WorldWideScience

Sample records for sample entropy values

  1. Multiscale sample entropy and cross-sample entropy based on symbolic representation and similarity of stock markets

    Science.gov (United States)

    Wu, Yue; Shang, Pengjian; Li, Yilong

    2018-03-01

    A modified multiscale sample entropy measure based on symbolic representation and similarity (MSEBSS) is proposed in this paper to research the complexity of stock markets. The modified algorithm reduces the probability of inducing undefined entropies and is confirmed to be robust to strong noise. Considering the validity and accuracy, MSEBSS is more reliable than Multiscale entropy (MSE) for time series mingled with much noise like financial time series. We apply MSEBSS to financial markets and results show American stock markets have the lowest complexity compared with European and Asian markets. There are exceptions to the regularity that stock markets show a decreasing complexity over the time scale, indicating a periodicity at certain scales. Based on MSEBSS, we introduce the modified multiscale cross-sample entropy measure based on symbolic representation and similarity (MCSEBSS) to consider the degree of the asynchrony between distinct time series. Stock markets from the same area have higher synchrony than those from different areas. And for stock markets having relative high synchrony, the entropy values will decrease with the increasing scale factor. While for stock markets having high asynchrony, the entropy values will not decrease with the increasing scale factor sometimes they tend to increase. So both MSEBSS and MCSEBSS are able to distinguish stock markets of different areas, and they are more helpful if used together for studying other features of financial time series.

  2. Sample Entropy-Based Approach to Evaluate the Stability of Double-Wire Pulsed MIG Welding

    Directory of Open Access Journals (Sweden)

    Ping Yao

    2014-01-01

    Full Text Available According to the sample entropy, this paper deals with a quantitative method to evaluate the current stability in double-wire pulsed MIG welding. Firstly, the sample entropy of current signals with different stability but the same parameters is calculated. The results show that the more stable the current, the smaller the value and the standard deviation of sample entropy. Secondly, four parameters, which are pulse width, peak current, base current, and frequency, are selected for four-level three-factor orthogonal experiment. The calculation and analysis of desired signals indicate that sample entropy values are affected by welding current parameters. Then, a quantitative method based on sample entropy is proposed. The experiment results show that the method can preferably quantify the welding current stability.

  3. Entropy Evaluation Based on Value Validity

    Directory of Open Access Journals (Sweden)

    Tarald O. Kvålseth

    2014-09-01

    Full Text Available Besides its importance in statistical physics and information theory, the Boltzmann-Shannon entropy S has become one of the most widely used and misused summary measures of various attributes (characteristics in diverse fields of study. It has also been the subject of extensive and perhaps excessive generalizations. This paper introduces the concept and criteria for value validity as a means of determining if an entropy takes on values that reasonably reflect the attribute being measured and that permit different types of comparisons to be made for different probability distributions. While neither S nor its relative entropy equivalent S* meet the value-validity conditions, certain power functions of S and S* do to a considerable extent. No parametric generalization offers any advantage over S in this regard. A measure based on Euclidean distances between probability distributions is introduced as a potential entropy that does comply fully with the value-validity requirements and its statistical inference procedure is discussed.

  4. Spatial-dependence recurrence sample entropy

    Science.gov (United States)

    Pham, Tuan D.; Yan, Hong

    2018-03-01

    Measuring complexity in terms of the predictability of time series is a major area of research in science and engineering, and its applications are spreading throughout many scientific disciplines, where the analysis of physiological signals is perhaps the most widely reported in literature. Sample entropy is a popular measure for quantifying signal irregularity. However, the sample entropy does not take sequential information, which is inherently useful, into its calculation of sample similarity. Here, we develop a method that is based on the mathematical principle of the sample entropy and enables the capture of sequential information of a time series in the context of spatial dependence provided by the binary-level co-occurrence matrix of a recurrence plot. Experimental results on time-series data of the Lorenz system, physiological signals of gait maturation in healthy children, and gait dynamics in Huntington's disease show the potential of the proposed method.

  5. Using the modified sample entropy to detect determinism

    Energy Technology Data Exchange (ETDEWEB)

    Xie Hongbo, E-mail: xiehb@sjtu.or [Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hung Hom, Kowloon (Hong Kong); Department of Biomedical Engineering, Jiangsu University, Zhenjiang (China); Guo Jingyi [Department of Health Technology and Informatics, Hong Kong Polytechnic University, Hung Hom, Kowloon (Hong Kong); Zheng Yongping, E-mail: ypzheng@ieee.or [Department of Health Technology and Informatics, Hong Kong Polytechnic University, Hung Hom, Kowloon (Hong Kong); Reseach Institute of Innovative Products and Technologies, Hong Kong Polytechnic University (Hong Kong)

    2010-08-23

    A modified sample entropy (mSampEn), based on the nonlinear continuous and convex function, has been proposed and proven to be superior to the standard sample entropy (SampEn) in several aspects. In this Letter, we empirically investigate the ability of the mSampEn statistic combined with surrogate data method to detect determinism. The effects of the datasets length and noise on the proposed method to differentiate between deterministic and stochastic dynamics are tested on several benchmark time series. The noise performance of the mSampEn statistic is also compared with the singular value decomposition (SVD) and symplectic geometry spectrum (SGS) based methods. The results indicate that the mSampEn statistic is a robust index for detecting determinism in short and noisy time series.

  6. Weighted fractional permutation entropy and fractional sample entropy for nonlinear Potts financial dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Kaixuan, E-mail: kaixuanxubjtu@yeah.net; Wang, Jun

    2017-02-26

    In this paper, recently introduced permutation entropy and sample entropy are further developed to the fractional cases, weighted fractional permutation entropy (WFPE) and fractional sample entropy (FSE). The fractional order generalization of information entropy is utilized in the above two complexity approaches, to detect the statistical characteristics of fractional order information in complex systems. The effectiveness analysis of proposed methods on the synthetic data and the real-world data reveals that tuning the fractional order allows a high sensitivity and more accurate characterization to the signal evolution, which is useful in describing the dynamics of complex systems. Moreover, the numerical research on nonlinear complexity behaviors is compared between the returns series of Potts financial model and the actual stock markets. And the empirical results confirm the feasibility of the proposed model. - Highlights: • Two new entropy approaches for estimation of nonlinear complexity are proposed for the financial market. • Effectiveness analysis of proposed methods is presented and their respective features are studied. • Empirical research of proposed analysis on seven world financial market indices. • Numerical simulation of Potts financial dynamics is preformed for nonlinear complexity behaviors.

  7. Weighted fractional permutation entropy and fractional sample entropy for nonlinear Potts financial dynamics

    International Nuclear Information System (INIS)

    Xu, Kaixuan; Wang, Jun

    2017-01-01

    In this paper, recently introduced permutation entropy and sample entropy are further developed to the fractional cases, weighted fractional permutation entropy (WFPE) and fractional sample entropy (FSE). The fractional order generalization of information entropy is utilized in the above two complexity approaches, to detect the statistical characteristics of fractional order information in complex systems. The effectiveness analysis of proposed methods on the synthetic data and the real-world data reveals that tuning the fractional order allows a high sensitivity and more accurate characterization to the signal evolution, which is useful in describing the dynamics of complex systems. Moreover, the numerical research on nonlinear complexity behaviors is compared between the returns series of Potts financial model and the actual stock markets. And the empirical results confirm the feasibility of the proposed model. - Highlights: • Two new entropy approaches for estimation of nonlinear complexity are proposed for the financial market. • Effectiveness analysis of proposed methods is presented and their respective features are studied. • Empirical research of proposed analysis on seven world financial market indices. • Numerical simulation of Potts financial dynamics is preformed for nonlinear complexity behaviors.

  8. Lattice-Valued Possibilistic Entropy Measure

    Czech Academy of Sciences Publication Activity Database

    Kramosil, Ivan

    2008-01-01

    Roč. 16, č. 6 (2008), s. 829-846 ISSN 0218-4885 R&D Projects: GA AV ČR IAA100300503 Institutional research plan: CEZ:AV0Z10300504 Keywords : complete lattice * lattice-valued possibilistic distribution * entropy measure * product of possibilistic distribution Subject RIV: BA - General Mathematics Impact factor: 1.000, year: 2008

  9. Fractal Image Compression Based on High Entropy Values Technique

    Directory of Open Access Journals (Sweden)

    Douaa Younis Abbaas

    2018-04-01

    Full Text Available There are many attempts tried to improve the encoding stage of FIC because it consumed time. These attempts worked by reducing size of the search pool for pair range-domain matching but most of them led to get a bad quality, or a lower compression ratio of reconstructed image. This paper aims to present a method to improve performance of the full search algorithm by combining FIC (lossy compression and another lossless technique (in this case entropy coding is used. The entropy technique will reduce size of the domain pool (i. e., number of domain blocks based on the entropy value of each range block and domain block and then comparing the results of full search algorithm and proposed algorithm based on entropy technique to see each of which give best results (such as reduced the encoding time with acceptable values in both compression quali-ty parameters which are C. R (Compression Ratio and PSNR (Image Quality. The experimental results of the proposed algorithm proven that using the proposed entropy technique reduces the encoding time while keeping compression rates and reconstruction image quality good as soon as possible.

  10. On Single-Valued Neutrosophic Entropy of order α

    Directory of Open Access Journals (Sweden)

    Harish Garg, Nancy

    2016-12-01

    Full Text Available Entropy is one of the measures which is used for measuring the fuzziness of the set. In this article, we have presented an entropy measure of order α under the single-valued neutrosophic set environment by considering the pair of their membership functions as well as the hesitation degree between them. Based on this measure, some of its desirable properties have been proposed and validated by taking an example of structure linguistic variable.

  11. Entropy, neutro-entropy and anti-entropy for neutrosophic information

    OpenAIRE

    Vasile Patrascu

    2017-01-01

    This approach presents a multi-valued representation of the neutrosophic information. It highlights the link between the bifuzzy information and neutrosophic one. The constructed deca-valued structure shows the neutrosophic information complexity. This deca-valued structure led to construction of two new concepts for the neutrosophic information: neutro-entropy and anti-entropy. These two concepts are added to the two existing: entropy and non-entropy. Thus, we obtained the following triad: e...

  12. Generalized sample entropy analysis for traffic signals based on similarity measure

    Science.gov (United States)

    Shang, Du; Xu, Mengjia; Shang, Pengjian

    2017-05-01

    Sample entropy is a prevailing method used to quantify the complexity of a time series. In this paper a modified method of generalized sample entropy and surrogate data analysis is proposed as a new measure to assess the complexity of a complex dynamical system such as traffic signals. The method based on similarity distance presents a different way of signals patterns match showing distinct behaviors of complexity. Simulations are conducted over synthetic data and traffic signals for providing the comparative study, which is provided to show the power of the new method. Compared with previous sample entropy and surrogate data analysis, the new method has two main advantages. The first one is that it overcomes the limitation about the relationship between the dimension parameter and the length of series. The second one is that the modified sample entropy functions can be used to quantitatively distinguish time series from different complex systems by the similar measure.

  13. Application of Multivariate Empirical Mode Decomposition and Sample Entropy in EEG Signals via Artificial Neural Networks for Interpreting Depth of Anesthesia

    Directory of Open Access Journals (Sweden)

    Jiann-Shing Shieh

    2013-08-01

    Full Text Available EEG (Electroencephalography signals can express the human awareness activities and consequently it can indicate the depth of anesthesia. On the other hand, Bispectral-index (BIS is often used as an indicator to assess the depth of anesthesia. This study is aimed at using an advanced signal processing method to analyze EEG signals and compare them with existing BIS indexes from a commercial product (i.e., IntelliVue MP60 BIS module. Multivariate empirical mode decomposition (MEMD algorithm is utilized to filter the EEG signals. A combination of two MEMD components (IMF2 + IMF3 is used to express the raw EEG. Then, sample entropy algorithm is used to calculate the complexity of the patients’ EEG signal. Furthermore, linear regression and artificial neural network (ANN methods were used to model the sample entropy using BIS index as the gold standard. ANN can produce better target value than linear regression. The correlation coefficient is 0.790 ± 0.069 and MAE is 8.448 ± 1.887. In conclusion, the area under the receiver operating characteristic (ROC curve (AUC of sample entropy value using ANN and MEMD is 0.969 ± 0.028 while the AUC of sample entropy value without filter is 0.733 ± 0.123. It means the MEMD method can filter out noise of the brain waves, so that the sample entropy of EEG can be closely related to the depth of anesthesia. Therefore, the resulting index can be adopted as the reference for the physician, in order to reduce the risk of surgery.

  14. Entropy Based Feature Selection for Fuzzy Set-Valued Information Systems

    Science.gov (United States)

    Ahmed, Waseem; Sufyan Beg, M. M.; Ahmad, Tanvir

    2018-06-01

    In Set-valued Information Systems (SIS), several objects contain more than one value for some attributes. Tolerance relation used for handling SIS sometimes leads to loss of certain information. To surmount this problem, fuzzy rough model was introduced. However, in some cases, SIS may contain some real or continuous set-values. Therefore, the existing fuzzy rough model for handling Information system with fuzzy set-values needs some changes. In this paper, Fuzzy Set-valued Information System (FSIS) is proposed and fuzzy similarity relation for FSIS is defined. Yager's relative conditional entropy was studied to find the significance measure of a candidate attribute of FSIS. Later, using these significance values, three greedy forward algorithms are discussed for finding the reduct and relative reduct for the proposed FSIS. An experiment was conducted on a sample population of the real dataset and a comparison of classification accuracies of the proposed FSIS with the existing SIS and single-valued Fuzzy Information Systems was made, which demonstrated the effectiveness of proposed FSIS.

  15. Evidence towards improved estimation of respiratory muscle effort from diaphragm mechanomyographic signals with cardiac vibration interference using sample entropy with fixed tolerance values.

    Directory of Open Access Journals (Sweden)

    Leonardo Sarlabous

    Full Text Available The analysis of amplitude parameters of the diaphragm mechanomyographic (MMGdi signal is a non-invasive technique to assess respiratory muscle effort and to detect and quantify the severity of respiratory muscle weakness. The amplitude of the MMGdi signal is usually evaluated using the average rectified value or the root mean square of the signal. However, these estimations are greatly affected by the presence of cardiac vibration or mechanocardiographic (MCG noise. In this study, we present a method for improving the estimation of the respiratory muscle effort from MMGdi signals that is robust to the presence of MCG. This method is based on the calculation of the sample entropy using fixed tolerance values (fSampEn, that is, with tolerance values that are not normalized by the local standard deviation of the window analyzed. The behavior of the fSampEn parameter was tested in synthesized mechanomyographic signals, with different ratios between the amplitude of the MCG and clean mechanomyographic components. As an example of application of this technique, the use of fSampEn was explored also in recorded MMGdi signals, with different inspiratory loads. The results with both synthetic and recorded signals indicate that the entropy parameter is less affected by the MCG noise, especially at low signal-to-noise ratios. Therefore, we believe that the proposed fSampEn parameter could improve estimates of respiratory muscle effort from MMGdi signals with the presence of MCG interference.

  16. Entropy, neutro-entropy and anti-entropy for neutrosophic information

    OpenAIRE

    Vasile Patrascu

    2017-01-01

    This article shows a deca-valued representation of neutrosophic information in which are defined the following features: truth, falsity, weak truth, weak falsity, ignorance, contradiction, saturation, neutrality, ambiguity and hesitation. Using these features, there are constructed computing formulas for entropy, neutro-entropy and anti-entropy.

  17. Value at risk estimation with entropy-based wavelet analysis in exchange markets

    Science.gov (United States)

    He, Kaijian; Wang, Lijun; Zou, Yingchao; Lai, Kin Keung

    2014-08-01

    In recent years, exchange markets are increasingly integrated together. Fluctuations and risks across different exchange markets exhibit co-moving and complex dynamics. In this paper we propose the entropy-based multivariate wavelet based approaches to analyze the multiscale characteristic in the multidimensional domain and improve further the Value at Risk estimation reliability. Wavelet analysis has been introduced to construct the entropy-based Multiscale Portfolio Value at Risk estimation algorithm to account for the multiscale dynamic correlation. The entropy measure has been proposed as the more effective measure with the error minimization principle to select the best basis when determining the wavelet families and the decomposition level to use. The empirical studies conducted in this paper have provided positive evidence as to the superior performance of the proposed approach, using the closely related Chinese Renminbi and European Euro exchange market.

  18. Determination of Sample Entropy and Fuzzy Measure Entropy Parameters for Distinguishing Congestive Heart Failure from Normal Sinus Rhythm Subjects

    Directory of Open Access Journals (Sweden)

    Lina Zhao

    2015-09-01

    Full Text Available Entropy provides a valuable tool for quantifying the regularity of physiological time series and provides important insights for understanding the underlying mechanisms of the cardiovascular system. Before any entropy calculation, certain common parameters need to be initialized: embedding dimension m, tolerance threshold r and time series length N. However, no specific guideline exists on how to determine the appropriate parameter values for distinguishing congestive heart failure (CHF from normal sinus rhythm (NSR subjects in clinical application. In the present study, a thorough analysis on the selection of appropriate values of m, r and N for sample entropy (SampEn and recently proposed fuzzy measure entropy (FuzzyMEn is presented for distinguishing two group subjects. 44 long-term NRS and 29 long-term CHF RR interval recordings from http://www.physionet.org were used as the non-pathological and pathological data respectively. Extreme (>2 s and abnormal heartbeat RR intervals were firstly removed from each RR recording and then the recording was segmented with a non-overlapping segment length N of 300 and 1000, respectively. SampEn and FuzzyMEn were performed for each RR segment under different parameter combinations: m of 1, 2, 3 and 4, and r of 0.10, 0.15, 0.20 and 0.25 respectively. The statistical significance between NSR and CHF groups under each combination of m, r and N was observed. The results demonstrated that the selection of m, r and N plays a critical role in determining the SampEn and FuzzyMEn outputs. Compared with SampEn, FuzzyMEn shows a better regularity when selecting the parameters m and r. In addition, FuzzyMEn shows a better relative consistency for distinguishing the two groups, that is, the results of FuzzyMEn in the NSR group were consistently lower than those in the CHF group while SampEn were not. The selections of m of 2 and 3 and r of 0.10 and 0.15 for SampEn and the selections of m of 1 and 2 whenever r (herein

  19. Comparison of Bispectral Index and Entropy values with electroencephalogram during surgical anaesthesia with sevoflurane.

    Science.gov (United States)

    Aho, A J; Kamata, K; Jäntti, V; Kulkas, A; Hagihira, S; Huhtala, H; Yli-Hankala, A

    2015-08-01

    Concomitantly recorded Bispectral Index® (BIS) and Entropy™ values sometimes show discordant trends during general anaesthesia. Previously, no attempt had been made to discover which EEG characteristics cause discrepancies between BIS and Entropy. We compared BIS and Entropy values, and analysed the changes in the raw EEG signal during surgical anaesthesia with sevoflurane. In this prospective, open-label study, 65 patients receiving general anaesthesia with sevoflurane were enrolled. BIS, Entropy and multichannel digital EEG were recorded. Concurrent BIS and State Entropy (SE) values were selected. Whenever BIS and SE values showed ≥10-unit disagreement for ≥60 s, the raw EEG signal was analysed both in time and frequency domain. A ≥10-unit disagreement ≥60 s was detected 428 times in 51 patients. These 428 episodes accounted for 5158 (11%) out of 45 918 analysed index pairs. During EEG burst suppression, SE was higher than BIS in 35 out of 49 episodes. During delta-theta dominance, BIS was higher than SE in 141 out of 157 episodes. During alpha or beta activity, SE was higher than BIS in all 49 episodes. During electrocautery, both BIS and SE changed, sometimes in the opposite direction, but returned to baseline values after electrocautery. Electromyography caused index disagreement four times (BIS > SE). Certain specific EEG patterns, and artifacts, are associated with discrepancies between BIS and SE. Time and frequency domain analyses of the original EEG improve the interpretation of studies involving BIS, Entropy and other EEG-based indices. NCT01077674. © The Author 2015. Published by Oxford University Press on behalf of the British Journal of Anaesthesia. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. Multiattribute Decision Making Based on Entropy under Interval-Valued Intuitionistic Fuzzy Environment

    Directory of Open Access Journals (Sweden)

    Yingjun Zhang

    2013-01-01

    Full Text Available Multiattribute decision making (MADM is one of the central problems in artificial intelligence, specifically in management fields. In most cases, this problem arises from uncertainty both in the data derived from the decision maker and the actions performed in the environment. Fuzzy set and high-order fuzzy sets were proven to be effective approaches in solving decision-making problems with uncertainty. Therefore, in this paper, we investigate the MADM problem with completely unknown attribute weights in the framework of interval-valued intuitionistic fuzzy (IVIF set (IVIFS. We first propose a new definition of IVIF entropy and some calculation methods for IVIF entropy. Furthermore, we propose an entropy-based decision-making method to solve IVIF MADM problems with completely unknown attribute weights. Particular emphasis is put on assessing the attribute weights based on IVIF entropy. Instead of the traditional methods, which use divergence among attributes or the probabilistic discrimination of attributes to obtain attribute weights, we utilize the IVIF entropy to assess the attribute weights based on the credibility of the decision-making matrix for solving the problem. Finally, a supplier selection example is given to demonstrate the feasibility and validity of the proposed MADM method.

  1. An application of sample entropy to precipitation in Paraíba State, Brazil

    Science.gov (United States)

    Xavier, Sílvio Fernando Alves; da Silva Jale, Jader; Stosic, Tatijana; dos Santos, Carlos Antonio Costa; Singh, Vijay P.

    2018-05-01

    A climate system is characterized to be a complex non-linear system. In order to describe the complex characteristics of precipitation series in Paraíba State, Brazil, we aim the use of sample entropy, a kind of entropy-based algorithm, to evaluate the complexity of precipitation series. Sixty-nine meteorological stations are distributed over four macroregions: Zona da Mata, Agreste, Borborema, and Sertão. The results of the analysis show that intricacies of monthly average precipitation have differences in the macroregions. Sample entropy is able to reflect the dynamic change of precipitation series providing a new way to investigate complexity of hydrological series. The complexity exhibits areal variation of local water resource systems which can influence the basis for utilizing and developing resources in dry areas.

  2. Automatic selection of the threshold value R for approximate entropy

    DEFF Research Database (Denmark)

    Lu, Sheng; Chen, Xinnian; Kanters, Jørgen K.

    2008-01-01

    Calculation of approximate entropy (ApEn) requires a priori determination of two unknown parameters, m and r. While the recommended values of r, in the range of 0.1-0.2 times the standard deviation of the signal, have been shown to be applicable for a wide variety of signals, in certain cases, r ...

  3. Multidimensional scaling analysis of financial time series based on modified cross-sample entropy methods

    Science.gov (United States)

    He, Jiayi; Shang, Pengjian; Xiong, Hui

    2018-06-01

    Stocks, as the concrete manifestation of financial time series with plenty of potential information, are often used in the study of financial time series. In this paper, we utilize the stock data to recognize their patterns through out the dissimilarity matrix based on modified cross-sample entropy, then three-dimensional perceptual maps of the results are provided through multidimensional scaling method. Two modified multidimensional scaling methods are proposed in this paper, that is, multidimensional scaling based on Kronecker-delta cross-sample entropy (MDS-KCSE) and multidimensional scaling based on permutation cross-sample entropy (MDS-PCSE). These two methods use Kronecker-delta based cross-sample entropy and permutation based cross-sample entropy to replace the distance or dissimilarity measurement in classical multidimensional scaling (MDS). Multidimensional scaling based on Chebyshev distance (MDSC) is employed to provide a reference for comparisons. Our analysis reveals a clear clustering both in synthetic data and 18 indices from diverse stock markets. It implies that time series generated by the same model are easier to have similar irregularity than others, and the difference in the stock index, which is caused by the country or region and the different financial policies, can reflect the irregularity in the data. In the synthetic data experiments, not only the time series generated by different models can be distinguished, the one generated under different parameters of the same model can also be detected. In the financial data experiment, the stock indices are clearly divided into five groups. Through analysis, we find that they correspond to five regions, respectively, that is, Europe, North America, South America, Asian-Pacific (with the exception of mainland China), mainland China and Russia. The results also demonstrate that MDS-KCSE and MDS-PCSE provide more effective divisions in experiments than MDSC.

  4. The Dynameomics Entropy Dictionary: A Large-Scale Assessment of Conformational Entropy across Protein Fold Space.

    Science.gov (United States)

    Towse, Clare-Louise; Akke, Mikael; Daggett, Valerie

    2017-04-27

    Molecular dynamics (MD) simulations contain considerable information with regard to the motions and fluctuations of a protein, the magnitude of which can be used to estimate conformational entropy. Here we survey conformational entropy across protein fold space using the Dynameomics database, which represents the largest existing data set of protein MD simulations for representatives of essentially all known protein folds. We provide an overview of MD-derived entropies accounting for all possible degrees of dihedral freedom on an unprecedented scale. Although different side chains might be expected to impose varying restrictions on the conformational space that the backbone can sample, we found that the backbone entropy and side chain size are not strictly coupled. An outcome of these analyses is the Dynameomics Entropy Dictionary, the contents of which have been compared with entropies derived by other theoretical approaches and experiment. As might be expected, the conformational entropies scale linearly with the number of residues, demonstrating that conformational entropy is an extensive property of proteins. The calculated conformational entropies of folding agree well with previous estimates. Detailed analysis of specific cases identifies deviations in conformational entropy from the average values that highlight how conformational entropy varies with sequence, secondary structure, and tertiary fold. Notably, α-helices have lower entropy on average than do β-sheets, and both are lower than coil regions.

  5. Existence and uniqueness of entropy solution to initial boundary value problem for the inviscid Burgers equation

    CERN Document Server

    Zhu, C

    2003-01-01

    This paper is concerned with the existence and uniqueness of the entropy solution to the initial boundary value problem for the inviscid Burgers equation. To apply the method of vanishing viscosity to study the existence of the entropy solution, we first introduce the initial boundary value problem for the viscous Burgers equation, and as in Evans (1998 Partial Differential Equations (Providence, RI: American Mathematical Society) and Hopf (1950 Commun. Pure Appl. Math. 3 201-30), give the formula of the corresponding viscosity solutions by Hopf-Cole transformation. Secondly, we prove the convergence of the viscosity solution sequences and verify that the limiting function is an entropy solution. Finally, we give an example to show how our main result can be applied to solve the initial boundary value problem for the Burgers equation.

  6. Existence and uniqueness of entropy solution to initial boundary value problem for the inviscid Burgers equation

    International Nuclear Information System (INIS)

    Zhu, Changjiang; Duan, Renjun

    2003-01-01

    This paper is concerned with the existence and uniqueness of the entropy solution to the initial boundary value problem for the inviscid Burgers equation. To apply the method of vanishing viscosity to study the existence of the entropy solution, we first introduce the initial boundary value problem for the viscous Burgers equation, and as in Evans (1998 Partial Differential Equations (Providence, RI: American Mathematical Society) and Hopf (1950 Commun. Pure Appl. Math. 3 201-30), give the formula of the corresponding viscosity solutions by Hopf-Cole transformation. Secondly, we prove the convergence of the viscosity solution sequences and verify that the limiting function is an entropy solution. Finally, we give an example to show how our main result can be applied to solve the initial boundary value problem for the Burgers equation

  7. Interval-Valued Hesitant Fuzzy Multiattribute Group Decision Making Based on Improved Hamacher Aggregation Operators and Continuous Entropy

    Directory of Open Access Journals (Sweden)

    Jun Liu

    2017-01-01

    Full Text Available Under the interval-valued hesitant fuzzy information environment, we investigate a multiattribute group decision making (MAGDM method with continuous entropy weights and improved Hamacher information aggregation operators. Firstly, we introduce the axiomatic definition of entropy for interval-valued hesitant fuzzy elements (IVHFEs and construct a continuous entropy formula on the basis of the continuous ordered weighted averaging (COWA operator. Then, based on the Hamacher t-norm and t-conorm, the adjusted operational laws for IVHFEs are defined. In order to aggregate interval-valued hesitant fuzzy information, some new improved interval-valued hesitant fuzzy Hamacher aggregation operators are investigated, including the improved interval-valued hesitant fuzzy Hamacher ordered weighted averaging (I-IVHFHOWA operator and the improved interval-valued hesitant fuzzy Hamacher ordered weighted geometric (I-IVHFHOWG operator, the desirable properties of which are discussed. In addition, the relationship among these proposed operators is analyzed in detail. Applying the continuous entropy and the proposed operators, an approach to MAGDM is developed. Finally, a numerical example for emergency operating center (EOC selection is provided, and comparative analyses with existing methods are performed to demonstrate that the proposed approach is both valid and practical to deal with group decision making problems.

  8. Using entropy measures to characterize human locomotion.

    Science.gov (United States)

    Leverick, Graham; Szturm, Tony; Wu, Christine Q

    2014-12-01

    Entropy measures have been widely used to quantify the complexity of theoretical and experimental dynamical systems. In this paper, the value of using entropy measures to characterize human locomotion is demonstrated based on their construct validity, predictive validity in a simple model of human walking and convergent validity in an experimental study. Results show that four of the five considered entropy measures increase meaningfully with the increased probability of falling in a simple passive bipedal walker model. The same four entropy measures also experienced statistically significant increases in response to increasing age and gait impairment caused by cognitive interference in an experimental study. Of the considered entropy measures, the proposed quantized dynamical entropy (QDE) and quantization-based approximation of sample entropy (QASE) offered the best combination of sensitivity to changes in gait dynamics and computational efficiency. Based on these results, entropy appears to be a viable candidate for assessing the stability of human locomotion.

  9. Bubble Entropy: An Entropy Almost Free of Parameters.

    Science.gov (United States)

    Manis, George; Aktaruzzaman, Md; Sassi, Roberto

    2017-11-01

    Objective : A critical point in any definition of entropy is the selection of the parameters employed to obtain an estimate in practice. We propose a new definition of entropy aiming to reduce the significance of this selection. Methods: We call the new definition Bubble Entropy . Bubble Entropy is based on permutation entropy, where the vectors in the embedding space are ranked. We use the bubble sort algorithm for the ordering procedure and count instead the number of swaps performed for each vector. Doing so, we create a more coarse-grained distribution and then compute the entropy of this distribution. Results: Experimental results with both real and synthetic HRV signals showed that bubble entropy presents remarkable stability and exhibits increased descriptive and discriminating power compared to all other definitions, including the most popular ones. Conclusion: The definition proposed is almost free of parameters. The most common ones are the scale factor r and the embedding dimension m . In our definition, the scale factor is totally eliminated and the importance of m is significantly reduced. The proposed method presents increased stability and discriminating power. Significance: After the extensive use of some entropy measures in physiological signals, typical values for their parameters have been suggested, or at least, widely used. However, the parameters are still there, application and dataset dependent, influencing the computed value and affecting the descriptive power. Reducing their significance or eliminating them alleviates the problem, decoupling the method from the data and the application, and eliminating subjective factors. Objective : A critical point in any definition of entropy is the selection of the parameters employed to obtain an estimate in practice. We propose a new definition of entropy aiming to reduce the significance of this selection. Methods: We call the new definition Bubble Entropy . Bubble Entropy is based on permutation

  10. Dynamic Cross-Entropy.

    Science.gov (United States)

    Aur, Dorian; Vila-Rodriguez, Fidel

    2017-01-01

    Complexity measures for time series have been used in many applications to quantify the regularity of one dimensional time series, however many dynamical systems are spatially distributed multidimensional systems. We introduced Dynamic Cross-Entropy (DCE) a novel multidimensional complexity measure that quantifies the degree of regularity of EEG signals in selected frequency bands. Time series generated by discrete logistic equations with varying control parameter r are used to test DCE measures. Sliding window DCE analyses are able to reveal specific period doubling bifurcations that lead to chaos. A similar behavior can be observed in seizures triggered by electroconvulsive therapy (ECT). Sample entropy data show the level of signal complexity in different phases of the ictal ECT. The transition to irregular activity is preceded by the occurrence of cyclic regular behavior. A significant increase of DCE values in successive order from high frequencies in gamma to low frequencies in delta band reveals several phase transitions into less ordered states, possible chaos in the human brain. To our knowledge there are no reliable techniques able to reveal the transition to chaos in case of multidimensional times series. In addition, DCE based on sample entropy appears to be robust to EEG artifacts compared to DCE based on Shannon entropy. The applied technique may offer new approaches to better understand nonlinear brain activity. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Cross-sample entropy of foreign exchange time series

    Science.gov (United States)

    Liu, Li-Zhi; Qian, Xi-Yuan; Lu, Heng-Yao

    2010-11-01

    The correlation of foreign exchange rates in currency markets is investigated based on the empirical data of DKK/USD, NOK/USD, CAD/USD, JPY/USD, KRW/USD, SGD/USD, THB/USD and TWD/USD for a period from 1995 to 2002. Cross-SampEn (cross-sample entropy) method is used to compare the returns of every two exchange rate time series to assess their degree of asynchrony. The calculation method of confidence interval of SampEn is extended and applied to cross-SampEn. The cross-SampEn and its confidence interval for every two of the exchange rate time series in periods 1995-1998 (before the Asian currency crisis) and 1999-2002 (after the Asian currency crisis) are calculated. The results show that the cross-SampEn of every two of these exchange rates becomes higher after the Asian currency crisis, indicating a higher asynchrony between the exchange rates. Especially for Singapore, Thailand and Taiwan, the cross-SampEn values after the Asian currency crisis are significantly higher than those before the Asian currency crisis. Comparison with the correlation coefficient shows that cross-SampEn is superior to describe the correlation between time series.

  12. Local entropy as a measure for sampling solutions in constraint satisfaction problems

    International Nuclear Information System (INIS)

    Baldassi, Carlo; Ingrosso, Alessandro; Lucibello, Carlo; Saglietti, Luca; Zecchina, Riccardo

    2016-01-01

    We introduce a novel entropy-driven Monte Carlo (EdMC) strategy to efficiently sample solutions of random constraint satisfaction problems (CSPs). First, we extend a recent result that, using a large-deviation analysis, shows that the geometry of the space of solutions of the binary perceptron learning problem (a prototypical CSP), contains regions of very high-density of solutions. Despite being sub-dominant, these regions can be found by optimizing a local entropy measure. Building on these results, we construct a fast solver that relies exclusively on a local entropy estimate, and can be applied to general CSPs. We describe its performance not only for the perceptron learning problem but also for the random K-satisfiabilty problem (another prototypical CSP with a radically different structure), and show numerically that a simple zero-temperature Metropolis search in the smooth local entropy landscape can reach sub-dominant clusters of optimal solutions in a small number of steps, while standard Simulated Annealing either requires extremely long cooling procedures or just fails. We also discuss how the EdMC can heuristically be made even more efficient for the cases we studied. (paper: disordered systems, classical and quantum)

  13. Parametric Bayesian Estimation of Differential Entropy and Relative Entropy

    OpenAIRE

    Gupta; Srivastava

    2010-01-01

    Given iid samples drawn from a distribution with known parametric form, we propose the minimization of expected Bregman divergence to form Bayesian estimates of differential entropy and relative entropy, and derive such estimators for the uniform, Gaussian, Wishart, and inverse Wishart distributions. Additionally, formulas are given for a log gamma Bregman divergence and the differential entropy and relative entropy for the Wishart and inverse Wishart. The results, as always with Bayesian est...

  14. How long the singular value decomposed entropy predicts the stock market? - Evidence from the Dow Jones Industrial Average Index

    Science.gov (United States)

    Gu, Rongbao; Shao, Yanmin

    2016-07-01

    In this paper, a new concept of multi-scales singular value decomposition entropy based on DCCA cross correlation analysis is proposed and its predictive power for the Dow Jones Industrial Average Index is studied. Using Granger causality analysis with different time scales, it is found that, the singular value decomposition entropy has predictive power for the Dow Jones Industrial Average Index for period less than one month, but not for more than one month. This shows how long the singular value decomposition entropy predicts the stock market that extends Caraiani's result obtained in Caraiani (2014). On the other hand, the result also shows an essential characteristic of stock market as a chaotic dynamic system.

  15. Bayesian Reliability Estimation for Deteriorating Systems with Limited Samples Using the Maximum Entropy Approach

    OpenAIRE

    Xiao, Ning-Cong; Li, Yan-Feng; Wang, Zhonglai; Peng, Weiwen; Huang, Hong-Zhong

    2013-01-01

    In this paper the combinations of maximum entropy method and Bayesian inference for reliability assessment of deteriorating system is proposed. Due to various uncertainties, less data and incomplete information, system parameters usually cannot be determined precisely. These uncertainty parameters can be modeled by fuzzy sets theory and the Bayesian inference which have been proved to be useful for deteriorating systems under small sample sizes. The maximum entropy approach can be used to cal...

  16. Entropy of quasiblack holes

    International Nuclear Information System (INIS)

    Lemos, Jose P. S.; Zaslavskii, Oleg B.

    2010-01-01

    We trace the origin of the black hole entropy S, replacing a black hole by a quasiblack hole. Let the boundary of a static body approach its own gravitational radius, in such a way that a quasihorizon forms. We show that if the body is thermal with the temperature taking the Hawking value at the quasihorizon limit, it follows, in the nonextremal case, from the first law of thermodynamics that the entropy approaches the Bekenstein-Hawking value S=A/4. In this setup, the key role is played by the surface stresses on the quasihorizon and one finds that the entropy comes from the quasihorizon surface. Any distribution of matter inside the surface leads to the same universal value for the entropy in the quasihorizon limit. This can be of some help in the understanding of black hole entropy. Other similarities between black holes and quasiblack holes such as the mass formulas for both objects had been found previously. We also discuss the entropy for extremal quasiblack holes, a more subtle issue.

  17. All Inequalities for the Relative Entropy

    Science.gov (United States)

    Ibinson, Ben; Linden, Noah; Winter, Andreas

    2007-01-01

    The relative entropy of two n-party quantum states is an important quantity exhibiting, for example, the extent to which the two states are different. The relative entropy of the states formed by reducing two n-party states to a smaller number m of parties is always less than or equal to the relative entropy of the two original n-party states. This is the monotonicity of relative entropy. Using techniques from convex geometry, we prove that monotonicity under restrictions is the only general inequality satisfied by quantum relative entropies. In doing so we make a connection to secret sharing schemes with general access structures: indeed, it turns out that the extremal rays of the cone defined by monotonicity are populated by classical secret sharing schemes. A surprising outcome is that the structure of allowed relative entropy values of subsets of multiparty states is much simpler than the structure of allowed entropy values. And the structure of allowed relative entropy values (unlike that of entropies) is the same for classical probability distributions and quantum states.

  18. Bayesian Reliability Estimation for Deteriorating Systems with Limited Samples Using the Maximum Entropy Approach

    Directory of Open Access Journals (Sweden)

    Ning-Cong Xiao

    2013-12-01

    Full Text Available In this paper the combinations of maximum entropy method and Bayesian inference for reliability assessment of deteriorating system is proposed. Due to various uncertainties, less data and incomplete information, system parameters usually cannot be determined precisely. These uncertainty parameters can be modeled by fuzzy sets theory and the Bayesian inference which have been proved to be useful for deteriorating systems under small sample sizes. The maximum entropy approach can be used to calculate the maximum entropy density function of uncertainty parameters more accurately for it does not need any additional information and assumptions. Finally, two optimization models are presented which can be used to determine the lower and upper bounds of systems probability of failure under vague environment conditions. Two numerical examples are investigated to demonstrate the proposed method.

  19. Proposal for determining changes in entropy of semi ideal gas using mean values of temperature functions

    Directory of Open Access Journals (Sweden)

    Pejović Branko B.

    2014-01-01

    Full Text Available In a semi-ideal gas, entropy changes cannot be determined through the medium specific heat capacity in a manner as determined by the change of internal energy and enthalpy, i.e. the amount of heat exchanged. Taking this into account, the authors conducted two models through which it is possible to determine the change in the specific entropy of a semi-ideal gas for arbitrary temperature interval using the spread sheet method, using the mean values of the appropriate functions. The idea is to replace integration, which occurs here in evitably, with mean values of the previous functions. The models are derived based on the functional dependence of the actual specific heat capacity on the temperature. The theorem used is that of the mean value of a function as well as the mathematical properties of the definite integral. The mean value of a fractional function is determined via its integrand while the logarithmic functions were performed by applying a suitable transformation of the differential calculus. The relations derived relation, using the computer program, have enabled the design of appropriate thermodynamic tables through which it is possible to determine the change in entropy of arbitrary state changes in an efficient and rational manner, without the use of calculus or finished forms. In this way, the change in the entropy of a semi-ideal gas is determined for an arbitrary temperature interval using the method which is analogous to that applied in determining the change of internal energy and enthalpy or the amount of heat exchanged, which was the goal of the work. Verification of the proposed method for both the above functions was performed for a a few characteristic semi-ideal gases where change c(T is significant, for the three adopted temperature intervals, for the characteristic change of state. This was compared to the results of the classical integral and the proposed method through the prepared tables. In certain or special cases

  20. Three faces of entropy for complex systems: Information, thermodynamics, and the maximum entropy principle

    Science.gov (United States)

    Thurner, Stefan; Corominas-Murtra, Bernat; Hanel, Rudolf

    2017-09-01

    There are at least three distinct ways to conceptualize entropy: entropy as an extensive thermodynamic quantity of physical systems (Clausius, Boltzmann, Gibbs), entropy as a measure for information production of ergodic sources (Shannon), and entropy as a means for statistical inference on multinomial processes (Jaynes maximum entropy principle). Even though these notions represent fundamentally different concepts, the functional form of the entropy for thermodynamic systems in equilibrium, for ergodic sources in information theory, and for independent sampling processes in statistical systems, is degenerate, H (p ) =-∑ipilogpi . For many complex systems, which are typically history-dependent, nonergodic, and nonmultinomial, this is no longer the case. Here we show that for such processes, the three entropy concepts lead to different functional forms of entropy, which we will refer to as SEXT for extensive entropy, SIT for the source information rate in information theory, and SMEP for the entropy functional that appears in the so-called maximum entropy principle, which characterizes the most likely observable distribution functions of a system. We explicitly compute these three entropy functionals for three concrete examples: for Pólya urn processes, which are simple self-reinforcing processes, for sample-space-reducing (SSR) processes, which are simple history dependent processes that are associated with power-law statistics, and finally for multinomial mixture processes.

  1. Characterization of complexity in the electroencephalograph activity of Alzheimer's disease based on fuzzy entropy.

    Science.gov (United States)

    Cao, Yuzhen; Cai, Lihui; Wang, Jiang; Wang, Ruofan; Yu, Haitao; Cao, Yibin; Liu, Jing

    2015-08-01

    In this paper, experimental neurophysiologic recording and statistical analysis are combined to investigate the nonlinear characteristic and the cognitive function of the brain. Fuzzy approximate entropy and fuzzy sample entropy are applied to characterize the model-based simulated series and electroencephalograph (EEG) series of Alzheimer's disease (AD). The effectiveness and advantages of these two kinds of fuzzy entropy are first verified through the simulated EEG series generated by the alpha rhythm model, including stronger relative consistency and robustness. Furthermore, in order to detect the abnormality of irregularity and chaotic behavior in the AD brain, the complexity features based on these two fuzzy entropies are extracted in the delta, theta, alpha, and beta bands. It is demonstrated that, due to the introduction of fuzzy set theory, the fuzzy entropies could better distinguish EEG signals of AD from that of the normal than the approximate entropy and sample entropy. Moreover, the entropy values of AD are significantly decreased in the alpha band, particularly in the temporal brain region, such as electrode T3 and T4. In addition, fuzzy sample entropy could achieve higher group differences in different brain regions and higher average classification accuracy of 88.1% by support vector machine classifier. The obtained results prove that fuzzy sample entropy may be a powerful tool to characterize the complexity abnormalities of AD, which could be helpful in further understanding of the disease.

  2. A Theoretical Basis for Entropy-Scaling Effects in Human Mobility Patterns.

    Science.gov (United States)

    Osgood, Nathaniel D; Paul, Tuhin; Stanley, Kevin G; Qian, Weicheng

    2016-01-01

    Characterizing how people move through space has been an important component of many disciplines. With the advent of automated data collection through GPS and other location sensing systems, researchers have the opportunity to examine human mobility at spatio-temporal resolution heretofore impossible. However, the copious and complex data collected through these logging systems can be difficult for humans to fully exploit, leading many researchers to propose novel metrics for encapsulating movement patterns in succinct and useful ways. A particularly salient proposed metric is the mobility entropy rate of the string representing the sequence of locations visited by an individual. However, mobility entropy rate is not scale invariant: entropy rate calculations based on measurements of the same trajectory at varying spatial or temporal granularity do not yield the same value, limiting the utility of mobility entropy rate as a metric by confounding inter-experimental comparisons. In this paper, we derive a scaling relationship for mobility entropy rate of non-repeating straight line paths from the definition of Lempel-Ziv compression. We show that the resulting formulation predicts the scaling behavior of simulated mobility traces, and provides an upper bound on mobility entropy rate under certain assumptions. We further show that this formulation has a maximum value for a particular sampling rate, implying that optimal sampling rates for particular movement patterns exist.

  3. An Effective Interval-Valued Intuitionistic Fuzzy Entropy to Evaluate Entrepreneurship Orientation of Online P2P Lending Platforms

    Directory of Open Access Journals (Sweden)

    Xiaohong Chen

    2013-01-01

    Full Text Available This paper describes an approach to measure the entrepreneurship orientation of online P2P lending platforms. The limitations of existing methods for calculating entropy of interval-valued intuitionistic fuzzy sets (IVIFSs are significantly improved by a new entropy measure of IVIFS considered in this paper, and then the essential properties of the proposed entropy are introduced. Moreover, an evaluation procedure is proposed to measure entrepreneurship orientation of online P2P lending platforms. Finally, a case is used to demonstrate the effectiveness of this method.

  4. RNA Thermodynamic Structural Entropy.

    Directory of Open Access Journals (Sweden)

    Juan Antonio Garcia-Martin

    Full Text Available Conformational entropy for atomic-level, three dimensional biomolecules is known experimentally to play an important role in protein-ligand discrimination, yet reliable computation of entropy remains a difficult problem. Here we describe the first two accurate and efficient algorithms to compute the conformational entropy for RNA secondary structures, with respect to the Turner energy model, where free energy parameters are determined from UV absorption experiments. An algorithm to compute the derivational entropy for RNA secondary structures had previously been introduced, using stochastic context free grammars (SCFGs. However, the numerical value of derivational entropy depends heavily on the chosen context free grammar and on the training set used to estimate rule probabilities. Using data from the Rfam database, we determine that both of our thermodynamic methods, which agree in numerical value, are substantially faster than the SCFG method. Thermodynamic structural entropy is much smaller than derivational entropy, and the correlation between length-normalized thermodynamic entropy and derivational entropy is moderately weak to poor. In applications, we plot the structural entropy as a function of temperature for known thermoswitches, such as the repression of heat shock gene expression (ROSE element, we determine that the correlation between hammerhead ribozyme cleavage activity and total free energy is improved by including an additional free energy term arising from conformational entropy, and we plot the structural entropy of windows of the HIV-1 genome. Our software RNAentropy can compute structural entropy for any user-specified temperature, and supports both the Turner'99 and Turner'04 energy parameters. It follows that RNAentropy is state-of-the-art software to compute RNA secondary structure conformational entropy. Source code is available at https://github.com/clotelab/RNAentropy/; a full web server is available at http

  5. RNA Thermodynamic Structural Entropy.

    Science.gov (United States)

    Garcia-Martin, Juan Antonio; Clote, Peter

    2015-01-01

    Conformational entropy for atomic-level, three dimensional biomolecules is known experimentally to play an important role in protein-ligand discrimination, yet reliable computation of entropy remains a difficult problem. Here we describe the first two accurate and efficient algorithms to compute the conformational entropy for RNA secondary structures, with respect to the Turner energy model, where free energy parameters are determined from UV absorption experiments. An algorithm to compute the derivational entropy for RNA secondary structures had previously been introduced, using stochastic context free grammars (SCFGs). However, the numerical value of derivational entropy depends heavily on the chosen context free grammar and on the training set used to estimate rule probabilities. Using data from the Rfam database, we determine that both of our thermodynamic methods, which agree in numerical value, are substantially faster than the SCFG method. Thermodynamic structural entropy is much smaller than derivational entropy, and the correlation between length-normalized thermodynamic entropy and derivational entropy is moderately weak to poor. In applications, we plot the structural entropy as a function of temperature for known thermoswitches, such as the repression of heat shock gene expression (ROSE) element, we determine that the correlation between hammerhead ribozyme cleavage activity and total free energy is improved by including an additional free energy term arising from conformational entropy, and we plot the structural entropy of windows of the HIV-1 genome. Our software RNAentropy can compute structural entropy for any user-specified temperature, and supports both the Turner'99 and Turner'04 energy parameters. It follows that RNAentropy is state-of-the-art software to compute RNA secondary structure conformational entropy. Source code is available at https://github.com/clotelab/RNAentropy/; a full web server is available at http

  6. Selection of entropy-measure parameters for knowledge discovery in heart rate variability data.

    Science.gov (United States)

    Mayer, Christopher C; Bachler, Martin; Hörtenhuber, Matthias; Stocker, Christof; Holzinger, Andreas; Wassertheurer, Siegfried

    2014-01-01

    Heart rate variability is the variation of the time interval between consecutive heartbeats. Entropy is a commonly used tool to describe the regularity of data sets. Entropy functions are defined using multiple parameters, the selection of which is controversial and depends on the intended purpose. This study describes the results of tests conducted to support parameter selection, towards the goal of enabling further biomarker discovery. This study deals with approximate, sample, fuzzy, and fuzzy measure entropies. All data were obtained from PhysioNet, a free-access, on-line archive of physiological signals, and represent various medical conditions. Five tests were defined and conducted to examine the influence of: varying the threshold value r (as multiples of the sample standard deviation σ, or the entropy-maximizing rChon), the data length N, the weighting factors n for fuzzy and fuzzy measure entropies, and the thresholds rF and rL for fuzzy measure entropy. The results were tested for normality using Lilliefors' composite goodness-of-fit test. Consequently, the p-value was calculated with either a two sample t-test or a Wilcoxon rank sum test. The first test shows a cross-over of entropy values with regard to a change of r. Thus, a clear statement that a higher entropy corresponds to a high irregularity is not possible, but is rather an indicator of differences in regularity. N should be at least 200 data points for r = 0.2 σ and should even exceed a length of 1000 for r = rChon. The results for the weighting parameters n for the fuzzy membership function show different behavior when coupled with different r values, therefore the weighting parameters have been chosen independently for the different threshold values. The tests concerning rF and rL showed that there is no optimal choice, but r = rF = rL is reasonable with r = rChon or r = 0.2σ. Some of the tests showed a dependency of the test significance on the data at hand. Nevertheless, as the medical

  7. Parametric Bayesian Estimation of Differential Entropy and Relative Entropy

    Directory of Open Access Journals (Sweden)

    Maya Gupta

    2010-04-01

    Full Text Available Given iid samples drawn from a distribution with known parametric form, we propose the minimization of expected Bregman divergence to form Bayesian estimates of differential entropy and relative entropy, and derive such estimators for the uniform, Gaussian, Wishart, and inverse Wishart distributions. Additionally, formulas are given for a log gamma Bregman divergence and the differential entropy and relative entropy for the Wishart and inverse Wishart. The results, as always with Bayesian estimates, depend on the accuracy of the prior parameters, but example simulations show that the performance can be substantially improved compared to maximum likelihood or state-of-the-art nonparametric estimators.

  8. Nonlinear Analysis of Auscultation Signals in TCM Using the Combination of Wavelet Packet Transform and Sample Entropy

    Directory of Open Access Journals (Sweden)

    Jian-Jun Yan

    2012-01-01

    Full Text Available Auscultation signals are nonstationary in nature. Wavelet packet transform (WPT has currently become a very useful tool in analyzing nonstationary signals. Sample entropy (SampEn has recently been proposed to act as a measurement for quantifying regularity and complexity of time series data. WPT and SampEn were combined in this paper to analyze auscultation signals in traditional Chinese medicine (TCM. SampEns for WPT coefficients were computed to quantify the signals from qi- and yin-deficient, as well as healthy, subjects. The complexity of the signal can be evaluated with this scheme in different time-frequency resolutions. First, the voice signals were decomposed into approximated and detailed WPT coefficients. Then, SampEn values for approximated and detailed coefficients were calculated. Finally, SampEn values with significant differences in the three kinds of samples were chosen as the feature parameters for the support vector machine to identify the three types of auscultation signals. The recognition accuracy rates were higher than 90%.

  9. Applying Improved Multiscale Fuzzy Entropy for Feature Extraction of MI-EEG

    Directory of Open Access Journals (Sweden)

    Ming-ai Li

    2017-01-01

    Full Text Available Electroencephalography (EEG is considered the output of a brain and it is a bioelectrical signal with multiscale and nonlinear properties. Motor Imagery EEG (MI-EEG not only has a close correlation with the human imagination and movement intention but also contains a large amount of physiological or disease information. As a result, it has been fully studied in the field of rehabilitation. To correctly interpret and accurately extract the features of MI-EEG signals, many nonlinear dynamic methods based on entropy, such as Approximate Entropy (ApEn, Sample Entropy (SampEn, Fuzzy Entropy (FE, and Permutation Entropy (PE, have been proposed and exploited continuously in recent years. However, these entropy-based methods can only measure the complexity of MI-EEG based on a single scale and therefore fail to account for the multiscale property inherent in MI-EEG. To solve this problem, Multiscale Sample Entropy (MSE, Multiscale Permutation Entropy (MPE, and Multiscale Fuzzy Entropy (MFE are developed by introducing scale factor. However, MFE has not been widely used in analysis of MI-EEG, and the same parameter values are employed when the MFE method is used to calculate the fuzzy entropy values on multiple scales. Actually, each coarse-grained MI-EEG carries the characteristic information of the original signal on different scale factors. It is necessary to optimize MFE parameters to discover more feature information. In this paper, the parameters of MFE are optimized independently for each scale factor, and the improved MFE (IMFE is applied to the feature extraction of MI-EEG. Based on the event-related desynchronization (ERD/event-related synchronization (ERS phenomenon, IMFE features from multi channels are fused organically to construct the feature vector. Experiments are conducted on a public dataset by using Support Vector Machine (SVM as a classifier. The experiment results of 10-fold cross-validation show that the proposed method yields

  10. EEG entropy measures in anesthesia

    Science.gov (United States)

    Liang, Zhenhu; Wang, Yinghua; Sun, Xue; Li, Duan; Voss, Logan J.; Sleigh, Jamie W.; Hagihira, Satoshi; Li, Xiaoli

    2015-01-01

    Highlights: ► Twelve entropy indices were systematically compared in monitoring depth of anesthesia and detecting burst suppression.► Renyi permutation entropy performed best in tracking EEG changes associated with different anesthesia states.► Approximate Entropy and Sample Entropy performed best in detecting burst suppression. Objective: Entropy algorithms have been widely used in analyzing EEG signals during anesthesia. However, a systematic comparison of these entropy algorithms in assessing anesthesia drugs' effect is lacking. In this study, we compare the capability of 12 entropy indices for monitoring depth of anesthesia (DoA) and detecting the burst suppression pattern (BSP), in anesthesia induced by GABAergic agents. Methods: Twelve indices were investigated, namely Response Entropy (RE) and State entropy (SE), three wavelet entropy (WE) measures [Shannon WE (SWE), Tsallis WE (TWE), and Renyi WE (RWE)], Hilbert-Huang spectral entropy (HHSE), approximate entropy (ApEn), sample entropy (SampEn), Fuzzy entropy, and three permutation entropy (PE) measures [Shannon PE (SPE), Tsallis PE (TPE) and Renyi PE (RPE)]. Two EEG data sets from sevoflurane-induced and isoflurane-induced anesthesia respectively were selected to assess the capability of each entropy index in DoA monitoring and BSP detection. To validate the effectiveness of these entropy algorithms, pharmacokinetic/pharmacodynamic (PK/PD) modeling and prediction probability (Pk) analysis were applied. The multifractal detrended fluctuation analysis (MDFA) as a non-entropy measure was compared. Results: All the entropy and MDFA indices could track the changes in EEG pattern during different anesthesia states. Three PE measures outperformed the other entropy indices, with less baseline variability, higher coefficient of determination (R2) and prediction probability, and RPE performed best; ApEn and SampEn discriminated BSP best. Additionally, these entropy measures showed an advantage in computation

  11. ECG contamination of EEG signals: effect on entropy.

    Science.gov (United States)

    Chakrabarti, Dhritiman; Bansal, Sonia

    2016-02-01

    Entropy™ is a proprietary algorithm which uses spectral entropy analysis of electroencephalographic (EEG) signals to produce indices which are used as a measure of depth of hypnosis. We describe a report of electrocardiographic (ECG) contamination of EEG signals leading to fluctuating erroneous Entropy values. An explanation is provided for mechanism behind this observation by describing the spread of ECG signals in head and neck and its influence on EEG/Entropy by correlating the observation with the published Entropy algorithm. While the Entropy algorithm has been well conceived, there are still instances in which it can produce erroneous values. Such erroneous values and their cause may be identified by close scrutiny of the EEG waveform if Entropy values seem out of sync with that expected at given anaesthetic levels.

  12. Maximum entropy formalism for the analytic continuation of matrix-valued Green's functions

    Science.gov (United States)

    Kraberger, Gernot J.; Triebl, Robert; Zingl, Manuel; Aichhorn, Markus

    2017-10-01

    We present a generalization of the maximum entropy method to the analytic continuation of matrix-valued Green's functions. To treat off-diagonal elements correctly based on Bayesian probability theory, the entropy term has to be extended for spectral functions that are possibly negative in some frequency ranges. In that way, all matrix elements of the Green's function matrix can be analytically continued; we introduce a computationally cheap element-wise method for this purpose. However, this method cannot ensure important constraints on the mathematical properties of the resulting spectral functions, namely positive semidefiniteness and Hermiticity. To improve on this, we present a full matrix formalism, where all matrix elements are treated simultaneously. We show the capabilities of these methods using insulating and metallic dynamical mean-field theory (DMFT) Green's functions as test cases. Finally, we apply the methods to realistic material calculations for LaTiO3, where off-diagonal matrix elements in the Green's function appear due to the distorted crystal structure.

  13. Maximum Quantum Entropy Method

    OpenAIRE

    Sim, Jae-Hoon; Han, Myung Joon

    2018-01-01

    Maximum entropy method for analytic continuation is extended by introducing quantum relative entropy. This new method is formulated in terms of matrix-valued functions and therefore invariant under arbitrary unitary transformation of input matrix. As a result, the continuation of off-diagonal elements becomes straightforward. Without introducing any further ambiguity, the Bayesian probabilistic interpretation is maintained just as in the conventional maximum entropy method. The applications o...

  14. Refined generalized multiscale entropy analysis for physiological signals

    Science.gov (United States)

    Liu, Yunxiao; Lin, Youfang; Wang, Jing; Shang, Pengjian

    2018-01-01

    Multiscale entropy analysis has become a prevalent complexity measurement and been successfully applied in various fields. However, it only takes into account the information of mean values (first moment) in coarse-graining procedure. Then generalized multiscale entropy (MSEn) considering higher moments to coarse-grain a time series was proposed and MSEσ2 has been implemented. However, the MSEσ2 sometimes may yield an imprecise estimation of entropy or undefined entropy, and reduce statistical reliability of sample entropy estimation as scale factor increases. For this purpose, we developed the refined model, RMSEσ2, to improve MSEσ2. Simulations on both white noise and 1 / f noise show that RMSEσ2 provides higher entropy reliability and reduces the occurrence of undefined entropy, especially suitable for short time series. Besides, we discuss the effect on RMSEσ2 analysis from outliers, data loss and other concepts in signal processing. We apply the proposed model to evaluate the complexity of heartbeat interval time series derived from healthy young and elderly subjects, patients with congestive heart failure and patients with atrial fibrillation respectively, compared to several popular complexity metrics. The results demonstrate that RMSEσ2 measured complexity (a) decreases with aging and diseases, and (b) gives significant discrimination between different physiological/pathological states, which may facilitate clinical application.

  15. Absolute entropy of ions in methanol

    International Nuclear Information System (INIS)

    Abakshin, V.A.; Kobenin, V.A.; Krestov, G.A.

    1978-01-01

    By measuring the initial thermoelectromotive forces of chains with bromo-silver electrodes in tetraalkylammonium bromide solutions the absolute entropy of bromide-ion in methanol is determined in the 298.15-318.15 K range. The anti Ssub(Brsup(-))sup(0) = 9.8 entropy units value is used for calculation of the absolute partial molar entropy of alkali metal ions and halogenide ions. It has been found that, absolute entropy of Cs + =12.0 entropy units, I - =14.0 entropy units. The obtained ion absolute entropies in methanol at 298.15 K within 1-2 entropy units is in an agreement with published data

  16. Multivariate refined composite multiscale entropy analysis

    International Nuclear Information System (INIS)

    Humeau-Heurtier, Anne

    2016-01-01

    Multiscale entropy (MSE) has become a prevailing method to quantify signals complexity. MSE relies on sample entropy. However, MSE may yield imprecise complexity estimation at large scales, because sample entropy does not give precise estimation of entropy when short signals are processed. A refined composite multiscale entropy (RCMSE) has therefore recently been proposed. Nevertheless, RCMSE is for univariate signals only. The simultaneous analysis of multi-channel (multivariate) data often over-performs studies based on univariate signals. We therefore introduce an extension of RCMSE to multivariate data. Applications of multivariate RCMSE to simulated processes reveal its better performances over the standard multivariate MSE. - Highlights: • Multiscale entropy quantifies data complexity but may be inaccurate at large scale. • A refined composite multiscale entropy (RCMSE) has therefore recently been proposed. • Nevertheless, RCMSE is adapted to univariate time series only. • We herein introduce an extension of RCMSE to multivariate data. • It shows better performances than the standard multivariate multiscale entropy.

  17. Nuclear power industry from the viewpoint of entropy so-called, 3

    International Nuclear Information System (INIS)

    Ukaji, Rokuo

    1984-01-01

    In Japan, the nuclear power industry tends to be grouped, which is understandable because of its nature as the unification of various technology aspects. The grouped operation implies the state in order (low entropy). If this grouped operation (low entropy) is in a state of low economic value (high entropy), in order to raise the economic value (low entropy), the tendency will be to weaken the grouping (high entropy). For raising the low economic value (high entropy) to a higher state (low entropy), other energy or value must be consumed. In the problematic situation when the economic value is also high for manufacturing and construction enterprises (low entropy), the leadership by the electric power enterprises is strongly desired. (Mori, K.)

  18. Magnetic entropy-change in La0.67-xBixCa0.33MnO3 compound

    International Nuclear Information System (INIS)

    Atalay, S.; Kolat, V.S.; Gencer, H.; Adiguzel, H.I.

