WorldWideScience

Sample records for sample visual space

  1. Visual pollution in public spaces in Venezuela

    International Nuclear Information System (INIS)

    Mendez Velandia, Carmen Arelys

    2013-01-01

    Each day cities inhabitants are exposed to visual pollution. This work assess the environmental impact caused by visual pollution in public spaces, using as a case of study a mixed-use neighborhood in San Cristobal, the capital of Tachira state, Venezuela. Such assessment was made using a qualitative approach, where special emphasis was paid to the perception of these impacts by a purposive sample of users of this area. The compilation and analysis of information reveal the main visual pollutants existing in these public spaces where, in addition to outdoor advertising, overhead wires, rubbish, graffiti, vacant land, among others, cars and outdoor kiosks. Neighborhood users are sensitive to the presence of visual pollutants, which affects them physically and psychologically, as well as for the visual quality of their environment. Such signs were used to guide a qualitative appraisal of environmental impacts generated by these circumstances and to propose policies to mitigate them.

  2. Visualizing the Sample Standard Deviation

    Science.gov (United States)

    Sarkar, Jyotirmoy; Rashid, Mamunur

    2017-01-01

    The standard deviation (SD) of a random sample is defined as the square-root of the sample variance, which is the "mean" squared deviation of the sample observations from the sample mean. Here, we interpret the sample SD as the square-root of twice the mean square of all pairwise half deviations between any two sample observations. This…

  3. The Perspective Structure of Visual Space

    Science.gov (United States)

    2015-01-01

    Luneburg’s model has been the reference for experimental studies of visual space for almost seventy years. His claim for a curved visual space has been a source of inspiration for visual scientists as well as philosophers. The conclusion of many experimental studies has been that Luneburg’s model does not describe visual space in various tasks and conditions. Remarkably, no alternative model has been suggested. The current study explores perspective transformations of Euclidean space as a model for visual space. Computations show that the geometry of perspective spaces is considerably different from that of Euclidean space. Collinearity but not parallelism is preserved in perspective space and angles are not invariant under translation and rotation. Similar relationships have shown to be properties of visual space. Alley experiments performed early in the nineteenth century have been instrumental in hypothesizing curved visual spaces. Alleys were computed in perspective space and compared with reconstructed alleys of Blumenfeld. Parallel alleys were accurately described by perspective geometry. Accurate distance alleys were derived from parallel alleys by adjusting the interstimulus distances according to the size-distance invariance hypothesis. Agreement between computed and experimental alleys and accommodation of experimental results that rejected Luneburg’s model show that perspective space is an appropriate model for how we perceive orientations and angles. The model is also appropriate for perceived distance ratios between stimuli but fails to predict perceived distances. PMID:27648222

  4. Does monocular visual space contain planes?

    NARCIS (Netherlands)

    Koenderink, J.J.; Albertazzi, L.; Doorn, A.J. van; Ee, R. van; Grind, W.A. van de; Kappers, A.M.L.; Lappin, J.S.; Norman, J.F.; Oomes, A.H.J.; Pas, S.F. te; Phillips, F.; Pont, S.C.; Richards, W.A.; Todd, J.T.; Verstraten, F.A.J.; Vries, S.C. de

    2010-01-01

    The issue of the existence of planes—understood as the carriers of a nexus of straight lines—in the monocular visual space of a stationary human observer has never been addressed. The most recent empirical data apply to binocular visual space and date from the 1960s (Foley, 1964). This appears to be

  5. Does monocular visual space contain planes?

    NARCIS (Netherlands)

    Koenderink, Jan J.; Albertazzi, Liliana; van Doorn, Andrea J.; van Ee, Raymond; van de Grind, Wim A.; Kappers, Astrid M L; Lappin, Joe S.; Farley Norman, J.; (Stijn) Oomes, A. H J; te Pas, Susan P.; Phillips, Flip; Pont, Sylvia C.; Richards, Whitman A.; Todd, James T.; Verstraten, Frans A J; de Vries, Sjoerd

    The issue of the existence of planes-understood as the carriers of a nexus of straight lines-in the monocular visual space of a stationary human observer has never been addressed. The most recent empirical data apply to binocular visual space and date from the 1960s (Foley, 1964). This appears to be

  6. Armstrong Laboratory Space Visual Function Tester Program

    Science.gov (United States)

    Oneal, Melvin R.; Task, H. Lee; Gleason, Gerald A.

    1992-01-01

    Viewgraphs on space visual function tester program are presented. Many astronauts and cosmonauts have commented on apparent changes in their vision while on-orbit. Comments have included descriptions of earth features and objects that would suggest enhanced distance visual acuity. In contrast, some cosmonaut observations suggest a slight loss in their object discrimination during initial space flight. Astronauts have also mentioned a decreased near vision capability that did not recover to normal until return to earth. Duntley space vision experiment, USSR space vision experiments, and visual function testers are described.

  7. The structure of visual spaces

    NARCIS (Netherlands)

    Koenderink, J.J.; van Doorn, A.J.

    2008-01-01

    The “visual space” of an optical observer situated at a single, fixed viewpoint is necessarily very ambiguous. Although the structure of the “visual field” (the lateral dimensions, i.e., the “image”) is well defined, the “depth” dimension has to be inferred from the image on the basis of “monocular

  8. Space-Time Disarray and Visual Awareness

    Directory of Open Access Journals (Sweden)

    Jan Koenderink

    2012-04-01

    Full Text Available Local space-time scrambling of optical data leads to violent jerks and dislocations. On masking these, visual awareness of the scene becomes cohesive, with dislocations discounted as amodally occluding foreground. Such cohesive space-time of awareness is technically illusory because ground truth is jumbled whereas awareness is coherent. Apparently the visual field is a construction rather than a (veridical perception.

  9. Qualitative GIS and the Visualization of Narrative Activity Space Data.

    Science.gov (United States)

    Mennis, Jeremy; Mason, Michael J; Cao, Yinghui

    Qualitative activity space data, i.e. qualitative data associated with the routine locations and activities of individuals, are recognized as increasingly useful by researchers in the social and health sciences for investigating the influence of environment on human behavior. However, there has been little research on techniques for exploring qualitative activity space data. This research illustrates the theoretical principles of combining qualitative and quantitative data and methodologies within the context of GIS, using visualization as the means of inquiry. Through the use of a prototype implementation of a visualization system for qualitative activity space data, and its application in a case study of urban youth, we show how these theoretical methodological principles are realized in applied research. The visualization system uses a variety of visual variables to simultaneously depict multiple qualitative and quantitative attributes of individuals' activity spaces. The visualization is applied to explore the activity spaces of a sample of urban youth participating in a study on the geographic and social contexts of adolescent substance use. Examples demonstrate how the visualization may be used to explore individual activity spaces to generate hypotheses, investigate statistical outliers, and explore activity space patterns among subject subgroups.

  10. A design space of visualization tasks.

    Science.gov (United States)

    Schulz, Hans-Jörg; Nocke, Thomas; Heitzler, Magnus; Schumann, Heidrun

    2013-12-01

    Knowledge about visualization tasks plays an important role in choosing or building suitable visual representations to pursue them. Yet, tasks are a multi-faceted concept and it is thus not surprising that the many existing task taxonomies and models all describe different aspects of tasks, depending on what these task descriptions aim to capture. This results in a clear need to bring these different aspects together under the common hood of a general design space of visualization tasks, which we propose in this paper. Our design space consists of five design dimensions that characterize the main aspects of tasks and that have so far been distributed across different task descriptions. We exemplify its concrete use by applying our design space in the domain of climate impact research. To this end, we propose interfaces to our design space for different user roles (developers, authors, and end users) that allow users of different levels of expertise to work with it.

  11. Centrifuge in space fluid flow visualization experiment

    Science.gov (United States)

    Arnold, William A.; Wilcox, William R.; Regel, Liya L.; Dunbar, Bonnie J.

    1993-01-01

    A prototype flow visualization system is constructed to examine buoyancy driven flows during centrifugation in space. An axial density gradient is formed by imposing a thermal gradient between the two ends of the test cell. Numerical computations for this geometry showed that the Prandtl number plays a limited part in determining the flow.

  12. Visual Navigation of Complex Information Spaces

    Directory of Open Access Journals (Sweden)

    Sarah North

    1995-11-01

    Full Text Available The authors lay the foundation for the introduction of visual navigation aid to assist computer users in direct manipulation of the complex information spaces. By exploring present research on scientific data visualisation and creating a case for improved information visualisation tools, they introduce the design of an improved information visualisation interface utilizing dynamic slider, called Visual-X, incorporating icons with bindable attributes (glyphs. Exploring the improvement that these data visualisations, make to a computing environment, the authors conduct an experiment to compare the performance of subjects who use traditional interfaces and Visual-X. Methodology is presented and conclusions reveal that the use of Visual-X appears to be a promising approach in providing users with a navigation tool that does not overload their cognitive processes.

  13. Nebula: reconstruction and visualization of scattering data in reciprocal space.

    Science.gov (United States)

    Reiten, Andreas; Chernyshov, Dmitry; Mathiesen, Ragnvald H

    2015-04-01

    Two-dimensional solid-state X-ray detectors can now operate at considerable data throughput rates that allow full three-dimensional sampling of scattering data from extended volumes of reciprocal space within second to minute time-scales. For such experiments, simultaneous analysis and visualization allows for remeasurements and a more dynamic measurement strategy. A new software, Nebula , is presented. It efficiently reconstructs X-ray scattering data, generates three-dimensional reciprocal space data sets that can be visualized interactively, and aims to enable real-time processing in high-throughput measurements by employing parallel computing on commodity hardware.

  14. Amazing Space: Explanations, Investigations, & 3D Visualizations

    Science.gov (United States)

    Summers, Frank

    2011-05-01

    The Amazing Space website is STScI's online resource for communicating Hubble discoveries and other astronomical wonders to students and teachers everywhere. Our team has developed a broad suite of materials, readings, activities, and visuals that are not only engaging and exciting, but also standards-based and fully supported so that they can be easily used within state and national curricula. These products include stunning imagery, grade-level readings, trading card games, online interactives, and scientific visualizations. We are currently exploring the potential use of stereo 3D in astronomy education.

  15. Visual interface for space and terrestrial analysis

    Science.gov (United States)

    Dombrowski, Edmund G.; Williams, Jason R.; George, Arthur A.; Heckathorn, Harry M.; Snyder, William A.

    1995-01-01

    The management of large geophysical and celestial data bases is now, more than ever, the most critical path to timely data analysis. With today's large volume data sets from multiple satellite missions, analysts face the task of defining useful data bases from which data and metadata (information about data) can be extracted readily in a meaningful way. Visualization, following an object-oriented design, is a fundamental method of organizing and handling data. Humans, by nature, easily accept pictorial representations of data. Therefore graphically oriented user interfaces are appealing, as long as they remain simple to produce and use. The Visual Interface for Space and Terrestrial Analysis (VISTA) system, currently under development at the Naval Research Laboratory's Backgrounds Data Center (BDC), has been designed with these goals in mind. Its graphical user interface (GUI) allows the user to perform queries, visualization, and analysis of atmospheric and celestial backgrounds data.

  16. Extraordinary Matter: Visualizing Space Plasmas and Particles

    Science.gov (United States)

    Barbier, S. B.; Bartolone, L.; Christian, E.; Thieman, J.; Eastman, T.; Lewis, E.

    2011-09-01

    Atoms and sub-atomic particles play a crucial role in the dynamics of our universe, but these particles and the space plasmas comprised of them are often overlooked in popular scientific and educational resources. Although the concepts are pertinent to a wide range of topics, even the most basic particle and plasma physics principles are generally unfamiliar to non-scientists. Educators and public communicators need assistance in explaining these concepts that cannot be easily demonstrated in the everyday world. Active visuals are a highly effective aid to understanding, but resources of this type are currently few in number and difficult to find, and most do not provide suitable context for audience comprehension. To address this need, our team is developing an online multimedia reference library of animations, visualizations, interactivities, and videos resources - Extraordinary Matter: Visualizing Space Plasmas and Particles. The site targets grades 9-14 and the equivalent in informal education and public outreach. Each ready-to-use product will be accompanied by a supporting explanation at a reading level matching the educational level of the concept. It will also have information on relevant science, technology, engineering, and mathematics (STEM) educational standards, activities, lesson plans, related products, links, and suggested uses. These products are intended to stand alone, making them adaptable to the widest range of uses, including scientist presentations, museum displays, educational websites and CDs, teacher professional development, and classroom use. This project is funded by a NASA Education and Public Outreach in Earth and Space Science (EPOESS) grant.

  17. Visualizing Human Migration Trhough Space and Time

    Science.gov (United States)

    Zambotti, G.; Guan, W.; Gest, J.

    2015-07-01

    Human migration has been an important activity in human societies since antiquity. Since 1890, approximately three percent of the world's population has lived outside of their country of origin. As globalization intensifies in the modern era, human migration persists even as governments seek to more stringently regulate flows. Understanding this phenomenon, its causes, processes and impacts often starts from measuring and visualizing its spatiotemporal patterns. This study builds a generic online platform for users to interactively visualize human migration through space and time. This entails quickly ingesting human migration data in plain text or tabular format; matching the records with pre-established geographic features such as administrative polygons; symbolizing the migration flow by circular arcs of varying color and weight based on the flow attributes; connecting the centroids of the origin and destination polygons; and allowing the user to select either an origin or a destination feature to display all flows in or out of that feature through time. The method was first developed using ArcGIS Server for world-wide cross-country migration, and later applied to visualizing domestic migration patterns within China between provinces, and between states in the United States, all through multiple years. The technical challenges of this study include simplifying the shapes of features to enhance user interaction, rendering performance and application scalability; enabling the temporal renderers to provide time-based rendering of features and the flow among them; and developing a responsive web design (RWD) application to provide an optimal viewing experience. The platform is available online for the public to use, and the methodology is easily adoptable to visualizing any flow, not only human migration but also the flow of goods, capital, disease, ideology, etc., between multiple origins and destinations across space and time.

  18. Treemap Visualizations for Space Situational Awareness

    Science.gov (United States)

    Ianni, J.; Gorrell, Z.

    Making sense of massive data sets is a problem for many military domains including space. With unwieldy big data sets used for space situational awareness (SSA), important trends and outliers may not be easy to spot especially not at-a-glance. One method being explored to visualize SSA data sets is called treemapping. Treemaps fill screen space with nested rectangles (tiles) of various sizes and colors to represent multiple dimensions of hierarchical data sets. By mapping these dimensions effectively with a tiling algorithm that maintains an appropriate aspect ratio, patterns can emerge that often would have gone unnoticed. The ability to interactively perform range filtering (in our case with sliders) and object drill-downs (hyperlinking the tiles) make this technology powerful for in-depth analyses in addition to at-a-glance awareness. For one SSA analysis, the tiles could represent satellites that are grouped by country, sized by apogee, and colored/shaded by the launch date. Filter sliders could allow apogee range or launch dates to be narrowed for better resolution of a smaller data set. The application of this technology for the Joint Space Operations Center (JSpOC) Mission System (JMS) is being explored on a DARPA Small Business Innovative Research (SBIR) effort as a plug-in to the existing User-Defined Operational Picture (UDOP). In addition, visualization of DARPA OrbitOutlook small telescope data will be demonstrated. This research will investigate what SSA analyses are best served by treemaps, the best tiling algorithms for these problems, and how the treemaps should be integrated into the existing JMS UDOP workflow. Finally, we introduce a variation of treemaps that help leaders allocate their time to tasks based on importance and urgency.

  19. Per-Sample Multiple Kernel Approach for Visual Concept Learning

    Directory of Open Access Journals (Sweden)

    Ling-Yu Duan

    2010-01-01

    Full Text Available Learning visual concepts from images is an important yet challenging problem in computer vision and multimedia research areas. Multiple kernel learning (MKL methods have shown great advantages in visual concept learning. As a visual concept often exhibits great appearance variance, a canonical MKL approach may not generate satisfactory results when a uniform kernel combination is applied over the input space. In this paper, we propose a per-sample multiple kernel learning (PS-MKL approach to take into account intraclass diversity for improving discrimination. PS-MKL determines sample-wise kernel weights according to kernel functions and training samples. Kernel weights as well as kernel-based classifiers are jointly learned. For efficient learning, PS-MKL employs a sample selection strategy. Extensive experiments are carried out over three benchmarking datasets of different characteristics including Caltech101, WikipediaMM, and Pascal VOC'07. PS-MKL has achieved encouraging performance, comparable to the state of the art, which has outperformed a canonical MKL.

  20. Per-Sample Multiple Kernel Approach for Visual Concept Learning

    Directory of Open Access Journals (Sweden)

    Tian Yonghong

    2010-01-01

    Full Text Available Abstract Learning visual concepts from images is an important yet challenging problem in computer vision and multimedia research areas. Multiple kernel learning (MKL methods have shown great advantages in visual concept learning. As a visual concept often exhibits great appearance variance, a canonical MKL approach may not generate satisfactory results when a uniform kernel combination is applied over the input space. In this paper, we propose a per-sample multiple kernel learning (PS-MKL approach to take into account intraclass diversity for improving discrimination. PS-MKL determines sample-wise kernel weights according to kernel functions and training samples. Kernel weights as well as kernel-based classifiers are jointly learned. For efficient learning, PS-MKL employs a sample selection strategy. Extensive experiments are carried out over three benchmarking datasets of different characteristics including Caltech101, WikipediaMM, and Pascal VOC'07. PS-MKL has achieved encouraging performance, comparable to the state of the art, which has outperformed a canonical MKL.

  1. Visual motion transforms visual space representations similarly throughout the human visual hierarchy.

    Science.gov (United States)

    Harvey, Ben M; Dumoulin, Serge O

    2016-02-15

    Several studies demonstrate that visual stimulus motion affects neural receptive fields and fMRI response amplitudes. Here we unite results of these two approaches and extend them by examining the effects of visual motion on neural position preferences throughout the hierarchy of human visual field maps. We measured population receptive field (pRF) properties using high-field fMRI (7T), characterizing position preferences simultaneously over large regions of the visual cortex. We measured pRFs properties using sine wave gratings in stationary apertures, moving at various speeds in either the direction of pRF measurement or the orthogonal direction. We find direction- and speed-dependent changes in pRF preferred position and size in all visual field maps examined, including V1, V3A, and the MT+ map TO1. These effects on pRF properties increase up the hierarchy of visual field maps. However, both within and between visual field maps the extent of pRF changes was approximately proportional to pRF size. This suggests that visual motion transforms the representation of visual space similarly throughout the visual hierarchy. Visual motion can also produce an illusory displacement of perceived stimulus position. We demonstrate perceptual displacements using the same stimulus configuration. In contrast to effects on pRF properties, perceptual displacements show only weak effects of motion speed, with far larger speed-independent effects. We describe a model where low-level mechanisms could underlie the observed effects on neural position preferences. We conclude that visual motion induces similar transformations of visuo-spatial representations throughout the visual hierarchy, which may arise through low-level mechanisms. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Biases in Visual, Auditory, and Audiovisual Perception of Space.

    Directory of Open Access Journals (Sweden)

    Brian Odegaard

    2015-12-01

    Full Text Available Localization of objects and events in the environment is critical for survival, as many perceptual and motor tasks rely on estimation of spatial location. Therefore, it seems reasonable to assume that spatial localizations should generally be accurate. Curiously, some previous studies have reported biases in visual and auditory localizations, but these studies have used small sample sizes and the results have been mixed. Therefore, it is not clear (1 if the reported biases in localization responses are real (or due to outliers, sampling bias, or other factors, and (2 whether these putative biases reflect a bias in sensory representations of space or a priori expectations (which may be due to the experimental setup, instructions, or distribution of stimuli. Here, to address these questions, a dataset of unprecedented size (obtained from 384 observers was analyzed to examine presence, direction, and magnitude of sensory biases, and quantitative computational modeling was used to probe the underlying mechanism(s driving these effects. Data revealed that, on average, observers were biased towards the center when localizing visual stimuli, and biased towards the periphery when localizing auditory stimuli. Moreover, quantitative analysis using a Bayesian Causal Inference framework suggests that while pre-existing spatial biases for central locations exert some influence, biases in the sensory representations of both visual and auditory space are necessary to fully explain the behavioral data. How are these opposing visual and auditory biases reconciled in conditions in which both auditory and visual stimuli are produced by a single event? Potentially, the bias in one modality could dominate, or the biases could interact/cancel out. The data revealed that when integration occurred in these conditions, the visual bias dominated, but the magnitude of this bias was reduced compared to unisensory conditions. Therefore, multisensory integration not only

  3. Biases in Visual, Auditory, and Audiovisual Perception of Space

    Science.gov (United States)

    Odegaard, Brian; Wozny, David R.; Shams, Ladan

    2015-01-01

    Localization of objects and events in the environment is critical for survival, as many perceptual and motor tasks rely on estimation of spatial location. Therefore, it seems reasonable to assume that spatial localizations should generally be accurate. Curiously, some previous studies have reported biases in visual and auditory localizations, but these studies have used small sample sizes and the results have been mixed. Therefore, it is not clear (1) if the reported biases in localization responses are real (or due to outliers, sampling bias, or other factors), and (2) whether these putative biases reflect a bias in sensory representations of space or a priori expectations (which may be due to the experimental setup, instructions, or distribution of stimuli). Here, to address these questions, a dataset of unprecedented size (obtained from 384 observers) was analyzed to examine presence, direction, and magnitude of sensory biases, and quantitative computational modeling was used to probe the underlying mechanism(s) driving these effects. Data revealed that, on average, observers were biased towards the center when localizing visual stimuli, and biased towards the periphery when localizing auditory stimuli. Moreover, quantitative analysis using a Bayesian Causal Inference framework suggests that while pre-existing spatial biases for central locations exert some influence, biases in the sensory representations of both visual and auditory space are necessary to fully explain the behavioral data. How are these opposing visual and auditory biases reconciled in conditions in which both auditory and visual stimuli are produced by a single event? Potentially, the bias in one modality could dominate, or the biases could interact/cancel out. The data revealed that when integration occurred in these conditions, the visual bias dominated, but the magnitude of this bias was reduced compared to unisensory conditions. Therefore, multisensory integration not only improves the

  4. Utilizing visualization for shared knowledge spaces

    Science.gov (United States)

    Mareda, John F.; Marek, Edward L., Jr.; Smith, Steven A.

    1997-04-01

    The amount and variety of data on the Web continues to grow exponentially, greatly complicating the process of finding relevant information, and making it increasingly difficult to understand information in the context of related material. Advanced visualization techniques, as long as they are compatible and effective ion the context of the widely distributed nature of data on the Web, can provide some measure of order to this chaos. Despite the proliferation of automated tools which attempt to deal with this sea of data, there is still a pressing need for human involvement in the organization and representation of information. People 'living' on the Web tend to form little 'knowledge spaces', revolving around those subjects that they are interested in. We describe several research efforts currently underway which address the problem of organizing and finding information in Cyberspace. We conclude with 'CiteMaps', a technology we are developing which combines Web-relevant visualization techniques with concepts and tools, to allow 'real people' to develop shareable clusters of related information.

  5. Accessibility of Shared Space by Visually Challenged People

    NARCIS (Netherlands)

    Melis-Dankers, Bart J.M.; Havik, Else M.; Steyvers, Frank J.J.M.; Petrie, Helen; Kooijman, Aart C.; Kouroupetroglou, Georgios

    Shared Space is a concept that comprises the design of a public space. There are concerns about the accessibility of Shared Spaces for people who are visually challenged. In this paper we give a systematic overview of the appearance of Shared Spaces in the Netherlands and the consequences that these

  6. Sequential sampling of visual objects during sustained attention.

    Directory of Open Access Journals (Sweden)

    Jianrong Jia

    2017-06-01

    Full Text Available In a crowded visual scene, attention must be distributed efficiently and flexibly over time and space to accommodate different contexts. It is well established that selective attention enhances the corresponding neural responses, presumably implying that attention would persistently dwell on the task-relevant item. Meanwhile, recent studies, mostly in divided attentional contexts, suggest that attention does not remain stationary but samples objects alternately over time, suggesting a rhythmic view of attention. However, it remains unknown whether the dynamic mechanism essentially mediates attentional processes at a general level. Importantly, there is also a complete lack of direct neural evidence reflecting whether and how the brain rhythmically samples multiple visual objects during stimulus processing. To address these issues, in this study, we employed electroencephalography (EEG and a temporal response function (TRF approach, which can dissociate responses that exclusively represent a single object from the overall neuronal activity, to examine the spatiotemporal characteristics of attention in various attentional contexts. First, attention, which is characterized by inhibitory alpha-band (approximately 10 Hz activity in TRFs, switches between attended and unattended objects every approximately 200 ms, suggesting a sequential sampling even when attention is required to mostly stay on the attended object. Second, the attentional spatiotemporal pattern is modulated by the task context, such that alpha-mediated switching becomes increasingly prominent as the task requires a more uniform distribution of attention. Finally, the switching pattern correlates with attentional behavioral performance. Our work provides direct neural evidence supporting a generally central role of temporal organization mechanism in attention, such that multiple objects are sequentially sorted according to their priority in attentional contexts. The results suggest

  7. Visualizing Space Plasmas and Particles: Extraordinary Matter

    Science.gov (United States)

    Barbier, B.; Bartolone, L. M.; Christian, E. R.; Eastman, T. E.; Lewis, E.; Thieman, J. R.

    2010-12-01

    A recent survey of museum visitors documented some startling misconceptions at a very basic level. Even in this "science attentive" group, one quarter of the respondents believed that an atom would explode if it lost an electron, one sixth said it would become a new atom or element, and one fifth said they had no idea what would happen. Only one fourth of the respondents indicated they were familiar with plasma as a state of matter. Current resources on these topics are few in number and/or are difficult to locate, and they rarely provide suitable context at a level understandable to high school students and educators or to the interested public. In response to this and other evidence of common misunderstandings of simple particle and plasma science, our team of space scientists and education specialists has embarked upon the development of "Extraordinary Matter: Visualizing Space Plasmas and Particles", an online NASA multimedia library. It is designed to assist formal and informal educators and scientists with explaining concepts that cannot be easily demonstrated in the everyday world. The newly released site, with a target audience equivalent to grades 9-14, includes both existing products, reviewed by our team for quality, and new products we have developed. Addition of products to our site is in large part determined by the results of our front-end evaluation to determine the specific needs, gaps, and priorities of potential audiences. Each ready-to-use product is accompanied by a supporting explanation at a reading level matching the educational level of the concept, along with educational standards addressed, and links to other associated resources. Some will include related educational activities. Products are intended to stand alone, making them adaptable to the widest range of uses, either individually or as a custom-selected group. Uses may include, for example, scientist presentations, museum displays, teacher professional development, and classroom

  8. Proxy Graph: Visual Quality Metrics of Big Graph Sampling.

    Science.gov (United States)

    Nguyen, Quan Hoang; Hong, Seok-Hee; Eades, Peter; Meidiana, Amyra

    2017-06-01

    Data sampling has been extensively studied for large scale graph mining. Many analyses and tasks become more efficient when performed on graph samples of much smaller size. The use of proxy objects is common in software engineering for analysis and interaction with heavy objects or systems. In this paper, we coin the term 'proxy graph' and empirically investigate how well a proxy graph visualization can represent a big graph. Our investigation focuses on proxy graphs obtained by sampling; this is one of the most common proxy approaches. Despite the plethora of data sampling studies, this is the first evaluation of sampling in the context of graph visualization. For an objective evaluation, we propose a new family of quality metrics for visual quality of proxy graphs. Our experiments cover popular sampling techniques. Our experimental results lead to guidelines for using sampling-based proxy graphs in visualization.

  9. Visual Sample Plan (VSP) - FIELDS Integration

    Energy Technology Data Exchange (ETDEWEB)

    Pulsipher, Brent A.; Wilson, John E.; Gilbert, Richard O.; Hassig, Nancy L.; Carlson, Deborah K.; Bing-Canar, John; Cooper, Brian; Roth, Chuck

    2003-04-19

    Two software packages, VSP 2.1 and FIELDS 3.5, are being used by environmental scientists to plan the number and type of samples required to meet project objectives, display those samples on maps, query a database of past sample results, produce spatial models of the data, and analyze the data in order to arrive at defensible decisions. VSP 2.0 is an interactive tool to calculate optimal sample size and optimal sample location based on user goals, risk tolerance, and variability in the environment and in lab methods. FIELDS 3.0 is a set of tools to explore the sample results in a variety of ways to make defensible decisions with quantified levels of risk and uncertainty. However, FIELDS 3.0 has a small sample design module. VSP 2.0, on the other hand, has over 20 sampling goals, allowing the user to input site-specific assumptions such as non-normality of sample results, separate variability between field and laboratory measurements, make two-sample comparisons, perform confidence interval estimation, use sequential search sampling methods, and much more. Over 1,000 copies of VSP are in use today. FIELDS is used in nine of the ten U.S. EPA regions, by state regulatory agencies, and most recently by several international countries. Both software packages have been peer-reviewed, enjoy broad usage, and have been accepted by regulatory agencies as well as site project managers as key tools to help collect data and make environmental cleanup decisions. Recently, the two software packages were integrated, allowing the user to take advantage of the many design options of VSP, and the analysis and modeling options of FIELDS. The transition between the two is simple for the user – VSP can be called from within FIELDS, automatically passing a map to VSP and automatically retrieving sample locations and design information when the user returns to FIELDS. This paper will describe the integration, give a demonstration of the integrated package, and give users download

  10. Visualizing spikes in source-space

    DEFF Research Database (Denmark)

    Beniczky, Sándor; Duez, Lene; Scherg, Michael

    2016-01-01

    OBJECTIVE: Reviewing magnetoencephalography (MEG) recordings is time-consuming: signals from the 306 MEG-sensors are typically reviewed divided into six arrays of 51 sensors each, thus browsing each recording six times in order to evaluate all signals. A novel method of reconstructing the MEG...... signals in source-space was developed using a source-montage of 29 brain-regions and two spatial components to remove magnetocardiographic (MKG) artefacts. Our objective was to evaluate the accuracy of reviewing MEG in source-space. METHODS: In 60 consecutive patients with epilepsy, we prospectively...... evaluated the accuracy of reviewing the MEG signals in source-space as compared to the classical method of reviewing them in sensor-space. RESULTS: All 46 spike-clusters identified in sensor-space were also identified in source-space. Two additional spike-clusters were identified in source-space. As 29...

  11. Visualization Techniques in Space and Atmospheric Sciences

    Science.gov (United States)

    Szuszczewicz, E. P. (Editor); Bredekamp, Joseph H. (Editor)

    1995-01-01

    Unprecedented volumes of data will be generated by research programs that investigate the Earth as a system and the origin of the universe, which will in turn require analysis and interpretation that will lead to meaningful scientific insight. Providing a widely distributed research community with the ability to access, manipulate, analyze, and visualize these complex, multidimensional data sets depends on a wide range of computer science and technology topics. Data storage and compression, data base management, computational methods and algorithms, artificial intelligence, telecommunications, and high-resolution display are just a few of the topics addressed. A unifying theme throughout the papers with regards to advanced data handling and visualization is the need for interactivity, speed, user-friendliness, and extensibility.

  12. Using Typography to Expand the Design Space of Data Visualization

    Directory of Open Access Journals (Sweden)

    Richard Brath

    Full Text Available This article is a systematic exploration and expansion of the data visualization design space focusing on the role of text. A critical analysis of text usage in data visualizations reveals gaps in existing frameworks and practice. A cross-disciplinary review including the fields of typography, cartography, and coding interfaces yields various typographic techniques to encode data into text, and provides scope for an expanded design space. Mapping new attributes back to well understood principles frames the expanded design space and suggests potential areas of application. From ongoing research created with our framework, we show the design, implementation, and evaluation of six new visualization techniques. Finally, a broad evaluation of a number of visualizations, including critiques from several disciplinary experts, reveals opportunities as well as areas of concern, and points towards additional research with our framework.

  13. Visualizing the history of living spaces.

    Science.gov (United States)

    Ivanov, Yuri; Wren, Christopher; Sorokin, Alexander; Kaur, Ishwinder

    2007-01-01

    The technology available to building designers now makes it possible to monitor buildings on a very large scale. Video cameras and motion sensors are commonplace in practically every office space, and are slowly making their way into living spaces. The application of such technologies, in particular video cameras, while improving security, also violates privacy. On the other hand, motion sensors, while being privacy-conscious, typically do not provide enough information for a human operator to maintain the same degree of awareness about the space that can be achieved by using video cameras. We propose a novel approach in which we use a large number of simple motion sensors and a small set of video cameras to monitor a large office space. In our system we deployed 215 motion sensors and six video cameras to monitor the 3,000-square-meter office space occupied by 80 people for a period of about one year. The main problem in operating such systems is finding a way to present this highly multidimensional data, which includes both spatial and temporal components, to a human operator to allow browsing and searching recorded data in an efficient and intuitive way. In this paper we present our experiences and the solutions that we have developed in the course of our work on the system. We consider this work to be the first step in helping designers and managers of building systems gain access to information about occupants' behavior in the context of an entire building in a way that is only minimally intrusive to the occupants' privacy.

  14. Crowdsourced Quantification and Visualization of Urban Mobility Space Inequality

    Directory of Open Access Journals (Sweden)

    Michael Szell

    2018-03-01

    Full Text Available Most cities are car-centric, allocating a privileged amount of urban space to cars at the expense of sustainable mobility like cycling. Simultaneously, privately owned vehicles are vastly underused, wasting valuable opportunities for accommodating more people in a livable urban environment by occupying spacious parking areas. Since a data-driven quantification and visualization of such urban mobility space inequality is lacking, here we explore how crowdsourced data can help to advance its understanding. In particular, we describe how the open-source online platform What the Street!? uses massive user-generated data from OpenStreetMap for the interactive exploration of city-wide mobility spaces. Using polygon packing and graph algorithms, the platform rearranges all parking and mobility spaces of cars, rails, and bicycles of a city to be directly comparable, making mobility space inequality accessible to a broad public. This crowdsourced method confirms a prevalent imbalance between modal share and space allocation in 23 cities worldwide, typically discriminating bicycles. Analyzing the guesses of the platform’s visitors about mobility space distributions, we find that this discrimination is consistently underestimated in the public opinion. Finally, we discuss a visualized scenario in which extensive parking areas are regained through fleets of shared, autonomous vehicles. We outline how such accessible visualization platforms can facilitate urban planners and policy makers to reclaim road and parking space for pushing forward sustainable transport solutions.

  15. Urban Space Explorer: A Visual Analytics System for Urban Planning.

    Science.gov (United States)

    Karduni, Alireza; Cho, Isaac; Wessel, Ginette; Ribarsky, William; Sauda, Eric; Dou, Wenwen

    2017-01-01

    Understanding people's behavior is fundamental to many planning professions (including transportation, community development, economic development, and urban design) that rely on data about frequently traveled routes, places, and social and cultural practices. Based on the results of a practitioner survey, the authors designed Urban Space Explorer, a visual analytics system that utilizes mobile social media to enable interactive exploration of public-space-related activity along spatial, temporal, and semantic dimensions.

  16. Visualization of thermal management system in space using neutron radiography

    International Nuclear Information System (INIS)

    Nakazawa, Takeshi

    1995-01-01

    The visualizing technique by neutron radiography is effective for visualizing liquid in metals, and the applications in wide fields have been reported. In this paper, as one of the examples of applying the visualizing technique by neutron radiography, the experiment of visualizing the two-phase fluid loop heat removal system for the purpose of using in spatial environment was carried out, and its results are reported. For future large scale space ships and space stations, the heat removal system with two-phase fluid loop which utilizes the phase transformation of heat transport media is regarded as promising. By this system, good heat transfer performance is obtained, transported heat quantity per unit mass of media increases, and pumping power and the weight of the total system are reduced. Temperature can be controlled by system pressure. The two-phase fluid loop for the visualization experiment and the experimental results are reported. By the experiment using the real time NRG system at the JRR-3M, the boiling and evaporation phenomena in the capillary heat transfer tubes were able to be visualized. (K.I.)

  17. Investigating "Othering" in Visual Arts Spaces of Learning

    Science.gov (United States)

    Biscombe, Monique; Conradie, Stephané; Costandius, Elmarie; Alexander, Neeske

    2017-01-01

    In the political, social, cultural and economic context of South Africa, higher education spaces provide fertile ground for social research. This case study explored "othered" identities in the Department of Visual Arts of Stellenbosch University. Interviews with students and lecturers revealed interesting and controversial aspects in…

  18. Interactive Design and Visualization of Branched Covering Spaces.

    Science.gov (United States)

    Roy, Lawrence; Kumar, Prashant; Golbabaei, Sanaz; Zhang, Yue; Zhang, Eugene

    2018-01-01

    Branched covering spaces are a mathematical concept which originates from complex analysis and topology and has applications in tensor field topology and geometry remeshing. Given a manifold surface and an -way rotational symmetry field, a branched covering space is a manifold surface that has an -to-1 map to the original surface except at the ramification points, which correspond to the singularities in the rotational symmetry field. Understanding the notion and mathematical properties of branched covering spaces is important to researchers in tensor field visualization and geometry processing, and their application areas. In this paper, we provide a framework to interactively design and visualize the branched covering space (BCS) of an input mesh surface and a rotational symmetry field defined on it. In our framework, the user can visualize not only the BCSs but also their construction process. In addition, our system allows the user to design the geometric realization of the BCS using mesh deformation techniques as well as connecting tubes. This enables the user to verify important facts about BCSs such as that they are manifold surfaces around singularities, as well as the Riemann-Hurwitz formula which relates the Euler characteristic of the BCS to that of the original mesh. Our system is evaluated by student researchers in scientific visualization and geometry processing as well as faculty members in mathematics at our university who teach topology. We include their evaluations and feedback in the paper.

  19. Visual space perception at different levels of depth description

    Czech Academy of Sciences Publication Activity Database

    Šikl, Radovan; Šimeček, Michal

    2015-01-01

    Roč. 77, č. 6 (2015), 2098–2107 ISSN 1943-3921 R&D Projects: GA ČR GA13-28709S Institutional support: RVO:68081740 Keywords : visual space perception * Depth scales * Level of description Subject RIV: AN - Psychology Impact factor: 1.782, year: 2015

  20. Investigating “Othering” in Visual Arts Spaces of Learning

    Directory of Open Access Journals (Sweden)

    Monique Biscombe

    2017-04-01

    Full Text Available In the political, social, cultural and economic context of South Africa, higher education spaces provide fertile ground for social research. This case study explored “othered” identities in the Department of Visual Arts of Stellenbosch University. Interviews with students and lecturers revealed interesting and controversial aspects in terms of their experiences in the Department of Visual Arts. Theoretical perspectives such as “othering”, symbolic racism, the racialised body and visual art theory were used to interpret these experiences. It was found that “othering” because of indirect racism and language or economic circumstances affects students’ creative expression. Causes of “othering” experiences should be investigated in order to promote necessary transformation within the visual arts and within higher education institutions. 

  1. The Visual Uncertainty Paradigm for Controlling Screen-Space Information in Visualization

    Science.gov (United States)

    Dasgupta, Aritra

    2012-01-01

    The information visualization pipeline serves as a lossy communication channel for presentation of data on a screen-space of limited resolution. The lossy communication is not just a machine-only phenomenon due to information loss caused by translation of data, but also a reflection of the degree to which the human user can comprehend visual…

  2. Patch-based visual tracking with online representative sample selection

    Science.gov (United States)

    Ou, Weihua; Yuan, Di; Li, Donghao; Liu, Bin; Xia, Daoxun; Zeng, Wu

    2017-05-01

    Occlusion is one of the most challenging problems in visual object tracking. Recently, a lot of discriminative methods have been proposed to deal with this problem. For the discriminative methods, it is difficult to select the representative samples for the target template updating. In general, the holistic bounding boxes that contain tracked results are selected as the positive samples. However, when the objects are occluded, this simple strategy easily introduces the noises into the training data set and the target template and then leads the tracker to drift away from the target seriously. To address this problem, we propose a robust patch-based visual tracker with online representative sample selection. Different from previous works, we divide the object and the candidates into several patches uniformly and propose a score function to calculate the score of each patch independently. Then, the average score is adopted to determine the optimal candidate. Finally, we utilize the non-negative least square method to find the representative samples, which are used to update the target template. The experimental results on the object tracking benchmark 2013 and on the 13 challenging sequences show that the proposed method is robust to the occlusion and achieves promising results.

  3. Data management, archiving, visualization and analysis of space physics data

    Science.gov (United States)

    Russell, C. T.

    1995-01-01

    A series of programs for the visualization and analysis of space physics data has been developed at UCLA. In the course of those developments, a number of lessons have been learned regarding data management and data archiving, as well as data analysis. The issues now facing those wishing to develop such software, as well as the lessons learned, are reviewed. Modern media have eased many of the earlier problems of the physical volume required to store data, the speed of access, and the permanence of the records. However, the ultimate longevity of these media is still a question of debate. Finally, while software development has become easier, cost is still a limiting factor in developing visualization and analysis software.

  4. A new method for mapping perceptual biases across visual space.

    Science.gov (United States)

    Finlayson, Nonie J; Papageorgiou, Andriani; Schwarzkopf, D Samuel

    2017-08-01

    How we perceive the environment is not stable and seamless. Recent studies found that how a person qualitatively experiences even simple visual stimuli varies dramatically across different locations in the visual field. Here we use a method we developed recently that we call multiple alternatives perceptual search (MAPS) for efficiently mapping such perceptual biases across several locations. This procedure reliably quantifies the spatial pattern of perceptual biases and also of uncertainty and choice. We show that these measurements are strongly correlated with those from traditional psychophysical methods and that exogenous attention can skew biases without affecting overall task performance. Taken together, MAPS is an efficient method to measure how an individual's perceptual experience varies across space.

  5. Visual Odometry for Autonomous Deep-Space Navigation Project

    Science.gov (United States)

    Robinson, Shane; Pedrotty, Sam

    2016-01-01

    Autonomous rendezvous and docking (AR&D) is a critical need for manned spaceflight, especially in deep space where communication delays essentially leave crews on their own for critical operations like docking. Previously developed AR&D sensors have been large, heavy, power-hungry, and may still require further development (e.g. Flash LiDAR). Other approaches to vision-based navigation are not computationally efficient enough to operate quickly on slower, flight-like computers. The key technical challenge for visual odometry is to adapt it from the current terrestrial applications it was designed for to function in the harsh lighting conditions of space. This effort leveraged Draper Laboratory’s considerable prior development and expertise, benefitting both parties. The algorithm Draper has created is unique from other pose estimation efforts as it has a comparatively small computational footprint (suitable for use onboard a spacecraft, unlike alternatives) and potentially offers accuracy and precision needed for docking. This presents a solution to the AR&D problem that only requires a camera, which is much smaller, lighter, and requires far less power than competing AR&D sensors. We have demonstrated the algorithm’s performance and ability to process ‘flight-like’ imagery formats with a ‘flight-like’ trajectory, positioning ourselves to easily process flight data from the upcoming ‘ISS Selfie’ activity and then compare the algorithm’s quantified performance to the simulated imagery. This will bring visual odometry beyond TRL 5, proving its readiness to be demonstrated as part of an integrated system.Once beyond TRL 5, visual odometry will be poised to be demonstrated as part of a system in an in-space demo where relative pose is critical, like Orion AR&D, ISS robotic operations, asteroid proximity operations, and more.

  6. Visualizing the quantum interaction picture in phase space

    International Nuclear Information System (INIS)

    Mehmani, Bahar; Aiello, Andrea

    2012-01-01

    We present a graphical example of the interaction picture-time evolution. Our aim is to help students understand in a didactic manner the simplicity that this picture provides. Visualizing the interaction picture unveils its advantages, which are hidden behind the involved mathematics. Specifically, we show that the time evolution of a driven harmonic oscillator in the interaction picture corresponds to a local transformation of a phase space-reference frame into the one that is co-rotating with the Wigner function. (paper)

  7. Topology of digital images visual pattern discovery in proximity spaces

    CERN Document Server

    Peters, James F

    2014-01-01

    This book carries forward recent work on visual patterns and structures in digital images and introduces a near set-based a topology of digital images. Visual patterns arise naturally in digital images viewed as sets of non-abstract points endowed with some form of proximity (nearness) relation. Proximity relations make it possible to construct uniform topolo- gies on the sets of points that constitute a digital image. In keeping with an interest in gaining an understanding of digital images themselves as a rich source of patterns, this book introduces the basics of digital images from a computer vision perspective. In parallel with a computer vision perspective on digital images, this book also introduces the basics of prox- imity spaces. Not only the traditional view of spatial proximity relations but also the more recent descriptive proximity relations are considered. The beauty of the descriptive proximity approach is that it is possible to discover visual set patterns among sets that are non-overlapping ...

  8. Complete k-space visualization of x-ray photoelectron diffraction

    International Nuclear Information System (INIS)

    Denlinger, J.D.; Lawrence Berkeley Lab., CA; Rotenberg, E.; Lawrence Berkeley Lab., CA; Kevan, S.D.; Tonner, B.P.

    1996-01-01

    A highly detailed x-ray photoelectron diffraction data set has been acquired for crystalline Cu(001). The data set for bulk Cu 3p emission encompasses a large k-space volume (k = 3--10 angstrom -1 ) with sufficient energy and angular sampling to monitor the continuous variation of diffraction intensities. The evolution of back-scattered intensity oscillations is visualized by energy and angular slices of this volume data set. Large diffraction data sets such as this will provide rigorous experimental tests of real-space reconstruction algorithms and multiple-scattering simulations

  9. Miniaturizing EM Sample Preparation: Opportunities, Challenges, and "Visual Proteomics".

    Science.gov (United States)

    Arnold, Stefan A; Müller, Shirley A; Schmidli, Claudio; Syntychaki, Anastasia; Rima, Luca; Chami, Mohamed; Stahlberg, Henning; Goldie, Kenneth N; Braun, Thomas

    2018-03-01

    This review compares and discusses conventional versus miniaturized specimen preparation methods for transmission electron microscopy (TEM). The progress brought by direct electron detector cameras, software developments and automation have transformed transmission cryo-electron microscopy (cryo-EM) and made it an invaluable high-resolution structural analysis tool. In contrast, EM specimen preparation has seen very little progress in the last decades and is now one of the main bottlenecks in cryo-EM. Here, we discuss the challenges faced by specimen preparation for single particle EM, highlight current developments, and show the opportunities resulting from the advanced miniaturized and microfluidic sample grid preparation methods described, such as visual proteomics and time-resolved cryo-EM studies. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Adaptive importance sampling of random walks on continuous state spaces

    International Nuclear Information System (INIS)

    Baggerly, K.; Cox, D.; Picard, R.

    1998-01-01

    The authors consider adaptive importance sampling for a random walk with scoring in a general state space. Conditions under which exponential convergence occurs to the zero-variance solution are reviewed. These results generalize previous work for finite, discrete state spaces in Kollman (1993) and in Kollman, Baggerly, Cox, and Picard (1996). This paper is intended for nonstatisticians and includes considerable explanatory material

  11. Stochastic sampling of the RNA structural alignment space.

    Science.gov (United States)

    Harmanci, Arif Ozgun; Sharma, Gaurav; Mathews, David H

    2009-07-01

    A novel method is presented for predicting the common secondary structures and alignment of two homologous RNA sequences by sampling the 'structural alignment' space, i.e. the joint space of their alignments and common secondary structures. The structural alignment space is sampled according to a pseudo-Boltzmann distribution based on a pseudo-free energy change that combines base pairing probabilities from a thermodynamic model and alignment probabilities from a hidden Markov model. By virtue of the implicit comparative analysis between the two sequences, the method offers an improvement over single sequence sampling of the Boltzmann ensemble. A cluster analysis shows that the samples obtained from joint sampling of the structural alignment space cluster more closely than samples generated by the single sequence method. On average, the representative (centroid) structure and alignment of the most populated cluster in the sample of structures and alignments generated by joint sampling are more accurate than single sequence sampling and alignment based on sequence alone, respectively. The 'best' centroid structure that is closest to the known structure among all the centroids is, on average, more accurate than structure predictions of other methods. Additionally, cluster analysis identifies, on average, a few clusters, whose centroids can be presented as alternative candidates. The source code for the proposed method can be downloaded at http://rna.urmc.rochester.edu.

  12. Sampling of post-Riley visual artists surreptitiously probing perception

    Science.gov (United States)

    Daly, Scott J.

    2003-06-01

    Attending any conference on visual perception undoubtedly leaves one exposed to the work of Salvador Dali, whose extended phase of work exploring what he dubbed, "the paranoiac-critical method" is very popular as examples of multiple perceptions from conflicting input. While all visual art is intertwined with perceptual science, from convincing three-dimensional illusion during the Renaissance to the isolated visual illusions of Bridget Riley"s Op-Art, direct statements about perception are rarely uttered by the artists in recent times. However, there are still a number of artists working today whose work contains perceptual questions and exemplars that can be of interest to vision scientists and imaging engineers. This talk will start sampling from Op-Art, which is most directly related to psychophysical test stimuli and then will discuss "perceptual installations" from artists such as James Turrell"s, whose focus is often directly on natural light, with no distortions imposed by any capture or display apparatus. His work generally involves installations that use daylight and focus the viewer on its nuanced qualities, such as umbra, air particle interactions, and effects of light adaptation. He is one of the last artists to actively discuss perception. Next we discuss minimal art and electronic art, with video artist Nam June Paik discussing the "intentionally boring" art of minimalism. Another artist using installations is Sandy Skoglund, who creates environments of constant spectral albedo, with the exception of her human occupants. Tom Shannon also uses installations as his media to delve into 3D aspects of depth and perspective, but in an atomized fashion. Beginning with installation concepts, Calvin Collum then adds the restrictive viewpoint of photography to create initially confusing images where the pictorial content and depth features are independent (analogous to the work of Patrick Hughes). Andy Goldsworthy also combines photography with concepts of

  13. Visual Sample Plan (VSP) Software: Designs and Data Analyses for Sampling Contaminated Buildings

    International Nuclear Information System (INIS)

    Pulsipher, Brent A.; Wilson, John E.; Gilbert, Richard O.; Nuffer, Lisa L.; Hassig, Nancy L.

    2005-01-01

    A new module of the Visual Sample Plan (VSP) software has been developed to provide sampling designs and data analyses for potentially contaminated buildings. An important application is assessing levels of contamination in buildings after a terrorist attack. This new module, funded by DHS through the Combating Terrorism Technology Support Office, Technical Support Working Group, was developed to provide a tailored, user-friendly and visually-orientated buildings module within the existing VSP software toolkit, the latest version of which can be downloaded from http://dqo.pnl.gov/vsp. In case of, or when planning against, a chemical, biological, or radionuclide release within a building, the VSP module can be used to quickly and easily develop and visualize technically defensible sampling schemes for walls, floors, ceilings, and other surfaces to statistically determine if contamination is present, its magnitude and extent throughout the building and if decontamination has been effective. This paper demonstrates the features of this new VSP buildings module, which include: the ability to import building floor plans or to easily draw, manipulate, and view rooms in several ways; being able to insert doors, windows and annotations into a room; 3-D graphic room views with surfaces labeled and floor plans that show building zones that have separate air handing units. The paper will also discuss the statistical design and data analysis options available in the buildings module. Design objectives supported include comparing an average to a threshold when the data distribution is normal or unknown, and comparing measurements to a threshold to detect hotspots or to insure most of the area is uncontaminated when the data distribution is normal or unknown

  14. Full k-space visualization of photoelectron diffraction

    International Nuclear Information System (INIS)

    Denlinger, J.D.; Rotenberg, E.; Kevan, S.D.; Tonner, B.P.

    1997-01-01

    The development of photoelectron holography has promoted the need for larger photoelectron diffraction data sets in order to improve the quality of real-space reconstructed images (by suppressing transformational artifacts and distortions). The two main experimental and theoretical approaches to holography, the transform of angular distribution patterns for a coarse selection of energies or the transform of energy-scanned profiles for several directions, represent two limits to k-space sampling. The high brightness of third-generation soft x-ray synchrotron sources provides the opportunity to rapidly measure large high-density x-ray photoelectron diffraction (XPD) data sets with approximately uniform k-space sampling. In this abstract, the authors present such a photoelectron data set acquired for Cu 3p emission from Cu(001). Cu(001) is one of the most well-studied systems for understanding photoelectron diffraction structure and for testing photoelectron holography methods. Cu(001) was chosen for this study in part due to the relatively inert and unreconstructed clean surface, and it served to calibrate and fine-tune the operation of a new synchrotron beamline, electron spectrometer and sample goniometer. In addition to Cu, similar open-quotes volumeclose quotes XPD data sets have been acquired for bulk and surface core-level emission from W(110), from reconstructed Si(100) and Si(111) surfaces, and from the adsorbate system of c(2x2) Mn/Ni(100)

  15. Accessibility of shared space for visually impaired persons : A comparative field study

    NARCIS (Netherlands)

    Havik, Else; Steyvers, Franciscus J.J.M.; Kooijman, Aart; Melis, Bart

    Shared Space is a concept that comprises the design and planning process of a public space. There are concerns about the accessibility of Shared Spaces for people who are visually impaired. In a comparative field study, the wayfinding performance of 25 visually impaired persons (VIPs) was observed

  16. Assessing Essential Qualities of Urban Space with Emotional and Visual Data Based on GIS Technique

    Directory of Open Access Journals (Sweden)

    Xin Li

    2016-11-01

    Full Text Available Finding a method to evaluate people’s emotional responses to urban spaces in a valid and objective way is fundamentally important for urban design practices and related policy making. Analysis of the essential qualities of urban space could be made both more effective and more accurate using innovative information techniques that have become available in the era of big data. This study introduces an integrated method based on geographical information systems (GIS and an emotion-tracking technique to quantify the relationship between people’s emotional responses and urban space. This method can evaluate the degree to which people’s emotional responses are influenced by multiple urban characteristics such as building shapes and textures, isovist parameters, visual entropy, and visual fractals. The results indicate that urban spaces may influence people’s emotional responses through both spatial sequence arrangements and shifting scenario sequences. Emotional data were collected with body sensors and GPS devices. Spatial clustering was detected to target effective sampling locations; then, isovists were generated to extract building textures. Logistic regression and a receiver operating characteristic analysis were used to determine the key isovist parameters and the probabilities that they influenced people’s emotion. Finally, based on the results, we make some suggestions for design professionals in the field of urban space optimization.

  17. Understand your Algorithm: Drill Down to Sample Visualizations in Jupyter Notebooks

    Science.gov (United States)

    Mapes, B. E.; Ho, Y.; Cheedela, S. K.; McWhirter, J.

    2017-12-01

    Statistics are the currency of climate dynamics, but the space of all possible algorithms is fathomless - especially for 4-dimensional weather-resolving data that many "impact" variables depend on. Algorithms are designed on data samples, but how do you know if they measure what you expect when turned loose on Big Data? We will introduce the year-1 prototype of a 3-year scientist-led, NSF-supported, Unidata-quality software stack called DRILSDOWN (https://brianmapes.github.io/EarthCube-DRILSDOWN/) for automatically extracting, integrating, and visualizing multivariate 4D data samples. Based on a customizable "IDV bundle" of data sources, fields and displays supplied by the user, the system will teleport its space-time coordinates to fetch Cases of Interest (edge cases, typical cases, etc.) from large aggregated repositories. These standard displays can serve as backdrops to overlay with your value-added fields (such as derived quantities stored on a user's local disk). Fields can be readily pulled out of the visualization object for further processing in Python. The hope is that algorithms successfully tested in this visualization space will then be lifted out and added to automatic processing toolchains, lending confidence in the next round of processing, to seek the next Cases of Interest, in light of a user's statistical measures of "Interest". To log the scientific work done in this vein, the visualizations are wrapped in iPython-based Jupyter notebooks for rich, human-readable documentation (indeed, quasi-publication with formatted text, LaTex math, etc.). Such notebooks are readable and executable, with digital replicability and provenance built in. The entire digital object of a case study can be stored in a repository, where libraries of these Case Study Notebooks can be examined in a browser. Model data (the session topic) are of course especially convenient for this system, but observations of all sorts can also be brought in, overlain, and differenced or

  18. Using Complex Auditory-Visual Samples to Produce Emergent Relations in Children with Autism

    Science.gov (United States)

    Groskreutz, Nicole C.; Karsina, Allen; Miguel, Caio F.; Groskreutz, Mark P.

    2010-01-01

    Six participants with autism learned conditional relations between complex auditory-visual sample stimuli (dictated words and pictures) and simple visual comparisons (printed words) using matching-to-sample training procedures. Pre- and posttests examined potential stimulus control by each element of the complex sample when presented individually…

  19. 3D Visualization of Engendering Collaborative Leadership in the Space

    Directory of Open Access Journals (Sweden)

    Aini-Kristiina Jäppinen

    2012-12-01

    Full Text Available The paper focuses on collaborative leadership in education and how to illustrate its engendering process in a three-dimensional space. This complex and fluid process is examined as distributed and pedagogical within a Finnish vocational upper secondary educational organization. As a consequence, the notion of distributed pedagogical leadership is used when collaborative leadership in education is studied. Collaborative leadership is argued to consist of the innermost substance of a professional learning community, as attributes of a group of people working together for specific purposes. Therefore, collaborative leadership naturally involves actors, activities, and context. However, the innermost substance of the community is the crux of leadership. It is here presented in the form of ten "keys", as ten attributes with several operational nuances. The keys are highly interdependent and a movement in one of them has an effect both on every other key and the whole. Within this framework, the paper provides a presentation of selected study results by means of the 3D program Strata. The visualizations illustrate concrete examples of how the keys relate to the reality in the vocational education organization in question. For this, a novel analysis called Wave is used, based on natural laws and rules of physics.

  20. Accessibility of Shared Space for visually impaired persons : An inventory in the Netherlands

    NARCIS (Netherlands)

    Havik, Else M; Melis - Dankers, Bart JM; Steyvers, Frank JJM; Kooijman, Aart C

    Shared Space is a concept that comprises the design and planning process of a public space. There are concerns about the accessibility of Shared Spaces for people who are visually impaired. This study provides a systematic overview of the appearance of Shared Spaces in the Netherlands and the

  1. Interpolation and sampling in spaces of analytic functions

    CERN Document Server

    Seip, Kristian

    2004-01-01

    The book is about understanding the geometry of interpolating and sampling sequences in classical spaces of analytic functions. The subject can be viewed as arising from three classical topics: Nevanlinna-Pick interpolation, Carleson's interpolation theorem for H^\\infty, and the sampling theorem, also known as the Whittaker-Kotelnikov-Shannon theorem. The book aims at clarifying how certain basic properties of the space at hand are reflected in the geometry of interpolating and sampling sequences. Key words for the geometric descriptions are Carleson measures, Beurling densities, the Nyquist rate, and the Helson-Szegő condition. The book is based on six lectures given by the author at the University of Michigan. This is reflected in the exposition, which is a blend of informal explanations with technical details. The book is essentially self-contained. There is an underlying assumption that the reader has a basic knowledge of complex and functional analysis. Beyond that, the reader should have some familiari...

  2. Correlation between k-space sampling pattern and MTF in compressed sensing MRSI.

    Science.gov (United States)

    Heikal, A A; Wachowicz, K; Fallone, B G

    2016-10-01

    To investigate the relationship between the k-space sampling patterns used for compressed sensing MR spectroscopic imaging (CS-MRSI) and the modulation transfer function (MTF) of the metabolite maps. This relationship may allow the desired frequency content of the metabolite maps to be quantitatively tailored when designing an undersampling pattern. Simulations of a phantom were used to calculate the MTF of Nyquist sampled (NS) 32 × 32 MRSI, and four-times undersampled CS-MRSI reconstructions. The dependence of the CS-MTF on the k-space sampling pattern was evaluated for three sets of k-space sampling patterns generated using different probability distribution functions (PDFs). CS-MTFs were also evaluated for three more sets of patterns generated using a modified algorithm where the sampling ratios are constrained to adhere to PDFs. Strong visual correlation as well as high R 2 was found between the MTF of CS-MRSI and the product of the frequency-dependant sampling ratio and the NS 32 × 32 MTF. Also, PDF-constrained sampling patterns led to higher reproducibility of the CS-MTF, and stronger correlations to the above-mentioned product. The relationship established in this work provides the user with a theoretical solution for the MTF of CS MRSI that is both predictable and customizable to the user's needs.

  3. Haptic over visual information in the distribution of visual attention after tool-use in near and far space.

    Science.gov (United States)

    Park, George D; Reed, Catherine L

    2015-10-01

    Despite attentional prioritization for grasping space near the hands, tool-use appears to transfer attentional bias to the tool's end/functional part. The contributions of haptic and visual inputs to attentional distribution along a tool were investigated as a function of tool-use in near (Experiment 1) and far (Experiment 2) space. Visual attention was assessed with a 50/50, go/no-go, target discrimination task, while a tool was held next to targets appearing near the tool-occupied hand or tool-end. Target response times (RTs) and sensitivity (d-prime) were measured at target locations, before and after functional tool practice for three conditions: (1) open-tool: tool-end visible (visual + haptic inputs), (2) hidden-tool: tool-end visually obscured (haptic input only), and (3) short-tool: stick missing tool's length/end (control condition: hand occupied but no visual/haptic input). In near space, both open- and hidden-tool groups showed a tool-end, attentional bias (faster RTs toward tool-end) before practice; after practice, RTs near the hand improved. In far space, the open-tool group showed no bias before practice; after practice, target RTs near the tool-end improved. However, the hidden-tool group showed a consistent tool-end bias despite practice. Lack of short-tool group results suggested that hidden-tool group results were specific to haptic inputs. In conclusion, (1) allocation of visual attention along a tool due to tool practice differs in near and far space, and (2) visual attention is drawn toward the tool's end even when visually obscured, suggesting haptic input provides sufficient information for directing attention along the tool.

  4. Random sampling of evolution time space and Fourier transform processing

    International Nuclear Information System (INIS)

    Kazimierczuk, Krzysztof; Zawadzka, Anna; Kozminski, Wiktor; Zhukov, Igor

    2006-01-01

    Application of Fourier Transform for processing 3D NMR spectra with random sampling of evolution time space is presented. The 2D FT is calculated for pairs of frequencies, instead of conventional sequence of one-dimensional transforms. Signal to noise ratios and linewidths for different random distributions were investigated by simulations and experiments. The experimental examples include 3D HNCA, HNCACB and 15 N-edited NOESY-HSQC spectra of 13 C 15 N labeled ubiquitin sample. Obtained results revealed general applicability of proposed method and the significant improvement of resolution in comparison with conventional spectra recorded in the same time

  5. Cryogenic Liquid Sample Acquisition System for Remote Space Applications

    Science.gov (United States)

    Mahaffy, Paul; Trainer, Melissa; Wegel, Don; Hawk, Douglas; Melek, Tony; Johnson, Christopher; Amato, Michael; Galloway, John

    2013-01-01

    There is a need to acquire autonomously cryogenic hydrocarbon liquid sample from remote planetary locations such as the lakes of Titan for instruments such as mass spectrometers. There are several problems that had to be solved relative to collecting the right amount of cryogenic liquid sample into a warmer spacecraft, such as not allowing the sample to boil off or fractionate too early; controlling the intermediate and final pressures within carefully designed volumes; designing for various particulates and viscosities; designing to thermal, mass, and power-limited spacecraft interfaces; and reducing risk. Prior art inlets for similar instruments in spaceflight were designed primarily for atmospheric gas sampling and are not useful for this front-end application. These cryogenic liquid sample acquisition system designs for remote space applications allow for remote, autonomous, controlled sample collections of a range of challenging cryogenic sample types. The design can control the size of the sample, prevent fractionation, control pressures at various stages, and allow for various liquid sample levels. It is capable of collecting repeated samples autonomously in difficult lowtemperature conditions often found in planetary missions. It is capable of collecting samples for use by instruments from difficult sample types such as cryogenic hydrocarbon (methane, ethane, and propane) mixtures with solid particulates such as found on Titan. The design with a warm actuated valve is compatible with various spacecraft thermal and structural interfaces. The design uses controlled volumes, heaters, inlet and vent tubes, a cryogenic valve seat, inlet screens, temperature and cryogenic liquid sensors, seals, and vents to accomplish its task.

  6. Images of Earth and Space: The Role of Visualization in NASA Science

    Science.gov (United States)

    1996-01-01

    Fly through the ocean at breakneck speed. Tour the moon. Even swim safely in the boiling sun. You can do these things and more in a 17 minute virtual journey through Earth and space. The trek is by way of colorful scientific visualizations developed by the NASA/Goddard Space Flight Center's Scientific Visualization Studio and the NASA HPCC Earth and Space Science Project investigators. Various styles of electronic music and lay-level narration provide the accompaniment.

  7. Comparing artistic and geometrical perspective depictions of space in the visual field.

    Science.gov (United States)

    Baldwin, Joseph; Burleigh, Alistair; Pepperell, Robert

    2014-01-01

    Which is the most accurate way to depict space in our visual field? Linear perspective, a form of geometrical perspective, has traditionally been regarded as the correct method of depicting visual space. But artists have often found it is limited in the angle of view it can depict; wide-angle scenes require uncomfortably close picture viewing distances or impractical degrees of enlargement to be seen properly. Other forms of geometrical perspective, such as fisheye projections, can represent wider views but typically produce pictures in which objects appear distorted. In this study we created an artistic rendering of a hemispherical visual space that encompassed the full visual field. We compared it to a number of geometrical perspective projections of the same space by asking participants to rate which best matched their visual experience. We found the artistic rendering performed significantly better than the geometrically generated projections.

  8. The Orientation of Visual Space from the Perspective of Hummingbirds.

    Science.gov (United States)

    Tyrrell, Luke P; Goller, Benjamin; Moore, Bret A; Altshuler, Douglas L; Fernández-Juricic, Esteban

    2018-01-01

    Vision is a key component of hummingbird behavior. Hummingbirds hover in front of flowers, guide their bills into them for foraging, and maneuver backwards to undock from them. Capturing insects is also an important foraging strategy for most hummingbirds. However, little is known about the visual sensory specializations hummingbirds use to guide these two foraging strategies. We characterized the hummingbird visual field configuration, degree of eye movement, and orientation of the centers of acute vision. Hummingbirds had a relatively narrow binocular field (~30°) that extended above and behind their heads. Their blind area was also relatively narrow (~23°), which increased their visual coverage (about 98% of their celestial hemisphere). Additionally, eye movement amplitude was relatively low (~9°), so their ability to converge or diverge their eyes was limited. We confirmed that hummingbirds have two centers of acute vision: a fovea centralis , projecting laterally, and an area temporalis , projecting more frontally. This retinal configuration is similar to other predatory species, which may allow hummingbirds to enhance their success at preying on insects. However, there is no evidence that their temporal area could visualize the bill tip or that eye movements could compensate for this constraint. Therefore, guidance of precise bill position during the process of docking occurs via indirect cues or directly with low visual acuity despite having a temporal center of acute vision. The large visual coverage may favor the detection of predators and competitors even while docking into a flower. Overall, hummingbird visual configuration does not seem specialized for flower docking.

  9. Direct visualization of solute locations in laboratory ice samples

    Directory of Open Access Journals (Sweden)

    T. Hullar

    2016-09-01

    Full Text Available Many important chemical reactions occur in polar snow, where solutes may be present in several reservoirs, including at the air–ice interface and in liquid-like regions within the ice matrix. Some recent laboratory studies suggest chemical reaction rates may differ in these two reservoirs. While investigations have examined where solutes are found in natural snow and ice, few studies have examined either solute locations in laboratory samples or the possible factors controlling solute segregation. To address this, we used micro-computed tomography (microCT to examine solute locations in ice samples prepared from either aqueous cesium chloride (CsCl or rose bengal solutions that were frozen using several different methods. Samples frozen in a laboratory freezer had the largest liquid-like inclusions and air bubbles, while samples frozen in a custom freeze chamber had somewhat smaller air bubbles and inclusions; in contrast, samples frozen in liquid nitrogen showed much smaller concentrated inclusions and air bubbles, only slightly larger than the resolution limit of our images (∼ 2 µm. Freezing solutions in plastic vs. glass vials had significant impacts on the sample structure, perhaps because the poor heat conductivity of plastic vials changes how heat is removed from the sample as it cools. Similarly, the choice of solute had a significant impact on sample structure, with rose bengal solutions yielding smaller inclusions and air bubbles compared to CsCl solutions frozen using the same method. Additional experiments using higher-resolution imaging of an ice sample show that CsCl moves in a thermal gradient, supporting the idea that the solutes in ice are present in mobile liquid-like regions. Our work shows that the structure of laboratory ice samples, including the location of solutes, is sensitive to the freezing method, sample container, and solute characteristics, requiring careful experimental design and interpretation of results.

