, Azuki pear, Tani deutia, Tamu brushwood, Clathracea, Rowan, Kobano ash and Yama (Japanese lacquer tree). A road embankment would be constructed of terraced masonry which would be landscaped with Tani deutia, Kuma raspberry, giant knotweed and mugwort. Previous development of geothermal wells in the area resulted in severe effects on the local flora. Consequently, further development was not recommended.

  3. The Future of Geothermal Energy

    Energy Technology Data Exchange (ETDEWEB)

    Kubik, Michelle [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2006-01-01

    A comprehensive assessment of enhanced, or engineered, geothermal systems was carried out by an 18-member panel assembled by the Massachusetts Institute of Technology (MIT) to evaluate the potential of geothermal energy becoming a major energy source for the United States.

  4. Dissolved gas concentrations of the geothermal fluids in Taiwan

    Science.gov (United States)

    Chen, Ai-Ti; Yang, Tsanyao Frank

    2010-05-01

    Taiwan, a geologically active island, is located on the boundary of the Philippine Sea Plate and the Eurasian Plate. High heat flow and geothermal gradient generated by the complex collision and orogeny, warm up the meteoric water and/or the ground water. The heated water becomes geothermal fluids. In previous studies, researchers tried to categorize hot springs based on the appearance, chemical compositions and lithological areas. Because of the chemical inertness, the concentrations and isotopic composition of dissolved noble gases are good indicators of the mantle degassing, geothermal conditions, and so on. In this study, 55 hot springs were collected from different tectonic units. It is the first time to systematically study the hot springs in Taiwan in terms of dissolved gases. Hot spring water is sampled and stored in pre-evacuated glass bottles for analyzing gas compositions. The abundances of noble gases were determined by a quadrupole mass spectrometer based on the isotope dilution technique. Samples with glass vials are introduced to RAD 7 and GC for dissolved Rn and major dissolved gases analyses. Furthermore, helium isotopic ratios and helium-neon ratios are measured on a conventional noble gas mass spectrometer. For hydrochemistry analysis, water samples are analyzed by IC, ICP-MS and titration. We can classify the hot springs samples into three major groups from main anion concentration data; and then, subdivide them into nine minor groups by cation concentration data. Moreover, according to major dissolved gases compositions, three major gas components: CH4, N2 and CO2, are identified. Dissolved noble gases provided more detailed clues about hot springs sources in Taiwan, such as the degree of mixing between meteoric water and deep-source water, which will be further discussed in this study.

  5. Facility Effluent Monitoring Plan for the N Reactor

    International Nuclear Information System (INIS)

    Watson, D.J.; Brendel, D.F.; Shields, K.D.

    1991-11-01

    A facility effluent monitoring plan is required by the US Department of Energy in DOE Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. This document is prepared using the specific guidelines identified in A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans, WHC-EP- 0438. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements. This facility effluent monitoring plan is the first annual report. It shall ensure long-range integrity of the effluent monitoring systems by requiring an update whenever a new process or operation introduces new hazardous materials or significant radioactive materials. This document must be reviewed annually even if there are no operational changes, and it must be updated as a minimum every three years. The primary purpose of the N Reactor Facility Effluent Monitoring Plan (FEMP), during standby, is to ensure that the radioactive effluents are properly monitored and evaluated for compliance with the applicable DOE orders and regulatory agencies at the federal, state, and local levels. A secondary purpose of the FEMP is to ensure that hazardous wastes are not released, in liquid effluents, to the environment even though the potential to do so is extremely low. The FEMP is to provide a monitoring system that collects representative samples in accordance with industry standards, performs analyses within stringent quality control (QC) requirements, and evaluates the data through the use of comparative analysis with the standards and acceptable environmental models

  6. Hanford Site Treated Effluent Disposal Facility process flow sheet

    International Nuclear Information System (INIS)

    Bendixsen, R.B.

    1993-04-01

    This report presents a novel method of using precipitation, destruction and recycle factors to prepare a process flow sheet. The 300 Area Treated Effluent Disposal Facility (TEDF) will treat process sewer waste water from the 300 Area of the Hanford Site, located near Richland, Washington, and discharge a permittable effluent flow into the Columbia River. When completed and operating, the TEDF effluent water flow will meet or exceed water quality standards for the 300 Area process sewer effluents. A preliminary safety analysis document (PSAD), a preconstruction requirement, needed a process flow sheet detailing the concentrations of radionuclides, inorganics and organics throughout the process, including the effluents, and providing estimates of stream flow quantities, activities, composition, and properties (i.e. temperature, pressure, specific gravity, pH and heat transfer rates). As the facility begins to operate, data from process samples can be used to provide better estimates of the factors, the factors can be entered into the flow sheet and the flow sheet will estimate more accurate steady state concentrations for the components. This report shows how the factors were developed and how they were used in developing a flow sheet to estimate component concentrations for the process flows. The report concludes with how TEDF sample data can improve the ability of the flow sheet to accurately predict concentrations of components in the process

  7. Geothermal energy as a source of electricity. A worldwide survey of the design and operation of geothermal power plants

    Energy Technology Data Exchange (ETDEWEB)

    DiPippo, R.

    1980-01-01

    An overview of geothermal power generation is presented. A survey of geothermal power plants is given for the following countries: China, El Salvador, Iceland, Italy, Japan, Mexico, New Zealand, Philippines, Turkey, USSR, and USA. A survey of countries planning geothermal power plants is included. (MHR)

  8. Liquid Effluent Monitoring Program at the Pacific Northwest Laboratory

    International Nuclear Information System (INIS)

    Ballinger, M.Y.

    1995-05-01

    Pacific Northwest Laboratory (PNL) is conducting a program to monitor the waste water from PNL-operated research and development facilities on the Hanford Site. The purpose of the program is to collect data to assess administrative controls and to determine whether discharges to the process sewer meet sewer criteria. Samples have been collected on a regular basis from the major PNL facilities on the Hanford Site since March 1994. A broad range of analyses has been performed to determine the primary constituents in the liquid effluent. The sampling program is briefly summarized in the paper. Continuous monitoring of pH, conductivity, and flow also provides data on the liquid effluent streams. In addition to sampling and monitoring, the program is evaluating the dynamics of the waste stream with dye studies and is evaluating the use of newer technologies for potential deployment in future sampling/monitoring efforts. Information collected to date has been valuable in determining sources of constituents that may be higher than the Waste Acceptance Criteria (WAC) for the Treated Effluent Disposal Facility (TEDF). This facility treats the waste streams before discharge to the Columbia River

  9. Geothermal today: 1999 Geothermal Energy Program highlights (Clean energy for the 21st century booklet)

    Energy Technology Data Exchange (ETDEWEB)

    Green, B.; Waggoner, T.

    2000-05-10

    The purpose of this publication is to educate and inform readers about research activities being carried out by the federal Geothermal Energy Program, and its achievements and future goals. This publication should help raise the visibility and awareness of geothermal energy contributions and potential, especially as part of the nation's clean energy technologies portfolio. The message of the publication is that program resources are being well spent and the results are real and tangible. A secondary message is that geothermal energy is a viable generation option with environmental, economic, and other benefits.

  10. Energy source completion for geothermal district heating systems

    International Nuclear Information System (INIS)

    Popovski, Kiril

    2000-01-01

    Geothermal district heating systems differs from the others mainly in the part of energy source completion and its connection to the heat distribution systems rather known problem. Even rather known problematic in the countries where geothermal energy is in wide application, new appearances of mistakes are always present due to the fact that necessary literature is difficult to be found. Essentials of the geothermal well completion and connection of geothermal source to the district heating distribution system are summarized in the paper and several examples of geothermal projects in flow are presented. (Author)

  11. Geothermal energy in Italy and abroad

    International Nuclear Information System (INIS)

    Caputo di Calvisi, C.

    2001-01-01

    Geothermal systems and fields are analysed giving particular evidence to the value of the geothermal source as an important natural source of energy. The paper analyses hydrothermal systems and describes the international experimental studies on the use of geothermal reservoirs in hot rocks with geopressured and magmatic systems. Experts are optimistic as far as the use of this innovative source of energy is possible in the medium-short term [it

  12. Geothermal energy for greenhouses

    Science.gov (United States)

    Jacky Friedman

    2009-01-01

    Geothermal energy is heat (thermal) derived from the earth (geo). The heat flows along a geothermal gradient from the center of the earth to the surface. Most of the heat arrives at the surface of the earth at temperatures too low for much use. However, plate tectonics ensure that some of the heat is concentrated at temperatures and depths favorable for its commercial...

  13. Geothermal energy technology

    Energy Technology Data Exchange (ETDEWEB)

    1977-01-01

    Geothermal energy research and development by the Sunshine Project is subdivided into five major categories: exploration and exploitation technology, hot-water power generation technology, volcanic power generation technology, environmental conservation and multi-use technology, and equipment materials research. The programs are being carried out by various National Research Institutes, universities, and private industry. During 1976 and 1977, studies were made of the extent of resources, reservoir structure, ground water movement, and neotectonics at the Onikobe and Hachimantai geothermal fields. Studies to be performed in the near future include the use of new prospecting methods, including artificial magnetotellurics, heat balance calculation, brightspot techniques, and remote sensing, as well as laboratory studies of the physical, mechanical, and chemical properties of rock. Studies are continuing in the areas of ore formation in geothermal environments, hot-dry-rock drilling and fracturing, large scale prospecting technology, high temperature-pressure drilling muds and well cements, and arsenic removal techniques.

  14. Geothermal energy, what technologies for what purposes?

    International Nuclear Information System (INIS)

    2008-01-01

    This book, fully illustrated and rich of concrete examples, takes stock of the different technologies implemented today to use the Earth's heat: geothermal heat pumps for domestic, tertiary and collective residential uses, geothermal district heating networks and geothermal power plants for power generation. This overview is completed by a description of the future perspectives offered by this renewable energy source in the World and in France in terms of energy independence and technological innovation: geo-cooling, hybrid systems, absorption heat pumps or stimulated geothermal systems. (J.S.)

  15. Geothermal Energy: Prospects and Problems

    Science.gov (United States)

    Ritter, William W.

    1973-01-01

    An examination of geothermal energy as a means of increasing the United States power resources with minimal pollution problems. Developed and planned geothermal-electric power installations around the world, capacities, installation dates, etc., are reviewed. Environmental impact, problems, etc. are discussed. (LK)

  16. Geothermal technology in Australia: Investigating social acceptance

    International Nuclear Information System (INIS)

    Dowd, Anne-Maree; Boughen, Naomi; Ashworth, Peta; Carr-Cornish, Simone

    2011-01-01

    Issues of social acceptance, such as lack of awareness and negative community perceptions and reactions, can affect low emission energy technology development, despite general support observed for reducing carbon emissions and mitigating climate change. Negative community reactions and lack of understanding have affected geothermal developments, as demonstrated by the fearful community reactions and negative media experienced in response to seismic disturbances caused by 'hot rock' geothermal energy generation in Switzerland and Germany. Focusing on geothermal energy, this paper presents the results of using a participatory action research methodology to engage diverse groups within the Australian public. A key finding is that the majority of the Australian public report limited the knowledge or understanding of geothermal technology and have various concerns including water usage and seismic activity instigated by geothermal drilling. However, geothermal energy receives general support due to a common trend to champion renewable energy sources in preference to traditional forms of energy generation and controversial technologies. This paper also demonstrates the effectiveness of using an engagement process to explore public understanding of energy technologies in the context of climate change, and suggests a way forward for governments and industry to allocate resources for greatest impact when communicating about geothermal technology. - Highlights: → Majority of Australians have limited knowledge or understanding of geothermal technology. → Various concerns, including water usage and seismic activity instigated by drilling, were raised. → Geothermal energy has general support due to a common trend to champion renewable energy sources. → Methodology shows the effectiveness of an engagement process to explore public understanding. → Participants expressed intention to change behaviours, which can be a catalyst for change.

  17. Geothermal energy utilization and technology

    CERN Document Server

    Dickson, Mary H; Fanelli, Mario

    2013-01-01

    Geothermal energy refers to the heat contained within the Earth that generates geological phenomena on a planetary scale. Today, this term is often associated with man's efforts to tap into this vast energy source. Geothermal Energy: utilization and technology is a detailed reference text, describing the various methods and technologies used to exploit the earth's heat. Beginning with an overview of geothermal energy and the state of the art, leading international experts in the field cover the main applications of geothermal energy, including: electricity generation space and district heating space cooling greenhouse heating aquaculture industrial applications The final third of the book focuses upon environmental impact and economic, financial and legal considerations, providing a comprehensive review of these topics. Each chapter is written by a different author, but to a set style, beginning with aims and objectives and ending with references, self-assessment questions and answers. Case studies are includ...

  18. Geothermal surveys in the oceanic volcanic island of Mauritius

    Science.gov (United States)

    Verdoya, Massimo; Chiozzi, Paolo; Pasqua, Claudio

    2017-04-01

    Oceanic island chains are generally characterised by young volcanic systems that are predominately composed of basaltic lavas and related magmatic products. Although hot springs are occasionally present, the pervasive, massive, recent outpourings of basaltic lavas are the primary manifestation of the existence of geothermal resources. These islands may have, in principle, significant potential for the exploitation of geothermal energy. In this paper, we present results of recent investigations aimed at the evaluation of geothermal resources of the island of Mauritius, that is the emerging portion of a huge submarine, aseismic, volcanic plateau extending in the SW part of the Indian Ocean. The plateau is related to a long-lived hotspot track, whose present-day expression is the active volcano of La Réunion Island, located about 200 km SW of Mauritius. The island does not show at present any volcanic activity, but magmatism is quite recent as it dates from 7.8 to 0.03 Myr. Geochemical data from water samples collected from boreholes do not indicate the presence of mature water, i.e. circulating in high-temperature geothermal reservoirs, and argue for short-term water-rock interaction in shallow hydrogeological circuits. However, this cannot rule out that a deep magmatic heat source, hydraulically insulated from shallow aquifers, may occur. To evaluate the geothermal gradient, a 270-m-deep hole was thus drilled in the island central portion, in which the most recent volcanic activity (0.03 Myr) took place. Temperature-depth profiles, recorded after complete thermal equilibration, revealed a thermal gradient of 40 mK/m. Attempts of extracting additional thermal information were also made by measuring the temperature in a 170-m-deep deep water hole, no longer used. The results were consistent with the gradient hole, i.e. pointing to a weak or null deep-seated thermal anomaly beneath Mauritius and low geothermal potential. The deep thermal process (mantle plume) invoked

  19. Bacterial corrosion in low-temperature geothermal. Mechanisms of corrosion by sulphate-reducing bacteria

    International Nuclear Information System (INIS)

    Daumas, Sylvie

    1987-01-01

    Within the frame of researches aimed at determining the causes of damages noticed on geothermal equipment, this research thesis aims at assessing the respective importance of physical-chemical processes and bacterial intervention in corrosion phenomena. It proposes an ecological approach of the fluid sampled in the Creil geothermal power station. The aim is to define the adaptation and activity degree of isolated sulphate-reducing bacteria with respect to their environment conditions. The author studied the effect of the development of these bacteria on the corrosion of carbon steel used in geothermal. Thus, he proposes a contribution to the understanding of mechanisms related to iron attack by these bacteria. Electrochemical techniques have been adapted to biological processes and used to measure corrosion [fr

  20. Legal provisions governing gaseous effluents radiological monitoring

    International Nuclear Information System (INIS)

    Winkelmann, I.

    1985-01-01

    This contribution explains the main provisions governing radiological monitoring of gaseous effluents from LWR type nuclear power plants. KTA rule 1503.1 defines the measuring methods and tasks to be fulfilled by reactor operators in order to safeguard due monitoring and accounting of radioactive substances in the plants' gaseous effluents. The routine measurements are checked by a supervisory programme by an independent expert. The routine controls include analysis of filter samples, comparative measurement of radioactive noble gases, interlaboratory comparisons, and comparative evaluation of measured values. (DG) [de

  1. Potential effects of geothermal energy conversion on Imperial Valley ecosystems. [Seven workshop presentations

    Energy Technology Data Exchange (ETDEWEB)

    Shinn, J.H. (ed.)

    1976-12-17

    This workshop on potential effcts of geothermal energy conversion on the ecology of Imperial Valley brought together personnel of Lawrence Livermore Laboratory and many collaborators under the sponsorship of the ERDA Imperial Valley Environmental Project (IVEP). The LLL Integrated Assessment Team identified the electric power potential and its associated effluents, discharges, subsidence, water requirements, land use, and noise. The Working Groups addressed the ecological problems. Water resource management problems include forces on water use, irrigation methods and water use for crops, water production, and water allocation. Agricultural problems are the contamination of edible crops and the reclamation of soil. A strategy is discussed for predevelopment baseline data and for identification of source term tracers. Wildlife resources might be threatened by habitat destruction, powerline impacts, noise and disturbance effects, gas emissions, and secondary impacts such as population pressure. Aquatic ecosystems in both the Salton Sea and fresh waters have potential hazards of salinity and trace metal effects, as well as existing stresses; baseline and bioassay studies are discussed. Problems from air pollution resulting from geothermal resource development might occur, particularly to vegetation and pollinator insects. Conversion of injury data to predicted economic damage isneeded. Finally, Imperial Valley desert ecosystems might be threatened by destruction of habitat and the possible effects on community structure such as those resulting from brine spills.

  2. Geothermal energy in California: Status report

    Energy Technology Data Exchange (ETDEWEB)

    Citron, O.; Davis, C.; Fredrickson, C.; Granit, R.; Kerrisk, D.; Leibowitz, L.; Schulkin, B.; Wornack, J.

    1976-06-30

    The potential for electric energy from geothermal resources in California is currently estimated to be equivalent to the output from 14 to 21 large (1000 MW) central station power plants. In addition, since over 30 California cities are located near potential geothermal resources, the non-electric applications of geothermal heat (industrial, agriculture, space heating, etc.) could be enormous. Therefore, the full-scale utilization of geothermal resources would have a major impact upon the energy picture of the state. This report presents a summary of the existing status of geothermal energy development in the state of California as of the early part of 1976. The report provides data on the extent of the resource base of the state and the present outlook for its utilization. It identifies the existing local, state, and federal laws, rules and regulations governing geothermal energy development and the responsibilities of each of the regulatory agencies involved. It also presents the differences in the development requirements among several counties and between California and its neighboring states. Finally, it describes on-going and planned activities in resource assessment and exploration, utilization, and research and development. Separate abstracts are prepared for ERDA Energy Research Abstracts (ERA) for Sections II--VI and the three Appendixes.

  3. Is the Philippine geothermal resource sustainable?

    International Nuclear Information System (INIS)

    Lalo, J.; Raymundo, E.

    2005-01-01

    This paper aims to illustrate the scenario in the Geothermal Energy Development Projects in the Philippines, to make the Filipino population aware that there is an existing cleaner technology available that is being utilized in Europe; for the Philippine geothermal energy project operators to adapt a cleaner production technology that has no harmful emission, hence, no pollution technology; to help end the conflict between stake holders and geothermal players through the introduction of cleaner production technology intervention. While it is a fact that the Philippines' Geothermal resource is second to U.S. or around the globe, the unwise utilization of geothermal energy may lead to depletion, hence, becomes non-renewable. It should be understood that the geothermal energy is a renewable resource only if the development process is sustainable. There is a need to educate the Filipino populace regarding a cleaner production technology as well as our government and political leaders. This cleaner production technology is a solution to the stake holders. It is of great importance to inform the Filipino people that there is an existing cleaner new technology from Europe and U.S. that is not pollutive in nature and is essentially sustainable development scheme since underground reservoirs are not depleted in the process. (author)

  4. Facility effluent monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Gleckler, B.P.

    1995-06-01

    This section of the 1994 Hanford Site Environmental Report summarizes the facility effluent monitoring programs and provides an evaluation of effluent monitoring data. These evaluations are useful in assessing the effectiveness of effluent treatment and control systems, as well as management practices.

  5. Performance evaluation of effluent treatment plant for automobile industry

    Energy Technology Data Exchange (ETDEWEB)

    Ansari, Farid [Department of Applied Science and Humanities, PDM College of Engineering, Bahadurgarh (Haryana) (India); Pandey, Yashwant K. [School of Energy and Environmental Studies, Devi Ahilya Vishwavidyalaya, Indore (India); Kumar, P.; Pandey, Priyanka [Department of Environmental Science, Post Graduate College Ghazipur (IN

    2013-07-01

    The automobile industry’s wastewater not only contains high levels of suspended and total solids such as oil, grease, dyestuff, chromium, phosphate in washing products, and coloring, at various stages of manufacturing but also, a significant amount of dissolved organics, resulting in high BOD or COD loads. The study reveals the performance, evaluation and operational aspects of effluent treatment plant and its treatability, rather than the contamination status of the real property. The Results revealed that the treated effluent shows most of the parameters are within permissible limits of Central Pollution Control Board (CPCB), India and based on the site visits, discussion with operation peoples, evaluation of process design, treatment system, existing effluent discharge, results of sample analyzed and found that effluent treatment plant of automobile industry are under performance satisfactory.

  6. 36Cl/Cl ratios in geothermal systems: preliminary measurements from the Coso Field

    International Nuclear Information System (INIS)

    Nimz, G.J.; Moore, J.N.; Kasameyer, P.W.

    1997-01-01

    The 36 Cl/Cl isotopic composition of chlorine in geothermal systems can be a useful diagnostic tool in characterizing hydrologic structure, in determining the origins and age of waters within the systems, and in differentiating the sources of chlorine (and other solutes) in the thermal waters. The 36 Cl/Cl values for several geothermal water samples and reservoir host rock samples from the Coso, California geothermal field have been measured for these purposes. The results indicate that most of the chlorine is not derived from the dominant granitoid that host the geothermal system. If the chlorine was originally input into the Coso subsurface through meteoric recharge, that input occurred at least 1-1.25 million years ago. The results suggest that the thermal waters could be connate waters derived from sedimentary formations, presumably underlying and adjacent top the granitic rocks, which have recently migrated into the host rocks. Alternatively, most of the chlorine but not the water, may have recently input into the system from magmatic sources. In either case, the results indicate that most of the chlorine in the thermal waters has existed within the granitoid host rocks for no more than about 100,00-200,00 years. this residence time for the chlorine is similar to residence times suggested by other researchers for chlorine in deep groundwaters of the Mono Basin north of the Coso field

  7. 36Cl/Cl ratios in geothermal systems: preliminary measurements from the Coso Field

    Energy Technology Data Exchange (ETDEWEB)

    Nimz, G.J.; Moore, J.N.; Kasameyer, P.W.

    1997-07-01

    The {sub 36}Cl/Cl isotopic composition of chlorine in geothermal systems can be a useful diagnostic tool in characterizing hydrologic structure, in determining the origins and age of waters within the systems, and in differentiating the sources of chlorine (and other solutes) in the thermal waters. The {sub 36}Cl/Cl values for several geothermal water samples and reservoir host rock samples from the Coso, California geothermal field have been measured for these purposes. The results indicate that most of the chlorine is not derived from the dominant granitoid that host the geothermal system. If the chlorine was originally input into the Coso subsurface through meteoric recharge, that input occurred at least 1-1.25 million years ago. The results suggest that the thermal waters could be connate waters derived from sedimentary formations, presumably underlying and adjacent top the granitic rocks, which have recently migrated into the host rocks. Alternatively, most of the chlorine but not the water, may have recently input into the system from magmatic sources. In either case, the results indicate that most of the chlorine in the thermal waters has existed within the granitoid host rocks for no more than about 100,00-200,00 years. this residence time for the chlorine is similar to residence times suggested by other researchers for chlorine in deep groundwaters of the Mono Basin north of the Coso field.