    2006-01-01

    Bi doped lanthanum manganites with the chemical composition of La 0.67-x Bi x Ca 0.33 MnO 3 (x=0, 0.05, 0.1, 0.2) were prepared by the standard solid-state process. The Curie temperatures were measured to be 267K for x=0, 248K for x=0.05, 244K for x=0.1 and 229K for x=0.2 samples. It was found that the maximum value of the magnetic entropy change |ΔS m | has reached the highest value of 6.08J/kgK at 3T for the composition with x=0.05. Nearly the same maximum entropy change was observed for the x=0 sample. A large decrease in the magnitude of the entropy change was observed for the x=0.2 sample

  19. Zero-contingent entropy of quantum states of a Hydrogen atom

    International Nuclear Information System (INIS)

    Charvot, R.; Majernik, V.

    1996-01-01

    We calculated the zero-contingent entropy for the position of electron in H-atom as a function of its quantum numbers and compared it with the corresponding value of the Shannon entropy. The values of zero-contingent entropy of quantum states of H-atom correlate well with the corresponding values of Shannon's entropy. This points out that, besides the Shannon entropy, the zero-contingent entropy represents an appropriate, and mathematically rather simple, measure of the spreading out of the wave functions in H-atom. (authors)

  20. Escort entropies and divergences and related canonical distribution

    International Nuclear Information System (INIS)

    Bercher, J.-F.

    2011-01-01

    We discuss two families of two-parameter entropies and divergences, derived from the standard Renyi and Tsallis entropies and divergences. These divergences and entropies are found as divergences or entropies of escort distributions. Exploiting the nonnegativity of the divergences, we derive the expression of the canonical distribution associated to the new entropies and a observable given as an escort-mean value. We show that this canonical distribution extends, and smoothly connects, the results obtained in nonextensive thermodynamics for the standard and generalized mean value constraints. -- Highlights: → Two-parameter entropies are derived from q-entropies and escort distributions. → The related canonical distribution is derived. → This connects and extends known results in nonextensive statistics.

  1. Information Entropy Production of Maximum Entropy Markov Chains from Spike Trains

    Science.gov (United States)

    Cofré, Rodrigo; Maldonado, Cesar

    2018-01-01

    We consider the maximum entropy Markov chain inference approach to characterize the collective statistics of neuronal spike trains, focusing on the statistical properties of the inferred model. We review large deviations techniques useful in this context to describe properties of accuracy and convergence in terms of sampling size. We use these results to study the statistical fluctuation of correlations, distinguishability and irreversibility of maximum entropy Markov chains. We illustrate these applications using simple examples where the large deviation rate function is explicitly obtained for maximum entropy models of relevance in this field.

  2. Wavelet bidomain sample entropy analysis to predict spontaneous termination of atrial fibrillation

    International Nuclear Information System (INIS)

    Alcaraz, Raúl; Rieta, José Joaquín

    2008-01-01

    The ability to predict if an atrial fibrillation (AF) episode terminates spontaneously or not through non-invasive techniques is a challenging problem of great clinical interest. This fact could avoid useless therapeutic interventions and minimize the risks for the patient. The present work introduces a robust AF prediction methodology carried out by estimating, through sample entropy (SampEn), the atrial activity (AA) organization increase prior to AF termination from the surface electrocardiogram (ECG). This regularity variation appears as a consequence of the decrease in the number of reentries wandering throughout the atrial tissue. AA was obtained from surface ECG recordings by applying a QRST cancellation technique. Next, a robust and reliable classification process for terminating and non-terminating AF episodes was developed, making use of two different wavelet decomposition strategies. Finally, the AA organization both in time and wavelet domains (bidomain) was estimated via SampEn. The methodology was validated using a training set consisting of 20 AF recordings with known termination properties and a test set of 30 recordings. All the training signals and 93.33% of the test set were correctly classified into terminating and sustained AF, obtaining 93.75% sensitivity and 92.86% specificity. It can be concluded that spontaneous AF termination can be reliably and noninvasively predicted by applying wavelet bidomain sample entropy

  3. Entropy production in a cell and reversal of entropy flow as an anticancer therapy

    Institute of Scientific and Technical Information of China (English)

    Liao-fu LUO

    2009-01-01

    The entropy production rate of cancer cells is always higher than healthy cells in the case where no external field is applied. Different entropy production between two kinds of cells determines the direction of entropy flow among cells. The entropy flow is the carrier of information flow. The entropy flow from cancerous cells to healthy cells takes along the harmful information of cancerous cells, propagating its toxic action to healthy tissues. We demonstrate that a low-frequency and low- intensity electromagnetic field or ultrasound irradiation may increase the entropy production rate of a cell in normal tissue than that in cancer and consequently re- verse the direction of entropy current between two kinds of cells. The modification of the PH value of cells may also cause the reversal of the direction of entropy flow between healthy and cancerous cells. Therefore, the bio- logical tissue under the irradiation of an electromagnetic field or ultrasound or under the appropriate change of cell acidity can avoid the propagation of harmful infor- marion from cancer cells. We suggest that this entropy mechanism possibly provides a basis for a novel approach to anticancer therapy.

  4. Nonextensive Entropy, Prior PDFs and Spontaneous Symmetry Breaking

    OpenAIRE

    Shafee, Fariel

    2008-01-01

    We show that using nonextensive entropy can lead to spontaneous symmetry breaking when a parameter changes its value from that applicable for a symmetric domain, as in field theory. We give the physical reasons and also show that even for symmetric Dirichlet priors, such a defnition of the entropy and the parameter value can lead to asymmetry when entropy is maximized.

  5. Measuring Coupling of Rhythmical Time Series Using Cross Sample Entropy and Cross Recurrence Quantification Analysis

    Directory of Open Access Journals (Sweden)

    John McCamley

    2017-01-01

    Full Text Available The aim of this investigation was to compare and contrast the use of cross sample entropy (xSE and cross recurrence quantification analysis (cRQA measures for the assessment of coupling of rhythmical patterns. Measures were assessed using simulated signals with regular, chaotic, and random fluctuations in frequency, amplitude, and a combination of both. Biological data were studied as models of normal and abnormal locomotor-respiratory coupling. Nine signal types were generated for seven frequency ratios. Fifteen patients with COPD (abnormal coupling and twenty-one healthy controls (normal coupling walked on a treadmill at three speeds while breathing and walking were recorded. xSE and the cRQA measures of percent determinism, maximum line, mean line, and entropy were quantified for both the simulated and experimental data. In the simulated data, xSE, percent determinism, and entropy were influenced by the frequency manipulation. The 1 : 1 frequency ratio was different than other frequency ratios for almost all measures and/or manipulations. The patients with COPD used a 2 : 3 ratio more often and xSE, percent determinism, maximum line, mean line, and cRQA entropy were able to discriminate between the groups. Analysis of the effects of walking speed indicated that all measures were able to discriminate between speeds.

  6. Entropy-based automated classification of independent components separated from fMCG

    International Nuclear Information System (INIS)

    Comani, S; Srinivasan, V; Alleva, G; Romani, G L

    2007-01-01

    Fetal magnetocardiography (fMCG) is a noninvasive technique suitable for the prenatal diagnosis of the fetal heart function. Reliable fetal cardiac signals can be reconstructed from multi-channel fMCG recordings by means of independent component analysis (ICA). However, the identification of the separated components is usually accomplished by visual inspection. This paper discusses a novel automated system based on entropy estimators, namely approximate entropy (ApEn) and sample entropy (SampEn), for the classification of independent components (ICs). The system was validated on 40 fMCG datasets of normal fetuses with the gestational age ranging from 22 to 37 weeks. Both ApEn and SampEn were able to measure the stability and predictability of the physiological signals separated with ICA, and the entropy values of the three categories were significantly different at p <0.01. The system performances were compared with those of a method based on the analysis of the time and frequency content of the components. The outcomes of this study showed a superior performance of the entropy-based system, in particular for early gestation, with an overall ICs detection rate of 98.75% and 97.92% for ApEn and SampEn respectively, as against a value of 94.50% obtained with the time-frequency-based system. (note)

  7. Entropy of the system formed in heavy ion collision

    International Nuclear Information System (INIS)

    Gudima, K.K.; Schulz, H.; Toneev, V.D.

    1985-01-01

    In frames of a cascade model the entropy evolution in a system producted in heavy ion collisions is investigated. Entropy calculation is based on smoothing of the distribution function over the momentum space by the temperature field introduction. The resulting entropy per one nucleon is shown to be rather sensitive to phase space subdivision into cells at the stage of free scattering of reaction products. Compared to recent experimental results for specific entropy values inferred from the composite particle yield of 4π measurements, it is found that cascade calculations do not favour some particular entropy model treatments and suggest smaller entropy values than following from consideration within equilibrium statistics

  8. The pigeon's discrimination of visual entropy: a logarithmic function.

    Science.gov (United States)

    Young, Michael E; Wasserman, Edward A

    2002-11-01

    We taught 8 pigeons to discriminate 16-icon arrays that differed in their visual variability or "entropy" to see whether the relationship between entropy and discriminative behavior is linear (in which equivalent differences in entropy should produce equivalent changes in behavior) or logarithmic (in which higher entropy values should be less discriminable from one another than lower entropy values). Pigeons received a go/no-go task in which the lower entropy arrays were reinforced for one group and the higher entropy arrays were reinforced for a second group. The superior discrimination of the second group was predicted by a theoretical analysis in which excitatory and inhibitory stimulus generalization gradients fall along a logarithmic, but not a linear scale. Reanalysis of previously published data also yielded results consistent with a logarithmic relationship between entropy and discriminative behavior.

  9. SpatEntropy: Spatial Entropy Measures in R

    OpenAIRE

    Altieri, Linda; Cocchi, Daniela; Roli, Giulia

    2018-01-01

    This article illustrates how to measure the heterogeneity of spatial data presenting a finite number of categories via computation of spatial entropy. The R package SpatEntropy contains functions for the computation of entropy and spatial entropy measures. The extension to spatial entropy measures is a unique feature of SpatEntropy. In addition to the traditional version of Shannon's entropy, the package includes Batty's spatial entropy, O'Neill's entropy, Li and Reynolds' contagion index, Ka...

  10. The vibrational and configurational entropy of α-brass

    International Nuclear Information System (INIS)

    Benisek, Artur; Dachs, Edgar; Salihović, Miralem; Paunovic, Aleksandar; Maier, Maria E.

    2014-01-01

    Highlights: • The heat capacity of two α-brass samples was measured from T = 5 K to 300 K. • Above T = 300 K, the ordering/disordering processes were investigated calorimetrically. • The vibrational and configurational entropies of α-brass were calculated. • A volume vs. bulk modulus approach describing the excess entropy was tested. -- Abstract: The heat capacities of two samples of a fcc Cu–Zn alloy with the composition CuZn15 and CuZn34 were measured from T = 5 K to 573 K using relaxation and differential scanning calorimetry. Below ∼90 K, they are characterised by negative excess heat capacities deviating from ideal mixing by up to −0.20 and −0.44 J · mol −1 · K −1 for CuZn15 and CuZn34, respectively. The excess heat capacities produce excess vibrational entropies, which are less negative compared to the excess entropy available from the literature. Since the literature entropy data contain both, the configurational and the vibrational part of the entropy, the difference is attributed to the excess configurational entropy. The thermodynamics of different short-range ordered samples was also investigated. The extent of the short-range order had no influence on the heat capacity below T = 300 K. Above T = 300 K, where the ordering changed during the measurement, the heat capacity depended strongly on the thermal history of the samples. From these data, the heat and entropy of ordering was calculated. The results on the vibrational entropy of this study were also used to test a relationship for estimating the excess vibrational entropy of mixing

  11. EEG entropy measures in anesthesia

    Directory of Open Access Journals (Sweden)

    Zhenhu eLiang

    2015-02-01

    Full Text Available Objective: Entropy algorithms have been widely used in analyzing EEG signals during anesthesia. However, a systematic comparison of these entropy algorithms in assessing anesthesia drugs’ effect is lacking. In this study, we compare the capability of twelve entropy indices for monitoring depth of anesthesia (DoA and detecting the burst suppression pattern (BSP, in anesthesia induced by GA-BAergic agents.Methods: Twelve indices were investigated, namely Response Entropy (RE and State entropy (SE, three wavelet entropy (WE measures (Shannon WE (SWE, Tsallis WE (TWE and Renyi WE (RWE, Hilbert-Huang spectral entropy (HHSE, approximate entropy (ApEn, sample entropy (SampEn, Fuzzy entropy, and three permutation entropy (PE measures (Shannon PE (SPE, Tsallis PE (TPE and Renyi PE (RPE. Two EEG data sets from sevoflurane-induced and isoflu-rane-induced anesthesia respectively were selected to assess the capability of each entropy index in DoA monitoring and BSP detection. To validate the effectiveness of these entropy algorithms, phar-macokinetic / pharmacodynamic (PK/PD modeling and prediction probability analysis were applied. The multifractal detrended fluctuation analysis (MDFA as a non-entropy measure was compared.Results: All the entropy and MDFA indices could track the changes in EEG pattern during different anesthesia states. Three PE measures outperformed the other entropy indices, with less baseline vari-ability, higher coefficient of determination and prediction probability, and RPE performed best; ApEn and SampEn discriminated BSP best. Additionally, these entropy measures showed an ad-vantage in computation efficiency compared with MDFA.Conclusion: Each entropy index has its advantages and disadvantages in estimating DoA. Overall, it is suggested that the RPE index was a superior measure.Significance: Investigating the advantages and disadvantages of these entropy indices could help improve current clinical indices for monitoring DoA.

  12. Adjoint entropy vs topological entropy

    OpenAIRE

    Giordano Bruno, Anna

    2012-01-01

    Recently the adjoint algebraic entropy of endomorphisms of abelian groups was introduced and studied. We generalize the notion of adjoint entropy to continuous endomorphisms of topological abelian groups. Indeed, the adjoint algebraic entropy is defined using the family of all finite-index subgroups, while we take only the subfamily of all open finite-index subgroups to define the topological adjoint entropy. This allows us to compare the (topological) adjoint entropy with the known topologic...

  13. The New Concept of Money: From Record-Of-Value (RoV) To Record-Of-Entropy (RoE)

    OpenAIRE

    Hegadekatti, Kartik

    2016-01-01

    In this paper, we shall analyse the concept of Money. Presently money is viewed as Record-of-Value i.e. money is used to capture value created in any activity. We start by defining money. Then we discuss the way energy is spent in creating value is measured using money. We also assess the uses of money by viewing it as a Record-of-Value entity. We discuss about the parallel economy which impacts mainstream economy in various ways. Economic Entropy is then defined and discussed. An equati...

  14. Upper entropy axioms and lower entropy axioms

    International Nuclear Information System (INIS)

    Guo, Jin-Li; Suo, Qi

    2015-01-01

    The paper suggests the concepts of an upper entropy and a lower entropy. We propose a new axiomatic definition, namely, upper entropy axioms, inspired by axioms of metric spaces, and also formulate lower entropy axioms. We also develop weak upper entropy axioms and weak lower entropy axioms. Their conditions are weaker than those of Shannon–Khinchin axioms and Tsallis axioms, while these conditions are stronger than those of the axiomatics based on the first three Shannon–Khinchin axioms. The subadditivity and strong subadditivity of entropy are obtained in the new axiomatics. Tsallis statistics is a special case of satisfying our axioms. Moreover, different forms of information measures, such as Shannon entropy, Daroczy entropy, Tsallis entropy and other entropies, can be unified under the same axiomatics

  15. Nonsymmetric entropy and maximum nonsymmetric entropy principle

    International Nuclear Information System (INIS)

    Liu Chengshi

    2009-01-01

    Under the frame of a statistical model, the concept of nonsymmetric entropy which generalizes the concepts of Boltzmann's entropy and Shannon's entropy, is defined. Maximum nonsymmetric entropy principle is proved. Some important distribution laws such as power law, can be derived from this principle naturally. Especially, nonsymmetric entropy is more convenient than other entropy such as Tsallis's entropy in deriving power laws.

  16. Symmetry Analysis of Gait between Left and Right Limb Using Cross-Fuzzy Entropy

    Directory of Open Access Journals (Sweden)

    Yi Xia

    2016-01-01

    Full Text Available The purpose of this paper is the investigation of gait symmetry problem by using cross-fuzzy entropy (C-FuzzyEn, which is a recently proposed cross entropy that has many merits as compared to the frequently used cross sample entropy (C-SampleEn. First, we used several simulation signals to test its performance regarding the relative consistency and dependence on data length. Second, the gait time series of the left and right stride interval were used to calculate the C-FuzzyEn values for gait symmetry analysis. Besides the statistical analysis, we also realized a support vector machine (SVM classifier to perform the classification of normal and abnormal gaits. The gait dataset consists of 15 patients with Parkinson’s disease (PD and 16 control (CO subjects. The results show that the C-FuzzyEn values of the PD patients’ gait are significantly higher than that of the CO subjects with a p value of less than 10-5, and the best classification performance evaluated by a leave-one-out (LOO cross-validation method is an accuracy of 96.77%. Such encouraging results imply that the C-FuzzyEn-based gait symmetry measure appears as a suitable tool for analyzing abnormal gaits.

  17. A Novel MADM Approach Based on Fuzzy Cross Entropy with Interval-Valued Intuitionistic Fuzzy Sets

    Directory of Open Access Journals (Sweden)

    Xin Tong

    2015-01-01

    Full Text Available The paper presents a novel multiple attribute decision-making (MADM approach for the problem with completely unknown attribute weights in the framework of interval-valued intuitionistic fuzzy sets (IVIFS. First, the fuzzy cross entropy and discrimination degree of IVIFS are defied. Subsequently, based on the discrimination degree of IVIFS, a nonlinear programming model to minimize the total deviation of discrimination degrees between alternatives and the positive ideal solution PIS as well as the negative ideal solution (NIS is constructed to obtain the attribute weights and, then, the weighted discrimination degree. Finally, all the alternatives are ranked according to the relative closeness coefficients using the extended TOPSIS method, and the most desirable alternative is chosen. The proposed approach extends the research method of MADM based on the IVIF cross entropy. Finally, we illustrate the feasibility and validity of the proposed method by two examples.

  18. Using maximum entropy modeling for optimal selection of sampling sites for monitoring networks

    Science.gov (United States)

    Stohlgren, Thomas J.; Kumar, Sunil; Barnett, David T.; Evangelista, Paul H.

    2011-01-01

    Environmental monitoring programs must efficiently describe state shifts. We propose using maximum entropy modeling to select dissimilar sampling sites to capture environmental variability at low cost, and demonstrate a specific application: sample site selection for the Central Plains domain (453,490 km2) of the National Ecological Observatory Network (NEON). We relied on four environmental factors: mean annual temperature and precipitation, elevation, and vegetation type. A “sample site” was defined as a 20 km × 20 km area (equal to NEON’s airborne observation platform [AOP] footprint), within which each 1 km2 cell was evaluated for each environmental factor. After each model run, the most environmentally dissimilar site was selected from all potential sample sites. The iterative selection of eight sites captured approximately 80% of the environmental envelope of the domain, an improvement over stratified random sampling and simple random designs for sample site selection. This approach can be widely used for cost-efficient selection of survey and monitoring sites.

  19. Physical entropy, information entropy and their evolution equations

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Inspired by the evolution equation of nonequilibrium statistical physics entropy and the concise statistical formula of the entropy production rate, we develop a theory of the dynamic information entropy and build a nonlinear evolution equation of the information entropy density changing in time and state variable space. Its mathematical form and physical meaning are similar to the evolution equation of the physical entropy: The time rate of change of information entropy density originates together from drift, diffusion and production. The concise statistical formula of information entropy production rate is similar to that of physical entropy also. Furthermore, we study the similarity and difference between physical entropy and information entropy and the possible unification of the two statistical entropies, and discuss the relationship among the principle of entropy increase, the principle of equilibrium maximum entropy and the principle of maximum information entropy as well as the connection between them and the entropy evolution equation.

  20. Can state or response entropy be used as a measure of sleep depth?

    LENUS (Irish Health Repository)

    Mahon, P

    2012-02-03

    SUMMARY: In this prospective observational study we examined the potential of the spectral entropy measures \\'state\\' and \\'response\\' entropy (Entropy monitor), as measures of sleep depth in 12 healthy adult subjects. Both median state and response entropy values varied significantly with sleep stage (p = 0.017 and p = 0.014 respectively; ANOVA). Median state or response entropy did not decrease significantly during the transition from awake to stage I sleep (p > 0.017). State entropy values decreased significantly between sleep stages I and II (p < 0.001). Both state and response entropy values were significantly less (40 and 45 arbitrary units respectively) in stage III (slow wave sleep) vs stage II sleep (p = 0.008). We conclude that state and response entropy values, when expressed as a function of time, may be a useful means of quantifying aspects of sleep.

  1. Entropy inequalities from reflection positivity

    International Nuclear Information System (INIS)

    Casini, H

    2010-01-01

    We investigate the question of whether the entropy and the Renyi entropies of the vacuum state reduced to a region of space can be represented in terms of correlators in quantum field theory. In this case, the positivity relations for the correlators are mapped into inequalities for the entropies. We write them using a real-time version of reflection positivity, which can be generalized to general quantum systems. Using this generalization we can prove an infinite sequence of inequalities which are obeyed by the Renyi entropies of integer index. There is one independent inequality involving any number of different subsystems. In quantum field theory the inequalities acquire a simple geometrical form and are consistent with the integer index Renyi entropies being given by vacuum expectation values of twisting operators in the Euclidean formulation. Several possible generalizations and specific examples are analyzed

  2. Explaining the entropy concept and entropy components

    Directory of Open Access Journals (Sweden)

    Marko Popovic

    2018-04-01

    Full Text Available Total entropy of a thermodynamic system consists of two components: thermal entropy due to energy, and residual entropy due to molecular orientation. In this article, a three-step method for explaining entropy is suggested. Step one is to use a classical method to introduce thermal entropy STM as a function of temperature T and heat capacity at constant pressure Cp: STM = ∫(Cp/T dT. Thermal entropy is the entropy due to uncertainty in motion of molecules and vanishes at absolute zero (zero-point energy state. It is also the measure of useless thermal energy that cannot be converted into useful work. The next step is to introduce residual entropy S0 as a function of the number of molecules N and the number of distinct orientations available to them in a crystal m: S0 = N kB ln m, where kB is the Boltzmann constant. Residual entropy quantifies the uncertainty in molecular orientation. Residual entropy, unlike thermal entropy, is independent of temperature and remains present at absolute zero. The third step is to show that thermal entropy and residual entropy add up to the total entropy of a thermodynamic system S: S = S0 + STM. This method of explanation should result in a better comprehension of residual entropy and thermal entropy, as well as of their similarities and differences. The new method was tested in teaching at Faculty of Chemistry University of Belgrade, Serbia. The results of the test show that the new method has a potential to improve the quality of teaching.

  3. Application of multi-scale (cross-) sample entropy for structural health monitoring

    Science.gov (United States)

    Lin, Tzu-Kang; Liang, Jui-Chang

    2015-08-01

    This study proposes an information-theoretic structural health monitoring (SHM) system based on multi-scale entropy (MSE) and multi-scale cross-sample entropy (MSCE). By measuring the ambient vibration signal from a structure, the damage condition can be rapidly evaluated via MSE analysis. The damage location can then be detected by analyzing the signals of different floors under the same damage condition via MSCE analysis. Moreover, a damage index is proposed to efficiently quantify the SHM process. Unlike some existing SHM methods, no experimental database or numerical model is required. Instead, a reference measurement of the current stage can initiate and launch the SHM system. A numerical simulation of a four-story steel structure is used to verify that the damage location and condition can be detected by the proposed SHM algorithm, and the location can be efficiently quantified by the damage index. A seven-story scaled-down benchmark structure is then employed for experimental verification. Based on the results, the damage condition can be correctly assessed, and average accuracy rates of 63.4 and 86.6% for the damage location can be achieved using the MSCE and damage index methods, respectively. As only the ambient vibration signal is required with a set of initial reference measurements, the proposed SHM system can be implemented practically with low cost.

  4. Entropy Generation of Shell and Double Concentric Tubes Heat Exchanger

    Directory of Open Access Journals (Sweden)

    basma abbas abdulmajeed

    2016-06-01

    Full Text Available Entropy generation was studied for new type of heat exchanger (shell and double concentric tubes heat exchanger. Parameters of hot oil flow rate, temperature of inlet hot oil and pressure drop were investigated with the concept of entropy generation. The results showed that the value of entropy generation increased with increasing the flow rate of hot oil and when cold water flow rate was doubled from 20 to 40 l/min, these values were larger. On the other hand, entropy generation increased with increasing the hot oil inlet temperature at a certain flow rate of hot oil. Furthermore, at a certain hot oil inlet temperature, the entropy generation increased with the pressure drop at different hot oil inlet flow rates. Finally, in order to keep up with modern technology, infrared thermography camera was used in order to measure the temperatures. The entropy generation was determined with lower values when infrared thermography camera was used to measure the temperatures, compared with the values obtained by using thermocouples.

  5. Entropy Generation and Human Aging: Lifespan Entropy and Effect of Physical Activity Level

    Science.gov (United States)

    Silva, Carlos; Annamalai, Kalyan

    2008-06-01

    The first and second laws of thermodynamics were applied to biochemical reactions typical of human metabolism. An open-system model was used for a human body. Energy conservation, availability and entropy balances were performed to obtain the entropy generated for the main food components. Quantitative results for entropy generation were obtained as a function of age using the databases from the U.S. Food and Nutrition Board (FNB) and Centers for Disease Control and Prevention (CDC), which provide energy requirements and food intake composition as a function of age, weight and stature. Numerical integration was performed through human lifespan for different levels of physical activity. Results were presented and analyzed. Entropy generated over the lifespan of average individuals (natural death) was found to be 11,404 kJ/ºK per kg of body mass with a rate of generation three times higher on infants than on the elderly. The entropy generated predicts a life span of 73.78 and 81.61 years for the average U.S. male and female individuals respectively, which are values that closely match the average lifespan from statistics (74.63 and 80.36 years). From the analysis of the effect of different activity levels, it is shown that entropy generated increases with physical activity, suggesting that exercise should be kept to a “healthy minimum” if entropy generation is to be minimized.

  6. Feasible Histories, Maximum Entropy

    International Nuclear Information System (INIS)

    Pitowsky, I.

    1999-01-01

    We consider the broadest possible consistency condition for a family of histories, which extends all previous proposals. A family that satisfies this condition is called feasible. On each feasible family of histories we choose a probability measure by maximizing entropy, while keeping the probabilities of commuting histories to their quantum mechanical values. This procedure is justified by the assumption that decoherence increases entropy. Finally, a criterion for identifying the nearly classical families is proposed

  7. The Effects of Aging and Dual Tasking on Human Gait Complexity During Treadmill Walking: A Comparative Study Using Quantized Dynamical Entropy and Sample Entropy.

    Science.gov (United States)

    Ahmadi, Samira; Wu, Christine; Sepehri, Nariman; Kantikar, Anuprita; Nankar, Mayur; Szturm, Tony

    2018-01-01

    Quantized dynamical entropy (QDE) has recently been proposed as a new measure to quantify the complexity of dynamical systems with the purpose of offering a better computational efficiency. This paper further investigates the viability of this method using five different human gait signals. These signals are recorded while normal walking and while performing secondary tasks among two age groups (young and older age groups). The results are compared with the outcomes of previously established sample entropy (SampEn) measure for the same signals. We also study how analyzing segmented and spatially and temporally normalized signal differs from analyzing whole data. Our findings show that human gait signals become more complex as people age and while they are cognitively loaded. Center of pressure (COP) displacement in mediolateral direction is the best signal for showing the gait changes. Moreover, the results suggest that by segmenting data, more information about intrastride dynamical features are obtained. Most importantly, QDE is shown to be a reliable measure for human gait complexity analysis.

  8. Characterizing brain structures and remodeling after TBI based on information content, diffusion entropy.

    Science.gov (United States)

    Fozouni, Niloufar; Chopp, Michael; Nejad-Davarani, Siamak P; Zhang, Zheng Gang; Lehman, Norman L; Gu, Steven; Ueno, Yuji; Lu, Mei; Ding, Guangliang; Li, Lian; Hu, Jiani; Bagher-Ebadian, Hassan; Hearshen, David; Jiang, Quan

    2013-01-01

    To overcome the limitations of conventional diffusion tensor magnetic resonance imaging resulting from the assumption of a Gaussian diffusion model for characterizing voxels containing multiple axonal orientations, Shannon's entropy was employed to evaluate white matter structure in human brain and in brain remodeling after traumatic brain injury (TBI) in a rat. Thirteen healthy subjects were investigated using a Q-ball based DTI data sampling scheme. FA and entropy values were measured in white matter bundles, white matter fiber crossing areas, different gray matter (GM) regions and cerebrospinal fluid (CSF). Axonal densities' from the same regions of interest (ROIs) were evaluated in Bielschowsky and Luxol fast blue stained autopsy (n = 30) brain sections by light microscopy. As a case demonstration, a Wistar rat subjected to TBI and treated with bone marrow stromal cells (MSC) 1 week after TBI was employed to illustrate the superior ability of entropy over FA in detecting reorganized crossing axonal bundles as confirmed by histological analysis with Bielschowsky and Luxol fast blue staining. Unlike FA, entropy was less affected by axonal orientation and more affected by axonal density. A significant agreement (r = 0.91) was detected between entropy values from in vivo human brain and histologically measured axonal density from post mortum from the same brain structures. The MSC treated TBI rat demonstrated that the entropy approach is superior to FA in detecting axonal remodeling after injury. Compared with FA, entropy detected new axonal remodeling regions with crossing axons, confirmed with immunohistological staining. Entropy measurement is more effective in distinguishing axonal remodeling after injury, when compared with FA. Entropy is also more sensitive to axonal density than axonal orientation, and thus may provide a more accurate reflection of axonal changes that occur in neurological injury and disease.

  9. Characterizing Brain Structures and Remodeling after TBI Based on Information Content, Diffusion Entropy

    Science.gov (United States)

    Fozouni, Niloufar; Chopp, Michael; Nejad-Davarani, Siamak P.; Zhang, Zheng Gang; Lehman, Norman L.; Gu, Steven; Ueno, Yuji; Lu, Mei; Ding, Guangliang; Li, Lian; Hu, Jiani; Bagher-Ebadian, Hassan; Hearshen, David; Jiang, Quan

    2013-01-01

    Background To overcome the limitations of conventional diffusion tensor magnetic resonance imaging resulting from the assumption of a Gaussian diffusion model for characterizing voxels containing multiple axonal orientations, Shannon's entropy was employed to evaluate white matter structure in human brain and in brain remodeling after traumatic brain injury (TBI) in a rat. Methods Thirteen healthy subjects were investigated using a Q-ball based DTI data sampling scheme. FA and entropy values were measured in white matter bundles, white matter fiber crossing areas, different gray matter (GM) regions and cerebrospinal fluid (CSF). Axonal densities' from the same regions of interest (ROIs) were evaluated in Bielschowsky and Luxol fast blue stained autopsy (n = 30) brain sections by light microscopy. As a case demonstration, a Wistar rat subjected to TBI and treated with bone marrow stromal cells (MSC) 1 week after TBI was employed to illustrate the superior ability of entropy over FA in detecting reorganized crossing axonal bundles as confirmed by histological analysis with Bielschowsky and Luxol fast blue staining. Results Unlike FA, entropy was less affected by axonal orientation and more affected by axonal density. A significant agreement (r = 0.91) was detected between entropy values from in vivo human brain and histologically measured axonal density from post mortum from the same brain structures. The MSC treated TBI rat demonstrated that the entropy approach is superior to FA in detecting axonal remodeling after injury. Compared with FA, entropy detected new axonal remodeling regions with crossing axons, confirmed with immunohistological staining. Conclusions Entropy measurement is more effective in distinguishing axonal remodeling after injury, when compared with FA. Entropy is also more sensitive to axonal density than axonal orientation, and thus may provide a more accurate reflection of axonal changes that occur in neurological injury and disease

  10. Linear entropy in quantum phase space

    International Nuclear Information System (INIS)

    Rosales-Zarate, Laura E. C.; Drummond, P. D.

    2011-01-01

    We calculate the quantum Renyi entropy in a phase-space representation for either fermions or bosons. This can also be used to calculate purity and fidelity, or the entanglement between two systems. We show that it is possible to calculate the entropy from sampled phase-space distributions in normally ordered representations, although this is not possible for all quantum states. We give an example of the use of this method in an exactly soluble thermal case. The quantum entropy cannot be calculated at all using sampling methods in classical symmetric (Wigner) or antinormally ordered (Husimi) phase spaces, due to inner-product divergences. The preferred method is to use generalized Gaussian phase-space methods, which utilize a distribution over stochastic Green's functions. We illustrate this approach by calculating the reduced entropy and entanglement of bosonic or fermionic modes coupled to a time-evolving, non-Markovian reservoir.

  11. Linear entropy in quantum phase space

    Energy Technology Data Exchange (ETDEWEB)

    Rosales-Zarate, Laura E. C.; Drummond, P. D. [Centre for Atom Optics and Ultrafast Spectroscopy, Swinburne University of Technology, Melbourne 3122 (Australia)

    2011-10-15

    We calculate the quantum Renyi entropy in a phase-space representation for either fermions or bosons. This can also be used to calculate purity and fidelity, or the entanglement between two systems. We show that it is possible to calculate the entropy from sampled phase-space distributions in normally ordered representations, although this is not possible for all quantum states. We give an example of the use of this method in an exactly soluble thermal case. The quantum entropy cannot be calculated at all using sampling methods in classical symmetric (Wigner) or antinormally ordered (Husimi) phase spaces, due to inner-product divergences. The preferred method is to use generalized Gaussian phase-space methods, which utilize a distribution over stochastic Green's functions. We illustrate this approach by calculating the reduced entropy and entanglement of bosonic or fermionic modes coupled to a time-evolving, non-Markovian reservoir.

  12. A Note on Burg’s Modified Entropy in Statistical Mechanics

    Directory of Open Access Journals (Sweden)

    Amritansu Ray

    2016-02-01

    Full Text Available Burg’s entropy plays an important role in this age of information euphoria, particularly in understanding the emergent behavior of a complex system such as statistical mechanics. For discrete or continuous variable, maximization of Burg’s Entropy subject to its only natural and mean constraint always provide us a positive density function though the Entropy is always negative. On the other hand, Burg’s modified entropy is a better measure than the standard Burg’s entropy measure since this is always positive and there is no computational problem for small probabilistic values. Moreover, the maximum value of Burg’s modified entropy increases with the number of possible outcomes. In this paper, a premium has been put on the fact that if Burg’s modified entropy is used instead of conventional Burg’s entropy in a maximum entropy probability density (MEPD function, the result yields a better approximation of the probability distribution. An important lemma in basic algebra and a suitable example with tables and graphs in statistical mechanics have been given to illustrate the whole idea appropriately.

  13. Entropy and Entanglement of the Electromagnetically Induced Transparency System

    Institute of Scientific and Technical Information of China (English)

    LIU Xiao-Juan; FANG Mao-Fa; ZHOU Qing-Ping

    2004-01-01

    @@ We study the entropy and the entanglement of an electromagnetically induced transparency system. The quantum entanglement between the atom and the two quantized laser fields is discussed by using quantum reduced entropy and that between the two quantized laser fields by using quantum relative entropy. We also examine whether influences of EIT on entropy and quantum entanglement of the system considered occur or not. Our results show that the minimum value of the atomic reduced entropy may be regarded as an entropy criterion on the electromagnetically induced transparency occurring.

  14. Entropy Generation and Human Aging: Lifespan Entropy and Effect of Physical Activity Level

    Directory of Open Access Journals (Sweden)

    Kalyan Annamalai

    2008-06-01

    Full Text Available The first and second laws of thermodynamics were applied to biochemical reactions typical of human metabolism. An open-system model was used for a human body. Energy conservation, availability and entropy balances were performed to obtain the entropy generated for the main food components. Quantitative results for entropy generation were obtained as a function of age using the databases from the U.S. Food and Nutrition Board (FNB and Centers for Disease Control and Prevention (CDC, which provide energy requirements and food intake composition as a function of age, weight and stature. Numerical integration was performed through human lifespan for different levels of physical activity. Results were presented and analyzed. Entropy generated over the lifespan of average individuals (natural death was found to be 11,404 kJ/ºK per kg of body mass with a rate of generation three times higher on infants than on the elderly. The entropy generated predicts a life span of 73.78 and 81.61 years for the average U.S. male and female individuals respectively, which are values that closely match the average lifespan from statistics (74.63 and 80.36 years. From the analysis of the effect of different activity levels, it is shown that entropy generated increases with physical activity, suggesting that exercise should be kept to a “healthy minimum” if entropy generation is to be minimized.

  15. Multivariate Generalized Multiscale Entropy Analysis

    Directory of Open Access Journals (Sweden)

    Anne Humeau-Heurtier

    2016-11-01

    Full Text Available Multiscale entropy (MSE was introduced in the 2000s to quantify systems’ complexity. MSE relies on (i a coarse-graining procedure to derive a set of time series representing the system dynamics on different time scales; (ii the computation of the sample entropy for each coarse-grained time series. A refined composite MSE (rcMSE—based on the same steps as MSE—also exists. Compared to MSE, rcMSE increases the accuracy of entropy estimation and reduces the probability of inducing undefined entropy for short time series. The multivariate versions of MSE (MMSE and rcMSE (MrcMSE have also been introduced. In the coarse-graining step used in MSE, rcMSE, MMSE, and MrcMSE, the mean value is used to derive representations of the original data at different resolutions. A generalization of MSE was recently published, using the computation of different moments in the coarse-graining procedure. However, so far, this generalization only exists for univariate signals. We therefore herein propose an extension of this generalized MSE to multivariate data. The multivariate generalized algorithms of MMSE and MrcMSE presented herein (MGMSE and MGrcMSE, respectively are first analyzed through the processing of synthetic signals. We reveal that MGrcMSE shows better performance than MGMSE for short multivariate data. We then study the performance of MGrcMSE on two sets of short multivariate electroencephalograms (EEG available in the public domain. We report that MGrcMSE may show better performance than MrcMSE in distinguishing different types of multivariate EEG data. MGrcMSE could therefore supplement MMSE or MrcMSE in the processing of multivariate datasets.

  16. Configurational entropy of hydrogen-disordered ice polymorphs

    International Nuclear Information System (INIS)

    Herrero, Carlos P.; Ramírez, Rafael

    2014-01-01

    The configurational entropy of several H-disordered ice polymorphs is calculated by means of a thermodynamic integration along a path between a totally H-disordered state and one fulfilling the Bernal-Fowler ice rules. A Monte Carlo procedure based on a simple energy model is used, so that the employed thermodynamic path drives the system from high temperatures to the low-temperature limit. This method turns out to be precise enough to give reliable values for the configurational entropy s th of different ice phases in the thermodynamic limit (number of molecules N → ∞). The precision of the method is checked for the ice model on a two-dimensional square lattice. Results for the configurational entropy are given for H-disordered arrangements on several polymorphs, including ices Ih, Ic, II, III, IV, V, VI, and XII. The highest and lowest entropy values correspond to ices VI and XII, respectively, with a difference of 3.3% between them. The dependence of the entropy on the ice structures has been rationalized by comparing it with structural parameters of the various polymorphs, such as the mean ring size. A particularly good correlation has been found between the configurational entropy and the connective constant derived from self-avoiding walks on the ice networks

  17. Quantum thermodynamics: Microscopic foundations of entropy and of entropy generation by irreversibility

    Directory of Open Access Journals (Sweden)

    Beretta, Gian Paolo

    2008-02-01

    Full Text Available What is the physical significance of entropy? What is the physical origin of irreversibility? Do entropy and irreversibility exist only for complex and macroscopic systems? Most physicists still accept and teach that the rationalization of these fundamental questions is given by Statistical Mechanics. Indeed, for everyday laboratory physics, the mathematical formalism of Statistical Mechanics (canonical and grand-canonical, Boltzmann, Bose-Einstein and Fermi-Dirac distributions allows a successful description of the thermodynamic equilibrium properties of matter, including entropy values. However, as already recognized by Schrodinger in 1936, Statistical Mechanics is impaired by conceptual ambiguities and logical inconsistencies, both in its explanation of the meaning of entropy and in its implications on the concept of state of a system. An alternative theory has been developed by Gyftopoulos, Hatsopoulos and the present author to eliminate these stumbling conceptual blocks while maintaining the mathematical formalism so successful in applications. To resolve both the problem of the meaning of entropy and that of the origin of irreversibility we have built entropy and irreversibility into the laws of microscopic physics. The result is a theory, that we call Quantum Thermodynamics, that has all the necessary features to combine Mechanics and Thermodynamics uniting all the successful results of both theories, eliminating the logical inconsistencies of Statistical Mechanics and the paradoxes on irreversibility, and providing an entirely new perspective on the microscopic origin of irreversibility, nonlinearity (therefore including chaotic behavior and maximal-entropy-generation nonequilibrium dynamics. In this paper we discuss the background and formalism of Quantum Thermodynamics including its nonlinear equation of motion and the main general results. Our objective is to show in a not-too-technical manner that this theory provides indeed a

  18. Prediction of Protein Configurational Entropy (Popcoen).

    Science.gov (United States)

    Goethe, Martin; Gleixner, Jan; Fita, Ignacio; Rubi, J Miguel

    2018-03-13

    A knowledge-based method for configurational entropy prediction of proteins is presented; this methodology is extremely fast, compared to previous approaches, because it does not involve any type of configurational sampling. Instead, the configurational entropy of a query fold is estimated by evaluating an artificial neural network, which was trained on molecular-dynamics simulations of ∼1000 proteins. The predicted entropy can be incorporated into a large class of protein software based on cost-function minimization/evaluation, in which configurational entropy is currently neglected for performance reasons. Software of this type is used for all major protein tasks such as structure predictions, proteins design, NMR and X-ray refinement, docking, and mutation effect predictions. Integrating the predicted entropy can yield a significant accuracy increase as we show exemplarily for native-state identification with the prominent protein software FoldX. The method has been termed Popcoen for Prediction of Protein Configurational Entropy. An implementation is freely available at http://fmc.ub.edu/popcoen/ .

  19. Entropy per baryon in a 'many-worlds' cosmology

    International Nuclear Information System (INIS)

    Clutton-Brock, M.

    1977-01-01

    The universe is imagined split into infinitely many branches, or 'worlds', only one of which can be observed. The world has an entropy per baryon xi approximately 10 9 : other worlds can have all possible values of entropy per baryon. High-entropy worlds with xi > 5x10 11 do not form galaxies, but only giant black holes. Low entropy worlds with xi 5 do form galaxies, but only metal-poor dwarf galaxies with no planets. Life can evolve only in worlds with entropy per baryon in the range 3x10 5 11 , and life is abundant only in a much narrower range. (Auth.)

  20. Maximum entropy PDF projection: A review

    Science.gov (United States)

    Baggenstoss, Paul M.

    2017-06-01

    We review maximum entropy (MaxEnt) PDF projection, a method with wide potential applications in statistical inference. The method constructs a sampling distribution for a high-dimensional vector x based on knowing the sampling distribution p(z) of a lower-dimensional feature z = T (x). Under mild conditions, the distribution p(x) having highest possible entropy among all distributions consistent with p(z) may be readily found. Furthermore, the MaxEnt p(x) may be sampled, making the approach useful in Monte Carlo methods. We review the theorem and present a case study in model order selection and classification for handwritten character recognition.

  1. Entropy generation as an environmental impact indicator and a sample application to freshwater ecosystems eutrophication

    International Nuclear Information System (INIS)

    Diaz-Mendez, S.E.; Sierra-Grajeda, J.M.T.; Hernandez-Guerrero, A.; Rodriguez-Lelis, J.M.

    2013-01-01

    Generally speaking, an ecosystem is seen as a complex set, it is composed by different biotic and abiotic parts. Naturally, each part has specifics functions related with mass and energy, those functions have influence between the parts directly and indirectly, and these functions are subjected to the basic laws of thermodynamics. If each part of the ecosystem is taken as thermodynamics system its entropy generation could be evaluated, then the total entropy generation of the ecosystem must be sum of the entropy generation in each part, to be in accordance with the Gouy-Stodola theorem. With this in mind, in this work an environmental indicator, for any kind of ecosystems, can be determined as a function of the ratio of total entropy generation for reference state, for instance a healthy forest; and the entropy generation of new different state of the same ecosystem can take, for instance a deforestation. Thus, thermodynamics concepts are applied to study the eutrophication of freshwater ecosystems; the strategy is based on techniques that integrate assumptions of the methodology of entropy generation inside ecosystems. The results show that if the amount of entropy generation is small respect a reference state; the sustainability of the ecosystem will be greater. - Highlights: • We estimate an environmental impact indicator using the concept of entropy generation. • It can be a useful tool for assessing the environmental impacts of the society over the environment. • It can be a useful tool to compare new technologies and improve their efficiencies even more. • It can help for a better understanding of the concept of entropy and its role among various classes of processes. • It can help to reduce environmental concerns and increase the sustainability of the planet

  2. Entropy of network ensembles

    Science.gov (United States)

    Bianconi, Ginestra

    2009-03-01

    In this paper we generalize the concept of random networks to describe network ensembles with nontrivial features by a statistical mechanics approach. This framework is able to describe undirected and directed network ensembles as well as weighted network ensembles. These networks might have nontrivial community structure or, in the case of networks embedded in a given space, they might have a link probability with a nontrivial dependence on the distance between the nodes. These ensembles are characterized by their entropy, which evaluates the cardinality of networks in the ensemble. In particular, in this paper we define and evaluate the structural entropy, i.e., the entropy of the ensembles of undirected uncorrelated simple networks with given degree sequence. We stress the apparent paradox that scale-free degree distributions are characterized by having small structural entropy while they are so widely encountered in natural, social, and technological complex systems. We propose a solution to the paradox by proving that scale-free degree distributions are the most likely degree distribution with the corresponding value of the structural entropy. Finally, the general framework we present in this paper is able to describe microcanonical ensembles of networks as well as canonical or hidden-variable network ensembles with significant implications for the formulation of network-constructing algorithms.

  3. Entropy: A new measure of stock market volatility?

    Science.gov (United States)

    Bentes, Sonia R.; Menezes, Rui

    2012-11-01

    When uncertainty dominates understanding stock market volatility is vital. There are a number of reasons for that. On one hand, substantial changes in volatility of financial market returns are capable of having significant negative effects on risk averse investors. In addition, such changes can also impact on consumption patterns, corporate capital investment decisions and macroeconomic variables. Arguably, volatility is one of the most important concepts in the whole finance theory. In the traditional approach this phenomenon has been addressed based on the concept of standard-deviation (or variance) from which all the famous ARCH type models - Autoregressive Conditional Heteroskedasticity Models- depart. In this context, volatility is often used to describe dispersion from an expected value, price or model. The variability of traded prices from their sample mean is only an example. Although as a measure of uncertainty and risk standard-deviation is very popular since it is simple and easy to calculate it has long been recognized that it is not fully satisfactory. The main reason for that lies in the fact that it is severely affected by extreme values. This may suggest that this is not a closed issue. Bearing on the above we might conclude that many other questions might arise while addressing this subject. One of outstanding importance, from which more sophisticated analysis can be carried out, is how to evaluate volatility, after all? If the standard-deviation has some drawbacks shall we still rely on it? Shall we look for an alternative measure? In searching for this shall we consider the insight of other domains of knowledge? In this paper we specifically address if the concept of entropy, originally developed in physics by Clausius in the XIX century, which can constitute an effective alternative. Basically, what we try to understand is, which are the potentialities of entropy compared to the standard deviation. But why entropy? The answer lies on the fact

  4. Entropy Coherent and Entropy Convex Measures of Risk

    NARCIS (Netherlands)

    Laeven, R.J.A.; Stadje, M.A.

    2011-01-01

    We introduce two subclasses of convex measures of risk, referred to as entropy coherent and entropy convex measures of risk. We prove that convex, entropy convex and entropy coherent measures of risk emerge as certainty equivalents under variational, homothetic and multiple priors preferences,

  5. MAXIMUM-LIKELIHOOD-ESTIMATION OF THE ENTROPY OF AN ATTRACTOR

    NARCIS (Netherlands)

    SCHOUTEN, JC; TAKENS, F; VANDENBLEEK, CM

    In this paper, a maximum-likelihood estimate of the (Kolmogorov) entropy of an attractor is proposed that can be obtained directly from a time series. Also, the relative standard deviation of the entropy estimate is derived; it is dependent on the entropy and on the number of samples used in the

  6. Entropy coherent and entropy convex measures of risk

    NARCIS (Netherlands)

    Laeven, Roger; Stadje, M.A.

    2010-01-01

    We introduce entropy coherent and entropy convex measures of risk and prove a collection of axiomatic characterization and duality results. We show in particular that entropy coherent and entropy convex measures of risk emerge as negative certainty equivalents in (the regular and a generalized

  7. The Conditional Entropy Power Inequality for Bosonic Quantum Systems

    DEFF Research Database (Denmark)

    de Palma, Giacomo; Trevisan, Dario

    2018-01-01

    We prove the conditional Entropy Power Inequality for Gaussian quantum systems. This fundamental inequality determines the minimum quantum conditional von Neumann entropy of the output of the beam-splitter or of the squeezing among all the input states where the two inputs are conditionally...... independent given the memory and have given quantum conditional entropies. We also prove that, for any couple of values of the quantum conditional entropies of the two inputs, the minimum of the quantum conditional entropy of the output given by the conditional Entropy Power Inequality is asymptotically...... achieved by a suitable sequence of quantum Gaussian input states. Our proof of the conditional Entropy Power Inequality is based on a new Stam inequality for the quantum conditional Fisher information and on the determination of the universal asymptotic behaviour of the quantum conditional entropy under...

  8. Detection of cracks in shafts with the Approximated Entropy algorithm

    Science.gov (United States)

    Sampaio, Diego Luchesi; Nicoletti, Rodrigo

    2016-05-01

    The Approximate Entropy is a statistical calculus used primarily in the fields of Medicine, Biology, and Telecommunication for classifying and identifying complex signal data. In this work, an Approximate Entropy algorithm is used to detect cracks in a rotating shaft. The signals of the cracked shaft are obtained from numerical simulations of a de Laval rotor with breathing cracks modelled by the Fracture Mechanics. In this case, one analysed the vertical displacements of the rotor during run-up transients. The results show the feasibility of detecting cracks from 5% depth, irrespective of the unbalance of the rotating system and crack orientation in the shaft. The results also show that the algorithm can differentiate the occurrence of crack only, misalignment only, and crack + misalignment in the system. However, the algorithm is sensitive to intrinsic parameters p (number of data points in a sample vector) and f (fraction of the standard deviation that defines the minimum distance between two sample vectors), and good results are only obtained by appropriately choosing their values according to the sampling rate of the signal.

  9. Resting state fMRI entropy probes complexity of brain activity in adults with ADHD.

    Science.gov (United States)

    Sokunbi, Moses O; Fung, Wilson; Sawlani, Vijay; Choppin, Sabine; Linden, David E J; Thome, Johannes

    2013-12-30

    In patients with attention deficit hyperactivity disorder (ADHD), quantitative neuroimaging techniques have revealed abnormalities in various brain regions, including the frontal cortex, striatum, cerebellum, and occipital cortex. Nonlinear signal processing techniques such as sample entropy have been used to probe the regularity of brain magnetoencephalography signals in patients with ADHD. In the present study, we extend this technique to analyse the complex output patterns of the 4 dimensional resting state functional magnetic resonance imaging signals in adult patients with ADHD. After adjusting for the effect of age, we found whole brain entropy differences (P=0.002) between groups and negative correlation (r=-0.45) between symptom scores and mean whole brain entropy values, indicating lower complexity in patients. In the regional analysis, patients showed reduced entropy in frontal and occipital regions bilaterally and a significant negative correlation between the symptom scores and the entropy maps at a family-wise error corrected cluster level of Pentropy is a useful tool in revealing abnormalities in the brain dynamics of patients with psychiatric disorders. © 2013 Elsevier Ireland Ltd. All rights reserved.

  10. Entropy per baryon in a 'many-worlds' cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Clutton-Brock, M [Manitoba Univ., Winnipeg (Canada)

    1977-04-01

    The universe is imagined split into infinitely many branches, or 'worlds', only one of which can be observed. The world has an entropy per baryon xi approximately 10/sup 9/: other worlds can have all possible values of entropy per baryon. High-entropy worlds with xi > 5x10/sup 11/ do not form galaxies, but only giant black holes. Low entropy worlds with xi < 3x10/sup 5/ do form galaxies, but only metal-poor dwarf galaxies with no planets. Life can evolve only in worlds with entropy per baryon in the range 3x10/sup 5/ < xi < 5x10/sup 11/, and life is abundant only in a much narrower range.

  11. Fisher information and Shannon entropy for on-line detection of transient signal high-values in laser Doppler flowmetry signals of healthy subjects

    International Nuclear Information System (INIS)

    Humeau, Anne; Trzepizur, Wojciech; Abraham, Pierre; Rousseau, David; Chapeau-Blondeau, Francois

    2008-01-01

    Laser Doppler flowmetry (LDF) is an easy-to-use method for the assessment of microcirculatory blood flow in tissues. However, LDF recordings very often present TRAnsient Signal High-values (TRASH), generally of a few seconds. These TRASH can come from tissue motions, optical fibre movements, movements of the probe head relative to the tissue, etc. They often lead to difficulties in signal global interpretations. In order to test the possibility of detecting automatically these TRASH for their removal, we process noisy and noiseless LDF signals with two indices from information theory, namely Fisher information and Shannon entropy. For this purpose, LDF signals from 13 healthy subjects are recorded at rest, during vascular occlusion of 3 min, and during post-occlusive hyperaemia. Computation of Fisher information and Shannon entropy values shows that, when calibrated, these two indices can be complementary to detect TRASH and be insensitive to the rapid increases of blood flow induced by post-occlusive hyperaemia. Moreover, the real-time algorithm has the advantage of being easy to implement and does not require any frequency analysis. This study opens new fields of application for Fisher information and Shannon entropy: LDF 'denoising'

  12. A gravitational entropy proposal

    International Nuclear Information System (INIS)

    Clifton, Timothy; Tavakol, Reza; Ellis, George F R

    2013-01-01

    We propose a thermodynamically motivated measure of gravitational entropy based on the Bel–Robinson tensor, which has a natural interpretation as the effective super-energy–momentum tensor of free gravitational fields. The specific form of this measure differs depending on whether the gravitational field is Coulomb-like or wave-like, and reduces to the Bekenstein–Hawking value when integrated over the interior of a Schwarzschild black hole. For scalar perturbations of a Robertson–Walker geometry we find that the entropy goes like the Hubble weighted anisotropy of the gravitational field, and therefore increases as structure formation occurs. This is in keeping with our expectations for the behaviour of gravitational entropy in cosmology, and provides a thermodynamically motivated arrow of time for cosmological solutions of Einstein’s field equations. It is also in keeping with Penrose’s Weyl curvature hypothesis. (paper)

  13. Entropy coherent and entropy convex measures of risk

    NARCIS (Netherlands)

    Laeven, R.J.A.; Stadje, M.

    2013-01-01

    We introduce two subclasses of convex measures of risk, referred to as entropy coherent and entropy convex measures of risk. Entropy coherent and entropy convex measures of risk are special cases of φ-coherent and φ-convex measures of risk. Contrary to the classical use of coherent and convex

  14. Cellular network entropy as the energy potential in Waddington's differentiation landscape

    Science.gov (United States)

    Banerji, Christopher R. S.; Miranda-Saavedra, Diego; Severini, Simone; Widschwendter, Martin; Enver, Tariq; Zhou, Joseph X.; Teschendorff, Andrew E.

    2013-01-01

    Differentiation is a key cellular process in normal tissue development that is significantly altered in cancer. Although molecular signatures characterising pluripotency and multipotency exist, there is, as yet, no single quantitative mark of a cellular sample's position in the global differentiation hierarchy. Here we adopt a systems view and consider the sample's network entropy, a measure of signaling pathway promiscuity, computable from a sample's genome-wide expression profile. We demonstrate that network entropy provides a quantitative, in-silico, readout of the average undifferentiated state of the profiled cells, recapitulating the known hierarchy of pluripotent, multipotent and differentiated cell types. Network entropy further exhibits dynamic changes in time course differentiation data, and in line with a sample's differentiation stage. In disease, network entropy predicts a higher level of cellular plasticity in cancer stem cell populations compared to ordinary cancer cells. Importantly, network entropy also allows identification of key differentiation pathways. Our results are consistent with the view that pluripotency is a statistical property defined at the cellular population level, correlating with intra-sample heterogeneity, and driven by the degree of signaling promiscuity in cells. In summary, network entropy provides a quantitative measure of a cell's undifferentiated state, defining its elevation in Waddington's landscape. PMID:24154593

  15. Entropy generation method to quantify thermal comfort

    Science.gov (United States)

    Boregowda, S. C.; Tiwari, S. N.; Chaturvedi, S. K.

    2001-01-01

    The present paper presents a thermodynamic approach to assess the quality of human-thermal environment interaction and quantify thermal comfort. The approach involves development of entropy generation term by applying second law of thermodynamics to the combined human-environment system. The entropy generation term combines both human thermal physiological responses and thermal environmental variables to provide an objective measure of thermal comfort. The original concepts and definitions form the basis for establishing the mathematical relationship between thermal comfort and entropy generation term. As a result of logic and deterministic approach, an Objective Thermal Comfort Index (OTCI) is defined and established as a function of entropy generation. In order to verify the entropy-based thermal comfort model, human thermal physiological responses due to changes in ambient conditions are simulated using a well established and validated human thermal model developed at the Institute of Environmental Research of Kansas State University (KSU). The finite element based KSU human thermal computer model is being utilized as a "Computational Environmental Chamber" to conduct series of simulations to examine the human thermal responses to different environmental conditions. The output from the simulation, which include human thermal responses and input data consisting of environmental conditions are fed into the thermal comfort model. Continuous monitoring of thermal comfort in comfortable and extreme environmental conditions is demonstrated. The Objective Thermal Comfort values obtained from the entropy-based model are validated against regression based Predicted Mean Vote (PMV) values. Using the corresponding air temperatures and vapor pressures that were used in the computer simulation in the regression equation generates the PMV values. The preliminary results indicate that the OTCI and PMV values correlate well under ideal conditions. However, an experimental study

  16. Entropy for the Complexity of Physiological Signal Dynamics.

    Science.gov (United States)

    Zhang, Xiaohua Douglas

    2017-01-01

    Recently, the rapid development of large data storage technologies, mobile network technology, and portable medical devices makes it possible to measure, record, store, and track analysis of biological dynamics. Portable noninvasive medical devices are crucial to capture individual characteristics of biological dynamics. The wearable noninvasive medical devices and the analysis/management of related digital medical data will revolutionize the management and treatment of diseases, subsequently resulting in the establishment of a new healthcare system. One of the key features that can be extracted from the data obtained by wearable noninvasive medical device is the complexity of physiological signals, which can be represented by entropy of biological dynamics contained in the physiological signals measured by these continuous monitoring medical devices. Thus, in this chapter I present the major concepts of entropy that are commonly used to measure the complexity of biological dynamics. The concepts include Shannon entropy, Kolmogorov entropy, Renyi entropy, approximate entropy, sample entropy, and multiscale entropy. I also demonstrate an example of using entropy for the complexity of glucose dynamics.

  17. Linearity of holographic entanglement entropy

    Energy Technology Data Exchange (ETDEWEB)

    Almheiri, Ahmed [Stanford Institute for Theoretical Physics, Department of Physics,Stanford University, Stanford, CA 94305 (United States); Dong, Xi [School of Natural Sciences, Institute for Advanced Study,Princeton, NJ 08540 (United States); Swingle, Brian [Stanford Institute for Theoretical Physics, Department of Physics,Stanford University, Stanford, CA 94305 (United States)

    2017-02-14

    We consider the question of whether the leading contribution to the entanglement entropy in holographic CFTs is truly given by the expectation value of a linear operator as is suggested by the Ryu-Takayanagi formula. We investigate this property by computing the entanglement entropy, via the replica trick, in states dual to superpositions of macroscopically distinct geometries and find it consistent with evaluating the expectation value of the area operator within such states. However, we find that this fails once the number of semi-classical states in the superposition grows exponentially in the central charge of the CFT. Moreover, in certain such scenarios we find that the choice of surface on which to evaluate the area operator depends on the density matrix of the entire CFT. This nonlinearity is enforced in the bulk via the homology prescription of Ryu-Takayanagi. We thus conclude that the homology constraint is not a linear property in the CFT. We also discuss the existence of ‘entropy operators’ in general systems with a large number of degrees of freedom.

  18. Entropy, complexity, and Markov diagrams for random walk cancer models.

    Science.gov (United States)

    Newton, Paul K; Mason, Jeremy; Hurt, Brian; Bethel, Kelly; Bazhenova, Lyudmila; Nieva, Jorge; Kuhn, Peter

    2014-12-19

    The notion of entropy is used to compare the complexity associated with 12 common cancers based on metastatic tumor distribution autopsy data. We characterize power-law distributions, entropy, and Kullback-Liebler divergence associated with each primary cancer as compared with data for all cancer types aggregated. We then correlate entropy values with other measures of complexity associated with Markov chain dynamical systems models of progression. The Markov transition matrix associated with each cancer is associated with a directed graph model where nodes are anatomical locations where a metastatic tumor could develop, and edge weightings are transition probabilities of progression from site to site. The steady-state distribution corresponds to the autopsy data distribution. Entropy correlates well with the overall complexity of the reduced directed graph structure for each cancer and with a measure of systemic interconnectedness of the graph, called graph conductance. The models suggest that grouping cancers according to their entropy values, with skin, breast, kidney, and lung cancers being prototypical high entropy cancers, stomach, uterine, pancreatic and ovarian being mid-level entropy cancers, and colorectal, cervical, bladder, and prostate cancers being prototypical low entropy cancers, provides a potentially useful framework for viewing metastatic cancer in terms of predictability, complexity, and metastatic potential.

  19. Logarithmic black hole entropy corrections and holographic Renyi entropy

    Energy Technology Data Exchange (ETDEWEB)

    Mahapatra, Subhash [The Institute of Mathematical Sciences, Chennai (India); KU Leuven - KULAK, Department of Physics, Kortrijk (Belgium)

    2018-01-15

    The entanglement and Renyi entropies for spherical entangling surfaces in CFTs with gravity duals can be explicitly calculated by mapping these entropies first to the thermal entropy on hyperbolic space and then, using the AdS/CFT correspondence, to the Wald entropy of topological black holes. Here we extend this idea by taking into account corrections to the Wald entropy. Using the method based on horizon symmetries and the asymptotic Cardy formula, we calculate corrections to the Wald entropy and find that these corrections are proportional to the logarithm of the area of the horizon. With the corrected expression for the entropy of the black hole, we then find corrections to the Renyi entropies. We calculate these corrections for both Einstein and Gauss-Bonnet gravity duals. Corrections with logarithmic dependence on the area of the entangling surface naturally occur at the order G{sub D}{sup 0}. The entropic c-function and the inequalities of the Renyi entropy are also satisfied even with the correction terms. (orig.)