  10. Sampling Indoor Aerosols on the International Space Station

    Science.gov (United States)

    Meyer, Marit E.

    2016-01-01

    In a spacecraft cabin environment, the size range of indoor aerosols is much larger and they persist longer than on Earth because they are not removed by gravitational settling. A previous aerosol experiment in 1991 documented that over 90 of the mass concentration of particles in the NASA Space Shuttle air were between 10 m and 100 m based on measurements with a multi-stage virtual impactor and a nephelometer (Liu et al. 1991). While the now-retired Space Shuttle had short duration missions (less than two weeks), the International Space Station (ISS) has been continually inhabited by astronauts for over a decade. High concentrations of inhalable particles on ISS are potentially responsible for crew complaints of respiratory and eye irritation and comments about 'dusty' air. Air filtration is the current control strategy for airborne particles on the ISS, and filtration modeling, performed for engineering and design validation of the air revitalization system in ISS, predicted that PM requirements would be met. However, aerosol monitoring has never been performed on the ISS to verify PM levels. A flight experiment is in preparation which will provide data on particulate matter in ISS ambient air. Particles will be collected with a thermophoretic sampler as well as with passive samplers which will extend the particle size range of sampling. Samples will be returned to Earth for chemical and microscopic analyses, providing the first aerosol data for ISS ambient air.

  11. Planning, Implementation and Optimization of Future space Missions using an Immersive Visualization Environement (IVE) Machine

    Science.gov (United States)

    Harris, E.

    Planning, Implementation and Optimization of Future Space Missions using an Immersive Visualization Environment (IVE) Machine E. N. Harris, Lockheed Martin Space Systems, Denver, CO and George.W. Morgenthaler, U. of Colorado at Boulder History: A team of 3-D engineering visualization experts at the Lockheed Martin Space Systems Company have developed innovative virtual prototyping simulation solutions for ground processing and real-time visualization of design and planning of aerospace missions over the past 6 years. At the University of Colorado, a team of 3-D visualization experts are developing the science of 3-D visualization and immersive visualization at the newly founded BP Center for Visualization, which began operations in October, 2001. (See IAF/IAA-01-13.2.09, "The Use of 3-D Immersive Visualization Environments (IVEs) to Plan Space Missions," G. A. Dorn and G. W. Morgenthaler.) Progressing from Today's 3-D Engineering Simulations to Tomorrow's 3-D IVE Mission Planning, Simulation and Optimization Techniques: 3-D (IVEs) and visualization simulation tools can be combined for efficient planning and design engineering of future aerospace exploration and commercial missions. This technology is currently being developed and will be demonstrated by Lockheed Martin in the (IVE) at the BP Center using virtual simulation for clearance checks, collision detection, ergonomics and reach-ability analyses to develop fabrication and processing flows for spacecraft and launch vehicle ground support operations and to optimize mission architecture and vehicle design subject to realistic constraints. Demonstrations: Immediate aerospace applications to be demonstrated include developing streamlined processing flows for Reusable Space Transportation Systems and Atlas Launch Vehicle operations and Mars Polar Lander visual work instructions. Long-range goals include future international human and robotic space exploration missions such as the development of a Mars

  12. Sample to answer visualization pipeline for low-cost point-of-care blood cell counting

    Science.gov (United States)

    Smith, Suzanne; Naidoo, Thegaran; Davies, Emlyn; Fourie, Louis; Nxumalo, Zandile; Swart, Hein; Marais, Philip; Land, Kevin; Roux, Pieter

    2015-03-01

    We present a visualization pipeline from sample to answer for point-of-care blood cell counting applications. Effective and low-cost point-of-care medical diagnostic tests provide developing countries and rural communities with accessible healthcare solutions [1], and can be particularly beneficial for blood cell count tests, which are often the starting point in the process of diagnosing a patient [2]. The initial focus of this work is on total white and red blood cell counts, using a microfluidic cartridge [3] for sample processing. Analysis of the processed samples has been implemented by means of two main optical visualization systems developed in-house: 1) a fluidic operation analysis system using high speed video data to determine volumes, mixing efficiency and flow rates, and 2) a microscopy analysis system to investigate homogeneity and concentration of blood cells. Fluidic parameters were derived from the optical flow [4] as well as color-based segmentation of the different fluids using a hue-saturation-value (HSV) color space. Cell count estimates were obtained using automated microscopy analysis and were compared to a widely accepted manual method for cell counting using a hemocytometer [5]. The results using the first iteration microfluidic device [3] showed that the most simple - and thus low-cost - approach for microfluidic component implementation was not adequate as compared to techniques based on manual cell counting principles. An improved microfluidic design has been developed to incorporate enhanced mixing and metering components, which together with this work provides the foundation on which to successfully implement automated, rapid and low-cost blood cell counting tests.

  13. The Orientation of Visual Space from the Perspective of Hummingbirds

    Directory of Open Access Journals (Sweden)

    Luke P. Tyrrell

    2018-01-01

    Full Text Available Vision is a key component of hummingbird behavior. Hummingbirds hover in front of flowers, guide their bills into them for foraging, and maneuver backwards to undock from them. Capturing insects is also an important foraging strategy for most hummingbirds. However, little is known about the visual sensory specializations hummingbirds use to guide these two foraging strategies. We characterized the hummingbird visual field configuration, degree of eye movement, and orientation of the centers of acute vision. Hummingbirds had a relatively narrow binocular field (~30° that extended above and behind their heads. Their blind area was also relatively narrow (~23°, which increased their visual coverage (about 98% of their celestial hemisphere. Additionally, eye movement amplitude was relatively low (~9°, so their ability to converge or diverge their eyes was limited. We confirmed that hummingbirds have two centers of acute vision: a fovea centralis, projecting laterally, and an area temporalis, projecting more frontally. This retinal configuration is similar to other predatory species, which may allow hummingbirds to enhance their success at preying on insects. However, there is no evidence that their temporal area could visualize the bill tip or that eye movements could compensate for this constraint. Therefore, guidance of precise bill position during the process of docking occurs via indirect cues or directly with low visual acuity despite having a temporal center of acute vision. The large visual coverage may favor the detection of predators and competitors even while docking into a flower. Overall, hummingbird visual configuration does not seem specialized for flower docking.

  14. Accessibility of shared space for visually impaired persons

    NARCIS (Netherlands)

    Havik, Else; Melis, Bart; Steyvers, Franciscus J.J.M.

    2011-01-01

    Shared Space is a new concept for the design of the public realm that is increasingly applied in Western countries. In Shared Space, the various functions of the public domain are combined, rather than separated. The behavior of road users is mainly determined by social relations and not exclusively

  15. The Rhetoric of Multi-Display Learning Spaces: exploratory experiences in visual art disciplines

    Directory of Open Access Journals (Sweden)

    Brett Bligh

    2010-11-01

    Full Text Available Multi-Display Learning Spaces (MD-LS comprise technologies to allow the viewing of multiple simultaneous visual materials, modes of learning which encourage critical reflection upon these materials, and spatial configurations which afford interaction between learners and the materials in orchestrated ways. In this paper we provide an argument for the benefits of Multi-Display Learning Spaces in supporting complex, disciplinary reasoning within learning, focussing upon our experiences within postgraduate visual arts education. The importance of considering the affordances of the physical environment within education has been acknowledged by the recent attention given to Learning Spaces, yet within visual art disciplines the perception of visual material within a given space has long been seen as a key methodological consideration with implications for the identity of the discipline itself. We analyse the methodological, technological and spatial affordances of MD-LS to support learning, and discuss comparative viewing as a disciplinary method to structure visual analysis within the space which benefits from the simultaneous display of multiple partitions of visual evidence. We offer an analysis of the role of the teacher in authoring and orchestration and conclude by proposing a more general structure for what we term ‘multiple perspective learning’, in which the presentation of multiple pieces of visual evidence creates the conditions for complex argumentation within Higher Education.

  16. Visual reconciliation of alternative similarity spaces in climate modeling

    Science.gov (United States)

    J Poco; A Dasgupta; Y Wei; William Hargrove; C.R. Schwalm; D.N. Huntzinger; R Cook; E Bertini; C.T. Silva

    2015-01-01

    Visual data analysis often requires grouping of data objects based on their similarity. In many application domains researchers use algorithms and techniques like clustering and multidimensional scaling to extract groupings from data. While extracting these groups using a single similarity criteria is relatively straightforward, comparing alternative criteria poses...

  17. Quantifying space, understanding minds: A visual summary approach

    Directory of Open Access Journals (Sweden)

    Mark Simpson

    2017-06-01

    Full Text Available This paper presents an illustrated, validated taxonomy of research that compares spatial measures to human behavior. Spatial measures quantify the spatial characteristics of environments, such as the centrality of intersections in a street network or the accessibility of a room in a building from all the other rooms. While spatial measures have been of interest to spatial sciences, they are also of importance in the behavioral sciences for use in modeling human behavior. A high correlation between values for spatial measures and specific behaviors can provide insights into an environment's legibility, and contribute to a deeper understanding of human spatial cognition. Research in this area takes place in several domains, which makes a full understanding of existing literature difficult. To address this challenge, we adopt a visual summary approach. Literature is analyzed, and recurring topics are identified and validated with independent inter-rater agreement tasks in order to create a robust taxonomy for spatial measures and human behavior. The taxonomy is then illustrated with a visual representation that allows for at-a-glance visual access to the content of individual research papers in a corpus. A public web interface has been created that allows interested researchers to add to the database and create visual summaries for their research papers using our taxonomy.

  18. Novel names extend for how long preschool children sample visual information.

    Science.gov (United States)

    Carvalho, Paulo F; Vales, Catarina; Fausey, Caitlin M; Smith, Linda B

    2018-04-01

    Known words can guide visual attention, affecting how information is sampled. How do novel words, those that do not provide any top-down information, affect preschoolers' visual sampling in a conceptual task? We proposed that novel names can also change visual sampling by influencing how long children look. We investigated this possibility by analyzing how children sample visual information when they hear a sentence with a novel name versus without a novel name. Children completed a match-to-sample task while their moment-to-moment eye movements were recorded using eye-tracking technology. Our analyses were designed to provide specific information on the properties of visual sampling that novel names may change. Overall, we found that novel words prolonged the duration of each sampling event but did not affect sampling allocation (which objects children looked at) or sampling organization (how children transitioned from one object to the next). These results demonstrate that novel words change one important dynamic property of gaze: Novel words can entrain the cognitive system toward longer periods of sustained attention early in development. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Visual Working Memory Is Independent of the Cortical Spacing Between Memoranda.

    Science.gov (United States)

    Harrison, William J; Bays, Paul M

    2018-03-21

    The sensory recruitment hypothesis states that visual short-term memory is maintained in the same visual cortical areas that initially encode a stimulus' features. Although it is well established that the distance between features in visual cortex determines their visibility, a limitation known as crowding, it is unknown whether short-term memory is similarly constrained by the cortical spacing of memory items. Here, we investigated whether the cortical spacing between sequentially presented memoranda affects the fidelity of memory in humans (of both sexes). In a first experiment, we varied cortical spacing by taking advantage of the log-scaling of visual cortex with eccentricity, presenting memoranda in peripheral vision sequentially along either the radial or tangential visual axis with respect to the fovea. In a second experiment, we presented memoranda sequentially either within or beyond the critical spacing of visual crowding, a distance within which visual features cannot be perceptually distinguished due to their nearby cortical representations. In both experiments and across multiple measures, we found strong evidence that the ability to maintain visual features in memory is unaffected by cortical spacing. These results indicate that the neural architecture underpinning working memory has properties inconsistent with the known behavior of sensory neurons in visual cortex. Instead, the dissociation between perceptual and memory representations supports a role of higher cortical areas such as posterior parietal or prefrontal regions or may involve an as yet unspecified mechanism in visual cortex in which stimulus features are bound to their temporal order. SIGNIFICANCE STATEMENT Although much is known about the resolution with which we can remember visual objects, the cortical representation of items held in short-term memory remains contentious. A popular hypothesis suggests that memory of visual features is maintained via the recruitment of the same neural

  20. Visual Middle-Out Modeling of Problem Spaces

    DEFF Research Database (Denmark)

    Valente, Andrea

    2009-01-01

    Modeling is a complex and central activity in many domains. Domain experts and designers usually work by drawing and create models from the middle-out; however, visual and middle-out style modeling is poorly supported by software tools. In order to define a new class of software-based modeling...... tools, we propose a scenario and identify some requirements. Those requirements are contrasted against features of existing tools from various application domains, and the results show general lack of support for custom visualization and incremental knowledge specification, poor handling of temporal...... information, and little generative capabilities.Satisfaction of the requirements proved difficult, and our first two prototypes did not perform well. A new and streamlined prototype is currently under development: it should enable some useful form of middle-out modeling. Application domains will range from...

  1. Visual evoked potentials and selective attention to points in space

    Science.gov (United States)

    Van Voorhis, S.; Hillyard, S. A.

    1977-01-01

    Visual evoked potentials (VEPs) were recorded to sequences of flashes delivered to the right and left visual fields while subjects responded promptly to designated stimuli in one field at a time (focused attention), in both fields at once (divided attention), or to neither field (passive). Three stimulus schedules were used: the first was a replication of a previous study (Eason, Harter, and White, 1969) where left- and right-field flashes were delivered quasi-independently, while in the other two the flashes were delivered to the two fields in random order (Bernoulli sequence). VEPs to attended-field stimuli were enhanced at both occipital (O2) and central (Cz) recording sites under all stimulus sequences, but different components were affected at the two scalp sites. It was suggested that the VEP at O2 may reflect modality-specific processing events, while the response at Cz, like its auditory homologue, may index more general aspects of selective attention.

  2. Programs Visualize Earth and Space for Interactive Education

    Science.gov (United States)

    2014-01-01

    Kevin Hussey and others at the Jet Propulsion Laboratory produced web applications to visualize all of the spacecraft in orbit around Earth and in the Solar System. Hussey worked with Milwaukee, Wisconsin-based The Elumenati to rewrite the programs, and after licensing them, the company started offering a version that can be viewed on spheres and dome theaters for schools, museums, science centers, and other institutions.

  3. Color-Space-Based Visual-MIMO for V2X Communication

    OpenAIRE

    Jai-Eun Kim; Ji-Won Kim; Youngil Park; Ki-Doo Kim

    2016-01-01

    In this paper, we analyze the applicability of color-space-based, color-independent visual-MIMO for V2X. We aim to achieve a visual-MIMO scheme that can maintain the original color and brightness while performing seamless communication. We consider two scenarios of GCM based visual-MIMO for V2X. One is a multipath transmission using visual-MIMO networking and the other is multi-node V2X communication. In the scenario of multipath transmission, we analyze the channel capacity numerically and w...

  4. Traveling with blindness: A qualitative space-time approach to understanding visual impairment and urban mobility.

    Science.gov (United States)

    Wong, Sandy

    2018-01-01

    This paper draws from Hägerstrand's space-time framework to generate new insights on the everyday mobilities of individuals with visual impairments in the San Francisco Bay Area. While existing research on visual impairment and mobility emphasizes individual physical limitations resulting from vision loss or inaccessible public spaces, this article highlights and bridges both the behavioral and social processes that influence individual mobility. A qualitative analysis of sit-down and mobile interview data reveals that the space-time constraints of people with visual impairments are closely linked to their access to transportation, assistive technologies, and mobile devices. The findings deepen our understandings of the relationship between health and mobility, and present intervention opportunities for improving the quality of life for people with visual impairment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. The Art in Visualizing Natural Landscapes from Space

    Science.gov (United States)

    Webley, P. W.; Shipman, J. S.; Adams, T.

    2017-12-01

    Satellite remote sensing data can capture the changing Earth at cm resolution, across hundreds of spectral channels, and multiple times per hour. There is an art in combining these datasets together to fully capture the beauty of our planet. The resulting artistic piece can be further transformed by building in an accompanying musical score, allowing for a deeper emotional connection with the public. We make use of visible, near, middle and long wave infrared and radar data as well as different remote sensing techniques to uniquely capture our changing landscape in the spaceborne data. We will generate visually compelling imagery and videos that represent hazardous events from dust storms to landslides and from volcanic eruptions to forest fires. We will demonstrate how specific features of the Earth's landscape can be emphasized through the use of different datasets and color combinations and how, by adding a musical score, we can directly connect with the viewer and heighten their experience. We will also discuss our process to integrate the different aspects of our project together and how it could be developed to capture the beauty of other planets across the solar system using spaceborne imagery and data. Bringing together experts in art installations, composing musical scores, and remote sensing image visualization can lead to new and exciting artistic representations of geoscience data. The resulting product demonstrates there is an art to visualizing remote sensing data to capture the beauty of our planet and that incorporating a musical score can take us all to new places and emotions to enhance our experience.

  6. Visualizing Queer Spaces: LGBTQ Students and the Traditionally Heterogendered Institution

    Science.gov (United States)

    Pryor, Jonathan T.

    2018-01-01

    As colleges and universities have increased campus programs, LGBTQ students continue to experience marginalization within the very spaces intended to support them. This study explored how LGBTQ college students experienced campus climate at a Midwest Urban Public (MUP) institution through a framework of the traditionally heterogendered institution…

  7. OpenSpace: From Data Visualization Research to Planetariums and Classrooms Worldwide

    Science.gov (United States)

    Emmart, C.; Ynnerman, A.; Bock, A.; Kuznetsova, M. M.; Kinzler, R. J.; Trakinski, V.; Mac Low, M. M.; Ebel, D. S. S.

    2016-12-01

    "OpenSpace" is a new NASA supported open source software that brings the latest techniques from data visualization research to the planetarium community and general public. The American Museum of Natural History (AMNH), in collaboration with informal science institutions (ISI), academic partners, key vendors that support planetariums worldwide, and NASA mission teams and Subject Matter Experts (SME), is creating OpenSpace to enable STEM education and improve U.S. scientific literacy by engaging a broad spectrum of the American public and STEM learners in cutting-edge NASA science and engineering content. The project's primary focus is the interactive presentation of dynamic data from observations (image sequences), astrophysical simulation (volumetric rendering), and space missions (observation geometry visualization). Development of the software began several years ago in collaboration with NASA Goddard's space weather modeling center and in conjunction with academic support from Linköping University (LiU) in Sweden, and continued last year with visualizations of NASA's New Horizons mission and ESA's Rosetta mission. For the New Horizons Pluto encounter, a dozen sites around the world running OpenSpace networked simultaneously to view the close approach to Pluto as narrated in real time by mission control scientists at NASA's Jet Propulsion Laboratory. Subsequent image data from the Long Range Reconnaissance Imaging (LORRI) camera was released by NASA as it downloaded from the spacecraft in the following months. These images, along with post encounter navigation reconstruction data (NASA SPICE) were then used to update the OpenSpace New Horizons visualization, and create a February 2016 public program in which Deputy Project Scientist, Cathy Olkin, demonstrated these results visualized in OpenSpace to a sold out crowd in the AMNH Hayden Planetarium. As demonstrated with the New Horizons visualization in OpenSpace, the goals of the project are to make visible

  8. Binding across space and time in visual working memory.

    Science.gov (United States)

    Karlsen, Paul Johan; Allen, Richard J; Baddeley, Alan D; Hitch, Graham J

    2010-04-01

    Recent studies of visual short-term memory have suggested that the binding of features such as color and shape into remembered objects is relatively automatic. A series of seven experiments broadened this investigation by comparing the immediate retention of colored shapes with performance when color and shape were separated either spatially or temporally, with participants required actively to form the bound object. Attentional load was manipulated with a demanding concurrent task, and retention in working memory was then tested using a single recognition probe. Both spatial and temporal separation of features tended to impair performance, as did the concurrent task. There was, however, no evidence for greater attentional disruption of performance as a result of either spatial or temporal separation of features. Implications for the process of binding in visual working memory are discussed, and an interpretation is offered in terms of the episodic buffer component of working memory, which is assumed to be a passive store capable of holding bound objects, but not of performing the binding.

  9. Less is more: Sampling chemical space with active learning

    Science.gov (United States)

    Smith, Justin S.; Nebgen, Ben; Lubbers, Nicholas; Isayev, Olexandr; Roitberg, Adrian E.

    2018-06-01

    The development of accurate and transferable machine learning (ML) potentials for predicting molecular energetics is a challenging task. The process of data generation to train such ML potentials is a task neither well understood nor researched in detail. In this work, we present a fully automated approach for the generation of datasets with the intent of training universal ML potentials. It is based on the concept of active learning (AL) via Query by Committee (QBC), which uses the disagreement between an ensemble of ML potentials to infer the reliability of the ensemble's prediction. QBC allows the presented AL algorithm to automatically sample regions of chemical space where the ML potential fails to accurately predict the potential energy. AL improves the overall fitness of ANAKIN-ME (ANI) deep learning potentials in rigorous test cases by mitigating human biases in deciding what new training data to use. AL also reduces the training set size to a fraction of the data required when using naive random sampling techniques. To provide validation of our AL approach, we develop the COmprehensive Machine-learning Potential (COMP6) benchmark (publicly available on GitHub) which contains a diverse set of organic molecules. Active learning-based ANI potentials outperform the original random sampled ANI-1 potential with only 10% of the data, while the final active learning-based model vastly outperforms ANI-1 on the COMP6 benchmark after training to only 25% of the data. Finally, we show that our proposed AL technique develops a universal ANI potential (ANI-1x) that provides accurate energy and force predictions on the entire COMP6 benchmark. This universal ML potential achieves a level of accuracy on par with the best ML potentials for single molecules or materials, while remaining applicable to the general class of organic molecules composed of the elements CHNO.

  10. Leading effect of visual plant characteristics for functional uses of green spaces

    Directory of Open Access Journals (Sweden)

    Beyza Şat Güngör

    2016-07-01

    Full Text Available Plant materials have the ability to lead the people’s functional use purposes with their visual characteristics. In this study, we examined whether the functional use follows the plant materials’ visual characteristics like a big size tree’s shade use. As visual characteristics of the plants; size, texture, color, and planting design basics are considered. Six urban green spaces determined for this experimental field study in the center of Kırklareli Province, and then a site survey implemented to determine apparent visual characteristics of the plants and matched functional uses with their visual characteristics. Five functional use types determined according to the visual plant characteristics (sitting and resting, pedestrian transition, meeting point, walking and recreational uses. Best representing four photos of each green space’s plant materials are used in photo questionnaires. 89 photo questionnaires were conducted. Five functional use type options indicated in the questionnaire for each green space and one of the options were coinciding with the visual plant characteristics of that green space according to the site survey results. For the analyses of questionnaires; SPSS 17 statistical packages were used. As result; the hypothesis was confirmed by coinciding statistical analyses results with the site survey results.

  11. Visualizing Proportions and Dissimilarities by Space-filling Maps

    DEFF Research Database (Denmark)

    Carrizosa, Emilio; Guerrero, Vanesa; Morales, Dolores Romero

    2017-01-01

    In this paper we address the problem of visualizing a set of individuals, which have attached a statistical value given as a proportion, and a dissimilarity measure. Each individual is represented as a region within the unit square, in such a way that the area of the regions represent...... the proportions and the distances between them represent the dissimilarities. To enhance the interpretability of the representation, the regions are required to satisfy two properties. First, they must form a partition of the unit square, namely, the portions in which it is divided must cover its area without...... is solved heuristically by using the Large Neighborhood Search technique. The methodology proposed in this paper is applied to three real-world datasets: the first one concerning financial markets in Europe and Asia, the second one about the letters in the English alphabet, and finally the provinces...

  12. Interactive visualization of Earth and Space Science computations

    Science.gov (United States)

    Hibbard, William L.; Paul, Brian E.; Santek, David A.; Dyer, Charles R.; Battaiola, Andre L.; Voidrot-Martinez, Marie-Francoise

    1994-01-01

    Computers have become essential tools for scientists simulating and observing nature. Simulations are formulated as mathematical models but are implemented as computer algorithms to simulate complex events. Observations are also analyzed and understood in terms of mathematical models, but the number of these observations usually dictates that we automate analyses with computer algorithms. In spite of their essential role, computers are also barriers to scientific understanding. Unlike hand calculations, automated computations are invisible and, because of the enormous numbers of individual operations in automated computations, the relation between an algorithm's input and output is often not intuitive. This problem is illustrated by the behavior of meteorologists responsible for forecasting weather. Even in this age of computers, many meteorologists manually plot weather observations on maps, then draw isolines of temperature, pressure, and other fields by hand (special pads of maps are printed for just this purpose). Similarly, radiologists use computers to collect medical data but are notoriously reluctant to apply image-processing algorithms to that data. To these scientists with life-and-death responsibilities, computer algorithms are black boxes that increase rather than reduce risk. The barrier between scientists and their computations can be bridged by techniques that make the internal workings of algorithms visible and that allow scientists to experiment with their computations. Here we describe two interactive systems developed at the University of Wisconsin-Madison Space Science and Engineering Center (SSEC) that provide these capabilities to Earth and space scientists.

  13. Advanced Analysis and Visualization of Space Weather Phenomena

    Science.gov (United States)

    Murphy, Joshua J.

    As the world becomes more technologically reliant, the more susceptible society as a whole is to adverse interactions with the sun. This "space weather'' can produce significant effects on modern technology, from interrupting satellite service, to causing serious damage to Earth-side power grids. These concerns have, over the past several years, prompted an out-welling of research in an attempt to understand the processes governing, and to provide a means of forecasting, space weather events. The research presented in this thesis couples to current work aimed at understanding Coronal Mass Ejections (CMEs) and their influence on the evolution of Earth's magnetic field and associated Van Allen radiation belts. To aid in the analysis of how these solar wind transients affect Earth's magnetic field, a system named Geospace/Heliosphere Observation & Simulation Tool-kit (GHOSTkit), along with its python analysis tools, GHOSTpy, has been devised to calculate the adiabatic invariants of trapped particle motion within Earth's magnetic field. These invariants aid scientists in ordering observations of the radiation belts, providing a more natural presentation of data, but can be computationally expensive to calculate. The GHOSTpy system, in the phase presented here, is aimed at providing invariant calculations based on LFM magnetic field simulation data. This research first examines an ideal dipole application to gain understanding on system performance. Following this, the challenges of applying the algorithms to gridded LFM MHD data is examined. Performance profiles are then presented, followed by a real-world application of the system.

  14. Transformation of artistic ideas of visual art into architectural space

    Directory of Open Access Journals (Sweden)

    Enyutina Ekaterina Dmitrievna

    2014-04-01

    Full Text Available Transformation of a two-dimensional composition into a volumetric and spatial solution is based on the abstract art painting. Theoretical part of the style of the twenties laid the basic groundwork for this solution. The group "Unovis" under the supervision of Malevich aimed to create the "Suprematic Utilitarian World": the development of a new architecture, a new ornament and new forms of furniture, as well as a new type of a modern book. The theory of P. Mondrian and the group "Style" had a tremendous effect on the architecture of the twentieth century, and first of all due to the “Bauhaus” school of design, that clearly represented the rationalistic principles of architecture. Originated in art a new understanding of the material world was reflected in architecture in the most striking and decisive manner. It can be illustrated by the example of modern prominent architects who also use the methods created by artists of the early twentieth century. For example, a designer and architect Zaha Hadid uses this method in many of her projects. When modeling her future projects she designs a volumetric and spatial conceptual model - composition of desired architectural space, using suprematic composition as a basis. Modeling method makes it possible to solve a range of problems competently and methodically interesting. Their solution is necessary for the architectural practice, conceptual design and training. Among the tasks lying "on the surface" of architectural creativity we can emphasize the following: 1. Abstracting. The aim is to design a volumetric and spatial conceptual model - a composition of desired architectural space, which will reflect reality from a new angle. 2. Conceptualization allows to reveal the main idea, the basic concept, the design principle in artistic activity, to investigate the conditions of functioning and aesthetic perception of architectural work in general. 3. Defining the structure and variability in the modular

  15. Women And Visual Representations Of Space In Two Chinese Film Adaptations Of Hamlet

    Directory of Open Access Journals (Sweden)

    CHEANG WAI FONG

    2014-12-01

    Full Text Available This paper studies two Chinese film adaptations of Shakespeare’s Hamlet, Xiaogang Feng’s The Banquet (2006 and Sherwood Hu’s Prince of the Himalayas (2006, by focusing on their visual representations of spaces allotted to women. Its thesis is that even though on the original Shakespearean stage details of various spaces might not be as vividly represented as in modern film productions, spaces are still crucial dramatic elements imbued with powerful significations. By analyzing the two Chinese film adaptations alongside the original Hamlet text, the paper attempts to reinterpret their different representations of spaces in relation to their different historical-cultural gender notions.

  16. Politicizing Precarity, Producing Visual Dialogues on Migration: Transnational Public Spaces in Social Movements

    Directory of Open Access Journals (Sweden)

    Nicole Doerr

    2010-05-01

    Full Text Available In a period characterized by weak public consent over European integration, the purpose of this article is to analyze images created by transnational activists who aim to politicize the social question and migrants' subjectivity in the European Union (EU. I will explore the content of posters and images produced by social movement activists for their local and joint European protest actions, and shared on blogs and homepages. I suspect that the underexplored visual dimension of emerging transnational public spaces created by activists offers a promising field of analysis. My aim is to give an empirical example of how we can study potential "visual dialogues" in transnational public spaces created within social movements. An interesting case for visual analysis is the grassroots network of local activist groups that created a joint "EuroMayday" against precarity and which mobilized protest parades across Europe. I will first discuss the relevance of "visual dialogues" in the EuroMayday protests from the perspective of discursive theories of democracy and social movements studies. Then I discuss activists' transnational sharing of visual images as a potentially innovative cultural practice aimed at politicizing and re-interpreting official imaginaries of citizenship, labor flexibility and free mobility in Europe. I also discuss the limits on emerging transnational "visual dialogues" posed by place-specific visual cultures. URN: urn:nbn:de:0114-fqs1002308

  17. Stereo visualization in the ground segment tasks of the science space missions

    Science.gov (United States)

    Korneva, Natalia; Nazarov, Vladimir; Mogilevsky, Mikhail; Nazirov, Ravil

    The ground segment is one of the key components of any science space mission. Its functionality substantially defines the scientific effectiveness of the experiment as a whole. And it should be noted that its outstanding feature (in contrast to the other information systems of the scientific space projects) is interaction between researcher and project information system in order to interpret data being obtained during experiments. Therefore the ability to visualize the data being processed is essential prerequisite for ground segment's software and the usage of modern technological solutions and approaches in this area will allow increasing science return in general and providing a framework for new experiments creation. Mostly for the visualization of data being processed 2D and 3D graphics are used that is caused by the traditional visualization tools capabilities. Besides that the stereo data visualization methods are used actively in solving some tasks. However their usage is usually limited to such tasks as visualization of virtual and augmented reality, remote sensing data processing and suchlike. Low prevalence of stereo visualization methods in solving science ground segment tasks is primarily explained by extremely high cost of the necessary hardware. But recently appeared low cost hardware solutions for stereo visualization based on the page-flip method of views separation. In this case it seems promising to use the stereo visualization as an instrument for investigation of a wide range of problems, mainly for stereo visualization of complex physical processes as well as mathematical abstractions and models. The article is concerned with an attempt to use this approach. It describes the details and problems of using stereo visualization (page-flip method based on NVIDIA 3D Vision Kit, graphic processor GeForce) for display of some datasets of magnetospheric satellite onboard measurements and also in development of the software for manual stereo matching.

  18. Research-Grade 3D Virtual Astromaterials Samples: Novel Visualization of NASA's Apollo Lunar Samples and Antarctic Meteorite Samples to Benefit Curation, Research, and Education

    Science.gov (United States)

    Blumenfeld, E. H.; Evans, C. A.; Oshel, E. R.; Liddle, D. A.; Beaulieu, K. R.; Zeigler, R. A.; Righter, K.; Hanna, R. D.; Ketcham, R. A.

    2017-01-01

    NASA's vast and growing collections of astromaterials are both scientifically and culturally significant, requiring unique preservation strategies that need to be recurrently updated to contemporary technological capabilities and increasing accessibility demands. New technologies have made it possible to advance documentation and visualization practices that can enhance conservation and curation protocols for NASA's Astromaterials Collections. Our interdisciplinary team has developed a method to create 3D Virtual Astromaterials Samples (VAS) of the existing collections of Apollo Lunar Samples and Antarctic Meteorites. Research-grade 3D VAS will virtually put these samples in the hands of researchers and educators worldwide, increasing accessibility and visibility of these significant collections. With new sample return missions on the horizon, it is of primary importance to develop advanced curation standards for documentation and visualization methodologies.

  19. Visualization of the Left Extraperitoneal Space and Spatial Relationships to Its Related Spaces by the Visible Human Project

    Science.gov (United States)

    Xu, Haotong; Li, Xiaoxiao; Zhang, Zhengzhi; Qiu, Mingguo; Mu, Qiwen; Wu, Yi; Tan, Liwen; Zhang, Shaoxiang; Zhang, Xiaoming

    2011-01-01

    Background The major hindrance to multidetector CT imaging of the left extraperitoneal space (LES), and the detailed spatial relationships to its related spaces, is that there is no obvious density difference between them. Traditional gross anatomy and thick-slice sectional anatomy imagery are also insufficient to show the anatomic features of this narrow space in three-dimensions (3D). To overcome these obstacles, we used a new method to visualize the anatomic features of the LES and its spatial associations with related spaces, in random sections and in 3D. Methods In conjunction with Mimics® and Amira® software, we used thin-slice cross-sectional images of the upper abdomen, retrieved from the Chinese and American Visible Human dataset and the Chinese Virtual Human dataset, to display anatomic features of the LES and spatial relationships of the LES to its related spaces, especially the gastric bare area. The anatomic location of the LES was presented on 3D sections reconstructed from CVH2 images and CT images. Principal Findings What calls for special attention of our results is the LES consists of the left sub-diaphragmatic fat space and gastric bare area. The appearance of the fat pad at the cardiac notch contributes to converting the shape of the anteroexternal surface of the LES from triangular to trapezoidal. Moreover, the LES is adjacent to the lesser omentum and the hepatic bare area in the anterointernal and right rear direction, respectively. Conclusion The LES and its related spaces were imaged in 3D using visualization technique for the first time. This technique is a promising new method for exploring detailed communication relationships among other abdominal spaces, and will promote research on the dynamic extension of abdominal diseases, such as acute pancreatitis and intra-abdominal carcinomatosis. PMID:22087259

  20. Habituation to novel visual vestibular environments with special reference to space flight

    Science.gov (United States)

    Young, L. R.; Kenyon, R. V.; Oman, C. M.

    1981-01-01

    The etiology of space motion sickness and the underlying physiological mechanisms associated with spatial orientation in a space environment were investigated. Human psychophysical experiments were used as the basis for the research concerning the interaction of visual and vestibular cues in the development of motion sickness. Particular emphasis is placed on the conflict theory in terms of explaining these interactions. Research on the plasticity of the vestibulo-ocular reflex is discussed.

  1. Autonomous spatially adaptive sampling in experiments based on curvature, statistical error and sample spacing with applications in LDA measurements

    Science.gov (United States)

    Theunissen, Raf; Kadosh, Jesse S.; Allen, Christian B.

    2015-06-01

    Spatially varying signals are typically sampled by collecting uniformly spaced samples irrespective of the signal content. For signals with inhomogeneous information content, this leads to unnecessarily dense sampling in regions of low interest or insufficient sample density at important features, or both. A new adaptive sampling technique is presented directing sample collection in proportion to local information content, capturing adequately the short-period features while sparsely sampling less dynamic regions. The proposed method incorporates a data-adapted sampling strategy on the basis of signal curvature, sample space-filling, variable experimental uncertainty and iterative improvement. Numerical assessment has indicated a reduction in the number of samples required to achieve a predefined uncertainty level overall while improving local accuracy for important features. The potential of the proposed method has been further demonstrated on the basis of Laser Doppler Anemometry experiments examining the wake behind a NACA0012 airfoil and the boundary layer characterisation of a flat plate.

  2. Perceptual geometry of space and form: visual perception of natural scenes and their virtual representation

    Science.gov (United States)

    Assadi, Amir H.

    2001-11-01

    Perceptual geometry is an emerging field of interdisciplinary research whose objectives focus on study of geometry from the perspective of visual perception, and in turn, apply such geometric findings to the ecological study of vision. Perceptual geometry attempts to answer fundamental questions in perception of form and representation of space through synthesis of cognitive and biological theories of visual perception with geometric theories of the physical world. Perception of form and space are among fundamental problems in vision science. In recent cognitive and computational models of human perception, natural scenes are used systematically as preferred visual stimuli. Among key problems in perception of form and space, we have examined perception of geometry of natural surfaces and curves, e.g. as in the observer's environment. Besides a systematic mathematical foundation for a remarkably general framework, the advantages of the Gestalt theory of natural surfaces include a concrete computational approach to simulate or recreate images whose geometric invariants and quantities might be perceived and estimated by an observer. The latter is at the very foundation of understanding the nature of perception of space and form, and the (computer graphics) problem of rendering scenes to visually invoke virtual presence.

  3. Perceived size and perceived direction: The interplay of the two descriptors of visual space

    Czech Academy of Sciences Publication Activity Database

    Šikl, Radovan; Šimeček, Michal

    2011-01-01

    Roč. 40, č. 8 (2011), s. 953-961 ISSN 0301-0066 R&D Projects: GA ČR GPP407/10/P566 Institutional research plan: CEZ:AV0Z70250504 Keywords : visual space * spatial descriptors * size judgments * direction judgments * parameterization Subject RIV: AN - Psychology Impact factor: 1.313, year: 2011

  4. Visual scan-path analysis with feature space transient fixation moments

    Science.gov (United States)

    Dempere-Marco, Laura; Hu, Xiao-Peng; Yang, Guang-Zhong

    2003-05-01

    The study of eye movements provides useful insight into the cognitive processes underlying visual search tasks. The analysis of the dynamics of eye movements has often been approached from a purely spatial perspective. In many cases, however, it may not be possible to define meaningful or consistent dynamics without considering the features underlying the scan paths. In this paper, the definition of the feature space has been attempted through the concept of visual similarity and non-linear low dimensional embedding, which defines a mapping from the image space into a low dimensional feature manifold that preserves the intrinsic similarity of image patterns. This has enabled the definition of perceptually meaningful features without the use of domain specific knowledge. Based on this, this paper introduces a new concept called Feature Space Transient Fixation Moments (TFM). The approach presented tackles the problem of feature space representation of visual search through the use of TFM. We demonstrate the practical values of this concept for characterizing the dynamics of eye movements in goal directed visual search tasks. We also illustrate how this model can be used to elucidate the fundamental steps involved in skilled search tasks through the evolution of transient fixation moments.

  5. Statistical inference and visualization in scale-space for spatially dependent images

    KAUST Repository

    Vaughan, Amy; Jun, Mikyoung; Park, Cheolwoo

    2012-01-01

    SiZer (SIgnificant ZERo crossing of the derivatives) is a graphical scale-space visualization tool that allows for statistical inferences. In this paper we develop a spatial SiZer for finding significant features and conducting goodness-of-fit tests

  6. A BHR Composite Network-Based Visualization Method for Deformation Risk Level of Underground Space.

    Directory of Open Access Journals (Sweden)

    Wei Zheng

    Full Text Available This study proposes a visualization processing method for the deformation risk level of underground space. The proposed method is based on a BP-Hopfield-RGB (BHR composite network. Complex environmental factors are integrated in the BP neural network. Dynamic monitoring data are then automatically classified in the Hopfield network. The deformation risk level is combined with the RGB color space model and is displayed visually in real time, after which experiments are conducted with the use of an ultrasonic omnidirectional sensor device for structural deformation monitoring. The proposed method is also compared with some typical methods using a benchmark dataset. Results show that the BHR composite network visualizes the deformation monitoring process in real time and can dynamically indicate dangerous zones.

  7. Once upon a Spacetime: Visual Storytelling in Cognitive and Geotemporal Information Spaces

    Directory of Open Access Journals (Sweden)

    Eva Mayr

    2018-03-01

    Full Text Available Stories are an essential mode, not only of human communication—but also of thinking. This paper reflects on the internalization of stories from a cognitive perspective and outlines a visualization framework for supporting the analysis of narrative geotemporal data. We discuss the strengths and limitations of standard techniques for representing spatiotemporal data (coordinated views, animation or slideshow, layer superimposition, juxtaposition, and space-time cube representation and think about their effects on mental representations of a story. Many current visualization systems offer multiple views and allow the user to investigate different aspects of a story. From a cognitive point of view, it is important to assist users in reconnecting these multiple perspectives into a coherent picture—e.g., by utilizing coherence techniques like seamless transitions. A case study involving visualizing biographical narratives illustrates how the design of advanced visualization systems can be cognitively and conceptually grounded to support the construction of an integrated internal representation.

  8. Vector model for mapping of visual space to subjective 4-D sphere

    International Nuclear Information System (INIS)

    Matuzevicius, Dalius; Vaitkevicius, Henrikas

    2014-01-01

    Here we present a mathematical model of binocular vision that maps a visible physical world to a subjective perception of it. The subjective space is a set of 4-D vectors whose components are outputs of four monocular neurons from each of the two eyes. Monocular neurons have one of the four types of concentric receptive fields with Gabor-like weighting coefficients. Next this vector representation of binocular vision is implemented as a pool of neurons where each of them is selective to the object's particular location in a 3-D visual space. Formally each point of the visual space is being projected onto a 4-D sphere. Proposed model allows determination of subjective distances in depth and direction, provides computational means for determination of Panum's area and explains diplopia and allelotropia

  9. The space-time cube revisited it potential to visualize mobile data

    DEFF Research Database (Denmark)

    Kveladze, Irma; Kraak, Menno-Jan

    2010-01-01

    and analyse the complex movement patterns (COST - MOVE, 2009; Keim et al., 2008). This results in the development of new visual analytical and exploratory tools, while existing solutions receive new attention (Andrienko et al., 2007). Among the last the Space Time Cube (STC) can be grouped. It has the ability...... to provide information about spatial and temporal relationships. The original idea of STC was introduced by Hägerstrand (1970). It represents an elegant framework to study spatio-temporal characteristics of human activity (Kraak and Koussoulakou, 2005). The vertical dimension of cube represents time (t......), while horizontal axes represent space (x, y). Basic elements represented in the cube are the Space-time Path (STP), Stations, and the Space Time Prism (STP). The STP represents the continuous activities of movements undertaken in space and time displayed as trajectory. It has been studied...

  10. Reachable Distance Space: Efficient Sampling-Based Planning for Spatially Constrained Systems

    KAUST Repository

    Xinyu Tang,; Thomas, S.; Coleman, P.; Amato, N. M.

    2010-01-01

    reachable distance space (RD-space), in which all configurations lie in the set of constraint-satisfying subspaces. This enables us to directly sample the constrained subspaces with complexity linear in the number of the robot's degrees of freedom

  11. Fabrication Techniques of Stretchable and Cloth Electroadhesion Samples for Implementation on Devices with Space Application

    Data.gov (United States)

    National Aeronautics and Space Administration — The purpose of this study is to determine materials and fabrication techniques for efficient space-rated electroadhesion (EA) samples. Liquid metals, including...

  12. COGNITIVE APPROACH TO THE STEREOTYPICAL PLACEMENT OF WOMEN IN VISUAL ADVERTISING SPACE

    Directory of Open Access Journals (Sweden)

    Simona Amankevičiūtė

    2013-10-01

    Full Text Available This article conceptualizes the image of women in the sexist advertisements of the 1950s and 60s and in current advertising discourse by combining the research traditions of both cognitive linguistics and semiotic image analysis. The aim of the research is to try to evaluate how canonical positionings of women in the hyperreality of advertisements may slip into everyday discourse (stereotype space and to present an interpretation of the creators’ visual lexicon. It is presumed that the traditional (formed by feminist linguists approach to sexist advertising as an expression of an androcentric worldview in culture may be considered too subjectively critical. This study complements an interpretation of women’s social roles in advertising with cognitive linguistic insights on the subject’s (woman’s visualisation and positioning in ad space. The article briefly overviews the feminist approach to women’s place in public discourse, and discusses the relevance of Goffman’s Gender Studies to an investigation of women’s images in advertising. The scholar’s contribution to adapting cognitive frame theory for an investigation of visuals in advertising is also discussed. The analysed ads were divided into three groups by Goffman’s classification, according to the concrete visuals used to represent women’s bodies or parts thereof: dismemberment, commodification, and subordination ritual. The classified stereotypical images of women’s bodies are discussed as visual metonymy, visual metaphor, and image schemas.

  13. Color-Space-Based Visual-MIMO for V2X Communication †

    Science.gov (United States)

    Kim, Jai-Eun; Kim, Ji-Won; Park, Youngil; Kim, Ki-Doo

    2016-01-01

    In this paper, we analyze the applicability of color-space-based, color-independent visual-MIMO for V2X. We aim to achieve a visual-MIMO scheme that can maintain the original color and brightness while performing seamless communication. We consider two scenarios of GCM based visual-MIMO for V2X. One is a multipath transmission using visual-MIMO networking and the other is multi-node V2X communication. In the scenario of multipath transmission, we analyze the channel capacity numerically and we illustrate the significance of networking information such as distance, reference color (symbol), and multiplexing-diversity mode transitions. In addition, in the V2X scenario of multiple access, we may achieve the simultaneous multiple access communication without node interferences by dividing the communication area using image processing. Finally, through numerical simulation, we show the superior SER performance of the visual-MIMO scheme compared with LED-PD communication and show the numerical result of the GCM based visual-MIMO channel capacity versus distance. PMID:27120603

  14. Color-Space-Based Visual-MIMO for V2X Communication

    Directory of Open Access Journals (Sweden)

    Jai-Eun Kim

    2016-04-01

    Full Text Available In this paper, we analyze the applicability of color-space-based, color-independent visual-MIMO for V2X. We aim to achieve a visual-MIMO scheme that can maintain the original color and brightness while performing seamless communication. We consider two scenarios of GCM based visual-MIMO for V2X. One is a multipath transmission using visual-MIMO networking and the other is multi-node V2X communication. In the scenario of multipath transmission, we analyze the channel capacity numerically and we illustrate the significance of networking information such as distance, reference color (symbol, and multiplexing-diversity mode transitions. In addition, in the V2X scenario of multiple access, we may achieve the simultaneous multiple access communication without node interferences by dividing the communication area using image processing. Finally, through numerical simulation, we show the superior SER performance of the visual-MIMO scheme compared with LED-PD communication and show the numerical result of the GCM based visual-MIMO channel capacity versus distance.

  15. Color-Space-Based Visual-MIMO for V2X Communication.

    Science.gov (United States)

    Kim, Jai-Eun; Kim, Ji-Won; Park, Youngil; Kim, Ki-Doo

    2016-04-23

    In this paper, we analyze the applicability of color-space-based, color-independent visual-MIMO for V2X. We aim to achieve a visual-MIMO scheme that can maintain the original color and brightness while performing seamless communication. We consider two scenarios of GCM based visual-MIMO for V2X. One is a multipath transmission using visual-MIMO networking and the other is multi-node V2X communication. In the scenario of multipath transmission, we analyze the channel capacity numerically and we illustrate the significance of networking information such as distance, reference color (symbol), and multiplexing-diversity mode transitions. In addition, in the V2X scenario of multiple access, we may achieve the simultaneous multiple access communication without node interferences by dividing the communication area using image processing. Finally, through numerical simulation, we show the superior SER performance of the visual-MIMO scheme compared with LED-PD communication and show the numerical result of the GCM based visual-MIMO channel capacity versus distance.

  16. A State Space Model for Spatial Updating of Remembered Visual Targets during Eye Movements.

    Science.gov (United States)

    Mohsenzadeh, Yalda; Dash, Suryadeep; Crawford, J Douglas

    2016-01-01

    In the oculomotor system, spatial updating is the ability to aim a saccade toward a remembered visual target position despite intervening eye movements. Although this has been the subject of extensive experimental investigation, there is still no unifying theoretical framework to explain the neural mechanism for this phenomenon, and how it influences visual signals in the brain. Here, we propose a unified state-space model (SSM) to account for the dynamics of spatial updating during two types of eye movement; saccades and smooth pursuit. Our proposed model is a non-linear SSM and implemented through a recurrent radial-basis-function neural network in a dual Extended Kalman filter (EKF) structure. The model parameters and internal states (remembered target position) are estimated sequentially using the EKF method. The proposed model replicates two fundamental experimental observations: continuous gaze-centered updating of visual memory-related activity during smooth pursuit, and predictive remapping of visual memory activity before and during saccades. Moreover, our model makes the new prediction that, when uncertainty of input signals is incorporated in the model, neural population activity and receptive fields expand just before and during saccades. These results suggest that visual remapping and motor updating are part of a common visuomotor mechanism, and that subjective perceptual constancy arises in part from training the visual system on motor tasks.

  17. Visual Sample Plan Version 7.0 User's Guide

    Energy Technology Data Exchange (ETDEWEB)

    Matzke, Brett D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Newburn, Lisa LN [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hathaway, John E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Bramer, Lisa M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Wilson, John E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Dowson, Scott T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Sego, Landon H. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Pulsipher, Brent A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2014-03-01

    User's guide for VSP 7.0 This user's guide describes Visual Sample Plan (VSP) Version 7.0 and provides instructions for using the software. VSP selects the appropriate number and location of environmental samples to ensure that the results of statistical tests performed to provide input to risk decisions have the required confidence and performance. VSP Version 7.0 provides sample-size equations or algorithms needed by specific statistical tests appropriate for specific environmental sampling objectives. It also provides data quality assessment and statistical analysis functions to support evaluation of the data and determine whether the data support decisions regarding sites suspected of contamination. The easy-to-use program is highly visual and graphic. VSP runs on personal computers with Microsoft Windows operating systems (XP, Vista, Windows 7, and Windows 8). Designed primarily for project managers and users without expertise in statistics, VSP is applicable to two- and three-dimensional populations to be sampled (e.g., rooms and buildings, surface soil, a defined layer of subsurface soil, water bodies, and other similar applications) for studies of environmental quality. VSP is also applicable for designing sampling plans for assessing chem/rad/bio threat and hazard identification within rooms and buildings, and for designing geophysical surveys for unexploded ordnance (UXO) identification.

  18. Communications Relay and Human-Assisted Sample Return from the Deep Space Gateway

    Science.gov (United States)

    Cichan, T.; Hopkins, J. B.; Bierhaus, B.; Murrow, D. W.

    2018-02-01

    The Deep Space Gateway can enable or enhance exploration of the lunar surface through two capabilities: 1. communications relay, opening up access to the lunar farside, and 2. sample return, enhancing the ability to return large sample masses.

  19. Universal Sample Preparation Module for Molecular Analysis in Space, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Lynntech proposes to develop and demonstrate the ability of a compact, light-weight, and automated universal sample preparation module (USPM) to process samples from...

  20. Confinement has no effect on visual space perception: The results of the Mars-500 experiment

    Czech Academy of Sciences Publication Activity Database

    Šikl, Radovan; Šimeček, Michal

    2014-01-01

    Roč. 76, č. 2 (2014), s. 438-451 ISSN 1943-3921 R&D Projects: GA ČR(CZ) GAP407/12/2528 Institutional support: RVO:68081740 Keywords : visual space perception * perspective * Mars-500 * size judgment * size constancy * confinement Subject RIV: AN - Psychology Impact factor: 2.168, year: 2014 http://dx.doi.org/10.3758/s13414-013-0594-y

  1. Audible vision for the blind and visually impaired in indoor open spaces.

    Science.gov (United States)

    Yu, Xunyi; Ganz, Aura

    2012-01-01

    In this paper we introduce Audible Vision, a system that can help blind and visually impaired users navigate in large indoor open spaces. The system uses computer vision to estimate the location and orientation of the user, and enables the user to perceive his/her relative position to a landmark through 3D audio. Testing shows that Audible Vision can work reliably in real-life ever-changing environment crowded with people.

  2. 3D visualization and finite element mesh formation from wood anatomy samples, Part II – Algorithm approach

    Directory of Open Access Journals (Sweden)

    Petr Koňas

    2009-01-01

    Full Text Available Paper presents new original application WOOD3D in form of program code assembling. The work extends the previous article “Part I – Theoretical approach” in detail description of implemented C++ classes of utilized projects Visualization Toolkit (VTK, Insight Toolkit (ITK and MIMX. Code is written in CMake style and it is available as multiplatform application. Currently GNU Linux (32/64b and MS Windows (32/64b platforms were released. Article discusses various filter classes for image filtering. Mainly Otsu and Binary threshold filters are classified for anatomy wood samples thresholding. Registration of images series is emphasized for difference of colour spaces compensation is included. Resulted work flow of image analysis is new methodological approach for images processing through the composition, visualization, filtering, registration and finite element mesh formation. Application generates script in ANSYS parametric design language (APDL which is fully compatible with ANSYS finite element solver and designer environment. The script includes the whole definition of unstructured finite element mesh formed by individual elements and nodes. Due to simple notation, the same script can be used for generation of geometrical entities in element positions. Such formed volumetric entities are prepared for further geometry approximation (e.g. by boolean or more advanced methods. Hexahedral and tetrahedral types of mesh elements are formed on user request with specified mesh options. Hexahedral meshes are formed both with uniform element size and with anisotropic character. Modified octree method for hexahedral mesh with anisotropic character was declared in application. Multicore CPUs in the application are supported for fast image analysis realization. Visualization of image series and consequent 3D image are realized in VTK format sufficiently known and public format, visualized in GPL application Paraview. Future work based on mesh

  3. Integrated visualization of simulation results and experimental devices in virtual-reality space

    International Nuclear Information System (INIS)

    Ohtani, Hiroaki; Ishiguro, Seiji; Shohji, Mamoru; Kageyama, Akira; Tamura, Yuichi

    2011-01-01

    We succeeded in integrating the visualization of both simulation results and experimental device data in virtual-reality (VR) space using CAVE system. Simulation results are shown using Virtual LHD software, which can show magnetic field line, particle trajectory, and isosurface of plasma pressure of the Large Helical Device (LHD) based on data from the magnetohydrodynamics equilibrium simulation. A three-dimensional mouse, or wand, determines the initial position and pitch angle of a drift particle or the starting point of a magnetic field line, interactively in the VR space. The trajectory of a particle and the stream-line of magnetic field are calculated using the Runge-Kutta-Huta integration method on the basis of the results obtained after pointing the initial condition. The LHD vessel is objectively visualized based on CAD-data. By using these results and data, the simulated LHD plasma can be interactively drawn in the objective description of the LHD experimental vessel. Through this integrated visualization, it is possible to grasp the three-dimensional relationship of the positions between the device and plasma in the VR space, opening a new path in contribution to future research. (author)

  4. Characteristics of eye-position gain field populations determine geometry of visual space

    Directory of Open Access Journals (Sweden)

    Sidney R Lehky

    2016-01-01

    Full Text Available We have previously demonstrated differences in eye-position spatial maps for anterior inferotemporal cortex (AIT in the ventral stream and lateral intraparietal cortex (LIP in the dorsal stream, based on population decoding of gaze angle modulations of neural visual responses (i.e., eye-position gain fields. Here we explore the basis of such spatial encoding differences through modeling of gain field characteristics. We created a population of model neurons, each having a different eye-position gain field. This population was used to reconstruct eye-position visual space using multidimensional scaling. As gain field shapes have never been well established experimentally, we examined different functions, including planar, sigmoidal, elliptical, hyperbolic, and mixtures of those functions. All functions successfully recovered positions, indicating weak constraints on allowable gain field shapes. We then used a genetic algorithm to modify the characteristics of model gain field populations until the recovered spatial maps closely matched those derived from monkey neurophysiological data in AIT and LIP. The primary differences found between model AIT and LIP gain fields were that AIT gain fields were more foveally dominated. That is, gain fields in AIT operated on smaller spatial scales and smaller dispersions than in LIP. Thus we show that the geometry of eye-position visual space depends on the population characteristics of gain fields, and that differences in gain field characteristics for different cortical areas may underlie differences in the representation of space.

  5. In Situ Visualization of the Phase Behavior of Oil Samples Under Refinery Process Conditions.

    Science.gov (United States)

    Laborde-Boutet, Cedric; McCaffrey, William C

    2017-02-21

    To help address production issues in refineries caused by the fouling of process units and lines, we have developed a setup as well as a method to visualize the behavior of petroleum samples under process conditions. The experimental setup relies on a custom-built micro-reactor fitted with a sapphire window at the bottom, which is placed over the objective of an inverted microscope equipped with a cross-polarizer module. Using reflection microscopy enables the visualization of opaque samples, such as petroleum vacuum residues, or asphaltenes. The combination of the sapphire window from the micro-reactor with the cross-polarizer module of the microscope on the light path allows high-contrast imaging of isotropic and anisotropic media. While observations are carried out, the micro-reactor can be heated to the temperature range of cracking reactions (up to 450 °C), can be subjected to H2 pressure relevant to hydroconversion reactions (up to 16 MPa), and can stir the sample by magnetic coupling. Observations are typically carried out by taking snapshots of the sample under cross-polarized light at regular time intervals. Image analyses may not only provide information on the temperature, pressure, and reactive conditions yielding phase separation, but may also give an estimate of the evolution of the chemical (absorption/reflection spectra) and physical (refractive index) properties of the sample before the onset of phase separation.

  6. Sampling large random knots in a confined space

    International Nuclear Information System (INIS)

    Arsuaga, J; Blackstone, T; Diao, Y; Hinson, K; Karadayi, E; Saito, M

    2007-01-01

    DNA knots formed under extreme conditions of condensation, as in bacteriophage P4, are difficult to analyze experimentally and theoretically. In this paper, we propose to use the uniform random polygon model as a supplementary method to the existing methods for generating random knots in confinement. The uniform random polygon model allows us to sample knots with large crossing numbers and also to generate large diagrammatically prime knot diagrams. We show numerically that uniform random polygons sample knots with large minimum crossing numbers and certain complicated knot invariants (as those observed experimentally). We do this in terms of the knot determinants or colorings. Our numerical results suggest that the average determinant of a uniform random polygon of n vertices grows faster than O(e n 2 )). We also investigate the complexity of prime knot diagrams. We show rigorously that the probability that a randomly selected 2D uniform random polygon of n vertices is almost diagrammatically prime goes to 1 as n goes to infinity. Furthermore, the average number of crossings in such a diagram is at the order of O(n 2 ). Therefore, the two-dimensional uniform random polygons offer an effective way in sampling large (prime) knots, which can be useful in various applications

  7. Sampling large random knots in a confined space

    Science.gov (United States)

    Arsuaga, J.; Blackstone, T.; Diao, Y.; Hinson, K.; Karadayi, E.; Saito, M.

    2007-09-01

    DNA knots formed under extreme conditions of condensation, as in bacteriophage P4, are difficult to analyze experimentally and theoretically. In this paper, we propose to use the uniform random polygon model as a supplementary method to the existing methods for generating random knots in confinement. The uniform random polygon model allows us to sample knots with large crossing numbers and also to generate large diagrammatically prime knot diagrams. We show numerically that uniform random polygons sample knots with large minimum crossing numbers and certain complicated knot invariants (as those observed experimentally). We do this in terms of the knot determinants or colorings. Our numerical results suggest that the average determinant of a uniform random polygon of n vertices grows faster than O(e^{n^2}) . We also investigate the complexity of prime knot diagrams. We show rigorously that the probability that a randomly selected 2D uniform random polygon of n vertices is almost diagrammatically prime goes to 1 as n goes to infinity. Furthermore, the average number of crossings in such a diagram is at the order of O(n2). Therefore, the two-dimensional uniform random polygons offer an effective way in sampling large (prime) knots, which can be useful in various applications.

  8. Sampling large random knots in a confined space

    Energy Technology Data Exchange (ETDEWEB)

    Arsuaga, J [Department of Mathematics, San Francisco State University, 1600 Holloway Ave, San Francisco, CA 94132 (United States); Blackstone, T [Department of Computer Science, San Francisco State University, 1600 Holloway Ave., San Francisco, CA 94132 (United States); Diao, Y [Department of Mathematics and Statistics, University of North Carolina at Charlotte, Charlotte, NC 28223 (United States); Hinson, K [Department of Mathematics and Statistics, University of North Carolina at Charlotte, Charlotte, NC 28223 (United States); Karadayi, E [Department of Mathematics, University of South Florida, 4202 E Fowler Avenue, Tampa, FL 33620 (United States); Saito, M [Department of Mathematics, University of South Florida, 4202 E Fowler Avenue, Tampa, FL 33620 (United States)

    2007-09-28

    DNA knots formed under extreme conditions of condensation, as in bacteriophage P4, are difficult to analyze experimentally and theoretically. In this paper, we propose to use the uniform random polygon model as a supplementary method to the existing methods for generating random knots in confinement. The uniform random polygon model allows us to sample knots with large crossing numbers and also to generate large diagrammatically prime knot diagrams. We show numerically that uniform random polygons sample knots with large minimum crossing numbers and certain complicated knot invariants (as those observed experimentally). We do this in terms of the knot determinants or colorings. Our numerical results suggest that the average determinant of a uniform random polygon of n vertices grows faster than O(e{sup n{sup 2}}). We also investigate the complexity of prime knot diagrams. We show rigorously that the probability that a randomly selected 2D uniform random polygon of n vertices is almost diagrammatically prime goes to 1 as n goes to infinity. Furthermore, the average number of crossings in such a diagram is at the order of O(n{sup 2}). Therefore, the two-dimensional uniform random polygons offer an effective way in sampling large (prime) knots, which can be useful in various applications.

  9. Dielectric sample with two-layer charge distribution for space charge calibration purposes

    DEFF Research Database (Denmark)

    Holbøll, Joachim; Henriksen, Mogens; Rasmussen, C.

    2002-01-01

    In the present paper is described a dielectric test sample with two very narrow concentrations of bulk charges, achieved by two internal electrodes not affecting the acoustical properties of the sample, a fact important for optimal application of most space charge measuring systems. Space charge...

  10. Human-Robot Site Survey and Sampling for Space Exploration

    Science.gov (United States)

    Fong, Terrence; Bualat, Maria; Edwards, Laurence; Flueckiger, Lorenzo; Kunz, Clayton; Lee, Susan Y.; Park, Eric; To, Vinh; Utz, Hans; Ackner, Nir

    2006-01-01

    NASA is planning to send humans and robots back to the Moon before 2020. In order for extended missions to be productive, high quality maps of lunar terrain and resources are required. Although orbital images can provide much information, many features (local topography, resources, etc) will have to be characterized directly on the surface. To address this need, we are developing a system to perform site survey and sampling. The system includes multiple robots and humans operating in a variety of team configurations, coordinated via peer-to-peer human-robot interaction. In this paper, we present our system design and describe planned field tests.

  11. 3D visualization and finite element mesh formation from wood anatomy samples, Part I – Theoretical approach

    Directory of Open Access Journals (Sweden)

    Petr Koňas

    2009-01-01

    Full Text Available The work summarizes created algorithms for formation of finite element (FE mesh which is derived from bitmap pattern. Process of registration, segmentation and meshing is described in detail. C++ library of STL from Insight Toolkit (ITK Project together with Visualization Toolkit (VTK were used for base processing of images. Several methods for appropriate mesh output are discussed. Multiplatform application WOOD3D for the task under GNU GPL license was assembled. Several methods of segmentation and mainly different ways of contouring were included. Tetrahedral and rectilinear types of mesh were programmed. Improving of mesh quality in some simple ways is mentioned. Testing and verification of final program on wood anatomy samples of spruce and walnut was realized. Methods of microscopic anatomy samples preparation are depicted. Final utilization of formed mesh in the simple structural analysis was performed.The article discusses main problems in image analysis due to incompatible colour spaces, samples preparation, thresholding and final conversion into finite element mesh. Assembling of mentioned tasks together and evaluation of the application are main original results of the presented work. In presented program two thresholding filters were used. By utilization of ITK two following filters were included. Otsu filter based and binary filter based were used. The most problematic task occurred in a production of wood anatomy samples in the unique light conditions with minimal or zero co­lour space shift and the following appropriate definition of thresholds (corresponding thresholding parameters and connected methods (prefiltering + registration which influence the continuity and mainly separation of wood anatomy structure. Solution in samples staining is suggested with the following quick image analysis realization. Next original result of the work is complex fully automated application which offers three types of finite element mesh

  12. Visual Experience Shapes the Neural Networks Remapping Touch into External Space.

    Science.gov (United States)

    Crollen, Virginie; Lazzouni, Latifa; Rezk, Mohamed; Bellemare, Antoine; Lepore, Franco; Collignon, Olivier

    2017-10-18

    Localizing touch relies on the activation of skin-based and externally defined spatial frames of reference. Psychophysical studies have demonstrated that early visual deprivation prevents the automatic remapping of touch into external space. We used fMRI to characterize how visual experience impacts the brain circuits dedicated to the spatial processing of touch. Sighted and congenitally blind humans performed a tactile temporal order judgment (TOJ) task, either with the hands uncrossed or crossed over the body midline. Behavioral data confirmed that crossing the hands has a detrimental effect on TOJ judgments in sighted but not in early blind people. Crucially, the crossed hand posture elicited enhanced activity, when compared with the uncrossed posture, in a frontoparietal network in the sighted group only. Psychophysiological interaction analysis revealed, however, that the congenitally blind showed enhanced functional connectivity between parietal and frontal regions in the crossed versus uncrossed hand postures. Our results demonstrate that visual experience scaffolds the neural implementation of the location of touch in space. SIGNIFICANCE STATEMENT In daily life, we seamlessly localize touch in external space for action planning toward a stimulus making contact with the body. For efficient sensorimotor integration, the brain has therefore to compute the current position of our limbs in the external world. In the present study, we demonstrate that early visual deprivation alters the brain activity in a dorsal parietofrontal network typically supporting touch localization in the sighted. Our results therefore conclusively demonstrate the intrinsic role that developmental vision plays in scaffolding the neural implementation of touch perception. Copyright © 2017 the authors 0270-6474/17/3710097-07$15.00/0.

  13. Experience of Multisensory Environments in Public Space among People with Visual Impairment

    Directory of Open Access Journals (Sweden)

    Gavin R. Jenkins

    2015-07-01

    Full Text Available This qualitative study explored the role of sensory characteristics embedded in the built environment and whether they support or hinder people with visual impairment in their use of public spaces. An online survey link was e-mailed to the presidents and committee members of each state’s chapters and associations of the National Federation of the Blind in the United States, resulting in 451 direct invitations to participate. Written responses of the survey questions from 48 respondents with visual impairment were analyzed. Three main themes: Barriers, Supporters, and Context-Dependence emerged from the respondents’ experience of multisensory characteristics within the built environment. The four subthemes subsumed in Barriers were: (1 Population specific design, (2 Extreme sensory backgrounds, (3 Uneven ground surfaces and objects, and (4 Inconsistent lighting. For Supporters, respondents provided specific examples of various sensory characteristics in built environments, including audible cues and echoes, smells, tactile quality of the ground surface, and temperature. Context-Dependence referred to the effects of sensory characteristics embedded in public spaces depending on one’s vision condition, the proximity to the sensory cues and the purpose of the activities one was performing at that moment. Findings provide occupational therapy practitioners an in-depth understanding of the transactional relationship between embedded sensory characteristics in the built environment, occupations, and people with visual impairment in order to make appropriate modifications or removal of barriers that affect occupational performance and engagement. Suggestions for occupational therapists as well as architects, designers, planners, policy makers/legislators related to functional sensory cues in the design of built environments were provided to increase accessibility in the use of public spaces by people with visual impairment.