  8. Technology assessment of geothermal energy resource development

    Energy Technology Data Exchange (ETDEWEB)

    1975-04-15

    Geothermal state-of-the-art is described including geothermal resources, technology, and institutional, legal, and environmental considerations. The way geothermal energy may evolve in the United States is described; a series of plausible scenarios and the factors and policies which control the rate of growth of the resource are presented. The potential primary and higher order impacts of geothermal energy are explored, including effects on the economy and society, cities and dwellings, environmental, and on institutions affected by it. Numerical and methodological detail is included in appendices. (MHR)

  9. Environmental impact in geothermal fields

    International Nuclear Information System (INIS)

    Birkle, P.; Torres R, V.; Gonzalez P, E.; Guevara G, M.

    1996-01-01

    Generally, water exploitation and deep steam of geothermal fields may be cause of a pollution potential on the surface, specially by the chemical composition of geothermal water which has a high concentration of minerals, salts and heavy metals. The utilization of stable isotopes as deuterium and oxygen 18 as radioactive tracers and water origin indicators allow to know the trajectories and sources of background waters as well as possible moistures between geothermal waters and meteoric waters. Some ions such as chlorides and fluorides present solubilities that allow their register as yet long distances of their source. (Author)

  10. Diagnostic peritoneal lavage: volume of lavage effluent needed for accurate determination of a negative lavage.

    Science.gov (United States)

    Sweeney, J F; Albrink, M H; Bischof, E; McAllister, E W; Rosemurgy, A S

    1994-12-01

    While the ability of diagnostic peritoneal lavage (DPL) to 'rule out' occult intra-abdominal injuries has been well established, the volume of lavage effluent necessary for accurate prediction of a negative lavage has not been determined. To address this, 60 injured adults with blunt (N = 45) or penetrating (N = 15) trauma undergoing DPL were evaluated prospectively through protocol. After infusion of 1l of Ringer's lactate solution, samples of lavage effluent were obtained at 100 cm3, 250 cm3, 500 cm3, and 759 cm3, and when no more effluent could be returned (final sample). DPL was considered negative if final sample RBC count was < or = 100,000/mm3 for blunt injury and < 50,000/mm3 for penetrating injury. The conclusion is that at 100 cm3 of lavage effluent returned, negative results are highly predictive of a negative DPL (98 per cent), though 250 cm3 of lavage effluent is required to predict a negative DPL uniformly (100 per cent).

  11. Geothermal Program Review XI: proceedings. Geothermal Energy - The Environmental Responsible Energy Technology for the Nineties

    Energy Technology Data Exchange (ETDEWEB)

    1993-10-01

    These proceedings contain papers pertaining to current research and development of geothermal energy in the USA. The seven sections of the document are: Overview, The Geysers, Exploration and Reservoir Characterization, Drilling, Energy Conversion, Advanced Systems, and Potpourri. The Overview presents current DOE energy policy and industry perspectives. Reservoir studies, injection, and seismic monitoring are reported for the geysers geothermal field. Aspects of geology, geochemistry and models of geothermal exploration are described. The Drilling section contains information on lost circulation, memory logging tools, and slim-hole drilling. Topics considered in energy conversion are efforts at NREL, condensation on turbines and geothermal materials. Advanced Systems include hot dry rock studies and Fenton Hill flow testing. The Potpourri section concludes the proceedings with reports on low-temperature resources, market analysis, brines, waste treatment biotechnology, and Bonneville Power Administration activities. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.

  12. Geothermal resources in the Republic of Macedonia

    International Nuclear Information System (INIS)

    Micevski, Eftim; Georgieva, Mirjana; Petrovski, Kiro; Lonchar, Ilija

    1995-01-01

    The Republic of Macedonia is situated in the central part of the Balcan Peninsula and covers a surface of 25. 713 km 2 Its territory is found in one of the most significant geothermal zones in this part of Balkans. The earths crust in this region suffers poli phase structural deformations, which as a result gives different structural features. The geothermal explorations in the Republic of Macedonia intensively started to conduct after 1970, after the first effects of the energy crisis. As a result of these explorations, more than 50 springs of mineral and thermo mineral waters with a total yield of more than 1.400 I./sec. And proved exploitation reservoirs of more than 1.000 I./sec. with temperatures higher than the medium year seasons hesitations for this part of the Earth in the boundaries of 20-75 o C with significant quantities of geothermal energy. This paper will shortly present the available geothermal resources and classification, according the type of geothermal energy, hydro geothermal, lithogeothermal and according the way of transport of the geothermal energy, convective and conductive systems. The next will present short descriptions of the resources, the degree of exploitation and the prognosis dimensions of the reservoirs. (Original)

  13. Origin of sulphur compounds and application of isotope geothermometry in selected geothermal systems of China

    International Nuclear Information System (INIS)

    Pang Zhonghe

    2005-01-01

    Geothermal and groundwater samples from East of Heber (EH) Province in the North China Basin and South of Fujian (SF) Province in Southeast of China were studied using sulphur and water isotopes. EH is located in a Mesozoic-Cenozoic sedimentary basin while SF is composed of small fault-block basins formed in Quaternary period. These systems belong to non-volcanic geothermal environments. Samples were collected from exploratory and production geothermal wells: 11 wells in EH and 17 wells in SF. The samples were analyzed for oxygen-18 (δ 18 O) and deuterium (δ 2 H) in water, sulfur-34 (δ 34 S) and oxygen-18 ((δ 18 O) in aqueous sulphate (SO 4 ). Chemical composition of the water samples was also determined. Results show that aqueous sulphate in the saline thermal waters of SF is of marine origin. The aqueous sulphate in EH waters is of non-marine origin. Reservoir temperature estimated using the oxygen isotope geothermometer is not compatible to those by chemical geothermometers or by down-hole measurements in the sedimentary environment for EH, different from that for the SF samples where aqueous sulphate seems to have reached equilibrium with thermal waters in the main up-flow zone. (author)

  14. Sustainable Development of Geothermal Industry in China: An Overview

    Directory of Open Access Journals (Sweden)

    Xu Bang

    2016-01-01

    Full Text Available With a wide distribution, large reserves, low cost, sustainable energy use and environmental protection and other unparalleled advantages, geothermal energy resources is important for China’s energy structure adjustment, energy conservation and environment improvement. Currently, geothermal utilization in China is still in its infancy, and Sustainable Development of the geothermal industry is also having a lot of problems. In this paper, the current research on sustainable development of geothermal industry focuses on two aspects: 1. the current situation of geothermal industry development and existing problems, 2. the current situation of sustainable development of the geothermal industry. On the basis of the review, some suggestions for further study on the sustainable development of geothermal industry are put forward.

  15. Development of geothermal resources

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    This paper describes the geothermal development promotion survey project. NEDO is taking the lead in investigation and development to reduce risks for private business entities and promote their development. The program is being moved forward by dividing the surveys into three ranks of A, B and C from prospects of geothermal resource availability and the state of data accumulation. The survey A lacks number of data, but covers areas as wide as 100 to 300 km{sup 2}, and studies possible existence of high-temperature geothermal energy. The survey B covers areas of 50 to 70 km{sup 2}, investigates availability of geothermal resources, and assesses environmental impacts. The survey C covers areas of 5 to 10 km{sup 2}, and includes production well drilling and long-term discharge tests, other than those carried out by the surveys A and B. Results derived in each fiscal year are evaluated and judged to establish development plans for the subsequent fiscal year. This paper summarizes development results on 38 areas from among 45 areas surveyed since fiscal 1980. Development promotion surveys were carried out over seven areas in fiscal 1994. Development is in progress not only on utilization of high-temperature steam, but also on binary cycle geothermal power generation utilizing hot waters of 80 to 150{degree}C. Fiscal 1994 has carried out discussions for spread and practical use of the systems (particularly on economic effects), and development of small-to-medium scale binary systems. 2 figs., 1 tab.

  16. Development of Genetic Occurrence Models for Geothermal Prospecting

    Science.gov (United States)

    Walker, J. D.; Sabin, A.; Unruh, J.; Monastero, F. C.; Combs, J.

    2007-12-01

    Exploration for utility-grade geothermal resources has mostly relied on identifying obvious surface manifestations of possible geothermal activity, e.g., locating and working near steaming ground or hot springs. This approach has lead to the development of over 130 resources worldwide, but geothermal exploration done in this manner is akin to locating hydrocarbon plays by searching for oil seeps. Confining exploration to areas with such features will clearly not discover a blind resource, that is, one that does not have surface expression. Blind resources, however, constitute the vast majority of hydrocarbon plays; this may be the case for geothermal resources as well. We propose a geothermal exploration strategy for finding blind systems that is based on an understanding of the geologic processes that transfer heat from the mantle to the upper crust and foster the conditions for hydrothermal circulation or enhanced geothermal exploration. The strategy employs a genetically based screening protocol to assess potential geothermal sites. The approach starts at the plate boundary scale and progressively focuses in on the scale of a producing electrical-grade field. Any active margin or hot spot is a potential location for geothermal resources. Although Quaternary igneous activity provides a clear indication of active advection of hot material into the upper crust, it is not sufficient to guarantee a potential utility-grade resource. Active faulting and/or evidence of high strain rates appear to be the critical features associated with areas of utility-grade geothermal potential. This is because deformation on its own can advect sufficient heat into the upper crust to create conditions favorable for geothermal exploitation. In addition, active deformation is required to demonstrate that open pathways for circulation of geothermal fluids are present and/or can be maintained. The last step in the screening protocol is to identify any evidence of geothermal activity

  17. Heat flow at the Platanares, Honduras, geothermal site

    Science.gov (United States)

    Meert, Joseph G.; Smith, Douglas L.

    1991-03-01

    Three boreholes, PLTG-1, PLTG-2 and PLTG-3, were drilled in the Platanares, Honduras geothermal system to evaluate the geothermal energy potential of the site. The maximum reservoir temperature was previously estimated at 225-240°C using various types of chemical and isotopic geothermometry. Geothermal gradients of 139-239°C/km, calculated from two segments of the temperature-depth profile for borehole PLTG-2, were used to project a minimum depth to the geothermal reservoir of 1.2-1.7 km. Borehole PLTG-1 exhibited an erratic temperature distribution attributed to fluid movement through a series of isolated horizontal and subhorizontal fractures. The maximum measured temperature in borehole PLTG-1 was 150.4°C, and in PLTG-2 the maximum measured temperature was 104.3°C. PLTG-3 was drilled after this study and the maximum recorded temperature of 165°C is similar to the temperature encountered in PLTG-1. Heat flow values of 392 mWm -2 and 266 mWm -2 represent the first directly-measured heat flow values for Honduras and northen Central America. Radioactive heat generation, based on gamma-ray analyses of uranium, thorium and potassium in five core samples, is less than 2.0 μWm -3 and does not appear to be a major source of the high heat flow. Several authors have proposed a variety of extensional tectonic environments for western Honduras and these heat flow values, along with published estimates of heat flow, are supportive of this type of tectonic regime.

  18. Synergy potential for oil and geothermal energy exploitation

    DEFF Research Database (Denmark)

    Ziabakhsh-Ganji, Zaman; Nick, Hamidreza M.; Donselaar, Marinus E.

    2018-01-01

    A new solution for harvesting energy simultaneously from two different sources of energy by combining geothermal energy production and thermal enhanced heavy oil recovery is introduced. Numerical simulations are employed to evaluate the feasibility of generating energy from geothermal resources...... and feasibility analyses of the synergy potential of thermally-enhanced oil recovery and geothermal energy production are performed. A series of simulations are carried out to examine the effects of reservoir properties on energy consumption and oil recovery for different injection rates and injection temperature...... the geothermal energy could make the geothermal business case independent and may be a viable option to reduce the overall project cost. Furthermore, the results display that the enhance oil productions are able to reduce the required subsidy for a single doublet geothermal project up to 50%....

  19. Geothermal publications list for Geopowering the West States

    Energy Technology Data Exchange (ETDEWEB)

    None

    2004-12-01

    A list of geothermal publications is provided for each of the states under the ''GeoPowering the West'' program. They are provided to assist the various states in developing their geothermal resources for direct-use and electric power applications. Each state publication list includes the following: (1) General papers on various direct-uses and electric power generation available from the Geo-Heat Center either by mail or on-line at: http://geoheat.oit.edu. (2) General Geo-Heat Center Quarterly Bulletin articles related to various geothermal uses--also available either by mail or on-line; (3) Publications from other web sites such as: Geothermal-Biz.com; NREL, EGI, GEO and others ; and (4) Geothermal Resources Council citations, which are available from their web site: www.geothermal.org.

  20. A complementary geothermal application

    International Nuclear Information System (INIS)

    Bedard, R.

    1998-01-01

    A geothermal project for air conditioning and heating at four health centres in Quebec was presented. The four health centres are: le centre Dominique-Tremblay, le centre Cardinal-Villeneuve, le centre Louis-Hebert, et le centre Francois-Charon. The investment made to install the geothermal heating and cooling system, the cost of operating the system, and energy savings resulting from the investment were discussed

  1. A hybrid geothermal energy conversion technology: Auxiliary heating of geothermally preheated water or CO2 - a potential solution for low-temperature resources

    Science.gov (United States)

    Saar, Martin; Garapati, Nagasree; Adams, Benjamin; Randolph, Jimmy; Kuehn, Thomas

    2016-04-01

    Safe, sustainable, and economic development of deep geothermal resources, particularly in less favourable regions, often requires employment of unconventional geothermal energy extraction and utilization methods. Often "unconventional geothermal methods" is synonymously and solely used as meaning enhanced geothermal systems, where the permeability of hot, dry rock with naturally low permeability at greater depths (4-6 km), is enhanced. Here we present an alternative unconventional geothermal energy utilization approach that uses low-temperature regions that are shallower, thereby drastically reducing drilling costs. While not a pure geothermal energy system, this hybrid approach may enable utilization of geothermal energy in many regions worldwide that can otherwise not be used for geothermal electricity generation, thereby increasing the global geothermal resource base. Moreover, in some realizations of this hybrid approach that generate carbon dioxide (CO2), the technology may be combined with carbon dioxide capture and storage (CCS) and CO2-based geothermal energy utilization, resulting in a high-efficiency (hybrid) geothermal power plant with a negative carbon footprint. Typically, low- to moderate-temperature geothermal resources are more effectively used for direct heat energy applications. However, due to high thermal losses during transport, direct use requires that the heat resource is located near the user. Alternatively, we show here that if such a low-temperature geothermal resource is combined with an additional or secondary energy resource, the power production is increased compared to the sum from two separate (geothermal and secondary fuel) power plants (DiPippo et al. 1978) and the thermal losses are minimized because the thermal energy is utilized where it is produced. Since Adams et al. (2015) found that using CO2 as a subsurface working fluid produces more net power than brine at low- to moderate-temperature geothermal resource conditions, we

  2. Vegetation component of geothermal EIS studies: Introduced plants, ecosystem stability, and geothermal development

    International Nuclear Information System (INIS)

    1994-10-01

    This paper contributes new information about the impacts from introduced plant invasions on the native Hawaiian vegetation as consequences of land disturbance and geothermal development activities. In this regard, most geothermal development is expected to act as another recurring source of physical disturbance which favors the spread and maintenance of introduced organisms throughout the region. Where geothermal exploration and development activities extend beyond existing agricultural and residential development, they will become the initial or sole source of disturbance to the naturalized vegetation of the area. Kilauea has a unique ecosystem adapted to the dynamics of a volcanically active landscape. The characteristics of this ecosystem need to be realized in order to understand the major threats to the ecosystem and to evaluate the effects of and mitigation for geothermal development in Puna. The native Puna vegetation is well adapted to disturbances associated with volcanic eruption, but it is ill-adapted to compete with alien plant species in secondary disturbances produced by human activities. Introduced plant and animal species have become a major threat to the continued presence of the native biota in the Puna region of reference

  3. Vegetation component of geothermal EIS studies: Introduced plants, ecosystem stability, and geothermal development

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-10-01

    This paper contributes new information about the impacts from introduced plant invasions on the native Hawaiian vegetation as consequences of land disturbance and geothermal development activities. In this regard, most geothermal development is expected to act as another recurring source of physical disturbance which favors the spread and maintenance of introduced organisms throughout the region. Where geothermal exploration and development activities extend beyond existing agricultural and residential development, they will become the initial or sole source of disturbance to the naturalized vegetation of the area. Kilauea has a unique ecosystem adapted to the dynamics of a volcanically active landscape. The characteristics of this ecosystem need to be realized in order to understand the major threats to the ecosystem and to evaluate the effects of and mitigation for geothermal development in Puna. The native Puna vegetation is well adapted to disturbances associated with volcanic eruption, but it is ill-adapted to compete with alien plant species in secondary disturbances produced by human activities. Introduced plant and animal species have become a major threat to the continued presence of the native biota in the Puna region of reference.

  4. Geothermal energy - availability - economy - prospects

    International Nuclear Information System (INIS)

    Kappelmeyer, O.

    1992-01-01

    The heat contained in the earth's crust represents an inexhaustible reservoir of energy on the technical scale, which is available at all times of day and at all seasons. In the volcanically active zones, the earth's heat is used industrially: Worldwide, the electrical power of geothermal powerstations is about 5000 MW; in addition, about 10,000 MW are used for direct thermal applications (heating) in regions with normal geothermal conditions. The geothermal power plants have been expanded at an annual rate of 12.2% since 1970. In many developing countries, the geothermal energy is the most important home source of energy for electricity generation. In Europe, in the Paris Basin, hot groundwater is pumped from a depth of about 2 km and is used for heating blocks of flats. In France as a whole, about 170,000 flats have been supplied with heat and hot water from underground for more than a decade. (orig./DG) [de

  5. Swiss geothermal energy update 1985 - 1990

    International Nuclear Information System (INIS)

    Rybach, L.; Hauber, L.

    1990-01-01

    Since 1985, geothermal R and D has evolved steadily in Switzerland. REgional low-enthalphy exploration and resource assessment are largely complete; emphasis is now on drilling and development. Vertical earth-heat exchangers (small-scale, decentralized, heat pump-coupled heating facilities) increase rapidly in number; the governmental system of risk coverage for geothermal drilling, established in 1987, gives rise to several drilling projects. Of these, a single well and a doublet have been successfully completed so far. Numerical modeling of coupled thermohydraulic processes in fracture-dominate Hot Dry Rock systems including rock-mechanics aspects, is in progress. In this paper some further efforts such as contributions to general geothermics, exploration and resource assessment activities in Switzerland, and financing of geothermal development abroad by Swiss banks are described

  6. Geothermal studies of seven interior salt domes

    International Nuclear Information System (INIS)

    1983-06-01

    This report defines and compares the geothermal environments of eight selected Gulf Coast salt domes. The thermal regimes in and around Gulf Coast salt domes are not well documented. The data base used for this study is an accumulation of bottom-hole temperature readings from oil and gas exploration wells and temperature logs run for the National Waste Terminal Storage (NWTS) program. The bottom-hole tempreatures were corrected in order to estimate the actual geothermal environments. Prior thermal studies and models indicate temperatures in and around salt domes are elevated above the norm by 1 0 F to 25 0 F. Using existing geothermal data and accepted theory, geothermal gradients for the selected domes and surrounding sediments were estimated. This study concludes that salt domes within a given basin have similar geothermal gradients, but that the basins differ in average geothermal gradients. This relationship is probably controlled by deep basement structural trends. No evidence of residual heat of emplacement was found associated with any of the selected domes

  7. Isotope study in geothermal fields in Java Island

    International Nuclear Information System (INIS)

    Wandowo, Z.A.

    1995-01-01

    Study in two geothermal fields, Dieng and Kamojang, in Java island by utilizing isotope technique has been carried out. Isotopic data of wells, springs and other geothermal manifestations providing informations on the recharge area of precipitation contributed to geothermal resources, flow paths and origin of geothermal fluids. The data of oxygen shift has also provided information on the characteristic the fields. (author). 8 refs, 5 figs, 3 tabs

  8. Baseline studies in the desert ecosystem at East Mesa Geothermal Test Site, Imperial Valley, California

    Energy Technology Data Exchange (ETDEWEB)

    Romney, E.M.; Wallace, A.; Lunt, O.R.; Ackerman, T.A.; Kinnear, J.E.

    1977-09-01

    Baseline data reported herein for soil, vegetation, and small mammal components of the East Mesa desert ecosystem represent a collection period from October 1975 to September 1977. Inasmuch as changes in salt balance from geothermal brine sources are of potential impact upon the ecosystem, considerable analytical effort was given to the determination of element constituents in soil, plant, and animal samples. A preliminary synthesis of data was done to investigate the heterogeneity of element constituents among the sampled population and to summarize results. Findings indicate that periodic sampling and chemical analysis of vegetation around an industrialized geothermal energy source is probably the best way to monitor the surrounding ecosystem for assuring containment of any resource pollutants.

  9. Evaluation of geothermal energy in Arizona. Arizona geothermal planning/commercialization team. Quarterly topical progress report, July 1-September 30, 1980

    Energy Technology Data Exchange (ETDEWEB)

    White, D.H.; Mancini, F.; Goldstone, L.A.; Malysa, L.

    1980-01-01

    Progress is reviewed on the following: area development plans, evaluation of geothermal applications, continued evaluation of geothermal resources, engineering and economic analyses, technical assistance in the state of Arizona, the impact of various growth patterns upon geothermal energy development, and the outreach program. (MHR)

  10. Multipurpose Use of Geothermal Energy

    Energy Technology Data Exchange (ETDEWEB)

    Lienau, Paul J.; Lund, John W. (eds.)

    1974-10-09

    The conference was organized to review the non-electric, multipurpose uses of geothermal energy in Hungary, Iceland, New Zealand, United States and the USSR. The international viewpoint was presented to provide an interchange of information from countries where non-electric use of geothermal energy has reached practical importance.

  11. Economic Valuation of a Geothermal Production Tax Credit

    Energy Technology Data Exchange (ETDEWEB)

    Owens, B.

    2002-04-01

    The United States (U.S.) geothermal industry has a 45-year history. Early developments were centered on a geothermal resource in northern California known as The Geysers. Today, most of the geothermal power currently produced in the U.S. is generated in California and Nevada. The majority of geothermal capacity came on line during the 1980s when stable market conditions created by the Public Utility Regulatory Policies Act (PURPA) in 1978 and tax incentives worked together to create a wave of geothermal development that lasted until the early 1990s. However, by the mid-1990s, the market for new geothermal power plants began to disappear because the high power prices paid under many PURPA contracts switched to a lower price based on an avoided cost calculation that reflected the low fossil fuel-prices of the early 1990s. Today, market and non-market forces appear to be aligning once again to create an environment in which geothermal energy has the potential to play an important role in meeting the nation's energy needs. One potentially attractive incentive for the geothermal industry is the Production Tax Credit (PTC). The current PTC, which was enacted as part of the Energy Policy Act of 1992 (EPAct) (P.L. 102-486), provides an inflation-adjusted 1.5 cent per kilowatt-hour (kWh) federal tax credit for electricity produced from wind and closed-loop biomass resources. Proposed expansions would make the credit available to geothermal and solar energy projects. This report focuses on the project-level financial impacts of the proposed PTC expansion to geothermal power plants.