  20. Logarithmic black hole entropy corrections and holographic Renyi entropy

    International Nuclear Information System (INIS)

    Mahapatra, Subhash

    2018-01-01

    The entanglement and Renyi entropies for spherical entangling surfaces in CFTs with gravity duals can be explicitly calculated by mapping these entropies first to the thermal entropy on hyperbolic space and then, using the AdS/CFT correspondence, to the Wald entropy of topological black holes. Here we extend this idea by taking into account corrections to the Wald entropy. Using the method based on horizon symmetries and the asymptotic Cardy formula, we calculate corrections to the Wald entropy and find that these corrections are proportional to the logarithm of the area of the horizon. With the corrected expression for the entropy of the black hole, we then find corrections to the Renyi entropies. We calculate these corrections for both Einstein and Gauss-Bonnet gravity duals. Corrections with logarithmic dependence on the area of the entangling surface naturally occur at the order G D 0 . The entropic c-function and the inequalities of the Renyi entropy are also satisfied even with the correction terms. (orig.)

  1. Permutation Entropy for Random Binary Sequences

    Directory of Open Access Journals (Sweden)

    Lingfeng Liu

    2015-12-01

    Full Text Available In this paper, we generalize the permutation entropy (PE measure to binary sequences, which is based on Shannon’s entropy, and theoretically analyze this measure for random binary sequences. We deduce the theoretical value of PE for random binary sequences, which can be used to measure the randomness of binary sequences. We also reveal the relationship between this PE measure with other randomness measures, such as Shannon’s entropy and Lempel–Ziv complexity. The results show that PE is consistent with these two measures. Furthermore, we use PE as one of the randomness measures to evaluate the randomness of chaotic binary sequences.

  2. Sample Entropy and Traditional Measures of Heart Rate Dynamics Reveal Different Modes of Cardiovascular Control During Low Intensity Exercise

    Directory of Open Access Journals (Sweden)

    Matthias Weippert

    2014-10-01

    Full Text Available Nonlinear parameters of heart rate variability (HRV have proven their prognostic value in clinical settings, but their physiological background is not very well established. We assessed the effects of low intensity isometric (ISO and dynamic (DYN exercise of the lower limbs on heart rate matched intensity on traditional and entropy measures of HRV. Due to changes of afferent feedback under DYN and ISO a distinct autonomic response, mirrored by HRV measures, was hypothesized. Five-minute inter-beat interval measurements of 43 healthy males (26.0 ± 3.1 years were performed during rest, DYN and ISO in a randomized order. Blood pressures and rate pressure product were higher during ISO vs. DYN (p < 0.001. HRV indicators SDNN as well as low and high frequency power were significantly higher during ISO (p < 0.001 for all measures. Compared to DYN, sample entropy (SampEn was lower during ISO (p < 0.001. Concluding, contraction mode itself is a significant modulator of the autonomic cardiovascular response to exercise. Compared to DYN, ISO evokes a stronger blood pressure response and an enhanced interplay between both autonomic branches. Non-linear HRV measures indicate a more regular behavior under ISO. Results support the view of the reciprocal antagonism being only one of many modes of autonomic heart rate control. Under different conditions; the identical “end product” heart rate might be achieved by other modes such as sympathovagal co-activation as well.

  3. Entropy density of an adiabatic relativistic Bose-Einstein condensate star

    Energy Technology Data Exchange (ETDEWEB)

    Khaidir, Ahmad Firdaus; Kassim, Hasan Abu; Yusof, Norhasliza [Theoretical Physics Lab., Department of Physics, Faculty of Science Building, University of Malaya, 50603 Kuala Lumpur (Malaysia)

    2015-04-24

    Inspired by recent works, we investigate how the thermodynamics parameters (entropy, temperature, number density, energy density, etc) of Bose-Einstein Condensate star scale with the structure of the star. Below the critical temperature in which the condensation starts to occur, we study how the entropy behaves with varying temperature till it reaches its own stability against gravitational collapse and singularity. Compared to photon gases (pressure is described by radiation) where the chemical potential, μ is zero, entropy of photon gases obeys the Stefan-Boltzmann Law for a small values of T while forming a spiral structure for a large values of T due to general relativity. The entropy density of Bose-Einstein Condensate is obtained following the similar sequence but limited under critical temperature condition. We adopt the scalar field equation of state in Thomas-Fermi limit to study the characteristics of relativistic Bose-Einstein condensate under varying temperature and entropy. Finally, we obtain the entropy density proportional to (σT{sup 3}-3T) which obeys the Stefan-Boltzmann Law in ultra-relativistic condition.

  4. Maximum entropy approach to statistical inference for an ocean acoustic waveguide.

    Science.gov (United States)

    Knobles, D P; Sagers, J D; Koch, R A

    2012-02-01

    A conditional probability distribution suitable for estimating the statistical properties of ocean seabed parameter values inferred from acoustic measurements is derived from a maximum entropy principle. The specification of the expectation value for an error function constrains the maximization of an entropy functional. This constraint determines the sensitivity factor (β) to the error function of the resulting probability distribution, which is a canonical form that provides a conservative estimate of the uncertainty of the parameter values. From the conditional distribution, marginal distributions for individual parameters can be determined from integration over the other parameters. The approach is an alternative to obtaining the posterior probability distribution without an intermediary determination of the likelihood function followed by an application of Bayes' rule. In this paper the expectation value that specifies the constraint is determined from the values of the error function for the model solutions obtained from a sparse number of data samples. The method is applied to ocean acoustic measurements taken on the New Jersey continental shelf. The marginal probability distribution for the values of the sound speed ratio at the surface of the seabed and the source levels of a towed source are examined for different geoacoustic model representations. © 2012 Acoustical Society of America

  5. ENTROPY FUNCTIONAL FOR CONTINUOUS SYSTEMS OF FINITE ENTROPY

    Institute of Scientific and Technical Information of China (English)

    M. Rahimi A. Riazi

    2012-01-01

    In this article,we introduce the concept of entropy functional for continuous systems on compact metric spaces,and prove some of its properties.We also extract the Kolmogorov entropy from the entropy functional.

  6. Entropy of the Mixture of Sources and Entropy Dimension

    OpenAIRE

    Smieja, Marek; Tabor, Jacek

    2011-01-01

    We investigate the problem of the entropy of the mixture of sources. There is given an estimation of the entropy and entropy dimension of convex combination of measures. The proof is based on our alternative definition of the entropy based on measures instead of partitions.

  7. Algorithmic randomness and physical entropy

    International Nuclear Information System (INIS)

    Zurek, W.H.

    1989-01-01

    Algorithmic randomness provides a rigorous, entropylike measure of disorder of an individual, microscopic, definite state of a physical system. It is defined by the size (in binary digits) of the shortest message specifying the microstate uniquely up to the assumed resolution. Equivalently, algorithmic randomness can be expressed as the number of bits in the smallest program for a universal computer that can reproduce the state in question (for instance, by plotting it with the assumed accuracy). In contrast to the traditional definitions of entropy, algorithmic randomness can be used to measure disorder without any recourse to probabilities. Algorithmic randomness is typically very difficult to calculate exactly but relatively easy to estimate. In large systems, probabilistic ensemble definitions of entropy (e.g., coarse-grained entropy of Gibbs and Boltzmann's entropy H=lnW, as well as Shannon's information-theoretic entropy) provide accurate estimates of the algorithmic entropy of an individual system or its average value for an ensemble. One is thus able to rederive much of thermodynamics and statistical mechanics in a setting very different from the usual. Physical entropy, I suggest, is a sum of (i) the missing information measured by Shannon's formula and (ii) of the algorithmic information content---algorithmic randomness---present in the available data about the system. This definition of entropy is essential in describing the operation of thermodynamic engines from the viewpoint of information gathering and using systems. These Maxwell demon-type entities are capable of acquiring and processing information and therefore can ''decide'' on the basis of the results of their measurements and computations the best strategy for extracting energy from their surroundings. From their internal point of view the outcome of each measurement is definite

  8. Entropy Information of Cardiorespiratory Dynamics in Neonates during Sleep

    Directory of Open Access Journals (Sweden)

    Maristella Lucchini

    2017-05-01

    Full Text Available Sleep is a central activity in human adults and characterizes most of the newborn infant life. During sleep, autonomic control acts to modulate heart rate variability (HRV and respiration. Mechanisms underlying cardiorespiratory interactions in different sleep states have been studied but are not yet fully understood. Signal processing approaches have focused on cardiorespiratory analysis to elucidate this co-regulation. This manuscript proposes to analyze heart rate (HR, respiratory variability and their interrelationship in newborn infants to characterize cardiorespiratory interactions in different sleep states (active vs. quiet. We are searching for indices that could detect regulation alteration or malfunction, potentially leading to infant distress. We have analyzed inter-beat (RR interval series and respiration in a population of 151 newborns, and followed up with 33 at 1 month of age. RR interval series were obtained by recognizing peaks of the QRS complex in the electrocardiogram (ECG, corresponding to the ventricles depolarization. Univariate time domain, frequency domain and entropy measures were applied. In addition, Transfer Entropy was considered as a bivariate approach able to quantify the bidirectional information flow from one signal (respiration to another (RR series. Results confirm the validity of the proposed approach. Overall, HRV is higher in active sleep, while high frequency (HF power characterizes more quiet sleep. Entropy analysis provides higher indices for SampEn and Quadratic Sample entropy (QSE in quiet sleep. Transfer Entropy values were higher in quiet sleep and point to a major influence of respiration on the RR series. At 1 month of age, time domain parameters show an increase in HR and a decrease in variability. No entropy differences were found across ages. The parameters employed in this study help to quantify the potential for infants to adapt their cardiorespiratory responses as they mature. Thus, they

  9. Entropy Information of Cardiorespiratory Dynamics in Neonates during Sleep.

    Science.gov (United States)

    Lucchini, Maristella; Pini, Nicolò; Fifer, William P; Burtchen, Nina; Signorini, Maria G

    2017-05-01

    Sleep is a central activity in human adults and characterizes most of the newborn infant life. During sleep, autonomic control acts to modulate heart rate variability (HRV) and respiration. Mechanisms underlying cardiorespiratory interactions in different sleep states have been studied but are not yet fully understood. Signal processing approaches have focused on cardiorespiratory analysis to elucidate this co-regulation. This manuscript proposes to analyze heart rate (HR), respiratory variability and their interrelationship in newborn infants to characterize cardiorespiratory interactions in different sleep states (active vs. quiet). We are searching for indices that could detect regulation alteration or malfunction, potentially leading to infant distress. We have analyzed inter-beat (RR) interval series and respiration in a population of 151 newborns, and followed up with 33 at 1 month of age. RR interval series were obtained by recognizing peaks of the QRS complex in the electrocardiogram (ECG), corresponding to the ventricles depolarization. Univariate time domain, frequency domain and entropy measures were applied. In addition, Transfer Entropy was considered as a bivariate approach able to quantify the bidirectional information flow from one signal (respiration) to another (RR series). Results confirm the validity of the proposed approach. Overall, HRV is higher in active sleep, while high frequency (HF) power characterizes more quiet sleep. Entropy analysis provides higher indices for SampEn and Quadratic Sample entropy (QSE) in quiet sleep. Transfer Entropy values were higher in quiet sleep and point to a major influence of respiration on the RR series. At 1 month of age, time domain parameters show an increase in HR and a decrease in variability. No entropy differences were found across ages. The parameters employed in this study help to quantify the potential for infants to adapt their cardiorespiratory responses as they mature. Thus, they could be useful

  10. Crane Safety Assessment Method Based on Entropy and Cumulative Prospect Theory

    Directory of Open Access Journals (Sweden)

    Aihua Li

    2017-01-01

    Full Text Available Assessing the safety status of cranes is an important problem. To overcome the inaccuracies and misjudgments in such assessments, this work describes a safety assessment method for cranes that combines entropy and cumulative prospect theory. Firstly, the proposed method transforms the set of evaluation indices into an evaluation vector. Secondly, a decision matrix is then constructed from the evaluation vectors and evaluation standards, and an entropy-based technique is applied to calculate the index weights. Thirdly, positive and negative prospect value matrices are established from reference points based on the positive and negative ideal solutions. Thus, this enables the crane safety grade to be determined according to the ranked comprehensive prospect values. Finally, the safety status of four general overhead traveling crane samples is evaluated to verify the rationality and feasibility of the proposed method. The results demonstrate that the method described in this paper can precisely and reasonably reflect the safety status of a crane.

  11. Quantum entropy and uncertainty for two-mode squeezed, coherent and intelligent spin states

    Science.gov (United States)

    Aragone, C.; Mundarain, D.

    1993-01-01

    We compute the quantum entropy for monomode and two-mode systems set in squeezed states. Thereafter, the quantum entropy is also calculated for angular momentum algebra when the system is either in a coherent or in an intelligent spin state. These values are compared with the corresponding values of the respective uncertainties. In general, quantum entropies and uncertainties have the same minimum and maximum points. However, for coherent and intelligent spin states, it is found that some minima for the quantum entropy turn out to be uncertainty maxima. We feel that the quantum entropy we use provides the right answer, since it is given in an essentially unique way.

  12. On variational definition of quantum entropy

    International Nuclear Information System (INIS)

    Belavkin, Roman V.

    2015-01-01

    Entropy of distribution P can be defined in at least three different ways: 1) as the expectation of the Kullback-Leibler (KL) divergence of P from elementary δ-measures (in this case, it is interpreted as expected surprise); 2) as a negative KL-divergence of some reference measure ν from the probability measure P; 3) as the supremum of Shannon’s mutual information taken over all channels such that P is the output probability, in which case it is dual of some transportation problem. In classical (i.e. commutative) probability, all three definitions lead to the same quantity, providing only different interpretations of entropy. In non-commutative (i.e. quantum) probability, however, these definitions are not equivalent. In particular, the third definition, where the supremum is taken over all entanglements of two quantum systems with P being the output state, leads to the quantity that can be twice the von Neumann entropy. It was proposed originally by V. Belavkin and Ohya [1] and called the proper quantum entropy, because it allows one to define quantum conditional entropy that is always non-negative. Here we extend these ideas to define also quantum counterpart of proper cross-entropy and cross-information. We also show inequality for the values of classical and quantum information

  13. Horizon Entropy from Quantum Gravity Condensates.

    Science.gov (United States)

    Oriti, Daniele; Pranzetti, Daniele; Sindoni, Lorenzo

    2016-05-27

    We construct condensate states encoding the continuum spherically symmetric quantum geometry of a horizon in full quantum gravity, i.e., without any classical symmetry reduction, in the group field theory formalism. Tracing over the bulk degrees of freedom, we show how the resulting reduced density matrix manifestly exhibits a holographic behavior. We derive a complete orthonormal basis of eigenstates for the reduced density matrix of the horizon and use it to compute the horizon entanglement entropy. By imposing consistency with the horizon boundary conditions and semiclassical thermodynamical properties, we recover the Bekenstein-Hawking entropy formula for any value of the Immirzi parameter. Our analysis supports the equivalence between the von Neumann (entanglement) entropy interpretation and the Boltzmann (statistical) one.

  14. Entanglement entropy and differential entropy for massive flavors

    International Nuclear Information System (INIS)

    Jones, Peter A.R.; Taylor, Marika

    2015-01-01

    In this paper we compute the holographic entanglement entropy for massive flavors in the D3-D7 system, for arbitrary mass and various entangling region geometries. We show that the universal terms in the entanglement entropy exactly match those computed in the dual theory using conformal perturbation theory. We derive holographically the universal terms in the entanglement entropy for a CFT perturbed by a relevant operator, up to second order in the coupling; our results are valid for any entangling region geometry. We present a new method for computing the entanglement entropy of any top-down brane probe system using Kaluza-Klein holography and illustrate our results with massive flavors at finite density. Finally we discuss the differential entropy for brane probe systems, emphasising that the differential entropy captures only the effective lower-dimensional Einstein metric rather than the ten-dimensional geometry.

  15. Hypoglycemia-Related Electroencephalogram Changes Assessed by Multiscale Entropy

    DEFF Research Database (Denmark)

    Fabris, C.; Sparacino, G.; Sejling, A. S.

    2014-01-01

    derivation in the two glycemic intervals was assessed using the multiscale entropy (MSE) approach, obtaining measures of sample entropy (SampEn) at various temporal scales. The comparison of how signal irregularity measured by SampEn varies as the temporal scale increases in the two glycemic states provides...

  16. Entropy generation in natural convection in a symmetrically and uniformly heated vertical channel

    Energy Technology Data Exchange (ETDEWEB)

    Andreozzi, Assunta [Dipartimento di Energetica, Termofluidodinamica applicata e Condizionamenti ambientali, Universita degli Studi di Napoli Federico II, Piazzale Tecchio 80, 80125 Napoli (Italy); Auletta, Antonio [CIRA - Centro Italiano Ricerche Aerospaziali, Via Maiorise 1, 81043 Capua (CE) (Italy); Manca, Oronzio [Dipartimento di Ingegneria Aerospaziale e Meccanica, Seconda Universita degli Studi di Napoli, Real Casa dell' Annunziata, Via Roma 29, 81031 Aversa (CE) (Italy)

    2006-08-15

    In this study numerical predictions of local and global entropy generation rates in natural convection in air in a vertical channel symmetrically heated at uniform heat flux are reported. Results of entropy generation analysis are obtained by solving the entropy generation equation based on the velocity and temperature data. The analyzed regime is two-dimensional, laminar and steady state. The numerical procedure expands an existing computer code on natural convection in vertical channels. Results in terms of fields and profiles of local entropy generation, for various Rayleigh number, Ra, and aspect ratio values, L/b, are given. The distributions of local values show different behaviours for the different Ra values. A correlation between global entropy generation rates, Rayleigh number and aspect ratio is proposed in the ranges 10{sup 3}=

  17. Logarithmic black hole entropy corrections and holographic Rényi entropy

    Science.gov (United States)

    Mahapatra, Subhash

    2018-01-01

    The entanglement and Rényi entropies for spherical entangling surfaces in CFTs with gravity duals can be explicitly calculated by mapping these entropies first to the thermal entropy on hyperbolic space and then, using the AdS/CFT correspondence, to the Wald entropy of topological black holes. Here we extend this idea by taking into account corrections to the Wald entropy. Using the method based on horizon symmetries and the asymptotic Cardy formula, we calculate corrections to the Wald entropy and find that these corrections are proportional to the logarithm of the area of the horizon. With the corrected expression for the entropy of the black hole, we then find corrections to the Rényi entropies. We calculate these corrections for both Einstein and Gauss-Bonnet gravity duals. Corrections with logarithmic dependence on the area of the entangling surface naturally occur at the order GD^0. The entropic c-function and the inequalities of the Rényi entropy are also satisfied even with the correction terms.

  18. Entropy production in the relativistic heavy ion collisions

    International Nuclear Information System (INIS)

    Holme, A.K.; Csernai, L.P.; Levai, P.; Papp, G.

    1989-09-01

    A short overview is given on the most important possibilities of entropy production in the relativistic heavy ion collisions, which is connected to the shock phenomena. The E802 experiment is considered as an example, where one can determine the specific entropy content from measured strange particle ratios. The received large entropy value (S/N B ∼ 14) can be explained by assuming quark-gluon plasma formation. The possibility of overcooling of quark-gluon plasma and its deflagration are also investigated. (author) 22 refs.; 4 figs

  19. Effects of quantum entropy on bag constant

    International Nuclear Information System (INIS)

    Miller, D.E.; Tawfik, A.

    2012-01-01

    The effects of quantum entropy on the bag constant are studied at low temperatures and for small chemical potentials. The inclusion of the quantum entropy of the quarks in the equation of state provides the hadronic bag with an additional heat which causes a decrease in the effective latent heat inside the bag. We have considered two types of baryonic bags, Δ and Ω - . In both cases we have found that the bag constant without the quantum entropy almost does not change with temperature and quark chemical potential. The contribution from the quantum entropy to the equation of state clearly decreases the value of the bag constant. Furthermore, we construct states densities for quarks using the 'Thomas Fermi model' and take into consideration a thermal potential for the interaction. (author)

  20. Symplectic entropy

    International Nuclear Information System (INIS)

    De Nicola, Sergio; Fedele, Renato; Man'ko, Margarita A; Man'ko, Vladimir I

    2007-01-01

    The tomographic-probability description of quantum states is reviewed. The symplectic tomography of quantum states with continuous variables is studied. The symplectic entropy of the states with continuous variables is discussed and its relation to Shannon entropy and information is elucidated. The known entropic uncertainty relations of the probability distribution in position and momentum of a particle are extended and new uncertainty relations for symplectic entropy are obtained. The partial case of symplectic entropy, which is optical entropy of quantum states, is considered. The entropy associated to optical tomogram is shown to satisfy the new entropic uncertainty relation. The example of Gaussian states of harmonic oscillator is studied and the entropic uncertainty relations for optical tomograms of the Gaussian state are shown to minimize the uncertainty relation

  1. Foreign exchange rate entropy evolution during financial crises

    Science.gov (United States)

    Stosic, Darko; Stosic, Dusan; Ludermir, Teresa; de Oliveira, Wilson; Stosic, Tatijana

    2016-05-01

    This paper examines the effects of financial crises on foreign exchange (FX) markets, where entropy evolution is measured for different exchange rates, using the time-dependent block entropy method. Empirical results suggest that financial crises are associated with significant increase of exchange rate entropy, reflecting instability in FX market dynamics. In accordance with phenomenological expectations, it is found that FX markets with large liquidity and large trading volume are more inert - they recover quicker from a crisis than markets with small liquidity and small trading volume. Moreover, our numerical analysis shows that periods of economic uncertainty are preceded by periods of low entropy values, which may serve as a tool for anticipating the onset of financial crises.

  2. Dispersion entropy for the analysis of resting-state MEG regularity in Alzheimer's disease.

    Science.gov (United States)

    Azami, Hamed; Rostaghi, Mostafa; Fernandez, Alberto; Escudero, Javier

    2016-08-01

    Alzheimer's disease (AD) is a progressive degenerative brain disorder affecting memory, thinking, behaviour and emotion. It is the most common form of dementia and a big social problem in western societies. The analysis of brain activity may help to diagnose this disease. Changes in entropy methods have been reported useful in research studies to characterize AD. We have recently proposed dispersion entropy (DisEn) as a very fast and powerful tool to quantify the irregularity of time series. The aim of this paper is to evaluate the ability of DisEn, in comparison with fuzzy entropy (FuzEn), sample entropy (SampEn), and permutation entropy (PerEn), to discriminate 36 AD patients from 26 elderly control subjects using resting-state magnetoencephalogram (MEG) signals. The results obtained by DisEn, FuzEn, and SampEn, unlike PerEn, show that the AD patients' signals are more regular than controls' time series. The p-values obtained by DisEn, FuzEn, SampEn, and PerEn based methods demonstrate the superiority of DisEn over PerEn, SampEn, and PerEn. Moreover, the computation time for the newly proposed DisEn-based method is noticeably less than for the FuzEn, SampEn, and PerEn based approaches.

  3. Multifractal diffusion entropy analysis: Optimal bin width of probability histograms

    Science.gov (United States)

    Jizba, Petr; Korbel, Jan

    2014-11-01

    In the framework of Multifractal Diffusion Entropy Analysis we propose a method for choosing an optimal bin-width in histograms generated from underlying probability distributions of interest. The method presented uses techniques of Rényi’s entropy and the mean squared error analysis to discuss the conditions under which the error in the multifractal spectrum estimation is minimal. We illustrate the utility of our approach by focusing on a scaling behavior of financial time series. In particular, we analyze the S&P500 stock index as sampled at a daily rate in the time period 1950-2013. In order to demonstrate a strength of the method proposed we compare the multifractal δ-spectrum for various bin-widths and show the robustness of the method, especially for large values of q. For such values, other methods in use, e.g., those based on moment estimation, tend to fail for heavy-tailed data or data with long correlations. Connection between the δ-spectrum and Rényi’s q parameter is also discussed and elucidated on a simple example of multiscale time series.

  4. The Effect of Threshold Values and Weighting Factors on the Association between Entropy Measures and Mortality after Myocardial Infarction in the Cardiac Arrhythmia Suppression Trial (CAST

    Directory of Open Access Journals (Sweden)

    Christopher Mayer

    2016-04-01

    Full Text Available Heart rate variability (HRV is a non-invasive measurement based on the intervals between normal heart beats that characterize cardiac autonomic function. Decreased HRV is associated with increased risk of cardiovascular events. Characterizing HRV using only moment statistics fails to capture abnormalities in regulatory function that are important aspects of disease risk. Thus, entropy measures are a promising approach to quantify HRV for risk stratification. The purpose of this study was to investigate this potential for approximate, corrected approximate, sample, fuzzy, and fuzzy measure entropy and its dependency on the parameter selection. Recently, published parameter sets and further parameter combinations were investigated. Heart rate data were obtained from the "Cardiac Arrhythmia Suppression Trial (CAST RR Interval Sub-Study Database" (Physionet. Corresponding outcomes and clinical data were provided by one of the investigators. The use of previously-reported parameter sets on the pre-treatment data did not significantly add to the identification of patients at risk for cardiovascular death on follow-up. After arrhythmia suppression treatment, several parameter sets predicted outcomes for all patients and patients without coronary artery bypass grafting (CABG. The strongest results were seen using the threshold parameter as a multiple of the data’s standard deviation ( r = 0 . 2 · σ . Approximate and sample entropy provided significant hazard ratios for patients without CABG and without diabetes for an entropy maximizing threshold approximation. Additional parameter combinations did not improve the results for pre-treatment data. The results of this study illustrate the influence of parameter selection on entropy measures’ potential for cardiovascular risk stratification and support the potential use of entropy measures in future studies.

  5. Distance-Based Configurational Entropy of Proteins from Molecular Dynamics Simulations.

    Science.gov (United States)

    Fogolari, Federico; Corazza, Alessandra; Fortuna, Sara; Soler, Miguel Angel; VanSchouwen, Bryan; Brancolini, Giorgia; Corni, Stefano; Melacini, Giuseppe; Esposito, Gennaro

    2015-01-01

    Estimation of configurational entropy from molecular dynamics trajectories is a difficult task which is often performed using quasi-harmonic or histogram analysis. An entirely different approach, proposed recently, estimates local density distribution around each conformational sample by measuring the distance from its nearest neighbors. In this work we show this theoretically well grounded the method can be easily applied to estimate the entropy from conformational sampling. We consider a set of systems that are representative of important biomolecular processes. In particular: reference entropies for amino acids in unfolded proteins are obtained from a database of residues not participating in secondary structure elements;the conformational entropy of folding of β2-microglobulin is computed from molecular dynamics simulations using reference entropies for the unfolded state;backbone conformational entropy is computed from molecular dynamics simulations of four different states of the EPAC protein and compared with order parameters (often used as a measure of entropy);the conformational and rototranslational entropy of binding is computed from simulations of 20 tripeptides bound to the peptide binding protein OppA and of β2-microglobulin bound to a citrate coated gold surface. This work shows the potential of the method in the most representative biological processes involving proteins, and provides a valuable alternative, principally in the shown cases, where other approaches are problematic.

  6. Entropy resistance minimization: An alternative method for heat exchanger analyses

    International Nuclear Information System (INIS)

    Cheng, XueTao

    2013-01-01

    In this paper, the concept of entropy resistance is proposed based on the entropy generation analyses of heat transfer processes. It is shown that smaller entropy resistance leads to larger heat transfer rate with fixed thermodynamic force difference and smaller thermodynamic force difference with fixed heat transfer rate, respectively. For the discussed two-stream heat exchangers in which the heat transfer rates are not given and the three-stream heat exchanger with prescribed heat capacity flow rates and inlet temperatures of the streams, smaller entropy resistance leads to larger heat transfer rate. For the two-stream heat exchangers with fixed heat transfer rate, smaller entropy resistance leads to larger effectiveness. Furthermore, it is shown that smaller values of the concepts of entropy generation numbers and modified entropy generation number do not always correspond to better performance of the discussed heat exchangers. - Highlights: • The concept of entropy resistance is defined for heat exchangers. • The concepts based on entropy generation are used to analyze heat exchangers. • Smaller entropy resistance leads to better performance of heat exchangers. • The applicability of entropy generation minimization is conditional

  7. The Conditional Entropy Power Inequality for Bosonic Quantum Systems

    Science.gov (United States)

    De Palma, Giacomo; Trevisan, Dario

    2018-06-01

    We prove the conditional Entropy Power Inequality for Gaussian quantum systems. This fundamental inequality determines the minimum quantum conditional von Neumann entropy of the output of the beam-splitter or of the squeezing among all the input states where the two inputs are conditionally independent given the memory and have given quantum conditional entropies. We also prove that, for any couple of values of the quantum conditional entropies of the two inputs, the minimum of the quantum conditional entropy of the output given by the conditional Entropy Power Inequality is asymptotically achieved by a suitable sequence of quantum Gaussian input states. Our proof of the conditional Entropy Power Inequality is based on a new Stam inequality for the quantum conditional Fisher information and on the determination of the universal asymptotic behaviour of the quantum conditional entropy under the heat semigroup evolution. The beam-splitter and the squeezing are the central elements of quantum optics, and can model the attenuation, the amplification and the noise of electromagnetic signals. This conditional Entropy Power Inequality will have a strong impact in quantum information and quantum cryptography. Among its many possible applications there is the proof of a new uncertainty relation for the conditional Wehrl entropy.

  8. Entropy equilibrium equation and dynamic entropy production in environment liquid

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The entropy equilibrium equation is the basis of the nonequilibrium state thermodynamics. But the internal energy implies the kinetic energy of the fluid micelle relative to mass center in the classical entropy equilibrium equation at present. This internal energy is not the mean kinetic energy of molecular movement in thermodynamics. Here a modified entropy equilibrium equation is deduced, based on the concept that the internal energy is just the mean kinetic energy of the molecular movement. A dynamic entropy production is introduced into the entropy equilibrium equation to describe the dynamic process distinctly. This modified entropy equilibrium equation can describe not only the entropy variation of the irreversible processes but also the reversible processes in a thermodynamic system. It is more reasonable and suitable for wider applications.

  9. Energy conservation and maximal entropy production in enzyme reactions.

    Science.gov (United States)

    Dobovišek, Andrej; Vitas, Marko; Brumen, Milan; Fajmut, Aleš

    2017-08-01

    A procedure for maximization of the density of entropy production in a single stationary two-step enzyme reaction is developed. Under the constraints of mass conservation, fixed equilibrium constant of a reaction and fixed products of forward and backward enzyme rate constants the existence of maximum in the density of entropy production is demonstrated. In the state with maximal density of entropy production the optimal enzyme rate constants, the stationary concentrations of the substrate and the product, the stationary product yield as well as the stationary reaction flux are calculated. The test, whether these calculated values of the reaction parameters are consistent with their corresponding measured values, is performed for the enzyme Glucose Isomerase. It is found that calculated and measured rate constants agree within an order of magnitude, whereas the calculated reaction flux and the product yield differ from their corresponding measured values for less than 20 % and 5 %, respectively. This indicates that the enzyme Glucose Isomerase, considered in a non-equilibrium stationary state, as found in experiments using the continuous stirred tank reactors, possibly operates close to the state with the maximum in the density of entropy production. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Renormalization group flow of entanglement entropy on spheres

    Energy Technology Data Exchange (ETDEWEB)

    Ben-Ami, Omer; Carmi, Dean [Raymond and Beverly Sackler Faculty of Exact Sciences School of Physics and Astronomy,Tel-Aviv University, Ramat-Aviv 69978 (Israel); Smolkin, Michael [Center for Theoretical Physics and Department of Physics,University of California, Berkeley, CA 94720 (United States)

    2015-08-12

    We explore entanglement entropy of a cap-like region for a generic quantum field theory residing in the Bunch-Davies vacuum on de Sitter space. Entanglement entropy in our setup is identical with the thermal entropy in the static patch of de Sitter, and we derive a simple relation between the vacuum expectation value of the energy-momentum tensor trace and the RG flow of entanglement entropy. In particular, renormalization of the bare couplings and logarithmic divergence of the entanglement entropy are interrelated in our setup. We confirm our findings by recovering known universal contributions for a free field theory deformed by a mass operator as well as obtain correct universal behaviour at the fixed points. Simple examples of entanglement entropy flows are elaborated in d=2,3,4. In three dimensions we find that while the renormalized entanglement entropy is stationary at the fixed points, it is not monotonic. We provide a computational evidence that the universal ‘area law’ for a conformally coupled scalar is different from the known result in the literature, and argue that this difference survives in the limit of flat space. Finally, we carry out the spectral decomposition of entanglement entropy flow and discuss its application to the F-theorem.

  11. EEG machine learning with Higuchi fractal dimension and Sample Entropy as features for successful detection of depression

    OpenAIRE

    Cukic, Milena; Pokrajac, David; Stokic, Miodrag; Simic, slobodan; Radivojevic, Vlada; Ljubisavljevic, Milos

    2018-01-01

    Reliable diagnosis of depressive disorder is essential for both optimal treatment and prevention of fatal outcomes. In this study, we aimed to elucidate the effectiveness of two non-linear measures, Higuchi Fractal Dimension (HFD) and Sample Entropy (SampEn), in detecting depressive disorders when applied on EEG. HFD and SampEn of EEG signals were used as features for seven machine learning algorithms including Multilayer Perceptron, Logistic Regression, Support Vector Machines with the linea...

  12. Holographic entanglement entropy of surface defects

    International Nuclear Information System (INIS)

    Gentle, Simon A.; Gutperle, Michael; Marasinou, Chrysostomos

    2016-01-01

    We calculate the holographic entanglement entropy in type IIB supergravity solutions that are dual to half-BPS disorder-type surface defects in N=4 supersymmetric Yang-Mills theory. The entanglement entropy is calculated for a ball-shaped region bisected by a surface defect. Using the bubbling supergravity solutions we also compute the expectation value of the defect operator. Combining our result with the previously-calculated one-point function of the stress tensor in the presence of the defect, we adapt the calculation of Lewkowycz and Maldacena http://dx.doi.org/10.1007/JHEP05(2014)025 to obtain a second expression for the entanglement entropy. Our two expressions agree up to an additional term, whose possible origin and significance is discussed.

  13. Holographic entanglement entropy of surface defects

    Energy Technology Data Exchange (ETDEWEB)

    Gentle, Simon A.; Gutperle, Michael; Marasinou, Chrysostomos [Department of Physics and Astronomy, University of California,Los Angeles, CA 90095 (United States)

    2016-04-12

    We calculate the holographic entanglement entropy in type IIB supergravity solutions that are dual to half-BPS disorder-type surface defects in N=4 supersymmetric Yang-Mills theory. The entanglement entropy is calculated for a ball-shaped region bisected by a surface defect. Using the bubbling supergravity solutions we also compute the expectation value of the defect operator. Combining our result with the previously-calculated one-point function of the stress tensor in the presence of the defect, we adapt the calculation of Lewkowycz and Maldacena http://dx.doi.org/10.1007/JHEP05(2014)025 to obtain a second expression for the entanglement entropy. Our two expressions agree up to an additional term, whose possible origin and significance is discussed.

  14. Crossing the entropy barrier of dynamical zeta functions

    International Nuclear Information System (INIS)

    Aurich, R.; Bolte, J.; Matthies, C.; Sieber, M.; Steiner, F.

    1992-01-01

    Dynamical zeta functions are an important tool to quantize chaotic dynamical systems. The basic quantization rules require the computation of the zeta functions on the real energy axis, where the Euler product representations running over the classical periodic orbits usually do not converge due to the existence of the so-called entropy barrier determined by the topological entropy of the classical system. We shown that the convergence properties of the dynamical zeta functions rewritten as Dirichlet series are governed not only by the well-known topological and metric entropy, but depend crucially on subtle statistical properties of the Maslow indices and of the multiplicities of the periodic orbits that are measured by a new parameter for which we introduce the notion of a third entropy. If and only if the third entropy is nonvanishing, one can cross the entropy barrier; if it exceeds a certain value, one can even compute the zeta function in the physical region by means of a convergent Dirichlet series. A simple statistical model is presented which allows to compute the third entropy. Four examples of chaotic systems are studied in detail to test the model numerically. (orig.)

  15. Crossing the entropy barrier of dynamical zeta functions

    Energy Technology Data Exchange (ETDEWEB)

    Aurich, R.; Bolte, J.; Matthies, C.; Sieber, M.; Steiner, F. (Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik)

    1992-01-01

    Dynamical zeta functions are an important tool to quantize chaotic dynamical systems. The basic quantization rules require the computation of the zeta functions on the real energy axis, where the Euler product representations running over the classical periodic orbits usually do not converge due to the existence of the so-called entropy barrier determined by the topological entropy of the classical system. We shown that the convergence properties of the dynamical zeta functions rewritten as Dirichlet series are governed not only by the well-known topological and metric entropy, but depend crucially on subtle statistical properties of the Maslow indices and of the multiplicities of the periodic orbits that are measured by a new parameter for which we introduce the notion of a third entropy. If and only if the third entropy is nonvanishing, one can cross the entropy barrier; if it exceeds a certain value, one can even compute the zeta function in the physical region by means of a convergent Dirichlet series. A simple statistical model is presented which allows to compute the third entropy. Four examples of chaotic systems are studied in detail to test the model numerically. (orig.).

  16. The improvement of Clausius entropy and its application in entropy analysis

    Institute of Scientific and Technical Information of China (English)

    WU Jing; GUO ZengYuan

    2008-01-01

    The defects of Cleusius entropy which Include s premise of reversible process and a process quantlty of heat in Its definition are discussed in this paper. Moreover, the heat temperature quotient under reversible conditions, i.e. (δQ/T)rev, is essentially a process quantity although it is numerically equal to the entropy change. The sum of internal energy temperature quotient and work temperature quotient is defined as the improved form of Clausius entropy and it can be further proved to be a state funcllon. Unlike Clausius entropy, the improved deflnltion consists of system properties wlthout premise just like other state functions, for example, pressure p and enthalpy h, etc. it is unnecessary to invent reversible paths when calculating entropy change for irreversible processes based on the improved form of entropy since it is independent of process. Furthermore, entropy balance equations for internally and externally irreversible processes are deduced respectively based on the concepts of thermal reservoir entropy transfer and system entropy transfer. Finally, some examples are presented to show that the improved deflnitlon of Clausius entropy provides a clear concept as well as a convenient method for en-tropy change calculation.

  17. Harmonic analysis of electric locomotive and traction power system based on wavelet singular entropy

    Science.gov (United States)

    Dun, Xiaohong

    2018-05-01

    With the rapid development of high-speed railway and heavy-haul transport, the locomotive and traction power system has become the main harmonic source of China's power grid. In response to this phenomenon, the system's power quality issues need timely monitoring, assessment and governance. Wavelet singular entropy is an organic combination of wavelet transform, singular value decomposition and information entropy theory, which combines the unique advantages of the three in signal processing: the time-frequency local characteristics of wavelet transform, singular value decomposition explores the basic modal characteristics of data, and information entropy quantifies the feature data. Based on the theory of singular value decomposition, the wavelet coefficient matrix after wavelet transform is decomposed into a series of singular values that can reflect the basic characteristics of the original coefficient matrix. Then the statistical properties of information entropy are used to analyze the uncertainty of the singular value set, so as to give a definite measurement of the complexity of the original signal. It can be said that wavelet entropy has a good application prospect in fault detection, classification and protection. The mat lab simulation shows that the use of wavelet singular entropy on the locomotive and traction power system harmonic analysis is effective.

  18. Entropy Analysis of RR and QT Interval Variability during Orthostatic and Mental Stress in Healthy Subjects

    Directory of Open Access Journals (Sweden)

    Mathias Baumert

    2014-12-01

    Full Text Available Autonomic activity affects beat-to-beat variability of heart rate and QT interval. The aim of this study was to explore whether entropy measures are suitable to detect changes in neural outflow to the heart elicited by two different stress paradigms. We recorded short-term ECG in 11 normal subjects during an experimental protocol that involved head-up tilt and mental arithmetic stress and computed sample entropy, cross-sample entropy and causal interactions based on conditional entropy from RR and QT interval time series. Head-up tilt resulted in a significant reduction in sample entropy of RR intervals and cross-sample entropy, while mental arithmetic stress resulted in a significant reduction in coupling directed from RR to QT. In conclusion, measures of entropy are suitable to detect changes in neural outflow to the heart and decoupling of repolarisation variability from heart rate variability elicited by orthostatic or mental arithmetic stress.

  19. Deconstructing Cross-Entropy for Probabilistic Binary Classifiers

    Directory of Open Access Journals (Sweden)

    Daniel Ramos

    2018-03-01

    Full Text Available In this work, we analyze the cross-entropy function, widely used in classifiers both as a performance measure and as an optimization objective. We contextualize cross-entropy in the light of Bayesian decision theory, the formal probabilistic framework for making decisions, and we thoroughly analyze its motivation, meaning and interpretation from an information-theoretical point of view. In this sense, this article presents several contributions: First, we explicitly analyze the contribution to cross-entropy of (i prior knowledge; and (ii the value of the features in the form of a likelihood ratio. Second, we introduce a decomposition of cross-entropy into two components: discrimination and calibration. This decomposition enables the measurement of different performance aspects of a classifier in a more precise way; and justifies previously reported strategies to obtain reliable probabilities by means of the calibration of the output of a discriminating classifier. Third, we give different information-theoretical interpretations of cross-entropy, which can be useful in different application scenarios, and which are related to the concept of reference probabilities. Fourth, we present an analysis tool, the Empirical Cross-Entropy (ECE plot, a compact representation of cross-entropy and its aforementioned decomposition. We show the power of ECE plots, as compared to other classical performance representations, in two diverse experimental examples: a speaker verification system, and a forensic case where some glass findings are present.

  20. Entropy and information

    CERN Document Server

    Volkenstein, Mikhail V

    2009-01-01

    The book "Entropy and Information" deals with the thermodynamical concept of entropy and its relationship to information theory. It is successful in explaining the universality of the term "Entropy" not only as a physical phenomenon, but reveals its existence also in other domains. E.g., Volkenstein discusses the "meaning" of entropy in a biological context and shows how entropy is related to artistic activities. Written by the renowned Russian bio-physicist Mikhail V. Volkenstein, this book on "Entropy and Information" surely serves as a timely introduction to understand entropy from a thermodynamic perspective and is definitely an inspiring and thought-provoking book that should be read by every physicist, information-theorist, biologist, and even artist.

  1. Properties of Risk Measures of Generalized Entropy in Portfolio Selection

    Directory of Open Access Journals (Sweden)

    Rongxi Zhou

    2017-12-01

    Full Text Available This paper systematically investigates the properties of six kinds of entropy-based risk measures: Information Entropy and Cumulative Residual Entropy in the probability space, Fuzzy Entropy, Credibility Entropy and Sine Entropy in the fuzzy space, and Hybrid Entropy in the hybridized uncertainty of both fuzziness and randomness. We discover that none of the risk measures satisfy all six of the following properties, which various scholars have associated with effective risk measures: Monotonicity, Translation Invariance, Sub-additivity, Positive Homogeneity, Consistency and Convexity. Measures based on Fuzzy Entropy, Credibility Entropy, and Sine Entropy all exhibit the same properties: Sub-additivity, Positive Homogeneity, Consistency, and Convexity. These measures based on Information Entropy and Hybrid Entropy, meanwhile, only exhibit Sub-additivity and Consistency. Cumulative Residual Entropy satisfies just Sub-additivity, Positive Homogeneity, and Convexity. After identifying these properties, we develop seven portfolio models based on different risk measures and made empirical comparisons using samples from both the Shenzhen Stock Exchange of China and the New York Stock Exchange of America. The comparisons show that the Mean Fuzzy Entropy Model performs the best among the seven models with respect to both daily returns and relative cumulative returns. Overall, these results could provide an important reference for both constructing effective risk measures and rationally selecting the appropriate risk measure under different portfolio selection conditions.

  2. Direct measurements of the magnetic entropy change

    DEFF Research Database (Denmark)

    Nielsen, Kaspar Kirstein; Neves Bez, Henrique; von Moos, Lars

    2015-01-01

    An experimental device that can accurately measure the magnetic entropy change, Δs, as a function of temperature, T, and magnetic field, H, is presented. The magnetic field source is in this case a set of counter-rotating concentric Halbach-type magnets, which produce a highly homogeneous applied...... to the ambient are negligible in terms of the calorimetric determination of the magnetic entropy change, while the losses cannot be ignored when correcting for the actual sample temperature. We apply the device to two different types of samples; one is commercial grade Gd, i.e., a pure second-order phase...

  3. Dynamics of entropy perturbations in assisted dark energy with mixed kinetic terms

    International Nuclear Information System (INIS)

    Karwan, Khamphee

    2011-01-01

    We study dynamics of entropy perturbations in the two-field assisted dark energy model. Based on the scenario of assisted dark energy, in which one scalar field is subdominant compared with the other in the early epoch, we show that the entropy perturbations in this two-field system tend to be constant on large scales in the early epoch and hence survive until the present era for a generic evolution of both fields during the radiation and matter eras. This behaviour of the entropy perturbations is preserved even when the fields are coupled via kinetic interaction. Since, for assisted dark energy, the subdominant field in the early epoch becomes dominant at late time, the entropy perturbations can significantly influence the dynamics of density perturbations in the universe. Assuming correlations between the entropy and curvature perturbations, the entropy perturbations can enhance the integrated Sachs-Wolfe (ISW) effect if the signs of the contributions from entropy perturbations and curvature perturbations are opposite after the matter era, otherwise the ISW contribution is suppressed. For canonical scalar field the effect of entropy perturbations on ISW effect is small because the initial value of the entropy perturbations estimated during inflation cannot be sufficiently large. However, in the case of k-essence, the initial value of the entropy perturbations can be large enough to affect the ISW effect to leave a significant imprint on the CMB power spectrum

  4. The improvement of Clausius entropy and its application in entropy analysis

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The defects of Clausius entropy which include a premise of reversible process and a process quantity of heat in its definition are discussed in this paper. Moreover, the heat temperature quotient under reversible conditions, i.e. (δQ/T)rev, is essentially a process quantity although it is numerically equal to the entropy change. The sum of internal energy temperature quotient and work temperature quotient is defined as the improved form of Clausius entropy and it can be further proved to be a state function. Unlike Clausius entropy, the improved definition consists of system properties without premise just like other state functions, for example, pressure p and enthalpy h, etc. It is unnecessary to invent reversible paths when calculating entropy change for irreversible processes based on the improved form of entropy since it is independent of process. Furthermore, entropy balance equations for internally and externally irreversible processes are deduced respectively based on the concepts of thermal reservoir entropy transfer and system entropy transfer. Finally, some examples are presented to show that the improved definition of Clausius entropy provides a clear concept as well as a convenient method for en- tropy change calculation.

  5. Ellipses of constant entropy in the XY spin chain

    International Nuclear Information System (INIS)

    Franchini, F; Its, A R; Jin, B-Q; Korepin, V E

    2007-01-01

    Entanglement in the ground state of the XY model on the infinite chain can be measured by the von Neumann entropy of a block of neighbouring spins. We study a double scaling limit: the size of the block is much larger than 1 but much smaller than the length of the whole chain. The entropy of the block has an asymptotic limit in the gapped regimes. We study this limiting entropy as a function of the anisotropy and of the magnetic field. We identify its minima at product states and its divergencies at the quantum phase transitions. We find that the curves of constant entropy are ellipses and hyperbolas, and that they all meet at one point (essential critical point). Depending on the approach to the essential critical point, the entropy can take any value between 0 and ∞. In the vicinity of this point, small changes in the parameters cause large change of the entropy

  6. Quantum dynamical entropy revisited

    International Nuclear Information System (INIS)

    Hudetz, T.

    1996-10-01

    We define a new quantum dynamical entropy, which is a 'hybrid' of the closely related, physically oriented entropy introduced by Alicki and Fannes in 1994, and of the mathematically well-developed, single-argument entropy introduced by Connes, Narnhofer and Thirring in 1987. We show that this new quantum dynamical entropy has many properties similar to the ones of the Alicki-Fannes entropy, and also inherits some additional properties from the CNT entropy. In particular, the 'hybrid' entropy interpolates between the two different ways in which both the AF and the CNT entropy of the shift automorphism on the quantum spin chain agree with the usual quantum entropy density, resulting in even better agreement. Also, the new quantum dynamical entropy generalizes the classical dynamical entropy of Kolmogorov and Sinai in the same way as does the AF entropy. Finally, we estimate the 'hybrid' entropy both for the Powers-Price shift systems and for the noncommutative Arnold map on the irrational rotation C * -algebra, leaving some interesting open problems. (author)

  7. On the relationship between NMR-derived amide order parameters and protein backbone entropy changes.

    Science.gov (United States)

    Sharp, Kim A; O'Brien, Evan; Kasinath, Vignesh; Wand, A Joshua

    2015-05-01

    Molecular dynamics simulations are used to analyze the relationship between NMR-derived squared generalized order parameters of amide NH groups and backbone entropy. Amide order parameters (O(2) NH ) are largely determined by the secondary structure and average values appear unrelated to the overall flexibility of the protein. However, analysis of the more flexible subset (O(2) NH  entropy than that reported by the side chain methyl axis order parameters, O(2) axis . A calibration curve for backbone entropy vs. O(2) NH is developed, which accounts for both correlations between amide group motions of different residues, and correlations between backbone and side chain motions. This calibration curve can be used with experimental values of O(2) NH changes obtained by NMR relaxation measurements to extract backbone entropy changes, for example, upon ligand binding. In conjunction with our previous calibration for side chain entropy derived from measured O(2) axis values this provides a prescription for determination of the total protein conformational entropy changes from NMR relaxation measurements. © 2015 Wiley Periodicals, Inc.

  8. EEG entropy measures indicate decrease of cortical information processing in Disorders of Consciousness.

    Science.gov (United States)

    Thul, Alexander; Lechinger, Julia; Donis, Johann; Michitsch, Gabriele; Pichler, Gerald; Kochs, Eberhard F; Jordan, Denis; Ilg, Rüdiger; Schabus, Manuel

    2016-02-01

    Clinical assessments that rely on behavioral responses to differentiate Disorders of Consciousness are at times inapt because of some patients' motor disabilities. To objectify patients' conditions of reduced consciousness the present study evaluated the use of electroencephalography to measure residual brain activity. We analyzed entropy values of 18 scalp EEG channels of 15 severely brain-damaged patients with clinically diagnosed Minimally-Conscious-State (MCS) or Unresponsive-Wakefulness-Syndrome (UWS) and compared the results to a sample of 24 control subjects. Permutation entropy (PeEn) and symbolic transfer entropy (STEn), reflecting information processes in the EEG, were calculated for all subjects. Participants were tested on a modified active own-name paradigm to identify correlates of active instruction following. PeEn showed reduced local information content in the EEG in patients, that was most pronounced in UWS. STEn analysis revealed altered directed information flow in the EEG of patients, indicating impaired feed-backward connectivity. Responses to auditory stimulation yielded differences in entropy measures, indicating reduced information processing in MCS and UWS. Local EEG information content and information flow are affected in Disorders of Consciousness. This suggests local cortical information capacity and feedback information transfer as neural correlates of consciousness. The utilized EEG entropy analyses were able to relate to patient groups with different Disorders of Consciousness. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  9. Automatic maximum entropy spectral reconstruction in NMR

    International Nuclear Information System (INIS)

    Mobli, Mehdi; Maciejewski, Mark W.; Gryk, Michael R.; Hoch, Jeffrey C.

    2007-01-01

    Developments in superconducting magnets, cryogenic probes, isotope labeling strategies, and sophisticated pulse sequences together have enabled the application, in principle, of high-resolution NMR spectroscopy to biomolecular systems approaching 1 megadalton. In practice, however, conventional approaches to NMR that utilize the fast Fourier transform, which require data collected at uniform time intervals, result in prohibitively lengthy data collection times in order to achieve the full resolution afforded by high field magnets. A variety of approaches that involve nonuniform sampling have been proposed, each utilizing a non-Fourier method of spectrum analysis. A very general non-Fourier method that is capable of utilizing data collected using any of the proposed nonuniform sampling strategies is maximum entropy reconstruction. A limiting factor in the adoption of maximum entropy reconstruction in NMR has been the need to specify non-intuitive parameters. Here we describe a fully automated system for maximum entropy reconstruction that requires no user-specified parameters. A web-accessible script generator provides the user interface to the system

  10. Exact results for corner contributions to the entanglement entropy and Rényi entropies of free bosons and fermions in 3d

    Directory of Open Access Journals (Sweden)

    Henriette Elvang

    2015-10-01

    Full Text Available In the presence of a sharp corner in the boundary of the entanglement region, the entanglement entropy (EE and Rényi entropies for 3d CFTs have a logarithmic term whose coefficient, the corner function, is scheme-independent. In the limit where the corner becomes smooth, the corner function vanishes quadratically with coefficient σ for the EE and σn for the Rényi entropies. For a free real scalar and a free Dirac fermion, we evaluate analytically the integral expressions of Casini, Huerta, and Leitao to derive exact results for σ and σn for all n=2,3,… . The results for σ agree with a recent universality conjecture of Bueno, Myers, and Witczak-Krempa that σ/CT=π2/24 in all 3d CFTs, where CT is the central charge. For the Rényi entropies, the ratios σn/CT do not indicate similar universality. However, in the limit n→∞, the asymptotic values satisfy a simple relationship and equal 1/(4π2 times the asymptotic values of the free energy of free scalars/fermions on the n-covered 3-sphere.

  11. Information Entropy Measures for Stand Structural Diversity:Joint Entropy

    Institute of Scientific and Technical Information of China (English)

    Lei Xiangdong; Lu Yuanchang

    2004-01-01

    Structural diversity is the key attribute of a stand. A set of biodiversity measures in ecology was introduced in forest management for describing stand structure, of which Shannon information entropy (Shannon index) has been the most widely used measure of species diversity. It is generally thought that tree size diversity could serve as a good proxy for height diversity. However, tree size diversity and height diversity for stand structure is not completely consistent. Stand diameter cannot reflect height information completely. Either tree size diversity or height diversity is one-dimensional information entropy measure. This paper discussed the method of multiple-dimensional information entropy measure with the concept of joint entropy. It is suggested that joint entropy is a good measure for describing overall stand structural diversity.

  12. Identification of a Threshold Value for the DEMATEL Method: Using the Maximum Mean De-Entropy Algorithm

    Science.gov (United States)

    Chung-Wei, Li; Gwo-Hshiung, Tzeng

    To deal with complex problems, structuring them through graphical representations and analyzing causal influences can aid in illuminating complex issues, systems, or concepts. The DEMATEL method is a methodology which can be used for researching and solving complicated and intertwined problem groups. The end product of the DEMATEL process is a visual representation—the impact-relations map—by which respondents organize their own actions in the world. The applicability of the DEMATEL method is widespread, ranging from analyzing world problematique decision making to industrial planning. The most important property of the DEMATEL method used in the multi-criteria decision making (MCDM) field is to construct interrelations between criteria. In order to obtain a suitable impact-relations map, an appropriate threshold value is needed to obtain adequate information for further analysis and decision-making. In this paper, we propose a method based on the entropy approach, the maximum mean de-entropy algorithm, to achieve this purpose. Using real cases to find the interrelationships between the criteria for evaluating effects in E-learning programs as an examples, we will compare the results obtained from the respondents and from our method, and discuss that the different impact-relations maps from these two methods.

  13. Entropy of orthogonal polynomials with Freud weights and information entropies of the harmonic oscillator potential

    Science.gov (United States)

    Van Assche, W.; Yáñez, R. J.; Dehesa, J. S.

    1995-08-01

    The information entropy of the harmonic oscillator potential V(x)=1/2λx2 in both position and momentum spaces can be expressed in terms of the so-called ``entropy of Hermite polynomials,'' i.e., the quantity Sn(H):= -∫-∞+∞H2n(x)log H2n(x) e-x2dx. These polynomials are instances of the polynomials orthogonal with respect to the Freud weights w(x)=exp(-||x||m), m≳0. Here, a very precise and general result of the entropy of Freud polynomials recently established by Aptekarev et al. [J. Math. Phys. 35, 4423-4428 (1994)], specialized to the Hermite kernel (case m=2), leads to an important refined asymptotic expression for the information entropies of very excited states (i.e., for large n) in both position and momentum spaces, to be denoted by Sρ and Sγ, respectively. Briefly, it is shown that, for large values of n, Sρ+1/2logλ≂log(π√2n/e)+o(1) and Sγ-1/2log λ≂log(π√2n/e)+o(1), so that Sρ+Sγ≂log(2π2n/e2)+o(1) in agreement with the generalized indetermination relation of Byalinicki-Birula and Mycielski [Commun. Math. Phys. 44, 129-132 (1975)]. Finally, the rate of convergence of these two information entropies is numerically analyzed. In addition, using a Rakhmanov result, we describe a totally new proof of the leading term of the entropy of Freud polynomials which, naturally, is just a weak version of the aforementioned general result.

  14. Quantum chaos: entropy signatures

    International Nuclear Information System (INIS)

    Miller, P.A.; Sarkar, S.; Zarum, R.

    1998-01-01

    A definition of quantum chaos is given in terms of entropy production rates for a quantum system coupled weakly to a reservoir. This allows the treatment of classical and quantum chaos on the same footing. In the quantum theory the entropy considered is the von Neumann entropy and in classical systems it is the Gibbs entropy. The rate of change of the coarse-grained Gibbs entropy of the classical system with time is given by the Kolmogorov-Sinai (KS) entropy. The relation between KS entropy and the rate of change of von Neumann entropy is investigated for the kicked rotator. For a system which is classically chaotic there is a linear relationship between these two entropies. Moreover it is possible to construct contour plots for the local KS entropy and compare it with the corresponding plots for the rate of change of von Neumann entropy. The quantitative and qualitative similarities of these plots are discussed for the standard map (kicked rotor) and the generalised cat maps. (author)

  15. Sequence space coverage, entropy of genomes and the potential to detect non-human DNA in human samples

    Directory of Open Access Journals (Sweden)

    Maley Carlo C

    2008-10-01

    Full Text Available Abstract Background Genomes store information for building and maintaining organisms. Complete sequencing of many genomes provides the opportunity to study and compare global information properties of those genomes. Results We have analyzed aspects of the information content of Homo sapiens, Mus musculus, Drosophila melanogaster, Caenorhabditis elegans, Arabidopsis thaliana, Saccharomyces cerevisiae, and Escherichia coli (K-12 genomes. Virtually all possible (> 98% 12 bp oligomers appear in vertebrate genomes while 98% to D. melanogaster (12–17 bp, C. elegans (11–17 bp, A. thaliana (11–17 bp, S. cerevisiae (10–16 bp and E. coli (9–15 bp. Frequencies of unique oligomers in the genomes follow similar patterns. We identified a set of 2.6 M 15-mers that are more than 1 nucleotide different from all 15-mers in the human genome and so could be used as probes to detect microbes in human samples. In a human sample, these probes would detect 100% of the 433 currently fully sequenced prokaryotes and 75% of the 3065 fully sequenced viruses. The human genome is significantly more compact in sequence space than a random genome. We identified the most frequent 5- to 20-mers in the human genome, which may prove useful as PCR primers. We also identified a bacterium, Anaeromyxobacter dehalogenans, which has an exceptionally low diversity of oligomers given the size of its genome and its GC content. The entropy of coding regions in the human genome is significantly higher than non-coding regions and chromosomes. However chromosomes 1, 2, 9, 12 and 14 have a relatively high proportion of coding DNA without high entropy, and chromosome 20 is the opposite with a low frequency of coding regions but relatively high entropy. Conclusion Measures of the frequency of oligomers are useful for designing PCR assays and for identifying chromosomes and organisms with hidden structure that had not been previously recognized. This information may be used to detect

  16. Sequence space coverage, entropy of genomes and the potential to detect non-human DNA in human samples

    Science.gov (United States)

    Liu, Zhandong; Venkatesh, Santosh S; Maley, Carlo C

    2008-01-01

    Background Genomes store information for building and maintaining organisms. Complete sequencing of many genomes provides the opportunity to study and compare global information properties of those genomes. Results We have analyzed aspects of the information content of Homo sapiens, Mus musculus, Drosophila melanogaster, Caenorhabditis elegans, Arabidopsis thaliana, Saccharomyces cerevisiae, and Escherichia coli (K-12) genomes. Virtually all possible (> 98%) 12 bp oligomers appear in vertebrate genomes while 98% to < 2% of possible oligomers in D. melanogaster (12–17 bp), C. elegans (11–17 bp), A. thaliana (11–17 bp), S. cerevisiae (10–16 bp) and E. coli (9–15 bp). Frequencies of unique oligomers in the genomes follow similar patterns. We identified a set of 2.6 M 15-mers that are more than 1 nucleotide different from all 15-mers in the human genome and so could be used as probes to detect microbes in human samples. In a human sample, these probes would detect 100% of the 433 currently fully sequenced prokaryotes and 75% of the 3065 fully sequenced viruses. The human genome is significantly more compact in sequence space than a random genome. We identified the most frequent 5- to 20-mers in the human genome, which may prove useful as PCR primers. We also identified a bacterium, Anaeromyxobacter dehalogenans, which has an exceptionally low diversity of oligomers given the size of its genome and its GC content. The entropy of coding regions in the human genome is significantly higher than non-coding regions and chromosomes. However chromosomes 1, 2, 9, 12 and 14 have a relatively high proportion of coding DNA without high entropy, and chromosome 20 is the opposite with a low frequency of coding regions but relatively high entropy. Conclusion Measures of the frequency of oligomers are useful for designing PCR assays and for identifying chromosomes and organisms with hidden structure that had not been previously recognized. This information may be used to

  17. Measuring time series regularity using nonlinear similarity-based sample entropy

    International Nuclear Information System (INIS)

    Xie Hongbo; He Weixing; Liu Hui

    2008-01-01

    Sampe Entropy (SampEn), a measure quantifying regularity and complexity, is believed to be an effective analyzing method of diverse settings that include both deterministic chaotic and stochastic processes, particularly operative in the analysis of physiological signals that involve relatively small amount of data. However, the similarity definition of vectors is based on Heaviside function, of which the boundary is discontinuous and hard, may cause some problems in the validity and accuracy of SampEn. Sigmoid function is a smoothed and continuous version of Heaviside function. To overcome the problems SampEn encountered, a modified SampEn (mSampEn) based on nonlinear Sigmoid function was proposed. The performance of mSampEn was tested on the independent identically distributed (i.i.d.) uniform random numbers, the MIX stochastic model, the Rossler map, and the Hennon map. The results showed that mSampEn was superior to SampEn in several aspects, including giving entropy definition in case of small parameters, better relative consistency, robust to noise, and more independence on record length when characterizing time series generated from either deterministic or stochastic system with different regularities

  18. Maximizing entropy of image models for 2-D constrained coding

    DEFF Research Database (Denmark)

    Forchhammer, Søren; Danieli, Matteo; Burini, Nino

    2010-01-01

    This paper considers estimating and maximizing the entropy of two-dimensional (2-D) fields with application to 2-D constrained coding. We consider Markov random fields (MRF), which have a non-causal description, and the special case of Pickard random fields (PRF). The PRF are 2-D causal finite...... context models, which define stationary probability distributions on finite rectangles and thus allow for calculation of the entropy. We consider two binary constraints and revisit the hard square constraint given by forbidding neighboring 1s and provide novel results for the constraint that no uniform 2...... £ 2 squares contains all 0s or all 1s. The maximum values of the entropy for the constraints are estimated and binary PRF satisfying the constraint are characterized and optimized w.r.t. the entropy. The maximum binary PRF entropy is 0.839 bits/symbol for the no uniform squares constraint. The entropy...