  14. Generic Space Science Visualization in 2D/3D using SDDAS

    Science.gov (United States)

    Mukherjee, J.; Murphy, Z. B.; Gonzalez, C. A.; Muller, M.; Ybarra, S.

    2017-12-01

    The Southwest Data Display and Analysis System (SDDAS) is a flexible multi-mission / multi-instrument software system intended to support space physics data analysis, and has been in active development for over 20 years. For the Magnetospheric Multi-Scale (MMS), Juno, Cluster, and Mars Express missions, we have modified these generic tools for visualizing data in two and three dimensions. The SDDAS software is open source and makes use of various other open source packages, including VTK and Qwt. The software offers interactive plotting as well as a Python and Lua module to modify the data before plotting. In theory, by writing a Lua or Python module to read the data, any data could be used. Currently, the software can natively read data in IDFS, CEF, CDF, FITS, SEG-Y, ASCII, and XLS formats. We have integrated the software with other Python packages such as SPICE and SpacePy. Included with the visualization software is a database application and other utilities for managing data that can retrieve data from the Cluster Active Archive and Space Physics Data Facility at Goddard, as well as other local archives. Line plots, spectrograms, geographic, volume plots, strip charts, etc. are just some of the types of plots one can generate with SDDAS. Furthermore, due to the design, output is not limited to strictly visualization as SDDAS can also be used to generate stand-alone IDL or Python visualization code.. Lastly, SDDAS has been successfully used as a backend for several web based analysis systems as well.

  15. Experience of Multisensory Environments in Public Space among People with Visual Impairment.

    Science.gov (United States)

    Jenkins, Gavin R; Yuen, Hon K; Vogtle, Laura K

    2015-07-23

    This qualitative study explored the role of sensory characteristics embedded in the built environment and whether they support or hinder people with visual impairment in their use of public spaces. An online survey link was e-mailed to the presidents and committee members of each state's chapters and associations of the National Federation of the Blind in the United States, resulting in 451 direct invitations to participate. Written responses of the survey questions from 48 respondents with visual impairment were analyzed. Three main themes: Barriers, Supporters, and Context-Dependence emerged from the respondents' experience of multisensory characteristics within the built environment. The four subthemes subsumed in Barriers were: (1) Population specific design, (2) Extreme sensory backgrounds, (3) Uneven ground surfaces and objects, and (4) Inconsistent lighting. For Supporters, respondents provided specific examples of various sensory characteristics in built environments, including audible cues and echoes, smells, tactile quality of the ground surface, and temperature. Context-Dependence referred to the effects of sensory characteristics embedded in public spaces depending on one's vision condition, the proximity to the sensory cues and the purpose of the activities one was performing at that moment. Findings provide occupational therapy practitioners an in-depth understanding of the transactional relationship between embedded sensory characteristics in the built environment, occupations, and people with visual impairment in order to make appropriate modifications or removal of barriers that affect occupational performance and engagement. Suggestions for occupational therapists as well as architects, designers, planners, policy makers/legislators related to functional sensory cues in the design of built environments were provided to increase accessibility in the use of public spaces by people with visual impairment.

  16. On the use of cartographic projections in visualizing phylo-genetic tree space

    Directory of Open Access Journals (Sweden)

    Clement Mark

    2010-06-01

    Full Text Available Abstract Phylogenetic analysis is becoming an increasingly important tool for biological research. Applications include epidemiological studies, drug development, and evolutionary analysis. Phylogenetic search is a known NP-Hard problem. The size of the data sets which can be analyzed is limited by the exponential growth in the number of trees that must be considered as the problem size increases. A better understanding of the problem space could lead to better methods, which in turn could lead to the feasible analysis of more data sets. We present a definition of phylogenetic tree space and a visualization of this space that shows significant exploitable structure. This structure can be used to develop search methods capable of handling much larger data sets.

  17. Real-space visualization of remnant Mott gap and magnon excitations.

    Science.gov (United States)

    Wang, Y; Jia, C J; Moritz, B; Devereaux, T P

    2014-04-18

    We demonstrate the ability to visualize real-space dynamics of charge gap and magnon excitations in the Mott phase of the single-band Hubbard model and the remnants of these excitations with hole or electron doping. At short times, the character of magnetic and charge excitations is maintained even for large doping away from the Mott and antiferromagnetic phases. Doping influences both the real-space patterns and long timescales of these excitations with a clear carrier asymmetry attributable to particle-hole symmetry breaking in the underlying model. Further, a rapidly oscillating charge-density-wave-like pattern weakens, but persists as a visible demonstration of a subleading instability at half-filling which remains upon doping. The results offer an approach to analyzing the behavior of systems where momentum space is either inaccessible or poorly defined.

  18. WeightLifter: Visual Weight Space Exploration for Multi-Criteria Decision Making.

    Science.gov (United States)

    Pajer, Stephan; Streit, Marc; Torsney-Weir, Thomas; Spechtenhauser, Florian; Muller, Torsten; Piringer, Harald

    2017-01-01

    A common strategy in Multi-Criteria Decision Making (MCDM) is to rank alternative solutions by weighted summary scores. Weights, however, are often abstract to the decision maker and can only be set by vague intuition. While previous work supports a point-wise exploration of weight spaces, we argue that MCDM can benefit from a regional and global visual analysis of weight spaces. Our main contribution is WeightLifter, a novel interactive visualization technique for weight-based MCDM that facilitates the exploration of weight spaces with up to ten criteria. Our technique enables users to better understand the sensitivity of a decision to changes of weights, to efficiently localize weight regions where a given solution ranks high, and to filter out solutions which do not rank high enough for any plausible combination of weights. We provide a comprehensive requirement analysis for weight-based MCDM and describe an interactive workflow that meets these requirements. For evaluation, we describe a usage scenario of WeightLifter in automotive engineering and report qualitative feedback from users of a deployed version as well as preliminary feedback from decision makers in multiple domains. This feedback confirms that WeightLifter increases both the efficiency of weight-based MCDM and the awareness of uncertainty in the ultimate decisions.

  19. Pelagic habitat visualization: the need for a third (and fourth) dimension: HabitatSpace

    Science.gov (United States)

    Beegle-Krause, C; Vance, Tiffany; Reusser, Debbie; Stuebe, David; Howlett, Eoin

    2009-01-01

    Habitat in open water is not simply a 2-D to 2.5-D surface such as the ocean bottom or the air-water interface. Rather, pelagic habitat is a 3-D volume of water that can change over time, leading us to the term habitat space. Visualization and analysis in 2-D is well supported with GIS tools, but a new tool was needed for visualization and analysis in four dimensions. Observational data (cruise profiles (xo, yo, z, to)), numerical circulation model fields (x,y,z,t), and trajectories (larval fish, 4-D line) need to be merged together in a meaningful way for visualization and analysis. As a first step toward this new framework, UNIDATA’s Integrated Data Viewer (IDV) has been used to create a set of tools for habitat analysis in 4-D. IDV was designed for 3-D+time geospatial data in the meteorological community. NetCDF JavaTM libraries allow the tool to read many file formats including remotely located data (e.g. data available via OPeNDAP ). With this project, IDV has been adapted for use in delineating habitat space for multiple fish species in the ocean. The ability to define and visualize boundaries of a water mass, which meets specific biologically relevant criteria (e.g., volume, connectedness, and inter-annual variability) based on model results and observational data, will allow managers to investigate the survival of individual year classes of commercially important fisheries. Better understanding of the survival of these year classes will lead to improved forecasting of fisheries recruitment.

  20. Space-based visual attention: a marker of immature selective attention in toddlers?

    Science.gov (United States)

    Rivière, James; Brisson, Julie

    2014-11-01

    Various studies suggested that attentional difficulties cause toddlers' failure in some spatial search tasks. However, attention is not a unitary construct and this study investigated two attentional mechanisms: location selection (space-based attention) and object selection (object-based attention). We investigated how toddlers' attention is distributed in the visual field during a manual search task for objects moving out of sight, namely the moving boxes task. Results show that 2.5-year-olds who failed this task allocated more attention to the location of the relevant object than to the object itself. These findings suggest that in some manual search tasks the primacy of space-based attention over object-based attention could be a marker of immature selective attention in toddlers. © 2014 Wiley Periodicals, Inc.

  1. Enabling Global Lunar Sample Return and Life-Detection Studies Using a Deep-Space Gateway

    Science.gov (United States)

    Cohen, B. A.; Eigenbrode, J. A.; Young, K. E.; Bleacher, J. E.; Trainer, M. E.

    2018-02-01

    The Deep Space Gateway could uniquely enable a lunar robotic sampling campaign that would provide incredible science return as well as feed forward to Mars and Europa by testing instrument sterility and ability to distinguish biogenic signals.

  2. Description of European Space Agency (ESA) Concept Development for a Mars Sample Receiving Facility (MSRF)

    Science.gov (United States)

    Vrublevskis, J.; Berthoud, L.; Guest, M.; Smith, C.; Bennett, A.; Gaubert, F.; Schroeven-Deceuninck, H.; Duvet, L.; van Winnendael, M.

    2018-04-01

    This presentation gives an overview of the several studies conducted for the European Space Agency (ESA) since 2007, which progressively developed layouts for a potential implementation of a Mars Sample Receiving Facility (MSRF).

  3. Visualizing histopathologic deep learning classification and anomaly detection using nonlinear feature space dimensionality reduction.

    Science.gov (United States)

    Faust, Kevin; Xie, Quin; Han, Dominick; Goyle, Kartikay; Volynskaya, Zoya; Djuric, Ugljesa; Diamandis, Phedias

    2018-05-16

    There is growing interest in utilizing artificial intelligence, and particularly deep learning, for computer vision in histopathology. While accumulating studies highlight expert-level performance of convolutional neural networks (CNNs) on focused classification tasks, most studies rely on probability distribution scores with empirically defined cutoff values based on post-hoc analysis. More generalizable tools that allow humans to visualize histology-based deep learning inferences and decision making are scarce. Here, we leverage t-distributed Stochastic Neighbor Embedding (t-SNE) to reduce dimensionality and depict how CNNs organize histomorphologic information. Unique to our workflow, we develop a quantitative and transparent approach to visualizing classification decisions prior to softmax compression. By discretizing the relationships between classes on the t-SNE plot, we show we can super-impose randomly sampled regions of test images and use their distribution to render statistically-driven classifications. Therefore, in addition to providing intuitive outputs for human review, this visual approach can carry out automated and objective multi-class classifications similar to more traditional and less-transparent categorical probability distribution scores. Importantly, this novel classification approach is driven by a priori statistically defined cutoffs. It therefore serves as a generalizable classification and anomaly detection tool less reliant on post-hoc tuning. Routine incorporation of this convenient approach for quantitative visualization and error reduction in histopathology aims to accelerate early adoption of CNNs into generalized real-world applications where unanticipated and previously untrained classes are often encountered.

  4. A new open-source Python-based Space Weather data access, visualization, and analysis toolkit

    Science.gov (United States)

    de Larquier, S.; Ribeiro, A.; Frissell, N. A.; Spaleta, J.; Kunduri, B.; Thomas, E. G.; Ruohoniemi, J.; Baker, J. B.

    2013-12-01

    Space weather research relies heavily on combining and comparing data from multiple observational platforms. Current frameworks exist to aggregate some of the data sources, most based on file downloads via web or ftp interfaces. Empirical models are mostly fortran based and lack interfaces with more useful scripting languages. In an effort to improve data and model access, the SuperDARN community has been developing a Python-based Space Science Data Visualization Toolkit (DaViTpy). At the center of this development was a redesign of how our data (from 30 years of SuperDARN radars) was made available. Several access solutions are now wrapped into one convenient Python interface which probes local directories, a new remote NoSQL database, and an FTP server to retrieve the requested data based on availability. Motivated by the efficiency of this interface and the inherent need for data from multiple instruments, we implemented similar modules for other space science datasets (POES, OMNI, Kp, AE...), and also included fundamental empirical models with Python interfaces to enhance data analysis (IRI, HWM, MSIS...). All these modules and more are gathered in a single convenient toolkit, which is collaboratively developed and distributed using Github and continues to grow. While still in its early stages, we expect this toolkit will facilitate multi-instrument space weather research and improve scientific productivity.

  5. Eye-Head Coordination in 31 Space Shuttle Astronauts during Visual Target Acquisition.

    Science.gov (United States)

    Reschke, Millard F; Kolev, Ognyan I; Clément, Gilles

    2017-10-27

    Between 1989 and 1995, NASA evaluated how increases in flight duration of up to 17 days affected the health and performance of Space Shuttle astronauts. Thirty-one Space Shuttle pilots participating in 17 space missions were tested at 3 different times before flight and 3 different times after flight, starting within a few hours of return to Earth. The astronauts moved their head and eyes as quickly as possible from the central fixation point to a specified target located 20°, 30°, or 60° off center. Eye movements were measured with electro-oculography (EOG). Head movements were measured with a triaxial rate sensor system mounted on a headband. The mean time to visually acquire the targets immediately after landing was 7-10% (30-34 ms) slower than mean preflight values, but results returned to baseline after 48 hours. This increase in gaze latency was due to a decrease in velocity and amplitude of both the eye saccade and head movement toward the target. Results were similar after all space missions, regardless of length.

  6. Compressive Sampling based Image Coding for Resource-deficient Visual Communication.

    Science.gov (United States)

    Liu, Xianming; Zhai, Deming; Zhou, Jiantao; Zhang, Xinfeng; Zhao, Debin; Gao, Wen

    2016-04-14

    In this paper, a new compressive sampling based image coding scheme is developed to achieve competitive coding efficiency at lower encoder computational complexity, while supporting error resilience. This technique is particularly suitable for visual communication with resource-deficient devices. At the encoder, compact image representation is produced, which is a polyphase down-sampled version of the input image; but the conventional low-pass filter prior to down-sampling is replaced by a local random binary convolution kernel. The pixels of the resulting down-sampled pre-filtered image are local random measurements and placed in the original spatial configuration. The advantages of local random measurements are two folds: 1) preserve high-frequency image features that are otherwise discarded by low-pass filtering; 2) remain a conventional image and can therefore be coded by any standardized codec to remove statistical redundancy of larger scales. Moreover, measurements generated by different kernels can be considered as multiple descriptions of the original image and therefore the proposed scheme has the advantage of multiple description coding. At the decoder, a unified sparsity-based soft-decoding technique is developed to recover the original image from received measurements in a framework of compressive sensing. Experimental results demonstrate that the proposed scheme is competitive compared with existing methods, with a unique strength of recovering fine details and sharp edges at low bit-rates.

  7. The "Carbon Data Explorer": Web-Based Space-Time Visualization of Modeled Carbon Fluxes

    Science.gov (United States)

    Billmire, M.; Endsley, K. A.

    2014-12-01

    The visualization of and scientific "sense-making" from large datasets varying in both space and time is a challenge; one that is still being addressed in a number of different fields. The approaches taken thus far are often specific to a given academic field due to the unique questions that arise in different disciplines, however, basic approaches such as geographic maps and time series plots are still widely useful. The proliferation of model estimates of increasing size and resolution further complicates what ought to be a simple workflow: Model some geophysical phenomen(on), obtain results and measure uncertainty, organize and display the data, make comparisons across trials, and share findings. A new tool is in development that is intended to help scientists with the latter parts of that workflow. The tentatively-titled "Carbon Data Explorer" (http://spatial.mtri.org/flux-client/) enables users to access carbon science and related spatio-temporal science datasets over the web. All that is required to access multiple interactive visualizations of carbon science datasets is a compatible web browser and an internet connection. While the application targets atmospheric and climate science datasets, particularly spatio-temporal model estimates of carbon products, the software architecture takes an agnostic approach to the data to be visualized. Any atmospheric, biophysical, or geophysical quanity that varies in space and time, including one or more measures of uncertainty, can be visualized within the application. Within the web application, users have seamless control over a flexible and consistent symbology for map-based visualizations and plots. Where time series data are represented by one or more data "frames" (e.g. a map), users can animate the data. In the "coordinated view," users can make direct comparisons between different frames and different models or model runs, facilitating intermodal comparisons and assessments of spatio-temporal variability. Map

  8. Kameleon Live: An Interactive Cloud Based Analysis and Visualization Platform for Space Weather Researchers

    Science.gov (United States)

    Pembroke, A. D.; Colbert, J. A.

    2015-12-01

    The Community Coordinated Modeling Center (CCMC) provides hosting for many of the simulations used by the space weather community of scientists, educators, and forecasters. CCMC users may submit model runs through the Runs on Request system, which produces static visualizations of model output in the browser, while further analysis may be performed off-line via Kameleon, CCMC's cross-language access and interpolation library. Off-line analysis may be suitable for power-users, but storage and coding requirements present a barrier to entry for non-experts. Moreover, a lack of a consistent framework for analysis hinders reproducibility of scientific findings. To that end, we have developed Kameleon Live, a cloud based interactive analysis and visualization platform. Kameleon Live allows users to create scientific studies built around selected runs from the Runs on Request database, perform analysis on those runs, collaborate with other users, and disseminate their findings among the space weather community. In addition to showcasing these novel collaborative analysis features, we invite feedback from CCMC users as we seek to advance and improve on the new platform.

  9. Functional differentiation of macaque visual temporal cortical neurons using a parametric action space.

    Science.gov (United States)

    Vangeneugden, Joris; Pollick, Frank; Vogels, Rufin

    2009-03-01

    Neurons in the rostral superior temporal sulcus (STS) are responsive to displays of body movements. We employed a parametric action space to determine how similarities among actions are represented by visual temporal neurons and how form and motion information contributes to their responses. The stimulus space consisted of a stick-plus-point-light figure performing arm actions and their blends. Multidimensional scaling showed that the responses of temporal neurons represented the ordinal similarity between these actions. Further tests distinguished neurons responding equally strongly to static presentations and to actions ("snapshot" neurons), from those responding much less strongly to static presentations, but responding well when motion was present ("motion" neurons). The "motion" neurons were predominantly found in the upper bank/fundus of the STS, and "snapshot" neurons in the lower bank of the STS and inferior temporal convexity. Most "motion" neurons showed strong response modulation during the course of an action, thus responding to action kinematics. "Motion" neurons displayed a greater average selectivity for these simple arm actions than did "snapshot" neurons. We suggest that the "motion" neurons code for visual kinematics, whereas the "snapshot" neurons code for form/posture, and that both can contribute to action recognition, in agreement with computation models of action recognition.

  10. Accuracy of micro four-point probe measurements on inhomogeneous samples: A probe spacing dependence study

    DEFF Research Database (Denmark)

    Wang, Fei; Petersen, Dirch Hjorth; Østerberg, Frederik Westergaard

    2009-01-01

    In this paper, we discuss a probe spacing dependence study in order to estimate the accuracy of micro four-point probe measurements on inhomogeneous samples. Based on sensitivity calculations, both sheet resistance and Hall effect measurements are studied for samples (e.g. laser annealed samples...... the probe spacing is smaller than 1/40 of the variation wavelength, micro four-point probes can provide an accurate record of local properties with less than 1% measurement error. All the calculations agree well with previous experimental results.......) with periodic variations of sheet resistance, sheet carrier density, and carrier mobility. With a variation wavelength of ¿, probe spacings from 0.0012 to 1002 have been applied to characterize the local variations. The calculations show that the measurement error is highly dependent on the probe spacing. When...

  11. Evaluation of the Cardiac Depression Visual Analogue Scale in a medical and non-medical sample.

    Science.gov (United States)

    Di Benedetto, Mirella; Sheehan, Matthew

    2014-01-01

    Comorbid depression and medical illness is associated with a number of adverse health outcomes such as lower medication adherence and higher rates of subsequent mortality. Reliable and valid psychological measures capable of detecting a range of depressive symptoms found in medical settings are needed. The Cardiac Depression Visual Analogue Scale (CDVAS) is a recently developed, brief six-item measure originally designed to assess the range and severity of depressive symptoms within a cardiac population. The current study aimed to further investigate the psychometric properties of the CDVAS in a general and medical sample. The sample consisted of 117 participants, whose mean age was 40.0 years (SD = 19.0, range 18-84). Participants completed the CDVAS, the Cardiac Depression Scale (CDS), the Depression Anxiety Stress Scales (DASS) and a demographic and health questionnaire. The CDVAS was found to have adequate internal reliability (α = .76), strong concurrent validity with the CDS (r = .89) and the depression sub-scale of the DASS (r = .70), strong discriminant validity and strong predictive validity. The principal components analysis revealed that the CDVAS measured only one component, providing further support for the construct validity of the scale. Results of the current study indicate that the CDVAS is a short, simple, valid and reliable measure of depressive symptoms suitable for use in a general and medical sample.

  12. Comparison of Directionally Solidified Samples Solidified Terrestrially and Aboard the International Space Station

    Science.gov (United States)

    Angart, S.; Lauer, M.; Tewari, S. N.; Grugel, R. N.; Poirier, D. R.

    2014-01-01

    This article reports research that has been carried out under the aegis of NASA as part of a collaboration between ESA and NASA for solidification experiments on the International Space Station (ISS). The focus has been on the effect of convection on the microstructural evolution and macrosegregation in hypoeutectic Al-Si alloys during directional solidification (DS). Terrestrial DS-experiments have been carried out at Cleveland State University (CSU) and under microgravity on the International Space Station (ISS). The thermal processing-history of the experiments is well defined for both the terrestrially processed samples and the ISS-processed samples. As of this writing, two dendritic metrics was measured: primary dendrite arm spacings and primary dendrite trunk diameters. We have observed that these dendrite-metrics of two samples grown in the microgravity environment show good agreements with models based on diffusion controlled growth and diffusion controlled ripening, respectively. The gravity-driven convection (i.e., thermosolutal convection) in terrestrially grown samples has the effect of decreasing the primary dendrite arm spacings and causes macrosegregation. Dendrite trunk diameters also show differences between the earth- and space-grown samples. In order to process DS-samples aboard the ISS, the dendritic seed crystals were partially remelted in a stationary thermal gradient before the DS was carried out. Microstructural changes and macrosegregation effects during this period are described and have modeled.

  13. Visualizing Space Weather: The Planeterrella Auroral Simulator as a Heliophysics Public Outreach Tool

    Science.gov (United States)

    Masongsong, E. V.; Lilensten, J.; Booth, M. J.; Suri, G.; Heflinger, T. G.; Angelopoulos, V.

    2014-12-01

    The NASA THEMIS and ARTEMIS satellite missions study "space weather," which describes the solar wind influence on Earth's protective magnetic shield, the magnetosphere. Space weather is important to study and predict because it can damage critical GPS and communications satellites, harm space travelers, and even disable our global electrical grid. The Planeterrella is an innovative heliophysics outreach demonstration, expanding public awareness of space weather by visualizing the sun-Earth connection up close and in-person. Using a glass vacuum chamber, two magnetized spheres and a 1kV power supply, the device can simulate plasma configurations of the solar corona, solar wind, Van Allen radiation belts, and auroral ovals, all of which are observable only by satellites. This "aurora in a bottle" is a modernized version of the original Terrella built by Kristian Birkeland in the 1890s to show that the aurora are electrical in nature. Adapted from plans by Lilensten et al. at CNRS-IPAG, the UCLA Planeterrella was completed in Nov. 2013, the second device of its kind in the U.S., and the centerpiece of the THEMIS/ARTEMIS mobile public outreach exhibit. In combination with captivating posters, 3D magnetic field models, dazzling aurora videos and magnetosphere animations, the Planeterrella has already introduced over 1200 people to the electrical link between our sun and the planets. Most visitors had seen solar flare images in the news, however the Planeterrella experience enhanced their appreciation of the dynamic solar wind and its effects on Earth's invisible magnetic field. Most importantly, visitors young and old realized that magnets are not just cool toys or only for powering hybrid car motors and MRIs, they are a fundamental aspect of ongoing life on Earth and are key to the formation and evolution of planets, moons, and stars, extending far beyond our galaxy to other planetary systems throughout the universe. Novel visualizations such as the Planeterrella can

  14. Primary Dendrite Array Morphology: Observations from Ground-based and Space Station Processed Samples

    Science.gov (United States)

    Tewari, Surendra; Rajamure, Ravi; Grugel, Richard; Erdmann, Robert; Poirier, David

    2012-01-01

    Influence of natural convection on primary dendrite array morphology during directional solidification is being investigated under a collaborative European Space Agency-NASA joint research program, "Microstructure Formation in Castings of Technical Alloys under Diffusive and Magnetically Controlled Convective Conditions (MICAST)". Two Aluminum-7 wt pct Silicon alloy samples, MICAST6 and MICAST7, were directionally solidified in microgravity on the International Space Station. Terrestrially grown dendritic monocrystal cylindrical samples were remelted and directionally solidified at 18 K/cm (MICAST6) and 28 K/cm (MICAST7). Directional solidification involved a growth speed step increase (MICAST6-from 5 to 50 micron/s) and a speed decrease (MICAST7-from 20 to 10 micron/s). Distribution and morphology of primary dendrites is currently being characterized in these samples, and also in samples solidified on earth under nominally similar thermal gradients and growth speeds. Primary dendrite spacing and trunk diameter measurements from this investigation will be presented.

  15. Reduced aliasing artifacts using shaking projection k-space sampling trajectory

    Science.gov (United States)

    Zhu, Yan-Chun; Du, Jiang; Yang, Wen-Chao; Duan, Chai-Jie; Wang, Hao-Yu; Gao, Song; Bao, Shang-Lian

    2014-03-01

    Radial imaging techniques, such as projection-reconstruction (PR), are used in magnetic resonance imaging (MRI) for dynamic imaging, angiography, and short-T2 imaging. They are less sensitive to flow and motion artifacts, and support fast imaging with short echo times. However, aliasing and streaking artifacts are two main sources which degrade radial imaging quality. For a given fixed number of k-space projections, data distributions along radial and angular directions will influence the level of aliasing and streaking artifacts. Conventional radial k-space sampling trajectory introduces an aliasing artifact at the first principal ring of point spread function (PSF). In this paper, a shaking projection (SP) k-space sampling trajectory was proposed to reduce aliasing artifacts in MR images. SP sampling trajectory shifts the projection alternately along the k-space center, which separates k-space data in the azimuthal direction. Simulations based on conventional and SP sampling trajectories were compared with the same number projections. A significant reduction of aliasing artifacts was observed using the SP sampling trajectory. These two trajectories were also compared with different sampling frequencies. A SP trajectory has the same aliasing character when using half sampling frequency (or half data) for reconstruction. SNR comparisons with different white noise levels show that these two trajectories have the same SNR character. In conclusion, the SP trajectory can reduce the aliasing artifact without decreasing SNR and also provide a way for undersampling reconstruction. Furthermore, this method can be applied to three-dimensional (3D) hybrid or spherical radial k-space sampling for a more efficient reduction of aliasing artifacts.

  16. Reduced aliasing artifacts using shaking projection k-space sampling trajectory

    International Nuclear Information System (INIS)

    Zhu Yan-Chun; Yang Wen-Chao; Wang Hao-Yu; Gao Song; Bao Shang-Lian; Du Jiang; Duan Chai-Jie

    2014-01-01

    Radial imaging techniques, such as projection-reconstruction (PR), are used in magnetic resonance imaging (MRI) for dynamic imaging, angiography, and short-T2 imaging. They are less sensitive to flow and motion artifacts, and support fast imaging with short echo times. However, aliasing and streaking artifacts are two main sources which degrade radial imaging quality. For a given fixed number of k-space projections, data distributions along radial and angular directions will influence the level of aliasing and streaking artifacts. Conventional radial k-space sampling trajectory introduces an aliasing artifact at the first principal ring of point spread function (PSF). In this paper, a shaking projection (SP) k-space sampling trajectory was proposed to reduce aliasing artifacts in MR images. SP sampling trajectory shifts the projection alternately along the k-space center, which separates k-space data in the azimuthal direction. Simulations based on conventional and SP sampling trajectories were compared with the same number projections. A significant reduction of aliasing artifacts was observed using the SP sampling trajectory. These two trajectories were also compared with different sampling frequencies. A SP trajectory has the same aliasing character when using half sampling frequency (or half data) for reconstruction. SNR comparisons with different white noise levels show that these two trajectories have the same SNR character. In conclusion, the SP trajectory can reduce the aliasing artifact without decreasing SNR and also provide a way for undersampling reconstruction. Furthermore, this method can be applied to three-dimensional (3D) hybrid or spherical radial k-space sampling for a more efficient reduction of aliasing artifacts

  17. The Use of Dynamic Visual Acuity as a Functional Test of Gaze Stabilization Following Space Flight

    Science.gov (United States)

    Peters, B. T.; Mulavara, A. P.; Brady, R.; Miller, C. A.; Richards, J. T.; Warren, L. E.; Cohen, H. S.; Bloomberg, J. J.

    2006-01-01

    After prolonged exposure to a given gravitational environment the transition to another is accompanied by adaptations in the sensorimotor subsystems, including the vestibular system. Variation in the adaptation time course of these subsystems, and the functional redundancies that exist between them make it difficult to accurately assess the functional capacity and physical limitations of astro/cosmonauts using tests on individual subsystems. While isolated tests of subsystem performance may be the only means to address where interventions are required, direct measures of performance may be more suitable for assessing the operational consequences of incomplete adaptation to changes in the gravitational environment. A test of dynamic visual acuity (DVA) is currently being used in the JSC Neurosciences Laboratory as part of a series of measures to assess the efficacy of a countermeasure to mitigate postflight locomotor dysfunction. In the current protocol, subjects visual acuity is determined using Landolt ring optotypes presented sequentially on a computer display. Visual acuity assessments are made both while standing and while walking at 1.8 m/s on a motorized treadmill. The use of a psychophysical threshold detection algorithm reduces the required number of optotype presentations and the results can be presented immediately after the test. The difference between the walking and standing acuity measures provides a metric of the change in the subject s ability to maintain gaze fixation on the visual target while walking. This functional consequence is observable regardless of the underlying subsystem most responsible for the change. Data from 15 cosmo/astronauts have been collected following long-duration (approx. 6 months) stays in space using a visual target viewing distance of 4.0 meters. An investigation of the group mean shows a change in DVA soon after the flight that asymptotes back to baseline approximately one week following their return to earth. The

  18. Histological and Transcriptomic Analysis of Adult Japanese Medaka Sampled Onboard the International Space Station.

    Directory of Open Access Journals (Sweden)

    Yasuhiko Murata

    Full Text Available To understand how humans adapt to the space environment, many experiments can be conducted on astronauts as they work aboard the Space Shuttle or the International Space Station (ISS. We also need animal experiments that can apply to human models and help prevent or solve the health issues we face in space travel. The Japanese medaka (Oryzias latipes is a suitable model fish for studying space adaptation as evidenced by adults of the species having mated successfully in space during 15 days of flight during the second International Microgravity Laboratory mission in 1994. The eggs laid by the fish developed normally and hatched as juveniles in space. In 2012, another space experiment ("Medaka Osteoclast" was conducted. Six-week-old male and female Japanese medaka (Cab strain osteoblast transgenic fish were maintained in the Aquatic Habitat system for two months in the ISS. Fish of the same strain and age were used as the ground controls. Six fish were fixed with paraformaldehyde or kept in RNA stabilization reagent (n = 4 and dissected for tissue sampling after being returned to the ground, so that several principal investigators working on the project could share samples. Histology indicated no significant changes except in the ovary. However, the RNA-seq analysis of 5345 genes from six tissues revealed highly tissue-specific space responsiveness after a two-month stay in the ISS. Similar responsiveness was observed among the brain and eye, ovary and testis, and the liver and intestine. Among these six tissues, the intestine showed the highest space response with 10 genes categorized as oxidation-reduction processes (gene ontogeny term GO:0055114, and the expression levels of choriogenin precursor genes were suppressed in the ovary. Eleven genes including klf9, klf13, odc1, hsp70 and hif3a were upregulated in more than four of the tissues examined, thus suggesting common immunoregulatory and stress responses during space adaptation.

  19. Tracking and visualization of space-time activities for a micro-scale flu transmission study.

    Science.gov (United States)

    Qi, Feng; Du, Fei

    2013-02-07

    Infectious diseases pose increasing threats to public health with increasing population density and more and more sophisticated social networks. While efforts continue in studying the large scale dissemination of contagious diseases, individual-based activity and behaviour study benefits not only disease transmission modelling but also the control, containment, and prevention decision making at the local scale. The potential for using tracking technologies to capture detailed space-time trajectories and model individual behaviour is increasing rapidly, as technological advances enable the manufacture of small, lightweight, highly sensitive, and affordable receivers and the routine use of location-aware devices has become widespread (e.g., smart cellular phones). The use of low-cost tracking devices in medical research has also been proved effective by more and more studies. This study describes the use of tracking devices to collect data of space-time trajectories and the spatiotemporal processing of such data to facilitate micro-scale flu transmission study. We also reports preliminary findings on activity patterns related to chances of influenza infection in a pilot study. Specifically, this study employed A-GPS tracking devices to collect data on a university campus. Spatiotemporal processing was conducted for data cleaning and segmentation. Processed data was validated with traditional activity diaries. The A-GPS data set was then used for visual explorations including density surface visualization and connection analysis to examine space-time activity patterns in relation to chances of influenza infection. When compared to diary data, the segmented tracking data demonstrated to be an effective alternative and showed greater accuracies in time as well as the details of routes taken by participants. A comparison of space-time activity patterns between participants who caught seasonal influenza and those who did not revealed interesting patterns. This study

  20. Reachable Distance Space: Efficient Sampling-Based Planning for Spatially Constrained Systems

    KAUST Repository

    Xinyu Tang,

    2010-01-25

    Motion planning for spatially constrained robots is difficult due to additional constraints placed on the robot, such as closure constraints for closed chains or requirements on end-effector placement for articulated linkages. It is usually computationally too expensive to apply sampling-based planners to these problems since it is difficult to generate valid configurations. We overcome this challenge by redefining the robot\\'s degrees of freedom and constraints into a new set of parameters, called reachable distance space (RD-space), in which all configurations lie in the set of constraint-satisfying subspaces. This enables us to directly sample the constrained subspaces with complexity linear in the number of the robot\\'s degrees of freedom. In addition to supporting efficient sampling of configurations, we show that the RD-space formulation naturally supports planning and, in particular, we design a local planner suitable for use by sampling-based planners. We demonstrate the effectiveness and efficiency of our approach for several systems including closed chain planning with multiple loops, restricted end-effector sampling, and on-line planning for drawing/sculpting. We can sample single-loop closed chain systems with 1,000 links in time comparable to open chain sampling, and we can generate samples for 1,000-link multi-loop systems of varying topologies in less than a second. © 2010 The Author(s).

  1. Directionally Solidified Aluminum - 7 wt% Silicon Alloys: Comparison of Earth and International Space Station Processed Samples

    Science.gov (United States)

    Grugel, Richard N,; Tewari, Surendra; Rajamure, R. S.; Erdman, Robert; Poirier, David

    2012-01-01

    Primary dendrite arm spacings of Al-7 wt% Si alloy directionally solidified in low gravity environment of space (MICAST-6 and MICAST-7: Thermal gradient approx. 19 to 26 K/cm, Growth speeds varying from 5 to 50 microns/s show good agreement with the Hunt-Lu model. Primary dendrite trunk diameters of the ISS processed samples show a good fit with a simple analytical model based on Kirkwood s approach, proposed here. Natural convection, a) decreases primary dendrite arm spacing. b) appears to increase primary dendrite trunk diameter.

  2. A Transmission Electron Microscope Investigation of Space Weathering Effects in Hayabusa Samples

    Science.gov (United States)

    Keller, Lindsay P.; Berger, Eve L.

    2014-01-01

    The Hayabusa mission to asteroid 25143 Itokawa successfully returned the first direct samples of the regolith from the surface of an asteroid. The Hayabusa samples thus present a special opportunity to directly investigate the evolution of asteroidal surfaces, from the development of the regolith to the study of the more complex effects of space weathering. Here we describe the mineralogy, microstructure and composition of three Hayabusa mission particles using transmission electron microscope (TEM) techniques

  3. Visual detection of Brucella in bovine biological samples using DNA-activated gold nanoparticles.

    Directory of Open Access Journals (Sweden)

    Dheeraj Pal

    Full Text Available Brucellosis is a bacterial disease, which, although affecting cattle primarily, has been associated with human infections, making its detection an important challenge. The existing gold standard diagnosis relies on the culture of bacteria which is a lengthy and costly process, taking up to 45 days. New technologies based on molecular diagnosis have been proposed, either through dip-stick, immunological assays, which have limited specificity, or using nucleic acid tests, which enable to identify the pathogen, but are impractical for use in the field, where most of the reservoir cases are located. Here we demonstrate a new test based on hybridization assays with metal nanoparticles, which, upon detection of a specific pathogen-derived DNA sequence, yield a visual colour change. We characterise the components used in the assay with a range of analytical techniques and show sensitivities down to 1000 cfu/ml for the detection of Brucella. Finally, we demonstrate that the assay works in a range of bovine samples including semen, milk and urine, opening up the potential for its use in the field, in low-resource settings.

  4. An alternative phase-space distribution to sample initial conditions for classical dynamics simulations

    International Nuclear Information System (INIS)

    Garcia-Vela, A.

    2002-01-01

    A new quantum-type phase-space distribution is proposed in order to sample initial conditions for classical trajectory simulations. The phase-space distribution is obtained as the modulus of a quantum phase-space state of the system, defined as the direct product of the coordinate and momentum representations of the quantum initial state. The distribution is tested by sampling initial conditions which reproduce the initial state of the Ar-HCl cluster prepared by ultraviolet excitation, and by simulating the photodissociation dynamics by classical trajectories. The results are compared with those of a wave packet calculation, and with a classical simulation using an initial phase-space distribution recently suggested. A better agreement is found between the classical and the quantum predictions with the present phase-space distribution, as compared with the previous one. This improvement is attributed to the fact that the phase-space distribution propagated classically in this work resembles more closely the shape of the wave packet propagated quantum mechanically

  5. Architectural Design Space Exploration of an FPGA-based Compressed Sampling Engine

    DEFF Research Database (Denmark)

    El-Sayed, Mohammad; Koch, Peter; Le Moullec, Yannick

    2015-01-01

    We present the architectural design space exploration of a compressed sampling engine for use in a wireless heart-rate monitoring system. We show how parallelism affects execution time at the register transfer level. Furthermore, two example solutions (modified semi-parallel and full...

  6. An extended sampling of the configurational space of HPr from E-coli

    NARCIS (Netherlands)

    de Groot, B.L.; Amadei, A; Scheek, R.M.; van Nuland, N.A.J.; Berendsen, H.J.C.

    1996-01-01

    Recently, we developed a method (Amadei et al., J. Biomol, Str. Dyn, 13: 815-626; de Groot et al., J. Biomol. Str. Dyn. 13: 741-751, 1996) to obtain an extended sampling of the configurational space of proteins, casing an adapted form of molecular dynamics (MD) simulations, based on the essential

  7. Numerically Accelerated Importance Sampling for Nonlinear Non-Gaussian State Space Models

    NARCIS (Netherlands)

    Koopman, S.J.; Lucas, A.; Scharth, M.

    2015-01-01

    We propose a general likelihood evaluation method for nonlinear non-Gaussian state-space models using the simulation-based method of efficient importance sampling. We minimize the simulation effort by replacing some key steps of the likelihood estimation procedure by numerical integration. We refer

  8. An extended sampling of the configurational space of HPr from E-coli

    NARCIS (Netherlands)

    de Groot, B.L.; Amadei, A; Scheek, R.M.; van Nuland, N.A.J.; Berendsen, H.J.C.

    Recently, we developed a method (Amadei et al., J. Biomol, Str. Dyn, 13: 815-626; de Groot et al., J. Biomol. Str. Dyn. 13: 741-751, 1996) to obtain an extended sampling of the configurational space of proteins, casing an adapted form of molecular dynamics (MD) simulations, based on the essential

  9. Optimizing the reconstruction filter in cone-beam CT to improve periodontal ligament space visualization: An in vitro study

    Energy Technology Data Exchange (ETDEWEB)

    Houno, Yuuki; Kodera, Yoshie [Graduate School of Medicine, Nagoya University, Nagoya (Japan); Hishikawa, Toshimitsu; Naitoh, Munetaka; Mitani, Akio; Noguchi, Toshihide; Ariji, Eiichiro [Aichi Gakuin University, Nisshin (Japan); Gotoh, Kenichi [Div. of Radiology, Dental Hospital, Aichi Gakuin University, Nisshin (Japan)

    2017-09-15

    Evaluation of alveolar bone is important in the diagnosis of dental diseases. The periodontal ligament space is difficult to clearly depict in cone-beam computed tomography images because the reconstruction filter conditions during image processing cause image blurring, resulting in decreased spatial resolution. We examined different reconstruction filters to assess their ability to improve spatial resolution and allow for a clearer visualization of the periodontal ligament space. Cone-beam computed tomography projections of 2 skull phantoms were reconstructed using 6 reconstruction conditions and then compared using the Thurstone paired comparison method. Physical evaluations, including the modulation transfer function and the Wiener spectrum, as well as an assessment of space visibility, were undertaken using experimental phantoms. Image reconstruction using a modified Shepp-Logan filter resulted in better sensory, physical, and quantitative evaluations. The reconstruction conditions substantially improved the spatial resolution and visualization of the periodontal ligament space. The difference in sensitivity was obtained by altering the reconstruction filter. Modifying the characteristics of a reconstruction filter can generate significant improvement in assessments of the periodontal ligament space. A high-frequency enhancement filter improves the visualization of thin structures and will be useful when accurate assessment of the periodontal ligament space is necessary.

  10. Optimizing the reconstruction filter in cone-beam CT to improve periodontal ligament space visualization: An in vitro study

    International Nuclear Information System (INIS)

    Houno, Yuuki; Kodera, Yoshie; Hishikawa, Toshimitsu; Naitoh, Munetaka; Mitani, Akio; Noguchi, Toshihide; Ariji, Eiichiro; Gotoh, Kenichi

    2017-01-01

    Evaluation of alveolar bone is important in the diagnosis of dental diseases. The periodontal ligament space is difficult to clearly depict in cone-beam computed tomography images because the reconstruction filter conditions during image processing cause image blurring, resulting in decreased spatial resolution. We examined different reconstruction filters to assess their ability to improve spatial resolution and allow for a clearer visualization of the periodontal ligament space. Cone-beam computed tomography projections of 2 skull phantoms were reconstructed using 6 reconstruction conditions and then compared using the Thurstone paired comparison method. Physical evaluations, including the modulation transfer function and the Wiener spectrum, as well as an assessment of space visibility, were undertaken using experimental phantoms. Image reconstruction using a modified Shepp-Logan filter resulted in better sensory, physical, and quantitative evaluations. The reconstruction conditions substantially improved the spatial resolution and visualization of the periodontal ligament space. The difference in sensitivity was obtained by altering the reconstruction filter. Modifying the characteristics of a reconstruction filter can generate significant improvement in assessments of the periodontal ligament space. A high-frequency enhancement filter improves the visualization of thin structures and will be useful when accurate assessment of the periodontal ligament space is necessary

  11. Enhanced conformational sampling to visualize a free-energy landscape of protein complex formation.

    Science.gov (United States)

    Iida, Shinji; Nakamura, Haruki; Higo, Junichi

    2016-06-15

    We introduce various, recently developed, generalized ensemble methods, which are useful to sample various molecular configurations emerging in the process of protein-protein or protein-ligand binding. The methods introduced here are those that have been or will be applied to biomolecular binding, where the biomolecules are treated as flexible molecules expressed by an all-atom model in an explicit solvent. Sampling produces an ensemble of conformations (snapshots) that are thermodynamically probable at room temperature. Then, projection of those conformations to an abstract low-dimensional space generates a free-energy landscape. As an example, we show a landscape of homo-dimer formation of an endothelin-1-like molecule computed using a generalized ensemble method. The lowest free-energy cluster at room temperature coincided precisely with the experimentally determined complex structure. Two minor clusters were also found in the landscape, which were largely different from the native complex form. Although those clusters were isolated at room temperature, with rising temperature a pathway emerged linking the lowest and second-lowest free-energy clusters, and a further temperature increment connected all the clusters. This exemplifies that the generalized ensemble method is a powerful tool for computing the free-energy landscape, by which one can discuss the thermodynamic stability of clusters and the temperature dependence of the cluster networks. © 2016 The Author(s).

  12. Visualizing the Inner Product Space R[superscript m x n] in a MATLAB-Assisted Linear Algebra Classroom

    Science.gov (United States)

    Caglayan, Günhan

    2018-01-01

    This linear algebra note offers teaching and learning ideas in the treatment of the inner product space R[superscript m x n] in a technology-supported learning environment. Classroom activities proposed in this note demonstrate creative ways of integrating MATLAB technology into various properties of Frobenius inner product as visualization tools…

  13. Time- and Space-Order Effects in Timed Discrimination of Brightness and Size of Paired Visual Stimuli

    Science.gov (United States)

    Patching, Geoffrey R.; Englund, Mats P.; Hellstrom, Ake

    2012-01-01

    Despite the importance of both response probability and response time for testing models of choice, there is a dearth of chronometric studies examining systematic asymmetries that occur over time- and space-orders in the method of paired comparisons. In this study, systematic asymmetries in discriminating the magnitude of paired visual stimuli are…

  14. Breaking the excitation-inhibition balance makes the cortical network’s space-time dynamics distinguish simple visual scenes

    DEFF Research Database (Denmark)

    Roland, Per E.; Bonde, Lars H.; Forsberg, Lars E.

    2017-01-01

    Brain dynamics are often taken to be temporal dynamics of spiking and membrane potentials in a balanced network. Almost all evidence for a balanced network comes from recordings of cell bodies of few single neurons, neglecting more than 99% of the cortical network. We examined the space......-time dynamics of excitation and inhibition simultaneously in dendrites and axons over four visual areas of ferrets exposed to visual scenes with stationary and moving objects. The visual stimuli broke the tight balance between excitation and inhibition such that the network exhibited longer episodes of net...... excitation subsequently balanced by net inhibition, in contrast to a balanced network. Locally in all four areas the amount of net inhibition matched the amount of net excitation with a delay of 125 ms. The space-time dynamics of excitation-inhibition evolved to reduce the complexity of neuron interactions...

  15. Auto-validating von Neumann rejection sampling from small phylogenetic tree spaces

    Directory of Open Access Journals (Sweden)

    York Thomas

    2009-01-01

    Full Text Available Abstract Background In phylogenetic inference one is interested in obtaining samples from the posterior distribution over the tree space on the basis of some observed DNA sequence data. One of the simplest sampling methods is the rejection sampler due to von Neumann. Here we introduce an auto-validating version of the rejection sampler, via interval analysis, to rigorously draw samples from posterior distributions over small phylogenetic tree spaces. Results The posterior samples from the auto-validating sampler are used to rigorously (i estimate posterior probabilities for different rooted topologies based on mitochondrial DNA from human, chimpanzee and gorilla, (ii conduct a non-parametric test of rate variation between protein-coding and tRNA-coding sites from three primates and (iii obtain a posterior estimate of the human-neanderthal divergence time. Conclusion This solves the open problem of rigorously drawing independent and identically distributed samples from the posterior distribution over rooted and unrooted small tree spaces (3 or 4 taxa based on any multiply-aligned sequence data.

  16. Space charge and steady state current in LDPE samples containing a permittivity/conductivity gradient

    DEFF Research Database (Denmark)

    Holbøll, Joachim; Bambery, K. R.; Fleming, R. J.

    2000-01-01

    Electromagnetic theory predicts that a dielectric sample in which a steady DC current of density ε is flowing, and in which the ratio of permittivity ε to conductivity σ varies with position, will acquire a space charge density j·grad(ε/σ). A simple and convenient way to generate an ε/σ gradient...... in a homogeneous sample is to establish a temperature gradient across it. The resulting spatial variation in ε is usually small in polymeric insulators, but the variation in σ can be appreciable. Laser induced pressure pulse (LIPP) measurements were made on 1.5 mm thick plaques of ultra pure LDPE equipped...... with vacuum-evaporated aluminium electrodes. Temperature differences up to 27°C were maintained across the samples, which were subjected to DC fields up to 20 kV/mm. Current density was measured as a function of temperature and field. Negligible thermally generated space charge was observed. The charge...

  17. Screen Space Ambient Occlusion Based Multiple Importance Sampling for Real-Time Rendering

    Science.gov (United States)

    Zerari, Abd El Mouméne; Babahenini, Mohamed Chaouki

    2018-03-01

    We propose a new approximation technique for accelerating the Global Illumination algorithm for real-time rendering. The proposed approach is based on the Screen-Space Ambient Occlusion (SSAO) method, which approximates the global illumination for large, fully dynamic scenes at interactive frame rates. Current algorithms that are based on the SSAO method suffer from difficulties due to the large number of samples that are required. In this paper, we propose an improvement to the SSAO technique by integrating it with a Multiple Importance Sampling technique that combines a stratified sampling method with an importance sampling method, with the objective of reducing the number of samples. Experimental evaluation demonstrates that our technique can produce high-quality images in real time and is significantly faster than traditional techniques.

  18. A novel heterogeneous training sample selection method on space-time adaptive processing

    Science.gov (United States)

    Wang, Qiang; Zhang, Yongshun; Guo, Yiduo

    2018-04-01

    The performance of ground target detection about space-time adaptive processing (STAP) decreases when non-homogeneity of clutter power is caused because of training samples contaminated by target-like signals. In order to solve this problem, a novel nonhomogeneous training sample selection method based on sample similarity is proposed, which converts the training sample selection into a convex optimization problem. Firstly, the existing deficiencies on the sample selection using generalized inner product (GIP) are analyzed. Secondly, the similarities of different training samples are obtained by calculating mean-hausdorff distance so as to reject the contaminated training samples. Thirdly, cell under test (CUT) and the residual training samples are projected into the orthogonal subspace of the target in the CUT, and mean-hausdorff distances between the projected CUT and training samples are calculated. Fourthly, the distances are sorted in order of value and the training samples which have the bigger value are selective preference to realize the reduced-dimension. Finally, simulation results with Mountain-Top data verify the effectiveness of the proposed method.

  19. The Open Space Sculptures Used in the Gençlik Park towards Visual Perception of Park Users

    Directory of Open Access Journals (Sweden)

    Ahmet Polat

    2012-11-01

    Full Text Available Urban parks are the most important areas that allow recreational activities in our towns. Increasing the visual quality of urban parks provides positive impacts on urban quality. Besides the artistic and technical features of open space sculptures which are used for urban park designs are the visual perceptions and preferences of park users are also important. In the context of this study, six sculptures in Gençlik Park which is in the boundaries Ankara have been considered. The aim of the study, to measure the visual quality of the sculptures in the urban parks through park users and to reveal the relationship between visual landscape indicators (of being interesting, coherence, complexity, meaningfulness, and mystery and the visual quality. For this purpose, the six pieces in Ankara Youth Park of sculpture were evaluated the scope of research. According to the results of the study; it was realized that park users like sculptures visually. A statistically significant relationship was found between the visual quality of the sculptures and some landscape indicators (to be interesting, mystery and harmony. In addition to these, some suggestions were made regarding the use of sculptures in urban parks.

  20. The "Tracked Roaming Transect" and distance sampling methods increase the efficiency of underwater visual censuses.

    Directory of Open Access Journals (Sweden)

    Alejo J Irigoyen

    Full Text Available Underwater visual census (UVC is the most common approach for estimating diversity, abundance and size of reef fishes in shallow and clear waters. Abundance estimation through UVC is particularly problematic in species occurring at low densities and/or highly aggregated because of their high variability at both spatial and temporal scales. The statistical power of experiments involving UVC techniques may be increased by augmenting the number of replicates or the area surveyed. In this work we present and test the efficiency of an UVC method based on diver towed GPS, the Tracked Roaming Transect (TRT, designed to maximize transect length (and thus the surveyed area with respect to diving time invested in monitoring, as compared to Conventional Strip Transects (CST. Additionally, we analyze the effect of increasing transect width and length on the precision of density estimates by comparing TRT vs. CST methods using different fixed widths of 6 and 20 m (FW3 and FW10, respectively and the Distance Sampling (DS method, in which perpendicular distance of each fish or group of fishes to the transect line is estimated by divers up to 20 m from the transect line. The TRT was 74% more time and cost efficient than the CST (all transect widths considered together and, for a given time, the use of TRT and/or increasing the transect width increased the precision of density estimates. In addition, since with the DS method distances of fishes to the transect line have to be estimated, and not measured directly as in terrestrial environments, errors in estimations of perpendicular distances can seriously affect DS density estimations. To assess the occurrence of distance estimation errors and their dependence on the observer's experience, a field experiment using wooden fish models was performed. We tested the precision and accuracy of density estimators based on fixed widths and the DS method. The accuracy of the estimates was measured comparing the actual

  1. Statistical inference and visualization in scale-space for spatially dependent images

    KAUST Repository

    Vaughan, Amy

    2012-03-01

    SiZer (SIgnificant ZERo crossing of the derivatives) is a graphical scale-space visualization tool that allows for statistical inferences. In this paper we develop a spatial SiZer for finding significant features and conducting goodness-of-fit tests for spatially dependent images. The spatial SiZer utilizes a family of kernel estimates of the image and provides not only exploratory data analysis but also statistical inference with spatial correlation taken into account. It is also capable of comparing the observed image with a specific null model being tested by adjusting the statistical inference using an assumed covariance structure. Pixel locations having statistically significant differences between the image and a given null model are highlighted by arrows. The spatial SiZer is compared with the existing independent SiZer via the analysis of simulated data with and without signal on both planar and spherical domains. We apply the spatial SiZer method to the decadal temperature change over some regions of the Earth. © 2011 The Korean Statistical Society.

  2. NASA Lunar Sample Education Disk Program - Space Rocks for Classrooms, Museums, Science Centers and Libraries

    Science.gov (United States)

    Allen, J. S.

    2009-12-01

    NASA is eager for students and the public to experience lunar Apollo rocks and regolith soils first hand. Lunar samples embedded in plastic are available for educators to use in their classrooms, museums, science centers, and public libraries for education activities and display. The sample education disks are valuable tools for engaging students in the exploration of the Solar System. Scientific research conducted on the Apollo rocks has revealed the early history of our Earth-Moon system. The rocks help educators make the connections to this ancient history of our planet as well as connections to the basic lunar surface processes - impact and volcanism. With these samples educators in museums, science centers, libraries, and classrooms can help students and the public understand the key questions pursued by missions to Moon. The Office of the Curator at Johnson Space Center is in the process of reorganizing and renewing the Lunar and Meteorite Sample Education Disk Program to increase reach, security and accountability. The new program expands the reach of these exciting extraterrestrial rocks through increased access to training and educator borrowing. One of the expanded opportunities is that trained certified educators from science centers, museums, and libraries may now borrow the extraterrestrial rock samples. Previously the loan program was only open to classroom educators so the expansion will increase the public access to the samples and allow educators to make the critical connections of the rocks to the exciting exploration missions taking place in our solar system. Each Lunar Disk contains three lunar rocks and three regolith soils embedded in Lucite. The anorthosite sample is a part of the magma ocean formed on the surface of Moon in the early melting period, the basalt is part of the extensive lunar mare lava flows, and the breccias sample is an important example of the violent impact history of the Moon. The disks also include two regolith soils and

  3. Grouped fuzzy SVM with EM-based partition of sample space for clustered microcalcification detection.

    Science.gov (United States)

    Wang, Huiya; Feng, Jun; Wang, Hongyu

    2017-07-20

    Detection of clustered microcalcification (MC) from mammograms plays essential roles in computer-aided diagnosis for early stage breast cancer. To tackle problems associated with the diversity of data structures of MC lesions and the variability of normal breast tissues, multi-pattern sample space learning is required. In this paper, a novel grouped fuzzy Support Vector Machine (SVM) algorithm with sample space partition based on Expectation-Maximization (EM) (called G-FSVM) is proposed for clustered MC detection. The diversified pattern of training data is partitioned into several groups based on EM algorithm. Then a series of fuzzy SVM are integrated for classification with each group of samples from the MC lesions and normal breast tissues. From DDSM database, a total of 1,064 suspicious regions are selected from 239 mammography, and the measurement of Accuracy, True Positive Rate (TPR), False Positive Rate (FPR) and EVL = TPR* 1-FPR are 0.82, 0.78, 0.14 and 0.72, respectively. The proposed method incorporates the merits of fuzzy SVM and multi-pattern sample space learning, decomposing the MC detection problem into serial simple two-class classification. Experimental results from synthetic data and DDSM database demonstrate that our integrated classification framework reduces the false positive rate significantly while maintaining the true positive rate.

  4. Sample selection via angular distance in the space of the arguments of an artificial neural network

    Science.gov (United States)

    Fernández Jaramillo, J. M.; Mayerle, R.

    2018-05-01

    In the construction of an artificial neural network (ANN) a proper data splitting of the available samples plays a major role in the training process. This selection of subsets for training, testing and validation affects the generalization ability of the neural network. Also the number of samples has an impact in the time required for the design of the ANN and the training. This paper introduces an efficient and simple method for reducing the set of samples used for training a neural network. The method reduces the required time to calculate the network coefficients, while keeping the diversity and avoiding overtraining the ANN due the presence of similar samples. The proposed method is based on the calculation of the angle between two vectors, each one representing one input of the neural network. When the angle formed among samples is smaller than a defined threshold only one input is accepted for the training. The accepted inputs are scattered throughout the sample space. Tidal records are used to demonstrate the proposed method. The results of a cross-validation show that with few inputs the quality of the outputs is not accurate and depends on the selection of the first sample, but as the number of inputs increases the accuracy is improved and differences among the scenarios with a different starting sample have and important reduction. A comparison with the K-means clustering algorithm shows that for this application the proposed method with a smaller number of samples is producing a more accurate network.

  5. Predictive Sampling of Rare Conformational Events in Aqueous Solution: Designing a Generalized Orthogonal Space Tempering Method.

    Science.gov (United States)

    Lu, Chao; Li, Xubin; Wu, Dongsheng; Zheng, Lianqing; Yang, Wei

    2016-01-12

    In aqueous solution, solute conformational transitions are governed by intimate interplays of the fluctuations of solute-solute, solute-water, and water-water interactions. To promote molecular fluctuations to enhance sampling of essential conformational changes, a common strategy is to construct an expanded Hamiltonian through a series of Hamiltonian perturbations and thereby broaden the distribution of certain interactions of focus. Due to a lack of active sampling of configuration response to Hamiltonian transitions, it is challenging for common expanded Hamiltonian methods to robustly explore solvent mediated rare conformational events. The orthogonal space sampling (OSS) scheme, as exemplified by the orthogonal space random walk and orthogonal space tempering methods, provides a general framework for synchronous acceleration of slow configuration responses. To more effectively sample conformational transitions in aqueous solution, in this work, we devised a generalized orthogonal space tempering (gOST) algorithm. Specifically, in the Hamiltonian perturbation part, a solvent-accessible-surface-area-dependent term is introduced to implicitly perturb near-solute water-water fluctuations; more importantly in the orthogonal space response part, the generalized force order parameter is generalized as a two-dimension order parameter set, in which essential solute-solvent and solute-solute components are separately treated. The gOST algorithm is evaluated through a molecular dynamics simulation study on the explicitly solvated deca-alanine (Ala10) peptide. On the basis of a fully automated sampling protocol, the gOST simulation enabled repetitive folding and unfolding of the solvated peptide within a single continuous trajectory and allowed for detailed constructions of Ala10 folding/unfolding free energy surfaces. The gOST result reveals that solvent cooperative fluctuations play a pivotal role in Ala10 folding/unfolding transitions. In addition, our assessment

  6. Dynamic Sampling of Trace Contaminants During the Mission Operations Test of the Deep Space Habitat

    Science.gov (United States)

    Monje, Oscar; Valling, Simo; Cornish, Jim

    2013-01-01

    The atmospheric composition inside spacecraft during long duration space missions is dynamic due to changes in the living and working environment of crew members, crew metabolism and payload operations. A portable FTIR gas analyzer was used to monitor the atmospheric composition within the Deep Space Habitat (DSH) during the Mission Operations Test (MOT) conducted at the Johnson Space Center (JSC). The FTIR monitored up to 20 gases in near- real time. The procedures developed for operating the FTIR were successful and data was collected with the FTIR at 5 minute intervals. Not all the 20 gases sampled were detected in all the modules and it was possible to measure dynamic changes in trace contaminant concentrations that were related to crew activities involving exercise and meal preparation.

  7. Left neglected, but only in far space: Spatial biases in healthy participants revealed in a visually-guided grasping task

    Directory of Open Access Journals (Sweden)

    Natalie ede Bruin

    2014-01-01

    Full Text Available Hemispatial neglect is a common outcome of stroke that is characterised by the inability to orient towards, and attend to stimuli in contralesional space. It is established that hemispatial neglect has a perceptual component, however, the presence and severity of motor impairments is controversial. Establishing the nature of space use and spatial biases during visually-guided actions amongst healthy individuals is critical to understanding the presence of visuomotor deficits in patients with neglect. Accordingly, three experiments were conducted to investigate the effect of object spatial location on patterns of grasping. Experiment 1 required right-handed participants to reach and grasp for blocks in order to construct 3D models. The blocks were scattered on a tabletop divided into equal size quadrants: left near, left far, right near, and right far. Identical sets of building blocks were available in each quadrant. Space use was dynamic, with participants initially grasping blocks from right near space and tending to ‘neglect’ left far space until the final stages of the task. Experiment 2 repeated the protocol with left-handed participants. Remarkably, left-handed participants displayed a similar pattern of space use to right-handed participants. In Experiment 3 eye movements were examined to investigate whether ‘neglect’ for grasping in left far reachable space had its origins in attentional biases. It was found that patterns of eye movements mirrored patterns of reach-to-grasp movements. We conclude that there are spatial biases during visually-guided grasping, specifically, a tendency to neglect left far reachable space, and that this ‘neglect’ is attentional in origin. The results raise the possibility that visuomotor impairments reported among patients with right hemisphere lesions when working in contralesional space may result in part from this inherent tendency to ‘neglect’ left far space irrespective of the presence

  8. A novel variable selection approach that iteratively optimizes variable space using weighted binary matrix sampling.

    Science.gov (United States)

    Deng, Bai-chuan; Yun, Yong-huan; Liang, Yi-zeng; Yi, Lun-zhao

    2014-10-07

    In this study, a new optimization algorithm called the Variable Iterative Space Shrinkage Approach (VISSA) that is based on the idea of model population analysis (MPA) is proposed for variable selection. Unlike most of the existing optimization methods for variable selection, VISSA statistically evaluates the performance of variable space in each step of optimization. Weighted binary matrix sampling (WBMS) is proposed to generate sub-models that span the variable subspace. Two rules are highlighted during the optimization procedure. First, the variable space shrinks in each step. Second, the new variable space outperforms the previous one. The second rule, which is rarely satisfied in most of the existing methods, is the core of the VISSA strategy. Compared with some promising variable selection methods such as competitive adaptive reweighted sampling (CARS), Monte Carlo uninformative variable elimination (MCUVE) and iteratively retaining informative variables (IRIV), VISSA showed better prediction ability for the calibration of NIR data. In addition, VISSA is user-friendly; only a few insensitive parameters are needed, and the program terminates automatically without any additional conditions. The Matlab codes for implementing VISSA are freely available on the website: https://sourceforge.net/projects/multivariateanalysis/files/VISSA/.

  9. Simulating and assessing boson sampling experiments with phase-space representations

    Science.gov (United States)

    Opanchuk, Bogdan; Rosales-Zárate, Laura; Reid, Margaret D.; Drummond, Peter D.

    2018-04-01

    The search for new, application-specific quantum computers designed to outperform any classical computer is driven by the ending of Moore's law and the quantum advantages potentially obtainable. Photonic networks are promising examples, with experimental demonstrations and potential for obtaining a quantum computer to solve problems believed classically impossible. This introduces a challenge: how does one design or understand such photonic networks? One must be able to calculate observables using general methods capable of treating arbitrary inputs, dissipation, and noise. We develop complex phase-space software for simulating these photonic networks, and apply this to boson sampling experiments. Our techniques give sampling errors orders of magnitude lower than experimental correlation measurements for the same number of samples. We show that these techniques remove systematic errors in previous algorithms for estimating correlations, with large improvements in errors in some cases. In addition, we obtain a scalable channel-combination strategy for assessment of boson sampling devices.

  10. Visualizing the inner product space ℝm×n in a MATLAB-assisted linear algebra classroom

    Science.gov (United States)

    Caglayan, Günhan

    2018-05-01

    This linear algebra note offers teaching and learning ideas in the treatment of the inner product space ? in a technology-supported learning environment. Classroom activities proposed in this note demonstrate creative ways of integrating MATLAB technology into various properties of Frobenius inner product as visualization tools that complement the algebraic approach. As implemented in linear algebra lessons in a university in the Unites States, the article also incorporates algebraic and visual work of students who experienced these activities with MATLAB software. The connection between the Frobenius norm and the Euclidean norm is also emphasized.

  11. FluoRender: An application of 2D image space methods for 3D and 4D confocal microscopy data visualization in neurobiology research

    KAUST Repository

    Wan, Yong; Otsuna, Hideo; Chien, Chi-Bin; Hansen, Charles

    2012-01-01

    2D image space methods are processing methods applied after the volumetric data are projected and rendered into the 2D image space, such as 2D filtering, tone mapping and compositing. In the application domain of volume visualization, most 2D image space methods can be carried out more efficiently than their 3D counterparts. Most importantly, 2D image space methods can be used to enhance volume visualization quality when applied together with volume rendering methods. In this paper, we present and discuss the applications of a series of 2D image space methods as enhancements to confocal microscopy visualizations, including 2D tone mapping, 2D compositing, and 2D color mapping. These methods are easily integrated with our existing confocal visualization tool, FluoRender, and the outcome is a full-featured visualization system that meets neurobiologists' demands for qualitative analysis of confocal microscopy data. © 2012 IEEE.

  12. FluoRender: An application of 2D image space methods for 3D and 4D confocal microscopy data visualization in neurobiology research

    KAUST Repository

    Wan, Yong

    2012-02-01

    2D image space methods are processing methods applied after the volumetric data are projected and rendered into the 2D image space, such as 2D filtering, tone mapping and compositing. In the application domain of volume visualization, most 2D image space methods can be carried out more efficiently than their 3D counterparts. Most importantly, 2D image space methods can be used to enhance volume visualization quality when applied together with volume rendering methods. In this paper, we present and discuss the applications of a series of 2D image space methods as enhancements to confocal microscopy visualizations, including 2D tone mapping, 2D compositing, and 2D color mapping. These methods are easily integrated with our existing confocal visualization tool, FluoRender, and the outcome is a full-featured visualization system that meets neurobiologists\\' demands for qualitative analysis of confocal microscopy data. © 2012 IEEE.

  13. Scenario-visualization for the assessment of perceived green space qualities at the urban-rural fringe.

    Science.gov (United States)

    Lange, Eckart; Hehl-Lange, Sigrid; Brewer, Mark J

    2008-11-01

    The provision of green space is increasingly being perceived as an important factor for quality of life. However, green spaces often face high developmental pressure. The main objective of this study is to investigate a prospective approach to green space planning by combining three-dimensional (3D) visualization of green space scenarios and survey techniques to facilitate improved participation of the public. Aside from the 'Status quo', scenarios 'Agriculture', 'Recreation', 'Nature conservation' and 'Wind turbines' are visualized in three dimensions. In order to test responses, a survey was conducted both in print format and on the Internet. Overall, 49 different visualizations that belong to one of the scenarios were available in the survey and were rated according to the perceived esthetic, recreational and ecological values. The highest rated scenes include vegetation elements such as meadows with orchards, single trees, shrubs or forest. The least attractive scenes are those where buildings are highly dominant or where there are no vegetation elements. Based on the ratings for the individual images and on the corresponding scenarios, our study shows that there is high potential for improving the existing landscape. All suggested changes are either rated about equal to or considerably higher than the status quo, with the scenario 'Nature conservation' receiving the highest scores.