  12. Federal Geothermal Research Program Update Fiscal Year 2000

    Energy Technology Data Exchange (ETDEWEB)

    Renner, J.L.

    2001-08-15

    The Department of Energy's Geothermal Program serves two broad purposes: (1) to assist industry in overcoming near-term barriers by conducting cost-shared research and field verification that allows geothermal energy to compete in today's aggressive energy markets; and (2) to undertake fundamental research with potentially large economic payoffs. The four categories of work used to distinguish the research activities of the Geothermal Program during FY 2000 reflect the main components of real-world geothermal projects. These categories form the main sections of the project descriptions in this Research Update. Exploration Technology research focuses on developing instruments and techniques to discover hidden hydrothermal systems and to explore the deep portions of known systems. Research in geophysical and geochemical methods is expected to yield increased knowledge of hidden geothermal systems. Reservoir Technology research combines laboratory and analytical investigations with equipment development and field testing to establish practical tools for resource development and management for both hydrothermal reservoirs and enhanced geothermal systems. Research in various reservoir analysis techniques is generating a wide range of information that facilitates development of improved reservoir management tools. Drilling Technology focuses on developing improved, economic drilling and completion technology for geothermal wells. Ongoing research to avert lost circulation episodes in geothermal drilling is yielding positive results. Conversion Technology research focuses on reducing costs and improving binary conversion cycle efficiency, to permit greater use of the more abundant moderate-temperature geothermal resource, and on the development of materials that will improve the operating characteristics of many types of geothermal energy equipment. Increased output and improved performance of binary cycles will result from investigations in heat cycle research.

  13. Geothermal heat; Energie aus der Tiefe. Geothermie

    Energy Technology Data Exchange (ETDEWEB)

    Urban, Karl

    2012-09-15

    The temperature in the interior of the earth increases with the depth. But for a long time, the geothermal energy only could be used at selected locations. Therefore, almost all major geothermal power plants are located at volcanic regions. The potential of the geothermal energy is not exhausted. Currently, many new power plants are developed. Although there is no volcanic activity in Germany, also some pilot plants develop the hot surface. The deep geothermal energy sometimes is difficult to be controlled. Before drilling experts rarely know how productive the subsoil is. Also, the drillings may trigger small earthquakes.

  14. Status of geothermal development in Hawaii - 1992

    International Nuclear Information System (INIS)

    Lesperance, G.O.

    1992-01-01

    Hawaii plans that geothermal will be a significant part of its energy mix to reduce its 90% dependency on imported oil for its electricity. The resource on the Big Island of Hawaii appears promising. However, the geothermal program in Hawaii continues to face stiff opposition from a few people who are determined to stop development at any cost. The efforts of geothermal developers, together with the State and County regulatory framework have inadvertently created situations that have impeded progress. However, after a 20-year effort the first increment of commercial geothermal energy is expected on line in 1992

  15. Fiscal 1995 verification survey of geothermal exploration technology. Report on a deep geothermal resource survey; 1995 nendo chinetsu tansa gijutsu nado kensho chosa. Shinbu chinetsu shigen hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-06-01

    For the purpose of reducing the risk of deep geothermal resource development, the paper investigated three factors for the formation of geothermal resource in the deep underground, that is, heat supply from heat source, supply of geothermal fluids, and the developmental status of fracture systems forming reservoir structures. The survey further clarified the status of existence of deep geothermal resource and the whole image of the geothermal system including shallow geothermal energy in order to research/study usability of deep geothermal resource. In the deep geothermal resource survey, drilling/examination were made of a deep geothermal exploration well (`WD-1,` target depth: approximately 3,000-4,000m) in the already developed area, with the aim of making rationalized promotion of the geothermal development. And the status of existence of deep geothermal resource and the whole image of the geothermal system were clarified to investigate/study usability of the geothermal system. In fiscal 1995, `WD-1` in the Kakkonda area reached a depth of 3,729m. By this, surveys were made to grasp the whole image of the shallow-deep geothermal system and to obtain basic data for researching usability of deep geothermal resource. 22 refs., 531 figs., 136 tabs.

  16. 242-A Evaporator/Liquid Effluent Retention Facility data quality objectives

    International Nuclear Information System (INIS)

    Von Bargen, B.H.

    1994-01-01

    The purpose of data quality objectives (DQO) is to determine the most cost effective methods of gathering the essential data necessary to make decisions to support successful operation of the facility. The essential data is defined by such information as sample amount, sample location, required analyses, and how sampling and analyses are performed. Successful operation is defined as meeting the campaign objectives while operating within established requirements. This DQO document addresses that portion of the system from 242-A Evaporator candidate feed tanks through discharge of process condensate to the Liquid Effluent Retention of Facility (LERF). Later revisions will incorporate and integrate the entire system, including the Effluent Treatment Facility (ETF)

  17. 242-A Evaporator/Liquid Effluent Retention Facility data quality objectives

    Energy Technology Data Exchange (ETDEWEB)

    Von Bargen, B.H.

    1994-09-29

    The purpose of data quality objectives (DQO) is to determine the most cost effective methods of gathering the essential data necessary to make decisions to support successful operation of the facility. The essential data is defined by such information as sample amount, sample location, required analyses, and how sampling and analyses are performed. Successful operation is defined as meeting the campaign objectives while operating within established requirements. This DQO document addresses that portion of the system from 242-A Evaporator candidate feed tanks through discharge of process condensate to the Liquid Effluent Retention of Facility (LERF). Later revisions will incorporate and integrate the entire system, including the Effluent Treatment Facility (ETF).

  18. The significance of "geothermal microzonation" for the correct planning of low-grade source geothermal systems

    Science.gov (United States)

    Viccaro, Marco; Pezzino, Antonino; Belfiore, Giuseppe Maria; Campisano, Carlo

    2016-04-01

    Despite the environmental-friendly energy systems are solar thermal technologies, photovoltaic and wind power, other advantageous technologies exist, although they have not found wide development in countries such as Italy. Given the almost absent environmental impact and the rather favorable cost/benefit ratio, low-enthalpy geothermal systems are, however, likely to be of strategic importance also in Italy during the next years. The importance of geology for a sustainable exploitation of the ground through geothermal systems from low-grade sources is becoming paramount. Specifically, understanding of the lithological characteristics of the subsurface along with structures and textures of rocks is essential for a correct planning of the probe/geo-exchanger field and their associated ground source heat pumps. The complex geology of Eastern Sicily (Southern Italy), which includes volcanic, sedimentary and metamorphic units over limited extension, poses the question of how thermal conductivity of rocks is variable at the scale of restricted areas (even within the same municipality). This is the innovative concept of geothermal microzonation, i.e., how variable is the geothermal potential as a function of geology at the microscale. Some pilot areas have been therefore chosen to test how the geological features of the subsurface can influence the low-enthalpy geothermal potential of an area. Our geologically based evaluation and micro-zonation of the low-grade source geothermal potential of the selected areas have been verified to be fundamental for optimization of all the main components of a low-enthalpy geothermal system. Saving realization costs and limiting the energy consumption through correct sizing of the system are main ambitions to have sustainable development of this technology with intensive utilization of the subsurface. The variegated territory of countries such as Italy implies that these goals can be only reached if, primarily, the geological features

  19. DARPA Workshop on Geothermal Energy for Military Operations

    Science.gov (United States)

    2010-05-01

    is administered by its Geothermal Program Office (GPO) at the Navy Air Weapons Station, China Lake, CA. GPO manages the Coso Geo- thermal Field at...advanced geothermal technologies might reduce the risk and cost to the point where the U.S. military would be able to take advantage. Supplying geothermal...was con- vened to explore whether investment in advanced geothermal technologies might reduce the risk and cost to the point where the U.S. military

  20. The economics of Plowshare geothermal power

    Energy Technology Data Exchange (ETDEWEB)

    Burnham, J B; Stewart, D H [Battelle-Northwest (United States)

    1970-05-15

    Geothermal energy is not a new concept. Naturally occurring hot water has been used for centuries in Iceland for heating purposes. About 20% of Klamath Falls, Oregon is today heated by hot water from geothermal wells. The generation of electricity is a relatively new use for geothermal energy which has developed over the last half century. There are plants in operation in Italy, New Zealand and the U. S.; these have a total capacity of more than 700 MWe. Geothermal generation is being explored and developed today in Japan, USSR, Mexico, Nicaragua, El Salvador, and Guatemala. Whenever a favorable combination of recent magmatic intrusion and favorable groundwater conditions occurs to create the necessary steam conditions it is usually economic to build a generating plant. With fuel essentially free the plants are usually economically competitive even in small sizes. Naturally occurring geothermal steam sites are rather limited. Witness to this statement can be found in the small number of plants (less than a dozen) in operation or under construction. On the other hand, geothermal anomalies are prevalent in every one of the world's continents. The possible coupling of Plowshare with geothermal power tp produce electricity is based on the idea to use rock crushing power of nuclear device to produce large cavity filled with broken rock from which the sensible heat can be removed. This paper is based on preliminary analysis of the concept. It is recognized that a more in-depth feasibility study is required before firm conclusions can be drawn. Also, a demonstration experiment is required to prove the concept in practical application.

  1. The economics of Plowshare geothermal power

    International Nuclear Information System (INIS)

    Burnham, J.B.; Stewart, D.H.

    1970-01-01

    Geothermal energy is not a new concept. Naturally occurring hot water has been used for centuries in Iceland for heating purposes. About 20% of Klamath Falls, Oregon is today heated by hot water from geothermal wells. The generation of electricity is a relatively new use for geothermal energy which has developed over the last half century. There are plants in operation in Italy, New Zealand and the U. S.; these have a total capacity of more than 700 MWe. Geothermal generation is being explored and developed today in Japan, USSR, Mexico, Nicaragua, El Salvador, and Guatemala. Whenever a favorable combination of recent magmatic intrusion and favorable groundwater conditions occurs to create the necessary steam conditions it is usually economic to build a generating plant. With fuel essentially free the plants are usually economically competitive even in small sizes. Naturally occurring geothermal steam sites are rather limited. Witness to this statement can be found in the small number of plants (less than a dozen) in operation or under construction. On the other hand, geothermal anomalies are prevalent in every one of the world's continents. The possible coupling of Plowshare with geothermal power tp produce electricity is based on the idea to use rock crushing power of nuclear device to produce large cavity filled with broken rock from which the sensible heat can be removed. This paper is based on preliminary analysis of the concept. It is recognized that a more in-depth feasibility study is required before firm conclusions can be drawn. Also, a demonstration experiment is required to prove the concept in practical application

  2. Facility effluent monitoring plan for K Area Spent Fuel. Revision 1

    International Nuclear Information System (INIS)

    Hunacek, G.S.

    1995-09-01

    The scope of this document includes program plans for monitoring and characterizing radioactive and nonradioactive hazardous materials discharged in the K Area effluents. This FEMP includes complete documentation for both airborne and liquid effluent monitoring systems that monitor radioactive and nonradioactive hazardous pollutants that could be discharged to the environment under routine and/or upset conditions. This documentation is provided for each K Area facility that uses, generates, releases, or manages significant quantities of radioactive and nonradioactive hazardous materials that could impact public and employee safety and the environment. This FEW describes the airborne and liquid effluent paths and the associated sampling and monitoring systems of the K Area facilities. Sufficient information is provided on the effluent characteristics and the effluent monitoring systems so that a compliance assessment against requirements may be performed. Adequate details are supplied such that radioactive and hazardous material source terms may be related to specific effluent streams which are, in turn, related to discharge points and finally compared to the effluent monitoring system capability

  3. Confirmation study of the effectiveness of prospect techniques for deep geothermal resources. Deep-seated geothermal resources survey report (Fiscal year 1993); 1993 nendo chinetsu tansa gijutsu nado kensho chosa. Shinbu chinetsu shigen chosa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-03-01

    Drilling and survey of deep geothermal exploration wells were conducted in order to grasp the existing situation of deep geothermal resource and the whole image of geothermal systems in the area where geothermal resource was already developed. Following fiscal 1992, the well was drilled in fiscal 1993 down to depths of 605m-1505m, and a 13-3/8 inch casing was inserted down to a depth of 1500m. In the drilling, four cores including oriented cores were sampled, and microscopic observation, X-ray diffraction analysis, fluid inclusion survey, core property test, etc. were conducted. In the FMI logging, detected were 273 bedding planes, 483 fractures, etc. Further made were a velocity structure survey, a gravity survey in the area of 270 km{sup 2} including deep exploration wells, a quality survey of the Kakkonda river water, etc. As to geothermal structure models in the Kakkonda area, results of the drilling were added to prediction models before drilling deep exploration wells, but the revision was not very much. Besides, studies were made of a survey method using microearthquakes, a survey technique using resistivity, etc. 61 refs., 259 figs., 95 tabs.

  4. Symposium in the field of geothermal energy

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez, Miguel; Mock, John E.

    1989-04-01

    Mexico and the US are nations with abundant sources of geothermal energy, and both countries have progressed rapidly in developing their more accessible resources. For example, Mexico has developed over 600 MWe at Cerro Prieto, while US developers have brought in over 2000 MWe at the Geysers. These successes, however, are only a prologue to an exciting future. All forms of energy face technical and economic barriers that must be overcome if the resources are to play a significant role in satisfying national energy needs. Geothermal energy--except for the very highest grade resources--face a number of barriers, which must be surmounted through research and development. Sharing a common interest in solving the problems that impede the rapid utilization of geothermal energy, Mexico and the US agreed to exchange information and participate in joint research. An excellent example of this close and continuing collaboration is the geothermal research program conducted under the auspices of the 3-year agreement signed on April 7, 1986 by the US DOE and the Mexican Comision Federal de Electricidad (CFE). The major objectives of this bilateral agreement are: (1) to achieve a thorough understanding of the nature of geothermal reservoirs in sedimentary and fractured igneous rocks; (2) to investigate how the geothermal resources of both nations can best be explored and utilized; and (3) to exchange information on geothermal topics of mutual interest.

  5. Geothermal Energy: Tapping the Potential

    Science.gov (United States)

    Johnson, Bill

    2008-01-01

    Ground source geothermal energy enables one to tap into the earth's stored renewable energy for heating and cooling facilities. Proper application of ground-source geothermal technology can have a dramatic impact on the efficiency and financial performance of building energy utilization (30%+). At the same time, using this alternative energy…

  6. Deep geothermal resources in Quebec and in Colombia: an area that may develop based on French experience on geothermal power plants

    International Nuclear Information System (INIS)

    Blessent, D.; Raymond, J.; Dezayes, C.

    2016-01-01

    Because of an increasing demand in electricity and a necessity of reducing greenhouse gas emissions, several countries envisage the development of the renewable energies. The geothermal energy is a particularly interesting alternative because it allows a production of electricity which is not influenced by weather conditions and it requires relatively restricted surface areas compared, for example, to the area required by a hydroelectric power plant. The literature review presented here summarizes the main characteristics of the geothermal potential in Quebec, in sedimentary basins, and in Colombia, in the area of the Nevado del Ruiz volcanic complex. Currently, in these two regions, the hydro-electric power dominates the electricity production, but there is a similar interest to the development of geothermal power plants. The French sites of Soultz-sous-Forets in Alsace and Boiling in Guadeloupe are respectively presented as an example of exploitation of geothermal improved systems (Enhanced Geothermal System; EGS) and geothermal resources in volcanic regions. The first site constitutes a model for the future development of the deep geothermal exploitation in Quebec, whereas the second is an example for Colombia. A description of environmental impacts related to the exploitation of deep geothermal resources is presented at the end of this paper. (authors)

  7. Department of Energy--Office of Energy Efficiency and Renewable Energy Geothermal Program: Geothermal Risk Mitigation Strategies Report

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2008-02-15

    An overview of general financial issues for renewable energy investments; geothermal energy investment barriers and risks; and recommendations for incentives and instruments to be considered to stimulate investment in geothermal energy development.

  8. Lithium Isotopes in Geothermal Fluids from Iceland

    Science.gov (United States)

    Millot, R.; Asmundsson, R.; Sanjuan, B.

    2008-12-01

    One of the main objectives of the HITI project (HIgh Temperature Instruments for supercritical geothermal reservoir characterization and exploitation), partially funded by the European Union, is to develop methods to characterize the reservoir and fluids of deep and very high temperature geothermal systems. The chemical composition of geothermal waters in terms of major and trace elements is related to the temperature, the degree of water/rock interaction and the mineralogical assemblage of the bedrock. Traditional geothermometers, such as silica, Na-K, Na-K-Ca or K-Mg applied to geothermal waters, make it possible to estimate the temperature at depth of the reservoir from which the waters are derived. However, the values estimated for deep temperature are not always concordant. The chemical geothermometer Na/Li which presents the singularity of associating two chemical elements, one a major element (sodium) and the other a trace element (Li), can be also used and gives an additional temperature estimation. The primary objective of this work was to better understand the behavior of this last geothermometer using the isotopic systematics of Li in order to apply it at very high temperature Icelandic geothermal systems. One particularly important aspect was to establish the nature, extent and mechanism of Li isotope fractionation between 100 and 350°C during water/rock interaction. For that purpose, we measured Li isotopes of about 25 geothermal waters from Iceland by using a Neptune MC-ICP-MS that enabled the analysis of Li isotopic ratios in geothermal waters with a level of precision of ±0.5‰ (2 standard deviations) on quantities of 10-50 ng of Li. Geothermal waters from Reykjanes, Svartsengi, Nesjavellir, Hveragerdi, Namafjall and Krafla geothermal systems were studied and particular emphasis was placed on the characterization of the behavior of Li isotopes in this volcanic context at high temperature with or without the presence of seawater during water

  9. Geothermal resource and utilization in Bulgaria

    International Nuclear Information System (INIS)

    Bojadgieva, K.; Benderev, A.

    2011-01-01

    Bulgarian territory is rich in thermal water of temperature in the range of 20 - 100 o C. The highest water temperature (98 o C) is measured in Sapareva banya geothermal reservoir. Electricity generation from geothermal water is not currently available in the country. The major direct thermal water use nowadays covers: balneology, space heating and air-conditioning, domestic hot water supply, greenhouses, swimming pools, bottling of potable water and geothermal ground source heat pumps (GSHP). The total installed capacity amounts to about 77.67 MW (excl. GSHP) and the produced energy is 1083.89 TJ/year. Two applications - balneology and geothermal ground source heat pumps show more stable development during the period of 2005 - 2010. The update information on the state-owned hydrothermal fields is based on issued permits and concessions by the state.

  10. FY97 Geothermal R&D Program Plan

    Energy Technology Data Exchange (ETDEWEB)

    None

    1996-09-01

    This is the Sandia National Laboratories Geothermal program plan. This is a DOE Geothermal Program planning and control document. Many of these reports were issued only in draft form. This one is of special interest for historical work because it contains what seems to be a complete list of Sandia geothermal program publications (citations / references) from about 1975 to late 1996. (DJE 2005)

  11. Insight into the Geothermal Structure in Chingshui, Ilan, Taiwan

    Directory of Open Access Journals (Sweden)

    Lun-Tao Tong

    2008-01-01

    Full Text Available The Chingshui geothermal field is the largest known productive geothermal area in Taiwan. The purpose of this paper is to delineate this geothermal structure by integrating geophysical data and borehole information. The existence of a magma chamber in the shallow crust and shallow intrusive igneous rock results in a high heat flow and geothermal gradient; furthermore, the NE deep fault system within the meta-sandstones provides meteoric recharge from a higher elevation to artesianally drive the geothermal system. There is evidence that geothermal fluid deeply circulated within the fracture zone and was heated by a deeply located body of hot rock. The geothermal reservoir of the Chingshui geothermal field might be related to the fracture zone of the Chingshuihsi fault. It is bounded by the C-fault in the north and Xiaonanao fault in the south. Based on information obtained from geophysical interpretations and well logs, a 3-D geothermal conceptual model is constructed in this study. Further, the geothermal reservoir is confined to an area that is 260 m in width, N21°W, 1.5 km in length, and has an 80° dip toward the NE. Ahigh-temperature zone is found in the SE region of the reservoir, which is about 500 m in length; this zone is located near the intersection of the Chingshuihsi and Xiaonanao faults. An area on the NE side of the high-temperature zone has been recommended for the drilling of production wells for future geothermal development.

  12. State policies for geothermal development

    Energy Technology Data Exchange (ETDEWEB)

    Sacarto, D.M.

    1976-01-01

    The most prominent geothermal resources in the USA occur in fifteen Gulf and Western states including Alaska and Hawaii. In each state, authority and guidelines have been established for administration of geothermal leasing and for regulation of development. Important matters addressed by these policies include resource definition, leasing provisions, development regulations, water appropriation, and environmental standards. Some other policies that need attention include taxation, securities regulations, and utility regulations. It is concluded that conditions needed for the geothermal industry to pursue large-scale development are consumer (utility) confidence in the resource; equitable tax treatment; prompt exploration of extensive land areas; long and secure tenure for productive properties; prompt facility siting and development; and competitive access to various consumers. With these conditions, the industry should be competitive with other energy sectors and win its share of investment capital. This publication reviews for the states various technical, economic, and institutional aspects of geothermal development. The report summarizes research results from numerous specialists and outlines present state and Federal policies. The report concludes generally that if public policies are made favorable to their development, geothermal resources offer an important energy resource that could supply all new electric capacity for the fifteen states for the next two decades. This energy--100,000 MW--could be generated at prices competitive with electricity from fossil and nuclear power plants. An extensive bibliography is included. (MCW)

  13. Decoloration and detoxification of effluents by ionizing radiation

    International Nuclear Information System (INIS)

    Borrely, Sueli I.; Morais, Aline V.; Rosa, Jorge M.; Badaró-Pedroso, Cintia; Conceição Pereira, Maria da; Higa, Marcela C.

    2016-01-01

    Three distinct textile samples were investigated for color and toxicity (S1–chemical/textile industry; S2–final textile effluent; S3 - standard textile produced effluent–untreated blue). Radiation processing of these samples were carried out at Dynamitron Electron Beam Accelerator and color and toxicity removal were determined: color removal by radiation was 96% (40 kGy, S1); 55% (2.5 kGy, S2) and 90% (2.5 kGy, S3). Concerning toxicity assays, Vibrio fischeri luminescent bacteria demonstrated higher reduction after radiation than the other systems: removal efficiencies were 33% (20 kGy, S1); 55% (2.5 kGy, S2) and 33% (2.5 kGy, S3). Daphnia similis and Brachionus plicatilis fitted well for S3 effluents. Hard toxic volumes into biological treatment plant may be avoided if radiation would be previously applied in a real plant. Results reveled how indispensable is to run toxicity to more than one living-organism. - Highlights: • 2.5 kGy was enough for decoloration and detoxification of S2 and S3. • S1 effluents were very toxic and required at least 20 kGy for detoxification. • Radiation processing reduced toxicity for 100% of treated samples. • V. fischeri was the best tool for toxicity measurements.

  14. Geothermal Exploration Case Studies on OpenEI (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Young, K.; Bennett, M.; Atkins, D.