  19. Entropy Generation in Natural Convection Under an Evanescent Magnetic Field

    International Nuclear Information System (INIS)

    Magherbi, Mourad; El Jery, Atef; Ben Brahim, Ammar

    2009-01-01

    We numerically study the effect of an externally-evanescent magnetic field on total entropy generation in conducting and non-reactive fluid enclosed in a square cavity. The horizontal walls of the enclosure are assumed to be insulated while the vertical walls are kept isothermal. A control volume finite element method is used to solve the conservation equations at Prandtl number of 0.71. The values of relaxation time of the magnetic field are chosen, so that the Lorentz force acts only in the transient state of entropy generation in natural convection. The total entropy generation was calculated for fixed value of irreversibility distribution ratio, different relaxation time varying from 0 to 1/5 and Grashof number equal to 10 5

  20. Entropy of a system formed in the collision of heavy ions

    International Nuclear Information System (INIS)

    Gudima, K.K.; Roepke, G.; Toneev, V.D.; Schulz, H.

    1987-01-01

    In the framework of the cascade model, we study the evolution of the entropy of a system formed in the collision of heavy ions. The method of calculating the entropy is based on a smoothing of the momentum distribution function by means of introducing a temperature field. It is shown that the resulting entropy per nucleon is very sensitive to the specific partitioning of phase space into cells in the free-expansion phase of the reaction. From comparison with experiment it is found that the cascade calculations do not show a preference for a particular model calculation of the entropy, but predict that the entropy is smaller than the values following from equilibrium statistics

  1. Configuration Entropy Calculations for Complex Compounds Technetium

    International Nuclear Information System (INIS)

    Muhayatun; Susanto Imam Rahayu; Surdia, N.M.; Abdul Mutalib

    2002-01-01

    Recently, the study of technetium complexes is rapidly increasing, due to the benefit of 99m Tc complexes (one of Tc nuclear isomers), which are widely used for diagnostics. Study of the structure-stability relationship of Tc complexes based on solid angle has been done by Kung using a Solid Angle Factor Sum (SAS). The SAS is hypothesized to be related to stability. SAS has been used by several researchers either for synthesis or designing the reaction route of the Tc complex formation and predicting the geometry of complex structures. Although the advantages of the SAS were very gratifying, but the model does not have the theoretical basis which is able to explain the correlation of steric parameters to physicochemical properties of complexes especially to those connected to a complex's stability. To improve the SAS model, in this research the model was modified by providing a theoretical basis for SAS. The results obtained from the correlation of the SAS value to the thermodynamic stability parameters of simple complexes show the values to have a similar trend as the standard entropy (S 0 ). The entropy approximation model was created by involving some factors which are not used in Kung's model. Entropy optimization to the bond length (ML) has also been done to several complexes. The calculations of SAS value using the calculated R for more than 100 Tc complexes provide a normalized mean value of 0.8545 ± 0.0851 and have similar curve profiles as those of Kung's model. The entropy value can be obtained by multiplying the natural logarithm of the a priori degeneracy of a certain distribution (Ω) and the Boltzmann constant. The results of Ω and In Ω of the Tc complexes have a narrow range. The results of this research are able to provide a basic concept for the SAS to explain the structure-stability relationship and to improve Kung's model. (author)

  2. Quantum key distribution with finite resources: Smooth Min entropy vs. Smooth Renyi entropy

    Energy Technology Data Exchange (ETDEWEB)

    Mertz, Markus; Abruzzo, Silvestre; Bratzik, Sylvia; Kampermann, Hermann; Bruss, Dagmar [Institut fuer Theoretische Physik III, Duesseldorf (Germany)

    2010-07-01

    We consider different entropy measures that play an important role in the analysis of the security of QKD with finite resources. The smooth min entropy leads to an optimal bound for the length of a secure key. Another bound on the secure key length was derived by using Renyi entropies. Unfortunately, it is very hard or even impossible to calculate these entropies for realistic QKD scenarios. To estimate the security rate it becomes important to find computable bounds on these entropies. Here, we compare a lower bound for the smooth min entropy with a bound using Renyi entropies. We compare these entropies for the six-state protocol with symmetric attacks.

  3. Generalized uncertainty principle and entropy of three-dimensional rotating acoustic black hole

    International Nuclear Information System (INIS)

    Zhao, HuiHua; Li, GuangLiang; Zhang, LiChun

    2012-01-01

    Using the new equation of state density from the generalized uncertainty principle, we investigate statistics entropy of a 3-dimensional rotating acoustic black hole. When λ introduced in the generalized uncertainty principle takes a specific value, we obtain an area entropy and a correction term associated with the acoustic black hole. In this method, there does not exist any divergence and one needs not the small mass approximation in the original brick-wall model. -- Highlights: ► Statistics entropy of a 3-dimensional rotating acoustic black hole is studied. ► We obtain an area entropy and a correction term associated with it. ► We make λ introduced in the generalized uncertainty principle take a specific value. ► There does not exist any divergence in this method.

  4. Group additivity values for enthalpies of formation (298 K), entropies (298 K), and molar heat capacities (300 K < T < 1500 K) of gaseous fluorocarbons

    International Nuclear Information System (INIS)

    Van Otterloo, Maren K.; Girshick, Steven L.; Roberts, Jeffrey T.

    2007-01-01

    A group additivity method was developed to estimate standard enthalpies of formation and standard entropies at 298 K of linear radical and closed-shell, gaseous fluorocarbon neutrals containing four or more carbon atoms. The method can also be used to estimate constant pressure molar heat capacities of the same compounds over the temperature range 300 K to 1500 K. Seventeen groups and seven fluorine-fluorine interaction terms were defined from 12 fluorocarbon molecules. Interaction term values from Yamada and Bozzelli [T. Yamada, J.W. Bozzelli, J. Phys. Chem. A 103 (1999) 7373-7379] were utilized. The enthalpy of formation group values were derived from G3MP2 calculations by Bauschlicher and Ricca [C.W. Bauschlicher, A. Ricca, J. Phys. Chem. A 104 (2000) 4581-4585]. Standard entropy and molar heat capacity group values were estimated from ab initio geometry optimization and frequency calculations at the Hartree-Fock level using the 6-31G(d) basis set. Enthalpies of formation for larger fluorocarbons estimated from the group additivity method compare well to enthalpies of formation found in the literature

  5. Nearest Neighbor Estimates of Entropy for Multivariate Circular Distributions

    Directory of Open Access Journals (Sweden)

    Neeraj Misra

    2010-05-01

    Full Text Available In molecular sciences, the estimation of entropies of molecules is important for the understanding of many chemical and biological processes. Motivated by these applications, we consider the problem of estimating the entropies of circular random vectors and introduce non-parametric estimators based on circular distances between n sample points and their k th nearest neighbors (NN, where k (≤ n – 1 is a fixed positive integer. The proposed NN estimators are based on two different circular distances, and are proven to be asymptotically unbiased and consistent. The performance of one of the circular-distance estimators is investigated and compared with that of the already established Euclidean-distance NN estimator using Monte Carlo samples from an analytic distribution of six circular variables of an exactly known entropy and a large sample of seven internal-rotation angles in the molecule of tartaric acid, obtained by a realistic molecular-dynamics simulation.

  6. Multi-scale symbolic transfer entropy analysis of EEG

    Science.gov (United States)

    Yao, Wenpo; Wang, Jun

    2017-10-01

    From both global and local perspectives, we symbolize two kinds of EEG and analyze their dynamic and asymmetrical information using multi-scale transfer entropy. Multi-scale process with scale factor from 1 to 199 and step size of 2 is applied to EEG of healthy people and epileptic patients, and then the permutation with embedding dimension of 3 and global approach are used to symbolize the sequences. The forward and reverse symbol sequences are taken as the inputs of transfer entropy. Scale factor intervals of permutation and global way are (37, 57) and (65, 85) where the two kinds of EEG have satisfied entropy distinctions. When scale factor is 67, transfer entropy of the healthy and epileptic subjects of permutation, 0.1137 and 0.1028, have biggest difference. And the corresponding values of the global symbolization is 0.0641 and 0.0601 which lies in the scale factor of 165. Research results show that permutation which takes contribution of local information has better distinction and is more effectively applied to our multi-scale transfer entropy analysis of EEG.

  7. Amplitude-aware permutation entropy: Illustration in spike detection and signal segmentation.

    Science.gov (United States)

    Azami, Hamed; Escudero, Javier

    2016-05-01

    Signal segmentation and spike detection are two important biomedical signal processing applications. Often, non-stationary signals must be segmented into piece-wise stationary epochs or spikes need to be found among a background of noise before being further analyzed. Permutation entropy (PE) has been proposed to evaluate the irregularity of a time series. PE is conceptually simple, structurally robust to artifacts, and computationally fast. It has been extensively used in many applications, but it has two key shortcomings. First, when a signal is symbolized using the Bandt-Pompe procedure, only the order of the amplitude values is considered and information regarding the amplitudes is discarded. Second, in the PE, the effect of equal amplitude values in each embedded vector is not addressed. To address these issues, we propose a new entropy measure based on PE: the amplitude-aware permutation entropy (AAPE). AAPE is sensitive to the changes in the amplitude, in addition to the frequency, of the signals thanks to it being more flexible than the classical PE in the quantification of the signal motifs. To demonstrate how the AAPE method can enhance the quality of the signal segmentation and spike detection, a set of synthetic and realistic synthetic neuronal signals, electroencephalograms and neuronal data are processed. We compare the performance of AAPE in these problems against state-of-the-art approaches and evaluate the significance of the differences with a repeated ANOVA with post hoc Tukey's test. In signal segmentation, the accuracy of AAPE-based method is higher than conventional segmentation methods. AAPE also leads to more robust results in the presence of noise. The spike detection results show that AAPE can detect spikes well, even when presented with single-sample spikes, unlike PE. For multi-sample spikes, the changes in AAPE are larger than in PE. We introduce a new entropy metric, AAPE, that enables us to consider amplitude information in the

  8. Secondary structural entropy in RNA switch (Riboswitch) identification.

    Science.gov (United States)

    Manzourolajdad, Amirhossein; Arnold, Jonathan

    2015-04-28

    RNA regulatory elements play a significant role in gene regulation. Riboswitches, a widespread group of regulatory RNAs, are vital components of many bacterial genomes. These regulatory elements generally function by forming a ligand-induced alternative fold that controls access to ribosome binding sites or other regulatory sites in RNA. Riboswitch-mediated mechanisms are ubiquitous across bacterial genomes. A typical class of riboswitch has its own unique structural and biological complexity, making de novo riboswitch identification a formidable task. Traditionally, riboswitches have been identified through comparative genomics based on sequence and structural homology. The limitations of structural-homology-based approaches, coupled with the assumption that there is a great diversity of undiscovered riboswitches, suggests the need for alternative methods for riboswitch identification, possibly based on features intrinsic to their structure. As of yet, no such reliable method has been proposed. We used structural entropy of riboswitch sequences as a measure of their secondary structural dynamics. Entropy values of a diverse set of riboswitches were compared to that of their mutants, their dinucleotide shuffles, and their reverse complement sequences under different stochastic context-free grammar folding models. Significance of our results was evaluated by comparison to other approaches, such as the base-pairing entropy and energy landscapes dynamics. Classifiers based on structural entropy optimized via sequence and structural features were devised as riboswitch identifiers and tested on Bacillus subtilis, Escherichia coli, and Synechococcus elongatus as an exploration of structural entropy based approaches. The unusually long untranslated region of the cotH in Bacillus subtilis, as well as upstream regions of certain genes, such as the sucC genes were associated with significant structural entropy values in genome-wide examinations. Various tests show that there

  9. Low-algorithmic-complexity entropy-deceiving graphs

    KAUST Repository

    Zenil, Hector

    2017-07-08

    In estimating the complexity of objects, in particular, of graphs, it is common practice to rely on graphand information-theoretic measures. Here, using integer sequences with properties such as Borel normality, we explain how these measures are not independent of the way in which an object, such as a graph, can be described or observed. From observations that can reconstruct the same graph and are therefore essentially translations of the same description, we see that when applying a computable measure such as the Shannon entropy, not only is it necessary to preselect a feature of interest where there is one, and to make an arbitrary selection where there is not, but also more general properties, such as the causal likelihood of a graph as a measure (opposed to randomness), can be largely misrepresented by computable measures such as the entropy and entropy rate. We introduce recursive and nonrecursive (uncomputable) graphs and graph constructions based on these integer sequences, whose different lossless descriptions have disparate entropy values, thereby enabling the study and exploration of a measure\\'s range of applications and demonstrating the weaknesses of computable measures of complexity.

  10. Low-algorithmic-complexity entropy-deceiving graphs

    KAUST Repository

    Zenil, Hector; Kiani, Narsis A.; Tegner, Jesper

    2017-01-01

    In estimating the complexity of objects, in particular, of graphs, it is common practice to rely on graphand information-theoretic measures. Here, using integer sequences with properties such as Borel normality, we explain how these measures are not independent of the way in which an object, such as a graph, can be described or observed. From observations that can reconstruct the same graph and are therefore essentially translations of the same description, we see that when applying a computable measure such as the Shannon entropy, not only is it necessary to preselect a feature of interest where there is one, and to make an arbitrary selection where there is not, but also more general properties, such as the causal likelihood of a graph as a measure (opposed to randomness), can be largely misrepresented by computable measures such as the entropy and entropy rate. We introduce recursive and nonrecursive (uncomputable) graphs and graph constructions based on these integer sequences, whose different lossless descriptions have disparate entropy values, thereby enabling the study and exploration of a measure's range of applications and demonstrating the weaknesses of computable measures of complexity.

  11. Entropy? Honest!

    Directory of Open Access Journals (Sweden)

    Tommaso Toffoli

    2016-06-01

    Full Text Available Here we deconstruct, and then in a reasoned way reconstruct, the concept of “entropy of a system”, paying particular attention to where the randomness may be coming from. We start with the core concept of entropy as a count associated with a description; this count (traditionally expressed in logarithmic form for a number of good reasons is in essence the number of possibilities—specific instances or “scenarios”—that match that description. Very natural (and virtually inescapable generalizations of the idea of description are the probability distribution and its quantum mechanical counterpart, the density operator. We track the process of dynamically updating entropy as a system evolves. Three factors may cause entropy to change: (1 the system’s internal dynamics; (2 unsolicited external influences on it; and (3 the approximations one has to make when one tries to predict the system’s future state. The latter task is usually hampered by hard-to-quantify aspects of the original description, limited data storage and processing resource, and possibly algorithmic inadequacy. Factors 2 and 3 introduce randomness—often huge amounts of it—into one’s predictions and accordingly degrade them. When forecasting, as long as the entropy bookkeping is conducted in an honest fashion, this degradation will always lead to an entropy increase. To clarify the above point we introduce the notion of honest entropy, which coalesces much of what is of course already done, often tacitly, in responsible entropy-bookkeping practice. This notion—we believe—will help to fill an expressivity gap in scientific discourse. With its help, we shall prove that any dynamical system—not just our physical universe—strictly obeys Clausius’s original formulation of the second law of thermodynamics if and only if it is invertible. Thus this law is a tautological property of invertible systems!

  12. Infinite Shannon entropy

    International Nuclear Information System (INIS)

    Baccetti, Valentina; Visser, Matt

    2013-01-01

    Even if a probability distribution is properly normalizable, its associated Shannon (or von Neumann) entropy can easily be infinite. We carefully analyze conditions under which this phenomenon can occur. Roughly speaking, this happens when arbitrarily small amounts of probability are dispersed into an infinite number of states; we shall quantify this observation and make it precise. We develop several particularly simple, elementary, and useful bounds, and also provide some asymptotic estimates, leading to necessary and sufficient conditions for the occurrence of infinite Shannon entropy. We go to some effort to keep technical computations as simple and conceptually clear as possible. In particular, we shall see that large entropies cannot be localized in state space; large entropies can only be supported on an exponentially large number of states. We are for the time being interested in single-channel Shannon entropy in the information theoretic sense, not entropy in a stochastic field theory or quantum field theory defined over some configuration space, on the grounds that this simple problem is a necessary precursor to understanding infinite entropy in a field theoretic context. (paper)

  13. Entropy of balance - some recent results

    Directory of Open Access Journals (Sweden)

    Laxåback Gerd

    2010-07-01

    Full Text Available Abstract Background Entropy when applied to biological signals is expected to reflect the state of the biological system. However the physiological interpretation of the entropy is not always straightforward. When should high entropy be interpreted as a healthy sign, and when as marker of deteriorating health? We address this question for the particular case of human standing balance and the Center of Pressure data. Methods We have measured and analyzed balance data of 136 participants (young, n = 45; elderly, n = 91 comprising in all 1085 trials, and calculated the Sample Entropy (SampEn for medio-lateral (M/L and anterior-posterior (A/P Center of Pressure (COP together with the Hurst self-similariy (ss exponent α using Detrended Fluctuation Analysis (DFA. The COP was measured with a force plate in eight 30 seconds trials with eyes closed, eyes open, foam, self-perturbation and nudge conditions. Results 1 There is a significant difference in SampEn for the A/P-direction between the elderly and the younger groups Old > young. 2 For the elderly we have in general A/P > M/L. 3 For the younger group there was no significant A/P-M/L difference with the exception for the nudge trials where we had the reverse situation, A/P Eyes Open. 5 In case of the Hurst ss-exponent we have for the elderly, M/L > A/P. Conclusions These results seem to be require some modifications of the more or less established attention-constraint interpretation of entropy. This holds that higher entropy correlates with a more automatic and a less constrained mode of balance control, and that a higher entropy reflects, in this sense, a more efficient balancing.

  14. Relation Entropy and Transferable Entropy Think of Aggregation on Group Decision Making

    Institute of Scientific and Technical Information of China (English)

    CHENG Qi-yue; QIU Wan-hua; LIU Xiao-feng

    2002-01-01

    In this paper, aggregation question based on group decision making and a single decision making is studied. The theory of entropy is applied to the sets pair analysis. The system of relation entropy and the transferable entropy notion are put. The character is studied. An potential by the relation entropy and transferable entropy are defined. It is the consistency measure on the group between a single decision making. We gained a new aggregation effective definition on the group misjudge.

  15. Probing renormalization group flows using entanglement entropy

    International Nuclear Information System (INIS)

    Liu, Hong; Mezei, Márk

    2014-01-01

    In this paper we continue the study of renormalized entanglement entropy introduced in http://dx.doi.org/10.1007/JHEP04(2013)162. In particular, we investigate its behavior near an IR fixed point using holographic duality. We develop techniques which, for any static holographic geometry, enable us to extract the large radius expansion of the entanglement entropy for a spherical region. We show that for both a sphere and a strip, the approach of the renormalized entanglement entropy to the IR fixed point value contains a contribution that depends on the whole RG trajectory. Such a contribution is dominant, when the leading irrelevant operator is sufficiently irrelevant. For a spherical region such terms can be anticipated from a geometric expansion, while for a strip whether these terms have geometric origins remains to be seen

  16. Entropy-Based Video Steganalysis of Motion Vectors

    Directory of Open Access Journals (Sweden)

    Elaheh Sadat Sadat

    2018-04-01

    Full Text Available In this paper, a new method is proposed for motion vector steganalysis using the entropy value and its combination with the features of the optimized motion vector. In this method, the entropy of blocks is calculated to determine their texture and the precision of their motion vectors. Then, by using a fuzzy cluster, the blocks are clustered into the blocks with high and low texture, while the membership function of each block to a high texture class indicates the texture of that block. These membership functions are used to weight the effective features that are extracted by reconstructing the motion estimation equations. Characteristics of the results indicate that the use of entropy and the irregularity of each block increases the precision of the final video classification into cover and stego classes.

  17. Entropies from Markov Models as Complexity Measures of Embedded Attractors

    Directory of Open Access Journals (Sweden)

    Julián D. Arias-Londoño

    2015-06-01

    Full Text Available This paper addresses the problem of measuring complexity from embedded attractors as a way to characterize changes in the dynamical behavior of different types of systems with a quasi-periodic behavior by observing their outputs. With the aim of measuring the stability of the trajectories of the attractor along time, this paper proposes three new estimations of entropy that are derived from a Markov model of the embedded attractor. The proposed estimators are compared with traditional nonparametric entropy measures, such as approximate entropy, sample entropy and fuzzy entropy, which only take into account the spatial dimension of the trajectory. The method proposes the use of an unsupervised algorithm to find the principal curve, which is considered as the “profile trajectory”, that will serve to adjust the Markov model. The new entropy measures are evaluated using three synthetic experiments and three datasets of physiological signals. In terms of consistency and discrimination capabilities, the results show that the proposed measures perform better than the other entropy measures used for comparison purposes.

  18. Entropy in an expanding universe

    International Nuclear Information System (INIS)

    Frautschi, S.

    1982-01-01

    The question of how the observed evolution of organized structures from initial chaos in the expanding universe can be reconciled with the laws of statistical mechanics is studied, with emphasis on effects of the expansion and gravity. Some major sources of entropy increase are listed. An expanding causal region is defined in which the entropy, though increasing, tends to fall further and further behind its maximum possible value, thus allowing for the development of order. The related questions of whether entropy will continue increasing without limit in the future, and whether such increase in the form of Hawking radiation or radiation from positronium might enable life to maintain itself permanently, are considered. Attempts to find a scheme for preserving life based on solid structures fail because events such as quantum tunneling recurrently disorganize matter on a very long but fixed time scale, whereas all energy sources slow down progressively in an expanding universe. However, there remains hope that other modes of life capable of maintaining themselves permanently can be found

  19. On the Possibility of Calculating Entropy, Free Energy, and Enthalpy of Vitreous Substances

    Directory of Open Access Journals (Sweden)

    Sergei V. Nemilov

    2018-03-01

    Full Text Available A critical analysis for the arguments in support of, and against, the traditional approach to thermodynamics of vitreous state is provided. In this approach one presumes that there is a continuous variation of the entropy in the glass-liquid transition temperature range, or a “continuous entropy approach” towards 0 K which produces a positive value of the entropy at T → 0 K. I find that arguments given against this traditional approach use a different understanding of the thermodynamics of glass transition on cooling a liquid, because it suggests a discontinuity or “entropy loss approach” in the variation of entropy in the glass-liquid transition range. That is based on: (1 an unjustifiable use of the classical Boltzmann statistics for interpreting the value of entropy at absolute zero; (2 the rejection of thermodynamic analysis of systems with broken ergodicity, even though the possibility of analogous analysis was proposed already by Gibbs; (3 the possibility of a finite change in entropy of a system without absorption or release of heat; and, (4 describing the thermodynamic properties of glasses in the framework of functions, instead of functionals. The last one is necessary because for glasses the entropy and enthalpy are not functions of the state, but functionals, as defined by Gibbs’ in his classification.

  20. On determining absolute entropy without quantum theory or the third law of thermodynamics

    Science.gov (United States)

    Steane, Andrew M.

    2016-04-01

    We employ classical thermodynamics to gain information about absolute entropy, without recourse to statistical methods, quantum mechanics or the third law of thermodynamics. The Gibbs-Duhem equation yields various simple methods to determine the absolute entropy of a fluid. We also study the entropy of an ideal gas and the ionization of a plasma in thermal equilibrium. A single measurement of the degree of ionization can be used to determine an unknown constant in the entropy equation, and thus determine the absolute entropy of a gas. It follows from all these examples that the value of entropy at absolute zero temperature does not need to be assigned by postulate, but can be deduced empirically.

  1. Scaling of the magnetic entropy change of Fe3−xMnxSi

    International Nuclear Information System (INIS)

    Said, M.R.; Hamam, Y.A.; Abu-Aljarayesh, I.

    2014-01-01

    The magnetic entropy change of Fe 3−x Mn x Si (for x=1.15, 1.3 and 1.5) has been extracted from isothermal magnetization measurements near the Curie temperature. We used the scaling hypotheses of the thermodynamic potentials to scale the magnetic entropy change to a single universal curve for each sample. The effect of the exchange field and the Curie temperature on the maximum entropy change is discussed. - Highlights: • The maximum of the magnetic entropy change occurs at temperatures T>T C . • The exchange field enhances the magnetic entropy change. • The magnetic entropy change at T C is inversely proportional to T C . • Scaling hypothesis is used to scale the magnetic entropy change

  2. Application of different entropy formalisms in a neural network for novel word learning

    Science.gov (United States)

    Khordad, R.; Rastegar Sedehi, H. R.

    2015-12-01

    In this paper novel word learning in adults is studied. For this goal, four entropy formalisms are employed to include some degree of non-locality in a neural network. The entropy formalisms are Tsallis, Landsberg-Vedral, Kaniadakis, and Abe entropies. First, we have analytically obtained non-extensive cost functions for the all entropies. Then, we have used a generalization of the gradient descent dynamics as a learning rule in a simple perceptron. The Langevin equations are numerically solved and the error function (learning curve) is obtained versus time for different values of the parameters. The influence of index q and number of neuron N on learning is investigated for the all entropies. It is found that learning is a decreasing function of time for the all entropies. The rate of learning for the Landsberg-Vedral entropy is slower than other entropies. The variation of learning with time for the Landsberg-Vedral entropy is not appreciable when the number of neurons increases. It is said that entropy formalism can be used as a means for studying the learning.

  3. Quantum topological entropy: First steps of a 'pedestrian' approach

    International Nuclear Information System (INIS)

    Hudetz, T.

    1991-01-01

    We introduce a notion of topological entropy for automorphisms of arbitrary (noncommutative, but unital) nuclear C * -algebras A, generalizing the 'classical' topological entropy for a homeomorphism T: X → X of an arbitrary (possibly connected) compact Hausdorff space X, where the generalization is of course understood in the sense that the latter topological dynamical system (with Z-action) is equivalently viewed as the C * -dynamical system given by the T-induced automorphism of the Abelian C * -algebra A = C(X) of (complex-valued) continuous functions on X. As a simple but basic example, we calculate our quantum topological entropy for shift automorphisms on AF algebras A associated with topological Markov chains (i.e. 'quantum topological' Markov chains); and also a real physical interpretation of our simple 'quantum probabilistic' entropy functionals is discussed (already in the introduction, anticipating the later definitions and results). (author)

  4. The concept of entropy. Relation between action and entropy

    Directory of Open Access Journals (Sweden)

    J.-P.Badiali

    2005-01-01

    Full Text Available The Boltzmann expression for entropy represents the traditional link between thermodynamics and statistical mechanics. New theoretical developments like the Unruh effect or the black hole theory suggest a new definition of entropy. In this paper we consider the thermodynamics of black holes as seriously founded and we try to see what we can learn from it in the case of ordinary systems for which a pre-relativistic description is sufficient. We introduce a space-time model and a new definition of entropy considering the thermal equilibrium from a dynamic point of view. Then we show that for black hole and ordinary systems we have the same relation relating a change of entropy to a change of action.

  5. Epoch-based Entropy for Early Screening of Alzheimer's Disease.

    Science.gov (United States)

    Houmani, N; Dreyfus, G; Vialatte, F B

    2015-12-01

    In this paper, we introduce a novel entropy measure, termed epoch-based entropy. This measure quantifies disorder of EEG signals both at the time level and spatial level, using local density estimation by a Hidden Markov Model on inter-channel stationary epochs. The investigation is led on a multi-centric EEG database recorded from patients at an early stage of Alzheimer's disease (AD) and age-matched healthy subjects. We investigate the classification performances of this method, its robustness to noise, and its sensitivity to sampling frequency and to variations of hyperparameters. The measure is compared to two alternative complexity measures, Shannon's entropy and correlation dimension. The classification accuracies for the discrimination of AD patients from healthy subjects were estimated using a linear classifier designed on a development dataset, and subsequently tested on an independent test set. Epoch-based entropy reached a classification accuracy of 83% on the test dataset (specificity = 83.3%, sensitivity = 82.3%), outperforming the two other complexity measures. Furthermore, it was shown to be more stable to hyperparameter variations, and less sensitive to noise and sampling frequency disturbances than the other two complexity measures.

  6. Nonequilibrium entropies

    International Nuclear Information System (INIS)

    Maes, Christian

    2012-01-01

    In contrast to the quite unique entropy concept useful for systems in (local) thermodynamic equilibrium, there is a variety of quite distinct nonequilibrium entropies, reflecting different physical points. We disentangle these entropies as they relate to heat, fluctuations, response, time asymmetry, variational principles, monotonicity, volume contraction or statistical forces. However, not all of those extensions yield state quantities as understood thermodynamically. At the end we sketch how aspects of dynamical activity can take over for obtaining an extended Clausius relation.

  7. Entropies of the Chinese Land Use/Cover Change from 1990 to 2010 at a County Level

    Directory of Open Access Journals (Sweden)

    Yong Fan

    2017-01-01

    Full Text Available Land Use/Cover Change (LUCC has gradually became an important direction in the research of global changes. LUCC is a complex system, and entropy is a measure of the degree of disorder of a system. According to land use information entropy, this paper analyzes changes in land use from the perspective of the system. Research on the entropy of LUCC structures has a certain “guiding role” for the optimization and adjustment of regional land use structure. Based on the five periods of LUCC data from the year of 1990 to 2010, this paper focuses on analyzing three types of LUCC entropies among counties in China—namely, Shannon, Renyi, and Tsallis entropies. The findings suggest that: (1 Shannon entropy can reflect the volatility of the LUCC, that Renyi and Tsallis entropies also have this function when their parameter has a positive value, and that Renyi and Tsallis entropies can reflect the extreme case of the LUCC when their parameter has a negative value.; (2 The entropy of China’s LUCC is uneven in time and space distributions, and that there is a large trend during 1990–2010, the central region generally has high entropy in space.

  8. Entropy-Based Clutter Rejection for Intrawall Diagnostics

    Directory of Open Access Journals (Sweden)

    Raffaele Solimene

    2012-01-01

    Full Text Available The intrawall diagnostic problem of detecting localized inhomogeneities possibly present within the wall is addressed. As well known, clutter arising from masonry structure can impair detection of embedded scatterers due to high amplitude reflections that wall front face introduces. Moreover, internal multiple reflections also can make it difficult ground penetrating radar images (radargramms interpretation. To counteract these drawbacks, a clutter rejection method, properly tailored on the wall features, is mandatory. To this end, here we employ a windowing strategy based on entropy measures of temporal traces “similarity.” Accordingly, instants of time for which radargramms exhibit entropy values greater than a prescribed threshold are “silenced.” Numerical results are presented in order to show the effectiveness of the entropy-based clutter rejection algorithm. Moreover, a comparison with the standard average trace subtraction is also included.

  9. Ratio of critical quantities related to Hawking temperature–entanglement entropy criticality

    Directory of Open Access Journals (Sweden)

    Jie-Xiong Mo

    2017-10-01

    Full Text Available We revisit the Hawking temperature–entanglement entropy criticality of the d-dimensional charged AdS black hole with our attention concentrated on the ratio TcδSEcQc. Comparing the results of this paper with those of the ratio TcScQc, one can find both the similarities and differences. These two ratios are independent of the characteristic length scale l and dependent on the dimension d. These similarities further enhance the relation between the entanglement entropy and the Bekenstein–Hawking entropy. However, the ratio TcδSEcQc also relies on the size of the spherical entangling region. Moreover, these two ratios take different values even under the same choices of parameters. The differences between these two ratios can be attributed to the peculiar property of the entanglement entropy since the research in this paper is far from the regime where the behavior of the entanglement entropy is dominated by the thermal entropy.

  10. The Role of Configurational Entropy in Amorphous Systems

    Directory of Open Access Journals (Sweden)

    Kirsten A. Graeser

    2010-05-01

    Full Text Available Configurational entropy is an important parameter in amorphous systems. It is involved in the thermodynamic considerations, plays an important role in the molecular mobility calculations through its appearance in the Adam-Gibbs equation and provides information on the solubility increase of an amorphous form compared to its crystalline counterpart. This paper presents a calorimetric method which enables the scientist to quickly determine the values for the configurational entropy at any temperature and obtain the maximum of information from these measurements.

  11. Using heteroclinic orbits to quantify topological entropy in fluid flows

    International Nuclear Information System (INIS)

    Sattari, Sulimon; Chen, Qianting; Mitchell, Kevin A.

    2016-01-01

    Topological approaches to mixing are important tools to understand chaotic fluid flows, ranging from oceanic transport to the design of micro-mixers. Typically, topological entropy, the exponential growth rate of material lines, is used to quantify topological mixing. Computing topological entropy from the direct stretching rate is computationally expensive and sheds little light on the source of the mixing. Earlier approaches emphasized that topological entropy could be viewed as generated by the braiding of virtual, or “ghost,” rods stirring the fluid in a periodic manner. Here, we demonstrate that topological entropy can also be viewed as generated by the braiding of ghost rods following heteroclinic orbits instead. We use the machinery of homotopic lobe dynamics, which extracts symbolic dynamics from finite-length pieces of stable and unstable manifolds attached to fixed points of the fluid flow. As an example, we focus on the topological entropy of a bounded, chaotic, two-dimensional, double-vortex cavity flow. Over a certain parameter range, the topological entropy is primarily due to the braiding of a period-three orbit. However, this orbit does not explain the topological entropy for parameter values where it does not exist, nor does it explain the excess of topological entropy for the entire range of its existence. We show that braiding by heteroclinic orbits provides an accurate computation of topological entropy when the period-three orbit does not exist, and that it provides an explanation for some of the excess topological entropy when the period-three orbit does exist. Furthermore, the computation of symbolic dynamics using heteroclinic orbits has been automated and can be used to compute topological entropy for a general 2D fluid flow.

  12. Computing algebraic transfer entropy and coupling directions via transcripts

    Science.gov (United States)

    Amigó, José M.; Monetti, Roberto; Graff, Beata; Graff, Grzegorz

    2016-11-01

    Most random processes studied in nonlinear time series analysis take values on sets endowed with a group structure, e.g., the real and rational numbers, and the integers. This fact allows to associate with each pair of group elements a third element, called their transcript, which is defined as the product of the second element in the pair times the first one. The transfer entropy of two such processes is called algebraic transfer entropy. It measures the information transferred between two coupled processes whose values belong to a group. In this paper, we show that, subject to one constraint, the algebraic transfer entropy matches the (in general, conditional) mutual information of certain transcripts with one variable less. This property has interesting practical applications, especially to the analysis of short time series. We also derive weak conditions for the 3-dimensional algebraic transfer entropy to yield the same coupling direction as the corresponding mutual information of transcripts. A related issue concerns the use of mutual information of transcripts to determine coupling directions in cases where the conditions just mentioned are not fulfilled. We checked the latter possibility in the lowest dimensional case with numerical simulations and cardiovascular data, and obtained positive results.

  13. Repetitive transient extraction for machinery fault diagnosis using multiscale fractional order entropy infogram

    Science.gov (United States)

    Xu, Xuefang; Qiao, Zijian; Lei, Yaguo

    2018-03-01

    The presence of repetitive transients in vibration signals is a typical symptom of local faults of rotating machinery. Infogram was developed to extract the repetitive transients from vibration signals based on Shannon entropy. Unfortunately, the Shannon entropy is maximized for random processes and unable to quantify the repetitive transients buried in heavy random noise. In addition, the vibration signals always contain multiple intrinsic oscillatory modes due to interaction and coupling effects between machine components. Under this circumstance, high values of Shannon entropy appear in several frequency bands or high value of Shannon entropy doesn't appear in the optimal frequency band, and the infogram becomes difficult to interpret. Thus, it also becomes difficult to select the optimal frequency band for extracting the repetitive transients from the whole frequency bands. To solve these problems, multiscale fractional order entropy (MSFE) infogram is proposed in this paper. With the help of MSFE infogram, the complexity and nonlinear signatures of the vibration signals can be evaluated by quantifying spectral entropy over a range of scales in fractional domain. Moreover, the similarity tolerance of MSFE infogram is helpful for assessing the regularity of signals. A simulation and two experiments concerning a locomotive bearing and a wind turbine gear are used to validate the MSFE infogram. The results demonstrate that the MSFE infogram is more robust to the heavy noise than infogram and the high value is able to only appear in the optimal frequency band for the repetitive transient extraction.

  14. The holographic entropy cone

    Energy Technology Data Exchange (ETDEWEB)

    Bao, Ning [Institute for Quantum Information and Matter, California Institute of Technology,Pasadena, CA 91125 (United States); Walter Burke Institute for Theoretical Physics, California Institute of Technology,452-48, Pasadena, CA 91125 (United States); Nezami, Sepehr [Stanford Institute for Theoretical Physics, Stanford University,Stanford, CA 94305 (United States); Ooguri, Hirosi [Walter Burke Institute for Theoretical Physics, California Institute of Technology,452-48, Pasadena, CA 91125 (United States); Kavli Institute for the Physics and Mathematics of the Universe, University of Tokyo,Kashiwa 277-8583 (Japan); Stoica, Bogdan [Walter Burke Institute for Theoretical Physics, California Institute of Technology,452-48, Pasadena, CA 91125 (United States); Sully, James [Theory Group, SLAC National Accelerator Laboratory, Stanford University,Menlo Park, CA 94025 (United States); Walter, Michael [Stanford Institute for Theoretical Physics, Stanford University,Stanford, CA 94305 (United States)

    2015-09-21

    We initiate a systematic enumeration and classification of entropy inequalities satisfied by the Ryu-Takayanagi formula for conformal field theory states with smooth holographic dual geometries. For 2, 3, and 4 regions, we prove that the strong subadditivity and the monogamy of mutual information give the complete set of inequalities. This is in contrast to the situation for generic quantum systems, where a complete set of entropy inequalities is not known for 4 or more regions. We also find an infinite new family of inequalities applicable to 5 or more regions. The set of all holographic entropy inequalities bounds the phase space of Ryu-Takayanagi entropies, defining the holographic entropy cone. We characterize this entropy cone by reducing geometries to minimal graph models that encode the possible cutting and gluing relations of minimal surfaces. We find that, for a fixed number of regions, there are only finitely many independent entropy inequalities. To establish new holographic entropy inequalities, we introduce a combinatorial proof technique that may also be of independent interest in Riemannian geometry and graph theory.

  15. The holographic entropy cone

    International Nuclear Information System (INIS)

    Bao, Ning; Nezami, Sepehr; Ooguri, Hirosi; Stoica, Bogdan; Sully, James; Walter, Michael

    2015-01-01

    We initiate a systematic enumeration and classification of entropy inequalities satisfied by the Ryu-Takayanagi formula for conformal field theory states with smooth holographic dual geometries. For 2, 3, and 4 regions, we prove that the strong subadditivity and the monogamy of mutual information give the complete set of inequalities. This is in contrast to the situation for generic quantum systems, where a complete set of entropy inequalities is not known for 4 or more regions. We also find an infinite new family of inequalities applicable to 5 or more regions. The set of all holographic entropy inequalities bounds the phase space of Ryu-Takayanagi entropies, defining the holographic entropy cone. We characterize this entropy cone by reducing geometries to minimal graph models that encode the possible cutting and gluing relations of minimal surfaces. We find that, for a fixed number of regions, there are only finitely many independent entropy inequalities. To establish new holographic entropy inequalities, we introduce a combinatorial proof technique that may also be of independent interest in Riemannian geometry and graph theory.

  16. On the determination of the magnetic entropy change in materials with first-order transitions

    International Nuclear Information System (INIS)

    Caron, L.; Ou, Z.Q.; Nguyen, T.T.; Cam Thanh, D.T.; Tegus, O.; Brueck, E.

    2009-01-01

    An accurate method to determine the magnetic entropy change in materials with hysteretic first-order transitions is presented, which is needed to estimate their potential for applications. We have investigated the effect of the maximal entropy change derived from magnetization measurements performed in different measurement processes. The results show that the isothermal entropy change can be derived from the Maxwell relations even for samples with large thermal hysteresis. In the temperature region with hysteresis, overestimating the entropy change can be avoided by measuring the isothermal magnetization of the sample after it is cooled from the paramagnetic state to the measurement temperature. In this way the so-called peak effect is not observed as shown here for a few compounds.

  17. Giant onsite electronic entropy enhances the performance of ceria for water splitting.

    Science.gov (United States)

    Naghavi, S Shahab; Emery, Antoine A; Hansen, Heine A; Zhou, Fei; Ozolins, Vidvuds; Wolverton, Chris

    2017-08-18

    Previous studies have shown that a large solid-state entropy of reduction increases the thermodynamic efficiency of metal oxides, such as ceria, for two-step thermochemical water splitting cycles. In this context, the configurational entropy arising from oxygen off-stoichiometry in the oxide, has been the focus of most previous work. Here we report a different source of entropy, the onsite electronic configurational entropy, arising from coupling between orbital and spin angular momenta in lanthanide f orbitals. We find that onsite electronic configurational entropy is sizable in all lanthanides, and reaches a maximum value of ≈4.7 k B per oxygen vacancy for Ce 4+ /Ce 3+ reduction. This unique and large positive entropy source in ceria explains its excellent performance for high-temperature catalytic redox reactions such as water splitting. Our calculations also show that terbium dioxide has a high electronic entropy and thus could also be a potential candidate for solar thermochemical reactions.Solid-state entropy of reduction increases the thermodynamic efficiency of ceria for two-step thermochemical water splitting. Here, the authors report a large and different source of entropy, the onsite electronic configurational entropy arising from coupling between orbital and spin angular momenta in f orbitals.

  18. Handling mixed-state magnetization data for magnetocaloric studies-a solution to achieve realistic entropy behaviour

    International Nuclear Information System (INIS)

    Das, S; Amaral, J S; Amaral, V S

    2010-01-01

    We present an approach to extract a realistic magnetic entropy value from non-equilibrium magnetization data near the transition temperature of a typical first-order system with a mixed-phase state, influenced by the phase transformation, which is responsible for large values reported, even higher than the theoretical limit. The effect of the mixed-phase state is modelled in the magnetization and its non-physical contribution is removed to obtain the magnetic entropy in accordance with calorimetric experiment and theoretical simulation. This approach gives a reliable estimation of the magnetic entropy value incorporating experimental non-equilibrium magnetization data and correcting the use of Maxwell's relation. (fast track communication)

  19. A new entropy function for feature extraction with the refined scores as a classifier for the unconstrained ear verification

    Directory of Open Access Journals (Sweden)

    Mamta Bansal

    2017-05-01

    Full Text Available For high end security like surveillance there is a need for a robust system capable of verifying a person under the unconstrained conditions. This paper presents the ear based verification system using a new entropy function that changes not only the information gain function but also the information source values. This entropy function displays peculiar characteristics such as splitting into two modes. Two types of entropy features: Effective Gaussian Information source value and Effective Exponential Information source value functions are derived using the entropy function. To classify the entropy features we have devised refined scores (RS method that refines the scores generated using the Euclidean distance. The experimental results vindicate the superiority of proposed method over literature.

  20. Monte Carlo comparison of four normality tests using different entropy estimates

    Czech Academy of Sciences Publication Activity Database

    Esteban, M. D.; Castellanos, M. E.; Morales, D.; Vajda, Igor

    2001-01-01

    Roč. 30, č. 4 (2001), s. 761-785 ISSN 0361-0918 R&D Projects: GA ČR GA102/99/1137 Institutional research plan: CEZ:AV0Z1075907 Keywords : test of normality * entropy test and entropy estimator * table of critical values Subject RIV: BD - Theory of Information Impact factor: 0.153, year: 2001

  1. Entropy fluxes, endoreversibility, and solar energy conversion

    Science.gov (United States)

    de Vos, A.; Landsberg, P. T.; Baruch, P.; Parrott, J. E.

    1993-09-01

    A formalism illustrating the conversion of radiation energy into work can be obtained in terms of energy and entropy fluxes. Whereas the Landsberg equality was derived for photothermal conversion with zero bandgap, a generalized inequality for photothermal/photovoltaic conversion with a single, but arbitrary, bandgap was deduced. This result was derived for a direct energy and entropy balance. The formalism of endoreversible dynamics was adopted in order to show the correlation with the latter approach. It was a surprising fact that the generalized Landsberg inequality was derived by optimizing some quantity W(sup *), which obtains it maximum value under short-circuit condition.

  2. Modeling multisite streamflow dependence with maximum entropy copula

    Science.gov (United States)

    Hao, Z.; Singh, V. P.

    2013-10-01

    Synthetic streamflows at different sites in a river basin are needed for planning, operation, and management of water resources projects. Modeling the temporal and spatial dependence structure of monthly streamflow at different sites is generally required. In this study, the maximum entropy copula method is proposed for multisite monthly streamflow simulation, in which the temporal and spatial dependence structure is imposed as constraints to derive the maximum entropy copula. The monthly streamflows at different sites are then generated by sampling from the conditional distribution. A case study for the generation of monthly streamflow at three sites in the Colorado River basin illustrates the application of the proposed method. Simulated streamflow from the maximum entropy copula is in satisfactory agreement with observed streamflow.

  3. On the Conditional Rényi Entropy

    NARCIS (Netherlands)

    S. Fehr (Serge); S. Berens (Stefan)

    2014-01-01

    htmlabstractThe Rényi entropy of general order unifies the well-known Shannon entropy with several other entropy notions, like the min-entropy or the collision entropy. In contrast to the Shannon entropy, there seems to be no commonly accepted definition for the conditional Rényi entropy: several

  4. Tsallis-like entropies in quantum scattering

    International Nuclear Information System (INIS)

    Ion, D.B.; Ion, M.L.

    1998-01-01

    In this work, the following entropies in quantum scattering are defined: the informational angular entropy, S θ ; Tsallis-like angular entropies, S q (θ); the angular momentum entropy, S L ; the Tsallis-like angular momentum entropies, S q (L); the angle-angular momentum entropy, S θL . These entropies are defined as natural measures of the uncertainties corresponding to the distribution probabilities. If we are interested in obtaining a measure of uncertainty of the simultaneous realization of the probability distributions, than, we have to calculate the entropy corresponding to these distributions. The expression of angle-angular momentum entropy is given. The relation between the Tsallis entropies and the angle-angular momentum entropy is derived

  5. Entropy of Masseter Muscle Pain Sensitivity: A New Technique for Pain Assessment.

    Science.gov (United States)

    Castrillon, Eduardo E; Exposto, Fernando G; Sato, Hitoshi; Tanosoto, Tomohiro; Arima, Taro; Baad-Hansen, Lene; Svensson, Peter

    2017-01-01

    To test whether manipulation of mechanical pain sensitivity (MPS) of the masseter muscle is reflected in quantitative measures of entropy. In a randomized, single-blinded, placebo-controlled design, 20 healthy volunteers had glutamate, lidocaine, and isotonic saline injected into the masseter muscle. Self-assessed pain intensity on a numeric rating scale (NRS) was evaluated up to 10 minutes following the injection, and MPS was evaluated after application (at 5 minutes and 30 minutes) of three different forces (0.5 kg, 1 kg, and 2 kg) to 15 different sites of the masseter muscle. Finally, the entropy and center of gravity (COG) of the pain sensitivity scores were calculated. Analysis of variance was used to test differences in means of tested outcomes and Tukey post hoc tests were used to adjust for multiple comparisons. The main findings were: (1) Compared with both lidocaine and isotonic saline, glutamate injections caused an increase in peak, duration, and area under the NRS pain curve (P entropy values (P entropy values when assessed with 0.5 kg and 1.0 kg but not with 2.0 kg of pressure; and (4) COG coordinates revealed differences between the x coordinates for time (P entropy measures. Entropy allows quantification of the diversity of MPS, which may be important in clinical assessment of pain states such as myofascial temporomandibular disorders.

  6. Dynamic Approximate Entropy Electroanatomic Maps Detect Rotors in a Simulated Atrial Fibrillation Model

    Science.gov (United States)

    Ugarte, Juan P.; Orozco-Duque, Andrés; Tobón, Catalina; Kremen, Vaclav; Novak, Daniel; Saiz, Javier; Oesterlein, Tobias; Schmitt, Clauss; Luik, Armin; Bustamante, John

    2014-01-01

    There is evidence that rotors could be drivers that maintain atrial fibrillation. Complex fractionated atrial electrograms have been located in rotor tip areas. However, the concept of electrogram fractionation, defined using time intervals, is still controversial as a tool for locating target sites for ablation. We hypothesize that the fractionation phenomenon is better described using non-linear dynamic measures, such as approximate entropy, and that this tool could be used for locating the rotor tip. The aim of this work has been to determine the relationship between approximate entropy and fractionated electrograms, and to develop a new tool for rotor mapping based on fractionation levels. Two episodes of chronic atrial fibrillation were simulated in a 3D human atrial model, in which rotors were observed. Dynamic approximate entropy maps were calculated using unipolar electrogram signals generated over the whole surface of the 3D atrial model. In addition, we optimized the approximate entropy calculation using two real multi-center databases of fractionated electrogram signals, labeled in 4 levels of fractionation. We found that the values of approximate entropy and the levels of fractionation are positively correlated. This allows the dynamic approximate entropy maps to localize the tips from stable and meandering rotors. Furthermore, we assessed the optimized approximate entropy using bipolar electrograms generated over a vicinity enclosing a rotor, achieving rotor detection. Our results suggest that high approximate entropy values are able to detect a high level of fractionation and to locate rotor tips in simulated atrial fibrillation episodes. We suggest that dynamic approximate entropy maps could become a tool for atrial fibrillation rotor mapping. PMID:25489858

  7. Dynamic approximate entropy electroanatomic maps detect rotors in a simulated atrial fibrillation model.

    Science.gov (United States)

    Ugarte, Juan P; Orozco-Duque, Andrés; Tobón, Catalina; Kremen, Vaclav; Novak, Daniel; Saiz, Javier; Oesterlein, Tobias; Schmitt, Clauss; Luik, Armin; Bustamante, John

    2014-01-01

    There is evidence that rotors could be drivers that maintain atrial fibrillation. Complex fractionated atrial electrograms have been located in rotor tip areas. However, the concept of electrogram fractionation, defined using time intervals, is still controversial as a tool for locating target sites for ablation. We hypothesize that the fractionation phenomenon is better described using non-linear dynamic measures, such as approximate entropy, and that this tool could be used for locating the rotor tip. The aim of this work has been to determine the relationship between approximate entropy and fractionated electrograms, and to develop a new tool for rotor mapping based on fractionation levels. Two episodes of chronic atrial fibrillation were simulated in a 3D human atrial model, in which rotors were observed. Dynamic approximate entropy maps were calculated using unipolar electrogram signals generated over the whole surface of the 3D atrial model. In addition, we optimized the approximate entropy calculation using two real multi-center databases of fractionated electrogram signals, labeled in 4 levels of fractionation. We found that the values of approximate entropy and the levels of fractionation are positively correlated. This allows the dynamic approximate entropy maps to localize the tips from stable and meandering rotors. Furthermore, we assessed the optimized approximate entropy using bipolar electrograms generated over a vicinity enclosing a rotor, achieving rotor detection. Our results suggest that high approximate entropy values are able to detect a high level of fractionation and to locate rotor tips in simulated atrial fibrillation episodes. We suggest that dynamic approximate entropy maps could become a tool for atrial fibrillation rotor mapping.

  8. Entropy for Mechanically Vibrating Systems

    Science.gov (United States)

    Tufano, Dante

    The research contained within this thesis deals with the subject of entropy as defined for and applied to mechanically vibrating systems. This work begins with an overview of entropy as it is understood in the fields of classical thermodynamics, information theory, statistical mechanics, and statistical vibroacoustics. Khinchin's definition of entropy, which is the primary definition used for the work contained in this thesis, is introduced in the context of vibroacoustic systems. The main goal of this research is to to establish a mathematical framework for the application of Khinchin's entropy in the field of statistical vibroacoustics by examining the entropy context of mechanically vibrating systems. The introduction of this thesis provides an overview of statistical energy analysis (SEA), a modeling approach to vibroacoustics that motivates this work on entropy. The objective of this thesis is given, and followed by a discussion of the intellectual merit of this work as well as a literature review of relevant material. Following the introduction, an entropy analysis of systems of coupled oscillators is performed utilizing Khinchin's definition of entropy. This analysis develops upon the mathematical theory relating to mixing entropy, which is generated by the coupling of vibroacoustic systems. The mixing entropy is shown to provide insight into the qualitative behavior of such systems. Additionally, it is shown that the entropy inequality property of Khinchin's entropy can be reduced to an equality using the mixing entropy concept. This equality can be interpreted as a facet of the second law of thermodynamics for vibroacoustic systems. Following this analysis, an investigation of continuous systems is performed using Khinchin's entropy. It is shown that entropy analyses using Khinchin's entropy are valid for continuous systems that can be decomposed into a finite number of modes. The results are shown to be analogous to those obtained for simple oscillators

  9. Gravitational Entropy and the Second Law of Thermodynamics

    Directory of Open Access Journals (Sweden)

    John W. Moffat

    2015-12-01

    Full Text Available The spontaneous violation of Lorentz and diffeomorphism invariance in a phase near the big bang lowers the entropy, allowing for an arrow of time and the second law of thermodynamics. The spontaneous symmetry breaking leads to O(3,1 → O(3 × R , where O(3 is the rotational symmetry of the Friedmann–Lemaître–Robertson–Walker spacetime. The Weyl curvature tensor Cμνρσ vanishes in the FLRW spacetime satisfying the Penrose zero Weyl curvature conjecture. The requirement of a measure of gravitational entropy is discussed. The vacuum expectation value 〈0|ψμ|0〉 ≠ 0 for a vector field ψμ acts as an order parameter and at the critical temperature Tc a phase transition occurs breaking the Lorentz symmetry spontaneously. During the ordered O(3 symmetry phase the entropy is vanishingly small and for T < Tc as the universe expands the anti-restored O(3,1 Lorentz symmetry leads to a disordered phase and a large increase in entropy creating the arrow of time.

  10. Identification of Auditory Object-Specific Attention from Single-Trial Electroencephalogram Signals via Entropy Measures and Machine Learning

    Directory of Open Access Journals (Sweden)

    Yun Lu

    2018-05-01

    Full Text Available Existing research has revealed that auditory attention can be tracked from ongoing electroencephalography (EEG signals. The aim of this novel study was to investigate the identification of peoples’ attention to a specific auditory object from single-trial EEG signals via entropy measures and machine learning. Approximate entropy (ApEn, sample entropy (SampEn, composite multiscale entropy (CmpMSE and fuzzy entropy (FuzzyEn were used to extract the informative features of EEG signals under three kinds of auditory object-specific attention (Rest, Auditory Object1 Attention (AOA1 and Auditory Object2 Attention (AOA2. The linear discriminant analysis and support vector machine (SVM, were used to construct two auditory attention classifiers. The statistical results of entropy measures indicated that there were significant differences in the values of ApEn, SampEn, CmpMSE and FuzzyEn between Rest, AOA1 and AOA2. For the SVM-based auditory attention classifier, the auditory object-specific attention of Rest, AOA1 and AOA2 could be identified from EEG signals using ApEn, SampEn, CmpMSE and FuzzyEn as features and the identification rates were significantly different from chance level. The optimal identification was achieved by the SVM-based auditory attention classifier using CmpMSE with the scale factor τ = 10. This study demonstrated a novel solution to identify the auditory object-specific attention from single-trial EEG signals without the need to access the auditory stimulus.

  11. Entropy of the electroencephalogram as applied in the M-Entropy S ...

    African Journals Online (AJOL)

    Background: It has been suggested that spectral entropy of the electroencephalogram as applied in the M-Entropy S/5TM Module (GE Healthcare) does not detect the effects of nitrous oxide (N2O). The aim of this study was to investigate the effect on entropy by graded increases in N2O concentrations in the presence of a ...

  12. Entropy of Baker's Transformation

    Institute of Scientific and Technical Information of China (English)

    栾长福

    2003-01-01

    Four theorems about four different kinds of entropies for Baker's transformation are presented. The Kolmogorov entropy of Baker's transformation is sensitive to the initial flips by the time. The topological entropy of Baker's transformation is found to be log k. The conditions for the state of Baker's transformation to be forbidden are also derived. The relations among the Shanonn, Kolmogorov, topological and Boltzmann entropies are discussed in details.

  13. Quantitative comparison of entropy analysis of fetal heart rate variability related to the different stages of labor.

    Science.gov (United States)

    Lim, Jongil; Kwon, Ji Young; Song, Juhee; Choi, Hosoon; Shin, Jong Chul; Park, In Yang

    2014-02-01

    The interpretation of the fetal heart rate (FHR) signal considering labor progression may improve perinatal morbidity and mortality. However, there have been few studies that evaluate the fetus in each labor stage quantitatively. To evaluate whether the entropy indices of FHR are different according to labor progression. A retrospective comparative study of FHR recordings in three groups: 280 recordings in the second stage of labor before vaginal delivery, 31 recordings in the first stage of labor before emergency cesarean delivery, and 23 recordings in the pre-labor before elective cesarean delivery. The stored FHR recordings of external cardiotocography during labor. Approximate entropy (ApEn) and sample entropy (SampEn) for the final 2000 RR intervals. The median ApEn and SampEn for the 2000 RR intervals showed the lowest values in the second stage of labor, followed by the emergency cesarean group and the elective cesarean group for all time segments (all PEntropy indices of FHR were significantly different according to labor progression. This result supports the necessity of considering labor progression when developing intrapartum fetal monitoring using the entropy indices of FHR. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. The maximum entropy production and maximum Shannon information entropy in enzyme kinetics

    Science.gov (United States)

    Dobovišek, Andrej; Markovič, Rene; Brumen, Milan; Fajmut, Aleš

    2018-04-01

    We demonstrate that the maximum entropy production principle (MEPP) serves as a physical selection principle for the description of the most probable non-equilibrium steady states in simple enzymatic reactions. A theoretical approach is developed, which enables maximization of the density of entropy production with respect to the enzyme rate constants for the enzyme reaction in a steady state. Mass and Gibbs free energy conservations are considered as optimization constraints. In such a way computed optimal enzyme rate constants in a steady state yield also the most uniform probability distribution of the enzyme states. This accounts for the maximal Shannon information entropy. By means of the stability analysis it is also demonstrated that maximal density of entropy production in that enzyme reaction requires flexible enzyme structure, which enables rapid transitions between different enzyme states. These results are supported by an example, in which density of entropy production and Shannon information entropy are numerically maximized for the enzyme Glucose Isomerase.

  15. Statistical properties of quantum entanglement and information entropy

    International Nuclear Information System (INIS)

    Abdel-Aty, M.M.A.

    2007-03-01

    Key words: entropy, entanglement, atom-field interaction, trapped ions, cold atoms, information entropy. Objects of research: Pure state entanglement, entropy squeezing mazer. The aim of the work: Study of the new entanglement features and new measures for both pure-state and mixed state of particle-field interaction. Also, the impact of the information entropy on the quantum information theory. Method of investigation: Methods of theoretical physics and applied mathematics (statistical physics, quantum optics) are used. Results obtained and their novelty are: All the results of the dissertation are new and many new features have been discovered. Particularly: the most general case of the pure state entanglement has been introduced. Although various special aspects of the quantum entropy have been investigated previously, the general features of the dynamics, when a multi-level system and a common environment are considered, have not been treated before and our work therefore, field a gap in the literature. Specifically: 1) A new entanglement measure due to quantum mutual entropy (mixed-state entanglement) we called it DEM, has been introduced, 2) A new treatment of the atomic information entropy in higher level systems has been presented. The problem has been completely solved in the case of three-level system, 3) A new solution of the interaction between the ultra cold atoms and cavity field has been discovered, 4) Some new models of the atom-field interaction have been adopted. Practical value: The subject carries out theoretic character. Application region: Results can be used in quantum computer developments. Also, the presented results can be used for further developments of the quantum information and quantum communications. (author)

  16. Neurodevelopment in newborns: a sample entropy analysis of electroencephalogram

    International Nuclear Information System (INIS)

    Zhang, Dandan; Ding, Haiyan; Liu, Yunfeng; Ding, Haishu; Zhou, Congle; Ye, Datian

    2009-01-01

    The present paper investigates the neural ontogeny of newborns in view of electroencephalogram (EEG) complexity during active sleep (AS) and quiet sleep (QS). Sample entropy (SampEn) is applied to EEG recordings from 168 newborns with postmenstrual age (PMA) ranging from 25 to 60 weeks. The relationship between neurodevelopment and PMA is then explored according to the statistical analysis of the median and interquartile range of SampEn curves. It is found that SampEn of EEG during AS is higher than that during QS. SampEn increases during both AS and QS before about 42 weeks in PMA while it ceases its increase in QS and even decreases in AS after newborns reaching term age. A distinct decrease in the interquartile range of SampEn is found with increasing PMA (from 25 to about 50 weeks), followed by maintenance of low fluctuation in SampEn curves. The study in this paper sets the stage for exhaustive investigation of the SampEn of EEG during brain maturation in newborns. And it could be hoped that SampEn in sleep EEG might be a useful parameter against which delays and aberrations in brain maturation might be tested. The SampEn changes during brain maturation also offer functional clues about neurodevelopment, based on which further explorations could be done. The significance of this paper is the discovery of the decrease in EEG complexity after newborns reaching term. Although some potential neurophysiologic reasons are given, this new discovery might require more study to investigate. In addition, the fluctuation of EEG complexity is analyzed for the first time, which helps to understand the EEG maturation in neurodevelopment

  17. The different paths to entropy

    International Nuclear Information System (INIS)

    Benguigui, L

    2013-01-01

    In order to understand how the complex concept of entropy emerged, we propose a trip into the past, reviewing the works of Clausius, Boltzmann, Gibbs and Planck. In particular, since Gibbs's work is not very well known we present a detailed analysis, recalling the three definitions of entropy that Gibbs gives. The introduction of entropy in quantum mechanics gives in a compact form all the classical definitions of entropy. Perhaps one of the most important aspects of entropy is to see it as a thermodynamic potential like the others proposed by Callen. The calculation of fluctuations in thermodynamic quantities is thus naturally related to entropy. We close with some remarks on entropy and irreversibility. (paper)

  18. Entropy of Mixing of Distinguishable Particles

    Science.gov (United States)

    Kozliak, Evguenii I.