  14. 10. Creativity and Innovation in Visual Arts through Form and Space Having Symbolic Value

    Directory of Open Access Journals (Sweden)

    Iaţeşen Mihai – Cosmin

    2017-03-01

    Full Text Available The numerous plastic approaches of form in the 20th century are characterized by creativity and innovation. Form, as expression of an artistic language, is the cause and effect for the cultural evolution of a particular spatial-temporal area. The invention of forms depending on the factors which will impose them in a particular socio-cultural context and location environment is not everything. The challenges of the act of creation are far more complex. For the art of the 20th century, the role of the type of expression in visual or gestural language proved much more convincing and meaningful as to the data or phenomena occurring in immediate reality. The personality of the artist, his cultural character, his media coverage and exterior influences of his inner world, his preceding experiences and receiver’s contacts in a specific area are the factors that influence the relation between the work of art and the audience against a particular spatial-temporal background. The psychological and sensory processes in works of plastic art are spatially configured in structures, which leads to self-confession. The artist filters the information and the elements of exterior reality through the vision of his imagination and power of expression specific to his inner self, and turns them into values through the involvement of his state of mind. Constantin Brâncuşi is the sculptor whose role was considered exponential as he revolutionized modern artistic vision by integrating and creating space-form relations through symbol. Throughout his complex work - the Group of Monumental Sculptures of Tg. Jiu, the artist renewed the language of the sculpture-specific means of expression, though archaic forms, by restoring traditional art. Archetypes often make reference to the initial and ideal form and they represent the primitive and native models composing it. Form attracts, polarizes and integrates the energy of the matter outside the human body, and art acquires

  15. Nanofriction visualized in space and time by 4D electron microscopy.

    Science.gov (United States)

    Flannigan, David J; Park, Sang Tae; Zewail, Ahmed H

    2010-11-10

    In this letter, we report a novel method of visualizing nanoscale friction in space and time using ultrafast electron microscopy (UEM). The methodology is demonstrated for a nanoscale movement of a single crystal beam on a thin amorphous membrane of silicon nitride. The movement results from the elongation of the crystal beam, which is initiated by a laser (clocking) pulse, and we examined two types of beams: those that are free of friction and the others which are fixed on the substrate. From observations of image change with time we are able to decipher the nature of microscopic friction at the solid-solid interface: smooth-sliding and periodic slip-stick friction. At the molecular and nanoscale level, and when a force parallel to the surface (expansion of the beam) is applied, the force of gravity as a (perpendicular) load cannot explain the observed friction. An additional effective load being 6 orders of magnitude larger than that due to gravity is attributed to Coulombic/van der Waals adhesion at the interface. For the case under study, metal-organic crystals, the gravitational force is on the order of piconewtons whereas the static friction force is 0.5 μN and dynamic friction is 0.4 μN; typical beam expansions are 50 nm/nJ for the free beam and 10 nm/nJ for the fixed beam. The method reported here should have applications for other materials, and for elucidating the origin of periodic and chaotic friction and their relevance to the efficacy of nano(micro)-scale devices.

  16. Extended phase-space methods for enhanced sampling in molecular simulations: a review

    Directory of Open Access Journals (Sweden)

    Hiroshi eFujisaki

    2015-09-01

    Full Text Available Molecular Dynamics simulations are a powerful approach to study biomolecular conformational changes or protein-ligand, protein-protein and protein-DNA/RNA interactions. Straightforward applications however are often hampered by incomplete sampling, since in a typical simulated trajectory the system will spend most of its time trapped by high energy barriers in restricted regions of the configuration space. Over the years, several techniques have been designed to overcome this problem and enhance space sampling. Here, we review a class of methods that rely on the idea of extending the set of dynamical variables of the system by adding extra ones associated to functions describing the process under study. In particular, we illustrate the Temperature Accelerated Molecular Dynamics (TAMD, Logarithmic Mean Force Dynamics (LogMFD, andMultiscale Enhanced Sampling (MSES algorithms. We also discuss combinations with techniques for searching reaction paths. We show the advantages presented by this approach and how it allows to quickly sample important regions of the free energy landscape via automatic exploration.

  17. (Re)visualizing Black lesbian lives, (trans)masculinity, and township space in the documentary work of Zanele Muholi.

    Science.gov (United States)

    Imma, Z'étoile

    2017-04-03

    This article explores the politics of representing Black queer and trans subjectivities in the recent documentary film and photography of South African lesbian visual activist Zanele Muholi. While Muholi's work has been most often been positioned as an artistic response to the hate-crimes and violence perpetuated against Black lesbians in South African townships, most notably acts of sexual violence known increasingly as corrective rape, I argue that Muholi's documentary texts trouble the spatial, gendered, and highly racialized articulations that make up an increasingly global corrective rape discourse. The article considers how her visual texts foreground and (re)visualize Black queer and trans gender experiences that relocate, challenge, collaborate with, and at times, perform, masculinity as means to subvert heterosexist and racist constructions of township space and the Black gendered body.

  18. Knowledge acquisition with domain experts on the aspects of use of visual variables in the Space Time Cube

    DEFF Research Database (Denmark)

    Kveladze, Irma; Kraak, Menno-Jan

    2013-01-01

    participants are selected purposefully based on the specific criteria in order to say something on the topic that has to be discussed (Nielsen, 1993). Accordingly, the main objective for focus group interview was to discuss the use of the visual variables based on the cartographic design theory (Bertin, 1983......The Space – Time Cube (STC) is a visual representation developed at the end of the 20th century for understanding the spatio-temporal aspects in human’s everyday life (Hägerstrand, 1970). Since its introduction, it has been widely used in a various discipline (Kraak, 2003; Demšar and Virrantaus...... to other visual representations. However, the usability metrics of the cartographic design theory for the STC content still remain to be unexplored. Therefore, this study particularly focused on the evaluation of the cartographic design aspects into the STC. This study was conducted in two different...

  19. Issues in visual support to real-time space system simulation solved in the Systems Engineering Simulator

    Science.gov (United States)

    Yuen, Vincent K.

    1989-01-01

    The Systems Engineering Simulator has addressed the major issues in providing visual data to its real-time man-in-the-loop simulations. Out-the-window views and CCTV views are provided by three scene systems to give the astronauts their real-world views. To expand the window coverage for the Space Station Freedom workstation a rotating optics system is used to provide the widest field of view possible. To provide video signals to as many viewpoints as possible, windows and CCTVs, with a limited amount of hardware, a video distribution system has been developed to time-share the video channels among viewpoints at the selection of the simulation users. These solutions have provided the visual simulation facility for real-time man-in-the-loop simulations for the NASA space program.

  20. NewsPaperBox - Online News Space: a visual model for representing the social space of a website

    Directory of Open Access Journals (Sweden)

    Selçuk Artut

    2010-02-01

    Full Text Available NewsPaperBox * propounds an alternative visual model utilizing the treemap algorithm to represent the collective use of a website that evolves in response to user interaction. While the technology currently exists to track various user behaviors such as number of clicks, duration of stay on a given web site, these statistics are not yet employed to influence the visual representation of that site's design in real time. In that sense, this project propounds an alternative modeling of a representational outlook of a website that is developed by collaborations and competitions of its global users. This paper proposes the experience of cyberspace as a generative process driven by its effective user participation.

  1. Space density and clustering properties of a new sample of emission-line galaxies

    International Nuclear Information System (INIS)

    Wasilewski, A.J.

    1982-01-01

    A moderate-dispersion objective-prism survey for low-redshift emission-line galaxies has been carried out in an 825 sq. deg. region of sky with the Burrell Schmidt telescope of Case Western Reserve University. A 4 0 prism (300 A/mm at H#betta#) was used with the Illa-J emulsion to show that a new sample of emission-line galaxies is available even in areas already searched with the excess uv-continuum technique. The new emission-line galaxies occur quite commonly in systems with peculiar morphology indicating gravitational interaction with a close companion or other disturbance. About 10 to 15% of the sample are Seyfert galaxies. It is suggested that tidal interaction involving matter infall play a significant role in the generation of an emission-line spectrum. The space density of the new galaxies is found to be similar to the space density of the Makarian galaxies. Like the Markarian sample, the galaxies in the present survey represent about 10% of all galaxies in the absolute magnitude range M/sub p/ = -16 to -22. The observations also indicate that current estimates of dwarf galaxy space densities may be too low. The clustering properties of the new galaxies have been investigated using two approaches: cluster contour maps and the spatial correlation function. These tests suggest that there is weak clustering and possibly superclustering within the sample itself and that the galaxies considered here are about as common in clusters of ordinary galaxies as in the field

  2. Galaxy power-spectrum responses and redshift-space super-sample effect

    Science.gov (United States)

    Li, Yin; Schmittfull, Marcel; Seljak, Uroš

    2018-02-01

    As a major source of cosmological information, galaxy clustering is susceptible to long-wavelength density and tidal fluctuations. These long modes modulate the growth and expansion rate of local structures, shifting them in both amplitude and scale. These effects are often named the growth and dilation effects, respectively. In particular the dilation shifts the baryon acoustic oscillation (BAO) peak and breaks the assumption of the Alcock-Paczynski (AP) test. This cannot be removed with reconstruction techniques because the effect originates from long modes outside the survey. In redshift space, the long modes generate a large-scale radial peculiar velocity that affects the redshift-space distortion (RSD) signal. We compute the redshift-space response functions of the galaxy power spectrum to long density and tidal modes at leading order in perturbation theory, including both the growth and dilation terms. We validate these response functions against measurements from simulated galaxy mock catalogs. As one application, long density and tidal modes beyond the scale of a survey correlate various observables leading to an excess error known as the super-sample covariance, and thus weaken their constraining power. We quantify the super-sample effect on BAO, AP, and RSD measurements, and study its impact on current and future surveys.

  3. Do you see what I hear? Vantage point preference and visual dominance in a time-space synaesthete.

    Science.gov (United States)

    Jarick, Michelle; Stewart, Mark T; Smilek, Daniel; Dixon, Michael J

    2013-01-01

    Time-space synaesthetes "see" time units organized in a spatial form. While the structure might be invariant for most synaesthetes, the perspective by which some view their calendar is somewhat flexible. One well-studied synaesthete L adopts different viewpoints for months seen vs. heard. Interestingly, L claims to prefer her auditory perspective, even though the month names are represented visually upside down. To verify this, we used a spatial-cueing task that included audiovisual month cues. These cues were either congruent with L's preferred "auditory" viewpoint (auditory-only and auditory + month inverted) or incongruent (upright visual-only and auditory + month upright). Our prediction was that L would show enhanced cueing effects (larger response time difference between valid and invalid targets) following the audiovisual congruent cues since both elicit the "preferred" auditory perspective. Also, when faced with conflicting cues, we predicted L would choose the preferred auditory perspective over the visual perspective. As we expected, L did show enhanced cueing effects following the audiovisual congruent cues that corresponded with her preferred auditory perspective, but that the visual perspective dominated when L was faced with both viewpoints simultaneously. The results are discussed with relation to the reification hypothesis of sequence space synaesthesia (Eagleman, 2009).

  4. Poster: Observing change in crowded data sets in 3D space - Visualizing gene expression in human tissues

    KAUST Repository

    Rogowski, Marcin

    2013-03-01

    We have been confronted with a real-world problem of visualizing and observing change of gene expression between different human tissues. In this paper, we are presenting a universal representation space based on two-dimensional gel electrophoresis as opposed to force-directed layouts encountered most often in similar problems. We are discussing the methods we devised to make observing change more convenient in a 3D virtual reality environment. © 2013 IEEE.

  5. Lunar and Meteorite Sample Education Disk Program - Space Rocks for Classrooms, Museums, Science Centers, and Libraries

    Science.gov (United States)

    Allen, Jaclyn; Luckey, M.; McInturff, B.; Huynh, P.; Tobola, K.; Loftin, L.

    2010-01-01

    NASA is eager for students and the public to experience lunar Apollo samples and meteorites first hand. Lunar rocks and soil, embedded in Lucite disks, are available for educators to use in their classrooms, museums, science centers, and public libraries for education activities and display. The sample education disks are valuable tools for engaging students in the exploration of the Solar System. Scientific research conducted on the Apollo rocks reveals the early history of our Earth-Moon system and meteorites reveal much of the history of the early solar system. The rocks help educators make the connections to this ancient history of our planet and solar system and the basic processes accretion, differentiation, impact and volcanism. With these samples, educators in museums, science centers, libraries, and classrooms can help students and the public understand the key questions pursued by many NASA planetary missions. The Office of the Curator at Johnson Space Center is in the process of reorganizing and renewing the Lunar and Meteorite Sample Education Disk Program to increase reach, security and accountability. The new program expands the reach of these exciting extraterrestrial rocks through increased access to training and educator borrowing. One of the expanded opportunities is that trained certified educators from science centers, museums, and libraries may now borrow the extraterrestrial rock samples. Previously the loan program was only open to classroom educators so the expansion will increase the public access to the samples and allow educators to make the critical connections to the exciting exploration missions taking place in our solar system. Each Lunar Disk contains three lunar rocks and three regolith soils embedded in Lucite. The anorthosite sample is a part of the magma ocean formed on the surface of Moon in the early melting period, the basalt is part of the extensive lunar mare lava flows, and the breccias sample is an important example of the

  6. Endodontic pathogens causing deep neck space infections: clinical impact of different sampling techniques and antibiotic susceptibility.

    Science.gov (United States)

    Poeschl, Paul W; Crepaz, Valentina; Russmueller, Guenter; Seemann, Rudolf; Hirschl, Alexander M; Ewers, Rolf

    2011-09-01

    The aims of the present study were to compare microbial populations in patients suffering from deep neck space abscesses caused by primary endodontic infections by sampling the infections with aspiration or swabbing techniques and to determine the susceptibility rates of the isolated bacteria to commonly used antibiotics. A total of 89 patients with deep neck space abscesses caused by primary endodontic infections requiring extraoral incision and drainage under general anesthesia were included. Either aspiration or swabbing was used to sample microbial pus specimens. The culture of the microbial specimens and susceptibility testing were performed following standard procedures. A total of 142 strains were recovered from 76 patients. In 13 patients, no bacteria were found. The predominant bacteria observed were streptococci (36%), staphylococci (13%), Prevotella (8%), and Peptostreptococcus (6%). A statistically significant greater number of obligate anaerobes were found in the aspiration group. The majority of patients presented a mixed aerobic-anaerobic population of bacterial flora (62%). The antibiotic resistance rates for the predominant bacteria were 10% for penicillin G, 9% for amoxicillin, 0% for amoxicillin clavulanate, 24% for clindamycin, and 24% for erythromycin. The results of our study indicated that a greater number of anaerobes were found when sampling using the aspiration technique. Penicillin G and aminopenicillins alone are not always sufficient for the treatment of severe deep neck space abscesses; beta-lactamase inhibitor combinations are more effective. Bacteria showed significant resistant rates to clindamycin. Thus, its single use in penicillin-allergic patients has to be carefully considered. Copyright © 2011 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  7. Spacing and Induction: Application to Exemplars Presented as Auditory and Visual Text

    Science.gov (United States)

    Zulkiply, Norehan; McLean, John; Burt, Jennifer S.; Bath, Debra

    2012-01-01

    It is an established finding that spacing repetitions generally facilitates memory for the repeated events. However, the effect of spacing of exemplars on inductive learning is not really known. Two experiments using textual material were conducted to investigate the effect of spacing on induction. Experiment 1 and 2 extended the generality of…

  8. Biomarker Analysis of Samples Visually Identified as Microbial in the Eocene Green River Formation: An Analogue for Mars.

    Science.gov (United States)

    Olcott Marshall, Alison; Cestari, Nicholas A

    2015-09-01

    One of the major exploration targets for current and future Mars missions are lithofacies suggestive of biotic activity. Although such lithofacies are not confirmation of biotic activity, they provide a way to identify samples for further analyses. To test the efficacy of this approach, we identified carbonate samples from the Eocene Green River Formation as "microbial" or "non-microbial" based on the macroscale morphology of their laminations. These samples were then crushed and analyzed by gas chromatography/mass spectroscopy (GC/MS) to determine their lipid biomarker composition. GC/MS analysis revealed that carbonates visually identified as "microbial" contained a higher concentration of more diverse biomarkers than those identified as "non-microbial," suggesting that this could be a viable detection strategy for selecting samples for further analysis or caching on Mars.

  9. Language therapy space teaching English as a foreign language to the visually impaired

    CERN Document Server

    Wyszynska, Beata

    2016-01-01

    The author describes the psycho-linguistic therapy «touching the World» for the visually impaired and explores language as a therapeutic tool with great possibilities for a teaching-learning process.

  10. Standard anatomical and visual space for the mouse retina: computational reconstruction and transformation of flattened retinae with the Retistruct package.

    Directory of Open Access Journals (Sweden)

    David C Sterratt

    Full Text Available The concept of topographic mapping is central to the understanding of the visual system at many levels, from the developmental to the computational. It is important to be able to relate different coordinate systems, e.g. maps of the visual field and maps of the retina. Retinal maps are frequently based on flat-mount preparations. These use dissection and relaxing cuts to render the quasi-spherical retina into a 2D preparation. The variable nature of relaxing cuts and associated tears limits quantitative cross-animal comparisons. We present an algorithm, "Retistruct," that reconstructs retinal flat-mounts by mapping them into a standard, spherical retinal space. This is achieved by: stitching the marked-up cuts of the flat-mount outline; dividing the stitched outline into a mesh whose vertices then are mapped onto a curtailed sphere; and finally moving the vertices so as to minimise a physically-inspired deformation energy function. Our validation studies indicate that the algorithm can estimate the position of a point on the intact adult retina to within 8° of arc (3.6% of nasotemporal axis. The coordinates in reconstructed retinae can be transformed to visuotopic coordinates. Retistruct is used to investigate the organisation of the adult mouse visual system. We orient the retina relative to the nictitating membrane and compare this to eye muscle insertions. To align the retinotopic and visuotopic coordinate systems in the mouse, we utilised the geometry of binocular vision. In standard retinal space, the composite decussation line for the uncrossed retinal projection is located 64° away from the retinal pole. Projecting anatomically defined uncrossed retinal projections into visual space gives binocular congruence if the optical axis of the mouse eye is oriented at 64° azimuth and 22° elevation, in concordance with previous results. Moreover, using these coordinates, the dorsoventral boundary for S-opsin expressing cones closely matches

  11. Sampling Methodologies for Epidemiologic Surveillance of Men Who Have Sex with Men and Transgender Women in Latin America: An Empiric Comparison of Convenience Sampling, Time Space Sampling, and Respondent Driven Sampling

    OpenAIRE

    Clark, J. L.; Konda, K. A.; Silva-Santisteban, A.; Peinado, J.; Lama, J. R.; Kusunoki, L.; Perez-Brumer, A.; Pun, M.; Cabello, R.; Sebastian, J. L.; Suarez-Ognio, L.; Sanchez, J.

    2014-01-01

    Alternatives to convenience sampling (CS) are needed for HIV/STI surveillance of most-at-risk populations in Latin America. We compared CS, time space sampling (TSS), and respondent driven sampling (RDS) for recruitment of men who have sex with men (MSM) and transgender women (TW) in Lima, Peru. During concurrent 60-day periods from June-August, 2011, we recruited MSM/TW for epidemiologic surveillance using CS, TSS, and RDS. A total of 748 participants were recruited through CS, 233 through T...

  12. The attention-weighted sample-size model of visual short-term memory

    DEFF Research Database (Denmark)

    Smith, Philip L.; Lilburn, Simon D.; Corbett, Elaine A.

    2016-01-01

    exceeded that predicted by the sample-size model for both simultaneously and sequentially presented stimuli. Instead, the set-size effect and the serial position curves with sequential presentation were predicted by an attention-weighted version of the sample-size model, which assumes that one of the items...

  13. Images of soft materials: a 3D visualization of interior of the sample in terms of attenuation coefficient

    International Nuclear Information System (INIS)

    Golosio, B.; Brunetti, A.; Cesareo, R.; Amendolia, S.R.; Rao, D.V.; Seltzer, S.M.

    2001-01-01

    Images of soft materials are obtained using image intensifier based X-ray system (Rao et al., Nucl. Instr. and Meth. A 437 (1999) 141). The interior of the soft material is visualized using the novel software in order to know the distribution of attenuation coefficient in terms of density. The novel software is based mainly on graphical library and applicable to several operating systems without any change. It can be applied to several applications starting from biomedical to industries, for example, quality control. The results for walnut and brew tooth are presented as a set of images from the internal parts of the sample. A description of the principal parameters required for tomographic visualization is given and some results based on this technique are reported and discussed

  14. Visualization and automatic detection of defect distribution in GaN atomic structure from sampling Moiré phase.

    Science.gov (United States)

    Wang, Qinghua; Ri, Shien; Tsuda, Hiroshi; Kodera, Masako; Suguro, Kyoichi; Miyashita, Naoto

    2017-09-19

    Quantitative detection of defects in atomic structures is of great significance to evaluating product quality and exploring quality improvement process. In this study, a Fourier transform filtered sampling Moire technique was proposed to visualize and detect defects in atomic arrays in a large field of view. Defect distributions, defect numbers and defect densities could be visually and quantitatively determined from a single atomic structure image at low cost. The effectiveness of the proposed technique was verified from numerical simulations. As an application, the dislocation distributions in a GaN/AlGaN atomic structure in two directions were magnified and displayed in Moire phase maps, and defect locations and densities were detected automatically. The proposed technique is able to provide valuable references to material scientists and engineers by checking the effect of various treatments for defect reduction. © 2017 IOP Publishing Ltd.

  15. Python-Based Scientific Analysis and Visualization of Precipitation Systems at NASA Marshall Space Flight Center

    Science.gov (United States)

    Lang, Timothy J.

    2015-01-01

    At NASA Marshall Space Flight Center (MSFC), Python is used several different ways to analyze and visualize precipitating weather systems. A number of different Python-based software packages have been developed, which are available to the larger scientific community. The approach in all these packages is to utilize pre-existing Python modules as well as to be object-oriented and scalable. The first package that will be described and demonstrated is the Python Advanced Microwave Precipitation Radiometer (AMPR) Data Toolkit, or PyAMPR for short. PyAMPR reads geolocated brightness temperature data from any flight of the AMPR airborne instrument over its 25-year history into a common data structure suitable for user-defined analyses. It features rapid, simplified (i.e., one line of code) production of quick-look imagery, including Google Earth overlays, swath plots of individual channels, and strip charts showing multiple channels at once. These plotting routines are also capable of significant customization for detailed, publication-ready figures. Deconvolution of the polarization-varying channels to static horizontally and vertically polarized scenes is also available. Examples will be given of PyAMPR's contribution toward real-time AMPR data display during the Integrated Precipitation and Hydrology Experiment (IPHEx), which took place in the Carolinas during May-June 2014. The second software package is the Marshall Multi-Radar/Multi-Sensor (MRMS) Mosaic Python Toolkit, or MMM-Py for short. MMM-Py was designed to read, analyze, and display three-dimensional national mosaicked reflectivity data produced by the NOAA National Severe Storms Laboratory (NSSL). MMM-Py can read MRMS mosaics from either their unique binary format or their converted NetCDF format. It can also read and properly interpret the current mosaic design (4 regional tiles) as well as mosaics produced prior to late July 2013 (8 tiles). MMM-Py can easily stitch multiple tiles together to provide a

  16. Movement-based estimation and visualization of space use in 3D for wildlife ecology and conservation.

    Directory of Open Access Journals (Sweden)

    Jeff A Tracey

    Full Text Available Advances in digital biotelemetry technologies are enabling the collection of bigger and more accurate data on the movements of free-ranging wildlife in space and time. Although many biotelemetry devices record 3D location data with x, y, and z coordinates from tracked animals, the third z coordinate is typically not integrated into studies of animal spatial use. Disregarding the vertical component may seriously limit understanding of animal habitat use and niche separation. We present novel movement-based kernel density estimators and computer visualization tools for generating and exploring 3D home ranges based on location data. We use case studies of three wildlife species--giant panda, dugong, and California condor--to demonstrate the ecological insights and conservation management benefits provided by 3D home range estimation and visualization for terrestrial, aquatic, and avian wildlife research.

  17. Movement-based estimation and visualization of space use in 3D for wildlife ecology and conservation

    Science.gov (United States)

    Tracey, Jeff A.; Sheppard, James; Zhu, Jun; Wei, Fu-Wen; Swaisgood, Ronald R.; Fisher, Robert N.

    2014-01-01

    Advances in digital biotelemetry technologies are enabling the collection of bigger and more accurate data on the movements of free-ranging wildlife in space and time. Although many biotelemetry devices record 3D location data with x, y, and z coordinates from tracked animals, the third z coordinate is typically not integrated into studies of animal spatial use. Disregarding the vertical component may seriously limit understanding of animal habitat use and niche separation. We present novel movement-based kernel density estimators and computer visualization tools for generating and exploring 3D home ranges based on location data. We use case studies of three wildlife species – giant panda, dugong, and California condor – to demonstrate the ecological insights and conservation management benefits provided by 3D home range estimation and visualization for terrestrial, aquatic, and avian wildlife research.

  18. Visual arts and the teaching of the mathematical concepts of shape and space in Grade R classrooms

    Directory of Open Access Journals (Sweden)

    Dianne Wilmot

    2015-09-01

    Full Text Available This article addresses the need for research in the areas of Grade R curriculum and pedagogy, Grade R teacher professional development, and early years mathematics teaching. More specifically, it responds to the need for teacher professional development in Grade R mathematics teaching of the geometric concepts of space and shape. The article describes a study about teachers’ understanding of how visual arts can be used as pedagogical modality. The study was prompted by the findings of a ‘Maths and Science through Arts and Culture Curriculum’ intervention undertaken with Grade R teachers enrolled for a Bachelor of Education (Foundation Phase degree at a South African university. Post-intervention, teachers’ classroom practices did not change, and they were not using visual arts to teach mathematical concepts. The lessons learned from the research intervention may contribute to the wider debate about Grade R teaching and children’s learning.

  19. Movement-based estimation and visualization of space use in 3D for wildlife ecology and conservation.

    Science.gov (United States)

    Tracey, Jeff A; Sheppard, James; Zhu, Jun; Wei, Fuwen; Swaisgood, Ronald R; Fisher, Robert N

    2014-01-01

    Advances in digital biotelemetry technologies are enabling the collection of bigger and more accurate data on the movements of free-ranging wildlife in space and time. Although many biotelemetry devices record 3D location data with x, y, and z coordinates from tracked animals, the third z coordinate is typically not integrated into studies of animal spatial use. Disregarding the vertical component may seriously limit understanding of animal habitat use and niche separation. We present novel movement-based kernel density estimators and computer visualization tools for generating and exploring 3D home ranges based on location data. We use case studies of three wildlife species--giant panda, dugong, and California condor--to demonstrate the ecological insights and conservation management benefits provided by 3D home range estimation and visualization for terrestrial, aquatic, and avian wildlife research.

  20. Visualization and quantification of heterogeneous diffusion rates in granodiorite samples by X-ray absorption imaging. Diffusion within gouge materials, altered rim and intact rock matrix

    International Nuclear Information System (INIS)

    Altman, S.J.; Tidwell, V.C.; Uchida, M.

    2001-01-01

    Matrix diffusion is one of the most important contaminant migration retardation processes in crystalline rocks. Performance assessment calculations in various countries assume that only the area of the fracture surface where advection is active provides access to the rock matrix. However, accessibility to the matrix could be significantly enhanced with diffusion into stagnant zones, fracture fillings, and through an alteration rim in the matrix. Laboratory visualization experiments were conducted on granodiorite samples to investigate and quantify diffusion rates within different zones of a Cretaceous granodiorite. Samples were collected from the Kamaishi experimental site in the northern part of the main island of Japan. Diffusion of iodine out of the sample is visualized and rates are measured using x-ray absorption imaging. X-ray images allow for measurements of relative iodine concentration and relative iodine mass as a function of time and two-dimensional space at a sub-millimeter spatial resolution. In addition, two-dimensional heterogeneous porosity fields (at the same resolution as the relative concentration fields) are measured. This imaging technique allows for a greater understanding of the spatial variability of diffusion rates than can be accomplished with standard bulk measurements. It was found that diffusion rates were fastest in partially gouge-filled fractures. Diffusion rates in the recrystallized calcite-based fracture-filling material were up to an order of magnitude lower than in gouge-filled fractures. Diffusion in altered matrix around the fractures was over an order of magnitude lower than that in the gouge-filled fractures. Healed fractures did not appear to have different diffusion rates than the unaltered matrix

  1. Visualization and quantification of heterogeneous diffusion rates in granodiorite samples by X-ray absorption imaging. Diffusion within gouge materials, altered rim and intact rock matrix

    Energy Technology Data Exchange (ETDEWEB)

    Altman, S.J.; Tidwell, V.C. [Sandia National Laboratories, Albuquerque, NM (United States); Uchida, M. [Japan Nuclear Cycle Development Inst., Ibaraki (Japan)

    2001-08-01

    Matrix diffusion is one of the most important contaminant migration retardation processes in crystalline rocks. Performance assessment calculations in various countries assume that only the area of the fracture surface where advection is active provides access to the rock matrix. However, accessibility to the matrix could be significantly enhanced with diffusion into stagnant zones, fracture fillings, and through an alteration rim in the matrix. Laboratory visualization experiments were conducted on granodiorite samples to investigate and quantify diffusion rates within different zones of a Cretaceous granodiorite. Samples were collected from the Kamaishi experimental site in the northern part of the main island of Japan. Diffusion of iodine out of the sample is visualized and rates are measured using x-ray absorption imaging. X-ray images allow for measurements of relative iodine concentration and relative iodine mass as a function of time and two-dimensional space at a sub-millimeter spatial resolution. In addition, two-dimensional heterogeneous porosity fields (at the same resolution as the relative concentration fields) are measured. This imaging technique allows for a greater understanding of the spatial variability of diffusion rates than can be accomplished with standard bulk measurements. It was found that diffusion rates were fastest in partially gouge-filled fractures. Diffusion rates in the recrystallized calcite-based fracture-filling material were up to an order of magnitude lower than in gouge-filled fractures. Diffusion in altered matrix around the fractures was over an order of magnitude lower than that in the gouge-filled fractures. Healed fractures did not appear to have different diffusion rates than the unaltered matrix.

  2. Classifier-guided sampling for discrete variable, discontinuous design space exploration: Convergence and computational performance

    Energy Technology Data Exchange (ETDEWEB)

    Backlund, Peter B. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Shahan, David W. [HRL Labs., LLC, Malibu, CA (United States); Seepersad, Carolyn Conner [Univ. of Texas, Austin, TX (United States)

    2014-04-22

    A classifier-guided sampling (CGS) method is introduced for solving engineering design optimization problems with discrete and/or continuous variables and continuous and/or discontinuous responses. The method merges concepts from metamodel-guided sampling and population-based optimization algorithms. The CGS method uses a Bayesian network classifier for predicting the performance of new designs based on a set of known observations or training points. Unlike most metamodeling techniques, however, the classifier assigns a categorical class label to a new design, rather than predicting the resulting response in continuous space, and thereby accommodates nondifferentiable and discontinuous functions of discrete or categorical variables. The CGS method uses these classifiers to guide a population-based sampling process towards combinations of discrete and/or continuous variable values with a high probability of yielding preferred performance. Accordingly, the CGS method is appropriate for discrete/discontinuous design problems that are ill-suited for conventional metamodeling techniques and too computationally expensive to be solved by population-based algorithms alone. In addition, the rates of convergence and computational properties of the CGS method are investigated when applied to a set of discrete variable optimization problems. Results show that the CGS method significantly improves the rate of convergence towards known global optima, on average, when compared to genetic algorithms.

  3. Evaluation of Total Nitrite Pattern Visualization as an Improved Method for Gunshot Residue Detection and its Application to Casework Samples.

    Science.gov (United States)

    Berger, Jason; Upton, Colin; Springer, Elyah

    2018-04-23

    Visualization of nitrite residues is essential in gunshot distance determination. Current protocols for the detection of nitrites include, among other tests, the Modified Griess Test (MGT). This method is limited as nitrite residues are unstable in the environment and limited to partially burned gunpowder. Previous research demonstrated the ability of alkaline hydrolysis to convert nitrates to nitrites, allowing visualization of unburned gunpowder particles using the MGT. This is referred to as Total Nitrite Pattern Visualization (TNV). TNV techniques were modified and a study conducted to streamline the procedure outlined in the literature to maximize the efficacy of the TNV in casework, while reducing the required time from 1 h to 5 min, and enhancing effectiveness on blood-soiled samples. The TNV method was found to provide significant improvement in the ability to detect significant nitrite residues, without sacrificing efficiency, that would allow for the determination of the muzzle-to-target distance. © 2018 American Academy of Forensic Sciences.

  4. Visualization of simulated urban spaces: inferring parameterized generation of streets, parcels, and aerial imagery.

    Science.gov (United States)

    Vanegas, Carlos A; Aliaga, Daniel G; Benes, Bedrich; Waddell, Paul

    2009-01-01

    Urban simulation models and their visualization are used to help regional planning agencies evaluate alternative transportation investments, land use regulations, and environmental protection policies. Typical urban simulations provide spatially distributed data about number of inhabitants, land prices, traffic, and other variables. In this article, we build on a synergy of urban simulation, urban visualization, and computer graphics to automatically infer an urban layout for any time step of the simulation sequence. In addition to standard visualization tools, our method gathers data of the original street network, parcels, and aerial imagery and uses the available simulation results to infer changes to the original urban layout and produce a new and plausible layout for the simulation results. In contrast with previous work, our approach automatically updates the layout based on changes in the simulation data and thus can scale to a large simulation over many years. The method in this article offers a substantial step forward in building integrated visualization and behavioral simulation systems for use in community visioning, planning, and policy analysis. We demonstrate our method on several real cases using a 200 GB database for a 16,300 km2 area surrounding Seattle.

  5. Early Visual Deprivation Severely Compromises the Auditory Sense of Space in Congenitally Blind Children

    Science.gov (United States)

    Vercillo, Tiziana; Burr, David; Gori, Monica

    2016-01-01

    A recent study has shown that congenitally blind adults, who have never had visual experience, are impaired on an auditory spatial bisection task (Gori, Sandini, Martinoli, & Burr, 2014). In this study we investigated how thresholds for auditory spatial bisection and auditory discrimination develop with age in sighted and congenitally blind…

  6. The role of space and time in object-based visual search

    NARCIS (Netherlands)

    Schreij, D.B.B.; Olivers, C.N.L.

    2013-01-01

    Recently we have provided evidence that observers more readily select a target from a visual search display if the motion trajectory of the display object suggests that the observer has dealt with it before. Here we test the prediction that this object-based memory effect on search breaks down if

  7. Remembering "A Great Fag": Visualizing Public Memory and the Construction of Queer Space

    Science.gov (United States)

    Dunn, Thomas R.

    2011-01-01

    This essay examines how public memory is visualized in the statue to Canada's "gay pioneer," Alexander Wood. By analyzing three viewing positions of the statue--the official democratic memory, traditionalist countermemory, and camp countermemory--I argue each position enacts a distinct form of remembering Wood with implications for both…

  8. Audio-visual Classification and Fusion of Spontaneous Affect Data in Likelihood Space

    NARCIS (Netherlands)

    Nicolaou, Mihalis A.; Gunes, Hatice; Pantic, Maja

    2010-01-01

    This paper focuses on audio-visual (using facial expression, shoulder and audio cues) classification of spontaneous affect, utilising generative models for classification (i) in terms of Maximum Likelihood Classification with the assumption that the generative model structure in the classifier is

  9. Discrete- vs. Continuous-Time Modeling of Unequally Spaced Experience Sampling Method Data

    Directory of Open Access Journals (Sweden)

    Silvia de Haan-Rietdijk

    2017-10-01

    Full Text Available The Experience Sampling Method is a common approach in psychological research for collecting intensive longitudinal data with high ecological validity. One characteristic of ESM data is that it is often unequally spaced, because the measurement intervals within a day are deliberately varied, and measurement continues over several days. This poses a problem for discrete-time (DT modeling approaches, which are based on the assumption that all measurements are equally spaced. Nevertheless, DT approaches such as (vector autoregressive modeling are often used to analyze ESM data, for instance in the context of affective dynamics research. There are equivalent continuous-time (CT models, but they are more difficult to implement. In this paper we take a pragmatic approach and evaluate the practical relevance of the violated model assumption in DT AR(1 and VAR(1 models, for the N = 1 case. We use simulated data under an ESM measurement design to investigate the bias in the parameters of interest under four different model implementations, ranging from the true CT model that accounts for all the exact measurement times, to the crudest possible DT model implementation, where even the nighttime is treated as a regular interval. An analysis of empirical affect data illustrates how the differences between DT and CT modeling can play out in practice. We find that the size and the direction of the bias in DT (VAR models for unequally spaced ESM data depend quite strongly on the true parameter in addition to data characteristics. Our recommendation is to use CT modeling whenever possible, especially now that new software implementations have become available.

  10. Distributed Visualization

    Data.gov (United States)

    National Aeronautics and Space Administration — Distributed Visualization allows anyone, anywhere, to see any simulation, at any time. Development focuses on algorithms, software, data formats, data systems and...

  11. The Hubble Space Telescope Medium Deep Survey Cluster Sample: Methodology and Data

    Science.gov (United States)

    Ostrander, E. J.; Nichol, R. C.; Ratnatunga, K. U.; Griffiths, R. E.

    1998-12-01

    We present a new, objectively selected, sample of galaxy overdensities detected in the Hubble Space Telescope Medium Deep Survey (MDS). These clusters/groups were found using an automated procedure that involved searching for statistically significant galaxy overdensities. The contrast of the clusters against the field galaxy population is increased when morphological data are used to search around bulge-dominated galaxies. In total, we present 92 overdensities above a probability threshold of 99.5%. We show, via extensive Monte Carlo simulations, that at least 60% of these overdensities are likely to be real clusters and groups and not random line-of-sight superpositions of galaxies. For each overdensity in the MDS cluster sample, we provide a richness and the average of the bulge-to-total ratio of galaxies within each system. This MDS cluster sample potentially contains some of the most distant clusters/groups ever detected, with about 25% of the overdensities having estimated redshifts z > ~0.9. We have made this sample publicly available to facilitate spectroscopic confirmation of these clusters and help more detailed studies of cluster and galaxy evolution. We also report the serendipitous discovery of a new cluster close on the sky to the rich optical cluster Cl l0016+16 at z = 0.546. This new overdensity, HST 001831+16208, may be coincident with both an X-ray source and a radio source. HST 001831+16208 is the third cluster/group discovered near to Cl 0016+16 and appears to strengthen the claims of Connolly et al. of superclustering at high redshift.

  12. Pattern recognition in probability spaces for visualization and identification of plasma confinement regimes and confinement time scaling

    International Nuclear Information System (INIS)

    Verdoolaege, G; Karagounis, G; Oost, G Van; Tendler, M

    2012-01-01

    Pattern recognition is becoming an increasingly important tool for making inferences from the massive amounts of data produced in fusion experiments. The purpose is to contribute to physics studies and plasma control. In this work, we address the visualization of plasma confinement data, the (real-time) identification of confinement regimes and the establishment of a scaling law for the energy confinement time. We take an intrinsically probabilistic approach, modeling data from the International Global H-mode Confinement Database with Gaussian distributions. We show that pattern recognition operations working in the associated probability space are considerably more powerful than their counterparts in a Euclidean data space. This opens up new possibilities for analyzing confinement data and for fusion data processing in general. We hence advocate the essential role played by measurement uncertainty for data interpretation in fusion experiments. (paper)

  13. Visual astronomy under dark skies a new approach to observing deep space

    CERN Document Server

    Cooke, Antony

    2005-01-01

    Modern astronomical telescopes, along with other advances in technology, have brought the deep sky - star clusters, nebulae and the galaxies - within reach of amateur astronomers. And it isn't even necessary to image many of these deep-sky objects in order to see them; they are within reach of visual observers using modern techniques and enhancement technology. The first requirement is truly dark skies; if you are observing from a light-polluted environment you need Tony Cooke's book, Visual Astronomy in the Suburbs. Given a site with clear, dark night skies everything else follows… this book will provide the reader with everything he needs to know about what to observe, and using some of today's state-of-the-art technique and commercial equipment, how to get superb views of faint and distant astronomical objects.

  14. The Lyman alpha reference sample. II. Hubble space telescope imaging results, integrated properties, and trends

    Energy Technology Data Exchange (ETDEWEB)

    Hayes, Matthew; Östlin, Göran; Duval, Florent; Sandberg, Andreas; Guaita, Lucia; Melinder, Jens; Rivera-Thorsen, Thøger [Department of Astronomy, Oskar Klein Centre, Stockholm University, AlbaNova University Centre, SE-106 91 Stockholm (Sweden); Adamo, Angela [Max Planck Institute for Astronomy, Königstuhl 17, D-69117 Heidelberg (Germany); Schaerer, Daniel [Université de Toulouse, UPS-OMP, IRAP, F-31000 Toulouse (France); Verhamme, Anne; Orlitová, Ivana [Geneva Observatory, University of Geneva, 51 Chemin des Maillettes, CH-1290 Versoix (Switzerland); Mas-Hesse, J. Miguel; Otí-Floranes, Héctor [Centro de Astrobiología (CSIC-INTA), Departamento de Astrofísica, P.O. Box 78, E-28691 Villanueva de la Cañada (Spain); Cannon, John M.; Pardy, Stephen [Department of Physics and Astronomy, Macalester College, 1600 Grand Avenue, Saint Paul, MN 55105 (United States); Atek, Hakim [Laboratoire dAstrophysique, École Polytechnique Fédérale de Lausanne (EPFL), Observatoire, CH-1290 Sauverny (Switzerland); Kunth, Daniel [Institut d' Astrophysique de Paris, UMR 7095, CNRS and UPMC, 98 bis Bd Arago, F-75014 Paris (France); Laursen, Peter [Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 Copenhagen (Denmark); Herenz, E. Christian, E-mail: matthew@astro.su.se [Leibniz-Institut für Astrophysik (AIP), An der Sternwarte 16, D-14482 Potsdam (Germany)

    2014-02-10

    We report new results regarding the Lyα output of galaxies, derived from the Lyman Alpha Reference Sample, and focused on Hubble Space Telescope imaging. For 14 galaxies we present intensity images in Lyα, Hα, and UV, and maps of Hα/Hβ, Lyα equivalent width (EW), and Lyα/Hα. We present Lyα and UV radial light profiles and show they are well-fitted by Sérsic profiles, but Lyα profiles show indices systematically lower than those of the UV (n ≈ 1-2 instead of ≳ 4). This reveals a general lack of the central concentration in Lyα that is ubiquitous in the UV. Photometric growth curves increase more slowly for Lyα than the far ultraviolet, showing that small apertures may underestimate the EW. For most galaxies, however, flux and EW curves flatten by radii ≈10 kpc, suggesting that if placed at high-z only a few of our galaxies would suffer from large flux losses. We compute global properties of the sample in large apertures, and show total Lyα luminosities to be independent of all other quantities. Normalized Lyα throughput, however, shows significant correlations: escape is found to be higher in galaxies of lower star formation rate, dust content, mass, and nebular quantities that suggest harder ionizing continuum and lower metallicity. Six galaxies would be selected as high-z Lyα emitters, based upon their luminosity and EW. We discuss the results in the context of high-z Lyα and UV samples. A few galaxies have EWs above 50 Å, and one shows f{sub esc}{sup Lyα} of 80%; such objects have not previously been reported at low-z.

  15. The Lyman alpha reference sample. II. Hubble space telescope imaging results, integrated properties, and trends

    International Nuclear Information System (INIS)

    Hayes, Matthew; Östlin, Göran; Duval, Florent; Sandberg, Andreas; Guaita, Lucia; Melinder, Jens; Rivera-Thorsen, Thøger; Adamo, Angela; Schaerer, Daniel; Verhamme, Anne; Orlitová, Ivana; Mas-Hesse, J. Miguel; Otí-Floranes, Héctor; Cannon, John M.; Pardy, Stephen; Atek, Hakim; Kunth, Daniel; Laursen, Peter; Herenz, E. Christian

    2014-01-01

    We report new results regarding the Lyα output of galaxies, derived from the Lyman Alpha Reference Sample, and focused on Hubble Space Telescope imaging. For 14 galaxies we present intensity images in Lyα, Hα, and UV, and maps of Hα/Hβ, Lyα equivalent width (EW), and Lyα/Hα. We present Lyα and UV radial light profiles and show they are well-fitted by Sérsic profiles, but Lyα profiles show indices systematically lower than those of the UV (n ≈ 1-2 instead of ≳ 4). This reveals a general lack of the central concentration in Lyα that is ubiquitous in the UV. Photometric growth curves increase more slowly for Lyα than the far ultraviolet, showing that small apertures may underestimate the EW. For most galaxies, however, flux and EW curves flatten by radii ≈10 kpc, suggesting that if placed at high-z only a few of our galaxies would suffer from large flux losses. We compute global properties of the sample in large apertures, and show total Lyα luminosities to be independent of all other quantities. Normalized Lyα throughput, however, shows significant correlations: escape is found to be higher in galaxies of lower star formation rate, dust content, mass, and nebular quantities that suggest harder ionizing continuum and lower metallicity. Six galaxies would be selected as high-z Lyα emitters, based upon their luminosity and EW. We discuss the results in the context of high-z Lyα and UV samples. A few galaxies have EWs above 50 Å, and one shows f esc Lyα of 80%; such objects have not previously been reported at low-z.

  16. A virtual work space for both hands manipulation with coherency between kinesthetic and visual sensation

    Science.gov (United States)

    Ishii, Masahiro; Sukanya, P.; Sato, Makoto

    1994-01-01

    This paper describes the construction of a virtual work space for tasks performed by two handed manipulation. We intend to provide a virtual environment that encourages users to accomplish tasks as they usually act in a real environment. Our approach uses a three dimensional spatial interface device that allows the user to handle virtual objects by hand and be able to feel some physical properties such as contact, weight, etc. We investigated suitable conditions for constructing our virtual work space by simulating some basic assembly work, a face and fit task. We then selected the conditions under which the subjects felt most comfortable in performing this task and set up our virtual work space. Finally, we verified the possibility of performing more complex tasks in this virtual work space by providing simple virtual models and then let the subjects create new models by assembling these components. The subjects can naturally perform assembly operations and accomplish the task. Our evaluation shows that this virtual work space has the potential to be used for performing tasks that require two-handed manipulation or cooperation between both hands in a natural manner.

  17. Visual properties and memorising scenes: Effects of image-space sparseness and uniformity.

    Science.gov (United States)

    Lukavský, Jiří; Děchtěrenko, Filip

    2017-10-01

    Previous studies have demonstrated that humans have a remarkable capacity to memorise a large number of scenes. The research on memorability has shown that memory performance can be predicted by the content of an image. We explored how remembering an image is affected by the image properties within the context of the reference set, including the extent to which it is different from its neighbours (image-space sparseness) and if it belongs to the same category as its neighbours (uniformity). We used a reference set of 2,048 scenes (64 categories), evaluated pairwise scene similarity using deep features from a pretrained convolutional neural network (CNN), and calculated the image-space sparseness and uniformity for each image. We ran three memory experiments, varying the memory workload with experiment length and colour/greyscale presentation. We measured the sensitivity and criterion value changes as a function of image-space sparseness and uniformity. Across all three experiments, we found separate effects of 1) sparseness on memory sensitivity, and 2) uniformity on the recognition criterion. People better remembered (and correctly rejected) images that were more separated from others. People tended to make more false alarms and fewer miss errors in images from categorically uniform portions of the image-space. We propose that both image-space properties affect human decisions when recognising images. Additionally, we found that colour presentation did not yield better memory performance over grayscale images.

  18. High spatial resolution 3D MR cholangiography with high sampling efficiency technique (SPACE): Comparison of 3 T vs. 1.5 T

    Energy Technology Data Exchange (ETDEWEB)

    Arizono, Shigeki [Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507 (Japan)], E-mail: arizono@kuhp.kyoto-u.ac.jp; Isoda, Hiroyoshi [Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507 (Japan)], E-mail: sayuki@kuhp.kyoto-u.ac.jp; Maetani, Yoji S. [Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507 (Japan)], E-mail: mbo@kuhp.kyoto-u.ac.jp; Hirokawa, Yuusuke [Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507 (Japan)], E-mail: yuusuke@kuhp.kyoto-u.ac.jp; Shimada, Kotaro [Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507 (Japan)], E-mail: kotaro@kuhp.kyoto-u.ac.jp; Nakamoto, Yuji [Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507 (Japan)], E-mail: ynakamo1@kuhp.kyoto-u.ac.jp; Shibata, Toshiya [Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507 (Japan)], E-mail: ksj@kuhp.kyoto-u.ac.jp; Togashi, Kaori [Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507 (Japan)], E-mail: ktogashi@kuhp.kyoto-u.ac.jp

    2010-01-15

    Purpose: The aim of this study was to evaluate image quality of 3D MR cholangiography (MRC) using high sampling efficiency technique (SPACE) at 3 T compared with 1.5 T. Methods and materials: An IRB approved prospective study was performed with 17 healthy volunteers using both 3 and 1.5 T MR scanners. MRC images were obtained with free-breathing navigator-triggered 3D T2-weighted turbo spin-echo sequence with SPACE (TR, >2700 ms; TE, 780 ms at 3 T and 801 ms at 1.5 T; echo-train length, 121; voxel size, 1.1 mm x 1.0 mm x 0.84 mm). The common bile duct (CBD) to liver contrast-to-noise ratios (CNRs) were compared between 3 and 1.5 T. A five-point scale was used to compare overall image quality and visualization of the third branches of bile duct (B2, B6, and B8). The depiction of cystic duct insertion and the highest order of bile duct visible were also compared. The results were compared using the Wilcoxon signed-ranks test. Results: CNR between the CBD and liver was significantly higher at 3 T than 1.5 T (p = 0.0006). MRC at 3 T showed a significantly higher overall image quality (p = 0.0215) and clearer visualization of B2 (p = 0.0183) and B6 (p = 0.0106) than at 1.5 T. In all analyses of duct visibility, 3 T showed higher scores than 1.5 T. Conclusion: 3 T MRC using SPACE offered better image quality than 1.5 T. SPACE technique facilitated high-resolution 3D MRC with excellent image quality at 3 T.

  19. Towards an exhaustive sampling of the configurational spaces of the two forms of the peptide hormone guanylin

    NARCIS (Netherlands)

    de Groot, B.L.; Amadei, A; van Aalten, D.M.F.; Berendsen, H.J.C.

    The recently introduced Essential Dynamics sampling method is extended such that an exhaustive sampling of the available (backbone) configurational space can be achieved. From an initial Molecular Dynamics simulation an approximated definition of the essential subspace is obtained. This subspace is

  20. Cytoscape: the network visualization tool for GenomeSpace workflows [v2; ref status: indexed, http://f1000r.es/47f

    Directory of Open Access Journals (Sweden)

    Barry Demchak

    2014-08-01

    Full Text Available Modern genomic analysis often requires workflows incorporating multiple best-of-breed tools. GenomeSpace is a web-based visual workbench that combines a selection of these tools with mechanisms that create data flows between them. One such tool is Cytoscape 3, a popular application that enables analysis and visualization of graph-oriented genomic networks. As Cytoscape runs on the desktop, and not in a web browser, integrating it into GenomeSpace required special care in creating a seamless user experience and enabling appropriate data flows. In this paper, we present the design and operation of the Cytoscape GenomeSpace app, which accomplishes this integration, thereby providing critical analysis and visualization functionality for GenomeSpace users. It has been downloaded over 850 times since the release of its first version in September, 2013.

  1. Cytoscape: the network visualization tool for GenomeSpace workflows [v1; ref status: indexed, http://f1000r.es/3ph

    Directory of Open Access Journals (Sweden)

    Barry Demchak

    2014-07-01

    Full Text Available Modern genomic analysis often requires workflows incorporating multiple best-ofbreed tools. GenomeSpace is a web-based visual workbench that combines a selection of these tools with mechanisms that create data flows between them. One such tool is Cytoscape 3, a popular application that enables analysis and visualization of graph-oriented genomic networks. As Cytoscape runs on the desktop, and not in a web browser, integrating it into GenomeSpace required special care in creating a seamless user experience and enabling appropriate data flows. In this paper, we present the design and operation of the Cytoscape GenomeSpace app, which accomplishes this integration, thereby providing critical analysis and visualization functionality for GenomeSpace users. It has been downloaded it over 850 times since the release of its first version in September, 2013.

  2. Effect of pitch–space correspondence on sound-induced visual motion perception

    NARCIS (Netherlands)

    Hidaka, Souta; Teramoto, Wataru; Keetels, Mirjam; Vroomen, J.H.M.

    2013-01-01

    The brain tends to associate specific features of stimuli across sensory modalities. The pitch of a sound is for example associated with spatial elevation such that higher-pitched sounds are felt as being “up” in space and lower-pitched sounds as being “down.” Here we investigated whether changes in

  3. On the relationship between visual magnitudes and gas and dust production rates in target comets to space missions

    Science.gov (United States)

    de Almeida, A. A.; Sanzovo, G. C.; Singh, P. D.; Misra, A.; Miguel Torres, R.; Boice, D. C.; Huebner, W. F.

    In this paper, we report the results of a cometary research, developed during the last 10 years by us, involving a criterious analysis of gas and dust production rates in comets directly associated to recent space missions. For the determination of the water release rates we use the framework of the semi-empirical model of observed visual magnitudes [Newburn Jr., R.L. A semi-empirical photometric theory of cometary gas and dust production. Application to P/Halley's production rates, ESA-SP 174, 3, 1981; de Almeida, A.A., Singh, P.D., Huebner, W.F. Water release rates, active areas, and minimum nuclear radius derived from visual magnitudes of comets - an application to Comet 46P/Wirtanen, Planet. Space Sci. 45, 681-692, 1997; Sanzovo, G.C., de Almeida, A.A., Misra, A. et al. Mass-loss rates, dust particle sizes, nuclear active areas and minimum nuclear radii of target comets for missions STARDUST and CONTOUR, MNRAS 326, 852-868, 2001.], which once obtained, were directly converted into gas production rates. In turn, the dust release rates were obtained using the photometric model for dust particles [Newburn Jr., R.L., Spinrad, H. Spectrophotometry of seventeen comets. II - the continuum, AJ 90, 2591-2608, 1985; de Freitas Pacheco, J.A., Landaberry, S.J.C., Singh, P.D. Spectrophotometric observations of the Comet Halley during the 1985-86 apparition, MNRAS 235, 457-464, 1988; Sanzovo, G.C., Singh, P.D., Huebner, W.F. Dust colors, dust release rates, and dust-to-gas ratios in the comae of six comets, A&AS 120, 301-311, 1996.]. We applied these models to seven target comets, chosen for space missions of "fly-by"/impact and rendezvous/landing.

  4. Methodology For Reduction Of Sampling On The Visual Inspection Of Developed And Etched Wafers

    Science.gov (United States)

    van de Ven, Jamie S.; Khorasani, Fred

    1989-07-01

    There is a lot of inspection in the manufacturing of semiconductor devices. Generally, the more important a manufacturing step, the higher is the level of inspection. In some cases 100% of the wafers are inspected after certain steps. Inspection is a non-value added and expensive activity. It requires an army of "inspectors," often times expensive equipment and becomes a "bottle neck" when the level of inspection is high. Although inspection helps identify quality problems, it hurts productivity. The new management, quality and productivity philosophies recommend against over inspection. [Point #3 in Dr. Deming's 14 Points for Management (1)] 100% inspection is quite unnecessary . Often the nature of a process allows us to reduce inspection drastically and still maintain a high level of confidence in quality. In section 2, we discuss such situations and show that some elementary probability theory allows us to determine sample sizes and measure the chances of catching a bad "lot" and accepting a good lot. In section 3, we provide an example and application of the theory, and make a few comments on money and time saved because of this work. Finally, in section 4, we draw some conclusions about the new quality and productivity philosophies and how applied statisticians and engineers should study every situation individually and avoid blindly using methods and tables given in books.

  5. Comparing relative abundance, lengths, and habitat of temperate reef fishes using simultaneous underwater visual census, video, and trap sampling

    KAUST Repository

    Bacheler, NM

    2017-04-28

    Unbiased counts of individuals or species are often impossible given the prevalence of cryptic or mobile species. We used 77 simultaneous multi-gear deployments to make inferences about relative abundance, diversity, length composition, and habitat of the reef fish community along the southeastern US Atlantic coast. In total, 117 taxa were observed by underwater visual census (UVC), stationary video, and chevron fish traps, with more taxa being observed by UVC (100) than video (82) or traps (20). Frequency of occurrence of focal species was similar among all sampling approaches for tomtate Haemulon aurolineatum and black sea bass Centropristis striata, higher for UVC and video compared to traps for red snapper Lutjanus campechanus, vermilion snapper Rhomboplites aurorubens, and gray triggerfish Balistes capriscus, and higher for UVC compared to video or traps for gray snapper L. griseus and lionfish Pterois spp. For 6 of 7 focal species, correlations of relative abundance among gears were strongest between UVC and video, but there was substantial variability among species. The number of recorded species between UVC and video was correlated (ρ = 0.59), but relationships between traps and the other 2 methods were weaker. Lengths of fish visually estimated by UVC were similar to lengths of fish caught in traps, as were habitat characterizations from UVC and video. No gear provided a complete census for any species in our study, suggesting that analytical methods accounting for imperfect detection are necessary to make unbiased inferences about fish abundance.

  6. Visual input that matches the content of vist of visual working memory requires less (not faster) evidence sampling to reach conscious access

    NARCIS (Netherlands)

    Gayet, S.; van Maanen, L.; Heilbron, M.; Paffen, C.L.E.; Van Der Stigchel, S.

    2016-01-01

    The content of visual working memory (VWM) affects the processing of concurrent visual input. Recently, it has been demonstrated that stimuli are released from interocular suppression faster when they match rather than mismatch a color that is memorized for subsequent recall. In order to investigate

  7. Bacterial communities of disease vectors sampled across time, space, and species.

    Science.gov (United States)

    Jones, Ryan T; Knight, Rob; Martin, Andrew P

    2010-02-01

    A common strategy of pathogenic bacteria is to form close associations with parasitic insects that feed on animals and to use these insects as vectors for their own transmission. Pathogens interact closely with other coexisting bacteria within the insect, and interactions between co-occurring bacteria may influence the vector competency of the parasite. Interactions between particular lineages can be explored through measures of alpha-diversity. Furthermore, general patterns of bacterial community assembly can be explored through measures of beta-diversity. Here, we use pyrosequencing (n=115,924 16S rRNA gene sequences) to describe the bacterial communities of 230 prairie dog fleas sampled across space and time. We use these communinty characterizations to assess interactions between dominant community members and to explore general patterns of bacterial community assembly in fleas. An analysis of co-occurrence patterns suggests non-neutral negative interactions between dominant community members (Pspace (phylotype-based: R=0.418, Pspace and time.

  8. Sampling

    CERN Document Server

    Thompson, Steven K

    2012-01-01

    Praise for the Second Edition "This book has never had a competitor. It is the only book that takes a broad approach to sampling . . . any good personal statistics library should include a copy of this book." —Technometrics "Well-written . . . an excellent book on an important subject. Highly recommended." —Choice "An ideal reference for scientific researchers and other professionals who use sampling." —Zentralblatt Math Features new developments in the field combined with all aspects of obtaining, interpreting, and using sample data Sampling provides an up-to-date treat

  9. INSIGHT: RFID and Bluetooth enabled automated space for the blind and visually impaired.

    Science.gov (United States)

    Ganz, Aura; Gandhi, Siddhesh Rajan; Wilson, Carole; Mullett, Gary

    2010-01-01

    In this paper we introduce INSIGHT, an indoor location tracking and navigation system to help the blind and visually impaired to easily navigate to their chosen destination in a public building. INSIGHT makes use of RFID and Bluetooth technology deployed within the building to locate and track the users. The PDA based user device interacts with INSIGHT server and provides the user navigation instructions in an audio form. The proposed system provides multi-resolution localization of the users, facilitating the provision of accurate navigation instructions when the user is in the vicinity of the RFID tags as well as accommodating a PANIC button which provides navigation instructions when the user is anywhere in the building. Moreover, the system will continuously monitor the zone in which the user walks. This will enable the system to identify if the user is located in the wrong zone of the building which may not lead to the desired destination.

  10. Use and Evaluation of 3D GeoWall Visualizations in Undergraduate Space Science Classes

    Science.gov (United States)

    Turner, N. E.; Hamed, K. M.; Lopez, R. E.; Mitchell, E. J.; Gray, C. L.; Corralez, D. S.; Robinson, C. A.; Soderlund, K. M.

    2005-12-01

    One persistent difficulty many astronomy students face is the lack of 3- dimensional mental model of the systems being studied, in particular the Sun-Earth-Moon system. Students without such a mental model can have a very hard time conceptualizing the geometric relationships that cause, for example, the cycle of lunar phases or the pattern of seasons. The GeoWall is a recently developed and affordable projection mechanism for three-dimensional stereo visualization which is becoming a popular tool in classrooms and research labs for use in geology classes, but as yet very little work has been done involving the GeoWall for astronomy classes. We present results from a large study involving over 1000 students of varied backgrounds: some students were tested at the University of Texas at El Paso, a large public university on the US-Mexico border and other students were from the Florida Institute of Technology, a small, private, technical school in Melbourne Florida. We wrote a lecture tutorial-style lab to go along with a GeoWall 3D visual of the Earth-Moon system and tested the students before and after with several diagnostics. Students were given pre and post tests using the Lunar Phase Concept Inventory (LPCI) as well as a separate evaluation written specifically for this project. We found the lab useful for both populations of students, but not equally effective for all. We discuss reactions from the students and their improvement, as well as whether the students are able to correctly assess the usefullness of the project for their own learning.

  11. Development of a Novel Self-Enclosed Sample Preparation Device for DNA/RNA Isolation in Space

    Science.gov (United States)

    Zhang, Ye; Mehta, Satish K.; Pensinger, Stuart J.; Pickering, Karen D.

    2011-01-01

    Modern biology techniques present potentials for a wide range of molecular, cellular, and biochemistry applications in space, including detection of infectious pathogens and environmental contaminations, monitoring of drug-resistant microbial and dangerous mutations, identification of new phenotypes of microbial and new life species. However, one of the major technological blockades in enabling these technologies in space is a lack of devices for sample preparation in the space environment. To overcome such an obstacle, we constructed a prototype of a DNA/RNA isolation device based on our novel designs documented in the NASA New Technology Reporting System (MSC-24811-1/3-1). This device is self-enclosed and pipette free, purposely designed for use in the absence of gravity. Our design can also be modified easily for preparing samples in space for other applications, such as flowcytometry, immunostaining, cell separation, sample purification and separation according to its size and charges, sample chemical labeling, and sample purification. The prototype of our DNA/RNA isolation device was tested for efficiencies of DNA and RNA isolation from various cell types for PCR analysis. The purity and integrity of purified DNA and RNA were determined as well. Results showed that our developed DNA/RNA isolation device offers similar efficiency and quality in comparison to the samples prepared using the standard protocol in the laboratory.

  12. The Visualization of the Space Probability Distribution for a Particle Moving in a Double Ring-Shaped Coulomb Potential

    Directory of Open Access Journals (Sweden)

    Yuan You

    2018-01-01

    Full Text Available The analytical solutions to a double ring-shaped Coulomb potential (RSCP are presented. The visualizations of the space probability distribution (SPD are illustrated for the two- (contour and three-dimensional (isosurface cases. The quantum numbers (n,l,m are mainly relevant for those quasi-quantum numbers (n′,l′,m′ via the double RSCP parameter c. The SPDs are of circular ring shape in spherical coordinates. The properties for the relative probability values (RPVs P are also discussed. For example, when we consider the special case (n,l,m=(6,5,0, the SPD moves towards two poles of z-axis when P increases. Finally, we discuss the different cases for the potential parameter b, which is taken as negative and positive values for c>0. Compared with the particular case b=0, the SPDs are shrunk for b=-0.5, while they are spread out for b=0.5.

  13. Sampling methodologies for epidemiologic surveillance of men who have sex with men and transgender women in Latin America: an empiric comparison of convenience sampling, time space sampling, and respondent driven sampling.

    Science.gov (United States)

    Clark, J L; Konda, K A; Silva-Santisteban, A; Peinado, J; Lama, J R; Kusunoki, L; Perez-Brumer, A; Pun, M; Cabello, R; Sebastian, J L; Suarez-Ognio, L; Sanchez, J

    2014-12-01

    Alternatives to convenience sampling (CS) are needed for HIV/STI surveillance of most-at-risk populations in Latin America. We compared CS, time space sampling (TSS), and respondent driven sampling (RDS) for recruitment of men who have sex with men (MSM) and transgender women (TW) in Lima, Peru. During concurrent 60-day periods from June-August, 2011, we recruited MSM/TW for epidemiologic surveillance using CS, TSS, and RDS. A total of 748 participants were recruited through CS, 233 through TSS, and 127 through RDS. The TSS sample included the largest proportion of TW (30.7 %) and the lowest percentage of subjects who had previously participated in HIV/STI research (14.9 %). The prevalence of newly diagnosed HIV infection, according to participants' self-reported previous HIV diagnosis, was highest among TSS recruits (17.9 %) compared with RDS (12.6 %) and CS (10.2 %). TSS identified diverse populations of MSM/TW with higher prevalences of HIV/STIs not accessed by other methods.

  14. Sampling Methodologies for Epidemiologic Surveillance of Men Who Have Sex with Men and Transgender Women in Latin America: An Empiric Comparison of Convenience Sampling, Time Space Sampling, and Respondent Driven Sampling

    Science.gov (United States)

    Clark, J. L.; Konda, K. A.; Silva-Santisteban, A.; Peinado, J.; Lama, J. R.; Kusunoki, L.; Perez-Brumer, A.; Pun, M.; Cabello, R.; Sebastian, J. L.; Suarez-Ognio, L.; Sanchez, J.

    2014-01-01

    Alternatives to convenience sampling (CS) are needed for HIV/STI surveillance of most-at-risk populations in Latin America. We compared CS, time space sampling (TSS), and respondent driven sampling (RDS) for recruitment of men who have sex with men (MSM) and transgender women (TW) in Lima, Peru. During concurrent 60-day periods from June–August, 2011, we recruited MSM/TW for epidemiologic surveillance using CS, TSS, and RDS. A total of 748 participants were recruited through CS, 233 through TSS, and 127 through RDS. The TSS sample included the largest proportion of TW (30.7 %) and the lowest percentage of subjects who had previously participated in HIV/STI research (14.9 %). The prevalence of newly diagnosed HIV infection, according to participants’ self-reported previous HIV diagnosis, was highest among TSS recruits (17.9 %) compared with RDS (12.6 %) and CS (10.2 %). TSS identified diverse populations of MSM/TW with higher prevalences of HIV/STIs not accessed by other methods. PMID:24362754

  15. The Role of Architectural and Learning Constraints in Neural Network Models: A Case Study on Visual Space Coding.

    Science.gov (United States)

    Testolin, Alberto; De Filippo De Grazia, Michele; Zorzi, Marco

    2017-01-01

    The recent "deep learning revolution" in artificial neural networks had strong impact and widespread deployment for engineering applications, but the use of deep learning for neurocomputational modeling has been so far limited. In this article we argue that unsupervised deep learning represents an important step forward for improving neurocomputational models of perception and cognition, because it emphasizes the role of generative learning as opposed to discriminative (supervised) learning. As a case study, we present a series of simulations investigating the emergence of neural coding of visual space for sensorimotor transformations. We compare different network architectures commonly used as building blocks for unsupervised deep learning by systematically testing the type of receptive fields and gain modulation developed by the hidden neurons. In particular, we compare Restricted Boltzmann Machines (RBMs), which are stochastic, generative networks with bidirectional connections trained using contrastive divergence, with autoencoders, which are deterministic networks trained using error backpropagation. For both learning architectures we also explore the role of sparse coding, which has been identified as a fundamental principle of neural computation. The unsupervised models are then compared with supervised, feed-forward networks that learn an explicit mapping between different spatial reference frames. Our simulations show that both architectural and learning constraints strongly influenced the emergent coding of visual space in terms of distribution of tuning functions at the level of single neurons. Unsupervised models, and particularly RBMs, were found to more closely adhere to neurophysiological data from single-cell recordings in the primate parietal cortex. These results provide new insights into how basic properties of artificial neural networks might be relevant for modeling neural information processing in biological systems.