    2014-03-01

    The U.S. Geological Survey (USGS) resource assessment (Williams et al., 2008) outlined a mean 30 GWe of undiscovered hydrothermal resource in the western United States. One goal of the U.S. Department of Energy's (DOE) Geothermal Technology Office (GTO) is to accelerate the development of this undiscovered resource. DOE has focused efforts on helping industry identify hidden geothermal resources to increase geothermal capacity in the near term. Increased exploration activity will produce more prospects, more discoveries, and more readily developable resources. Detailed exploration case studies akin to those found in oil and gas (e.g. Beaumont and Foster, 1990-1992) will give developers central location for information gives models for identifying new geothermal areas, and guide efficient exploration and development of these areas. To support this effort, the National Renewable Energy Laboratory (NREL) has been working with GTO to develop a template for geothermal case studies on the Geothermal Gateway on OpenEI. In 2012, the template was developed and tested with two case studies: Raft River Geothermal Area (http://en.openei.org/wiki/Raft_River_Geothermal_Area) and Coso Geothermal Area (http://en.openei.org/wiki/Coso_Geothermal_Area). In 2013, ten additional case studies were completed, and Semantic MediaWiki features were developed to allow for more data and the direct citations of these data. These case studies are now in the process of external peer review. In 2014, NREL is working with universities and industry partners to populate additional case studies on OpenEI. The goal is to provide a large enough data set to start conducting analyses of exploration programs to identify correlations between successful exploration plans for areas with similar geologic occurrence models.

  15. Environmental impacts of Sheba tannery (Ethiopia effluents on the surrounding water bodies

    Directory of Open Access Journals (Sweden)

    Abraha Gebrekidan

    2009-08-01

    Full Text Available The levels of hexavalent chromium from direct and treated Sheba tannery effluents, downstream river and spring water samples and upstream river water samples were determined spectrophotometrically by the s-diphenylcarbazide method at 540 nm. Temporal and representative samples were collected from the untreated tannery effluent (S1, sedimentation pond (S2, chromium oxidation pond (S3, downstream river (S4, downstream spring (S5 and 5 kms upstream river (S6. The mean levels of hexavalent chromium in S1, S2, S3, S4, S5 and S6 were 10.54, 9.15, 7.82, 0.58, 0.54 and 0.015 mg/L, respectively. The levels of hexavalent chromium in the downstream river and spring water samples exceed the World Health Organization (WHO permissible limit of total chromium in drinking waters (0.05 mg/L as opposed to the levels in the upstream waters. The increased concentrations of Cr(VI in the water samples indicate the possible environmental pollution of the downstream water bodies by the Sheba tannery effluents. In view of the toxicity and related environmental hazards, the levels of hexavalent chromium from the Sheba tannery effluents must be reduced to a permissible limit before discharging into the down stream waters being used for domestic purposes by the nearby communities.

  16. Applications of stable isotopes and radioisotopes in the exploration and reservoir management of Philippine geothermal fields

    International Nuclear Information System (INIS)

    Ferrer, H.P.; Alvis-Isidro, R.R.

    1996-01-01

    The development of indigenous geothermal energy resources is currently one of the primary thrusts of the country's energy program. Presently, the Philippines has a total of geothermal generating capacity of about 1400 MWe. This comprises about 20% of the total energy mix and electricity requirements of the country. By 1998, an additional capacity of about 500 MWe will be commissioned, and the PHilippines would be generating 1900 MWe of electricity from geothermal energy resources. From 1990 to 1993, PNOC EDC (Philippine National Oil Company, Energy Development Corporation) has been granted a research contract by the International Atomic Energy Agency (IAEA). The Company has also been a recipient since 1991 of an IAEA Technical Assistance on the use of stable isotope techniques in geothermal hydrology. Stable isotopes, particularly 18 O and 2 H, in conjunction with other geochemical parameters and geological and geophysical data, have been used to: a) establish the local meteoric water line; b) determine the origin of geothermal fluids; c) delineate the elevation of recharge of geothermal and ground water systems; d) confirm pre-exploitation hydrochemical models; e) identify physical and chemical processes due to exploitation of the geothermal resource (i.e. reinjection fluid returns, incursion of cold meteoric water, boiling due to pressure drawdown and mixing with acidic steam condensates); and, f) estimate reservoir temperatures. Techniques using radioisotopes, such as 14 C, have also been used for the age-dating of charred wood samples collected from some of our geothermal exploration areas. The detection of 3 H has also been used as an indicator for the incursion of recent cold meteoric water into the geothermal system. Tracer studies using 131 I, have also been previously carried out, in coordination with the Philippine Nuclear Research Institute, to determine local hydrology and flow paths of reinjected water in some of our geothermal fields

  17. Geothermal energy prospecting in El Salvador

    International Nuclear Information System (INIS)

    Balcazar, M.; Flores, J.H.; Gonzalez, E.; Ortega, M.

    1993-01-01

    Geochronological and geological studies carried out in El Salvador C. A., located a production geothermal zone to the north of the volcanic belt, in a region named Ahuachapan-Chipilapa. Hydrothermal activity and geochemical analysis indicate the existence of active geothermal faults aligned to the directions South-North and Northwest-Southeast. Radon mapping in that region covered a total of 8.7 km 2 where plastic detectors were placed 200 m apart. Results confirmed the existence of active faults and two producing geothermal wells were located. (author)

  18. Mixing effects on geothermometric calculations of the Newdale geothermal area in the Eastern Snake River Plain, Idaho

    Energy Technology Data Exchange (ETDEWEB)

    Ghanashayam Neupane; Earl D. Mattson; Travis L. McLing; Cody J. Cannon; Thomas R. Wood; Trevor A. Atkinson; Patrick F. Dobson; Mark E. Conrad

    2016-02-01

    The Newdale geothermal area in Madison and Fremont Counties in Idaho is a known geothermal resource area whose thermal anomaly is expressed by high thermal gradients and numerous wells producing warm water (up to 51 °C). Geologically, the Newdale geothermal area is located within the Eastern Snake River Plain (ESRP) that has a time-transgressive history of sustained volcanic activities associated with the passage of Yellowstone Hotspot from the southwestern part of Idaho to its current position underneath Yellowstone National Park in Wyoming. Locally, the Newdale geothermal area is located within an area that was subjected to several overlapping and nested caldera complexes. The Tertiary caldera forming volcanic activities and associated rocks have been buried underneath Quaternary flood basalts and felsic volcanic rocks. Two southeast dipping young faults (Teton dam fault and an unnamed fault) in the area provide the structural control for this localized thermal anomaly zone. Geochemically, water samples from numerous wells in the area can be divided into two broad groups – Na-HCO3 and Ca-(Mg)-HCO3 type waters and are considered to be the product of water-rhyolite and water-basalt interactions, respectively. Each type of water can further be subdivided into two groups depending on their degree of mixing with other water types or interaction with other rocks. For example, some bivariate plots indicate that some Ca-(Mg)-HCO3 water samples have interacted only with basalts whereas some samples of this water type also show limited interaction with rhyolite or mixing with Na-HCO3 type water. Traditional geothermometers [e.g., silica variants, Na-K-Ca (Mg-corrected)] indicate lower temperatures for this area; however, a traditional silica-enthalpy mixing model results in higher reservoir temperatures. We applied a new multicomponent equilibrium geothermometry tool (e.g., Reservoir Temperature Estimator, RTEst) that is based on inverse geochemical modeling which

  19. Heavy metals in handloom-dyeing effluents and their biosorption by agricultural byproducts.

    Science.gov (United States)

    Nahar, Kamrun; Chowdhury, Md Abul Khair; Chowdhury, Md Akhter Hossain; Rahman, Afzal; Mohiuddin, K M

    2018-03-01

    The Madhabdi municipality in the Narsingdi district of Bangladesh is a well-known area for textile, handloom weaving, and dyeing industries. These textile industries produce a considerable amount of effluents, sewage sludge, and solid waste materials every day that they directly discharge into surrounding water bodies and agricultural fields. This disposal poses a serious threat to the overall epidemic and socio-economic pattern of the locality. This research entailed the collection of 34 handloom-dyeing effluent samples from different handloom-dyeing industries of Madhabdi, which were then analyzed to determine the contents of the heavy metals iron (Fe), zinc (Zn), copper (Cu), chromium (Cr), manganese (Mn), lead (Pb), and cadmium (Cd). Average concentrations of Fe, Cr, Cu, Pb, Mn, and Zn were 3.81, 1.35, 1.70, 0.17, 0.75, and 0.73 mg L -1 , respectively, whereas Cd content was below the detectable limit of the atomic adsorption spectrophotometer. The concentrations of Fe, Cr, Cu, Pb, and Mn exceed the industrial effluent discharge standards (IEDS) for inland surface water and irrigation water guideline values. A biosorption experiment of the heavy metals (Fe, Cr, Cu, Mn, and Zn) was conducted without controlling for any experimental parameters (e.g., pH, temperature, or other compounds present in the effluent samples) by using four agricultural wastes or byproducts, namely rice husk, sawdust, lemon peel, and eggshell. Twenty grams of each biosorbent was added to 1 L of effluent samples and stored for 7 days. The biosorption capacity of each biosorbent is ranked as follows: eggshell, sawdust, rice husk, and lemon peel. Furthermore, the biosorption affinity of each metal ion was found in the following order: Cu and Cr (both had similar biosorption affinity), Zn, Fe, Mn. The effluents should not be discharged before treatment, and efficient treatment of effluents is possible with eggshell powder or sawdust at a rate of 20 g of biosorbent per liter of effluents.

  20. Quantifying the undiscovered geothermal resources of the United States

    Science.gov (United States)

    Williams, Colin F.; Reed, Marshall J.; DeAngelo, Jacob; Galanis, S. Peter

    2009-01-01

    In 2008, the U.S. Geological Survey (USGS) released summary results of an assessment of the electric power production potential from the moderate- and high-temperature geothermal resources of the United States (Williams et al., 2008a; USGS Fact Sheet 2008-3082; http://pubs.usgs.gov/fs/2008/3082). In the assessment, the estimated mean power production potential from undiscovered geothermal resources is 30,033 Megawatts-electric (MWe), more than three times the estimated mean potential from identified geothermal systems: 9057 MWe. The presence of significant undiscovered geothermal resources has major implications for future exploration and development activities by both the government and private industry. Previous reports summarize the results of techniques applied by the USGS and others to map the spatial distribution of undiscovered resources. This paper describes the approach applied in developing estimates of the magnitude of the undiscovered geothermal resource, as well as the manner in which that resource is likely to be distributed among geothermal systems of varying volume and temperature. A number of key issues constrain the overall estimate. One is the degree to which characteristics of the undiscovered resources correspond to those observed among identified geothermal systems. Another is the evaluation of exploration history, including both the spatial distribution of geothermal exploration activities relative to the postulated spatial distribution of undiscovered resources and the probability of successful discoveries from the application of standard geothermal exploration techniques. Also significant are the physical, chemical, and geological constraints on the formation and longevity of geothermal systems. Important observations from this study include the following. (1) Some of the largest identified geothermal systems, such as The Geysers vapor-dominated system in northern California and the diverse geothermal manifestations found in Yellowstone

  1. Geothermal and environment

    International Nuclear Information System (INIS)

    1993-01-01

    The production of geothermal-electric energy, presents relatively few contamination problems. The two bigger problems associated to the geothermal production are the disposition of waste fluids and the discharges to the atmosphere of non-condensable gases as CO 2 , H 2 O and NH 3 . For both problems the procedures and production technologies exist, like it is the integral use of brines and gases cleaning systems. Other problems consist on the local impact to forest areas for the effect of the vapor discharge, the contamination for noise, the contamination of aquifer shallow and the contamination related with the construction and termination of wells

  2. Geothermal Progress Monitor, report No. 13

    Energy Technology Data Exchange (ETDEWEB)

    1992-02-01

    Geothermal Progress Monitor (GPM) Issue No. 13 documents that most related factors favor the growth and geographic expansion of the US geothermal industry and that the industry is being technologically prepared to meet those challenges into the next century. It is the function of GPM to identify trends in the use of this resource and to provide a historical record of its development pathway. The information assembled for this issue of GPM indicates that trends in the use of geothermal energy in this country and abroad continue to be very positive. Favorable sentiments as well as pertinent actions on the part of both government and industry are documented in almost every section. The FEDERAL BEAT points up that the National Energy Strategy (NES) developed at the highest levels of the US government recognizes the environmental and energy security advantages of renewable energy, including geothermal, and makes a commitment to substantial diversification'' of US sources of energy. With the announcement of the construction of several new plants and plant expansions, the INDUSTRY SCENE illustrates industry's continued expectation tha the use of geothermal energy will prove profitable to investors. In DEVELOPMENT STATUS, spokesmen for both an investor-owned utility and a major geothermal developer express strong support for geothermal power, particularly emphasizing its environmental advantages. DEVELOPMENT STATUS also reports that early successes have been achieved by joint DOE/industry R D at The Geysers which will have important impacts on the future management of this mature field. Also there is increasing interest in hot dry rock. Analyses conducted in support of the NES indicate that if all the postulated technology developments occur in this field, the price of energy derived from hot dry rock in the US could drop.

  3. NEDO Forum 2001. Session on development of geothermal energy (Prospect of geothermal energy); NEDO Forum 2001. Chinetsu kaihatsu session (chinetsu energy no tenbo)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-09-20

    The presentations made at the above-named session of the NEDO (New Energy and Industrial Technology Development Organization) forum held in Tokyo on September 20, 2001, are collected in this report. Director Noda of Institute for Geo-Resources and Environment, National Institute of Advanced Industrial Science and Technology, delivered a lecture entitled 'Future course of geothermal technology development,' and Executive Director Iikura of Tokyo Toshi Kaihatsu, Inc., a lecture entitled 'Thinking of geothermal energy.' Described in an achievement report entitled 'Present state and future trend of geothermal development' were the present state of geothermal power generation and characteristics of geothermal energy, signification of the introduction of binary cycle power generation, and the promotion of the introduction of ground heat utilizing heat pump systems. Stated in a lecture entitled 'Geothermal development promotion survey' were the geothermal development promotion survey and its result and how to implement such surveys in the future. Reported in a lecture entitled 'Verification survey of geothermal energy probing technology and the like and the development of geothermal water utilizing power plant and the like' were reservoir fluctuation probing, deep-seated thermal resource probing and collecting, 10-MW class demonstration plant, Measurement While Drilling System, and a hot rock power generation system. (NEDO)

  4. Geothermal power development in Hawaii. Volume I. Review and analysis

    Energy Technology Data Exchange (ETDEWEB)

    1982-06-01

    The history of geothermal exploration in Hawaii is reviewed briefly. The nature and occurrences of geothermal resources are presented island by island. An overview of geothermal markets is presented. Other topies covered are: potential markets of the identified geothermal areas, well drilling technology, hydrothermal fluid transport, overland and submarine electrical transmission, community aspects of geothermal development, legal and policy issues associated with mineral and land ownership, logistics and infrastructure, legislation and permitting, land use controls, Regulation 8, Public Utilities Commission, political climate and environment, state plans, county plans, geothermal development risks, and business planning guidelines.

  5. Environmental assessmental, geothermal energy, Heber geothermal binary-cycle demonstration project: Imperial County, California

    Energy Technology Data Exchange (ETDEWEB)

    1980-10-01

    The proposed design, construction, and operation of a commercial-scale (45 MWe net) binary-cycle geothermal demonstration power plant are described using the liquid-dominated geothermal resource at Heber, Imperial County, California. The following are included in the environmental assessment: a description of the affected environment, potential environmental consequences of the proposed action, mitigation measures and monitoring plans, possible future developmental activities at the Heber anomaly, and regulations and permit requirements. (MHR)

  6. Clinical Validation of Therapeutic Drug Monitoring of Imipenem in Spent Effluent in Critically Ill Patients Receiving Continuous Renal Replacement Therapy: A Pilot Study.

    Science.gov (United States)

    Wen, Aiping; Li, Zhe; Yu, Junxian; Li, Ren; Cheng, Sheng; Duan, Meili; Bai, Jing

    2016-01-01

    The primary objective of this pilot study was to investigate whether the therapeutic drug monitoring of imipenem could be performed with spent effluent instead of blood sampling collected from critically ill patients under continuous renal replacement therapy. A prospective open-label study was conducted in a real clinical setting. Both blood and effluent samples were collected pairwise before imipenem administration and 0.5, 1, 1.5, 2, 3, 4, 6, and 8 h after imipenem administration. Plasma and effluent imipenem concentrations were determined by reversed-phase high-performance liquid chromatography with ultraviolet detection. Pharmacokinetic and pharmacodynamic parameters of blood and effluent samples were calculated. Eighty-three paired plasma and effluent samples were obtained from 10 patients. The Pearson correlation coefficient of the imipenem concentrations in plasma and effluent was 0.950 (Pimipenem concentration ratio was 1.044 (95% confidence interval, 0.975 to 1.114) with Bland-Altman analysis. No statistically significant difference was found in the pharmacokinetic and pharmacodynamic parameters tested in paired plasma and effluent samples with Wilcoxon test. Spent effluent of continuous renal replacement therapy could be used for therapeutic drug monitoring of imipenem instead of blood sampling in critically ill patients.

  7. Numerical investigation of the efficiency of emission reduction and heat extraction in a sedimentary geothermal reservoir: a case study of the Daming geothermal field in China.

    Science.gov (United States)

    Guo, Xuyang; Song, Hongqing; Killough, John; Du, Li; Sun, Pengguang

    2018-02-01

    The utilization of geothermal energy is clean and has great potential worldwide, and it is important to utilize geothermal energy in a sustainable manner. Mathematical modeling studies of geothermal reservoirs are important as they evaluate and quantify the complex multi-physical effects in geothermal reservoirs. However, previous modeling efforts lack the study focusing on the emission reduction efficiency and the deformation at geothermal wellbores caused by geothermal water extraction/circulation. Emission efficiency is rather relevant in geothermal projects introduced in areas characterized by elevated air pollution where the utilization of geothermal energy is as an alternative to burning fossil fuels. Deformation at geothermal wellbores is also relevant as significant deformation caused by water extraction can lead to geothermal wellbore instability and can consequently decrease the effectiveness of the heat extraction process in geothermal wells. In this study, the efficiency of emission reduction and heat extraction in a sedimentary geothermal reservoir in Daming County, China, are numerically investigated based on a coupled multi-physical model. Relationships between the efficiency of emission reduction and heat extraction, deformation at geothermal well locations, and geothermal field parameters including well spacing, heat production rate, re-injection temperature, rock stiffness, and geothermal well placement patterns are analyzed. Results show that, although large heat production rates and low re-injection temperatures can lead to decreased heat production in the last 8 years of heat extraction, they still improve the overall heat production capacity and emission reduction capacity. Also, the emission reduction capacity is positively correlated with the heat production capacity. Deformation at geothermal wellbore locations is alleviated by smaller well spacing, lower heat production rates, and smaller numbers of injectors in the well pattern, and by

  8. Computational modeling of shallow geothermal systems

    CERN Document Server

    Al-Khoury, Rafid

    2011-01-01

    A Step-by-step Guide to Developing Innovative Computational Tools for Shallow Geothermal Systems Geothermal heat is a viable source of energy and its environmental impact in terms of CO2 emissions is significantly lower than conventional fossil fuels. Shallow geothermal systems are increasingly utilized for heating and cooling of buildings and greenhouses. However, their utilization is inconsistent with the enormous amount of energy available underneath the surface of the earth. Projects of this nature are not getting the public support they deserve because of the uncertainties associated with

  9. Geothermal Energy: Evaluation of a Resource

    Science.gov (United States)

    Bockemuehl, H. W.

    1976-01-01

    This article suggests the use of geothermal energy for producing electricity, using as an example the development at Wairakei, New Zealand. Other geothermal areas are identified, and economic and environmental co sts of additional development are explored. (Author/AV)

  10. Assessment of geothermal resources of the United States, 1978

    Energy Technology Data Exchange (ETDEWEB)

    Muffler, L.J.P. (ed.)

    1979-01-01

    The geothermal resource assessment presented is a refinement and updating of USGS Circular 726. Nonproprietary information available in June 1978 is used to assess geothermal energy in the ground and, when possible, to evaluate the fraction that might be recovered at the surface. Five categories of geothermal energy are discussed: conduction-dominated regimes, igneous-related geothermal systems, high-temperature (> 150/sup 0/C) and intermediate-temperature (90 to 150/sup 0/C) hydrothermal convection systems, low-temperature (< 90/sup 0/C) geothermal waters, and geopressured-geothermal energy (both thermal energy and energy from dissolved methane). Assessment data are presented on three colored maps prepared in cooperation with the National Oceanic and Atmospheric Administration. Separate abstracts were prepared for papers on these five categories.

  11. Liquid Effluent Monitoring Information System test plans releases 2.0 and 3.0

    International Nuclear Information System (INIS)

    Guettler, D.A.

    1995-01-01

    The Liquid Effluent Monitoring Information System (LEMIS) is being developed as the organized information repository facility in support of the liquid effluent monitoring requirements of the Tri-Party Agreement. It is necessary to provide an automated repository into which the results from liquid effluent sampling will be placed. This repository must provide for effective retention, review, and retrieval of selected sample data by authorized persons and organizations. This System Architecture document is the aggregation of the DMR P+ methodology project management deliverables. Together they represent a description of the project and its plan through four Releases, corresponding to the definition and prioritization of requirements defined by the user

  12. Minutes of the conference 'Geothermal energy in Asia '98'. Symposium on the current status and the future of developing geothermal energy in Asia

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-10-22

    This paper summarizes the proceedings presented at the 'Geothermal energy in Asia '98' held on October 22, 1998 in the Philippines. The Philippines, Japan, Indonesia, China, Malaysia, and Vietnam presented proceedings on the current status and the future of developing geothermal energy in each country. Technical theses presented relate to the following matters: a geothermal development model in the Khoy geothermal area in Iran, the result of surveys on promotion of geothermal development in Japan, the thermal fluid sources in the geothermal fluid systems in the Hachijo volcanic island in Japan, strategies for heat reservoir management by using numerical simulation in the Hacchobari geothermal area in Japan, a geological model for the north Negros geothermal area in the center of the Philippines, application of the NEDO rock core analyzing method in the Wasabizawa geothermal development area in Japan, measurements of geomagnetism, geocurrent, and gravity in the north Negros in the center of the Philippines, geophysical studies in geothermal exploration in the Mataloko area in the Nustenggara island in the eastern Indonesia, and the background of magma/crust structure in the geothermal systems. (NEDO)

  13. Diagenetic effect on permeabilities of geothermal sandstone reservoirs

    DEFF Research Database (Denmark)

    Weibel, Rikke; Olivarius, Mette; Kristensen, Lars

    The Danish subsurface contains abundant sedimentary deposits, which can be utilized for geothermal heating. The Upper Triassic – Lower Jurassic continental-marine sandstones of the Gassum Formation has been utilised as a geothermal reservoir for the Thisted Geothermal Plant since 1984 extracting...... and permeability is caused by increased diagenetic changes of the sandstones due to increased burial depth and temperatures. Therefore, the highest water temperatures typically correspond with the lowest porosities and permeabilities. Especially the permeability is crucial for the performance of the geothermal......-line fractures. Continuous thin chlorite coatings results in less porosity- and permeability-reduction with burial than the general reduction with burial, unless carbonate cemented. Therefore, localities of sandstones characterized by these continuous chlorite coatings may represent fine geothermal reservoirs...