    2014-01-01

    The molar entropy of mixing yields values that depend only on the number of mixing components rather than on their chemical nature. To explain this phenomenon using the logic of chemistry, this article considers mixing of distinguishable particles, thus complementing the well-known approach developed for nondistinguishable particles, for example,…

  19. ENTROPY - OUR BEST FRIEND

    Directory of Open Access Journals (Sweden)

    Urban Kordes

    2005-10-01

    Full Text Available The paper tries to tackle the question of connection between entropy and the living. Definitions of life as the phenomenon that defies entropy are overviewed and the conclusion is reached that life is in a way dependant on entropy - it couldn't exist without it. Entropy is a sort of medium, a fertile soil, that gives life possibility to blossom. Paper ends with presenting some consequences for the field of artificial intelligence.

  20. Entropy Measures for Stochastic Processes with Applications in Functional Anomaly Detection

    Directory of Open Access Journals (Sweden)

    Gabriel Martos

    2018-01-01

    Full Text Available We propose a definition of entropy for stochastic processes. We provide a reproducing kernel Hilbert space model to estimate entropy from a random sample of realizations of a stochastic process, namely functional data, and introduce two approaches to estimate minimum entropy sets. These sets are relevant to detect anomalous or outlier functional data. A numerical experiment illustrates the performance of the proposed method; in addition, we conduct an analysis of mortality rate curves as an interesting application in a real-data context to explore functional anomaly detection.

  1. Path length entropy analysis of diastolic heart sounds.

    Science.gov (United States)

    Griffel, Benjamin; Zia, Mohammad K; Fridman, Vladamir; Saponieri, Cesare; Semmlow, John L

    2013-09-01

    Early detection of coronary artery disease (CAD) using the acoustic approach, a noninvasive and cost-effective method, would greatly improve the outcome of CAD patients. To detect CAD, we analyze diastolic sounds for possible CAD murmurs. We observed diastolic sounds to exhibit 1/f structure and developed a new method, path length entropy (PLE) and a scaled version (SPLE), to characterize this structure to improve CAD detection. We compare SPLE results to Hurst exponent, Sample entropy and Multiscale entropy for distinguishing between normal and CAD patients. SPLE achieved a sensitivity-specificity of 80%-81%, the best of the tested methods. However, PLE and SPLE are not sufficient to prove nonlinearity, and evaluation using surrogate data suggests that our cardiovascular sound recordings do not contain significant nonlinear properties. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Editorial: Entropy in Landscape Ecology

    Directory of Open Access Journals (Sweden)

    Samuel A. Cushman

    2018-04-01

    Full Text Available Entropy and the second law of thermodynamics are the central organizing principles of nature, but the ideas and implications of the second law are poorly developed in landscape ecology. The purpose of this Special Issue “Entropy in Landscape Ecology” in Entropy is to bring together current research on applications of thermodynamics in landscape ecology, to consolidate current knowledge and identify key areas for future research. The special issue contains six articles, which cover a broad range of topics including relationships between entropy and evolution, connections between fractal geometry and entropy, new approaches to calculate configurational entropy of landscapes, example analyses of computing entropy of landscapes, and using entropy in the context of optimal landscape planning. Collectively these papers provide a broad range of contributions to the nascent field of ecological thermodynamics. Formalizing the connections between entropy and ecology are in a very early stage, and that this special issue contains papers that address several centrally important ideas, and provides seminal work that will be a foundation for the future development of ecological and evolutionary thermodynamics.

  3. Entropy method of measuring and evaluating periodicity of quasi-periodic trajectories

    Science.gov (United States)

    Ni, Yanshuo; Turitsyn, Konstantin; Baoyin, Hexi; Junfeng, Li

    2018-06-01

    This paper presents a method for measuring the periodicity of quasi-periodic trajectories by applying discrete Fourier transform (DFT) to the trajectories and analyzing the frequency domain within the concept of entropy. Having introduced the concept of entropy, analytical derivation and numerical results indicate that entropies increase as a logarithmic function of time. Periodic trajectories typically have higher entropies, and trajectories with higher entropies mean the periodicities of the motions are stronger. Theoretical differences between two trajectories expressed as summations of trigonometric functions are also derived analytically. Trajectories in the Henon-Heiles system and the circular restricted three-body problem (CRTBP) are analyzed with the indicator entropy and compared with orthogonal fast Lyapunov indicator (OFLI). The results show that entropy is a better tool for discriminating periodicity in quasiperiodic trajectories than OFLI and can detect periodicity while excluding the spirals that are judged as periodic cases by OFLI. Finally, trajectories in the vicinity of 243 Ida and 6489 Golevka are considered as examples, and the numerical results verify these conclusions. Some trajectories near asteroids look irregular, but their higher entropy values as analyzed by this method serve as evidence of frequency regularity in three directions. Moreover, these results indicate that applying DFT to the trajectories in the vicinity of irregular small bodies and calculating their entropy in the frequency domain provides a useful quantitative analysis method for evaluating orderliness in the periodicity of quasi-periodic trajectories within a given time interval.

  4. Correlations of multiscale entropy in the FX market

    Science.gov (United States)

    Stosic, Darko; Stosic, Dusan; Ludermir, Teresa; Stosic, Tatijana

    2016-09-01

    The regularity of price fluctuations in exchange rates plays a crucial role in FX market dynamics. Distinct variations in regularity arise from economic, social and political events, such as interday trading and financial crisis. This paper applies a multiscale time-dependent entropy method on thirty-three exchange rates to analyze price fluctuations in the FX. Correlation matrices of entropy values, termed entropic correlations, are in turn used to describe global behavior of the market. Empirical results suggest a weakly correlated market with pronounced collective behavior at bi-weekly trends. Correlations arise from cycles of low and high regularity in long-term trends. Eigenvalues of the correlation matrix also indicate a dominant European market, followed by shifting American, Asian, African, and Pacific influences. As a result, we find that entropy is a powerful tool for extracting important information from the FX market.

  5. Relative entanglement entropies in 1+1-dimensional conformal field theories

    Energy Technology Data Exchange (ETDEWEB)

    Ruggiero, Paola; Calabrese, Pasquale [International School for Advanced Studies (SISSA) and INFN,Via Bonomea 265, 34136, Trieste (Italy)

    2017-02-08

    We study the relative entanglement entropies of one interval between excited states of a 1+1 dimensional conformal field theory (CFT). To compute the relative entropy S(ρ{sub 1}∥ρ{sub 0}) between two given reduced density matrices ρ{sub 1} and ρ{sub 0} of a quantum field theory, we employ the replica trick which relies on the path integral representation of Tr(ρ{sub 1}ρ{sub 0}{sup n−1}) and define a set of Rényi relative entropies S{sub n}(ρ{sub 1}∥ρ{sub 0}). We compute these quantities for integer values of the parameter n and derive via the replica limit the relative entropy between excited states generated by primary fields of a free massless bosonic field. In particular, we provide the relative entanglement entropy of the state described by the primary operator i∂ϕ, both with respect to the ground state and to the state generated by chiral vertex operators. These predictions are tested against exact numerical calculations in the XX spin-chain finding perfect agreement.

  6. The Maximum Entropy Principle and the Modern Portfolio Theory

    Directory of Open Access Journals (Sweden)

    Ailton Cassetari

    2003-12-01

    Full Text Available In this work, a capital allocation methodology base don the Principle of Maximum Entropy was developed. The Shannons entropy is used as a measure, concerning the Modern Portfolio Theory, are also discuted. Particularly, the methodology is tested making a systematic comparison to: 1 the mean-variance (Markovitz approach and 2 the mean VaR approach (capital allocations based on the Value at Risk concept. In principle, such confrontations show the plausibility and effectiveness of the developed method.

  7. Use of mutual information to decrease entropy: Implications for the second law of thermodynamics

    International Nuclear Information System (INIS)

    Lloyd, S.

    1989-01-01

    Several theorems on the mechanics of gathering information are proved, and the possibility of violating the second law of thermodynamics by obtaining information is discussed in light of these theorems. Maxwell's demon can lower the entropy of his surroundings by an amount equal to the difference between the maximum entropy of his recording device and its initial entropy, without generating a compensating entropy increase. A demon with human-scale recording devices can reduce the entropy of a gas by a negligible amount only, but the proof of the demon's impracticability leaves open the possibility that systems highly correlated with their environment can reduce the environment's entropy by a substantial amount without increasing entropy elsewhere. In the event that a boundary condition for the universe requires it to be in a state of low entropy when small, the correlations induced between different particle modes during the expansion phase allow the modes to behave like Maxwell's demons during the contracting phase, reducing the entropy of the universe to a low value

  8. Linearized semiclassical initial value time correlation functions with maximum entropy analytic continuation.

    Science.gov (United States)

    Liu, Jian; Miller, William H

    2008-09-28

    The maximum entropy analytic continuation (MEAC) method is used to extend the range of accuracy of the linearized semiclassical initial value representation (LSC-IVR)/classical Wigner approximation for real time correlation functions. LSC-IVR provides a very effective "prior" for the MEAC procedure since it is very good for short times, exact for all time and temperature for harmonic potentials (even for correlation functions of nonlinear operators), and becomes exact in the classical high temperature limit. This combined MEAC+LSC/IVR approach is applied here to two highly nonlinear dynamical systems, a pure quartic potential in one dimensional and liquid para-hydrogen at two thermal state points (25 and 14 K under nearly zero external pressure). The former example shows the MEAC procedure to be a very significant enhancement of the LSC-IVR for correlation functions of both linear and nonlinear operators, and especially at low temperature where semiclassical approximations are least accurate. For liquid para-hydrogen, the LSC-IVR is seen already to be excellent at T=25 K, but the MEAC procedure produces a significant correction at the lower temperature (T=14 K). Comparisons are also made as to how the MEAC procedure is able to provide corrections for other trajectory-based dynamical approximations when used as priors.

  9. On quantum Rényi entropies

    DEFF Research Database (Denmark)

    Müller-Lennert, Martin; Dupont-Dupuis, Fréderic; Szehr, Oleg

    2013-01-01

    The Rényi entropies constitute a family of information measures that generalizes the well-known Shannon entropy, inheriting many of its properties. They appear in the form of unconditional and conditional entropies, relative entropies, or mutual information, and have found many applications in in...

  10. A Method of Rotating Machinery Fault Diagnosis Based on the Close Degree of Information Entropy

    Institute of Scientific and Technical Information of China (English)

    GENG Jun-bao; HUANG Shu-hong; JIN Jia-shan; CHEN Fei; LIU Wei

    2006-01-01

    This paper presents a method of rotating machinery fault diagnosis based on the close degree of information entropy. In the view of the information entropy, we introduce four information entropy features of the rotating machinery, which describe the vibration condition of the machinery. The four features are, respectively, denominated as singular spectrum entropy, power spectrum entropy, wavelet space state feature entropy and wavelet power spectrum entropy. The value scopes of the four information entropy features of the rotating machinery in some typical fault conditions are gained by experiments, which can be acted as the standard features of fault diagnosis. According to the principle of the shorter distance between the more similar models, the decision-making method based on the close degree of information entropy is put forward to deal with the recognition of fault patterns. We demonstrate the effectiveness of this approach in an instance involving the fault pattern recognition of some rotating machinery.

  11. Entanglement entropy of ABJM theory and entropy of topological black hole

    Science.gov (United States)

    Nian, Jun; Zhang, Xinyu

    2017-07-01

    In this paper we discuss the supersymmetric localization of the 4D N = 2 offshell gauged supergravity on the background of the AdS4 neutral topological black hole, which is the gravity dual of the ABJM theory defined on the boundary {S}^1× H^2 . We compute the large- N expansion of the supergravity partition function. The result gives the black hole entropy with the logarithmic correction, which matches the previous result of the entanglement entropy of the ABJM theory up to some stringy effects. Our result is consistent with the previous on-shell one-loop computation of the logarithmic correction to black hole entropy. It provides an explicit example of the identification of the entanglement entropy of the boundary conformal field theory with the bulk black hole entropy beyond the leading order given by the classical Bekenstein-Hawking formula, which consequently tests the AdS/CFT correspondence at the subleading order.

  12. Minimum Entropy Generation Theorem Investigation and Optimization of Metal Hydride Alloy Hydrogen Storage

    Directory of Open Access Journals (Sweden)

    Chi-Chang Wang

    2014-05-01

    Full Text Available The main purpose of this paper is to carry out numerical simulation of the hydrogen storage on exothermic reaction of metal hydride LaNi5 alloy container. In addition to accelerating the reaction speed of the internal metal hydride by internal control tube water-cooled mode, analyze via the application of second law of thermodynamics the principle of entropy generation. Use COMSOL Mutilphysics 4.3 a to engage in finite element method value simulation on two-dimensional axisymmetric model. Also on the premise that the internal control tube parameters the radius ri, the flow rate U meet the metal hydride saturation time, observe the reaction process of two parameters on the tank, entropy distribution and the results of the accumulated entropy. And try to find the internal tube parameter values of the minimum entropy, whose purpose is to be able to identify the reaction process and the reaction results of internal tank’s optimum energy conservation.

  13. Entropy-Stabilized Oxides

    Science.gov (United States)

    2015-09-29

    antiferroelectrics. Phys. Rev. Lett. 110, 017603 (2013). 22. Cantor , B., Chang, I., Knight, P. & Vincent, A. Microstructural development in equiatomic...Science 345, 1153–1158 (2014). 24. Gali, A. & George , E. Tensile properties of high- and medium-entropy alloys. Intermetallics 39, 74–78 (2013). 25...148–153 (2014). 26. Otto, F., Yang, Y., Bei, H. & George , E. Relative effects of enthalpy and entropy on the phase stability of equiatomic high-entropy

  14. Transplanckian entanglement entropy

    International Nuclear Information System (INIS)

    Chang, Darwin; Chu, C.-S.; Lin Fengli

    2004-01-01

    The entanglement entropy of the event horizon is known to be plagued by the UV divergence due to the infinitely blue-shifted near horizon modes. In this Letter we calculate the entanglement entropy using the transplanckian dispersion relation, which has been proposed to model the quantum gravity effects. We show that, very generally, the entropy is rendered UV finite due to the suppression of high energy modes effected by the transplanckian dispersion relation

  15. Entropy-Based Privacy against Profiling of User Mobility

    Directory of Open Access Journals (Sweden)

    Alicia Rodriguez-Carrion

    2015-06-01

    Full Text Available Location-based services (LBSs flood mobile phones nowadays, but their use poses an evident privacy risk. The locations accompanying the LBS queries can be exploited by the LBS provider to build the user profile of visited locations, which might disclose sensitive data, such as work or home locations. The classic concept of entropy is widely used to evaluate privacy in these scenarios, where the information is represented as a sequence of independent samples of categorized data. However, since the LBS queries might be sent very frequently, location profiles can be improved by adding temporal dependencies, thus becoming mobility profiles, where location samples are not independent anymore and might disclose the user’s mobility patterns. Since the time dimension is factored in, the classic entropy concept falls short of evaluating the real privacy level, which depends also on the time component. Therefore, we propose to extend the entropy-based privacy metric to the use of the entropy rate to evaluate mobility profiles. Then, two perturbative mechanisms are considered to preserve locations and mobility profiles under gradual utility constraints. We further use the proposed privacy metric and compare it to classic ones to evaluate both synthetic and real mobility profiles when the perturbative methods proposed are applied. The results prove the usefulness of the proposed metric for mobility profiles and the need for tailoring the perturbative methods to the features of mobility profiles in order to improve privacy without completely loosing utility.

  16. Banados-Teitelboim-Zanelli black hole with gravitational Chern-Simons term: Thermodynamics and statistical entropy

    International Nuclear Information System (INIS)

    Park, Mu-In

    2008-01-01

    Recently, the Banados-Teitelboim-Zanelli (BTZ) black hole in the presence of the gravitational Chern-Simons term has been studied, and it is found that the usual thermodynamic quantities, like the black hole mass, angular momentum, and entropy, are modified. But, for large values of the gravitational Chern-Simons coupling where the modification terms dominate the original terms some exotic behaviors occur, like the roles of the mass and angular momentum are interchanged and the entropy depends more on the inner horizon area than the outer one. A basic physical problem of this system is that the form of entropy does not guarantee the second law of thermodynamics, in contrast to the Bekenstein-Hawking entropy. Moreover, this entropy does not agree with the statistical entropy, in contrast to a good agreement for small values of the gravitational Chern-Simons coupling. Here I find that there is another entropy formula where the usual Bekenstein-Hawking form dominates the inner-horizon term again, as in the small gravitational Chern-Simons coupling case, such that the second law of thermodynamics can be guaranteed. I also find that the new entropy formula agrees with the statistical entropy based on the holographic anomalies for the whole range of the gravitational Chern-Simons coupling. This reproduces, in the limit of a vanishing Einstein-Hilbert term, the recent result about the exotic BTZ black holes, where their masses and angular momenta are completely interchanged and the entropies depend only on the area of the inner horizon. I compare the result of the holographic approach with the classical-symmetry-algebra-based approach, and I find exact agreements even with the higher-derivative corrections of the gravitational Chern-Simons term. This provides a nontrivial check of the AdS/CFT correspondence, in the presence of higher-derivative terms in the gravity action

  17. Ranking DMUs by Comparing DEA Cross-Efficiency Intervals Using Entropy Measures

    Directory of Open Access Journals (Sweden)

    Tim Lu

    2016-12-01

    Full Text Available Cross-efficiency evaluation, an extension of data envelopment analysis (DEA, can eliminate unrealistic weighing schemes and provide a ranking for decision making units (DMUs. In the literature, the determination of input and output weights uniquely receives more attentions. However, the problem of choosing the aggressive (minimal or benevolent (maximal formulation for decision-making might still remain. In this paper, we develop a procedure to perform cross-efficiency evaluation without the need to make any specific choice of DEA weights. The proposed procedure takes into account the aggressive and benevolent formulations at the same time, and the choice of DEA weights can then be avoided. Consequently, a number of cross-efficiency intervals is obtained for each DMU. The entropy, which is based on information theory, is an effective tool to measure the uncertainty. We then utilize the entropy to construct a numerical index for DMUs with cross-efficiency intervals. A mathematical program is proposed to find the optimal entropy values of DMUs for comparison. With the derived entropy value, we can rank DMUs accordingly. Two examples are illustrated to show the effectiveness of the idea proposed in this paper.

  18. New Insights into the Fractional Order Diffusion Equation Using Entropy and Kurtosis.

    Science.gov (United States)

    Ingo, Carson; Magin, Richard L; Parrish, Todd B

    2014-11-01

    Fractional order derivative operators offer a concise description to model multi-scale, heterogeneous and non-local systems. Specifically, in magnetic resonance imaging, there has been recent work to apply fractional order derivatives to model the non-Gaussian diffusion signal, which is ubiquitous in the movement of water protons within biological tissue. To provide a new perspective for establishing the utility of fractional order models, we apply entropy for the case of anomalous diffusion governed by a fractional order diffusion equation generalized in space and in time. This fractional order representation, in the form of the Mittag-Leffler function, gives an entropy minimum for the integer case of Gaussian diffusion and greater values of spectral entropy for non-integer values of the space and time derivatives. Furthermore, we consider kurtosis, defined as the normalized fourth moment, as another probabilistic description of the fractional time derivative. Finally, we demonstrate the implementation of anomalous diffusion, entropy and kurtosis measurements in diffusion weighted magnetic resonance imaging in the brain of a chronic ischemic stroke patient.

  19. New Insights into the Fractional Order Diffusion Equation Using Entropy and Kurtosis

    Directory of Open Access Journals (Sweden)

    Carson Ingo

    2014-11-01

    Full Text Available Fractional order derivative operators offer a concise description to model multi-scale, heterogeneous and non-local systems. Specifically, in magnetic resonance imaging, there has been recent work to apply fractional order derivatives to model the non-Gaussian diffusion signal, which is ubiquitous in the movement of water protons within biological tissue. To provide a new perspective for establishing the utility of fractional order models, we apply entropy for the case of anomalous diffusion governed by a fractional order diffusion equation generalized in space and in time. This fractional order representation, in the form of the Mittag–Leffler function, gives an entropy minimum for the integer case of Gaussian diffusion and greater values of spectral entropy for non-integer values of the space and time derivatives. Furthermore, we consider kurtosis, defined as the normalized fourth moment, as another probabilistic description of the fractional time derivative. Finally, we demonstrate the implementation of anomalous diffusion, entropy and kurtosis measurements in diffusion weighted magnetic resonance imaging in the brain of a chronic ischemic stroke patient.

  20. Thermostatistical aspects of generalized entropies

    International Nuclear Information System (INIS)

    Fa, K.S.; Lenzi, E.K.

    2004-01-01

    We investigate the properties concerning a class of generalized entropies given by S q,r =k{1-[Σ i p i q ] r }/[r(q-1)] which include Tsallis' entropy (r=1), the usual Boltzmann-Gibbs entropy (q=1), Renyi's entropy (r=0) and normalized Tsallis' entropy (r=-1). In order to obtain the generalized thermodynamic relations we use the laws of thermodynamics and considering the hypothesis that the joint probability of two independent systems is given by p ij A c upB =p i A p j B . We show that the transmutation which occurs from Tsallis' entropy to Renyi's entropy also occur with S q,r . In this scenario, we also analyze the generalized variance, covariance and correlation coefficient of a non-interacting system by using extended optimal Lagrange multiplier approach. We show that the correlation coefficient tends to zero in the thermodynamic limit. However, Renyi's entropy related to this non-interacting system presents a certain degree of non-extensivity

  1. DINAMICAL PROCESSES, ENTROPY AND INFORMATION IN NATURAL AND SOCIAL SYSTEMS

    OpenAIRE

    N. V. Katargin

    2013-01-01

    Possible to describe complicate as natural as social systems as objects consisted of nonlinearly dependent elements at the multi-dimension (phase) space contained as real as information components. The system movement is defined by natural growth of entropy and its decrease as a result of using of external energy sources and other resources. Examined the аssociation of entropy with the value of objects, as well as with humanitarian concepts: God's Providence, morality, and happiness.

  2. Standard entropy for borides of non-transition metals, rare-earth metals and actinides

    International Nuclear Information System (INIS)

    Borovikova, M.S.

    1986-01-01

    Using as initial data the most reliable values of standard entropy for 10 compounds, the entropies for 40 compounds of non-transition metals, rare-earth metals and actinides have been evaluated by the method of comparative calculation. Taking into account the features of boride structures, two methods, i.e. additive and proportional, have been selected for the entropy calculations. For the range of borides the entropies were calculated from the linear relation of the latter to the number of boron atoms in the boride. For borides of rare-earth metals allowance has been made for magnetic contributions in conformity with the multiplicity of the corresponding ions. Insignificant differences in the electronic contributions to the entropy for borides and metals have been neglected. For dodecaborides only the additive method has been used. This is specified by the most rigid network that provides the same contribution to compound entropy. (orig.)

  3. Some remarks on conditional entropy

    NARCIS (Netherlands)

    Nijst, A.G.P.M.

    1969-01-01

    Using a definition of conditional entropy given by Hanen and Neveu [5, 10, 11] we discuss in this paper some properties of conditional entropy and mean entropy, in particular an integral representation of conditional entropy (§ 2), and the decomposition theorem of the KolmogorovSina¯i invariant (§

  4. Entropy, matter, and cosmology.

    Science.gov (United States)

    Prigogine, I; Géhéniau, J

    1986-09-01

    The role of irreversible processes corresponding to creation of matter in general relativity is investigated. The use of Landau-Lifshitz pseudotensors together with conformal (Minkowski) coordinates suggests that this creation took place in the early universe at the stage of the variation of the conformal factor. The entropy production in this creation process is calculated. It is shown that these dissipative processes lead to the possibility of cosmological models that start from empty conditions and gradually build up matter and entropy. Gravitational entropy takes a simple meaning as associated to the entropy that is necessary to produce matter. This leads to an extension of the third law of thermodynamics, as now the zero point of entropy becomes the space-time structure out of which matter is generated. The theory can be put into a convenient form using a supplementary "C" field in Einstein's field equations. The role of the C field is to express the coupling between gravitation and matter leading to irreversible entropy production.

  5. Relations Among Some Fuzzy Entropy Formulae

    Institute of Scientific and Technical Information of China (English)

    卿铭

    2004-01-01

    Fuzzy entropy has been widely used to analyze and design fuzzy systems, and many fuzzy entropy formulae have been proposed. For further in-deepth analysis of fuzzy entropy, the axioms and some important formulae of fuzzy entropy are introduced. Some equivalence results among these fuzzy entropy formulae are proved, and it is shown that fuzzy entropy is a special distance measurement.

  6. Intra-tumour signalling entropy determines clinical outcome in breast and lung cancer.

    Directory of Open Access Journals (Sweden)

    Christopher R S Banerji

    2015-03-01

    Full Text Available The cancer stem cell hypothesis, that a small population of tumour cells are responsible for tumorigenesis and cancer progression, is becoming widely accepted and recent evidence has suggested a prognostic and predictive role for such cells. Intra-tumour heterogeneity, the diversity of the cancer cell population within the tumour of an individual patient, is related to cancer stem cells and is also considered a potential prognostic indicator in oncology. The measurement of cancer stem cell abundance and intra-tumour heterogeneity in a clinically relevant manner however, currently presents a challenge. Here we propose signalling entropy, a measure of signalling pathway promiscuity derived from a sample's genome-wide gene expression profile, as an estimate of the stemness of a tumour sample. By considering over 500 mixtures of diverse cellular expression profiles, we reveal that signalling entropy also associates with intra-tumour heterogeneity. By analysing 3668 breast cancer and 1692 lung adenocarcinoma samples, we further demonstrate that signalling entropy correlates negatively with survival, outperforming leading clinical gene expression based prognostic tools. Signalling entropy is found to be a general prognostic measure, valid in different breast cancer clinical subgroups, as well as within stage I lung adenocarcinoma. We find that its prognostic power is driven by genes involved in cancer stem cells and treatment resistance. In summary, by approximating both stemness and intra-tumour heterogeneity, signalling entropy provides a powerful prognostic measure across different epithelial cancers.

  7. Entropy, pricing and macroeconomics of pumped-storage systems

    Science.gov (United States)

    Karakatsanis, Georgios; Mamassis, Nikos; Koutsoyiannis, Demetris; Efstratiadis, Andreas

    2014-05-01

    We propose a pricing scheme for the enhancement of macroeconomic performance of pumped-storage systems, based on the statistical properties of both geophysical and economic variables. The main argument consists in the need of a context of economic values concerning the hub energy resource; defined as the resource that comprises the reference energy currency for all involved renewable energy sources (RES) and discounts all related uncertainty. In the case of pumped-storage systems the hub resource is the reservoir's water, as a benchmark for all connected intermittent RES. The uncertainty of all involved natural and economic processes is statistically quantifiable by entropy. It is the relation between the entropies of all involved RES that shapes the macroeconomic state of the integrated pumped-storage system. Consequently, there must be consideration on the entropy of wind, solar and precipitation patterns, as well as on the entropy of economic processes -such as demand preferences on either current energy use or storage for future availability. For pumped-storage macroeconomics, a price on the reservoir's capacity scarcity should also be imposed in order to shape a pricing field with upper and lower limits for the long-term stability of the pricing range and positive net energy benefits, which is the primary issue of the generalized deployment of pumped-storage technology. Keywords: Entropy, uncertainty, pricing, hub energy resource, RES, energy storage, capacity scarcity, macroeconomics

  8. Automated EEG entropy measurements in coma, vegetative state/unresponsive wakefulness syndrome and minimally conscious state

    Science.gov (United States)

    Gosseries, Olivia; Schnakers, Caroline; Ledoux, Didier; Vanhaudenhuyse, Audrey; Bruno, Marie-Aurélie; Demertzi, Athéna; Noirhomme, Quentin; Lehembre, Rémy; Damas, Pierre; Goldman, Serge; Peeters, Erika; Moonen, Gustave; Laureys, Steven

    Summary Monitoring the level of consciousness in brain-injured patients with disorders of consciousness is crucial as it provides diagnostic and prognostic information. Behavioral assessment remains the gold standard for assessing consciousness but previous studies have shown a high rate of misdiagnosis. This study aimed to investigate the usefulness of electroencephalography (EEG) entropy measurements in differentiating unconscious (coma or vegetative) from minimally conscious patients. Left fronto-temporal EEG recordings (10-minute resting state epochs) were prospectively obtained in 56 patients and 16 age-matched healthy volunteers. Patients were assessed in the acute (≤1 month post-injury; n=29) or chronic (>1 month post-injury; n=27) stage. The etiology was traumatic in 23 patients. Automated online EEG entropy calculations (providing an arbitrary value ranging from 0 to 91) were compared with behavioral assessments (Coma Recovery Scale-Revised) and outcome. EEG entropy correlated with Coma Recovery Scale total scores (r=0.49). Mean EEG entropy values were higher in minimally conscious (73±19; mean and standard deviation) than in vegetative/unresponsive wakefulness syndrome patients (45±28). Receiver operating characteristic analysis revealed an entropy cut-off value of 52 differentiating acute unconscious from minimally conscious patients (sensitivity 89% and specificity 90%). In chronic patients, entropy measurements offered no reliable diagnostic information. EEG entropy measurements did not allow prediction of outcome. User-independent time-frequency balanced spectral EEG entropy measurements seem to constitute an interesting diagnostic – albeit not prognostic – tool for assessing neural network complexity in disorders of consciousness in the acute setting. Future studies are needed before using this tool in routine clinical practice, and these should seek to improve automated EEG quantification paradigms in order to reduce the remaining false

  9. Entropy and Digital Installation

    Directory of Open Access Journals (Sweden)

    Susan Ballard

    2005-01-01

    Full Text Available This paper examines entropy as a process which introduces ideas of distributed materiality to digital installation. Beginning from an analysis of entropy as both force and probability measure within information theory and it’s extension in Ruldof Arnheim’s text ‘Entropy and Art” it develops an argument for the positive rather thannegative forces of entropy. The paper centres on a discussion of two recent works by New Zealand artists Ronnie van Hout (“On the Run”, Wellington City Gallery, NZ, 2004 and Alex Monteith (“Invisible Cities”, Physics Room Contemporary Art Space, Christchurch, NZ, 2004. Ballard suggests that entropy, rather than being a hindrance to understanding or a random chaotic force, discloses a necessary and material politics of noise present in digital installation.

  10. Brain entropy and human intelligence: A resting-state fMRI study

    Science.gov (United States)

    Calderone, Daniel; Morales, Leah J.

    2018-01-01

    Human intelligence comprises comprehension of and reasoning about an infinitely variable external environment. A brain capable of large variability in neural configurations, or states, will more easily understand and predict variable external events. Entropy measures the variety of configurations possible within a system, and recently the concept of brain entropy has been defined as the number of neural states a given brain can access. This study investigates the relationship between human intelligence and brain entropy, to determine whether neural variability as reflected in neuroimaging signals carries information about intellectual ability. We hypothesize that intelligence will be positively associated with entropy in a sample of 892 healthy adults, using resting-state fMRI. Intelligence is measured with the Shipley Vocabulary and WASI Matrix Reasoning tests. Brain entropy was positively associated with intelligence. This relation was most strongly observed in the prefrontal cortex, inferior temporal lobes, and cerebellum. This relationship between high brain entropy and high intelligence indicates an essential role for entropy in brain functioning. It demonstrates that access to variable neural states predicts complex behavioral performance, and specifically shows that entropy derived from neuroimaging signals at rest carries information about intellectual capacity. Future work in this area may elucidate the links between brain entropy in both resting and active states and various forms of intelligence. This insight has the potential to provide predictive information about adaptive behavior and to delineate the subdivisions and nature of intelligence based on entropic patterns. PMID:29432427

  11. Brain entropy and human intelligence: A resting-state fMRI study.

    Science.gov (United States)

    Saxe, Glenn N; Calderone, Daniel; Morales, Leah J

    2018-01-01

    Human intelligence comprises comprehension of and reasoning about an infinitely variable external environment. A brain capable of large variability in neural configurations, or states, will more easily understand and predict variable external events. Entropy measures the variety of configurations possible within a system, and recently the concept of brain entropy has been defined as the number of neural states a given brain can access. This study investigates the relationship between human intelligence and brain entropy, to determine whether neural variability as reflected in neuroimaging signals carries information about intellectual ability. We hypothesize that intelligence will be positively associated with entropy in a sample of 892 healthy adults, using resting-state fMRI. Intelligence is measured with the Shipley Vocabulary and WASI Matrix Reasoning tests. Brain entropy was positively associated with intelligence. This relation was most strongly observed in the prefrontal cortex, inferior temporal lobes, and cerebellum. This relationship between high brain entropy and high intelligence indicates an essential role for entropy in brain functioning. It demonstrates that access to variable neural states predicts complex behavioral performance, and specifically shows that entropy derived from neuroimaging signals at rest carries information about intellectual capacity. Future work in this area may elucidate the links between brain entropy in both resting and active states and various forms of intelligence. This insight has the potential to provide predictive information about adaptive behavior and to delineate the subdivisions and nature of intelligence based on entropic patterns.

  12. Misuse of thermodynamic entropy in economics

    International Nuclear Information System (INIS)

    Kovalev, Andrey V.

    2016-01-01

    The direct relationship between thermodynamic entropy and economic scarcity is only valid for a thermodynamically isolated economy. References to the second law of thermodynamics in economics within the context of scarcity ignore the fact that the earth is not an isolated system. The earth interacts with external sources and sinks of entropy and the resulting total entropy fluctuates around a constant. Even if the mankind finally proves unable to recycle industrial waste and close the technological cycle, the economic disruption caused by the depletion of natural resources may happen while the total thermodynamic entropy of the ecosystem remains essentially at the present level, because the transfer of chemically refined products may not increase significantly the total entropy, but it may decrease their recyclability. The inutility of industrial waste is not connected with its entropy, which may be exemplified with the case of alumina production. The case also demonstrates that industrially generated entropy is discharged into surroundings without being accumulated in ‘thermodynamically unavailable matter’. Material entropy, as a measure of complexity and economic dispersal of resources, can be a recyclability metric, but it is not a thermodynamic parameter, and its growth is not equivalent to the growth of thermodynamic entropy. - Highlights: • Entropy cannot be used as a measure of economic scarcity. • There is no anthropogenic entropy separate from the entropy produced naturally. • Inutility of industrial waste is not connected with its thermodynamic entropy. • Industrially generated entropy may or may not be accumulated in industrial waste. • Recyclability is more important than thermodynamic entropy of a product.

  13. Inadequacy of von Neumann entropy for characterizing extractable work

    International Nuclear Information System (INIS)

    Dahlsten, Oscar C O; Renner, Renato; Rieper, Elisabeth; Vedral, Vlatko

    2011-01-01

    The lack of knowledge that an observer has about a system limits the amount of work it can extract. This lack of knowledge is normally quantified using the Gibbs/von Neumann entropy. We show that this standard approach is, surprisingly, only correct in very specific circumstances. In general, one should use the recently developed smooth entropy approach. For many common physical situations, including large but internally correlated systems, the resulting values for the extractable work can deviate arbitrarily from those suggested by the standard approach.

  14. The effect of orthostatic stress on multiscale entropy of heart rate and blood pressure

    International Nuclear Information System (INIS)

    Turianikova, Zuzana; Javorka, Kamil; Calkovska, Andrea; Javorka, Michal; Baumert, Mathias

    2011-01-01

    Cardiovascular control acts over multiple time scales, which introduces a significant amount of complexity to heart rate and blood pressure time series. Multiscale entropy (MSE) analysis has been developed to quantify the complexity of a time series over multiple time scales. In previous studies, MSE analyses identified impaired cardiovascular control and increased cardiovascular risk in various pathological conditions. Despite the increasing acceptance of the MSE technique in clinical research, information underpinning the involvement of the autonomic nervous system in the MSE of heart rate and blood pressure is lacking. The objective of this study is to investigate the effect of orthostatic challenge on the MSE of heart rate and blood pressure variability (HRV, BPV) and the correlation between MSE (complexity measures) and traditional linear (time and frequency domain) measures. MSE analysis of HRV and BPV was performed in 28 healthy young subjects on 1000 consecutive heart beats in the supine and standing positions. Sample entropy values were assessed on scales of 1–10. We found that MSE of heart rate and blood pressure signals is sensitive to changes in autonomic balance caused by postural change from the supine to the standing position. The effect of orthostatic challenge on heart rate and blood pressure complexity depended on the time scale under investigation. Entropy values did not correlate with the mean values of heart rate and blood pressure and showed only weak correlations with linear HRV and BPV measures. In conclusion, the MSE analysis of heart rate and blood pressure provides a sensitive tool to detect changes in autonomic balance as induced by postural change

  15. 3D flat holography: entropy and logarithmic corrections

    International Nuclear Information System (INIS)

    Bagchi, Arjun; Basu, Rudranil

    2014-01-01

    We compute the leading corrections to the Bekenstein-Hawking entropy of the Flat Space Cosmological (FSC) solutions in 3D flat spacetimes, which are the flat analogues of the BTZ black holes in AdS 3 . The analysis is done by a computation of density of states in the dual 2D Galilean Conformal Field Theory and the answer obtained by this matches with the limiting value of the expected result for the BTZ inner horizon entropy as well as what is expected for a generic thermodynamic system. Along the way, we also develop other aspects of holography of 3D flat spacetimes

  16. Entanglement entropy and duality in AdS4

    Directory of Open Access Journals (Sweden)

    Ioannis Bakas

    2015-07-01

    Full Text Available Small variations of the entanglement entropy δS and the expectation value of the modular Hamiltonian δE are computed holographically for circular entangling curves in the boundary of AdS4, using gravitational perturbations with general boundary conditions in spherical coordinates. Agreement with the first law of thermodynamics, δS=δE, requires that the line element of the entangling curve remains constant. In this context, we also find a manifestation of electric–magnetic duality for the entanglement entropy and the corresponding modular Hamiltonian, following from the holographic energy–momentum/Cotton tensor duality.

  17. 19 CFR 181.62 - Commercial samples of negligible value.

    Science.gov (United States)

    2010-04-01

    ... 19 Customs Duties 2 2010-04-01 2010-04-01 false Commercial samples of negligible value. 181.62... Returned After Repair or Alteration § 181.62 Commercial samples of negligible value. (a) General. Commercial samples of negligible value imported from Canada or Mexico may qualify for duty-free entry under...

  18. Vector entropy imaging theory with application to computerized tomography

    International Nuclear Information System (INIS)

    Wang Yuanmei; Cheng Jianping; Heng, Pheng Ann

    2002-01-01

    Medical imaging theory for x-ray CT and PET is based on image reconstruction from projections. In this paper a novel vector entropy imaging theory under the framework of multiple criteria decision making is presented. We also study the most frequently used image reconstruction methods, namely, least square, maximum entropy, and filtered back-projection methods under the framework of the single performance criterion optimization. Finally, we introduce some of the results obtained by various reconstruction algorithms using computer-generated noisy projection data from the Hoffman phantom and real CT scanner data. Comparison of the reconstructed images indicates that the vector entropy method gives the best in error (difference between the original phantom data and reconstruction), smoothness (suppression of noise), grey value resolution and is free of ghost images. (author)

  19. Relative entropy, mixed gauge-gravitational anomaly and causality

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharyya, Arpan [Department of Physics and Center for Field Theory and Particle Physics, Fudan University,220 Handan Road, 200433 Shanghai (China); Centre For High Energy Phsyics, Indian Institute of Science,560012 Bangalore (India); Cheng, Long [Department of Physics and Center for Field Theory and Particle Physics, Fudan University,220 Handan Road, 200433 Shanghai (China); Hung, Ling-Yan [Department of Physics and Center for Field Theory and Particle Physics, Fudan University,220 Handan Road, 200433 Shanghai (China); Collaborative Innovation Center of Advanced Microstructures, Fudan University,220 Handan Road, 200433 Shanghai (China)

    2016-07-25

    In this note we explored the holographic relative entropy in the presence of the 5d Chern-Simons term, which introduces a mixed gauge-gravity anomaly to the dual CFT. The theory trivially satisfies an entanglement first law. However, to quadratic order in perturbations of the stress tensor T and current density J, there is a mixed contribution to the relative entropy bi-linear in T and J, signalling a potential violation of the positivity of the relative entropy. Miraculously, the term vanishes up to linear order in a derivative expansion. This prompted a closer inspection on a different consistency check, that involves time-delay of a graviton propagating in a charged background, scattered via a coupling supplied by the Chern-Simons term. The analysis suggests that the time-delay can take either sign, potentially violating causality for any finite value of the CS coupling.

  20. How multiplicity determines entropy and the derivation of the maximum entropy principle for complex systems.

    Science.gov (United States)

    Hanel, Rudolf; Thurner, Stefan; Gell-Mann, Murray

    2014-05-13

    The maximum entropy principle (MEP) is a method for obtaining the most likely distribution functions of observables from statistical systems by maximizing entropy under constraints. The MEP has found hundreds of applications in ergodic and Markovian systems in statistical mechanics, information theory, and statistics. For several decades there has been an ongoing controversy over whether the notion of the maximum entropy principle can be extended in a meaningful way to nonextensive, nonergodic, and complex statistical systems and processes. In this paper we start by reviewing how Boltzmann-Gibbs-Shannon entropy is related to multiplicities of independent random processes. We then show how the relaxation of independence naturally leads to the most general entropies that are compatible with the first three Shannon-Khinchin axioms, the (c,d)-entropies. We demonstrate that the MEP is a perfectly consistent concept for nonergodic and complex statistical systems if their relative entropy can be factored into a generalized multiplicity and a constraint term. The problem of finding such a factorization reduces to finding an appropriate representation of relative entropy in a linear basis. In a particular example we show that path-dependent random processes with memory naturally require specific generalized entropies. The example is to our knowledge the first exact derivation of a generalized entropy from the microscopic properties of a path-dependent random process.

  1. Calculation of Configurational Entropy in Complex Landscapes

    Directory of Open Access Journals (Sweden)

    Samuel A Cushman

    2018-04-01

    Full Text Available Entropy and the second law of thermodynamics are fundamental concepts that underlie all natural processes and patterns. Recent research has shown how the entropy of a landscape mosaic can be calculated using the Boltzmann equation, with the entropy of a lattice mosaic equal to the logarithm of the number of ways a lattice with a given dimensionality and number of classes can be arranged to produce the same total amount of edge between cells of different classes. However, that work seemed to also suggest that the feasibility of applying this method to real landscapes was limited due to intractably large numbers of possible arrangements of raster cells in large landscapes. Here I extend that work by showing that: (1 the proportion of arrangements rather than the number with a given amount of edge length provides a means to calculate unbiased relative configurational entropy, obviating the need to compute all possible configurations of a landscape lattice; (2 the edge lengths of randomized landscape mosaics are normally distributed, following the central limit theorem; and (3 given this normal distribution it is possible to fit parametric probability density functions to estimate the expected proportion of randomized configurations that have any given edge length, enabling the calculation of configurational entropy on any landscape regardless of size or number of classes. I evaluate the boundary limits (4 for this normal approximation for small landscapes with a small proportion of a minority class and show it holds under all realistic landscape conditions. I further (5 demonstrate that this relationship holds for a sample of real landscapes that vary in size, patch richness, and evenness of area in each cover type, and (6 I show that the mean and standard deviation of the normally distributed edge lengths can be predicted nearly perfectly as a function of the size, patch richness and diversity of a landscape. Finally, (7 I show that the

  2. Autonomous entropy-based intelligent experimental design

    Science.gov (United States)

    Malakar, Nabin Kumar

    2011-07-01

    The aim of this thesis is to explore the application of probability and information theory in experimental design, and to do so in a way that combines what we know about inference and inquiry in a comprehensive and consistent manner. Present day scientific frontiers involve data collection at an ever-increasing rate. This requires that we find a way to collect the most relevant data in an automated fashion. By following the logic of the scientific method, we couple an inference engine with an inquiry engine to automate the iterative process of scientific learning. The inference engine involves Bayesian machine learning techniques to estimate model parameters based upon both prior information and previously collected data, while the inquiry engine implements data-driven exploration. By choosing an experiment whose distribution of expected results has the maximum entropy, the inquiry engine selects the experiment that maximizes the expected information gain. The coupled inference and inquiry engines constitute an autonomous learning method for scientific exploration. We apply it to a robotic arm to demonstrate the efficacy of the method. Optimizing inquiry involves searching for an experiment that promises, on average, to be maximally informative. If the set of potential experiments is described by many parameters, the search involves a high-dimensional entropy space. In such cases, a brute force search method will be slow and computationally expensive. We develop an entropy-based search algorithm, called nested entropy sampling, to select the most informative experiment. This helps to reduce the number of computations necessary to find the optimal experiment. We also extended the method of maximizing entropy, and developed a method of maximizing joint entropy so that it could be used as a principle of collaboration between two robots. This is a major achievement of this thesis, as it allows the information-based collaboration between two robotic units towards a same

  3. Entropy: Order or Information

    Science.gov (United States)

    Ben-Naim, Arieh

    2011-01-01

    Changes in entropy can "sometimes" be interpreted in terms of changes in disorder. On the other hand, changes in entropy can "always" be interpreted in terms of changes in Shannon's measure of information. Mixing and demixing processes are used to highlight the pitfalls in the association of entropy with disorder. (Contains 3 figures.)

  4. Manufacturing of High Entropy Alloys

    Science.gov (United States)

    Jablonski, Paul D.; Licavoli, Joseph J.; Gao, Michael C.; Hawk, Jeffrey A.

    2015-07-01

    High entropy alloys (HEAs) have generated interest in recent years due to their unique positioning within the alloy world. By incorporating a number of elements in high proportion they have high configurational entropy, and thus they hold the promise of interesting and useful properties such as enhanced strength and phase stability. The present study investigates the microstructure of two single-phase face-centered cubic (FCC) HEAs, CoCrFeNi and CoCrFeNiMn, with special attention given to melting, homogenization and thermo-mechanical processing. Large-scale ingots were made by vacuum induction melting to avoid the extrinsic factors inherent in small-scale laboratory button samples. A computationally based homogenization heat treatment was applied to both alloys in order to eliminate segregation due to normal ingot solidification. The alloys fabricated well, with typical thermo-mechanical processing parameters being employed.

  5. Entropie analysis of floating car data systems

    Directory of Open Access Journals (Sweden)

    F. Gössel

    2004-01-01

    Full Text Available The knowledge of the actual traffic state is a basic prerequisite of modern traffic telematic systems. Floating Car Data (FCD systems are becoming more and more important for the provision of actual and reliable traffic data. In these systems the vehicle velocity is the original variable for the evaluation of the current traffic condition. As real FCDsystems are operating under conditions of limited transmission and processing capacity the analysis of the original variable vehicle speed is of special interest. Entropy considerations are especially useful for the deduction of fundamental restrictions and limitations. The paper analyses velocity-time profiles by means of information entropy. It emphasises in quantification of the information content of velocity-time profiles and the discussion of entropy dynamic in velocity-time profiles. Investigations are based on empirical data derived during field trials. The analysis of entropy dynamic is carried out in two different ways. On one hand velocity differences within a certain interval of time are used, on the other hand the transinformation between velocities in certain time distances was evaluated. One important result is an optimal sample-rate for the detection of velocity data in FCD-systems. The influence of spatial segmentation and of different states of traffic was discussed.

  6. DINAMICAL PROCESSES, ENTROPY AND INFORMATION IN NATURAL AND SOCIAL SYSTEMS

    Directory of Open Access Journals (Sweden)

    N. V. Katargin

    2013-01-01

    Full Text Available Possible to describe complicate as natural as social systems as objects consisted of nonlinearly dependent elements at the multi-dimension (phase space contained as real as information components. The system movement is defined by natural growth of entropy and its decrease as a result of using of external energy sources and other resources. Examined the аssociation of entropy with the value of objects, as well as with humanitarian concepts: God's Providence, morality, and happiness.

  7. Entropy-based financial asset pricing.

    Directory of Open Access Journals (Sweden)

    Mihály Ormos

    Full Text Available We investigate entropy as a financial risk measure. Entropy explains the equity premium of securities and portfolios in a simpler way and, at the same time, with higher explanatory power than the beta parameter of the capital asset pricing model. For asset pricing we define the continuous entropy as an alternative measure of risk. Our results show that entropy decreases in the function of the number of securities involved in a portfolio in a similar way to the standard deviation, and that efficient portfolios are situated on a hyperbola in the expected return-entropy system. For empirical investigation we use daily returns of 150 randomly selected securities for a period of 27 years. Our regression results show that entropy has a higher explanatory power for the expected return than the capital asset pricing model beta. Furthermore we show the time varying behavior of the beta along with entropy.

  8. Entropy-based financial asset pricing.

    Science.gov (United States)

    Ormos, Mihály; Zibriczky, Dávid

    2014-01-01

    We investigate entropy as a financial risk measure. Entropy explains the equity premium of securities and portfolios in a simpler way and, at the same time, with higher explanatory power than the beta parameter of the capital asset pricing model. For asset pricing we define the continuous entropy as an alternative measure of risk. Our results show that entropy decreases in the function of the number of securities involved in a portfolio in a similar way to the standard deviation, and that efficient portfolios are situated on a hyperbola in the expected return-entropy system. For empirical investigation we use daily returns of 150 randomly selected securities for a period of 27 years. Our regression results show that entropy has a higher explanatory power for the expected return than the capital asset pricing model beta. Furthermore we show the time varying behavior of the beta along with entropy.

  9. Entropy of Iterated Function Systems and Their Relations with Black Holes and Bohr-Like Black Holes Entropies

    Directory of Open Access Journals (Sweden)

    Christian Corda

    2018-01-01

    Full Text Available In this paper we consider the metric entropies of the maps of an iterated function system deduced from a black hole which are known the Bekenstein–Hawking entropies and its subleading corrections. More precisely, we consider the recent model of a Bohr-like black hole that has been recently analysed in some papers in the literature, obtaining the intriguing result that the metric entropies of a black hole are created by the metric entropies of the functions, created by the black hole principal quantum numbers, i.e., by the black hole quantum levels. We present a new type of topological entropy for general iterated function systems based on a new kind of the inverse of covers. Then the notion of metric entropy for an Iterated Function System ( I F S is considered, and we prove that these definitions for topological entropy of IFS’s are equivalent. It is shown that this kind of topological entropy keeps some properties which are hold by the classic definition of topological entropy for a continuous map. We also consider average entropy as another type of topological entropy for an I F S which is based on the topological entropies of its elements and it is also an invariant object under topological conjugacy. The relation between Axiom A and the average entropy is investigated.

  10. Holographic charged Rényi entropies

    Science.gov (United States)

    Belin, Alexandre; Hung, Ling-Yan; Maloney, Alexander; Matsuura, Shunji; Myers, Robert C.; Sierens, Todd

    2013-12-01

    We construct a new class of entanglement measures by extending the usual definition of Rényi entropy to include a chemical potential. These charged Rényi entropies measure the degree of entanglement in different charge sectors of the theory and are given by Euclidean path integrals with the insertion of a Wilson line encircling the entangling surface. We compute these entropies for a spherical entangling surface in CFT's with holographic duals, where they are related to entropies of charged black holes with hyperbolic horizons. We also compute charged Rényi entropies in free field theories.

  11. Correlation as a Determinant of Configurational Entropy in Supramolecular and Protein Systems

    Science.gov (United States)

    2015-01-01

    For biomolecules in solution, changes in configurational entropy are thought to contribute substantially to the free energies of processes like binding and conformational change. In principle, the configurational entropy can be strongly affected by pairwise and higher-order correlations among conformational degrees of freedom. However, the literature offers mixed perspectives regarding the contributions that changes in correlations make to changes in configurational entropy for such processes. Here we take advantage of powerful techniques for simulation and entropy analysis to carry out rigorous in silico studies of correlation in binding and conformational changes. In particular, we apply information-theoretic expansions of the configurational entropy to well-sampled molecular dynamics simulations of a model host–guest system and the protein bovine pancreatic trypsin inhibitor. The results bear on the interpretation of NMR data, as they indicate that changes in correlation are important determinants of entropy changes for biologically relevant processes and that changes in correlation may either balance or reinforce changes in first-order entropy. The results also highlight the importance of main-chain torsions as contributors to changes in protein configurational entropy. As simulation techniques grow in power, the mathematical techniques used here will offer new opportunities to answer challenging questions about complex molecular systems. PMID:24702693

  12. Possible extended forms of thermodynamic entropy

    International Nuclear Information System (INIS)

    Sasa, Shin-ichi

    2014-01-01

    Thermodynamic entropy is determined by a heat measurement through the Clausius equality. The entropy then formalizes a fundamental limitation of operations by the second law of thermodynamics. The entropy is also expressed as the Shannon entropy of the microscopic degrees of freedom. Whenever an extension of thermodynamic entropy is attempted, we must pay special attention to how its three different aspects just mentioned are altered. In this paper, we discuss possible extensions of the thermodynamic entropy. (paper)

  13. Configurational entropy in brane-world models

    Energy Technology Data Exchange (ETDEWEB)

    Correa, R.A.C. [CCNH, Universidade Federal do ABC, Santo Andre, SP (Brazil); Rocha, Roldao da [CMCC, Universidade Federal do ABC, Santo Andre, SP (Brazil); International School for Advanced Studies (SISSA), Trieste (Italy)

    2015-11-15

    In this work we investigate the entropic information on thick brane-world scenarios and its consequences. The brane-world entropic information is studied for the sine-Gordon model and hence the brane-world entropic information measure is shown to be an accurate way for providing the most suitable range for the bulk AdS curvature, in particular from the informational content of physical solutions. Besides, the brane-world configurational entropy is employed to demonstrate a high organisational degree in the structure of the configuration of the system, for large values of a parameter of the sine-Gordon model but the one related to the AdS curvature. The Gleiser and Stamatopoulos procedure is finally applied in order to achieve a precise correlation between the energy of the system and the brane-world configurational entropy. (orig.)

  14. Configurational entropy in brane-world models

    Energy Technology Data Exchange (ETDEWEB)

    Correa, R. A. C., E-mail: fis04132@gmail.com [CCNH, Universidade Federal do ABC, 09210-580, Santo André, SP (Brazil); Rocha, Roldão da, E-mail: roldao.rocha@ufabc.edu.br [CMCC, Universidade Federal do ABC, 09210-580, Santo André, SP (Brazil); International School for Advanced Studies (SISSA), Via Bonomea 265, 34136, Trieste (Italy)

    2015-11-02

    In this work we investigate the entropic information on thick brane-world scenarios and its consequences. The brane-world entropic information is studied for the sine-Gordon model and hence the brane-world entropic information measure is shown to be an accurate way for providing the most suitable range for the bulk AdS curvature, in particular from the informational content of physical solutions. Besides, the brane-world configurational entropy is employed to demonstrate a high organisational degree in the structure of the configuration of the system, for large values of a parameter of the sine-Gordon model but the one related to the AdS curvature. The Gleiser and Stamatopoulos procedure is finally applied in order to achieve a precise correlation between the energy of the system and the brane-world configurational entropy.

  15. Configurational entropy in brane-world models

    International Nuclear Information System (INIS)

    Correa, R. A. C.; Rocha, Roldão da

    2015-01-01

    In this work we investigate the entropic information on thick brane-world scenarios and its consequences. The brane-world entropic information is studied for the sine-Gordon model and hence the brane-world entropic information measure is shown to be an accurate way for providing the most suitable range for the bulk AdS curvature, in particular from the informational content of physical solutions. Besides, the brane-world configurational entropy is employed to demonstrate a high organisational degree in the structure of the configuration of the system, for large values of a parameter of the sine-Gordon model but the one related to the AdS curvature. The Gleiser and Stamatopoulos procedure is finally applied in order to achieve a precise correlation between the energy of the system and the brane-world configurational entropy

  16. Monotonicity of the von Neumann entropy expressed as a function of R\\'enyi entropies

    OpenAIRE

    Fannes, Mark

    2013-01-01

    The von Neumann entropy of a density matrix of dimension d, expressed in terms of the first d-1 integer order R\\'enyi entropies, is monotonically increasing in R\\'enyi entropies of even order and decreasing in those of odd order.

  17. Driver Fatigue Detection System Using Electroencephalography Signals Based on Combined Entropy Features

    Directory of Open Access Journals (Sweden)

    Zhendong Mu

    2017-02-01

    Full Text Available Driver fatigue has become one of the major causes of traffic accidents, and is a complicated physiological process. However, there is no effective method to detect driving fatigue. Electroencephalography (EEG signals are complex, unstable, and non-linear; non-linear analysis methods, such as entropy, maybe more appropriate. This study evaluates a combined entropy-based processing method of EEG data to detect driver fatigue. In this paper, 12 subjects were selected to take part in an experiment, obeying driving training in a virtual environment under the instruction of the operator. Four types of enthrones (spectrum entropy, approximate entropy, sample entropy and fuzzy entropy were used to extract features for the purpose of driver fatigue detection. Electrode selection process and a support vector machine (SVM classification algorithm were also proposed. The average recognition accuracy was 98.75%. Retrospective analysis of the EEG showed that the extracted features from electrodes T5, TP7, TP8 and FP1 may yield better performance. SVM classification algorithm using radial basis function as kernel function obtained better results. A combined entropy-based method demonstrates good classification performance for studying driver fatigue detection.

  18. More dimensions: Less entropy

    International Nuclear Information System (INIS)

    Kolb, E.W.; Lindley, D.; Seckel, D.

    1984-01-01

    For a cosmological model with d noncompact and D compact spatial dimensions and symmetry R 1 x S/sup d/ x S/sup D/, we calculate the entropy produced in d dimensions due to the compactification of D dimensions and show it too small to be of cosmological interest. Although insufficient entropy is produced in the model we study, the contraction of extra dimensions does lead to entropy production. We discuss modifications of our assumptions, including changing our condition for decoupling of the extra dimensions, which may lead to a large entropy production and change our conclusions

  19. Permutation entropy based time series analysis: Equalities in the input signal can lead to false conclusions

    Energy Technology Data Exchange (ETDEWEB)

    Zunino, Luciano, E-mail: lucianoz@ciop.unlp.edu.ar [Centro de Investigaciones Ópticas (CONICET La Plata – CIC), C.C. 3, 1897 Gonnet (Argentina); Departamento de Ciencias Básicas, Facultad de Ingeniería, Universidad Nacional de La Plata (UNLP), 1900 La Plata (Argentina); Olivares, Felipe, E-mail: olivaresfe@gmail.com [Instituto de Física, Pontificia Universidad Católica de Valparaíso (PUCV), 23-40025 Valparaíso (Chile); Scholkmann, Felix, E-mail: Felix.Scholkmann@gmail.com [Research Office for Complex Physical and Biological Systems (ROCoS), Mutschellenstr. 179, 8038 Zurich (Switzerland); Biomedical Optics Research Laboratory, Department of Neonatology, University Hospital Zurich, University of Zurich, 8091 Zurich (Switzerland); Rosso, Osvaldo A., E-mail: oarosso@gmail.com [Instituto de Física, Universidade Federal de Alagoas (UFAL), BR 104 Norte km 97, 57072-970, Maceió, Alagoas (Brazil); Instituto Tecnológico de Buenos Aires (ITBA) and CONICET, C1106ACD, Av. Eduardo Madero 399, Ciudad Autónoma de Buenos Aires (Argentina); Complex Systems Group, Facultad de Ingeniería y Ciencias Aplicadas, Universidad de los Andes, Av. Mons. Álvaro del Portillo 12.455, Las Condes, Santiago (Chile)

    2017-06-15

    A symbolic encoding scheme, based on the ordinal relation between the amplitude of neighboring values of a given data sequence, should be implemented before estimating the permutation entropy. Consequently, equalities in the analyzed signal, i.e. repeated equal values, deserve special attention and treatment. In this work, we carefully study the effect that the presence of equalities has on permutation entropy estimated values when these ties are symbolized, as it is commonly done, according to their order of appearance. On the one hand, the analysis of computer-generated time series is initially developed to understand the incidence of repeated values on permutation entropy estimations in controlled scenarios. The presence of temporal correlations is erroneously concluded when true pseudorandom time series with low amplitude resolutions are considered. On the other hand, the analysis of real-world data is included to illustrate how the presence of a significant number of equal values can give rise to false conclusions regarding the underlying temporal structures in practical contexts. - Highlights: • Impact of repeated values in a signal when estimating permutation entropy is studied. • Numerical and experimental tests are included for characterizing this limitation. • Non-negligible temporal correlations can be spuriously concluded by repeated values. • Data digitized with low amplitude resolutions could be especially affected. • Analysis with shuffled realizations can help to overcome this limitation.

  20. Charged Rényi entropies in CFTs with Einstein-Gauss-Bonnet holographic duals

    Science.gov (United States)

    Pastras, Georgios; Manolopoulos, Dimitrios

    2014-11-01

    We calculate the Rényi entropy S q ( μ, λ), for spherical entangling surfaces in CFT's with Einstein-Gauss-Bonnet-Maxwell holographic duals. Rényi entropies must obey some interesting inequalities by definition. However, for Gauss-Bonnet couplings λ, larger than specific value, but still allowed by causality, we observe a violation of the inequality , which is related to the existence of negative entropy black holes, providing interesting restrictions in the bulk theory. Moreover, we find an interesting distinction of the behaviour of the analytic continuation of S q ( μ, λ) for imaginary chemical potential, between negative and non-negative λ.

  1. Enzyme catalysis by entropy without Circe effect.

    Science.gov (United States)

    Kazemi, Masoud; Himo, Fahmi; Åqvist, Johan

    2016-03-01

    Entropic effects have often been invoked to explain the extraordinary catalytic power of enzymes. In particular, the hypothesis that enzymes can use part of the substrate-binding free energy to reduce the entropic penalty associated with the subsequent chemical transformation has been very influential. The enzymatic reaction of cytidine deaminase appears to be a distinct example. Here, substrate binding is associated with a significant entropy loss that closely matches the activation entropy penalty for the uncatalyzed reaction in water, whereas the activation entropy for the rate-limiting catalytic step in the enzyme is close to zero. Herein, we report extensive computer simulations of the cytidine deaminase reaction and its temperature dependence. The energetics of the catalytic reaction is first evaluated by density functional theory calculations. These results are then used to parametrize an empirical valence bond description of the reaction, which allows efficient sampling by molecular dynamics simulations and computation of Arrhenius plots. The thermodynamic activation parameters calculated by this approach are in excellent agreement with experimental data and indeed show an activation entropy close to zero for the rate-limiting transition state. However, the origin of this effect is a change of reaction mechanism compared the uncatalyzed reaction. The enzyme operates by hydroxide ion attack, which is intrinsically associated with a favorable activation entropy. Hence, this has little to do with utilization of binding free energy to pay the entropic penalty but rather reflects how a preorganized active site can stabilize a reaction path that is not operational in solution.