  16. Visual Performance Challenges to Low-Frequency Perturbations After Long-Duration Space Flight, and Countermeasure Development

    Science.gov (United States)

    Mulavara, Ajitkumar; Wood, Scott; Fiedler, Matthew; Kofman, Igor; Kulecz, Walter B.; Miller, Chris; Peters, Brian; Serrador, Jorge; Cohen, Helen; Reschke, Millard; hide

    2010-01-01

    Astronauts experience sensorimotor disturbances after long-duration space flight. After a water landing, crewmembers may need to egress the vehicle within a few minutes for safety and operational reasons in various sea state conditions. Exposure to even low-frequency motions induced by sea conditions surrounding a vessel can cause significant motor control problems affecting critical functions. The first objective of this study was to document human visual performance during simulated wave motion below 2.0 Hz. We examined the changes in accuracy and reaction time when subjects performed a visual target acquisition task in which the location of the target was offset vertically during horizontal rotation at an oscillating frequency of 0.8 Hz. The main finding was that both accuracy and reaction time varied as a function of target location, with greater performance decrements occurring when vertical targets were acquired at perturbing frequencies of 0.8 Hz in the horizontal plane. A second objective was to develop a countermeasure, base d on stochastic resonance (SR), to enhance sensorimotor capabilities with the aim of facilitating rapid adaptation to gravitational transitions after long-duration space flight. SR is a mechanism by which noise can enhance the response of neural systems to relevant sensory signals. Recent studies have shown that applying imperceptible stochastic electrical stimulation to the vestibular system (SVS) significantly improved balance and oculomotor responses. This study examined the effectiveness of SVS on improving balance performance. Subjects performed a standard balance task while bipolar SVS was applied to the vestibular system using constant current stimulation through electrodes placed over the mastoid process. The main finding of this study was that balance performance with the application of SR showed significant improvement in the range of 10%-25%. Ultimately an SR-based countermeasure might be fielded either as preflight training

  17. Extracting Hydrologic Understanding from the Unique Space-time Sampling of the Surface Water and Ocean Topography (SWOT) Mission

    Science.gov (United States)

    Nickles, C.; Zhao, Y.; Beighley, E.; Durand, M. T.; David, C. H.; Lee, H.

    2017-12-01

    The Surface Water and Ocean Topography (SWOT) satellite mission is jointly developed by NASA, the French space agency (CNES), with participation from the Canadian and UK space agencies to serve both the hydrology and oceanography communities. The SWOT mission will sample global surface water extents and elevations (lakes/reservoirs, rivers, estuaries, oceans, sea and land ice) at a finer spatial resolution than is currently possible enabling hydrologic discovery, model advancements and new applications that are not currently possible or likely even conceivable. Although the mission will provide global cover, analysis and interpolation of the data generated from the irregular space/time sampling represents a significant challenge. In this study, we explore the applicability of the unique space/time sampling for understanding river discharge dynamics throughout the Ohio River Basin. River network topology, SWOT sampling (i.e., orbit and identified SWOT river reaches) and spatial interpolation concepts are used to quantify the fraction of effective sampling of river reaches each day of the three-year mission. Streamflow statistics for SWOT generated river discharge time series are compared to continuous daily river discharge series. Relationships are presented to transform SWOT generated streamflow statistics to equivalent continuous daily discharge time series statistics intended to support hydrologic applications using low-flow and annual flow duration statistics.

  18. Microstructure and Macrosegregation Study of Directionally Solidified Al-7Si Samples Processed Terrestrially and Aboard the International Space Station

    Science.gov (United States)

    Angart, Samuel; Erdman, R. G.; Poirier, David R.; Tewari, S.N.; Grugel, R. N.

    2014-01-01

    This talk reports research that has been carried out under the aegis of NASA as part of a collaboration between ESA and NASA for solidification experiments on the International Space Station (ISS). The focus has been on the effect of convection on the microstructural evolution and macrosegregation in hypoeutectic Al-Si alloys during directional solidification (DS). The DS-experiments have been carried out under 1-g at Cleveland State University (CSU) and under low-g on the International Space Station (ISS). The thermal processing-history of the experiments is well defined for both the terrestrially-processed samples and the ISS-processed samples. We have observed that the primary dendrite arm spacings of two samples grown in the low-g environment of the ISS show good agreement with a dendrite-growth model based on diffusion controlled growth. The gravity-driven convection (i.e., thermosolutal convection) in terrestrially grown samples has the effect of decreasing the primary dendrite arm spacings and causes macrosgregation. In order to process DS-samples aboard the ISS, dendritic-seed crystals have to partially remelted in a stationary thermal gradient before the DS is carried out. Microstructural changes and macrosegregation effects during this period are described.

  19. Analysis of Time and Space Invariance of BOLD Responses in the Rat Visual System

    DEFF Research Database (Denmark)

    Bailey, Christopher; Sanganahalli, Basavaraju G; Herman, Peter

    2012-01-01

    Neuroimaging studies of functional magnetic resonance imaging (fMRI) and electrophysiology provide the linkage between neural activity and the blood oxygenation level-dependent (BOLD) response. Here, BOLD responses to light flashes were imaged at 11.7T and compared with neural recordings from...... for general linear modeling (GLM) of BOLD responses. Light flashes induced high magnitude neural/BOLD responses reproducibly from both regions. However, neural/BOLD responses from SC and V1 were markedly different. SC signals followed the boxcar shape of the stimulation paradigm at all flash rates, whereas V1...... signals were characterized by onset/offset transients that exhibited different flash rate dependencies. We find that IRF(SC) is generally time-invariant across wider flash rate range compared with IRF(V1), whereas IRF(SC) and IRF(V1) are both space invariant. These results illustrate the importance...

  20. Two-dimensional T2 distribution mapping in rock core plugs with optimal k-space sampling.

    Science.gov (United States)

    Xiao, Dan; Balcom, Bruce J

    2012-07-01

    Spin-echo single point imaging has been employed for 1D T(2) distribution mapping, but a simple extension to 2D is challenging since the time increase is n fold, where n is the number of pixels in the second dimension. Nevertheless 2D T(2) mapping in fluid saturated rock core plugs is highly desirable because the bedding plane structure in rocks often results in different pore properties within the sample. The acquisition time can be improved by undersampling k-space. The cylindrical shape of rock core plugs yields well defined intensity distributions in k-space that may be efficiently determined by new k-space sampling patterns that are developed in this work. These patterns acquire 22.2% and 11.7% of the k-space data points. Companion density images may be employed, in a keyhole imaging sense, to improve image quality. T(2) weighted images are fit to extract T(2) distributions, pixel by pixel, employing an inverse Laplace transform. Images reconstructed with compressed sensing, with similar acceleration factors, are also presented. The results show that restricted k-space sampling, in this application, provides high quality results. Copyright © 2012 Elsevier Inc. All rights reserved.

  1. The Visualization and Analysis of POI Features under Network Space Supported by Kernel Density Estimation

    Directory of Open Access Journals (Sweden)

    YU Wenhao

    2015-01-01

    Full Text Available The distribution pattern and the distribution density of urban facility POIs are of great significance in the fields of infrastructure planning and urban spatial analysis. The kernel density estimation, which has been usually utilized for expressing these spatial characteristics, is superior to other density estimation methods (such as Quadrat analysis, Voronoi-based method, for that the Kernel density estimation considers the regional impact based on the first law of geography. However, the traditional kernel density estimation is mainly based on the Euclidean space, ignoring the fact that the service function and interrelation of urban feasibilities is carried out on the network path distance, neither than conventional Euclidean distance. Hence, this research proposed a computational model of network kernel density estimation, and the extension type of model in the case of adding constraints. This work also discussed the impacts of distance attenuation threshold and height extreme to the representation of kernel density. The large-scale actual data experiment for analyzing the different POIs' distribution patterns (random type, sparse type, regional-intensive type, linear-intensive type discusses the POI infrastructure in the city on the spatial distribution of characteristics, influence factors, and service functions.

  2. Determining Plane-Sweep Sampling Points in Image Space Using the Cross-Ratio for Image-Based Depth Estimation

    Science.gov (United States)

    Ruf, B.; Erdnuess, B.; Weinmann, M.

    2017-08-01

    With the emergence of small consumer Unmanned Aerial Vehicles (UAVs), the importance and interest of image-based depth estimation and model generation from aerial images has greatly increased in the photogrammetric society. In our work, we focus on algorithms that allow an online image-based dense depth estimation from video sequences, which enables the direct and live structural analysis of the depicted scene. Therefore, we use a multi-view plane-sweep algorithm with a semi-global matching (SGM) optimization which is parallelized for general purpose computation on a GPU (GPGPU), reaching sufficient performance to keep up with the key-frames of input sequences. One important aspect to reach good performance is the way to sample the scene space, creating plane hypotheses. A small step size between consecutive planes, which is needed to reconstruct details in the near vicinity of the camera may lead to ambiguities in distant regions, due to the perspective projection of the camera. Furthermore, an equidistant sampling with a small step size produces a large number of plane hypotheses, leading to high computational effort. To overcome these problems, we present a novel methodology to directly determine the sampling points of plane-sweep algorithms in image space. The use of the perspective invariant cross-ratio allows us to derive the location of the sampling planes directly from the image data. With this, we efficiently sample the scene space, achieving higher sampling density in areas which are close to the camera and a lower density in distant regions. We evaluate our approach on a synthetic benchmark dataset for quantitative evaluation and on a real-image dataset consisting of aerial imagery. The experiments reveal that an inverse sampling achieves equal and better results than a linear sampling, with less sampling points and thus less runtime. Our algorithm allows an online computation of depth maps for subsequences of five frames, provided that the relative

  3. DETERMINING PLANE-SWEEP SAMPLING POINTS IN IMAGE SPACE USING THE CROSS-RATIO FOR IMAGE-BASED DEPTH ESTIMATION

    Directory of Open Access Journals (Sweden)

    B. Ruf

    2017-08-01

    Full Text Available With the emergence of small consumer Unmanned Aerial Vehicles (UAVs, the importance and interest of image-based depth estimation and model generation from aerial images has greatly increased in the photogrammetric society. In our work, we focus on algorithms that allow an online image-based dense depth estimation from video sequences, which enables the direct and live structural analysis of the depicted scene. Therefore, we use a multi-view plane-sweep algorithm with a semi-global matching (SGM optimization which is parallelized for general purpose computation on a GPU (GPGPU, reaching sufficient performance to keep up with the key-frames of input sequences. One important aspect to reach good performance is the way to sample the scene space, creating plane hypotheses. A small step size between consecutive planes, which is needed to reconstruct details in the near vicinity of the camera may lead to ambiguities in distant regions, due to the perspective projection of the camera. Furthermore, an equidistant sampling with a small step size produces a large number of plane hypotheses, leading to high computational effort. To overcome these problems, we present a novel methodology to directly determine the sampling points of plane-sweep algorithms in image space. The use of the perspective invariant cross-ratio allows us to derive the location of the sampling planes directly from the image data. With this, we efficiently sample the scene space, achieving higher sampling density in areas which are close to the camera and a lower density in distant regions. We evaluate our approach on a synthetic benchmark dataset for quantitative evaluation and on a real-image dataset consisting of aerial imagery. The experiments reveal that an inverse sampling achieves equal and better results than a linear sampling, with less sampling points and thus less runtime. Our algorithm allows an online computation of depth maps for subsequences of five frames, provided that

  4. Implication of the first decision on visual information-sampling in the spatial frequency domain in pulmonary nodule recognition

    Science.gov (United States)

    Pietrzyk, Mariusz W.; Manning, David; Donovan, Tim; Dix, Alan

    2010-02-01

    Aim: To investigate the impact on visual sampling strategy and pulmonary nodule recognition of image-based properties of background locations in dwelled regions where the first overt decision was made. . Background: Recent studies in mammography show that the first overt decision (TP or FP) has an influence on further image reading including the correctness of the following decisions. Furthermore, the correlation between the spatial frequency properties of the local background following decision sites and the first decision correctness has been reported. Methods: Subjects with different radiological experience were eye tracked during detection of pulmonary nodules from PA chest radiographs. Number of outcomes and the overall quality of performance are analysed in terms of the cases where correct or incorrect decisions were made. JAFROC methodology is applied. The spatial frequency properties of selected local backgrounds related to a certain decisions were studied. ANOVA was used to compare the logarithmic values of energy carried by non redundant stationary wavelet packet coefficients. Results: A strong correlation has been found between the number of TP as a first decision and the JAFROC score (r = 0.74). The number of FP as a first decision was found negatively correlated with JAFROC (r = -0.75). Moreover, the differential spatial frequency profiles outcomes depend on the first choice correctness.

  5. The Space-Time Cube as part of a GeoVisual Analytics Environment to support the understanding of movement data

    DEFF Research Database (Denmark)

    Kveladze, Irma; Kraak, M. J.; van Elzakker, C. P. J. M.

    2015-01-01

    This paper reports the results of an empirical usability experiment on the performance of the space-time cube in a GeoVisual analytics environment. It was developed to explore movement data based on the requirements of human geographers. The interactive environment consists of multiple coordinated...

  6. SU-F-J-158: Respiratory Motion Resolved, Self-Gated 4D-MRI Using Rotating Cartesian K-Space Sampling

    Energy Technology Data Exchange (ETDEWEB)

    Han, F; Zhou, Z; Yang, Y; Sheng, K; Hu, P [UCLA School of Medicine, Los Angeles, CA (United States)

    2016-06-15

    Purpose: Dynamic MRI has been used to quantify respiratory motion of abdominal organs in radiation treatment planning. Many existing 4D-MRI methods based on 2D acquisitions suffer from limited slice resolution and additional stitching artifacts when evaluated in 3D{sup 1}. To address these issues, we developed a 4D-MRI (3D dynamic) technique with true 3D k-space encoding and respiratory motion self-gating. Methods: The 3D k-space was acquired using a Rotating Cartesian K-space (ROCK) pattern, where the Cartesian grid was reordered in a quasi-spiral fashion with each spiral arm rotated using golden angle{sup 2}. Each quasi-spiral arm started with the k-space center-line, which were used as self-gating{sup 3} signal for respiratory motion estimation. The acquired k-space data was then binned into 8 respiratory phases and the golden angle ensures a near-uniform k-space sampling in each phase. Finally, dynamic 3D images were reconstructed using the ESPIRiT technique{sup 4}. 4D-MRI was performed on 6 healthy volunteers, using the following parameters (bSSFP, Fat-Sat, TE/TR=2ms/4ms, matrix size=500×350×120, resolution=1×1×1.2mm, TA=5min, 8 respiratory phases). Supplemental 2D real-time images were acquired in 9 different planes. Dynamic locations of the diaphragm dome and left kidney were measured from both 4D and 2D images. The same protocol was also performed on a MRI-compatible motion phantom where the motion was programmed with different amplitude (10–30mm) and frequency (3–10/min). Results: High resolution 4D-MRI were obtained successfully in 5 minutes. Quantitative motion measurements from 4D-MRI agree with the ones from 2D CINE (<5% error). The 4D images are free of the stitching artifacts and their near-isotropic resolution facilitates 3D visualization and segmentation of abdominal organs such as the liver, kidney and pancreas. Conclusion: Our preliminary studies demonstrated a novel ROCK 4D-MRI technique with true 3D k-space encoding and respiratory

  7. Space charge profiles in low density polyethylene samples containing a permittivity/conductivity gradient

    DEFF Research Database (Denmark)

    Bambery, K.R.; Fleming, R.J.; Holbøll, Joachim

    2001-01-01

    .5×107 V m-1. Current density was also measured as a function of temperature and field. Space charge due exclusively to the temperature gradient was detected, with density of order 0.01 C m-3. The activation energy associated with the transport of electrons through the bulk was calculated as 0.09 e...

  8. Influence of the radial spacing between cathodes on the surface composition of iron samples sintered by hollow cathode electric discharge

    Directory of Open Access Journals (Sweden)

    Brunatto S.F.

    2001-01-01

    Full Text Available The present work reports an investigation of the influence of the radial spacing between cathodes on the iron sintering process by hollow cathode electrical discharge, with surface enrichment of the alloying elements Cr and Ni. Pressed cylindrical samples of 9.5 mm diameter and density of 7.0 ± 0.1 g/cm³ were prepared by compaction of Ancorsteel 1000C iron powder. These samples, constituting the central cathode, were positioned concentrically in the interior of an external cathode machined from a tube of stainless steel AISI 310 (containing: 25% Cr, 16% Ni, 1.5% Mn, 1.5% Si, 0.03% C and the remainder Fe. Sintering was done at 1150 °C, for 120 min, utilizing radial spacings between the central and hollow cathodes of 3, 6 and 9 mm and a gas mixture of 80% Ar and 20% H2, with a flow rate of 5 cm³/s at a pressure of 3 Torr. The electric discharge was generated using a pulsed voltage power source, with a period of 200 mus. The radial spacing had only a slight influence on the quantity of atoms of alloying elements deposited and diffused on the surface of the sample. Analysis with a microprobe showed the presence of chrome (up to 4.0% and nickel (up to 3.0%, in at. % at the surface of the samples. This surface enrichment can be attributed to the mechanism of sputtering of the metallic atoms present in the external cathode, with the deposition of these elements on the sample surface and consequent diffusion within the sample.

  9. Data Transformation Functions for Expanded Search Spaces in Geographic Sample Supervised Segment Generation

    OpenAIRE

    Christoff Fourie; Elisabeth Schoepfer

    2014-01-01

    Sample supervised image analysis, in particular sample supervised segment generation, shows promise as a methodological avenue applicable within Geographic Object-Based Image Analysis (GEOBIA). Segmentation is acknowledged as a constituent component within typically expansive image analysis processes. A general extension to the basic formulation of an empirical discrepancy measure directed segmentation algorithm parameter tuning approach is proposed. An expanded search landscape is defined, c...

  10. Understanding the International Space Station Crew Perspective following Long-Duration Missions through Data Analytics & Visualization of Crew Feedback

    Science.gov (United States)

    Bryant, Cody; Meza, David; Schoenstein, Nicole; Schuh, Susan

    2017-01-01

    The International Space Station (ISS) first became a home and research laboratory for NASA and International Partner crewmembers over 16 years ago. Each ISS mission lasts approximately 6 months and consists of three to six crewmembers. After returning to Earth, most crewmembers participate in an extensive series of 30+ debriefs intended to further understand life onboard ISS and allow crews to reflect on their experiences. Examples of debrief data collected include ISS crew feedback about sleep, dining, payload science, scheduling and time planning, health & safety, and maintenance. The Flight Crew Integration (FCI) Operational Habitability (OpsHab) team, based at Johnson Space Center (JSC), is a small group of Human Factors engineers and one stenographer that has worked collaboratively with the NASA Astronaut office and ISS Program to collect, maintain, disseminate and analyze this data. The database provides an exceptional and unique resource for understanding the "crew perspective" on long duration space missions. Data is formatted and categorized to allow for ease of search, reporting, and ultimately trending, in order to understand lessons learned, recurring issues and efficiencies gained over time. Recently, the FCI OpsHab team began collaborating with the NASA JSC Knowledge Management team to provide analytical analysis and visualization of these over 75,000 crew comments in order to better ascertain the crew's perspective on long duration spaceflight and gain insight on changes over time. In this initial phase of study, a text mining framework was used to cluster similar comments and develop measures of similarity useful for identifying relevant topics affecting crew health or performance, locating similar comments when a particular issue or item of operational interest is identified, and providing search capabilities to identify information pertinent to future spaceflight systems and processes for things like procedure development and training. In addition

  11. New experimental space for irradiating samples by RA reactor fast neutron flux at temperatures up to 100 deg C

    International Nuclear Information System (INIS)

    Pavicevic, M.; Novakovic, M.; Zecevic, V.

    1961-01-01

    The objective of this paper is to present adaptation of the RA reactor which would enable samples irradiation by fast neutrons and describe new experimental possibilities. New experimental space was achieved using hollow fuel elements which have been reconstructed to enable placement of irradiation capsules inside the tube. This paper includes thermal analysis and describes problems related to operation, safety and radiation protection issues which arise from using reconstructed fuel elements

  12. Different Stimuli, Different Spatial Codes: A Visual Map and an Auditory Rate Code for Oculomotor Space in the Primate Superior Colliculus

    Science.gov (United States)

    Lee, Jungah; Groh, Jennifer M.

    2014-01-01

    Maps are a mainstay of visual, somatosensory, and motor coding in many species. However, auditory maps of space have not been reported in the primate brain. Instead, recent studies have suggested that sound location may be encoded via broadly responsive neurons whose firing rates vary roughly proportionately with sound azimuth. Within frontal space, maps and such rate codes involve different response patterns at the level of individual neurons. Maps consist of neurons exhibiting circumscribed receptive fields, whereas rate codes involve open-ended response patterns that peak in the periphery. This coding format discrepancy therefore poses a potential problem for brain regions responsible for representing both visual and auditory information. Here, we investigated the coding of auditory space in the primate superior colliculus(SC), a structure known to contain visual and oculomotor maps for guiding saccades. We report that, for visual stimuli, neurons showed circumscribed receptive fields consistent with a map, but for auditory stimuli, they had open-ended response patterns consistent with a rate or level-of-activity code for location. The discrepant response patterns were not segregated into different neural populations but occurred in the same neurons. We show that a read-out algorithm in which the site and level of SC activity both contribute to the computation of stimulus location is successful at evaluating the discrepant visual and auditory codes, and can account for subtle but systematic differences in the accuracy of auditory compared to visual saccades. This suggests that a given population of neurons can use different codes to support appropriate multimodal behavior. PMID:24454779

  13. Development of improved space sampling strategies for ocean chemical properties: Total carbon dioxide and dissolved nitrate

    Science.gov (United States)

    Goyet, Catherine; Davis, Daniel; Peltzer, Edward T.; Brewer, Peter G.

    1995-01-01

    Large-scale ocean observing programs such as the Joint Global Ocean Flux Study (JGOFS) and the World Ocean Circulation Experiment (WOCE) today, must face the problem of designing an adequate sampling strategy. For ocean chemical variables, the goals and observing technologies are quite different from ocean physical variables (temperature, salinity, pressure). We have recently acquired data on the ocean CO2 properties on WOCE cruises P16c and P17c that are sufficiently dense to test for sampling redundancy. We use linear and quadratic interpolation methods on the sampled field to investigate what is the minimum number of samples required to define the deep ocean total inorganic carbon (TCO2) field within the limits of experimental accuracy (+/- 4 micromol/kg). Within the limits of current measurements, these lines were oversampled in the deep ocean. Should the precision of the measurement be improved, then a denser sampling pattern may be desirable in the future. This approach rationalizes the efficient use of resources for field work and for estimating gridded (TCO2) fields needed to constrain geochemical models.

  14. Micro-calibration of space and motion by photoreceptors synchronized in parallel with cortical oscillations: A unified theory of visual perception.

    Science.gov (United States)

    Jerath, Ravinder; Cearley, Shannon M; Barnes, Vernon A; Jensen, Mike

    2018-01-01

    A fundamental function of the visual system is detecting motion, yet visual perception is poorly understood. Current research has determined that the retina and ganglion cells elicit responses for motion detection; however, the underlying mechanism for this is incompletely understood. Previously we proposed that retinogeniculo-cortical oscillations and photoreceptors work in parallel to process vision. Here we propose that motion could also be processed within the retina, and not in the brain as current theory suggests. In this paper, we discuss: 1) internal neural space formation; 2) primary, secondary, and tertiary roles of vision; 3) gamma as the secondary role; and 4) synchronization and coherence. Movement within the external field is instantly detected by primary processing within the space formed by the retina, providing a unified view of the world from an internal point of view. Our new theory begins to answer questions about: 1) perception of space, erect images, and motion, 2) purpose of lateral inhibition, 3) speed of visual perception, and 4) how peripheral color vision occurs without a large population of cones located peripherally in the retina. We explain that strong oscillatory activity influences on brain activity and is necessary for: 1) visual processing, and 2) formation of the internal visuospatial area necessary for visual consciousness, which could allow rods to receive precise visual and visuospatial information, while retinal waves could link the lateral geniculate body with the cortex to form a neural space formed by membrane potential-based oscillations and photoreceptors. We propose that vision is tripartite, with three components that allow a person to make sense of the world, terming them "primary, secondary, and tertiary roles" of vision. Finally, we propose that Gamma waves that are higher in strength and volume allow communication among the retina, thalamus, and various areas of the cortex, and synchronization brings cortical

  15. Image Sampling with Quasicrystals

    Directory of Open Access Journals (Sweden)

    Mark Grundland

    2009-07-01

    Full Text Available We investigate the use of quasicrystals in image sampling. Quasicrystals produce space-filling, non-periodic point sets that are uniformly discrete and relatively dense, thereby ensuring the sample sites are evenly spread out throughout the sampled image. Their self-similar structure can be attractive for creating sampling patterns endowed with a decorative symmetry. We present a brief general overview of the algebraic theory of cut-and-project quasicrystals based on the geometry of the golden ratio. To assess the practical utility of quasicrystal sampling, we evaluate the visual effects of a variety of non-adaptive image sampling strategies on photorealistic image reconstruction and non-photorealistic image rendering used in multiresolution image representations. For computer visualization of point sets used in image sampling, we introduce a mosaic rendering technique.

  16. Use of space-filling curves to select sample locations in natural resource monitoring studies

    Science.gov (United States)

    Andrew Lister; Charles T. Scott

    2009-01-01

    The establishment of several large area monitoring networks over the past few decades has led to increased research into ways to spatially balance sample locations across the landscape. Many of these methods are well documented and have been used in the past with great success. In this paper, we present a method using geographic information systems (GIS) and fractals...

  17. Space science technology: In-situ science. Sample Acquisition, Analysis, and Preservation Project summary

    Science.gov (United States)

    Aaron, Kim

    1991-01-01

    The Sample Acquisition, Analysis, and Preservation Project is summarized in outline and graphic form. The objective of the project is to develop component and system level technology to enable the unmanned collection, analysis and preservation of physical, chemical and mineralogical data from the surface of planetary bodies. Technology needs and challenges are identified and specific objectives are described.

  18. A different outlook on time: visual and auditory month names elicit different mental vantage points for a time-space synaesthete.

    Science.gov (United States)

    Jarick, Michelle; Dixon, Mike J; Stewart, Mark T; Maxwell, Emily C; Smilek, Daniel

    2009-01-01

    Synaesthesia is a fascinating condition whereby individuals report extraordinary experiences when presented with ordinary stimuli. Here we examined an individual (L) who experiences time units (i.e., months of the year and hours of the day) as occupying specific spatial locations (January is 30 degrees to the left of midline). This form of time-space synaesthesia has been recently investigated by Smilek et al. (2007) who demonstrated that synaesthetic time-space associations are highly consistent, occur regardless of intention, and can direct spatial attention. We extended this work by showing that for the synaesthete L, her time-space vantage point changes depending on whether the time units are seen or heard. For example, when L sees the word JANUARY, she reports experiencing January on her left side, however when she hears the word "January" she experiences the month on her right side. L's subjective reports were validated using a spatial cueing paradigm. The names of months were centrally presented followed by targets on the left or right. L was faster at detecting targets in validly cued locations relative to invalidly cued locations both for visually presented cues (January orients attention to the left) and for aurally presented cues (January orients attention to the right). We replicated this difference in visual and aural cueing effects using hour of the day. Our findings support previous research showing that time-space synaesthesia can bias visual spatial attention, and further suggest that for this synaesthete, time-space associations differ depending on whether they are visually or aurally induced.

  19. Visual search for tropical web spiders: the influence of plot length, sampling effort, and phase of the day on species richness.

    Science.gov (United States)

    Pinto-Leite, C M; Rocha, P L B

    2012-12-01

    Empirical studies using visual search methods to investigate spider communities were conducted with different sampling protocols, including a variety of plot sizes, sampling efforts, and diurnal periods for sampling. We sampled 11 plots ranging in size from 5 by 10 m to 5 by 60 m. In each plot, we computed the total number of species detected every 10 min during 1 hr during the daytime and during the nighttime (0630 hours to 1100 hours, both a.m. and p.m.). We measured the influence of time effort on the measurement of species richness by comparing the curves produced by sample-based rarefaction and species richness estimation (first-order jackknife). We used a general linear model with repeated measures to assess whether the phase of the day during which sampling occurred and the differences in the plot lengths influenced the number of species observed and the number of species estimated. To measure the differences in species composition between the phases of the day, we used a multiresponse permutation procedure and a graphical representation based on nonmetric multidimensional scaling. After 50 min of sampling, we noted a decreased rate of species accumulation and a tendency of the estimated richness curves to reach an asymptote. We did not detect an effect of plot size on the number of species sampled. However, differences in observed species richness and species composition were found between phases of the day. Based on these results, we propose guidelines for visual search for tropical web spiders.

  20. Conformal flight path symbology for head-up displays: Defining the distribution of visual attention in three-dimensional space

    Science.gov (United States)

    Ververs, Patricia May

    An extensive investigation of the format for head-up display (HUD) instrumentation was conducted in a two-part experiment. First, a pilot's information requirements for the tasks of approach, landing, and taxi were determined through a survey administered to professional commercial pilots via the world wide web. The results of the survey were applied in the development of two symbology sets, one set for flight navigation and the second for ground navigation. Second, twenty pilots from the University of Illinois at Urbana-Champaign were recruited to participate in a 3-day experiment. The study was designed to investigate the format for symbology on HUDs and the performance effects of using conformal and partially conformal symbology to support the pilots' tasks. In addition, two different methods were investigated for supporting the pilots' transition between the task of flying and the task of landing. A seamless transition used visual momentum techniques to smoothly guide the pilots' cognitive transition between the serial displays and the associated tasks. A seamed approach employed an abrupt change between the displays to alert the pilots of the task switch. The results indicate that incorporating a virtually conformal, tunnel-in-the-sky symbology into a complete HUD instrumentation set offers promising pilot performance effects. Pilots easily navigated the complex curved approaches with little to no deviation from the flight path (approximately 10 feet), while performing the secondary tasks of the scanning their instruments and the environment. The seamless transition between the flight and ground symbology offered the pilots a preview of the upcoming landing task, thereby preparing them for the task switch. On the ground, the perspective (scene-linked) symbology set supported landing and taxi navigation tasks with the equal efficiency to the plan view display but with much greater precision. Theories of allocation of attention were used to interpret the

  1. Separate visualization of endolymphatic space, perilymphatic space and bone by a single pulse sequence; 3D-inversion recovery imaging utilizing real reconstruction after intratympanic Gd-DTPA administration at 3 tesla

    International Nuclear Information System (INIS)

    Naganawa, Shinji; Satake, Hiroko; Kawamura, Minako; Fukatsu, Hiroshi; Sone, Michihiko; Nakashima, Tsutomu

    2008-01-01

    Twenty-four hours after intratympanic administration of gadolinium contrast material (Gd), the Gd was distributed mainly in the perilymphatic space. Three-dimensional FLAIR can differentiate endolymphatic space from perilymphatic space, but not from surrounding bone. The purpose of this study was to evaluate whether 3D inversion-recovery turbo spin echo (3D-IR TSE) with real reconstruction could separate the signals of perilymphatic space (positive value), endolymphatic space (negative value) and bone (near zero) by setting the inversion time between the null point of Gd-containing perilymph fluid and that of the endolymph fluid without Gd. Thirteen patients with clinically suspected endolymphatic hydrops underwent intratympanic Gd injection and were scanned at 3 T. A 3D FLAIR and 3D-IR TSE with real reconstruction were obtained. In all patients, low signal of endolymphatic space in the labyrinth on 3D FLAIR was observed in the anatomically appropriate position, and it showed negative signal on 3D-IR TSE. The low signal area of surrounding bone on 3D FLAIR showed near zero signal on 3D-IR TSE. Gd-containing perilymphatic space showed high signal on 3D-IR TSE. In conclusion, by optimizing the inversion time, endolymphatic space, perilymphatic space and surrounding bone can be separately visualized on a single image using a 3D-IR TSE with real reconstruction. (orig.)

  2. GARN: Sampling RNA 3D Structure Space with Game Theory and Knowledge-Based Scoring Strategies.

    Science.gov (United States)

    Boudard, Mélanie; Bernauer, Julie; Barth, Dominique; Cohen, Johanne; Denise, Alain

    2015-01-01

    Cellular processes involve large numbers of RNA molecules. The functions of these RNA molecules and their binding to molecular machines are highly dependent on their 3D structures. One of the key challenges in RNA structure prediction and modeling is predicting the spatial arrangement of the various structural elements of RNA. As RNA folding is generally hierarchical, methods involving coarse-grained models hold great promise for this purpose. We present here a novel coarse-grained method for sampling, based on game theory and knowledge-based potentials. This strategy, GARN (Game Algorithm for RNa sampling), is often much faster than previously described techniques and generates large sets of solutions closely resembling the native structure. GARN is thus a suitable starting point for the molecular modeling of large RNAs, particularly those with experimental constraints. GARN is available from: http://garn.lri.fr/.

  3. The Atmospheric Scanning Electron Microscope with open sample space observes dynamic phenomena in liquid or gas.

    Science.gov (United States)

    Suga, Mitsuo; Nishiyama, Hidetoshi; Konyuba, Yuji; Iwamatsu, Shinnosuke; Watanabe, Yoshiyuki; Yoshiura, Chie; Ueda, Takumi; Sato, Chikara

    2011-12-01

    Although conventional electron microscopy (EM) requires samples to be in vacuum, most chemical and physical reactions occur in liquid or gas. The Atmospheric Scanning Electron Microscope (ASEM) can observe dynamic phenomena in liquid or gas under atmospheric pressure in real time. An electron-permeable window made of pressure-resistant 100 nm-thick silicon nitride (SiN) film, set into the bottom of the open ASEM sample dish, allows an electron beam to be projected from underneath the sample. A detector positioned below captures backscattered electrons. Using the ASEM, we observed the radiation-induced self-organization process of particles, as well as phenomena accompanying volume change, including evaporation-induced crystallization. Using the electrochemical ASEM dish, we observed tree-like electrochemical depositions on the cathode. In silver nitrate solution, we observed silver depositions near the cathode forming incidental internal voids. The heated ASEM dish allowed observation of patterns of contrast in melting and solidifying solder. Finally, to demonstrate its applicability for monitoring and control of industrial processes, silver paste and solder paste were examined at high throughput. High resolution, imaging speed, flexibility, adaptability, and ease of use facilitate the observation of previously difficult-to-image phenomena, and make the ASEM applicable to various fields. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Traffic Visualization

    DEFF Research Database (Denmark)

    Picozzi, Matteo; Verdezoto, Nervo; Pouke, Matti

    2013-01-01

    In this paper, we present a space-time visualization to provide city's decision-makers the ability to analyse and uncover important "city events" in an understandable manner for city planning activities. An interactive Web mashup visualization is presented that integrates several visualization...... techniques to give a rapid overview of traffic data. We illustrate our approach as a case study for traffic visualization systems, using datasets from the city of Oulu that can be extended to other city planning activities. We also report the feedback of real users (traffic management employees, traffic police...

  5. Biomedical image representation approach using visualness and spatial information in a concept feature space for interactive region-of-interest-based retrieval.

    Science.gov (United States)

    Rahman, Md Mahmudur; Antani, Sameer K; Demner-Fushman, Dina; Thoma, George R

    2015-10-01

    This article presents an approach to biomedical image retrieval by mapping image regions to local concepts where images are represented in a weighted entropy-based concept feature space. The term "concept" refers to perceptually distinguishable visual patches that are identified locally in image regions and can be mapped to a glossary of imaging terms. Further, the visual significance (e.g., visualness) of concepts is measured as the Shannon entropy of pixel values in image patches and is used to refine the feature vector. Moreover, the system can assist the user in interactively selecting a region-of-interest (ROI) and searching for similar image ROIs. Further, a spatial verification step is used as a postprocessing step to improve retrieval results based on location information. The hypothesis that such approaches would improve biomedical image retrieval is validated through experiments on two different data sets, which are collected from open access biomedical literature.

  6. Acerca da métrica da percepção do espaço visual On the metric of visual space

    Directory of Open Access Journals (Sweden)

    José Aparecido da Silva

    2006-02-01

    Full Text Available Nesta revisão, analisamos diferentes aspectos relacionados à métrica da percepção visual. Atenção especial foi dada à mensuração de distância egocêntrica (distância de um observador a um objeto e à mensuração de distância exocêntrica (distância entre dois objetos, ou partes de um objeto. Além disso, foram, brevemente, consideradas as teorias, a natureza dos indícios de distância, os tipos de indicadores de distância percebida, e os ambientes nos quais as distâncias são mensuradas. Concluímos que, a relação entre distância percebida e distância real não reflete uma simples transformação de sua contraparte física; em vez disso, esta relação depende substancialmente do ambiente no qual as distâncias são estimadas bem como da combinação de indícios de distância presente neste ambiente.The major aim of this overview was the visual perception of egocentric (distance from an observer to a target and exocentric distance (distance between two targets. We considered different issues concerning the relationship between perceived distance and physical distance, giving special attention to the theories, to the cues regarding distance, how perceived distances are measured, and the types of visual environments where the measuring of distances occurred. We concluded that the perceived distance does not reflect a simple transformation of its physical counterpart; rather, the mapping between perceived distance and physical distance depends substantially on the type of visual environments where distances are measured, and, on the cue combination available in these environments.

  7. Data Transformation Functions for Expanded Search Spaces in Geographic Sample Supervised Segment Generation

    Directory of Open Access Journals (Sweden)

    Christoff Fourie

    2014-04-01

    Full Text Available Sample supervised image analysis, in particular sample supervised segment generation, shows promise as a methodological avenue applicable within Geographic Object-Based Image Analysis (GEOBIA. Segmentation is acknowledged as a constituent component within typically expansive image analysis processes. A general extension to the basic formulation of an empirical discrepancy measure directed segmentation algorithm parameter tuning approach is proposed. An expanded search landscape is defined, consisting not only of the segmentation algorithm parameters, but also of low-level, parameterized image processing functions. Such higher dimensional search landscapes potentially allow for achieving better segmentation accuracies. The proposed method is tested with a range of low-level image transformation functions and two segmentation algorithms. The general effectiveness of such an approach is demonstrated compared to a variant only optimising segmentation algorithm parameters. Further, it is shown that the resultant search landscapes obtained from combining mid- and low-level image processing parameter domains, in our problem contexts, are sufficiently complex to warrant the use of population based stochastic search methods. Interdependencies of these two parameter domains are also demonstrated, necessitating simultaneous optimization.

  8. Automated Image Sampling and Classification Can Be Used to Explore Perceived Naturalness of Urban Spaces.

    Directory of Open Access Journals (Sweden)

    Roger Hyam

    Full Text Available The psychological restorative effects of exposure to nature are well established and extend to just viewing of images of nature. A previous study has shown that Perceived Naturalness (PN of images correlates with their restorative value. This study tests whether it is possible to detect degree of PN of images using an image classifier. It takes images that have been scored by humans for PN (including a subset that have been assessed for restorative value and passes them through the Google Vision API image classification service. The resulting labels are assigned to broad semantic classes to create a Calculated Semantic Naturalness (CSN metric for each image. It was found that CSN correlates with PN. CSN was then calculated for a geospatial sampling of Google Street View images across the city of Edinburgh. CSN was found to correlate with PN in this sample also indicating the technique may be useful in large scale studies. Because CSN correlates with PN which correlates with restorativeness it is suggested that CSN or a similar measure may be useful in automatically detecting restorative images and locations. In an exploratory aside CSN was not found to correlate with an indicator of socioeconomic deprivation.

  9. Comparing relative abundance, lengths, and habitat of temperate reef fishes using simultaneous underwater visual census, video, and trap sampling

    KAUST Repository

    Bacheler, NM; Geraldi, NR; Burton, ML; Muñ oz, RC; Kellison, GT

    2017-01-01

    of the reef fish community along the southeastern US Atlantic coast. In total, 117 taxa were observed by underwater visual census (UVC), stationary video, and chevron fish traps, with more taxa being observed by UVC (100) than video (82) or traps (20

  10. Improved abdominal MRI in non-breath-holding children using a radial k-space sampling technique

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jong Hyuk; Choi, Young Hun; Cheon, Jung Eun; Lee, So Mi; Cho, Hyun Hae; Kim, Woo Sun; Kim, In One [Seoul National University Children' s Hospital, Department of Radiology, Seoul (Korea, Republic of); Shin, Su Mi [SMG-SNU Boramae Medical Center, Department of Radiology, Seoul (Korea, Republic of)

    2015-06-15

    Radial k-space sampling techniques have been shown to reduce motion artifacts in adult abdominal MRI. To compare a T2-weighted radial k-space sampling MRI pulse sequence (BLADE) with standard respiratory-triggered T2-weighted turbo spin echo (TSE) in pediatric abdominal imaging. Axial BLADE and respiratory-triggered turbo spin echo sequences were performed without fat suppression in 32 abdominal MR examinations in children. We retrospectively assessed overall image quality, the presence of respiratory, peristaltic and radial artifact, and lesion conspicuity. We evaluated signal uniformity of each sequence. BLADE showed improved overall image quality (3.35 ± 0.85 vs. 2.59 ± 0.59, P < 0.001), reduced respiratory motion artifact (0.51 ± 0.56 vs. 1.89 ± 0.68, P < 0.001), and improved lesion conspicuity (3.54 ± 0.88 vs. 2.92 ± 0.77, P = 0.006) compared to respiratory triggering turbo spin-echo (TSE) sequences. The bowel motion artifact scores were similar for both sequences (1.65 ± 0.77 vs. 1.79 ± 0.74, P = 0.691). BLADE introduced a radial artifact that was not observed on the respiratory triggering-TSE images (1.10 ± 0.85 vs. 0, P < 0.001). BLADE was associated with diminished signal variation compared with respiratory triggering-TSE in the liver, spleen and air (P < 0.001). The radial k-space sampling technique improved the quality and reduced respiratory motion artifacts in young children compared with conventional respiratory-triggered turbo spin-echo sequences. (orig.)

  11. A new Langmuir probe concept for rapid sampling of space plasma electron density

    International Nuclear Information System (INIS)

    Jacobsen, K S; Pedersen, A; Moen, J I; Bekkeng, T A

    2010-01-01

    In this paper we describe a new Langmuir probe concept that was invented for the in situ investigation of HF radar backscatter irregularities, with the capability to measure absolute electron density at a resolution sufficient to resolve the finest conceivable structure in an ionospheric plasma. The instrument consists of two or more fixed-bias cylindrical Langmuir probes whose radius is small compared to the Debye length. With this configuration, it is possible to acquire absolute electron density measurements independent of electron temperature and rocket/satellite potential. The system was flown on the ICI-2 sounding rocket to investigate the plasma irregularities which cause HF backscatter. It had a sampling rate of more than 5 kHz and successfully measured structures down to the scale of one electron gyro radius. The system can easily be adapted for any ionospheric rocket or satellite, and provides high-quality measurements of electron density at any desired resolution

  12. Modality-Driven Classification and Visualization of Ensemble Variance

    Energy Technology Data Exchange (ETDEWEB)

    Bensema, Kevin; Gosink, Luke; Obermaier, Harald; Joy, Kenneth I.

    2016-10-01

    Paper for the IEEE Visualization Conference Advances in computational power now enable domain scientists to address conceptual and parametric uncertainty by running simulations multiple times in order to sufficiently sample the uncertain input space.

  13. OmicsNet: a web-based tool for creation and visual analysis of biological networks in 3D space.

    Science.gov (United States)

    Zhou, Guangyan; Xia, Jianguo

    2018-06-07

    Biological networks play increasingly important roles in omics data integration and systems biology. Over the past decade, many excellent tools have been developed to support creation, analysis and visualization of biological networks. However, important limitations remain: most tools are standalone programs, the majority of them focus on protein-protein interaction (PPI) or metabolic networks, and visualizations often suffer from 'hairball' effects when networks become large. To help address these limitations, we developed OmicsNet - a novel web-based tool that allows users to easily create different types of molecular interaction networks and visually explore them in a three-dimensional (3D) space. Users can upload one or multiple lists of molecules of interest (genes/proteins, microRNAs, transcription factors or metabolites) to create and merge different types of biological networks. The 3D network visualization system was implemented using the powerful Web Graphics Library (WebGL) technology that works natively in most major browsers. OmicsNet supports force-directed layout, multi-layered perspective layout, as well as spherical layout to help visualize and navigate complex networks. A rich set of functions have been implemented to allow users to perform coloring, shading, topology analysis, and enrichment analysis. OmicsNet is freely available at http://www.omicsnet.ca.

  14. Ratiometric, visual, dual-signal fluorescent sensing and imaging of pH/copper ions in real samples based on carbon dots-fluorescein isothiocyanate composites.

    Science.gov (United States)

    Zhu, Xinxin; Jin, Hui; Gao, Cuili; Gui, Rijun; Wang, Zonghua

    2017-01-01

    In this article, a facile aqueous synthesis of carbon dots (CDs) was developed by using natural kelp as a new carbon source. Through hydrothermal carbonization of kelp juice, fluorescent CDs were prepared and the CDs' surface was modified with polyethylenimine (PEI). The PEI-modified CDs were conjugated with fluorescein isothiocyanate (FITC) to fabricate CDs-FITC composites. To exploit broad applications, the CDs-FITC composites were developed as fluorescent sensing or imaging platforms of pH and Cu 2+ . Analytical performances of the composites-based fluorescence (FL) sensors were evaluated, including visual FL imaging of pH in glass bottle, ratiometric FL sensing of pH in yogurt samples, visual FL latent fingerprint and leaf imaging detection of [Cu 2+ ], dual-signal FL sensing of [Cu 2+ ] in yogurt and human serum samples. Experimental results from ratiometric, visual, dual-signal FL sensing and imaging applications confirmed the high feasibility, accuracy, stabilization and simplicity of CDs-FITC composites-based FL sensors for the detection of pH and Cu 2+ ions in real samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. An Interdisciplinary Method for the Visualization of Novel High-Resolution Precision Photography and Micro-XCT Data Sets of NASA's Apollo Lunar Samples and Antarctic Meteorite Samples to Create Combined Research-Grade 3D Virtual Samples for the Benefit of Astromaterials Collections Conservation, Curation, Scientific Research and Education

    Science.gov (United States)

    Blumenfeld, E. H.; Evans, C. A.; Oshel, E. R.; Liddle, D. A.; Beaulieu, K.; Zeigler, R. A.; Hanna, R. D.; Ketcham, R. A.

    2016-01-01

    New technologies make possible the advancement of documentation and visualization practices that can enhance conservation and curation protocols for NASA's Astromaterials Collections. With increasing demands for accessibility to updated comprehensive data, and with new sample return missions on the horizon, it is of primary importance to develop new standards for contemporary documentation and visualization methodologies. Our interdisciplinary team has expertise in the fields of heritage conservation practices, professional photography, photogrammetry, imaging science, application engineering, data curation, geoscience, and astromaterials curation. Our objective is to create virtual 3D reconstructions of Apollo Lunar and Antarctic Meteorite samples that are a fusion of two state-of-the-art data sets: the interior view of the sample by collecting Micro-XCT data and the exterior view of the sample by collecting high-resolution precision photography data. These new data provide researchers an information-rich visualization of both compositional and textural information prior to any physical sub-sampling. Since January 2013 we have developed a process that resulted in the successful creation of the first image-based 3D reconstruction of an Apollo Lunar Sample correlated to a 3D reconstruction of the same sample's Micro- XCT data, illustrating that this technique is both operationally possible and functionally beneficial. In May of 2016 we began a 3-year research period during which we aim to produce Virtual Astromaterials Samples for 60 high-priority Apollo Lunar and Antarctic Meteorite samples and serve them on NASA's Astromaterials Acquisition and Curation website. Our research demonstrates that research-grade Virtual Astromaterials Samples are beneficial in preserving for posterity a precise 3D reconstruction of the sample prior to sub-sampling, which greatly improves documentation practices, provides unique and novel visualization of the sample's interior and

  16. [Sampling and measurement methods of the protocol design of the China Nine-Province Survey for blindness, visual impairment and cataract surgery].

    Science.gov (United States)

    Zhao, Jia-liang; Wang, Yu; Gao, Xue-cheng; Ellwein, Leon B; Liu, Hu

    2011-09-01

    To design the protocol of the China nine-province survey for blindness, visual impairment and cataract surgery to evaluate the prevalence and main causes of blindness and visual impairment, and the prevalence and outcomes of the cataract surgery. The protocol design was began after accepting the task for the national survey for blindness, visual impairment and cataract surgery from the Department of Medicine, Ministry of Health, China, in November, 2005. The protocol in Beijing Shunyi Eye Study in 1996 and Guangdong Doumen County Eye Study in 1997, both supported by World Health Organization, was taken as the basis for the protocol design. The relative experts were invited to discuss and prove the draft protocol. An international advisor committee was established to examine and approve the draft protocol. Finally, the survey protocol was checked and approved by the Department of Medicine, Ministry of Health, China and Prevention Program of Blindness and Deafness, WHO. The survey protocol was designed according to the characteristics and the scale of the survey. The contents of the protocol included determination of target population and survey sites, calculation of the sample size, design of the random sampling, composition and organization of the survey teams, determination of the examinee, the flowchart of the field work, survey items and methods, diagnostic criteria of blindness and moderate and sever visual impairment, the measures of the quality control, the methods of the data management. The designed protocol became the standard and practical protocol for the survey to evaluate the prevalence and main causes of blindness and visual impairment, and the prevalence and outcomes of the cataract surgery.

  17. Innovative Ultrasonic Testing (UT) of nuclear components by sampling phased array with 3D visualization of inspection results

    OpenAIRE

    Pudovikov, Sergey; Bulavinov, Andrey; Pinchuk, Roman

    2011-01-01

    Unlike other industrial branches, nuclear industry - when performing UT- is not only asking for a reliable detection, but also for an exact sizing of material defects. Under these objectives ultrasonic imaging plays an important role in practical testing of nuclear components in the data evaluation process as well as for documentation of the inspection results. 2D and 3D sound-field steering by means of phased array technology offers great opportunities for spatially correct visualization of ...

  18. Extreme robustness of scaling in sample space reducing processes explains Zipf’s law in diffusion on directed networks

    International Nuclear Information System (INIS)

    Corominas-Murtra, Bernat; Hanel, Rudolf; Thurner, Stefan

    2016-01-01

    It has been shown recently that a specific class of path-dependent stochastic processes, which reduce their sample space as they unfold, lead to exact scaling laws in frequency and rank distributions. Such sample space reducing processes offer an alternative new mechanism to understand the emergence of scaling in countless processes. The corresponding power law exponents were shown to be related to noise levels in the process. Here we show that the emergence of scaling is not limited to the simplest SSRPs, but holds for a huge domain of stochastic processes that are characterised by non-uniform prior distributions. We demonstrate mathematically that in the absence of noise the scaling exponents converge to −1 (Zipf’s law) for almost all prior distributions. As a consequence it becomes possible to fully understand targeted diffusion on weighted directed networks and its associated scaling laws in node visit distributions. The presence of cycles can be properly interpreted as playing the same role as noise in SSRPs and, accordingly, determine the scaling exponents. The result that Zipf’s law emerges as a generic feature of diffusion on networks, regardless of its details, and that the exponent of visiting times is related to the amount of cycles in a network could be relevant for a series of applications in traffic-, transport- and supply chain management. (paper)

  19. Using Visual Information to Determine the Subjective Valuation of Public Space for Transportation : Application to Subway Crowding Costs in NYC

    Science.gov (United States)

    2017-11-30

    The objective of this project is to explore the role of visual information in determining the users subjective valuation of multidimensional trip attributes that are relevant in decision-making, but are neglected in standard travel demand models. ...

  20. The space - time - cube and the display of large movement data sets: the link between visualization strategies and cartographic design guidelines

    DEFF Research Database (Denmark)

    Kveladze, Irma; Kraak, Menno-Jan

    2011-01-01

    one should not only consider the nature of the data, but also the purpose of the particular phase of the workflow. To verify the above approach the visualization strategies and design guidelines are applied in a different use cases. The cases include: • The annotated space-time path A travel log...... is the Space-Time-cube (STC). The last decades the interest in this representation has increased considerable because of the technological opportunities. Despite the many domains where the STC is used, it is still unclear what the full possibilities and limitations of this graphic representation are. Its three...... consisting of a trajectory based on different modes of transport, with linked annotations. The challenge is to deal different scales and annotations. • The historical movement data The event ‘Napoleons march to Moscow’ contains fifteen space-time paths (STP) with attribute information. Challenge is to answer...

  1. Post-Flight Microbial Analysis of Samples from the International Space Station Water Recovery System and Oxygen Generation System

    Science.gov (United States)

    Birmele, Michele N.

    2011-01-01

    The Regenerative, Environmental Control and Life Support System (ECLSS) on the International Space Station (ISS) includes the the Water Recovery System (WRS) and the Oxygen Generation System (OGS). The WRS consists of a Urine Processor Assembly (UPA) and Water Processor Assembly (WPA). This report describes microbial characterization of wastewater and surface samples collected from the WRS and OGS subsystems, returned to KSC, JSC, and MSFC on consecutive shuttle flights (STS-129 and STS-130) in 2009-10. STS-129 returned two filters that contained fluid samples from the WPA Waste Tank Orbital Recovery Unit (ORU), one from the waste tank and the other from the ISS humidity condensate. Direct count by microscopic enumeration revealed 8.38 x 104 cells per mL in the humidity condensate sample, but none of those cells were recoverable on solid agar media. In contrast, 3.32 x lOs cells per mL were measured from a surface swab of the WRS waste tank, including viable bacteria and fungi recovered after S12 days of incubation on solid agar media. Based on rDNA sequencing and phenotypic characterization, a fungus recovered from the filter was determined to be Lecythophora mutabilis. The bacterial isolate was identified by rDNA sequence data to be Methylobacterium radiotolerans. Additional UPA subsystem samples were returned on STS-130 for analysis. Both liquid and solid samples were collected from the Russian urine container (EDV), Distillation Assembly (DA) and Recycle Filter Tank Assembly (RFTA) for post-flight analysis. The bacterium Pseudomonas aeruginosa and fungus Chaetomium brasiliense were isolated from the EDV samples. No viable bacteria or fungi were recovered from RFTA brine samples (N= 6), but multiple samples (N = 11) from the DA and RFTA were found to contain fungal and bacterial cells. Many recovered cells have been identified to genus by rDNA sequencing and carbon source utilization profiling (BiOLOG Gen III). The presence of viable bacteria and fungi from WRS

  2. NASA Johnson Space Center's Planetary Sample Analysis and Mission Science (PSAMS) Laboratory: A National Facility for Planetary Research

    Science.gov (United States)

    Draper, D. S.

    2016-01-01

    NASA Johnson Space Center's (JSC's) Astromaterials Research and Exploration Science (ARES) Division, part of the Exploration Integration and Science Directorate, houses a unique combination of laboratories and other assets for conducting cutting edge planetary research. These facilities have been accessed for decades by outside scientists, most at no cost and on an informal basis. ARES has thus provided substantial leverage to many past and ongoing science projects at the national and international level. Here we propose to formalize that support via an ARES/JSC Plane-tary Sample Analysis and Mission Science Laboratory (PSAMS Lab). We maintain three major research capa-bilities: astromaterial sample analysis, planetary process simulation, and robotic-mission analog research. ARES scientists also support planning for eventual human ex-ploration missions, including astronaut geological training. We outline our facility's capabilities and its potential service to the community at large which, taken together with longstanding ARES experience and expertise in curation and in applied mission science, enable multi-disciplinary planetary research possible at no other institution. Comprehensive campaigns incorporating sample data, experimental constraints, and mission science data can be conducted under one roof.

  3. Particle System Based Adaptive Sampling on Spherical Parameter Space to Improve the MDL Method for Construction of Statistical Shape Models

    Directory of Open Access Journals (Sweden)

    Rui Xu

    2013-01-01

    Full Text Available Minimum description length (MDL based group-wise registration was a state-of-the-art method to determine the corresponding points of 3D shapes for the construction of statistical shape models (SSMs. However, it suffered from the problem that determined corresponding points did not uniformly spread on original shapes, since corresponding points were obtained by uniformly sampling the aligned shape on the parameterized space of unit sphere. We proposed a particle-system based method to obtain adaptive sampling positions on the unit sphere to resolve this problem. Here, a set of particles was placed on the unit sphere to construct a particle system whose energy was related to the distortions of parameterized meshes. By minimizing this energy, each particle was moved on the unit sphere. When the system became steady, particles were treated as vertices to build a spherical mesh, which was then relaxed to slightly adjust vertices to obtain optimal sampling-positions. We used 47 cases of (left and right lungs and 50 cases of livers, (left and right kidneys, and spleens for evaluations. Experiments showed that the proposed method was able to resolve the problem of the original MDL method, and the proposed method performed better in the generalization and specificity tests.

  4. Map Learning with a 3D Printed Interactive Small-Scale Model: Improvement of Space and Text Memorization in Visually Impaired Students

    Directory of Open Access Journals (Sweden)

    Stéphanie Giraud

    2017-06-01

    Full Text Available Special education teachers for visually impaired students rely on tools such as raised-line maps (RLMs to teach spatial knowledge. These tools do not fully and adequately meet the needs of the teachers because they are long to produce, expensive, and not versatile enough to provide rapid updating of the content. For instance, the same RLM can barely be used during different lessons. In addition, those maps do not provide any interactivity, which reduces students’ autonomy. With the emergence of 3D printing and low-cost microcontrollers, it is now easy to design affordable interactive small-scale models (SSMs which are adapted to the needs of special education teachers. However, no study has previously been conducted to evaluate non-visual learning using interactive SSMs. In collaboration with a specialized teacher, we designed a SSM and a RLM representing the evolution of the geography and history of a fictitious kingdom. The two conditions were compared in a study with 24 visually impaired students regarding the memorization of the spatial layout and historical contents. The study showed that the interactive SSM improved both space and text memorization as compared to the RLM with braille legend. In conclusion, we argue that affordable home-made interactive small scale models can improve learning for visually impaired students. Interestingly, they are adaptable to any teaching situation including students with specific needs.

  5. Map Learning with a 3D Printed Interactive Small-Scale Model: Improvement of Space and Text Memorization in Visually Impaired Students.

    Science.gov (United States)

    Giraud, Stéphanie; Brock, Anke M; Macé, Marc J-M; Jouffrais, Christophe

    2017-01-01

    Special education teachers for visually impaired students rely on tools such as raised-line maps (RLMs) to teach spatial knowledge. These tools do not fully and adequately meet the needs of the teachers because they are long to produce, expensive, and not versatile enough to provide rapid updating of the content. For instance, the same RLM can barely be used during different lessons. In addition, those maps do not provide any interactivity, which reduces students' autonomy. With the emergence of 3D printing and low-cost microcontrollers, it is now easy to design affordable interactive small-scale models (SSMs) which are adapted to the needs of special education teachers. However, no study has previously been conducted to evaluate non-visual learning using interactive SSMs. In collaboration with a specialized teacher, we designed a SSM and a RLM representing the evolution of the geography and history of a fictitious kingdom. The two conditions were compared in a study with 24 visually impaired students regarding the memorization of the spatial layout and historical contents. The study showed that the interactive SSM improved both space and text memorization as compared to the RLM with braille legend. In conclusion, we argue that affordable home-made interactive small scale models can improve learning for visually impaired students. Interestingly, they are adaptable to any teaching situation including students with specific needs.

  6. Visual Education

    DEFF Research Database (Denmark)

    Buhl, Mie; Flensborg, Ingelise

    2010-01-01

    The intrinsic breadth of various types of images creates new possibilities and challenges for visual education. The digital media have moved the boundaries between images and other kinds of modalities (e.g. writing, speech and sound) and have augmented the possibilities for integrating the functi......The intrinsic breadth of various types of images creates new possibilities and challenges for visual education. The digital media have moved the boundaries between images and other kinds of modalities (e.g. writing, speech and sound) and have augmented the possibilities for integrating...... to emerge in the interlocutory space of a global visual repertoire and diverse local interpretations. The two perspectives represent challenges for future visual education which require visual competences, not only within the arts but also within the subjects of natural sciences, social sciences, languages...

  7. Investigating the Influence of Light Shelf Geometry Parameters on Daylight Performance and Visual Comfort, a Case Study of Educational Space in Tehran, Iran

    Directory of Open Access Journals (Sweden)

    Mohammad Hossein Moazzeni

    2016-07-01

    Full Text Available Daylight can be considered as one of the most important principles of sustainable architecture. It is unfortunate that this is neglected by designers in Tehran, a city that benefits from a significant amount of daylight and many clear sunny days during the year. Using a daylight controller system increases space natural light quality and decreases building lighting consumption by 60%. It also affects building thermal behavior, because most of them operate as shading. The light shelf is one of the passive systems for controlling daylight, mostly used with shading and installed in the upper half of the windows above eye level. The influence of light shelf parameters, such as its dimensions, shelf rotation angle and orientation on daylight efficiency and visual comfort in educational spaces is investigated in this article. Daylight simulation software and annual analysis based on climate information during space occupation hours were used. The results show that light shelf dimensions, as well as different orientations, especially in southern part, are influential in the distribution of natural light and visual comfort. At the southern orientation, increased light shelf dimensions result in an increase of the area of the work plane with suitable daylight levels by 2%–40% and a significant decrease in disturbing and intolerable glare hours.

  8. Fluid Shifts Before, During and After Prolonged Space Flight and Their Association with Intracranial Pressure and Visual Impairment

    Science.gov (United States)

    Stenger, Michael; Hargens, Alan; Dulchavsky, Scott

    2014-01-01

    Future human space travel will primarily consist of long duration missions onboard the International Space Station or exploration class missions to Mars, its moons, or nearby asteroids. Current evidence suggests that long duration missions might increase risk of permanent ocular structural and functional changes, possibly due to increased intracranial pressure resulting from a spaceflight-induced cephalad (headward) fluid shift.

  9. Gender and Racial Differences: Development of Sixth Grade Students' Geometric Spatial Visualization within an Earth/Space Unit

    Science.gov (United States)

    Jackson, Christa; Wilhelm, Jennifer Anne; Lamar, Mary; Cole, Merryn

    2015-01-01

    This study investigated sixth-grade middle-level students' geometric spatial development by gender and race within and between control and experimental groups at two middle schools as they participated in an Earth/Space unit. The control group utilized a regular Earth/Space curriculum and the experimental group used a National Aeronautics and…

  10. Use of a holder-vacuum tube device to save on-site hands in preparing urine samples for head-space gas-chromatography, and its application to determine the time allowance for sample sealing.

    Science.gov (United States)

    Kawai, Toshio; Sumino, Kimiaki; Ohashi, Fumiko; Ikeda, Masayuki

    2011-01-01

    To facilitate urine sample preparation prior to head-space gas-chromatographic (HS-GC) analysis. Urine samples containing one of the five solvents (acetone, methanol, methyl ethyl ketone, methyl isobutyl ketone and toluene) at the levels of biological exposure limits were aspirated into a vacuum tube via holder, a device commercially available for venous blood collection (the vacuum tube method). The urine sample, 5 ml, was quantitatively transferred to a 20-ml head-space vial prior to HS-GC analysis. The loaded tubes were stored at +4 ℃ in dark for up to 3 d. The vacuum tube method facilitated on-site procedures of urine sample preparation for HS-GC with no significant loss of solvents in the sample and no need of skilled hands, whereas on-site sample preparation time was significantly reduced. Furthermore, no loss of solvents was detected during the 3-d storage, irrespective of hydrophilic (acetone) or lipophilic solvent (toluene). In a pilot application, high performance of the vacuum tube method in sealing a sample in an air-tight space succeeded to confirm that no solvent will be lost when sealing is completed within 5 min after urine voiding, and that the allowance time is as long as 30 min in case of toluene in urine. The use of the holder-vacuum tube device not only saves hands for transfer of the sample to air-tight space, but facilitates sample storage prior to HS-GC analysis.

  11. Using spatiotemporal models and distance sampling to map the space use and abundance of newly metamorphosed Western Toads (Anaxyrus boreas)

    Science.gov (United States)

    Chelgren, Nathan D.; Samora, Barbara; Adams, Michael J.; McCreary, Brome

    2011-01-01

    High variability in abundance, cryptic coloration, and small body size of newly metamorphosed anurans have limited demographic studies of this life-history stage. We used line-transect distance sampling and Bayesian methods to estimate the abundance and spatial distribution of newly metamorphosed Western Toads (Anaxyrus boreas) in terrestrial habitat surrounding a montane lake in central Washington, USA. We completed 154 line-transect surveys from the commencement of metamorphosis (15 September 2009) to the date of first snow accumulation in fall (1 October 2009), and located 543 newly metamorphosed toads. After accounting for variable detection probability associated with the extent of barren habitats, estimates of total surface abundance ranged from a posterior median of 3,880 (95% credible intervals from 2,235 to 12,600) in the first week of sampling to 12,150 (5,543 to 51,670) during the second week of sampling. Numbers of newly metamorphosed toads dropped quickly with increasing distance from the lakeshore in a pattern that differed over the three weeks of the study and contradicted our original hypotheses. Though we hypothesized that the spatial distribution of toads would initially be concentrated near the lake shore and then spread outward from the lake over time, we observed the opposite. Ninety-five percent of individuals occurred within 20, 16, and 15 m of shore during weeks one, two, and three respectively, probably reflecting continued emergence of newly metamorphosed toads from the lake and mortality or burrow use of dispersed individuals. Numbers of toads were highest near the inlet stream of the lake. Distance sampling may provide a useful method for estimating the surface abundance of newly metamorphosed toads and relating their space use to landscape variables despite uncertain and variable probability of detection. We discuss means of improving the precision of estimates of total abundance.

  12. Topological Methods for Visualization

    Energy Technology Data Exchange (ETDEWEB)

    Berres, Anne Sabine [Los Alamos National Lab. (LANL), Los Alamos, NM (United Stat

    2016-04-07

    This slide presentation describes basic topological concepts, including topological spaces, homeomorphisms, homotopy, betti numbers. Scalar field topology explores finding topological features and scalar field visualization, and vector field topology explores finding topological features and vector field visualization.

  13. Being and Becoming in the Space Between: Co-Created Visual Storying through Community-Based Participatory Action Research

    Science.gov (United States)

    Koo, Ah Ran

    2017-01-01

    The main goal of this study was to expand understanding of a Korean-American community's cultural identities through storytelling and artmaking, which was conceptualized as "Visual Storying" in this study. Ethnic minority students in the United States often experience confusion or conflict between American and their heritage cultures.…

  14. Comparative exploration of hydrogen sulfide and water transmembrane free energy surfaces via orthogonal space tempering free energy sampling.