  14. Geothermal rice drying unit in Kotchany, Macedonia

    International Nuclear Information System (INIS)

    Popovski, K.; Dimitrov, K.; Andrejevski, B.; Popovska, S.

    1992-01-01

    A geothermal field in Kotchany (Macedonia) has very advantageous characteristics for direct application purposes. Low content of minerals, moderate temperature (78C) and substantial available geothermal water flow (up to 300 1/s) enabled the establishment of a district heating scheme comprising mainly agricultural and industrial uses. A rice drying unit of 10 t/h capacity was installed 8 years ago, using the geothermal water as the primary heat source. A temperature drop of 75/50C enables the adaptation of conventional drying technology, already proven in practice in the surrounding rice growing region. Water to air heat exchanger and all necessary equipment and materials are of local production, made of copper and carbon steel. The use of such drying units is strongly recommended for the concrete district heating scheme because it offers a very simple geothermal application and enables improvement in the annual heating load factor without high investments in geothermal water distribution lines

  15. Renewable Energy Essentials: Geothermal

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    Geothermal energy is energy available as heat contained in or discharged from the earth's crust that can be used for generating electricity and providing direct heat for numerous applications such as: space and district heating; water heating; aquaculture; horticulture; and industrial processes. In addition, the use of energy extracted from the constant temperatures of the earth at shallow depth by means of ground source heat pumps (GSHP) is also generally referred to as geothermal energy.

  16. Prokaryotic communities differ along a geothermal soil photic gradient.

    Science.gov (United States)

    Meadow, James F; Zabinski, Catherine A

    2013-01-01

    Geothermal influenced soils exert unique physical and chemical limitations on resident microbial communities but have received little attention in microbial ecology research. These environments offer a model system in which to investigate microbial community heterogeneity and a range of soil ecological concepts. We conducted a 16S bar-coded pyrosequencing survey of the prokaryotic communities in a diatomaceous geothermal soil system and compared communities across soil types and along a conspicuous photic depth gradient. We found significant differences between the communities of the two different soils and also predictable differences between samples taken at different depths. Additionally, we targeted three ecologically relevant bacterial phyla, Cyanobacteria, Planctomycetes, and Verrucomicrobia, for clade-wise comparisons with these variables and found strong differences in their abundances, consistent with the autecology of these groups.

  17. Potential for enhanced geothermal systems in Alberta, Canada

    International Nuclear Information System (INIS)

    Hofmann, Hannes; Weides, Simon; Babadagli, Tayfun; Zimmermann, Günter; Moeck, Inga; Majorowicz, Jacek; Unsworth, Martyn

    2014-01-01

    The province of Alberta has a high demand of thermal energy for both industrial and residential applications. Currently, the vast majority of the heat used in these applications is obtained by burning natural gas. Geothermal energy production from deep aquifer systems in the sedimentary basin could provide an alternative sustainable source of heat that would significantly reduce greenhouse gas emissions. To date there has been no geothermal field development in Alberta because the average geothermal gradient was considered to be too low for economic geothermal energy generation. However, with new technologies for Enhanced Geothermal Systems (EGS), it may be possible to develop geothermal resources from the sedimentary rocks in the Western Canadian Sedimentary Basin (WCSB). A numerical feasibility study based on a regional geological model and existing and newly gained data was conducted to identify scenarios for geothermal energy production in the region. In central Alberta, three Devonian carbonate formations (Cooking Lake, Nisku, Wabamun) and the Cambrian Basal Sandstone Unit were identified as the highest geothermal potential zones. Thermal-hydraulic reservoir simulations for a 5 km × 5 km site in the city of Edmonton were performed to evaluate reservoir development concepts for these four potential target formations; therefore, hydraulic fracturing treatments were also simulated. Different utilization concepts are presented for possible applications of geothermal energy generation in residential, industrial and agricultural areas. The Cooking Lake formation and the Basal Sandstone Unit are potentially the most promising reservoirs because the most heat can be extracted and the applications for the heat are widespread although the costs are higher than utilizing the shallower formations. Reservoir stimulation considerably improves the economics in all formations

  18. Effective Geothermal Utilisation close to the surface by the TT-Geothermal Radial Drilling (GRD-Method

    Directory of Open Access Journals (Sweden)

    Hans-Joachim Bayer

    2007-01-01

    Full Text Available In the late 1970-Years, Tracto-Technik developped a very effective radial-shaped percussion system for a geothermal heating, the ECOtherm-System, which was very well accepted by customers. Nowadays, a radial-shaped drilling system, operating some decameters below the surface, was developped by Tracto-Technik, which offers the chance of a very effective drilling for the use of geothermal energy. The main advantage of this development is the reduction of drilling costs by new constructions and new handling possibilities. Drilling processes like the rod connecting or the drill-hole enlargement were solved in other ways as usual, by very time-shortening and effective ways, which are presented in the paper. The new TT-Geothermal radial drilling methods need only a very small but highly effective drilling unit, which reduces the operational drilling cost in a enormous way. All operational drilling steps are reduced to less than a half time as usual. By these GRD-methods, the use of surface-close geothermal energy is simplified and less expansive.

  19. Missing a trick in geothermal exploration

    Science.gov (United States)

    Younger, Paul L.

    2014-07-01

    Expansion of geothermal energy use across the globe is restricted by out-of-date prejudices. It is time for geothermal exploration to be extended to a broader range of environments and rejuvenated with the latest insights from relevant geoscience disciplines.

  20. Study deep geothermal energy; Studie dypgeotermisk energi

    Energy Technology Data Exchange (ETDEWEB)

    Havellen, Vidar; Eri, Lars Sigurd; Andersen, Andreas; Tuttle, Kevin J.; Ruden, Dorottya Bartucz; Ruden, Fridtjof; Rigler, Balazs; Pascal, Christophe; Larsen, Bjoern Tore

    2012-07-01

    The study aims to analyze the potential energy with current technology, challenges, issues and opportunities for deep geothermal energy using quantitative analysis. It should especially be made to identify and investigate critical connections between geothermal potential, the size of the heating requirements and technical solutions. Examples of critical relationships may be acceptable cost of technology in relation to heating, local geothermal gradient / drilling depth / temperature levels and profitability. (eb)

  1. Role of effluent organic matter in the photochemical degradation of compounds of wastewater origin.

    Science.gov (United States)

    Bodhipaksha, Laleen C; Sharpless, Charles M; Chin, Yu-Ping; MacKay, Allison A

    2017-03-01

    The photoreactivity of treated wastewater effluent organic matter differs from that of natural organic matter, and the indirect phototransformation rates of micropollutants originating in wastewater are expected to depend on the fractional contribution of wastewater to total stream flow. Photodegradation rates of four common compounds of wastewater origin (sulfamethoxazole, sulfadimethoxine, cimetidine and caffeine) were measured in river water, treated municipal wastewater effluent and mixtures of both to simulate various effluent-stream water mixing conditions that could occur in environmental systems. Compounds were chosen for their unique photodegradation pathways with the photochemically produced reactive intermediates, triplet-state excited organic matter ( 3 OM*), singlet oxygen ( 1 O 2 ), and hydroxyl radicals (OH). For all compounds, higher rates of photodegradation were observed in effluent relative to upstream river water. Sulfamethoxazole degraded primarily via direct photolysis, with some contribution from OH and possibly from carbonate radicals and other unidentified reactive intermediates in effluent-containing samples. Sulfadimethoxine also degraded mainly by direct photolysis, and natural organic matter appeared to inhibit this process to a greater extent than predicted by light screening. In the presence of effluent organic matter, sulfadimethoxine showed additional reactions with OH and 1 O 2 . In all water samples, cimetidine degraded by reaction with 1 O 2 (>95%) and caffeine by reaction with OH (>95%). In river water mixtures, photodegradation rate constants for all compounds increased with increasing fractions of effluent. A conservative mixing model was able to predict reaction rate constants in the case of hydroxyl radical reactions, but it overestimated rate constants in the case of 3 OM* and 1 O 2 pathways. Finally, compound degradation rate constants normalized to the rate of light absorption by water correlated with E 2 /E 3 ratios

  2. Dissolved organic nitrogen recalcitrance and bioavailable nitrogen quantification for effluents from advanced nitrogen removal wastewater treatment facilities

    International Nuclear Information System (INIS)

    Fan, Lu; Brett, Michael T.; Jiang, Wenju; Li, Bo

    2017-01-01

    The objective of this study was to determine the composition of nitrogen (N) in the effluents of advanced N removal (ANR) wastewater treatment plants (WWTPs). This study also tested two different experimental protocols for determining dissolved N recalcitrance. An analysis of 15 effluent samples from five WWTPs, showed effluent concentrations and especially effluent composition varied greatly from one system to the other, with total nitrogen (TN) ranging between 1.05 and 8.10 mg L −1 . Nitrate (NO 3 − ) accounted for between 38 ± 32% of TN, and ammonium accounted for a further 29 ± 28%. All of these samples were dominated by dissolved inorganic nitrogen (DIN; NO 3 −  + NH 4 + ), and uptake experiments indicated the DIN fraction was as expected highly bioavailable. Dissolved organic N (DON) accounted for 20 ± 11% for the total dissolved N in these effluents, and uptake experiments indicated the bioavailability of this fraction varied between 27 ± 26% depending on the WWTP assessed. These results indicate near complete DIN removal should be the primary goal of ANR treatment systems. The comparison of bioavailable nitrogen (BAN) quantification protocols showed that the dissolved nitrogen uptake bioassay approach was clearly a more reliable way to determine BAN concentrations compared to the conventional cell yield protocol. Moreover, because the nitrogen uptake experiment was much more sensitive, this protocol made it easier to detect extrinsic factors (such as biological contamination or toxicity) that could affect the accuracy of these bioassays. Based on these results, we recommend the nitrogen uptake bioassay using filtered and autoclaved samples to quantify BAN concentrations. However, for effluent samples indicating toxicity, algal bioassays will not accurately quantify BAN. - Highlights: • DIN was the dominated N pool for most of the tested effluent samples. • DON bioavailability considerably varied depending on the WWTP assessed.

  3. Aerated drilling cutting transport analysis in geothermal well

    Science.gov (United States)

    Wakhyudin, Aris; Setiawan, Deni; Dwi Marjuan, Oscar

    2017-12-01

    Aeratad drilling widely used for geothermal drilling especially when drilled into predicted production zone. Aerated drilling give better performance on preventing lost circulation problem, improving rate of penetration, and avoiding drilling fluid invasion to productive zone. While well is drilled, cutting is produced and should be carried to surface by drilling fluid. Hole problem, especially pipe sticking will occur while the cutting is not lifted properly to surface. The problem will effect on drilling schedule; non-productive time finally result more cost to be spent. Geothermal formation has different characteristic comparing oil and gas formation. Geothermal mainly has igneous rock while oil and gas mostly sedimentary rock. In same depth, formation pressure in geothermal well commonly lower than oil and gas well while formation temperature geothermal well is higher. While aerated drilling is applied in geothermal well, Igneous rock density has higher density than sedimentary rock and aerated drilling fluid is lighter than water based mud hence minimum velocity requirement to transport cutting is larger than in oil/gas well drilling. Temperature and pressure also has impact on drilling fluid (aerated) density. High temperature in geothermal well decrease drilling fluid density hence the effect of pressure and temperature also considered. In this paper, Aerated drilling cutting transport performance on geothermal well will be analysed due to different rock and drilling fluid density. Additionally, temperature and pressure effect on drilling fluid density also presented to merge.

  4. Geothermal Energy Utilization in the United States - 2000

    Energy Technology Data Exchange (ETDEWEB)

    Lund, John W.; Boyd, Tonya L (Geo-Heat Center, Oregon Institute of Technology, Klamath Falls, OR); Sifford, Alex (Sifford Energy Services, Neskowin, OR); Bloomquist, R. Gordon (Washington State University Energy Program, Olympia, WA)

    2000-01-01

    Geothermal energy is used for electric power generation and direct utilization in the United States. The present installed capacity for electric power generation is 3,064 MWe with only 2,212 MWe in operation due to reduction at The Geysers geothermal field in California; producing approximately16,000 GWh per year. Geothermal electric power plants are located in California, Nevada, Utah and Hawaii. The two largest concentrations of plants are at The Geysers in northern California and the Imperial Valley in southern California. The direct utilization of geothermal energy includes the heating of pools and spas, greenhouses and aquaculture facilities, space heating and district heating, snow melting, agricultural drying, industrial applications and ground-source heat pumps. The installed capacity is 4,000 MWt and the annual energy use is 20,600 billion Btu (21,700 TJ - 6040 GWh). The largest applications is groundsource (geothermal) heat pumps (59% of the energy use), and the largest direct-use is in aquaculture. Direct utilization is increasing at about six percent per year; whereas, electric power plant development is almost static. Geothermal energy is a relatively benign energy source, displaying fossil fuels and thus, reducing greenhouse gas emissions. A recent initiative by the U.S. Department of Energy, “Geo-Powering the West,” should stimulate future geothermal development. The proposal is especially oriented to small-scale power plants with cascaded uses of the geothermal fluid for direct applications.

  5. Geothermal energy utilization in the United States - 2000

    Energy Technology Data Exchange (ETDEWEB)

    Lund, John W.; Boyd, Tonya L.; Sifford, Alex; Bloomquist, R. Gordon

    2000-01-01

    Geothermal energy is used for electric power generation and direct utilization in the United States. The present installed capacity for electric power generation is 3,064 MWe with only 2,212 MWe in operation due to reduction at The Geysers geothermal field in California; producing approximately16,000 GWh per year. Geothermal electric power plants are located in California, Nevada, Utah and Hawaii. The two largest concentrations of plants are at The Geysers in northern California and the Imperial Valley in southern California. The direct utilization of geothermal energy includes the heating of pools and spas, greenhouses and aquaculture facilities, space heating and district heating, snow melting, agricultural drying, industrial applications and ground-source heat pumps. The installed capacity is 4,000 MWt and the annual energy use is 20,600 billion Btu (21,700 TJ - 6040 GWh). The largest applications is groundsource (geothermal) heat pumps (59% of the energy use), and the largest direct-use is in aquaculture. Direct utilization is increasing at about six percent per year; whereas, electric power plant development is almost static. Geothermal energy is a relatively benign energy source, displaying fossil fuels and thus, reducing greenhouse gas emissions. A recent initiative by the U.S. Department of Energy, “Geo-Powering the West,” should stimulate future geothermal development. The proposal is especially oriented to small-scale power plants with cascaded uses of the geothermal fluid for direct applications.

  6. Geothermal energy and its application opportunities in Serbia

    Directory of Open Access Journals (Sweden)

    Andrić Nenad M.

    2015-01-01

    Full Text Available Geothermal energy is accumulated heat in the fluid and rock masses in the Earth 's crust. The natural decay of radioactive elements (uranium, thorium and potassium in rocks produces heat energy. The simplest use of geothermal energy for heating is by heat pump. Geothermal energy can be used for production of electricity. It uses hot water and steam from the earth to run the generator. Serbia has significant potential for geothermal energy. The total amount of accumulated heat in geothermal resources in a depth of 3 km is two times higher than the equivalent thermal energy that could be obtained by burning all types of coal from all their sites in Serbia! The total abundance of geothermal resources in Serbia is 4000 l/s. Abundance of wells in Vojvodina is 10-20 l/s, and the temperature is from 40 to 60°C. Exploitation of thermal waters in Mačva could cause heating of following cities: Bogatić, Šabac, Sremska Mitrovica and Loznica, with a total population of 150.000 people. The richest hydrogeothermal resources are in Mačva, Vranje and Jošanička Banja. Using heat pumps, geothermal water can be exploited on the entire territory of Serbia! Although large producer, Serbia is importing food, ie., fruits and vegetables. With the construction of greenhouses, which will be heated with geothermal energy, Serbia can become an exporting country.

  7. Guanacaste Geothermal Project. Technical prefeasibility report. Annex E. Geohydrology

    Energy Technology Data Exchange (ETDEWEB)

    1976-12-01

    This report is the fifth of six annexes to the Summary Report on the First Phase of the Guanacaste Geothermal Project. The studies covered an area of 500 km/sup 2/ on the SW flanks of the Rincon de la Vieja and Miravalles volcanoes of the Guanacaste Volcanic Range in NW Costa Rica, and were aimed at locating zones of high geothermal gradient, and reconstruction of the stratigraphic column. An estimate was made of the annual and low-water mark water reserves. Balances were also made for each basin taking into consideration precipitation, evapo-transpiration, and runoff. Determinations were also made of effluent and influent stream, recharge, and deep water circulation zones, and water tables. An underground flow pattern was observed, extending from the volcanic massifs where recharge takes place, to the plains near the Panamerican Highway. Using silica, specific conductivity, and chlorides as natural tracers, it was concluded that the underground and surface drainage patterns generally coincide. In the area around the Miravalles volcano, a zone was found near the township of Guayabal where seepage of deep waters appears to take place, showing high silica and chloride contents (more than 150 and 50 ppM respectively), and high conductivity (more than 500 mhos-cm). Springs with low mineral content, which could be associated with shallow circulation waters, are also present in this zone. This could be indicative of the existence of two horizons, a cold one above and a hot one below, separated by an impermeable layer. Another instance of seepage of deep waters is observed in the zone around the township of Salitral de Bagaces and the Aguas Calientes River. In the northeastern part of the area under study, it was observed that the underground drainage pattern conforms to the surface drainage of the Salitral and Tizate rivers.

  8. The Pawsey Supercomputer geothermal cooling project

    Science.gov (United States)

    Regenauer-Lieb, K.; Horowitz, F.; Western Australian Geothermal Centre Of Excellence, T.

    2010-12-01

    The Australian Government has funded the Pawsey supercomputer in Perth, Western Australia, providing computational infrastructure intended to support the future operations of the Australian Square Kilometre Array radiotelescope and to boost next-generation computational geosciences in Australia. Supplementary funds have been directed to the development of a geothermal exploration well to research the potential for direct heat use applications at the Pawsey Centre site. Cooling the Pawsey supercomputer may be achieved by geothermal heat exchange rather than by conventional electrical power cooling, thus reducing the carbon footprint of the Pawsey Centre and demonstrating an innovative green technology that is widely applicable in industry and urban centres across the world. The exploration well is scheduled to be completed in 2013, with drilling due to commence in the third quarter of 2011. One year is allocated to finalizing the design of the exploration, monitoring and research well. Success in the geothermal exploration and research program will result in an industrial-scale geothermal cooling facility at the Pawsey Centre, and will provide a world-class student training environment in geothermal energy systems. A similar system is partially funded and in advanced planning to provide base-load air-conditioning for the main campus of the University of Western Australia. Both systems are expected to draw ~80-95 degrees C water from aquifers lying between 2000 and 3000 meters depth from naturally permeable rocks of the Perth sedimentary basin. The geothermal water will be run through absorption chilling devices, which only require heat (as opposed to mechanical work) to power a chilled water stream adequate to meet the cooling requirements. Once the heat has been removed from the geothermal water, licensing issues require the water to be re-injected back into the aquifer system. These systems are intended to demonstrate the feasibility of powering large-scale air

  9. Geothermal well log interpretation state of the art. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Sanyal, S.K.; Wells, L.E.; Bickham, R.E.

    1980-01-01

    An in-depth study of the state of the art in Geothermal Well Log Interpretation has been made encompassing case histories, technical papers, computerized literature searches, and actual processing of geothermal wells from New Mexico, Idaho, and California. A classification scheme of geothermal reservoir types was defined which distinguishes fluid phase and temperature, lithology, geologic province, pore geometry, salinity, and fluid chemistry. Major deficiencies of Geothermal Well Log Interpretation are defined and discussed with recommendations of possible solutions or research for solutions. The Geothermal Well Log Interpretation study and report has concentrated primarily on Western US reservoirs. Geopressured geothermal reservoirs are not considered.

  10. Geothermal direct-heat utilization assistance. Quarterly report, October--December 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    This report summarizes geothermal technical assistance, R&D and technology transfer activities of the Geo-Heat Center at Oregon Institute of Technology for the first quarter of FY-97. It describes 174 contracts with parties during this period related to technical assistance with geothermal direct heat projects. Areas dealt with include geothermal heat pumps, space heating, greenhouses, aquaculture, equipment, economics and resources. Research activities are summarized on greenhouse peaking. Outreach activities include the publication of a geothermal direct use Bulletin, dissemination of information, geothermal library, technical papers and seminars, and progress monitor reports on geothermal resources and utilization.

  11. Geothermal investigations in Slovenia

    Directory of Open Access Journals (Sweden)

    Danilo Ravnik

    1991-12-01

    Full Text Available The paper presents the methodology and the results of geothermal investigations, based on seventy-two boreholes in the territory of the Republic of Slovenia.The data of fundamental geothermal quantities: formation temperature, thermal conductivity, and radiogenic heat production of rocks as well as surface heat flow density are stored in a computerized data base. Their synthesis is given in the map of formation temperatures at 1000 m depth and in the map of surface heat flow density. In both maps the thermal difference between the Pannonian basin in theeastern and the Dinarides in the western part of Slovenia is clearly expressed.However, in the boundary area between these two tectonic units, for a distance of about 100 km in SW-NE direction, elevated horizontal gradients of formation temperature as well as heat flow density are evident. A small positive thermal anomaly in the Ljubljana depression is conspicuous.The low-temperature geothermal resources in Slovenia such as thermalsprings and thermal water from boreholes, are estimated to have a flow rate of 1120 kg/s, corresponding to the ideal total heat production of 144 MWt. In the geothermally promising areas amounting to 3200 km2 the rate of accessible resource base (ARB down to the depth of 3 km has been assessed to about 8.5 x lO 20» J.

  12. Geothermal progress monitor: Report Number 19

    International Nuclear Information System (INIS)

    1997-12-01

    Short articles are presented related to activities in the federal government and the geothermal industry, international developments, state and local government activities, technology development, and technology transfer. Power plant tables and a directory of organizations involved in geothermal resource development are included

  13. Geothermal progress monitor: Report Number 19

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-01

    Short articles are presented related to activities in the federal government and the geothermal industry, international developments, state and local government activities, technology development, and technology transfer. Power plant tables and a directory of organizations involved in geothermal resource development are included.

  14. Effluent from Wastewater Treatment Plants

    DEFF Research Database (Denmark)

    Kristensen, Jannie Munk; Nierychlo, Marta; Albertsen, Mads

    Incoming microorganisms to wastewater treatment plants (WWTPs) are usually considered to be removed in the treatment process. Analyses of the effluent generally show a very high degree of reduction of pathogens supporting this assumption. However, standard techniques for detecting bacteria......-independent 16SrRNA gene amplicon sequencing was applied for the identification and quantification of the microorganisms. In total 84 effluent samples from 14 full-scale Danish wastewater treatment plants were investigated over a period of 3 months. The microbial community composition was investigated by 16S r...... contain pathogenic species. One of these was Arcobacter (Campylobacteraceae) which was found in up to 16% relative abundance. This indicates that Arcobacter, and perhaps other pathogenic genera, are not being removed efficiently in full-scale plants and may pose a potential health safety problem. Further...

  15. Effects of farmhouse hotel and paper mill effluents on bacterial community structures in sediment and surface water of Nanxi River, China.