  2. Black hole thermodynamical entropy

    International Nuclear Information System (INIS)

    Tsallis, Constantino; Cirto, Leonardo J.L.

    2013-01-01

    As early as 1902, Gibbs pointed out that systems whose partition function diverges, e.g. gravitation, lie outside the validity of the Boltzmann-Gibbs (BG) theory. Consistently, since the pioneering Bekenstein-Hawking results, physically meaningful evidence (e.g., the holographic principle) has accumulated that the BG entropy S BG of a (3+1) black hole is proportional to its area L 2 (L being a characteristic linear length), and not to its volume L 3 . Similarly it exists the area law, so named because, for a wide class of strongly quantum-entangled d-dimensional systems, S BG is proportional to lnL if d=1, and to L d-1 if d>1, instead of being proportional to L d (d ≥ 1). These results violate the extensivity of the thermodynamical entropy of a d-dimensional system. This thermodynamical inconsistency disappears if we realize that the thermodynamical entropy of such nonstandard systems is not to be identified with the BG additive entropy but with appropriately generalized nonadditive entropies. Indeed, the celebrated usefulness of the BG entropy is founded on hypothesis such as relatively weak probabilistic correlations (and their connections to ergodicity, which by no means can be assumed as a general rule of nature). Here we introduce a generalized entropy which, for the Schwarzschild black hole and the area law, can solve the thermodynamic puzzle. (orig.)

  3. Entropy-Corrected Holographic Dark Energy

    International Nuclear Information System (INIS)

    Wei Hao

    2009-01-01

    The holographic dark energy (HDE) is now an interesting candidate of dark energy, which has been studied extensively in the literature. In the derivation of HDE, the black hole entropy plays an important role. In fact, the entropy-area relation can be modified due to loop quantum gravity or other reasons. With the modified entropy-area relation, we propose the so-called 'entropy-corrected holographic dark energy' (ECHDE) in the present work. We consider many aspects of ECHDE and find some interesting results. In addition, we briefly consider the so-called 'entropy-corrected agegraphic dark energy' (ECADE). (geophysics, astronomy, and astrophysics)

  4. Save energy, without entropy

    International Nuclear Information System (INIS)

    Steinmeyer, D.

    1992-01-01

    When we talk about saving energy what we usually mean is not wasting work. What we try to do when we design a process, is to use work as effectively as possible. It's hard to do that if we can't see it clearly. This paper illustrates how work can be seen (or calculated) without imposing entropy as a screen in front of it. We've all heard that the second law tells us that the entropy of the universe is increasing, and we are left with the feeling that the universe is ultimately headed for chaos, but receive little other information from this statement. A slightly more useful statement of the second law is the work potential of the universe is decreasing. However, this statement carries a needlessly negative ring. A simplified definition of the second law is: It takes work to change things. With these two corollaries: We can calculate the theoretical minimum work needed for a given change; and We can express the value of all changes in terms of work

  5. Variations mechanism in entropy of wave height field and its relation with thermodynamic entropy

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    This paper gives a brief description of annual period and seasonal variation in the wave height field entropy in the northeastern Pacific. A calculation of the quantity of the, received by lithosphere systems in the northern hemisphere is introduced. The wave heat field entropy is compared with the difference in the quantity of the sun's radiation heat. Analysis on the transfer method, period and lag of this seasonal variation led to the conclusion that the annual period and seasonal variation in the entropy of the wave height field in the Northwestern Pacific is due to the seasonal variation of the sun's radiation heat. Furthermore, the inconsistency between thermodynamic entropy and information entropy was studied.

  6. Unification of field theory and maximum entropy methods for learning probability densities

    Science.gov (United States)

    Kinney, Justin B.

    2015-09-01

    The need to estimate smooth probability distributions (a.k.a. probability densities) from finite sampled data is ubiquitous in science. Many approaches to this problem have been described, but none is yet regarded as providing a definitive solution. Maximum entropy estimation and Bayesian field theory are two such approaches. Both have origins in statistical physics, but the relationship between them has remained unclear. Here I unify these two methods by showing that every maximum entropy density estimate can be recovered in the infinite smoothness limit of an appropriate Bayesian field theory. I also show that Bayesian field theory estimation can be performed without imposing any boundary conditions on candidate densities, and that the infinite smoothness limit of these theories recovers the most common types of maximum entropy estimates. Bayesian field theory thus provides a natural test of the maximum entropy null hypothesis and, furthermore, returns an alternative (lower entropy) density estimate when the maximum entropy hypothesis is falsified. The computations necessary for this approach can be performed rapidly for one-dimensional data, and software for doing this is provided.

  7. Unification of field theory and maximum entropy methods for learning probability densities.

    Science.gov (United States)

    Kinney, Justin B

    2015-09-01

    The need to estimate smooth probability distributions (a.k.a. probability densities) from finite sampled data is ubiquitous in science. Many approaches to this problem have been described, but none is yet regarded as providing a definitive solution. Maximum entropy estimation and Bayesian field theory are two such approaches. Both have origins in statistical physics, but the relationship between them has remained unclear. Here I unify these two methods by showing that every maximum entropy density estimate can be recovered in the infinite smoothness limit of an appropriate Bayesian field theory. I also show that Bayesian field theory estimation can be performed without imposing any boundary conditions on candidate densities, and that the infinite smoothness limit of these theories recovers the most common types of maximum entropy estimates. Bayesian field theory thus provides a natural test of the maximum entropy null hypothesis and, furthermore, returns an alternative (lower entropy) density estimate when the maximum entropy hypothesis is falsified. The computations necessary for this approach can be performed rapidly for one-dimensional data, and software for doing this is provided.

  8. Complexity Quantification for Overhead Transmission Line Emergency Repair Scheme via a Graph Entropy Method Improved with Petri Net and AHP Weighting Method

    Directory of Open Access Journals (Sweden)

    Jing Zhou

    2014-01-01

    Full Text Available According to the characteristics of emergency repair in overhead transmission line accidents, a complexity quantification method for emergency repair scheme is proposed based on the entropy method in software engineering, which is improved by using group AHP (analytical hierarchical process method and Petri net. Firstly, information structure chart model and process control flowchart model could be built by Petri net. Then impact factors on complexity of emergency repair scheme could be quantified into corresponding entropy values, respectively. Finally, by using group AHP method, weight coefficient of each entropy value would be given before calculating the overall entropy value for the whole emergency repair scheme. By comparing group AHP weighting method with average weighting method, experiment results for the former showed a stronger correlation between quantified entropy values of complexity and the actual consumed time in repair, which indicates that this new method is more valid.

  9. Entropy of a rotating and charged black string to all orders in the Planck length

    International Nuclear Information System (INIS)

    Ren, Zhao; Yue-Qin, Wu; Li-Chun, Zhang

    2009-01-01

    By using the entanglement entropy method, this paper calculates the statistical entropy of the Bose and Fermi fields in thin films, and derives the Bekenstein–Hawking entropy and its correction term on the background of a rotating and charged black string. Here, the quantum field is entangled with quantum states in the black string and thin film to the event horizon from outside the rotating and charged black string. Taking into account the effect of the generalized uncertainty principle on quantum state density, it removes the difficulty of the divergence of state density near the event horizon in the brick-wall model. These calculations and discussions imply that high density quantum states near the event horizon of a black string are strongly correlated with the quantum states in a black string and that black string entropy is a quantum effect. The ultraviolet cut-off in the brick-wall model is not reasonable. The generalized uncertainty principle should be considered in the high energy quantum field near the event horizon. From the viewpoint of quantum statistical mechanics, the correction value of Bekenstein–Hawking entropy is obtained. This allows the fundamental recognition of the correction value of black string entropy at nonspherical coordinates

  10. On unified-entropy characterization of quantum channels

    International Nuclear Information System (INIS)

    Rastegin, A E

    2012-01-01

    We consider properties of quantum channels with the use of unified entropies. Extremal unravelings of quantum channel with respect to these entropies are examined. The concept of map entropy is extended in terms of the unified entropies. The map (q, s)-entropy is naturally defined as the unified (q, s)-entropy of a rescaled dynamical matrix of given quantum channel. Inequalities of Fannes type are obtained for introduced entropies in terms of both the trace and Frobenius norms of difference between corresponding dynamical matrices. Additivity properties of introduced map entropies are discussed. The known inequality of Lindblad with the entropy exchange is generalized to many of the unified entropies. For the tensor product of a pair of quantum channels, we derive a two-sided estimate on the output entropy of a maximally entangled input state. (paper)

  11. Maximum Entropy Fundamentals

    Directory of Open Access Journals (Sweden)

    F. Topsøe

    2001-09-01

    Full Text Available Abstract: In its modern formulation, the Maximum Entropy Principle was promoted by E.T. Jaynes, starting in the mid-fifties. The principle dictates that one should look for a distribution, consistent with available information, which maximizes the entropy. However, this principle focuses only on distributions and it appears advantageous to bring information theoretical thinking more prominently into play by also focusing on the "observer" and on coding. This view was brought forward by the second named author in the late seventies and is the view we will follow-up on here. It leads to the consideration of a certain game, the Code Length Game and, via standard game theoretical thinking, to a principle of Game Theoretical Equilibrium. This principle is more basic than the Maximum Entropy Principle in the sense that the search for one type of optimal strategies in the Code Length Game translates directly into the search for distributions with maximum entropy. In the present paper we offer a self-contained and comprehensive treatment of fundamentals of both principles mentioned, based on a study of the Code Length Game. Though new concepts and results are presented, the reading should be instructional and accessible to a rather wide audience, at least if certain mathematical details are left aside at a rst reading. The most frequently studied instance of entropy maximization pertains to the Mean Energy Model which involves a moment constraint related to a given function, here taken to represent "energy". This type of application is very well known from the literature with hundreds of applications pertaining to several different elds and will also here serve as important illustration of the theory. But our approach reaches further, especially regarding the study of continuity properties of the entropy function, and this leads to new results which allow a discussion of models with so-called entropy loss. These results have tempted us to speculate over

  12. MAXIMUM PRINCIPLE FOR SUBSONIC FLOW WITH VARIABLE ENTROPY

    Directory of Open Access Journals (Sweden)

    B. Sizykh Grigory

    2017-01-01

    Full Text Available Maximum principle for subsonic flow is fair for stationary irrotational subsonic gas flows. According to this prin- ciple, if the value of the velocity is not constant everywhere, then its maximum is achieved on the boundary and only on the boundary of the considered domain. This property is used when designing form of an aircraft with a maximum critical val- ue of the Mach number: it is believed that if the local Mach number is less than unit in the incoming flow and on the body surface, then the Mach number is less then unit in all points of flow. The known proof of maximum principle for subsonic flow is based on the assumption that in the whole considered area of the flow the pressure is a function of density. For the ideal and perfect gas (the role of diffusion is negligible, and the Mendeleev-Clapeyron law is fulfilled, the pressure is a function of density if entropy is constant in the entire considered area of the flow. Shows an example of a stationary sub- sonic irrotational flow, in which the entropy has different values on different stream lines, and the pressure is not a function of density. The application of the maximum principle for subsonic flow with respect to such a flow would be unreasonable. This example shows the relevance of the question about the place of the points of maximum value of the velocity, if the entropy is not a constant. To clarify the regularities of the location of these points, was performed the analysis of the com- plete Euler equations (without any simplifying assumptions in 3-D case. The new proof of the maximum principle for sub- sonic flow was proposed. This proof does not rely on the assumption that the pressure is a function of density. Thus, it is shown that the maximum principle for subsonic flow is true for stationary subsonic irrotational flows of ideal perfect gas with variable entropy.

  13. Compressibility and rarefaction effects on entropy and entropy generation in micro/nano Couette flow using DSMC

    International Nuclear Information System (INIS)

    Ejtehadi, Omid; Esfahani, Javad Abolfazli; Roohi, Ehsan

    2012-01-01

    In the present work, compressible flow of argon gas in the famous problem of Couette flow in micro/nano-scale is considered and numerically analyzed using the direct simulation Monte Carlo (DSMC) method. The effects of compressibility and rarefaction on entropy and entropy generation in terms of viscous dissipation and thermal diffusion are studied in a wide range of Mach and Knudsen numbers and the observed physics are discussed. In this regard, we computed entropy by using its kinetic theory formulation in a microscopic way while the entropy generation distribution is achieved by applying a semi-microscopic approach and thoroughly free from equilibrium assumptions. The results of our simulations demonstrated that the entropy profiles are in accordance with the temperature profiles. It is also illustrated that the increase of Mach number will result in non-uniform entropy profiles with increase in the vicinity of the central regions of the channel. Moreover, generation of entropy in all regions of the domain stages clear growth. By contrast, increasing the Knudsen number has inverse effects such as: uniform entropy profiles and a falling off in entropy generation amount throughout the channel.

  14. Entropy in Biology

    Indian Academy of Sciences (India)

    During the process of ageing, the balance shifts in the direction of anarchy. Death is ... tion of life and the laws of statistieal physics and entropy, both of which ... capable of doing work. ... defined by Ludwig Boltzmann in 1877, the entropy of the.

  15. Preimage entropy dimension of topological dynamical systems

    OpenAIRE

    Liu, Lei; Zhou, Xiaomin; Zhou, Xiaoyao

    2014-01-01

    We propose a new definition of preimage entropy dimension for continuous maps on compact metric spaces, investigate fundamental properties of the preimage entropy dimension, and compare the preimage entropy dimension with the topological entropy dimension. The defined preimage entropy dimension holds various basic properties of topological entropy dimension, for example, the preimage entropy dimension of a subsystem is bounded by that of the original system and topologically conjugated system...

  16. Configurational entropy of charged AdS black holes

    Directory of Open Access Journals (Sweden)

    Chong Oh Lee

    2017-09-01

    Full Text Available When we consider charged AdS black holes in higher dimensional spacetime and a molecule number density along coexistence curves is numerically extended to higher dimensional cases. It is found that a number density difference of a small and large black holes decrease as a total dimension grows up. In particular, we find that a configurational entropy is a concave function of a reduced temperature and reaches a maximum value at a critical (second-order phase transition point. Furthermore, the bigger a total dimension becomes, the more concave function in a configurational entropy while the more convex function in a reduced pressure.

  17. Combinatorics of the SU(2) black hole entropy in loop quantum gravity

    International Nuclear Information System (INIS)

    Agullo, Ivan; Barbero G, J. Fernando; Borja, Enrique F.; Diaz-Polo, Jacobo; Villasenor, Eduardo J. S.

    2009-01-01

    We use the combinatorial and number-theoretical methods developed in previous works by the authors to study black hole entropy in the new proposal put forth by Engle, Noui, and Perez. Specifically, we give the generating functions relevant for the computation of the entropy and use them to derive its asymptotic behavior, including the value of the Immirzi parameter and the coefficient of the logarithmic correction.

  18. On S-mixing entropy of quantum channels

    Science.gov (United States)

    Mukhamedov, Farrukh; Watanabe, Noboru

    2018-06-01

    In this paper, an S-mixing entropy of quantum channels is introduced as a generalization of Ohya's S-mixing entropy. We investigate several properties of the introduced entropy. Moreover, certain relations between the S-mixing entropy and the existing map and output entropies of quantum channels are investigated as well. These relations allowed us to find certain connections between separable states and the introduced entropy. Hence, there is a sufficient condition to detect entangled states. Moreover, several properties of the introduced entropy are investigated. Besides, entropies of qubit and phase-damping channels are calculated.

  19. Entropy: From Thermodynamics to Hydrology

    Directory of Open Access Journals (Sweden)

    Demetris Koutsoyiannis

    2014-02-01

    Full Text Available Some known results from statistical thermophysics as well as from hydrology are revisited from a different perspective trying: (a to unify the notion of entropy in thermodynamic and statistical/stochastic approaches of complex hydrological systems and (b to show the power of entropy and the principle of maximum entropy in inference, both deductive and inductive. The capability for deductive reasoning is illustrated by deriving the law of phase change transition of water (Clausius-Clapeyron from scratch by maximizing entropy in a formal probabilistic frame. However, such deductive reasoning cannot work in more complex hydrological systems with diverse elements, yet the entropy maximization framework can help in inductive inference, necessarily based on data. Several examples of this type are provided in an attempt to link statistical thermophysics with hydrology with a unifying view of entropy.

  20. Algebraic entropy for algebraic maps

    International Nuclear Information System (INIS)

    Hone, A N W; Ragnisco, Orlando; Zullo, Federico

    2016-01-01

    We propose an extension of the concept of algebraic entropy, as introduced by Bellon and Viallet for rational maps, to algebraic maps (or correspondences) of a certain kind. The corresponding entropy is an index of the complexity of the map. The definition inherits the basic properties from the definition of entropy for rational maps. We give an example with positive entropy, as well as two examples taken from the theory of Bäcklund transformations. (letter)

  1. Nonsymmetric entropy I: basic concepts and results

    OpenAIRE

    Liu, Chengshi

    2006-01-01

    A new concept named nonsymmetric entropy which generalizes the concepts of Boltzman's entropy and shannon's entropy, was introduced. Maximal nonsymmetric entropy principle was proven. Some important distribution laws were derived naturally from maximal nonsymmetric entropy principle.

  2. Entropy and Multifractality in Relativistic Ion-Ion Collisions

    Directory of Open Access Journals (Sweden)

    Shaista Khan

    2018-01-01

    Full Text Available Entropy production in multiparticle systems is investigated by analyzing the experimental data on ion-ion collisions at AGS and SPS energies and comparing the findings with those reported earlier for hadron-hadron, hadron-nucleus, and nucleus-nucleus collisions. It is observed that the entropy produced in limited and full phase space, when normalized to maximum rapidity, exhibits a kind of scaling which is nicely supported by Monte Carlo model HIJING. Using Rényi’s order q information entropy, multifractal characteristics of particle production are examined in terms of generalized dimensions, Dq. Nearly the same values of multifractal specific heat, c, observed in hadronic and ion-ion collisions over a wide range of incident energies suggest that the quantity c might be used as a universal characteristic of multiparticle production in hadron-hadron, hadron-nucleus, and nucleus-nucleus collisions. The analysis is extended to the study of spectrum of scaling indices. The findings reveal that Rényi’s order q information entropy could be another way to investigate the fluctuations in multiplicity distributions in terms of spectral function f(α, which has been argued to be a convenient function for comparison sake not only among different experiments but also between the data and theoretical models.

  3. The constraint rule of the maximum entropy principle

    NARCIS (Netherlands)

    Uffink, J.

    1995-01-01

    The principle of maximum entropy is a method for assigning values to probability distributions on the basis of partial information. In usual formulations of this and related methods of inference one assumes that this partial information takes the form of a constraint on allowed probability

  4. Statistical mechanical theory of liquid entropy

    International Nuclear Information System (INIS)

    Wallace, D.C.

    1993-01-01

    The multiparticle correlation expansion for the entropy of a classical monatomic liquid is presented. This entropy expresses the physical picture in which there is no free particle motion, but rather, each atom moves within a cage formed by its neighbors. The liquid expansion, including only pair correlations, gives an excellent account of the experimental entropy of most liquid metals, of liquid argon, and the hard sphere liquid. The pair correlation entropy is well approximated by a universal function of temperature. Higher order correlation entropy, due to n-particle irreducible correlations for n≥3, is significant in only a few liquid metals, and its occurrence suggests the presence of n-body forces. When the liquid theory is applied to the study of melting, the author discovers the important classification of normal and anomalous melting, according to whether there is not or is a significant change in the electronic structure upon melting, and he discovers the universal disordering entropy for melting of a monatomic crystal. Interesting directions for future research are: extension to include orientational correlations of molecules, theoretical calculation of the entropy of water, application to the entropy of the amorphous state, and correlational entropy of compressed argon. The author clarifies the relation among different entropy expansions in the recent literature

  5. Entropy and equilibrium via games of complexity

    Science.gov (United States)

    Topsøe, Flemming

    2004-09-01

    It is suggested that thermodynamical equilibrium equals game theoretical equilibrium. Aspects of this thesis are discussed. The philosophy is consistent with maximum entropy thinking of Jaynes, but goes one step deeper by deriving the maximum entropy principle from an underlying game theoretical principle. The games introduced are based on measures of complexity. Entropy is viewed as minimal complexity. It is demonstrated that Tsallis entropy ( q-entropy) and Kaniadakis entropy ( κ-entropy) can be obtained in this way, based on suitable complexity measures. A certain unifying effect is obtained by embedding these measures in a two-parameter family of entropy functions.

  6. Enthalpy–entropy compensation

    Indian Academy of Sciences (India)

    Enthalpy–entropy compensation is the name given to the correlation sometimes observed between the estimates of the enthalpy and entropy of a reaction obtained from temperature-dependence data. Although the mainly artefactual nature of this correlation has been known for many years, the subject enjoys periodical ...

  7. Entropy, related thermodynamic properties, and structure of methylisocyanate

    International Nuclear Information System (INIS)

    Davis, Phil S.; Kilpatrick, John E.

    2013-01-01

    Highlights: ► The thermodynamic properties of methylisocyanate have been determined by isothermal calorimetry from 15 to 298.15 K. ► The third law entropy has been compared with the entropy calculated by statistical thermodynamics. ► The comparisons are consistent with selected proposed molecular structures and vibrational frequencies. -- Abstract: The entropy and related thermodynamic properties of methylisocyanate, CH 3 NCO, have been determined by isothermal calorimetry. The entropy in the ideal gas state at 298.15 K and 1 atmosphere is S m o = 284.3 ± 0.6 J/K · mol. Other thermodynamic properties determined include: the heat capacity from 15 to 300 K, the temperature of fusion (T fus = 178.461 ± 0.024 K), the enthalpy of fusion (ΔH fus = 7455.2 ± 14.0 J/mol), the enthalpy of vaporization at 298.15 K (ΔH vap = 28768 ± 54 J/mol), and the vapor pressure from fusion to 300 K. Using statistical thermodynamics, the entropy in this same state has been calculated for various assumed structures for methylisocyante which have been proposed based on several spectroscopic and ab initio results. Comparisons between the experimental and calculated entropy have led to the following conclusions concerning historical differences among problematic structural properties: (1) The CNC/CNO angles can have the paired values of 140/180° or 135/173° respectively. It is not possible to distinguish between the two by this thermodynamic analysis. (2) The methyl group functions as a free rotor or near free rotor against the NCO rigid frame. The barrier to internal rotation is less than 2100 J/mol. (3) The CNC vibrational bending frequency is consistent with the more recently observed assignments at 165 and 172 cm −1 with some degree of anharmonicity or with a pure harmonic at about 158 cm −1

  8. Ensemble Entropy for Monitoring Network Design

    Directory of Open Access Journals (Sweden)

    Leonardo Alfonso

    2014-03-01

    Full Text Available Information-theory provides, among others, conceptual methods to quantify the amount of information contained in single random variables and methods to quantify the amount of information contained and shared among two or more variables. Although these concepts have been successfully applied in hydrology and other fields, the evaluation of these quantities is sensitive to different assumptions in the estimation of probabilities. An example is the histogram bin size used to estimate probabilities to calculate Information Theory quantities via frequency methods. The present research aims at introducing a method to take into consideration the uncertainty coming from these parameters in the evaluation of the North Sea’s water level network. The main idea is that the entropy of a random variable can be represented as a probability distribution of possible values, instead of entropy being a deterministic value. The method consists of solving multiple scenarios of Multi-Objective Optimization Problem in which information content is maximized and redundancy is minimized. Results include probabilistic analysis of the chosen parameters on the resulting family of Pareto fronts, providing additional criteria on the selection of the final set of monitoring points.

  9. On holographic defect entropy

    International Nuclear Information System (INIS)

    Estes, John; Jensen, Kristan; O’Bannon, Andy; Tsatis, Efstratios; Wrase, Timm

    2014-01-01

    We study a number of (3+1)- and (2+1)-dimensional defect and boundary conformal field theories holographically dual to supergravity theories. In all cases the defects or boundaries are planar, and the defects are codimension-one. Using holography, we compute the entanglement entropy of a (hemi-)spherical region centered on the defect (boundary). We define defect and boundary entropies from the entanglement entropy by an appropriate background subtraction. For some (3+1)-dimensional theories we find evidence that the defect/boundary entropy changes monotonically under certain renormalization group flows triggered by operators localized at the defect or boundary. This provides evidence that the g-theorem of (1+1)-dimensional field theories generalizes to higher dimensions

  10. Entropy and cosmology.

    Science.gov (United States)

    Zucker, M. H.

    This paper is a critical analysis and reassessment of entropic functioning as it applies to the question of whether the ultimate fate of the universe will be determined in the future to be "open" (expanding forever to expire in a big chill), "closed" (collapsing to a big crunch), or "flat" (balanced forever between the two). The second law of thermodynamics declares that entropy can only increase and that this principle extends, inevitably, to the universe as a whole. This paper takes the position that this extension is an unwarranted projection based neither on experience nonfact - an extrapolation that ignores the powerful effect of a gravitational force acting within a closed system. Since it was originally presented by Clausius, the thermodynamic concept of entropy has been redefined in terms of "order" and "disorder" - order being equated with a low degree of entropy and disorder with a high degree. This revised terminology more subjective than precise, has generated considerable confusion in cosmology in several critical instances. For example - the chaotic fireball of the big bang, interpreted by Stephen Hawking as a state of disorder (high entropy), is infinitely hot and, thermally, represents zero entropy (order). Hawking, apparently focusing on the disorderly "chaotic" aspect, equated it with a high degree of entropy - overlooking the fact that the universe is a thermodynamic system and that the key factor in evaluating the big-bang phenomenon is the infinitely high temperature at the early universe, which can only be equated with zero entropy. This analysis resolves this confusion and reestablishes entropy as a cosmological function integrally linked to temperature. The paper goes on to show that, while all subsystems contained within the universe require external sources of energization to have their temperatures raised, this requirement does not apply to the universe as a whole. The universe is the only system that, by itself can raise its own

  11. Heat transfer entropy resistance for the analyses of two-stream heat exchangers and two-stream heat exchanger networks

    International Nuclear Information System (INIS)

    Cheng, XueTao; Liang, XinGang

    2013-01-01

    The entropy generation minimization method is often used to analyze heat transfer processes from the thermodynamic viewpoint. In this paper, we analyze common heat transfer processes with the concept of entropy generation, and propose the concept of heat transfer entropy resistance. It is found that smaller heat transfer entropy resistance leads to smaller equivalent thermodynamic force difference with prescribed heat transfer rate and larger heat transfer rate with prescribed equivalent thermodynamic force difference. With the concept of heat transfer entropy resistance, the performance of two-stream heat exchangers (THEs) and two-stream heat exchanger networks (THENs) is analyzed. For the cases discussed in this paper, it is found that smaller heat transfer entropy resistance always leads to better heat transfer performance for THEs and THENs, while smaller values of the entropy generation, entropy generation numbers and revised entropy generation number do not always. -- Highlights: • The concept of entropy resistance is defined. • The minimum entropy resistance principle is developed. • Smaller entropy resistance leads to better heat transfer

  12. Entropy maximization

    Indian Academy of Sciences (India)

    Abstract. It is shown that (i) every probability density is the unique maximizer of relative entropy in an appropriate class and (ii) in the class of all pdf f that satisfy. ∫ fhi dμ = λi for i = 1, 2,...,...k the maximizer of entropy is an f0 that is pro- portional to exp(. ∑ ci hi ) for some choice of ci . An extension of this to a continuum of.

  13. Excess Entropy and Diffusivity

    Indian Academy of Sciences (India)

    First page Back Continue Last page Graphics. Excess Entropy and Diffusivity. Excess entropy scaling of diffusivity (Rosenfeld,1977). Analogous relationships also exist for viscosity and thermal conductivity.

  14. Universal corrections to entanglement entropy of local quantum quenches

    Energy Technology Data Exchange (ETDEWEB)

    David, Justin R.; Khetrapal, Surbhi [Centre for High Energy Physics, Indian Institute of Science,C.V. Raman Avenue, Bangalore 560012 (India); Kumar, S. Prem [Department of Physics, Swansea University,Singleton Park, Swansea SA2 8PP (United Kingdom)

    2016-08-22

    We study the time evolution of single interval Rényi and entanglement entropies following local quantum quenches in two dimensional conformal field theories at finite temperature for which the locally excited states have a finite temporal width ϵ. We show that, for local quenches produced by the action of a conformal primary field, the time dependence of Rényi and entanglement entropies at order ϵ{sup 2} is universal. It is determined by the expectation value of the stress tensor in the replica geometry and proportional to the conformal dimension of the primary field generating the local excitation. We also show that in CFTs with a gravity dual, the ϵ{sup 2} correction to the holographic entanglement entropy following a local quench precisely agrees with the CFT prediction. We then consider CFTs admitting a higher spin symmetry and turn on a higher spin chemical potential μ. We calculate the time dependence of the order ϵ{sup 2} correction to the entanglement entropy for small μ, and show that the contribution at order μ{sup 2} is universal. We verify our arguments against exact results for minimal models and the free fermion theory.

  15. On Entropy Generation and the Effect of Heat and Mass Transfer Coupling in a Distillation Process

    Science.gov (United States)

    Burgos-Madrigal, Paulina; Mendoza, Diego F.; López de Haro, Mariano

    2018-01-01

    The entropy production rates as obtained from the exergy analysis, entropy balance and the nonequilibrium thermodynamics approach are compared for two distillation columns. The first case is a depropanizer column involving a mixture of ethane, propane, n-butane and n-pentane. The other is a weighed sample of Mexican crude oil distilled with a pilot scale fractionating column. The composition, temperature and flow profiles, for a given duty and operating conditions in each column, are obtained with the Aspen Plus V8.4 software by using the RateFrac model with a rate-based nonequilibrium column. For the depropanizer column the highest entropy production rate is found in the central trays where most of the mass transfer occurs, while in the second column the highest values correspond to the first three stages (where the vapor mixture is in contact with the cold liquid reflux), and to the last three stages (where the highest temperatures take place). The importance of the explicit inclusion of thermal diffusion in these processes is evaluated. In the depropanizer column, the effect of the coupling between heat and mass transfer is found to be negligible, while for the fractionating column it becomes appreciable.

  16. A simple method for estimating the entropy of neural activity

    International Nuclear Information System (INIS)

    Berry II, Michael J; Tkačik, Gašper; Dubuis, Julien; Marre, Olivier; Da Silveira, Rava Azeredo

    2013-01-01

    The number of possible activity patterns in a population of neurons grows exponentially with the size of the population. Typical experiments explore only a tiny fraction of the large space of possible activity patterns in the case of populations with more than 10 or 20 neurons. It is thus impossible, in this undersampled regime, to estimate the probabilities with which most of the activity patterns occur. As a result, the corresponding entropy—which is a measure of the computational power of the neural population—cannot be estimated directly. We propose a simple scheme for estimating the entropy in the undersampled regime, which bounds its value from both below and above. The lower bound is the usual ‘naive’ entropy of the experimental frequencies. The upper bound results from a hybrid approximation of the entropy which makes use of the naive estimate, a maximum entropy fit, and a coverage adjustment. We apply our simple scheme to artificial data, in order to check their accuracy; we also compare its performance to those of several previously defined entropy estimators. We then apply it to actual measurements of neural activity in populations with up to 100 cells. Finally, we discuss the similarities and differences between the proposed simple estimation scheme and various earlier methods. (paper)

  17. Giant onsite electronic entropy enhances the performance of ceria for water splitting

    DEFF Research Database (Denmark)

    Naghavi, S. Shahab; Emery, Antoine A.; Hansen, Heine Anton

    2017-01-01

    lanthanides, and reaches a maximum value of ≈4.7 kB per oxygen vacancy for Ce4+/Ce3+ reduction. This unique and large positive entropy source in ceria explains its excellent performance for high-temperature catalytic redox reactions such as water splitting. Our calculations also show that terbium dioxide has...... a high electronic entropy and thus could also be a potential candidate for solar thermochemical reactions....

  18. Entropy of self-gravitating radiation

    International Nuclear Information System (INIS)

    Sorkin, R.D.; Wald, R.M.; Jiu, Z.Z.

    1981-01-01

    The entropy of self-gravitating radiation confined to a spherical box of radius R is examined in the context of general relativity. It is expected that configurations (i.e., initial data) which extremize total entropy will be spherically symmetric, time symmetric distributions of radiation in local thermodynamic equilibrium. Assuming this is the case, it is proved that extrema of S coincide precisely with static equilibrium configurations of the radiation fluid. Furthermore, dynamically stable equilibrium configurations are shown to coincide with local maxima of S. The equilibrium configurations and their entropies are calculated and their properties are discussed. However, it is shown that entropies higher than these local extrema can be achieved and, indeed, arbitrarily high entropies can be attained by configurations inside of or outside but arbitrarily near their own Schwarzschild radius. However, consideration is limited to configurations which are outside their own Schwarzschild radius by at least one radiation wavelength, then the entropy is bounded and it is found Ssub(max) < is approximately equal to MR, where M is the total mass. This supports the validity for self-gravitating systems of the Bekenstein upper limit on the entropy to energy ratio of material bodies. (author)

  19. Entropy-based derivation of generalized distributions for hydrometeorological frequency analysis

    Science.gov (United States)

    Chen, Lu; Singh, Vijay P.

    2018-02-01

    Frequency analysis of hydrometeorological and hydrological extremes is needed for the design of hydraulic and civil infrastructure facilities as well as water resources management. A multitude of distributions have been employed for frequency analysis of these extremes. However, no single distribution has been accepted as a global standard. Employing the entropy theory, this study derived five generalized distributions for frequency analysis that used different kinds of information encoded as constraints. These distributions were the generalized gamma (GG), the generalized beta distribution of the second kind (GB2), and the Halphen type A distribution (Hal-A), Halphen type B distribution (Hal-B) and Halphen type inverse B distribution (Hal-IB), among which the GG and GB2 distribution were previously derived by Papalexiou and Koutsoyiannis (2012) and the Halphen family was first derived using entropy theory in this paper. The entropy theory allowed to estimate parameters of the distributions in terms of the constraints used for their derivation. The distributions were tested using extreme daily and hourly rainfall data. Results show that the root mean square error (RMSE) values were very small, which indicated that the five generalized distributions fitted the extreme rainfall data well. Among them, according to the Akaike information criterion (AIC) values, generally the GB2 and Halphen family gave a better fit. Therefore, those general distributions are one of the best choices for frequency analysis. The entropy-based derivation led to a new way for frequency analysis of hydrometeorological extremes.

  20. EEG artifacts reduction by multivariate empirical mode decomposition and multiscale entropy for monitoring depth of anaesthesia during surgery.

    Science.gov (United States)

    Liu, Quan; Chen, Yi-Feng; Fan, Shou-Zen; Abbod, Maysam F; Shieh, Jiann-Shing

    2017-08-01

    Electroencephalography (EEG) has been widely utilized to measure the depth of anaesthesia (DOA) during operation. However, the EEG signals are usually contaminated by artifacts which have a consequence on the measured DOA accuracy. In this study, an effective and useful filtering algorithm based on multivariate empirical mode decomposition and multiscale entropy (MSE) is proposed to measure DOA. Mean entropy of MSE is used as an index to find artifacts-free intrinsic mode functions. The effect of different levels of artifacts on the performances of the proposed filtering is analysed using simulated data. Furthermore, 21 patients' EEG signals are collected and analysed using sample entropy to calculate the complexity for monitoring DOA. The correlation coefficients of entropy and bispectral index (BIS) results show 0.14 ± 0.30 and 0.63 ± 0.09 before and after filtering, respectively. Artificial neural network (ANN) model is used for range mapping in order to correlate the measurements with BIS. The ANN method results show strong correlation coefficient (0.75 ± 0.08). The results in this paper verify that entropy values and BIS have a strong correlation for the purpose of DOA monitoring and the proposed filtering method can effectively filter artifacts from EEG signals. The proposed method performs better than the commonly used wavelet denoising method. This study provides a fully adaptive and automated filter for EEG to measure DOA more accuracy and thus reduce risk related to maintenance of anaesthetic agents.

  1. Entropy in molecular recognition by proteins.

    Science.gov (United States)

    Caro, José A; Harpole, Kyle W; Kasinath, Vignesh; Lim, Jackwee; Granja, Jeffrey; Valentine, Kathleen G; Sharp, Kim A; Wand, A Joshua

    2017-06-20

    Molecular recognition by proteins is fundamental to molecular biology. Dissection of the thermodynamic energy terms governing protein-ligand interactions has proven difficult, with determination of entropic contributions being particularly elusive. NMR relaxation measurements have suggested that changes in protein conformational entropy can be quantitatively obtained through a dynamical proxy, but the generality of this relationship has not been shown. Twenty-eight protein-ligand complexes are used to show a quantitative relationship between measures of fast side-chain motion and the underlying conformational entropy. We find that the contribution of conformational entropy can range from favorable to unfavorable, which demonstrates the potential of this thermodynamic variable to modulate protein-ligand interactions. For about one-quarter of these complexes, the absence of conformational entropy would render the resulting affinity biologically meaningless. The dynamical proxy for conformational entropy or "entropy meter" also allows for refinement of the contributions of solvent entropy and the loss in rotational-translational entropy accompanying formation of high-affinity complexes. Furthermore, structure-based application of the approach can also provide insight into long-lived specific water-protein interactions that escape the generic treatments of solvent entropy based simply on changes in accessible surface area. These results provide a comprehensive and unified view of the general role of entropy in high-affinity molecular recognition by proteins.

  2. q-entropy for symbolic dynamical systems

    International Nuclear Information System (INIS)

    Zhao, Yun; Pesin, Yakov

    2015-01-01

    For symbolic dynamical systems we use the Carathéodory construction as described in (Pesin 1997 Dimension Theory in Dynamical Systems, ConTemporary Views and Applications (Chicago: University of Chicago Press)) to introduce the notions of q-topological and q-metric entropies. We describe some basic properties of these entropies and in particular, discuss relations between q-metric entropy and local metric entropy. Both q-topological and q-metric entropies are new invariants respectively under homeomorphisms and metric isomorphisms of dynamical systems. (paper)

  3. Entropy Production in Pipeline Flow of Dispersions of Water in Oil

    Directory of Open Access Journals (Sweden)

    Rajinder Pal

    2014-08-01

    Full Text Available Entropy production in pipeline adiabatic flow of water-in-oil emulsions is investigated experimentally in three different diameter pipes. The dispersed-phase (water droplets concentration of emulsion is varied from 0 to 41% vol. The entropy production rates in emulsion flow are compared with the values expected in single-phase flow of Newtonian fluids with the same properties (viscosity and density. While in the laminar regime the entropy production rates in emulsion flow can be described adequately by the single-phase Newtonian equations, a significant deviation from single-phase flow behavior is observed in the turbulent regime. In the turbulent regime, the entropy production rates in emulsion flow are found to be substantially smaller than those expected on the basis of single-phase equations. For example, the entropy production rate in water-in-oil emulsion flow at a dispersed-phase volume fraction of 0.41 is only 38.4% of that observed in flow of a single-phase Newtonian fluid with the same viscosity and density, when comparison is made at a Reynolds number of 4000. Thus emulsion flow in pipelines is more efficient thermodynamically than single-phase Newtonian flow.

  4. A Maximum Entropy Approach to Loss Distribution Analysis

    Directory of Open Access Journals (Sweden)

    Marco Bee

    2013-03-01

    Full Text Available In this paper we propose an approach to the estimation and simulation of loss distributions based on Maximum Entropy (ME, a non-parametric technique that maximizes the Shannon entropy of the data under moment constraints. Special cases of the ME density correspond to standard distributions; therefore, this methodology is very general as it nests most classical parametric approaches. Sampling the ME distribution is essential in many contexts, such as loss models constructed via compound distributions. Given the difficulties in carrying out exact simulation,we propose an innovative algorithm, obtained by means of an extension of Adaptive Importance Sampling (AIS, for the approximate simulation of the ME distribution. Several numerical experiments confirm that the AIS-based simulation technique works well, and an application to insurance data gives further insights in the usefulness of the method for modelling, estimating and simulating loss distributions.

  5. Small molecule hydration energy and entropy from 3D-RISM

    Science.gov (United States)

    Johnson, J.; Case, D. A.; Yamazaki, T.; Gusarov, S.; Kovalenko, A.; Luchko, T.

    2016-09-01

    Implicit solvent models offer an attractive way to estimate the effects of a solvent environment on the properties of small or large solutes without the complications of explicit simulations. One common test of accuracy is to compute the free energy of transfer from gas to liquid for a variety of small molecules, since many of these values have been measured. Studies of the temperature dependence of these values (i.e. solvation enthalpies and entropies) can provide additional insights into the performance of implicit solvent models. Here, we show how to compute temperature derivatives of hydration free energies for the 3D-RISM integral equation approach. We have computed hydration free energies of 1123 small drug-like molecules (both neutral and charged). Temperature derivatives were also used to calculate hydration energies and entropies of 74 of these molecules (both neutral and charged) for which experimental data is available. While direct results have rather poor agreement with experiment, we have found that several previously proposed linear hydration free energy correction schemes give good agreement with experiment. These corrections also provide good agreement for hydration energies and entropies though simple extensions are required in some cases.

  6. Small molecule hydration energy and entropy from 3D-RISM

    International Nuclear Information System (INIS)

    Johnson, J; Case, D A; Yamazaki, T; Gusarov, S; Kovalenko, A; Luchko, T

    2016-01-01

    Implicit solvent models offer an attractive way to estimate the effects of a solvent environment on the properties of small or large solutes without the complications of explicit simulations. One common test of accuracy is to compute the free energy of transfer from gas to liquid for a variety of small molecules, since many of these values have been measured. Studies of the temperature dependence of these values (i.e. solvation enthalpies and entropies) can provide additional insights into the performance of implicit solvent models. Here, we show how to compute temperature derivatives of hydration free energies for the 3D-RISM integral equation approach. We have computed hydration free energies of 1123 small drug-like molecules (both neutral and charged). Temperature derivatives were also used to calculate hydration energies and entropies of 74 of these molecules (both neutral and charged) for which experimental data is available. While direct results have rather poor agreement with experiment, we have found that several previously proposed linear hydration free energy correction schemes give good agreement with experiment. These corrections also provide good agreement for hydration energies and entropies though simple extensions are required in some cases. (paper)

  7. Generalized Uncertainty Principle and Black Hole Entropy of Higher-Dimensional de Sitter Spacetime

    International Nuclear Information System (INIS)

    Zhao Haixia; Hu Shuangqi; Zhao Ren; Li Huaifan

    2007-01-01

    Recently, there has been much attention devoted to resolving the quantum corrections to the Bekenstein-Hawking black hole entropy. In particular, many researchers have expressed a vested interest in the coefficient of the logarithmic term of the black hole entropy correction term. In this paper, we calculate the correction value of the black hole entropy by utilizing the generalized uncertainty principle and obtain the correction term caused by the generalized uncertainty principle. Because in our calculation we think that the Bekenstein-Hawking area theorem is still valid after considering the generalized uncertainty principle, we derive that the coefficient of the logarithmic term of the black hole entropy correction term is positive. This result is different from the known result at present. Our method is valid not only for four-dimensional spacetimes but also for higher-dimensional spacetimes. In the whole process, the physics idea is clear and calculation is simple. It offers a new way for studying the entropy correction of the complicated spacetime.

  8. Entropy Maximization

    Indian Academy of Sciences (India)

    It is shown that (i) every probability density is the unique maximizer of relative entropy in an appropriate class and (ii) in the class of all pdf that satisfy ∫ f h i d = i for i = 1 , 2 , … , … k the maximizer of entropy is an f 0 that is proportional to exp ⁡ ( ∑ c i h i ) for some choice of c i . An extension of this to a continuum of ...

  9. Classicality condition on a system observable in a quantum measurement and a relative-entropy conservation law

    Science.gov (United States)

    Kuramochi, Yui; Ueda, Masahito

    2015-03-01

    We consider the information flow on a system observable X corresponding to a positive-operator-valued measure under a quantum measurement process Y described by a completely positive instrument from the viewpoint of the relative entropy. We establish a sufficient condition for the relative-entropy conservation law which states that the average decrease in the relative entropy of the system observable X equals the relative entropy of the measurement outcome of Y , i.e., the information gain due to measurement. This sufficient condition is interpreted as an assumption of classicality in the sense that there exists a sufficient statistic in a joint successive measurement of Y followed by X such that the probability distribution of the statistic coincides with that of a single measurement of X for the premeasurement state. We show that in the case when X is a discrete projection-valued measure and Y is discrete, the classicality condition is equivalent to the relative-entropy conservation for arbitrary states. The general theory on the relative-entropy conservation is applied to typical quantum measurement models, namely, quantum nondemolition measurement, destructive sharp measurements on two-level systems, a photon counting, a quantum counting, homodyne and heterodyne measurements. These examples except for the nondemolition and photon-counting measurements do not satisfy the known Shannon-entropy conservation law proposed by Ban [M. Ban, J. Phys. A: Math. Gen. 32, 1643 (1999), 10.1088/0305-4470/32/9/012], implying that our approach based on the relative entropy is applicable to a wider class of quantum measurements.

  10. Detection of topological phase transitions through entropy measurements: The case of germanene

    Science.gov (United States)

    Grassano, D.; Pulci, O.; Shubnyi, V. O.; Sharapov, S. G.; Gusynin, V. P.; Kavokin, A. V.; Varlamov, A. A.

    2018-05-01

    We propose a characterization tool for studies of the band structure of new materials promising for the observation of topological phase transitions. We show that a specific resonant feature in the entropy per electron dependence on the chemical potential may be considered as a fingerprint of the transition between topological and trivial insulator phases. The entropy per electron in a honeycomb two-dimensional crystal of germanene subjected to the external electric field is obtained from the first-principles calculation of the density of electronic states and the Maxwell relation. We demonstrate that, in agreement with the recent prediction of the analytical model, strong spikes in the entropy per particle dependence on the chemical potential appear at low temperatures. They are observed at the values of the applied bias both below and above the critical value that corresponds to the transition between the topological insulator and trivial insulator phases, whereas the giant resonant feature in the vicinity of the zero chemical potential is strongly suppressed at the topological transition point, in the low-temperature limit. In a wide energy range, the van Hove singularities in the electronic density of states manifest themselves as zeros in the entropy per particle dependence on the chemical potential.

  11. Entropy evaporated by a black hole

    International Nuclear Information System (INIS)

    Zurek, W.H.

    1982-01-01

    It is shown that the entropy of the radiation evaporated by an uncharged, nonrotating black hole into vacuum in the course of its lifetime is approximately (4/3) times the initial entropy of this black hole. Also considered is a thermodynamically reversible process in which an increase of black-hole entropy is equal to the decrease of the entropy of its surroundings. Implications of these results for the generalized second law of thermodynamics and for the interpretation of black-hole entropy are pointed out

  12. Entropy generation in a mixed convection Poiseulle flow of molybdenum disulphide Jeffrey nanofluid

    Science.gov (United States)

    Gul, Aaiza; Khan, Ilyas; Makhanov, Stanislav S.

    2018-06-01

    Entropy analysis in a mixed convection Poiseulle flow of a Molybdenum Disulphide Jeffrey Nanofluid (MDJN) is presented. Mixed convection is caused due to buoyancy force and external pressure gradient. The problem is formulated in terms of a boundary value problem for a system of partial differential equations. An analytical solution for the velocity and the temperature is obtained using the perturbation technique. Entropy generation has been derived as a function of the velocity and temperature gradients. The solutions are displayed graphically and the relevant importance of the input parameters is discussed. A Jeffrey nanofluid (JN) has been compared with a second grade nanofluid (SGN) and Newtonian nanofluid (NN). It is found that the entropy generation decreases when the temperature increases whereas increasing the Brickman number increases entropy generation.

  13. Spectral entropy as a monitor of depth of propofol induced sedation.

    LENUS (Irish Health Repository)

    Mahon, Padraig

    2012-02-03

    OBJECTIVE: The aim of this prospective, observational study was to evaluate State and Response entropy (Entropy(TM) Monitor, GE Healthcare, Finland), indices as measures of moderate ("conscious") sedation in healthy adult patients receiving a low dose propofol infusion. Sedation was evaluated using: (I) the responsiveness component of the OAA\\/S scale (Observer\\'s Assessment of Alertness\\/Sedation scale) and (II) multi-channel electroencephalogram (EEG) interpretation by a clinical expert. METHODS: 12 ASA I patients were recruited. A target-controlled infusion of propofol was administered (using Schnider\\'s pharmacokinetic model) with an initial effect site concentration set to 0.5 microg ml(-1). A 4 minute equilibrium period was allowed. This concentration was increased at 4 minute intervals by 0.5 microg ml(-1) to a maximum of 2.0 microg ml(-1). State (SE) and Response (RE), entropy values were recorded for each 4 minute epoch together with clinical sedation scores (OAA\\/S) and continuous multi-channel EEG. The multi-channel EEG recorded during the final minute of each 4 minute epoch or "patient\\/time unit" was presented to a neurophysiologist who assigned a label "sedated\\/not sedated". SE\\/RE values were compared in patient\\/time units with clinical or EEG evidence of sedation versus those without. RESULTS: Mean SE and RE values were less in patient\\/time units when clinical evidence of sedation was present, [mean = 86.8 (95% CI, 84.0-88.3) and 94.3 (95%CI, 92-96.1)], P = 0.002 and P = 0.001, respectively. In patient\\/time units assigned the label "sedated" by the clinical neurophysiologist assessing the multi-channel EEG, SE and RE values were less [mean = 87.5 (95% CI, 86.3-88.4) and 95.0 (95% CI, 93.8-96.1)] P = 0.001 and P < 0.001, respectively. CONCLUSIONS: A statistically significant decrease in SE and RE values was demonstrated in patient\\/time units in which clinical or EEG evidence of sedation was present. We conclude that spectral entropy

  14. Entropy and transverse section reconstruction

    International Nuclear Information System (INIS)

    Gullberg, G.T.

    1976-01-01

    A new approach to the reconstruction of a transverse section using projection data from multiple views incorporates the concept of maximum entropy. The principle of maximizing information entropy embodies the assurance of minimizing bias or prejudice in the reconstruction. Using maximum entropy is a necessary condition for the reconstructed image. This entropy criterion is most appropriate for 3-D reconstruction of objects from projections where the system is underdetermined or the data are limited statistically. This is the case in nuclear medicine time limitations in patient studies do not yield sufficient projections

  15. The residual entropy of Shastry-Sutherland lattice of rare-earth tetraborides

    Energy Technology Data Exchange (ETDEWEB)

    Novikov, V.V., E-mail: vvnovikov@mail.ru [Bryansk Physical Laboratory, Petrovsky Bryansk State University, 14, Bezhitskaja St., 241036, Bryansk (Russian Federation); Matovnikov, A.V.; Mitroshenkov, N.V. [Bryansk Physical Laboratory, Petrovsky Bryansk State University, 14, Bezhitskaja St., 241036, Bryansk (Russian Federation); Tolstosheev, A.K. [Bryansk State Technical University, 7, Bulvar 50-letiya Oktyabrya, 241035, Bryansk (Russian Federation)

    2016-05-05

    The experimental temperature dependence of thulium tetraboride specific heat C{sub p}(T) and other heat capacity data for other RE-tetraborides were investigated in the 2–300 K temperature interval. Anomalies of C{sub p}(T) dependence of TmB{sub 4} at T{sub N1} = 9.6 K and T{sub N2} = 11.4 K due to the antiferromagnetic ordering have been revealed. The ground state of the ion Tm{sup 3+} was confirmed as a doublet. The diffuse anomaly of C{sub p}(T) is attributed to the Schottky contribution to the specific heat of the tetraboride, which is caused by the influence of the crystal electric field (CEF). The presence of the residual (zero-point) entropy S{sub 0} of the magnetic moments system of Tm{sup 3+} ions, due to frustration of the Shastry-Sutherland lattice, is detected. As a measure of the frustration of the system, a new characteristic of frustrated systems, the entropy frustration figure of merit, the value of which depends on the zero-point entropy of the system, is introduced: f{sub S} = S{sub 0}/ΔS{sub m} {sub max}, where ΔS{sub m} {sub max} is the maximum value of entropy change of the boride magnetic subsystem. For TmB{sub 4} and tetraborides of Gd, Tb, Dy, Ho, and Er, f{sub s} values determined from thermal measurements, and f = θ{sub c-w}/T{sub N} (θ{sub c-w} denotes the Curie-Weiss temperature; T{sub N} is Neel temperature), calculated according to the magnetic measurement data, are practically identical. - Highlights: • The specific heat of tulium tetraboride at 2–300 K was experimentally investigated. • The nature of the ground state is established. • The Schottky contribution to the specific heat of tetraboride is identified. • The frustration figures of merit of RB{sub 4} correspond to their entropy at absolute zero.

  16. Multivariate multiscale entropy of financial markets

    Science.gov (United States)

    Lu, Yunfan; Wang, Jun

    2017-11-01

    In current process of quantifying the dynamical properties of the complex phenomena in financial market system, the multivariate financial time series are widely concerned. In this work, considering the shortcomings and limitations of univariate multiscale entropy in analyzing the multivariate time series, the multivariate multiscale sample entropy (MMSE), which can evaluate the complexity in multiple data channels over different timescales, is applied to quantify the complexity of financial markets. Its effectiveness and advantages have been detected with numerical simulations with two well-known synthetic noise signals. For the first time, the complexity of four generated trivariate return series for each stock trading hour in China stock markets is quantified thanks to the interdisciplinary application of this method. We find that the complexity of trivariate return series in each hour show a significant decreasing trend with the stock trading time progressing. Further, the shuffled multivariate return series and the absolute multivariate return series are also analyzed. As another new attempt, quantifying the complexity of global stock markets (Asia, Europe and America) is carried out by analyzing the multivariate returns from them. Finally we utilize the multivariate multiscale entropy to assess the relative complexity of normalized multivariate return volatility series with different degrees.

  17. Maximum entropy reconstruction of the configurational density of states from microcanonical simulations

    International Nuclear Information System (INIS)

    Davis, Sergio

    2013-01-01

    In this work we develop a method for inferring the underlying configurational density of states of a molecular system by combining information from several microcanonical molecular dynamics or Monte Carlo simulations at different energies. This method is based on Jaynes' Maximum Entropy formalism (MaxEnt) for Bayesian statistical inference under known expectation values. We present results of its application to measure thermodynamic entropy and free energy differences in embedded-atom models of metals.

  18. Temperature multiscale entropy analysis: a promising marker for early prediction of mortality in septic patients

    International Nuclear Information System (INIS)

    Papaioannou, V E; Pneumatikos, I A; Chouvarda, I G; Maglaveras, N K; Baltopoulos, G I

    2013-01-01

    A few studies estimating temperature complexity have found decreased Shannon entropy, during severe stress. In this study, we measured both Shannon and Tsallis entropy of temperature signals in a cohort of critically ill patients and compared these measures with the sequential organ failure assessment (SOFA) score, in terms of intensive care unit (ICU) mortality. Skin temperature was recorded in 21 mechanically ventilated patients, who developed sepsis and septic shock during the first 24 h of an ICU-acquired infection. Shannon and Tsallis entropies were calculated in wavelet-based decompositions of the temperature signal. Statistically significant differences of entropy features were tested between survivors and non-survivors and classification models were built, for predicting final outcome. Significantly reduced Tsallis and Shannon entropies were found in non-survivors (seven patients, 33%) as compared to survivors. Wavelet measurements of both entropy metrics were found to predict ICU mortality better than SOFA, according to a combination of area under the curve, sensitivity and specificity values. Both entropies exhibited similar prognostic accuracy. Combination of SOFA and entropy presented improved the outcome of univariate models. We suggest that reduced wavelet Shannon and Tsallis entropies of temperature signals may complement SOFA in mortality prediction, during the first 24 h of an ICU-acquired infection. (paper)

  19. Intra-Tumour Signalling Entropy Determines Clinical Outcome in Breast and Lung Cancer

    Science.gov (United States)

    Banerji, Christopher R. S.; Severini, Simone; Caldas, Carlos; Teschendorff, Andrew E.

    2015-01-01

    The cancer stem cell hypothesis, that a small population of tumour cells are responsible for tumorigenesis and cancer progression, is becoming widely accepted and recent evidence has suggested a prognostic and predictive role for such cells. Intra-tumour heterogeneity, the diversity of the cancer cell population within the tumour of an individual patient, is related to cancer stem cells and is also considered a potential prognostic indicator in oncology. The measurement of cancer stem cell abundance and intra-tumour heterogeneity in a clinically relevant manner however, currently presents a challenge. Here we propose signalling entropy, a measure of signalling pathway promiscuity derived from a sample’s genome-wide gene expression profile, as an estimate of the stemness of a tumour sample. By considering over 500 mixtures of diverse cellular expression profiles, we reveal that signalling entropy also associates with intra-tumour heterogeneity. By analysing 3668 breast cancer and 1692 lung adenocarcinoma samples, we further demonstrate that signalling entropy correlates negatively with survival, outperforming leading clinical gene expression based prognostic tools. Signalling entropy is found to be a general prognostic measure, valid in different breast cancer clinical subgroups, as well as within stage I lung adenocarcinoma. We find that its prognostic power is driven by genes involved in cancer stem cells and treatment resistance. In summary, by approximating both stemness and intra-tumour heterogeneity, signalling entropy provides a powerful prognostic measure across different epithelial cancers. PMID:25793737

  20. Dynamical entropy for infinite quantum systems

    International Nuclear Information System (INIS)

    Hudetz, T.

    1990-01-01

    We review the recent physical application of the so-called Connes-Narnhofer-Thirring entropy, which is the successful quantum mechanical generalization of the classical Kolmogorov-Sinai entropy and, by its very conception, is a dynamical entropy for infinite quantum systems. We thus comparingly review also the physical applications of the classical dynamical entropy for infinite classical systems. 41 refs. (Author)

  1. Structural transformations of heat treated Co-less high entropy alloys

    Science.gov (United States)

    Mitrica, D.; Tudor, A.; Rinaldi, A.; Soare, V.; Predescu, C.; Berbecaru, A.; Stoiciu, F.; Badilita, V.

    2018-03-01

    Co is considered to be one of the main ingredients in superalloys. Co is considered a critical element and its substitution is difficult due to its unique ability to form high temperature stable structures with high mechanical and corrosion/oxidation resistance. High entropy alloys (HEA) represent a relatively new concept in material design. HEA are characterised by a high number of alloying elements, in unusually high proportion. Due to their specific particularities, high entropy alloys tend to form predominant solid solution structures that develop potentially high chemical, physical and mechanical properties. Present paper is studying Co-less high entropy alloys with high potential in severe environment applications. The high entropy alloys based on Al-Cr-Fe-Mn-Ni system were prepared by induction melting and casting under protective atmosphere. The as-cast specimens were heat treated at various temperatures to determine the structure and property behaviour. Samples taken before and after heat treatment were investigated for chemical, physical, structural and mechanical characteristics. Sigma phase composition and heat treatment parameters had major influence over the resulted alloy structure and properties.

  2. On the maximum entropy distributions of inherently positive nuclear data

    Energy Technology Data Exchange (ETDEWEB)

    Taavitsainen, A., E-mail: aapo.taavitsainen@gmail.com; Vanhanen, R.

    2017-05-11

    The multivariate log-normal distribution is used by many authors and statistical uncertainty propagation programs for inherently positive quantities. Sometimes it is claimed that the log-normal distribution results from the maximum entropy principle, if only means, covariances and inherent positiveness of quantities are known or assumed to be known. In this article we show that this is not true. Assuming a constant prior distribution, the maximum entropy distribution is in fact a truncated multivariate normal distribution – whenever it exists. However, its practical application to multidimensional cases is hindered by lack of a method to compute its location and scale parameters from means and covariances. Therefore, regardless of its theoretical disadvantage, use of other distributions seems to be a practical necessity. - Highlights: • Statistical uncertainty propagation requires a sampling distribution. • The objective distribution of inherently positive quantities is determined. • The objectivity is based on the maximum entropy principle. • The maximum entropy distribution is the truncated normal distribution. • Applicability of log-normal or normal distribution approximation is limited.

  3. Time-evolution of the entropy of fluctuations in some biological systems as investigated by NMR

    International Nuclear Information System (INIS)

    Lenk, R.

    1979-01-01

    A simple expression for the entropy of fluctuations has been developed, using the tunnelling-effect model. This gives the possibility to estimate the changes and evolution of entropy in non-crystalline and biological samples by NMR investigations. On the other hand, the oscillatory character of the time-evolution of some properties, experimentally found in the investigated samples of plants, is interpreted in terms of the generalized master equation with an exponential memory function. (Auth.)

  4. Entropy generation and thermodynamic analysis of solar air heaters with artificial roughness on absorber plate

    Directory of Open Access Journals (Sweden)

    Prasad Radha K.

    2017-09-01

    Full Text Available This paper presents mathematical modelling and numerical analysis to evaluate entropy generation analysis (EGA by considering pressure drop and second law efficiency based on thermodynamics for forced convection heat transfer in rectangular duct of a solar air heater with wire as artificial roughness in the form of arc shape geometry on the absorber plate. The investigation includes evaluations of entropy generation, entropy generation number, Bejan number and irreversibilities of roughened as well as smooth absorber plate solar air heaters to compare the relative performances. Furthermore, effects of various roughness parameters and operating parameters on entropy generation have also been investigated. Entropy generation and irreversibilities (exergy destroyed has its minimum value at relative roughness height of 0.0422 and relative angle of attack of 0.33, which leads to the maximum exergetic efficiency. Entropy generation and exergy based analyses can be adopted for the evaluation of the overall performance of solar air heaters.

  5. Analyzing the financial crisis using the entropy density function

    Science.gov (United States)

    Oh, Gabjin; Kim, Ho-yong; Ahn, Seok-Won; Kwak, Wooseop

    2015-02-01

    The risk that is created by nonlinear interactions among subjects in economic systems is assumed to increase during an abnormal state of a financial market. Nevertheless, investigating the systemic risk in financial markets following the global financial crisis is not sufficient. In this paper, we analyze the entropy density function in the return time series for several financial markets, such as the S&P500, KOSPI, and DAX indices, from October 2002 to December 2011 and analyze the variability in the entropy value over time. We find that the entropy density function of the S&P500 index during the subprime crisis exhibits a significant decrease compared to that in other periods, whereas the other markets, such as those in Germany and Korea, exhibit no significant decrease during the market crisis. These findings demonstrate that the S&P500 index generated a regular pattern in the return time series during the financial crisis.