    Science.gov (United States)

    Lv, Chao; Aitchison, Erick W; Wu, Dongsheng; Zheng, Lianqing; Cheng, Xiaolin; Yang, Wei

    2016-03-05

    Hydrogen sulfide (H2 S), a commonly known toxic gas compound, possesses unique chemical features that allow this small solute molecule to quickly diffuse through cell membranes. Taking advantage of the recent orthogonal space tempering (OST) method, we comparatively mapped the transmembrane free energy landscapes of H2 S and its structural analogue, water (H2 O), seeking to decipher the molecular determinants that govern their drastically different permeabilities. As revealed by our OST sampling results, in contrast to the highly polar water solute, hydrogen sulfide is evidently amphipathic, and thus inside membrane is favorably localized at the interfacial region, that is, the interface between the polar head-group and nonpolar acyl chain regions. Because the membrane binding affinity of H2 S is mainly governed by its small hydrophobic moiety and the barrier height inbetween the interfacial region and the membrane center is largely determined by its moderate polarity, the transmembrane free energy barriers to encounter by this toxic molecule are very small. Moreover when H2 S diffuses from the bulk solution to the membrane center, the above two effects nearly cancel each other, so as to lead to a negligible free energy difference. This study not only explains why H2 S can quickly pass through cell membranes but also provides a practical illustration on how to use the OST free energy sampling method to conveniently analyze complex molecular processes. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  15. HUBBLE SPACE TELESCOPE PROPER MOTION (HSTPROMO) CATALOGS OF GALACTIC GLOBULAR CLUSTERS. I. SAMPLE SELECTION, DATA REDUCTION, AND NGC 7078 RESULTS

    Energy Technology Data Exchange (ETDEWEB)

    Bellini, A.; Anderson, J.; Van der Marel, R. P.; Watkins, L. L. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); King, I. R. [Department of Astronomy, University of Washington, Box 351580, Seattle, WA 98195 (United States); Bianchini, P. [Max Planck Institute for Astronomy, Königstuhl 17, D-69117 Heidelberg (Germany); Chanamé, J. [Instituto de Astrofísica, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Macul 782-0436, Santiago (Chile); Chandar, R. [Department of Physics and Astronomy, The University of Toledo, 2801 West Bancroft Street, Toledo, OH 43606 (United States); Cool, A. M. [Department of Physics and Astronomy, San Francisco State University, 1600 Holloway Avenue, San Francisco, CA 94132 (United States); Ferraro, F. R.; Massari, D. [Dipartimento di Fisica e Astronomia, Università di Bologna, via Ranzani 1, I-40127 Bologna (Italy); Ford, H., E-mail: bellini@stsci.edu [Department of Physics and Astronomy, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218 (United States)

    2014-12-20

    We present the first study of high-precision internal proper motions (PMs) in a large sample of globular clusters, based on Hubble Space Telescope (HST) data obtained over the past decade with the ACS/WFC, ACS/HRC, and WFC3/UVIS instruments. We determine PMs for over 1.3 million stars in the central regions of 22 clusters, with a median number of ∼60,000 stars per cluster. These PMs have the potential to significantly advance our understanding of the internal kinematics of globular clusters by extending past line-of-sight (LOS) velocity measurements to two- or three-dimensional velocities, lower stellar masses, and larger sample sizes. We describe the reduction pipeline that we developed to derive homogeneous PMs from the very heterogeneous archival data. We demonstrate the quality of the measurements through extensive Monte Carlo simulations. We also discuss the PM errors introduced by various systematic effects and the techniques that we have developed to correct or remove them to the extent possible. We provide in electronic form the catalog for NGC 7078 (M 15), which consists of 77,837 stars in the central 2.'4. We validate the catalog by comparison with existing PM measurements and LOS velocities and use it to study the dependence of the velocity dispersion on radius, stellar magnitude (or mass) along the main sequence, and direction in the plane of the sky (radial or tangential). Subsequent papers in this series will explore a range of applications in globular-cluster science and will also present the PM catalogs for the other sample clusters.

  16. A radial sampling strategy for uniform k-space coverage with retrospective respiratory gating in 3D ultrashort-echo-time lung imaging.

    Science.gov (United States)

    Park, Jinil; Shin, Taehoon; Yoon, Soon Ho; Goo, Jin Mo; Park, Jang-Yeon

    2016-05-01

    The purpose of this work was to develop a 3D radial-sampling strategy which maintains uniform k-space sample density after retrospective respiratory gating, and demonstrate its feasibility in free-breathing ultrashort-echo-time lung MRI. A multi-shot, interleaved 3D radial sampling function was designed by segmenting a single-shot trajectory of projection views such that each interleaf samples k-space in an incoherent fashion. An optimal segmentation factor for the interleaved acquisition was derived based on an approximate model of respiratory patterns such that radial interleaves are evenly accepted during the retrospective gating. The optimality of the proposed sampling scheme was tested by numerical simulations and phantom experiments using human respiratory waveforms. Retrospectively, respiratory-gated, free-breathing lung MRI with the proposed sampling strategy was performed in healthy subjects. The simulation yielded the most uniform k-space sample density with the optimal segmentation factor, as evidenced by the smallest standard deviation of the number of neighboring samples as well as minimal side-lobe energy in the point spread function. The optimality of the proposed scheme was also confirmed by minimal image artifacts in phantom images. Human lung images showed that the proposed sampling scheme significantly reduced streak and ring artifacts compared with the conventional retrospective respiratory gating while suppressing motion-related blurring compared with full sampling without respiratory gating. In conclusion, the proposed 3D radial-sampling scheme can effectively suppress the image artifacts due to non-uniform k-space sample density in retrospectively respiratory-gated lung MRI by uniformly distributing gated radial views across the k-space. Copyright © 2016 John Wiley & Sons, Ltd.

  17. CAIPIRINHA accelerated SPACE enables 10-min isotropic 3D TSE MRI of the ankle for optimized visualization of curved and oblique ligaments and tendons.

    Science.gov (United States)

    Kalia, Vivek; Fritz, Benjamin; Johnson, Rory; Gilson, Wesley D; Raithel, Esther; Fritz, Jan

    2017-09-01

    To test the hypothesis that a fourfold CAIPIRINHA accelerated, 10-min, high-resolution, isotropic 3D TSE MRI prototype protocol of the ankle derives equal or better quality than a 20-min 2D TSE standard protocol. Following internal review board approval and informed consent, 3-Tesla MRI of the ankle was obtained in 24 asymptomatic subjects including 10-min 3D CAIPIRINHA SPACE TSE prototype and 20-min 2D TSE standard protocols. Outcome variables included image quality and visibility of anatomical structures using 5-point Likert scales. Non-parametric statistical testing was used. P values ≤0.001 were considered significant. Edge sharpness, contrast resolution, uniformity, noise, fat suppression and magic angle effects were without statistical difference on 2D and 3D TSE images (p > 0.035). Fluid was mildly brighter on intermediate-weighted 2D images (p acceleration enables high-spatial resolution oblique and curved planar MRI of the ankle and visualization of ligaments, tendons and joints equally well or better than a more time-consuming anisotropic 2D TSE MRI. • High-resolution 3D TSE MRI improves visualization of ankle structures. • Limitations of current 3D TSE MRI include long scan times. • 3D CAIPIRINHA SPACE allows now a fourfold-accelerated data acquisition. • 3D CAIPIRINHA SPACE enables high-spatial-resolution ankle MRI within 10 min. • 10-min 3D CAIPIRINHA SPACE produces equal-or-better quality than 20-min 2D TSE.

  18. Vapor space characterization of Waste Tank 241-C-103: Inorganic results from sample Job 7B (May 12-25, 1994)

    International Nuclear Information System (INIS)

    Ligotke, M.W.; Pool, K.H.; Lerner, B.D.

    1994-10-01

    This report is to provide analytical results for use in safety and toxicological evaluations of the vapor space of Hanford single-shell waste storage tanks C-103. Samples were analysed to determine concentrations of ammonia, nitric oxide, nitrogen dioxide, sulfur oxides, and hydrogen cyanide. In addition to the samples, controls were analyzed that included blanks, spiked blanks, and spiked samples. These controls provided information about the suitability of sampling and analytical methods. Also included are the following: information describing the methods and sampling procedures used; results of sample analyses; and Conclusions and recommendations

  19. The attention-weighted sample-size model of visual short-term memory: Attention capture predicts resource allocation and memory load.

    Science.gov (United States)

    Smith, Philip L; Lilburn, Simon D; Corbett, Elaine A; Sewell, David K; Kyllingsbæk, Søren

    2016-09-01

    We investigated the capacity of visual short-term memory (VSTM) in a phase discrimination task that required judgments about the configural relations between pairs of black and white features. Sewell et al. (2014) previously showed that VSTM capacity in an orientation discrimination task was well described by a sample-size model, which views VSTM as a resource comprised of a finite number of noisy stimulus samples. The model predicts the invariance of [Formula: see text] , the sum of squared sensitivities across items, for displays of different sizes. For phase discrimination, the set-size effect significantly exceeded that predicted by the sample-size model for both simultaneously and sequentially presented stimuli. Instead, the set-size effect and the serial position curves with sequential presentation were predicted by an attention-weighted version of the sample-size model, which assumes that one of the items in the display captures attention and receives a disproportionate share of resources. The choice probabilities and response time distributions from the task were well described by a diffusion decision model in which the drift rates embodied the assumptions of the attention-weighted sample-size model. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  20. Optical devices for proximity operations study and test report. [intensifying images for visual observation during space transportation system activities

    Science.gov (United States)

    Smith, R. A.

    1979-01-01

    Operational and physical requirements were investigated for a low-light-level viewing device to be used as a window-mounted optical sight for crew use in the pointing, navigating, stationkeeping, and docking of space vehicles to support space station operations and the assembly of large structures in space. A suitable prototype, obtained from a commercial vendor, was subjected to limited tests to determine the potential effectiveness of a proximity optical device in spacecraft operations. The constructional features of the device are discussed as well as concepts for its use. Tests results show that a proximity optical device is capable of performing low-light-level viewing services and will enhance manned spacecraft operations.

  1. Visual detection of copper(II) ions in blood samples by controlling the leaching of protein-capped gold nanoparticles.

    Science.gov (United States)

    Lee, Yen-Fei; Deng, Ting-Wei; Chiu, Wei-Jane; Wei, Tsao-Yen; Roy, Prathik; Huang, Chih-Ching

    2012-04-21

    We have developed a simple, low-cost, paper-based probe for the selective colorimetric detection of copper ions (Cu(2+)) in aqueous solutions. The bovine serum albumin (BSA)-modified 13.3-nm Au nanoparticle (BSA-Au NP) probe was designed to detect Cu(2+) ions using lead ions (Pb(2+)) and 2-mercaptoethanol (2-ME) as leaching agents in a glycine-NaOH (pH 12.0) solution. In addition, a nitrocellulose membrane (NCM) was used to trap the BSA-Au NPs, leading to the preparation of a nanocomposite film consisting of a BSA-Au NP-decorated membrane (BSA-Au NPs/NCM). The BSA-Au NPs probe operates on the principle that Cu deposition on the surface of the BSA-Au NPs inhibits their leaching ability, which is accelerated by Pb(2+) ions in the presence of 2-ME. Under optimal solution conditions (5 mM glycine-NaOH (pH 12.0), Pb(2+) (50 μM), and 2-ME (1.0 M)), the Pb(2+)/2-ME-BSA-Au NPs/NCM enabled the detection of Cu(2+) at nanomolar concentrations in aqueous solutions by the naked eye with high selectivity (at least 100-fold over other metal ions). In addition, this cost-effective probe allowed for the rapid and simple determination of Cu(2+) ions in not only natural water samples but also in a complex biological sample (in this case, blood sample).

  2. Sequence space coverage, entropy of genomes and the potential to detect non-human DNA in human samples

    Directory of Open Access Journals (Sweden)

    Maley Carlo C

    2008-10-01

    Full Text Available Abstract Background Genomes store information for building and maintaining organisms. Complete sequencing of many genomes provides the opportunity to study and compare global information properties of those genomes. Results We have analyzed aspects of the information content of Homo sapiens, Mus musculus, Drosophila melanogaster, Caenorhabditis elegans, Arabidopsis thaliana, Saccharomyces cerevisiae, and Escherichia coli (K-12 genomes. Virtually all possible (> 98% 12 bp oligomers appear in vertebrate genomes while 98% to D. melanogaster (12–17 bp, C. elegans (11–17 bp, A. thaliana (11–17 bp, S. cerevisiae (10–16 bp and E. coli (9–15 bp. Frequencies of unique oligomers in the genomes follow similar patterns. We identified a set of 2.6 M 15-mers that are more than 1 nucleotide different from all 15-mers in the human genome and so could be used as probes to detect microbes in human samples. In a human sample, these probes would detect 100% of the 433 currently fully sequenced prokaryotes and 75% of the 3065 fully sequenced viruses. The human genome is significantly more compact in sequence space than a random genome. We identified the most frequent 5- to 20-mers in the human genome, which may prove useful as PCR primers. We also identified a bacterium, Anaeromyxobacter dehalogenans, which has an exceptionally low diversity of oligomers given the size of its genome and its GC content. The entropy of coding regions in the human genome is significantly higher than non-coding regions and chromosomes. However chromosomes 1, 2, 9, 12 and 14 have a relatively high proportion of coding DNA without high entropy, and chromosome 20 is the opposite with a low frequency of coding regions but relatively high entropy. Conclusion Measures of the frequency of oligomers are useful for designing PCR assays and for identifying chromosomes and organisms with hidden structure that had not been previously recognized. This information may be used to detect

  3. Sequence space coverage, entropy of genomes and the potential to detect non-human DNA in human samples

    Science.gov (United States)

    Liu, Zhandong; Venkatesh, Santosh S; Maley, Carlo C

    2008-01-01

    Background Genomes store information for building and maintaining organisms. Complete sequencing of many genomes provides the opportunity to study and compare global information properties of those genomes. Results We have analyzed aspects of the information content of Homo sapiens, Mus musculus, Drosophila melanogaster, Caenorhabditis elegans, Arabidopsis thaliana, Saccharomyces cerevisiae, and Escherichia coli (K-12) genomes. Virtually all possible (> 98%) 12 bp oligomers appear in vertebrate genomes while 98% to < 2% of possible oligomers in D. melanogaster (12–17 bp), C. elegans (11–17 bp), A. thaliana (11–17 bp), S. cerevisiae (10–16 bp) and E. coli (9–15 bp). Frequencies of unique oligomers in the genomes follow similar patterns. We identified a set of 2.6 M 15-mers that are more than 1 nucleotide different from all 15-mers in the human genome and so could be used as probes to detect microbes in human samples. In a human sample, these probes would detect 100% of the 433 currently fully sequenced prokaryotes and 75% of the 3065 fully sequenced viruses. The human genome is significantly more compact in sequence space than a random genome. We identified the most frequent 5- to 20-mers in the human genome, which may prove useful as PCR primers. We also identified a bacterium, Anaeromyxobacter dehalogenans, which has an exceptionally low diversity of oligomers given the size of its genome and its GC content. The entropy of coding regions in the human genome is significantly higher than non-coding regions and chromosomes. However chromosomes 1, 2, 9, 12 and 14 have a relatively high proportion of coding DNA without high entropy, and chromosome 20 is the opposite with a low frequency of coding regions but relatively high entropy. Conclusion Measures of the frequency of oligomers are useful for designing PCR assays and for identifying chromosomes and organisms with hidden structure that had not been previously recognized. This information may be used to

  4. Survey and visual detection of Zaire ebolavirus in clinical samples targeting the nucleoprotein gene in Sierra Leone

    Directory of Open Access Journals (Sweden)

    Jing Yuan

    2015-12-01

    Full Text Available Ebola virus (EBOV can lead to severe hemorrhagic fever with a high risk of death in humans and other primates. To guide treatment and prevent spread of the viral infection, a rapid and sensitive detection method is required for clinical samples. Here, we described and evaluated a reverse transcription loop-mediated isothermal amplification (RT-LAMP method to detect Zaire ebolavirus using the nucleoprotein gene (NP as a target sequence. Two different techniques were used, a calcein/Mn2+ complex chromogenic method and real-time turbidity monitoring. The RT-LAMP assay detected the NP target sequence with a limit of 4.56 copies/μL within 45 min under 61°C, a similar even or increase in sensitivity than that of real-time reverse transcription-polymerase chain reaction (RT-PCR. Additionally, all pseudoviral particles or non- Zaire EBOV genomes were negative for LAMP detection, indicating that the assay was highly specific for EBOV. To appraise the availability of the RT-LAMP method for use in clinical diagnosis of EBOV, of 417 blood or swab samples collected from patients with clinically suspected infections in Sierra Leone, 307 were identified for RT-LAMP-based surveillance of EBOV. Therefore, the highly specific and sensitive RT-LAMP method allows the rapid detection of EBOV, and is a suitable tool for clinical screening, diagnosis, and primary quarantine purposes.

  5. Validation of highly accelerated real-time cardiac cine MRI with radial k-space sampling and compressed sensing in patients at 1.5T and 3T.

    Science.gov (United States)

    Haji-Valizadeh, Hassan; Rahsepar, Amir A; Collins, Jeremy D; Bassett, Elwin; Isakova, Tamara; Block, Tobias; Adluru, Ganesh; DiBella, Edward V R; Lee, Daniel C; Carr, James C; Kim, Daniel

    2018-05-01

    To validate an optimal 12-fold accelerated real-time cine MRI pulse sequence with radial k-space sampling and compressed sensing (CS) in patients at 1.5T and 3T. We used two strategies to reduce image artifacts arising from gradient delays and eddy currents in radial k-space sampling with balanced steady-state free precession readout. We validated this pulse sequence against a standard breath-hold cine sequence in two patient cohorts: a myocardial infarction (n = 16) group at 1.5T and chronic kidney disease group (n = 18) at 3T. Two readers independently performed visual analysis of 68 cine sets in four categories (myocardial definition, temporal fidelity, artifact, noise) on a 5-point Likert scale (1 = nondiagnostic, 2 = poor, 3 = adequate or moderate, 4 = good, 5 = excellent). Another reader calculated left ventricular (LV) functional parameters, including ejection fraction. Compared with standard cine, real-time cine produced nonsignificantly different visually assessed scores, except for the following categories: 1) temporal fidelity scores were significantly lower (P = 0.013) for real-time cine at both field strengths, 2) artifacts scores were significantly higher (P = 0.013) for real-time cine at both field strengths, and 3) noise scores were significantly (P = 0.013) higher for real-time cine at 1.5T. Standard and real-time cine pulse sequences produced LV functional parameters that were in good agreement (e.g., absolute mean difference in ejection fraction cine MRI pulse sequence using radial k-space sampling and CS produces good to excellent visual scores and relatively accurate LV functional parameters in patients at 1.5T and 3T. Magn Reson Med 79:2745-2751, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  6. Quantitative Characterization of Configurational Space Sampled by HIV-1 Nucleocapsid Using Solution NMR, X-ray Scattering and Protein Engineering.

    Science.gov (United States)

    Deshmukh, Lalit; Schwieters, Charles D; Grishaev, Alexander; Clore, G Marius

    2016-06-03

    Nucleic-acid-related events in the HIV-1 replication cycle are mediated by nucleocapsid, a small protein comprising two zinc knuckles connected by a short flexible linker and flanked by disordered termini. Combining experimental NMR residual dipolar couplings, solution X-ray scattering and protein engineering with ensemble simulated annealing, we obtain a quantitative description of the configurational space sampled by the two zinc knuckles, the linker and disordered termini in the absence of nucleic acids. We first compute the conformational ensemble (with an optimal size of three members) of an engineered nucleocapsid construct lacking the N- and C-termini that satisfies the experimental restraints, and then validate this ensemble, as well as characterize the disordered termini, using the experimental data from the full-length nucleocapsid construct. The experimental and computational strategy is generally applicable to multidomain proteins. Differential flexibility within the linker results in asymmetric motion of the zinc knuckles which may explain their functionally distinct roles despite high sequence identity. One of the configurations (populated at a level of ≈40 %) closely resembles that observed in various ligand-bound forms, providing evidence for conformational selection and a mechanistic link between protein dynamics and function. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Small on the Left, Large on the Right: Numbers Orient Visual Attention onto Space in Preverbal Infants

    Science.gov (United States)

    Bulf, Hermann; de Hevia, Maria Dolores; Macchi Cassia, Viola

    2016-01-01

    Numbers are represented as ordered magnitudes along a spatially oriented number line. While culture and formal education modulate the direction of this number-space mapping, it is a matter of debate whether its emergence is entirely driven by cultural experience. By registering 8-9-month-old infants' eye movements, this study shows that numerical…

  8. Using novel descriptor accounting for ligand-receptor interactions to define and visually explore biologically relevant chemical space.

    Science.gov (United States)

    Rabal, Obdulia; Oyarzabal, Julen

    2012-05-25

    The definition and pragmatic implementation of biologically relevant chemical space is critical in addressing navigation strategies in the overlapping regions where chemistry and therapeutically relevant targets reside and, therefore, also key to performing an efficient drug discovery project. Here, we describe the development and implementation of a simple and robust method for representing biologically relevant chemical space as a general reference according to current knowledge, independently of any reference space, and analyzing chemical structures accordingly. Underlying our method is the generation of a novel descriptor (LiRIf) that converts structural information into a one-dimensional string accounting for the plausible ligand-receptor interactions as well as for topological information. Capitalizing on ligand-receptor interactions as a descriptor enables the clustering, profiling, and comparison of libraries of compounds from a chemical biology and medicinal chemistry perspective. In addition, as a case study, R-groups analysis is performed to identify the most populated ligand-receptor interactions according to different target families (GPCR, kinases, etc.), as well as to evaluate the coverage of biologically relevant chemical space by structures annotated in different databases (ChEMBL, Glida, etc.).

  9. Synaesthetic perception of colour and visual space in a blind subject: An fMRI case study

    NARCIS (Netherlands)

    Niccolai, V.; Leeuwen, T.M. van; Blakemore, C.; Störig, P.

    2012-01-01

    In spatial sequence synaesthesia (SSS) ordinal stimuli are perceived as arranged in peripersonal space. Using fMRI, we examined the neural bases of SSS and colour synaesthesia for spoken words in a late-blind synaesthete, JF. He reported days of the week and months of the year as both coloured and

  10. Parametric embedding for class visualization.

    Science.gov (United States)

    Iwata, Tomoharu; Saito, Kazumi; Ueda, Naonori; Stromsten, Sean; Griffiths, Thomas L; Tenenbaum, Joshua B

    2007-09-01

    We propose a new method, parametric embedding (PE), that embeds objects with the class structure into a low-dimensional visualization space. PE takes as input a set of class conditional probabilities for given data points and tries to preserve the structure in an embedding space by minimizing a sum of Kullback-Leibler divergences, under the assumption that samples are generated by a gaussian mixture with equal covariances in the embedding space. PE has many potential uses depending on the source of the input data, providing insight into the classifier's behavior in supervised, semisupervised, and unsupervised settings. The PE algorithm has a computational advantage over conventional embedding methods based on pairwise object relations since its complexity scales with the product of the number of objects and the number of classes. We demonstrate PE by visualizing supervised categorization of Web pages, semisupervised categorization of digits, and the relations of words and latent topics found by an unsupervised algorithm, latent Dirichlet allocation.

  11. Correlation-maximizing surrogate gene space for visual mining of gene expression patterns in developing barley endosperm tissue

    Directory of Open Access Journals (Sweden)

    Usadel Björn

    2007-05-01

    Full Text Available Abstract Background Micro- and macroarray technologies help acquire thousands of gene expression patterns covering important biological processes during plant ontogeny. Particularly, faithful visualization methods are beneficial for revealing interesting gene expression patterns and functional relationships of coexpressed genes. Such screening helps to gain deeper insights into regulatory behavior and cellular responses, as will be discussed for expression data of developing barley endosperm tissue. For that purpose, high-throughput multidimensional scaling (HiT-MDS, a recent method for similarity-preserving data embedding, is substantially refined and used for (a assessing the quality and reliability of centroid gene expression patterns, and for (b derivation of functional relationships of coexpressed genes of endosperm tissue during barley grain development (0–26 days after flowering. Results Temporal expression profiles of 4824 genes at 14 time points are faithfully embedded into two-dimensional displays. Thereby, similar shapes of coexpressed genes get closely grouped by a correlation-based similarity measure. As a main result, by using power transformation of correlation terms, a characteristic cloud of points with bipolar sandglass shape is obtained that is inherently connected to expression patterns of pre-storage, intermediate and storage phase of endosperm development. Conclusion The new HiT-MDS-2 method helps to create global views of expression patterns and to validate centroids obtained from clustering programs. Furthermore, functional gene annotation for developing endosperm barley tissue is successfully mapped to the visualization, making easy localization of major centroids of enriched functional categories possible.

  12. Biological Visualization, Imaging and Simulation(Bio-VIS) at NASA Ames Research Center: Developing New Software and Technology for Astronaut Training and Biology Research in Space

    Science.gov (United States)

    Smith, Jeffrey

    2003-01-01

    The Bio- Visualization, Imaging and Simulation (BioVIS) Technology Center at NASA's Ames Research Center is dedicated to developing and applying advanced visualization, computation and simulation technologies to support NASA Space Life Sciences research and the objectives of the Fundamental Biology Program. Research ranges from high resolution 3D cell imaging and structure analysis, virtual environment simulation of fine sensory-motor tasks, computational neuroscience and biophysics to biomedical/clinical applications. Computer simulation research focuses on the development of advanced computational tools for astronaut training and education. Virtual Reality (VR) and Virtual Environment (VE) simulation systems have become important training tools in many fields from flight simulation to, more recently, surgical simulation. The type and quality of training provided by these computer-based tools ranges widely, but the value of real-time VE computer simulation as a method of preparing individuals for real-world tasks is well established. Astronauts routinely use VE systems for various training tasks, including Space Shuttle landings, robot arm manipulations and extravehicular activities (space walks). Currently, there are no VE systems to train astronauts for basic and applied research experiments which are an important part of many missions. The Virtual Glovebox (VGX) is a prototype VE system for real-time physically-based simulation of the Life Sciences Glovebox where astronauts will perform many complex tasks supporting research experiments aboard the International Space Station. The VGX consists of a physical display system utilizing duel LCD projectors and circular polarization to produce a desktop-sized 3D virtual workspace. Physically-based modeling tools (Arachi Inc.) provide real-time collision detection, rigid body dynamics, physical properties and force-based controls for objects. The human-computer interface consists of two magnetic tracking devices

  13. Small-angle X-ray scattering tensor tomography: model of the three-dimensional reciprocal-space map, reconstruction algorithm and angular sampling requirements.

    Science.gov (United States)

    Liebi, Marianne; Georgiadis, Marios; Kohlbrecher, Joachim; Holler, Mirko; Raabe, Jörg; Usov, Ivan; Menzel, Andreas; Schneider, Philipp; Bunk, Oliver; Guizar-Sicairos, Manuel

    2018-01-01

    Small-angle X-ray scattering tensor tomography, which allows reconstruction of the local three-dimensional reciprocal-space map within a three-dimensional sample as introduced by Liebi et al. [Nature (2015), 527, 349-352], is described in more detail with regard to the mathematical framework and the optimization algorithm. For the case of trabecular bone samples from vertebrae it is shown that the model of the three-dimensional reciprocal-space map using spherical harmonics can adequately describe the measured data. The method enables the determination of nanostructure orientation and degree of orientation as demonstrated previously in a single momentum transfer q range. This article presents a reconstruction of the complete reciprocal-space map for the case of bone over extended ranges of q. In addition, it is shown that uniform angular sampling and advanced regularization strategies help to reduce the amount of data required.

  14. Lunar and Meteorite Sample Education Disk Program — Space Rocks for Classrooms, Museums, Science Centers, and Libraries

    Science.gov (United States)

    Allen, J.; Luckey, M.; McInturff, B.; Huynh, P.; Tobola, K.; Loftin, L.

    2010-03-01

    NASA’s Lunar and Meteorite Sample Education Disk Program has Lucite disks containing Apollo lunar samples and meteorite samples that are available for trained educators to borrow for use in classrooms, museums, science center, and libraries.

  15. Performance of an Optimized Paper-Based Test for Rapid Visual Measurement of Alanine Aminotransferase (ALT in Fingerstick and Venipuncture Samples.

    Directory of Open Access Journals (Sweden)

    Sidhartha Jain

    Full Text Available A paper-based, multiplexed, microfluidic assay has been developed to visually measure alanine aminotransferase (ALT in a fingerstick sample, generating rapid, semi-quantitative results. Prior studies indicated a need for improved accuracy; the device was subsequently optimized using an FDA-approved automated platform (Abaxis Piccolo Xpress as a comparator. Here, we evaluated the performance of the optimized paper test for measurement of ALT in fingerstick blood and serum, as compared to Abaxis and Roche/Hitachi platforms. To evaluate feasibility of remote results interpretation, we also compared reading cell phone camera images of completed tests to reading the device in real time.96 ambulatory patients with varied baseline ALT concentration underwent fingerstick testing using the paper device; cell phone images of completed devices were taken and texted to a blinded off-site reader. Venipuncture serum was obtained from 93/96 participants for routine clinical testing (Roche/Hitachi; subsequently, 88/93 serum samples were captured and applied to paper and Abaxis platforms. Paper test and reference standard results were compared by Bland-Altman analysis.For serum, there was excellent agreement between paper test and Abaxis results, with negligible bias (+4.5 U/L. Abaxis results were systematically 8.6% lower than Roche/Hitachi results. ALT values in fingerstick samples tested on paper were systematically lower than values in paired serum tested on paper (bias -23.6 U/L or Abaxis (bias -18.4 U/L; a correction factor was developed for the paper device to match fingerstick blood to serum. Visual reads of cell phone images closely matched reads made in real time (bias +5.5 U/L.The paper ALT test is highly accurate for serum testing, matching the reference method against which it was optimized better than the reference methods matched each other. A systematic difference exists between ALT values in fingerstick and paired serum samples, and can be

  16. CAIPIRINHA accelerated SPACE enables 10-min isotropic 3D TSE MRI of the ankle for optimized visualization of curved and oblique ligaments and tendons

    Energy Technology Data Exchange (ETDEWEB)

    Kalia, Vivek [University of Vermont Medical Center, Department of Radiology, Burlington, VT (United States); Johns Hopkins University School of Medicine, Russell H. Morgan Department of Radiology and Radiological Science, Section of Musculoskeletal Radiology, Baltimore, MD (United States); Fritz, Benjamin [University Medical Center Freiburg, Department of Radiology, Freiburg im Breisgau (Germany); Johnson, Rory [Siemens Healthcare USA, Inc, Cary, NC (United States); Gilson, Wesley D. [Siemens Healthcare USA, Inc, Baltimore, MD (United States); Raithel, Esther [Siemens Healthcare GmbH, Erlangen (Germany); Fritz, Jan [Johns Hopkins University School of Medicine, Russell H. Morgan Department of Radiology and Radiological Science, Section of Musculoskeletal Radiology, Baltimore, MD (United States)

    2017-09-15

    To test the hypothesis that a fourfold CAIPIRINHA accelerated, 10-min, high-resolution, isotropic 3D TSE MRI prototype protocol of the ankle derives equal or better quality than a 20-min 2D TSE standard protocol. Following internal review board approval and informed consent, 3-Tesla MRI of the ankle was obtained in 24 asymptomatic subjects including 10-min 3D CAIPIRINHA SPACE TSE prototype and 20-min 2D TSE standard protocols. Outcome variables included image quality and visibility of anatomical structures using 5-point Likert scales. Non-parametric statistical testing was used. P values ≤0.001 were considered significant. Edge sharpness, contrast resolution, uniformity, noise, fat suppression and magic angle effects were without statistical difference on 2D and 3D TSE images (p > 0.035). Fluid was mildly brighter on intermediate-weighted 2D images (p < 0.001), whereas 3D images had substantially less partial volume, chemical shift and no pulsatile-flow artifacts (p < 0.001). Oblique and curved planar 3D images resulted in mildly-to-substantially improved visualization of joints, spring, bifurcate, syndesmotic, collateral and sinus tarsi ligaments, and tendons (p < 0.001, respectively). 3D TSE MRI with CAIPIRINHA acceleration enables high-spatial resolution oblique and curved planar MRI of the ankle and visualization of ligaments, tendons and joints equally well or better than a more time-consuming anisotropic 2D TSE MRI. (orig.)

  17. Real-space and real-time dynamics of CRISPR-Cas9 visualized by high-speed atomic force microscopy.

    Science.gov (United States)

    Shibata, Mikihiro; Nishimasu, Hiroshi; Kodera, Noriyuki; Hirano, Seiichi; Ando, Toshio; Uchihashi, Takayuki; Nureki, Osamu

    2017-11-10

    The CRISPR-associated endonuclease Cas9 binds to a guide RNA and cleaves double-stranded DNA with a sequence complementary to the RNA guide. The Cas9-RNA system has been harnessed for numerous applications, such as genome editing. Here we use high-speed atomic force microscopy (HS-AFM) to visualize the real-space and real-time dynamics of CRISPR-Cas9 in action. HS-AFM movies indicate that, whereas apo-Cas9 adopts unexpected flexible conformations, Cas9-RNA forms a stable bilobed structure and interrogates target sites on the DNA by three-dimensional diffusion. These movies also provide real-time visualization of the Cas9-mediated DNA cleavage process. Notably, the Cas9 HNH nuclease domain fluctuates upon DNA binding, and subsequently adopts an active conformation, where the HNH active site is docked at the cleavage site in the target DNA. Collectively, our HS-AFM data extend our understanding of the action mechanism of CRISPR-Cas9.

  18. Non-destructive visualization of linear explosive-induced Pyroshock using phase arrayed laser-induced shock in a space launcher composite

    International Nuclear Information System (INIS)

    Jang, Jae Kyeong; Lee, Jung Ryul

    2015-01-01

    Separation mechanism of Space launch vehicles are used in various separation systems and pyrotechnic devices. The operation of these pyrotechnic devices generates Pyroshock that can cause failures in electronic components. The prediction of high frequency structural response, especially the shock response spectrum (SRS), is important. This paper presents a non-destructive visualization and simulation of linear explosive-induced Pyroshock using phase arrayed Laser-induced shock. The proposed method includes a laser shock test based on laser beam and filtering zone conditioning to predict the SRS of Pyroshock. A ballistic test based on linear explosive and non-contact Laser Doppler Vibrometers and a nondestructive Laser shock measurement using laser excitation and several PZT sensors, are performed using a carbon composite sandwich panel. The similarity of the SRS of the conditioned laser shock to that of the real explosive Pyroshock is evaluated with the Mean Acceleration Difference. The average of MADs over the two training points was 33.64%. And, MAD at verification point was improved to 31.99%. After that, experimentally found optimal conditions are applied to any arbitrary points in laser scanning area. Finally, it is shown that linear explosive-induced real Pyroshock wave propagation can be visualized with high similarity based on the proposed laser technology. (paper)

  19. CAIPIRINHA accelerated SPACE enables 10-min isotropic 3D TSE MRI of the ankle for optimized visualization of curved and oblique ligaments and tendons

    International Nuclear Information System (INIS)

    Kalia, Vivek; Fritz, Benjamin; Johnson, Rory; Gilson, Wesley D.; Raithel, Esther; Fritz, Jan

    2017-01-01

    To test the hypothesis that a fourfold CAIPIRINHA accelerated, 10-min, high-resolution, isotropic 3D TSE MRI prototype protocol of the ankle derives equal or better quality than a 20-min 2D TSE standard protocol. Following internal review board approval and informed consent, 3-Tesla MRI of the ankle was obtained in 24 asymptomatic subjects including 10-min 3D CAIPIRINHA SPACE TSE prototype and 20-min 2D TSE standard protocols. Outcome variables included image quality and visibility of anatomical structures using 5-point Likert scales. Non-parametric statistical testing was used. P values ≤0.001 were considered significant. Edge sharpness, contrast resolution, uniformity, noise, fat suppression and magic angle effects were without statistical difference on 2D and 3D TSE images (p > 0.035). Fluid was mildly brighter on intermediate-weighted 2D images (p < 0.001), whereas 3D images had substantially less partial volume, chemical shift and no pulsatile-flow artifacts (p < 0.001). Oblique and curved planar 3D images resulted in mildly-to-substantially improved visualization of joints, spring, bifurcate, syndesmotic, collateral and sinus tarsi ligaments, and tendons (p < 0.001, respectively). 3D TSE MRI with CAIPIRINHA acceleration enables high-spatial resolution oblique and curved planar MRI of the ankle and visualization of ligaments, tendons and joints equally well or better than a more time-consuming anisotropic 2D TSE MRI. (orig.)

  20. Diagnostic value of sleep stage dissociation as visualized on a 2-dimensional sleep state space in human narcolepsy

    DEFF Research Database (Denmark)

    Olsen, Anders Vinther; Stephansen, Jens; Leary, Eileen B.

    2017-01-01

    Type 1 narcolepsy (NT1) is characterized by symptoms believed to represent Rapid Eye Movement (REM) sleep stage dissociations, occurrences where features of wake and REM sleep are intermingled, resulting in a mixed state. We hypothesized that sleep stage dissociations can be objectively detected...... through the analysis of nocturnal Polysomnography (PSG) data, and that those affecting REM sleep can be used as a diagnostic feature for narcolepsy. A Linear Discriminant Analysis (LDA) model using 38 features extracted from EOG, EMG and EEG was used in control subjects to select features differentiating...... wake, stage N1, N2, N3 and REM sleep. Sleep stage differentiation was next represented in a 2D projection. Features characteristic of sleep stage differences were estimated from the residual sleep stage probability in the 2D space. Using this model we evaluated PSG data from NT1 and non...

  1. SERVIR: From Space to Village. A Regional Monitoring and Visualization System For Environmental Management Using Satellite Applications For Sustainable Development

    Science.gov (United States)

    Sever, Tom; Stahl, H. Philip; Irwin, Dan; Lee, Daniel

    2007-01-01

    NASA is committed to providing technological support and expertise to regional and national organizations for earth science monitoring and analysis. This commitment is exemplified by NASA's long-term relationship with Central America. The focus of these efforts has primarily been to measure the impact of human development on the environment and to provide data for the management of human settlement and expansion in the region. Now, NASA is planning to extend and expand this capability to other regions of the world including Africa and the Caribbean. NASA began using satellite imagery over twenty-five years ago to locate important Maya archeological sites in Mesoamerica and to quantify the affect of deforestation on those sites. Continuing that mission, NASA has partnered with the U.S. Agency for International Development (USAID), the World Bank, the Water Center for the Humid Tropics of Latin America and the Caribbean (CATHALAC) and the Central American Commission for Environment and Development (CCAD) to develop SERVIR (Sistema Regional de Visualizacion y Monitoreo), for the Mesoamerican Biological Corridor. SERVIR has become one of the most important aspects of NASA's geospatial efforts in Central America by establishing a common access portal for information that affects the lives, livelihood and future of everyone in the region. SERVIR, most commonly referred to as a regional visualization and monitoring system, is a scientific and technological platform that integrates satellite and other geospatial data sets to generate tools for improved decision-making capabilities. It has a collection of data and models that are easily accessible to earth science managers, first responders, NGO's (Non-Government Organizations) and a host of others. SERVIR is currently used to monitor and forecast ecological changes as well as provide information for decision support during severe events such as forest fires, red tides,and tropical storms. Additionally, SERVIR addresses the

  2. Risk of Visual Impairment and Intracranial Hypertension After Space Flight: Evaluation of the Role of Polymorphism of Enzymes Involved in One-Carbon Metabolism

    Science.gov (United States)

    Smith, S. M.; Gregory, J. F.; Zeisel, G. H.; Gibson, C. R.; Mader, T. H.; Kinchen, J.; Ueland, P.; Ploutz-Snyder, R.; Heer, M.; Zwart, S. R.

    2016-01-01

    Data from the Nutritional Status Assessment protocol provided biochemical evidence that the one-carbon metabolic pathway may be altered in individuals experiencing vision-related issues during and after space flight (1, 2). Briefly, serum concentrations of homocysteine, cystathionine, 2-methylcitric acid, and methylmalonic acid were significantly (P<0.001) higher (25-45%) in astronauts with ophthalmic changes than in those without such changes (1). These differences existed before, during, and after flight. Serum folate was lower (P<0.01) during flight in individuals with ophthalmic changes. Preflight serum concentrations of cystathionine and 2-methylcitric acid, and mean in-flight serum folate, were significantly (P<0.05) correlated with postflight changes in refraction (1). A follow-up study was conducted to evaluate a small number of known polymorphisms of enzymes in the one-carbon pathway, and to evaluate how these relate to vision and other medical aspects of the eye. Specifically, we investigated 5 polymorphisms in MTRR, MTHFR, SHMT, and CBS genes and their association with ophthalmic changes after flight in 49 astronauts. The number of G alleles of MTRR 66 and C alleles of SHMT1 1420 both contributed to the odds of visual disturbances (3). Block regression showed that B-vitamin status at landing and genetics were significant predictors for many of the ophthalmic outcomes studied (3). In conclusion, we document an association between MTRR 66 and SHMT1 1420 polymorphisms and space flightinduced vision changes. These data document that individuals with an altered 1-carbon metabolic pathway may be predisposed to anatomic and/or physiologic changes that render them susceptible to ophthalmic damage during space flight.

  3. Visualizing water

    Science.gov (United States)

    Baart, F.; van Gils, A.; Hagenaars, G.; Donchyts, G.; Eisemann, E.; van Velzen, J. W.

    2016-12-01

    A compelling visualization is captivating, beautiful and narrative. Here we show how melding the skills of computer graphics, art, statistics, and environmental modeling can be used to generate innovative, attractive and very informative visualizations. We focus on the topic of visualizing forecasts and measurements of water (water level, waves, currents, density, and salinity). For the field of computer graphics and arts, water is an important topic because it occurs in many natural scenes. For environmental modeling and statistics, water is an important topic because the water is essential for transport, a healthy environment, fruitful agriculture, and a safe environment.The different disciplines take different approaches to visualizing water. In computer graphics, one focusses on creating water as realistic looking as possible. The focus on realistic perception (versus the focus on the physical balance pursued by environmental scientists) resulted in fascinating renderings, as seen in recent games and movies. Visualization techniques for statistical results have benefited from the advancement in design and journalism, resulting in enthralling infographics. The field of environmental modeling has absorbed advances in contemporary cartography as seen in the latest interactive data-driven maps. We systematically review the design emerging types of water visualizations. The examples that we analyze range from dynamically animated forecasts, interactive paintings, infographics, modern cartography to web-based photorealistic rendering. By characterizing the intended audience, the design choices, the scales (e.g. time, space), and the explorability we provide a set of guidelines and genres. The unique contributions of the different fields show how the innovations in the current state of the art of water visualization have benefited from inter-disciplinary collaborations.

  4. Visualization analysis and design

    CERN Document Server

    Munzner, Tamara

    2015-01-01

    Visualization Analysis and Design provides a systematic, comprehensive framework for thinking about visualization in terms of principles and design choices. The book features a unified approach encompassing information visualization techniques for abstract data, scientific visualization techniques for spatial data, and visual analytics techniques for interweaving data transformation and analysis with interactive visual exploration. It emphasizes the careful validation of effectiveness and the consideration of function before form. The book breaks down visualization design according to three questions: what data users need to see, why users need to carry out their tasks, and how the visual representations proposed can be constructed and manipulated. It walks readers through the use of space and color to visually encode data in a view, the trade-offs between changing a single view and using multiple linked views, and the ways to reduce the amount of data shown in each view. The book concludes with six case stu...

  5. Evaluating color deficiency simulation and daltonization methods through visual search and sample-to-match: SaMSEM and ViSDEM

    Science.gov (United States)

    Simon-Liedtke, Joschua T.; Farup, Ivar; Laeng, Bruno

    2015-01-01

    Color deficient people might be confronted with minor difficulties when navigating through daily life, for example when reading websites or media, navigating with maps, retrieving information from public transport schedules and others. Color deficiency simulation and daltonization methods have been proposed to better understand problems of color deficient individuals and to improve color displays for their use. However, it remains unclear whether these color prosthetic" methods really work and how well they improve the performance of color deficient individuals. We introduce here two methods to evaluate color deficiency simulation and daltonization methods based on behavioral experiments that are widely used in the field of psychology. Firstly, we propose a Sample-to-Match Simulation Evaluation Method (SaMSEM); secondly, we propose a Visual Search Daltonization Evaluation Method (ViSDEM). Both methods can be used to validate and allow the generalization of the simulation and daltonization methods related to color deficiency. We showed that both the response times (RT) and the accuracy of SaMSEM can be used as an indicator of the success of color deficiency simulation methods and that performance in the ViSDEM can be used as an indicator for the efficacy of color deficiency daltonization methods. In future work, we will include comparison and analysis of different color deficiency simulation and daltonization methods with the help of SaMSEM and ViSDEM.

  6. T2 image contrast evaluation using three dimension sampling perfection with application optimized contrasts using different flip angle evolution (3D-SPACE)

    International Nuclear Information System (INIS)

    Yamazaki, Ryo; Hiura, Yukikazu; Tsuji, Akio; Nishiki, Shigeo; Uchikoshi, Masato

    2011-01-01

    Sampling perfection with application optimized contrasts using different flip angle evolution (3D-SPACE) sequence enables one to decrease specific absorption rate (SAR) by using variable flip angle refocusing pulse. Therefore, it is expected that the contrast obtained with 3D-SPACE sequences is different from that of spin echo (SE) images and turbo spin echo (TSE) images. The purpose of this study was to evaluate the characteristics of the signal intensity and central nervous system (CNS) image contrast in T 2 weighted 3D-SPACE. Using 3 different sequences (SE, 3D-TSE and 3D-SPACE) with repetition time (TR)/ echo time (TE)=3500/70, 90 and 115 ms, we obtained T 2 weighted magnetic resonance (MR) images of inhouse phantom and five healthy volunteers' brain. Signal intensity of the phantom which contains various T 1 and T 2 value was evaluated. Tissue contrasts of white/gray matter, cerebrospinal fluid (CSF)/subcutaneous fat and gray matter/subcutaneous fat were evaluated for a clinical image study. The phantom study showed that signal intensity in 3D-SPACE significantly decreased under a T 1 value of 250 ms. It was markedly decreased in comparison to other sequences, as effective echo time (TE) was extended. White/gray matter contrast of 3D-SPACE was the highest in all sequences. On the other hand, CSF/fat and gray matter/fat contrast of 3D-SPACE was higher than TSE but lower than SE. CNS image contrasts of 3D-SPACE were comparable to that of SE. Signal intensity had decreased in the range where T 1 and T 2 values were extremely short. (author)

  7. Visual cognition

    Energy Technology Data Exchange (ETDEWEB)

    Pinker, S.

    1985-01-01

    This collection of research papers on visual cognition first appeared as a special issue of Cognition: International Journal of Cognitive Science. The study of visual cognition has seen enormous progress in the past decade, bringing important advances in our understanding of shape perception, visual imagery, and mental maps. Many of these discoveries are the result of converging investigations in different areas, such as cognitive and perceptual psychology, artificial intelligence, and neuropsychology. This volume is intended to highlight a sample of work at the cutting edge of this research area for the benefit of students and researchers in a variety of disciplines. The tutorial introduction that begins the volume is designed to help the nonspecialist reader bridge the gap between the contemporary research reported here and earlier textbook introductions or literature reviews.

  8. STS 131 Return Samples: Assessment of Air Quality Aboard the Shuttle (STS-131) and International Space Station (19A)

    Science.gov (United States)

    James, John T.

    2010-01-01

    The toxicological assessments of 1 grab sample canister (GSC) from the Shuttle are reported in Table 1. Analytical methods have not changed from earlier reports. The recoveries of the 3 surrogates (C-13-acetone, fluorobenzene, and chlorobenzene) from the Shuttle GSC were 100%, 93%, and 101%, respectively. Based on the historical experience using end-of-mission samples, the Shuttle atmosphere was acceptable for human respiration.

  9. Visual attention.

    Science.gov (United States)

    Evans, Karla K; Horowitz, Todd S; Howe, Piers; Pedersini, Roccardo; Reijnen, Ester; Pinto, Yair; Kuzmova, Yoana; Wolfe, Jeremy M

    2011-09-01

    A typical visual scene we encounter in everyday life is complex and filled with a huge amount of perceptual information. The term, 'visual attention' describes a set of mechanisms that limit some processing to a subset of incoming stimuli. Attentional mechanisms shape what we see and what we can act upon. They allow for concurrent selection of some (preferably, relevant) information and inhibition of other information. This selection permits the reduction of complexity and informational overload. Selection can be determined both by the 'bottom-up' saliency of information from the environment and by the 'top-down' state and goals of the perceiver. Attentional effects can take the form of modulating or enhancing the selected information. A central role for selective attention is to enable the 'binding' of selected information into unified and coherent representations of objects in the outside world. In the overview on visual attention presented here we review the mechanisms and consequences of selection and inhibition over space and time. We examine theoretical, behavioral and neurophysiologic work done on visual attention. We also discuss the relations between attention and other cognitive processes such as automaticity and awareness. WIREs Cogni Sci 2011 2 503-514 DOI: 10.1002/wcs.127 For further resources related to this article, please visit the WIREs website. Copyright © 2011 John Wiley & Sons, Ltd.

  10. Simultaneous escaping of explicit and hidden free energy barriers: application of the orthogonal space random walk strategy in generalized ensemble based conformational sampling.

    Science.gov (United States)

    Zheng, Lianqing; Chen, Mengen; Yang, Wei

    2009-06-21

    To overcome the pseudoergodicity problem, conformational sampling can be accelerated via generalized ensemble methods, e.g., through the realization of random walks along prechosen collective variables, such as spatial order parameters, energy scaling parameters, or even system temperatures or pressures, etc. As usually observed, in generalized ensemble simulations, hidden barriers are likely to exist in the space perpendicular to the collective variable direction and these residual free energy barriers could greatly abolish the sampling efficiency. This sampling issue is particularly severe when the collective variable is defined in a low-dimension subset of the target system; then the "Hamiltonian lagging" problem, which reveals the fact that necessary structural relaxation falls behind the move of the collective variable, may be likely to occur. To overcome this problem in equilibrium conformational sampling, we adopted the orthogonal space random walk (OSRW) strategy, which was originally developed in the context of free energy simulation [L. Zheng, M. Chen, and W. Yang, Proc. Natl. Acad. Sci. U.S.A. 105, 20227 (2008)]. Thereby, generalized ensemble simulations can simultaneously escape both the explicit barriers along the collective variable direction and the hidden barriers that are strongly coupled with the collective variable move. As demonstrated in our model studies, the present OSRW based generalized ensemble treatments show improved sampling capability over the corresponding classical generalized ensemble treatments.

  11. Accounting for sampling error when inferring population synchrony from time-series data: a Bayesian state-space modelling approach with applications.

    Directory of Open Access Journals (Sweden)

    Hugues Santin-Janin

    Full Text Available BACKGROUND: Data collected to inform time variations in natural population size are tainted by sampling error. Ignoring sampling error in population dynamics models induces bias in parameter estimators, e.g., density-dependence. In particular, when sampling errors are independent among populations, the classical estimator of the synchrony strength (zero-lag correlation is biased downward. However, this bias is rarely taken into account in synchrony studies although it may lead to overemphasizing the role of intrinsic factors (e.g., dispersal with respect to extrinsic factors (the Moran effect in generating population synchrony as well as to underestimating the extinction risk of a metapopulation. METHODOLOGY/PRINCIPAL FINDINGS: The aim of this paper was first to illustrate the extent of the bias that can be encountered in empirical studies when sampling error is neglected. Second, we presented a space-state modelling approach that explicitly accounts for sampling error when quantifying population synchrony. Third, we exemplify our approach with datasets for which sampling variance (i has been previously estimated, and (ii has to be jointly estimated with population synchrony. Finally, we compared our results to those of a standard approach neglecting sampling variance. We showed that ignoring sampling variance can mask a synchrony pattern whatever its true value and that the common practice of averaging few replicates of population size estimates poorly performed at decreasing the bias of the classical estimator of the synchrony strength. CONCLUSION/SIGNIFICANCE: The state-space model used in this study provides a flexible way of accurately quantifying the strength of synchrony patterns from most population size data encountered in field studies, including over-dispersed count data. We provided a user-friendly R-program and a tutorial example to encourage further studies aiming at quantifying the strength of population synchrony to account for

  12. Vapor space characterization of waste tank 241-C-101: Results from samples collected on 9/1/94

    International Nuclear Information System (INIS)

    Lucke, R.B.; Clauss, T.W.; Ligotke, M.W.

    1995-11-01

    This report describes results of the analyses of tank-headspace samples taken from the Hanford waste Tank 241-C-101 (referred to as Tank C-101) and the ambient air collected - 30 ft upwind near the tank and through the VSS near the tank. Pacific Northwest Laboratory (PNL) contracted with Westinghouse Hanford Company (WHC) to provide sampling devices and to analyze inorganic and organic analytes collected from the tank headspace and ambient air near the tank. The sample job was designated S4056, and samples were collected by WHC on September 1, 1994, using the vapor sampling system (VSS). The samples were inspected upon delivery to the 326/23B laboratory and logged into PNL record book 55408 before implementation of PNL Technical Procedure PNL-TVP-07. Custody of the sorbent traps was transferred to PNL personnel performing the inorganic analysis and stored at refrigerated (≤ 10 degrees C) temperature until the time of analysis. The canisters were stored in the 326/23B laboratory at ambient (25 degrees C) temperature until the time of the analysis. Access to the 326/23B laboratory is limited to PNL personnel working on the waste-tank safety program. Analyses described in this report were performed at PNL in the 300 area of the Hanford Reservation. Analytical methods that were used are described in the text. In summary, sorbent traps for inorganic analyses containing sample materials were either weighed (for water analysis) or desorbed with the appropriate aqueous solutions (for NH 3 , NO 2 , and NO analyses). The aqueous extracts were analyzed either by selective electrode or by ion chromatography (IC). Organic analyses were performed using cryogenic preconcentration followed by gas chromatography/mass spectrometry (GC/MS)

  13. Vapor space characterization of waste tank 241-BY-105 (in situ): Results from samples collected on May 9, 1994

    International Nuclear Information System (INIS)

    McVeety, B.D.; Pool, K.H.; Ligotke, M.W.; Clauss, T.W.; Lucke, R.B.; Sharma, A.K.; McCulloch, M.; Fruchter, J.S.; Goheen, S.C.

    1995-05-01

    This report describes inorganic and organic analyses results from in situ samples obtained from the tank headspace of the Hanford waste storage Tank 241-BY-105 (referred to as Tank BY-105). The results described here were obtained to support safety and toxicological evaluations. A summary of the results for inorganic and organic analytes is listed. Detailed descriptions of the results appear in the text. Quantitative results were obtained for the inorganic compounds NH 3 , NO 2 , NO, HCN, and H 2 O. Sampling for sulfur oxides was not requested. Results of the inorganic samples were affected by sampling errors that led to an undefined uncertainty in sample volume. Consequently, tank-headspace concentrations are estimated only. Thirty-nine tentatively identified organic analytes were observed above the detection limit of (ca.) 10 ppbv, but standards for most of these were not available at the time of analysis, and their quantitation is beyond the scope of this study. In addition, we looked for the 41 standard TO-14 analytes. Of these, only a few were observed above the 2-ppbv detection limit. The 16 organic analytes with the highest estimated concentrations are listed. These 16 analytes account for approximately 68% of the total or organic components in Tank BY-105

  14. Tank Vapor Characterization Project: Vapor space characterization of waste Tank A-101, Results from samples collected on June 8, 1995

    International Nuclear Information System (INIS)

    Pool, K.H.; Clauss, T.W.; McVeety, B.D.; Evans, J.C.; Thomas, B.L.; Olsen, K.B.; Fruchter, J.S.; Ligotke, M.W.

    1995-11-01

    This report describes the analytical results of vapor samples taken from the headspace of the waste storage tank 241-A-101 (Tank A-101) at the Hanford Site in Washington State. The results described in this report were obtained to characterize the vapors present in the tank headspace and to support safety evaluations and tank-farm operations. The results include air concentrations of selected inorganic and organic analytes and grouped compounds from samples obtained by Westinghouse Hanford Company (WHC) and provided for analysis to Pacific Northwest National Laboratory (PNL). Analyses were performed by the Vapor Analytical Laboratory (VAL) at PNL. Analyte concentrations were based on analytical results and, where appropriate, sample volumes provided by WHC. A summary of the results is listed in Table 1. Detailed descriptions of the analytical results appear in the text

  15. Evaluation of aqueductal patency in patients with hydrocephalus: Three-dimensional high-sampling efficiency technique(SPACE) versus two-dimensional turbo spin echo at 3 Tesla

    International Nuclear Information System (INIS)

    Ucar, Murat; Guryildirim, Melike; Tokgoz, Nil; Kilic, Koray; Borcek, Alp; Oner, Yusuf; Akkan, Koray; Tali, Turgut

    2014-01-01

    To compare the accuracy of diagnosing aqueductal patency and image quality between high spatial resolution three-dimensional (3D) high-sampling-efficiency technique (sampling perfection with application optimized contrast using different flip angle evolutions [SPACE]) and T2-weighted (T2W) two-dimensional (2D) turbo spin echo (TSE) at 3-T in patients with hydrocephalus. This retrospective study included 99 patients diagnosed with hydrocephalus. T2W 3D-SPACE was added to the routine sequences which consisted of T2W 2D-TSE, 3D-constructive interference steady state (CISS), and cine phase-contrast MRI (PC-MRI). Two radiologists evaluated independently the patency of cerebral aqueduct and image quality on the T2W 2D-TSE and T2W 3D-SPACE. PC-MRI and 3D-CISS were used as the reference for aqueductal patency and image quality, respectively. Inter-observer agreement was calculated using kappa statistics. The evaluation of the aqueductal patency by T2W 3D-SPACE and T2W 2D-TSE were in agreement with PC-MRI in 100% (99/99; sensitivity, 100% [83/83]; specificity, 100% [16/16]) and 83.8% (83/99; sensitivity, 100% [67/83]; specificity, 100% [16/16]), respectively (p < 0.001). No significant difference in image quality between T2W 2D-TSE and T2W 3D-SPACE (p = 0.056) occurred. The kappa values for inter-observer agreement were 0.714 for T2W 2D-TSE and 0.899 for T2W 3D-SPACE. Three-dimensional-SPACE is superior to 2D-TSE for the evaluation of aqueductal patency in hydrocephalus. T2W 3D-SPACE may hold promise as a highly accurate alternative treatment to PC-MRI for the physiological and morphological evaluation of aqueductal patency.

  16. Evaluation of aqueductal patency in patients with hydrocephalus: Three-dimensional high-sampling efficiency technique(SPACE) versus two-dimensional turbo spin echo at 3 Tesla

    Energy Technology Data Exchange (ETDEWEB)

    Ucar, Murat; Guryildirim, Melike; Tokgoz, Nil; Kilic, Koray; Borcek, Alp; Oner, Yusuf; Akkan, Koray; Tali, Turgut [School of Medicine, Gazi University, Ankara (Turkey)

    2014-12-15

    To compare the accuracy of diagnosing aqueductal patency and image quality between high spatial resolution three-dimensional (3D) high-sampling-efficiency technique (sampling perfection with application optimized contrast using different flip angle evolutions [SPACE]) and T2-weighted (T2W) two-dimensional (2D) turbo spin echo (TSE) at 3-T in patients with hydrocephalus. This retrospective study included 99 patients diagnosed with hydrocephalus. T2W 3D-SPACE was added to the routine sequences which consisted of T2W 2D-TSE, 3D-constructive interference steady state (CISS), and cine phase-contrast MRI (PC-MRI). Two radiologists evaluated independently the patency of cerebral aqueduct and image quality on the T2W 2D-TSE and T2W 3D-SPACE. PC-MRI and 3D-CISS were used as the reference for aqueductal patency and image quality, respectively. Inter-observer agreement was calculated using kappa statistics. The evaluation of the aqueductal patency by T2W 3D-SPACE and T2W 2D-TSE were in agreement with PC-MRI in 100% (99/99; sensitivity, 100% [83/83]; specificity, 100% [16/16]) and 83.8% (83/99; sensitivity, 100% [67/83]; specificity, 100% [16/16]), respectively (p < 0.001). No significant difference in image quality between T2W 2D-TSE and T2W 3D-SPACE (p = 0.056) occurred. The kappa values for inter-observer agreement were 0.714 for T2W 2D-TSE and 0.899 for T2W 3D-SPACE. Three-dimensional-SPACE is superior to 2D-TSE for the evaluation of aqueductal patency in hydrocephalus. T2W 3D-SPACE may hold promise as a highly accurate alternative treatment to PC-MRI for the physiological and morphological evaluation of aqueductal patency.

  17. Space space space

    CERN Document Server

    Trembach, Vera

    2014-01-01

    Space is an introduction to the mysteries of the Universe. Included are Task Cards for independent learning, Journal Word Cards for creative writing, and Hands-On Activities for reinforcing skills in Math and Language Arts. Space is a perfect introduction to further research of the Solar System.

  18. A Visual Analog Scale to assess anxiety in children during anesthesia induction (VAS-I): Results supporting its validity in a sample of day care surgery patients.

    Science.gov (United States)

    Berghmans, Johan M; Poley, Marten J; van der Ende, Jan; Weber, Frank; Van de Velde, Marc; Adriaenssens, Peter; Himpe, Dirk; Verhulst, Frank C; Utens, Elisabeth

    2017-09-01

    The modified Yale Preoperative Anxiety Scale is widely used to assess children's anxiety during induction of anesthesia, but requires training and its administration is time-consuming. A Visual Analog Scale, in contrast, requires no training, is easy-to-use and quickly completed. The aim of this study was to evaluate a Visual Analog Scale as a tool to assess anxiety during induction of anesthesia and to determine cut-offs to distinguish between anxious and nonanxious children. Four hundred and one children (1.5-16 years) scheduled for daytime surgery were included. Children's anxiety during induction was rated by parents and anesthesiologists on a Visual Analog Scale and by a trained observer on the modified Yale Preoperative Anxiety Scale. Psychometric properties assessed were: (i) concurrent validity (correlations between parents' and anesthesiologists' Visual Analog Scale and modified Yale Preoperative Anxiety Scale scores); (ii) construct validity (differences between subgroups according to the children's age and the parents' anxiety as assessed by the State-Trait Anxiety Inventory); (iii) cross-informant agreement using Bland-Altman analysis; (iv) cut-offs to distinguish between anxious and nonanxious children (reference: modified Yale Preoperative Anxiety Scale ≥30). Correlations between parents' and anesthesiologists' Visual Analog Scale and modified Yale Preoperative Anxiety Scale scores were strong (0.68 and 0.73, respectively). Visual Analog Scale scores were higher for children ≤5 years compared to children aged ≥6. Visual Analog Scale scores of children of high-anxious parents were higher than those of low-anxious parents. The mean difference between parents' and anesthesiologists' Visual Analog Scale scores was 3.6, with 95% limits of agreement (-56.1 to 63.3). To classify anxious children, cut-offs for parents (≥37 mm) and anesthesiologists (≥30 mm) were established. The present data provide preliminary data for the validity of a Visual

  19. Vapor space characterization of waste Tank 241-BY-108: Results from samples collected on 10/27/94

    International Nuclear Information System (INIS)

    McVeety, B.D.; Clauss, T.W.; Ligotke, M.W.

    1995-10-01

    This report describes inorganic and organic analyses results from samples obtained from the headspace of the Hanford waste storage Tank 241-BY-108 (referred to as Tank BY-108). The results described here were obtained to support safety and toxicological evaluations. A summary of the results for inorganic and organic analytes is listed in Table 1. Detailed descriptions of the results appear in the text. Quantitative results were obtained for the inorganic compounds ammonia (NH 3 ), nitrogen dioxide (NO 2 ), nitric oxide (NO), and water vapor (H 2 O). Trends in NH 3 and H 2 O samples indicated a possible sampling problem. Sampling for hydrogen cyanide (HCN) and sulfur oxides (SO x ) was not requested. In addition, the authors looked for the 40 TO-14 compounds plus an additional 15 analytes. Of these, 17 were observed above the 5-ppbv reporting cutoff. Also, eighty-one organic tentatively identified compounds (TICs) were observed above the reporting cutoff (ca.) 10 ppbv, and are reported with concentrations that are semiquantitative estimates based on internal standard response factors. The nine organic analytes with the highest estimated concentrations are listed in Summary Table 1 and account for approximately 48% of the total organic components in the headspace of Tank BY-108. Three permanent gases, hydrogen (H 2 ), carbon dioxide (CO 2 ), and nitrous oxide (N 2 O) were also detected. Tank BY-108 is on the Ferrocyanide Watch List

  20. Hypothesis Tests for Bernoulli Experiments: Ordering the Sample Space by Bayes Factors and Using Adaptive Significance Levels for Decisions

    Directory of Open Access Journals (Sweden)

    Carlos A. de B. Pereira

    2017-12-01

    Full Text Available The main objective of this paper is to find the relation between the adaptive significance level presented here and the sample size. We statisticians know of the inconsistency, or paradox, in the current classical tests of significance that are based on p-value statistics that are compared to the canonical significance levels (10%, 5%, and 1%: “Raise the sample to reject the null hypothesis” is the recommendation of some ill-advised scientists! This paper will show that it is possible to eliminate this problem of significance tests. We present here the beginning of a larger research project. The intention is to extend its use to more complex applications such as survival analysis, reliability tests, and other areas. The main tools used here are the Bayes factor and the extended Neyman–Pearson Lemma.

  1. Vapor space characterization of waste tank 241-C-106: Results from samples collected on February 15, 1994

    International Nuclear Information System (INIS)

    McVeety, B.D.; Clauss, T.W.; Young, J.S.; Ligotke, M.W.; Goheen, S.C.; Lucke, R.B.; Pool, K.H.; McCulloch, M.; Fruchter, J.S.

    1995-06-01

    This document presents the details of the inorganic and organic analysis that was performed on samples from the headspace of Hanford waste tank 241-C-106. The results described were obtained to support the safety and toxicological evaluations. A summary of the results for the inorganic and organic analytes is included, as well as, a detailed description of the results which appears in the text

  2. Vapor space characterization of waste Tank 241-TX-118 (in situ): Results from samples collected on 9/7/94

    International Nuclear Information System (INIS)

    Thomas, B.L.; Clauss, T.W.; Ligotke, M.W.; Pool, K.H.; McVeety, B.D.; Olsen, K.B.; Fruchter, J.S.; Goheen, S.C.

    1995-10-01

    This report describes inorganic and organic analyses results from in situ samples obtained from the headspace of the Hanford waste storage Tank 241-TX-118 (referred to as Tank TX-118). The results described here were obtained to support safety and toxicological evaluations. A summary of the results for inorganic and organic analytes is listed in Table 1. Detailed descriptions of the results appear in the text. Quantitative results were obtained for the inorganic compounds ammonia (NH 3 ), nitrogen dioxide (NO 2 ), nitric oxide (NO), hydrogen cyanide (CHN), and water (H 2 O). Sampling for sulfur oxides (SO x ) was not requested. In addition, quantitative results were obtained for the 39 TO-14 compounds plus an additional 13 analytes. Hexane, normally included in the additional analytes, was removed because a calibration standard was not available during analysis of Tank TX-118 SUMMA trademark canisters. Of these, 12 were observed above the 5-ppbv reporting cutoff. Fourteen tentatively identified compounds (TICs) were observed above the reporting cutoff of (ca.) 10 ppbv and are reported with concentrations that are semiquantitative estimates based on internal-standard response factors. The 10 organic analytes with the highest estimated concentrations are listed in Table 1 and account for approximately 86% of the total organic components in Tank TX-118. Permanent gas analysis was not conducted on the tank-headspace samples. Tank TX-118 is on both the Ferrocyanide and Organic Watch List

  3. Vapor space characterization of Waste Tank 241-TY-104: Results from samples collected on 4/27/95

    International Nuclear Information System (INIS)

    Klinger, G.S.; Olsen, K.B.; Clauss, T.W.