    Science.gov (United States)

    Lu, Xiao-Ming; Lu, Peng-Zhen

    2014-11-01

    The pyrosequencing technique was used to evaluate bacterial community structures in sediment and surface water samples taken from Nanxi River receiving effluents from a paper mill and a farmhouse hotel, respectively. For each sample, 4,610 effective bacterial sequences were selected and used to do the analysis of diversity and abundance, respectively. Bacterial phylotype richness in the sediment sample without effluent input was higher than the other samples, and the surface water sample with addition of effluent from the paper mill contained the least richness. Effluents from both the paper mill and farmhouse hotel have a potential to reduce the bacterial diversity and abundance in the sediment and surface water, especially it is more significant in the sediment. The effect of the paper mill effluent on the sediment and surface water bacterial communities was more serious than that of the farmhouse hotel effluent. Characterization of microbial community structures in the sediment and surface water from two tributaries of the downstream river indicated that various effluents from the paper mill and farmhouse hotel have the similar potential to decrease the natural variability in riverine microbial ecosystems.

  16. Where is Argentina going in geothermal energy

    Energy Technology Data Exchange (ETDEWEB)

    Mange, J

    1977-01-01

    A brief review is given of geothermal exploration and development in Argentina. Methodical efforts to inventory the geothermal resources of the country were begun in 1974. The Commission set itself the task of locating the geothermal anomalies and then selecting particular anomalies for intensive exploration in order to confirm or discard the possibilities of exploiting the resource. The known principal anomalies are listed and the two selected for intensive exploration are indicated. (JSR)

  17. New Geothermal Prospect in North-Eastern Morocco

    OpenAIRE

    Rimi, Abdelkrim; Correia, António; Carneiro, Júlio; Verdoya, Massimo; Zarhloule, Yassine; Lucazeau, Francis; Boughriba, Mimoun; Barkaoui, Alae Eddine

    2010-01-01

    Geothermal data has been indicating promising potentialities in the north-eastern Morocco. This paperpresents new temperature data, recently recorded in water borehole located in the Berkane and Oujda areas. Generally, the observed temperature gradients are rather high. One hole near Berkane, revealed an average geothermal gradient of more than 110 ºC/km at depths greater than 300 m. This result confirms the geothermal gradient estimated in a mining borehole located about 30 km west ...

  18. 1978 annual report, INEL geothermal environmental program

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, S.G.; Sullivan, J.F.; Stanley, N.E.

    1979-04-01

    The objective of the Raft River Geothermal Environmental Program, in its fifth year, is to characterize the beneficial and detrimental impacts resulting from the development of moderate-temperature geothermal resources in the valley. This report summarizes the monitoring and research efforts conducted as part of this program in 1978. The results of these monitoring programs will be used to determine the mitigation efforts required to reduce long-term impacts resulting from geothermal development.

  19. Geothermal engineering fundamentals and applications

    CERN Document Server

    Watson, Arnold

    2013-01-01

    This book explains the engineering required to bring geothermal resources into use. The book covers specifically engineering aspects that are unique to geothermal engineering, such as measurements in wells and their interpretation, transport of near-boiling water through long pipelines, turbines driven by fluids other than steam, and project economics. The explanations are reinforced by drawing comparisons with other energy industries.

  20. Future directions and cycles for electricity production from geothermal resources

    International Nuclear Information System (INIS)

    Michaelides, Efstathios E.

    2016-01-01

    Graphical abstract: 25% more power may be produced using binary-flashing geothermal cycles. - Highlights: • Power from geothermal power plants is continuously available and “dispatchable.” • The next generation of geothermal will include more binary plants. • Lower temperature geothermal resources will be utilized in the future. • Dry rock resources may produce a high fraction of electricity in several countries. - Abstract: Geothermal power production is economically competitive and capable to produce a high percentage of the electric power demand in several countries. The currently operating geothermal power plants utilize water from an aquifer at relatively higher temperatures and produce power using dry steam, flashing or binary cycles. A glance at the map of the global geothermal resources proves that there is a multitude of sites, where the aquifer temperature is lower. There are also many geothermal resources where a high geothermal gradient exists in the absence of an aquifer. It becomes apparent that the next generation of geothermal power plants will utilize more of the lower-temperature aquifer resources or the dry resources. For such power plants to be economically competitive, modified or new cycles with higher efficiencies must be used. This paper presents two methods to increase the efficiency of the currently used geothermal cycles. The first uses a binary-flashing system to reduce the overall entropy production, thus, producing more electric power from the resource. The second describes a heat extraction system to be used with dry hot-rock resources.

  1. Low enthalpy geothermal for oil sands (LEGO)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-07-01

    Geothermal energy is generated by the slow decay of radioactive materials within the Earth. Geothermal energy resources include the water from hot springs used for heating; the withdrawal of high temperature steam from deep wells; and the use of stable ground or water temperatures near the Earth's surface to heat or cool buildings or in industrial processes. Heat pumps are used to transfer heat or water from the ground into buildings in winter. This paper discussed low enthalpy geothermal options for oil sands processes in order to reduce the use of natural gas and emissions from greenhouse gases (GHGs). The study was also conducted to aid in the development of a portfolio of renewable energy options for the oil and gas sector. The study estimated the costs and benefits of operating a shallow geothermal borehole cluster for meeting a portion of process heat demands for the Nexen's Albian mine. The costs and benefits of operating thermo-chillers integrated with a shallow geothermal borehole cluster for waste heat mitigation were also evaluated. The study showed that geothermal designs can be used to meet a portion of oil sands process heat and cooling demands. Mining operators may reduce carbon emissions and energy costs for process heat demands by installing closed loop borehole heat exchangers. Geothermal heat storage capacity can also be used to increase the efficiency of thermal chillers. It was concluded that pilot plant studies would contribute to a better understanding of the technology. tabs., figs.

  2. Victorian first for geothermal

    International Nuclear Information System (INIS)

    Wallace, Paula

    2014-01-01

    AGL Limited (AGL) will assist Maroondah Sports Club to save hundreds of thousands of dollars on its energy bills over the next decade by commencing work to install Victoria's first GeoAir geothermal cooling and heating system. Utilising the earth's constant temperature, the new GeoAir geothermal system provides a renewable source of energy that will save the club up to $12,000 in the first year and up to $150,000 over the next 10 years

  3. Geothermally Coupled Well-Based Compressed Air Energy Storage

    Energy Technology Data Exchange (ETDEWEB)

    Davidson, C L [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Bearden, Mark D [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Horner, Jacob A [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Appriou, Delphine [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); McGrail, B Peter [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-12-01

    Previous work by McGrail et al. (2013, 2015) has evaluated the possibility of pairing compressed air energy storage with geothermal resources in lieu of a fossil-fired power generation component, and suggests that such applications may be cost competitive where geology is favorable to siting both the geothermal and CAES components of such a system. Those studies also note that the collocation of subsurface resources that meet both sets of requirements are difficult to find in areas that also offer infrastructure and near- to mid-term market demand for energy storage. This study examines a novel application for the compressed air storage portion of the project by evaluating the potential to store compressed air in disused wells by amending well casings to serve as subsurface pressure vessels. Because the wells themselves would function in lieu of a geologic storage reservoir for the CAES element of the project, siting could focus on locations with suitable geothermal resources, as long as there was also existing wellfield infrastructure that could be repurposed for air storage. Existing wellfields abound in the United States, and with current low energy prices, many recently productive fields are now shut in. Should energy prices remain stagnant, these idle fields will be prime candidates for decommissioning unless they can be transitioned to other uses, such as redevelopment for energy storage. In addition to the nation’s ubiquitous oil and gas fields, geothermal fields, because of their phased production lifetimes, also may offer many abandoned wellbores that could be used for other purposes, often near currently productive geothermal resources. These existing fields offer an opportunity to decrease exploration and development uncertainty by leveraging data developed during prior field characterization, drilling, and production. They may also offer lower-cost deployment options for hybrid geothermal systems via redevelopment of existing well-field infrastructure

  4. Geothermally Coupled Well-Based Compressed Air Energy Storage

    Energy Technology Data Exchange (ETDEWEB)

    Davidson, Casie L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Bearden, Mark D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Horner, Jacob A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Cabe, James E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Appriou, Delphine [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); McGrail, B. Peter [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-12-20

    Previous work by McGrail et al. (2013, 2015) has evaluated the possibility of pairing compressed air energy storage with geothermal resources in lieu of a fossil-fired power generation component, and suggests that such applications may be cost competitive where geology is favorable to siting both the geothermal and CAES components of such a system. Those studies also note that the collocation of subsurface resources that meet both sets of requirements are difficult to find in areas that also offer infrastructure and near- to mid-term market demand for energy storage. This study examines a novel application for the compressed air storage portion of the project by evaluating the potential to store compressed air in disused wells by amending well casings to serve as subsurface pressure vessels. Because the wells themselves would function in lieu of a geologic storage reservoir for the CAES element of the project, siting could focus on locations with suitable geothermal resources, as long as there was also existing wellfield infrastructure that could be repurposed for air storage. Existing wellfields abound in the United States, and with current low energy prices, many recently productive fields are now shut in. Should energy prices remain stagnant, these idle fields will be prime candidates for decommissioning unless they can be transitioned to other uses, such as redevelopment for energy storage. In addition to the nation’s ubiquitous oil and gas fields, geothermal fields, because of their phased production lifetimes, also may offer many abandoned wellbores that could be used for other purposes, often near currently productive geothermal resources. These existing fields offer an opportunity to decrease exploration and development uncertainty by leveraging data developed during prior field characterization, drilling, and production. They may also offer lower-cost deployment options for hybrid geothermal systems via redevelopment of existing well-field infrastructure

  5. Groundwater Chemistry and Overpressure Evidences in Cerro Prieto Geothermal Field

    Directory of Open Access Journals (Sweden)

    Ivan Morales-Arredondo

    2017-01-01

    Full Text Available In order to understand the geological and hydrogeological processes influencing the hydrogeochemical behavior of the Cerro Prieto Geothermal Field (CP aquifer, Mexico, a characterization of the water samples collected from geothermal wells was carried out. Different hydrochemical diagrams were used to evaluate brine evolution of the aquifer. To determine pressure conditions at depth, a calculation was performed using hydrostatic and lithostatic properties from CP, considering geological characteristics of the study area, and theoretical information about some basin environments. Groundwater shows hydrogeochemical and geological evidences of the diagenetic evolution that indicate overpressure conditions. Some physical, chemical, textural, and mineralogical properties reported in the lithological column from CP are explained understanding the evolutionary process of the sedimentary material that composes the aquifer.

  6. Geothermal Technologies Program Geoscience and Supporting Technologies 2001 University Research Summaries

    International Nuclear Information System (INIS)

    Creed, R.J.; Laney, P.T.

    2002-01-01

    The U.S. Department of Energy Office of Wind and Geothermal Technologies (DOE) is funding advanced geothermal research through University Geothermal Research solicitations. These solicitations are intended to generate research proposals in the areas of fracture permeability location and characterization, reservoir management and geochemistry. The work funded through these solicitations should stimulate the development of new geothermal electrical generating capacity through increasing scientific knowledge of high-temperature geothermal systems. In order to meet this objective researchers are encouraged to collaborate with the geothermal industry. These objectives and strategies are consistent with DOE Geothermal Energy Program strategic objectives

  7. Geothermal Technologies Program Geoscience and Supporting Technologies 2001 University Research Summaries

    Energy Technology Data Exchange (ETDEWEB)

    Creed, R.J.; Laney, P.T.

    2002-05-14

    The U.S. Department of Energy Office of Wind and Geothermal Technologies (DOE) is funding advanced geothermal research through University Geothermal Research solicitations. These solicitations are intended to generate research proposals in the areas of fracture permeability location and characterization, reservoir management and geochemistry. The work funded through these solicitations should stimulate the development of new geothermal electrical generating capacity through increasing scientific knowledge of high-temperature geothermal systems. In order to meet this objective researchers are encouraged to collaborate with the geothermal industry. These objectives and strategies are consistent with DOE Geothermal Energy Program strategic objectives.

  8. Geothermal Technologies Program Geoscience and Supporting Technologies 2001 University Research Summaries

    Energy Technology Data Exchange (ETDEWEB)

    Creed, Robert John; Laney, Patrick Thomas

    2002-06-01

    The U.S. Department of Energy Office of Wind and Geothermal Technologies (DOE) is funding advanced geothermal research through University Geothermal Research solicitations. These solicitations are intended to generate research proposals in the areas of fracture permeability location and characterization, reservoir management and geochemistry. The work funded through these solicitations should stimulate the development of new geothermal electrical generating capacity through increasing scientific knowledge of high-temperature geothermal systems. In order to meet this objective researchers are encouraged to collaborate with the geothermal industry. These objectives and strategies are consistent with DOE Geothermal Energy Program strategic objectives.

  9. Application of low enthalpy geothermal energy

    International Nuclear Information System (INIS)

    Stancher, B.; Giannone, G.

    2007-01-01

    Geothermal energy comes from the superficial layers of the Earth's crust; it can be exploited in several ways, depending on its temperature. Many systems have been developed to use this clean and renewable energy resource. This paper deals with a particular application of low enthalpy geothermal energy in Latisana (district of Udine NE, Italy). The Latisana's indoor stadium is equipped with geothermal plant that uses low temperature water (29-30 0 ) to provide heating. Economic analysis shows that the cost of its plant is comparable to the cost powered by other kinds of renewable energy resources

  10. Improving geothermal power plants with a binary cycle

    Science.gov (United States)

    Tomarov, G. V.; Shipkov, A. A.; Sorokina, E. V.

    2015-12-01

    The recent development of binary geothermal technology is analyzed. General trends in the introduction of low-temperature geothermal sources are summarized. The use of single-phase low-temperature geothermal fluids in binary power plants proves possible and expedient. The benefits of power plants with a binary cycle in comparison with traditional systems are shown. The selection of the working fluid is considered, and the influence of the fluid's physicochemical properties on the design of the binary power plant is discussed. The design of binary power plants is based on the chemical composition and energy potential of the geothermal fluids and on the landscape and climatic conditions at the intended location. Experience in developing a prototype 2.5 MW Russian binary power unit at Pauzhetka geothermal power plant (Kamchatka) is outlined. Most binary systems are designed individually for a specific location. Means of improving the technology and equipment at binary geothermal power plants are identified. One option is the development of modular systems based on several binary systems that employ the heat from the working fluid at different temperatures.

  11. Laser-fluorescence determination of trace uranium in hot spring water, geothermal water and tap water in Xi'an Lishan region

    International Nuclear Information System (INIS)

    Ma Wenyan; Zhou Chunlin; Han Feng; Di Yuming

    2002-01-01

    Using the Laser-Fluorescence technique, an investigation was made, adopting the standard mix method, on trace uranium concentrations in hot spring water and geothermal water from Lishan region, and in tap water from some major cities in Shanxi province. Totally 40 samples from 27 sites were investigated. Measurement showed that the tap water contains around 10 -6 g/L of uranium, whose concentrations in both hot spring water and geothermal water are 10 -5 g/L. Most of samples are at normal radioactive background level, some higher contents were determined in a few samples

  12. Effluent generation by the dairy industry: preventive attitudes and opportunities

    Directory of Open Access Journals (Sweden)

    V. B. Brião

    2007-12-01

    Full Text Available Work aimed to identify the effluent is generating areas in a dairy company for purpose of changing concept pollution prevention. methodology consisted measuring volumes and collecting samples effluents production sectors. analysis was conducted by sector, order those which generated excessive amounts effluents. results show that dry products (powdered milk powdered whey are greatest generators BOD, nitrogen phosphorus, while fluid form (UHT milk, formulated UHT, pasteurized cream butter produced large quantities oils grease. solids recovery, waste segregation water reuse can be applied with saving potential as much R$ 28,000 ($ 11,200 per month only raw materials also environmental gains in pollution prevention.

  13. Geothermal energy. Ground source heat pumps

    International Nuclear Information System (INIS)

    2009-01-01

    Geothermal energy can be harnessed in 2 different ways: electricity or heat generation. The combined net electrical geothermal power of the European Union countries reached 719.3 MWe in 2008 (4.8 MW up on 2007) for 868.1 MWe of installed capacity. Gross electrical production contracted slightly in 2008 (down 1% on the 2007 level) and stood at 5809.5 GWh in 2008. Italy has a overwhelming position with a production of 5520.3 GWh. Geothermal heat production concerning aquifers whose temperature is 30-150 C. degrees generally at a depth of 1-3 km is called low- and medium-enthalpy energy. 18 of the 27 EU members use low- and medium-enthalpy energy totaling 2560.0 MWth of installed capacity that yielded 689.2 ktoe in 2008 and 3 countries Hungary, Italy and France totaling 480.3 ktoe. Very low-enthalpy energy concerns the exploitation of shallow geothermal resources using geothermal heat pumps. In 2008, 114452 ground heat pumps were sold in Europe. At the end of 2008, the installed capacity was 8955.4 MWth (16.5% up on 2007 level, it represented 785206 pumps. Over one million ground heat pumps are expected to be operating in 2010 in Europe. (A.C.)

  14. Detecting geothermal anomalies and evaluating LST geothermal component by combining thermal remote sensing time series and land surface model data

    Science.gov (United States)

    Romaguera, Mireia; Vaughan, R. Greg; Ettema, J.; Izquierdo-Verdiguier, E.; Hecker, C. A.; van der Meer, F.D.

    2018-01-01

    This paper explores for the first time the possibilities to use two land surface temperature (LST) time series of different origins (geostationary Meteosat Second Generation satellite data and Noah land surface modelling, LSM), to detect geothermal anomalies and extract the geothermal component of LST, the LSTgt. We hypothesize that in geothermal areas the LSM time series will underestimate the LST as compared to the remote sensing data, since the former does not account for the geothermal component in its model.In order to extract LSTgt, two approaches of different nature (physical based and data mining) were developed and tested in an area of about 560 × 560 km2 centered at the Kenyan Rift. Pre-dawn data in the study area during the first 45 days of 2012 were analyzed.The results show consistent spatial and temporal LSTgt patterns between the two approaches, and systematic differences of about 2 K. A geothermal area map from surface studies was used to assess LSTgt inside and outside the geothermal boundaries. Spatial means were found to be higher inside the geothermal limits, as well as the relative frequency of occurrence of high LSTgt. Results further show that areas with strong topography can result in anomalously high LSTgt values (false positives), which suggests the need for a slope and aspect correction in the inputs to achieve realistic results in those areas. The uncertainty analysis indicates that large uncertainties of the input parameters may limit detection of LSTgt anomalies. To validate the approaches, higher spatial resolution images from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data over the Olkaria geothermal field were used. An established method to estimate radiant geothermal flux was applied providing values between 9 and 24 W/m2 in the geothermal area, which coincides with the LSTgt flux rates obtained with the proposed approaches.The proposed approaches are a first step in estimating LSTgt

  15. Diversity of sulfate-reducing bacteria in a plant using deep geothermal energy

    Science.gov (United States)

    Alawi, Mashal; Lerm, Stephanie; Vetter, Alexandra; Wolfgramm, Markus; Seibt, Andrea; Würdemann, Hilke

    2011-06-01

    Enhanced process understanding of engineered geothermal systems is a prerequisite to optimize plant reliability and economy. We investigated microbial, geochemical and mineralogical aspects of a geothermal groundwater system located in the Molasse Basin by fluid analysis. Fluids are characterized by temperatures ranging from 61°C to 103°C, salinities from 600 to 900 mg/l and a dissolved organic carbon content (DOC) between 6.4 to 19.3 mg C/l. The microbial population of fluid samples was analyzed by genetic fingerprinting techniques based on PCR-amplified 16S rRNA- and dissimilatory sulfite reductase genes. Despite of the high temperatures, microbes were detected in all investigated fluids. Fingerprinting and DNA sequencing enabled a correlation to metabolic classes and biogeochemical processes. The analysis revealed a broad diversity of sulfate-reducing bacteria. Overall, the detection of microbes known to be involved in biocorrosion and mineral precipitation indicates that microorganisms could play an important role for the understanding of processes in engineered geothermal systems.

  16. Federal Geothermal Research Program Update Fiscal Year 2000; ANNUAL

    International Nuclear Information System (INIS)

    Renner, J.L.

    2001-01-01

    The Department of Energy's Geothermal Program serves two broad purposes: (1) to assist industry in overcoming near-term barriers by conducting cost-shared research and field verification that allows geothermal energy to compete in today's aggressive energy markets; and (2) to undertake fundamental research with potentially large economic payoffs. The four categories of work used to distinguish the research activities of the Geothermal Program during FY 2000 reflect the main components of real-world geothermal projects. These categories form the main sections of the project descriptions in this Research Update. Exploration Technology research focuses on developing instruments and techniques to discover hidden hydrothermal systems and to explore the deep portions of known systems. Research in geophysical and geochemical methods is expected to yield increased knowledge of hidden geothermal systems. Reservoir Technology research combines laboratory and analytical investigations with equipment development and field testing to establish practical tools for resource development and management for both hydrothermal reservoirs and enhanced geothermal systems. Research in various reservoir analysis techniques is generating a wide range of information that facilitates development of improved reservoir management tools. Drilling Technology focuses on developing improved, economic drilling and completion technology for geothermal wells. Ongoing research to avert lost circulation episodes in geothermal drilling is yielding positive results. Conversion Technology research focuses on reducing costs and improving binary conversion cycle efficiency, to permit greater use of the more abundant moderate-temperature geothermal resource, and on the development of materials that will improve the operating characteristics of many types of geothermal energy equipment. Increased output and improved performance of binary cycles will result from investigations in heat cycle research

  17. Realizing the geothermal electricity potential—water use and consequences

    Science.gov (United States)

    Shankar Mishra, Gouri; Glassley, William E.; Yeh, Sonia

    2011-07-01

    Electricity from geothermal resources has the potential to supply a significant portion of US baseload electricity. We estimate the water requirements of geothermal electricity and the impact of potential scaling up of such electricity on water demand in various western states with rich geothermal resources but stressed water resources. Freshwater, degraded water, and geothermal fluid requirements are estimated explicitly. In general, geothermal electricity has higher water intensity (l kWh - 1) than thermoelectric or solar thermal electricity. Water intensity decreases with increase in resource enthalpy, and freshwater gets substituted by degraded water at higher resource temperatures. Electricity from enhanced geothermal systems (EGS) could displace 8-100% of thermoelectricity generated in most western states. Such displacement would increase stress on water resources if re-circulating evaporative cooling, the dominant cooling system in the thermoelectric sector, is adopted. Adoption of dry cooling, which accounts for 78% of geothermal capacity today, will limit changes in state-wide freshwater abstraction, but increase degraded water requirements. We suggest a research and development focus to develop advanced energy conversion and cooling technologies that reduce water use without imposing energy and consequent financial penalties. Policies should incentivize the development of higher enthalpy resources, and support identification of non-traditional degraded water sources and optimized siting of geothermal plants.