  6. The Entropy of Words—Learnability and Expressivity across More than 1000 Languages

    Directory of Open Access Journals (Sweden)

    Christian Bentz

    2017-06-01

    Full Text Available The choice associated with words is a fundamental property of natural languages. It lies at the heart of quantitative linguistics, computational linguistics and language sciences more generally. Information theory gives us tools at hand to measure precisely the average amount of choice associated with words: the word entropy. Here, we use three parallel corpora, encompassing ca. 450 million words in 1916 texts and 1259 languages, to tackle some of the major conceptual and practical problems of word entropy estimation: dependence on text size, register, style and estimation method, as well as non-independence of words in co-text. We present two main findings: Firstly, word entropies display relatively narrow, unimodal distributions. There is no language in our sample with a unigram entropy of less than six bits/word. We argue that this is in line with information-theoretic models of communication. Languages are held in a narrow range by two fundamental pressures: word learnability and word expressivity, with a potential bias towards expressivity. Secondly, there is a strong linear relationship between unigram entropies and entropy rates. The entropy difference between words with and without co-textual information is narrowly distributed around ca. three bits/word. In other words, knowing the preceding text reduces the uncertainty of words by roughly the same amount across languages of the world.

  7. Entropy Generation Across Earth's Bow Shock

    Science.gov (United States)

    Parks, George K.; McCarthy, Michael; Fu, Suiyan; Lee E. s; Cao, Jinbin; Goldstein, Melvyn L.; Canu, Patrick; Dandouras, Iannis S.; Reme, Henri; Fazakerley, Andrew; hide

    2011-01-01

    Earth's bow shock is a transition layer that causes an irreversible change in the state of plasma that is stationary in time. Theories predict entropy increases across the bow shock but entropy has never been directly measured. Cluster and Double Star plasma experiments measure 3D plasma distributions upstream and downstream of the bow shock that allow calculation of Boltzmann's entropy function H and his famous H-theorem, dH/dt O. We present the first direct measurements of entropy density changes across Earth's bow shock. We will show that this entropy generation may be part of the processes that produce the non-thermal plasma distributions is consistent with a kinetic entropy flux model derived from the collisionless Boltzmann equation, giving strong support that solar wind's total entropy across the bow shock remains unchanged. As far as we know, our results are not explained by any existing shock models and should be of interests to theorists.

  8. The Grading Entropy-based Criteria for Structural Stability of Granular Materials and Filters

    Directory of Open Access Journals (Sweden)

    Janos Lőrincz

    2015-05-01

    Full Text Available This paper deals with three grading entropy-based rules that describe different soil structure stability phenomena: an internal stability rule, a filtering rule and a segregation rule. These rules are elaborated on the basis of a large amount of laboratory testing and from existing knowledge in the field. Use is made of the theory of grading entropy to derive parameters which incorporate all of the information of the grading curve into a pair of entropy-based parameters that allow soils with common behaviours to be grouped into domains on an entropy diagram. Applications of the derived entropy-based rules are presented by examining the reason of a dam failure, by testing against the existing filter rules from the literature, and by giving some examples for the design of non-segregating grading curves (discrete particle size distributions by dry weight. A physical basis for the internal stability rule is established, wherein the higher values of base entropy required for granular stability are shown to reflect the closeness between the mean and maximum grain diameters, which explains how there are sufficient coarser grains to achieve a stable grain skeleton.

  9. Entropy Growth in the Early Universe and Confirmation of Initial Big Bang Conditions

    Science.gov (United States)

    Beckwith, Andrew

    2009-09-01

    This paper shows how increased entropy values from an initially low big bang level can be measured experimentally by counting relic gravitons. Furthermore the physical mechanism of this entropy increase is explained via analogies with early-universe phase transitions. The role of Jack Ng's (2007, 2008a, 2008b) revised infinite quantum statistics in the physics of gravitational wave detection is acknowledged. Ng's infinite quantum statistics can be used to show that ΔS~ΔNgravitons is a startmg point to the increasing net universe cosmological entropy. Finally, in a nod to similarities AS ZPE analysis, it is important to note that the resulting ΔS~ΔNgravitons ≠ 1088, that in fact it is much lower, allowing for evaluating initial graviton production as an emergent field phenomena, which may be similar to how ZPE states can be used to extract energy from a vacuum if entropy is not maximized. The rapid increase in entropy so alluded to without near sudden increases to 1088 may be enough to allow successful modeling of relic graviton production for entropy in a manner similar to ZPE energy extraction from a vacuum state.

  10. Topological entropy of continuous functions on topological spaces

    International Nuclear Information System (INIS)

    Liu Lei; Wang Yangeng; Wei Guo

    2009-01-01

    Adler, Konheim and McAndrew introduced the concept of topological entropy of a continuous mapping for compact dynamical systems. Bowen generalized the concept to non-compact metric spaces, but Walters indicated that Bowen's entropy is metric-dependent. We propose a new definition of topological entropy for continuous mappings on arbitrary topological spaces (compactness, metrizability, even axioms of separation not necessarily required), investigate fundamental properties of the new entropy, and compare the new entropy with the existing ones. The defined entropy generates that of Adler, Konheim and McAndrew and is metric-independent for metrizable spaces. Yet, it holds various basic properties of Adler, Konheim and McAndrew's entropy, e.g., the entropy of a subsystem is bounded by that of the original system, topologically conjugated systems have a same entropy, the entropy of the induced hyperspace system is larger than or equal to that of the original system, and in particular this new entropy coincides with Adler, Konheim and McAndrew's entropy for compact systems

  11. Problems in black-hole entropy interpretation

    International Nuclear Information System (INIS)

    Liberati, S.

    1997-01-01

    In this work some proposals for black-hole entropy interpretation are exposed and investigated. In particular, the author will firstly consider the so-called 'entanglement entropy' interpretation, in the framework of the brick wall model and the divergence problem arising in the one-loop calculations of various thermodynamical quantities, like entropy, internal energy and heat capacity. It is shown that the assumption of equality of entanglement entropy and Bekenstein-Hawking one appears to give inconsistent results. These will be a starting point for a different interpretation of black.hole entropy based on peculiar topological structures of manifolds with 'intrinsic' thermodynamical features. It is possible to show an exact relation between black-hole gravitational entropy and topology of these Euclidean space-times. the expression for the Euler characteristic, through the Gauss-Bonnet integral, and the one for entropy for gravitational instantons are proposed in a form which makes the relation between these self-evident. Using this relation he propose a generalization of the Bekenstein-Hawking entropy in which the former and Euler characteristic are related in the equation S = χA / 8. Finally, he try to expose some conclusions and hypotheses about possible further development of this research

  12. Single-cell entropy for accurate estimation of differentiation potency from a cell's transcriptome

    Science.gov (United States)

    Teschendorff, Andrew E.; Enver, Tariq

    2017-01-01

    The ability to quantify differentiation potential of single cells is a task of critical importance. Here we demonstrate, using over 7,000 single-cell RNA-Seq profiles, that differentiation potency of a single cell can be approximated by computing the signalling promiscuity, or entropy, of a cell's transcriptome in the context of an interaction network, without the need for feature selection. We show that signalling entropy provides a more accurate and robust potency estimate than other entropy-based measures, driven in part by a subtle positive correlation between the transcriptome and connectome. Signalling entropy identifies known cell subpopulations of varying potency and drug resistant cancer stem-cell phenotypes, including those derived from circulating tumour cells. It further reveals that expression heterogeneity within single-cell populations is regulated. In summary, signalling entropy allows in silico estimation of the differentiation potency and plasticity of single cells and bulk samples, providing a means to identify normal and cancer stem-cell phenotypes. PMID:28569836

  13. Gravitational entropies in LTB dust models

    International Nuclear Information System (INIS)

    Sussman, Roberto A; Larena, Julien

    2014-01-01

    We consider generic Lemaître–Tolman–Bondi (LTB) dust models to probe the gravitational entropy proposals of Clifton, Ellis and Tavakol (CET) and of Hosoya and Buchert (HB). We also consider a variant of the HB proposal based on a suitable quasi-local scalar weighted average. We show that the conditions for entropy growth for all proposals are directly related to a negative correlation of similar fluctuations of the energy density and Hubble scalar. While this correlation is evaluated locally for the CET proposal, it must be evaluated in a non-local domain dependent manner for the two HB proposals. By looking at the fulfilment of these conditions at the relevant asymptotic limits we are able to provide a well grounded qualitative description of the full time evolution and radial asymptotic scaling of the three entropies in generic models. The following rigorous analytic results are obtained for the three proposals: (i) entropy grows when the density growing mode is dominant, (ii) all ever-expanding hyperbolic models reach a stable terminal equilibrium characterized by an inhomogeneous entropy maximum in their late time evolution; (iii) regions with decaying modes and collapsing elliptic models exhibit unstable equilibria associated with an entropy minimum (iv) near singularities the CET entropy diverges while the HB entropies converge; (v) the CET entropy converges for all models in the radial asymptotic range, whereas the HB entropies only converge for models asymptotic to a Friedmann–Lemaître–Robertson–Walker background. The fact that different independent proposals yield fairly similar conditions for entropy production, time evolution and radial scaling in generic LTB models seems to suggest that their common notion of a ‘gravitational entropy’ may be a theoretically robust concept applicable to more general spacetimes. (paper)

  14. Information Entropy Production of Maximum Entropy Markov Chains from Spike Trains

    Directory of Open Access Journals (Sweden)

    Rodrigo Cofré

    2018-01-01

    Full Text Available The spiking activity of neuronal networks follows laws that are not time-reversal symmetric; the notion of pre-synaptic and post-synaptic neurons, stimulus correlations and noise correlations have a clear time order. Therefore, a biologically realistic statistical model for the spiking activity should be able to capture some degree of time irreversibility. We use the thermodynamic formalism to build a framework in the context maximum entropy models to quantify the degree of time irreversibility, providing an explicit formula for the information entropy production of the inferred maximum entropy Markov chain. We provide examples to illustrate our results and discuss the importance of time irreversibility for modeling the spike train statistics.

  15. Enthalpy-entropy compensation in protein unfolding

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Enthalpy-entropy compensation was found to be a universal law in protein unfolding based on over 3 000 experimental data. Water molecular reorganization accompanying the protein unfolding was suggested as the origin of the enthalpy-entropy compensation in protein unfolding. It is indicated that the enthalpy-entropy compensation constitutes the physical foundation that satisfies the biological need of the small free energy changes in protein unfolding, without the sacrifice of the bio-diversity of proteins. The enthalpy-entropy compensation theory proposed herein also provides valuable insights into the Privalov's puzzle of enthalpy and entropy convergence in protein unfolding.

  16. The Entropy of Co-Compact Open Covers

    Directory of Open Access Journals (Sweden)

    Steven Bourquin

    2013-06-01

    Full Text Available Co-compact entropy is introduced as an invariant of topological conjugation for perfect mappings defined on any Hausdorff space (compactness and metrizability are not necessarily required. This is achieved through the consideration of co-compact covers of the space. The advantages of co-compact entropy include: (1 it does not require the space to be compact and, thus, generalizes Adler, Konheim and McAndrew’s topological entropy of continuous mappings on compact dynamical systems; and (2 it is an invariant of topological conjugation, compared to Bowen’s entropy, which is metric-dependent. Other properties of co-compact entropy are investigated, e.g., the co-compact entropy of a subsystem does not exceed that of the whole system. For the linear system, (R; f, defined by f(x = 2x, the co-compact entropy is zero, while Bowen’s entropy for this system is at least log 2. More generally, it is found that co-compact entropy is a lower bound of Bowen’s entropies, and the proof of this result also generates the Lebesgue Covering Theorem to co-compact open covers of non-compact metric spaces.

  17. Maximum-Entropy Inference with a Programmable Annealer

    Science.gov (United States)

    Chancellor, Nicholas; Szoke, Szilard; Vinci, Walter; Aeppli, Gabriel; Warburton, Paul A.

    2016-03-01

    Optimisation problems typically involve finding the ground state (i.e. the minimum energy configuration) of a cost function with respect to many variables. If the variables are corrupted by noise then this maximises the likelihood that the solution is correct. The maximum entropy solution on the other hand takes the form of a Boltzmann distribution over the ground and excited states of the cost function to correct for noise. Here we use a programmable annealer for the information decoding problem which we simulate as a random Ising model in a field. We show experimentally that finite temperature maximum entropy decoding can give slightly better bit-error-rates than the maximum likelihood approach, confirming that useful information can be extracted from the excited states of the annealer. Furthermore we introduce a bit-by-bit analytical method which is agnostic to the specific application and use it to show that the annealer samples from a highly Boltzmann-like distribution. Machines of this kind are therefore candidates for use in a variety of machine learning applications which exploit maximum entropy inference, including language processing and image recognition.

  18. On Thermodynamic Interpretation of Transfer Entropy

    Directory of Open Access Journals (Sweden)

    Don C. Price

    2013-02-01

    Full Text Available We propose a thermodynamic interpretation of transfer entropy near equilibrium, using a specialised Boltzmann’s principle. The approach relates conditional probabilities to the probabilities of the corresponding state transitions. This in turn characterises transfer entropy as a difference of two entropy rates: the rate for a resultant transition and another rate for a possibly irreversible transition within the system affected by an additional source. We then show that this difference, the local transfer entropy, is proportional to the external entropy production, possibly due to irreversibility. Near equilibrium, transfer entropy is also interpreted as the difference in equilibrium stabilities with respect to two scenarios: a default case and the case with an additional source. Finally, we demonstrated that such a thermodynamic treatment is not applicable to information flow, a measure of causal effect.

  19. Entropy type complexity of quantum processes

    International Nuclear Information System (INIS)

    Watanabe, Noboru

    2014-01-01

    von Neumann entropy represents the amount of information in the quantum state, and this was extended by Ohya for general quantum systems [10]. Umegaki first defined the quantum relative entropy for σ-finite von Neumann algebras, which was extended by Araki, and Uhlmann, for general von Neumann algebras and *-algebras, respectively. In 1983 Ohya introduced the quantum mutual entropy by using compound states; this describes the amount of information correctly transmitted through the quantum channel, which was also extended by Ohya for general quantum systems. In this paper, we briefly explain Ohya's S-mixing entropy and the quantum mutual entropy for general quantum systems. By using structure equivalent class, we will introduce entropy type functionals based on quantum information theory to improve treatment for the Gaussian communication process. (paper)

  20. Notes on entanglement entropy in string theory

    International Nuclear Information System (INIS)

    He, Song; Numasawa, Tokiro; Takayanagi, Tadashi; Watanabe, Kento

    2015-01-01

    In this paper, we study the conical entropy in string theory in the simplest setup of dividing the nine dimensional space into two halves. This corresponds to the leading quantum correction to the horizon entropy in string theory on the Rindler space. This entropy is also called the conical entropy and includes surface term contributions. We first derive a new simple formula of the conical entropy for any free higher spin fields. Then we apply this formula to computations of conical entropy in open and closed superstring. In our analysis of closed string, we study the twisted conical entropy defined by making use of string theory on Melvin backgrounds. This quantity is easier to calculate owing to the folding trick. Our analysis shows that the conical entropy in closed superstring is UV finite owing to the string scale cutoff.

  1. Entropy and Entropy Production: Old Misconceptions and New Breakthroughs

    Directory of Open Access Journals (Sweden)

    Leonid M. Martyushev

    2013-03-01

    Full Text Available Persistent misconceptions existing for dozens of years and influencing progress in various fields of science are sometimes encountered in the scientific and especially, the popular-science literature. The present brief review deals with two such interrelated misconceptions (misunderstandings. The first misunderstanding: entropy is a measure of disorder. This is an old and very common opinion. The second misconception is that the entropy production minimizes in the evolution of nonequilibrium systems. However, as it has recently become clear, evolution (progress in Nature demonstrates the opposite, i.e., maximization of the entropy production. The principal questions connected with this maximization are considered herein. The two misconceptions mentioned above can lead to the apparent contradiction between the conclusions of modern thermodynamics and the basic conceptions of evolution existing in biology. In this regard, the analysis of these issues seems extremely important and timely as it contributes to the deeper understanding of the laws of development of the surrounding World and the place of humans in it.

  2. Entropy, energy and negativity in Fermi-resonance coupled states of substituted methanes

    International Nuclear Information System (INIS)

    Hou Xiwen; Wan Mingfang; Ma Zhongqi

    2010-01-01

    Several measures of entanglement have attracted considerable interest in the relationship of a measure of entanglement with other quantities. The dynamics of entropy, energy and negativity is studied for Fermi-resonance coupled vibrations in substituted methanes with three kinds of initial mixed states, which are the mixed density matrices of binomial states, thermal states and squeezed states on two vibrational modes, respectively. It is demonstrated that for mixed binomial states and mixed thermal states with small magnitudes the entropies of the stretch and the bend are anti-correlated in the same oscillatory frequency, so do the energies for each kind of state with small magnitudes, whereas the entropies exhibit positive correlations with the corresponding energies. Furthermore, for small magnitudes quantum mutual entropy is positively correlated with the interacting energy. Analytic forms of entropies and energies are provided with initial conditions in which they are stationary, and the agreement between analytic and numerical simulations is satisfactory. The dynamical entanglement measured by negativity is examined for those states and conditions. It is shown that negativity displays a sudden death for mixed binomial states and mixed thermal states with small magnitudes, and the time-averaged negativity has the minimal value under the conditions of stationary entropies and energies. Moreover, negativity is positively correlated with the mutual entropy and the interacting energy just for mixed squeezed states with small magnitudes. Those are useful for molecular quantum information processing and dynamical entanglement.

  3. Entropy-power uncertainty relations: towards a tight inequality for all Gaussian pure states

    International Nuclear Information System (INIS)

    Hertz, Anaelle; Jabbour, Michael G; Cerf, Nicolas J

    2017-01-01

    We show that a proper expression of the uncertainty relation for a pair of canonically-conjugate continuous variables relies on entropy power, a standard notion in Shannon information theory for real-valued signals. The resulting entropy-power uncertainty relation is equivalent to the entropic formulation of the uncertainty relation due to Bialynicki-Birula and Mycielski, but can be further extended to rotated variables. Hence, based on a reasonable assumption, we give a partial proof of a tighter form of the entropy-power uncertainty relation taking correlations into account and provide extensive numerical evidence of its validity. Interestingly, it implies the generalized (rotation-invariant) Schrödinger–Robertson uncertainty relation exactly as the original entropy-power uncertainty relation implies Heisenberg relation. It is saturated for all Gaussian pure states, in contrast with hitherto known entropic formulations of the uncertainty principle. (paper)

  4. Entropy considerations in constraining the mSUGRA parameter space

    International Nuclear Information System (INIS)

    Nunez, Dario; Sussman, Roberto A.; Zavala, Jesus; Nellen, Lukas; Cabral-Rosetti, Luis G.; Mondragon, Myriam

    2006-01-01

    We explore the use of two criteria to constraint the allowed parameter space in mSUGRA models. Both criteria are based in the calculation of the present density of neutralinos as dark matter in the Universe. The first one is the usual ''abundance'' criterion which is used to calculate the relic density after the ''freeze-out'' era. To compute the relic density we used the numerical public code micrOMEGAs. The second criterion applies the microcanonical definition of entropy to a weakly interacting and self-gravitating gas evaluating then the change in the entropy per particle of this gas between the ''freeze-out'' era and present day virialized structures (i.e systems in virial equilibrium). An ''entropy-consistency'' criterion emerges by comparing theoretical and empirical estimates of this entropy. The main objective of our work is to determine for which regions of the parameter space in the mSUGRA model are both criteria consistent with the 2σ bounds according to WMAP for the relic density: 0.0945 < ΩCDMh2 < 0.1287. As a first result, we found that for A0 = 0, sgnμ +, small values of tanβ are not favored; only for tanβ ≅ 50 are both criteria significantly consistent

  5. Maximum entropy deconvolution of low count nuclear medicine images

    International Nuclear Information System (INIS)

    McGrath, D.M.

    1998-12-01

    Maximum entropy is applied to the problem of deconvolving nuclear medicine images, with special consideration for very low count data. The physics of the formation of scintigraphic images is described, illustrating the phenomena which degrade planar estimates of the tracer distribution. Various techniques which are used to restore these images are reviewed, outlining the relative merits of each. The development and theoretical justification of maximum entropy as an image processing technique is discussed. Maximum entropy is then applied to the problem of planar deconvolution, highlighting the question of the choice of error parameters for low count data. A novel iterative version of the algorithm is suggested which allows the errors to be estimated from the predicted Poisson mean values. This method is shown to produce the exact results predicted by combining Poisson statistics and a Bayesian interpretation of the maximum entropy approach. A facility for total count preservation has also been incorporated, leading to improved quantification. In order to evaluate this iterative maximum entropy technique, two comparable methods, Wiener filtering and a novel Bayesian maximum likelihood expectation maximisation technique, were implemented. The comparison of results obtained indicated that this maximum entropy approach may produce equivalent or better measures of image quality than the compared methods, depending upon the accuracy of the system model used. The novel Bayesian maximum likelihood expectation maximisation technique was shown to be preferable over many existing maximum a posteriori methods due to its simplicity of implementation. A single parameter is required to define the Bayesian prior, which suppresses noise in the solution and may reduce the processing time substantially. Finally, maximum entropy deconvolution was applied as a pre-processing step in single photon emission computed tomography reconstruction of low count data. Higher contrast results were

  6. A Note on Quantum Entropy

    International Nuclear Information System (INIS)

    Hansen, Frank

    2016-01-01

    Incremental information, as measured by the quantum entropy, is increasing when two ensembles are united. This result was proved by Lieb and Ruskai, and it is the foundation for the proof of strong subadditivity of quantum entropy. We present a truly elementary proof of this fact in the context of the broader family of matrix entropies introduced by Chen and Tropp.

  7. A Note on Quantum Entropy

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, Frank, E-mail: frank.hansen@m.tohoku.ac.jp [Tohoku University, Institute for Excellence in Higher Education (Japan)

    2016-06-15

    Incremental information, as measured by the quantum entropy, is increasing when two ensembles are united. This result was proved by Lieb and Ruskai, and it is the foundation for the proof of strong subadditivity of quantum entropy. We present a truly elementary proof of this fact in the context of the broader family of matrix entropies introduced by Chen and Tropp.

  8. Entropy function and universality of entropy-area relation for small black holes

    International Nuclear Information System (INIS)

    Cai Ronggen; Chen, C.-M.; Maeda, Kei-ichi; Ohta, Nobuyoshi; Pang Dawei

    2008-01-01

    We discuss the entropy-area relation for the small black holes with higher curvature corrections by using the entropy function formalism and field redefinition method. We show that the entropy S BH of the small black hole is proportional to its horizon area A. In particular, we find a universal result that S BH =A/2G, the ratio is 2 times of Bekenstein-Hawking entropy-area formula in many cases of physical interest. In four dimensions, the universal relation is always true irrespective of the coefficients of the higher-order terms if the dilaton couplings are the same, which is the case for string effective theory, while in five dimensions, the relation again holds irrespective of the overall coefficient if the higher-order corrections are in the GB combination. We also discuss how this result generalizes to known physically interesting cases with Lovelock correction terms in various dimensions, and possible implications of the universal relation.

  9. Entropy Production of Stars

    Directory of Open Access Journals (Sweden)

    Leonid M. Martyushev

    2015-06-01

    Full Text Available The entropy production (inside the volume bounded by a photosphere of main-sequence stars, subgiants, giants, and supergiants is calculated based on B–V photometry data. A non-linear inverse relationship of thermodynamic fluxes and forces as well as an almost constant specific (per volume entropy production of main-sequence stars (for 95% of stars, this quantity lies within 0.5 to 2.2 of the corresponding solar magnitude is found. The obtained results are discussed from the perspective of known extreme principles related to entropy production.

  10. Differences between state entropy and bispectral index during analysis of identical electroencephalogram signals: a comparison with two randomised anaesthetic techniques.

    Science.gov (United States)

    Pilge, Stefanie; Kreuzer, Matthias; Karatchiviev, Veliko; Kochs, Eberhard F; Malcharek, Michael; Schneider, Gerhard

    2015-05-01

    It is claimed that bispectral index (BIS) and state entropy reflect an identical clinical spectrum, the hypnotic component of anaesthesia. So far, it is not known to what extent different devices display similar index values while processing identical electroencephalogram (EEG) signals. To compare BIS and state entropy during analysis of identical EEG data. Inspection of raw EEG input to detect potential causes of erroneous index calculation. Offline re-analysis of EEG data from a randomised, single-centre controlled trial using the Entropy Module and an Aspect A-2000 monitor. Klinikum rechts der Isar, Technische Universität München, Munich. Forty adult patients undergoing elective surgery under general anaesthesia. Blocked randomisation of 20 patients per anaesthetic group (sevoflurane/remifentanil or propofol/remifentanil). Isolated forearm technique for differentiation between consciousness and unconsciousness. Prediction probability (PK) of state entropy to discriminate consciousness from unconsciousness. Correlation and agreement between state entropy and BIS from deep to light hypnosis. Analysis of raw EEG compared with index values that are in conflict with clinical examination, with frequency measures (frequency bands/Spectral Edge Frequency 95) and visual inspection for physiological EEG patterns (e.g. beta or delta arousal), pathophysiological features such as high-frequency signals (electromyogram/high-frequency EEG or eye fluttering/saccades), different types of electro-oculogram or epileptiform EEG and technical artefacts. PK of state entropy was 0.80 and of BIS 0.84; correlation coefficient of state entropy with BIS 0.78. Nine percent BIS and 14% state entropy values disagreed with clinical examination. Highest incidence of disagreement occurred after state transitions, in particular for state entropy after loss of consciousness during sevoflurane anaesthesia. EEG sequences which led to false 'conscious' index values often showed high

  11. Comparison of bispectral index and entropy monitoring in patients undergoing internalisation of deep brain stimulators

    Directory of Open Access Journals (Sweden)

    Suparna Bharadwaj

    2016-01-01

    Full Text Available Introduction: Depth of anaesthesia (DOA monitors are shown to reduce the intra-operative dose of anaesthetic agents, provide haemodynamic stability and shorten emergence times. Electroencephalography (EEG based DOA monitors such as bispectral index (BIS and entropy have been calibrated and validated in healthy subjects. Hence the clinical effectiveness of these monitors may be affected when monitoring patients with neurological disorders (e.g., epilepsy, dystonia, dementia and Parkinson's disease. The aim of this study was to determine whether BIS and entropy correlate with each other and with clinical indices of DOA in patients with movement disorders under general anaesthesia (GA. Materials and Methods: We conducted a prospective, observational study in patients with movement disorders undergoing internalization of deep brain stimulators. All patients received standard GA with age-adjusted mean alveolar concentration (aaMAC of an inhalational agent between 0.7 and 1.1. BIS and entropy sensors were applied on the patient's left forehead. Data collected included clinical parameters and EEG-based DOA indices. Correlation analysis was performed between entropy, BIS and the clinical indices of DOA. Bland Altman analysis was performed to determine the agreement between BIS and entropy. Results: Thirty patients were studied (mean age was 58.4 ± 11 years, male: female 18:12 and weight 79.2 ± 17 kg. Indications for deep brain stimulation were Parkinson's disease (n = 25, essential tremors (n = 2 and dystonia (n = 3. There was a very strong positive correlation between BIS and response entropy (RE (r = 0.932 and BIS and state entropy (SE (r = 0.950 and a strong negative correlation among aaMAC and BIS, RE and SE with r values of −0.686, −0.788 and −0.732, respectively. However, there was no correlation between BIS, RE, SE and haemodynamic values. Conclusion: Our study showed that BIS and entropy perform well in patients with movement disorders

  12. Topological Rényi entropy after a quantum quench.

    Science.gov (United States)

    Halász, Gábor B; Hamma, Alioscia

    2013-04-26

    We present an analytical study on the resilience of topological order after a quantum quench. The system is initially prepared in the ground state of the toric-code model, and then quenched by switching on an external magnetic field. During the subsequent time evolution, the variation in topological order is detected via the topological Rényi entropy of order 2. We consider two different quenches: the first one has an exact solution, while the second one requires perturbation theory. In both cases, we find that the long-term time average of the topological Rényi entropy in the thermodynamic limit is the same as its initial value. Based on our results, we argue that topological order is resilient against a wide range of quenches.

  13. Weak entropy inequalities and entropic convergence

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    A criterion for algebraic convergence of the entropy is presented and an algebraic convergence result for the entropy of an exclusion process is improved. A weak entropy inequality is considered and its relationship to entropic convergence is discussed.

  14. Cosmological model from the holographic equipartition law with a modified Renyi entropy

    Energy Technology Data Exchange (ETDEWEB)

    Komatsu, Nobuyoshi [Kanazawa University, Department of Mechanical Systems Engineering, Kanazawa, Ishikawa (Japan)

    2017-04-15

    Cosmological equations were recently derived by Padmanabhan from the expansion of cosmic space due to the difference between the degrees of freedom on the surface and in the bulk in a region of space. In this study, a modified Renyi entropy is applied to Padmanabhan's 'holographic equipartition law', by regarding the Bekenstein-Hawking entropy as a nonextensive Tsallis entropy and using a logarithmic formula of the original Renyi entropy. Consequently, the acceleration equation including an extra driving term (such as a time-varying cosmological term) can be derived in a homogeneous, isotropic, and spatially flat universe. When a specific condition is mathematically satisfied, the extra driving term is found to be constant-like as if it is a cosmological constant. Interestingly, the order of the constant-like term is naturally consistent with the order of the cosmological constant measured by observations, because the specific condition constrains the value of the constant-like term. (orig.)

  15. Relative entropy and the RG flow

    Energy Technology Data Exchange (ETDEWEB)

    Casini, Horacio; Testé, Eduardo; Torroba, Gonzalo [Centro Atómico Bariloche and CONICET,S.C. de Bariloche, Río Negro, R8402AGP (Argentina)

    2017-03-16

    We consider the relative entropy between vacuum states of two different theories: a conformal field theory (CFT), and the CFT perturbed by a relevant operator. By restricting both states to the null Cauchy surface in the causal domain of a sphere, we make the relative entropy equal to the difference of entanglement entropies. As a result, this difference has the positivity and monotonicity properties of relative entropy. From this it follows a simple alternative proof of the c-theorem in d=2 space-time dimensions and, for d>2, the proof that the coefficient of the area term in the entanglement entropy decreases along the renormalization group (RG) flow between fixed points. We comment on the regimes of convergence of relative entropy, depending on the space-time dimensions and the conformal dimension Δ of the perturbation that triggers the RG flow.

  16. Large Field Inflation and Gravitational Entropy

    DEFF Research Database (Denmark)

    Kaloper, Nemanja; Kleban, Matthew; Lawrence, Albion

    2016-01-01

    species will lead to a violation of the covariant entropy bound at large $N$. If so, requiring the validity of the covariant entropy bound could limit the number of light species and their couplings, which in turn could severely constrain axion-driven inflation. Here we show that there is no such problem...... entropy of de Sitter or near-de Sitter backgrounds at leading order. Working in detail with $N$ scalar fields in de Sitter space, renormalized to one loop order, we show that the gravitational entropy automatically obeys the covariant entropy bound. Furthermore, while the axion decay constant is a strong...... in this light, and show that they are perfectly consistent with the covariant entropy bound. Thus, while quantum gravity might yet spoil large field inflation, holographic considerations in the semiclassical theory do not obstruct it....

  17. Exploring total cardiac variability in healthy and pathophysiological subjects using improved refined multiscale entropy.

    Science.gov (United States)

    Marwaha, Puneeta; Sunkaria, Ramesh Kumar

    2017-02-01

    Multiscale entropy (MSE) and refined multiscale entropy (RMSE) techniques are being widely used to evaluate the complexity of a time series across multiple time scales 't'. Both these techniques, at certain time scales (sometimes for the entire time scales, in the case of RMSE), assign higher entropy to the HRV time series of certain pathologies than that of healthy subjects, and to their corresponding randomized surrogate time series. This incorrect assessment of signal complexity may be due to the fact that these techniques suffer from the following limitations: (1) threshold value 'r' is updated as a function of long-term standard deviation and hence unable to explore the short-term variability as well as substantial variability inherited in beat-to-beat fluctuations of long-term HRV time series. (2) In RMSE, entropy values assigned to different filtered scaled time series are the result of changes in variance, but do not completely reflect the real structural organization inherited in original time series. In the present work, we propose an improved RMSE (I-RMSE) technique by introducing a new procedure to set the threshold value by taking into account the period-to-period variability inherited in a signal and evaluated it on simulated and real HRV database. The proposed I-RMSE assigns higher entropy to the age-matched healthy subjects than that of patients suffering from atrial fibrillation, congestive heart failure, sudden cardiac death and diabetes mellitus, for the entire time scales. The results strongly support the reduction in complexity of HRV time series in female group, old-aged, patients suffering from severe cardiovascular and non-cardiovascular diseases, and in their corresponding surrogate time series.

  18. Entropy Budget for Hawking Evaporation

    Directory of Open Access Journals (Sweden)

    Ana Alonso-Serrano

    2017-07-01

    Full Text Available Blackbody radiation, emitted from a furnace and described by a Planck spectrum, contains (on average an entropy of 3 . 9 ± 2 . 5 bits per photon. Since normal physical burning is a unitary process, this amount of entropy is compensated by the same amount of “hidden information” in correlations between the photons. The importance of this result lies in the posterior extension of this argument to the Hawking radiation from black holes, demonstrating that the assumption of unitarity leads to a perfectly reasonable entropy/information budget for the evaporation process. In order to carry out this calculation, we adopt a variant of the “average subsystem” approach, but consider a tripartite pure system that includes the influence of the rest of the universe, and which allows “young” black holes to still have a non-zero entropy; which we identify with the standard Bekenstein entropy.

  19. A numerical investigation of the entropy generation in and thermodynamic optimization of a combustion chamber

    International Nuclear Information System (INIS)

    Arjmandi, H.R.; Amani, E.

    2015-01-01

    In this study, we are simulating the turbulent combustion of a mixed bluff-body swirl stabilized flame in a gas turbine combustion chamber and investigating the effects of different parameters, including the swirl number, distance between the air and fuel nozzle which is called bluff size, equivalence ratio, inlet fuel flow rate, and the inlet air velocity, on the entropy generation. We perform the process of the design of the combustion chamber by proposing the optimal value of each parameter based on the EGM (entropy generation minimization) method under the two maximum allowable temperature and size constraints. Two common methods of entropy generation calculation, one based on the overall entropy balance on a system and the other based on the local entropy generation rate calculation, are used and compared in this study. Our results show that the deviation between the total entropy generations calculated by the two methods is 6.4% in average which is an acceptable error in turbulent combustion simulations. Also, the two opposing factors, namely chemical reaction and heat transfer, have the main contribution to the total entropy generation. - Highlights: • We perform the design of a combustion chamber using CFD and based on the EGM method. • We use and compare two methods for computing the total entropy generation. • We also study the entropy generation due to different phenomena separately. • Reaction and heat transfer have the dominant contribution to the entropy generation

  20. The dynamical entropy of quantum systems

    International Nuclear Information System (INIS)

    Connes, A.; Narnhofer, H.; Thirring, W.

    1987-01-01

    The definition of the dynamical entropy for automorphisms of C * - algebras is represented. Several properties are discussed; especially it is argued that the entropy of the shift can be shown in special cases to be equal with the entropy density. (Author)

  1. Refined composite multiscale weighted-permutation entropy of financial time series

    Science.gov (United States)

    Zhang, Yongping; Shang, Pengjian

    2018-04-01

    For quantifying the complexity of nonlinear systems, multiscale weighted-permutation entropy (MWPE) has recently been proposed. MWPE has incorporated amplitude information and been applied to account for the multiple inherent dynamics of time series. However, MWPE may be unreliable, because its estimated values show large fluctuation for slight variation of the data locations, and a significant distinction only for the different length of time series. Therefore, we propose the refined composite multiscale weighted-permutation entropy (RCMWPE). By comparing the RCMWPE results with other methods' results on both synthetic data and financial time series, RCMWPE method shows not only the advantages inherited from MWPE but also lower sensitivity to the data locations, more stable and much less dependent on the length of time series. Moreover, we present and discuss the results of RCMWPE method on the daily price return series from Asian and European stock markets. There are significant differences between Asian markets and European markets, and the entropy values of Hang Seng Index (HSI) are close to but higher than those of European markets. The reliability of the proposed RCMWPE method has been supported by simulations on generated and real data. It could be applied to a variety of fields to quantify the complexity of the systems over multiple scales more accurately.

  2. Spontaneous entropy decrease and its statistical formula

    OpenAIRE

    Xing, Xiu-San

    2007-01-01

    Why can the world resist the law of entropy increase and produce self-organizing structure? Does the entropy of an isolated system always only increase and never decrease? Can be thermodymamic degradation and self-organizing evolution united? How to unite? In this paper starting out from nonequilibrium entropy evolution equation we proved that a new entropy decrease could spontaneously emerge in nonequilibrium system with internal attractive interaction. This new entropy decrease coexists wit...

  3. Entropy Maximization as a Basis for Information Recovery in Dynamic Economic Behavioral Systems

    Directory of Open Access Journals (Sweden)

    George Judge

    2015-02-01

    Full Text Available As a basis for information recovery in open dynamic microeconomic systems, we emphasize the connection between adaptive intelligent behavior, causal entropy maximization and self-organized equilibrium seeking behavior. This entropy-based causal adaptive behavior framework permits the use of information-theoretic methods as a solution basis for the resulting pure and stochastic inverse economic-econometric problems. We cast the information recovery problem in the form of a binary network and suggest information-theoretic methods to recover estimates of the unknown binary behavioral parameters without explicitly sampling the configuration-arrangement of the sample space.

  4. Black hole versus cosmological horizon entropy

    International Nuclear Information System (INIS)

    Davis, Tamara M; Davies, P C W; Lineweaver, Charles H

    2003-01-01

    The generalized second law of thermodynamics states that entropy always increases when all event horizons are attributed with an entropy proportional to their area. We test the generalized second law by investigating the change in entropy when dust, radiation and black holes cross a cosmological event horizon. We generalize for flat, open and closed Friedmann-Robertson-Walker universes by using numerical calculations to determine the cosmological horizon evolution. In most cases, the loss of entropy from within the cosmological horizon is more than balanced by an increase in cosmological event horizon entropy, maintaining the validity of the generalized second law of thermodynamics. However, an intriguing set of open universe models shows an apparent entropy decrease when black holes disappear over the cosmological event horizon. We anticipate that this apparent violation of the generalized second law will disappear when solutions are available for black holes embedded in arbitrary backgrounds

  5. Entropy of uremia and dialysis technology.

    Science.gov (United States)

    Ronco, Claudio

    2013-01-01

    The second law of thermodynamics applies with local exceptions to patient history and therapy interventions. Living things preserve their low level of entropy throughout time because they receive energy from their surroundings in the form of food. They gain their order at the expense of disordering the nutrients they consume. Death is the thermodynamically favored state: it represents a large increase in entropy as molecular structure yields to chaos. The kidney is an organ dissipating large amounts of energy to maintain the level of entropy of the organism as low as possible. Diseases, and in particular uremia, represent conditions of rapid increase in entropy. Therapeutic strategies are oriented towards a reduction in entropy or at least a decrease in the speed of entropy increase. Uremia is a process accelerating the trend towards randomness and disorder (increase in entropy). Dialysis is a factor external to the patient that tends to reduce the level of entropy caused by kidney disease. Since entropy can only increase in closed systems, energy and work must be spent to limit the entropy of uremia. This energy should be adapted to the system (patient) and be specifically oriented and personalized. This includes a multidimensional effort to achieve an adequate dialysis that goes beyond small molecular weight solute clearance. It includes a biological plan for recovery of homeostasis and a strategy towards long-term rehabilitation of the patient. Such objectives can be achieved with a combination of technology and innovation to answer specific questions that are still present after 60 years of dialysis history. This change in the individual bioentropy may represent a local exception to natural trends as the patient could be considered an isolated universe responding to the classic laws of thermodynamics. Copyright © 2013 S. Karger AG, Basel.

  6. Time Dependence of Entropy Flux and Entropy Production of a Dissipative Dynamical System Driven by Non-Gaussian Noise

    International Nuclear Information System (INIS)

    Guo Yongfeng; Xu Wei; Li Dongxi; Xie Wenxian

    2008-01-01

    A stochastic dissipative dynamical system driven by non-Gaussian noise is investigated. A general approximate Fokker-Planck equation of the system is derived through a path-integral approach. Based on the definition of Shannon's information entropy, the exact time dependence of entropy flux and entropy production of the system is calculated both in the absence and in the presence of non-equilibrium constraint. The present calculation can be used to interpret the interplay of the dissipative constant and non-Gaussian noise on the entropy flux and entropy production

  7. Information-theoretical aspects of quantum-mechanical entropy

    International Nuclear Information System (INIS)

    Wehrl, A.

    1990-01-01

    Properties of the quantum ( = von Neumann) entropy S(ρ) -k Trρ lnρ, ρ being a compact operator, are proved first, and differences against the classical case, e.g. the Shannon entropy, are worked out. The main result is on the strong subadditivity of this quantum entropy. Then another entropy, a function not of the state but of the dynamics of the system, is considered as a quantum analogue of the classical Kolmogorov-Sinai-entropy. An attempt in defining such a quantity had only recently sucess in a paper of Connes, Narnhofer and Thirring. A definition of this entropy is given. 34 refs

  8. Entropy Production in Stochastics

    Directory of Open Access Journals (Sweden)

    Demetris Koutsoyiannis

    2017-10-01

    Full Text Available While the modern definition of entropy is genuinely probabilistic, in entropy production the classical thermodynamic definition, as in heat transfer, is typically used. Here we explore the concept of entropy production within stochastics and, particularly, two forms of entropy production in logarithmic time, unconditionally (EPLT or conditionally on the past and present having been observed (CEPLT. We study the theoretical properties of both forms, in general and in application to a broad set of stochastic processes. A main question investigated, related to model identification and fitting from data, is how to estimate the entropy production from a time series. It turns out that there is a link of the EPLT with the climacogram, and of the CEPLT with two additional tools introduced here, namely the differenced climacogram and the climacospectrum. In particular, EPLT and CEPLT are related to slopes of log-log plots of these tools, with the asymptotic slopes at the tails being most important as they justify the emergence of scaling laws of second-order characteristics of stochastic processes. As a real-world application, we use an extraordinary long time series of turbulent velocity and show how a parsimonious stochastic model can be identified and fitted using the tools developed.

  9. Does black-hole entropy make sense

    International Nuclear Information System (INIS)

    Wilkins, D.

    1979-01-01

    Bekenstein and Hawking saved the second law of thermodynamics near a black hole by assigning to the hole an entropy Ssub(h) proportional to the area of its event horizon. It is tempting to assume that Ssub(h) possesses all the features commonly associated with the physical entropy. Kundt has shown, however, that Ssub(h) violates several reasonable physical expectations. This criticism is reviewed, augmenting it as follows: (a) Ssub(h) is a badly behaved state function requiring knowledge of the hole's future history; and (b) close analogs of event horizons in other space-times do not possess an 'entropy'. These questions are also discussed: (c) Is Ssub(h) suitable for all regions of a black-hole space-time. And (b) should Ssub(h) be attributed to the exterior of a white hole. One can retain Ssub(h) for the interior (respectively, exterior) of a black (respectively, white) hole, but is rejected as contrary to the information-theoretic derivation of horizon entropy given by Berkenstein. The total entropy defined by Kundt (all ordinary entropy on space-section cutting through the hole, no horizon term) and that of Bekenstein-Hawking (ordinary entropy outside horizon plus horizon term) appear to be complementary concepts with separate domains of validity. In the most natural choice, an observer inside a black hole will use Kundt's entropy, and one remaining outside that of Bekenstein-Hawking. (author)

  10. Entropy of stable seasonal rainfall distribution in Kelantan

    Science.gov (United States)

    Azman, Muhammad Az-zuhri; Zakaria, Roslinazairimah; Satari, Siti Zanariah; Radi, Noor Fadhilah Ahmad

    2017-05-01

    Investigating the rainfall variability is vital for any planning and management in many fields related to water resources. Climate change can gives an impact of water availability and may aggravate water scarcity in the future. Two statistics measurements which have been used by many researchers to measure the rainfall variability are variance and coefficient of variation. However, these two measurements are insufficient since rainfall distribution in Malaysia especially in the East Coast of Peninsular Malaysia is not symmetric instead it is positively skewed. In this study, the entropy concept is used as a tool to measure the seasonal rainfall variability in Kelantan and ten rainfall stations were selected. In previous studies, entropy of stable rainfall (ESR) and apportionment entropy (AE) were used to describe the rainfall amount variability during years for Australian rainfall data. In this study, the entropy of stable seasonal rainfall (ESSR) is suggested to model rainfall amount variability during northeast monsoon (NEM) and southwest monsoon (SWM) seasons in Kelantan. The ESSR is defined to measure the long-term average seasonal rainfall amount variability within a given year (1960-2012). On the other hand, the AE measures the rainfall amounts variability across the months. The results of ESSR and AE values show that stations in east coastline are more variable as compared to other stations inland for Kelantan rainfall. The contour maps of ESSR for Kelantan rainfall stations are also presented.

  11. MaxEnt queries and sequential sampling

    International Nuclear Information System (INIS)

    Riegler, Peter; Caticha, Nestor

    2001-01-01

    In this paper we pose the question: After gathering N data points, at what value of the control parameter should the next measurement be done? We propose an on-line algorithm which samples optimally by maximizing the gain in information on the parameters to be measured. We show analytically that the information gain is maximum for those potential measurements whose outcome is most unpredictable, i.e. for which the predictive distribution has maximum entropy. The resulting algorithm is applied to exponential analysis

  12. Applications of Entropy in Finance: A Review

    Directory of Open Access Journals (Sweden)

    Guanqun Tong

    2013-11-01

    Full Text Available Although the concept of entropy is originated from thermodynamics, its concepts and relevant principles, especially the principles of maximum entropy and minimum cross-entropy, have been extensively applied in finance. In this paper, we review the concepts and principles of entropy, as well as their applications in the field of finance, especially in portfolio selection and asset pricing. Furthermore, we review the effects of the applications of entropy and compare them with other traditional and new methods.

  13. Unification of field theory and maximum entropy methods for learning probability densities

    OpenAIRE

    Kinney, Justin B.

    2014-01-01

    The need to estimate smooth probability distributions (a.k.a. probability densities) from finite sampled data is ubiquitous in science. Many approaches to this problem have been described, but none is yet regarded as providing a definitive solution. Maximum entropy estimation and Bayesian field theory are two such approaches. Both have origins in statistical physics, but the relationship between them has remained unclear. Here I unify these two methods by showing that every maximum entropy de...

  14. Wavelet entropy characterization of elevated intracranial pressure.

    Science.gov (United States)

    Xu, Peng; Scalzo, Fabien; Bergsneider, Marvin; Vespa, Paul; Chad, Miller; Hu, Xiao

    2008-01-01

    Intracranial Hypertension (ICH) often occurs for those patients with traumatic brain injury (TBI), stroke, tumor, etc. Pathology of ICH is still controversial. In this work, we used wavelet entropy and relative wavelet entropy to study the difference existed between normal and hypertension states of ICP for the first time. The wavelet entropy revealed the similar findings as the approximation entropy that entropy during ICH state is smaller than that in normal state. Moreover, with wavelet entropy, we can see that ICH state has the more focused energy in the low wavelet frequency band (0-3.1 Hz) than the normal state. The relative wavelet entropy shows that the energy distribution in the wavelet bands between these two states is actually different. Based on these results, we suggest that ICH may be formed by the re-allocation of oscillation energy within brain.

  15. Entropy Parameter M in Modeling a Flow Duration Curve

    Directory of Open Access Journals (Sweden)

    Yu Zhang

    2017-12-01

    Full Text Available A flow duration curve (FDC is widely used for predicting water supply, hydropower, environmental flow, sediment load, and pollutant load. Among different methods of constructing an FDC, the entropy-based method, developed recently, is appealing because of its several desirable characteristics, such as simplicity, flexibility, and statistical basis. This method contains a parameter, called entropy parameter M, which constitutes the basis for constructing the FDC. Since M is related to the ratio of the average streamflow to the maximum streamflow which, in turn, is related to the drainage area, it may be possible to determine M a priori and construct an FDC for ungauged basins. This paper, therefore, analyzed the characteristics of M in both space and time using streamflow data from 73 gauging stations in the Brazos River basin, Texas, USA. Results showed that the M values were impacted by reservoir operation and possibly climate change. The values were fluctuating, but relatively stable, after the operation of the reservoirs. Parameter M was found to change inversely with the ratio of average streamflow to the maximum streamflow. When there was an extreme event, there occurred a jump in the M value. Further, spatially, M had a larger value if the drainage area was small.

  16. Uncertainty principle and informational entropy for partially coherent light

    NARCIS (Netherlands)

    Bastiaans, M.J.

    1986-01-01

    It is shown that, among all partially coherent wave fields having the same informational entropy, the product of the effective widths of the intensity functions in the space and the spatial-frequency domains takes its minimum value for a wave field with a Gaussian-shaped cross-spectral density

  17. Entropy of international trades

    Science.gov (United States)

    Oh, Chang-Young; Lee, D.-S.

    2017-05-01

    The organization of international trades is highly complex under the collective efforts towards economic profits of participating countries given inhomogeneous resources for production. Considering the trade flux as the probability of exporting a product from a country to another, we evaluate the entropy of the world trades in the period 1950-2000. The trade entropy has increased with time, and we show that it is mainly due to the extension of trade partnership. For a given number of trade partners, the mean trade entropy is about 60% of the maximum possible entropy, independent of time, which can be regarded as a characteristic of the trade fluxes' heterogeneity and is shown to be derived from the scaling and functional behaviors of the universal trade-flux distribution. The correlation and time evolution of the individual countries' gross-domestic products and the number of trade partners show that most countries achieved their economic growth partly by extending their trade relationship.

  18. Curvature Entropy for Curved Profile Generation

    Directory of Open Access Journals (Sweden)

    Koichiro Sato

    2012-03-01

    Full Text Available In a curved surface design, the overall shape features that emerge from combinations of shape elements are important. However, controlling the features of the overall shape in curved profiles is difficult using conventional microscopic shape information such as dimension. Herein two types of macroscopic shape information, curvature entropy and quadrature curvature entropy, quantitatively represent the features of the overall shape. The curvature entropy is calculated by the curvature distribution, and represents the complexity of a shape (one of the overall shape features. The quadrature curvature entropy is an improvement of the curvature entropy by introducing a Markov process to evaluate the continuity of a curvature and to approximate human cognition of the shape. Additionally, a shape generation method using a genetic algorithm as a calculator and the entropy as a shape generation index is presented. Finally, the applicability of the proposed method is demonstrated using the side view of an automobile as a design example.

  19. Gradient Dynamics and Entropy Production Maximization

    Science.gov (United States)

    Janečka, Adam; Pavelka, Michal

    2018-01-01

    We compare two methods for modeling dissipative processes, namely gradient dynamics and entropy production maximization. Both methods require similar physical inputs-how energy (or entropy) is stored and how it is dissipated. Gradient dynamics describes irreversible evolution by means of dissipation potential and entropy, it automatically satisfies Onsager reciprocal relations as well as their nonlinear generalization (Maxwell-Onsager relations), and it has statistical interpretation. Entropy production maximization is based on knowledge of free energy (or another thermodynamic potential) and entropy production. It also leads to the linear Onsager reciprocal relations and it has proven successful in thermodynamics of complex materials. Both methods are thermodynamically sound as they ensure approach to equilibrium, and we compare them and discuss their advantages and shortcomings. In particular, conditions under which the two approaches coincide and are capable of providing the same constitutive relations are identified. Besides, a commonly used but not often mentioned step in the entropy production maximization is pinpointed and the condition of incompressibility is incorporated into gradient dynamics.

  20. Dynamical glucometry: Use of multiscale entropy analysis in diabetes

    Science.gov (United States)

    Costa, Madalena D.; Henriques, Teresa; Munshi, Medha N.; Segal, Alissa R.; Goldberger, Ary L.

    2014-09-01

    Diabetes mellitus (DM) is one of the world's most prevalent medical conditions. Contemporary management focuses on lowering mean blood glucose values toward a normal range, but largely ignores the dynamics of glucose fluctuations. We probed analyte time series obtained from continuous glucose monitor (CGM) sensors. We show that the fluctuations in CGM values sampled every 5 min are not uncorrelated noise. Next, using multiscale entropy analysis, we quantified the complexity of the temporal structure of the CGM time series from a group of elderly subjects with type 2 DM and age-matched controls. We further probed the structure of these CGM time series using detrended fluctuation analysis. Our findings indicate that the dynamics of glucose fluctuations from control subjects are more complex than those of subjects with type 2 DM over time scales ranging from about 5 min to 5 h. These findings support consideration of a new framework, dynamical glucometry, to guide mechanistic research and to help assess and compare therapeutic interventions, which should enhance complexity of glucose fluctuations and not just lower mean and variance of blood glucose levels.

  1. Entropy is in Flux V3.4

    Science.gov (United States)

    Kadanoff, Leo P.

    2017-05-01

    The science of thermodynamics was put together in the Nineteenth Century to describe large systems in equilibrium. One part of thermodynamics defines entropy for equilibrium systems and demands an ever-increasing entropy for non-equilibrium ones. Since thermodynamics does not define entropy out of equilibrium, pure thermodynamics cannot follow the details of how this increase occurs. However, starting with the work of Ludwig Boltzmann in 1872, and continuing to the present day, various models of non-equilibrium behavior have been put together with the specific aim of generalizing the concept of entropy to non-equilibrium situations. This kind of entropy has been termed kinetic entropy to distinguish it from the thermodynamic variety. Knowledge of kinetic entropy started from Boltzmann's insight about his equation for the time dependence of gaseous systems. In this paper, his result is stated as a definition of kinetic entropy in terms of a local equation for the entropy density. This definition is then applied to Landau's theory of the Fermi liquid thereby giving the kinetic entropy within that theory. The dynamics of many condensed matter systems including Fermi liquids, low temperature superfluids, and ordinary metals lend themselves to the definition of kinetic entropy. In fact, entropy has been defined and used for a wide variety of situations in which a condensed matter system has been allowed to relax for a sufficient period so that the very most rapid fluctuations have been ironed out. One of the broadest applications of non-equilibrium analysis considers quantum degenerate systems using Martin-Schwinger Green's functions (Phys Rev 115:1342-1373, 1959) as generalized Wigner functions, g^({p},ω ,{R},T). This paper describes once again how the quantum kinetic equations for these functions give locally defined conservation laws for mass momentum and energy. In local thermodynamic equilibrium, this kinetic theory enables a reasonable definition of the density

  2. Algebraic entropy for differential-delay equations

    OpenAIRE

    Viallet, Claude M.

    2014-01-01

    We extend the definition of algebraic entropy to a class of differential-delay equations. The vanishing of the entropy, as a structural property of an equation, signals its integrability. We suggest a simple way to produce differential-delay equations with vanishing entropy from known integrable differential-difference equations.

  3. The Wehrl entropy has Gaussian optimizers

    DEFF Research Database (Denmark)

    De Palma, Giacomo

    2018-01-01

    We determine the minimum Wehrl entropy among the quantum states with a given von Neumann entropy and prove that it is achieved by thermal Gaussian states. This result determines the relation between the von Neumann and the Wehrl entropies. The key idea is proving that the quantum-classical channel...

  4. Single Particle Entropy in Heated Nuclei

    International Nuclear Information System (INIS)

    Guttormsen, M.; Chankova, R.; Hjorth-Jensen, M.; Rekstad, J.; Siem, S.; Sunde, A. C.; Syed, N. U. H.; Agvaanluvsan, U.; Schiller, A.; Voinov, A.

    2006-01-01

    The thermal motion of single particles represents the largest contribution to level density (or entropy) in atomic nuclei. The concept of single particle entropy is presented and shown to be an approximate extensive (additive) quantity for mid-shell nuclei. A few applications of single particle entropy are demonstrated

  5. BiEntropy for Python v. 1.0

    Energy Technology Data Exchange (ETDEWEB)

    2018-03-15

    This Python package provides high-performance implementations of the functions and examples presented in "BiEntropy - The Approximate Entropy of a Finite Binary String" by Grenville J. Croll, presented at ANPA 34 in 2013. https://arxiv.org/abs/1305.0954 According to the paper, BiEntropy is "a simple algorithm which computes the approximate entropy of a finite binary string of arbitrary length" using "a weighted average of the Shannon Entropies of the string and all but the last binary derivative of the string."

  6. Nonextensive entropies derived from Gauss' principle

    International Nuclear Information System (INIS)

    Wada, Tatsuaki

    2011-01-01

    Gauss' principle in statistical mechanics is generalized for a q-exponential distribution in nonextensive statistical mechanics. It determines the associated stochastic and statistical nonextensive entropies which satisfy Greene-Callen principle concerning on the equivalence between microcanonical and canonical ensembles. - Highlights: → Nonextensive entropies are derived from Gauss' principle and ensemble equivalence. → Gauss' principle is generalized for a q-exponential distribution. → I have found the condition for satisfying Greene-Callen principle. → The associated statistical q-entropy is found to be normalized Tsallis entropy.

  7. Entanglement entropy in top-down models

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Peter A.R.; Taylor, Marika [Mathematical Sciences and STAG Research Centre, University of Southampton,Highfield, Southampton, SO17 1BJ (United Kingdom)

    2016-08-26

    We explore holographic entanglement entropy in ten-dimensional supergravity solutions. It has been proposed that entanglement entropy can be computed in such top-down models using minimal surfaces which asymptotically wrap the compact part of the geometry. We show explicitly in a wide range of examples that the holographic entanglement entropy thus computed agrees with the entanglement entropy computed using the Ryu-Takayanagi formula from the lower-dimensional Einstein metric obtained from reduction over the compact space. Our examples include not only consistent truncations but also cases in which no consistent truncation exists and Kaluza-Klein holography is used to identify the lower-dimensional Einstein metric. We then give a general proof, based on the Lewkowycz-Maldacena approach, of the top-down entanglement entropy formula.

  8. Entanglement entropy in top-down models

    International Nuclear Information System (INIS)

    Jones, Peter A.R.; Taylor, Marika

    2016-01-01

    We explore holographic entanglement entropy in ten-dimensional supergravity solutions. It has been proposed that entanglement entropy can be computed in such top-down models using minimal surfaces which asymptotically wrap the compact part of the geometry. We show explicitly in a wide range of examples that the holographic entanglement entropy thus computed agrees with the entanglement entropy computed using the Ryu-Takayanagi formula from the lower-dimensional Einstein metric obtained from reduction over the compact space. Our examples include not only consistent truncations but also cases in which no consistent truncation exists and Kaluza-Klein holography is used to identify the lower-dimensional Einstein metric. We then give a general proof, based on the Lewkowycz-Maldacena approach, of the top-down entanglement entropy formula.

  9. Entanglement entropy from tensor network states for stabilizer codes

    Science.gov (United States)

    He, Huan; Zheng, Yunqin; Bernevig, B. Andrei; Regnault, Nicolas

    2018-03-01

    In this paper, we present the construction of tensor network states (TNS) for some of the degenerate ground states of three-dimensional (3D) stabilizer codes. We then use the TNS formalism to obtain the entanglement spectrum and entropy of these ground states for some special cuts. In particular, we work out examples of the 3D toric code, the X-cube model, and the Haah code. The latter two models belong to the category of "fracton" models proposed recently, while the first one belongs to the conventional topological phases. We mention the cases for which the entanglement entropy and spectrum can be calculated exactly: For these, the constructed TNS is a singular value decomposition (SVD) of the ground states with respect to particular entanglement cuts. Apart from the area law, the entanglement entropies also have constant and linear corrections for the fracton models, while the entanglement entropies for the toric code models only have constant corrections. For the cuts we consider, the entanglement spectra of these three models are completely flat. We also conjecture that the negative linear correction to the area law is a signature of extensive ground-state degeneracy. Moreover, the transfer matrices of these TNSs can be constructed. We show that the transfer matrices are projectors whose eigenvalues are either 1 or 0. The number of nonzero eigenvalues is tightly related to the ground-state degeneracy.

  10. Inflationary fluctuations, entropy generation and baryogenesis in a cold universe

    International Nuclear Information System (INIS)

    Ellis, J.; Enqvist, K.; Nanopoulos, D.V.; Olive, K.A.

    1987-01-01

    We study the implications of a generic inflationary model for scenarios of baryogenesis based on the decays of coherent oscillations of squark and slepton fields. We consider the effects of de Sitter fluctuations on the magnitudes of the coherent oscillations of squarks and sleptons. We see that the largest contribution to the entropy density is due to inflation decays which together with the value of the oscillation amplitude determined by the de Sitter fluctuations leads to a baryon to entropy ratio O(10 -10 ). The isothermal density fluctuations produced by the coherent oscillations are found to be negligible compared with the adiabatic fluctuations produced during inflation. (orig.)

  11. Entropy for the Quantized Field in the Atom-Field Interaction: Initial Thermal Distribution

    Directory of Open Access Journals (Sweden)

    Luis Amilca Andrade-Morales

    2016-09-01

    Full Text Available We study the entropy of a quantized field in interaction with a two-level atom (in a pure state when the field is initially in a mixture of two number states. We then generalise the result for a thermal state; i.e., an (infinite statistical mixture of number states. We show that for some specific interaction times, the atom passes its purity to the field and therefore the field entropy decreases from its initial value.

  12. Credal Networks under Maximum Entropy

    OpenAIRE

    Lukasiewicz, Thomas

    2013-01-01

    We apply the principle of maximum entropy to select a unique joint probability distribution from the set of all joint probability distributions specified by a credal network. In detail, we start by showing that the unique joint distribution of a Bayesian tree coincides with the maximum entropy model of its conditional distributions. This result, however, does not hold anymore for general Bayesian networks. We thus present a new kind of maximum entropy models, which are computed sequentially. ...

  13. Holographic entanglement entropy and cyclic cosmology

    Science.gov (United States)

    Frampton, Paul H.

    2018-06-01

    We discuss a cyclic cosmology in which the visible universe, or introverse, is all that is accessible to an observer while the extroverse represents the total spacetime originating from the time when the dark energy began to dominate. It is argued that entanglement entropy of the introverse is the more appropriate quantity to render infinitely cyclic, rather than the entropy of the total universe. Since vanishing entanglement entropy implies disconnected spacetimes, at the turnaround when the introverse entropy is zero the disconnected extroverse can be jettisoned with impunity.

  14. Entropy as a measure of diffusion

    International Nuclear Information System (INIS)

    Aghamohammadi, Amir; Fatollahi, Amir H.; Khorrami, Mohammad; Shariati, Ahmad

    2013-01-01

    The time variation of entropy, as an alternative to the variance, is proposed as a measure of the diffusion rate. It is shown that for linear and time-translationally invariant systems having a large-time limit for the density, at large times the entropy tends exponentially to a constant. For systems with no stationary density, at large times the entropy is logarithmic with a coefficient specifying the speed of the diffusion. As an example, the large-time behaviors of the entropy and the variance are compared for various types of fractional-derivative diffusions.