    1995-10-01

    This report describes inorganic and organic analyses results from samples obtained from the headspace of the Hanford waste storage Tank 241-TY-104 (referred to as Tank TY-104). The results described here were obtained to support safety and toxicological evaluations. A summary of the results for inorganic and organic analytes is listed in Table 1. Detailed descriptions of the results appear in the text. Quantitative results were obtained for the inorganic compounds ammonia (NH 3 ), nitrogen dioxide (NO 2 ), nitric oxide (NO), and water (H 2 O). Sampling for hydrogen cyanide (HCN) and sulfur oxides (SO x ) was not requested. In addition, quantitative results were obtained for the 39 TO-14 compounds plus an additional 14 analytes. Of these, 8 were observed above the 5-ppbv reporting cutoff. Five tentatively identified compounds (TICs) were observed above the reporting cutoff of (ca.) 10 ppbv and are reported with concentrations that are semiquantitative estimates based on internal-standard response factors. The 10 organic analytes with the highest estimated concentrations are listed in Table 1 and account for approximately 94% of the total organic components in Tank TY-104. Nitrous oxide (N 2 O) was the only permanent gas detected in the tank-headspace samples. Tank TY-104 is on the Ferrocyanide Watch List

  4. Vapor space characterization of Waste Tank 241-U-105: Results from samples collected on 2/24/95

    International Nuclear Information System (INIS)

    Pool, K.H.; Clauss, T.W.; Ligotke, M.W.

    1995-10-01

    This report describes inorganic and organic analyses results from samples obtained from the headspace of the Hanford waste storage Tank 241-U-105 (referred to as Tank U-105). The results described here were obtained to support safety and toxicological evaluations. A summary of the results for inorganic and organic analytes is listed in Table 1. Detailed descriptions of the results appear in the text. Quantitative results were obtained for the inorganic compounds ammonia (NH 3 ), nitrogen dioxide (NO 2 ), nitric oxide (NO), and water (H 2 O). Sampling for hydrogen cyanide (HCN) and sulfur oxides (SO x ) was not requested. In addition, quantitative results were obtained for the 39 TO-14 compounds plus an additional 14 analytes. Of these, six were observed above the 5-ppbv reporting cutoff. Three tentatively identified compounds (TICs) were observed above the reporting cutoff of (ca.) 10 ppbv and are reported with concentrations that are semiquantitative estimates based on internal-standard response factors. All nine of the organic analytes identified are listed in Table 1 and account for 100% of the total organic components in Tank U-105. Nitrous oxide (N 2 O) was the only permanent gas detected in the tank-headspace sample. Tank U-105 is on the Hydrogen Watch List

  5. Vapor space characterization of Waste Tank 241-U-107: Results from samples collected on 2/17/95

    International Nuclear Information System (INIS)

    McVeety, B.D.; Clauss, T.W.; Ligotke, M.W.

    1995-10-01

    This report describes inorganic and organic analyses results from samples obtained from the headspace of the Hanford waste storage Tank 241-U-107 (referred to as Tank U-107). The results described here were obtained to support safety and toxicological evaluations. A summary of the results for inorganic and organic analytes is listed in Table 1. Detailed descriptions of the results appear in the text. Quantitative results were obtained for the inorganic compounds ammonia (NH 3 ), nitrogen dioxide (NO 2 ), nitric oxide (NO), and water (H 2 O). Sampling for hydrogen cyanide (HCN) and sulfur oxides (SO x ) was not requested. In addition, quantitative results were obtained for the 39 TO-14 compounds plus an additional 14 analytes. Of these, 10 were observed above the 5-ppbv reporting cutoff. Sixteen organic tentatively identified compounds (TICs) were observed above the reporting cutoff of (ca.) 10 ppbv, and are reported with concentrations that are semiquantitative estimates based on internal-standard response factors. The 10 organic analytes with the highest estimated concentrations are listed in Table 1 and account for approximately 88% of the total organic components in Tank U-107. Nitrous oxide (N 2 O) was the only permanent gas detected in the tank-headspace samples. Tank U-107 is on the Organic and the Hydrogen Watch Lists

  6. Vapor space characterization of waste Tank 241-SX-103: Results from samples collected on 3/23/95

    International Nuclear Information System (INIS)

    Ligotke, M.W.; Clauss, T.W.; Pool, K.H.; McVeety, B.D.; Klinger, G.S.; Olsen, K.B.; Bredt, O.P.; Fruchter, J.S.; Goheen, S.C.

    1995-11-01

    This report describes inorganic and organic analyses results from samples obtained from the headspace of the Hanford waste storage tank 241-SX-103 (referred to as Tank SX-103). The results described here were obtained to support safety and toxicological evaluations. A summary of the results for inorganic and organic analytes is listed in Table 1. Detailed descriptions of the results appear in the text. Quantitative results were obtained for the inorganic compounds ammonia (NH 3 ), nitrogen dioxide (NO 2 ), nitric oxide (NO), and water vapor (H 2 O). Sampling for hydrogen cyanide (HCN) and sulfur oxides (SO x ) was not requested. In addition, quantitative results were obtained for the 39 TO-14 compounds plus an additional 14 analytes. Of these, two were observed above the 5-ppbv reporting cutoff. Two tentatively identified compounds (TICs) were observed above the reporting cutoff of (ca.) 10 ppbv and are reported with concentrations that are semiquantitative estimates based on internal-standard response factors. The four organic analytes identified are listed in Table 1 and account for approximately 100% of the total organic components in Tank SX-103. Carbon dioxide (CO 2 ) was the only permanent gas detected in the tank-headspace samples. Tank SX-103 is on the Hydrogen Watch List

  7. Vapor space characterization of Waste Tank 241-U-106 (in situ): Results from samples collected on 8/25/94

    International Nuclear Information System (INIS)

    Ligotke, M.W.; Lucke, R.B.; Pool, K.H.

    1995-10-01

    This report describes inorganic and organic analyses results from in situ samples obtained from the headspace of the Hanford waste storage Tank 241-U-106 (referred to as Tank U-106). The results described here were obtained to support safety and toxicological evaluations. A summary of the results for inorganic and organic analytes is listed in Table 1. Detailed descriptions of the results appear in the text. Quantitative results were obtained for the inorganic compounds ammonia (NH 3 ), nitrogen dioxide (NO 2 ), nitric oxide (NO), and water (H 2 O). Sampling for hydrogen cyanide (HCN) and sulfur oxides (SO x ) was not performed. In addition, the authors looked for the 39 TO-14 compounds plus an additional 14 target analytes. Of these, six were observed above the 5-ppbv reporting cutoff. Ten organic tentatively identified compounds (TICs) were observed above the reporting cutoff of (ca.) 10 ppbv in two or more of the three samples collected and are reported with concentrations that are semiquantitative estimates based on internal standard response factors. The 10 organic analytes with the highest estimated concentrations are listed in Table 1 and account for approximately 89% of the total organic components in Tank U-106. Methyl isocyanate, a compound of possible concern in Tank U-106, was not detected. Tank U-106 is on the Organic Watch List

  8. Visualizing the Heliosphere

    Science.gov (United States)

    Bridgman, William T.; Shirah, Greg W.; Mitchell, Horace G.

    2008-01-01

    Today, scientific data and models can combine with modern animation tools to produce compelling visualizations to inform and educate. The Scientific Visualization Studio at Goddard Space Flight Center merges these techniques from the very different worlds of entertainment and science to enable scientists and the general public to 'see the unseeable' in new ways.

  9. Quantitative Visualization of Dynamic Tracer Transportation in the Extracellular Space of Deep Brain Regions Using Tracer-Based Magnetic Resonance Imaging

    Science.gov (United States)

    Hou, Jin; Wang, Wei; Quan, Xianyue; Liang, Wen; Li, Zhiming; Han, Hongbin; Chen, Deji

    2017-01-01

    Background This study assessed an innovative tracer-based magnetic resonance imaging (MRI) system to visualize the dynamic transportation of tracers in regions of deep brain extracellular space (ECS) and to measure transportation ability and ECS structure. Material/Methods Gadolinium-diethylene triamine pentaacetic acid (Gd-DTPA) was the chosen tracer and was injected into the caudate nucleus and thalamus. Real-time dynamic transportation of Gd-DTPA in ECS was observed and the results were verified by laser scanning confocal microscopy. Using Transwell assay across the blood-brain barrier, a modified diffusion equation was further simplified. Effective diffusion coefficient D* and tortuosity λ were calculated. Immunohistochemical staining and Western blot analysis were used to investigate the extracellular matrix contributing to ECS structure. Results Tracers injected into the caudate nucleus were transported to the ipsilateral frontal and temporal cortices away from the injection points, while both of them injected into the thalamus were only distributed on site. Although the caudate nucleus was closely adjacent to the thalamus, tracer transportation between partitions was not observed. In addition, D* and the λ showed statistically significant differences between partitions. ECS was shown to be a physiologically partitioned system, and its division is characterized by the unique distribution territory and transportation ability of substances located in it. Versican and Tenascin R are possible contributors to the tortuosity of ECS. Conclusions Tracer-based MRI will improve our understanding of the brain microenvironment, improve the techniques for local delivery of drugs, and highlight brain tissue engineering fields in the future. PMID:28866708

  10. Quantitative Visualization of Dynamic Tracer Transportation in the Extracellular Space of Deep Brain Regions Using Tracer-Based Magnetic Resonance Imaging.

    Science.gov (United States)

    Hou, Jin; Wang, Wei; Quan, Xianyue; Liang, Wen; Li, Zhiming; Chen, Deji; Han, Hongbin

    2017-09-03

    BACKGROUND This study assessed an innovative tracer-based magnetic resonance imaging (MRI) system to visualize the dynamic transportation of tracers in regions of deep brain extracellular space (ECS) and to measure transportation ability and ECS structure. MATERIAL AND METHODS Gadolinium-diethylene triamine pentaacetic acid (Gd-DTPA) was the chosen tracer and was injected into the caudate nucleus and thalamus. Real-time dynamic transportation of Gd-DTPA in ECS was observed and the results were verified by laser scanning confocal microscopy. Using Transwell assay across the blood-brain barrier, a modified diffusion equation was further simplified. Effective diffusion coefficient D* and tortuosity λ were calculated. Immunohistochemical staining and Western blot analysis were used to investigate the extracellular matrix contributing to ECS structure. RESULTS Tracers injected into the caudate nucleus were transported to the ipsilateral frontal and temporal cortices away from the injection points, while both of them injected into the thalamus were only distributed on site. Although the caudate nucleus was closely adjacent to the thalamus, tracer transportation between partitions was not observed. In addition, D* and the λ showed statistically significant differences between partitions. ECS was shown to be a physiologically partitioned system, and its division is characterized by the unique distribution territory and transportation ability of substances located in it. Versican and Tenascin R are possible contributors to the tortuosity of ECS. CONCLUSIONS Tracer-based MRI will improve our understanding of the brain microenvironment, improve the techniques for local delivery of drugs, and highlight brain tissue engineering fields in the future.

  11. Vapor space characterization of waste tank 241-BY-109 (in situ): Results from samples collected on 9/22/94

    International Nuclear Information System (INIS)

    Pool, K.H.; Clauss, T.W.; Ligotke, M.W.

    1995-06-01

    This report describes inorganic and organic analyses results from in situ samples obtained from the headspace of the Hanford waste storage Tank 241-BY-109 (referred to as Tank BY-109). The results described here were obtained to support safety and toxicological evaluations. A summary of the results for inorganic and organic analytes is listed in Summary Table 1. Detailed descriptions of the results appear in the text. Quantitative results were obtained for the inorganic compounds ammonia (NH 3 ), nitrogen dioxide (NO 2 ), nitric oxide (NO), and water (H 2 O). Sampling for hydrogen cyanide (HCN) and sulfur oxides (SO x ) was not requested. Organic compounds were also quantitatively determined. Twenty-three organic tentatively identified compounds (TICs) were observed above the detection limit of (ca.) 10 ppbv, but standards for most of these were not available at the time of analysis, and the reported concentrations are semiquantitative estimates. In addition, we looked for the 40 standard TO-14 analytes. We observed 38. Of these, only a few were observed above the 2-ppbv calibrated instrument detection limit. The ten organic analytes with the highest estimated concentrations are listed in Summary Table 1. The ten analytes account for approximately 84% of the total organic components in Tank BY-109

  12. Vapor space characterization of waste tank 241-TY-103: Results from samples collected on 4/11/95

    International Nuclear Information System (INIS)

    Ligotke, M.W.; Clauss, T.W.; Pool, K.H.

    1995-10-01

    This report describes inorganic and organic analyses results from samples obtained from the headspace of the Hanford waste storage Tank 241-TY-103 (referred to as Tank TY-103). The results described here were obtained to support safety and toxicological evaluations. A summary of the results for inorganic and organic analytes is listed in Table 1. Detailed descriptions of the results appear in the text. Quantitative results were obtained for the inorganic compounds ammonia (NH 3 ), nitrogen dioxide (NO 2 ), nitric oxide (NO), and water (H 2 O). Sampling for hydrogen cyanide (HCN) and sulfur oxides (SO x ) was not requested. In addition, quantitative results were obtained for the 39 TO-14 compounds plus an additional 14 analytes. Of these, 16 were observed above the 5-ppbv reporting cutoff. Sixteen tentatively identified compounds (TICs) were observed above the reporting cutoff of (ca.) 10 ppbv and are reported with concentrations that are semiquantitative estimates based on internal-standard response factors. The 10 organic analytes with the highest estimated concentrations are listed in Table 1 and account for approximately 95% of the total organic components in Tank TY-103. Two permanent gases, carbon dioxide (CO 2 ) and nitrous oxide (N 2 O), were also detected

  13. Vapor space characterization of Waste Tank 241-S-111: Results from samples collected on 3/21/95

    International Nuclear Information System (INIS)

    Klinger, G.S.; Clauss, T.W.; Ligotke, M.W.

    1995-10-01

    This report describes inorganic and organic analyses results from samples obtained from the headspace of the Hanford waste storage Tank 241-S-111 (referred to as Tank S-111). The results described here were obtained to support safety and toxicological evaluations. A summary of the results for inorganic and organic analytes is listed in Table 1. Detailed descriptions of the results appear in the text. Quantitative results were obtained for the inorganic compounds ammonia (NH 3 ), nitrogen dioxide (NO 2 ), nitric oxide (NO), and water (H 2 O). Sampling for hydrogen cyanide (HCN) and sulfur oxides (SO x ) was not requested. In addition, quantitative results were obtained for the 39 TO-14 compounds plus an additional 14 analytes. Of these, seven were observed above the 5-ppbv reporting cutoff. Five tentatively identified compounds (TICs) were observed above the reporting cutoff of (ca.) 10 ppbv and are reported with concentrations that are semiquantitative estimates based on internal-standard response factors. The 10 organic analytes with the highest estimated concentrations are listed in Table 1 and account for approximately 98% of the total organic components in Tank S-111. Two permanent gases, hydrogen (H 2 ) and nitrous oxide (N 2 O), were also detected. Tank S-111 is on the Hydrogen Watch List

  14. Vapor space characterization of waste Tank 241-U-103: Results from samples collected on 2/15/95

    International Nuclear Information System (INIS)

    Ligotke, M.W.; Pool, K.H.; Clauss, T.W.; McVeety, B.D.; Klinger, G.S.; Olsen, K.B.; Bredt, O.P.; Fruchter, J.S.; Goheen, S.C.

    1995-11-01

    This report describes inorganic and organic analyses results from samples obtained from the headspace of the Hanford waste storage Tank 241-U-103 (referred to as Tank U-103). The results described her were obtained to support safety and toxicological evaluations. A summary of the results for inorganic and organic analytes is listed in Table 1. Detailed descriptions of the results appear in the text. Quantitative results were obtained for the inorganic compounds ammonia (NH 3 ), nitrogen dioxide (NO 2 ), nitric oxide (NO), and water vapor (H 2 O). Sampling for hydrogen cyanide (HCN) and sulfur oxides (SO x ) was not requested. In addition, quantitative results were obtained for the 39 TO-14 compounds plus an additional 14 analytes. Of these, 11 were observed above the 5-ppbv reporting cutoff. Eleven tentatively identified compounds (TICs) were observed above the reporting cutoff of (ca.) 10 ppbv and are reported with concentrations that are semiquantitative estimates based on internal-standard response factors. The 10 organic analytes with the highest estimated concentrations are listed in Table 1 and account for approximately 90% of the total organic components in Tank U-103. Two permanent gases, hydrogen (H 2 ) and nitrous oxide (N 2 O), were also detected. Tank U-103 is on the Hydrogen Watch List

  15. Vapor space characterization of waste Tank 241-SX-106: Results from samples collected on 3/24/95

    International Nuclear Information System (INIS)

    Klinger, G.S.; Clauss, T.W.; Litgotke, M.W.

    1995-11-01

    This report describes inorganic and organic analyses results from samples obtained from the headspace of the Hanford waste storage Tank 241-SX-106 (referred to as Tank SX-106). The results described here were obtained to support safety and toxicological evaluations. A summary of the results for inorganic and organic analytes is listed in Table 1. Detailed descriptions of the results appear in the text. Quantitative results were obtained for the inorganic compounds ammonia (NH 3 ), nitrogen dioxide (NO 2 ), nitric oxide (NO), and water (H 2 O). Sampling for hydrogen cyanide (HCN) and sulfur oxides (SO x ) was not requested. In addition, quantitative results were obtained for the 39 TO-14 compounds plus an additional 14 analytes. Of these, 4 were observed above the 5-ppbv reporting cutoff. Three tentatively identified compounds (TICs) were observed above the reporting cutoff of (ca.) 10 ppbv and are reported with concentrations that are semiquantitative estimates based on internal-standard response factors. The 7 organic analytes identified are listed in Table 1 and account for approximately 100% of the total organic components in Tank SX-106. Carbon dioxide (CO 2 ) was the only permanent gas detected. Tank SX-106 is on the Ferrocyanide Watch List

  16. Vapor space characterization of waste tank 241-TX-118: Results from samples collected on 12/16/94

    International Nuclear Information System (INIS)

    Lucke, R.B.; Ligotke, M.W.; McVeety, B.D.

    1995-10-01

    This report describes inorganic and organic analyses results from samples obtained from the headspace of the Hanford waste storage Tank 241-TX-118 (referred to as Tank TX-118). The results described here were obtained to support safety and toxicological evaluations. A summary of the results for inorganic and organic analytes is listed in Table 1. Detailed descriptions of the results appear in the text. Quantitative results were obtained for the inorganic compounds ammonia (NH 3 ), nitrogen dioxide (NO 2 ), nitric oxide (NO), and water (H 2 O). Sampling for hydrogen cyanide (HCN) and sulfur oxides (SO x ) was not requested. In addition, quantitative results were obtained for the 39 TO-14 compounds plus an additional 14 analytes. Of these, 3 were observed above the 5-ppbv reporting cutoff. Twenty three organic tentatively identified compounds (TICs) were observed above the reporting cutoff of (ca.) 10 ppbv, and are reported with concentrations that are semiquantitative estimates based on internal-standard response factors. The 10 organic analytes with the highest estimated concentrations are listed in Table 1 and account for approximately 84% of the total organic components in Tank TX-118. Two permanent gases, carbon dioxide (CO 2 ) and nitrous oxide (N 2 O), were also detected

  17. Vapor space characterization of waste tank 241-S-102: Results from samples collected on 3/14/95

    International Nuclear Information System (INIS)

    Pool, K.H.; McVeety, B.D.; Clauss, T.W.

    1995-10-01

    This report describes inorganic and organic analyses results from samples obtained from the headspace of the Hanford waste storage Tank 241-S-102 (referred to as Tank S-102). The results described here were obtained to support safety and toxicological evaluations. A summary of the results for inorganic and organic analytes is listed in Table 1. Detailed descriptions of the results appear in the text. Quantitative results were obtained for the inorganic compounds ammonia (NH 3 ), nitrogen dioxide (NO 2 ), nitric oxide (NO), and water (H 2 O). Sampling for hydrogen cyanide (HCN) and sulfur oxides (SO x ) was not requested. In addition, quantitative results were obtained for the 39 TO-14 compounds plus an additional 14 analytes. Of these, 11 were observed above the 5-ppbv reporting cutoff. Eleven tentatively identified compounds (TICs) were observed above the reporting cutoff of (ca.) 10 ppbv and are reported with concentrations that are semiquantitative estimates based on internal-standard response factors. The 10 organic analytes with the highest estimated concentrations are listed in Table 1 and account for approximately 95% of the total organic components in Tank S-102. Two permanent gases, hydrogen (H 2 ) and nitrous oxide (N 2 O), were also detected

  18. Vapor space characterization of Waste Tank 241-TY-104 (in situ): Results from samples collected on 8/5/94

    International Nuclear Information System (INIS)

    Ligotke, M.W.; Pool, K.H.; Lucke, R.B.

    1995-10-01

    This report describes inorganic and organic analyses results from in situ samples obtained from the headspace of the Hanford waste storage Tank 241-TY-104 (referred to as Tank TY-104). The results described here were obtained to support safety and toxicological evaluations. A summary of the results for inorganic and organic analytes is listed in Table 1. Detailed descriptions of the results appear in the text. Quantitative results were obtained for the inorganic compounds ammonia (NH 3 ), nitrogen dioxide (NO 2 ), nitric oxide (NO), and water (H 2 O). Sampling for hydrogen cyanide (HCN) and sulfur oxides (SO x ) was not performed. In addition, the authors looked for the 39 TO-14 compounds plus an additional 14 analytes. Of these, eight were observed above the 5-ppbv reporting cutoff. Twenty-four organic tentatively identified compounds (TICs) were observed above the reporting cutoff of (ca.) 10 ppbv and are reported with concentrations that are semiquantitative estimates based on internal standard response factors. The 10 organic analytes with the highest estimated concentrations are listed in Table 1 and account for approximately 86% of the total organic components in Tank TY-104. Tank TY-104 is on the Ferrocyanide Watch List

  19. Vapor space characterization of waste Tank 241-TY-101: Results from samples collected on 4/6/95

    International Nuclear Information System (INIS)

    Klinger, G.S.; Clauss, T.W.; Ligotke, M.W.; Pool, K.H.; McVeety, B.D.; Olsen, K.B.; Bredt, O.P.; Fruchter, J.S.; Goheen, S.C.

    1995-11-01

    This report describes inorganic and organic analyses results from samples obtained from the headspace of the Hanford waste storage Tank 241-TY-101 (referred to as Tank TY-101). The results described here were obtained to support safety and toxicological evaluations. A summary of the results for inorganic and organic analytes is listed in Table 1. Detailed descriptions of the results appear in the text. Quantitative results were obtained for the inorganic compounds ammonia (NH 3 ), nitrogen dioxide (NO 2 ), nitric oxide (NO), and water vapor (H 2 O). Sampling for hydrogen cyanide (HCN) and sulfur oxides (SO x ) was not requested. In addition, quantitative results were obtained for the 39 TO-14 compounds plus an additional 14 analytes. Off these, 5 were observed above the 5-ppbv reporting cutoff. One tentatively identified compound (TIC) was observed above the reporting cutoff of (ca.) 10 ppbv and are reported with concentrations that are semiquantitative estimates based on internal-standard response factors. The six organic analyses identified are listed in Table 1 and account for approximately 100% of the total organic components in Tank TY-101. Two permanent gases, carbon dioxide (CO 2 ) and nitrous oxide (N 2 O), were also detected. Tank TY-101 is on the Ferrocyanide Watch List

  20. Vapor space characterization of waste tank 241-BX-104: Results from samples collected on 12/30/94

    International Nuclear Information System (INIS)

    Pool, K.H.; Ligotke, M.W.; McVeety, B.D.

    1995-10-01

    This report describes inorganic and organic analyses results from samples obtained from the headspace of the Hanford waste storage Tank 241-BX-104 (referred to as Tank BX-104). The results described here were obtained to support safety and toxicological evaluations. A summary of the results for inorganic and organic analytes is listed in Table 1. Detailed descriptions of the results appear in the text. Quantitative results were obtained. for the inorganic compounds ammonia (NH 3 ), nitrogen dioxide (NO 2 ), nitric oxide (NO), and water (H 2 O). Sampling for hydrogen cyanide (HCN) and sulfur oxides (SOx) was not requested. In addition, quantitative results were obtained for the 39 TO-14 compounds plus an additional 14 analytes. Of these, 13 were observed above the 5-ppbv reporting cutoff. Sixty-six organic tentatively identified compounds (TICs) were observed above the reporting cutoff of (ca.) 10 ppbv and are reported with concentrations that are semiquantitative estimates based on internal-standard response factors. The 10 organic analytes, with the highest estimated concentrations are listed in Table 1 and account for approximately 70% of the total organic components in Tank BX-104. Two permanent gases, carbon dioxide (CO 2 ) and nitrous oxide (N 2 O), were also detected

  1. Vapor space characterization of waste Tank 241-BY-107: Results from in situ sample collected on 3/25/94

    International Nuclear Information System (INIS)

    Sharma, A.K.; Lucke, R.B.; Clauss, T.W.; McVeety, B.D.; Fruchter, J.S.; Goheen, S.C.

    1995-06-01

    This report describes organic results from vapors of the Hanford single-shell waste storage Tank 241-BY-107 (referred to as Tank BY-107). Samples for selected inorganic compounds were obtained but not anlayzed (Section 2.0). Quantitative results were obtained for several organic analytes, but quantities of analytes not listed in US Environmental Protection Agency (EPA) compendium Method TO-14 were estimated. Approximately 80 tentatively identified organic analytes were observed above the detection limit of (ca.) 10 ppbv, but standards for most of these were not available at the time of analysis, and their quantitative determination is beyond the scope of this study. The SUMMATM canister samples were also analyzed for the 41 organic compounds listed in EPA compendium Method TO-14. Of these, only a few were observed above the 2-ppbv detection limits. These are summarized in Table 3.1. Estimated quantities were determined of tentatively identified compounds (TICs). A summary of these results shows quantities of all TICs above the concentration of ca. 10 ppbv. This consists of more than 80 organic analytes. The 12 organic analytes with the highest estimated concentrations are shown

  2. Design and Development of Low Cost, Simple, Rapid and Safe, Modified Field Kits for the Visual Detection and Determination of Arsenic in Drinking Water Samples

    Directory of Open Access Journals (Sweden)

    Y. Anjaneyulu

    2005-08-01

    (HgBr 2 As (10-50ppb, Brown – (HgBr 3 As (50-100ppb or Black – Hg3 As2 (>100ppb are formed which can be precisely estimated by visual comparison with standard color chart. The results obtained by field kits agree well with the data obtained through I.C.P.AES methods. The most important characteristic for field measurement is that analytical results can be obtained on the site where the sample is taken with high precision and can be conveniently utilized for monitoring arsenic rapidly in a highly contaminated large geographical area.

  3. Vapor space characterization of waste Tank 241-C-109 (in situ): Results from samples collected on 6/23/94

    International Nuclear Information System (INIS)

    Clauss, T.W.; Ligotke, M.W.; Pool, K.H.; Lucke, R.B.; McVeety, B.D.; Sharma, A.K.; McCulloch, M.; Fruchter, J.S.; Goheen, S.C.

    1995-10-01

    This report describes organic analyses results from in situ samples obtained from the headspace of the Hanford waste storage Tank 241-C-109 (referred to as Tank C-109). The results described here were obtained to support safety and toxicological evaluations. Organic compounds were quantitatively determined. Thirteen organic tentatively identified compounds (TICs) were observed above the detection limit of (ca.) 10 ppbv, but standards for most of these were not available at the time of analysis, and the reported concentrations are semiquantitative estimates. In addition, the authors looked for the 40 standard TO-14 analytes. Of these, only one was observed above the 2-ppbv calibrated instrumental detection limit. However, it is believed, even though the values for dichlorodifluoromethane and trichlorofluoromethane are below the instrumental detection limit, they are accurate at these low concentrations. The six analytes account for approximately 100% of the total organic components in Tank C-109. These six organic analytes with the highest estimated concentrations are listed in Summary Table 1. Detailed descriptions of the results appear in the text

  4. Technical innovation in dynamic contrast-enhanced magnetic resonance imaging of musculoskeletal tumors: an MR angiographic sequence using a sparse k-space sampling strategy.

    Science.gov (United States)

    Fayad, Laura M; Mugera, Charles; Soldatos, Theodoros; Flammang, Aaron; del Grande, Filippo

    2013-07-01

    We demonstrate the clinical use of an MR angiography sequence performed with sparse k-space sampling (MRA), as a method for dynamic contrast-enhanced (DCE)-MRI, and apply it to the assessment of sarcomas for treatment response. Three subjects with sarcomas (2 with osteosarcoma, 1 with high-grade soft tissue sarcomas) underwent MRI after neoadjuvant therapy/prior to surgery, with conventional MRI (T1-weighted, fluid-sensitive, static post-contrast T1-weighted sequences) and DCE-MRI (MRA, time resolution = 7-10 s, TR/TE 2.4/0.9 ms, FOV 40 cm(2)). Images were reviewed by two observers in consensus who recorded image quality (1 = diagnostic, no significant artifacts, 2 = diagnostic, 75 % with good response, >75 % with poor response). DCE-MRI findings were concordant with histological response (arterial enhancement with poor response, no arterial enhancement with good response). Unlike conventional DCE-MRI sequences, an MRA sequence with sparse k-space sampling is easily integrated into a routine musculoskeletal tumor MRI protocol, with high diagnostic quality. In this preliminary work, tumor enhancement characteristics by DCE-MRI were used to assess treatment response.

  5. Technical innovation in dynamic contrast-enhanced magnetic resonance imaging of musculoskeletal tumors: an MR angiographic sequence using a sparse k-space sampling strategy

    International Nuclear Information System (INIS)

    Fayad, Laura M.; Mugera, Charles; Grande, Filippo del; Soldatos, Theodoros; Flammang, Aaron

    2013-01-01

    We demonstrate the clinical use of an MR angiography sequence performed with sparse k-space sampling (MRA), as a method for dynamic contrast-enhanced (DCE)-MRI, and apply it to the assessment of sarcomas for treatment response. Three subjects with sarcomas (2 with osteosarcoma, 1 with high-grade soft tissue sarcomas) underwent MRI after neoadjuvant therapy/prior to surgery, with conventional MRI (T1-weighted, fluid-sensitive, static post-contrast T1-weighted sequences) and DCE-MRI (MRA, time resolution = 7-10 s, TR/TE 2.4/0.9 ms, FOV 40 cm 2 ). Images were reviewed by two observers in consensus who recorded image quality (1 = diagnostic, no significant artifacts, 2 = diagnostic, 75 % with good response, >75 % with poor response). DCE-MRI findings were concordant with histological response (arterial enhancement with poor response, no arterial enhancement with good response). Unlike conventional DCE-MRI sequences, an MRA sequence with sparse k-space sampling is easily integrated into a routine musculoskeletal tumor MRI protocol, with high diagnostic quality. In this preliminary work, tumor enhancement characteristics by DCE-MRI were used to assess treatment response. (orig.)

  6. Robust nonhomogeneous training samples detection method for space-time adaptive processing radar using sparse-recovery with knowledge-aided

    Science.gov (United States)

    Li, Zhihui; Liu, Hanwei; Zhang, Yongshun; Guo, Yiduo

    2017-10-01

    The performance of space-time adaptive processing (STAP) may degrade significantly when some of the training samples are contaminated by the signal-like components (outliers) in nonhomogeneous clutter environments. To remove the training samples contaminated by outliers in nonhomogeneous clutter environments, a robust nonhomogeneous training samples detection method using the sparse-recovery (SR) with knowledge-aided (KA) is proposed. First, the reduced-dimension (RD) overcomplete spatial-temporal steering dictionary is designed with the prior knowledge of system parameters and the possible target region. Then, the clutter covariance matrix (CCM) of cell under test is efficiently estimated using a modified focal underdetermined system solver (FOCUSS) algorithm, where a RD overcomplete spatial-temporal steering dictionary is applied. Third, the proposed statistics are formed by combining the estimated CCM with the generalized inner products (GIP) method, and the contaminated training samples can be detected and removed. Finally, several simulation results validate the effectiveness of the proposed KA-SR-GIP method.

  7. MO-FG-CAMPUS-JeP2-01: 4D-MRI with 3D Radial Sampling and Self-Gating-Based K-Space Sorting: Image Quality Improvement by Slab-Selective Excitation

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Z; Pang, J; Tuli, R; Fraass, B; Fan, Z [Cedars Sinai Medical Center, Los Angeles, CA (United States); Yang, W [Cedars-Sinai Medical Center, Los Angeles, CA (United States); Bi, X [Siemens Healthcare, Los Angeles, CA (United States); Hakimian, B [Cedars Sinai Medical Center, Los Angeles CA (United States); Li, D [Cedars Sinai Medical Center, Los Angeles, California (United States)

    2016-06-15

    Purpose: A recent 4D MRI technique based on 3D radial sampling and self-gating-based K-space sorting has shown promising results in characterizing respiratory motion. However due to continuous acquisition and potentially drastic k-space undersampling resultant images could suffer from low blood-to-tissue contrast and streaking artifacts. In this study 3D radial sampling with slab-selective excitation (SS) was proposed in attempt to enhance blood-to-tissue contrast by exploiting the in-flow effect and to suppress the excess signal from the peripheral structures particularly in the superior-inferior direction. The feasibility of improving image quality by using this approach was investigated through a comparison with the previously developed non-selective excitation (NS) approach. Methods: Two excitation approaches SS and NS were compared in 5 cancer patients (1 lung 1 liver 2 pancreas and 1 esophagus) at 3Tesla. Image artifact was assessed in all patients on a 4-point scale (0: poor; 3: excellent). Signal-tonoise ratio (SNR) of the blood vessel (aorta) at the center of field-of-view and its nearby tissue were measured in 3 of the 5 patients (1 liver 2 pancreas) and blood-to-tissue contrast-to-noise ratio (CNR) were then determined. Results: Compared with NS the image quality of SS was visually improved with overall higher signal in all patients (2.6±0.55 vs. 3.4±0.55). SS showed an approximately 2-fold increase of SNR in the blood (aorta: 16.39±1.95 vs. 32.19±7.93) and slight increase in the surrounding tissue (liver/pancreas: 16.91±1.82 vs. 22.31±3.03). As a result the blood-totissue CNR was dramatically higher in the SS method (1.20±1.20 vs. 9.87±6.67). Conclusion: The proposed 3D radial sampling with slabselective excitation allows for reduced image artifact and improved blood SNR and blood-to-tissue CNR. The success of this technique could potentially benefit patients with cancerous tumors that have invaded the surrounding blood vessels where radiation

  8. MO-FG-CAMPUS-JeP2-01: 4D-MRI with 3D Radial Sampling and Self-Gating-Based K-Space Sorting: Image Quality Improvement by Slab-Selective Excitation

    International Nuclear Information System (INIS)

    Deng, Z; Pang, J; Tuli, R; Fraass, B; Fan, Z; Yang, W; Bi, X; Hakimian, B; Li, D

    2016-01-01

    Purpose: A recent 4D MRI technique based on 3D radial sampling and self-gating-based K-space sorting has shown promising results in characterizing respiratory motion. However due to continuous acquisition and potentially drastic k-space undersampling resultant images could suffer from low blood-to-tissue contrast and streaking artifacts. In this study 3D radial sampling with slab-selective excitation (SS) was proposed in attempt to enhance blood-to-tissue contrast by exploiting the in-flow effect and to suppress the excess signal from the peripheral structures particularly in the superior-inferior direction. The feasibility of improving image quality by using this approach was investigated through a comparison with the previously developed non-selective excitation (NS) approach. Methods: Two excitation approaches SS and NS were compared in 5 cancer patients (1 lung 1 liver 2 pancreas and 1 esophagus) at 3Tesla. Image artifact was assessed in all patients on a 4-point scale (0: poor; 3: excellent). Signal-tonoise ratio (SNR) of the blood vessel (aorta) at the center of field-of-view and its nearby tissue were measured in 3 of the 5 patients (1 liver 2 pancreas) and blood-to-tissue contrast-to-noise ratio (CNR) were then determined. Results: Compared with NS the image quality of SS was visually improved with overall higher signal in all patients (2.6±0.55 vs. 3.4±0.55). SS showed an approximately 2-fold increase of SNR in the blood (aorta: 16.39±1.95 vs. 32.19±7.93) and slight increase in the surrounding tissue (liver/pancreas: 16.91±1.82 vs. 22.31±3.03). As a result the blood-totissue CNR was dramatically higher in the SS method (1.20±1.20 vs. 9.87±6.67). Conclusion: The proposed 3D radial sampling with slabselective excitation allows for reduced image artifact and improved blood SNR and blood-to-tissue CNR. The success of this technique could potentially benefit patients with cancerous tumors that have invaded the surrounding blood vessels where radiation

  9. Visualization and quantification of capillary drainage in the pore space of laminated sandstone by a porous plate method using differential imaging X-ray microtomography

    Science.gov (United States)

    Lin, Qingyang; Bijeljic, Branko; Rieke, Holger; Blunt, Martin J.

    2017-08-01

    The experimental determination of capillary pressure drainage curves at the pore scale is of vital importance for the mapping of reservoir fluid distribution. To fully characterize capillary drainage in a complex pore space, we design a differential imaging-based porous plate (DIPP) method using X-ray microtomography. For an exemplar mm-scale laminated sandstone microcore with a porous plate, we quantify the displacement from resolvable macropores and subresolution micropores. Nitrogen (N2) was injected as the nonwetting phase at a constant pressure while the porous plate prevented its escape. The measured porosity and capillary pressure at the imaged saturations agree well with helium measurements and experiments on larger core samples, while providing a pore-scale explanation of the fluid distribution. We observed that the majority of the brine was displaced by N2 in macropores at low capillary pressures, followed by a further brine displacement in micropores when capillary pressure increases. Furthermore, we were able to discern that brine predominantly remained within the subresolution micropores, such as regions of fine lamination. The capillary pressure curve for pressures ranging from 0 to 1151 kPa is provided from the image analysis compares well with the conventional porous plate method for a cm-scale core but was conducted over a period of 10 days rather than up to few months with the conventional porous plate method. Overall, we demonstrate the capability of our method to provide quantitative information on two-phase saturation in heterogeneous core samples for a wide range of capillary pressures even at scales smaller than the micro-CT resolution.

  10. Scientific visualization uncertainty, multifield, biomedical, and scalable visualization

    CERN Document Server

    Chen, Min; Johnson, Christopher; Kaufman, Arie; Hagen, Hans

    2014-01-01

    Based on the seminar that took place in Dagstuhl, Germany in June 2011, this contributed volume studies the four important topics within the scientific visualization field: uncertainty visualization, multifield visualization, biomedical visualization and scalable visualization. • Uncertainty visualization deals with uncertain data from simulations or sampled data, uncertainty due to the mathematical processes operating on the data, and uncertainty in the visual representation, • Multifield visualization addresses the need to depict multiple data at individual locations and the combination of multiple datasets, • Biomedical is a vast field with select subtopics addressed from scanning methodologies to structural applications to biological applications, • Scalability in scientific visualization is critical as data grows and computational devices range from hand-held mobile devices to exascale computational platforms. Scientific Visualization will be useful to practitioners of scientific visualization, ...

  11. Sampling Development

    Science.gov (United States)

    Adolph, Karen E.; Robinson, Scott R.

    2011-01-01

    Research in developmental psychology requires sampling at different time points. Accurate depictions of developmental change provide a foundation for further empirical studies and theories about developmental mechanisms. However, overreliance on widely spaced sampling intervals in cross-sectional and longitudinal designs threatens the validity of…

  12. Fully three-dimensional reconstruction from data collected on concentric cubes in Fourier space: implementation and a sample application to MRI [magnetic resonance imaging

    International Nuclear Information System (INIS)

    Herman, G.T.; Roberts, D.; Axel, L.

    1992-01-01

    An algorithm is proposed for rapid and accurate reconstruction from data collected in Fourier space at points arranged on a grid of concentric cubes. The whole process has computational complexity of the same order as required for the 3D fast Fourier transform and so (for medically relevant sizes of the data set) it is faster than backprojection into the same size rectangular grid. The design of the algorithm ensures that no interpolations are needed, in contrast to methods involving backprojection with their unavoidable interpolations. As an application, a 3D data collection method for MRI has been designed which directly samples the Fourier transform of the object to be reconstructed on concentric cubes as needed for the algorithm. (author)

  13. Laser-induced breakdown spectroscopy for space exploration applications: Influence of the ambient pressure on the calibration curves prepared from soil and clay samples

    International Nuclear Information System (INIS)

    Salle, Beatrice; Cremers, David A.; Maurice, Sylvestre; Wiens, Roger C.

    2005-01-01

    Recently, there has been an increasing interest in the laser-induced breakdown spectroscopy (LIBS) technique for stand-off detection of geological samples for use on landers and rovers to Mars, and for other space applications. For space missions, LIBS analysis capabilities must be investigated and instrumental development is required to take into account constraints such as size, weight, power and the effect of environmental atmosphere (pressure and ambient gas) on flight instrument performance. In this paper, we study the in-situ LIBS method at reduced pressure (7 Torr CO 2 to simulate the Martian atmosphere) and near vacuum (50 mTorr in air to begin to simulate the Moon or asteroids' pressure) as well as at atmospheric pressure in air (for Earth conditions and comparison). Here in-situ corresponds to distances on the order of 150 mm in contrast to stand-off analysis at distance of many meters. We show the influence of the ambient pressure on the calibration curves prepared from certified soil and clay pellets. In order to detect simultaneously all the elements commonly observed in terrestrial soils, we used an Echelle spectrograph. The results are discussed in terms of calibration curves, measurement precision, plasma light collection system efficiency and matrix effects

  14. Sodium magnetic resonance imaging. Development of a 3D radial acquisition technique with optimized k-space sampling density and high SNR-efficiency

    International Nuclear Information System (INIS)

    Nagel, Armin Michael

    2009-01-01

    A 3D radial k-space acquisition technique with homogenous distribution of the sampling density (DA-3D-RAD) is presented. This technique enables short echo times (TE 23 Na-MRI, and provides a high SNR-efficiency. The gradients of the DA-3D-RAD-sequence are designed such that the average sampling density in each spherical shell of k-space is constant. The DA-3D-RAD-sequence provides 34% more SNR than a conventional 3D radial sequence (3D-RAD) if T 2 * -decay is neglected. This SNR-gain is enhanced if T 2 * -decay is present, so a 1.5 to 1.8 fold higher SNR is measured in brain tissue with the DA-3D-RAD-sequence. Simulations and experimental measurements show that the DA-3D-RAD sequence yields a better resolution in the presence of T 2 * -decay and less image artefacts when B 0 -inhomogeneities exist. Using the developed sequence, T 1 -, T 2 * - and Inversion-Recovery- 23 Na-image contrasts were acquired for several organs and 23 Na-relaxation times were measured (brain tissue: T 1 =29.0±0.3 ms; T 2s * ∼4 ms; T 2l * ∼31 ms; cerebrospinal fluid: T 1 =58.1±0.6 ms; T 2 * =55±3 ms (B 0 =3 T)). T 1 - und T 2 * -relaxation times of cerebrospinal fluid are independent of the selected magnetic field strength (B0 = 3T/7 T), whereas the relaxation times of brain tissue increase with field strength. Furthermore, 23 Na-signals of oedemata were suppressed in patients and thus signals from different tissue compartments were selectively measured. (orig.)

  15. Visual Semiotics & Uncertainty Visualization: An Empirical Study.

    Science.gov (United States)

    MacEachren, A M; Roth, R E; O'Brien, J; Li, B; Swingley, D; Gahegan, M

    2012-12-01

    This paper presents two linked empirical studies focused on uncertainty visualization. The experiments are framed from two conceptual perspectives. First, a typology of uncertainty is used to delineate kinds of uncertainty matched with space, time, and attribute components of data. Second, concepts from visual semiotics are applied to characterize the kind of visual signification that is appropriate for representing those different categories of uncertainty. This framework guided the two experiments reported here. The first addresses representation intuitiveness, considering both visual variables and iconicity of representation. The second addresses relative performance of the most intuitive abstract and iconic representations of uncertainty on a map reading task. Combined results suggest initial guidelines for representing uncertainty and discussion focuses on practical applicability of results.

  16. Multivariate volume visualization through dynamic projections

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Shusen [Univ. of Utah, Salt Lake City, UT (United States); Wang, Bei [Univ. of Utah, Salt Lake City, UT (United States); Thiagarajan, Jayaraman J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Bremer, Peer -Timo [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Pascucci, Valerio [Univ. of Utah, Salt Lake City, UT (United States)

    2014-11-01

    We propose a multivariate volume visualization framework that tightly couples dynamic projections with a high-dimensional transfer function design for interactive volume visualization. We assume that the complex, high-dimensional data in the attribute space can be well-represented through a collection of low-dimensional linear subspaces, and embed the data points in a variety of 2D views created as projections onto these subspaces. Through dynamic projections, we present animated transitions between different views to help the user navigate and explore the attribute space for effective transfer function design. Our framework not only provides a more intuitive understanding of the attribute space but also allows the design of the transfer function under multiple dynamic views, which is more flexible than being restricted to a single static view of the data. For large volumetric datasets, we maintain interactivity during the transfer function design via intelligent sampling and scalable clustering. As a result, using examples in combustion and climate simulations, we demonstrate how our framework can be used to visualize interesting structures in the volumetric space.

  17. Frequency, prevalence, incidence and risk factors associated with visual hallucinations in a sample of patients with Parkinson's disease: a longitudinal 4-year study.

    Science.gov (United States)

    Gibson, G; Mottram, P G; Burn, D J; Hindle, J V; Landau, S; Samuel, M; Hurt, C S; Brown, R G; M Wilson, K C

    2013-06-01

    To examine the prevalence, incidence and risk factors associated with visual hallucinations (VHs) amongst people suffering from Parkinson's disease (PD). We recruited 513 patients with PD from movement disorder and PD clinics within three sites in the UK. Patients were interviewed using a series of standardised clinical rating scales at baseline, 12, 24 and 36 months. Data relating to VHs were collected using the North-East Visual Hallucinations Interview. Prevalence rates for VHs at each assessment were recorded. Associations were determined using multiple regression analysis. Cross-sectional prevalence rates for VHs at baseline, 12, 24 and 36 months indicated VHs in approximately 50% of patients. A cumulative frequency of 82.7% of cases at the end of the study period exhibited VHs. The incidence rate for VHs was 457 cases per 1000 population. Longer disease duration, greater impairment in activities of daily living and higher rates of anxiety were most commonly associated with VHs. No factors predictive of VHs could be ascertained. When examined longitudinally, VHs affect more patients than is commonly assumed in cross-sectional prevalence studies. Clinicians should routinely screen for VHs throughout the disease course. Disease duration, impairment in activities of daily living and anxiety presented as co-morbidities associated with VHs in PD, and therefore those presenting with VHs should be screened for anxiety disorder and vice versa. Copyright © 2012 John Wiley & Sons, Ltd.

  18. k-space sampling optimization for ultrashort TE imaging of cortical bone: Applications in radiation therapy planning and MR-based PET attenuation correction

    International Nuclear Information System (INIS)

    Hu, Lingzhi; Traughber, Melanie; Su, Kuan-Hao; Pereira, Gisele C.; Grover, Anu; Traughber, Bryan; Muzic, Raymond F. Jr.

    2014-01-01

    Purpose: The ultrashort echo-time (UTE) sequence is a promising MR pulse sequence for imaging cortical bone which is otherwise difficult to image using conventional MR sequences and also poses strong attenuation for photons in radiation therapy and PET imaging. The authors report here a systematic characterization of cortical bone signal decay and a scanning time optimization strategy for the UTE sequence through k-space undersampling, which can result in up to a 75% reduction in acquisition time. Using the undersampled UTE imaging sequence, the authors also attempted to quantitatively investigate the MR properties of cortical bone in healthy volunteers, thus demonstrating the feasibility of using such a technique for generating bone-enhanced images which can be used for radiation therapy planning and attenuation correction with PET/MR. Methods: An angularly undersampled, radially encoded UTE sequence was used for scanning the brains of healthy volunteers. Quantitative MR characterization of tissue properties, including water fraction and R2 ∗ = 1/T2 ∗ , was performed by analyzing the UTE images acquired at multiple echo times. The impact of different sampling rates was evaluated through systematic comparison of the MR image quality, bone-enhanced image quality, image noise, water fraction, and R2 ∗ of cortical bone. Results: A reduced angular sampling rate of the UTE trajectory achieves acquisition durations in proportion to the sampling rate and in as short as 25% of the time required for full sampling using a standard Cartesian acquisition, while preserving unique MR contrast within the skull at the cost of a minimal increase in noise level. The R2 ∗ of human skull was measured as 0.2–0.3 ms −1 depending on the specific region, which is more than ten times greater than the R2 ∗ of soft tissue. The water fraction in human skull was measured to be 60%–80%, which is significantly less than the >90% water fraction in brain. High-quality, bone

  19. NASA's Scientific Visualization Studio

    Science.gov (United States)

    Mitchell, Horace G.

    2003-01-01

    Since 1988, the Scientific Visualization Studio(SVS) at NASA Goddard Space Flight Center has produced scientific visualizations of NASA s scientific research and remote sensing data for public outreach. These visualizations take the form of images, animations, and end-to-end systems and have been used in many venues: from the network news to science programs such as NOVA, from museum exhibits at the Smithsonian to White House briefings. This presentation will give an overview of the major activities and accomplishments of the SVS, and some of the most interesting projects and systems developed at the SVS will be described. Particular emphasis will be given to the practices and procedures by which the SVS creates visualizations, from the hardware and software used to the structures and collaborations by which products are designed, developed, and delivered to customers. The web-based archival and delivery system for SVS visualizations at svs.gsfc.nasa.gov will also be described.

  20. The comparability of men who have sex with men recruited from venue-time-space sampling and facebook: a cohort study.

    Science.gov (United States)

    Hernandez-Romieu, Alfonso C; Sullivan, Patrick S; Sanchez, Travis H; Kelley, Colleen F; Peterson, John L; Del Rio, Carlos; Salazar, Laura F; Frew, Paula M; Rosenberg, Eli S

    2014-07-17

    Recruiting valid samples of men who have sex with men (MSM) is a key component of the US human immunodeficiency virus (HIV) surveillance and of research studies seeking to improve HIV prevention for MSM. Social media, such as Facebook, may present an opportunity to reach broad samples of MSM, but the extent to which those samples are comparable with men recruited from venue-based, time-space sampling (VBTS) is unknown. The objective of this study was to assess the comparability of MSM recruited via VBTS and Facebook. HIV-negative and HIV-positive black and white MSM were recruited from June 2010 to December 2012 using VBTS and Facebook in Atlanta, GA. We compared the self-reported venue attendance, demographic characteristics, sexual and risk behaviors, history of HIV-testing, and HIV and sexually transmitted infection (STI) prevalence between Facebook- and VTBS-recruited MSM overall and by race. Multivariate logistic and negative binomial models estimated age/race adjusted ratios. The Kaplan-Meier method was used to assess 24-month retention. We recruited 803 MSM, of whom 110 (34/110, 30.9% black MSM, 76/110, 69.1% white MSM) were recruited via Facebook and 693 (420/693, 60.6% black MSM, 273/693, 39.4% white MSM) were recruited through VTBS. Facebook recruits had high rates of venue attendance in the previous month (26/34, 77% among black and 71/76, 93% among white MSM; between-race P=.01). MSM recruited on Facebook were generally older, with significant age differences among black MSM (P=.02), but not white MSM (P=.14). In adjusted multivariate models, VBTS-recruited MSM had fewer total partners (risk ratio [RR]=0.78, 95% CI 0.64-0.95; P=.01) and unprotected anal intercourse (UAI) partners (RR=0.54, 95% CI 0.40-0.72; PFacebook, to 77% for black and 78% for white MSM recruited at venues. There was no statistically significant differences in retention between the four groups (log-rank P=.64). VBTS and Facebook recruitment methods yielded similar samples of MSM in

  1. Visualizations as Projection Devices

    DEFF Research Database (Denmark)

    Harty, Chris; Holm Jacobsen, Peter; Tryggestad, Kjell

    The aim of this paper is to inquire into the role of project visualizations in shaping healthcare spaces and practices. The study draws upon an ethnographic field study from a large on-going hospital construction project in Denmark, and focuses on the early phases of on-boarding the design team...... into the project organization. During the on-boarding visualizations multiplies in form, content and purpose, ranging from paper and digitally based projections of clinical work spaces and practices for the future hospital building in use, to paper and digitally based projections of the cost budget and time...

  2. Math for visualization, visualizing math

    NARCIS (Netherlands)

    Wijk, van J.J.; Hart, G.; Sarhangi, R.

    2013-01-01

    I present an overview of our work in visualization, and reflect on the role of mathematics therein. First, mathematics can be used as a tool to produce visualizations, which is illustrated with examples from information visualization, flow visualization, and cartography. Second, mathematics itself

  3. Visual art and visual perception

    NARCIS (Netherlands)

    Koenderink, Jan J.

    2015-01-01

    Visual art and visual perception ‘Visual art’ has become a minor cul-de-sac orthogonal to THE ART of the museum directors and billionaire collectors. THE ART is conceptual, instead of visual. Among its cherished items are the tins of artist’s shit (Piero Manzoni, 1961, Merda d’Artista) “worth their

  4. Flow visualization

    CERN Document Server

    Merzkirch, Wolfgang

    1974-01-01

    Flow Visualization describes the most widely used methods for visualizing flows. Flow visualization evaluates certain properties of a flow field directly accessible to visual perception. Organized into five chapters, this book first presents the methods that create a visible flow pattern that could be investigated by visual inspection, such as simple dye and density-sensitive visualization methods. It then deals with the application of electron beams and streaming birefringence. Optical methods for compressible flows, hydraulic analogy, and high-speed photography are discussed in other cha

  5. Biased visualization of hypoperfused tissue by computed tomography due to short imaging duration: improved classification by image down-sampling and vascular models

    Energy Technology Data Exchange (ETDEWEB)

    Mikkelsen, Irene Klaerke; Ribe, Lars Riisgaard; Bekke, Susanne Lise; Tietze, Anna; Oestergaard, Leif; Mouridsen, Kim [Aarhus University Hospital, Center of Functionally Integrative Neuroscience, Aarhus C (Denmark); Jones, P.S.; Alawneh, Josef [University of Cambridge, Department of Clinical Neurosciences, Cambridge (United Kingdom); Puig, Josep; Pedraza, Salva [Dr. Josep Trueta Girona University Hospitals, Department of Radiology, Girona Biomedical Research Institute, Girona (Spain); Gillard, Jonathan H. [University of Cambridge, Department of Radiology, Cambridge (United Kingdom); Warburton, Elisabeth A. [Cambrigde University Hospitals, Addenbrooke, Stroke Unit, Cambridge (United Kingdom); Baron, Jean-Claude [University of Cambridge, Department of Clinical Neurosciences, Cambridge (United Kingdom); Centre Hospitalier Sainte Anne, INSERM U894, Paris (France)

    2015-07-15

    Lesion detection in acute stroke by computed-tomography perfusion (CTP) can be affected by incomplete bolus coverage in veins and hypoperfused tissue, so-called bolus truncation (BT), and low contrast-to-noise ratio (CNR). We examined the BT-frequency and hypothesized that image down-sampling and a vascular model (VM) for perfusion calculation would improve normo- and hypoperfused tissue classification. CTP datasets from 40 acute stroke patients were retrospectively analysed for BT. In 16 patients with hypoperfused tissue but no BT, repeated 2-by-2 image down-sampling and uniform filtering was performed, comparing CNR to perfusion-MRI levels and tissue classification to that of unprocessed data. By simulating reduced scan duration, the minimum scan-duration at which estimated lesion volumes came within 10 % of their true volume was compared for VM and state-of-the-art algorithms. BT in veins and hypoperfused tissue was observed in 9/40 (22.5 %) and 17/40 patients (42.5 %), respectively. Down-sampling to 128 x 128 resolution yielded CNR comparable to MR data and improved tissue classification (p = 0.0069). VM reduced minimum scan duration, providing reliable maps of cerebral blood flow and mean transit time: 5 s (p = 0.03) and 7 s (p < 0.0001), respectively. BT is not uncommon in stroke CTP with 40-s scan duration. Applying image down-sampling and VM improve tissue classification. (orig.)

  6. Biased visualization of hypoperfused tissue by computed tomography due to short imaging duration: improved classification by image down-sampling and vascular models

    International Nuclear Information System (INIS)

    Mikkelsen, Irene Klaerke; Ribe, Lars Riisgaard; Bekke, Susanne Lise; Tietze, Anna; Oestergaard, Leif; Mouridsen, Kim; Jones, P.S.; Alawneh, Josef; Puig, Josep; Pedraza, Salva; Gillard, Jonathan H.; Warburton, Elisabeth A.; Baron, Jean-Claude

    2015-01-01

    Lesion detection in acute stroke by computed-tomography perfusion (CTP) can be affected by incomplete bolus coverage in veins and hypoperfused tissue, so-called bolus truncation (BT), and low contrast-to-noise ratio (CNR). We examined the BT-frequency and hypothesized that image down-sampling and a vascular model (VM) for perfusion calculation would improve normo- and hypoperfused tissue classification. CTP datasets from 40 acute stroke patients were retrospectively analysed for BT. In 16 patients with hypoperfused tissue but no BT, repeated 2-by-2 image down-sampling and uniform filtering was performed, comparing CNR to perfusion-MRI levels and tissue classification to that of unprocessed data. By simulating reduced scan duration, the minimum scan-duration at which estimated lesion volumes came within 10 % of their true volume was compared for VM and state-of-the-art algorithms. BT in veins and hypoperfused tissue was observed in 9/40 (22.5 %) and 17/40 patients (42.5 %), respectively. Down-sampling to 128 x 128 resolution yielded CNR comparable to MR data and improved tissue classification (p = 0.0069). VM reduced minimum scan duration, providing reliable maps of cerebral blood flow and mean transit time: 5 s (p = 0.03) and 7 s (p < 0.0001), respectively. BT is not uncommon in stroke CTP with 40-s scan duration. Applying image down-sampling and VM improve tissue classification. (orig.)

  7. Effects of types of work and visual environemnt on human pschology and behavior in an office space. Shikankyo ga shitsumusha no shinriter dot kodo ni oyobosu eikyo sagyo naiyo no chigai ni yoruhyoka

    Energy Technology Data Exchange (ETDEWEB)

    Sato, M [The Tokyo Electric Power Co. Inc., Tokyo (Japan); Inui, M., Nakamura, Y. (Tokyo Institute of technology, Tokyo (Japan))

    1991-10-30

    In this paper, was investigared an effect of work and visual environment types on the psychology and behavior of workers in office spaces in terms of subjective appraisal, work performance, behavior pattern, etc. In order to make a such effect of visual environment clear, a series of factorial experiments were conducted. Window and interior decoration of pot plants and paintings were adopted as factors of the visual environment. A Krepelin addition, a Krepelin addition-subtraction and multiplication, a Krepelin machiene, a hand-written manoscript, a word-processed manuscript, and a mirror tracing were adopted as work types. The number of sobjects was five for each work type. Consequently, a significance of the effect of the window and interior decoration on workers was verified. It was also found that the presence of the window and interior decoration improved the work performance for the major types of perfomance test. Furthermore, it was revealed that the presence of the window ans interior decoration the behavior of subjects active. 11 refs., 11 figs., 9 tabs.

  8. Visual field

    Science.gov (United States)

    ... your visual field. How the Test is Performed Confrontation visual field exam. This is a quick and ... to achieve this important distinction for online health information and services. Learn more about A.D.A. ...

  9. Data visualization

    CERN Document Server

    Azzam, Tarek

    2013-01-01

    Do you communicate data and information to stakeholders? In Part 1, we introduce recent developments in the quantitative and qualitative data visualization field and provide a historical perspective on data visualization, its potential role in evaluation practice, and future directions. Part 2 delivers concrete suggestions for optimally using data visualization in evaluation, as well as suggestions for best practices in data visualization design. It focuses on specific quantitative and qualitative data visualization approaches that include data dashboards, graphic recording, and geographic information systems (GIS). Readers will get a step-by-step process for designing an effective data dashboard system for programs and organizations, and various suggestions to improve their utility.

  10. Visualization Design Environment

    Energy Technology Data Exchange (ETDEWEB)

    Pomplun, A.R.; Templet, G.J.; Jortner, J.N.; Friesen, J.A.; Schwegel, J.; Hughes, K.R.

    1999-02-01

    Improvements in the performance and capabilities of computer software and hardware system, combined with advances in Internet technologies, have spurred innovative developments in the area of modeling, simulation and visualization. These developments combine to make it possible to create an environment where engineers can design, prototype, analyze, and visualize components in virtual space, saving the time and expenses incurred during numerous design and prototyping iterations. The Visualization Design Centers located at Sandia National Laboratories are facilities built specifically to promote the ''design by team'' concept. This report focuses on designing, developing and deploying this environment by detailing the design of the facility, software infrastructure and hardware systems that comprise this new visualization design environment and describes case studies that document successful application of this environment.

  11. Visual Literacy and Visual Thinking.

    Science.gov (United States)

    Hortin, John A.

    It is proposed that visual literacy be defined as the ability to understand (read) and use (write) images and to think and learn in terms of images. This definition includes three basic principles: (1) visuals are a language and thus analogous to verbal language; (2) a visually literate person should be able to understand (read) images and use…

  12. Visual Literacy and Visual Culture.

    Science.gov (United States)

    Messaris, Paul

    Familiarity with specific images or sets of images plays a role in a culture's visual heritage. Two questions can be asked about this type of visual literacy: Is this a type of knowledge that is worth building into the formal educational curriculum of our schools? What are the educational implications of visual literacy? There is a three-part…

  13. A morphological basis for orientation tuning in primary visual cortex.

    Science.gov (United States)

    Mooser, François; Bosking, William H; Fitzpatrick, David

    2004-08-01

    Feedforward connections are thought to be important in the generation of orientation-selective responses in visual cortex by establishing a bias in the sampling of information from regions of visual space that lie along a neuron's axis of preferred orientation. It remains unclear, however, which structural elements-dendrites or axons-are ultimately responsible for conveying this sampling bias. To explore this question, we have examined the spatial arrangement of feedforward axonal connections that link non-oriented neurons in layer 4 and orientation-selective neurons in layer 2/3 of visual cortex in the tree shrew. Target sites of labeled boutons in layer 2/3 resulting from focal injections of biocytin in layer 4 show an orientation-specific axial bias that is sufficient to confer orientation tuning to layer 2/3 neurons. We conclude that the anisotropic arrangement of axon terminals is the principal source of the orientation bias contributed by feedforward connections.

  14. ESPACIO DE ASENTAMIENTO Y CAMPOS VISUALES EN LA ARQUEOLOGÍA DEL VALLE DE AMBATO, CATAMARCA, ARGENTINA / Settlement space and visual fields in the archeology of Ambato valley, Catamarca, Argentina.

    Directory of Open Access Journals (Sweden)

    Susana Assandri

    2010-12-01

    Full Text Available La cultura Aguada en el Valle de Ambato, Catamarca, adquiere una manifestación particular que se observa a nivel espacial por la gran cantidad y variedad de las unidades de asentamiento, tanto por sus características externas, como emplazamiento en el terreno y relación con recursos hídricos, como por sus características internas. En este trabajo se intenta avanzar en el análisis espacial, que habíamos enfocado en las características internas de las estructuras construidas en el Valle, para ahondar en la relación de éstas con su espacio geográfico, como una de las manifestaciones espaciales de las relaciones entre los seres humanos y su ambiente.La propuesta es que a través del análisis de la visibilidad, de cada una de las estructuras, genere un aporte al conocimiento de los factores que contribuyen a su emplazamiento en el terreno. Palabras Clave: Aguada; análisis espacial; visibilidad; estructuras; emplazamiento. AbstractAguada culture in Ambato valley, Catamarca, acquires a particular manifestation observed spatially by the large number and variety of settlement units by their external characteristics such as location in relation to land and water resources, and its internal characteristics.  It attempts to advance in spatial analysis; we had focused on the internal characteristics of the structures built in the Valley, to deepen their relations with their geographical space as a spatial manifestation of the relationship between humans and their environment.  The proposal is that through the analysis of visibility, each of the structures, contribute to the knowledge of the factors contributing to its location in the field. Keywords: Aguada, spatial analysis, visibility, structures, location.

  15. Visualization Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Evaluates and improves the operational effectiveness of existing and emerging electronic warfare systems. By analyzing and visualizing simulation results...

  16. High-resolution space-time characterization of convective rain cells: implications on spatial aggregation and temporal sampling operated by coarser resolution instruments

    Science.gov (United States)

    Marra, Francesco; Morin, Efrat

    2017-04-01

    Forecasting the occurrence of flash floods and debris flows is fundamental to save lives and protect infrastructures and properties. These natural hazards are generated by high-intensity convective storms, on space-time scales that cannot be properly monitored by conventional instrumentation. Consequently, a number of early-warning systems are nowadays based on remote sensing precipitation observations, e.g. from weather radars or satellites, that proved effective in a wide range of situations. However, the uncertainty affecting rainfall estimates represents an important issue undermining the operational use of early-warning systems. The uncertainty related to remote sensing estimates results from (a) an instrumental component, intrinsic of the measurement operation, and (b) a discretization component, caused by the discretization of the continuous rainfall process. Improved understanding on these sources of uncertainty will provide crucial information to modelers and decision makers. This study aims at advancing knowledge on the (b) discretization component. To do so, we take advantage of an extremely-high resolution X-Band weather radar (60 m, 1 min) recently installed in the Eastern Mediterranean. The instrument monitors a semiarid to arid transition area also covered by an accurate C-Band weather radar and by a relatively sparse rain gauge network ( 1 gauge/ 450 km2). Radar quantitative precipitation estimation includes corrections reducing the errors due to ground echoes, orographic beam blockage and attenuation of the signal in heavy rain. Intense, convection-rich, flooding events recently occurred in the area serve as study cases. We (i) describe with very high detail the spatiotemporal characteristics of the convective cores, and (ii) quantify the uncertainty due to spatial aggregation (spatial discretization) and temporal sampling (temporal discretization) operated by coarser resolution remote sensing instruments. We show that instantaneous rain intensity

  17. Digital visual communications using a Perceptual Components Architecture

    Science.gov (United States)

    Watson, Andrew B.

    1991-01-01

    The next era of space exploration will generate extraordinary volumes of image data, and management of this image data is beyond current technical capabilities. We propose a strategy for coding visual information that exploits the known properties of early human vision. This Perceptual Components Architecture codes images and image sequences in terms of discrete samples from limited bands of color, spatial frequency, orientation, and temporal frequency. This spatiotemporal pyramid offers efficiency (low bit rate), variable resolution, device independence, error-tolerance, and extensibility.

  18. Social Set Visualizer

    DEFF Research Database (Denmark)

    Flesch, Benjamin; Vatrapu, Ravi; Mukkamala, Raghava Rao

    2015-01-01

    approach to computational social science mentioned above. The development of the dashboard involved cutting-edge open source visual analytics libraries (D3.js) and creation of new visualizations such as of actor mobility across time and space, conversational comets, and more. Evaluation of the dashboard......Current state-of-the-art in big social data analytics is largely limited to graph theoretical approaches such as social network analysis (SNA) informed by the social philosophical approach of relational sociology. This paper proposes and illustrates an alternate holistic approach to big social data...

  19. Waste tank vapor project: Vapor space characterization of waste tank 241-BY-104: Results from samples collected on June 24, 1994

    International Nuclear Information System (INIS)

    Clauss, T.W.; Ligotke, M.W.; McVeety, B.D.; Pool, K.H.; Lucke, R.B.; Fruchter, J.S.; Goheen, S.C.