  18. Realizing the geothermal electricity potential-water use and consequences

    International Nuclear Information System (INIS)

    Mishra, Gouri Shankar; Yeh, Sonia; Glassley, William E

    2011-01-01

    Electricity from geothermal resources has the potential to supply a significant portion of US baseload electricity. We estimate the water requirements of geothermal electricity and the impact of potential scaling up of such electricity on water demand in various western states with rich geothermal resources but stressed water resources. Freshwater, degraded water, and geothermal fluid requirements are estimated explicitly. In general, geothermal electricity has higher water intensity (l kWh -1 ) than thermoelectric or solar thermal electricity. Water intensity decreases with increase in resource enthalpy, and freshwater gets substituted by degraded water at higher resource temperatures. Electricity from enhanced geothermal systems (EGS) could displace 8-100% of thermoelectricity generated in most western states. Such displacement would increase stress on water resources if re-circulating evaporative cooling, the dominant cooling system in the thermoelectric sector, is adopted. Adoption of dry cooling, which accounts for 78% of geothermal capacity today, will limit changes in state-wide freshwater abstraction, but increase degraded water requirements. We suggest a research and development focus to develop advanced energy conversion and cooling technologies that reduce water use without imposing energy and consequent financial penalties. Policies should incentivize the development of higher enthalpy resources, and support identification of non-traditional degraded water sources and optimized siting of geothermal plants.

  19. Assessment of peracetic acid disinfected effluents by microbiotests.

    Science.gov (United States)

    Antonelli, M; Mezzanotte, V; Panouillères, M

    2009-09-01

    Bioassays were performed by commercially available kits on peracetic acid (PAA) solutions, at different concentrations, and on secondary effluents (from two different wastewater treatment plants) after disinfection at bench-scale, considering both samples containing residual active PAA and the same samples where residual PAA was quenched. Four indicator organisms were used: Vibrio fischeri, Thamnocephalus platyurus, Daphnia magna, and Selenastrum capricornutum. The experiments lead to conclude that Thamnocephalus platyurus is a very sensitive organism, probably not adequate to perform a reliable toxicity assessment of effluents for monitoring purposes. The presence of specific organic compounds deriving from human metabolism and urban pollution, even at very low concentrations, can affect the results of bioassays, especially those performed on Vibrio fischeri. PAA is toxic for bacteria and crustaceans even at concentrations lower than the ones commonly used in wastewater disinfection (2-5 mg/L), while its effect on algae is smaller. The toxic effect on bacteria was expected, as PAA is used for disinfection, but its possible influence on biological processes in the receiving aquatic environment should be considered. Toxicity on crustaceans would confirm the fact that discharging disinfected effluents could raise some environmental problems.

  20. Exergoeconomic optimization of integrated geothermal system in Simav, Kutahya

    International Nuclear Information System (INIS)

    Arslan, Oguz; Kose, Ramazan

    2010-01-01

    The aim of this study is to investigate the integrated use of the geothermal resources in the Kutahya-Simav region, Turkey. Although geothermal energy has been in use for years in the others countries, the integrated use of the geothermal fluid is new in Turkey. The high temperature level of the geothermal fluid in the Simav field makes it possible to utilize it for electricity generation, space heating and balneology. In this regard, a multiple complex has been proposed there in order to use the energy of the geothermal fluid more efficiently. Therefore, the possibility of electricity generation by a binary cycle has been preliminarily researched. After the electricity generation process, the waste geothermal fluid has been conducted to residences and greenhouses later for heating purpose in the field. In this regard, twenty one different models have been formed and analyzed using exergy and LCC methods. As a conclusion, the pre-feasibility study indicates that utilization of this geothermal capacity for multiple uses would be an attractive investment for Simav region.

  1. The state of exploitation of geothermal energy and some interesting achievements in geothermal research and development in the world

    Directory of Open Access Journals (Sweden)

    Dušan Rajver

    2016-08-01

    Full Text Available The article presents the latest status of geothermal energy use worldwide and the comparison with the previous period, both in electricity generation as well as in the various categories of direct use. Electricity production takes place in 26 countries and has at the end of 2014 reached 73,700 GWh from geothermal power plants with nearly 12.8 GW of installed power. This is still only 0.31 % of the total electricity produced in the world and it will be interesting to monitor the future share of geothermal energy in doing so. In the last 5-year period the development was particularly rapid in countries where it was slower in the past and, however, with favorable geological (tectonic conditions (Iceland, Kenya, New Zealand, Turkey, etc.. Direct use of geothermal energy covers a signifiant number of countries, today there are 82, although some of them are such where it takes place almost solely by geothermal (ground-source heat pumps (GHP on shallow subsurface energy (Finland. Installed capacity in the direct use is 70,885 MWt and geothermal energy used, including the GHP, is 592,638 TJ/year (end of 2014. Within the used energy the share of GHP dominates with 55.2 %, followed by the bathing and swimming pools complexes incl. balneology by 20.2 %, space heating by 15.0 % (the majority of it is district heating, heating of greenhouses and soil with 4.9 %, etc. The second part presents some interesting technological and scientifi innovations in exploration and exploitation of geothermal energy.

  2. Sixteenth workshop on geothermal reservoir engineering: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Ramey, H.J. Jr.; Kruger, P.; Miller, F.G.; Horne, R.N.; Brigham, W.E.; Cook, J.W. (Stanford Geothermal Program)

    1991-01-25

    The Sixteenth Workshop on Geothermal Reservoir Engineering was held at Stanford University on January 23-25, 1991. The Workshop Banquet Speaker was Dr. Mohinder Gulati of UNOCAL Geothermal. Dr. Gulati gave an inspiring talk on the impact of numerical simulation on development of geothermal energy both in The Geysers and the Philippines. Dr. Gulati was the first recipient of The Stanford Geothermal Program Reservoir Engineering Award for Excellence in Development of Geothermal Energy. Dr. Frank Miller presented the award. The registered attendance figure of one hundred fifteen participants was up slightly from last year. There were seven foreign countries represented: Iceland, Italy, Philippines, Kenya, the United Kingdom, Mexico, and Japan. As last year, papers on about a dozen geothermal fields outside the United States were presented. There were thirty-six papers presented at the Workshop, and two papers were submitted for publication only. Attendees were welcomed by Dr. Khalid Aziz, Chairman of the Petroleum Engineering Department at Stanford. Opening remarks were presented by Dr. Roland Horne, followed by a discussion of the California Energy Commission's Geothermal Activities by Barbara Crowley, Vice Chairman; and J.E. ''Ted'' Mock's presentation of the DOE Geothermal Program: New Emphasis on Industrial Participation. Technical papers were organized in twelve sessions concerning: hot dry rock, geochemistry, tracer injection, field performance, modeling, and chemistry/gas. As in previous workshops, session chairpersons made major contributions to the program. Special thanks are due to Joel Renner, Jeff Tester, Jim Combs, Kathy Enedy, Elwood Baldwin, Sabodh Garg, Marcel0 Lippman, John Counsil, and Eduardo Iglesias. The Workshop was organized by the Stanford Geothermal Program faculty, staff, and graduate students. We wish to thank Pat Ota, Angharad Jones, Rosalee Benelli, Jeanne Mankinen, Ted Sumida, and Terri A. Ramey who also

  3. Proceedings and findings of the geothermal commercialization workshop

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, J.; Dhillon, H.

    1979-04-01

    The proceedings are presented of a Geothermal Commercialization Workshop conducted by the Division of Geothermal Resource Management, Department of Energy. The workshop was held in January-February 1979 at The MITRE Corporation facility in McLean, Virginia. The workshop addressed geothermal hydrothermal commercialization achievements and needs in the areas of Marketing and Outreach, Economics, Scenarios, and Progress Monitoring.

  4. Geothermal-resource verification for Air Force bases

    Energy Technology Data Exchange (ETDEWEB)

    Grant, P.R. Jr.

    1981-06-01

    This report summarizes the various types of geothermal energy reviews some legal uncertainties of the resource and then describes a methodology to evaluate geothermal resources for applications to US Air Force bases. Estimates suggest that exploration costs will be $50,000 to $300,000, which, if favorable, would lead to drilling a $500,000 exploration well. Successful identification and development of a geothermal resource could provide all base, fixed system needs with an inexpensive, renewable energy source.

  5. Seismic characterisation for geothermal energy prospecting

    NARCIS (Netherlands)

    Huck, A.; Groot, P. de; Simmelink, E.; Vandeweijer, V.P.; Willemsen, A.

    2009-01-01

    The city of The Hague intends to use geothermal energy to heat approx. 4000 houses in a planned urban development area called The Hague South-West. This paper describes the application of advanced seismic interpretation workflows to help positioning a geothermal doublet consisting of one injector -

  6. Environmental effects of geothermal energy exploitation

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, H [Japan Metals and Chemicals Co., Ltd., Japan

    1975-01-01

    The environmental effects of geothermal power generation which cause air and water pollution and destruction of natural areas are reviewed. The production of steam and hot water affect existing hot springs sources and can cause ground subsidence. Harmful gas can be released onto the atmosphere from fumarolic gas and hot springs. Hydrothermal geothermal fields occasionally contain harmful substances such as arsenic in the hot water. Serious environmental effects can result from geothermal exploitation activities such as the felling of trees for road construction, well drilling, and plant construction. Once geothermal power generation has begun, the release of H/sub 2/S into the atmosphere and the reinjection of hot water are conducted continuously and sufficient countermeasures can be taken. One problem is the effects of plant construction and operation on natural parks. It is important to reach a compromise between development and protection of natural senic areas. Two figures, two tables, and 13 references are provided.

  7. Non-electrical uses of geothermal energy

    Energy Technology Data Exchange (ETDEWEB)

    Barbier, E; Fanelli, M

    1977-01-01

    The non-electric applications of geothermal energy, with the exception of balneology, date back to the nineteenth century and have been given a new impetus by the recent oil crisis. In general, water or water-steam mixtures at temperatures between 20 and 180/sup 0/C are used for these applications. The search for geothermal fluids draws on techniques from hydrogeology, geochemistry and geophysics, the same techniques as applied to the search for cold waters, together with some specific methods connected with the underground thermal conditions. Geothermal energy is used in agriculture, aquaculture, district heating and cooling and various industrial applications. The power associated with these uses throughout the world at present can be estimated at 6200 MW and future prospects are by now promising and of definite economic interest. The environmental impact from geothermal energy is lower than that caused by conventional energy sources. Reinjection of used fluids back into the underground may, however, solve pollution problems.

  8. Non-electrical uses of geothermal energy

    Energy Technology Data Exchange (ETDEWEB)

    Barbier, E; Fanelli, M

    1977-01-01

    The non-electric applications of geothermal energy, with the exception of balneology, date back to the nineteenth century and have been given a new impetus by the recent oil crisis. In general, water or water--steam mixtures at temperatures between 20 and 180/sup 0/C are used for these applications. The search for geothermal fluids draws on techniques from hydrogeology, geochemistry and geophysics, the same techniques as applied to the search for cold waters, together with some specific methods connected with the underground thermal conditions. Geothermal energy is used in agriculture, aquaculture, district heating and cooling, and various industrial applications. The power associated with these uses throughout the world at present can be estimated at 6200 MW and future prospects are by now promising and of definite economic interest. The environmental impact from geothermal energy is lower than that caused by conventional energy sources. Reinjection of used fluids back into the underground may, however, solve pollution problems.

  9. Economic and financial aspects of geothermal energy utilization

    International Nuclear Information System (INIS)

    Gazo, F.M.; Datuin, R.

    1990-01-01

    This paper reports on the historical development of geothermal energy in the Philippines, its present status and future possibilities. It also illustrates the average power generation and utilization from primary energy sources (hydro, oil, coal, and geothermal energy) in the country from 1981 to 1988. A comparison is made between electricity generating costs and results of operations from these power sources, showing that geothermal energy utilization is very competitive. Moreover, it also discusses the economic viability of geothermal energy utilization as a result of separate studies conducted by World Bank and an Italian energy consulting firm

  10. Geothermal prospects in British Columbia: Resource, market and regulatory aspects

    International Nuclear Information System (INIS)

    Ghomshei, M.M.; Brown, T.L.S.; MacRae, J.M.

    1992-01-01

    British Columbia is host to about 15 young volcanic centres and 60 hot springs, all evidence of presence of geothermal resources. Most high-grade geothermal prospects in British Columbia are located along 3 volcanic belts in the south-western region of the province. It is estimated that a minimum of 800 MWe can be generated from the known prospects in this region. Significant low-grade geothermal resources exist in several provincial regions. Market applications consistent with the geothermal resources known and expected to occur in British Columbia include electrical generation, process and other direct heat uses and recreation. Leasing, exploration and development operations for high-grade geothermal resources are addressed by the British Columbia open-quotes Geothermal Resources Actclose quotes which defines geothermal resources and reserves all rights to the Crown in the right of the Province

  11. Geothermal energy applications in China

    International Nuclear Information System (INIS)

    Ren, X.; Tang, N.; Zhang, Z.; Wang, J.

    1990-01-01

    This paper updates geothermal energy applications in China. To total energy consumption for electricity is 20.38 MWe, and for direct use is 41,222 TJ/yr, even though the beneficial heat was estimated to be 7,198 TJ/yr. The attached tables are the basic geothermal information mainly the years 1985-1989. Some of the tables are additions to the report or preceeding years

  12. Geothermal energy in France. Market study for 2011

    International Nuclear Information System (INIS)

    2012-01-01

    After having recalled the French national objectives for 2020 related to the share of renewable energies in final energy consumption, and given a brief overview of geothermal production in Europe, this report proposes a rather detailed overview of the geothermal market and production in France: evolution of the geothermal production stock, assessment of tonnes equivalent of oil and CO 2 emissions, users, turnover, jobs. It addresses the three main geothermal sectors: high energy (boiling geothermal, the Soultz-sous-Forets power station), direct use of heat, and very low energy (heat demand in France, results and regional distribution, market structure, analysis of the price of an installation). The last part addresses the legal and financial framework: status of French law, quality issue, levers for development (purchase tariff, geologic risk, thermal regulation 2012, energy saving certificates, tax credits, and subsidies)

  13. Hydrogeology of the Krafla geothermal system, northeast Iceland

    DEFF Research Database (Denmark)

    Pope, Emily Catherine; Bird, D. K.; Arnórsson, S.

    2016-01-01

    The Krafla geothermal system is located in Iceland's northeastern neovolcanic zone, within the Krafla central volcanic complex. Geothermal fluids are superheated steam closest to the magma heat source, two-phase at higher depths, and sub-boiling at the shallowest depths. Hydrogen isotope ratios...... of geothermal fluids range from -87‰, equivalent to local meteoric water, to -94‰. These fluids are enriched in 18O relative to the global meteoric line by +0.5-3.2‰. Calculated vapor fractions of the fluids are 0.0-0.5 wt% (~0-16% by volume) in the northwestern portion of the geothermal system and increase...... the benefits of combining phase segregation effects in two-phase systems during analysis of wellhead fluid data with stable isotope values of hydrous alteration minerals when evaluating the complex hydrogeology of volcano-hosted geothermal systems....

  14. A biological method to monitor early effects of the air pollution caused by the industrial exploitation of geothermal energy.

    Science.gov (United States)

    Paoli, Luca; Loppi, Stefano

    2008-09-01

    The suitability of a set of ecophysiological parameters, to be used as early warning indicator to detect signs of a worsening environment around geothermal power plants, was tested by comparison with the diversity of epiphytic lichens, a well-established indicator of geothermal air pollution. Samples of the lichen Evernia prunastri were transplanted around a geothermal power plant at Larderello (Tuscany, Italy) and at a control site, and integrity of cell membranes, concentration of chlorophyll a, b and carotenoids, chlorophyll integrity and variations in pH of thalli were measured. The results showed that cell membrane damage, expressed by changes in electrical conductivity, could be used to detect early (exposure periods as short as 1 month) deleterious effects of geothermal air pollution.

  15. Decentralised wastewater treatment effluent fertigation: preliminary ...

    African Journals Online (AJOL)

    2018-04-02

    Apr 2, 2018 ... The experimental site at Newlands-Mashu Research Facility, located in Durban ... Samples of effluent used during the study were collected from the AF ... Yield parameters of banana (number and mass of true fingers ..... GHOREISHI M, HOSSINI Y and MAFTOON M (2012) Simple models for predicting leaf ...

  16. Proposed radioactive liquid effluent monitoring requirements at the Savannah River Site

    International Nuclear Information System (INIS)

    Jannik, G.T.; Carlton, W.H.; Blunt, B.C.

    1994-01-01

    Clear regulatory guidance exists for structuring a radiological air monitoring program, however, there is no parallel guidance for radiological liquid monitoring. For Department of Energy (DOE) facilities, there are no existing applicable federal regulations, DOE orders, or DOE guidance documents that specify at what levels continuous monitoring, continuous sampling, or periodic confirmatory measurements of radioactive liquid effluents must be made. In order to bridge this gap and to technically justify and document liquid effluent monitoring decisions at DOE's Savannah River Site, Westinghouse Savannah River Company has proposed that a graded, dose-based approach be established, in conjunction with limits on facility radionuclide inventories, to determine the monitoring and sampling criteria to be applied at each potential liquid radioactive effluent point. The graded approach would be similar to--and a conservative extension of--the existing, agreed-upon SRS/EPA-IV airborne effluent monitoring approach documented in WSRC's NESHAP Quality Assurance Project Plan. The limits on facility radionuclide inventories are based on--and are a conservative extension of--the 10 CFR 834, 10 CFR 20, and SCR 61-63 annual limits on discharges to sanitary sewers. Used in conjunction with each other, the recommended source category criteria levels and facility radionuclide inventories would allow for the best utilization of resources and provide consistent, technically justifiable determinations of radioactive liquid effluent monitoring requirements

  17. Direct utilization of geothermal energy

    International Nuclear Information System (INIS)

    Lund, J. W.

    2010-01-01

    The worldwide application of geothermal energy for direct utilization is reviewed. This paper is based on the world update for direct-use presented at the World Geothermal Congress 2010 in Bali, Indonesia (WGC2010) which also includes material presented at three world geothermal congresses in Italy, Japan and Turkey (WGC95, WGC2000 and WGC2005). This report is based on country update papers prepared for WGC2010 and data from other sources. Final update papers were received from 70 countries of which 66 reported some direct utilization of geothermal energy for WGC2010. Twelve additional countries were added to the list based on other sources of information. The 78 countries having direct utilization of geothermal energy, is a significant increase from the 72 reported in 2005, the 58 reported in 2000, and the 28 reported in 1995. An estimate of the installed thermal power for direct utilization at the end of 2009, reported from WGC2010 is 48,493 MW th , almost a 72 % increased over the 2005 data, growing at a compound rate of 11.4% annually with a capacity factor of 0.28. The thermal energy used is 423,830 TJ/year (117,740 GWh/yr), about a 55% increase over 2005, growing at a compound rate of 9.2% annually. The distribution of thermal energy used by category is approximately 47.2% for ground-source heat pumps, 25.8% for bathing and swimming (including balneology), 14.9% for space heating (of which 85% is for district heating), 5.5% for greenhouses and open ground heating, 2.8% for industrial process heating, 2.7% for aquaculture pond and raceway heating, 0.4% for agricultural drying, 0.5% for snow melting and cooling, and 0.2% for other uses. Energy savings amounted to 250 million barrels (38 million tonnes) of equivalent oil annually, preventing 33 million tonnes of carbon and 107 million tonnes of CO 2 being released to the atmosphere which includes savings in geothermal heat pump cooling (compared to using fuel oil to generate electricity). (author)

  18. Hot Dry Rock; Geothermal Energy

    Energy Technology Data Exchange (ETDEWEB)

    None

    1990-01-01

    The commercial utilization of geothermal energy forms the basis of the largest renewable energy industry in the world. More than 5000 Mw of electrical power are currently in production from approximately 210 plants and 10 000 Mw thermal are used in direct use processes. The majority of these systems are located in the well defined geothermal generally associated with crustal plate boundaries or hot spots. The essential requirements of high subsurface temperature with huge volumes of exploitable fluids, coupled to environmental and market factors, limit the choice of suitable sites significantly. The Hot Dry Rock (HDR) concept at any depth originally offered a dream of unlimited expansion for the geothermal industry by relaxing the location constraints by drilling deep enough to reach adequate temperatures. Now, after 20 years intensive work by international teams and expenditures of more than $250 million, it is vital to review the position of HDR in relation to the established geothermal industry. The HDR resource is merely a body of rock at elevated temperatures with insufficient fluids in place to enable the heat to be extracted without the need for injection wells. All of the major field experiments in HDR have shown that the natural fracture systems form the heat transfer surfaces and that it is these fractures that must be for geothermal systems producing from naturally fractured formations provide a basis for directing the forthcoming but, equally, they require accepting significant location constraints on HDR for the time being. This paper presents a model HDR system designed for commercial operations in the UK and uses production data from hydrothermal systems in Japan and the USA to demonstrate the reservoir performance requirements for viable operations. It is shown that these characteristics are not likely to be achieved in host rocks without stimulation processes. However, the long term goal of artificial geothermal systems developed by systematic

  19. Direct Utilization of Geothermal Energy

    Directory of Open Access Journals (Sweden)

    John W. Lund

    2010-08-01

    Full Text Available The worldwide application of geothermal energy for direct utilization is reviewed. This paper is based on the world update for direct-use presented at the World Geothermal Congress 2010 in Bali, Indonesia (WGC2010 [1] which also includes material presented at three world geothermal congresses in Italy, Japan and Turkey (WGC95, WGC2000 and WGC2005. This report is based on country update papers prepared for WGC2010 and data from other sources. Final update papers were received from 70 countries of which 66 reported some direct utilization of geothermal energy for WGC2010. Twelve additional countries were added to the list based on other sources of information. The 78 countries having direct utilization of geothermal energy, is a significant increase from the 72 reported in 2005, the 58 reported in 2000, and the 28 reported in 1995. An estimate of the installed thermal power for direct utilization at the end of 2009, reported from WGC2010 is 48,493 MWt, almost a 72 % increased over the 2005 data, growing at a compound rate of 11.4% annually with a capacity factor of 0.28. The thermal energy used is 423,830 TJ/year (117,740 GWh/yr, about a 55% increase over 2005, growing at a compound rate of 9.2% annually. The distribution of thermal energy used by category is approximately 47.2% for ground-source heat pumps, 25.8% for bathing and swimming (including balneology, 14.9% for space heating (of which 85% is for district heating, 5.5% for greenhouses and open ground heating, 2.8% for industrial process heating, 2.7% for aquaculture pond and raceway heating, 0.4% for agricultural drying, 0.5% for snow melting and cooling, and 0.2% for other uses. Energy savings amounted to 250 million barrels (38 million tonnes of equivalent oil annually, preventing 33 million tonnes of carbon and 107 million tonnes of CO2 being release to the atmosphere which includes savings in geothermal heat pump cooling (compared to using fuel oil to generate electricity.