  15. Entropy as a measure of diffusion

    Energy Technology Data Exchange (ETDEWEB)

    Aghamohammadi, Amir, E-mail: mohamadi@alzahra.ac.ir; Fatollahi, Amir H., E-mail: fath@alzahra.ac.ir; Khorrami, Mohammad, E-mail: mamwad@mailaps.org; Shariati, Ahmad, E-mail: shariati@mailaps.org

    2013-10-15

    The time variation of entropy, as an alternative to the variance, is proposed as a measure of the diffusion rate. It is shown that for linear and time-translationally invariant systems having a large-time limit for the density, at large times the entropy tends exponentially to a constant. For systems with no stationary density, at large times the entropy is logarithmic with a coefficient specifying the speed of the diffusion. As an example, the large-time behaviors of the entropy and the variance are compared for various types of fractional-derivative diffusions.

  16. A Modified Entropy Generation Number for Heat Exchangers

    Institute of Scientific and Technical Information of China (English)

    1996-01-01

    This paper demonstrates the difference between the entropy generation number method proposed by Bejian and the method of entropy generation per unit amount of heat transferred in analyzing the ther-modynamic performance of heat exchangers,points out the reason for leading to the above difference.A modified entropy generation number for evaluating the irreversibility of heat exchangers is proposed which is in consistent with the entropy generation per unit amount of heat transferred in entropy generation analysis.The entropy generated by friction is also investigated.Results show that when the entropy generated by friction in heat exchangers in taken into account,there is a minimum total entropy generation number while the NTU and the ratio of heat capacity rates vary.The existence of this minimum is the prerequisite of heat exchanger optimization.

  17. Entropy of charged dilaton-axion black hole

    International Nuclear Information System (INIS)

    Ghosh, Tanwi; SenGupta, Soumitra

    2008-01-01

    Using the brick wall method, the entropy of the charged dilaton-axion black hole is determined for both asymptotically flat and nonflat cases. The entropy turns out to be proportional to the horizon area of the black hole confirming the Bekenstein-Hawking area-entropy formula for black holes. The leading order logarithmic corrections to the entropy are also derived for such black holes.

  18. Towards operational interpretations of generalized entropies

    Science.gov (United States)

    Topsøe, Flemming

    2010-12-01

    The driving force behind our study has been to overcome the difficulties you encounter when you try to extend the clear and convincing operational interpretations of classical Boltzmann-Gibbs-Shannon entropy to other notions, especially to generalized entropies as proposed by Tsallis. Our approach is philosophical, based on speculations regarding the interplay between truth, belief and knowledge. The main result demonstrates that, accepting philosophically motivated assumptions, the only possible measures of entropy are those suggested by Tsallis - which, as we know, include classical entropy. This result constitutes, so it seems, a more transparent interpretation of entropy than previously available. However, further research to clarify the assumptions is still needed. Our study points to the thesis that one should never consider the notion of entropy in isolation - in order to enable a rich and technically smooth study, further concepts, such as divergence, score functions and descriptors or controls should be included in the discussion. This will clarify the distinction between Nature and Observer and facilitate a game theoretical discussion. The usefulness of this distinction and the subsequent exploitation of game theoretical results - such as those connected with the notion of Nash equilibrium - is demonstrated by a discussion of the Maximum Entropy Principle.

  19. Towards operational interpretations of generalized entropies

    International Nuclear Information System (INIS)

    Topsoee, Flemming

    2010-01-01

    The driving force behind our study has been to overcome the difficulties you encounter when you try to extend the clear and convincing operational interpretations of classical Boltzmann-Gibbs-Shannon entropy to other notions, especially to generalized entropies as proposed by Tsallis. Our approach is philosophical, based on speculations regarding the interplay between truth, belief and knowledge. The main result demonstrates that, accepting philosophically motivated assumptions, the only possible measures of entropy are those suggested by Tsallis - which, as we know, include classical entropy. This result constitutes, so it seems, a more transparent interpretation of entropy than previously available. However, further research to clarify the assumptions is still needed. Our study points to the thesis that one should never consider the notion of entropy in isolation - in order to enable a rich and technically smooth study, further concepts, such as divergence, score functions and descriptors or controls should be included in the discussion. This will clarify the distinction between Nature and Observer and facilitate a game theoretical discussion. The usefulness of this distinction and the subsequent exploitation of game theoretical results - such as those connected with the notion of Nash equilibrium - is demonstrated by a discussion of the Maximum Entropy Principle.

  20. Maximum Entropy in Drug Discovery

    Directory of Open Access Journals (Sweden)

    Chih-Yuan Tseng

    2014-07-01

    Full Text Available Drug discovery applies multidisciplinary approaches either experimentally, computationally or both ways to identify lead compounds to treat various diseases. While conventional approaches have yielded many US Food and Drug Administration (FDA-approved drugs, researchers continue investigating and designing better approaches to increase the success rate in the discovery process. In this article, we provide an overview of the current strategies and point out where and how the method of maximum entropy has been introduced in this area. The maximum entropy principle has its root in thermodynamics, yet since Jaynes’ pioneering work in the 1950s, the maximum entropy principle has not only been used as a physics law, but also as a reasoning tool that allows us to process information in hand with the least bias. Its applicability in various disciplines has been abundantly demonstrated. We give several examples of applications of maximum entropy in different stages of drug discovery. Finally, we discuss a promising new direction in drug discovery that is likely to hinge on the ways of utilizing maximum entropy.

  1. An entropy approach for evaluating the maximum information content achievable by an urban rainfall network

    Directory of Open Access Journals (Sweden)

    E. Ridolfi

    2011-07-01

    Full Text Available Hydrological models are the basis of operational flood-forecasting systems. The accuracy of these models is strongly dependent on the quality and quantity of the input information represented by rainfall height. Finer space-time rainfall resolution results in more accurate hazard forecasting. In this framework, an optimum raingauge network is essential in predicting flood events.

    This paper develops an entropy-based approach to evaluate the maximum information content achievable by a rainfall network for different sampling time intervals. The procedure is based on the determination of the coefficients of transferred and nontransferred information and on the relative isoinformation contours.

    The nontransferred information value achieved by the whole network is strictly dependent on the sampling time intervals considered. An empirical curve is defined, to assess the objective of the research: the nontransferred information value is plotted versus the associated sampling time on a semi-log scale. The curve has a linear trend.

    In this paper, the methodology is applied to the high-density raingauge network of the urban area of Rome.

  2. Temporal Correlations and Neural Spike Train Entropy

    International Nuclear Information System (INIS)

    Schultz, Simon R.; Panzeri, Stefano

    2001-01-01

    Sampling considerations limit the experimental conditions under which information theoretic analyses of neurophysiological data yield reliable results. We develop a procedure for computing the full temporal entropy and information of ensembles of neural spike trains, which performs reliably for limited samples of data. This approach also yields insight to the role of correlations between spikes in temporal coding mechanisms. The method, when applied to recordings from complex cells of the monkey primary visual cortex, results in lower rms error information estimates in comparison to a 'brute force' approach

  3. Heart rate variability analysis based on time–frequency representation and entropies in hypertrophic cardiomyopathy patients

    International Nuclear Information System (INIS)

    Clariá, F; Vallverdú, M; Caminal, P; Baranowski, R; Chojnowska, L

    2008-01-01

    In hypertrophic cardiomyopathy (HCM) patients there is an increased risk of premature death, which can occur with little or no warning. Furthermore, classification for sudden cardiac death on patients with HCM is very difficult. The aim of our study was to improve the prognostic value of heart rate variability (HRV) in HCM patients, giving insight into changes of the autonomic nervous system. In this way, the suitability of linear and nonlinear measures was studied to assess the HRV. These measures were based on time–frequency representation (TFR) and on Shannon and Rényi entropies, and compared with traditional HRV measures. Holter recordings of 64 patients with HCM and 55 healthy subjects were analyzed. The HCM patients consisted of two groups: 13 high risk patients, after aborted sudden cardiac death (SCD); 51 low risk patients, without SCD. Five-hour RR signals, corresponding to the sleep period of the subjects, were considered for the analysis as a comparable standard situation. These RR signals were filtered in the three frequency bands: very low frequency band (VLF, 0–0.04 Hz), low frequency band (LF, 0.04–0.15 Hz) and high frequency band (HF, 0.15–0.45 Hz). TFR variables based on instantaneous frequency and energy functions were able to classify HCM patients and healthy subjects (control group). Results revealed that measures obtained from TFR analysis of the HRV better classified the groups of subjects than traditional HRV parameters. However, results showed that nonlinear measures improved group classification. It was observed that entropies calculated in the HF band showed the highest statistically significant levels comparing the HCM group and the control group, p-value < 0.0005. The values of entropy measures calculated in the HCM group presented lower values, indicating a decreasing of complexity, than those calculated from the control group. Moreover, similar behavior was observed comparing high and low risk of premature death, the values of

  4. Arithmetic of quantum entropy function

    International Nuclear Information System (INIS)

    Sen, Ashoke

    2009-01-01

    Quantum entropy function is a proposal for computing the entropy associated with the horizon of a black hole in the extremal limit, and is related via AdS/CFT correspondence to the dimension of the Hilbert space in a dual quantum mechanics. We show that in N = 4 supersymmetric string theories, quantum entropy function formalism naturally explains the origin of the subtle differences between the microscopic degeneracies of quarter BPS dyons carrying different torsion, i.e. different arithmetical properties. These arise from additional saddle points in the path integral - whose existence depends on the arithmetical properties of the black hole charges - constructed as freely acting orbifolds of the original AdS 2 x S 2 near horizon geometry. During this analysis we demonstrate that the quantum entropy function is insensitive to the details of the infrared cutoff used in the computation, and the details of the boundary terms added to the action. We also discuss the role of the asymptotic symmetries of AdS 2 in carrying out the path integral in the definition of quantum entropy function. Finally we show that even though quantum entropy function is expected to compute the absolute degeneracy in a given charge and angular momentum sector, it can also be used to compute the index. This can then be compared with the microscopic computation of the index.

  5. Time dependence of entropy flux and entropy production for a dynamical system driven by noises with coloured cross-correlation

    Institute of Scientific and Technical Information of China (English)

    Xie Wen-Xian; Xu Wei; Cai Li

    2007-01-01

    This paper shows the Fokker-Planck equation of a dynamical system driven by coloured cross-correlated white noises in the absence and presence of a small external force. Based on the Fokker-Planck equation and the definition of Shannon's information entropy, the time dependence of entropy flux and entropy production can be calculated. The present results can be used to explain the extremal behaviour of time dependence of entropy flux and entropy production in view of the dissipative parameter γ of the system, coloured cross-correlation time τ and coloured cross-correlation strength λ.

  6. Harvesting Entropy for Random Number Generation for Internet of Things Constrained Devices Using On-Board Sensors

    Directory of Open Access Journals (Sweden)

    Marcin Piotr Pawlowski

    2015-10-01

    Full Text Available Entropy in computer security is associated with the unpredictability of a source of randomness. The random source with high entropy tends to achieve a uniform distribution of random values. Random number generators are one of the most important building blocks of cryptosystems. In constrained devices of the Internet of Things ecosystem, high entropy random number generators are hard to achieve due to hardware limitations. For the purpose of the random number generation in constrained devices, this work proposes a solution based on the least-significant bits concatenation entropy harvesting method. As a potential source of entropy, on-board integrated sensors (i.e., temperature, humidity and two different light sensors have been analyzed. Additionally, the costs (i.e., time and memory consumption of the presented approach have been measured. The results obtained from the proposed method with statistical fine tuning achieved a Shannon entropy of around 7.9 bits per byte of data for temperature and humidity sensors. The results showed that sensor-based random number generators are a valuable source of entropy with very small RAM and Flash memory requirements for constrained devices of the Internet of Things.

  7. Harvesting Entropy for Random Number Generation for Internet of Things Constrained Devices Using On-Board Sensors

    Science.gov (United States)

    Pawlowski, Marcin Piotr; Jara, Antonio; Ogorzalek, Maciej

    2015-01-01

    Entropy in computer security is associated with the unpredictability of a source of randomness. The random source with high entropy tends to achieve a uniform distribution of random values. Random number generators are one of the most important building blocks of cryptosystems. In constrained devices of the Internet of Things ecosystem, high entropy random number generators are hard to achieve due to hardware limitations. For the purpose of the random number generation in constrained devices, this work proposes a solution based on the least-significant bits concatenation entropy harvesting method. As a potential source of entropy, on-board integrated sensors (i.e., temperature, humidity and two different light sensors) have been analyzed. Additionally, the costs (i.e., time and memory consumption) of the presented approach have been measured. The results obtained from the proposed method with statistical fine tuning achieved a Shannon entropy of around 7.9 bits per byte of data for temperature and humidity sensors. The results showed that sensor-based random number generators are a valuable source of entropy with very small RAM and Flash memory requirements for constrained devices of the Internet of Things. PMID:26506357

  8. Harvesting entropy for random number generation for internet of things constrained devices using on-board sensors.

    Science.gov (United States)

    Pawlowski, Marcin Piotr; Jara, Antonio; Ogorzalek, Maciej

    2015-10-22

    Entropy in computer security is associated with the unpredictability of a source of randomness. The random source with high entropy tends to achieve a uniform distribution of random values. Random number generators are one of the most important building blocks of cryptosystems. In constrained devices of the Internet of Things ecosystem, high entropy random number generators are hard to achieve due to hardware limitations. For the purpose of the random number generation in constrained devices, this work proposes a solution based on the least-significant bits concatenation entropy harvesting method. As a potential source of entropy, on-board integrated sensors (i.e., temperature, humidity and two different light sensors) have been analyzed. Additionally, the costs (i.e., time and memory consumption) of the presented approach have been measured. The results obtained from the proposed method with statistical fine tuning achieved a Shannon entropy of around 7.9 bits per byte of data for temperature and humidity sensors. The results showed that sensor-based random number generators are a valuable source of entropy with very small RAM and Flash memory requirements for constrained devices of the Internet of Things.

  9. Transfer Entropy Estimation and Directional Coupling Change Detection in Biomedical Time Series

    Directory of Open Access Journals (Sweden)

    Lee Joon

    2012-04-01

    Full Text Available Abstract Background The detection of change in magnitude of directional coupling between two non-linear time series is a common subject of interest in the biomedical domain, including studies involving the respiratory chemoreflex system. Although transfer entropy is a useful tool in this avenue, no study to date has investigated how different transfer entropy estimation methods perform in typical biomedical applications featuring small sample size and presence of outliers. Methods With respect to detection of increased coupling strength, we compared three transfer entropy estimation techniques using both simulated time series and respiratory recordings from lambs. The following estimation methods were analyzed: fixed-binning with ranking, kernel density estimation (KDE, and the Darbellay-Vajda (D-V adaptive partitioning algorithm extended to three dimensions. In the simulated experiment, sample size was varied from 50 to 200, while coupling strength was increased. In order to introduce outliers, the heavy-tailed Laplace distribution was utilized. In the lamb experiment, the objective was to detect increased respiratory-related chemosensitivity to O2 and CO2 induced by a drug, domperidone. Specifically, the separate influence of end-tidal PO2 and PCO2 on minute ventilation (V˙E before and after administration of domperidone was analyzed. Results In the simulation, KDE detected increased coupling strength at the lowest SNR among the three methods. In the lamb experiment, D-V partitioning resulted in the statistically strongest increase in transfer entropy post-domperidone for PO2→V˙E. In addition, D-V partitioning was the only method that could detect an increase in transfer entropy for PCO2→V˙E, in agreement with experimental findings. Conclusions Transfer entropy is capable of detecting directional coupling changes in non-linear biomedical time series analysis featuring a small number of observations and presence of outliers. The results

  10. Topological nearly entropy

    Science.gov (United States)

    Gulamsarwar, Syazwani; Salleh, Zabidin

    2017-08-01

    The purpose of this paper is to generalize the notions of Adler's topological entropy along with their several fundamental properties. A function f : X → Y is said to be R-map if f-1 (V) is regular open in X for every regular open set V in Y. Thus, we initiated a notion of topological nearly entropy for topological R-dynamical systems which is based on nearly compact relative to the space by using R-map.

  11. Analysis of crude oil markets with improved multiscale weighted permutation entropy

    Science.gov (United States)

    Niu, Hongli; Wang, Jun; Liu, Cheng

    2018-03-01

    Entropy measures are recently extensively used to study the complexity property in nonlinear systems. Weighted permutation entropy (WPE) can overcome the ignorance of the amplitude information of time series compared with PE and shows a distinctive ability to extract complexity information from data having abrupt changes in magnitude. Improved (or sometimes called composite) multi-scale (MS) method possesses the advantage of reducing errors and improving the accuracy when applied to evaluate multiscale entropy values of not enough long time series. In this paper, we combine the merits of WPE and improved MS to propose the improved multiscale weighted permutation entropy (IMWPE) method for complexity investigation of a time series. Then it is validated effective through artificial data: white noise and 1 / f noise, and real market data of Brent and Daqing crude oil. Meanwhile, the complexity properties of crude oil markets are explored respectively of return series, volatility series with multiple exponents and EEMD-produced intrinsic mode functions (IMFs) which represent different frequency components of return series. Moreover, the instantaneous amplitude and frequency of Brent and Daqing crude oil are analyzed by the Hilbert transform utilized to each IMF.

  12. Quantum Statistical Entropy of Five-Dimensional Black Hole

    Institute of Scientific and Technical Information of China (English)

    ZHAO Ren; WU Yue-Qin; ZHANG Sheng-Li

    2006-01-01

    The generalized uncertainty relation is introduced to calculate quantum statistic entropy of a black hole.By using the new equation of state density motivated by the generalized uncertainty relation, we discuss entropies of Bose field and Fermi field on the background of the five-dimensional spacetime. In our calculation, we need not introduce cutoff. There is not the divergent logarithmic term as in the original brick-wall method. And it is obtained that the quantum statistic entropy corresponding to black hole horizon is proportional to the area of the horizon. Further it is shown that the entropy of black hole is the entropy of quantum state on the surface of horizon. The black hole's entropy is the intrinsic property of the black hole. The entropy is a quantum effect. It makes people further understand the quantum statistic entropy.

  13. Quantum Statistical Entropy of Five-Dimensional Black Hole

    International Nuclear Information System (INIS)

    Zhao Ren; Zhang Shengli; Wu Yueqin

    2006-01-01

    The generalized uncertainty relation is introduced to calculate quantum statistic entropy of a black hole. By using the new equation of state density motivated by the generalized uncertainty relation, we discuss entropies of Bose field and Fermi field on the background of the five-dimensional spacetime. In our calculation, we need not introduce cutoff. There is not the divergent logarithmic term as in the original brick-wall method. And it is obtained that the quantum statistic entropy corresponding to black hole horizon is proportional to the area of the horizon. Further it is shown that the entropy of black hole is the entropy of quantum state on the surface of horizon. The black hole's entropy is the intrinsic property of the black hole. The entropy is a quantum effect. It makes people further understand the quantum statistic entropy.

  14. Equipartition of entropy production as an approximation to the state of minimum entropy production in diabatic distillation

    International Nuclear Information System (INIS)

    Johannessen, Eivind; Rosjorde, Audun

    2007-01-01

    We show that the theorem of equipartition of entropy production is important for the understanding of the state of minimum entropy production in diabatic distillation. The theorem is not valid in a strictly mathematical sense. We explain why, when and in what sense this theorem is a good approximation to the optimal state in diabatic distillation. In order to make these predictions, we use a hypothesis for the state of minimum entropy production of an optimally controlled system, which was formulated on the basis of results of entropy production minimisation in chemical reactors. The hypothesis says that the state of minimum entropy production is characterised by approximately constant local entropy production and thermodynamic forces, given that there is sufficient freedom in the system. We present numerical results which are in agreement with the predictions. The results show that a column with constant tray entropy production in the stripping section and in the rectifying section is a good approximation to the optimal column, except when the total heat transfer area is low. The agreement between the two columns becomes better and better as the total heat transfer area and the number of trays increase. The fact that the predictions and the numerical results agree very well gives support to the validity of the hypothesis

  15. Clausius entropy for arbitrary bifurcate null surfaces

    International Nuclear Information System (INIS)

    Baccetti, Valentina; Visser, Matt

    2014-01-01

    Jacobson’s thermodynamic derivation of the Einstein equations was originally applied only to local Rindler horizons. But at least some parts of that construction can usefully be extended to give meaningful results for arbitrary bifurcate null surfaces. As presaged in Jacobson’s original article, this more general construction sharply brings into focus the questions: is entropy objectively ‘real’? Or is entropy in some sense subjective and observer-dependent? These innocent questions open a Pandora’s box of often inconclusive debate. A consensus opinion, though certainly not universally held, seems to be that Clausius entropy (thermodynamic entropy, defined via a Clausius relation dS=đQ/T) should be objectively real, but that the ontological status of statistical entropy (Shannon or von Neumann entropy) is much more ambiguous, and much more likely to be observer-dependent. This question is particularly pressing when it comes to understanding Bekenstein entropy (black hole entropy). To perhaps further add to the confusion, we shall argue that even the Clausius entropy can often be observer-dependent. In the current article we shall conclusively demonstrate that one can meaningfully assign a notion of Clausius entropy to arbitrary bifurcate null surfaces—effectively defining a ‘virtual Clausius entropy’ for arbitrary ‘virtual (local) causal horizons’. As an application, we see that we can implement a version of the generalized second law (GSL) for this virtual Clausius entropy. This version of GSL can be related to certain (nonstandard) integral variants of the null energy condition. Because the concepts involved are rather subtle, we take some effort in being careful and explicit in developing our framework. In future work we will apply this construction to generalize Jacobson’s derivation of the Einstein equations. (paper)

  16. Holographic entropy inequalities and gapped phases of matter

    Energy Technology Data Exchange (ETDEWEB)

    Bao, Ning [Institute for Quantum Information and Matter, California Institute of Technology,Pasadena, CA 91125 (United States); Walter Burke Institute for Theoretical Physics, California Institute of Technology,Pasadena, CA 91125 (United States); Cao, ChunJun [Walter Burke Institute for Theoretical Physics, California Institute of Technology,Pasadena, CA 91125 (United States); Walter, Michael [Stanford Institute for Theoretical Physics,Stanford University, Stanford, CA 94305 (United States); Wang, Zitao [Institute for Quantum Information and Matter, California Institute of Technology,Pasadena, CA 91125 (United States); Walter Burke Institute for Theoretical Physics, California Institute of Technology,Pasadena, CA 91125 (United States)

    2015-09-29

    We extend our studies of holographic entropy inequalities to gapped phases of matter. For any number of regions, we determine the linear entropy inequalities satisfied by systems in which the entanglement entropy satisfies an exact area law. In particular, we find that all holographic entropy inequalities are valid in such systems. In gapped systems with topological order, the “cyclic inequalities” derived recently for the holographic entanglement entropy generalize the Kitaev-Preskill formula for the topological entanglement entropy. Finally, we propose a candidate linear inequality for general 4-party quantum states.

  17. Holographic entropy inequalities and gapped phases of matter

    International Nuclear Information System (INIS)

    Bao, Ning; Cao, ChunJun; Walter, Michael; Wang, Zitao

    2015-01-01

    We extend our studies of holographic entropy inequalities to gapped phases of matter. For any number of regions, we determine the linear entropy inequalities satisfied by systems in which the entanglement entropy satisfies an exact area law. In particular, we find that all holographic entropy inequalities are valid in such systems. In gapped systems with topological order, the “cyclic inequalities” derived recently for the holographic entanglement entropy generalize the Kitaev-Preskill formula for the topological entanglement entropy. Finally, we propose a candidate linear inequality for general 4-party quantum states.

  18. Examples of Entropy-driven Ordering

    Indian Academy of Sciences (India)

    driven Ordering. Orientational ordering of long objects. Entropy of sliding increases. Freezing in hard-sphere systems. Vibrational entropy increases. Phase separation in hard-sphere binary mixtures with disparate sizes. More room for smaller ...

  19. Receiver function estimated by maximum entropy deconvolution

    Institute of Scientific and Technical Information of China (English)

    吴庆举; 田小波; 张乃铃; 李卫平; 曾融生

    2003-01-01

    Maximum entropy deconvolution is presented to estimate receiver function, with the maximum entropy as the rule to determine auto-correlation and cross-correlation functions. The Toeplitz equation and Levinson algorithm are used to calculate the iterative formula of error-predicting filter, and receiver function is then estimated. During extrapolation, reflective coefficient is always less than 1, which keeps maximum entropy deconvolution stable. The maximum entropy of the data outside window increases the resolution of receiver function. Both synthetic and real seismograms show that maximum entropy deconvolution is an effective method to measure receiver function in time-domain.

  20. Controlling the Shannon Entropy of Quantum Systems

    Science.gov (United States)

    Xing, Yifan; Wu, Jun

    2013-01-01

    This paper proposes a new quantum control method which controls the Shannon entropy of quantum systems. For both discrete and continuous entropies, controller design methods are proposed based on probability density function control, which can drive the quantum state to any target state. To drive the entropy to any target at any prespecified time, another discretization method is proposed for the discrete entropy case, and the conditions under which the entropy can be increased or decreased are discussed. Simulations are done on both two- and three-dimensional quantum systems, where division and prediction are used to achieve more accurate tracking. PMID:23818819

  1. Controlling the Shannon Entropy of Quantum Systems

    Directory of Open Access Journals (Sweden)

    Yifan Xing

    2013-01-01

    Full Text Available This paper proposes a new quantum control method which controls the Shannon entropy of quantum systems. For both discrete and continuous entropies, controller design methods are proposed based on probability density function control, which can drive the quantum state to any target state. To drive the entropy to any target at any prespecified time, another discretization method is proposed for the discrete entropy case, and the conditions under which the entropy can be increased or decreased are discussed. Simulations are done on both two- and three-dimensional quantum systems, where division and prediction are used to achieve more accurate tracking.

  2. Estimating the Entropy of Binary Time Series: Methodology, Some Theory and a Simulation Study

    Directory of Open Access Journals (Sweden)

    Elie Bienenstock

    2008-06-01

    Full Text Available Partly motivated by entropy-estimation problems in neuroscience, we present a detailed and extensive comparison between some of the most popular and effective entropy estimation methods used in practice: The plug-in method, four different estimators based on the Lempel-Ziv (LZ family of data compression algorithms, an estimator based on the Context-Tree Weighting (CTW method, and the renewal entropy estimator. METHODOLOGY: Three new entropy estimators are introduced; two new LZ-based estimators, and the “renewal entropy estimator,” which is tailored to data generated by a binary renewal process. For two of the four LZ-based estimators, a bootstrap procedure is described for evaluating their standard error, and a practical rule of thumb is heuristically derived for selecting the values of their parameters in practice. THEORY: We prove that, unlike their earlier versions, the two new LZ-based estimators are universally consistent, that is, they converge to the entropy rate for every finite-valued, stationary and ergodic process. An effective method is derived for the accurate approximation of the entropy rate of a finite-state hidden Markov model (HMM with known distribution. Heuristic calculations are presented and approximate formulas are derived for evaluating the bias and the standard error of each estimator. SIMULATION: All estimators are applied to a wide range of data generated by numerous different processes with varying degrees of dependence and memory. The main conclusions drawn from these experiments include: (i For all estimators considered, the main source of error is the bias. (ii The CTW method is repeatedly and consistently seen to provide the most accurate results. (iii The performance of the LZ-based estimators is often comparable to that of the plug-in method. (iv The main drawback of the plug-in method is its computational inefficiency; with small word-lengths it fails to detect longer-range structure in

  3. Universal canonical entropy for gravitating systems

    Indian Academy of Sciences (India)

    Similar to this is the case of ref. [12] which also uses the saddle point approximation to express the microcanonical entropy in terms of the canonical entropy [12a]. Recalling that there is at least 'circumstantial' evidence that the microcanonical entropy has a 'universal' form [13–15], identical to that obtained in ref. [6] quoted.

  4. Angular momentum independence of the entropy sum and entropy product for AdS rotating black holes in all dimensions

    Directory of Open Access Journals (Sweden)

    Hang Liu

    2016-08-01

    Full Text Available In this paper, we investigate the angular momentum independence of the entropy sum and product for AdS rotating black holes based on the first law of thermodynamics and a mathematical lemma related to Vandermonde determinant. The advantage of this method is that the explicit forms of the spacetime metric, black hole mass and charge are not needed but the Hawking temperature and entropy formula on the horizons are necessary for static black holes, while our calculations require the expressions of metric and angular velocity formula. We find that the entropy sum is always independent of angular momentum for all dimensions and the angular momentum-independence of entropy product only holds for the dimensions d>4 with at least one rotation parameter ai=0, while the mass-free of entropy sum and entropy product for rotating black holes only stand for higher dimensions (d>4 and for all dimensions, respectively. On the other hand, we find that the introduction of a negative cosmological constant does not affect the angular momentum-free of entropy sum and product but the criterion for angular momentum-independence of entropy product will be affected.

  5. Aplikasi Pemilihan Bibit Budidaya Ikan Air Tawar dengan Metode MOORA – Entropy

    Directory of Open Access Journals (Sweden)

    Muhammad Ashari, Arini, Fitri Mintarsih

    2017-10-01

    Full Text Available At the beginning of the start of the business of breeding fish selection of freshwater fish cultivation becomes a difficult thing to do. The results of interviews with the Center for Research and Development of Freshwater Aquaculture said that there are 8 factors that influence the selection of freshwater fish cultivation seeds, namely temperature, water pH, location, elevation, dissolved oxygen, pond area, the ideal length of enlargement, feeding easier, fish. This research uses Decision Support System with Multi Objective Optimization By Ratio Analysis (MOORA method as ranking and Entropy as weighting. The incorporation of the MOORA and Entropy methods gives the recommendation result by combining the objective system's subjective and subjective weights. It used priority criteria with temperature value 0,222, water pH 0,194, Eatability 0,111, community interest toward fish 0,055, dissolved oxygen 0,138, land height 0,167, ideal length of fish enlargement 0,027, and pool area 0,083 produce catfish as the best alternative of fish breeder water with value -0.1009.Keywords: Information, fish, DSS,  MOORA, Entropy

  6. Maximum-entropy networks pattern detection, network reconstruction and graph combinatorics

    CERN Document Server

    Squartini, Tiziano

    2017-01-01

    This book is an introduction to maximum-entropy models of random graphs with given topological properties and their applications. Its original contribution is the reformulation of many seemingly different problems in the study of both real networks and graph theory within the unified framework of maximum entropy. Particular emphasis is put on the detection of structural patterns in real networks, on the reconstruction of the properties of networks from partial information, and on the enumeration and sampling of graphs with given properties.  After a first introductory chapter explaining the motivation, focus, aim and message of the book, chapter 2 introduces the formal construction of maximum-entropy ensembles of graphs with local topological constraints. Chapter 3 focuses on the problem of pattern detection in real networks and provides a powerful way to disentangle nontrivial higher-order structural features from those that can be traced back to simpler local constraints. Chapter 4 focuses on the problem o...

  7. Two dissimilar approaches to dynamical systems on hyper MV -algebras and their information entropy

    Science.gov (United States)

    Mehrpooya, Adel; Ebrahimi, Mohammad; Davvaz, Bijan

    2017-09-01

    Measuring the flow of information that is related to the evolution of a system which is modeled by applying a mathematical structure is of capital significance for science and usually for mathematics itself. Regarding this fact, a major issue in concern with hyperstructures is their dynamics and the complexity of the varied possible dynamics that exist over them. Notably, the dynamics and uncertainty of hyper MV -algebras which are hyperstructures and extensions of a central tool in infinite-valued Lukasiewicz propositional calculus that models many valued logics are of primary concern. Tackling this problem, in this paper we focus on the subject of dynamical systems on hyper MV -algebras and their entropy. In this respect, we adopt two varied approaches. One is the set-based approach in which hyper MV -algebra dynamical systems are developed by employing set functions and set partitions. By the other method that is based on points and point partitions, we establish the concept of hyper injective dynamical systems on hyper MV -algebras. Next, we study the notion of entropy for both kinds of systems. Furthermore, we consider essential ergodic characteristics of those systems and their entropy. In particular, we introduce the concept of isomorphic hyper injective and hyper MV -algebra dynamical systems, and we demonstrate that isomorphic systems have the same entropy. We present a couple of theorems in order to help calculate entropy. In particular, we prove a contemporary version of addition and Kolmogorov-Sinai Theorems. Furthermore, we provide a comparison between the indispensable properties of hyper injective and semi-independent dynamical systems. Specifically, we present and prove theorems that draw comparisons between the entropies of such systems. Lastly, we discuss some possible relationships between the theories of hyper MV -algebra and MV -algebra dynamical systems.

  8. Constant conditional entropy and related hypotheses

    International Nuclear Information System (INIS)

    Ferrer-i-Cancho, Ramon; Dębowski, Łukasz; Moscoso del Prado Martín, Fermín

    2013-01-01

    Constant entropy rate (conditional entropies must remain constant as the sequence length increases) and uniform information density (conditional probabilities must remain constant as the sequence length increases) are two information theoretic principles that are argued to underlie a wide range of linguistic phenomena. Here we revise the predictions of these principles in the light of Hilberg’s law on the scaling of conditional entropy in language and related laws. We show that constant entropy rate (CER) and two interpretations for uniform information density (UID), full UID and strong UID, are inconsistent with these laws. Strong UID implies CER but the reverse is not true. Full UID, a particular case of UID, leads to costly uncorrelated sequences that are totally unrealistic. We conclude that CER and its particular cases are incomplete hypotheses about the scaling of conditional entropies. (letter)

  9. On the fundamental equation of nonequilibrium statistical physics—Nonequilibrium entropy evolution equation and the formula for entropy production rate

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    In this paper the author presents an overview on his own research works. More than ten years ago, we proposed a new fundamental equation of nonequilibrium statistical physics in place of the present Liouville equation. That is the stochastic velocity type’s Langevin equation in 6N dimensional phase space or its equivalent Liouville diffusion equation. This equation is time-reversed asymmetrical. It shows that the form of motion of particles in statistical thermodynamic systems has the drift-diffusion duality, and the law of motion of statistical thermodynamics is expressed by a superposition of both the law of dynamics and the stochastic velocity and possesses both determinism and probability. Hence it is different from the law of motion of particles in dynamical systems. The stochastic diffusion motion of the particles is the microscopic origin of macroscopic irreversibility. Starting from this fundamental equation the BBGKY diffusion equation hierarchy, the Boltzmann collision diffusion equation, the hydrodynamic equations such as the mass drift-diffusion equation, the Navier-Stokes equation and the thermal conductivity equation have been derived and presented here. What is more important, we first constructed a nonlinear evolution equation of nonequilibrium entropy density in 6N, 6 and 3 dimensional phase space, predicted the existence of entropy diffusion. This entropy evolution equation plays a leading role in nonequilibrium entropy theory, it reveals that the time rate of change of nonequilibrium entropy density originates together from its drift, diffusion and production in space. From this evolution equation, we presented a formula for entropy production rate (i.e. the law of entropy increase) in 6N and 6 dimensional phase space, proved that internal attractive force in nonequilibrium system can result in entropy decrease while internal repulsive force leads to another entropy increase, and derived a common expression for this entropy decrease rate or

  10. On Equivalence of Nonequilibrium Thermodynamic and Statistical Entropies

    Directory of Open Access Journals (Sweden)

    Purushottam D. Gujrati

    2015-02-01

    Full Text Available We review the concept of nonequilibrium thermodynamic entropy and observables and internal variables as state variables, introduced recently by us, and provide a simple first principle derivation of additive statistical entropy, applicable to all nonequilibrium states by treating thermodynamics as an experimental science. We establish their numerical equivalence in several cases, which includes the most important case when the thermodynamic entropy is a state function. We discuss various interesting aspects of the two entropies and show that the number of microstates in the Boltzmann entropy includes all possible microstates of non-zero probabilities even if the system is trapped in a disjoint component of the microstate space. We show that negative thermodynamic entropy can appear from nonnegative statistical entropy.

  11. Black hole entropy in the O(N) model

    International Nuclear Information System (INIS)

    Kabat, D.; Shenker, S.H.; Strassler, M.J.

    1995-01-01

    We consider corrections to the entropy of a black hole from an O(N)-invariant linear σ model. We obtain the entropy from a 1/N expansion of the partition function on a cone. The entropy arises from diagrams which are analogous to those introduced by Susskind and Uglum to explain black hole entropy in string theory. The interpretation of the σ-model entropy depends on scale. At short distances, it has a state counting interpretation, as the entropy of entanglement of the N fields φ a . In the infrared, the effective theory has a single composite field σ∼φ a φ a , and the state counting interpretation of the entropy is lost. copyright 1995 The American Physical Society

  12. Entropy concentration and the empirical coding game

    NARCIS (Netherlands)

    Grünwald, P.D.

    2008-01-01

    We give a characterization of maximum entropy/minimum relative entropy inference by providing two 'strong entropy concentration' theorems. These theorems unify and generalize Jaynes''concentration phenomenon' and Van Campenhout and Cover's 'conditional limit theorem'. The theorems characterize

  13. Logical entropy of quantum dynamical systems

    Directory of Open Access Journals (Sweden)

    Ebrahimzadeh Abolfazl

    2016-01-01

    Full Text Available This paper introduces the concepts of logical entropy and conditional logical entropy of hnite partitions on a quantum logic. Some of their ergodic properties are presented. Also logical entropy of a quantum dynamical system is dehned and ergodic properties of dynamical systems on a quantum logic are investigated. Finally, the version of Kolmogorov-Sinai theorem is proved.

  14. Study on corrosion resistance of high - entropy alloy in medium acid liquid and chemical properties

    International Nuclear Information System (INIS)

    Florea, I; Buluc, G; Florea, R M; Carcea, I; Soare, V

    2015-01-01

    High-entropy alloy is a new alloy which is different from traditional alloys. The high entropy alloys were started in Tsing Hua University of Taiwan since 1995 by Yeh et al. Consisting of a variety of elements, each element occupying a similar compared with other alloy elements to form a high entropy. We could define high entropy alloys as having approximately equal concentrations, made up of a group of 5 to 11 major elements. In general, the content of each element is not more than 35% by weight of the alloy. During the investigation it turned out that this alloy has a high hardness and is also corrosion proof and also strength and good thermal stability. In the experimental area, scientists used different tools, including traditional casting, mechanical alloying, sputtering, splat-quenching to obtain the high entropy alloys with different alloying elements and then to investigate the corresponding microstructures and mechanical, chemical, thermal, and electronic performances. The present study is aimed to investigate the corrosion resistance in a different medium acid and try to put in evidence the mechanical properties. Forasmuch of the wide composition range and the enormous number of alloy systems in high entropy alloys, the mechanical properties of high entropy alloys can vary significantly. In terms of hardness, the most critical factors are: hardness/strength of each composing phase in the alloy, distribution of the composing phases. The corrosion resistance of an high entropy alloy was made in acid liquid such as 10%HNO 3 -3%HF, 10%H 2 SO 4 , 5%HCl and then was investigated, respectively with weight loss experiment. Weight loss test was carried out by put the samples into the acid solution for corrosion. The solution was maintained at a constant room temperature. The liquid formulations used for tests were 3% hydrofluoric acid with 10% nitric acid, 10% sulphuric acid, 5% hydrochloric acid. Weight loss of the samples was measured by electronic scale. (paper)

  15. Power spectrum of the geomagnetic field by the maximum entropy method

    International Nuclear Information System (INIS)

    Kantor, I.J.; Trivedi, N.B.

    1980-01-01

    Monthly mean values of Vassouras (state of Rio de Janeiro) geomagnetic field are analyzed us the maximum entropy method. The method is described and compared with other methods of spectral analysis, and its advantages and disadvantages are presented. (Author) [pt

  16. Black hole entropy functions and attractor equations

    International Nuclear Information System (INIS)

    Lopes Cardoso, Gabriel; Wit, Bernard de; Mahapatra, Swapna

    2007-01-01

    The entropy and the attractor equations for static extremal black hole solutions follow from a variational principle based on an entropy function. In the general case such an entropy function can be derived from the reduced action evaluated in a near-horizon geometry. BPS black holes constitute special solutions of this variational principle, but they can also be derived directly from a different entropy function based on supersymmetry enhancement at the horizon. Both functions are consistent with electric/magnetic duality and for BPS black holes their corresponding OSV-type integrals give identical results at the semi-classical level. We clarify the relation between the two entropy functions and the corresponding attractor equations for N = 2 supergravity theories with higher-derivative couplings in four space-time dimensions. We discuss how non-holomorphic corrections will modify these entropy functions

  17. Left-right entanglement entropy of Dp-branes

    Energy Technology Data Exchange (ETDEWEB)

    Zayas, Leopoldo A. Pando [The Abdus Salam International Centre for Theoretical Physics,Strada Costiera 11, 34014 Trieste (Italy); Michigan Center for Theoretical Physics, Randall Laboratory of Physics,The University of Michigan,450 Church Street, Ann Arbor, MI 48109-1120 (United States); Quiroz, Norma [Departamento de Ciencias Exactas, Tecnología y Metodología,Centro Universitario del Sur, Universidad de Guadalajara,Enrique Arreola Silva 883, C.P. 49000, Cd. Guzmán, Jalisco (Mexico)

    2016-11-04

    We compute the left-right entanglement entropy for Dp-branes in string theory. We employ the CFT approach to string theory Dp-branes, in particular, its presentation as coherent states of the closed string sector. The entanglement entropy is computed as the von Neumann entropy for a density matrix resulting from integration over the left-moving degrees of freedom. We discuss various crucial ambiguities related to sums over spin structures and argue that different choices capture different physics; however, we advance a themodynamic argument that seems to favor a particular choice of replica. We also consider Dp branes on compact dimensions and verify that the effects of T-duality act covariantly on the Dp brane entanglement entropy. We find that generically the left-right entanglement entropy provides a suitable generalization of boundary entropy and of the D-brane tension.

  18. Shannon versus Kullback-Leibler entropies in nonequilibrium random motion

    International Nuclear Information System (INIS)

    Garbaczewski, Piotr

    2005-01-01

    We analyze dynamical properties of the Shannon information entropy of a continuous probability distribution, which is driven by a standard diffusion process. This entropy choice is confronted with another option, employing the conditional Kullback-Leibler entropy. Both entropies discriminate among various probability distributions, either statically or in the time domain. An asymptotic approach towards equilibrium is typically monotonic in terms of the Kullback entropy. The Shannon entropy time rate needs not to be positive and is a sensitive indicator of the power transfer processes (removal/supply) due to an active environment. In the case of Smoluchowski diffusions, the Kullback entropy time rate coincides with the Shannon entropy 'production' rate

  19. On the way towards a generalized entropy maximization procedure

    International Nuclear Information System (INIS)

    Bagci, G. Baris; Tirnakli, Ugur

    2009-01-01

    We propose a generalized entropy maximization procedure, which takes into account the generalized averaging procedures and information gain definitions underlying the generalized entropies. This novel generalized procedure is then applied to Renyi and Tsallis entropies. The generalized entropy maximization procedure for Renyi entropies results in the exponential stationary distribution asymptotically for q element of (0,1] in contrast to the stationary distribution of the inverse power law obtained through the ordinary entropy maximization procedure. Another result of the generalized entropy maximization procedure is that one can naturally obtain all the possible stationary distributions associated with the Tsallis entropies by employing either ordinary or q-generalized Fourier transforms in the averaging procedure.

  20. Entropy and black-hole thermodynamics

    International Nuclear Information System (INIS)

    Wald, R.M.

    1979-01-01

    The concept of entropy is examined with an eye toward gaining insight into the nature of black-hole thermodynamics. Definitions of entropy are given for ordinary classical and quantum-mechanical systems which lead to plausibility arguments for the ordinary laws of thermodynamics. The treatment of entropy for a classical system is in the spirit of the information-theory viewpoint, but by explicitly incorporating the coarse-grained observable into the definition of entropy, we eliminate any nonobjective features. The definition of entropy for a quantum-mechanical system is new, but directly parallels the classical treatment. We then apply these ideas to a self-gravitating quantum system which contains a black hole. Under some assumptions: which, although nontrivial, are by no means exotic: about the nature of such a system, it is seen that the same plausibility arguments which lead to the ordinary laws of thermodynamics for ordinary systems now lead to the laws of black-hole mechanics, including the generalized second law of thermodynamics. Thus, it appears perfectly plausible that black-hole thermodynamics is nothing more than ordinary thermodynamics applied to a self-gravitating quantum system

  1. ENTROPY FLOW CHARACTERISTICS ANALYSIS OF TYPHOON MATSA (0509)

    Institute of Scientific and Technical Information of China (English)

    XU Hui; LIU Chong-jian

    2008-01-01

    The evolution of Typhoon Matsa (0509) is examined in terms of entropy flow through an entropy balance equation derived from the Gibbs relation, according to the second law of thermodynamics. The entropy flows in the various significant stages of (genesis, development and decaying) during its evolution are diagnosed based on the outputs of the PSU/NCAR mesoscale model (known as MM5). The results show that: (1) the vertical spatial distribution of entropy flow for Matsa is characterized by a predominantly negative entropy flow in a large portion of the troposphere and a positive flow in the upper levels; (2) the fields of entropy flows at the middle troposphere (500 hPa) show that the growth of the typhoon is greatly dependent on the negative entropy flows from its surroundings; and (3) the simulated centres of heavy rainfall associated with the typhoon match well with the zones of large negative entropy flows, suggesting that they may be a significant indicator for severe weather events.

  2. Performance Analysis of Entropy Methods on K Means in Clustering Process

    Science.gov (United States)

    Dicky Syahputra Lubis, Mhd.; Mawengkang, Herman; Suwilo, Saib

    2017-12-01

    K Means is a non-hierarchical data clustering method that attempts to partition existing data into one or more clusters / groups. This method partitions the data into clusters / groups so that data that have the same characteristics are grouped into the same cluster and data that have different characteristics are grouped into other groups.The purpose of this data clustering is to minimize the objective function set in the clustering process, which generally attempts to minimize variation within a cluster and maximize the variation between clusters. However, the main disadvantage of this method is that the number k is often not known before. Furthermore, a randomly chosen starting point may cause two points to approach the distance to be determined as two centroids. Therefore, for the determination of the starting point in K Means used entropy method where this method is a method that can be used to determine a weight and take a decision from a set of alternatives. Entropy is able to investigate the harmony in discrimination among a multitude of data sets. Using Entropy criteria with the highest value variations will get the highest weight. Given this entropy method can help K Means work process in determining the starting point which is usually determined at random. Thus the process of clustering on K Means can be more quickly known by helping the entropy method where the iteration process is faster than the K Means Standard process. Where the postoperative patient dataset of the UCI Repository Machine Learning used and using only 12 data as an example of its calculations is obtained by entropy method only with 2 times iteration can get the desired end result.

  3. Zero modes and entanglement entropy

    Energy Technology Data Exchange (ETDEWEB)

    Yazdi, Yasaman K. [Perimeter Institute for Theoretical Physics,31 Caroline St. N., Waterloo, ON, N2L 2Y5 (Canada); Department of Physics and Astronomy, University of Waterloo,200 University Avenue West, Waterloo, ON, N2L 3G1 (Canada)

    2017-04-26

    Ultraviolet divergences are widely discussed in studies of entanglement entropy. Also present, but much less understood, are infrared divergences due to zero modes in the field theory. In this note, we discuss the importance of carefully handling zero modes in entanglement entropy. We give an explicit example for a chain of harmonic oscillators in 1D, where a mass regulator is necessary to avoid an infrared divergence due to a zero mode. We also comment on a surprising contribution of the zero mode to the UV-scaling of the entanglement entropy.

  4. Entropy Learning in Neural Network

    Directory of Open Access Journals (Sweden)

    Geok See Ng

    2017-12-01

    Full Text Available In this paper, entropy term is used in the learning phase of a neural network.  As learning progresses, more hidden nodes get into saturation.  The early creation of such hidden nodes may impair generalisation.  Hence entropy approach is proposed to dampen the early creation of such nodes.  The entropy learning also helps to increase the importance of relevant nodes while dampening the less important nodes.  At the end of learning, the less important nodes can then be eliminated to reduce the memory requirements of the neural network.

  5. Shannon's information is not entropy

    International Nuclear Information System (INIS)

    Schiffer, M.

    1990-01-01

    In this letter we clear up the long-standing misidentification of Shannon's Information with Entropy. We show that Information, in contrast to Entropy, is not invariant under unitary transformations and that these quantities are only equivalent for representations consisting of Hamiltonian eigenstates. We illustrate this fact through a toy system consisting of a harmonic oscillator in a coherent state. It is further proved that the representations which maximize the information are those which are energy-eigenstates. This fact sets the entropy as an upper bound for Shannon's Information. (author)

  6. Entanglement entropy and nonabelian gauge symmetry

    International Nuclear Information System (INIS)

    Donnelly, William

    2014-01-01

    Entanglement entropy has proven to be an extremely useful concept in quantum field theory. Gauge theories are of particular interest, but for these systems the entanglement entropy is not clearly defined because the physical Hilbert space does not factor as a tensor product according to regions of space. Here we review a definition of entanglement entropy that applies to abelian and nonabelian lattice gauge theories. This entanglement entropy is obtained by embedding the physical Hilbert space into a product of Hilbert spaces associated to regions with boundary. The latter Hilbert spaces include degrees of freedom on the entangling surface that transform like surface charges under the gauge symmetry. These degrees of freedom are shown to contribute to the entanglement entropy, and the form of this contribution is determined by the gauge symmetry. We test our definition using the example of two-dimensional Yang–Mills theory, and find that it agrees with the thermal entropy in de Sitter space, and with the results of the Euclidean replica trick. We discuss the possible implications of this result for more complicated gauge theories, including quantum gravity. (paper)

  7. Entropy, recycling and macroeconomics of water resources

    Science.gov (United States)

    Karakatsanis, Georgios; Mamassis, Nikos; Koutsoyiannis, Demetris

    2014-05-01

    We propose a macroeconomic model for water quantity and quality supply multipliers derived by water recycling (Karakatsanis et al. 2013). Macroeconomic models that incorporate natural resource conservation have become increasingly important (European Commission et al. 2012). In addition, as an estimated 80% of globally used freshwater is not reused (United Nations 2012), under increasing population trends, water recycling becomes a solution of high priority. Recycling of water resources creates two major conservation effects: (1) conservation of water in reservoirs and aquifers and (2) conservation of ecosystem carrying capacity due to wastewater flux reduction. Statistical distribution properties of the recycling efficiencies -on both water quantity and quality- for each sector are of vital economic importance. Uncertainty and complexity of water reuse in sectors are statistically quantified by entropy. High entropy of recycling efficiency values signifies greater efficiency dispersion; which -in turn- may indicate the need for additional infrastructure for the statistical distribution's both shifting and concentration towards higher efficiencies that lead to higher supply multipliers. Keywords: Entropy, water recycling, water supply multipliers, conservation, recycling efficiencies, macroeconomics References 1. European Commission (EC), Food and Agriculture Organization (FAO), International Monetary Fund (IMF), Organization of Economic Cooperation and Development (OECD), United Nations (UN) and World Bank (2012), System of Environmental and Economic Accounting (SEEA) Central Framework (White cover publication), United Nations Statistics Division 2. Karakatsanis, G., N. Mamassis, D. Koutsoyiannis and A. Efstratiades (2013), Entropy and reliability of water use via a statistical approach of scarcity, 5th EGU Leonardo Conference - Hydrofractals 2013 - STAHY '13, Kos Island, Greece, European Geosciences Union, International Association of Hydrological Sciences

  8. Entropy corresponding to the interior of a Schwarzschild black hole

    Directory of Open Access Journals (Sweden)

    Bibhas Ranjan Majhi

    2017-07-01

    Full Text Available Interior volume within the horizon of a black hole is a non-trivial concept which turns out to be very important to explain several issues in the context of quantum nature of black hole. Here we show that the entropy, contained by the maximum interior volume for massless modes, is proportional to the Bekenstein–Hawking expression. The proportionality constant is less than unity implying the horizon bears maximum entropy than that by the interior. The derivation is very systematic and free of any ambiguity. To do so the precise value of the energy of the modes, living in the interior, is derived by constraint analysis. Finally, the implications of the result are discussed.

  9. Entropy corresponding to the interior of a Schwarzschild black hole

    Science.gov (United States)

    Majhi, Bibhas Ranjan; Samanta, Saurav

    2017-07-01

    Interior volume within the horizon of a black hole is a non-trivial concept which turns out to be very important to explain several issues in the context of quantum nature of black hole. Here we show that the entropy, contained by the maximum interior volume for massless modes, is proportional to the Bekenstein-Hawking expression. The proportionality constant is less than unity implying the horizon bears maximum entropy than that by the interior. The derivation is very systematic and free of any ambiguity. To do so the precise value of the energy of the modes, living in the interior, is derived by constraint analysis. Finally, the implications of the result are discussed.

  10. Topological entropy for induced hyperspace maps

    International Nuclear Information System (INIS)

    Canovas Pena, Jose S.; Lopez, Gabriel Soler

    2006-01-01

    Let (X,d) be a compact metric space and let f:X->X be continuous. Let K(X) be the family of compact subsets of X endowed with the Hausdorff metric and define the extension f-bar :K(X)->K(X) by f-bar (K)=f(K) for any K-bar K(X). We prove that the topological entropy of f-bar is greater or equal than the topological entropy of f, and this inequality can be strict. On the other hand, we prove that the topological entropy of f is positive if and only if the topological entropy of f-bar is also positive

  11. Topological entropy for induced hyperspace maps

    Energy Technology Data Exchange (ETDEWEB)

    Canovas Pena, Jose S. [Departamento de Matematica Aplicada y Estadistica, Universidad Politecnica de Cartagena, 30203 Cartagena, Murcia (Spain)]. E-mail: Jose.canovas@upct.es; Lopez, Gabriel Soler [Departamento de Matematica Aplicada y Estadistica, Universidad Politecnica de Cartagena, 30203 Cartagena, Murcia (Spain)]. E-mail: Gabriel.soler@upct.es

    2006-05-15

    Let (X,d) be a compact metric space and let f:X->X be continuous. Let K(X) be the family of compact subsets of X endowed with the Hausdorff metric and define the extension f-bar :K(X)->K(X) by f-bar (K)=f(K) for any K-bar K(X). We prove that the topological entropy of f-bar is greater or equal than the topological entropy of f, and this inequality can be strict. On the other hand, we prove that the topological entropy of f is positive if and only if the topological entropy of f-bar is also positive.

  12. Entropy statistics and information theory

    NARCIS (Netherlands)

    Frenken, K.; Hanusch, H.; Pyka, A.

    2007-01-01

    Entropy measures provide important tools to indicate variety in distributions at particular moments in time (e.g., market shares) and to analyse evolutionary processes over time (e.g., technical change). Importantly, entropy statistics are suitable to decomposition analysis, which renders the

  13. Microscopic entropy and nonlocality

    International Nuclear Information System (INIS)

    Karpov, E.; Ordonets, G.; Petroskij, T.; Prigozhin, I.

    2003-01-01

    We have obtained a microscopic expression for entropy in terms of H function based on nonunitary Λ transformation which leads from the time evolution as a unitary group to a Markovian dynamics and unifies the reversible and irreversible aspects of quantum mechanics. This requires a new representation outside the Hilbert space. In terms of H, we show the entropy production and the entropy flow during the emission and absorption of radiation by an atom. Analyzing the time inversion experiment, we emphasize the importance of pre- and postcollisional correlations, which break the symmetry between incoming and outgoing waves. We consider the angle dependence of the H function in a three-dimensional situation. A model including virtual transitions is discussed in a subsequent paper

  14. Maximum entropy methods

    International Nuclear Information System (INIS)

    Ponman, T.J.

    1984-01-01

    For some years now two different expressions have been in use for maximum entropy image restoration and there has been some controversy over which one is appropriate for a given problem. Here two further entropies are presented and it is argued that there is no single correct algorithm. The properties of the four different methods are compared using simple 1D simulations with a view to showing how they can be used together to gain as much information as possible about the original object. (orig.)

  15. Entropies of the automata networks with additive rule

    Institute of Scientific and Technical Information of China (English)

    Guo-qingGU; GeCHEN; 等

    1996-01-01

    The matrix presentation for automata networks with additive rule are described.A set of entropy theorems of additive automata network are proved and an analytic formula of its entropy is built.For example,we proved that the topological entropy is identically equal to metric entropy for an additive antomata network.

  16. Optimization of rainfall networks using information entropy and temporal variability analysis

    Science.gov (United States)

    Wang, Wenqi; Wang, Dong; Singh, Vijay P.; Wang, Yuankun; Wu, Jichun; Wang, Lachun; Zou, Xinqing; Liu, Jiufu; Zou, Ying; He, Ruimin

    2018-04-01

    Rainfall networks are the most direct sources of precipitation data and their optimization and evaluation are essential and important. Information entropy can not only represent the uncertainty of rainfall distribution but can also reflect the correlation and information transmission between rainfall stations. Using entropy this study performs optimization of rainfall networks that are of similar size located in two big cities in China, Shanghai (in Yangtze River basin) and Xi'an (in Yellow River basin), with respect to temporal variability analysis. Through an easy-to-implement greedy ranking algorithm based on the criterion called, Maximum Information Minimum Redundancy (MIMR), stations of the networks in the two areas (each area is further divided into two subareas) are ranked during sliding inter-annual series and under different meteorological conditions. It is found that observation series with different starting days affect the ranking, alluding to the temporal variability during network evaluation. We propose a dynamic network evaluation framework for considering temporal variability, which ranks stations under different starting days with a fixed time window (1-year, 2-year, and 5-year). Therefore, we can identify rainfall stations which are temporarily of importance or redundancy and provide some useful suggestions for decision makers. The proposed framework can serve as a supplement for the primary MIMR optimization approach. In addition, during different periods (wet season or dry season) the optimal network from MIMR exhibits differences in entropy values and the optimal network from wet season tended to produce higher entropy values. Differences in spatial distribution of the optimal networks suggest that optimizing the rainfall network for changing meteorological conditions may be more recommended.

  17. Entropy Generation Analysis of Desalination Technologies

    Directory of Open Access Journals (Sweden)

    John H. Lienhard V

    2011-09-01

    Full Text Available Increasing global demand for fresh water is driving the development and implementation of a wide variety of seawater desalination technologies. Entropy generation analysis, and specifically, Second Law efficiency, is an important tool for illustrating the influence of irreversibilities within a system on the required energy input. When defining Second Law efficiency, the useful exergy output of the system must be properly defined. For desalination systems, this is the minimum least work of separation required to extract a unit of water from a feed stream of a given salinity. In order to evaluate the Second Law efficiency, entropy generation mechanisms present in a wide range of desalination processes are analyzed. In particular, entropy generated in the run down to equilibrium of discharge streams must be considered. Physical models are applied to estimate the magnitude of entropy generation by component and individual processes. These formulations are applied to calculate the total entropy generation in several desalination systems including multiple effect distillation, multistage flash, membrane distillation, mechanical vapor compression, reverse osmosis, and humidification-dehumidification. Within each technology, the relative importance of each source of entropy generation is discussed in order to determine which should be the target of entropy generation minimization. As given here, the correct application of Second Law efficiency shows which systems operate closest to the reversible limit and helps to indicate which systems have the greatest potential for improvement.

  18. Logarithmic terms in entanglement entropies of 2D quantum critical points and Shannon entropies of spin chains.

    Science.gov (United States)

    Zaletel, Michael P; Bardarson, Jens H; Moore, Joel E

    2011-07-08

    Universal logarithmic terms in the entanglement entropy appear at quantum critical points (QCPs) in one dimension (1D) and have been predicted in 2D at QCPs described by 2D conformal field theories. The entanglement entropy in a strip geometry at such QCPs can be obtained via the "Shannon entropy" of a 1D spin chain with open boundary conditions. The Shannon entropy of the XXZ chain is found to have a logarithmic term that implies, for the QCP of the square-lattice quantum dimer model, a logarithm with universal coefficient ±0.25. However, the logarithm in the Shannon entropy of the transverse-field Ising model, which corresponds to entanglement in the 2D Ising conformal QCP, is found to have a singular dependence on the replica or Rényi index resulting from flows to different boundary conditions at the entanglement cut.

  19. Entanglement Entropy of AdS Black Holes

    Directory of Open Access Journals (Sweden)

    Maurizio Melis

    2010-11-01

    Full Text Available We review recent progress in understanding the entanglement entropy of gravitational configurations for anti-de Sitter gravity in two and three spacetime dimensions using the AdS/CFT correspondence. We derive simple expressions for the entanglement entropy of two- and three-dimensional black holes. In both cases, the leading term of the entanglement entropy in the large black hole mass expansion reproduces exactly the Bekenstein-Hawking entropy, whereas the subleading term behaves logarithmically. In particular, for the BTZ black hole the leading term of the entanglement entropy can be obtained from the large temperature expansion of the partition function of a broad class of 2D CFTs on the torus.

  20. Excess entropy scaling for the segmental and global dynamics of polyethylene melts.

    Science.gov (United States)

    Voyiatzis, Evangelos; Müller-Plathe, Florian; Böhm, Michael C

    2014-11-28

    The range of validity of the Rosenfeld and Dzugutov excess entropy scaling laws is analyzed for unentangled linear polyethylene chains. We consider two segmental dynamical quantities, i.e. the bond and the torsional relaxation times, and two global ones, i.e. the chain diffusion coefficient and the viscosity. The excess entropy is approximated by either a series expansion of the entropy in terms of the pair correlation function or by an equation of state for polymers developed in the context of the self associating fluid theory. For the whole range of temperatures and chain lengths considered, the two estimates of the excess entropy are linearly correlated. The scaled bond and torsional relaxation times fall into a master curve irrespective of the chain length and the employed scaling scheme. Both quantities depend non-linearly on the excess entropy. For a fixed chain length, the reduced diffusion coefficient and viscosity scale linearly with the excess entropy. An empirical reduction to a chain length-independent master curve is accessible for both dynamic quantities. The Dzugutov scheme predicts an increased value of the scaled diffusion coefficient with increasing chain length which contrasts physical expectations. The origin of this trend can be traced back to the density dependence of the scaling factors. This finding has not been observed previously for Lennard-Jones chain systems (Macromolecules, 2013, 46, 8710-8723). Thus, it limits the applicability of the Dzugutov approach to polymers. In connection with diffusion coefficients and viscosities, the Rosenfeld scaling law appears to be of higher quality than the Dzugutov approach. An empirical excess entropy scaling is also proposed which leads to a chain length-independent correlation. It is expected to be valid for polymers in the Rouse regime.