    1994-11-01

    This report describes results of the analyses of tank-headspace samples taken from Hanford waste Tank 241-BY-104 (referred to as Tank BY-104) on June 24, 1994. The Pacific Northwest Laboratory (PNL) contracted with Westinghouse Hanford Company (WHC) to provide sampling devices and analyze inorganic and organic samples collected from the tank headspace. The sample job was designated S4019 and was performed by WHC on June 24, 1994 using the vapor sampling system (VSS). The results of the analyses are expected to be used in the determination of safety and toxicological issues related to the tank-headspace gas as described in the WHC report entitled Data Quality Objectives for Generic In-Tank Health and Safety Vapor Issue Resolution, WHC-SD-WM-DQO-002, Rev. 0. Sampling devices, including 16 sorbent trains (for inorganic analyses), and 5 SUMMA trademark canisters (for organic analyses), were supplied to the WHC sampling staff on June 20, 1994. Samples were taken (by WHC) on June 24. The samples were returned from the field on June 27. The inorganic samples delivered to PNL on chain-of-custody (COC) 006893 included 16 sorbent trains as described in Tables 2.2, 2.3, and 2.4. Additional inorganic blank spikes were obtained from related sample jobs. SUMMA trademark samples delivered to PNL on COC 006896 included one ambient air sample, one ambient-air sample through the sampling system, and three tank-headspace SUMMA trademark canister samples. The samples were inspected upon delivery to the 326/23B laboratory and logged into PNL laboratory record book 55408. Custody of the sorbent trains was transferred to PNL personnel performing the inorganic analysis and stored at refrigerated (≤10 degrees C) temperature until the time of analysis. Access to the 326/23B laboratory is limited to PNL personnel working on the waste-tank safety program

  20. Preserving Samples and Their Scientific Integrity — Insights into MSR from the Astromaterials Acquisition and Curation Office at NASA Johnson Space Center

    Science.gov (United States)

    Calaway, M. J.; Regberg, A. B.; Mitchell, J. L.; Fries, M. D.; Zeigler, R. A.; McCubbin, F. M.; Harrington, A. D.

    2018-04-01

    Rigorous collection of samples for contamination knowledge, the information gained from the characterization of reference materials and witness plates in concurrence with sample return, is essential for MSR mission success.

  1. The Personal Health Technology Design Space

    DEFF Research Database (Denmark)

    Bardram, Jakob Eyvind; Frost, Mads

    2016-01-01

    . To enable designers to make informed and well-articulated design decision, the authors propose a design space for personal health technologies. This space consists of 10 dimensions related to the design of data sampling strategies, visualization and feedback approaches, treatment models, and regulatory......Interest is increasing in personal health technologies that utilize mobile platforms for improved health and well-being. However, although a wide variety of these systems exist, each is designed quite differently and materializes many different and more or less explicit design assumptions...

  2. Space dynamics

    International Nuclear Information System (INIS)

    Corno, S.E.

    1995-01-01

    Analytical methods for Space Dynamics of fission reactors, are presented. It is shown how a few sample problems in space dynamics can be solved, within the one and two group diffusion model, by purely analytical tools, essentially based on Laplace transform and complex Green function techniques. A quite suggestive generalization of this approach, applicable to the fluid core reactors, whose fuel is undergoing a violent mixing, is reported and briefly discussed. (author)

  3. Visual Impairment

    Science.gov (United States)

    ... site Sitio para adolescentes Body Mind Sexual Health Food & Fitness Diseases & Conditions Infections Drugs & Alcohol School & Jobs Sports Expert Answers (Q&A) Staying Safe Videos for Educators Search English Español Visual Impairment KidsHealth / For Teens / Visual Impairment What's in ...

  4. Visual attention

    NARCIS (Netherlands)

    Evans, K.K.; Horowitz, T.S.; Howe, P.; Pedersini, R.; Reijnen, E.; Pinto, Y.; Wolfe, J.M.

    2011-01-01

    A typical visual scene we encounter in everyday life is complex and filled with a huge amount of perceptual information. The term, ‘visual attention’ describes a set of mechanisms that limit some processing to a subset of incoming stimuli. Attentional mechanisms shape what we see and what we can act

  5. Space exploration

    CERN Document Server

    2009-01-01

    Space Exploration, is one book in the Britannica Illustrated Science Library Series that is correlated to the science curriculum in grades 5-8. The Britannica Illustrated Science Library is a visually compelling set that covers earth science, life science, and physical science in 16 volumes.  Created for ages 10 and up, each volume provides an overview on a subject and thoroughly explains it through detailed and powerful graphics-more than 1,000 per volume-that turn complex subjects into information that students can grasp.  Each volume contains a glossary with full definitions for vocabulary help and an index.

  6. Visual cognition

    Science.gov (United States)

    Cavanagh, Patrick

    2011-01-01

    Visual cognition, high-level vision, mid-level vision and top-down processing all refer to decision-based scene analyses that combine prior knowledge with retinal input to generate representations. The label “visual cognition” is little used at present, but research and experiments on mid- and high-level, inference-based vision have flourished, becoming in the 21st century a significant, if often understated part, of current vision research. How does visual cognition work? What are its moving parts? This paper reviews the origins and architecture of visual cognition and briefly describes some work in the areas of routines, attention, surfaces, objects, and events (motion, causality, and agency). Most vision scientists avoid being too explicit when presenting concepts about visual cognition, having learned that explicit models invite easy criticism. What we see in the literature is ample evidence for visual cognition, but few or only cautious attempts to detail how it might work. This is the great unfinished business of vision research: at some point we will be done with characterizing how the visual system measures the world and we will have to return to the question of how vision constructs models of objects, surfaces, scenes, and events. PMID:21329719

  7. Visual cognition.

    Science.gov (United States)

    Cavanagh, Patrick

    2011-07-01

    Visual cognition, high-level vision, mid-level vision and top-down processing all refer to decision-based scene analyses that combine prior knowledge with retinal input to generate representations. The label "visual cognition" is little used at present, but research and experiments on mid- and high-level, inference-based vision have flourished, becoming in the 21st century a significant, if often understated part, of current vision research. How does visual cognition work? What are its moving parts? This paper reviews the origins and architecture of visual cognition and briefly describes some work in the areas of routines, attention, surfaces, objects, and events (motion, causality, and agency). Most vision scientists avoid being too explicit when presenting concepts about visual cognition, having learned that explicit models invite easy criticism. What we see in the literature is ample evidence for visual cognition, but few or only cautious attempts to detail how it might work. This is the great unfinished business of vision research: at some point we will be done with characterizing how the visual system measures the world and we will have to return to the question of how vision constructs models of objects, surfaces, scenes, and events. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Exposure of unsuspecting workers to deadly atmospheres in below-ground confined spaces and investigation of related whole-air sample composition using adsorption gas chromatography.

    Science.gov (United States)

    Smith, Philip A; Lockhart, Bonnie; Besser, Brett W; Michalski, Michael A R

    2014-01-01

    Hazardous atmospheres in confined spaces may be obvious when a source of air contamination or oxygen (O2) deficiency is recognized. Such is often the case in general industry settings, especially with work processes which create hazardous atmospheres that may be anticipated. Hazards present in active sewers are also well recognized; but the possibility that O2 deficiency or high airborne contaminant concentrations may exist in new construction sewers or storm drains has been repeatedly ignored with deadly results. Low O2 and high carbon dioxide (CO2) concentrations may exist in new construction manholes that have not yet been connected to an active sewer or drain system, and these concentrations have been shown to vary over time. A recent incident is described where workers repeatedly entered such a confined space without incident, but subsequent entry resulted in a fatality and a near-miss for a co-worker rescuer. Additional cases are discussed, with an emphasis placed on elevated CO2 concentrations as a causative factor. A description is provided for the adsorptive gas chromatography whole-air analysis methodology used to quantitatively determine atmospheric conditions present at this type of fatality site or others after an incident, and for the gas chromatography-mass spectrometry method used to provide confirmation of analyte identity with high certainty. Many types of confined spaces may be encountered in addition to the underground varieties discussed, and many possible atmospheric hazards are possible. The definitive whole-air analysis approach described here may be of use and should be considered to investigate many confined space fatality and near-miss cases, and to better understand the causes of dangerous atmosphere conditions that may arise in confined spaces.

  9. Thinking Visually about Algebra

    Science.gov (United States)

    Baroudi, Ziad

    2015-01-01

    Many introductions to algebra in high school begin with teaching students to generalise linear numerical patterns. This article argues that this approach needs to be changed so that students encounter variables in the context of modelling visual patterns so that the variables have a meaning. The article presents sample classroom activities,…

  10. Network Visualization Project (NVP)

    Science.gov (United States)

    2016-07-01

    Application data flow .............................................................................2 Fig. 2 Sample JSON data...interface supporting improved network analysis and network communication visualization. 2. Application Design NVP consists of 2 parts: back-end data...notation ( JSON ) format. This JSON is provided as input to the front-end application of the project. This interaction of the user with the back-end

  11. Visual cognition

    Energy Technology Data Exchange (ETDEWEB)

    Pinker, S.

    1985-01-01

    This book consists of essays covering issues in visual cognition presenting experimental techniques from cognitive psychology, methods of modeling cognitive processes on computers from artificial intelligence, and methods of studying brain organization from neuropsychology. Topics considered include: parts of recognition; visual routines; upward direction; mental rotation, and discrimination of left and right turns in maps; individual differences in mental imagery, computational analysis and the neurological basis of mental imagery: componental analysis.

  12. Visual search, visual streams, and visual architectures.

    Science.gov (United States)

    Green, M

    1991-10-01

    Most psychological, physiological, and computational models of early vision suggest that retinal information is divided into a parallel set of feature modules. The dominant theories of visual search assume that these modules form a "blackboard" architecture: a set of independent representations that communicate only through a central processor. A review of research shows that blackboard-based theories, such as feature-integration theory, cannot easily explain the existing data. The experimental evidence is more consistent with a "network" architecture, which stresses that: (1) feature modules are directly connected to one another, (2) features and their locations are represented together, (3) feature detection and integration are not distinct processing stages, and (4) no executive control process, such as focal attention, is needed to integrate features. Attention is not a spotlight that synthesizes objects from raw features. Instead, it is better to conceptualize attention as an aperture which masks irrelevant visual information.

  13. Controlled Directional Solidification of Aluminum - 7 wt Percent Silicon Alloys: Comparison Between Samples Processed on Earth and in the Microgravity Environment Aboard the International Space Station

    Science.gov (United States)

    Grugel, Richard N.; Tewari, Surendra N.; Erdman, Robert G.; Poirier, David R.

    2012-01-01

    An overview of the international "MIcrostructure Formation in CASTing of Technical Alloys" (MICAST) program is given. Directional solidification processing of metals and alloys is described, and why experiments conducted in the microgravity environment aboard the International Space Station (ISS) are expected to promote our understanding of this commercially relevant practice. Microstructural differences observed when comparing the aluminum - 7 wt% silicon alloys directionally solidified on Earth to those aboard the ISS are presented and discussed.

  14. The prevalence and cognitive profile of sequence-space synaesthesia.

    Science.gov (United States)

    Ward, Jamie; Ipser, Alberta; Phanvanova, Eva; Brown, Paris; Bunte, Iris; Simner, Julia

    2018-05-01

    People with sequence-space synaesthesia visualize sequential concepts such as numbers and time as an ordered pattern extending through space. Unlike other types of synaesthesia, there is no generally agreed objective method for diagnosing this variant or separating it from potentially related aspects of cognition. We use a recently-developed spatial consistency test together with a novel questionnaire on naïve samples and estimate the prevalence of sequence-space synaesthesia to be around 8.1% (Study 1) to 12.8% (Study 2). We validate our test by showing that participants classified as having sequence-space synaesthesia perform differently on lab-based tasks. They show a spatial Stroop-like interference response, they show enhanced detection of low visibility Gabor stimuli, they report more use of visual imagery, and improved memory for certain types of public events. We suggest that sequence-space synaesthesia develops from a particular neurocognitive profile linked both to greater visual imagery and enhanced visual perception. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. New experimental space for irradiating samples by RA reactor fast neutron flux at temperatures up to 100 deg C; Novi eksperimentalni prostori namenjeni ozracivanju uzoraka u fluksu brzih neutrona na temperaturama do 100{sup 0} C na reaktoru RA

    Energy Technology Data Exchange (ETDEWEB)

    Pavicevic, M; Novakovic, M; Zecevic, V [Boris Kidric Institute of nuclear sciences, Vinca, Belgrade (Yugoslavia)

    1961-07-01

    The objective of this paper is to present adaptation of the RA reactor which would enable samples irradiation by fast neutrons and describe new experimental possibilities. New experimental space was achieved using hollow fuel elements which have been reconstructed to enable placement of irradiation capsules inside the tube. This paper includes thermal analysis and describes problems related to operation, safety and radiation protection issues which arise from using reconstructed fuel elements.

  16. Visual coherence for large-scale line-plot visualizations

    KAUST Repository

    Muigg, Philipp

    2011-06-01

    Displaying a large number of lines within a limited amount of screen space is a task that is common to many different classes of visualization techniques such as time-series visualizations, parallel coordinates, link-node diagrams, and phase-space diagrams. This paper addresses the challenging problems of cluttering and overdraw inherent to such visualizations. We generate a 2x2 tensor field during line rasterization that encodes the distribution of line orientations through each image pixel. Anisotropic diffusion of a noise texture is then used to generate a dense, coherent visualization of line orientation. In order to represent features of different scales, we employ a multi-resolution representation of the tensor field. The resulting technique can easily be applied to a wide variety of line-based visualizations. We demonstrate this for parallel coordinates, a time-series visualization, and a phase-space diagram. Furthermore, we demonstrate how to integrate a focus+context approach by incorporating a second tensor field. Our approach achieves interactive rendering performance for large data sets containing millions of data items, due to its image-based nature and ease of implementation on GPUs. Simulation results from computational fluid dynamics are used to evaluate the performance and usefulness of the proposed method. © 2011 The Author(s).

  17. Visual coherence for large-scale line-plot visualizations

    KAUST Repository

    Muigg, Philipp; Hadwiger, Markus; Doleisch, Helmut; Grö ller, Eduard M.

    2011-01-01

    Displaying a large number of lines within a limited amount of screen space is a task that is common to many different classes of visualization techniques such as time-series visualizations, parallel coordinates, link-node diagrams, and phase-space diagrams. This paper addresses the challenging problems of cluttering and overdraw inherent to such visualizations. We generate a 2x2 tensor field during line rasterization that encodes the distribution of line orientations through each image pixel. Anisotropic diffusion of a noise texture is then used to generate a dense, coherent visualization of line orientation. In order to represent features of different scales, we employ a multi-resolution representation of the tensor field. The resulting technique can easily be applied to a wide variety of line-based visualizations. We demonstrate this for parallel coordinates, a time-series visualization, and a phase-space diagram. Furthermore, we demonstrate how to integrate a focus+context approach by incorporating a second tensor field. Our approach achieves interactive rendering performance for large data sets containing millions of data items, due to its image-based nature and ease of implementation on GPUs. Simulation results from computational fluid dynamics are used to evaluate the performance and usefulness of the proposed method. © 2011 The Author(s).

  18. Systematic sampling with errors in sample locations

    DEFF Research Database (Denmark)

    Ziegel, Johanna; Baddeley, Adrian; Dorph-Petersen, Karl-Anton

    2010-01-01

    analysis using point process methods. We then analyze three different models for the error process, calculate exact expressions for the variances, and derive asymptotic variances. Errors in the placement of sample points can lead to substantial inflation of the variance, dampening of zitterbewegung......Systematic sampling of points in continuous space is widely used in microscopy and spatial surveys. Classical theory provides asymptotic expressions for the variance of estimators based on systematic sampling as the grid spacing decreases. However, the classical theory assumes that the sample grid...... is exactly periodic; real physical sampling procedures may introduce errors in the placement of the sample points. This paper studies the effect of errors in sample positioning on the variance of estimators in the case of one-dimensional systematic sampling. First we sketch a general approach to variance...

  19. Visual comparison for information visualization

    KAUST Repository

    Gleicher, M.; Albers, D.; Walker, R.; Jusufi, I.; Hansen, C. D.; Roberts, J. C.

    2011-01-01

    Data analysis often involves the comparison of complex objects. With the ever increasing amounts and complexity of data, the demand for systems to help with these comparisons is also growing. Increasingly, information visualization tools support such comparisons explicitly, beyond simply allowing a viewer to examine each object individually. In this paper, we argue that the design of information visualizations of complex objects can, and should, be studied in general, that is independently of what those objects are. As a first step in developing this general understanding of comparison, we propose a general taxonomy of visual designs for comparison that groups designs into three basic categories, which can be combined. To clarify the taxonomy and validate its completeness, we provide a survey of work in information visualization related to comparison. Although we find a great diversity of systems and approaches, we see that all designs are assembled from the building blocks of juxtaposition, superposition and explicit encodings. This initial exploration shows the power of our model, and suggests future challenges in developing a general understanding of comparative visualization and facilitating the development of more comparative visualization tools. © The Author(s) 2011.

  20. Visual comparison for information visualization

    KAUST Repository

    Gleicher, M.

    2011-09-07

    Data analysis often involves the comparison of complex objects. With the ever increasing amounts and complexity of data, the demand for systems to help with these comparisons is also growing. Increasingly, information visualization tools support such comparisons explicitly, beyond simply allowing a viewer to examine each object individually. In this paper, we argue that the design of information visualizations of complex objects can, and should, be studied in general, that is independently of what those objects are. As a first step in developing this general understanding of comparison, we propose a general taxonomy of visual designs for comparison that groups designs into three basic categories, which can be combined. To clarify the taxonomy and validate its completeness, we provide a survey of work in information visualization related to comparison. Although we find a great diversity of systems and approaches, we see that all designs are assembled from the building blocks of juxtaposition, superposition and explicit encodings. This initial exploration shows the power of our model, and suggests future challenges in developing a general understanding of comparative visualization and facilitating the development of more comparative visualization tools. © The Author(s) 2011.

  1. Developing Tests of Visual Dependency

    Science.gov (United States)

    Kindrat, Alexandra N.

    2011-01-01

    Astronauts develop neural adaptive responses to microgravity during space flight. Consequently these adaptive responses cause maladaptive disturbances in balance and gait function when astronauts return to Earth and are re-exposed to gravity. Current research in the Neuroscience Laboratories at NASA-JSC is focused on understanding how exposure to space flight produces post-flight disturbances in balance and gait control and developing training programs designed to facilitate the rapid recovery of functional mobility after space flight. In concert with these disturbances, astronauts also often report an increase in their visual dependency during space flight. To better understand this phenomenon, studies were conducted with specially designed training programs focusing on visual dependency with the aim to understand and enhance subjects ability to rapidly adapt to novel sensory situations. The Rod and Frame test (RFT) was used first to assess an individual s visual dependency, using a variety of testing techniques. Once assessed, subjects were asked to perform two novel tasks under transformation (both the Pegboard and Cube Construction tasks). Results indicate that head position cues and initial visual test conditions had no effect on an individual s visual dependency scores. Subjects were also able to adapt to the manual tasks after several trials. Individual visual dependency correlated with ability to adapt manual to a novel visual distortion only for the cube task. Subjects with higher visual dependency showed decreased ability to adapt to this task. Ultimately, it was revealed that the RFT may serve as an effective prediction tool to produce individualized adaptability training prescriptions that target the specific sensory profile of each crewmember.

  2. Reconstruction and visualization of nanoparticle composites by transmission electron tomography

    Energy Technology Data Exchange (ETDEWEB)

    Wang, X.Y. [National Institute for Nanotechnology, 11421 Saskatchewan Drive, Edmonton, Canada T6H 2M9 (Canada); Department of Physics, University of Alberta, Edmonton, Canada T6G 2G7 (Canada); Lockwood, R. [National Institute for Nanotechnology, 11421 Saskatchewan Drive, Edmonton, Canada T6H 2M9 (Canada); Malac, M., E-mail: marek.malac@nrc-cnrc.gc.ca [National Institute for Nanotechnology, 11421 Saskatchewan Drive, Edmonton, Canada T6H 2M9 (Canada); Department of Physics, University of Alberta, Edmonton, Canada T6G 2G7 (Canada); Furukawa, H. [SYSTEM IN FRONTIER INC., 2-8-3, Shinsuzuharu bldg. 4F, Akebono-cho, Tachikawa-shi, Tokyo 190-0012 (Japan); Li, P.; Meldrum, A. [National Institute for Nanotechnology, 11421 Saskatchewan Drive, Edmonton, Canada T6H 2M9 (Canada)

    2012-02-15

    This paper examines the limits of transmission electron tomography reconstruction methods for a nanocomposite object composed of many closely packed nanoparticles. Two commonly used reconstruction methods in TEM tomography were examined and compared, and the sources of various artefacts were explored. Common visualization methods were investigated, and the resulting 'interpretation artefacts' ( i.e., deviations from 'actual' particle sizes and shapes arising from the visualization) were determined. Setting a known or estimated nanoparticle volume fraction as a criterion for thresholding does not in fact give a good visualization. Unexpected effects associated with common built-in image filtering methods were also found. Ultimately, this work set out to establish the common problems and pitfalls associated with electron beam tomographic reconstruction and visualization of samples consisting of closely spaced nanoparticles. -- Highlights: Black-Right-Pointing-Pointer Electron tomography limits were explored by both experiment and simulation. Black-Right-Pointing-Pointer Reliable quantitative volumetry using electron tomography is not presently feasible. Black-Right-Pointing-Pointer Volume rendering appears to be better choice for visualization of composite samples.

  3. Rationale and Methods for Archival Sampling and Analysis of Atmospheric Trace Chemical Contaminants On Board Mir and Recommendations for the International Space Station

    Science.gov (United States)

    Perry, J. L.; James, J. T.; Cole, H. E.; Limero, T. F.; Beck, S. W.

    1997-01-01

    Collection and analysis of spacecraft cabin air samples are necessary to assess the cabin air quality with respect to crew health. Both toxicology and engineering disciplines work together to achieve an acceptably clean cabin atmosphere. Toxicology is concerned with limiting the risk to crew health from chemical sources, setting exposure limits, and analyzing air samples to determine how well these limits are met. Engineering provides the means for minimizing the contribution of the various contaminant generating sources by providing active contamination control equipment on board spacecraft and adhering to a rigorous material selection and control program during the design and construction of the spacecraft. A review of the rationale and objectives for sampling spacecraft cabin atmospheres is provided. The presently-available sampling equipment and methods are reviewed along with the analytical chemistry methods employed to determine trace contaminant concentrations. These methods are compared and assessed with respect to actual cabin air quality monitoring needs. Recommendations are presented with respect to the basic sampling program necessary to ensure an acceptably clean spacecraft cabin atmosphere. Also, rationale and recommendations for expanding the scope of the basic monitoring program are discussed.

  4. Visualizing Transformation

    DEFF Research Database (Denmark)

    Pedersen, Pia

    2012-01-01

    Transformation, defined as the step of extracting, arranging and simplifying data into visual form (M. Neurath, 1974), was developed in connection with ISOTYPE (International System Of TYpographic Picture Education) and might well be the most important legacy of Isotype to the field of graphic...... design. Recently transformation has attracted renewed interest because of the book The Transformer written by Robin Kinross and Marie Neurath. My on-going research project, summarized in this paper, identifies and depicts the essential principles of data visualization underlying the process...... of transformation with reference to Marie Neurath’s sketches on the Bilston Project. The material has been collected at the Otto and Marie Neurath Collection housed at the University of Reading, UK. By using data visualization as a research method to look directly into the process of transformation, the project...

  5. Student Visual Communication of Evolution

    Science.gov (United States)

    Oliveira, Alandeom W.; Cook, Kristin

    2017-06-01

    Despite growing recognition of the importance of visual representations to science education, previous research has given attention mostly to verbal modalities of evolution instruction. Visual aspects of classroom learning of evolution are yet to be systematically examined by science educators. The present study attends to this issue by exploring the types of evolutionary imagery deployed by secondary students. Our visual design analysis revealed that students resorted to two larger categories of images when visually communicating evolution: spatial metaphors (images that provided a spatio-temporal account of human evolution as a metaphorical "walk" across time and space) and symbolic representations ("icons of evolution" such as personal portraits of Charles Darwin that simply evoked evolutionary theory rather than metaphorically conveying its conceptual contents). It is argued that students need opportunities to collaboratively critique evolutionary imagery and to extend their visual perception of evolution beyond dominant images.

  6. Superposition Enhanced Nested Sampling

    Directory of Open Access Journals (Sweden)

    Stefano Martiniani

    2014-08-01

    Full Text Available The theoretical analysis of many problems in physics, astronomy, and applied mathematics requires an efficient numerical exploration of multimodal parameter spaces that exhibit broken ergodicity. Monte Carlo methods are widely used to deal with these classes of problems, but such simulations suffer from a ubiquitous sampling problem: The probability of sampling a particular state is proportional to its entropic weight. Devising an algorithm capable of sampling efficiently the full phase space is a long-standing problem. Here, we report a new hybrid method for the exploration of multimodal parameter spaces exhibiting broken ergodicity. Superposition enhanced nested sampling combines the strengths of global optimization with the unbiased or athermal sampling of nested sampling, greatly enhancing its efficiency with no additional parameters. We report extensive tests of this new approach for atomic clusters that are known to have energy landscapes for which conventional sampling schemes suffer from broken ergodicity. We also introduce a novel parallelization algorithm for nested sampling.

  7. Waste Tank Vapor Program: Vapor space characterization of waste tank 241-T-111. Results from samples collected on January 20, 1995

    International Nuclear Information System (INIS)

    Klinger, G.S.; Clauss, T.W.; Ligotke, M.W.; Pool, K.H.; McVeety, B.D.; Olsen, K.B.; Bredt, O.P.; Fruchter, J.S.; Goheen, S.C.

    1995-10-01

    This document presents the details of the inorganic and organic analysis that was performed on samples from the headspace of Hanford waste tank 241-T-111. The results described were obtained to support the safety and toxicological evaluations. A summary of the results for the inorganic and organic analytes is included, as well as, a detailed description of the results which appears in the text

  8. Waste Tank Vapor Program: Vapor space characterization of waste tank 241; C-102: Results from samples collected on August 23, 1994

    International Nuclear Information System (INIS)

    Klinger, G.S.; Clauss, T.W.; Ligotke, M.W.

    1995-10-01

    This document presents the details of the inorganic and organic analysis that was performed on samples from the headspace of Hanford waste tank 241-C-102. The results described were obtained to support the safety and toxicological evaluations. A summary of the results for the inorganic and organic analytes is included, as well as, a detailed description of the results which appears in the text

  9. Vapor space characterization of waste tank 241-U-111: Results from samples collected on February 28, 1995. Waste Tank Vapor Program

    International Nuclear Information System (INIS)

    Clauss, T.W.; Pool, K.H.; McVeety, B.D.; Bredt, O.P.; Goheen, S.C.; Ligotke, M.W.; Lucke, R.B.; Klinger, G.S.; Fruchter, J.S.

    1995-07-01

    This document presents the details of the inorganic and organic analysis that was performed on samples from the headspace of Hanford waste tank 241-U-111. The results described were obtained to support the safety and toxicological evaluations. A summary of the results for the inorganic and organic analytes is included, as well as, a detailed description of the results which appears in the text

  10. Vapor space characterization of waste Tank 241-U-106: Results from samples collected on March 7, 1995. Waste Tank Vapor Program

    International Nuclear Information System (INIS)

    Klinger, G.S.; Lucke, R.B.; McVeety, B.D.

    1995-07-01

    This report describes inorganic and organic analyses results from samples obtained from the headspace of the Hanford waste storage Tank 241-U-106 (referred to as Tank U-106). The results described here were obtained to support safety and toxicological evaluations. Quantitative results were obtained for the inorganic compounds ammonia (NH 3 ), nitrogen dioxide (NO 2 ), nitric oxide (NO), and water (H 2 O) Sampling for hydrogen cyanide (HCN) and sulfur oxides (SO x ) was not requested. The NH 3 concentration was 16% greater than that determined from an ISS sample obtained in August 1994; the H 2 O concentration was about 10% less. In addition, quantitative results were obtained for the 39 TO-14 compounds plus an additional 14 analytes. Of these, 5 were observed in two or more canisters above the 5-ppbv reporting cutoff. Eleven organic tentatively identified compounds (TICS) were observed in two or more canisters above the reporting cutoff of (ca.) 10 ppbv and are reported with concentrations that are semiquantitative estimates based on internal-standard response factors. The 10 organic analytes with the highest estimated concentrations account for approximately 90% of the total organic components in Tank U-106. Three permanent gases, nitrous oxide (N 2 O), hydrogen (H 2 ) and carbon dioxide (COD were also detected

  11. Waste Tank Vapor Program: Vapor space characterization of Waste Tank 241-T-107. Results from samples collected on January 18, 1995

    International Nuclear Information System (INIS)

    Pool, K.H.; Lucke, R.B.; McVeety, B.D.

    1995-06-01

    This report describes inorganic and organic analyses results from samples obtained from the headspace of the Hanford waste storage Tank 241-T-107 (referred to as Tank T-107). The results described here were obtained to support safety and toxicological evaluations. A summary of the results for inorganic and organic analytes is listed in Table 1. Detailed descriptions of the results appear in the text. Quantitative results were obtained for the inorganic compounds ammonia (NH 3 ), nitrogen dioxide (NO 2 ), nitric oxide (NO), and water (H 2 O). Sampling for hydrogen cyanide (HCN) and sulfur oxides (SO x ) was not requested. In addition, quantitative results were obtained for the 39 TO-14 compounds plus an additional 14 analytes. Of these, I was observed above the 5-ppbv reporting cutoff. Six organic tentatively identified compounds (TICs) were observed above the reporting cutoff of (ca.) 10 ppbv and are reported with concentrations that are semiquantitative estimates based on internal-standard response factors. The estimated concentration of all 7 organic analytes observed in the tank headspace are listed in Table I and account for approximately 100% of the total organic components in Tank T-107. Two permanent gases, carbon dioxide (CO 2 ) and nitrous oxide (N 2 O), were also detected in the tank-headspace samples

  12. Visualizing Series

    Science.gov (United States)

    Unal, Hasan

    2008-01-01

    The importance of visualisation and multiple representations in mathematics has been stressed, especially in a context of problem solving. Hanna and Sidoli comment that "Diagrams and other visual representations have long been welcomed as heuristic accompaniments to proof, where they not only facilitate the understanding of theorems and their…

  13. Visual Form Detection in 3-Dimensional Space.

    Science.gov (United States)

    1982-10-01

    34 ahead of "intellectualism" and "experimentation" was waning. Both Thomas Hobbes (1588-1679) and Rene Descartes (1596-1650), enlightened by advances in...from this time -- the seventeenth century - more than any other. Despite the residual theology in Descartes ’ concept of mind, his theories are...essentially naturalistic and biological. Thev invoke supernatural entities only in passing. Though a mind- body dlualist, Descartes (lid accept the notion

  14. Visual Data Mining of Robot Performance Data, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to design and develop VDM/RP, a visual data mining system that will enable analysts to acquire, store, query, analyze, and visualize recent and historical...

  15. 5D Task Analysis Visualization Tool Phase II, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The creation of a five-dimensional task analysis visualization (5D-TAV) software tool for Task Analysis and Workload Planning using multi-dimensional visualization...

  16. 5D Task Analysis Visualization Tool, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The creation of a five-dimensional task analysis visualization (5D-TAV) software tool for Task Analysis and Workload Planning using multi-dimensional visualization...

  17. Space Use in the Commons: Evaluating a Flexible Library Environment

    Directory of Open Access Journals (Sweden)

    Andrew D. Asher

    2017-06-01

    Full Text Available Abstract Objective – This article evaluates the usage and user experience of the Herman B Wells Library’s Learning Commons, a newly renovated technology and learning centre that provides services and spaces tailored to undergraduates’ academic needs at Indiana University Bloomington (IUB. Methods – A mixed-method research protocol combining time-lapse photography, unobtrusive observation, and random-sample surveys was employed to construct and visualize a representative usage and activity profile for the Learning Commons space. Results – Usage of the Learning Commons by particular student groups varied considerably from expectations based on student enrollments. In particular, business, first and second year students, and international students used the Learning Commons to a higher degree than expected, while humanities students used it to a much lower degree. While users were satisfied with the services provided and the overall atmosphere of the space, they also experienced the negative effects of insufficient space and facilities due to the space often operating at or near its capacity. Demand for collaboration rooms and computer workstations was particularly high, while additional evidence suggests that the Learning Commons furniture mix may not adequately match users’ needs. Conclusions – This study presents a unique approach to space use evaluation that enables researchers to collect and visualize representative observational data. This study demonstrates a model for quickly and reliably assessing space use for open-plan and learning-centred academic environments and for evaluating how well these learning spaces fulfill their institutional mission.

  18. Mapping glaucoma patients' 30-2 and 10-2 visual fields reveals clusters of test points damaged in the 10-2 grid that are not sampled in the sparse 30-2 grid.

    Directory of Open Access Journals (Sweden)

    Ryo Asaoka

    Full Text Available PURPOSE: To cluster test points in glaucoma patients' 30-2 and 10-2 visual field (VF (Humphrey Field Analyzer: HFA, Carl Zeiss Meditec, Dublin, CA in order to map the different regions damaged by the disease. METHOD: This retrospective study included 128 eyes from 128 patients. 142 total deviation (TD values (74 from the 30-2 VF and 68 from the 10-2 VF were clustered using the 'Hierarchical Ordered Partitioning And Collapsing Hybrid-Partitioning Around Medoids' algorithm. The stability of the identified clusters was evaluated using bootstrapping. RESULTS: 65 sectors were identified in total: 38 sectors were located outside the 10-2 VF whereas 29 sectors were located inside the 10-2 VF (two sectors overlap in both grids. The mapping of many sectors appeared to follow the distribution of retinal nerve fiber bundles. The results of bootstrapping suggested clusters were stable whether they were outside or inside the 10-2 VF. CONCLUSION: A considerable number of sectors were identified in the 10-2 VF area, despite the fact that clustering was carried out on all points in both the 30-2 VF and 10-2 VF simultaneously. These findings suggest that glaucomatous central VF deterioration cannot be picked up by the 30-2 test grid alone, because of poor spatial sampling; denser estimation of the central ten degrees, than offered by the 30-2 test grid alone, is needed. It may be beneficial to develop a new VF test grid that combines test points from 30-2 and 10-2 VFs--the results of this study could help to devise this test grid.

  19. Free-breathing contrast-enhanced T1-weighted gradient-echo imaging with radial k-space sampling for paediatric abdominopelvic MRI

    Energy Technology Data Exchange (ETDEWEB)

    Chandarana, Hersh; Block, Kai T.; Winfeld, Matthew J.; Lala, Shailee V.; Mazori, Daniel; Giuffrida, Emalyn; Babb, James S.; Milla, Sarah S. [New York University Langone Medical Center, Department of Radiology, New York, NY (United States)

    2014-02-15

    To compare the image quality of contrast-enhanced abdominopelvic 3D fat-suppressed T1-weighted gradient-echo imaging with radial and conventional Cartesian k-space acquisition schemes in paediatric patients. Seventy-three consecutive paediatric patients were imaged at 1.5 T with sequential contrast-enhanced T1-weighted Cartesian (VIBE) and radial gradient echo (GRE) acquisition schemes with matching parameters when possible. Cartesian VIBE was acquired as a breath-hold or as free breathing in patients who could not suspend respiration, followed by free-breathing radial GRE in all patients. Two paediatric radiologists blinded to the acquisition schemes evaluated multiple parameters of image quality on a five-point scale, with higher score indicating a more optimal examination. Lesion presence or absence, conspicuity and edge sharpness were also evaluated. Mixed-model analysis of variance was performed to compare radial GRE and Cartesian VIBE. Radial GRE had significantly (all P < 0.001) higher scores for overall image quality, hepatic edge sharpness, hepatic vessel clarity and respiratory motion robustness than Cartesian VIBE. More lesions were detected on radial GRE by both readers than on Cartesian VIBE, with significantly higher scores for lesion conspicuity and edge sharpness (all P < 0.001). Radial GRE has better image quality and lesion conspicuity than conventional Cartesian VIBE in paediatric patients undergoing contrast-enhanced abdominopelvic MRI. (orig.)

  20. Visualization of the sequence of a couple splitting outside shop

    DEFF Research Database (Denmark)

    2015-01-01

    Visualization of tracks of couple walking together before splitting and one goes into shop the other waits outside. The visualization represents the sequence described in figure 7 in the publication 'Taking the temperature of pedestrian movement in public spaces'......Visualization of tracks of couple walking together before splitting and one goes into shop the other waits outside. The visualization represents the sequence described in figure 7 in the publication 'Taking the temperature of pedestrian movement in public spaces'...

  1. AND/OR Importance Sampling

    OpenAIRE

    Gogate, Vibhav; Dechter, Rina

    2012-01-01

    The paper introduces AND/OR importance sampling for probabilistic graphical models. In contrast to importance sampling, AND/OR importance sampling caches samples in the AND/OR space and then extracts a new sample mean from the stored samples. We prove that AND/OR importance sampling may have lower variance than importance sampling; thereby providing a theoretical justification for preferring it over importance sampling. Our empirical evaluation demonstrates that AND/OR importance sampling is ...

  2. Visual Descriptor Learning for Predicting Grasping Affordances

    DEFF Research Database (Denmark)

    Thomsen, Mikkel Tang

    2016-01-01

    by the task of grasping unknown objects given visual sensor information. The contributions from this thesis stem from three works that all relate to the task of grasping unknown objects but with particular focus on the visual representation part of the problem. First an investigation of a visual feature space...... consisting of surface features was performed. Dimensions in the visual space were varied and the effects were evaluated with the task of grasping unknown object. The evaluation was performed using a novel probabilistic grasp prediction approach based on neighbourhood analysis. The resulting success......-rates for predicting grasps were between 75% and 90% depending on the object class. The investigations also provided insights into the importance of selecting a proper visual feature space when utilising it for predicting affordances. As a consequence of the gained insights, a semi-local surface feature, the Sliced...

  3. Visual Storytelling

    OpenAIRE

    Ting-Hao; Huang; Ferraro, Francis; Mostafazadeh, Nasrin; Misra, Ishan; Agrawal, Aishwarya; Devlin, Jacob; Girshick, Ross; He, Xiaodong; Kohli, Pushmeet; Batra, Dhruv; Zitnick, C. Lawrence; Parikh, Devi; Vanderwende, Lucy; Galley, Michel

    2016-01-01

    We introduce the first dataset for sequential vision-to-language, and explore how this data may be used for the task of visual storytelling. The first release of this dataset, SIND v.1, includes 81,743 unique photos in 20,211 sequences, aligned to both descriptive (caption) and story language. We establish several strong baselines for the storytelling task, and motivate an automatic metric to benchmark progress. Modelling concrete description as well as figurative and social language, as prov...

  4. Flow visualization

    International Nuclear Information System (INIS)

    Weinstein, L.M.

    1991-01-01

    Flow visualization techniques are reviewed, with particular attention given to those applicable to liquid helium flows. Three techniques capable of obtaining qualitative and quantitative measurements of complex 3D flow fields are discussed including focusing schlieren, particle image volocimetry, and holocinematography (HCV). It is concluded that the HCV appears to be uniquely capable of obtaining full time-varying, 3D velocity field data, but is limited to the low speeds typical of liquid helium facilities. 8 refs

  5. Future Of Visual Entertainment

    Science.gov (United States)

    Dryer, Ivan

    1983-10-01

    The development of new visual entertainment forms has and will continue to have a powerful impact on the direction of our society. Foremost among these new forms will be the Holo's--moving Holographic images of anything imaginable, projected in mid air (a room, a dome) and so lifelike they are virtually indistinguishable from "reality". The Holo's and space development will ultimately transform entertainment and in the process, humanity, too. Meanwhile, the seeds of these changes are now being planted in entertainment trends and innovations whose implications are just beginning to emerge.

  6. Integrated Visualization Environment for Science Mission Modeling, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed work will provide NASA with an integrated visualization environment providing greater insight and a more intuitive representation of large technical...

  7. A Flexible Framework for Collaborative Visualization Applications using JAVASPACES

    National Research Council Canada - National Science Library

    Butler, Sean

    2001-01-01

    ...(Trademark), a high-level network programming API. This thesis describes a tool for developing collaborative visualization software using JavaSpaces-an application framework and accompanying toolkit...

  8. Genome U-Plot: a whole genome visualization.

    Science.gov (United States)

    Gaitatzes, Athanasios; Johnson, Sarah H; Smadbeck, James B; Vasmatzis, George

    2018-05-15

    The ability to produce and analyze whole genome sequencing (WGS) data from samples with structural variations (SV) generated the need to visualize such abnormalities in simplified plots. Conventional two-dimensional representations of WGS data frequently use either circular or linear layouts. There are several diverse advantages regarding both these representations, but their major disadvantage is that they do not use the two-dimensional space very efficiently. We propose a layout, termed the Genome U-Plot, which spreads the chromosomes on a two-dimensional surface and essentially quadruples the spatial resolution. We present the Genome U-Plot for producing clear and intuitive graphs that allows researchers to generate novel insights and hypotheses by visualizing SVs such as deletions, amplifications, and chromoanagenesis events. The main features of the Genome U-Plot are its layered layout, its high spatial resolution and its improved aesthetic qualities. We compare conventional visualization schemas with the Genome U-Plot using visualization metrics such as number of line crossings and crossing angle resolution measures. Based on our metrics, we improve the readability of the resulting graph by at least 2-fold, making apparent important features and making it easy to identify important genomic changes. A whole genome visualization tool with high spatial resolution and improved aesthetic qualities. An implementation and documentation of the Genome U-Plot is publicly available at https://github.com/gaitat/GenomeUPlot. vasmatzis.george@mayo.edu. Supplementary data are available at Bioinformatics online.

  9. Vapor space characterization of waste Tank 241-C-104: Results from samples collected on 2/17/94 and 3/3/94

    International Nuclear Information System (INIS)

    Lucke, R.B.; McVeety, B.D.; Clauss, T.W.; Pool, K.H.; Young, J.S.; McCulloch, M.; Ligotke, M.W.; Fruchter, J.S.; Goheen, S.C.

    1995-10-01

    This report describes inorganic and organic analyses results from samples obtained from the headspace of the Hanford waste storage Tank 241-C-104 (referred to as Tank C-104). The results described here were obtained to support safety and toxicological evaluations. A summary of the results for inorganic and organic analytes is listed in Summary Table 1. Detailed descriptions of the results appear in the text. Quantitative results were obtained for the inorganic compounds ammonia (NH 3 ), nitrogen dioxide (NO 2 ), nitric oxide (NO), sulfur oxides (SO x ), and water vapor (H 2 O). Organic compounds were also quantitatively determined. Occupational Safety and Health Administration (OSHA) versatile sampler (OVS) tubes were analyzed for tributyl phosphate. Twenty-four organic tentatively identified compounds (TICs) were observed above the detection limit of (ca.) 10 ppbv, but standards for most of these were not available at the time of analysis, and the reported concentrations are semiquantitative estimates. In addition, the authors looked for the 40 standard TO-14 analytes. Of these, two were observed above the 2-ppbv calibrated instrument detection limit. The 10 organic analytes with the highest estimated concentrations are listed in Summary Table 1. These 10 analytes account for approximately 88% of the total organic components in Tank C 104. Tank C-104 is not on any of the Watch Lists

  10. Imagined Spaces: Motion Graphics in Performance Spaces

    DEFF Research Database (Denmark)

    Steijn, Arthur

    2016-01-01

    through theories drawn from two different fields. The first is from the field of direct visual perception as explored and described by the American psychologist J. J. Gibson. I supplement this angle by introducing relevant new media theories extracted from writings from L. Manovich. I also briefly...... introduce a second theoretic perspective from neuroscience, especially neurological theories related to aesthetic experiences as studied, categorized and explained by V. S. Ramachandran. Key Words: Motion graphics, video projections, space, direct visual perception, design process, new media, neuroscience...

  11. Space Environmental Effects on Colored Coatings and Anodizes

    Science.gov (United States)

    Kamenetzky, Rachel R.; Finckenor, Miria M.; Vaughn, Jason A.

    1999-01-01

    Colored coatings and anodizes are used on spacecraft as markers and astronaut visual aids. These materials must be stable in the space environment and withstand atomic oxygen, ultraviolet radiation, particulate radiation, thermal cycling, and high vacuum without significant change in optical and mechanical properties. A variety of colored coatings and anodizes have been exposed to simulated space environments at Marshall Space Flight Center and also actual space environment as part of the Passive Optical Sample Assembly (POSA) - I flight experiment. Colored coatings were developed by AZ Technology, Huntsville, AL, under a NASA contract for International Space Station (ISS). These include yellow, red, blue, and black paints suitable for Extra-Vehicular Activity (EVA) visual aids and ISS emblems. AaChron, Inc., Minneapolis, MN, developed stable colored anodizes, also in yellow, red, blue, and black, for astronaut visual aids. These coatings were exposed in the laboratory to approximately 550 equivalent sun-hours of solar ultraviolet radiation and approximately 1 x 10(exp 21) atoms/sq cm of atomic oxygen in vacuum. The AZ Technology yellow colored coating, designated TMS800IY, and all four AaChron colored anodizes were flown on POSA-I. POSA-I was a Risk Mitigation Experiment for ISS. It was attached to the exterior of the Mir space station docking module by EVA and was exposed for 18 months. The laboratory-simulated space environment, the natural space environment and the unique environment of an orbiting, active space station and their effects on these developmental materials are discussed.

  12. Visual-Spatial Thinking in Hypertexts.

    Science.gov (United States)

    Johnson-Sheehan, Richard; Baehr, Craig

    2001-01-01

    Explores what it means to think visually and spatially in hypertexts and how users react and maneuver in real and virtual three-dimensional spaces. Offers four principles of visual thinking that can be applied when developing hypertexts. Applies these principles to actual hypertexts, demonstrating how selectivity, fixation, depth discernment, and…

  13. Spatial Coding of Individuals with Visual Impairments

    Science.gov (United States)

    Papadopoulos, Konstantinos; Koustriava, Eleni; Kartasidou, Lefkothea

    2012-01-01

    The aim of this study is to examine the ability of children and adolescents with visual impairments to code and represent near space. Moreover, it examines the impact of the strategies they use and individual differences in their performance. A total of 30 individuals with visual impairments up to the age of 18 were given eight different object…

  14. Landmark Image Retrieval Using Visual Synonyms

    NARCIS (Netherlands)

    Gavves, E.; Snoek, C.G.M.

    2010-01-01

    In this paper, we consider the incoherence problem of the visual words in bag-of-words vocabularies. Different from existing work, which performs assignment of words based solely on closeness in descriptor space, we focus on identifying pairs of independent, distant words - the visual synonyms -

  15. Visual synonyms for landmark image retrieval

    NARCIS (Netherlands)

    Gavves, E.; Snoek, C.G.M.; Smeulders, A.W.M.

    2012-01-01

    In this paper, we address the incoherence problem of the visual words in bag-of-words vocabularies. Different from existing work, which assigns words based on closeness in descriptor space, we focus on identifying pairs of independent, distant words - the visual synonyms - that are likely to host

  16. Audio-Visual Classification of Sports Types

    DEFF Research Database (Denmark)

    Gade, Rikke; Abou-Zleikha, Mohamed; Christensen, Mads Græsbøll

    2015-01-01

    In this work we propose a method for classification of sports types from combined audio and visual features ex- tracted from thermal video. From audio Mel Frequency Cepstral Coefficients (MFCC) are extracted, and PCA are applied to reduce the feature space to 10 dimensions. From the visual modali...

  17. Visualizing Structure and Dynamics of Disaccharide Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Matthews, J. F.; Beckham, G. T.; Himmel, M. E.; Crowley, M. F.

    2012-01-01

    We examine the effect of several solvent models on the conformational properties and dynamics of disaccharides such as cellobiose and lactose. Significant variation in timescale for large scale conformational transformations are observed. Molecular dynamics simulation provides enough detail to enable insight through visualization of multidimensional data sets. We present a new way to visualize conformational space for disaccharides with Ramachandran plots.

  18. Visual sensations induced by Cherenkov radiation

    International Nuclear Information System (INIS)

    McNulty, P.J.; Pease, V.P.; Bond, V.P.

    1975-01-01

    Pulses of relativistic singly charged particles entering the eyeball induce a variety of visual phenomena by means of Cerenkov radiation generated during their passage through the vitreous. These phenomena are similar in appearance to many of the visual sensations experienced by Apollo astronauts exposed to the cosmic rays in deep space

  19. A monocular, unconscious form of visual attention

    NARCIS (Netherlands)

    Self, M.W.; Roelfsema, P.R.

    2010-01-01

    Sudden changes in our visual field capture our attention so that we are faster and more accurate in our responses to that region of space. The underlying mechanisms by which these behavioral improvements occur are unknown. Here we investigate the level of the visual system at which attentional

  20. Sample Return Robot

    Data.gov (United States)

    National Aeronautics and Space Administration — This Challenge requires demonstration of an autonomous robotic system to locate and collect a set of specific sample types from a large planetary analog area and...

  1. Retrospective comparison of three-dimensional imaging sequences in the visualization of posterior fossa cranial nerves.

    Science.gov (United States)

    Ors, Suna; Inci, Ercan; Turkay, Rustu; Kokurcan, Atilla; Hocaoglu, Elif

    2017-12-01

    To compare efficancy of three-dimentional SPACE (sampling perfection with application-optimized contrasts using different flip-angle evolutions) and CISS (constructive interference in steady state) sequences in the imaging of the cisternal segments of cranial nerves V-XII. Temporal MRI scans from 50 patients (F:M ratio, 27:23; mean age, 44.5±15.9 years) admitted to our hospital with vertigo, tinnitus, and hearing loss were retrospectively analyzed. All patients had both CISS and SPACE sequences. Quantitative analysis of SPACE and CISS sequences was performed by measuring the ventricle-to-parenchyma contrast-to-noise ratio (CNR). Qualitative analysis of differences in visualization capability, image quality, and severity of artifacts was also conducted. A score ranging 'no artefact' to 'severe artefacts and unreadable' was used for the assessment of artifacts and from 'not visualized' to 'completely visualized' for the assesment of image quality, respectively. The distribution of variables was controlled by the Kolmogorov-Smirnov test. Samples t-test and McNemar's test were used to determine statistical significance. Rates of visualization of posterior fossa cranial nerves in cases of complete visualization were as follows: nerve V (100% for both sequences), nerve VI (94% in SPACE, 86% in CISS sequences), nerves VII-VIII (100% for both sequences), IX-XI nerve complex (96%, 88%); nerve XII (58%, 46%) (p<0.05). SPACE sequences showed fewer artifacts than CISS sequences (p<0.002). Copyright © 2017 Elsevier B.V. All rights reserved.

  2. MELAHIRKAN IMPERATIF MORALITAS DALAM KARYA VISUAL

    Directory of Open Access Journals (Sweden)

    Obed Bima Wicandra

    2005-01-01

    Full Text Available Visual aesthetics in visual arts are more and more questioned in the context of open global culture. Works that lead to violence%2C pornography%2C lies%2C and other things far from morality and ethics%2C are faced with public s identity to follow their desire to fulfill their consumtive needs. The blossoming of visual works and their media stimulates the visual creators in expressing ideas and imagination. Created visual works must support a better cultural direction for human life. Faith in its relation to God plays a role in achieveing space for interaction%2C so that visual works can reflect codes or symbols in the cycle of ideology or cultural values that respect the essence of faith. Abstract in Bahasa Indonesia : Estetika visual dalam seni rupa semakin dipertanyakan dalam konteks budaya global yang terbuka. Karya yang menjurus kekerasan%2C pornografi%2C kebohongan dan hal lain yang jauh dari moral dan etika diperhadapkan dengan identitas masyarakat yang mengikuti hasrat dalam memenuhi kebutuhan konsumtifnya. Karya-karya visual yang semakin berkembang beserta dengan medianya merangsang kreator visual dalam menuangkan gagasan dan imajinasi. Bagi peradaban kehidupan manusia%2C karya-karya visual yang dibuat harus mendukung arah peradaban yang lebih baik. Di sini peran iman dalam hubungannya dengan Tuhan mendapat ruang berinteraksi%2C sehingga karya visual yang dihasilkan mencerminkan kode-kode maupun simbol dalam perputaran ideologi atau nilai-nilai budaya yang menjunjung tinggi hakikat keimanan. visual aesthetics%2C moral imperative%2C faith.

  3. SeeDB: Efficient Data-Driven Visualization Recommendations to Support Visual Analytics.

    Science.gov (United States)

    Vartak, Manasi; Rahman, Sajjadur; Madden, Samuel; Parameswaran, Aditya; Polyzotis, Neoklis

    2015-09-01

    Data analysts often build visualizations as the first step in their analytical workflow. However, when working with high-dimensional datasets, identifying visualizations that show relevant or desired trends in data can be laborious. We propose SeeDB, a visualization recommendation engine to facilitate fast visual analysis: given a subset of data to be studied, SeeDB intelligently explores the space of visualizations, evaluates promising visualizations for trends, and recommends those it deems most "useful" or "interesting". The two major obstacles in recommending interesting visualizations are (a) scale : evaluating a large number of candidate visualizations while responding within interactive time scales, and (b) utility : identifying an appropriate metric for assessing interestingness of visualizations. For the former, SeeDB introduces pruning optimizations to quickly identify high-utility visualizations and sharing optimizations to maximize sharing of computation across visualizations. For the latter, as a first step, we adopt a deviation-based metric for visualization utility, while indicating how we may be able to generalize it to other factors influencing utility. We implement SeeDB as a middleware layer that can run on top of any DBMS. Our experiments show that our framework can identify interesting visualizations with high accuracy. Our optimizations lead to multiple orders of magnitude speedup on relational row and column stores and provide recommendations at interactive time scales. Finally, we demonstrate via a user study the effectiveness of our deviation-based utility metric and the value of recommendations in supporting visual analytics.

  4. Visual Attention to Movement and Color in Children with Cortical Visual Impairment

    Science.gov (United States)

    Cohen-Maitre, Stacey Ann; Haerich, Paul

    2005-01-01

    This study investigated the ability of color and motion to elicit and maintain visual attention in a sample of children with cortical visual impairment (CVI). It found that colorful and moving objects may be used to engage children with CVI, increase their motivation to use their residual vision, and promote visual learning.

  5. Systematic Sampling and Cluster Sampling of Packet Delays

    OpenAIRE

    Lindh, Thomas

    2006-01-01

    Based on experiences of a traffic flow performance meter this papersuggests and evaluates cluster sampling and systematic sampling as methods toestimate average packet delays. Systematic sampling facilitates for exampletime analysis, frequency analysis and jitter measurements. Cluster samplingwith repeated trains of periodically spaced sampling units separated by randomstarting periods, and systematic sampling are evaluated with respect to accuracyand precision. Packet delay traces have been ...

  6. Visualization rhetoric: framing effects in narrative visualization.

    Science.gov (United States)

    Hullman, Jessica; Diakopoulos, Nicholas

    2011-12-01

    Narrative visualizations combine conventions of communicative and exploratory information visualization to convey an intended story. We demonstrate visualization rhetoric as an analytical framework for understanding how design techniques that prioritize particular interpretations in visualizations that "tell a story" can significantly affect end-user interpretation. We draw a parallel between narrative visualization interpretation and evidence from framing studies in political messaging, decision-making, and literary studies. Devices for understanding the rhetorical nature of narrative information visualizations are presented, informed by the rigorous application of concepts from critical theory, semiotics, journalism, and political theory. We draw attention to how design tactics represent additions or omissions of information at various levels-the data, visual representation, textual annotations, and interactivity-and how visualizations denote and connote phenomena with reference to unstated viewing conventions and codes. Classes of rhetorical techniques identified via a systematic analysis of recent narrative visualizations are presented, and characterized according to their rhetorical contribution to the visualization. We describe how designers and researchers can benefit from the potentially positive aspects of visualization rhetoric in designing engaging, layered narrative visualizations and how our framework can shed light on how a visualization design prioritizes specific interpretations. We identify areas where future inquiry into visualization rhetoric can improve understanding of visualization interpretation. © 2011 IEEE

  7. Sample Acquisition for Materials in Planetary Exploration (SAMPLE), Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — ORBITEC proposes to analyze, design, and develop a device for autonomous lunar surface/subsurface sampling and processing applications. The Sample Acquisition for...

  8. Public Use Microdata Samples (PUMS)

    Data.gov (United States)

    National Aeronautics and Space Administration — Public Use Microdata Samples (PUMS) are computer-accessible files containing records for a sample of housing units, with information on the characteristics of each...

  9. Visual literacy in HCI

    NARCIS (Netherlands)

    Overton, K.; Sosa-Tzec, O.; Smith, N.; Blevis, E.; Odom, W.; Hauser, S.; Wakkary, R.L.

    2016-01-01

    The goal of this workshop is to develop ideas about and expand a research agenda for visual literacy in HCI. By visual literacy, we mean the competency (i) to understand visual materials, (ii) to create visuals materials, and (iii) to think visually [2]. There are three primary motivations for this

  10. Characteristic sounds facilitate visual search.

    Science.gov (United States)

    Iordanescu, Lucica; Guzman-Martinez, Emmanuel; Grabowecky, Marcia; Suzuki, Satoru

    2008-06-01

    In a natural environment, objects that we look for often make characteristic sounds. A hiding cat may meow, or the keys in the cluttered drawer may jingle when moved. Using a visual search paradigm, we demonstrated that characteristic sounds facilitated visual localization of objects, even when the sounds carried no location information. For example, finding a cat was faster when participants heard a meow sound. In contrast, sounds had no effect when participants searched for names rather than pictures of objects. For example, hearing "meow" did not facilitate localization of the word cat. These results suggest that characteristic sounds cross-modally enhance visual (rather than conceptual) processing of the corresponding objects. Our behavioral demonstration of object-based cross-modal enhancement complements the extensive literature on space-based cross-modal interactions. When looking for your keys next time, you might want to play jingling sounds.

  11. Communication spaces.

    Science.gov (United States)

    Coiera, Enrico

    2014-01-01

    Annotations to physical workspaces such as signs and notes are ubiquitous. When densely annotated, work areas become communication spaces. This study aims to characterize the types and purpose of such annotations. A qualitative observational study was undertaken in two wards and the radiology department of a 440-bed metropolitan teaching hospital. Images were purposefully sampled; 39 were analyzed after excluding inferior images. Annotation functions included signaling identity, location, capability, status, availability, and operation. They encoded data, rules or procedural descriptions. Most aggregated into groups that either created a workflow by referencing each other, supported a common workflow without reference to each other, or were heterogeneous, referring to many workflows. Higher-level assemblies of such groupings were also observed. Annotations make visible the gap between work done and the capability of a space to support work. Annotations are repairs of an environment, improving fitness for purpose, fixing inadequacy in design, or meeting emergent needs. Annotations thus record the missing information needed to undertake tasks, typically added post-implemented. Measuring annotation levels post-implementation could help assess the fit of technology to task. Physical and digital spaces could meet broader user needs by formally supporting user customization, 'programming through annotation'. Augmented reality systems could also directly support annotation, addressing existing information gaps, and enhancing work with context sensitive annotation. Communication spaces offer a model of how work unfolds. Annotations make visible local adaptation that makes technology fit for purpose post-implementation and suggest an important role for annotatable information systems and digital augmentation of the physical environment.

  12. Computing and Visualizing Reachable Volumes for Maneuvering Satellites

    International Nuclear Information System (INIS)

    Jiang, M.; de Vries, W.H.; Pertica, A.J.; Olivier, S.S.

    2011-01-01

    Detecting and predicting maneuvering satellites is an important problem for Space Situational Awareness. The spatial envelope of all possible locations within reach of such a maneuvering satellite is known as the Reachable Volume (RV). As soon as custody of a satellite is lost, calculating the RV and its subsequent time evolution is a critical component in the rapid recovery of the satellite. In this paper, we present a Monte Carlo approach to computing the RV for a given object. Essentially, our approach samples all possible trajectories by randomizing thrust-vectors, thrust magnitudes and time of burn. At any given instance, the distribution of the 'point-cloud' of the virtual particles defines the RV. For short orbital time-scales, the temporal evolution of the point-cloud can result in complex, multi-reentrant manifolds. Visualization plays an important role in gaining insight and understanding into this complex and evolving manifold. In the second part of this paper, we focus on how to effectively visualize the large number of virtual trajectories and the computed RV. We present a real-time out-of-core rendering technique for visualizing the large number of virtual trajectories. We also examine different techniques for visualizing the computed volume of probability density distribution, including volume slicing, convex hull and isosurfacing. We compare and contrast these techniques in terms of computational cost and visualization effectiveness, and describe the main implementation issues encountered during our development process. Finally, we will present some of the results from our end-to-end system for computing and visualizing RVs using examples of maneuvering satellites.

  13. Computing and Visualizing Reachable Volumes for Maneuvering Satellites

    Science.gov (United States)

    Jiang, M.; de Vries, W.; Pertica, A.; Olivier, S.

    2011-09-01

    Detecting and predicting maneuvering satellites is an important problem for Space Situational Awareness. The spatial envelope of all possible locations within reach of such a maneuvering satellite is known as the Reachable Volume (RV). As soon as custody of a satellite is lost, calculating the RV and its subsequent time evolution is a critical component in the rapid recovery of the satellite. In this paper, we present a Monte Carlo approach to computing the RV for a given object. Essentially, our approach samples all possible trajectories by randomizing thrust-vectors, thrust magnitudes and time of burn. At any given instance, the distribution of the "point-cloud" of the virtual particles defines the RV. For short orbital time-scales, the temporal evolution of the point-cloud can result in complex, multi-reentrant manifolds. Visualization plays an important role in gaining insight and understanding into this complex and evolving manifold. In the second part of this paper, we focus on how to effectively visualize the large number of virtual trajectories and the computed RV. We present a real-time out-of-core rendering technique for visualizing the large number of virtual trajectories. We also examine different techniques for visualizing the computed volume of probability density distribution, including volume slicing, convex hull and isosurfacing. We compare and contrast these techniques in terms of computational cost and visualization effectiveness, and describe the main implementation issues encountered during our development process. Finally, we will present some of the results from our end-to-end system for computing and visualizing RVs using examples of maneuvering satellites.

  14. Interactive data visualization foundations, techniques, and applications

    CERN Document Server

    Ward, Matthew; Keim, Daniel

    2010-01-01

    Visualization is the process of representing data, information, and knowledge in a visual form to support the tasks of exploration, confirmation, presentation, and understanding. This book is designed as a textbook for students, researchers, analysts, professionals, and designers of visualization techniques, tools, and systems. It covers the full spectrum of the field, including mathematical and analytical aspects, ranging from its foundations to human visual perception; from coded algorithms for different types of data, information and tasks to the design and evaluation of new visualization techniques. Sample programs are provided as starting points for building one's own visualization tools. Numerous data sets have been made available that highlight different application areas and allow readers to evaluate the strengths and weaknesses of different visualization methods. Exercises, programming projects, and related readings are given for each chapter. The book concludes with an examination of several existin...

  15. Boat sampling

    International Nuclear Information System (INIS)

    Citanovic, M.; Bezlaj, H.

    1994-01-01

    This presentation describes essential boat sampling activities: on site boat sampling process optimization and qualification; boat sampling of base material (beltline region); boat sampling of weld material (weld No. 4); problems accompanied with weld crown varieties, RPV shell inner radius tolerance, local corrosion pitting and water clarity. The equipment used for boat sampling is described too. 7 pictures

  16. Graph sampling

    OpenAIRE

    Zhang, L.-C.; Patone, M.

    2017-01-01

    We synthesise the existing theory of graph sampling. We propose a formal definition of sampling in finite graphs, and provide a classification of potential graph parameters. We develop a general approach of Horvitz–Thompson estimation to T-stage snowball sampling, and present various reformulations of some common network sampling methods in the literature in terms of the outlined graph sampling theory.

  17. Visual Memories Bypass Normalization.

    Science.gov (United States)

    Bloem, Ilona M; Watanabe, Yurika L; Kibbe, Melissa M; Ling, Sam

    2018-05-01

    How distinct are visual memory representations from visual perception? Although evidence suggests that briefly remembered stimuli are represented within early visual cortices, the degree to which these memory traces resemble true visual representations remains something of a mystery. Here, we tested whether both visual memory and perception succumb to a seemingly ubiquitous neural computation: normalization. Observers were asked to remember the contrast of visual stimuli, which were pitted against each other to promote normalization either in perception or in visual memory. Our results revealed robust normalization between visual representations in perception, yet no signature of normalization occurring between working memory stores-neither between representations in memory nor between memory representations and visual inputs. These results provide unique insight into the nature of visual memory representations, illustrating that visual memory representations follow a different set of computational rules, bypassing normalization, a canonical visual computation.

  18. Learning Visualizations by Analogy: Promoting Visual Literacy through Visualization Morphing.

    Science.gov (United States)

    Ruchikachorn, Puripant; Mueller, Klaus

    2015-09-01

    We propose the concept of teaching (and learning) unfamiliar visualizations by analogy, that is, demonstrating an unfamiliar visualization method by linking it to another more familiar one, where the in-betweens are designed to bridge the gap of these two visualizations and explain the difference in a gradual manner. As opposed to a textual description, our morphing explains an unfamiliar visualization through purely visual means. We demonstrate our idea by ways of four visualization pair examples: data table and parallel coordinates, scatterplot matrix and hyperbox, linear chart and spiral chart, and hierarchical pie chart and treemap. The analogy is commutative i.e. any member of the pair can be the unfamiliar visualization. A series of studies showed that this new paradigm can be an effective teaching tool. The participants could understand the unfamiliar visualization methods in all of the four pairs either fully or at least significantly better after they observed or interacted with the transitions from the familiar counterpart. The four examples suggest how helpful visualization pairings be identified and they will hopefully inspire other visualization morphings and associated transition strategies to be identified.

  19. Manchester visual query language

    Science.gov (United States)

    Oakley, John P.; Davis, Darryl N.; Shann, Richard T.

    1993-04-01

    We report a database language for visual retrieval which allows queries on image feature information which has been computed and stored along with images. The language is novel in that it provides facilities for dealing with feature data which has actually been obtained from image analysis. Each line in the Manchester Visual Query Language (MVQL) takes a set of objects as input and produces another, usually smaller, set as output. The MVQL constructs are mainly based on proven operators from the field of digital image analysis. An example is the Hough-group operator which takes as input a specification for the objects to be grouped, a specification for the relevant Hough space, and a definition of the voting rule. The output is a ranked list of high scoring bins. The query could be directed towards one particular image or an entire image database, in the latter case the bins in the output list would in general be associated with different images. We have implemented MVQL in two layers. The command interpreter is a Lisp program which maps each MVQL line to a sequence of commands which are used to control a specialized database engine. The latter is a hybrid graph/relational system which provides low-level support for inheritance and schema evolution. In the paper we outline the language and provide examples of useful queries. We also describe our solution to the engineering problems associated with the implementation of MVQL.

  20. Interactive Terascale Particle Visualization

    Science.gov (United States)

    Ellsworth, David; Green, Bryan; Moran, Patrick

    2004-01-01

    This paper describes the methods used to produce an interactive visualization of a 2 TB computational fluid dynamics (CFD) data set using particle tracing (streaklines). We use the method introduced by Bruckschen et al. [2001] that pre-computes a large number of particles, stores them on disk using a space-filling curve ordering that minimizes seeks, and then retrieves and displays the particles according to the user's command. We describe how the particle computation can be performed using a PC cluster, how the algorithm can be adapted to work with a multi-block curvilinear mesh, and how the out-of-core visualization can be scaled to 296 billion particles while still achieving interactive performance on PG hardware. Compared to the earlier work, our data set size and total number of particles are an order of magnitude larger. We also describe a new compression technique that allows the lossless compression of the particles by 41% and speeds the particle retrieval by about 30%.