  20. Assessment of Radioactive Liquid Effluents Release at IPEN-CNEN/SP

    International Nuclear Information System (INIS)

    Bessa Nisti, Marcelo; Godoy dos Santos, Adir Janete

    2008-01-01

    A continuous effluent monitoring program has been established at IPEN's plant in order to allow an environmental impact assessment due to radioactive liquid effluent discharge to sanitary system. Representative samples of radioactive liquid effluents are analyzed by using high resolution gamma spectroscopy and instrumental neutron activation analysis, facing to Brazilian radioprotection regulatory rules. The results are consolidating yearly in the Institute source-term. In this paper, results of the source-term are presented, concerning to years 2004, 2005 and 2006. The total activity discharged was 8.5xl0 8 Bq, 5.7x10 8 Bq and 2.7xl0 8 Bq, respectively. As the release is strongly dependent on the total amount of the effluent and on the dilution factor, special attention is needed in order to obtain the correct value of that last one. The estimated inside plant dilution factor, considering the recent facilities and the reshaping of the sewerage system was 80, 180 and 130, for period of 2004, 2005 and 2006 discharged liquid radioactive effluent

  1. Mapping temperature and radiant geothermal heat flux anomalies in the Yellowstone geothermal system using ASTER thermal infrared data

    Science.gov (United States)

    Vaughan, R. Greg; Lowenstern, Jacob B.; Keszthelyi, Laszlo P.; Jaworowski, Cheryl; Heasler, Henry

    2012-01-01

    The purpose of this work was to use satellite-based thermal infrared (TIR) remote sensing data to measure, map, and monitor geothermal activity within the Yellowstone geothermal area to help meet the missions of both the U.S. Geological Survey Yellowstone Volcano Observatory and the Yellowstone National Park Geology Program. Specifically, the goals were to: 1) address the challenges of remotely characterizing the spatially and temporally dynamic thermal features in Yellowstone by using nighttime TIR data from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) and 2) estimate the temperature, geothermal radiant emittance, and radiant geothermal heat flux (GHF) for Yellowstone’s thermal areas (both Park wide and for individual thermal areas). ASTER TIR data (90-m pixels) acquired at night during January and February, 2010, were used to estimate surface temperature, radiant emittance, and radiant GHF from all of Yellowstone’s thermal features, produce thermal anomaly maps, and update field-based maps of thermal areas. A background subtraction technique was used to isolate the geothermal component of TIR radiance from thermal radiance due to insolation. A lower limit for the Yellowstone’s total radiant GHF was established at ~2.0 GW, which is ~30-45% of the heat flux estimated through geochemical (Cl-flux) methods. Additionally, about 5 km2 was added to the geodatabase of mapped thermal areas. This work provides a framework for future satellite-based thermal monitoring at Yellowstone as well as exploration of other volcanic / geothermal systems on a global scale.

  2. Fate of wastewater effluent hER-agonists and hER-antagonists during soil aquifer treatment.

    Science.gov (United States)

    Otakuye, Conroy; Quanrud, David M; Ela, Wendell P; Wicke, Daniel; Lansey, Kevin E; Arnold, Robert G

    2005-04-01

    Estrogen activity was measured in wastewater effluent before and after polishing via soil-aquifer treatment (SAT) using both a (hER-beta) competitive binding assay and a transcriptional activation (yeast estrogen screen, YES) assay. From the competitive binding assay, the equivalent 17alpha-ethinylestradiol (EE2) concentration in secondary effluent was 4.7 nM but decreased to 0.22 nM following SAT. The YES assay indicated that the equivalent EE2 concentration in the same effluent sample was below the method-detection limit (bioassays alone should not be relied upon to measure estrogenic activity in complex environmental samples because the simultaneous presence of both agonists and antagonist compounds can yield false negatives. Multiple in vitro bioassays, sample fractionation or tests designed to measure anti-estrogenic activity can be used to overcome this problem. It is also clear that there are circumstances under which SAT does not completely remove estrogenic activity during municipal wastewater effluent polishing.

  3. Phytoextraction of heavy metals by Sesuvium portulacastrum l. a salt marsh halophyte from tannery effluent.

    Science.gov (United States)

    Ayyappan, Durai; Sathiyaraj, Ganesan; Ravindran, Konganapuram Chellappan

    2016-01-01

    The present study investigated the sources for remediation of heavy metals and salts from tannery effluent using salt marsh halophyte Sesuvium portulacastrum. From the results observed, in tannery effluent treated soil from 1 kg dry weight of plant sample, Sesuvium portulacastrum accumulated 49.82 mg Cr, 22.10 mg Cd, 35.10 mg Cu and 70.10 mg Zn and from 1 g dry weight of the plant sample, 246.21 mg Na Cl. Cultivation of Sesuvium portulacastrum significantly reduced the EC, pH and SAR levels in tannery effluent and salt treated soil and correspondingly increased in plant sample after 125 days of cultivation. In conclusion, Sesuvium portulacastrum was an efficient in accumulating heavy metals such as Chromium, Cadmium, Copper and Zinc, sodium and chloride maximum through its leaves when compared to stem and root. The finding of these bioacccumulation studies indicates that Sesuvium portulacastrum could be used for phytoremediation of tannery effluent contaminated field.

  4. Mathematical analysis of brewery effluent distribution in Ikpoba ...

    African Journals Online (AJOL)

    Samples of waste water and river water which were taken at predetermined points, ... thereby making the research result relevant for surface water pollution control. Keywords: Brewery effluent, pollutants, lotic ecosystem, water pollution, river, ...

  5. Microbiological monitoring in geothermal plants and a cold storage

    Science.gov (United States)

    Alawi, Mashal; Lerm, Stephanie; Vieth, Andrea; Vetter, Alexandra; Miethling-Graff, Rona; Seibt, Andrea; Wolfgramm, Markus; Würdemann, Hilke

    2010-05-01

    Enhanced process understanding of engineered geothermal systems is mandatory to optimize plant reliability and economy. In the scope of the research project 'AquiScreen' we investigated geothermally used groundwater systems under microbial, geochemical, mineralogical and petrological aspects. Geothermal systems located in the North German Basin and the Molasse Basin were analyzed by sampling of fluids and solid phases. The investigated sites were characterized by different temperatures, salinities and potential microbial substrates. The microbial population was analyzed by the use of genetic fingerprinting techniques based on PCR-amplified 16S rRNA genes. Sequencing of dominant bands of fingerprints from different sites and the subsequent comparison on public databases enables a correlation to metabolic classes and provides information about the biochemical processes. In all investigated geothermal plants covering a temperature range from 45° to 120° C microorganisms were found. Phylogenetic gene analyses indicate a broad diversity of microorganisms adapted to the specific conditions in the engineered system. Beside characterized bacteria like Thermus scotoductus, Siderooxidans lithoautotrophicus and the archaeon Methanothermobacter thermoautotrophicus a high number of so far uncultivated microorganisms was detected. As it is known that -in addition to abiotic factors- microbes like sulfate-reducing bacteria (SRB) are involved in the processes of corrosion and scaling in plant components we identified SRB by specific analyses of dissimilatoric sulfite reductase genes. The SRB detected are closely related to thermotolerant and thermophilic species of Desulfotomaculum, Thermodesulfovibrio and Thermodesulfobacterium, respectively. Overall, the detection of microbes known to be involved in biocorrosion and examined precipitation products like iron sulfides are indicating that microorganisms play an important role for the understanding of processes in engineered

  6. Occurrence of antibiotics in hospital, residential, and dairy effluent, municipal wastewater, and the Rio Grande in New Mexico.

    Science.gov (United States)

    Brown, Kathryn D; Kulis, Jerzy; Thomson, Bruce; Chapman, Timothy H; Mawhinney, Douglas B

    2006-08-01

    This study had three objectives: 1) determine occurrence of antibiotics in effluent from hospitals, residential facilities, and dairies, and in municipal wastewater 2) determine antibiotic removal at a large wastewater treatment plant (WWTP) in Albuquerque, NM, and 3) determine concentrations of antibiotics in the Rio Grande, which receives wastewater from the Albuquerque WWTP. Twenty-three samples of wastewater and 3 samples of Rio Grande water were analyzed for the presence of 11 antibiotics. Fifty-eight percent of samples had at least one antibiotic present while 25% had three or more. Hospital effluent had detections of sulfamethoxazole, trimethoprim, ciprofloxacin, ofloxacin, lincomycin, and penicillin G, with 4 of 5 hospital samples having at least one antibiotic detected and 3 having four or more. At the residential sampling sites, ofloxacin was found in effluent from assisted living and retirement facilities, while the student dormitory had no detects. Only lincomycin was detected in dairy effluent (in 2 of 8 samples, at 700 and 6600 ng/L). Municipal wastewater had detections of sulfamethoxazole, trimethoprim, ciprofloxacin, and ofloxacin, with 4 of 6 samples having at least one antibiotic present and 3 having 3 or more. The relatively high concentrations (up to 35,500 ng/L) of ofloxacin found in hospital and residential effluent may be of concern due to potential genotoxic effects and development of antibiotic resistance. At the Albuquerque WWTP, both raw wastewater and treated effluent had detections of sulfamethoxazole, trimethoprim, and ofloxacin, at concentrations ranging from 110 to 470 ng/L. However, concentrations in treated effluent were reduced by 20% to 77%. No antibiotics were detected in the Rio Grande upstream of the Albuquerque WWTP discharge, and only one antibiotic, sulfamethoxazole, was detected in the Rio Grande (300 ng/L) below the WWTP.

  7. Effect of Hydrothermal Alteration on Rock Properties in Active Geothermal Setting

    Science.gov (United States)

    Mikisek, P.; Bignall, G.; Sepulveda, F.; Sass, I.

    2012-04-01

    Hydrothermal alteration records the physical-chemical changes of rock and mineral phases caused by the interaction of hot fluids and wall rock, which can impact effective permeability, porosity, thermal parameters, rock strength and other rock properties. In this project, an experimental approach has been used to investigate the effects of hydrothermal alteration on rock properties. A rock property database of contrastingly altered rock types and intensities has been established. The database details horizontal and vertical permeability, porosity, density, thermal conductivity and thermal heat capacity for ~300 drill core samples from wells THM12, THM13, THM14, THM17, THM18, THM22 and TH18 in the Wairakei-Tauhara geothermal system (New Zealand), which has been compared with observed hydrothermal alteration type, rank and intensity obtained from XRD analysis and optical microscopy. Samples were selected from clay-altered tuff and intercalated siltstones of the Huka Falls Formation, which acts as a cap rock at Wairakei-Tauhara, and tuffaceous sandstones of the Waiora Formation, which is a primary reservoir-hosting unit for lateral and vertical fluid flows in the geothermal system. The Huka Falls Formation exhibits argillic-type alteration of varying intensity, while underlying Waiora Formations exhibits argillic- and propylithic-type alteration. We plan to use a tempered triaxial test cell at hydrothermal temperatures (up to 200°C) and pressures typical of geothermal conditions, to simulate hot (thermal) fluid percolation through the rock matrix of an inferred "reservoir". Compressibility data will be obtained under a range of operating (simulation reservoir) conditions, in a series of multiple week to month-long experiments that will monitor change in permeability and rock strength accompanying advancing hydrothermal alteration intensity caused by the hot brine interacting with the rock matrix. We suggest, our work will provide new baseline information concerning

  8. Application of environmental isotope tracing technology to geothermal geochemistry

    International Nuclear Information System (INIS)

    Shang Yingnan

    2006-01-01

    This paper reviews the recent application and development of environmental isotope tracing technology to geothermal geochemistry in the following aspects: gas isotopes (He, C) tracing of warm springs; H, O isotope tracing on the origin and cause of geothermal water, environmental isotope dating of geothermal water, and the advantage of excess parameter of deuterium (d) in geothermal research. The author also suggests that isotope method should combine with other geological methods to expand its advantage. (authors)

  9. Insight into the Geothermal Structure in Chingshui, Ilan, Taiwan

    OpenAIRE

    Lun-Tao Tong; Shoung Ouyang; Tai-Rong Guo; Ching-Ray Lee; Kou-Hsin Hu; Chun-Li Lee; Chun-Jao Wang

    2008-01-01

    The Chingshui geothermal field is the largest known productive geothermal area in Taiwan. The purpose of this paper is to delineate this geothermal structure by integrating geophysical data and borehole information. The existence of a magma chamber in the shallow crust and shallow intrusive igneous rock results in a high heat flow and geothermal gradient; furthermore, the NE deep fault system within the meta-sandstones provides meteoric recharge from a higher elevation to artesianally drive t...

  10. Archaeology in the Kilauea East Rift Zone: Part 2, A preliminary sample survey, Kapoho, Kamaili and Kilauea geothermal subzones, Puna District, Hawaii island

    Energy Technology Data Exchange (ETDEWEB)

    Sweeney, M.T.K.; Burtchard, G.C. [International Archaeological Research Inst., Inc., Honolulu, HI (United States)

    1995-05-01

    This report describes a preliminary sample inventory and offers an initial evaluation of settlement and land-use patterns for the Geothermal Resources Subzones (GRS) area, located in Puna District on the island of Hawaii. The report is the second of a two part project dealing with archaeology of the Puna GRS area -- or more generally, the Kilauea East Rift Zone. In the first phase of the project, a long-term land-use model and inventory research design was developed for the GRS area and Puna District generally. That report is available under separate cover as Archaeology in the Kilauea East Rift Zone, Part I: Land-Use Model and Research Design. The present report gives results of a limited cultural resource survey built on research design recommendations. It offers a preliminary evaluation of modeled land-use expectations and offers recommendations for continuing research into Puna`s rich cultural heritage. The present survey was conducted under the auspices of the United States Department of Energy, and subcontracted to International Archaeological Research Institute, Inc. (IARII) by Martin Marietta Energy Systems, Inc. The purpose of the archaeological work is to contribute toward the preparation of an environmental impact statement by identifying cultural materials which could be impacted through completion of the proposed Hawaii Geothermal Project.

  11. INEL Geothermal Environmental Program. 1979 annual report

    Energy Technology Data Exchange (ETDEWEB)

    Thurow, T.L.; Sullivan, J.F.

    1980-04-01

    The Raft River Geothermal Environmental Program is designed to assess beneficial and detrimental impacts to the ecosystem resulting from the development of moderate temperature geothermal resources in the valley. The results of this research contribute to developing an understanding of Raft River Valley ecology and provide a basis for making management decisions to reduce potential long-term detrimental impacts on the environment. The environmental monitoring and research efforts conducted during the past six years of geothermal development and planned future research are summarized.

  12. Geothermal energy in the world energy scenario

    International Nuclear Information System (INIS)

    Barbier, E.

    1989-01-01

    This paper reports on the world energy consumption between 1960 and 1984 from primary energy sources (coal, natural gas, oil, hydropower, nuclear energy) and the same in percentages from 1925. This highlights the diminishing role of coal and the increased consumption of gas and oil. The latter has stabilized around 42% of the total after the drop in demand resulting from the oil crisis of 1973. The world energy consumption has then been divided into industrialized and developing countries. It appears that the latter, with a population equal to 68% of the total world population, consumed 23% of the world energy in 1982. Furthermore, the consumption figures show that the demand for domestic energy is much smaller in developing countries, and it is well-known that domestic energy consumed is one of the parameters used to assess standard of living. The total installed electric capacity throughout the world is then reported, divided between developed and developing countries, showing that the latter consumed 11% of all the electricity generated in the world in 1981. The world installed electric power of geothermal origin at the end of 1985 is shown, along with estimates for 1990. Geothermal energy represents 0.2% of the world electric power. This is obviously a small figure and indicates that geothermal energy plays a minor role on the world energy scene. However, if we distinguish between industrialized and developing countries, we can observe that, with their currently limited electrical consumption but good geothermal prospects, the developing countries could achieve quite a significant contribution to their total electric energy from that of geothermal origin, increasing at the moment from 3 to 19%. Finally, a comparison is made between electricity generating costs of different sources, showing that geothermal energy is competitive. A table illustrates the world evolution in installed geothermal capacity from 1950 to 1985. The non-electric uses of geothermal energy

  13. Guidelines for Provision and Interchange of Geothermal Data Assets

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2014-07-03

    The US Department of Energy Office of Geothermal Technologies (OGT) is funding and overseeing the development of the National Geothermal Data System (NGDS), a distributed information system providing access to integrated data in support of, and generated in, all phases of geothermal development. NGDS is being built in an open paradigm and will employ state-of-the-art informatics approaches and capabilities to advance the state of geothermal knowledge in the US. This document presents guidelines related to provision and interchange of data assets in the context of the National Geothermal Data System. It identifies general specifications for NGDS catalog metadata and data content, and provides specific instructions for preparation and submission of data assets by OGT-funded projects.

  14. Assessing geothermal energy potential in upstate New York. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Hodge, D.S. [SUNY, Buffalo, NY (United States)

    1996-08-01

    The potential of geothermal energy for future electric power generation in New York State is evaluated using estimates of temperatures of geothermal reservoir rocks. Bottom hole temperatures from over 2000 oil and gas wells in the region were integrated into subsurface maps of the temperatures for specific geothermal reservoirs. The Theresa/Potsdam formation provides the best potential for extraction of high volumes of geothermal fluids. The evaluation of the Theresa/Potsdam geothermal reservoir in upstate New York suggests that an area 30 miles east of Elmira, New York has the highest temperatures in the reservoir rock. The Theresa/Potsdam reservoir rock should have temperatures about 136 {degrees}C and may have as much as 450 feet of porosity in excess of 8%. Estimates of the volumes of geothermal fluids that can be extracted are provided and environmental considerations for production from a geothermal well is discussed.

  15. The Bonneville Power Administration's geothermal program

    International Nuclear Information System (INIS)

    Darr, G.D.

    1990-01-01

    Despite being a power source with many desirable characteristics, geothermal has not been developed in the Pacific Northwest because of high costs, high risks, and the lack of a market for power. The region will require new power sources in the 1990s, and will need to know to what extent it can rely on geothermal. The Bonneville Power Administration has developed a geothermal RD and D program which includes a proposal to award power contracts to three pilot projects in the Northwest. Public outreach efforts, environmental base line studies, and economic and land use impact studies will also be undertaken. In this paper two projects already under way are discussed

  16. Operation strategy analysis of a geothermal step utilization heating system

    International Nuclear Information System (INIS)

    Zheng, Guozhong; Li, Feng; Tian, Zhe; Zhu, Neng; Li, Qianru; Zhu, Han

    2012-01-01

    Geothermal energy has been successfully applied in many district heating systems. In order to promote better use of geothermal energy, it is important to analyze the operation strategy of geothermal heating system. This study proposes a comprehensive and systematic operation strategy for a geothermal step utilization heating system (GSUHS). Calculation models of radiator heating system (RHS), radiant floor heating system (RFHS), heat pump (HP), gas boiler (GB), plate heat exchanger (PHE) and pump are first established. Then the operation strategy of the GSUHS is analyzed with the aim to substantially reduce the conventional energy consumption of the whole system. Finally, the energy efficiency and geothermal tail water temperature are analyzed. With the operation strategy in this study, the geothermal energy provides the main heating amount for the system. The heating seasonal performance factor is 15.93. Compared with coal-fired heating, 75.1% of the standard coal equivalent can be saved. The results provide scientific guidance for the application of an operation strategy for a geothermal step utilization heating system. -- Highlights: ► We establish calculation models for the geothermal step utilization heating system. ► We adopt minimal conventional energy consumption to determine the operation strategy. ► The geothermal energy dominates the heating quantity of the whole system. ► The utilization efficiency of the geothermal energy is high. ► The results provide guidance to conduct operation strategy for scientific operation.

  17. The Main Problems in the Development of Geothermal Energy Industry in China

    Science.gov (United States)

    Yan, Jiahong; Wang, Shejiao; Li, Feng

    2017-04-01

    As early as 1980-1985, the geothermal energy research group of the Institute of Geology and Geophisics (Chinese Academy of Sciences) has proposed to pay attention to geothermal energy resources in oil fields. PetroChina began to study the geothermal energy resources in the region of Beijing-Tianjin-Hebei from 1995. Subsequently, the geothermal resources in the Huabei, Daqing and Liaohe oil regions were evaluated. The total recoverable hot water of the three oilfields reached 19.3 × 1011m3. PetroChina and Kenya have carried out geothermal energy development and utilization projects, with some relevant technical achievements.On the basis of many years' research on geothermal energy, we summarized the main problems in the formation and development of geothermal energy in China. First of all, China's geothermal resources research is still unable to meet the needs of the geothermal energy industry. Secondly, the development and utilization of geothermal energy requires multi-disciplinary cooperation. Thirdly, the development and utilization of geothermal energy needs consideration of local conditions. Finally, the development and utilization of geothermal energy resources requires the effective management of local government.

  18. Geological model of supercritical geothermal reservoir related to subduction system

    Science.gov (United States)

    Tsuchiya, Noriyoshi

    2017-04-01

    Following the Great East Japan Earthquake and the accident at the Fukushima Daiichi Nuclear power station on 3.11 (11th March) 2011, geothermal energy came to be considered one of the most promising sources of renewable energy for the future in Japan. The temperatures of geothermal fields operating in Japan range from 200 to 300 °C (average 250 °C), and the depths range from 1000 to 2000 m (average 1500 m). In conventional geothermal reservoirs, the mechanical behavior of the rocks is presumed to be brittle, and convection of the hydrothermal fluid through existing network is the main method of circulation in the reservoir. In order to minimize induced seismicity, a rock mass that is "beyond brittle" is one possible candidate, because the rock mechanics of "beyond brittle" material is one of plastic deformation rather than brittle failure. Supercritical geothermal resources could be evaluated in terms of present volcanic activities, thermal structure, dimension of hydrothermal circulation, properties of fracture system, depth of heat source, depth of brittle factures zone, dimension of geothermal reservoir. On the basis of the GIS, potential of supercritical geothermal resources could be characterized into the following four categories. 1. Promising: surface manifestation d shallow high temperature, 2 Probability: high geothermal gradient, 3 Possibility: Aseismic zone which indicates an existence of melt, 4 Potential : low velocity zone which indicates magma input. Base on geophysical data for geothermal reservoirs, we have propose adequate tectonic model of development of the supercritical geothermal reservoirs. To understand the geological model of a supercritical geothermal reservoir, granite-porphyry system, which had been formed in subduction zone, was investigated as a natural analog of the supercritical geothermal energy system. Quartz veins, hydrothermal breccia veins, and glassy veins are observed in a granitic body. The glassy veins formed at 500-550

  19. Geophysical considerations of geothermics

    Energy Technology Data Exchange (ETDEWEB)

    Hayakawa, M

    1967-01-01

    The development and utilization of geothermal energy is described from the standpoint of geophysics. The internal temperature of the Earth and the history and composition of magmas are described. Methods of exploration such as gravity, magnetic, thermal and electrical surveys are discussed, as are geochemical and infrared photogrammetric techniques. Examples are provided of how these techniques have been used in Italy and at the Matsukawa geothermal field in Japan. Drilling considerations such as muds, casings and cementing materials are discussed. Solutions are proposed for problems of environmental pollution and plant expansion.

  20. Assessment of the Impact of Industrial Effluents on Groundwater Quality in Okhla Industrial Area, New Delhi, India

    Directory of Open Access Journals (Sweden)

    Wequar Ahmad Siddiqui

    2009-01-01

    Full Text Available In the present study physicochemical parameters like pH, hardness, TDS, chloride, sulphate, nitrate, fluoride, DO, COD and conductivity of some important heavy metals such as iron, cobalt, cadmium, lead, mercury, chromium, selenium and arsenic were first analyzed in effluent water of Okhla industrial area phase-II and then groundwater of near by areas. Obtained values of effluent water were compared with ISI standard for effluent water discharge and groundwater values were compared with ISI and WHO drinking water standards. The result shows that discharge of untreated effluents by the industries is leading to contamination of groundwater of the surrounding areas. Lead, mercury, fluoride, TDS, sulphate was above the desirable limit in effluent water (ISI standard for effluent water discharge. Subsequent analysis of groundwater of nearby areas was rated as unacceptable for drinking because of presence of fluoride in all the samples above the desirable limit. Lead, mercury, cadmium, chloride was also detected in many samples.